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ABSTRACT

Reported is the develorment of a self-instructional
course in engineering statics designed for engineering students that
has been implemented in several instituticns. There are 15 unit
modules in the course divided into three different levels. Each unit
begins with a description of genexal objectives. The unit is then
divided into several subunits each of which has terminal objectives.
A self-assessment test is given after finishing each subunit. After
the completion of all subunits in a unit, an achievement test is
given to assess the student's grasp of the material in the comgplete
unit. Only pass/fail grades were given on the achievement test. Final
letter grades were given on' the basis of the number of units covered
by each student. The course is aimed at enabling students to learn at
their own pace. The 15 units included in the course were
Fundamentals, Equilibrium Diagrams, Equilibrium Analysis, Components
Superposition Cantilever Beams, Vector Algebhra, Friction, Engineering
Frames, Non-Coplaner Systems, Equivalent Systems, Trusses, Properties
of Surfaces, Energy Methods, Hydrostatics, Beam Diagrams, and Slide
Rule. Evaluation of the course was favorable. A description of most
units is included in the report. (PS)
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ABSTRACT

For Contract DEC - X - 71 - 0042 (057)
by Associate Professor D.E. Alexander

The objective of this project was to design a course where each student
learns engineering statics using self-paced modular units. This course has
been constructed and used here at the Un‘versity of Washington and at some
nearby community colleges. (he course has been organized into a learning
hierarchy of 14 modules. Each module begins with a behaviorable objective for
the complete module and is then broken down into units with assessment tasks
and terminal objectives for each unit. Each student decides when he wants to
take an achievement test on each module. When he passes the test {there is no
grade, only pass or fail for each module, also no time limit in any test) re
proceeds to the next higher module. Successful achievement tests on 10 modules
gives a "C" grade, 12 a "B" grade and all 14 an "A".

A1l classroom lectures have been replaced by classroom consulting by the
instructors. The resu1t§'pf student surveys are inciuced in the body of this
report. Since this technique has been developed, many other instructors are
presenting classes in this self-study manner. This quarter I am offering a

course in digital computation and numerical methods using the same format.
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Innovative Project in Engineering Statics
Daniel E. Alexander
Department of Mechanical Engineering

1. INTRODUCTION

The objective of this project was to construct a course in which the student
learns engineering statics using self-instructional units. All of this material
is to be presented using a three-dimensional approach. This course has been con-
structed and used for the last four quarters here at the University of Washington
and one quarter at Everett Community College.

2, COURSE FORMAT

A detailed format of the course is enclosed with this report. Some unitw
are enclosed with this report.

3. INSTRUCTORS AND STUDENTS INVOLVED IN THE COURSE

Instructors Sections
Fall Quarter M. Ekse, H. Strausser, "
D. Alexander
Winter Quarter H. Chenoweth 1
Spring Quarter W. Chalk, J. Morrison
H. Chenoweth, D. Alexander 5
W. Zimmerman at Everett

Community College

Summer D. Alexander 1

4. STUDENT PROGRESS

Records were kept of the time needed for each student to complete each unit
and also the time needed to complete the course. The time needed to finish a unit
and be prepared for an achievement test on the unit averaged out to be between U

and 6 hours. The fastest student finished the course in 3 weeks. Almost all of the
students finished the course before finals week. The fastest student had an overall

grade point of 3.93 for two years. The next fastest student took 3 1/5 weeks, his
overall grade point after 7 quarters is 1.86. The next fastest student needed 6
weeks to complete the course. During 3 of the 4 quarters, a girl finished first.
slowest students have needed 2 quarters to achieve C grades.
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5. GRADES EARNED

For all 11 sections A 116
B 39
C 21
D 3
E 5 -
PW 18

6. SIJDENT EVALUATION

All students were asked to evaluate the course in the Fail quarter. No formal
evajuations were taken during the other quarters, but spot evaluations were given
to some students and the evaluations were the same as during the Fall quarter.

7. COMMENTS

Careful notes were kept of feed-back from the students and instructors using the
units. This feed-back has been used to rebuild most of the units and it was found
necessary to add a basic unit on the slide rule. Also a teachers manual with a com-
prehensive set of achievement tests for each unit has been constructed.

The course has been presented without using formal timed tests. This made it
impossible to measure objectively the student achievement in the course Vs the
achievement in the regular courses. However the individual tests given have all
been much more difficult than the timed conventional tests. The amount of material
covered in this course has been about 40% greater than in the conventional course.

It is obvious that all students do not and can not learn at the same rate. Many
students have to repeat units at the first of the course and some even toward the
end of the course. The instructors and students all like the idea of keeping a
student in a unit until he can actually demonstrate that he knows the material.

Other instructors in the college of engineering are ncw presenting courses in this
self-instructional manner. EE has at least three courses, ME has one, Chem. E one,
and the college courses have at least three. All of these instructors have either
attended one of the Engr. 180 sessions or attended a seminar where I presented the
course. Everett Community College has adopted our Engr. 180 course for next year.
Also as a direct result of a teaching institute that I sponsored in 1971, almost all
the commnity colleges, universities, and colleges that teach engineering in the
northwest have one or more self-instructional courses.

In my opinion many courses will be presented as self-instructional courses in the
future. The students like them and the instructors who have been involved like them.
Some faculty and administrators have told me they cannot justify spending their time on
this type of educational research as against the traditional engineering and scientific
research. I believe both types of research are needed at the university level.
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ENGINEERING 180

Professors Alexander, Chalk, Chenoweth, and Morrison

Engineering Statics Traditionally an engineering student studies a series of
courses that leads to an engineering design course. A typical series is shown
below.

Engineering -~ Engineering » Dynamics = Mechanics —» Material = Engineering = Design
Problems Statics of Materials Science Lab.

The first course is an introduction to engineering analysis and problem solving. ")
Engineering statics is concerned with constructing equilibrium diagrams and
determining the external loads that act on stationary structures. Dynamics
includes the studies of pure motion and the external loads that act upon members
that are not at rest. Mechanics of materials begins the study of the internal
conditions of a body acted upon by external loads. Material science is taught in
the Department of Metallurgy and is concerned with the internal structures of
different materials and how materials react to loads, temperature changes, etc.
In the engineering laborataory course the student tests actual members for
deflections, failures, etc. Then in the design course the student can draw on
all of these courses plus math, chemistry, physics, etc. to design actual engi-
neering structures or members. Each of the courses depends upon the ability of
the student to visualize and construct good equilibrium diagrams and to find

the external loads acting upon any member, this is the material learned in
engineering statics.

The Course A flow chart of the course is drawn on page 2. The course has been

organized into 14 units at three levels. Each unit has been designed to be
self-instructional and each student works through each unit at his own pace.

Each unit begins with an objective for the complete unit. This tells the student
exactly what is to be learned in the unit. The unit is then broken down into
learning sub-units with a terminal objective written for each sub-unit. When a
student decides that he fully understands the terminal objective, he then works
the self-assessment task written for the learning sub-unit. When he compietes
the task, he checks it with one of the professors. When he has finished a
complete unit and decides that he is recdy to demonstrate his grasp of the mater-
ial in the unit, he takes an achievement test on the complete unit. When he has
passed the test (there is no grade, only pass), he can then proceed to the next
unit.
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Course Conduct The professors will be in Room 326 during the following hours:

9:30 - 10:30 10:30 - 11:30 11:30 - 12:30
Monday Chalk Chalk
Tuesday Morrison Morrison Morrison
Wednesday Chalk Chenoweth
Thursday Chenowe th Chenoweth
Friday Alexander Alexander

The instructors will work with the students on an individual basis to check
units and give tests. No lectures will be given. Mostly the professors will
be consultants helping the students in any way. During the first five weeks

of the course, it is important that the students come to Room 326 and work with
the instructors at least four times per week including one day for testing.
Achievement tests will be given and graded in Room 327 only during the course
hours.

Achievement Tests Each student will take an individual test on any unit when

he decides he is ready. A1l achievement tests will be given in Room 327. A1l
the tests will be prepared by professor Alexander and administered by Professors
Alexander, Chalk, Chenoweth, and Morrison. There will be no time limit on any
test, all tests will be closed book, and each test will be graded by one of the
instructors with the student before the student leaves the testing room. Before
being allowed to take an achievement test on a unit, the student must have one

of the professors sign the unit. No penalty wiil be given for a non-passed test.

Grades Grades will be given for the number of successful units completed as
shown below.

Total Units 5 6 8 10 12
Level 3 2 3
Level 2 1 3 3 4
tevel 1 5 5 5 5 5

Grade E D C B A

Level 1 units must be taken in order. Level 2 and level 3 units can be taken
in any order except three level 2 units must be completed before taking any

AP
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level 3 units. Also the units must be completed as shown on the following
schedule:

Friday March 31

Unit 1
2 Thursday April 6
3 Wednesday April 32
4 Tuesday April 18
5 Monday April 24
6 - 12 At least one per week ’

If a unit is not completed on time, it will not count toward a grade and the
student will have to complete an extra unit for his grade. Also a pass must

be earned for all level 1 units. It is hoped that all students will get ahead of
the minimum schedule.

Office Hours The four professors will be available in their offices during their
regular office hours. These times will be announced later.

Study Rooms Room 326 is available for study M W F 1:30-2:30 and T 1:30-3:30.
Room 327 is available all day every day.

Student Supplies Each student must have a slide rule, some engineering paper,

two triangles, a protractor, an engineers scale, a mechanical pencil, and a
2H drafting pencil.

Text The text is "A Self-Learning Course in Engineering Statics" by D.E. Alexander.
It costs $9.00 and will be given out in units as the student progresses through
the course.
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D. E. ALEXANDER ENGINEERING 180 Fall 197

Student evaluation of self study course designed and constructed by D. E. Alexander
Seventy-nine (79) students from four classes.

Two classes by D. E. Alexander 38 students

Two classes by M. Ekse and H. Strausser 41 students

You are just now finishing a course in engineering statics where you learned the
material using self-paced self-study units with written objectives, no lectures,

and individual non-timed tests.
Yes No
I 1) Did you like the units approach as compared to the
‘ conventional course: 79 0 -
2) Do you feel that you knew the material when you N
finished each unit? 79 0
3) Do you like the testing program? 78 1
4) Do you like the grading system? 79 0
5) Do you like the non-lecture consulting type teacher
relationship? 79 0
6) Would you like to take dynamics using this system? 79 0
7) Would you recommend that Engr. 180 be taught this
way next quarter? 79 0
8) What grade would you assign the course compared to
other freshman and sophomore courses? A B C D E
76 3

Comments - Al1 good. Typical listed below.

Best course I've ever taken.

Liked it all the way.

Want more.

Learn more.

Good feedback.

Excellent student-teacher relationship.
Learned much more,

Almost too gcod.

Want this to continue.

t This is the first time I have been in a class like this, and it is very refreshing
to experic.ce a class with such a free attitude. The learning experience is left
up to the student.




Engineering 180 (Cont.)

Good change from conventional class structure.
Less pressureyet you still learn more than normal .
Superior to conventional course - can work at own speed.

After the problem set and similar test, you may even over learn it which is better
for retention.

Testirq program was flexible and often I felt that I learned something instead
of merely reciting back informatior. Also, I like to have lots of time.

Grading system great, unambiguous, you can get what you are willing to work for.

Liked non-lecture consulting type teacher relationship. Get to talk to professors
and get questions answered. Normally in a Tecture class, you don't know the
instructor, his goals for the class are unknown and the prof. gives out pearls of
wisdom which are usually redundant, whereas this course is much more applied and
less su~arfluousknowledge, which you don't use anyway.

It is very complete, step by step approach to the problem solving of statics. I
feel very grateful to be able to take this course in such a manner. I hope to see
dynamics taught this way.

Much less pressure and I've learned more in this course than any conventional course.

Don't like Prof. Strausser. He talks down like he's too good to teach this Tlow
level class.

You learn more this way,only a couple of spots in units hard to understand. Good
work, Prof. Alexander.

This course allows for much feedback to the student, letting him know how he stands
in relation to the course at all times.

Good--almost too good--takes desire away from other courses.

Best part of the course was the few minutes the instructor would spend each day
with the individual student.

Course excellent. Course makes studying a learning process rather than a competi-
tive one. I would recommend all science and math courses being taught in the same
way

Student-teacher relationship gives more meaning to the class thus stimulating more
interest in the course.

This method of teaching a difficult subject matter is very easy to follow,
informative and interesting.

I was very impressed with the class in general. At all times I knew exactly where 1
stood. The units were clear and the work was difficult, but interesting.

Undoubtedly, the best overall course I've taken at the University.




UNIT 1
FUNDAMENTALS

A THE END OF UNIT 1, YOU WILL BE ABLE TO VISUALIZE FORCE
FIELDS ACTING UPON ENGINEERING MEMBERS, CONSTRUCT POINT
FORCE RESULTANTS OF THESE FORCE FIELDS, AND DEMONSTRATE
ADDITION AND RESOLUTION OF POINT FORCES WITH THE PARA~
LLELOGRAM LAW AND WITH MOMENT EQUATIONS.

Introduction

Engineering statics is the study of forces acting upon stationary structures. The
space surrounding the structures is assumed to have a constant air pressure and temperature.
Lengths within the space are measured in feet, and forces are measured in pounds.
The action between two members that affects the size, shape or motion of the members
is called a force. Forces are classified as contact forces (when two members actually contact
each other) or as distant forces (when two members are attracted to each other by magnetism
or gravity). In engineering statics only actions between stationary members will be considered.
The study of forces acting upon engineering members involves four principles which will
be develomed: (1) the principle of a force field, (2) the principle of a point force, (3) the
parallelogram law for the ddition of point forces, and (4) the principle of moments.

Copyright 1371 by D. E. Alexander FD 1




The Principle of a Force Field

Figure D 1(a) shows a student's hand which has gradually rushed directly against a
round block attached to a compression scale until the scale reads 12 pounds. A method of
identifying the action against the student's hand and against the block will be developed

when the scale is he.d at 12 pounds.

Wherever the student's hand contacts the block, contact forces are built up. It will
P

be assumed here that the contact forces are uniformly distributed over the entire contact

area and that the intensity of the contact forces is uniform over the entire contact area.

These contact forces will be represented by arrows acting against the student's palm as
shown in (b). With the assumption that the contact forces are uniform in intensity and
uniformly distributed over the entire contact area, there would be an infinite number of
arrows, all of the same length. For convenieice, only a limited number are drawn. The
distributed force system acting against the student's palm is called a force field and is
labeled FFl. Force field arrows are always drawn with half arrowheads, as shown in (b).
When the spring scale reads 12 pounds, the magnitude of the total force field FFl is 12
pounds. No attempt iz made to draw the lengths of the arrows to scale, but with the
assumption that the contact is uniform, the arrows will all be of the same lengths in the

same ‘lirection.

The action of the student's palm against the block is equal and o site to the action
B q pPpo

of the block against the st .Jent's palm. Figure FD 1(c¢) shows force field FF2 acting
against the block. FFZ is equal and opposite to I‘Fl, with a magnitude of 12 pounds.

1
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(a)

Figure D 2

Figure FD 2(a) shows a student holdirg a homogeneous cylinder with a weightless cord.
This time the distant attraction of the earth for the cylinder is acting on the cylinder.
This attraction acts uniformly throughout the cylinder. It is called gravity and is repre-
sented by force arrows acting downward as shown in (b). Again, the force would be most
accurately represented with an infinite number of arrows, but only a limited number can be
drawn. If the cylinder weighs 4 pounds, FFl = 4 pounds. In (c) FFl is drawn as a uniform
force field acting cn the lower surface of the cylinder. For convenience, gravity force
fields are usvally drawn either on thr= top or bottom of a member. Although it is not shown,
a force field equal and opposite to FFl will be acting upon the earth.

In (d) some transverse sections of the supporting cord are shown exposed with their
acting force fields. It is assumed that each force field is evenly distributed over tne
exposed surface. Notice that although the magnitude of all the force fields in () are

equal, the force fields are not drawn to scale.




Figure FD 3
@) (b
In figure FD 3(a) a student is holding an eraser in his hand. The force fields acting
upon the eraser are to be shown. Usually the object being analyzed is drawn as if it is
isolated from its surroundings as shown in (b), then the force fields that are acting against
it are shown. FFl is the force field due to gravity. FF2 acts as shown in (b) to support

the eraser. Force field FFq acting against the hand is equal and opposite to FF2.

FE,

Figure FD 4

In figure FD 4(a) a uniform horizontal beam E supports symmetrical loads C ahd D and
rests on smooth horizontal supports at A and B. The force fields acting on all the members
are to be constructed. In (b) the members are isolated from each other with their force
fields shown. Although FFl, which is due to the weight of beam E, acts over the entire beam,
for convenience only a small cut-out sectior is shown. It is assumed that all the members
are rigid; for rigid members the shapes of the contact force fields can be assumed to be
symmetrical. The actual shape of the force field depends upon the loacding and material in
contact, but only the simplest symmetrical force fields will pe used in this presentation.

AT THIS POINT YOU SHOULD BE ABLE TO VISUALIZE FORCE FIELDS
ACTING ON SIMPLE ENGINEERING MEMBERS AND BE ABLE TO CON-
STRUCT THE FORCE FIELDS ON THREE-DIMENSIONAL DRAWINGS. Mm-1
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The Principle of & Foint Force

Any force acting upon an object is distributed over a contact surface or a volume.
In this presentation these distributed force systems are called force fields. After
identifying a forcz field acting upon an obiact, the force field is sometimes replaced
by a single point force.

Figure D 5

An example of a point force replacing a force field is shown in figure FD 5. 1In (a) a
student is pushing with his palm directly against a smooth surface until the compression
spring registers .. pounds. In (b) the student's hand and the scale are redrawn separated
from each other with their acting force fields shown. Now in (c) each force field is
replaced by an arrow passing through the center of its field. Each arrow represents a point
force which has the same magnitude and direction as the force field it replaced. Each point
force is called the resultant of its force field, thus the resultant of FFl is Fl with a
magnitude of 12 pounds. Point force arrows are drawn with full arrowheads to distinguish
them from the force field arrows with the half-arrowheads.

Since FFl and FF2 are equal and opposite to each other, it would follow that their
point force resultants Fl and F2 are also equal and opposite to each other. The placement

on an object of a point force resultant cannot be an exact placement, since the point force

is purely imagninary and abstract. It must only pass through the center of the force field
it replaces.
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Figure FD 6

Figure FD 6(a) shows a weight hanging on a cord. The force fields shown in (b) have
been replaced by their point force resultants in (c). Again, these point force resultants
pass through the centers of their force fields. F2 passes through a point called the center
of gravity of the cylinder.

FrFy
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@ (b) )
Figure ID 7

The eraser being held by a student's hand in figure FD 7(a) is shown with its force

fields in (b) and its point force resultants in (c). Try picking up an eraser and feeling e

the point force resultant of the eraser's weight. This should help to show that any point A
force is purely imaginary.




Figure FD 8

The symmetrically loaded engineering structure shown in figure FD 8(a) is redrawn in

(b) with the force fields shown and in (c¢) with the point force resultants of these force
fields.

NOW IF YOU ARE GIVEN A SIMPLE ENGINEERING STRUCTURE, YOU
SHOULD BE ABLE TO CONSTRUCT THE FORCE FIELDS ACTING UPON
THE INDIVIDUAL MEMBERS AND BE ABLE TO REPLACE THOSE FORCE
FIELDS BY THEIR POINT FORCE RESULTANTS. FD -2




Farallelogram Law for the Addition of Forces FD

Figure FD 9 is an isometric drawing of a horizontal stationary ring with four vertical
holes a, b, ¢, and d drilled through it. The ring is assumed to be weightless and the
holes frictionless. Spring scales S1 and S2 are attached through holes a and b and
gradually pulled while maintaining the ring in its original horizontal position until S1
reads 20 lbs. S2 also reads 20 1lbs and it is found by trial and error that the centerlines
of S1 and S2 must be horizontal and colinear (on the same straight line) or the ring will
not stay in its original position. Force fields FFl and FF2 are shown on the drawing with

their point forces Fl and F Fl and F2 are equal, opposite, colinear and horizontal.

2"

F,(17.4 1b) + F (12.2 1b) = F,(20 1b) 'f':f

. ~
F7 ~Fh Figure FD 9

Now an experiment is to be performed. Sl and S2 are to be released, then two other
spring scales are to be attached through holes ¢ and d. These two scales and S1 are to be
gradually pulled while keeping S1 and the ring in their original positions, until S1 again
reads 20 1b. S2 has now been effectively replaced by the new scales.

It is found by experimentation that the two new scales must always be pulled in the
same horizontal plane as S1. However, they can be pulled in a variety of directions, and
for each set of directions will read different magnitudes. One combination is shown in the
drawing where S3 and St replace S2. When S3 and St are pulled in the directions shown and
S1 registers 20 1bs, S3 reads 17.4 lbs and S# reads 12.2 1bs.

FF3 and FFu are shown in figure FD 9 with their point forces F3 = 17.4 1lbs and F, =
12.2 1bs drawn to scale. When the action lines of point forces F3 and Fu are extended,
they are found to meet at point 1 on the line of action of FZ' Now, if a parallelogram is
drawn to scale at point 1 with F3 and F, «s its sides, it is found purely from graphical
measuring that the diagonal of the parallelogram is equal to F 2 In order for the point

i~




Fll(lh.k 11,) + Flz(lu.u 1b)

Vind

FD

forces to intersect each other in this manner, each cne must be transmitted along its lire of 9
action. This is sometimes called the principle of transmissibility of a point force.

Since the point forces all act in. the same plane, a plan view of part of the ring can
be drawr: to a larger scale in figure FD 10. Notice that the parallelogram for F3 and F, can .
be drawn two ways. The solution will be the same when the arrowheads come together at one

end of the parallelogram (dotted example) as it is. when the tails meet (shown with solid
lines).

?3(17.u 1b) + F (12.2 1b) ?‘2(20 1b)

F5(79.2 1-) + F6(7u.7 1b)

?7(16.2 ib) + f8(11.7 1b)

— a— oY ’5"

by
\;;, {
// \\

2 //,/\5 a4 N

é = T3E -=3s
fa ™~ g £
~ 5 "

\\ \ s

D

Fg(ll.S 1b) + Flo(8.5 1b) F?(ZO 1b)

F2(20 1b)
Figure D 10

The centerlines of other spring combinations that can be found by trial and error are
also shown in figure FD 10. When pulled as shown, S5 and S6 replace S2. Their point forces
FS and F6 are found to be coplanar (in the same plane) and concurrent (the lines of action
meet at the same point) with F2 and form the sides of a parallelogram which has a diagonal
equal to F2. Other sets that can replace S2 are S7 and S8, S9 and S10, and S11 and S12.

All of these sets are found to have point forces that are coplanar with F2 and all are
concurrent and form parallelograms with diagonals equal to F2, except the parallel set of

S9 and S10. The case of parallel forces will be treated later in a spe~.al section.
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0f course, each ¢f the experiments could have been performed in the reverse order. For
instance, the three springs S1, S3 and S4 could have been applied first, then the right~
handed pair, S3 and Sk, could have been replaced by S2. When S2? is replaced by S2 and S4, -
point force Fy is replaced by Fyand Fy. In reversing the order, Fq and F, would be replaced
by F,. In either case, F, is called the sum or resultant of F, and Fiys while Fyand F,
are called components of F, along their direction lines. Fq and F)g e not usually referred
to as components of FZ'

The results of experiments are usually written in the form of a law. The law for the
addition of forc:s is called the parallelogram law. It states that when a single load is
to be replaced bv two loads. their three point forces (1) must have lines of action that are
coplanar and concurrent, and (2) must form a parallelogram at the point of concurrency, with
the diagonal equal to the single point force (called the resultant) and its sides equal tc

‘ the other two point forces (called the components). Conversely, when two loads are to be
\ replaced by a single load, tneir two point forces (called components) must (1) be coplanar
and concurrent, and (2) form the sides of a parallelogram at their concurrent point, whilh
has a diagonal (called the resultant) equal to the point force of the total load.

