ED 075 484
AUTHOR

TITLE
INSTITUTION
SPONS AGENCY
REPORT NO
PUB LCATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME

"TM 002 562

Whitely, Susan E.; Dawis, Rene V.

The Nature of Objectivity with the Rasch Model.
Minnesota Univ., Minneapolis. Center for the study of
Organizational Performance and Human

Effectiveness.

Office of Naval Research, Washington, D.C. Personnel
and Training Research Programs Office.

TR-3008

2 Jan 73

29p.

MF-$0.65 HC-$3.29

¥*Equivalency Tests; *Item Analysis; *Mathematical
Models; *Measurement Instruments; Psychometrics;:
Statistical Studies; Technical Reports; *Test
Construction

*Rasch Model

Although it has been claimed that the Rasch model

leads to a higher degree of objectivity in measurement than has been
previously possible, this model has had little impact on test
development. Population-invariant item and ability calibrations along
with the statistical equivalency of any two item subsets are
.supposedly possible if the item pool has been calibrated by the Rasch
model, Initial research has been encouraging, but the relation of
underlying assumptions and computations in the Rasch model to trait
theory and trait measurement has not been clear from previous work.
The current paper presents an analysis of the conditions under which
the claims of objectivity will be substantiated, with special
emphasis on the nature of equivalent forms. It is concluded that the
real advantages of the Rasch model will nct be apparent until the
technology of trait measurement becomes more sophisticated.

{Author)



FILT\TEP FROM BEST AVAILABLE COPY

'
Le

)

5
THE CENTER FOR THE STUDY OF
ORGANIZATIONAL PERFORMANCE
B AND |
G _ HUMAN EFFECTIVENESS
(S |
7 ‘ University of Minnesbta
: Minneapolis, Minnesota
N Office of Naval Research Contract
ey ONR N00014-88-A-0141-0003
C‘)
==
=

Approved for public release; distribution unlimited




ED Q75484

Prepared for
PERSONNEL AND TRAINING RESEARCIi PROGRAMS

PSYCHOLOGICAL SCIENCES DIVISION
OFFICE OF NAVAL RESEARCH

_ Contract Ho. 00014-68-4-0141-0003
Cratract Authority Identification Number, NR No. 151-323

THE NATURE OF OBJECTIVITY
WITH THE RASCH MODEL

Susan E. Whitely and Rene' V. Dawis

Technical Report No. 3008

This document has been approved for public release and gale; its
distribution is unlimited. Reproduction in whole or in part is
permitted for any purpose of the United States Governmepnt.



ERIC

Aruitoxt provided by Eic:

Securrty Cla it ation

DOCUMENT CONTROL DATA-R & D

eSevarrate L ofae i o trete s Lo b abictract arisd tocde singt annotatgest aast e ebifered wliess the oserat) repart is cloastfiely

TONIGINA TING AL TIVIT Y (Uorparate -‘lll”ll)]) QAL HLPORT SEFCUIITIY CLASIFICATION
The Center for the.Study of Organizational Performance| |mr1aAcSIFIED
and Human Effectiveness e creur
University of Minnesota, Minneapolis, Minnesota 55455

3 REPOR! TITLE

The Nature of Objectivity with the Rasch Model

4. DESCHRIPTIVE NOTES (Type ol report and, inclusive dums)v o
Technical Report No. 3008

5. AUTHORIS! (First name, middle initial, taost name)

Susan E. Whitely and Rene' V. Dawis

6. REPORT DATE 78, TOYTAL NO. OF PAGES 7b. NO. OF REFg
2 January 1973 25 11
Ba. CONTRACT OR GRANT NO. - 98, CRIGINATOR®S REPORT NUMBERI(S)
N00014~-68~A-0141-0003
b. PHOJECT NO. ' 3008
NR 151-323
c. 9. OTHER REPORT NOI{S) (Any other numbery that may be assigned
this report)
d.

