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Results

ABSTRACT
Multiple matrix sampling (MMS) procedures were

utilized to determine the necessary parameters of a Pearson Type I
curve. Empirical norms distributions were approximated by both the
Type I model and the negative hypergeometric model. Four existing
ITED norms distributions, two subtests and two grades, were
approximated by the MMS procedures. Two sampling designs for each
test-grade combination were studied. Comparison of approximations
obtained for the Type I curve and the negative hypergeometric curve
supported the use of the Type I curve for determining test score
distributions of large populations. (Author)
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Lord (1962) and others (Kieinke, 1972; Plumlee, 1964; ShoemSker,

1970) have contended that more representative samples of students could

be obtained for the national norms of standardized achievement tests

4
if less examinee time were requested. They proposed an item sampling

\
pieN plan or a multiple matrix sampling aiRS) plan to reduce the amount of

,,

time needed per examinee. To use matrix sampling for this purpose, it is

assumed that normative distributions conform closely to one or another

theoretical probability distribution. The normative testing enables

the testing agency to estimate the parameters of the assumed theoretical

probability model. Then, an estimate of the entire norms distribution

E.14
(i.e., the distribution obtained when all examineet take all items) is

derived frow this theoretical model.

Past research in this area has primarily involved the use of the

negative hypergeometric distribution as the model for the estimated

norms distribution (Lord,.1962; Shoemaker, 1970). Recently, however,

Brandenburg and Forsyth (1973) have found that the empirical norms dis-

tributions of certain types of standardized tests can be approximated

more adequately by using a Pearson Type I curve (Pearnon and Johnson,

1968) rather than the negative hypergeometric model. The Brandenburg

and Forsyth (1973) study was notanliaS or item sampling study. They
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utilized the entire norms distribution for each test to compute the

necessary parameters of both the negative hypergeometric (first two

moments required) and the Pearson Type I model (first four moments re-

quired).

When the two theoretical cumulative distributions were reproduced

using the moments of the empirical data, the Type I model- was-- found-to--

fit the observed data more Closely. Since the Pearson Type I model re-

quires estimates of the first four moments of the norms distribution and

since these higher moments.of a distribution are known to have a high

.degree of sampling error, it seemed reasonable to investigate the superior-

ity of the Pearson Type I model under MMS conditions. The primary purpose

of this study was to compare the adequacy of these two probability models

for approximating entire norms distributions when MMS procedures were ut-

ilized to estimate the distribution parameters.

PROCEDURES

Multiple Matrix Samplin

A multiple matrix sampling experiment consists of administering samples

of items (i.e., eubtests) from a pool of items (or a test) to samples of

examinees from some well-detined population. The random samples of examinees

are given either completely non-overlapping sets of items (i.e., the items

are sampled without replacement) or potentially overlapping sets of items

(i.e., the itams ace sampled without replacement for each subtext but with

replacement between subtelAa).

The basic purpose of MMS is to make inferences about the scores of

the population of examinees on the population of items. For example, in

curriculum evaluations, the evaluator may be interested in the estimating

\_/
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of the mean score for the population on a number of different cri-

terion measures. Rather than give the entire set of instruments to

all students, he may use an MMS approach to estimate the means.

In order to make inferences about the total population of items

and examinees, it is necessary to extrapolate the information in each

matrix-sample. Thus, tor example, if in the curriculum evaluation

project mentioned above, ten samples (subtexts) of items were given

to ten samples of students, the information from each sample is utilized

iesome way to provide an estimate of the mean of all examinees on all

items. For a more detailed discussion of the mechanics of these opera-

tions, the reader is referred to Shoemaker (1971a) and Knapp (1972).

Theoretical Models Utilized

This study was primarily concerned with the use of the HMS concept

to estimate the parameters of two theoretical probability models: Pearson

Type I and negative hypergeometric. With the numerical value of its

parameters, thus specified, each model would. then serve as an approximation

for the entire norms distribution.