Quantities that obey the parallelogram law when added are called vector quantities or
vectors. A vector has these characteristics: (1) a magnitude, (2) a line of action, a
direction, and a sense, that is, it is a directed quantity, and (3) a vector obeys the
parallelogram law when added to another of its kind or when replaced by others of its kind.

A point force is therefore a vector, as represented by a full c.row. The length of the arrow ~
represents the magnitude of the point force, the position of the body of the arrow represents

the line of action and direction of the point force, the position of the arrowhead represents

the sense of the point force, and these point forces are combined only with parallelogram

addition. Vectors will be written in this presentation with bars over them (example - ?3),

and the magnitudes of the vectors will be written with capital letters (examples - Fas r,.

6.

Figure FD 11 1
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Figure FD 11(a) shows a horizontal ring held by S1 and S2. The parallelogram law is

to be used: (1) to replace S2 by point force components along the action lines a and b,
(2) to replace S2 by a set of components, one along b and the other through point c.

and

For case (1) a plan view is drawn to scale in (b) of the right half of the ring with

FFz and ?é shown along with lines a and b. Next, a parallelogram is drawn to scale at

point 1 with f} as its diagonal and Fyand F as its sides. Fj and F, are the point forces

of two loads acting at a and b.
For case (2) a plan view is drawn to scale in (c¢). FF, and ?é are shown, and the
action line of ?S can be drawn. F and F, intersect at point 2, therefore ?E must pass

through point ¢ and point 2. ?E can now be placed on the diagram. Now F, can be replaced

by components F; and ?E as shiown by the parallelogram. Replacing a point force by com-
ponents is sometimes called resolution.

l" ElJ_J 3 6
- /] [—I—T—H
” 6-9'8 0 30/b

=16.6"
(b) \E'\

Figure FD 12

(c)

?

16.6 "’:}u

The three loads S3, S4, and Sl hold the ring in a stationary position in figure FD 12( +).

In (b), loads S3 and S4 are to be replaced by their point force resultant using the parallel-

ogram law, then in (c) the point force resultant of S1 and S4 is to be found using the
parallelogram law.

In (b) ?ﬁ and ?3 are combined at their intersection point. In (c) Fi and ?ﬁ intersect

as shown and combine with a parallelogram to give their resultant ﬁé.

AT THIS POINT, IF YOU ARE GIVEN AN OBJECT ACTED UPON BY TWO
OR MORE LOADS, YOU SHOULD BE ABLE TO REPLACE ANY ONE OF THEST
LOADS BY POINT FORTE CCMPONENTS USING THE PARALLELOGRAM LAW.
ALSO, IF YOU ARE CIVEN AN OBJECT ACTED UPON BY THREE OR MORE
COPLANAR NON-PARALLEL LOADS, YOU SHOULD BE ABLE TO FIND THE
POINT FORCE RESULTANT OF ANY TWO OF THE LOADS USING “HE
PARALLELOGRAM LAW.

=
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Moment of a Point Force

- b
0 ‘ é--.gfe:?.o.»

-~ -0

W
(a) (b) H=19.3"
Figure FD 13

e
Figure FD 13(a) shows a ring which was originally held in a stationary horizontal
position by loads S1 and S2. S2 was then replaced by S3 and S4, and, while maintaining the
ring in its criginal horizontal position, the three scales were pulled until S1 registered
- its original magnitude of 20 lbs. It was found that Sl and S2 were colinear, and that $2,
S3, and S4 were coplanar and concurrent. In (b) a plan view of the ring is constructed with
'f“'l, ?2’ ?3, and '}:u drawn to scale along their a?tion lines on the outside of the ring. F’Z,
F3, and Fq are related to each other as shown by the force parallelogram drawn to scale at
’ ‘ their point of concurrency 0. Now a point P is chosen in the plane of ?—2’ Fj, and F,. Some
new relationships are to be developed between ?2 and its components f3 and .fu with respect
to point P.
A plan view of the right half of the ring is drawn in figure FD 14. Point P is shown,
and the point forces F,, ?3, and 'f“'u are drawn to scale on their lines of action. The point

of concurrency 0 is also shown.




FD ‘ 13
First, a relationship between FZ ard point P

is to be developed. A straight line s is drawn
from P to 0. Using the parallelogram law, . is
replaced with components D and E, which are )
parallel and perpendicular, respectively, to
line s. Line a is next drawn from P perpendicular
to the line of action of F,. Notice that the
angles labeled O are equ;.l, so from similar
triangles,

t")l M’ﬂ

Sz

a
Next, F‘3 is to be related to point P. Com-
ponents A and B, which are parallel and perper-

dicular to s, replace 'fa. Line b is drawn from P
perpendicular to the action line of ?.3. Angles -

labeled ot are equal, so from similar triangles,

Fu is now to be related to point P. H and G, perpendicular and parallel to s, replace

! fu’ line c is drawn from P perpendicular to '}1, and the angles A are equal, so
. s . o
’ c H
‘ FZ is the resultant of F and ?u, so the component of F2 perpendicular to line s must
equal the sum of the components of F and F which are perpendicular to s. This means that
f =B+ H
These are colinear, so E=B+H
Supstituting the first three equations into this equation gives
aF2 _ bF3 + cFu
s s s X
s is the denominator for each term and can be cancelled, leaving
aF2 z bF + cF
, This equation relates the resultant F. E, and 1ts components F3 and F with point P. The
product al‘ is called the moment of F with respect to point P and can be written MF /P.
s; The product bF , is called the moment of F3 with respect to P, or MF3 /p MFu /P is the product

cFy. In the use of this equation, P is called the moment center, a is called the moment arm
(or lever arm) of F with respect to P, and b and ¢ are the moment arms of F3 and F with
i g respect to P. If tne lengths are in inches and the forces in pounds, the units for moments
«* are inches times pounds or inch-pounds.




The relationships between the point force F: and its components F; and F, with respect
to point P resulted in an equation. The terms in any equation must have signc. The usual
sign convention for mcments is that a moment will be called positive if the force arrow
points counterclockwise on the lever arm and negative if the force arrow points clockwise
on the moment arm. Some examples of positive and negative moments oi point forces are shown

in figure FD 15,
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Me g = —dFs Me, e= ~hf7
Figure FD 15

/WFB/E = +\9f:_9

AT THIS POINT, IF YOU ARE GIVEN COPLANAR POINT FORCES AND
A POINT IN THEIR PLANE, YOU SHOULD BE ABLE TO IDENTIFY THE
MOMENTS OF THE POINT FORCES WITH RESPECT TO THE POINT USING
CORRECT SIGNS.




Measured Moments

T

Figure FD 16

Fg=19.3"

The right half of the ring from figure FD 14 is redrawn in figure FD 16. The mathe-
matical moments are to be found using measured lever axme “or the moments of F2, F3, and Fu

- with respect to point P.

MF /P = +(11.6)(20) = +232 in-1b
2
MF3/P = +(3)(24) = +72 in-1b
= +(8.3)(19.3)= +160 in-1b '

MFu /p
Mo p = Mo o+ Mo o= +72 + 160 = 4232 in-ib
2 3 4

In the derivation of the moment equation, the distance s was cancelled. This mec.as point
P is a random point and the moment of the resultant '}:2 will equal the moment of its components
F, and M to any point in the plane of F,, F,, and F,.

To illustrate this, a point Z is also shown in the plane of -}:2’ ?3, and Ti; in figure
FD 16. Perpendicular lines d, e, and f are drawn and measured.

M. o M
F,/2 = MF /2 + MFu/Z
Therefore, +(6.2)(20) = + (12.0)(24) - (8.5)(19.3)
+ 124 = + 288 - 164

NOW IF YOU ARE GIVEN A DIAGRAM SHOWING COPLANAR POINT
:i§ FORCES ACTING ON AN OBJECT, YOU SHOULD BE ABLE TO FIND :
- THE MOMENTS OF THE POINT FORCES WITH RESPECT TO ANY x
POINT IN THEIR PLANE. FD -5
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1 inch = 10 inches
Using Moments to find Components

£ =20%

D ———

Figure D 17

In figure FD 17 a ring is acted upon by loads S1 and S2. S11 and S12 are to replace
S2 while keeping the ring in its original position. The magnitudes of S11 and S12 are to
be found using moment equations. A portion of the plan view of the ring is drawn in (b),
showing ?2’ ?11’ and ?iz. Remember that the moment of the resultant ?} equals the moment
of its components Fll and F12 with respect to any point.

First, ?12 will be found. A point X is chosen anywhere along the line of action of
F11; the equation of the moments of the point forces with respect to X can now be written.

. The lever arms for the three point forces are drawn and scaled from the drawing.

.= M +
MFZ/X Pl /X MFIZ/X

+ (17.45)(20)

(0)(F11) + (17.1)(F12)

F 20.4 1b

]

12

To find the magnitude of ?11’ a point y is chosen anyplace on the action line of ?12‘
Perpendicular moment arms are drawn and scaled.

= +
MFZ/Y MFIZ/Y MFll/Y

-(6.57)(20)

(0)(F12) - 12.9(F11)

F 10.4 1b

11

. NOW YOU SHOULD BE ABLE TO REPLACE A POINT FORCE BY POINT
FORCE COMPONENTS ALONG DESIGNATED DIRECTIONS BY USING
MOMENT EQUATTONS. . -6




Using Moments to find Resultants
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Figure FD 18

Figure FD 18(a) shows a vertical slab acted upon by two loads. The single point force
resultant fq of loads S2 and S3 is to be found, using moment equations.

A plan view of the slab is drawn to scale in (b), with ?2 and f3 shown. The line of
action of their resultant F, will be found first.

A point A is located 3 inches from the line of action of ?2 and 4 inches from the line
of action of F;. Point A is on the line of action of the resultant of ?2 and f3, since

N N7 W
0=+ (3)(16) - (")(12)

Another point B is located 6 inches and 8 inches from the action lines of ?2 and '1'53.

The action lire of F,, has now been established, since it must pass through points A and b.

The magnitude of ?14 now can be found by choosing an arbitrary point C on the line of

action of f3. Perpendiculars e and f are drawn and measured.

M = M + M
Fu/C FZ/C F3/C
(f)(Fq) = (e)(Fz) +90
(8)(Fq) = (13)(186)
Fu = 26 1b

NOW YOU SHOULD BE ABLE TO FIND THE SINGLE POINT FORCE
RESULTANT OF ANY TWO COPLANAR LOADS BY JSING MOMENT
EQUATIONS. D -7




18 Point Force Resultants of Multiple Loads FD

The acting icads on the apparatus shown in figure FD 19(a) are the weights of the two
blocks and the spring pull. The system is symmetrical about the centeriine of the spring
scale. The single point force resultant of these acting loads is to be found (1) using the .

parallelogram law directly, and (2) using a moment equation. .
0 2 40,
———t
0 2 o
FR=30"
520" 3
A
ml
]
R=539
F2
F1
(d)

(c)

Figure FD 19

A 3-D diagram is drawn in (b) showing the three force fields. Their point force
resultants are superinposed on the diagram. Since the point forces are coplanar, a 2-D
diagram showing the point forces can be drawn to scale in (c). The action lines of F, and
F, meet at point P, so F, and ?2 are added at P to find their resultant R,. Next, the

1
action lines of }_2'1 and ?3 are extended and found to meet at point T. R is the sum of Rl

and T3 at T. The magnitude, line of action, direction, and sense of R are now known.
Method (2) begins with diagraw (c) drawn to scale with Fs F,, and F; shown. Now in
(d) Fl’ ’F2, and ?3 are added with a triangle (this technique can easily be derived from the
parallelogram law) to find R = 53.9 1b. Next, the line of action of R must be found in (c).
Line m' is first drawn perpendicular to R in (d). Next, line m is drawn from reference
point 0 in (c) parallel to m'. R acts perpendicular to m in (¢) at an exact distance from

0. This distance will be called e.

The moment of R equals the sum of the moments of ?l’ F,, and F3 with respect to 0.
R I N W
- (e)(53.9) = (3)(20) - (3.5)(20) - (6)(30)
e = 3.53 inches.

The line of action of R can now be placed perpendicular to line m 3.53 inches from 0.
This checks with the first method.

WHEN YOU ARE GIVEN AN OBJECT ACTED UPON BY LOADS THAT REDUCE
TO COPLANAR NON-PARALLEL PCINT FORCES, YOU SHOULD BE ABLE TO
FIND THE SINGLE POINT FORCE RESULTANT OF THE LOADS USING
EITHER DIRECT PARALLELOGRAM ADDITIONS OR MOMENT EQUATIONS.

/ S , K 7 ) Y
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Parallel Systems FD 19

Many times in engineering statics two parallel loads are replaced by one load. When
the two loads are replaced by their force fields and these in turn are replaced by their
point forces, these point forces do not intersect. Therefore, the parallelogram law cannot
be used directly to add parallel point forces. Graphical and moment equation techniques
will be developed now for finding the resultant of two parallel point forces.

(A1 20 40,(,
5 ZO/n.
4:&:;:» C=20"
'R = 7 ]
\ 5_'33’"
T—{TT=E Doos o
8 (b) Figure FD 20

Figure FD 20(a) shows a vertical member acted upon by two horizontal loads S1 and S2
that are to be replaced by a single load.

In (b) the force fields that represent the two loads are shown together with the
point forces that replace them. C and D are coplanar but not concwrent. Point force C
can be replaced by two components E and F which are coplanar with D. T can be added with
D to give _}fl. ﬁl can now be added to E to give R which is the single point force resultant
of Cand D. R is scaled and found to equal 45 1bs, with a line of action 5.33 inches above
D. This point force resultant R represents a single load that could replace Si and S2.

The point force resultant of S1 and S2 can also be found using moments, as shown in
(c). The three vectors are coplanar, R acts parallel to C and D towards the right, and
R =C + D, so the magnitude of R = 20 + 25 = 45 1lbs. Also, the moment of R equals the
moment of C plus the moment of D with respect to any point. Taking the top of bracket B
as a reference, distance d can be found:

"rs8 = Mors  Mere
- (d)(us) -(3)(25) - (15)(20)
d = 8.33 inches.
R can now be placed on diagram (c).

The two methods check each other. Sl and S2 can be replaced by a 45 1b single spring
that is coplanar and parallel with them and positioned 5.33 inches above S2.

NOW YOU SHOULD BE ABLE TO FIND THE SINGLE POINT FORCE
RESULTANT OF TWO PARALLEL LOADS, BOTH GRAPHICALLY AND
WITH MOMINTS.

L]




Point Force Resultants of Solid Objects F[;
1
=463 lbs
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b) Figure FD 21

The single point force resultant of the solid object in figure FD 21 is to be found.

The object can be mentally pictured as if it were two simple objects, as shown in (b).
This type of object is called a composite object. (The composite objects presented in this
unit will be made up only of rectangular, triangular, and circular blocks. The centers of
gravity of these common objects can be found in an engineering handbook.) Each simple
object has a gravitational force field acting downward that has the same shape as the object.

For the lower rectangle the point force resultant acts through the center of gravity of
the rectangle (at w/2 and 1/2 from any corner) and has a magnitude of

R2 = (6)(2)(4)(.257) = 12.3 1b

The triangular shape has a point force resultant that acts through its center of

gravity (1/3 and w/2 from the right front cormer) and has a magnitude of

- (8)(2)(3)(.257)
17 2

The two resultants are parallel, so a 2-D diagram (c) can be used to find the single
resultant R of il and §2.

R = 4,63 1b

R = R, + '§2 = 4,63 + 12,3 = 16.93 1b
= M +
Ma/x R /X MR2/X
(d)(16.93) = (2)(4.63) + (3)(12.3)

d = 2.73 inches.

R can now be placed with its correct magnitude, direction, sense, and line of application

in (c).

The composite member shown in figure FD 22(a) also has a single resultant. The resultant
is to be found using a moment equation. First, in (b), the member is mentally replaced by
three known shapes. The block and wedge are considered to be solid with their resultants

H
B
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0 3 6 4"

0 5 R=12.56 Ibs Figure FD 22

n

Y $10.81bs

(c)

acting downward. The resﬁltant of the cylindrical hole is considered to act upward, and
all three resultants are coplanar. In (c) the three point force resultants are drawn in
2-D with their correct magnitudes, directions, senses, and lines of application. The
magnitude of the single vector resultant must be equal to the sum of the magnitudes of the

vertical forces.
R=10.8+ 2.7 - 0.94 = 12.56 1lbs acting downward in “he

plane of the three point forces.
In addition, the moment of the resultant about some point X must equal the sum of the
moments of the individual parts about the same point.

s IO N W
(d)(12.56) = (6)(10.8) + (10)(2.7) - (4)(0.94)
d = 7.01 inches from the right edge of the member.

WHEN A COMPOSITE OBJECT HAS POINT FORCE RESULTANTS THAT ARE
OQOPLANAR, YOU SHOULD BE ABLE TO FIND THE SINGLE POINT IORCC
RESULTANT FOR THE COMPOSITE OBJECT.
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UNIT 2
EQUILIBRIUM DIAGRAMS

WHEN YOU HAVE FINISHED UNIT 2, IF YOU ARE GIVEN AN ENGINEERING
STRUCTURE, (1) YOU WILL BE ABLE TO VISUALIZE THE 3-D FORCE
FIELDS ACTING ON THE COMPLETE STRUCTURE AND ON ANY INDIVIDUAL
MEMBER OF THE STRUCTURE, (2) YOU WILL BE ABLE TO CONSTRUCT
FREE-BODY (F-B) DIAGRAMS IN 3-D OF THE STRUCTURE OR ANY MEMBER
OF THE STRUCTURE USING POINT FORCES IN PLACE OF THE FORCE FIELDS,
AND (3) YOU WILL BE ABLE TO QONSTRUCT 2-D F-B DIAGRAMS OF THE
STRUCTURE OR ANY MEMBER OF THE STRUCTURE USING POINT FORCES.

Introduction

In Unit 1 you learned how to visualize force Fields acting upon members and then how
to replace these force fields by their point forces. In this unit more involved engi-
neering structures and members will be analyzed. These structures will be shown in 3-D
diagrams with force fields and point forces. 2-D diagrams will then be drawn of each
member with the point forces shown. Only the relative positions of the force fields and
point forces will be considered in this unit. All the structures analyzed in this unit
will be in static equilibrium, that is, when they are acted upon by forces, they will not
deflect or move from their stationary positions.

Forces Between Bodies

Force fields acting upon a body are caused either by direct contact with another body
or by a magnetic or gravitational attraction between the body being studied and another body.
The force fields acting between bodies are always equa. and opposite. This means that the
action (a force field) of body A on another body B will be equal and opposite to the action
(a force field) of the body B on body A. The point forces that replace the force fields
will be colinear, equal, and opposite to each other.

Copyright - 1971
D. E. Alexander EQD 1




2 EQD

Figure EQD 1(a) shows an isometric drawing of a horizontal stationary beam H that is
loaded with a wooden block A, another beam B, and a concrete block C. Beam H is resting
upon two horizontal smooth supports D and E which are assumed to be rigidly attached to
the ground. All the force fields acting upon each member are to be shown in 3-D. Each
mesmber is then to be shown in 3-D and 2-D with point forces replacing the force fields they
represent. Members A, B, D, and H are assumed to be rigid, homogeneous and symmetrical about
their vertical centerlines ( é’s) These vertical zt's are in the same vertical plane.

£y ! l

N b ]
Figure £QD 1 7

g / () 7

The force fields acting upon each member are shown in (b). FTlO represents the weight
of H but only a small section of this force field is shown. Each contact force field in (b)
is an evenly distributed force field. In (c) all the force fields have been replaced by
their point forces. Each point force acts through the center of its force field and all
the point forces are in the same vertical plane, that is, they are coplanar. Although, of
course, the four members are themselves 3-D and could not be in a single plane, the point
forces that represent the force fields between them arecoplanar. This type of system is
called a coplanar system. The members are shown in (d) in 2-D with point forces.

%
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Engineering Pins EQD 3

Many times engineering members are connected to Other members with round pins. Figure
EQD 2 will be used to analyze the force fields acting upon a pin. The force fields acting
upon weight W, pin A, fitting B, and cord C will be found. It is assumed that A, B, and C
are weightless and rigid and that pin A is frictionless. The system is also symetrical
about the vertical ¢ of cord C.

(a) (b) (e)
Figure EQD 2

In (b) the members are separated. It is further assumed that pin A has snug fits with

W and B and that uniform force fields act at each contact surface. FF. then acts upward

6
against the pin and is uniformly distributed over its contact area as shown. FF, acting
against the fitting is equal and opposite to FFe. FF8 acts uniformly over its area and

must balance FF.. Since the pin is symmetrical about a vertical ¢, FF, and FFS are equal
to each other as shown. FF, and FF, are equal and opposite to FFS and IF,. Remember
again that all the force fields are assumed to be evenly distributed over their contact
areas.

In (¢) the force fields have been replaced by point forces with each point force
acting through the center of its force field.




EQD

An isometric space diagram of a horizontal beam H, this time supporting a load P with
a pinned yoke B, is shown in figure EQD 3(a). Beam H is supported at its right end by a
roller C and at its left end by a pin E held in a bracket D. The system is coplanar, the >

pins are friction free with snug fits, all members are weightless except H and P, and all <
members are rigid. All the members are to be drawn in 3-D with force fields, in 3-D with
point forces, and in 2-D with point forces.
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Y (b) Figure EQD 3

In (b) all the members are drawn in exploded 3-D and all the force fields that act
against all the members arz shown. All the force fields are evenly distributed. Notice
that roller C has line contact with its support and member H so its force fields F F, and
FFZ are line fields.

In (¢) the isometric drawings show the members with the point force resultants of the
force fields. All of these point forces act through the centers of the fields they represent.
The 2-D space diagram is drawn in (d) and the 2-D diagrams with point forces in (e).

Notice that some of the arrows in (e) actually represent two force fields.

AT THIS TIME IF YOU ARE GIVEN AN OBJECT THAT IS LOADED WITH VERTICAL

LOADS AND CONSTRAINED BY PINS AND ROLLERS, YOU SHOULD BE ABLE TO

PLACE ON 3-D DRAWINGS THE FORCE FIELDS ACTING UPON ALL THE MEMBERS,

THEN SHOW THE EQUIVALENT POINT FORCES ON 3-D DIAGRAMS, AND FINALLY

SHOW THE POINT FORCES ON 2-D DIAGRAMS. EQD -
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Two-Force Members

EQD _~ _

Figure EQD b

An experiment is to be performed with rod A held by a student, as shown in figure ZQD 4(a).
The student will load member A by pushing or pulling through the ball and socket joints
without moving member A. He finds from experimenting that he can (1) push his hands toward
each other along the ¢ of A or (2) pull his hands apart again along A's { . If he rushes or
pulls in any other direction, member A will not remain stationary.

Diagram (b) shows the force fields and the corresponding point forces that are the
results of pushing on the rod. The force fields FFl and FF2 are equal and opposite. The
point forces F, and F2 are also equal and opposite and colinear along the ct of A. Diagram
(c) shows the force fields and point forces caused by pulling on A. Again the point forces
are equal, opposite and colinear along the ¢ of A.

The type of member shown in figure EQD 4 is called a two-force (2-F) member. A 2-F
member can be described as a member loaded only at two places by evenly distributed force
fields, and must therefore be weightless with frictionless supports at two places and no
loads between the two supports. When the two force fields are replaced by their point forces,
these two point forces must be equal and opposite and colinear with the tt_ of the member.