10. DISTRIBUTION STATEMENT

Appfoved for public release; distribution unlimited

1. SUPPLEMENTARY NOTES 12, SPONSORING MILITARY AGTIVITY

Personnel and Training Research Programs
Office of Naval Research
Arlington, Virginia 22217

13. ABSTRACT

Although it has been claimed that the Rasch model leads to a higher degree of
objectivity in measurement than has been previously possible, this model has had
little impact on test development. Population~invariant item and ability cali-
brations along with the statistical equivalency of any two item subsets are
supposedly possible if the item pool has been calibrated by the Rasch model. Initial
research has been encouraging, but the relation of underlying assumptions and
computations in the Rasch model to trait theory and trait measurement has not been
clear from previous work. The current paper presents an analysis of the conditions
under which the claims of objectivity will be substantiated, with special emphasis
on the nature of equivalent forms. It is concluded that the real advantages of the
Rasch model will not be apparent until the technology of trait measurement becomes
more sophisticated. v

DD |FN°onM651473 (PAGE 1)

/N NN _anr.caes




Secunty Classifivation

KEY WORDS

LINK a

LiINK D

LiNx ¢

ROLE

wT

ROLE

wT

ROLE w T

Rasch model

Test equivalence
Objective measurement
Test development.

FRICD 1473 exco

rrrrn ¥ 0101-807-6821

Security Claasification

A=31409




The Nature of Objectivity
With the Rasch Model

Susan E. Whitely and Rene' V. Dawis

A new kind of item analysis, originally formulated by Rasch (1960, 1966z,
1966b), is now available for use in developing measures of unidimensional
traits. Wright (1968), one of the first researchers to operationalize the
Rasch model, claims that the use of this model leads to an objectivity in
measurement which is not possible under classical approaches to test develop-
ment. According to Wright (1968), tests calibrated by the Rasch model will
have the following characteristics: 1) the calibration of the measuring in-
strument is independent of the sample and 2) the measurement of a person on
the lateunt trait is independent of the particular instrument ;sed. A psy-
chological test having these objective characteristics would become directly

_analogous to a yardstick that measures the length of objects. That is, the
intervals on the yardstick are independent of the length of the objects and
the length of individual cbjects is interpfetable without respect to which
particulai yardstick is used. In contrast, tests developed according to
the classical model have neither characteristic. The score obtained by a
person is not interpretable without referrimg to both some norm group and
fhe particular test form used.

Wright and Panchapakesan (1969) claim that objective measurement is
now possible because the Rasch model has the following properties: 1) the
estimates of the ftem difficulity parameter will not vary siénificantly over
different populatioms of people, 2) the estimates of a person's ability,
given a certain raw score, will be invariant over different populations

and 3) estimates of a person's ability from amy calibrated subset of items

will be statistically equivalent. If these properties are truly character-
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istic of the Rasch technique, it would seem that mental measurement would

be revolutionized. No longer would equivalent forms need to be carefully
developed, since measurement is instrument independent and any subset of

the calibrated item pool could be used as altermative instruments. Simi-
larly, independence of measurement from a particular population norm im-
plies that tests can be used for persons dissimilar from the standardization
population without the necessity of collecting new norms.

To date, however, the Rasch technique has had little apparent impact.
No major attempt at test development has yet been reported. The reasons for
this are not clear, particularly since initial research has been encouraging.
Both item and ability parameters have been found to be population-invariant
(Anderson, Kearney and Everett, 1968; Brooks, 1965; Timsley, 1971). Further-
more, the model appeafs to be robust with respect to several of the under-
lying assumptions (Panchapakesan, 1968). However, little evidence on the
equivalency of item subsets has been presented, nor is it clear from Wright
and Panchapakesan's (1969) paper how the model accomplishes either item-
invariance or population-invariance of the estimated parameters.

The major purpose of the present paper is to determine how the Rasch
model's underlying assumptions, computational procedures and trait theory
interact to produce item- and populafion-invariant parameters. The equiva-
lency of item subsets will be given special attention by presenting some
empirical data in addition to determining thoroughly the nature of subset

equivalency.

The Rasch Model

The Rasch model is a latent structure model which is based on the out-
come of the encounter between persons and items. The model seeks to repro-

duce; as accurately as possible, the probabilities (of passing) in the cells



<3~

of an item-by-score-group matrix, in which persons obtaining the same raw
score are grouped together. Table 1 presents an item-by-score-group matrix
in which k items are ordered by their difficulty level and k-1 score groups
by obtained raw scores. The score groups for which all items are either
passed or failed are excluded from the matrix, since these extreme score
groups provide no differential information about the items. The cell entries
reprasent the pfobability, Pij’ that item 1 will be passed by score group j.
The Rasch model is a function which is designed to reproduce these propor-
tions or probabilities Ly use of only two parameters, item easiness and per-

son ability, in the following manmner:

A, x Ei where
¢9) Pij = ij:TZE_E_ET Aj = ability parameter for score
3 1 group j
and
Ei = easiness parameter for item i

Assumptions. The most basic assumption made by the Rasch model is uni-
dimensionality of the item pocl. If subjects are grouped according to total
score, within each group there should be ro remaining significant correlations
between items. This means that all of the covariation between the items is
accounted for by variation of persons on the latent trait to be measﬁred.

