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1
Multivariate Statistical Inference under Marginal Structure, I.

by
-Ieon Jay Gleser
The Johns Hopkins Uriversity and Educational Testing Service
and
Ingram Olkin

Stanford University and Educational Testing Service

l. Introcuction

In this paper we are concerned with statistical inference concerning
the parameters of k multivariate normal populations. Several models
are considered in which the parameters hAve certain hierarchical relation-
ships. These models may arise in a variety of scientific contexts, but
our concern with thi~ problem originated in the context of testing the
hypothesis that k chiological tests are parailel forms of the same test.
Suppose that we aure utilizing k different (collections of) psychologi-

cal tests. These (collections of) tests have one subtest T

-

0 in common,
and are designed to be statistically equivalent (parallel) to one another.
The components of the g -th test can be represented as (TO’Tg) , Where
To is the subtest common to all k psychological tests, and Tg is the
subtest peculiar to the g -th test, g = 1,2,...,k -
In one possible experimental design, each of the k psychological

tests is given to a different group of persons. The k groups of persons
are randomly constructed (of possibly unequal sizes), and are considered

to be (statistically) homogeneous with respect to the psychologicul traits

being measured. The score of a single person from the g -th group on the

lWork supported in part by the Educational Testing Service, the Air Force
Office of Scientific Research (contract FUh620-70-C-0066) at Johns Hopkins
University, and the National Science Foundation (Grant GP-32326X) at Stanford
University.
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) - o
g -th test (TO’Tg) is denoted by (xé°),x£g)) , where xég) is the score

on subtest TO and x£g) is the score on the remainder, Tg , of the

test. The scores xég),x£g) may be scalars, or they may be (row) vectors,

depending on whether the subtests TO s Tg themselves are considered to

consist of one, or of more than one, parts. However, the dimensions of

L, () (k)
’70 ? 0

0 are the same (since they are scores on the common

(1) @) (x)
1’71 1

same (since the subtests Tl’T2""’Tk are Gesigned to be statistically

equivalent to one another). To be specific, let us assume that TO con-

see, and x

subtest TO ), and the dimensions of x yeee, and x are the

sists of q parts, so that the common dimensions of xél),xé2),---,Xék)
are 1 xq , and let us assume that Tl’T2""’Tk each consist of p - q
parts (q < p) , so that the common dimensions of x£l),x£2),...,x£k)
are 1x (p ~-q) .

It is assumed that the score of an individual on any test has a
multivariate normal distribution, and that scores of individuals are
mutually statistically independent. Thus, in describing a statistical
model for this problem, it ;emains only to specify the mean vectors and

covariance matrices of the score vectors (Xél),x£l)),(xé2),x£2)),...,

14
(xék),xik)) - These parameters are perhaps best described by a table:

Group (Test)
Parameters
1 2 e k
Mean Vector (pél),u§l)) (pé2),u£2)) vee (pék),pgk))
1 2 2
Covariance Zéo) Zé%) /Zéo) zél) Zég) Zéi)
Matrix 1 Tt
@) | o) 9 )
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For the g -th group (the individuals who take the g -th test), Ho

is the expected score (Vector) on the parts of -the subtest Ty » M is

the expected score (vector) on the parts of subtest Tg s Zég) is the co-

variance matrix among the scores on the parts of subtest T Zﬁi) is

0 2
covariance matrix among the scores on the parts of subtest Tg , and

Zéi) = (Z£§))' is the matrix of covariances between scores on parts of

TO and scores on parts of Tg . We write

4 9

u(8) _ (uég) (g))

el s(8) _

J

’ g:l’2’ooo’k .

(8) (g)
le le
Thus, u(g) is the mean vector and Z(g2 is the covariance matrix of
the distribution of the score of a single person from the g -th group on
the g -th test (TO,Tg) .

If the k groups are truly (statistically) homogeneous with respect
to the psychological attributes being measured, then since all k groups

take subtest TO’ we would expect

O R L IR P Y 0

to be true, regafdless of whether or not the k tests (TO,Tl),(TO,T2),
...,(TO,Tk) are parallel forms (statistically equivalent). The hypothesis

that all k tests are parallel forms is




(1-2) HmV\.: = 2 ee = 5 Z(l)= 2(2) = eee = Z‘.(k)

To verify that the k tests (TO’Tl)’(TO’T2)’"T’(TO’Tk) are indeed
parallel forms, given that the k -groups are statistically homogeneous,
we can test the hypothesis Hmvc versus the more general alternative

hypothesis H '

m've!

In some instances we may believe that the noncormon parts Tl:Tz""’Tk

of the k tests are not necessarily statistically equivalent, and we may

7

have some doubts as to whether or not the k groups havn;}ﬂé’??ﬁ?*heant&a“ﬁg/

performence on the common subtest T, (i.e., whether pél)‘= ué2) = ve. =

k) ).

ué However, we may continue to believe that the parts o° subtest
TO have the same interrelationships (variances and covariances) in all

k groups. In such a case, our given hypothesis is

(1.3)  H ¢ z(%) - zég) = el = zég)

2

and we may want to test Hm'vc' or Hmvc against this hypothesis. (Note

that H _ implies H 1o Which in turn implies ch, .) Acceptance of

the hypothesis Hm'

veor @8 against the hypothesis ch, means that all k

groups respond simiiarly to subtest TO --in other words, the k groups

cre marginally homogeneous in their response to subtest T Acceptance

0
of the hypothesis Hmvc as against ch, means that the k tests are paral-

lel forms and that the k groups are homogeneous in their responses to

o~

the tests (TO,Tl), (TC,T2),---,(TO,TK) .

Besides hypotheses H s H

H_, , various intermediate
mve

m've' ve

hypotheses may oe of interest. For example, the hypotheses:




..5..
(k) Hyer s o 2B o 5
and
TN O C Y C B O L

may be of concern. Figure 1 indicates the logical relationships among the

hypotheses (models) Hﬁvc s Hoger o Hogr o H ,and H, . -
7 mve H'Vc
Y
mve x “ve!
\-\Hm,'/z'
e
Figure 1. Iogical relationships among the hypotheses. An
. arrow indicates implication. Thus, Hmvc—4 Hm'vc
means that hypothesis H implies hypothesis
H mve

m've

The maximum likelihood estimators (MLE) of the parameters under the

various models (the models defined by hypotheses Hmvc s Hm'vc' : hvc' f
Hm'vc , and ch ) are listed in Section 3 and derived in an Appendix at

the end of this paper. Using the results given in the Appendix, we may

obtair likelihood ratio tests (LRT) between various pairs of hypotheses.

These tests are given in Section 4. In general, the test statistics ob-

tained from the likelihood ratio approach hav: distributions similar in
form to the distributions for the IRT for the multivariate analysis of

variance and'to the distributions for Wilks's lambda test for the equality

of covariance matrices [see Anderson (1958)]. The exact distributiong-are
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those of products of powers of independent beta variates, and are known to
be very complicated in form. .However, by using the Box (1949) approximation,
we may obtain approximate levels of significance for these tests from a
weighted sum of chi-square distributions (see Section k). A numerical
illustration of tﬁe computation and use of_one of these likelihood ratio
tests in a practical context appears in Section 5; this practical example

is also used (and intr.duced) in Section 3 to illustrate the differences

in value of the MLE under the various models discussed in this paper.

Before entering into a discussion of the various estimators and tests of
hypotheses, however, we have a few further comments to make coﬁcerning

the underlying structure of the inferential problem.

\B 2. The Underlying Structure

Recall that we have k groups of individuals, and that each indivi-
dual in the g -th group takes the test (TO,Tg) , g=1,2...,k . The
score for the i -th individual in group g is éf), gf)) If there
are Ng individuals in group g , then we need only consider the sample

means:

W
(1) 8.2 » ,(8) (&) _ L 5 (8)

3 ’ - 3 ’
Ng =1 0oi 1 Ng 521 1i

and can summarize these means by x

2(8) _ (iég),§£g)) .

If the subtests T, and Tg each have only one part (i.e., each

0
-(g) -(g)

of T, and T_ are summarized by one score), then X and Xy are
o

0]

scalars. However, we need not be restrictive about this, since the theory




g L

applies even when TO and Tg each have several parts (and are sum-

marized by several scores), and Qég) and xig) are vectors. TFor
example, suppose there are two groups, and the tests given to the groups

are made up as follows:

Essay Questions Multiple Choice Questions

Tests given to Group 1:

Tests given to Group 2:

€

That is, some of the essay questions and some of the multiple choice ques-

tions are taken by both groups, while other essay questions and other

multiple choice questions differ between the two groups. Suppose that

the common essay questions are summarized by a single score, the distinct !
essay questions are sumarized by a single score, the common multiple

choice questions are summarized by a single score, and the distinct multi-

Ple choice questions are summarized by a singie score. In this case,

iél)m and 552) are (row) vectors with 2 components (i.e., iég) is
1x2, g=12), and () ana () are (row) vectors with 2

components.

In the example provided in Sections 5 and 5, there are three groups,

and we have the following format:
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SAT Verbal SAT Math SAT Verbal
Operational Operational Experimental
Test given to Group 1:
%o I TOI )
Test given to Group 2: % I -
-
%o I To’i‘ T2
v
Test given to Group >: : l
TO TO T3

4

In\tg;s/case, TO has 2 parts (and is summarized by 2 scores), and Tl )
- -(2 -
T, and T3 have 1 part each. Hence xél), xé ) s xéa) are all 1 x 2

- -(2 -
vectors, while x£l) R x£') ) x£3) are scalars. -
Returning to our deta, we can define sample cross-product matrices
() y(e)
(g) VOO VOl
(2'2) A = ; g=12,..0,k ,
v(8) +(g)
10 11

where

N

: g
(2.3) vé(g)) - (Xéf) ] };ég)),(xé?) i };ég))

i=1

(g)

is the sample cross-product matrix for the vector %0 of scores of

group g on subtest TO , where

1i

N
(2.4) vi‘f) = i_}i (x(g) - iig))'(ng) - iig))

pes




N ,_
y ‘ | - *

is the sample cross-product matrix for the vector XSg) “of scores of

group g on subtest Tg , and vhere

g - - ()
f‘” R R O C N VN
is the sample matrix of cross-products for group g between the scores on
subtest TO and the scores on subtest Té + In the context of our first

2\
example, V(l) and V(2) are both & x 4 matrices, and Véé) s Véol s

VOl s VOl B Vll R Vll are all 2 x 2 matrices. In the context

of our second example, V(l) R V(2) , and V(B) are 5 x 5 matrices,

1) 2 3 . 1 2 3
Véo , Véo)_, Véo) are 2 x 2 matrices, \Tél) s Vél) , and Vél) are

; (1) (2) (3) . 5
2 x 1 matrices, and Viy’ s Vq{"» Vq77 are 1x 1 matrices (i.e.,

scalars).
When all of the score vectors (xég),xgg)) have multivariate normal
distributions, and the performances of individuals on the tests are

mutually statistically independent, then it is well known that the mean
(1) y(2)

vectors i(l),§(2)’,,,’§(k)
e

and sample cross-product metrices V PEERY
together are jointly sufficient for inferences concerning the param-
eters u(l),u(Q),---,u(k) s Z(l),2(2),---;z(k) of the model (see

Anderson (1958)). Let us assume that we have already reduced our test

score data to a summarization in terms of tne quantities i(l),i(z),...
2(5) ana v(l),v(z),. y(k)

)

ooy
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.
I

It is known [Anderson (1958)} that under the assumptions described

above, i(g) and V(g) are statistically independeni of one another for

top,

-(1 - -
g=12...,k . Also (z( 2V(l)), (x(a),Vﬂz)),..., (x(k),V(k)) are
mutually statistically independent. Thedistribution of i(g) is multi-

variatve normal with density function
2.6) pEE) =@ 5E) 2 o - B_;g [le) - (8)y(8)yLx(e) - (8)y)

(g)

where ¢ is & certain constant depending upon p and Ng . The dis-

tribution of V(g) is Wishart with parameters n_= Ng -1 and Zﬁ .