Another example of a 2-F member is shown
in EQD 5. Fl and F2 must be equal and opposite
along the ¢ of the 2-F member C, as shown in

(b). This means that FFl and FF2 must be equal

and opposite. FFg and FF6 on pin D are equal to

each other. This means that for C to be a 2-F
o,

~z ’*/.@ member, the two hands must be equal distances from the ¢ of C
Figure EQD 5 / A and both must apply the same pressuwre. Of course, the hands
/ could both pull and the result would be the same with all the
Z

force fields and point forces in (b) reversed. In addition,
F3 is equal and opposite to F and Fy is equal to Fg.




effective ¢ @)

Figure EQD 6

The structure shown in figure EQD 6(a) shows a weight W being supported by two members

A and B. The system is coplanar, that is, the (é's of A, B, and W are coplanar. A and B
are considered to be weightless and the connecting pins friction free.

Now, in (b-), diagrams of A and B are drawn with their force fields shown. FFE} is

replaced by Fg, which is on the ¢ of A. FF, and IF, are equal, so the corresponding point

forces Fl and F2 can be replaced by Fu. Fu is equal and opposite to F3 and is also on the
¢ of A. Member A is also called a 2-F menber, even though it is loaded at 3 places.
Wherever the loads on a member can be replaced by two point forces that are colinear with
the ¢ of the member, the member is called a 2-F member. Member B can be analyzed in a

similar manner. It is called a 2-I' compression member.

The structure shown in figure (c¢) is also coplanar and supports load W. In (d) FFl is

a uniform force field. Its corresponding point force is Fy. 'FF2 and FF3are 2qual, so the
point forces F
and opposite to Fl. A ¢ of the member can be drawn along the action lines of Fl and Fq-,
this is called the effective ¢ of the member. Because this ¢ can be drawn, member C is
a 2-F member. Member D is also a 2-F member with an effective @ as shown. The actual
shape of a 2-F member is not important as long as an effective ¢ can be found.

AT THIS POINT YOU SHCULD BE ABLE TO IDENTIFY 2-F MEMBERS

AND THEIR EFFECTIVE ¢'S. EQD -

2 and F3 are also equal and can be replaced by Fq. Fu must be colinear, equal,




EQD 7

forces with Unknown Directions

w
@ B
()
l'(,” h
Fi F& (A
! Fl Fty A
( 4/ FF,
" (b) Fq
© - (2
Figure EQD 7

Up until now members have been loaded so that the directions of the loads could be
determined by inspection. In figure EQD 7(a) and (b) weight W is constrained by a smooth
sloping surface at B and a frictionless snug pin A. The system is coplanar.

Because the surface at B is smooth, the reaction there is a line field perpendicular
to the sloping surface (this reaction is the same as it would be if W rested on a roller
at B). However, the direction of the force field acting on W at A is unknown. FFl is
therefore drawn with wavy arrows in the cut-away view shown in (c¢), to illustrate that it
has no known direction. For the same reason, FFQ, FF3, IT‘Fu
bracket are also drawn with wavy arrows. In (d), the 2-D diagram, the point forces Fl, E’Q,

F

s FFS, and FF6 on pin A and its

3 and Fu are also drawn with wavy arrows, since their directions are unknown.

In engineering statics, members are connected by smooth surfaces, rough surfaces,
frictionless pins, rollers, ball-and-socket joints, friction surfaces and other means. On
the next two pages, figure EQD 8 illustratcs some types of contact and distant force
relationships. Whenever the directions are unknown, wavy arrows are shown for both the
force fields and the point forces. The examples marked with ar, asterisk (*) will be studied

in later casesj all others should be analyzed and understood at this time.




Gravity

p2.

Point force acts
through the center -

of gravity

(-

Point force acts

L@
through the centroid
r@_ ﬁ of the magnetic field
ﬁ Frictionless roller
Line contact,

_,;E Magnetic attractions

oo

‘ resultant acts
perpendicuiar to

the surface

@ Frictionless pin

/3/ Resultant acts
*hrough the pin ¢, -

its direction
cetermined by loading

Line contact

\ Smooth surface,

Resultant acts
perpendicular to
the surface .

Smooth surface,
__D_ﬁ:i\ ;\7 area contact
0 \< Resultant acts
perpendicular to

w the surface
3-D 3-D diagram 2-D 2-D diagram
space showing space showing *
Jiagram force fields diagram point forces




Rough surrace,
line contact

5 .
}/ Lirection T30
resultant lete

o
) Ly loading

contact material:

POTE

-
v

, .
AA‘A

“rpiction surface, R
1 area contact

Direction of

resultant determined
by loading and

contact materials

Ball and socket, AL
no load betweer. the
\ . frictionless scckets
Two-force member,
E resultants at each ’
socket are colinear ;

“Ball and socket,
loaded between the
frictionless sockets

The resultants at
=ach socket are
not colinear

Cantilever bean
I (501id cornnection)

K’ Resultants reduace

to a svstem of

hrve foress

4.3 shaft-iw oinge

Resultant acts
: perpendicular
' to the shaft,
: drection determined

P e o= o -

sy 2+ lnmading
_ 2-D 2-D diagram
space showing space showin,,
Jiarram force fields diagram point forces

Figure £QD 8
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Free-Body (F-B) Diagrams

Figure EQD 9(a) shows a frame supporting two loads. These loads cause other loads to
be built up on each member of the frame. The loads upon each individual member can all be
represented by force fields. Assumptions are made that all the members of the frame are
weightless, all the pins are friction free with saug fits, and all the members of the
frame have ¢_’s that are coplanar, thus all the force fields are evenly distributed over

their areas of application. -

Figure EQD 9

In (b) each member of the frame is drawn as if it is isolated with only the force

fields that act against it. These diagrams are called free-body (F-B) diagrams. Each of

these F-B diagrams will now be analyzed.
Member B is a 2-F tension member so FF; and FFG must be equal and opposite with known
directions. The force fields on pin E are FF)gs which is equal and opposite to FFS, and

FFZG and FF27, which are equal to each other.




3

D is also a 2-F tension member.
FI’18 equals FF
Pin M is acted upon by three other members: B, C, and D. FF, is equal and opposite
to FF. on B,

6
and FFlO are equal and opposite to FF13 and FF

19°

are drawn with wavy arrows.

all of which are represented by wavy arrows.

direction) caused by pin G.

A

Figure E(. 10

replacing the force fields.

forces in (b).

EQD

FF17 and fF

12

Al

16

FFg aad FF8 are equal and opposite to FF

1

are equal to each other; in addition,

and FF,. on D. Although FFll

17 16

on C, their directions are unknown so all

Member C is acted upon by FFlu’ which is caused by weight W
equal and opposite to FF;, and FF,, from pin M; and FF
Pin F is acted upon by F?ZZ, which is equal and opposite to FFls, with FF

Member A has seven acting force fields. These are FF

13 FF13 ani iT), which are
15

and FF,, caused by the roller;

1 2

FF3 and FFu, from pin E; FFZl and FFZO (unknown direction) from pir F; and F‘st (unknown

F,\é'\@/\i (h)
(TN

The complete frame is drawn in figure EQD 10(a) as a 3-D F-B diagram with point forces

3-D F-B diagrams of each of the members are “rawn with point

(unknown direction) caused by pin F.



(a)

Figure EQD 11

i

(b)

The complete frame is drawn as a 2-D F-B diagram in figure EQD 11(a) with point forces;

in (b) 2-D F-B diagrams are drawn with point forces on all the members. This type of 2-D

F-B diagram is widely used in engineering statics. To properly construct and use the 2-D

F-B diagrams, it is essential that you are able to visualize: (1) the 3-D F-B diagrams

with force fields, and (2) the 3-D F-B diagrams with point forces. Notice that single

arrows in the 2-D F-B diagrams can actually represent two separated force fields.

Some basic F-B diagrams are shown on the next two pages in figure EQD 12.
be studied at this time.

NOW, IF YOU ARE GIVEN A 3-D SPACE DIAGRAM OF A STATIONARY
STRUCTURE, YOU SHOULD BE ABLE TO: (1) VISUALIZE 3-D F-B
DIAGRAMS OF EACH MEMBER OF THE STRUCTURE USING FORCE FIELDS,
(2) CONSTRUCT 3-D F-B DIAGRAMS OF EACH MEMBER OF THE STRUCTURE
USTNG PONT FORCES, AND (3) CONSTRUCT 2-D F-B DIAGRAMS OF EACH
MEMBER OF THE STRUCTURE USING POINT FORCES.

They should

ED -3




EQD In_free-body diagrams such as these, all pins are assumed to be
frictionless and all members weightless, unless shown otherwise

Yarallel
point :orce
sVt em

Non-w.: form
loading rvduces to
a single resultant
through the log's
center of eravity

Forces = ting a°
contact ~urface:
are equal
and o; josite

Lower for-e fiel.!
is trape. vidal in
shape, with its
direction dependent
upon loading an.:
contact surface
conditions

= ‘i{
! Since a:1 the
. N constraints are
ball and socket,
all the mem.oers
are two-force

3-D 3-D free-body 2-0 2-D free-body
; space diagram showinr-~ space diagram showing
- Alagram force fielas diagramn point forces

Figure LEQD 17




EQD

Despite the bal

and sc¢ <et at it. ~

bottom support,

the sloping pole
is not a

two-force member

Frame is made Y
up entirely of
two-force members

Loading dctermines

the direction of £
the force field orn

the left-hand pip

Direction of
force field on the
upper connection
is wXnown

Many asc rptions
about symretry are
made in the 2-D
free-body diarram

=i 3-D free-body 2-D 2-D free-body
Gpace Jdiagram showing, space diag~am showing x
dlagram force fields diagram peint forces k.

Figure EQD 12




(a)

FD-1 Complete the force fields FD -2 Complete the point force

shown in (b) above. resultants shown in (c).




FD - 3(A) Replace S2 by point forces

acting along lines a and b.

0 & 1,

FD - 3(B) Find the point force resultant
of S3 and Su.




Mg A

Me /A

=) 25
BQ\ E(?
e e hi
\ \\ 3 F '
\ S > -
H
d\\\ /6// 9; ; ‘j
\
A /F%,fr 19 i
/\i\ \ . l
/O— e\\\\%c | {‘ E
- + I |
_ fs
Me s =
Me./p =
Mise = >
Mg 6 =
Mr,,8 = ’
Me /p =
Mpse = ’
Me /e =

Find the moments of S1, S2, and S3 with respect to points P and Q.




o 5 10" -
c
E § ——
a
FD-06 Replace S2 by point force components along lines ¢ and d using
moment equations.

[

n
0 3

FD- 10 Find the point force resultant of the composite object.




——

FD -7 Find the single point force resultant of the 30 1b and 40 1b loads.
Use moment equations only.

—

FD - 8 Find the point force resultant of the 25, 50, and 40 1b loads using a

force triangle and a moment equation. Check with direct parallelogram
addition.




R RN ]

{a) ®
frre— E (R X) y ]
T1e» E f—
()
FD - 9(A) Use the parallelogram law to replace the acting loads with a single

point force in (b).

D - 9(B) Check your answer by using a moment equation in (c).
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UNIT 3

EQUILIBRIUM ANALYSIS

IT YOU ARD TIVLN A 3-. STACTY LIATEA A VIR

i I

AT THE END OF UNIT 3

Do erems Ao o oaamE AT MATS T L 3 A AT
STPUCTURE THAT IS LOALEL WITH CLFLANAF LOADS AND MAlL T 0 & ci¥elaalios
CF TWO-FORCE (I-F) AND THRIE-TIRCL

v

COHSTRATNED AT TWO PLACES SO ThiAl

YOU WILL BE ABLE TO FIND “HE REACTIONG 7
e we g T AL o e
USING PR JIACRAMS WITH FORCE :uIN7TONS AT F-R DIACRAMS WITh MOWINT 1IUATTONC.

v

Introduction

The equilibrium diagramg ceveloped in Unil 2 were used to visualize In 3-0 tie
force fields acting upcn complete structures ana their individual remberc. -t dlavrams
wer2 then constructec in 3-L and 2-I with the force flelds replaced bw thalr print e
regultants. In this unit F-3 diagrams will pe used with tne parallelcyram law il momn?
equations to cetermine tne lines of action, alrectione, senzeg, and nagnitudes o the oine
fcrce resultants of the force fields thet are acting on a 2eplanar structure wien fie

siructure 18 in static equilibrium.

Two-Force Members

In unit 2 you learned what a two-force (2-F) member is. Wher only two loads act upon an
object which is in equilibrium, the two point force resultants of the loads must balance each
other. To do this, they must be colinear with the effective ¢ of the object, opposite in
sense, and equal in magnitude. This is called the two force principle.

YFF
Figure EQA 1 A / FR

The 2-F principle is illustrated in figure EQA 1. In (a) object M is assumed to ‘¢
weightless and loaded through two frictionless ball-and socket joints. FFl and FF2 represent
the loads. Equilibrium of the object can be established by either pulling as shown in (b) or
pushing as shown in (¢). f‘l and ?2 must be colinear, opposite in sense, and equal in magni-

tude. Fl and F2 are equal and opposite vectors, so vector equations can be written for them.

or F1+F2=0 or 2F=0

EQA 1




Three-Force Members K

Object M in figure EQA 2(a) is assumed to be weightless. It is loaded at three friction-

12ss pall-and-socket joints A, B, and C. Loads which are represented by fF.,, E‘FZ, and TT, e

-

4

gradually applied whi.e keeping the member M in stationary equilibrium. =~ . . ,
mirt force resultants of their force fields.

. r wp, e ey v vy A . s el e e et e e s
tTCan D8 AUl L Louy W TaldLL LT r&L L D T L8t n Mo Laal ¥

Tt

E : . A L3 - =~ - P - s N - "~ N } 1 N PR o= N [
“he syatem is in QUMW S0 any e Ot The Lo Ads Tast Dadance thy i ¢ ety
two loads, that 1., then the (0Int 1or oo Mvplad thelr ooaln, @) Mt Lo e o J e
B
= T - e e TN [REE B! - O N . - . T t o
Pooodra oL, . t.onust acd v tht USIng o E\qf\cﬂ lTolorram 1w te pive 1 e oot ch e

« 3 e 3
. - - T Sypaay ~— . eyl PN 3 A v =
must be ooy the 2= princitle, oclinear with and o ual, 1t oprosite to o

Py 1"
i

,
It nao

-

)

Peen shown tnat |, . and their resultant 3\1 muct Le coplanar and cither concurrent (i
< -

sarallel. Since T, and T must o criinear then 1., T 5 and 1, must D¢ Cor lanar and o tie:
- i

10 3
coi.current or parallel.

The results of these deductions are shown in EQA 2(b) and (c). }-‘2 and }_“3 are shown as
being concurrent with F; at © in (b) or parallel to it in (c). You already know that since Fz
and }-‘3 are concurrent at 0,, a parallelogram can be drawn at . showing }-‘2 + }-‘3 : Rl’ as in (b).
F. must be colinear with, and equal, but opposite to ﬁl. For the parallel case in (c), }-‘2 +
P

5 equals R, which is also colinear with, and equal, but opposite to F,.

f/ for (b) -I:Z’ + f3 = D, but ?1 = _}'_‘l, soF. +T. = .T “his ]

| S tF = T s Lecomes T L
that ¢ itt F e ) F, + T =R R, - -T T, +T.+T.
¢ C‘inbewmttenil 0. In (@)}?Jrfl-.‘i?, Rz--:],sof,2+} + 1. =0
cr ZF = Q. ’ '
A random point ¥ can be chosen in the plane of Fl, T'Ps and EJ as in (L) an. (e). Yoy

Frow in (L) ti. M
? N I A

N 2 = i oinea ¥ o= 1
R “F3/p MR sp & winee D,l = -F, then M = A
1 1

FRIC
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Combiring these gives Me g ¥ .‘i}_3/? T Mhope or wlng conec lens Voo e
. . S e “ =0 Lozniy, ¢ (A) e PRRY] PORY -y . z—u = .
= 0 which can be writtenZM, = 0. Again in (o) M. ; sop YT : r

5S¢ for either (b)) or (c), 2 F = ¢ arc M.z U where P ooan te ann polnt Lot

(X

F,, [
1’
A principle that applies to a member which is loadec at only three places can now be

o

-

ps and F3.

stated. When an object is in equilibrium under the action of three loads,tne tores point roae.
resultants of the loads must (1) be coplanar, (2) be concurrent or parallel, (3) add with the
parallelogram law to a zero resultant (L F = 0), and (4) t'e summation of the moments of the
three point forces with respect to any point in their plune must equal zero ( 2“1&.‘, S T ).
Thisis called the three-force (3-F) principle. This Principle will now be applied to find the
reactions on some simple structures.

Three -Force Member Reactions

7”

i

I
L el

®) =
__1_] )

Member A shown in figure EQA 3(a) and (b) is symmetrically loaded by weight B, con-
strained by a frictionless roller C and a frictionless pin D, and is assumed to be welghtless.

Figure EQA 3

Since member A is loaded at three places, it is called a three-force (3-F) member. The acting
load is weight B. The loads acting against A at C and D are called reacting loads or reac-
tions, and the point force resultants of these loads are also usually referred to as the
reac.ions on member A. The point forces representing the reactions on member A at C and D
will be found using the 3-F principle.

Remember that if member A is symmetrically loaded by weight B that the vertical ¢'s ot
A and B must be coplanar.




ECA

3O/b

34 2%

mnn

o0’® 18" /1 p

Pirst & 3-0 ciagram is drawn to scale o A In (¢). “nic d-u alayran o wenderon

drawt, with zin B, rolier C, and weignt b removed. T and Z"( can be place i in chr et
vawt T. oand T. are superinposed upon the tiagrar.  Hach Toint soree veplacox it ree T
; ! ! :
' an "flc:our‘se acts througn the center ~f its toree flel.. How '}-‘1 and ¥ intersect gl
B ':_3 must therefore act trwough the € of hole D and coant 150 T,ocan e plaoor lnot
Alagramn. E'E~3 nas the same uirecilon as E—'\; and can als (e placed on the dlagram. Dl
(U) is now a 50 F-B zciagram of member A,
Tra directions. sensec, ana iines of acticn of T @ T, are now knuas, i otarn L
Y ~
wil:s now be founc using paralielcoyram aauition E_,‘ is lats out to rcawe at polnd o e ;
a t1on lires ¢f T, and T3 are oxtended through pceint 1. “ine a is dravm from e Tl
T rarallel —[l, line 1 i= dresn from the tals of _ parallel te I, lext arrosmesis oo
p:dc»e'j on f. and ?? at point o A paraellelogran »2 Das seen censt wred aly oot 2o G
e Fl islequal anc cpoesite to the sligle polnt torce resaltant of — RIS 5_0. at
‘ne parallelogram at D snoas 7o + ?3 s (it oaown) = -T e B+ T3+ % 50 mnlb
L4
Altnough tne parailelogram in (c) * . arawmn to =cale, 1t is difficult te measure tie

magnitudes of the point toxces in an isometric view. For this reasen 2-D diagr 5o (1) i

1 12, and E'3 are coplanar in (d)., Now the same procedure in (d) as in (¢) will

13

arawnh.

give tne directions, senses, lines of action, and magnitude. of ¥ and ?‘3. 2= Jiarranr (1)
is drawn to scale. T. arnd F. are placed on their correct lines of applicaticns, and extons
. 1 2 Dl ;

to meet at P, Iy is drawn through the ¢ or hole D and I. Tnis completes tne 2-D =B
Giapram. Now a parallelogram is constructed to scale at P with T, as its rever-od ilagns i

3 1 by
and ¥, and ?3 as its sides. ?2 and ?3 are measured giving I, = 18 1b ana 'y = 34 U
T. and T. are now known, they are the point {orcr resultanis of the force flields actins
2 3 :

against member A at C and D.

Tne magnitudes of T, end '}:3 can also be founa using /-0 F-B diagrams drawn to scats
and moment equations. The 2-D F-B diagram in figure FQA 4(a) is drawn to scale and wili .«
used to find the magnitude of ?"2.

In (a) Tl and f, are placed in the diagram and as lefcre intersect at [. g oAR T
be drawn on the diagram as it acts through the ¢ of D ana point P.

MFI * MF2 * MFB must equal zero with respect to any peint. Point D (the ¢ ~f the o)
<"11 be used as a moment center to find .

[€)
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EQA

{ ’
. K =18k
b=5"" 57
| A = i
30 co'®
ac 3”7
O 4)
F
s (@) _
Figu-e EQA 4
Line a is drawn from the ¢ of T perpencicular tc the line of action ¢f Foyoline o d
drawn from the ¢ of D perpencicular to the line of actix. ¢f T.. The lengths .© a w.:!
are 3 inches and 5 inches as shown in figure EQA 3(b).
. Now MF3/D + MF,/D + MF7/D =0 or Z_MD = 0
(0) (F) - (a) (F)) + (p) (F.) =40
©) (F,) - (3) (30) + (5) (F,) = ¢ p 8000 gy
, ~ 3 27 7 A )
F-B diagram (b) will pe used tc find the magnitude o 73. A5 Deiore 71, 7., and -
intersect at P. Next a pcint X is chosen as the line ¢: action of —2 Ferpendicular 1.r.-
C ~an be drawn frum X to the line of action of ?1 ard It lengtn scaled. MNext line . 1.
. drawn from X perpendicular to tne iine of action of '?3' Line d is scaled as 3.o inches.
; { M = P YA z
EME O on Mp e P e g 7O
2 1 3
(0) (F,) + (4) (30) - (3.5) (7)) = ¢ poe 82030)

Poor —=de = 34 1
30 qag ot U
These answers check with those found by the direct prarallelogram lau addi

tien.

(b)

Figure EQA §

The 3-F principle will now be us.d to find the reactions at A and B for 3-i membey:
’ shown in figure EQA 5(a) and (b). The system is coplanar, that is the ¢'sof M, B, A, and
- T are coplanar. Menber M is weightless, and the connections of B, C, and A are frictionle:~

It is not necessary to drawn a 3-D I-B diagram as the system is coplanar, however 1t
is always necessary to visualize the 3-D F-B diagram.

ERICH
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F=254
P
£=32
5
F, =283
(b)
/O/I
40"
~ - gy e . . "
AZ-DF-B is dram t¢ vcale in tigare 520 6(a) ion T anc T esee ! Sn tne
- ' . = . LI SN o 1\.‘u\',-w“ . l* L
iinas of action. "he action line o0 T oSt pas cnro o o nte o (0 i ‘E )
> MESERPER 4 = wlaw™ 2 wd b Al
(the intersection point of Ty ara £ Oroe [arallellfram G fe Iran or e owlen T, 4T
balancinrg the known E‘C. Sealing the foree pavaliclegrar sivs o, = L. 1o

F = 26.3 1b.

Instead o. constructing a parallelogram at the point of concurrency, it is also possible
to find the magnitudes of t,, PB’ and FC with the device shown in (b), called a closed force
polygon. To construct such a polygon for these forces, a line representing the known point

force FC is first laid out to scale a.ywhere on the figure but parallel to [

From the head of FC a line is ccnstructed parallel to ?‘B and from the tail of I_‘C another

C's line of action.

line is drawn parallel to FA‘ The intersection point of these two lines determines the head
of PB and the tail of E-‘A. FB and FA can be directly measured on th- polygon. Comparison of
figures (a) and (b) indicates that the closed force polygon method i- .tuallv <o halt ~o ol
: rce parallelogram , and that the results found with the two methods witl @ icontical.
However the closed force polygon method is more convenient since the polvern  uirer fewu
lines ang nead not be constructeud at the point of concurrency ! the fopee

To find FA and Fy using moment equations, ancther F-B diagram is drawn to scale in figure
EQA 7. Again the action lines of Fy, FC’ and FA are concurrent at point P. To find Fy, con-
struct and measure lever arms a and b and take moments about the ¢ of pin A.

a = 11.4 inches and b = 12.9 inches
ZMA =0

+(11.4)(32) - (12.9)(FB) =0
FB = 28.3 1b

To find FA, construct and measure lever "ums ¢ and
d and take moments about the ¢ of pin B.
e = 5.4 inches and d = 6.8 inches
ZMB =1

= (5.4)(32) + (6.8)(F,) = 0
Fy = 25.% 1b Figure EQA 7




EQA

_ GIVEN A 3-F MEMBER LOADED AT ONE PLACT™ AND CONS.RAINLD
{ AT TWO PLACES ONE OF WHICH HAS A REACIION OF KNOWN
DIRCCTION, YOU SHOULD BE ABLE TO DRAW THE NECESSARY -1
DIAGRAMS AND FIND THE REACTIONS AT THE CONSTRAINTS U3SING
A FORCE POLYGON OR MOMENT LQUATIONS. EQA

|
(SN

Reactions on Structures Containing 2-F and 3-F Members

The coplanar structure shown in figure EQA 8(a) and (%) consists of two J-' v mbers

loaded at their concurrent point. The loads on members Ak and BC are tc Le ‘oun:.

o

437

40

17

12 ) [

(<)

Figure EQA 8 Far=

K A 2-D F-B aiagram ol the structure is drawn to « larger ceale in (c). ?AE« aet F
act along the effective €5 .f their menbers as shown. At P the nin is left jn 1o
structure, the load W and its vertical supperting chank are resoved, and [, ic .wn
acting downward through the pin. The closed forer polyson in (3) can te coz';:,tpuc? N
‘scale, and the magnitudes of Iorces FAB and TEC can Lo measure . E./\B = 43 1b and

FBC = 69 1b.