Referring again to Table 1, the item~by-score-group matrix, unidimen-
sionality implies that for each item, Pi

is less than Pi and P1 is less

1 2 2
than P13 and so on to Pi,k-l’ so that the probability of passing the item
increases regularly with total score. Each item, then, orders subjects in
the same way.

A secovnd asgumption,; required for comjoint mcasurement of subjects and
items, is that items are ordered in the tame way within each score group,

On the item-by~-score-group watrix, this implies that P,, is less than P,

1j 2j

and P2j is less than P3j’ etc. to ij, within each score group. It is as-
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sumed that both of these ordering conditions will hold true for any popula-
tion, regardless of the mean value of the latent trait.

Two additional assumptions must be made in order to apply the simple
logistic model propésed by Rasch. All items must have equal discrimination,
that is, the rate at which the probability of passing the item increases with
total score must be equal for all items. Also, there must be minimal guessing
so that the probability of passing an item'by chance is minimized.

As summarized by Wright and Panchapakesan (1969), it is assumed that the
only way in which items differ is in easiness. Although on the surface this
seems to lead to a very restricted applicability of the model,'several re-
searchers have claimed the model is robust with respect to significant depar-
tures from these assumptions (Anderson, Kearney and Everett, 1968; Panchapa-
kesan, 1969; Wright and Panchapakesan, 1962). However, as will be pointed out
in this paper, the population-invariance feature of the Rasch model with re-
spect to item calibration is actually an assumption, and the amount of depar-
ture from this feature depends directly on the degree to which there is an
"interaction effect" between populations and items.

Estimating the parameters. An understanding of how the item and person
parameters are determined necessitates converting the cell probabilities into
likelihood ratios.1 Likelihood ratios are simply betting odds, the ratio of
the probability of passing to the probability of failing. In terms of likeli-
hoods, the cells are to be reproduced by the simple product of item easiness

and person ability values as follows:

5
2) 1 Pij = Aj X Ei

Accordingly, the likelihoods in the cells of the item-by-score-group matrix

are reproduced from the values associated with the row and column marginals.
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The person ability value represents an indication of the likelihood that a
person will pass an item in the set, whereas the item easiness value indicates
the likelihood the item will be passed. How these likelihoods are derived
constitute the major concernm in this section.

The initial values for ability and easiness are directly derived from
the values in the corresponding row or column. Item easiness is estimated
by the k-1 root vf the product of the score group likelihoods, as follows:2

k-1/ P, " P P, where k-1 = the
3) E, = // 1L /. 12 \ o (;——34551—‘ number of score

N \% “Pi k} - PiZ/ - Pi,k-l groups

Thus, the item parameters are initially estimated by the geometric mean of
the likelihoods across score groups. The comparable initial values for per-
son ability can be similarly obtained by taking the geometiic mean across

items, as follows:

| Y RT Pai N .o/ By
) Ay F 1~P.£vP T-p .|
. 1j

Y Zj \ kj/ /

Thus, it can he seen that the initial ability estimate for a score group is

the "average" likelihood of passing an item in the set.

Both the initial values and the final values are usually reported as log
likelihoods rather than simple likelihoods. The log likelihood for an item
easiness estimate, di’ is simply the arithmetic mean of the log likelihoods
over score groups, as follows:

Zti ’

(5) di = “E:%' where tij = cell log likelihoods

and, of course, the antilog of this value is Ei' Similarly, the arithmetic

mean of the log likelihor 1s over items estimate the log ability estimates,

bj’ as follows:

. Zti'
(6 bj = k
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The log likelihood scale for item easiness and person ability is related to
the probability a score group will pass an item, as given by the following

equation:
. exp (b, +d,)
7 »,,= l__1

1 1+exp G +3d)

3

Using log likelihoods rather than simple likelihoods has two advantages.
The first is the obvious computational advantage. Second, the estimate of
the log likelihood of any cell in the matrix is the simple sum of log Aj and
log Ei as fpllows:

(8) tyy =0+ 4 '
Thus, on the logarithmic scale, the likelihéod that a person will pass an
item 1s given by the simple addition of his abilitv and the item's easinesé.