<o

The density function of V(g) is given by

1) pr(®) - o(® @) T @) PP @) ey,
where d(g) is a constant depending upon ng and p .
Let
7= G @) sy v = (1)@ Lyl
(2.8) »
RGO RN TN e IO )

To obtain maximum likelihood estimators (MIE) of p and I under the

various models described in Section 1, we need to maximize the likelihood

(2.9) p(%,V) = ;I{ [P(J-f(g))p(v(g))}
g=1




-11-

with respect to u and £ under the rez%r’ *ions upon these parameters

imposed by the hypotheses H 5

H H H and H .
mve m've - ve! ’ ve

m've
Por simplicity of exposition, we summarize the MLE's for p and X
under the various hypotheses in Section 3; proofs of the results are

deferred to the Appendix.

3. Maximum Likelihood Estimation

a

In this section we surmarize the maximum likelihood estimators (MLE)

of the parameters (E’Z) for each of the five mocels {H_ , ,

H
ve m've'! ?

H , H

s , and H ) described in Section 1. However, it is helpful

m've

to first consider a reparameterization wnich simplifies the analysis and
helps to clarify our understanding of the results.
In three of the five models described above (namely, in Hv*' s

Hm'vc' , and Hm'vc ), the restrictions on the purameters that are imposed

by the model concern the parameters of the marginal distribuiions of the
scores xéf) made by individuals on subtest T, . This, in the models x

defined by ch, and Hm the marginal covariance matrices

!vcl J

(1) 5(2) (k) ; e .
ZOO ’ZOO ""’ZOO are constrained to be equal, while in the models de-

fined by Hm'v and Hm’vc" thz marginal expected score vectors

C
2
uél),ué ),---,uék) are assumed to be equal. To isolate the marginal

parameters uég) and Zég) ; €=L12,...,k, we are led [Lord (19%55),

Anderson (1957), Bhargava (1962)] to consider breaking the likelihood

¢ (2.9) into two factors: (i) the density function of the marginal quan-
- (1) _(2 - 2
hd tities Xé ),xé ),...,xék) s Véé),véo),...,vég) , and (ii) the conditional

density function of the sufficient statistic (x,V) given these marginal,
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quantities. If we do this [see Bquations-(A.1) and (A.2) of the Appendix],

we find that ’

)

u(()g) o(8) _ u:(Lg) (g)(z(v)) Z(g) z(g)

(3.1) .
s(8) _ (Zog)) Zéi) , ana (8 z§§) i z§g) (g)y lz(g)

11.0

g=1,2,...,k , appear as naturai parameters in this representation. Note
that B(g) is the q x p - Q@ matrix of wregression coefficients (slopes)

and a(g) is the 1 x p - @ vector of intercepts for the regressions of

the elements of x§g) on xég) (that is, E[xgg)lxég)3= a(g) + xég)ﬁ(g)) .

Further, Zg%)o is the residual covariance matrix of x§g) after the

dependence of x§g) on xég) has been removed by regression. Thus,
the parameters in (3.1} are not only of interest in connection with
finding the MIE of (u,Z) , but are also of interest in their own right.

Tt is no' oifficult o show that (u,Z) and (3.1) are equivalient

uég) . ole) zég) ’

parameterizations. Equation (3.1) represents s

B(g) , and Zi%?o , g=112,...,k

(+,£) . On the other hand,

, as functions of the parameters

(e _ (uég) (g)) o (g) o(8) ég)ﬁ(g))
(3-2) ( \
Og) () zég) (g//ﬁ-b))
s(8) _ ,
z§§) Zgi), (B(g)yzég) Zii?o N (B(g5,zé§)(6(g))
j

)
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(6)  ofe)

g =1,2,...,k , represents (u,Z) as functions of uy ™", Z(g)

) OO )

B(g) , and Zg%?o ;) 8=1L2,.00,k .

Corresponding tq}the parameters a(g)

g
B(g) , and Z§1)o , wWe may

)

define the sample quantities:

(g)=;<:(Lg) (g)(v(g) lv((ﬁ) ;a8 o (g) lv(g)

a

(3.3)

o) y(6) | () ey Ty te)
3 ll 0 ll
for gd— p ..,k . DNote [see‘thef&ppendix] that xég) s a(g)
G (g) (e) ; - - ()

VA (N )’ Veg O B, and (Ng) lvll-O are the respect:ve MIE of ;™" |

a(g) s ég)\, .B( g) , and Z§§)O , 8=1L12, , wiaen the parameters

(g) (g)) \\ﬁpe distribution- of the scores for the individuals in any
>
W) 00y o

one group are functionally unrelated to the parameters
the distribution of the scores of the individuals in any other group,
g f h . Iny follows, we refer to these maximum likelihood estimators

"™ as the "usual" (unrestricted)eestimators of the corresponding parameters.

(2) ,

For example, we refer to B(g) as the "usual" estimator of @

!
=1,2,...,k .

g_
/>§§ We are now in ition to give explicitly the MLE of the parameters

\\}L , H , and
VS m've

Hmvc described in Section 1. Calculatio \of these MLE will be iliustrated

X (1,Z) uader each of the models H ot s
] "

~

N by fye fcllowing practical example.

P4
N

-

15
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3.0 An Illusbrative Example

The Scholastic Aptitude Test (SAT) of the College Entrance Examination
Board contains items designed to measure verbal ability and items designed
to measure mathematical ability. The test is given to a number of indi-
viduals at a time; different individuals who take the test may receive
different forms of the tdst. In each such form, certain verbal items
and certain mathematical jéems are common to all forms of the test.
Other items, however, differ from form to form-l The common items are

used for the operational (measurement) purposes of the SAT; the differing

items are included for certain experimental purposes. Suppose k such

forrms of the SAT exist. Then at a givén administration of the test, each
form is given to the same number of individuals, and forms are assigned
te individuals by a process similar to the technique of (randomized)
systematic sampling used in sample survey designs.

The score on the g -th form of the SAT -can be summarized by three
numbers (scores): (i) the total score on those verbal items common to all
forms (SAT Verbal Operational Score), (ii) the total score on those mathe-
matical items common to all forms (SAT Mathematical Operational Score),
and (iii) the total score on those items peculiar to the g -th form
(SAT Experimental Score). The common parts (SAT Verbal Operational,

SAT Mathematical Operational) of each form constitute subtest T. in the

0
terminology of Sections 1 and 2. Thus, the score vector "éf) of the

-

i -th individual in the group of individuals taking the g -th form is
a 1 x2 dimensional vector. The unique part (SAT Experimental) on the

g -th form constitutes subtest T , g = 1,2,...,k + The score vector

U, o W T




-15-

xif) of the i -th individual who takes the g -th form of the SAT is thus
a scalar (& 1 x 1 dimensional vector).

In April, 1971, several thousand individuals took the SAT at testing
centers across the country. A sample of 100 individuals was chosen from
among all those individuals who took a given form of the SAT, for each of
% different forms (TO,Tl) s (TO,T2) , and (TO,TB) for which the experi-
mental items were comparable (in the present case, all experimental items

were verbal items). Thus, 9q=2, p=3, k=3 , and N. =N, =N, =

1 2 3
100 . The test data have been summarized in terms of the sample mean
vectors i(g) and ssmple cross-product matrices V(g) , separately for

each form (group), g = 1,2,3 . These summarizations appear in Table 1.
Table 2 gives the "usual" estimators of the parameters (i,Z) anc of the
parameters defined in (3.1). The values o these "usual" estimators serve
to provide comparisons to the values of the MLE of the parameters under
each of the models ch, , H 1 s H 4, H, 5 Hmvc , which we

discuss below.

5.1 Maximun Likelihood Estimators under ch,

We begin by considering the most general of the five models described
in Section 1. In this model, which is defined by the hypothesis ch, s
the score vectors xéf) of individuals in all Xk groups have a common
covariance matrix ZOO - That is, under this model, the parameters (&,g)

of the distribution of the scores are restricted to belong to the parametric

subspace a%c, » where

-

A FEEINLE
-
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Table 1. Summarization of Test Data for the Illustrative Example
Nl=N2=N3=lOO, qQq=2, p=3, k=3,
1) (33.86, 22.52, 14.77) ,

) (33.62, 25.145, W.55)

:03) . (36.05, 2b.40, 16.21)

v 2 {To1lots @65k 39,01k

140, 16k 91,014 59,581
59,581 39,014 21,325

(2) 134,980 96,396 58, 141
v = 96; 396 77: 919 h2: hll b}
58, 141 b2, 411 26,671
05) (

104, 106 73,206 46, 765

160, 751 104,106 71,115
71,115 k6,765 32,137

bl R

S e
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Table 2. The "Usual" Estimators of the Parameters (p,=) for the
Illustrative Example
21 2 L 5585, 22052, TT)
3(2) 7)) (33.62, 25.43, 1h.55)
50) L :0) | (3605, 2h.k0, 16.21)
A1) 1401. 64 910.1k 595.81
z 100 910.14 £56.54 390.14 s
595.81 390.1L 273.25
A(2) (2) _ 13%9.80 953.96 581.41)
z 165 \ 963.96 779.19 4oh.11 5
581.41 hok.11 266.71)
A(3) _ () _ 1607.51 1041.06 711.15\
z w5 V- 10%41.06 732,06 467.65 s
711.15 467.65 2737

ﬁél) - (33.86, 22.52)

&) 0.3502

)

ﬁéz) - (5362, 25.43) , B < o005

383) - (3605, 2vho) , &) - o308
BP - (Mo g0 0 (o) 30 e
B0 = (350 e o B - ke £ -
O I O T
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1 2 -(k
® v = {{,2): Zéo) = Zéo) = ves = Léo) =%y 1 Zpp an arbitrary

N q x q covariance matrix) .

1) @) ()

Because the marginal covariance matrices 00 %00 7" 00 have a
common value ZOO , the pooled estimator
k
1 1 ()
A = == &
(-4 §VY%0 =F = Voo
g=1
k
for ZOO ; where N = X Ng , has intuitive appeal. Note that although
g=1

the hypothesis ch, puts no explicit restrictions relating the parameters

Zéi) and Zgi) to Zéf) and Zgg) , respectively, g # h, implicit
restrictions upon the relationships between these parameters are imposed

b H since
N ve!

%00 zéi)
s(e) _
) o

must be a positive semi-definite matrix for all g = 1,2,...,k . On the

PP

other hand, Hﬁc‘ imposes no restrictions (explicit or implicit)

h
relating the parameters B(g) and Z(g) to B(h) and Z£l?0 , g f h .

11.0
This fact suggests that B(g) and Z£§?O be estimated by their "usual"
-1 .
estimators B(g) and (Ng) “Vg%?o , respectively, g = 1,2,...,k .
Similarly, since ch, imposes no restrictions relating the para.eters

uég) and a(g) for one group to the correspunding parameters uéh)

and a(h) in any other group, g f h , we think of estimating these

parameters by their "usual" estimators ( uég) by iég) , and a(g) by

a(g) ) g = 1,2,---,}{ )o




(3.5)

are ..