Also in (¢) moment equations can be used to check the values fond for —’:.'\.i-, n . TBC'
The action lines of all the point forces are known, s¢ perpencicular lever armc can be
drawn and measured, and the equations can be coumpleted.

T To find ¥y ZM, =0 To find Fp  ZMy = 0

+(ll.1)(FAB) - (12)(0) = 0 -(12)(40) + (7°O)(FBC) -

_ " Fpp = 43.2 1b Fac = 68.6 1pb

1
<

The answers check with those found by parallelogram addition. ?‘ABand FBC are of oourse

the point force resultants of force fields that act on any transverse section of AB and BC.




8 EQA

The structure snown in figure ZQA 3(a) and (B) is used to support a 53 1o weirnt.

{ reactions at B and D are wanted. The mempers are assumed to be weightless, coplanar, 4
joined with frictionless pins.
y/
Fas50%
D
7y . NI~ =
_ \v¥ 0
—A
234

643’

~ (<)
d— o)
< (b)
(d)
2’ 4"
/b s
Figure EQA 9 207 40
The F-B diagram shown in (c) is drawn to a larger scale. FA is known, so it can e
placed on this F-B diagram. Since member CD is a 2-F member, the line of action of FD can be
) placed on the F-B diagram, and because FB must be concurrent with FA and FD at peint 0, its
, line of action is also known. The polygon drawn in (d) shows the magnitudes and senses of FB
end By, Fg = 85.5 1b and F, = 101 b
' { The same F-B diagram in (c) can be used to find lever arms to use in moment equations:
LMy =0 My=0
-(6.43)(Fp) + (13)(50) = 0 (2.348)(Fg) - (4)(50) = ¢

FD = 101 1b FB = 85.5 1b
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Jrame ABC supports 4n 55 L1 lzaw threws, .« bulley at B, e :
: 3 : 3 3 1 SO P fme £ wlvarte ~7 the yoactiort 1t oy .t
welpntless with fricticnless tins. The point force resultants ~7 e reaction

and the lcad on member AC are 12 oo ‘cuni.
A ¥a LNe Loal on meember

fp-

e

Frgure E@QA /0

A 3-.D dia.gram of memper ABC is drawn to scale in (c).
removed in this diagram but are left ipn the frame.

the pulley is removed at B.

The pins at A, B, and C are ; -

-k \ ;
-he Lrackets are removed at A ane ol

liotice in (¢) that if the pin at € is removed, the rvection at C would consist ~f o
force field pushing against member AC in cne iir@cticn\ erd to force {ield, wushine
against BC in ancther direc.ion / . HNow if the pin is left in the structure at . tu~
parallel force fields F}'l and E'F2 act vertically upward against the pin,since the brcwe.t
at C is supported by horizontal rollers . These two force rields F}‘l andg I'F, are callex:

2
the reactions of the bracket against the structure at constraint C. The pins then are .+t

in the structure when finding reactions whenever more than one member ig attached to 4 111,
at a constraint. The directions of the force fields acting against the pins at A and R
cannot be determined by inspection, the directions of their point force resultants wii. !-

tound using 2-D I'-B diagrams and then 3-D F-B diagram (c) will be completed.
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2-D T-B diagram (3) is .o drawn 1o scase. ., wnilt oretlaoes TR ooant TRy e (),
i3 shown in (d) acting verticaliv wward azainst the vir. 7, o doxlo Wlashed sc chee b
it actually represents tue renarate force flelys

Next U-B (e) of the pullew fug Jram 40 scale. . oand v GyioA JElel !
(e) on their correct lines of action. loree polve o () o T T
:—P" 'r_'B in (d) is 2qual and opresite to — no(e).

T-k (d) can now lx cormloted, '_ and TC inter ~oLt ot 2, _x cm pe leced in It ¢ orreect

line of action, iorce volvren () car ‘e drawn, s»
9 by F

oL Sal te meatured in ().

iz double siasned to shcw that 1t repreaents twe Trree

Using the directionc ¢t the colnt toree in (&) oy tne di

in (¢), diagram (¢) can now e compietea. 3-D ciagrar ()
visualized from (a) te reallv understand what the ocint lorosr
actually represent.
‘ ?-D I-B diagram (h) is drawn to scale to find the - cint force resultant of the leas
' acting on member AC. Members AC and BC are 2-I" mermbera so thelr point fnrces act alens thedi:
effective &9, ?AC and FBC are placed on their correct lires of action in (h).
rolygon (i) are now be drawn and the magnitude of TAC ¢sn be measured givine F,. = 33 U

AC e
As soon as the directions of the coint forces are 25tablished in (d) and (n), morment

P Orce

equations could be used in place of the force volygon. The magnitudes of T[ and T, are
found in the figure using moment equations with measured lever arms.

NCW IF YOU ARE GIVEN A CUPLANAR STRUCTURE THAT IS SUPPORTING A COPLANAR LOAL
AND IS COMPOSED OF 2-F AND 3-F MEMBERS AND CONSTRAINED AT TWO PLACES ONE OF

WHICH HAS A KIOWN DIRECTION, YOU SHOULD BE ABLE TO FIND THE STRUCTURE'S
REACTIONS OR THE LOADS ON ANY 2-F MEMBER OF THE STRUCTURE USING FORCE
POLYGONS OR MOMINT EQUATIONS WITH THE NECESSARY FREL-BODY DIAGRAMS. EQA - 2
Q
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Combinations of 3-F Members -- Combined Diagrams

Figure EQA 11(a) is an isometric drawing to scale of
two Smuller pipes B and C. Each pipe is assumed to be of
assuned that each pipe is rigid so that the line contacts
ing structure are uniform. The point force resultants of
the supporting walls on B and C are to be found, first by
with force polygons.

"

5 / Oll

Figure EQA 11

a large pipe A being supported .v

uniform weight per foot. It is also
between A, B, and C and the support-
the reactions of B and C on A anl o7

using moment equations and then

End views of the pipes are drawn %o scale in 2-D in (»). Since the pipes are of uniform

weight per foot and all have the same length, the point force pesultants of all the loads act-

ing upon A, B, and C are coplanar. 1In (c) F-B diagrams of each pipe are drawn to scale in

2-D.

Pipe A has three point forces on its 2-D F-B diagram, WA is the weight of A, §2 is caused

by B on A and acts perpendicular to the contact surface of B and A, and Rl which is caused by

C pushing against A is perpendicular to the contact surface of A and C.

Pipe B has four point forces on its 2-D F-B diagram.

WB is the weight of B, R, is equal

and oppositz to RZ’ and R, and §8 are caused by the left support acting against B.

The forces acting on the F-B diagram of pipe C are its weight W., R, equal and opposite

to R, and R; and Ry caused by the right support pushing against it.
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Now moment equations will be used to find the magnitudes of Ry and Rz on A, Ry and §8 on
B, andR5 andRsonC. ]

To find R, on A, a point X is chosen on the line of action of Rl as shown in the F-B dia-
gram of pipe A. Perpendicular lever arms a and b are drawn and measured.

a = 12 inches and b = 10.8 inches

2z Nl)\ =0 (0)(R1) - (12)(R2) + (10.8)(140) = 0 = 126 1b

ro

To find R, a point Y is chosen on the line of action of R,. lever amms c and d are

drawn and measured.
¢ = 11.2 inches and d = 8.2 inches

= MY =0 (0)(R2) + (ll.Z)(Rl) - (8.2)(180) = 0 R, = 103 1b

The F-B diagram of B can now be solved. R, = 126 1b and wb = 80 1b, so the two unknowns
R, and Rg can be found.

2 MG =0 (0)(R7) + (0)(80) - (31.2)(R8) + (9.2)(128) = 0 R8 = 104 1b
z MH =0 -(13.2)(R7) + (13.2)(80) + (3.8)(126) = 0 R7 = 116 1b
Now the F-B diagram of C can be used to solve for R5 and Re.

2 My =0 (14.0)(R;) - (14.0)(50) - (6.9)(103) = 0 Rg = 101 1b

> MP =0 (17.8)(R5) - (15.4)(103) = 0 R5 = 89 1b

To find the reactions on each pipe with force polygons, the F-B diagram of A is redrawn
in figure EQA 12(a) and its force polygon is drawn in (b). R, and R, are then scaled. The
F-B diagram of pipe B is redrawn in (c¢) and will be used to find R and R Since WB and R
are known (R is equal and opposite to R2 found in (b)), these two pomt fopces can be added
to give Rg A four-sided polygon can pe used to find R and R directly. To do this, WB 1S
firet laid out to scale, then R is laid out from its a:mwhead The polygon can then be
closed with R and R8, just as you would close a three-sided polygon.

Now a F—B diagram of C can be used to find Rs and R6 using a four-sided force polygon as
shown in (f). R3 is first laid out to scale, then W, is drawn to scale from its tip. Ry and
R6 close the polygon and can be measured.

When drawing four-sided polygons, the forces are usuzlly added in clockwiSe order around
the concurrent point, always starting with the known forces.

Notice that R2 and Ru in (P) and () are equal and opposite. The two force polygons for
A ard B can be superimposed upon each other as in the top half of (g). That is, force poly-
gon W,, Rl’ and R from A can be drawn as before. Then w and R can be laid out with R,
superimposed on R and pointing in the opposite direction. R and R then complete the Fome
polygon for B. Tn the same manner force polygon R3, wc, R5, and R can be superimposed on the
figure. This is celed a combined force diagram.




10 = /aalb
/,n= 10"

126 %= R, Wy 140"

=/407%

/
50%

/7= 100 /4

Figure EQA 12

Also notice that A is a 3-F member since it has one acting load and two reaction loads.
Although B has two acting loads and two reaction loads, the two acting loads V—J3 and Ru can be
combined into one acting load. The same applies to mipe C. Pipes B and C are then also
called 3-F members. A 3-F member may be acted upon by any nuaber of coplanar loads, as long
as it has only two reactions.

As another example, the reactions on the cylinder B and the member AC in figure EQA 13(a)
and (b) will be found using a single combined diagram and then checked using moment equations.

. Figure EQA 13
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2-D F-B diagrams of cylinder B and member AC are drawn to scale in figure EQA 1i(a) and
(b). The outside reactions on B, §1 and }_22,ar~e found using the triangular force polygon shown

in (). wAC and R3

now known since R., T, and §A are concurrent at P. Now the force polygon in (¢} can be com-

are then added to give §5 as shown in (b). The line of action of ?A is

)
pleted with WAC’ R,, and T and the magnitudes measured.

100"

Figure EQA 14

Note that the unknowns in F-B (a) can be found by summing moments about points X and Y and
the unknowns in FB (b) can be found by taking moments about points A and C.

GIVEN A COMBINATION OF 3-F MEMBERS, YOU SHOULD NOW B3E ABLE
TO FIND THEIR REACTIONS USING 2-D F-B DIAGRAMS WITH COM-
BINED FORCE POLYGONS OR MOMENT EQUATIONS. EQA

!
N
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UNIT 4

COMPONENTS - SUPERPOSITION - CANTILEVER BEAMS

WHEN YOU HAVE COMPLETED THIS UNIT, YOU WILL BE ABLE TO:
(1) FIND THE REACTIONS ON A STRUCTURE MADE UP OF a) A 2-F
AND A 3-F MEMBER OR b) TWO 2-F MEMBERS USING MUTUALLY
PERPENDICULAR POINT FORCE COMPONENTS, (2) FIND THE REAC-
TIONS ON A STRUCTURE MADE UP OF TWO 3-F MEMBERS USING THL
METHOD OF SUPERPOSITION, AND (3) FIND THE REACTION ON ANY
VERTICAL SECTION OF A CANTILEVER BEAM WHICH IS SUPPORTING
A TRANSVERSE LOAD.

Introducticn
In Units 2 and 3 vou learned how to construct U-B ziagrams and find *he unxnown v i°7i n

on coplanar structures that «re in equilibrium using crarhical and moment equati n n

the parallelogram law. In this unit *h

M

he technique of drawing F-B diagrars and uuing the

parallelogram law to find reacticns on coplanar ctractures will be ewpanded T Inclux o

use of mutually perpendicular (crthogenal) components of the forces in arithretic

¢ e

. . . ‘s . R e i ard geed. 0
rmoment equations. Another basic tool called surerpositicn will be develsroe® and used, 1.

the direct parallelogram furcz equations and mament equations will be used to fipl tio

reactions on the rigii connection o7 « ~antilever beam.

Use of Mutually perpendiculer Components tor 'Inding Reactjons

)
X
mﬂs
3

b e /2l 3 té

R
LE\_‘:’? =
@ \

Zo°

Figure CSC / -

A weightless member } is loaded with a coplanar 32 pound pull and is supported by a

roller at B and a frictionless pin at A. The reactions at A and B arc to be found. These

reactions can .e found only with the three force principle as developad in this presentation.

The three force principle will be used to find the reactions using five different methol: :

1.

2
3.
4
5

By direct summation of the point forces.

By direct summation of the moments of the point forces.

By sumation of mutually perpendicular components of the point forces.

By summation of the moments of mutually perpendicular ccmponents of *he point frrees,
By a combination of 3 and 4 summation of mutually perpendicular components and

summatior of the moments of nutually verpendicular comps ents.

L]

-~
v
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[ Zirect Summation of the Point forces

VEACRIVZ: Bic
107 : g0 7é

- 6
\%-32/
The first method has alveady been Jdeveloped. The free bedv diagram (d) 1s irewn te

scale with FC and fh as shown. T. and f% intersect at point P g0 T

T

Iy can pe placel - the
b C A ;

free-body diagram. Yo is known, the force parallelogram can be constructed to scale and the
F magnitudes of T? and ?E can Le measurr 1. The three dimensicnal fre (c) can new be

drawn.

Direct Summation of the Moments of the Point Forces

Measuring a = 11.4" b = 12,9
-3 “A =0 -aFC + bFB + OFA = 0
- (11.8)(32) + (12.9)(FB) =0 FB= 28.3 1b

Measuring ¢ = 5,4 4 - 6.8

]
(o]

7 Y
FA = 25.4 1p ///, \\
’% <) - ’:‘-.—=32/6

develored also and is shown in (e).

(e) is constructed to scale with fé and FR shown. To find ¥ (L. magnitue o 5 moments
h % b

are taken of ?B and ?b with respect to point A as shown rext -
its correct location with its line of

£M, = -
B 0 CFC de + OFB
(5.4)(32) - (6.8)(§A)

1]
(o]

The second method has Leen Again a frec-bod. liaram

{e). TA is nows .irawn in

action massing throush points A anc¢ P. Moments with
respecCt to B as shown next to (e) give the reaction at A. These magnitudes of ?A and FH
by the direct summation of forces.  The three diménsimn41
free~body diagram for this solution is (c),

can be seen to check with those found
exactly as in the other soluticn.

Summa:ion of Mutually Perpendicular Components of the Point Fc-~ces

The third method uses the principle that the three loads acting upon M can be replaeced
by their three point force resultants and these point force resultants can be replaced iv-
point force components without altering the equilibrium conditions of the system. Mutuallv
perpendicular components or orthogonal components are used because nmutually pervendicular
;omponents deperd only ~n their resultant and are independent of each other. It is customary
to make one of the cumponents horizontal and the other vertical, as measurements are usually
taken from horizontal or vertical lines. Horizontal ., and vertical ?v (mutually perverdicular

1
any H

perpendicular components) of'ggint force T are independent of each other because F“ cannot
be replaced using the parallelogram law with any set of orthngonal components where either

o of the set is vertical.

ERIC S | R
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r = = 5F, = " = = z
eyt Pyt Py T Ry=0 (&F,=0) Pl " Fy tEy s Ry =0 (5F, = 0)

csc
Fam
N ~&e oy
ch \ ) ‘— FA”=6046
A 4 Fav
w \VaL:
\
o =y FiV =.744fi \
— 525° #)  R=30'®
(9}

200

Member M is first drawn to scale (£). F, FB’ and ‘EA will be placed in wrder in (£)
and then their horizontal and vertical components will be shown with them.

?C has a magnitude of 32 1b and a direction of 20° from the vertical so its horizontal
and vertical components can Le found with arithmetic equations. T, is drawn dashed at C.
Then a parallelogram is drawn showing ?C beirg replaced by horizontal (?CH) and vertical
(?C‘I) components. The slope( € = 20°) of ?C is known so

Yen Fov
sin & = '}:g— cos & = =
C C
Foy = (32) (sin 20°) = 10.951 Foy = (32) (cos 20°) = 30 1b

These compcnents can be placed at point ¢ It is not necessary to construct them to an

exact scale, but it is best to show their relationships to ?C to scale as shown in (f).

FB acts perpendicular to the wall so its direction is known. Using the slope Lox of
3/8/8.55 the following relationships hold
Fg . F F Foo=

- BH = RV or BH © .936 FB FBV = .351 FB
8.55 8 3

These components written in terms of FB can be placed on the free-body diagram at B.
FA acts through points A and F. The slope of ?A can be measured and is found
to be 52.5°. These relationships also hold

b
cos 52.5°= fan F,., = .609 F sin 57.5° = F
=, 7.5 = "ay F.., =
FA AH A =L AV .79 PA

Fay and Fyy can be placed at A as shown in (f).

?A’ Fg» and Fy, a At Pf
equilibrium to exist, the three point forces add to a zero resultant R, that is FB + FC +

are concurrent at point P and can be imagined to act at P. At P for

?A = R = 0. This zero resultant will have a zero horizontal componer §H and a zero

i X R, =T T T R =T F, + F.. .
vertical component &/ where RH = FBH + FCH + FAH and &/ FBV + FCV FAV

The horizontal and vertical component sets are colinear, so using signs of f.,u and
+

—~ , the magnitudes o. the components relate to each other as

) e e i ] . ) o

- [}
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Another way to vissalize that F,, + F . -F_ . =0and F,, ~F . +7 . =0 ‘s shown
7t SR AR T Con T Ty AV ey fpy T Y oS shoWR
. e . = = = sz It - vy - M .
in (g). First, since Foo FE, and FA &dd to zerc and intersect at P, then & “any point
must equal zero for the three point forces. MNext the ferce pelygen for the three point

rry

forces is drawn in (g). Notice that when ‘FC’ -::B’ and -}:A are replaced by their vertical

i a 4 T + F _ = 3 i T 4+ F I - n
and horizontal components in (g) that Fay ¥ Fgy FCV 3 and Py + Fpp - P = 0
ay . . s +
NOW uslng signs of —» and ,,,f
+ F - F + I3 =0 - F‘ ) + F‘ +r . =
w7 ooy T ray T O B Ten T a7 O
Substituting Fay : ., 357 ~fa gy - ?FC
Fep = 30 /6 Ac ey = 70 PS5 /6
o :
v E 7P g4 Fo by = 609,:4
. P - .936F_ + 10.95 + .509T =
. 351 }B 30 + .79HrA 0 .vJG-B 10.95 608 A 0

Solving the two independent equations for the two unknowns gives the magnitudes of

F I3 z 25.u 1t Fo = 28.3 1b

FA and Fg FA 25.4 1b B 1. . ) :
These answers check with the other methods. Agein the actual 3-D F-B diagram for

this solution is still (c¢).

Summation of the Moments of Mutually Perpendicular Compcnerits of the Psint Forces

Tt has been developed in the fundamentals
section that the moment of a point force is -
equal to the sums of the moments of its com- —— [N ——13 W’“
ponents. If the direct moments of the point P
forces equal zero with respect to any point, B 936 F;

~

351 F 8N

N pect to the same point. This pr:inciple will A
be used in method four. First a free-body 6094 — [0.95°-8 l
diagram (h) is drawn with the three point Y, C

then the moments of the compenents of the ~ T

point forces must also equal zero with res-

forces shown replaced by their components 7 1.794 A \

as in method 3. To find FB moments are 3048

1

taken of all the components with respect to

point A. Distances used are shown on the 525 (h)
free-body diagram.
é'MA =0

(0)(FAH) + (0)(FAV) - (lZ)(FCV) + (0)(FCH) + (8)(FBH) + (lS)(FBV)=0

- (12)(30) + ‘(8)(.936FB) + (15)(.351 FB) =0

. FB = 28.3 1b
To find FA moments are taken with respect to point B. 1

(0)(FBH) + (0)(FBV) + (8)(FCH) + (3)(ch) + (8)(FAH) - (lS)(FAV) =0
+ (8)(10.95) + (3)(30) + (8)(.609FA) - (15)(.79uFA) =0
FA = 25.4 1b
As always the results check with the othep methods and the actual free-body dia

gram  {e (~

.- ) 4
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Combinaticn Method o 127 S
M e *I‘ L
5 By T 2a, g b
g” Fou = 35 Fou = S 9%

/5 45 /f,:q A

10.Q5 4
C

rb
3018
1

0% gy,

(«)

This method is a combination of 3 and 4 without using point P. F-b diagram (1) is

drawn and ?C’ F.B’ and 'E-"A are replaced by horizontal and vertical components. T T

i anag F
CH Cv
are shown on the F-B but their resultant FC is not shown. ?-CH and ?CV are drawm so that
rCV is approximately three times as long as ?CH‘ As before FCH = 16.95 1b and FCV = 30 1bh,

Now -FB is replaced by _F-BH and ?BV in a slightly different manner than before. Insteal

of relating both of them to their resultant, ?BH and ?BV are related to eac.: other. F.
is labeled and Fyy = 3/8 Py, (remember the slope of ?B is 3/8/8.55).

o

Next the direction of

.

is guessed and F, is replecec by qu and FAV. do relaticn-hi-

have been established yet between Frs FAF’ and F,., so ¥,.. and T,,. are merely showm actir. -
A H AV AH Al :

through the € of pin A.

= 1 ) F
z MA 0 will give P

(123(30) = (15) (3/8 ¥ ) + (8)(F .1)

“BH © BE
L s .
Py = 26.4 1b Py = (3/8) (26.4) = 9.9 1b
- 2 ,r 2 = JBum +9.9° = 28.3
Fg= Ve *Pay

i F F oW pl F-B diagram.
The magnitudes of FBH and }BV are new piaced on the F-B

2 z F,. = 15.45 1b

ZFy =0 10,95+ Fyy 26.4 A

EE; 200 Fyy +9.9=30 Fpy = 20.11b
Fy = \V20.1% + 15.45% = 25.4 1b

The slope angle « that FA makes with a horizontal line at A can be found

F
Cos o< = F_N_{_ = ;235 = .608 o< =52.5°
A .

Notice in this last method that only components are drawn on the F-B diagram. It is
best to put the magnitudes of the components on the F-B for a quick visual check. Also
the 2-D F-B need not be drawn to an exact scale as no measuring is done on the F-B diagras
all measurements can be taken from the original space diagram (b).
actual F-B diagram is still (c).