A computational step in the model which is important in the firal inter-
pretation is the anchoring of the parameters. Since item and person param-
eters are conjointly estimated from the same function, a unique solution is
not specifie&. To provide an anchor for the item easiness estimates, the
wean of the item log likelihoods is set equal to zero by subtracting the
grand mean of the matrix, t , as follows:

(9) 1log Ei = di =t - t

Similarly, the person ability estimates must also be adjusted to correspond
to the anchoring of the item easiness estimates by setting the mean log like-
lihood for ability equal to zero as follows:

10 log A,=b, =t , - ¢
(10) 8 3 J o] e

Thus, as with items, the grand mean is subtracted from the parameter esti-
mated for each score group.
In terms of simple likelihoods, both the mean item easiness likelihood

and mean person ability 1likelihood is set at 1.0. The importance of this
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anchoring will become clear in the discussion on precision of item subsets.
The final item and person parameter estimates are determined by the
maximum likelihood procedure developed by Wright and Panchapakesan (1969).
This procedure simultaneously solves two sets of equations until the esti-
mates converge from one iteration to the next. The first condition to be
satisfied is maximum predictability of the observed frequencies of passing
each item for each score group from the estimated parameters of the model.

This is given by the following equation:

k-1
(1) ay = jil (rj exp [bj + di])/(l + exp [bj + di])
where r, = number of persons in score
group j
and a4 = number of persons passing
item {1

The second condition is maximum predictability of obtained raw scores from

a sum of the predicted probabilities, that the score group will pass

Pij,
each individual item, This condition is given by the following equation:

k A
(12) j= I (exp [b, +4.1)/(1 +exp [b, +4d.])
i=1 b 1 J i
where j = raw score for score group

The final estimated parameters, then, maximize the fit of the model to the

data in the item-by-score-group matrix.

Item calibration and unweighted score groups. Whetner the model is
conceptualized in terms of simpie likelihoods.ér log likelihoods, it is
important to notice that each cell in the item-by-score-group matrix has

 equal weight in determining the initial estimates of the parameters. The
observed likelihoods of passing an item are summed over to-estimate the in-

itial item easiness parameters, without respect to the_size of the groups

obtaining each raw score. It makes no difference, then, if the estimates

come from a high-ability population, where high scores are obtained more fre-
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“han low scores, or from a low-ability population, where the reverse

5 .se. ‘The Rasch model is concerned with reprbducing the observed pat-
tern of likelihoods associated with raw sccre groups. In cpntrast, traditional
item analysis techniques are concerned with the likelihood or probability that
a member of a given populatiqn can pass an item.

This particdiéf feature of the Rasch model is critical with respect to ™
claims about the invariance of item parameters over populatioms. When the
specific characteristics of a population with respect to a latent trait are
not permitted to weight the estimates, the item parameters will be population-

free. However, it is important to notice that this is true only if there is

no "interaction effect' between populations and items. The item parameters

will be invariant only if the same likelihoods are associated with items for
each score group in different populations. The more '"culturally-biased" the
items are, the less likely item parameters are to be invariant over popula-
tions. In the final analysis, then, population-invariance of items is an
assumption of the mo&el.

The shift in emphasis from populations to score groups has.one important
operational implication: huge N's are required. Unlike classical item analy~
sis, each éqore group is used to give independeﬁt estimates of the item param-
eters. However, even when as many as 500 persons are used for item calibra-
tion, extreme scores may not be obtained frequéntly enough to provide very
stable estimates of the Pij's. Even if scores on a 50-item test formed a
perfectly rectgngular distribution, for instance, a total N of 500 would pro-
"duce no more than 10 personé per score group. Typically, however, mid-range
score groups have very high frequencies and extreme scoxe groups may have few

or no observations at all. Although the Pij's from the extremes can be esti-

mated from the model, the need for very large N's during test &evelopment '



should be obvious.

Anchoring and interpreting ability scores. The key to the population-
invariant interpretability of ability ;cores'and to item-invariant equiva-
lency of forms is the manner in which scores are anchored. The subtraction
of the grand mean during the computation of the initial item easiness esti-
mates fesults in the standardization of the item sét to a mean likelihood
value of 1.0. - Ability estimates are correspondingly adjusted such that a
person performing at the mean level of the item set would have an ability of
1.0. When the parameters are anchored in this way, ability scores can be
interpreted as the odds the person will pass an item in the calibrated set.