N
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It is shown in the Appendix that these estimators, namely

ﬁég)(vc') = x(g) , &(g)(vc') - a(g)

K
(VC') - _1_-_ T V(g) s é(g)(vcl) = B(g) s
N 00
8(8) (yory) o L (&)
27.0(ve") = N Vii.o 7’
g 5.
ndeed the MLE of uég) , a(8) , Zop 0 6(8) | ana zﬁ%?o

\
respectively, g = 1,2,...,k , when the model defined by ch, rLolds.

The MIE of (p,Z) under H . can now be found by substituting (3.5)

into

(3:6)

3(e)

for

(3.2). This substitution results in the following MLE:

ﬁ(g)(vc') - ( (g) (g)) - -(g)

| e o (0GE MG
(ve! =3
Vgg) Vég)) N, SZ £%)o _ V£g) (g)) M (g)) lvé%)

g=1,2,...,k . The actual values of the MLE (3.5) and (3.6) for the

example described in Subsection 3.0 are summarized in Table 3.

u(g)

for

equals

Note that ﬁ(g)(VC') is equal to the "usual" estimator x(g) for

o) " -1/
, but that Z(g)(vc') differs from the "usual" estimator (Ng) lV‘g)

Z(g) . Indeed, the difference between f(g)(vc') and (Ng)_lv(g)
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Table 3. Maximum Likelihood Estimators under ch, for the

Illustrative Lxample
ﬁ(l)(vc') = (33.86, 22.52, 14.77)
3(2)(vc') = (33.62, 25.143, 1h.55)

3(3)(v0') = (36.03 2h.ho, 16.21)

971.72 T22.60 by

s e (1&52.98 9T1L.72 61).cu)
Ve
619.04 1T 5L 28%. 7k

9{.!. 72 7?2060 ‘l21036

[ 1452,98 1.72 Gl )
\ 619.59 "e1.36 £80.14

971.72 T22. 60 41,32
o46.55 4h1.32 300.69

A(3) 1452.98 971.72 616.55
sV (ve') =
ﬁél)(vc ) = (33.86, 22.52) #{ W (uer) = 0.3502
1oy = (33.62, 25.83) , 6@ (wer) = 0105

100 wer) = (36.05, 2wbo) , &)y 2oz

a vy _ [1bO1.64 JW0.14
Zoo(ve') = ( 910. 1k 6;6.5&) )

A e I v IR S -

ll 0~

#(1) _19.82 z( ) o(ve’) = 15.50 ££i)o(vc 5= 11.90 .
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k
ﬁ(g)(vc') - l—V(g)= 2 ( Ly (s) V(g) :
N N 0 N 00
g (g)(v(g)) s=1 g (g)(v(g))
where Iq is the q x q identity matrix.
3.2 Maximum Likelihood Estimators under Hm’vc'
In the model defined by the hypothesis Hm’vc’ , the scores xéi) of

individuals on subtest TO are assumed to be identically distributed

according to a q -variate normal distribution with mean vector o and

. - . .
covariance matrix 00 ° That is, under the hypothesis Hm’vc’ , the

parameters (u,2) are restricted to belong to the parametric subspace

wm‘vc' , where
1 k "
® et = {w,7): ué ) o2 pé ) = My is an arbitrary 1 x q vector,
L k . .
Zéo) = es. = Z( ) H ZOO is an arbitrary q x g covariance
matrix}

As 1is the case under ch, , the hypothesis Hm’vc’ explicitly

. 1 2 k
requires éo),ZéO),...,ZéO) to have the common value X 00 and

imelicitly relates the parameters é%) and Z(i) of the distribution

of scores for one group to the corresponding parameters él) and Z(k)

of the distribution of scores for any other group, g # h . However, as
before, H . Pplaces no restrictions relating the parameters (g)

m've
of one group to the corresponding parameters ( ) and Zig)o

(g)
and le 0




atal

of any other group; this suggests that we estimate B(g) and Z£%)O by

their "usual" estimators B(g) and (Ng) 1V£%)O , respectively,

g=12,...,k .

Because Hm’vc requires that the rarginal expected score vectors
1 k
( ),ué ), ,ué ) must have a common value uo , We can estimate uo by

the pooled estimator:

The residual cross-product matrix

k - P
(3.8) A= % Ng(;(g) BN U

)
00 = =) &0 0

£ e

can then be conbined with WOO = 00

to provide an estimator
g=1 ‘

k .
f ( ) S WO =
Fhyo) = z g—l Vég) + N (x & *5) (xég) - %)

1
i o 00

for ZOO . Finally, since Hm'vc’ does not restrict the relationships

(1) [(2) (K

among O 1,00, ..., , we are led to estimation of these parameters by

their "usual" estimators a(l),a(e),...,a(k) , respectively.

In the Appendix we verify that the estimators

ﬁ(()g)(mlvcl) = §O s a(g)(m’vc') = a(g) s

(3.9) fOO(m’vc’) = % (oo * AOO) , é(g)(m’vc’) _ B(g) ,
ve') = Ly
£1)o(m ve') = v

N_"11-0 ’
g
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(e) 5(g)
00 > P and Eavig

. The MLE of the parameters (g,Z) can

are respectively the MLE of Ky a(g) , Z
g = .L,2,--~..k P under Hm,vc,
now be obtained by substituting (3.9) in (3.2). This substitution results

in the following MLE:

008 (miver ) - (g)(m vc,),h(g)(m we) = (R, iig) . (iég) _= V(s)) lv(g)

- (2))-1,(e) |
sle) .1 (oo * Aoo) e (oo * o) (Vo 6 Vot \
Elmive') = W \V£g) (g)) (Hoo *+ Ago) ﬁ; V£§)0 V(g)(v(g)) (Wop *+ AOO)(V(g))%éEJ
(3-10)

for g = 1,2,+..,k . The values of the MLE (3.9) and (3.10) for the

example described in Subsection B\Q\ére summarized in Table L.

%

5.3 Maximum Likelihood Estimators under ch

In the model defined by the hypothesis ch, scores by all individuals
(in any group) are assumed to have a common covariance matrix I , but
not necessarily equal expected score vectors. That is, under this model,
the parameters (E’E) of the distributions of the scores are restricted

to belong to the parametric subspace N where
{(4,Z): Z(l) = 2(2) = .0 = Z(k) =% , £ an arbitrary
P x p covariance matrix)

The MLE of the parameters (u,z) under this model are well known

(Anderson (1958), p. 2u8];
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Table 4. Maximum Likelihood Estimators under H e+ for the

Illustrative Example
W (miver) = (3451, 24.12, 15.10)

£ (miver) = (.51, 2412, 1h.9)

3(5)(m’vc’) = (34.51, 24.12, 15.61) ,

(1) 152.98 °  971.72 619.05

SV (m've') = | 971L.72 722. 60 417.62 s
619.05 417.62 283. 74"

~(2) 1452.98 971.72 619.40%

2V (m've') = | 971.72 722.60 421.36 s

: 619.40 421.36 280.1‘4,

() 1452,98 971. 72 6L6 455 $

o (mive') = | 971.72 722.60 441.32 ,
646.55 441.32 309.69

ﬁo(m’vc’) = (34.51, 2k.12)

&(l)(m’vc’) = 0.3502 , &(2)(m’vc') = -0.0705 , 62(3)(“1"’0’) = 0.1328

A 0.3928 A(2 0.5608 A 0.5650
58 (mrver) - (0.2297) , @) - (o.ggo&)) , B - (0-22g6> ’

ﬁg%?o(m'vc’) = 19.82 R ﬁgj?o(mxvcx) = 15.40 s gg?o(m'v"') = 11.90

hadh i I e e D A e A e A A L - T




ﬁ(g)(vc) - 5(e) y  8=L2,..0,k

k

A l l h
Z(ve) = § = V(g) =5v
g:
oo Vo1 k()
W =z v
Yo Wl &=

Here, we did not need to use the equivalent parameterization (3.1) in
order to obtain MLE for (u,2) , sinc: the results are directly end easily
obtainable. However, for the sake of comparison to the resul’s given in

previous subsections, we can obtain the MLE of uég) s a(g) s Zég) R

(g) (g)
= = 3, he
PR EB L Iyl =By 0 here )
%00 ZooP
= ’

1 1
B'Zoo Ziy.0 * BB
by substituting (3.11) intc (3.1). The result of this substitution is the

following list of MIE:

ﬁég)(vc) - iég) , &(é)(vc) - §£g) . iég)wgéwOl ’

é('fc) = w(;lw ;

0"01
- Z11.0(ve) = § (W), - W10W03W01)

=

& 1
(3.12) ZOO(VC) =T Yoo

= (o

The values of the MLE (3.11) and (3.12) for the example described in

Subsection 3.0 are summarized in Table 5.




Table 5.

Maximum Likelihood Estimators under ch for the

Illustrative Example

ﬁ(l)(vc) = (33.86, 22
5@ () = (33.62, 25

505 (ve) = (36.05, 2b.

52, 14.77)

43, 1k4.55)

1h52,98 971.72

S(ve) = | 971.72 T20.

629.46 427.30

ﬁél)(vc) - (33.86, 22.52)

1PN we) - (33062, 25.83)

8% (ve) = (36.05, 2nho)

1452.98 971.72 ~
971.72 722.60) s B(ve)=

a(lj(vc) = 0.1122

F Y Sy

&(2)(vc) = -0.2712

&(5)(vc) = 0.5673

Z1,.0(ve) = 15.87

P T
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.

3.4 Maximum Likelihood Estimators under Hove

= /

In the model defined by ﬁypothesis H ,
i

n've the scores of all

individuals on subtest TO have the same marginal distribution (with

~

common mean vector ko and common-covariance matrix ZOO ). Further, the

scores of all individuals on the remaindex of the test have a common co-

b

pil),ugz),...,u£k) are not necessarily equal). Finally, under H

m've ’
the score xé% of any individual on the common subtest TO serves as

variance matrix Zl’ , but not necessarily a common mean vector (that is,

an equally good predictor of the score x§§) of that individual on the

remainder T  of the test, regardless of the group to which the individual

’belongs. (That is,}the correlations between elements of xéf) and

element§,of ng) are the same for all individuals 1 in all groups g.)