The Pearson Type I model requires the estimation of four parameters

(mean, variance, a skewness index anda kurtosis index). The estimation

of these quaotitiee was accomplished primarily through the use of !Ardis

(1960) formulas for estimating thf moments of a X-item test from the mo-

menta of a iv-item test (It > k).

The first around zero moment, (111) and the next three central moments

629 173, I4) were further adjusted to obtain unbiased estimates of the

population parameters when examinee sampling is also assumed. These for-

mulas are shown on the following page:
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Mean:

Variance:

A A

U1 V (1)
1

P 111 1.1 (2)
2 n - 2

Third Central Moment 2

(Cramer, 1946):

Fourth Central Moment
(Cramer, 1946):

U3 (n 1)(n - 2) U3 (3)

n(n
2
- 2n + 3)

U4 (n - 1)(n - 2)(n - 3) U4

3n (2n - 3)
(4)

A 2

Ca - 1) (n - 2) (n - 3) (u2)

To specify a particular Pearson Type I curve, the four moments must be

converted to coefficients of skewness and kurtosis. For a single matrix

sample, the coefficients of skewness and kurtosis could be estimated as

follows (population coefficients are given also):

Population Matrix Sample

A ASkewness: /7-- u
3
/u

2

3/2
(5) U

3
/ti

2

3/2
1

" AKurtosis: 0
2

U
4
/U

2
(7) 8

2
U
4
/U

2

2

(6)

(8)

However, when several sets of matrix sample data are available

for estimating a given parameter, there exists at least two ways of

combining this data. The moments estimated from each matrix sample

could be combined to estimate the population second, third and fourth

moments. From these estimates, skewness and kurtosis indices could

be computed (average moment method). Or alternatively, estimates of

the skewness and kurtosis indices could be obtained from the moments of

each matrix sample and combined to yield overall estimates of the indices
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(average ratio method). Fun. the data obtained ie the MS experimsnts,

both methode appearsd se yIeld equelly good estimates of the coefficients.

However, when the Type I and negative hypergeometsic curves were con-

structed from the two sets of cow:tic-Sent!), the "average sement" method

gave better results. The results reported in thie study were those

associated with the "average =Lest" methal.

Data Sources

The available score distributions for this study were based on the

Iowa Tests of Educational Development (Lindquist and Feldt, 1970). Thirty-

six distributions of score? (9 testa et 4 grades) obtained from the 1971

Iowa high school testing program were available. From this pool of data,

the scores from two grade?, 9 and 12, and two tests, Quantitative Thinking.

(Q) and Use of Sotrces of Information (SI), were chosen for study. These

four distributions represented extremeS in skewness and a sizeable range

in the kurtoeie index. The descriptive data related to these distributions

are given in Table 1.

(Insert TOle 1 about here)

11.111,111114.1.1.M.111.40/0011.0 *Mb 111

Item and Examinee Desi

This inesstleatie& ass a post messes or pout hoc experiment. That

is, the norms distributions were knows, anu from therm distribution items

and examinees were selected esiag sevesal MS designs.

Four restrictions were placed on the sampling designs. First,

the items and esamineee were sampled without replacement for all

matrix samples. Tao rutriction was made to limit the scope and cost

of the study, and in recognition of Shoemaker's results (1971a, 1971b,



-6-

and 1972). Shoemaker has shown only small differences between over-

lapping and ronoverlapping item sampling. Secondly, it was arbitrarily

decided that the number of items in each matrix should oe no more than

1/4 of the total number of itemc. This meanc that the number of matrix

samples would be at least four. Thirdly, within each design the number

of items (k) and the number of examinees (n) were constant for, each

matrix sample. Finally, the number of examinees for each matrix sample

was set at 500. Although most NHS studies have not utilized sample sizes

that large, such a number of examinees per matrix sample did not seem

unreasonable since the purpose was to approximate entire norms distributions.