The claimed advantages of using Rasch ability parameters rather than
the more traditional z-scores or percentiles actually.deriQes from the use of
this "domain-referenced" rather than the usual ''norm-referenced" interpreta- '
tion of test scores (cf. Popham and Husek, 1969, for this distinction). If
the simplest domain-réferenced score, percentage correct, is used as an esti-
mate of the ability associated with each raw score, it is easy to see that
this scor:> 1) will have the same interpretation regardless of what population
the individual belongs to, and 2) estimates ability on a ratio scale since
the zero point can be interpfeted as not passing any items. The population-
invariant interpretability of Rascﬁ ability parameters is only slightly more
involved than the direct interpretability of percentage correct scores, dif-
fering mainly as to the amount of information used to derive the ability esti-
mates.

Unlike percentage correct scores, however, the anchoring of the Rasch
ability paraﬁeters on the item set .means that a person's ability can be esti-
mated by using any subset from the calibrated item pool. The major prereq-

uisite 18 that the item parameters' errors of estimate are known by simulta-
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rnieously calibrating all the items on some populationl These values are then
fixed, and the ability associated with each of the possible k-1 scores for any
set of k items can be estimated by maximizing the predictability of these raw
scores from a sum of the estimated probabilities of passing items for each
score group, equation (6). The equivalenéy of item subsets results from the
item parameters-being fixed relative to the likelihoods associated with the
whole set of items, rather than the particular subset. Thus, thé ability
parameters will estimate the likelihoods of passing items in the whole set,
rather than the particular subset whichAmay not represent the difficulty of
the whole set.

To compare these instantaneously equivalent forms to those obtained under
the more painstaking traditional techniques, three important differences must
be noted. The first is that the goals of estimation are limited in the Rasch
model. What is being estimated is not Some abstract "true” scpre;'rather,
ability is defined as the likelihood of solving items in some pre-defined set.
The second difference fr;m graditional techniques is that items which fit the
Rasch model differ only on difficulty level. Classical item téchniques for
constructing equivalent forms allow items to differ on other characteristics,
éuch_as slope Qr discrimination. The third, and perhaps most important dif-
ference, is the precision with which ability is estimated. This will be con-

sidered more fully in the following section.

Precision of measurement. Wright (1968) nggested that since statisti-
cally equivalent forms can be obtained by using any item subset, the use of
the Rasch model eliminates the need to paimstakingly equate items on tests to
create equivalent forms. However, there is quite a difference between statis-
tically equivalent forms in the traditional sense and the narrow kind of sta-

tistical equivalency that may be obtailned from Rasch-calibrated item subsets.
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A claim of statistical equivalency between Rasch-calibrated item subsets
merely means that‘the difference in ability estimation between the forms is
no greater than would be expected from measurement error. In contrast, :the
traditional kind of statistical equivalency results in alfernate forms being
what might be called "maximally equivalent". The Forrelations between the
test forms are as high as possible so that the precision of ability estimates
frém one form to the other is maximized. How errors of measurement are esti-
mated in the Rasch model, and what this implies for statisticaliy and maxi-
mally equivalent forms, are the major concerns in this section.

For each item and score group (ability) parametef there is an error asso-
ciated with the estimate. The standard error of estimate for items is approx-
imated by the following equation:

k-1

3 v@p = A/ien?) Ve
3=1

5 Byyl12yyD)

where probability of correct response
Pij = as estimated by parameters for

cell ij
It can be seen that»the standard error of the item becomes small as
rj Pij (léPij) increases. Given.equal frequencies in the score groups, this
term is maximized when the probability of passing the item is as close as
possible to the probability of failing the item for each score group. Obvi-
ously, the difficulty level of the item will increase as a score group's
total raw score decreases. So, the standard error of the item will take on
its smallest value when the probability of passing the item is .5C for the
score group with the largest frequency, rj. The correspondence t§ the clas-
sical test approach of selecting items with a difficulty level of .50 for'the
population (to maximize reliability) should be obvious, if the mode and mean

of the distribution are equal. So, item error in the Rasch model turns out

to be population specific.