»Thus, under Hm’vc the parameters (u,Z) o the distributions of the

scores of individuals on the various tests are restricted to belong to the

parametric subspace (Dm'vc , where

wm’vc = <(E’§)= u(l) = uéz) = e (k) .

o . = “0 = uo is an arbitrary

1 x q vector,

=Y is an arpitrary p x p
covariance matrix}

The MLE of the parameters (u,Z) can be obtained as special cases of

results obtained in a previous paper [Gleser and Olkin (l966ﬂ, or by direct

ooy e
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analysis, as in the Appendix to the present paper. Note that the hypothesis

Hm;vc implies the followfﬁé’;gzggz;nships among the parameters defined
in (3.1):
(1) _ (@) _ _ (k)
IJ'O “IJ'O = -uo -IJ'O
(1) _(3) _ _ (k) _
Zoo” = Zoo” = *** =Zoo < Foo
(3.13)
1 2 k
RED NN CO NN ¢ P
(1) _ () _ _s(k)
le-O N 211.0 -t T 211-0 N 211-0

The hypothesis Hm'vc imposes no restrictions concerning relationships

between a(l),a(z),...,a(k) , and indeed differs from the hypothesis H_,

él) (2) = eee = (x) on the

only in imposing the relationship p = Ko

marginal expected scores of individuals on subtest TO . This additional

restriction suggests estimating ko by the pooled estimator fo defined
in (3.7), thus freeing the residual cross-product matrix AOO to provide

additional information about I . Since under ch we estimate ZCO ,

00
-1 and (N)—lw

B, and Z WOOwOl s

by (W) lwoo ) 11-0 =

Ewll -W W~1W ] , respectively, the arguments used in Subsection 3.2 of

10"00"01
1.0 %Y woéw01 and

(N)—lwll-o , respechively, and to think of estimating I, by using

11.0

this paper lead us to think of estimating B and I

: -1 . y .
the pooled estimator (M) “[W,, + AOO] . Finally, since H , = imposes

A
no relationships among a(l’,a(e),...,a(k) beyond those iposed by H__ ,

we can estimate a(l),a(e),...,a(k) by the estimators used 1o estimate
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- ~-(1 -(2 -(2
these parameters under H . ; namely, xgl) ( )Wo%W01: (2) é )Woéw01’
-(k k . PR )

esey, and xg - x( )WbéWOl . TIn the Appendix, il is shown that these
estimators:

A~ = n = -\g -

uo(m'vc) = X a(g)(m'vc) = x£g) - xé )WOéWOl , g=1,2..,k

(3.14) goo(m'vc) = -i]\? (WOO + AOO) ) g(m’vc) = wo(])-wo]_ s

(m've) = %'(wll W )

ll 0 lO 0001

are indeed MIE of the corresponding parameters. To obtain MLE of (1,2) ,
we can substitute (3.14) into (3.2), toking account of the equalities (3.13),

and obtain

ﬁ(g)(m’vc) (uo(m vc),ugg)(m‘vc))

G -(g) (y(g) O)w 14 ) , eg=11,2,...,k

= \Xgr %y 00701
(3.15) \
Yoo * Poo (Woo * 037”01
S(m've) = L
H = N P}
wlowoo(w " 80) M0 ¥ Wlowoo( * oo)woo o1

as the MLE of “(l),u(z),...,u(k) , and % respectively. Values of the
MIE (3.14) and (3.15) for the example described in Subsection 3.0 are

summarized in Table 6.

+4
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Tahle 6. Maximum Likelihood Estimators under Hm’vc for the

Illustrative Example
ﬁ<l)(m'vc) = (34.51, 24.12, 15.15) ,
{I(z)(m'vc) = (34.51, 24.12, 1k.77) ,
ﬁ(a)(m'vc) = (34.51, 24.12, 15.61) ,

A 1452.98 971.72 629.46"
E(m've) = | 971.72 T722.60 427.30 s
629. 46 427.3%0 289.11

{Io(m'vc) = (34.51, 2k.12)

&(l)(m'vc) = 0.1122 | &(2)(m'vc) = -0.2712 , &(3)(m'vc) = 0.5673

& 0 /1452.98  971.72 ar :0.3750 a toe) o
Zoo(m've) = \"g71.72 722.60) > B(m've) ='\o.o871\) s Zyp.(m've) = 15.87

. TR
[T R
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3.5 Maximum Likelihood Estimators under Hmvc

Under the model defined by H . the vests (TO,Tl), (TO,I‘z), ce e,
(TO’Tk) when applied to the k randomly chosen groups produce statistically

equivalent scores. That is, the scores (xéi),x£%)) for all individuals

in all groups are identically distributed with identical expected score

vectors p = (po,pl) and identical covariance metrices

v i
/ Zoo To1

T =
‘210 le

The model defined by Hﬁvc thus requires the parameters of the distri-

butions of scores to belong to the parametric subset O ve ? where

Bove ~ {(&,§)= P(l) = u(z) = ... p(k) = p 1is an arbitrary

1 xp vector,

(1) _ (@)

= eee = Z(k) =¥ dis an arbitrary p x p
covariance matrix) . ) ‘

The MLE of 11+ and £ uader Hmvc are well known [see Anderson (1958)].

These estimators are

P R I
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k

f(mve) = Ls i(g) =X ,
N
g=1

N k k R _

(3.16)  =(mve) = %—[ s v®) . 5y (i(g) - :T:)‘(x(g) %))
g=1 g=1
- % (W + A

The MLE of the parameters

K =P, -p Z—lz )

o ’ 1 "0%00701
(3.17) 1 o1

2o o+ B=ZngTo; s 3.0 = E1y T Fro*odtor

are obtained from (3.16) through an obvious substitutica. The values of
the MLE (5.16) and the MLE (3.17) for the example described in

Subsection 3.0 are swmarized in Table T.

3.6 Some Comments

Going back over the lists of MLE under the various hypotheses, certain
general rules can be observed to be at work. The assumption of the

equality of the marginal covariance matrices Zég),Zég),...,Zég) does not

affect estimation of the mean vectors u(l),u(z),---,u(k) (when compared

to MIE for the mean vectors when equality of the Zég) is not assumed),

but allows adjustment of our estimates of Zé%) and Z£%) through a

g
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N

Table 7. Maximum Likelihood Estimators under Hmvc for the

Illustrative Example

f(mve) = (34.51, 24.12, 15.18)

. 1452.98 971.72 629.46
S(mve) = | 972.72 722.60 427.30 s
€29.46 427.%7 289.11

-

ﬁo(mvc) = (34.51, 24.12) £ &(mvc) = 0.1390 ,

A _ [1452.98 971-72) AT _/0-5750) 2 -
Eoo(mve) = (971.72 Te2.60) o Pmve) =il5g7) 5 Iyy.olme) = 15.87
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regression of the usual estimators (N )_lV(g) and (N,)-lv(g) on the
g 0L g 11

-1 (g) 15 (e)
residual (Ng) lVOO - (N) £ Voo’ around the pooled estimator
g=1 -
k
-1 1 2 «(k
(M) g§1 Vég) of the common value Z,, of Zéo)’zéo)"""éo) s

g=12...,k (see Subsection 3.1).

The assumption of the equality of the marginal expected score vectors
A1) (@) (k)
0

AT L similarly permits us to adjust estimation of the

- - - - 2
usual estimators xgl),xgé),..., and xék) of p£l),u£ ),..., and u(k)

1
) ) . . -(1) _= -(2) _=
by regressing these estimators on the residuals %0 X007 g2
and iék) - §O around the pooled estimator ;O of the common value Ko
of u(l) (2) (k) Thi ti 1 f th esidual cross-
0 Mo TseresMg . is assumption also frees the resi

product matrix AOO to help provide additional information for estimating

z when it is known that Z(l) = 2(2) = eee = Zég) =z The effects

00 00 00 00 °
of such adjustments on the resulting estimators are illustrated in Tables
2 through 7.

Although the adjusted estimators may provide superior accuracy in
comparison to the unadjusted estimators, the distributions of the adjusted
estimators are usually more complicated than the distributions of the
unadjusted estimators, and do not promise t» be directly amenable for the
purpose of forming confidence regions for the various parameters. In
such ceses, the indirect route of obtaining confidence regions for the
parameters (3.1) is often more promising, “nce the MLE of these parameters

in many cases have tractable distributions. Since the basic distribution

theory for those estimators which do have convenient distributions is known

™ S Wt v
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[see Gleser and Olkin (1966), (1969), (1972a), Anderson (1958)], and since
our remaining distributional results appear to be too cumbersome for
practical use, distribution theory for the MIE is not given in the present

paper.

4. ‘ests of Hypotheses

Tn previous sections we have described 5 separate hypotheses ch' s

, H , H

' ve and HmVc . These hypotheses specify relations

Hm'vc'
among the parameters of the distributions of test scores ¢n k psychological
tests (TO’Tl)’(TO’TQ)’""(TO’Tk) . In Section 3 we summarized the maximum
likelihood estimators (MLE) of the parameters under each of these hypotheses.
We also indicated what form the MLE of the parameters took under the general,
all-inclusive hypothesis, Ht , in which the parameters ( p(g),z(g) )

of the g -th test score distribution are not necessarily functionally

related to the parameters ( u(h),z(h) ) of any other test score distribu-
tion, h # g . 1In the present section, we describe statistical tests of
hypotheses which, upon the basis of the given test score deta, allow us

to decide which hypothesis of any pair of these hypotheses best describes

the parameters of the test score distributions.

4.1 Likelihood Ratio Test Statistic

Let H and H_ be any 2 of the 6 hypotheses: He o Hygo s
Hm'vd B ch B Hm'vc , and Hmvc . For example, Ha may be the hypothesis
L
Hmvc and Hb may be the hypothesis Hm’vd . Assume that hypothesis Ha

logically implies Hb . 1In this case, classical likelihood ratin test
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theory suggests comparing Ha to Hb by means of the likelihood ratio

test statistic

( mz;x p(x,V)

K,Z)EWw

(1) A == _8
a,b max  p(%,V)

(k,Z)eq,

where w is the subspace of the total parameter space w, which cor-
responds to hypothesis Ha , and @, is the subspace of the parameter

space which corresponds to hypothesis Hb . Since Ha implies Hb 5 aar

is included in @ , and thus max p(%,V) < max p(x,V) . Since clefrly
o
a %

A >0, it follows that 0 <A <1 . Values of A cl®se to 1
a,b — -~ a,b = a,b

favor hypothesis Ha s while values of Aa close to O favor hypcthesis

b
)
Hb + If we adopt the approach of Neyman and Prarson to hypothesis testing,

we call Ha the null hypothesis, and reject Ha (not necessarily in

favor of H_ ) if

(4.2) xa’b <N,

vhere N* is a certain critical constant obtained from the null distribution

of Aa b (that is, the distribution of Aa when hypothesis Ha describes
) )

b
the parameters ( u,Z )). If we wish to test H ~versus H at a level of

significance of y , 0 <y <1, then we choose A* to satisfy

(4.3) P[Aa b < M} <y , all (E,g) € w

)

are all large, and

k T

In very large samples (i.e., when Nl’NQ""’N
of the same order of megnitude), it can be shown that the distribution of

-2log Aa b when Ha is true is approximately a chi~-square ( X2 )
s :
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distribution with fa degrees of freedom. Here f is a certain
)

b a,b

integer which depends upon the hypotheses Ha and Hb , and upon q ,

P, and k. Let Xg(f,y) be that constant which is exceeded with
probability 7y by a random variable having a chi-square distribution with

f degrees of freedom. Then, in large samples, it follows frow the ahove
discussion that the critical constant A* defined in Equations (4.2) and
(4.3) is approximately equal to exp[aéxg(fa’b,yﬂ . Hence, i1 large samples,

a likelihood ratio test of Ha versus Hb , at a level ¢T cignificar.ce of

approximately ¥ , rejects Ha if
(b.k) A . < expl (£ 7).
a,b = 2 a,b’

Since H, and H_ can be any 2 of the 6 hypotheses H_, H

vc! )

6 - .
s Ho,.»and H  , a total of (5) =15 pairs of

s H
ve m've

m've!
hypotheses can be compared by means of a statistical test of hypothesis.

In 14 of these pairs of hypotheses, one of the hypotheses to be compared
logically implies tﬁe other, so that the classical likelihood ratio test
theory described above can be applied to construct a test of these hypothe-
seés. These 1t pairs of hypotheses are listed in the first two columns of
Table 8.