Given these restrictions, the two tests chosen for this study ex-

hibit different problems in choosing item sampling designs. The Quan-

titative test is composed of 36 items which is easily divisible into the

following k by t (number of items by number of subtests) designs:

4 x 9, 6 x 6, 9 x 4. Following Shoemaker's suggestion (personal communi-

cation, 1972), the 4 x 9 plan for the Quantitative test was eliminated.

The other two plans were implemented for grade 9 and grade 12 populations.

The 46-item Sources of Information test did not lend itself to a

similar variety of simple designs. If it is required that every item be

placed in one or another matrix, a test of this length permits only two

sampling plans: 2 x 23 and 23 x 2. The first of these has too few items

per matrix to make possible the necessary entimstes of moueLts, and

the second has more than the maximum allowable proportion of items

per subtext. On the basis of published real:to (Shoemaker, 1971b), it

was concluded that the random, exclusion of on or two items from ell

subtests would not seriously affect the accuracy of the estimates of

the moments. Thus, two sampling plans were adopted: four subtests of
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eleven items each (11 x 4) and five subtests of nine items each (9 x 5).

It should be noted that despite the exclusion of one or two items, the

distribution moments that were estimated from the data were for a 46-item

test. A summary of the designs for both tests is presented in Table 2.

(Insert Table 2 about here)

111111 11.111

Five replications of each sampling design were carried out in order

to provide an indication of_the variability of the moment estimates

and the corresponding variability of the approximations to the norms

distribution. These five replications of each of two sampling plans

produced 10 approximations of each norms distribution. Since four norms

distributions had been chosen for study, there was a total of 40 repli-

cations of the MMS experiment.

Evaluation of Approximations

After the necessary parameters were estimated from the MMS procedure,

the resultant Pearson Type I and negative hypergeometric curves were

compared to the empirical norms distributions. Four measures of the

discrepancy between the theoretical and empirical distributions were

calculated: a) the maximum absolute difference in the relative fre-

quency for any score interval; b) the mean absolute difference in re-

lative frequency for all intervals; c) a chi-square type index calculat-

ed on relative frequencies (Lord's D index, 1962); and d) the maximum

absolute-difference-in the relatiVe cumulative frequency (rcf). For the

purposes of this study, the last of these indexes (referred to as MDC)

use considered to be the most accurate representation of the results.

As a consequence, it is the only index discussed here. Results for the
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other indices are quite similar, and they may be found in Brandenburg

(1972).

The index MDC is defined as follows:

MDC Maximum overall empirical score points of
lief at X

i for empirical distributiod - ref

at X, for theoretical distributionl.

Thus, MDC represents the maximum ordinate discrepaney--bettasem_the_theore7..

tical and empirical ogives. EXcept for the location of the decimal point,

MDC equals the maximum PR difference overall score points between the

theoretical curve and the "true" curve.

RESULTS AND DISCUSSION

The MDC indices obtained from the five replications for each

test - grade - sampling design combination and each theoretical curve

are presented.in Table 3. In parentheses preceding the data for each

set of ten replications is the MDC index obtained when the moments of

entire norms distribution were used to define the theoretical °give;

and this model vas compared to the empirical ogiveA Each value is

designated as an "original MDC."

(Insert Table 3 about here)

Two observations about these original MDC indices should be

made before additional results ere diecnesed, first, each original

Type I MDC index is less than -ftegatiVa hypergeo-

metric index. Second, the differences between the two original indices

are greater f r the Q-distributions than for the S-distributions.

Given the above observations, It was not surprising to find that
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in 19 of 20 replications related to the Q-test, the Typs I MC index

was less than the corresponding negative hypergeometrie index. In

13 of these 19 replications,the difference between the observed

Type I index and observed negative hypergeometrie was emalle than

the difference between the original indices. However, the median

difference was still approximately -0,027 for q-9 and -.021 for Q-12.

Thus, under the sampling design restrictions;1 this %bitestigation

for the Q-test, the results of the MMS experiment strongly support

the utilization of t'ee Type I model for approximating norms distri-

butions rather than the negative hypergeometric model.