=12~

Unlike classical test models, where measurement error is agsumed to be
equal for all ability levels, the Rasch model provides separate errors of
measurement for each ability level. The standard error of an ability esti-

mate 1s approximated by the foliowing formula:

, k
(14) v(bj) = (/k7) I

1/r. P,
i=1 31

(1-p )

h| j

That is, the inverse of the predicted cell frequencies are summed over itéms
and then multiplied by l/k2 to give the standard erfor of the ability esti-
mafe. As with {tems, the standard error is minimized for a score group when
for as many cells as possible the probability of‘passing equals the probé-
bility of failing. Also, score groups with larger frequencies, Ty will have
smaller standard errors than those with fewer persons. Over all Scor¢ groups,
the standard error will be smaliest when the number of items increases since
(l/kz) will be minimized.

It can be seen, then, that the précision of estimating ability for any
particular score group depends on which items are used. The most precise
ability estimate for a score group.occurs when és many items as possible are
af the 50% difficulty level for the group. Following this line of reascning,
the best item subsets to use for different populations will vary when these
populations vary with respect to the latent trait, if ability is to be esti-
mated with maximum precision.

Regardless of the average size of measurement error for a group, Wright
(1968) claims that the observed difference in estimation between any item
subsets will be totally accounted for by the associated measurement errors,
That is, the differences between abiiity scores on the two test formg will
be distributed as would be expected from the confidence intervals asgociated
with the scores obtained on each test. To make a test of statigtical equiva-

lency, a "standardized difference score" must be computed for each person.
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‘This is given by the following formula:

X -~ X
(15) D12 = 1p 2p where D12 = gtandardized difference
2 2 A
SE + SE X, , X, = ability score obtained by
xlp x2p 1 2 8
‘ P P person p. on teat 1 and test 2
respectively
Sszlp’ SE2x2p = measurement errors associated

with xlp’ X

2p

The observed difference between the ability estimates given by the two tests
is divided by the Staﬁdard error of the score differences. The standardized
difference score computed for each person can be interpreted as a z score of
his observed difference between fcem subget scores on a distribution of the
differences that would be expecte&”from the measurement error assoclated with
each score, If the error bétween the two forms is random, then whén the
standardized differences are summed over persons in the population, these
séores should be normally distributed with a mean of O and standard deviation
of 1.0.

Statistical equivalency of any item subsets, then, merely means that the
observed differences between subset scores are distributed as would be expected
from measurement error alone. However, even if this claim can be substantiated
for item pocls calibrated by the Rasch technique, there is no guarantee that
statistically equivalent forms are also maximally equivalent forms. The prob-
lem of. precision, as shown abéve, is stili a population-épecific problem. To
have '"maximally equivalent forms" the measurement error between forms must be
minimized and it is n&t possible to use just any subset of items from the
calibrated pool. Items must be as carefully selected as in classical tech-
niques of test development. 1In fact, the same criteria must be met. Average
item difficulty should be at .50, and the test means and variances should be
equal 1if the avérage standard error of estimate, weighted by ffequency, is to

be minimized over score groups for each test.
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Equivalency of Calibrated Item Subsets

Tinsley (1971) compared the equivalency of item subsets on four tests
and concluded that the Rasch ability estimates were not invariant over item
subsets. However, Tinsl: d¥d .. :t wge standardized differemmes in his com-
parisons and confounded maximal equivalency with statistical equivalency.
Data from one of Tinsley's.tests were re-analyzed to determine how well the
observed differences between itemISubsets are accounted fér by the errors of
measuvement for each score and the relative degree of precision of measure-
ment between subsets.

Procedure. Test protocols for a 60-item verbal analogies test were
calibrated by the Rasch technique. All items were multiple-choice, with five
alternatives. The items .on tﬂis tent had been selected from avgroup of 96
items which were administered to college students. The items had been se-
lected according to mixed criteria, with fit of the data to the Rasch model
as one of theée criteria.

Data from 949 subjects were available on the final 60-item analogies
test, . Approximately two-thirds of the sample were college students, while
the remaining one~third of the sample consisted of suburban high school
students. The 60~item test had a mean of 34.86 and a variance of 89.32 on
the combined sample. Hoyt reliability was found to equal .877, showing a
good dégree of internal consistency in the item pool. However, 30% of the
items did not fit the model at the .01 level, while 407% of the items did
not fit when the more stringent criterion of .05 was used. Thus, the claims
with respect to equivalent forms were to be given a stringent test, since
several items do not .fit the model.