In one of the 15 possible pairs of hypotheses, however, neither »f
the two hypotheses logically implies the other. This pair of hypotheses,
H ., , and ch , cannot be compared using the classical likelihood

mvce

ratio test theory sketched above. We can, of course, construct a likeli-~

hood ratio test statistic A , of the form (4.1), but choice of a
J
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hypothesis to serve as the null hypothesis is arbitrary, %a b is not
J
necessarily bounded above by 1, and the. asymptotic distribution of this

test statistic under either Hm' , Or ch is not necessarily the chi-

=
square distribution.- For these reasons, comparison of Hm'vc' versus

vC

ch by means of a statistical test of hypothesis would require an entirely
separate analysis and'discussion. Since it is unlikely that a comparison
of Hm'vc' with ch would arise as an important problem in psychological
testing contexts, we omit discussion of a test of significance for these
two hypotheses.

For each of the 14 pairs of hypotheses for which the likelihood ratio
test theory is applicable, we can construct the likelihood ratio test
statistic %a,b by making use of the various maxima of the likelihood
p(i,V) described in the Appendix. For example, suppose chat we wish to
make a statistical test of ch versus ch, . Note that ch logically
implies ch, , 80 that Ha = ch and Hb = ch, in this comparison.

From Ecuation (A.38) of the Appendix (remembering that (E’E) and the

parameterization in terms of the quantities definec in Equation (3.1) are

equivalent parametecizations), we find that

1 i~§N

sy = uny Bu (27 L
(4.5) max  p(x,V) = H(V)| § woo' | V1.0

(1,250,
vhere H(V) is defined by Equation (A.21) in the Appendix. Similarly,

from Equation (A.25) of the Appendix,

OO|~%N 1 | Lyle) e

(4.6) max  p(%,v) = H(V)| % v
(I‘i)g)ewvc| g—__l
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Dividing (4.5) by (4.6), we obtain the likelihood ratio test statistic:

max  p(%,V)
(&’E)ewvc
ve,ve! © max  0(%,V)
(E)%)ewvcr

(k.7)

[V =]
=

1 (&) g

k |1 Viro!

mo|—t— .
1

el | | § ¥yp.0]

Once we have calculated the likelihood ratio test statistic Xa b’
J

then if the sample sizes N N2,.--,N are large and of the same order of

1’ k

magnitude, we can test Ha versus Hb at an approximate level of
significence 7 by means of the test which rejects H, if (4.4%) holds.
Use of (4.4) requires knoﬁledge of the conctant fa,b , plus access to
tables of the chi-square distribution. The constant fa,b can be obtained
from the well-known asymptotic theory of likelihond ratio tests. Values

of fa,b for each of the 1k possib%g tests of hypctheses are listed in the
fourth column of Table 8. Thus, the constant fvc,vc'“ needed to apply

the likelihood ratio test of ch versus ch, in largé samples is

given by (see Table 8):

_(p-9g)k-1)(p+qg+1)
ve,ve'’ 2

-
pr

Suppose thet p=3, ¢=2, k=3. Then f , = 6 . If we want
ve,ve

to test ch versus ch, at level of significance ¢y = 0.05, then in

large samples we would reject hypothesis ch if
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12
Ne,ver < exp[ 4X°(6,.05)] = .0018 .

In Table 8, we give the likelihood ratio test statistics Ka b for L
) ™,

of the 14 possible comparisons of hypotheses (namely. Hmvc versus H

m've ’

H versus H__, H , versus H , and H , , versus H_, ). TFor
mve ve m've ve m've ve

the remaining 10 comparisons, we recommend a modification of the likelihood
ratio test statistic along the lines first suggested by Bartlett (1937).

From the médified statistic La b given in Table 8, however, the likeli-
)

hood ratio test statistic Ka b MAY easily be obtained by merely sub-

J
stituting Ng for mg or ng ;, 8=1,2,s00,k, and N for m or n
in the formula for Ih b For example, in Table 8, we suggest the
] A

statistic

(4.8) L , = I

for testing ch versus ch’ (here, mg = Ng -q-1, g=1,2,..0,k,

k
and m= £ m_ ). To obtain A
g: l g ve

N for m everywhere in (4.8); the result is the formula for Ao

y 5 we substitute N_ for m_ and
» Ve g g

1

,Ve
already obtained in (4.7).

4,2 Bartlett Modifications of the Likelihood Ratio Test

Consider the likelihood ratio test statistic Avc & for testing
J

ch against general alternatives Ht . When k =2 and Nl % N2 s

it is known that the test of hypothesis which rejects ch when

o p SN is a biased test [Das Gupta (1969)]. 1In the univariate
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case ( p = 1 ), Bartlett (1937) suggests modifying the likelihood ratio
test statistic for testing the equality of variances among k ‘populations
by replacing the sample sizes Ng by the degrees of freedom ng of the
estimators of the variances of the g -th population, g = 1,2,...,k,
everywhere these quantities (the Ng's) appear in the formula for

the likelihood ratio test statistic. Anderson (1958; p. 2k9) proposes a
similar modification of the likelihood ratie:test statistic %vc,t
for testing tﬁ; equality of the covariance matrices among k populations.
When Nl = N2 = eee = Nk ;
and the Bartlett-tyne modification (ﬁLVC, " (see Table 8) of this test

the likelihood ratio test statistic A
ve,t

statistic are monotonic functions of one another, so that in this case

A and L yield equivalent tests. That is, if we construct
ve,t ve,t

a test of ch versus Ht of level of significance ¥ which is based
on A , and a test of H versus H, of level of significance 7
ve,t ve t ‘
which is based on L (and which rejects H for small values of
ve,t ve

ch,t ), then the test based on %vc,t ?eaects ch if and only if tne

test based on L rejects H__ .
ve ve

+
IR

When at least two Ng's are unequal, however, the tests of ch versus

Ht based on %vc,t and ch,t , respectively, are not the same. In

particular, the test based on A is biased [Das Gupta (1969), Sugiura

ve,t
and Nagao (1968)]. The difference between the tests is most pronounced

for small and moderate sample sizes. For large samples %vc,t and Ibc,t

are approximanely equal %o one another, and a test which rejects ch

when
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L, <exl-bE(e 7)1
ve,t 2 ve, t’

has level of significance approximately equal to 7 -
Next consider the test of Hmvc versus Ht based on the likelihood

ratio test statistic A ., . It can be shown [see Anderson (1958;
J

Chapter 10)] that

= A A
mve,t mve,ve ve,t

where A is the likelihood ratio test statistic for testing Hmv

mve,ve c

versus ch . Anderson suggests that since a Bartlett modification of

Avc,t improves the properties of the test of ch versus Ht , the

identical Bartlett modification of kmvc % will improve the properties
J

of the test of H.mvc versus Ht . As far as the property of unbiased-

ness of a test is concerned, Andecrson's conjecture is correct. That is,

whereas the test of H versus H, which rejects H for small
mve t mve

values of kmvc,t is a biased test when the sample sizes Nl’NQ""’Nk

. . o .
are not all equal, the Bartlett modification Ihvc,t of kmvc,t always

yield: an unbiased test. The test statistics kmvc,t and Lmvc,t yield

equivalent tests when Nl = N2 = ees = Nk , and are nearly ejual for large

sample sizes, regardless of whether the sample sizes Nl’N2’°"’Nk are

equal or not. The Bartlett modification of the likesihood ratio test
statistic kmvc % thus has greatest effect upon the properties of the
J

resulting test of Hmvc versus Ht for small or moderate sample sizes

Nl’N2""’Nk , which are not all equal to one another.

Cugtne o v
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Bartlett modifications for the test statistics Avc',t and Am ve',t

are justified by the same arguments used above to justify Bartlett

modifications of A and A . In all of these cases the Bartlett
ve,t mve,t

modification L of A, is formed by replacing the sample sizes N
a,b a,b g

by the degrees of freedom n_ = N_- 1 of the appropriate estimator of

the covariance matrix { (N )-lv(g) as an estimator of Z(g) in the case

(g) R (o) :
of Avc,t and N o)t and (N ) lVOO as an estimator of X, in
the case of A_, and N, , . } in the formula for A . Note that

ve',t m've',t &,b
in computing and analyzing Avc',t (or L.t b ) and Am'vc'3t (or
. (g e
Lm'vc',t ), we can act as if only observations of scores X5 of indi-
viduals on subtest TO have been obtained.
Let us next turn to A , « Note from (4.T) that
ve,ve
1
5N
I 1 \%e
x |7 Vireo!
A , = I
ve,ve _ 1
el | | § ¥p.0]
(4.9)
1
— iy AN
2 k 2
I (g) I gw Ié 5 V(g) l
K V1140 N % '11.0
= n — .
1
g=l| |1 (g) 2 AN
| § g§l V130! N "11.0
L i

It is known that V(g) has a Wishart distribution with mg = Nq -q-1

11-0 () (&)
g g =
degrees of freedom and expected value E(Vll'O) =m le 0? 8° ,2,0e0,k &

The quantity




il o
1
5N
2

k g 1l oI
g=1 IL 5 V(g) |
N 11-0

g=1

has the form of a likelihood ratio test statistic for testing the equality

5(g)

of the residual covariance matrices ll 0>’ 8&° 1,2,...,k against

general alternatives. [Indeed, it can be shown that U is the likelihood

(1) _z<z> _ e

ratio test statistic for testing the hypothesis ll 0 11.0 = °°° ll 0

against the hypothesis H, .] Since
V1.0 =W - w10"’001“’01
(%.11) k
_ (g) (g) (g)=(8) _ -
= gzl V1.0 gzl (B Woéwoﬁ Voo (B2 WO(J)""Ol) )

it can be seen that

1 (g) %N
1 g
| & Z Vllo|

(%.12) U, =
° \ '% wu.-oI

somewhat resembles the likelihood ratio test statistic of MANOVA. [Actually,

U, 1is the likelihood ratio test statistic for testing H against the

2
. 1 2 k (1) (2)
hypothesis that Z§l)0 = Z§1? = eee = Z§1)o , and X540 = oo =

- Zég) .] Using the arguments presented earlier which justified modifying

A

ve.t ? it would appear that the performance of Ul as the basis of a test
)

F LI LLE
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of equality of covariances would be improved if in the formula (4.8) for U

we everywhere replaced Ng by the degrees of freedom mg of yg??o ,

1

k k
g =1,2,...,k , and replaced N.= £ N by m= Z& m_ . Then, using the
g=l g g:l g
arguments used earlier to justity modifying Kmvc & it seems appro-
b

priate to make a similar modification in the formula (h.9) for %vc ve!
s

That is, we modify A

ve,ve! by replacing Ng by m,, &= 1,2,...,k ,

and N by m everywhere in Equation (4.9). We call the resulting

statistic,
m
k m_11.0
I: y = H ’
ve,ve _ 1
=1\ | $¥1.0]
the Bartlett modification of A , + Since A, 4 = A ' s
ve,ve m've,m've ve,ve
mye,m've' T xvc,vc'%mvc,m'vc 4 7\m.vc,vc' = 7\vc,vc'kmvc,vc » and
%m'vc,vc' = %vc,vc'“m'vc,vc , it seems appropriate to make modifications
. . . . . . \
of the likelihood ratio test statistics Mmrve,w've' xmvc,m'vc' s
mve, ve' and %m'vc,vc' similar to the modification which we have just
made to %vc ve! * These Bartlett modifications are exhibited in Table 8.
2

For every Bartlett modification La b of a likelihood ratio
2

statistic %a shown, in Table 8, the following comments apply:

b
b
(i) A test of H, versus' H  based on Lh,b rejects H ~ when

Lh,b <FEo

where LI¥ is determined from the distribution of Ih b
s

when Ha is true.