The results related to the S -teat are not nearly as conclusive.

For distribution S-9, the original difference in MDC indices was

-.004108. Thus, for all practical purposes, both models were pro-

viding similar approximations. In only 5 of the 10 replications for

this test was the Type I model better. ,Given the size of the original

difference, ouch a result was not. unexpected. However, it does pro-

vide some evidence that, under the sampling conditions of this study,

the estimation of four moments rather than two does not intramce

an excessive amount of error in the seproxinations.

For distribution S-12, 6 of tha 10 replications yielded better

MX indices for the Type T. model. Since, the original MDC difference

(-.105498) was in favor cf the Type I models chile result was expected

also.

In svmmary, the empirical data of this study seem to support

the utilization of the Type I model. Of course, generalizations

beyond the restrictions oi this study are difficult to make. The

present study concerned a particular type of achievement test data.
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. Without resort to item sampling, it had been established that the norms

distributions for these tesC6 were better approximated by a Type I model.

Also, it is possible that the negative hypergeometric model (which re-

quires estimates of only two parameters) may provide "good" approximations

with smaller sample sizes and hence decrease the cost of obtaining the )IMS

data. It is possible that other sampling designs may produce different

-----
resirEE-11mittrrth-6756111studied here were someWhat "atypical"

in terms of the original MDC values. In a study of 90 empirical distri-

butions (4 of which are used here),Brandenburg and Forsyth (1973) found

that the median MDC index (i.e., originalMDC) for the Type I fit was

.015, and the median MDC for the negattie hypergeometric fit was .033.

Thus, the four distributions examined in this study had above "average"

MDC indices. Perhaps other distributions with smaller original MDC

indices would not produce similar results. The effect of the above fac-

tors must, of course, be examined before any general conclusions regarding

the Type I model can be made. Nevertheless, the results of the present

study do indicate that future investigations into the use of II'IS pro-

cedures for the purpose of approximating norms distributions should in-

clude the Type I model.

ADDITIONAL COMMENTS

General conclusions involving test differences or grade difference

-from Type I approximations are difficult to make from fable 3. There are,

however, noticeable differences betWeen designs within each test-grade

combination. For Q, the 9 x.4 design yielded better results than the

6 x 6 design. This does not substantiate Shoemaker's (1971a) statement

that all sampling designs with equal values of the product (t)(k)(n) give

essentially the same standard error for estimated parameters. Shoemaker,



however, based his inference on mean and variance estimation, whereas

our MDC data involved the estimation of four parameters.

Shoemaker (personal conmunication,"1972) indicated that a greater

number of items per subtests may be used to better estimate the higher-

order moments. This is true for MMS results for Q. Howeirer, it is

not true for the MMS results for S; better results (lower MDC values)

were achieved for the 9 x 5 design compared to the 11 x 4 design. But

the interpretation of this reversal is confounded somewhat by factors

affecting these results and not the Q results. Although the 11 x 4 design

uses 2 more items per subtest, it also omits 2 items, whereas the 9 x 5

design only omits 1 item. Furthermore, the 9 x 5 design has 500 more ob-

servations per replication.

Also, it may be observed from Table 3 that 7 of the 40 MMS-derived

Type I approximations and 18 of the 40 MMS-derived negative hypergeometric

approximations yielded MDC indices less than their respective original MDC

indices obtained from approximations using the norms distribution moments.

This means that the use of population moments does not guarantee a "best-

fitting" curve. In general, however, the original MDC index was for all

practical purposes a lower bound for the obtained MDC indices from MMS.

The Type I approximations of the four norms distributions from the

MMS experiments had MDC indices about .015 larger than their corresponding

original MDC indices. Thus, it might be hypothesized that even for relatively

good original MDC indices (say, less than .015) the MDC indices from the MMS

technique would be near .030. If this hypothesis is assumed to be true, and

if it is also assumed that the possibility of good norms approximations are

greatest when a post mortem-tYpe design is utilized, the MMS results may

not be very encouraging. On the other hand, if biased populations are

obtained via the traditional standardization procedures, then these results



-12-

may be viewed quite positively.