N
L

As before however the
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Combinaticn methods will now be used to find the s

reactions on three coplanar systems.

Lxample 1

‘\ 7+ 26% l Ty=24%

:zk3

(6) E “rgure Isc o 2

Weightless cables OA and OR support a 26 1b load. The reactions at A and ¥ are to lw
found. FB () is drawn, T is replaced by Tx (10 2b) and T (24 1b), B (actually ?B) by
B and B (B = B as the slope of OE is VD, andAby A and B (A = 4/3 A )

X v oy X : 3 X X Y

<

Y
To find B To find A
EMA = 0 assume T acts at pélzngyo EMy =0
(3)(10) - (w)(2u) + (9)(8}() - (2)(By) =0 (5)(19) + (5)(2u) - (9)(Ay)-(?)
5,(: G < 6 8,/ = 9.4/6 &S /3 P /6 /Q}/-' /4_6 /4 ()1’/3&\,’) = 4
p-)
Cheak- SFm:o /94t o4 4,0 Ty soFh oS
S Ly oo /e 7 G Dy

Example 2

=887

8
19.5%z,,

B,: 39 &4

Llgore CS5c 3

3-F member ACD and 2-F member 3C are weightless and coplarar. The pins are frictionless.

The reactions at A ana B are to be “ound. 24
F-B (c) is drawn. BC has a slope of 6/2.5 so FB can be replaced by By and B, ( 8/2.5 R ).

KV and ‘KH corplete the F-B diagram.

ZMA=0/.?.45// ; o e o
(2 9)&51// #F(3)By): (7)176) . s
5/‘/: /s 6 a4 - /O//: /\3‘4.3
Sr: Ca,005) 39608 A
Theck - E Ay O {9/(/33/* (£)0 5) = (6‘}0;’.5‘/-/ (5-//(3¢;y/
/é - /76 s TP ¢ ‘ ) -
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E¥aimple 3

c 6o 't

——

C',./” 30®

b —— ’ - .-
30/:_7-// # <. :3/9
76
TV:S/'9

S/ 578

Tv O S s0°
C S/ G/ré

Th o GO cos @O0

= S0 /o
E Fpyz o S £y ~o
Grves Cup’: J0/6
<y S et

nw

EZr7gz0
()Buy) # (X8 ) -
(1301 # (2 &)

()2 15 8.) » (6)8v)=
(13)3e) + 2)E 7

By s s2 3 /by(

6’/‘{'— -261‘77/6"'

Ky 20 ELy -0
Ly S/ 94723

g0 =] A 3678 s gg 26"
r-—b'—-l (b) Yy D = 642/6 Duy: 30~ 26,4
~rgure <SC A v = T 3L -

The coplanar frame supports 2 60 1b load. The reactions at A and B are w nted if all

members are weightless and frictionless.
All forces are

F-B diagrams (c) and (d) are drawn, the pin at C is left in (c).
Tt is not necessarv that the compcnents are

replaced by horizontal and vertical components,
" against the frame, for instance at B components By and B, can be dravm

dravm "pushing

"pulling" on the frame.
F-B (c) can now be completed as shown in the figure. Then the comporients at C (C.V. and ()

at C on the frame (d) are equal and opposite to the components (CV and CH) at C on the rulley

(c). So with CV and CF known, F-B (c) can be completed.
Chrckte Z Mo : O 5 V5,7 Av: &4 37
v3)(3 ¢) 4 (2)(69 2) = (8)02 3) 4 (3)(2¢.%) 5 VBw 7 Bo: 297 /6
g, B AT 2 3.2°
For V= !

17 = /77

Some cardinal ~ules 1in engineering statics.

S FH =0, & FV = 0, and ZM = . 1) Always draw F-B diagrams;put all component magnitudes as
they are found on the F-B diagrams, this will give you a quick visual check of vour work. Lo

not put spatial dimensions on the F-B diagrams, use the dimensions from a space diagram. 2)
3) Always do neat work that you can be

Remember when solving for reactions using

Always check your work with an independent method.

* proud of.
AT THIS POINT, GIVEN A COPLANAR STRUCTURE MADE UP OF 2-F
AND 3-F MEMBERS, YOU SHOULD BE ABLE TG CONSTRUCT A 2-D F-B
DIAGRAM OF THE STRUCTURE, REPLACE THE LOADS BY HORIZONTAL
AND VERTICAL POINT FURCE COMPONENTS, AND WRITE THE rORCE

AND MOMENT EQUATIONS NEEDED TO FIND THE RECACTIONS. csc-1
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Superposition

Superposition is a technique used in engineering statics for finding the reactions on
members or structures that have more than one external load. Partial reactions are found for
each load acting alone and these partial reactions are then added by the parallelogram law tc
find the total reaction at each constraint.

.,‘
B=90" B=90" -
a6 %0* | il:go/b ;
d.
_an'b A
Ax-qo l _l AX:Z-O& |
Ay=80" () Tay=0t )
R: 30+ 50 80/ $af o
ZMA =0 (4)(30) + (12)(50) = (3)(80)
(4)(30) + (12)(50) = (8)(B) d = 9™
B =90 1b T, =0
ZF =0 & ZE =0 (3)(80) = (8)(B)
Ay =90 10 A = 80 1b B = 90 1b
A =120 1b LF =0 6 X =0
A =90 1b A = 801
A =120 1b
(b)
7The Sy I hemn
'F ceplonar,
B=15" 75% )
Y 50"’ Be” 30k 50° B=p
) /b Jso,b ] b J
Ag= 5...[.9 | sz=75_.§ ?0
T,=a0% (e Ags=50" TA =0% )
-1- -2- -
ZMy =0 (4)(30) = (8)(8,) ZMA = 0 (12)(50) = (8)(B,) Superposition of -1- and -2- )
By =15 1b B, = 75 1b B =15+ 75= 90 1b
Ajy = 30 Ib A, =75 1b A =15 +75= 90 1b
Ay =15 b Ay = 50 1b A, = 30 + 50 = 80 1b
A =120 1b
Figure CSC 8

When an object such as the one shown in CSC 8(a) and (b) is loaded at two places and the
reactions are wanted at A and B, three techniques can be used.

(1) A F-B diagram can be drawn to scale with both of the forces and solved as shown in (c).

(2) The two acting loads can first be replaced by their resultant as in (d) and the prob-~
lem solved as shown.

(3) Thé reactions can be found by first assuming that W, acts alone as shown in (e) and

finding the partial reactions caused by it. The partial reactions caused by W, acting alone

can then be found as shown in (f). By the principle of superposition the two sets of par~
tial reactions can be added to give the total reactions as shown in (g).




I

< sc 9
The frame shown in figure CSC 9(a) and (b) is loaded by twc elecCtromagnets C and D. It

is assumed that the structure is weightless with frictionless pins, and each magnet is assumed
to set up an evenly distributed force field of 1 1b. The reactions at A and B are to be found
. using superposition.

I 12" o &)

8,-.42"% ¢I®
r 2 F member £ * £
s+ s ) 6, +0a o)
-47 T
3-F members .
r .
.alb‘l
13" Ay
An=-8“
t Mg =0 sMa =9© s o
U/’er/mpd.fc
(7)(!)1-(4)6%//).: 02)(3 ) Gz ) g)+(4)[é)=(/2,/(3/jz,) 5, - . 92r0r P20
Ay Yg P ut Buyp: 12576 Buy: 125~ 78 #7/6
. Bz 7 O
(7X7) # @/{%ﬁm/ = (12)08 1) /s /4 Bay = 7E 65 I3
v ’h A’/—/z= A3 41/2"3 —e . y > 45
/4/,//:,78 AI/: _f-.~5a P
Ay, .58
B, 786 By .92
Cé‘c/('
E £py = O S KLv =@ E Mg =0
47 5.037 . C ,2e #/: %24 8 (EX1) # $2)013) » (6)[22)=(30.C) 4(FUE)1 2N #Y
/iju/e <sSCc S /0ol = o 04
F-B diagram (c) is drawn and completed with magnet C on and magnet D off. Notice that
with D off, AO is a 2-F member, and the reaction at A therefore lies along tle ¢ of A .

F-B diagram (d) is drawn and completed with magnet D on and magnet C off.

BE becomes a
2-F member, and the reaction at B therefore lies along the ¢ of BE.

The partial reactions are superimposed in (e) and can be visually checked by summa* on of
forces. It is suggested that you prove to yourself that this example cannot be solved with C

and D both on together.

It should be apparent to you now that with multi-membered frames, the loads camnot be

added to a single resultant dcting upon one member of the frane.
N . ‘ " ‘ * , - . L]




CSC
a 20 1b weight is being supported by two coplanar members.

In figure CSC 10(a) and (b)
The reactions at A and B are tc

AC is a uniform member weighing 15 1b and BC weighs 10 1b.

be found by superposition.

@
2078
/8
/o 4/5’5 / le 7 /4 /0N /4
- s\ 2" S LA a\.2 2_.1/7 A\=Z
S
t/,o’ e f6.7/5 f ;7% 23/6
s 13 38 .
(<) ) @)
éMA =0 2/_145 -0 z’ﬂg c e
(G ) 2 @)
2)0S) HE ) (2)20): (6)Byz) Gosyves = @) B3
I 2 : 2 &, 7% Ays = L T8
By = &' Dyz s 67
By, 376 = 3/5)(s) P Y d Dy /s )0 2) 274
g s s0’6 n & 4B & z: &34
. v 14 - » p N 2 )
Az 3 E s E
Byva = ;3. 3758
Check - L3 )y
- ALy o L
E opy =0 ;
s/3=1+3 18 wg 2680 £S5 Lo S 00
A5 FS ‘RS 2¢.6*
()
-SQPe/m;/oa.sco/

2 s =0
- syr3) £ ()CC L) = (/. 5Ne0) 4 (SH3) /(6 8 F)
(3)G5) + (5K )ﬂ( j O ps et s Ge
1279 9 = 425/ B 20 crn@® £35°
A gere  &S5E O
showing only the ¢’s of the members are drawn (c), (d), and (e).

load acting alone,@ with the 20 1b load only, and F-B @ with

Simplified F-B diagrams
A force and moment

(D is solved with the 15 1b
the 10 1b load. The partial
check is made of (f).

reaction components are sumperimposed in (f).

NOW IF YOU ARC GIVEN A STRUCTURE COMPOSED OF TWO 3-F MEMBERS
YOU SHOULD BE ABLE TO FIND THE REACTTONS USING SUPERPOSITION.

(SC -2

o

.
[,
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Cantilever Beam Reactions

Frequently in engineering statics it is necessary to analyze the external forces that
would act on an imaginary cu* section of a member. When a symmetrical two-force menber has
a cross section exposed in a F-B diagram, the external force field acting on this imaginary
section is uniform, symmetrical and act3 parallel to the center line of the member. The sense
of the field is determined by the external loads. If the loads push on the member, the field
on the exposed surface also pushes and the member is said to be in compression. If the exter-
nal forces pull on the member, the field on the exposed section also pulls from the exposed

surface and the menber is said to be in tension.

Exposed transverse sections are necessary to analyze the reactions at the constraint of

a cantilever beam . A cantilever is a member that is rigidly constraired at one en’ and load-
ed sonewnere along its lengcth ( e.g. a diving board with a diver apout to dive ). Figure
CSC 11 shows a uniform horizontal cantilever beam which is assumed to be weightless. A method

of finding the forces acting on any vertical section when a vertical load is placed on the
beam is to be developed.

—‘IM,G 6MI
l.
“J 2/N' (b)

Figure CSC 11

The part cf the beam to be analyzed exwends from an imaginary vertical plane A, which is
perpendicular to the axis of the beam, to the right end of the beam. Lines CE and IK :ndi-
cate where plane A cuts the sides of the beam. Another vertical plane B, which cuts the sides
of the beam along lines FH and LN, is shown two inches to the right of plane A. D, G, J, and
M are the mid-points of their respective lines and indicate the points of intersection of a

horizontal plane which passes through the center line of the beam.

(S




Pigure CSC 12

If a 50 1b load is applied to the end of the beam as shawn in figure CSC 12, the beam
will tend to bend. Careful measurement of a real beam loaded in this way would show that the

distance between C and F (two inches) has increased a small increment & X whereas the dis-
tance between E and H (two inches) has shortened by exactly the same incremental distance
A x. The distance between D and G, however, will not change, and the two cross sections

A and B will both remain as rectangular planes perpendicular to the axis of the beam.

Another experiment can be performed showing that when a tension load is applied to a
sample of material, the sample elongates some distance A D. When the load is increased or
decreased, the change in A D is directly proportional to the change in the load (doubling
the load doubles the deflection, halving the load halves the deflection, etc.). This rela-
tionship is also found for compression tests. Furthermore, it is found experimentally that a
given load gives the same deflection to the sample whether it is applied as a tension load or
a compression load. From this experimental evidence it can be said that a member deflects in
direct proportion to the load applied.

F-B diagrams of the beam with cross section A exposed are drawn in figure CSC 13. These
diagrams show no deflections as the deflections are very small and do not significantly alter
the shape of the F-B diagram. FFw and }—“w are known and can be placed on the two F-B diagrams.

The first experiment showed that maximum deflection occurs at both the top and bottom
of the beam while no deflection occurs at the middle. In addition the elongation of the
upper half varies uniformly from DG to CF and the shortening of the lower half varies unifcrm-
ly from DG to EH. This is true because cross sections A and B remain as rectangular planes

perpendicular to the axis of the beam. Therefore a force field varying from zero at JD to a

maximun at IC must be acting upon the top half of the beam at section A to put it in tension

..?,\
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1035 F, T
(b)
@ 1 inch = 6 inches
, 103 Fe 1 inch = 100 1b

(¢)

Figure CSC 13

Each of the force fields can be replaced by a point force resultant acting through its
These
two point force resultants, together with the point force resultant of the load, establish a

effective center, which in this case is two inches from the centerline of the beam.

system of three point forces which must, by the three force principle, be concurrent at some
point on the line of action of ?w. ?T’ the resultant of the upper force field, and FC’ the
resultant of the lower force field, are equal in magnitude and act through points two inches
above and below the center line of the beam respectively. Their lines of action must there-
fore meet with the action line of ?w at point P, which is on the centerline of the beam, as

shown in (a) and (b). The magnitudes of Fy and F,. can then be found by constructing a paral-

lelogram of forces as shown in (c). Force fields FFp and FF, have the same slopes as the

point force resultant Fp and F..

AT THLS POINT, GIVEN A CANTILEVER BEAM LOADED ON ONE END,
YOU SHOULD BE ABLE TO VISUALIZE THE FORCE FIELDS ACTING
ON A CROSS-SECTION OF THE BEAM AND DETERMINE THEIR POINT

FORCE RESULTANTS USING THE PARALLELOGRAM LAW. SC-3
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Vertical

Shears and Bending Moment Couples on Cantilever Beams

1 inch
1 inch

6 inches

A%

Fr=103 W
% (<)
,/1;;103L8 « g ]
A 50
Fry = 100" i ’
-~ 7 ,
IN
J
ZIN
.
£, 100"
CH f.l/N (d)
V=508

Fi_ure CSC 14

n——-gM L.—jlﬂ
] 7y 5048
Fr=103‘8 25" Fy l
] 7
1004 Ry Py \‘\\ V| 3
~ L
2/N __——t;;*(:‘—*—'
1005 F L | 7
ferl03*®  258:f, ()

The 3-D F-B diagram of the cantilever beam with its
loads is redrawn in figure CSC 13(a) and the tio-dimensional

F-B diagram is redrawn in (b) with the three acting puoint

forces F g0
¥

replace the point force reactions by mutually perpendicular

I—-“T, and I—-“C . Sometimes it is convenient to

dqF
V Epyy and Fpy
and FTV can 1n

components as in (b) where Fy is replaced by F, .

g and Foye Foy a
twn  be replaced by a single vertical component ¥,
in (d).

shear.

and FC is replaced by FCE
as shown
This vertical component is called the vertical

The remaining components I—-“,m and FCI ]
equal in magnitude, and opposite in sense, with their lines

are coplanar,

of action displaced a distance (in this case four inches)
apart. The two horizontal point force components form a
point force system that is called a couple which for a
cantilever beam is called a bending moment couple.

The point force components representing the couple and
the vertical shear can be found using arithmetic equations.

I—-“w, F., and FC and their components obey the three-force

principle. Therefore in (d) for ?TH’ FCH’ U, and Fw,
ZF =0 V =50 1b
Lty =0  Fp T Fy

2. My = 0 (2)(Ep) + (D (F) = (8)(50)
4 Fryy = 400
Fqy = 100 1b Fry = 100 1b
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Another cross section seven inches from the right end of the beam is to be investigated
for the magnitudes ol its vertical shear and couple. A three-dimensional F-B diagrar is
drawn in figure CSC 15(a) showing FF,, and f“;, and a two-dimensional F-B diagram is drawn in

(b) showing F‘:’, At the exposed section, V is shown acting vertically, ana _F—’I“r' and -‘;C‘i are
drawn horizontally 2 inches from the beam ¢ .

Fw
- ;/IV |
D Fuw =508
7544 E.
2"
ot +
ZIU
L8 t~
75 fen
V=508
)
Figure CSC 15
Now
> Fv =0 V =50 1b
=0 Fpy = Ty
2 My = 0 (2)(Epyy) + (D(Fyy) = (6)(50)
4 Frpy = 360
oy = o= 75 Wb

The vertical shear is found to be 50 1b acting vertically upward, and the bending moment
couple consists of two 75 1b parallel point forces acting horizontally 4 inches apart as
shown in (b).

AT THIS POINT, GIVEN A CANTILEVER BEAM LOADED ON ONE END,
YOU SHOULD BE ABLE TO FIND THE VERTICAL SHEAR AND THE
BENDING MOMENT QOUPLE ACTING ON ANY VERTICAL CROSS~-SECTION

USING FORCE AND MOMENT EQUATIONS. SC-4
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a smooth sloping surface. If the object weighs 10 1b, find the point force

reactions on the two supporting surfaces (a) using a force polygon, and (b)
using moment equations.

lin - uin
1in - lOlb
{
; EQA - 1A The object is in equilibrium as shown with a rough horizontal surface and




s

EQA - 1(B) Find the reaction on pin A using a force polygon. Check with a moment
equation. The member is weightless and the pins are frictionless.




lln

611’1

*"' ®
-
; EA - 2(8) Find the reactions at A and B using moment equations. Members AC and BC

are weightless and pins A, B, and C are frictionless.




301b
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EQA - 2(B)

reactions at A and B?

If the members are weightless and the pins are frictionless, what are *he

-

-

e



EQA

5 O

T IO SS

lin - 5in
!
, ¢
( . )]
& ~
&
J
; EQA - 200 Find the reactions at A and B for the frame sl.own. State “he assumptions “.

needed in your solution.




EQA
9) 3 .
o
v Q oA <
i
120 .~
1
- 1
y . . -in _ . in
Assumptions: Weightless members and 17 =5
frictionless pins.
t
&
L
b EQA - 240 Find the reaction at B and the directicn of the reaction on the pin at A,

What force is acting on member AC?




EQGA
) - . .\'
in _ cin P,
131 = 900™
. Al
1 EQA - 3(A) Find the point forces acting on each weightless cord using one combined
force diagram.




EQA

- . 3
AT T ITIITYITYYTY

Pins and surfaces

are frictionless. 1in

h €
.
-
. '
§ ‘e
! .
4
'
]
N
N
{3
~
4 e

o £ - 3@B) Find the reactions at A and B using one comtined diagram.
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D. E. Alexander

UNIT 7

ENGINEERING FRAMES

AT THE END OF THIS UNIT, GIVEN A 3-D DIAGRAM OF AN ENGINEERING
FRAME SUPPORTING A LOAD, YOU WILL PE ABLE TO FIND THE HORIZON-
TAL AND VERTICAL POINT FORCE COMPONENTS OF THE FORCE FIELDS

ACTING ON THE CONTACT SURFACES OF ALL THE MEMBFRS OF THE FRAME.

Figure EF 1

The chree stationary loaded structures in figure EF 1 are engineering frames. Frames are
used to support loads and are assumed to be made up of weightless and rigid 2-F and 2-F mem-
bers joined with frictionless pins. The frames in this unit are symmetrical about a vertical
plane which contains the centerline of each member of the frame including the load, the three
frames then are called coplanar systems.

The horizontal and vertical point force components of the force fields acting upon each
member including the pins of the three frames in figure EF 1 will now be found.

‘.
5




’,
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26 Figure EF 2

The first frame to be analyzed is drawn to scale in figure EF 2 in 3-D (a) and in 2-D (b)
with dimensions. Next 2-D F-B diagrams of the whole frame and each member are drawn in
figure EF 3. The first step in drawing a F-B diagram is to draw each member to scale without
showing any components. At each contact surface a force field acts. Each force field is men-
Ta’ly repiaced by a single point force and this point force is in turm replaced by horizontal
and vertical components using the parallelogram law . Only these conponents are shown in the
F-B diagrams. Although these components are abstract, it is easier to imagine that the compo-
nents are actually active on the members.

Assume now that the F-B diagrams in EF 3(a) and (b) are drawn without any components
shovm. Each set of components at each contact surface will now be added to each F-B diagram,
Arrovheads and magnitudes will be omitted except for the load until later, since it cannot
be determined by inspection which direction the components are "pushing" against the members.
The directions and magnitudes will be then found using arithmetic equations. It is only
necessary at this time to show the lines of action of the compcnents.

D2
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EF 3

F-B (W) will be analyzed first. #, and

rope. Both W, and W, are single nents and are given a single slash as shown. At the
v i gle compo g

act on the exposed surface of the woightlas. , ¥
lefit_end of @ a single load acts. It is replaced by F‘i and ?‘V but without arrowheads.
and ?‘H actually represent a single force field which acts against the rope, however, they are

drawn as if they act through the ¢ of the removed pin F. F

y and FV are single slashed. The

lengths of the components need not be drawn to scale.

The F-B diegram for pin F is next. It has a load caused by the rope and two symmetrical
loads caused by member DF. The load caused by the rope has two components which must be equal
and opposite to FH and FV on @ . These are drawn as ?Hl and FVl and act through the ¢ of
the pin. ?V2 and ?H2 are double slashed to show that they actually represent two force fields.
Figure EF 3(¢) is an exploded isometric drawing of the joint at pin F and clearly shows how
pin F is loaded by one force field caused by the rope and by two force fields from member DF.

F-B @ has a set of double components FH3 and FV3 that are equal and opposite to ?‘m
and ?‘vz on pin F. 'Ev and EH are caused by AE acting through the removed pin E. At pin D
double siashed point force components D; and D are caused by member DC. )

It is not possible to determine whether the components come from single or double foroe

fields with 2-D drawings, you must refer to the 3-D diagram figure EF 2(a).

F P

" D

~ @ @
@ / BVJ
~
Fu
Wy
Wy
Figure EF 3

The point force components EV’ 7\",, and ‘EH can now be placed in F-B diagram @ in figure
EF 3(a). Ty, A, and A, are all single slashed.

Following the above procedure, you should now be able to analyze the rest of the F-B
diagrams yourself. The joint at pin B is shown in isometric in figure EF 3(d) to help you.
Four things should be apparent to you in your study of the F-B diagrams: (1) all the loads
are replaced by vertical and horizontal components, (2) the H and V components are left with-
out arrowheads except the external load and are not drawn with their lengths to scale, g
(3) wherever a component represents a single force field, it is single slashed, and wherever
a component actually represents two force fields, it is double slashed, (4) the loads between
connecting members (usually members only connect with pins) are equal and opposite force

>y

fields, so their sets of components are equal and opposite. For instance, Ev and EH on DC cre

equal and opposite to By, and By, on pin B, and §H3 and EV3 on AE are equal and opposite to
EH2 and By, on pin B.