,

A A




(11)

(iii)

(iv)

146~

When the sample sizes are equal L and A are mono-
a,b a,b
tone functions of one another and hence lead to equivaleht
tests of Ha versus Hb .
When the sample sizes are unequal, and are either small or
moderate in size, the test of Ha versus Hb of level of
significance 7 which rejects Ha when ka b < N* 1is not
)
the same test as the test of level of significance 7y which
rejects Ha when La b < 1% . 1In certain cases, it is
)
known that the former test is a biased test, while the latter
test is unbiased. It is conjectured that the test based on
ka b is always a biased test, while the test based on
)

La b is always an unbiased test.
)

When the sample sizes are large, A, . and L are
)

a,b
approximately equal; further, the test which rejects Ha

when

1,2
7\a,b < exp[ X (fa,b’y)] ’

and the test which rejects Ha when

14,2
La b < exp[ -5X (fa’b:')')] ’

b

both have level of significance approximately equal to 7 .

For each of the 14 pairs of hypotheses which have been covered by

our discussion in this section, Table 8 lists the test statistic ( Aa b

or La,b )

b

which is recommended for testing this pair of hypotheses, and
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the degrees of freedom f
a,b

under the null hypothesis ( H ). Table 8 also provides cross-references

of its asymptotic chi-square distribution

to other articles [9r to Anderson's (1958) textbook] in which some of these

hypothesis testing problems are considered.

4.3 Asymptotic Expansion for the Null Distribution

Each of the likelihood ratio test statistics listed in Table 8 is a
ratio of products of powers of determinants of certain random Wishart-
distributed matrices. The exact null distribution of each such test
statistic can be shown to be the same as the distribution of a product
of powers of certain independent beta variates. Thus [see Box (l9h9),

Anderson (1958; pp. 203-209)], when N.,N.,...,N, are all moderately

1’72 k
) 2 2 .
large (say, N, >3(p" +kX), g=1,2...,k ), the null %ﬁh&,’cwe
. . . . ‘.2 = =
distribution function of log Ta,b’ where Ta,b Aa,b or Ta,b La,b

depending on the hypotheses Ha and Hb to be compared, may be

approximated as follows:
. 2
- <t} 2 -
P{-2log Ta,b <t} (L ¢a’b)P{X (fa’b) < pa’b‘r}
+ P{X2(f +U)y<p 7}
(k.13) a,b a,b - "a,b

o)
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2 . . .
where X (f) represents a random variable having a chi-square distribu-
tion with f degrees of freedom, fa b is the degrees of freedom of the

2
asymptotic null distribution of the likelihood ratio test statistic (given

in column 4 of Table 8), and ° and p_ . are constants depending on
2

b
2
Nl’N2”"’Nk , P, 4, k, ard the hypotheses ( H and H_ ) being
compared. Given a desired level of significance 7°, we may use (4.13)

to obtain the critical constant T* for the test of Ha versus Hb

which rejects Ha when

(4.14) Ta,b <T™* .

To do this, we first find a number t_ b(y) which satisfies
2

(1 -0, JROE(E, ) <, D) o, (BIX(E, 4 B) St ()

(4.15) .
=7 .
Then
t_ . (7)
(4.16) T* = exp & [ 227 .
pa,b

Thus, an approximate test of significance of level 7 for Ha versus
H rejects H_ when (4.1%) holds, where T* is given by (4.16), and
T =
a,b a,b a,b a,b

which are to be compared.

A or T =L depending upon the hypotheses HA and Hb

Tabie 9 gives formulas for obtaining values of pa b and ¢a b ° With
2 2

few exceptions, explicit formulas for Py b and ¢a b in terms of the basic
2 2

K
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dimensions q, p, k, Nl’Nz""’N -are very long and complex (this

k

is particularly the case for oa ). Thus, for the sake of compactness,

b
’ -

we have found it expedient to give explicit formulas for p and ¢ in
only a few cases; the other p's and ¢'s in Table 9 are then expressed as
certain functions of these explicitly defined p's and ¢'s. The functions

needed to achieve the above-mentioned compactification in Table 9 are de-

fined as follows.

kf p + f o) -
(%+.17) P(a,b,c;n) - a,b"a,b b,c " b,c ,
f + f
a,b b,c
and
1

22 2
(h'°l8) ‘D(a:b:c’n) = (s pa,b¢a,b + pb,c¢b,c

r‘e(a,b,c;:‘)-

fa,bfb,c
+ £

2
* T j (kp g =000 1

a,b sC

Motivation for use of the functions defined by (4.17) and (4.18) can be
found in Gleser and Olkin (1972b). Here, we illustrate how to use these

two functions, and Table 9, to obtain p

1.y 5 @nd ¢ vwhen
mve,m' ve

mve,m've'

(as in the illustrative example of Subsection 3.0) a=2, p=23,

k=3, and Nl = N2 = N3 = 100 .

Looking at Table 9 and Equations (4.17) and (4.18), we see that to

determine p ..y and ¢ 1.+ 5 we need to first find the values
mve,m' ve mve,m've
of f ¢ f P
mve, m've ? Pave,m've ? “mve,m've 7 Tm've,m've’ 7 "m've,m've' ’

and .
¢m'vc,m'vc'

.y

q, k, I _yeeelN ) are given in Tables 8 and 9. From Table §,

Fxplicit formulas for these suantities (in terms of p ,

P s
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fvemive = (P - Dk -1) =2

=LI>_-q)(p;q+l)(k~ll=6

m've,m've'
From Table 9,

~2N-p-g-%k-2_ 39 _
Pmve,m' ve 2N - %— 98555,

- - )@ -a)®r (-1 - 5]

¢ ' s
mve,m've 123N -p-q -k - 1)2
> 2
=1 - A _ly,ap-9)+3(p-9)-17_ g(p -ak-1)
() toat = 1 ( z )[ - -
move,mve =l Mg T k-1)(p+qa+1)(p-4q (®+q+ 1m
= 99551
and
(»-4a) 2 .12 1 2
Q’m'vc,m'vc' = ’ { E‘l ( ;n-) -5 [(p - q) -1}[p - q + 2]
pm'vc,m'vc' &= g m

2
- 6(k = l)(p +q+ l)(l - pm'vc,m'vc')

s UE D) (50500 - )P (o - 0 (k- 1)%2 - 5))
m

1873
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Thus, from Table 9 and (4.17),

(Z,%--%)[q(p-q)2+5(p-q)-1]
g

Pave,m've’ 7 B +a + 3)(k - 1)

{a+1)p +q-gk-k)
(p+q+ 3m

+

1.00020 .

From Table 9 and (4.18),

1 N,22 2

e

h8 i g Ve Puve, m've*mve,mve ¥ Pave,m've! *mive,m've!

Pave ,m've!
f £, .
. mve,m've m've,m' ve! ( o 2)
l’(fm,vc m've * fm ve,m've ) 't m ch m've - m've,m've'’

J

= L 200 42 2, \2 o
S &= ’.( {.98500 0 1.00076 00002
48(1.00k41) So1 ) (-98500)°(0)" + (1.00076)(.00002)

’
e

2 L
¥ %1‘:;‘58' [ Zg‘i (-98500) - 1%000761%)

.0000C"
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In the above example, o

and )i
mve,m've Pm've,m've' Prve ,m' e
were all close to 1, and ¢ ¢ and ¢ wiie
? mve,m've > “m've,m've’ ’ mve,m've'

all very close to O. This result is not excedtional. For every test of
hypothesis represented in Table 9, it can be suown that Pa.b -1 and
)

¢a,b -0 as Nl’N2"°"Nk all tend to . (Mhis fact follows since the

limiting null distributionsef -2log Ta b is a chi-square distribution
- )

with fa degrees of freedom.) In general, % b is closer to O in
) )

b

large samples than Py b is close to 1. For example, in the case con-
)

sidered above, the three ¢ ~values were all O to four decimal places,

while the p -values were .98333, .99351, and 1.00020, respectively. When

] is very close to 0, but o is not so close to 1 that we can set
a,b a,b

p = 1 without loss of accuracy, ta b(7) may be found by setting
)
ta,b(y) = X(fa,b,y) , as can be seen by setting ¢a,b =0 in (k.15),
snd T* may be found from (4.16). That is, when o ., is very close
)
to O,

2
X (fa b’7)

] .
pa,b

T* = exp -3l
Of course, when Nl’N2’°"’Nk are so large that pa,b = 1 and ¢a,b =0
(to several decimal place accuracy), then T* may be found from the

formula,

2
T* = exp -5 X (f .
Xp 2 ( a,b’y)
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5. An Application-

In previous sections, we have described the implications of the
hypotheses ch, s Hm'vc' ) ch s Hm'vc , and Hmvc for the psychological
testing situation in which k tests (TO,Tl),(TO,TQ),...,(TO,TK) are given
to k separate groups of individuals. If the k groups of individuals
taking the k tests can be regarded as k random samples of individuals
from a certain population of individuals, and if the environments in which
the k tests are given are homogeneous, then we would expect the distribu-
tions of the scores of individuals on the k forms (TO’Tl)’(TO’T2)""’
(TO’Tk) to have parameters related by hypothesis Hmvc if the k forms
are psrallel, and by hypothesis Hm’vc’ whether the k forms are parallel
or not.

If the assignment of individuals to forms, or individual-form pairs
to testing environments, has not been performed in such a way that dif-
ferences among the parameters of the Kk test score distributions can be

attributed solely to differences in the forms (TO,Tl),(TO,Ta),...,(TO,TK) ,

then any of the hypotheses ch, , H_,or H

Ve nfve MY relate the param-

eters, or there may be no relationéhips among the parameters ( Ht ).

In this psychological testing context, an experimenter who believes
that his experimental design has made adequate allowance for individual
differences and environmentsl effects upon testing performance would usually
start testing hypotheses by comparing the hypothesis Hmvc (parallel forms)
to the hypothesis Hm’vc’ . In this section, we illustraﬁe the test of
these two hypotheses in the context of the example described in Subsection

3.0. There, 3 forms (TO,Tl) s (TO’T2) s (TO’TB) were each given to 100




-
);m

-61-

individuals. The subtest TO 'common to all 3 forms has 2 parts, while

the forms as a whole each have 3 parts. Hence, k=3, q=2, p=3]

N1 = N2 = N3 = 100 .

From Table 8, the recommended test statistic for testing Hmvc versus

Hm'vc' 18
(&) 2
1 (&) 1 \%e )
) 3 Img Vitlol by (oo * Agg)
(5.1 L ron = 1L : ’ .
o™ 5\ T w !

where w o=y = m3 =97, m= m +om, 4 m3 = 291 . Because m o= m, = m3 s

and
= e w1/ g+ A = B o],
where
Qp.0 = Wy * Ay - (W + Ay )Wy + Aoo)—l(wm thg)

we can rewrite L in the form

mve,m've'
" 5 1(97)
I Ing?Ol )
(5.2) 1, =|8L :
mve,m've I; IB
5 Y1.0

From the data given in Table 1, we find that

V§%?O = 15k0.ho29k | V(B) = 1189.67254

- (2)
= 1981.9%3688 , Vv ’ 11.0
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and that )
Qll-O = 4759.8120 .
(g) | _ (8) - 1 .1 ;
Note that ,V11-o, =3, 8123, I3 Qll-OI = 5 Q.0 since

these quantities are scalars. Thus, from (5.2)

(5.3) = .00998 .