Three different divisions of the pool of 60 calibrated items resulted
in the following subset comparisons: 1) odd versus even items, 2) easy

'[ERJ!:‘ versus hard items and 3} randomly selected subsets with no item ovesiap.
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Each subset, then, contained 30 items. The corresﬁonding ability estimates
for obtained raw scores on each subset vic: cued b a8 maxlmum likelihood
Procedure u..ng fixed item parameters for each subset. The item parameters
were estimated from the full 60~item calibration on 949 subjects.

Results. ‘iable 2 presents the means and variances for both log likeli-
hood and raw scores on the six item subsets. The resudlts from the compari-
sons between item subsets indicated that the raw scoreemeans and variances
differed widely. For all three subset comparisons, tlre means were signifi-
cantly different. The odd-even and easy-hard subsets wexe significantly
different in variability, while the random subsets did mwt differ. The t
values reported are for correlated variances (Guilford, 1956).

Scaling the test in log likelihoods produced fewer significamt differ-
ences between subsets. The only significant differences that were found were
between the easy and hard item subsets, which had both significantly different
means and variances. Although the mean difference, .im absolute terms, is
probably too small to be theoretically important, the difference in varia-
bility is sizable.

Table 2 also presents the mean standard errors associated with log like-
lihood ability estimates, weighted by the frequencies: with which this popula~
tion obtained the various total scores. This error asmociated with the score
groupskis approximately equal for thé random sets and:msid-even comparisons,
but does differ between the easy and hard subsets. Apparematly the estimated
item likelihoods more closely approximate the ability im whis population on
the hard test than on the easy test. That is, or the Ime#f test, the proba-
bility of passing an item is closer to .50 for more scere groups than on the
eagy. test, The hard test, then, should provide the more pmecise wmeasurement
fary whis population.

[ERJ!:« Table 3 presents more information relevant to the prexision of measure-
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ment. It can be seen that although the subset mean differences are very small,
there is a large varlance between the tests. The correlations betveen the sub-~
sets show that the largest percentage of variance shared is orilly 58% (r=.76).
Thus, none of the item subsets are maximally equivalent.

Table 3 also presents the standardized difference for the three compari-
sons. In no case are the means significantly greater than zero. The variances
are very close to 1.0 for both the random sets and odd-even comparisons, but
are somewhat larger for the easy versus hard test comparison.

This variance is significantly different from 1.0 (F=1.3, p<.0l) and is
large enough to have some theoretical importance.

Discussion. The results from two of the subset comparisons, odd-even and
random sets, support the claim of statistical equivalency between item subsets
calibratéd by the Rasch technique. The standardized differences between these
subsets were distributed as woﬁld be expected from measurement error alone.

The results from the standardized differences between the easy and hard sub-
sets, however, indicate that these differences :annot be fully explained by
estimated measurement error. Although the reason for this difference is not
entirely clear, it is qqite likely that the large number of items not fitting
the model was the major influence. To determine the plausibility of this
interpretation, the percentage of iteﬁs not fitting the model on the separate
subsets was computed. It was found that 237% of the items on the easy subset
and 57% of the items on the hard subset did not fit the model. It is likely,
then, that both ability and measurement error were underestimated on the hard
subset, since many of the difficult items did not adequately measure the per-
son's abiiity.

Apparently only under the most extreme conditions does the Rasch model
fail to produce statistically equivalent forms for any item subsets. How-

ever, none of the item subsets..resulted in the maximal equivalency charac—
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teristic of tests developed by classical techniques, since the correlations
between subsets were only moderate. Some increase in precision could have
been gained by more efficient item selection, as evidenced by the varying
average measurement error between forms. The variance of the Rasch ability
estimates was significantly different between the easy and the hard item
subsets. The more extreme estimates were obtained from the easy subset, as

would be expected, when the population is of relatively high ability.

Conclusion and Summary

Although the Rasch model apparently can potentially provide the popula-
tion~ and item-iﬁvériaﬁf scaling needed for objective measurement, it is
certainly no panacea for the test developer's problems. Some of the claimed
advantages of Rasch scaling depend directly on the characteristics of the
item pool, rather than the model. For an item pool fully to possess the prop-
erties of bbjective measurement, a set of rigorous assumptions must be met.

The most direct influence of item characteristics is on the‘population-
invariance of item calibrations. The Rasch item parameter estimates will be
invariant only under a special conditicn. Individuals with the same raw score
must have the same probabilitie; of passing each item, regardless of the pop-
vlation to which they belong. Thus, item parameters will not be population-
inzvariant when thére is cultural bias which differen;ially affects the item
probabilities. .Since it is well known that many popular ability tests have
items which différ in cultural loadings, the special condition required for
item parameter invariance may be difficult to obtain. Compared with the
classical model, however, the Raéch model is superior since difficulty level
is never porulation-invariant.