Also, it should be noted that the MIX indices were computed on

the basis of the raw score norms distributions before any smoothing

had been undertaken. Since most test publishers would_smooth the

obtained raw score distributions before assigning percentile ranks,

it is possible that the norms distribution ,mbmed from MMS tech-

niques would approximate the smoothed distributions better than the un -

smoothed distributions.



-13-

Table 1

Descriptive Data For the Four Tests

Test & No. of
Grade Items N Mean(pi) Variance(p2) Skewness(Vii) Kurtosis(02)

Q-9 36 16,867 12.143 33.551 0.8559 3.4573

Q-12 36 11,581 17.820 66.489 0.3402 2.1100

SI-9 46 16,867 22.304 62.949 0.2027 2.2319

SI-12 46 11,581 29.058 74.220 -0.4918 2.3925
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Table 2

MS Sampling Designs (t/k/n)

Test
Grade

9 12

Quantitative (Q) 6/6/500* 6/6/500
4/9/500 4/9/500

Sources of 5/9/500 5/9/500
Information (SI) 4/11/500 4/11/500

*The first number represents subtexts, the second
the number of items on each subtext, and the third
the number of examinees taking each subtext.
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Table 3

MDC Values

(TI -NH)

k x t MDC -Type I MDC --Neg. Hyp. DIFF
Test-Grade Design (.021232)* (.047654) ( -.026422)

R1 .029929 .058785 -.028850

R2 .035248 .042731 -.007483

6 x 6 R3 .045532 .062194 -.016662

1(4 .044109 .034803 +.009306

R5 .028778 .060987 -:032209

Q-9

Ri .019368 .053258 -.033890

R2 .039317 .067945 -.028628

9 x 4 R3 .014036 .043052 -.029016

R
4

.028100 .054013 -.025913

R5. .033013 .052195 -.019182

(.021541) (.050193) (-.028652)

Ri .036305 .046241 -.009936

R2 .039912 .064887 -.024975
.6 x 6

R3 .030392 .058305 -.027913

1(4 .028969 .057338 -.028369

R5 .031347 .048560 -.017213

Q-12

R, .020191 .050880 -.030689

R2 .053794 .056605 -.002811

9 x 4 R
3

.027561 .051635 -.024074

1(4 .033359 .049260 -.015901

R
s

.032023 .047143 -.015120

*Numbers in parentheses are the "original" MDC values calculated when pop-
ulatiommoments and the given models were used to fit the empirical norms.
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k x t

Table 3 (cont.)

MAC Values

MDC-Type I MDC-Neg. Hyp.
(TI-NH)

DIFF
Test-Grade Design (.042927)* (.047035) (-.004108)

R
1

.066313 .068373 -.002060

R
2

.071241 .055280 +.015961

11 x 4 R
3

.047555 .053200 -.005645

R
4

.052957 .040040 +.012917
R
5

.036337 .032900 +.003437
8-9

R
1

.040228 .046565 -.006337

R
2

.046792 .042747 +.004045

9 x 5 R
3

.036583 .041477 -.004894

R
4

.044829 .043297 +.001532

R
5

.040741 .043557 -.002816

(.017199) (.032697) (-.015498)

Ri .031203 .047869 -.016666

R
2

.043915 .043399 +.000516
11 x 4

R
3

.026028 .029613 -.003585

R
4

.034280 .055394 -.021114

R
5

.034280 .028068 +.006212
8-12

R
1

.019118 .034215 -.015097

R
2

.035228 .034104 +.001124

9 x 5 R
3

.050286 .042598 +.006688

R
4

.017334 .032830 -.015496

R5 .025612 .030752 -.005140

*Numbers in parentheses are the "original" NW values calculated when pop-
ulation moments and the given models* were used to fit the empirical norms.
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