L 1] 1]
mve, m' ve

1

In Subsection 4.3, we indicated that a test of H verste H |,
mve = m've

of level of significance approximately equal to 7 rejects Hﬁvc when

t
I - exp AL nwc,m,vc,(y)} ’
pmvc,m'vc'
and t ., is obtained from (4.15). Since
mve,m* ve .
meC,m'VC, = ) pmVC,m'vc' = 1.0044L 5 ch’m,vc, = 0.000002 s

we see from (%.15) that

(7) = E(8,7)

&
1

t 1] 1]
mve,m’ ve

and that
2
X=(8
I* = exp -z [ 1.ooﬁo%'] y

If we wish to test H versus H , , at level cf significance ¥ = 0.05,
mve m've

then

x?(8, 0.05) = 15.507 ,

g
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and
* = A 22007 g
L exp -3 [ loOOhOl ] = 0000)4')-{- .
Since L is greater than I¥ , we cannot reject Hmvc at the 0.05

mve,m' ve'

level of significance. Thus, the three forms of the SAT can (tentatively)

be regarded as parallel forms of the same test.
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Appendix. Derivation of the Maximum Likelihood Estimators

In Section ¥ we noted that the joint density function p(%,V)

of the sufficient statistic (x,V) has the form

k
p(57) = T p(EplE)
g=1
- AU
where p(x(g)) is given by Equation (2.6), and p(V(g)) is given by
Equation (2.7), & = 1,2,...,k . Adopting the approach to the derivation
of the maximum likelihood estimators which was mentioned in Section 3,
we break the likelihood p(%,V) into two factors: (i) the marginal
. . - - 2
density function of X, (l), ée),...,x(k)) and V) (V(%), éo),...,
(k)) ; and (ii) the conditional density function p(x,leO,VOO) of

= (x

(x,V) given (XO,VOO) .
From (2.6), (2.7) and Theorems 2.4.3 and 7.3.3 of Anderson (1958), -

the marginal density function p(iO,VOO)' is

T e >p<v(g>

P(XO’VOO) = ool
$(n -q-1)
(A.1) =c, T {|Vé§) g |z (g)l
g=1
exp “%[Ng(iég) (g))(z(g)) ( (g) (g)), - tr(Z(g)) lV( )]} ,

where CO is a certain constant. Since the conditional density function

p(x,V|x ’VOO) of (x,V) given (iO,VOO) is equal to p(i,V)/p(io,VOO) ,

it can be shown that
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k 1
= g1z _ (g);-5(p-q) (g) (g)

exp ﬂé(Ng(ggg) _o(8) ;ég)s(g))(zgi?o)-l(§§g) - ;ég)s(g)).

(A.2) .
+ tr Vég)(B(g) - B(g))(z(g) )’l(B(B) - B(g))'

110

¥ tr(zgi?o)-lvgi)o g

vhere Cl is a certain constant, the parameters a(g) s B(g) , and Zgi?o s
g =1,2,...,k , are defined by Equation (3.1), and the sample quantities

(g) (g)
B and Vll 0’ 8

The joint density function p(X,V) of the sufficient statistic (x,V)

\

is tﬁzbfroduct
(03) 2N = B, V15, To0 oy Vo)

of (A.1) and (A.2). 1In Section 3, we have shown that the parameterization
of p(x,V) in terms of pég) s Zég) s o(e) B(g) , and Z§§)O s

g =1,2,...,k is equivalent to the original parameterization of p(x,V)

= 1,2,...,k, are defined by Equation (3.3).

)

in terms of p(g) and Z(g) s, g&=12,...,k . In this Appendix, we find

)

maximum likelihood estimators (MLE) of the parameters

a(g) s B(g) , and Zg%?o , 8=L1L2,...,k, under each of the hypotheses
i ,, H, ,, H_, H, , and H « These MLE can then be
ve m've ve m've nIve

transformed (see Section 3) to obtain the MLE of the original parameters "
p(g) and Z(g) y g2=12,..0,% . !

To obtain the MIE ot “he parameters under the various hyjotheses,

we mske repeated use of the following lemmss.




-66-

Lemma A.l. Let Zj be given s x t matrices and Hj be given s x s

H. 1is
1

nonnegative definite matrices, j = 1,2,...,r . Assume that

r
J:

nonsingular. Then for all s x t matrices =,
r T ~ A
(a.4) = (2, -E)H(z.-F)= 5% (2, - E)'Hj(Zj - =)

R r
+ (= -E=E)( =

A
H)(=-E2) ,
=1 Y

2, r -1 r
vhere Z=( T H.) T H.Z.
je1 9 gm1 33

any t x t nonnegative definite matrix A,

. Hence for all s x t matrices Z and

15384

lil

>

r
(A:5) I tr Hj(Zj - E)A(zj -

j=1
with egu:?’cy in (A.5) if

Proof. Note that

MR

o
tr H.(Z. - =)A(Z. -
J(J )(J

J=1

Inl
|
Iti>

2 -Z)H(Z. -F) = (2. -H(Z. -2+ (2, -DH(E-=
(2 - 2wye, @) = (2 - Btz - B v @ - HuyE-3)

J
(A'6) A A A, A
+ (2 -E)H(Z, - E) + (2 -E)HA(=-5) .
E-mue -He E-DuE-9 .,
r fa) r N
and that (Z. -Z)'H. = = H.(Z. - ) =0 . From these two facts,
j:l J J j:l o) J

(A.4) follows. Since for all = (including the case when X = Z ),

r r
S trH(Z, - EAZ, -E)' =tr £ (2. - E)'H. (2, - E)A
521 57y - =y - ) j=l(a )'iy(25 - &)

J

2 ., L o . '

and since tr(=-E=)'(Z HJ.)(.:. - E)A >0, (A.5) follows directly from
J=1

(A.4). TFor future use, note that
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r ~ ~ r ~ ~ r ~
(A.7) £ trH.(Z. -E)AZ. - =) =tr Al = 2'H.Z. - Z( = H,)= .
j=1 3 3 je1 93 j=1 9
-~

Lemms A.2. ILev U be a given t x t nonnegative definite matrix, and let

{ be a proitive integer. Then for all +t x t positive definite matrices gib
g NS

A,
1 - A7 A
(a.8) IAIZI exp[-%trAlU]S I%Ulzleztl ’
with equality holdingin {(a.8) if A = (1/f)U .
Proof. This lemma is ‘a direct consequence of Lemma 3.2.2 of Anderson " =
(1958). ‘ e e e

A.l Maximum Likelihood Estimaturs under General Alternatives

From Equation (A.1),

_ k ( ) 2 (n -q-1)
g:

where u, = (u(l),ué2), ,uék)) » Zog = (Z(l) L(g),..., ég)) ,

X .
v agmg) = (xRl -Bem)) T {Iz(g)l € expl- wr(z(®) N «
(A.10)

and
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k
MugrZoo) = = Mgl :(8) - u8)(x{E) L) -
g=

(()g))v

(A.11)

- z or ¥ (x(g) ég))(zég))-l(iég) N u(()g)),

g=1

, . ' \ (g) _:
Note that A(&O,éoo) >0 , with A(&O,goo) = 0 AT Moo = x(g)

g =1,2,...,k . Hence

k a%N

(a.12)  £lupSe) S T Uyl & e __tr(z(g) -1,(8);
Hoos: o1

with equality when pég) = §(g) , 8= l’giilf’k . Applying Lemma A.2

to each term in the product on the right-hand side of (A.12), we conclude

that
k -5qN 1 k
: -5qN
, (A.13)  flupZy) S T | (s)| 8) - 2W 1 | L ES (g)|
~ = g g=l g .
with equality in (A.13) holding if uég) = iég) s = (N ) lv(g)

g = 1,2’000,1{ .

Let ug turn now to p(i,VliO,VOO)

Let O = (a(l) (2) ,..’a(k)) ,
(B(]), (2),...,3(k)) ,

1 2 k .
2110 (z£1)0:2£1)0:°°°: gl)o) Define ,
D(% 8215 .0)
(A.1k)
- 3 a8 - ol®) - (@50 lE) ) (e - ofE)

g:l ll’O

iég)ﬁ(g)):]

and

#‘» ";L};&"M’wm-""" e




A e e L B e A S e B . el

_69_

b

(A.15) E(E,g . )= % tr[V(g) (B(g) - (g))(z(g) )-l(B(g) - B(g))'] P

-

g:
Then from Equation (A.2),

p-1)

- @2 e |
(a:16)  p(x,V|x,Vo0) =€) T {154l lvi3 o| h(@, 8,25 ,0)

g=1 -

where

h(2,8,5,,.0) = lexp -5 D(%@,éll,o)][exz) % E(B,Z;7.0)]
(A.17)

X
Hl {|Z§%)o| exp[‘%tr(zgi)o) lvgi)o]}
g:

It is clear by inspection of (A.14) and (A.15) that D(G,B,le,o) >0

and E(§,§ -o) >0 forall &, B, §11 o 5 and that D(Q, B,Z 1 O) =0
and E(B,5,,,,) =0 if a(8) - o(8) . igg) - iég)B(g) ana &) - 5(8)

g=12,...,k . Further, from Lemms A.2,

1
i 3(p-q)N
(8) | % 1, o (8) (g) v(e) 2 g
21501 8 expldte(zi$l) VIS < W, it oI ’
; v ip w(8) -1,(g) .
with ¢quality if 211-0 = (Ng) lVll 0’ &= i,2,...,k . Hence, we con
clude from (A.17) that for all ¢, B, Zy;.0 2
k
-(p-q)N (g)

with equality holding in (A.18) it a(g) = a(g) s B(g) = B(g) » and

gi)o (N ) lv(g) g=1,2,000,k .

11.0 ’

)
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et 0 = (s Z00s® BTy o) 5 O = (pZo) » Oy = (% 8521;.0)

Then O = (90,91) . The largest possible space of possible values for
0 is Wy s where

o, = {e: 6

0 € %, 0 e wl,t} R

and
w = {0, = (rrSon) ¢ u(g) an arbitrary 1 x g
0,t 0 0’2007 * o

vector and
Zég) an arbitrary q x q positive definite matrix,

g = 1,2,...,}{}

)

g .
wl,t = {Ql = (?’?’§11-o) : a( ) an arbitrary 1 x (p - q) vector,

-~ - B(g)

an arbitrary q x (p - @) vector, and Z(g)

11.0

an arbitrary (p - @) x (» - @) positive definite

matrix, g = 1,2, .00,k}

Let H, be.a hypothesis which restricts the parameters © = (uo,
-
iOO’g’?’gll-O) to a subspace w, Oof of the form

U~)a = {(&O’EOO’(Z’ B’§11~0): (EO:§OO) € wO,

k and (%B2),.0) €@y b
i e i f .

where wb,a is a subset of wb,t and wl,a is a subset o wl,t It

then follows from (A.3), (A.9), and (A.16) that

ity

N
JRNTEEN TN
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.
3,
) k $(n_-p-1)
sup p(x,v) = [cc; T lv(e)] &% 10 swp £(uy,z)]
Gea% g=1 e edb ~07A0
0 0,a
(A.19)
A 2% [ sup h(a,p,= o
6. e ~ 7110
1 wi,a
In particular, it follows from (A.13) and (A.18), and from (A.19),
that
k %
(A.20) mex p(%,v) = H(v) T | v(e)] "
Gew =1 N
N &=l g
where ‘;;
Ly (g) 2(n_-n-1)
(a.21)  H(V) = ¢ 0 e#P T KA .
g=1

The maximum in (A.20) is achieved when u(g) = i(g) , ZOO = (N lV(g)

o(8) - a8 ale) _g(8) | ong ZE)O (v ) l"%?o . g =1,2.0k,

since (as shown above) equality in (A.13) and (A.18) is achieved for these

values of the parameters. Thus, the MLE of the parameters under general

alternatives are:

ﬁ(()g) - ';{(()g) ) g(()g) - ﬁ; V(()(g)) , a8 _a(e) 5(e) _ p(8)

a(
ﬁ)o SN Vgi)o

L

for g= 1,2,...,k , and the maximum of the likelihood is given by (A.20).