Alchough population-invariance of ability estimates is probably attain-

able for any item pool, how much of an advantage this is depends on the theo-
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retical interpretability of the item pool. The Rasch ability parameter esti-
mates are nearly-as invariant as percentage correct scores, but-have the same
disadvantage. Interpretation is possible only relative to the existing set
of itéms, the calibrated item pool. As with domain-referenced testing, the
items in the set must have a priori validity. In general, the current expli-
cation of most trait constructs does not even approach the kind of precision
required f6r~; domain-referenced interpretation. Again, the Rﬁsch model
offers a potentiality, but does not Solve basic theoretical problems in test
interpretability,

The major focus of this paper has been on the construction of equivalent
forms from a calibrated item pool. The Rasch model was found to have many
more parallels to traditional criteria for the development of equivalent forms
than would have been anticipated from previdus explanations (Wright and Pan-
chapakesan, 1969)., To understand the characteristics of the Rasch model in
developing equivalent forms, it was found necessary to distinguish between
statistical equivalency, in the narrow sense, and makimal equivalency. Item
subsets are statistically equivalent if the diffefences obtained on some sam-
ple are distributed as would be expected from the measurement error associated
with each score, Maximal equivalency, however, means that the measurement
differences between tests is as small as possible. It was pointéd out that
using any subset from an item pool calibrated by the Rasch model would lead
to statistical equivalency but not necessarily maximal equivalency between
subsets. |

The empirical results generally substantiated this interpretation .of

the nature of equivalent forms from the Rasch model. Only under extreme con-

ditions did the measurement errors fail to account for the observed differ-

ences between subsets. None of the subsets were maximally equivalent and

precision might have been increased by using more efficient techniques in
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selecting items. The classical techniques of having item diff?culties close
to .50 for the population and matching extreme item difficulties would then
apply if the tests are to be equally pracise at each score level.

It may be wondered, then, what advantages the Rasch model really offers,
1f maximally equivalent forms necessitate using classical item selection cri-
teria. The real strength of the special statistical equivalency of Rasch-
calibrated item subsets is the possibility of individualized selection of
items rather than the construction of fixed content test#. The unusual char-
acteristics of Rasch measurement errors allow the desired degree of precision
for any person to be obtained from the fewest possible items. Estimates of
ability and measurement error associated with each possible raw score for any
subset of items can easily be determined. If items are administered by a
computer, ability and measuremeﬁt error can be estimated after the person re-
sponds to each item. The next item selected, then, will be as close to the
ability estimate as possible and will give the largest increase in precision.
Tests developed according to classical techniques are not suitable for indi-
vidualized item selection since measurement error can only be estimated fo?

a whole test actually administered to some populatien.

In conclusion, the lack of impact of the Rasch model is due more to the
current status of trait measurement than to the features of the model. The
true advantages of the Rasch model hecessitate a more sophisticated technology
in trait measurement than is now characteristic of the field. Explicit trait-
item theory, culturally-fair items and computer administration of tests would

be part of the necessary technological sophistication.
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Footnotes

1. The cell values actually used in computations are not the simple
likelihoods. A correction is made to prevent infinite values from
occurring when all members of the score group pass the item. The
cell likelihood values are corrected by the relative frequency of

the score group, as given by the following equation:

where
ij ij L = corrected cell likelihood

a,

ij

number of persons in score
group j passing item i

Tyg =845 = number of persons in score
i \ group j failing item i

w = percentage of total cali-
brating sample obtaining
score j
2. This interpretation is oversimplified to maintain conceptual clarity.

‘The actual cell values used in computation are corrected cell likeli-

hoods.
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Table 1

Item-by~Score~Group Probability Matrix

Total=-Score Group
(Raw Score)

=1, k-1
12 4 k-1
Piy P2 Pik-1
Py,
P

2k
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Table 3

Precision of Measurement and Standardized Differences
Between Item Subsets

Subset Comparison | Log Likelihood | Standardized Difference

Sél-iz r 1%, 551&2 5%,-%,
0dd, Even 425 .76 .007 1.028 1.014
Easy, Hard .590 .76 -.057 1.313  1.146
Random Sets .410 .76 | -.020 .995 | .998