— 7" lo 9 sho— 16"—o] 5" -
T D(O ] L 0O O,

P
Fu=10" 2"
~ 512 =24 %
~ /b
X Fy=
Fa=10® @Gt~
F =108 § “a=24" @ _ Frug=24 "
/b
Wy =10 0 24" @
24l P P 24
® 1% 10"
/510 12,6 Ay =2 78 /b
5° 24" =378
Figure EF 4 " C,=378

The frame and all the F-B diagrams are redrawn in figures EF 4 and EF 5. The magnitudes
and senses of all the components will now be found using the parallelogram law in force and
moment equation form. As the components on each F-B diagram are found, their magnitudes and
senses will be placed on the drawings.

W o_'"

"

! — D e = W, = =

F-t () T T T W, = 10 1b Wy = 24 1b
F

ZFX=0 FH=2141b ZFY=0 v

The arrowheads and magnitudes are now placed on the F-B diagrams.

= 10 1b

F-B @ FVl and F, are equal and opposite to FV and FH cn W, so

FVl =10 1b FHl = 24 1b
ZFX and ZFY =9 FH2 = 24 1b FV2 = 10 1b )

F-B diagram @ can now be completed.

F-B @ FH3 and FV3 are equal and opposite to FH2 and FV2 on F, (FH3 and fV3 "bush""

M, =0 (A is the center of pin A.) against @ but can
be shown " ing"
(25)(,) own "pulling")

(25)(CV) Cy =37.81b

n

(3'/)(FV3) + (214)(FH3)
(37)(10) + (2u)(2u)

Zannd GF, = 0 AH=2l¥lb AV=27.8lb

Y




F--B @ Fy3 =241 Fy; = 10 b ZMD =0 (D is the center of pin .)
(30)(Fv3) = (25)(EV) (30)(10) = (25)(Ev) EV =12 Ib
ZFY=0 Dy=2w I;HandEHcannotbefoundyet.

-3 (D) Dy =21b Dy, = 2 b Dy, and Dy, are unknown no.

P8 Q) D=2 ZMyzo (9D, + (12)(D,)

(D(2) + (12)(D'H3)

(9)(c,)

(9)(37.8) D,., = 26.9 10

i3
EFX and ZFY =g BV = 33.8 1b BH = 26.9 1b ¢
Dm:zlb
6Q%Q> E, =12
Dﬂl~2 3 \\D,,2=26.9/6 E :qub @ "
DV/=2/5 \ A2 Ew=2.9

37.8%
F-8(D) Dy, = 26.9 1b Dy = 26-91b
13.45%
F-B O D, = 2.9 1b TRy 0 By =291 4040
PB(E) By By 291 EysE,c121b //Ib
F-B @) E,, =121 By = 2.91b 9 B
SFyand EF, =0 By, = 26.911 By, = 39.8 1b Figure IF §
1 s By, = 26.9 1b By, = 39.8 1b both from (09
By, = 26.9 1b By, = 39.8 1b both from (AE)

ZFX =0 ZFy =0 Checks.




(b

39

Figure EF 6

The second frame from EF 1 is redrawn in EF 6(a) and (b). Again the frame is considered
to be rigid and weightless, the pins frictionless, and the frame and all its members symmetri-
cal about a vertical plane through the € of the rope. The components of the loads acting on
all the members are to be found. F-B diagrams are drawn in EF 7 and EF 8. Pin C is shown in

isometric with its connecting members in EF 8(a).

- 15%
@ Cu=13
¢, =36" Wy =15"
Wy = 36/b
- /b
P ...3/b l’\Vl" ‘36
78
Win=15"
B8 Pu=157 T
) =15/ PULLEY
G :75/6 @P/N H
’ *WES(?/" R =3 R=3% 16
@ W=39
Figure EF 7
D GF is & 2-f member.
ZMA =C (10)(39) = (5)(GH) GH = 78 1b
B Ay = 39 1b By = 78 1b ;
@ It is known by inspection that L "y = wH
pe R v v
@ pulley ww= 36 1b wm= 15 1b I“V and Py are found by inspection

@ pin By inspection




By inspection
ZM, =0 (8.5)(78) = (6‘)(DH) D; = 110.5 1b

Cyy = 32.5 1b Dy and Cy, cannot be found yet. 3
Cyq and Gy are equal and opposite to Cy and G, in @

CH1=15 1b Cya = 36 1b

V1
G, is equal and opposite to Gy, from ) cy=32.51 Cyp=17.5D
Gy = 17.51b  ZMy =0 (2.8)(17.8) * (5)(Cyg) = (1)(78) + (2)(39)

BV and BH are now known. CVS = 22.45 1b 625lb

29. 225

All by inspection 29225 b\ \-

Checks 11 225/b 16. 25
11 225 _\
875" _\

15”
875" 5“ 75”
0 \
36“ 11225

. pg.225" 1625“
quzs zazf
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The third frame is redrawn in figure EF 9, and F-B diagrams of all the members are shown

in figure EF 10. The horizontal and vertical components or: pulleys D and B and pins D and B .
can be found as before. However, when F-B alagrams <:) s (39 , and (:) are drawn, no moment .
equation can be written that will have only one unknown. On F-B (:) a moment equation ZZMA =0

will relate EH and E;. On F-B (CE ZZMC = 0 will also relate EH and EV. These two eguations

with two unknowns can then be so'ved. The procedure is shown below.

pulley W, = 18 1b wH = 24 Rest by inspection.

pin All known now. i
pulley Bv = U8 BH = 24 By inspection

pin Known now.

BH3 and BV3 known from pin B.

DV3 and DH3 known from pin D.

(3)(30) + (41)(30, = (36)(EH) + (UG)(EV)

® O EXE

EZMC =0
0)(12) + (u)(2u) = (6)(EH) + (30)(EV)

Slight rearrangement of the above equations yields
6§ E,+ 8E, = (3)(5) + (41)(5) = 220 from (1), and

6 EH + 30 E

v (20)(12) + (u)(2u) = 236 .

Simultaneous so’ 'tion of these equations gives
By, = 5.3 and By = 29.6 1b




EF 9

All the F-B diagrams can now be completed and the actual Joads at each contact surface

1 . ¢ v s

can be found. For instance, (EV2 + 1521_{2)'5 = E, where E is the magnitude of the “orce field

acting at constraint E.

A A, = 296"

6.7%

F'e
ar NOW IF YOU ARE GIVEN A LOADED ENGINEERING FRAME, YOU SHOULD

BE ABLE TO FIND THE POINT FORCE COMPONENTS OF THE FORCE FIELDS

ACTING UPON EVERY MEMBER OF THE FRAME. EF -1
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TRUSSES
7
AT THE END OF THIS INIT IF YOU ARE GIVEN A SPACE DIAGRAM OF
A TRUSS, YOU SHOULD BE ABLE TO SOLVE FOR THE FORCES IN THE
TRUSS MEMBERS USING (1) THE METHOD OF JOINTS, (2) THE METHOD
OF SECTIONS, AND (3) A COMBINED DIAGRAM.
Introduction
A fremework composed of I-beams, channels, 8, bars, and other special shaped engin-
cering members that are joined only at their ends to form a rigid structure is called a
truss. Bridges, roof supports, and cranes are usually made up of combinations of trusses.
Each truss is essentially a series of connected triangular shapes. In this unit only coplanar
trusses will be considered. An example of a typical coplanar truss is shown in figure TR 1(a).
The bridge actually consists of two coplanar trusses joined by the cross beams. The bridge
deck has been omitted in (b) to show how the members supporting it transfer the loads from
the deck to the bottom joints of the two trusses.
idealized as frichionless
’;"‘l‘\\ X PirS
L F ‘,.: ‘\3\\? idealized as
Ve

frichionless roller

(b)

For purposes of analysis, the truss is idealized by making some assumptions. (1) The
individual members are considered to be we ghtless, rigid, and coplanar. (2) The members

are connected at each joint by a single :. otionless pin (as shown in the isometric, the

actual connection could be a welded or riveted gusset plate), and no member is continuous

through a joint. (3) All the loads are assumed to be applied only on the pins and at each

joint the ¢'s of the members and the external loads are coplanar and concurrent with the
& of the connecting pin. With these assumptions and idealizations, each truss is a

coplanar system, each joint is a concurrent system, and each member is a 2-F member capable
of resisting either pure tension or compression.

TR 1




? R

Some external loads have been assumed at joints T, U, and V. These loads are caused
by vehicles, wind, and the weight of the road bed. The point force resultants of the loads
acting on the members will now be found using three different methods.

-
Method of Joints with Components
The F-B of the idealized truss is shown in figure TR 2. Since every member is consider-
ed to be 2-F and the forces at each joint are concurrent, only the ¢ 's of the members are
drawn. The loads are replaced by their point force resultants and are in kip (1,000 1b) units.
Before the forces in the members can be determined, the unknown support reactions F and 29
must be found.
The connection at R is a smooth
Far-i-2f roller so the direction of FR is
known to be vertically upward, but
the direction of the reaction at
W is unknown by inspection so
.f;q is drawn as a wavy arrow.
" FR can be found by taking moments
about W.
2° w . - B
" Vv . zMw =0 -121’x -3]7 oo
o W + (=121 + 167) x (-1 -2)
- + =281 x (-1 -37)
Sl ¢+ 40T x BJ = 0
which gives Fp = ¥ ana —I—‘R = 43 ;

’r’w can be found by sumning forces. ¥F =0 F, + (1-23)+#(-39)+ (-1-3)) + () =0

T, =2+ 43 and F, = 447 A
The F-B diagram is redrawn in figure TR 3(a). A convenient system for referring to all

the point forces acting on the members of the truss is called Bow's notation. This consists

of placing a small letter in any space that is between two outside forces or two members as

shown. For joint R .he forces reading in a clockwise order are called af, fe, and €a as

shown in (b). For S the forces are ah, hg, gf, and fa as shown in (c). Joint point forces
are always read in a clockwise order.




a -
ob — oh :

P S V) . A

* /f | 9 hq

h fa f
b , [
a (c)
f g { /
R \w a R fy s ¥
Al T v /
' e d ¢ e
de "~ Yed b (b)
ea
(a)

Figure TR 3

- Joint R will be analyzed first since it cortains only two unknown forces. The point

forces acting on its two members due to the 4° load will be found.
of= 5%C
J.V h L k sk
of 4 4 “f /
/ f ’ ’ 3A 3*
. —Lu - b o b fv . 3’. T
] 'L{ _fe ‘Z_Q _fe _._ _ 3 2
] l./k
= 4 ik 4k ch Y
“ ® (c) «) © n
Figure TR 4
. In figure TR 4(a) a F-B diagram is drawn of joint R with the %X load & and the £'s

of the two unknown forces af ad f2. Next af is replaced by horizontal and vertical
cocmponents as in (b). ZPV 0 gives afy = 4K as in (c). The slope of af is 4/3 so étfH

= 3 as shown in (d). 5E,; = 0in (e) gives fe = 3. F-B (£) shows the actual point force
resultants af and fe that act on members RS and RT. Force af acts toward joint R, so it
puts member RS in compression (C). Force fe acts away from joint R, so it puts RT in tension
(T). All of this work could be done on one F-B diagram.
Now joint T czn be solved as it has only two unknowns.

k‘) : 3k First extemnal load de is replaced by horizontal and
vertical components. Member RT is in tension so and its
force arrow on joint T still points away from the joint,
so point force ef on joint T is equal and opposite to

;r‘ fe on joint R. Now fg and gd can be found by summing
3k forces horizontally and vertically.




TR

Joints S, U, V, and W can be solved in the same manner. A joint can be solved when
it has two or less unknown point forces. All the joint F-B diagrams are shown related

to each other in figure TR 6. -
2
A .
Ne '
—

S
2
R 5*7’ -é.’ -‘2-— ——
T Figure TR 6 V
The horizontal and vertical components are usually left on the F-B diagrams and the )
actual point forces with their T or C labels are placed on each member. -~ \
:
AT THIS TIME, GIVEN A COPLANAR TRUSS, YOU SHOULD BE AB'E
TO FIND THE POINT FORCE RESULTANT OF THE LOAD ON ANY MEM-
BER USING THE METHOD OF JOINTS. R-1

Method of Sections




R "5

The 3-D space diagram of the truss from figure TR 1 is redrewn in figure TR 7(a) ard the
2-d F-B diagram is redrawn in (b) with all the outside loads shown. This time the point force
resultants of the loads on members SU, SV and TV (ah, hg and gd) are to be found using the
method of sections.

A cutting plane A-A is drawn through the F-B diagrem as shown in (b). Another F-B
diagram is then drawn of the portion to the left of the cutting plane as shown in figure TR 8.
This F-B diagram is in equilibrium so ah, hg, and gb become the point force resultants of
external loads and can be found using force and moment equations,

S Sh ...,g Taking moments about point S will involve only one
Figure TR 8 P\ unknown gd. Assume TV to be in tension.
M =0 «
y -165 x (-1-33) + (-16F - 12%) x (43)
\h9 +(-163) x (gdl) =0 or  -16K - 48K + 16gdk = 0
gd = ¥ ard @ = o]
R - 1= \; Menber 1V is therefore a tension nembe~ vith ‘
If;ij £ "‘?‘3; 3 a force magnitude of 4,
Assume SU is in tension. ZMV =0
(-167% x (- -37)  + (-161 + 167) x (ahl) + (~261) x (43) = 0 ( - sign means wrong .
' ugk - 16ahk - 112 k = 0 ah = uk ah = -4 direction assumed for ah)
Member SU is a compression member, its point force resultant is 3
£F = 0 will give hig and hg (W) + (T~ 39) + (i) + (- 41) + (Fp) = 0
hg=+1-3 ng = 1%2+1%2 =141k B

Member SV is therefore a tension member with a force magnitude of l.ulk. The
completed F-B diagram is shown in figure TR 9(a). This F-B should check by summing

forces £F =0 5'h+ﬁ'g+§a+?'.r+'}’R=0
-4 +1 -3+ -T-37+u4J=0
i components -b+1+4-1=090
j components -1-3+u=09g

5 gh=-4i /'o:!‘h o Y

h
%.9- Qz‘j l ’]=3h\
g L
R ) “Hl=dg ) 4 W
) T \gdedt N
1/5;:‘4j Lpe-C-3j Figure TR ¢ d 'F;=':§]. E,’Zf*’ij

6)




6 TR
0f course the other half of the truss is also in equilibrium as shown in (b).
Summation of forces and moments will show that F-B (b) is correct.

.
.i: 12 ;i: 74 —
L
6 g
12 4
‘ 4 3
3 ‘ k
%
" {e

The method of sections will now be used to find the point force resultants of the loads

acting on members A, B, and C of the derrick in figure TR 10¢a). The load of 16k is being
raised with no acceleration. An idealized 2-D space diagram of the coplanar truss that

contains members A, B, and C is shown with dimensions in (b).

¥
g L

" Figure TR 11

The F-B in figure TR 11(a) is used to find the components of the loads on the cable,
and the F-B in (b) is used to find the compcrients of the load on the pin at Y. Now the —
F-B diagrar shown in (c) can be drawn and the method of sections used to find the point

force resulcants of the loads on A, B, and C.




(L

To find Fp assume A is a tension member and take moments about X.

_ EHg=0 I+ 2129 x (81 - 43 + (120 +6]) x G- 45) + (12)) X (-F,D) = 0 ¢
-96% + 96K - ugk - 18K + 12F,% = 0 .
F, = 466 F, = 5.55T
AT 53 A

To find FB assume it is a tension force and take moments about Y.
F,=-1 Fi+1 FB';‘,':- .707FBI+.707 PB‘i

B rm B T
£H, =0 (-1 -6 x BI- 4] + (-1 - 129) x (-.707?8'{ + L707F3) = 0
ugk + 16k - 17FK - 8.5FK = 0 '
Fy = 2.59°T

To find FC assume it is a compression force and take moments about Z.

2 Fi+1 F.3 = .894F.T + ,U47F.3
CT o O T o ct c

%!
n

s =0 (2u1 - 63) x (3T - u3) + (361) x (-61 - 43) + (121 - 123) x
(.89urc’£ + .u47 Fc'j') =0

- 96k + 18k - uyk + 5.37?82 + 10.7uFCE =0

7 F, = 13.8%

Check by sumning point forces.
?A+'FB+PC+ (3T -u43) + (81 - 43) = 0

- 5.51
-.707 (2.59) T + .707(2.59)F = - 1.821 + 1,823
.894 (13.8) T + .u447(13.8)F = 12,41 + 6.23

Sy
[1] [1]

-5.57 - 1.827 + 1.827 + 12.31 + 6.2 + 31 - 4j - 81 - u4j = 0

i components -55-1.82+12.4+3-8=90
j components +1.82+6.,2-4-4=090

The values of F,, Fy, and -F—C are usually placed on the F-B diagram after they are
checked as shown in (c).

NOW YOU SHOULD BE ABLE TO USE THE METHOD OF SECTIONS TO
- FIND THE POINT FORCE RESULTANTS OF THE LOADS ACTING UPON
i MEMBERS OF A GIVEN COPLANAR TRUSS.




8 Maxwell Diagram or Combined Force Polygons TR
The point force resultants of the loads acting on all the members of the truss in figure

TR 12(a) will now be found by using a graphical technique called a Maxwell diagram. The 2-D

F-B diagram is drawn to scale in (b) and the reactions &t the constraints found previously ~
are placed on it as single point forces with their correct directions. First a 2-D F-B

diagram of joint R is drawn as shown in (c). Next a force polygon of the three point forces

is drawn to scale starting with the known force €a and continuing in a clockwise order

with af and Fe as shown in (d). Forces af and fe are then scaled and put on the F-B diagram
Force af puts member RS in compression and force fe puts member RT in tension.

PR

as in (e). .
’5/?\\ x <5 (9 234
NS
Figure TR 12 0 T o
s ’ k\<2" n’ h
/ /oy
Y721 /6' '6’ b
” 14
/{ ty f
II.// th 9 )
y :'-q': .5&
1,7 . AN
?/’ oo 16’ 12’
l/;-/ Z’ o - > r v W X
Lo ’/’/ 4K e 3./ £ d 3’K [+ R4
\\s\&o (1 mch 6 kips) (6)

Af=5“c ‘ 9 <f d
3¢ k
é.fas"f N I Y
e /c) (-/) (e) ¢4 d &+ f ??3/ ¢ ‘

. The F-B diagram for joint T can be solved as it has two unknown forces. Force de is
known and since ef =-fe, force polygon (g) can be drawn beginning with de followed by ef, fg,
and gd. Forces fg and gd can be scaled. Members ST and TV are tension members with loads
of 3kT and uk‘r.

This procedure can be continued joint by joint as shown in figure TR 13(a). Each force
polygon is drawn around its joint. The scales have been enlarged in figure 13 for clarity.
All of tne force polygons will now be combined into force polygon.

The procedure starts by drawing to scale the point force polygon of the outside loads as
shown in (b). This consists of point forces ab, bc, cd, de, and &a plotted in a clockwise
with their arrcwheads drawn.

Now beginning with &a,polygon eafe@can be drawn superimposed upon (b) as shown in (c).
No arrows are put on af and fe, but their directions must be visualized as indicated by the
half arrows in (c¢). The magnitudes can then be measured and the forces listed as af = SkC

and fe = 3T.

Polygon{2)defgd can be drawn upon (c) as shown in (d). Note that ef is opposite to
fe in@. The polygon gives fg = 3k'I‘ and gd = uk’r.

Polygon@can be superimposed upon (d) as shown in (e). This process can be continued
with polygons@.@, and@until (f) is complete. This combined set of force polygons is
called a Maxwell diagram. With only a single F-B diagram of the truss, this combined
di-agram gives graphically the point forces acting upon each member of the truss.




/

@ e @ d d
—O-e f e 34
(a)
o / Z 3
C Hips
0
d N
o7 ], I
’ f e f e
(b (c) Figwe TR 13 ()

The main difficulty students have when constructing a
Maxwell diagram is in determining whether the members are in
compression (C) or tension (T). You must visualize the in-
dividual joint F-B diagrams as in TR 13 and mentally place
the arrows representing the forces on these F-B diagrams.

If the arrow points toward a joint, the member is in com-
pression. If the arrow points away from the joint, the
member is in tension.

Always start with the outside force polygon as in (f)

TR 13(b). This polygon has arrowheads, and it must close

or you have made a mistake in calculating the reactions.

If you are neat and careful, the last joint polygon @ when superimposed on (f) will also
close.




TR
Another brief example of the cuanstruction of a Maxwell diagram for a truss is shown in
figures TR 14 and TR 15. This example should be carefully studied before you attempt to solve

any problems this way. The isometric space diagrem and its 2-D F-B diagram are drawn to scals
in figure TR 14(a) and (b) with the loading shown on (b). In (c) and (d) the reactions

are found graphically.

coneur, I'C’/lf-‘j’

-~
I




7.2K

{ Figure TR 15 e

In figure TR 15(a) the 2-D F-B diagram is drewn to a larger scale and Bow's notation is
applied. The combined diagram is constructed (f). First the outside force polygon abedefa ic
constructed to scale with its arrowheads shown. Either joint fagf or efle can be drawn next,
and the remaining joint force polygons drawn one by one. The forces acting on each member are
shown in (a) with their magnitudes and proper C or T notations.

AT THIS TIME WHEN YOU ARE GIVEN A LOADED COPLANAR TRUSS, YOU
SHOULD BE ABLE TO FIND ITS REACTIONS AND THEN FIND THE FORCES
ACTING ON EACH MEMEER OF THE TRUSS USING A MAXWELL DIAGRAM. iR-3
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UNIT 12

HYDROSTATICS
AT THE END OF THIS UNIT IF YOU ARE GIVEN A FLAT COMPOSITE
SURFACE SUBMERGED IN A STATIONARY FLUID, YOU WILL BE ABLE
TO FIND THE POINT FORCE RESULTANT OF THE FLUID PRESSURE
ACTING AGATINST THE SURFACE.

Introduction

In the work so far in engineering statics, loads have been applied to solid objects
by other solid objects or by gravity. These loads were alwayvs distributed loads ard in
most cases for analysis were replaced by their point force resultants. In this unit flat
surfaces will be submerged under a fluid and the distributed loads caused by the fluid
will be replaced by their point force resu.*znts. The fluids used will be stationary and
ron-compressible. A non-compressible stationary fluid is found from experimentation to be
unable to exert any friction forces, that is it can exert only normal forces on any surface.

Developement

~igure MHDS Y

The tank in figure HDS 1 is filled with water. The pcint force resultants of the
distributed force fields that act upon flat surfaces A, B, C, and D are to be found. fThe

dimensions and locations of each surface will be given as it is analyzed.

HDS /




HDS

Water is a non-compressible fluid. Any stationary surface submerged in stationary
water ras a distributed load (a force field) acting upon it due to the water. This dis-
tributed load is generally called a hydrostatic load. The intensity of this force field
is called pressure. This pressure (force field intensity) depends only upon the depth
anc the density of the water above it. Also it is found from experimentation that the
pressure at any depth acts perpendicular to any surface at the same depth with the same

intensity. That is the pressure at any depthfor a static fluid is constant in any

direction.

(a)

(c) (o)

Frgure HOS 2

The weightless pipe P has been inserted into the tank of water to a depth h. Then
the lower end has been sealed by plate L. The pipe full of water is then removed from the
tank. Plate H is then mentally removed in (b) and a F-B diagram of the pipe filled with
water in drawn.

It is assumed that the air pressure is negligible so there is no force field acting
on the upper free surface S. One force field caused by gravity acts vertically downward,
it is distributed throughout the complete volume of the water but is represented by FF,
acting as shown. When plate H is mentally removed, force field FF2 acts upward to keep
the water in the pipe. FF2 is uniformily distributed over area A. In (c) force field
FF3 is shown acting against plate H. FF3 is equal and opposite to FF2. Now looking at
FF2,
force fizld. Pressure p, on FF2 is equal to pressure py on FF3. F-B diagram (d) can now

each individual half arrow can te thought of as the intensity (pressure) of the

be drawn of the pipe filled with water with F) and F, replacing FF, and FE,.