¥

i 2
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A.2 Maximum Likelihood Estimations under Ho o

The hypothesis ch, restricts the parameters © = (Eo’§00’9’9’§11-o)

to the parametric subspace W0 described in Subsection 3.1l. Note that

(A-22) W 1 = {e: 8 € o 1) 0] € asl,t) ,

0,ve
where
- : (L) = _ ., ok
@ ver = LWpsZp): (esZg) € @ oy Bgp” = Bgp” = «oe = Zgy”)
- 2 k
Let Z00 represent the conmon value of Z(l) (O),...,Zéo) under ch,
(1) _ @ _ gk *
Note that when ZOO = ZOO T oees = ZOO = ZOO ,

1
- N 1 -
(823)  £(gsZ00) = (expl 3o, Zog) NIzl =" exp For S5y

_ (g) . . _ .
where W, gEl Voo ¢ Since A(EO,QOO) >0, with A(Eo,goo) =0 if

(g) = i(g) , 2=12,...,k, and by an application of Lemma A.2, we

SO N (O B

concTude that when 2 00 ?

1 1
2N _-zaN
(A'zh') f(uo)zoo) < I OOI e

(2) _ ;(g)
0 2

for all W, , Z,,, with equality achieved in (a.24) if iy
g=12,....,k and I, =.(1\i)'1wOO

We conclude from (A.22), (A.19), (A.18), and (A.24) that

(A.25) max p(x,V) = H(V)|%
Oea%c

ll 0

1 k
Nool 2N | (g)|
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As shown above, equality is achieved in (A.18) and (A.24) when

uég) , ;ég) , o8 a(e) e gle) 4 zﬁ%?o , (Ng)-lvgf?o ’

(1) _ o(2) _ _ (k) _ oy ce.
and when % 07 = 507 = .o = T = () lwoo . Hence, it follows that

(1) _ o(2) _ - s(k) _
under H_., the MIE of u, , Z50/ = Zj5% = «00 = 2o =% %5 B
and Zl1 o &re given by Equation (3.5). The maximum of the likelihood
~dL* .

under ch, is given by Equation (A.25).

A.3 Maximum Likelihood Estimators under Hm' .

vC

The hypothesis H , . restricts the parameters © = (&0’§oo’g’§’§11-o)

Ve

to the parametric subspace @ described in Subsection 3.2. Note that

'VC'
%
(A.26) ST {6: 0 € 9, mive'? Ol € aﬁ,t] s
vhere
et

- (1) _ () _ _ (k)
wo’rn!v(:! - {(&O)zoo)- (EO’ZOO) € wO’t ] IJ'O = 'J»O = eee = IJ,O )

and zéé) = zég) = oeee = zég)} -4

(1) (@) (k)
Let Ko represent the common value of Ho TaHg TaeeesMy and ZOO
represent the common value of Z(l) zég),...zég) « Note that when

00 ’
R e

1 N -1w ™~
= A .Y

(A.27) f(&o,zoo) = {exp[ 3 A(Eo’z:o)]}lzool exp ~3tr SoWoy s
where in this case

k - -
o

AlgrZoo) = e (8 - w5 - k)’

vo b o ¥

s
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Applying Lemma A.l, we find that for all (EO’EOO) € ab,m'vc' s

k
AligeToo) 2 E o n G8- >=<O)<zoo)‘l<>‘<gg)

x

- =o)'

k
z N (x(g) . x ) (x(g) =

g=1

o)l

tr(ZOO)-

-1
tr(zoo) Ao 7

-SSR ) IS N ()
vhere X, = (2 N)™ 2 Nx° = (w) by N g -+ Thus for all
g1 & g=1 g=1 .
(&O’§OO) ¢ “,m've' ?

:11
.2 ' <N . -1
(8-28)  £(ny5,0) < 15| ™ exp -3trZo ) (o * Agp)

An application of Lemma A.2 to the right-hand side of (A.28) yields

1

4N _-3qN

(1) _ @) _ (k)

for all (&O’ZOO) € ab,m'vc' , with equality when Ko ~ = Mo ces = Hy = go

ma 2(g) = 23 v = 558 = (0 og # 00)

We conclude from (A.20), (A.19), (A.18), and (A.29) that

k alN
_ 1 An 1 2
(~.30) mx p(x,V) = H(V)Iﬁ'(woo + AOO)I = on I gi)ol

Geah,vc g=

Since, as shown above, equality is achieved in (A.18) and (A.29) when

gt = ufB - TRREY (l) = zg) = e = Zég) = () (g * Agp)
a(g) - a8) 6(g) . p(8) £§)o (x,) lvii)o g =1,2,.ek, it
follows that under K , , the MLE of uél) = ué ) o= uék) = uy




Ll

= Z(k)- z are given by Equation (3.9).

=80 %00 % By Zii0
, is given by Equation (A.30).

1 2
Z(go) = Z(go) =

The maximum of the likelihood under Hm'vc

A.b Maximum Likelihood Estimators under H and H_,
ve m' ve

The hypothesis ch restricts the parameters © 1o the parametric

subspace:

(A.31) w, = {0:06,¢€ G, ve'? 0, € cul,vcn] ’

and the hypothesis Hm'vc restricts the parameters © to the parametric

subspace

(a.52) “ntve T {6: % ¢ ab,m'vc" gl € aﬁ,vc"} ?

where
- : . (1) _ (2) _ (k)
O yor= (@ BE1 o) BBy ) e oy s BT = B0 = eee 587,
, (1) _ «(2) _ (k)
and Ei70g = le.o = see = 211-0] .

' 2
Let B be the common value of B(l), ( ),...,B(k) , and let le-O

(1) (2) (k) (1) _ 4(2)
be the common value of zll-O’zll-O""’zll-O « Note that when R =B =

Y 9 BN €= SN ¢.) RN

e =BT =B, L9300 % 217,07 0 110 = ©11:0 °

(A.33) D(g’-?’gll°0) 20 ,
with equality achieved if

(&) _ ;(gg) - ;((gg)g , g =1,2e.0,k .

Also,
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(A'Bh) E(?)E“ll_o) = E((B’ B’ .. "B)) (211-0’21100’ . "zll-O))

- Z tr V(g)(B(g) 8)(= 1. O) (B(g) B)’
g_

Applying Lemma A.l (and Equation (A.7)) to (A.34), we find that when

I ((E?EXA “11. 0) c"):I_ ve' ?

....

", } k
(39)  B(Ey0) 2 o005 )71 = B (E) -Wlowoéwoﬂ ’

g:
h k
with equality achieved for*mg( ) ( ) = eee = ﬁ(k) = ( Zl /(g)) (g) (g)
“s, g=
l Fi,
Woo Wop ¢+ Hence, for all (u,B, l‘OmA mi ve 2 it' follows from (A. 33)

“w,

and (A.35) that

~
bt

1 -1 -
(A-36)  h(%,B,5;; ) < Izll_O! 2V exp -%tr(:{i?o) lwli-o] )

(g) _ ;(&) _ z(8)y-1y

with equality achieved in (A.36) if a'°/ = x; X5 WoWoy » 8 = 1,2,.00,k ,

and B = WOéWOl . Applying Lemma A.2 to the right-hand side of (A.36), we

conclude that for all (9’?’§11-o) € Wy yon 2

- 4N _-3(p-q)N
2
(A‘BZ) h(a B) ll O) < IN ll OI e 2

with equality achieved in (A.37) if o(8) _ igg) (g) oéw01 ) B(l) =
(2) _ _ (1) _ (@) _ (k) -
BT 7= e = = woolW01 ,and 217700 = Ij7lg = cr = Bpql0 = (V) R AR

We conclude from (A.31), (A.1S), (A.24), and (A.37) that

1
- =N
2Nk I

(A.38) max p(x,V) = H(V)|N 00 ¥ "11-0

BGew .
ve
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Since equality is achieved in (A.2%) and (A.37) for- u(g) = ;ég) s
o(8) _ §£g) -(g)WbéwOl . g=1,2,...,k , and for 20) CD -
28 = () Mg oM = 6 - - = Woo¥o1 » Z§i)o - Zgi)o -

(k) - . .
= %1% = (N) lWlJ-O , it follows that under H__ the MIE are given
by Equation (3.12). The maximum of the likelihood under H . is given
by Equation (A.38).

Similarly, from (A.32), (A.19), (A.29), &nd (A3T), it follows that

L
‘ - ~ 1, 4N L N
(A-39) 0" p(%,v) = HV) (W0 + 8o0) [0 15 Wyp
m've
The maximum likelihood estimators of the parameters under H ., . are

given by Equation (3.1k), as can be seen from the gufficient conditions given
above for equality to be achieved in (A.29) and (A.37). The maximum of the

likelihood under H , . 1is given by Equation (A.39).

£.5 Maximum of the Likelihood under Hmvc

_The hypothesis' Hmvc restricts the parameters © to the parametric

subgpace

(A.%0) © e = {o: 6 € 0, m've"? e, € mi,m"vc"]

D e T (@820, 002 (@ BZ1q,0) € @ g

e NNC) NN ¢S S CD B O BRN

J

(1) _s(2) 5(¥) 5

11 0 11 o~ " 11 o
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By applying Lemma A.l separately to D(Q, ‘3’211-0) and to E(B,}:ll. O)

when (‘Z"?’§11-o) €Wyt ) it can be shown that

X
D(‘f’?’ﬁl.o)*E(?ﬂfn.o)_>tr{(>311.0)"l[ z v(g) (g) lv(g)

+ Ay - (W + Ay (Wop * Aoo) (W01 + A1)

-1

with equality achieved when a(l) = a(2) = ees a(k) = X + AOO) '

(l) = 6(2) = eee = B(}\{) = (WOO + AOO)-l(WOl + AOl) .

- X (W
1 “0'"00
(wOl + AOl) , and B

Thus, when (g,?,gll.o) € (J.\l’mnvcn )
(A.41) n(c, 8,5 ').’< .. I'%N 2tr(s )’lQ
‘ 2P 21,0/ 2 %1300 exXp =2 11.0 1140
where
-1
Qui.0 = Mg + Apy ~ (g + Ayp) (g + Agg) ~(Hgy ™ Agy)

Applying Lemma A.2 to the right-hand side of (A.41) yields the result that

1 SN _-3(p-a)N
(A"+2) h(g"@’gll'o) _<_ I N Qll'OI e -

for all (Ot B, Z11- O) W) et with equality when a(l) = a(a) = see =
(x) = 1 (1) _ (3) . _ (%) _
™ =% - xo(wOO + AOO) (wOl +(A(;l) , B/ =8 _(.;. = g\ =
-1 1 (2) _ k) oyl

(oo * Bog) ~(Wop ) s and E.i0g = Iy = o = 20l =.(M) "y -

From (A-40), (A.19), (A.29), and (A.42) it follows that

1
(A.43) o max p(x,V) = H(V) | % (Woo * Aoo)| I § ¥ Q1. ol 2
emeC
A
= H(V) | % (w +a) [2N
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.The maximum likelihood estimators of the parameters under Hmvc are given
implicitly in Section 3.5 (and explicitly above by the conditions for
equality in (A.29) and (A.42)). The maximum of the likelihood under i

mve

is given by Equation (A.43).
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