~




HOS 3

Now letting V equal the volume of the water, A the lower surface of the water, ¥ the
density of the water (.0361 1b/cu-in), P, the pressure of FF2 (p2A = FF2), and P3 the pressure
of rfé (p3A = FF3), the relationships will developed between Pys Pgs A, h, and y .

In (&) FF = Vi< 94
Vo2 d FE 2 e So FE, = /QAGL-
/s ZF, =
° F2: B A Yo L9 : b4 @7 By 4 4
Stece Sf3 2 Em oL 4y,

That is the pressure at any distance h under water is equal to h times the density of
tne water. This is a linear relationship because doubling h doubles the pressure, halving

h halves p, etc.
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Ergure HOS 3

Now portion E of the tank is redrawn in figure HDS 3. The force fields and their
intensities (pressures) acting against surfaces K, L, and M will be analyzed.
Surface K is at a constaat depth h, so its force field FFl will be a uniform force

field acting perpendicular to K. Its pressure p = hy and of course is uniform over area K.

That is Py Py =p3=p:= hy .
Vertical surface L has a distributed force field FF2 acting perpendicularly against it.

This force field intensity (pressure) varies linearly from zero at the free water surface
to pressure p, = h¥ at height h. Also pressure P5 = h1 ¥ and pressure Pg = h2 ¥ .
Sloping surface M has a force field FF3 that acts perpendicular to its surface as

Since the intensity (pressure) at any point is directly proportional to the height

shown.
pressure p, = hy¥y, and

to the free surface and ¥ of the fluid, pressure Py = hyy,

pressure £, = h » Some of the pressures on the three surfaces are summarized in the

figure.




F/'jure HDS 4

Now looking at surface A in figure HDS 1, the point force resultant of the force field
acting against surface A due to the water pressure will be found.

3-D diagram HDS u(a) is drawn of surface A. Force field FFA acts against the surface
with its intensity (pressure) being a minimum on the top of the surface and varying linearly
to a maximum at the bottom of the surface. The point force resultant F, of FFA is shown,
its magnitude and line of application are to be found.

In (b) the surface is redrawn in 3-D with the force field deleted for convenience and
dA is drawn on the surface dimensioned with y and x as shown. Line 0S is the intersection
of surface A and the free water surface. Vertical line OV is any arbitrary vertical line

that intersects 0S.
dF on 4R = pdf = Yy dA
Foon A = ,/;‘c/F 2 a’ngdA which is ¥ times the first moment of A with respect to 0S
So the magnitude of F, is Y (the density of the fluid) times c¢ (the distance from the free
fluid line to the centroid of the surface A) times the submerged area A.

Now the distances b and e to the line of action of FA will be focund. Vertical
distance b will be found first. Remember for force field FFA that the moment of the

resultant point force FA equals the sum of the moments of the distributed forces in the

field with respect to any point or line.
So with respect to 0S

Mg, Jos Mer, jas
bXA) = L apaF

b - YhedA . xLgdh . Ix
Y rcA <A

49 pdA = J ysydA = ¥ y'dA

—
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HOS

I is called the moment of inertia of surface A with respect to 0S (the free surface).
The term cA is the first moment of surface A with respect to OS.
Next the arbitrary vertical line OV is drawn. Discance e will now be found.

MEy o7 = Mes, Jor
£, = ) F) = = -
e 74 { ﬁpa/f? jxryo/ﬁ = &gzyaf,q

e = &42;7 74

/

= &Zg;ngV? ) 44;:7 o j e
d‘ﬁ;&/ 449 7‘4‘7 7.5 - o

1
IS

Ixy is called the product of inertia of the area with respect to axes 0S and OV at

point O (the intersection of OS and OV), cA is the first moment of the a.ea with respect

to line 0S.

I I
FTae two terms b = E% and e = Egz actually locate the centroid of the volume of force

field FFA.

llow a statement can be made. The magnitude, direction, and line of action of the
point force resultant of the distributed load acting upon a vertical flat surface A
submerged in a static fluid can be found. Its magnitude is F = & cA where ¥ is the density
of the fluid, c is the vertical distance from the free surface of the fluid to the centroid

(€

of surface A, and A is the total area of surface A.

The point force resultant F has the same direction as its force field FF. Its line
of action passes through the centroid of its force field. The centroid can be found by
b= é% Ix is the moment of inertia of the submerged surface with respecf to the
intersection of the submerged surface and the free fluid surface. This line

will be called 0S.

CA is the first moment of the submerged surface with respect to line OS.

I b is the vertical distance from line OS to the point force resultant F.

e = Eﬁz Ixy is the product of interia of the submerged surface with respect to the
intersection of 0S and any arbitrary vertical line OV that intersects 0S.

cA is the first moment of the surface with respect to line 0S.

e is the horizontal distance from line OV to point force resultant F.
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Yertical Surfaces
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Firoure AMHOS S

The single point force resultant of the hydrostatic load acting on the triangular suarface
Surfzce B is redrawn in 3-D and 2-D in figure HDS 5 and its dimensions
are shown. The “op cf B lies on the free water surface. Its force field FFB is shown with

B will now be found.

its resultant FB. Now the magnitude and line of action of FB are to be found.

i = YA y: 034/ /6/cv-1n Fa:(o3ay)(B)(3e)
c: G i = 7.8 /46
A= (6')(?}_ 3¢C.:°
(2)
- Z
és ?,g Ly : ZTos= Zey Pt CAhe Fransfer Fformola) {a/"é")
z = él.lj_ 2
ca: bbT. (BUTF) 2 /62, g Be)E)?
/2 (va) z /3008
Luy: Zos = /62 + /3060 = (2E2n ¥
Cc = - C [ (mta:yre/ an» -v[/J‘ 0.5)
A = 36/4 4
_ /4é2
6 - [:'T@Z) -~ G. 78 inches Som s regetrve .- b 43 messered
Socun  From g s
IA/ I H .2 -
e s 9 ~y as~op = z,
— YY cc ¥ ¥ A & Hhe Aransfe fa/mu/q/
Th9ce = - 6% 55,4 - &
53 ° ‘n ¥ = - @7 4q Y.< s
Zags Zoseoy = =72 » @e7)-6)3C) : -s5w2 ., *
( & T ~& tn /9= Ed+ 17
_../5.5'2)
e =~ 2~ Lo+ T2 5
Ce)@e) ” o

s o5, ¥
St Ave < 3 Meesvrad A Abe

reyns )Cmq oV

The single point force resultant of the hydrostatic load acting upon composite surface

C will now be found. The surface is redrawn in figure HDS 6.
rectangular &nd triangular surfaces.

It is then replaced by the




LFrovre HOS &

First the mqymz‘ua’e of rhe force 15 Found,
F = 5chA = ¥(cphs + <, A,)
Ssing gy’ = Y cos@ - XK s/mé, (ts found that (. = 8.19 " and <, = 939"
F = Cozen[(819)27 + (a39)54] = 26.3 /b

& .,

Now zhe position of the force must be fFound.

I, «wnd Ix,’ are Ffound using I, = '—Z-%IL + L’%‘Z‘COSJG = Iy 5mae
Z:z; - 2836 27 605 I 7X6)/35 2— &*q)/36 (5) - 3_?’?6_1(. 367) = 9 8 cn?
Iz’, = I :2- 6? + FX6Mia éc’@)ﬁz (5) - (o)(.867) = 314 n*
I, = 678 + (81927 v (923964 = 7,966 n*
b = 2289 = 10.9m, F acts 10.9n below zhe watersurface

(8m@)27+ C232)57

e = 'i-?- where I:ry = I’,‘,(j‘, + Ct‘{f/lf_ + .er,g;_ +  c,.d 4,
dy and d, ave detevmined from &' = zcosod - ysmo , dp = 727" J, = 10347
he formula I*’g’ = Lj——ff—sm.?& + Ly o520 15 used £2 Lind .2—#%, and I ..
]t;g’t - %)/ e é '@/ 36 (.867) + ‘_/;26"(5) = 495 >
- Lyy = 7@z o X053 (847) 4 Co)s) = 87.5 ,u¥
1’ Izy = NS (8192 27)27 ~ 875 *(TII)10.39) 54 = ~6T7I5 (u®

= -Xd¢- - . ,
€ CB.INZZ = C239)54) 7-2/; F acts 92(in zo the r/jlt-t of OV
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Sloping Surfaces

Jips

Frgvre LIS T

The point force resultant of the distributed load aciing on sloping surface D will now
ve found. First 3-D and 2-D diagrams are drawn in figure HDS 7. Next the point force
resultant and its location will be derived analytically. The intersection of s rface I with
an extension of the free water surface is labeled OM. Line ON is a line parallel to surface

D. Element dA is chosen a distance a below the water surface
JFE er FA = o dR i padA r by 8 IA
’E‘D on o T ,,y:\)'"//q- Yy 3in & J/q = & C/q

As before for a vertical surface the magnitude of F on a sloping surface is ¥ times
¢ (the vertical distance to the centroid of the surface) times the submerged area.
The line of action of Fy is needed.

To Ffind 4
2

MEprom = Mrrs/om 6;0:,4[‘1 &y sin & IR - a»_;,,,@{«, dA
b= ¥ o 9£7aJ4 4/1&4 T ons whece  Fp - rjﬂ“j:m()c/ﬁ

PR e : -2

r s dj;y /4 W s 4
o /‘7»'0/
§ = //yry;mao/g < & S d_&/yya//q
Meplow = Mpioon @ *a
e rro s fuh s

Fsm 6) 9d.9 ezl s A

ot
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FHOS ' =

Now the point force resultant of the hydrostatic load acting on surface D will be found
when ¢ = 11 inches, © = 30°, and the diameter of D is 7 inches. Distance s to OM is then
11 / sin 30° = 22 inches, ON is drawn 2 inches from the edge of surface D.

i~ = r64 = /'036/jﬁ//(384/) = /.S.-J /6 /Q—/‘-;)('?:/ : 38,¢/41
- _Z-OM Z Z Z < 7 - éﬂ ?
= e oAd = < c /Q.Sz < L, /7 7

é b z 4

= (r8) * Geg)z2)?
s 18T/ ,, 7

4 = (787)

: e =222 z) 4 K IS 7.5 S ww w ard Ao o A
(~22)(38 %, e
e : Lopt-on fOM-ou 3 Z&y ~ oy 0/4
5
s 2 (Z#Z.J"}('— Zz)\(?&’_q)
= - FCLS L. 2
: (-7c<0)

EEREE- T DKoy

(-22)(3&8.¢) € ew A e ngn/ Fra ow

Distances b and e locate the centroid of force field F FD. Whenever the surface is
symmetrical (Ixy = 0), its force field will be symmetrical and distance e can be found by
inspection. That is in this example Fy will lie on yy.

Engineeriig Applications

Eramp /e /

e

G 3

)
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"

20 600 aJQ)lfl //4(
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10
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Frogore PSS 8§

Plate P in figure HDS 8 weighs 85 1b and is held in a wooden trough by frictionless
pins at A and B. The plate makes a snug fit with the sides and bottom of the trough. The
pin reactions are to be found with the water level as shown if all contact surfaces between
P and the trough are considered to be frictionfree.
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Frovre y27- % 4

F.. must be found and placed

3-D and 2-D F-B diagrams are drawn. FP is known. Iy

f-8 diagrams.
: (0)(<

Fw: ycA p:036/ 'Yeouin c: S A =
c(0361)() @)(/15) = /8T /b

i

R ) N YR

o3 GO°

- ;s 57

2 3 . ’ Z

L= Ly T s Teer ot = éé/ 444‘ b6: 7 2

- - e = 72 R (/,S'/ , 2

54 0053 i . A= (7

(707 5) L @GNS )E 75y A 7S 5z
/2
= ASELO 17 #

é : (4!._{5_’—_—0) - =2 -7V &L inches ok ch s3 (f/(// 5/ t1ches 57 /4"/(Céd’

(5. 75)(3) (75

el L. S tncher Srom cibther Frewg k P Ly
‘.-.//f’ J?j/pm <64 //o/oe( 74— =3 Co//dno’
517 /e;één; /%-": 2 A B Cohere [4{: A s By ,
rﬁﬁ’g o (5‘/&5/ o //é)@./ 7 (/07‘7((/(/&7/
- G.5 4
Ly o0 Fyp & 95 + @&7)(s) = 55 sy
E Ly zo (4{ . (/3 7}CfCC/ = 76,2 /6

By By: (6L/e: B /4 Ay = By :

A=z B = f.?./"-/33./2 = ®3.2/4

Se She  pend  fie  resu/tasd  of 44
arf 7 er & & 32276

-2 e ;/fa,;

D205 Ao ro (&)

/(}f, '47/ Jy' qq(/ .__),6-_-07,"
2% 4(7 4 6’3

& e.2 /5

€C2y . 332,74

Force

)4610 ‘Gc/;,;:;,




Eqqmple 2 HO S !

: | A/ rm
T b=03¢cy
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The symmetrical gate is centered over a 10 inch diameter opening. The upper half of the
gate is acted upon by water, the lower by fluid mud. The weight L needed to keep the gate c

clesed is to be found, also the components of the load on A. The gate is assumed to be weig
weightless and the pin at A frictionless.

A /2
/4 Ay fE L __f____———?—— %
— Si/za

VIR ¥ X
’:W

—_L“]_? |
|

N\ A

5027(7./2-2) 1
(148072 (G f 2 &)

Fr

Fisvre o> )

Yo

3-D and 2-D F-B diagrams are constructed of the gate with the pin at A removed. The

loads from the water and the mud will be handled separately.
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HbDs
/KW w // ée ﬁun O/ tcl/.S f{

] /b c 9. WS ooy
Fw = ¥ chf =076/ oa? < 7 Gy 6.58:n
. 2
(o036 )e.re)(29.2] SO PP
= 7. 75 /& =
b= __'Z_—_/_V Z/}(= Al rt > g9g

<4 SLINDE 2 Coe)l.rl) | o209

- é.yzq/ C-/,rP}C?‘7-2-/

((—w;;'/c 79.2)

2 -TNE g down Frim 7he (weter line

C S irches Sfrem  a, dhe. Srofe of Ahe epraing by rvipeckie,

The force field for the fluid mud press

ure has a pressure at the intersection of the
water and the mud of (9)(.0361) = .324 1b/sq

-in. This is equivalent to a height of .324/.07

= 4,65 inches of mud. FM will be found as if 4.65 inches of mud is acting. Line OM will
be 4.65 inches above the plane separating the mud and the water,
Fm: e A = (067)C 465 # _C(____""[f/) (39.a) =(o07)@.77)3%2)= /€. /6
3)6r)
’ - A / a IR
b (From om:) - Lom! | Cri)s) A C??.Z/@J'?/ . 765 s dows frem
<4 (..".,7)639,1/ Opy 1
A ' Aoy Cay Aow ke ltcatded vy Fhe ~- 4 dla?r@n
U>’147 e 044'4 Jteasr  oa Fhe 2-0 ~.-x5 L9+ g
;o Sfind Fy
r/‘f,q - 0
$./2) 315y 4 Gy 2)CrE) = gk
g, = 4.?, ?/J
To  Fuad Ay £ By
Z/V:d f?y: fj"/‘f ﬁéﬁﬁ-/z"'af\.‘ 52.‘7—l$

£l yzo Ax: Prs rogo - 28 .35 7% _,

NOW IF YOU ARE GIVEN A FLAT SURFACE SUBMERGED IN A STATIC FLUID, YOU SHOULD
BE ABLE TO FIND THE MAGNITUDE AND LINE OF APPLICATION OF THE POINT FORCE

RESULTANT OF THE HYDROSTATIC FORCE FIELD THAT ACTS UPON THE SURFACE. HOS-/

—
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UNIT 13
VIRTUAL WORK

AT THE END OF THIS UNIT IF YOU ARE GIVEN A SINGLE MEMBER

OR A COMBINATION OF TWO OR THREE MEMBERS ACTED UFON BY

COPLANAR LOADS OR COUPLES, YCU WILL BE ABLE TO FIND THE

STATIC EQUILIBRIUM POSITION OF THE SYSTEM USING THE PRINCIPLE

OF VIRTUAL WORK.
Introduction

In your work in equilibrium in the previous units, you have been concerned with

finding the reactions on stationary engineering members using the parallelogram law in
its force and moment equation ms. In this unit you will learn how to find the
equilibrium position for a sysiem that is acted upon by external loads. To find this
equilibrium position, active-force diagrams, displacements, and work relationships will

be used in place of free-body diagrams with force and moment equations.
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Fﬁjarc VW 1

Weight W in figure VW 1 is resting in position 1 on collars A and B. C and D are
frictionless vertical guides. Next a load L is gradually applied to block W through
the frictionless connection E in the direction shown. L is increased until weight W is
being held in position 1, at this time load L becomes constant. Then L is pulled until
block W moves with no acceleration to position 2 as shown in (b). Weight W has now been
moved through the vertical distance h.
vV w
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when weight W is moved a vertical distance h, it is sald that work has been done on

1

w. The magnitude of this work is (W)(h). W .s in 1b and h in inches, so the units for
WOk dre in - 1b,

The work to raise W was done by load L. In other words pulling in the direction ~!
L with a force field FF will give the work equal to (W)(h). This work wa: done by TP v p
r~sing from 1 to 2. It is found from experimentation that if L is measured, veplaced iv
IT and then T, then (F cos © )(h) is equal to (W)(h). That is the work Jone ty i moving
vertically a distance h is (F cos € )(h). It is also found from experimentation tha® w.rt
is not a vector guantity but is a scalar quantity, so when work equations are used, all
the manipulations of real numbers can be used. This means that wort quantities have siirs
and car be added or multiplied using real nurber manipulations.

It is easy to confuse effort with work. For instance as L is gradually increased
until weight W is not supported by the collars, effort must be applied t¢ I, Lut nc vors
is done. Effort is needed to simply hold the weight. Now as L is pulled until ™ is i-

position 2, the effort of F sin® dJdoes no work. Also as 6 is varied, the effor:t neecsl

to raise weight W varies. With a large € much more effort is needed than with a smail e.

Virtual Displacement and Virtual Work

Fljurc vw 2 (0

A 3-D drawing figure VW 2(a) shows a ring held in equilibrium in a horizontal
position by loads S1, S3, and S4. A plan view of the ring is drawn next (b). Now the
whole system is displaced in (b) a distance ®X to the right from the original position
1 to position 2 while keeping the ring in equilibrium with S1, S3, and S4. Distance s ¥
is on the order of dx and is called a virtual displacement.

The work dcue by FF, during displacement 5 is (Fy cos 8, Y(8X) or (Fy, 008 %),
this will be called positive work. Notice that F3V does no work during the sy displacement.

The work done by FF, when displaced is (Fu cos @,)(8X) or (FuH)(SZ) and is also positive.
Now FF, acts toward the left and is displaced to the right. The work done by the horizontal —
force field FFl during displacement §x is (--I’l cos B83)(BX) or - (Fl)( X ).




vw 3
You know the cystem is in equilibrium whether at rest at 1, moving with no acceleration
between 1 and 2, or at rest at 2. So EF = 0 for the system and the sum of the horizontal
- compone..ts equals 0 for the system. r & Fx =0 FBH + FuH - FlH =0
Multiplying each term by skgives (Fsp)(éx) + (FUH)( sx) - (Fm)(i x)=0
This states that the work done by the three loads during the virtual displacement §¥

is zero.

Figurc vw 3

[ 2hadi ¥

Now in (c) the ring is kept in equilibrium and displaced a vertical displacement &y

upward. FF, does work of (Fsv)(b'y), FF, of - (Fuv)(ég), and FFl does work ot
F1V(Sy) = zero work.

Using £F =0 Fay = Fyy* Fpy = 0
Multiplying by 8y (F3v)( 5y ) - (Fw)(éy )+ (Flv)(éy ) =0
, This states that the work done by the three loads during a virtual displacement &y = 0.
- The ring could be displaced while in equilibrium through any virtual displacement
in any direction and the work done would be zero.

Now in figure W 3, the ring is disr'aced through a small angle &8 which is on
the order of 48 . The work done by eacn point force when the ring is rotated through
©6 will be found.

tirst the work done by F, when it is rotated through 80 will be found. Line a (solid)
is drawn from P to Fyat position 1. Then the ring is rotated through 86 to position 2.
Line a’ (dotted) is then drawn. Next F3 is replaced by A and B where A is parallel to line
a and B is perpendicular to line a. For a small 8@ chord ase is equal to arc asé.
When F, is rotated a small 66 from position 1 to position 2, A does no work. The only
work done is (B)(& 88). But aB is the moment of Fy with respect to point P, so the .

work done is (aB)(B 8 ) = ( ) (86),
M, P
—_ Similarily ~ F, does work of (-C)(b §6) = (MFl/P)( 26).

And Fy does work of (~E)(c §0) = (MF p)( 56 ).
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These are all virtual work quantities as 86 is a virtual rotation.

“ince XM, = 0 for the system while in equilibrium, correct signs van be used

to give -—
M. -M. _-M. =0
Py Ty PR P
“ultiplying by 86, (M. .)(88) - (M. _)(58) - (M. )(§8) =0
> My p By /P Fy/P

“1is -tates that when a body in equilibrium under the action of external loads is liispla.- @
through a virtual angle $8 , the work dore by the external loadsis zero.
Looking back at the derivation, you can see why & must be on the ordger ¢ .8

46 must be small enough so that the physical geometry remains constant when 58 tae
clave. The work done during a virtual displacement, either translation or rotatiorn, ic
1o virtual work -ind written S U.
vlow a principle can be stated. When a body is acted upon by external loads and is
in equilibrium, the extra external work needed to give the hody a virtual displacement
i Zerc. Or stated another way, if a body is in equilibrium under the action of external

s and is dJisplaced a virtual displacement, the external loads do no work. This is

<ailed the principle of virtual work and is written &U:= 0.

iqaililrium Position of a Single Member Acted Upon by Coplanar loads

/-r\qurc VW«

Hember M in figure VW Y(a) is weightless, supports loads W ar;d I through frictionless
~nnections, and is supported at S with @ frictionless pin. The equilibrium position is
1c be determined (angle 6 ) using the principle of virtual work,

In (b) a diagram is drawn of the & of M. The equilibrium position is assumed (angle )
ac shown with the full line diagram. Now M is displaced through &6 to the Jdotted poziticr.
Linee M is in equilitrium, 8\ = 9 for the virtual displacement §68 . The orlv farce:

that do work during the virtual displacement %@ are W and P, so only W and F are shrw o1

the diagram. Diagram (b) is called an active-force diagram.
Now the work done by P during $¢ is Psy , also during % work is done by % =1 - .




vw
SV =0 PSx—WSg =0
Notice that sxX = 1886 cosO and &y = 186 s5in6
so 20(1858 cose) - 25(2 89 3m B) = O
D:wdmy by 38 20(18 co28) - 25(9Fsin ) = O

. - sind = (20)(18) - 6 = 58°
Jo/vmj for B8 tan 6 = -2;’;6 §25;(4) 1.6

&

D
(b)

F/gufe VW 5

The weightless bar B on VW 5(a) supports a 10 1b weight and is held in equilibrium
by a horizontal push of 5 1b. The vertical and horizontal walls are frictionless. Angle
is to be found for static equilibrium using 8¢ = 0.

The active force diagram (b) is drawn (solid line) with & assumed. From C to D is

labeled x, from D to A is y. Now B is given a horizontal virtual displacement §X , this
gives A a vertical virtual displacement § Yy .

st/ =0 5sx ~ 10(%3 5y) = 0
Now 52 and 8Y must be related zo eachr other.
'+ y* = 30" iferentioting yéelds  2xdx + 2ydy = o
Now let 5z = dx and 55 >dy so 2%k sx +Zg§g= 0 or 55=‘j§‘52:
The miaus sign shows that as y gevs longev x gets shorter.
Substituting in 8Y =0, Ssx - 10(%5)(*%y 5x) =0
- 10(F)*Y)=0  er ¥y = .75
wt@ =%y =75 O = cor’(75) = 53°

NOW IF YOU ARE GIVEN A MEMBER THAT IS IN EQUILIBRIUM

UNDER THE ACTION OF COPLANAR LOAD'S, YOU SHOULD BE ABLE

TO DETERMINE ITS EQUILIBRIUM POSITION USING THE PRINCIPLE

OF VIRTUAL WORK WITH AN ACTIVE-FORCE DIAGRAM. vin/-/

oy
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Figure VW 6(a) shows a weightless member A loaded by weight W (25 1b) and Force ~
tields F’Fl (30 1b) and FF2 (30 1b). Angle 8 is to be found when the system is in static
equilibrium. Notice that FF) and FF, form a couple.

Active force diagram (b) is drawn with the three loads replaced by their point forces.
The system is then displaced through the virtual angle 38 . Point Force FL does work of

(1. B)(59) when it is rotated through $6 . F, does work of (M. 5)(28) during this
1/ 2/

v tition. The total work done by F) and F, during $6 are (MF gt Me B)(S@ ). ML +

1/ 2/ SV

: Yoo equal to the moment of the couple tormed by Fl and I, with respect to B. This

1'~“/a'lsu the moment of the couple with respect to any peint. It can be said then that when
the couple is rotated through a s€ virtual rotation angle, the virtual work done is (M.)
(26 ) or (C)(56). It can also be deduced that when a couple is translated through ab
straight line translation $Z, it does no work as the work done by one of the forces would
be equal and opposite to the work done by the other force. '
Now active-force diagram (c) is drawn with load W and couple C. The system is in

equilibrium and is again rotated through $6 . The couple does negative work against the

rotation. o
5U=0 ~C86 + Wsy =0 v
- (240) 36 + (25)(20 58 5in8) = O v

sind = 240 = 48 6= 28.6°
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Figure VW 7

Sloping member A in figure VW 7(a) is loaded as shown. The floor and wall are
frictionless and angle © is to be found when the system is in static equilibrium.

Active-force diagram (b) is drawn with an assumed 6O . Now if the 20 1b force is
given a $x to the left at B, the bar at D will rise a Sy. The virtual distances the
20 and 15 1b point forces move can be found, but the virtual angle through which the
coupl> rotates is nct known. A new technique will be developed to find this 98 .

The new technique is shown on the active-force diagram (c). This time the bar is
first given a horizontal displacement St as shown. Then the bar is rotated about B
until it matches the position of the dashed bar in (b). During the §x displacement
the 20 1b force does work of 20$z. During the rotation the 15 1b force does work of
1565 and the couple does work of 10066.

5U=0 20sx + 155y + 10058 = O
From the geometry, Ax = 5058 5n@  and 2y = #0 86 cos8

20(50 50 5in0) - 15(40 86 cos6) + 100 50 = O

10s5in® - S¢os8 +« 1 =0

10516 ~ 6V - 5@ + 1 =0

(10sine + 1)* = (6(1- sin?@ )?

100 5in*@ +« 20s5/1nO +1 = 36(1- 5/mM?8)

5;,15:2&%4(%@_:_44 Q: 26°
NOW IF YOU ARE G1VEN A SINGLE MEMBER IN EQUILIBRIUM
UNDER THE ACTION OF LOADS AND COUPLES, YOU SHOULD BE

ABLE TO FIND ITS EQUILIBRIUM POSITION USING THE
PRINCIPLE OF VIRTUAL WORK.
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The two blocks in figure VW 8(a) are in static equilibriun. The equilibrium
position of the system is to be determined using $U<0.

In (b) an active-force diagram
is drawn with 6, assumed.

The length of the weightless rope is such that angle o< is
80° in (»). Angle 6, will be found.

First for each weight the tangential component is found in terms of W.

Wr, = Wcosg, = 30cosg, Wr, = 50cos 6,

The system is now displaced through §6.

ov=0 - Wy re¢ ~ Wy, rse = 0 "30cos© r80 + 50 o056, r 56 = O
‘30¢o58, t 50cos®, = O

Also &, ~ 80°+ 6, = /180" or 8, = 100° - 6,

5u65t/,tut/'nﬂ, "30cosBy * 50 cos(100-6) : O
“30cos g, 50[cos 100° cos @, + 51 100° sin 6,] =0
30 - 8.48 - 49.2tan 8, = O tan O, = 433 6,~ 23.8°

Three frictionless links in figure VW 9(a) weigh as shown. The three angles
6,,8and 6, are to be found when the 10 1b horizontal load is applied.

First active-force diagram (b) is drawn for link A and angle 6, is found. It is
assumed that the 5 1lb point force acts through the center of the link.

Now active-force diagram (c) is drawn with links B and A joined with frictionless
pin D. Link B is given a virtual displacement $& . Remember that link A has a known
equilibriun angle 8, with a vertical line.

This angle will not change during the virtual
displacement 686 .

Angle 6, can be found with active-force diagram (d). This time when the system is

displaced through %6 , angles 6, and 6, remain constant with a vertical line.

sU=0 105){,-555/2 : 0 10 156,5/"91 - 5286,(059,/2 =0
_ 0
(b) tane‘=%’-25 G, = 14

I - - 6258, 058,
1052 - 689 - 654 20 10186, 5/n6, - 5286, <036, . %

(<) tan 8, = j—%- = .8 6, = 38.7° =Q
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Figure IW 10
dU=0 16 6y - 108x = 0
Notice that x = 40cos® ana 9= 50518
then dz ="40smnO@df = sz dy= 50cosdp = 8y
16(50cos650) -~ 10(40 5/ 50) = Q

tand = (16)(5)/c10)40) = 2 8= 634°
(@) S

The 16 1b weight in figure VW 10(a) is being held in equilibrium by a horizontail
10 1b push. The equilibrium angle @ is to be found when the dimensions are as shown
on the active-force diagram (b).

As always angle 8 is assumed to be the equilibrium angle and the system is given a $&,

it
4

- NOW IF YOU ARE GIVEN A SYSTEM OF TVO OR THREE
MEMBERS IN EQUILIBRIUM, YOU SHOULD BE ABLE TO
FIND THE EQUILIBRIUM POSITON OF THE SYSTEM
USING VIRTUAL WORK.
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UNIT 14
BEAM DIAGRAMS
GIVEN A BEAM SUPPORTING TRANSVERSE LOADS, AT THE END OF
THIS UNIT YOU WILL BE ABLE TO CONSTRUCT LOAD, SHEAR, AND
BENDING MOMENT DIAGRAMS FOR THE BEAM.
Introduction
The structural members labeled B in figure BD 1 are called beams. Beams are generally
long, slender members used for supporting loads that are transverse to their €'s. Each of
the beams shown below will be analyzed in this unit for the external reactions at its con-
straints and for the internal reactions on any vertical section of the beam.
{
~

(

Figure BD 1
BD 1
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Uniformly loaded Beams BD

The first beam to be analyzed in this unit is shown in figure BD 2(a). The reactions at
its supports will be found, then internal reactions will be found for any vertical section of
the beam. The beam is assumed to be weightless.

To find the reactions, F-B diagram (b) is drawn. The larger block weighs (15)(8)
(10)(.1) = 120 1b, the smaller one (6)(8)(5)(.1) = 24 1b. Each biock is replaced in (b)
by its force field which is assumed to be evenly distributed. It is further assumed that
the 6 inch and 8 inch supports have evenly distributed force fields. The magnitudes of
FF3 and FFu will be found by replacing each force field with its point force resultant
and finding the resultants using moment equations.

:»:MFu =0 (19)(120) + (49)(24) = (36)(Fy) zp&é 2o (13)(24) + (36)(F)

(17)(120)

48 1b

gives T, Fy = 96 1b F,

Now an imaginary vertical section is to be exposed 19 inches from the left end. A F-B
diagram is drawn in figure BD 2(c) of the portion of the beam from the exposed section to the
left end of the beam. You have learmed in the development of a cantilever beam that the force
fields that act on the exposed section must balance the acting force fields on the rest of the
beam, that is FF, and FFg must balance FF, and FFy. pF, = 1/8 of FF) = (1/8)(120) = 15 1b.

The resultant of FF, and FF, is R where R = 48 - 15 = 33 1b¢.

In addition the moment of R equals the sum of the moments of FF and FF, with respect to

the exposed section.
-(d)(33) = +(.5)(15) - (16)(u48)

MR/S ) M'[*‘7/8 ¥ M1-‘1‘/3 d = 23.05 inches to the left of the exposed surface.

For equilibrium to be maintained, this 33 lb force must be balanced by the resultants of
FFS and FFG acting at the exposed surface. Remember from the cantilever development that the
force fields on an exposed section vary from zero at the neutral axis to a maximum at the top

and bottom, the two force fields must be equal, they are triangular in shape, their resultants

pass through their effective centers, and their resultants balance the acting loads' resultant.

FF» ?‘5’ FFg, and Ts can now be drawn with their correct directions in ().

Now in (d) the point force resultants are drawn ¢ i the exposed surface. In (e) they

are replaced by vertical and horizontal components, that is, A+ B = ?5 and D+ C = f‘s.
Remember from the cantilever section that B + T = V which is called the vertical shear,

and A and D form a couple called the bending moment couple. ¥ can be represented by one
vertical point force. The couple formed by A and D has no resultant force but only a
B+C

and the curved arrow M represents the bending moment couple. The magnitudes of V and M
can be found using F-B (c). Imagine that the F-B diagram (c) is constructed only with

FF,, FF,, V, and M acting on it.

resultant moment, so a curved arrow is used to represent this moment. In (£) V

1 n

z:FV =0 ZMneu‘cml axis 0
y =48 - 15 = 33 1b¢ M =-(.,5)(15) + (16)(u8)

. = 760.5 in-1b %

)




BD 3

% ‘ All dimensions in inches
' For both blocks, Density = 0.1 1b/in°

w/15"%
' b
Y| v=33
Also acting on the exposed section is a uniformly distributed line force
@ “ield caused by the direct application of the 120 1b load. This line force /
i*’field is called w and is equal to the weight of the block divided by the (f ) M=
~ length of the block, w = 120 1b/8 inches = 15 1b/in. 7605 in-1b

These three types of reactions will now be found for a number of vertical

sections of the bean using F-B diagrams.
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V=0
- ‘)M=O
we8

BD
Beginning with a section a distance dx from the left end of the beam, 2-D
and 3-D F-B diagrams are constructed and solved for w, V, and M in figure BD 3.
Individual F-B diagrams are drawn in 2-D for leisths from the left end of the
beam of 2 inches, 4 inches, 6 inches, 10 inches, etc., until the last F-B is
of the complete beam. F-B diagrams of same of the sections are drawn in 3-D

0 lv =16 with their solutions worked out.
2 v )M= 16 The following sign conventions will be used for the values of w, V, and M:
w8 w is positive when { , negative when }
16 y-32 V is positive when ¥, negative when ¢
M is positive when ), negative when)
3 ) M= 6% The values of w, V, and M are in the following units:
{w-8 w is in 1b/in
32 y.48 V is in 1b & yeoh ¢
6 )M'/‘*l/‘ M is in in-1b .Jl: w:%: Slb/in
-t g M= O/b
111 -8 E b VEwWd = 0 asdax ~o
48 - w=8%% < gy d
V=48 0 d M-de—;eu as ax = g
~10 )M=336 ~ hV=16*
"
4 we0 E BM—/6 n-1b
78 ,v=48 Sz -6 s ~y=18”
* .
[ - )M'528 16 w=8 G M=y in-1b
I w0 V=208 =16 g
~
48 -0 V= 48 M= 1(16) = 16 w=8% .4
e V=6(8) = u8
M=720 3 M= 3( 14
, W Y = 3(48) = 14k "
| 45 'E V=48 &
w15 i V=3 & in-1b o ¥
-*—2/—-»‘ )M= 796.5 M=5287" % w =15 %%
] E— 48 w0t & yes ;
78 Ly w15 w=0 4
1 V= e 48 M= 7965 "
~ 23— )M=772-5 M = 11(48) = 528 W= -15
T V=27 V=48 - 3(15) = 3
48 Vi pw =75 M = 18(48) - 1.5(45)
i O = =
ft—— 26— )M=624 N = 864 ~ 67.5 = 796.5
X
111 20 V=72 5 w =15 %
48 = Z
bhpby «=90 5
- * n-lb
TR LR N a2y
w = -15
4 - -
48r v=-72 V=-72%  y:us-sas) = -7
M = 23(u48) - u4(120)

Figure BD 3 i
1104 - 480 = 62"




BD

120
Hbth w-o weo :
ft————— 35— M==py V=48 - 120 = -72 2
. = 32(48) - 132200
‘iy }ﬁ?} ve-72 = 1536 - 1560 = -2u
fe——— 38 ) M=-186 ?
T
11 120 H V:gé $
S 1111} 20 g
————— 44/ M=-240
‘Ly 2o Mlw=12
31311 (V=24
——————— 43 M=-2/6
1114 H{HW‘Q ,,; W= 12
78 Hfﬂ V=24 "% /20 V=u8-120+6(12) =0
< 46 Ma-142 M = 38(48) - 19(120) + 3(72)
T T e0 4 1824 - 2280 + 216 = =240
120
S 171 B 4v=24 w =4
L e———— 4G M=-72 V=16%
ek I 3M= 3
H}f} wr‘f} V=16 96
IO ] M==32 = -4
V= U8 - 120 + 8(12) - 2(4) = 16
'-{/'481 }ﬁﬁ 14{”_ }16 _ o = 48(48) - 29(120) + 12(96) - 1(8)
W=ty RV=8 ® = 2304 - 3480 + 1152 - 8 = -32
- )M-*& N
T g W o4 g
A 1114, 1’6 wthhhhy=0 S
- Jn-o
1,1 120 M o4
S 111 T SR 1 1 T LA
d 57 M=0 w=0
17 EEEE w=0 V=u8-120+ 96~ 6(u) =0 w=0Q ¥n
bs Lﬁf} 96 ﬁ‘h V=0 M = 57(48) - 38(12C) + 21(96) - 8(24)
= 2736 - 4560 + 2016 = 192 = 0
- 60 - )M-O
y {H {ﬂ“ w+*0 w, V, and M for each exposed vertical beam section
48 6 will now be plotted as ordinates vs the beam lengths as
Figure BD 3 abscissas using the established sign conventions of

+wp ,+Ve,and+M”M,
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BD

Figure BD 4 is now drawn. The beam length is laid out to scale horizontally in @ 7
then vertical lines a and b are drawn. Next a base line ¢ is drawn and the force fields from
the F-B diagram of the entire beam are drawn in @ . This will be called the F-B diagram.

N . .
ext a base line d is drawn and ~he values of w from the F-B diagrams in BD 3 are plotted

to scale vs the length x from the left end to give curve @ .
Base line e is then drawn and the V values from the F-

B diagrams in BD 3 are plotted to
scale to form curve @ . i

Next on the f base line the values of M are plotted for each of the F-B diagrams to

give curve .
The curves in BD 4 will now pe analyzed. First the thiee curves will be compared in the

region where X varies from 0 to 6 inches from the left end of the beam. Looking at curve @

you can see that w is a straight line since w = 8 1b/in for any value of x. The V curve
between 0 and 6 inches also forms a straight line with the equation V = 0 + mx = 0 + 146—8 X =

8x 1b. For M between 0 and 6 inches, M = 0 when x = 0, 16 when x = 2, 64 when x = 4, and 144
when X = 6.

The equation for w (fromx = 0 to x = 6) isw =8, and V (x = 0 to x = 6) is V = 8x.

Comparing them V = 8x is the integral of w fromx = 0 to x = 6 written
V= fwdx=f8dx= 8fdx= 8x

Now try integrating the V curve and see if 't matches the answers trom the F-B diagrams

2
for M. M= dex = f8xdx = %(-— b !;xz
When x=0 M=0
2
x=2 M=ux"= .
x2 16 All calculated values from the F-B diagrams
x=4 M=ux" = g4 check with those found by the integration
x=6 M= uxt= luy method.
Between x = 0 and x = 6 the w, V, and M curves are related to each other as

V= fwdx and M=dex or w=g—:’z and V:%Mi

In other words the V curve is the integral (area under) the w curve, the M curve is
the integral (area under) the V curve, the w curve is the derivative (slope) of the V curve,
and the V curve is the derivative (slope) of the M curve.

Letting x = 0 at 6 inches, the three curves from 6 inches to 18 inches (now x goes from
6 to 12) relate as w = 0 V = u8 M= 144 + u8x .

All the equations are now placed on the diagram in figure BD 4. You should be able to
verify all the rest of the equations.

This set of curves, that is w vs x, V vs X, and M vs X, is called a set of beam curves
or beam diagrams. It is a single diagram that shows the values of w, V, and M for all sec-
tions of the beam.

The relationships between the curves are sometimes referred to as laws. If the w curve

is called a lower curve, V is the next higher curve relative to w, and M is the next higher

curve relative to V.
Law #1: The length of the ordinate at any point on any curve is equal to the slope of

the next higher curve at the same corresponding point.
Law #2: Between any two ordinates on any lower curve, the area underneath the curve is

equal to the ~hange in length of the ordinates on the next higher curve, between the same

corresponding ordinates.
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g BD
A section of the beam 21 inches from the left end and dx long has been drawn in a 3~D
F-B diagram in figure BD 5. Relationships will be derived between w, V, and M on this F-B.
wdx On the left face of the section V = 3 1b and acts upward.
M = 796.5 in-1b and acts clockwise and w = 15 1b/in and acts
M V-dv downward. On the right face w still is 15 1b/in acting downward.
V acts downward and is 3 1b minus some dV as x increases. V can
therefore be drawn on the right face of the section as V - dV.
M+ dM M is counterclockwise and equals 796.5 in-1b plus some dM, so it
*
can be placed on the diagram as M + dM.
dx
Y = - - + ==+ M+ z
ri BD 5 ZMrlght face 0 M - Vdx + (wdx) 5 =0
2
- : (dx)” . . .
ZFV =0 V- (wdx) - (Ve-dV) =0 wdx=dV -Vdx + dM = 0, since w 7 18 negligible
dv
W=3x Or wdx = dV or V = wdx V=aqM>-(-or Vdx = dM or M = Vdx

These are the same equations that were developed using the F-B diagram approach.

Knowing how the w, V, and M curves are related, it is not necessary to draw F-B diagrams
to find the reactions on any vertical surface, only a F-B diagram of the complete beam is
T needed. The w, V, and M .urves can then be plotted from this one F-B diagram. Figure BD 6

shows a loaded beam. The F-B diagram, w, V, and M curves are to be plotted below the beam.
The F-B diagram is drawn first. Reactions FFl and FF, are found by imagining each force
i field being replaced by its point force and taking moments about each point force. The
lengths of the force fields are not plotted to scale on the F-B diagram.

Next the w curve is plotted using the F-B diagram. In interval 1, w = 120/12 = - 10,
in2w=0,in3w=108/3 =+ 36, in4w=0, in5w=108/9 = + 12, in 6 w = 0, and in
7w =96/6 = ~16. The w curve need not be drawn to an exact vertical scale. Equations can
be written for w in each interval. '

Next the V curve can be plotted using the w curve and the two derived curve laws. V
has a zero ordinate when x = 0. In interval 1 w has a constant negative ordinate so V has
a constant negative slope. Also in 1 the area under the w curve ( - 10 x 12 =-120) is the
change in the V curve so at x = 12, V = - 120. In interval 2 w = 0 so V remains constant
at - 120. In 3 w is positive so V has a positive slope and the positive change in V is

(35(36) = + 108, so at x = 3 in interval 3, V = - 120 + 108 = - 12. In 4 V is constant at
- 12. In b V has a posztive slope and V = - 12 + 108 = + 96 at x = 9. In 6 V remains
constant. In 7w = - 16 so V has a negative slope. The change in V in 7 is (8)(-16) = - 96

which brings V to 0 at the free end of the beam. The V curve has units of lbs but need not
be drawn to an exact scale vertically. The equations for V for each interval are shown below.
The M curve can now be plotted using the V curve and the two derived curve laws. M
begins with a zero ordinate at x = 0. In interval 1 V has a negative increasing ordinate,
so M must have a negative increasing slope. The area under the M curve in 1 is (-12)(120)
. 12 = =720 so M = ~720 at x = 12. In 2 V has a constant negative ordirate so M has a constant
' negative slope, also the area under -he V cuve is (5)(-120) = - 600 so at x = 5 in 2

M= - 720 - 600 = - 13.0. In 3 V has a negative decreasing ordinate so M has a negative




BD

decreasing slope. At the beginning of 3 Mhas a
negative slope of - 120 , at the end M has a slope
of - 12. The ordinate of M at the end of 3 is
- 1320 - 198 = - 1518, In 4 V has a constant
negative ordinate so M has a constant negative
slope. At x =9 in 4 M= - 1518 - 108 = -1626.
V has a negative ordinate at the beginning
of 5, the ordinate becomes 0 and equals 96 at
the end of 5. The M curve in 5 begins with a
negative slope, decreases to a zero slope, and
then increases to a positive slope of 96. The

DIAGRAM AND THE w, V, AND M CURVES FOR THE BEAM.

BD - 1

best way to find the ordinate for M at x = 9 in )] 23 4 &5 6 7
v B te th . V(v = . D DU SR DU B
interval 5 is to timlte the ?quatlon for V ( 7k i E A A N &
-12 + 12x2}, then integrate it to get M (M = -1626 120% qélb
- 12x + 6x°) and set x = 9. This gives M = F-B HH“ l b'
0 I
248 at x F5=108% 0gh: #=
In 6 V is positive so M is positive and = -1248 =36
+ (96)(10) = - 288 at x = 10. In 7 V has a constantly o
decreasing positive ordinate so M has a constantly w weo] o R o .t/
decreasing positive slope. At x = 6 in 7 M = -288 N . =
+ (96)(6) /2 = 0. This checks as M must equal zewv w=-10 w=-16
. . ordinate = o 1198 _
at the free end of the beam. Again M has units of - slope area = -i2o oc  POS itive
in-1b and need not be plotted to scale. All the = :_,0 charge In decreasing
. . . ordinate odinate
equations for M can be found by integrating the
appropriate V curves. v f 16
. : in i 5 -2
To find the maximum value of M in interval 5, nega tive
set V= -12 + 12x = 0 and get x = 1. Then Mmax /ncreasing
s - 1626 - 12(1) + 6 (17 = - 1632. ordinate >/
_%M-ln
Shear and bending moment equations. : it
g c; ions ,.;egaf/ ve area= -/98 pos:f'/V.e
1 V=-10x M= -5x increasingz change in 268 fdecreasing
2 V=-120 M= -720 - 120x Slope ordinare Slope
3 V=-120+36xM = -1320 + 18x2 - 120x
V= -12 M= -1518 - 12x
5§ V-12+12x M= -1626 + 6x2 - 12x - 1248
6 V=96 M= -12u8 + 96x%
2 /5/8 -
7 V=+96-16x M=-288 - 8x° + 9x T s
. Max =~1632
AT THIS POINi, IF YOU ARE GIVEN A 2-D DIAGRAM 30
a OF A BEAM LOADED WITH UNIFORM LOADS AND SUPPORTED g |
AT TWO SUPPORTS WHICH ALSO HAVE UNIFORM LOADING,
YOU SHOULD BE ASLE TO CONSTRUCT THE 2-D F-B Figure BU 6
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Beams with Idealized Point Forces and Point Couples

In figure BD 7, F-B 1 is the F-B diagram of the -
given beam showing the distributed loads that act on the
beam. The w, V, and M curves that show the reactions
occurring on any cut section of the beam are constructed 5
as before. It is sometimes convenient to replace the
distributed loads with point forces as shown in F-B 2.

To illustrate this in figure BD 7 the w, V, and M curves

derived from F-B 2 are superimposed on the curves from

F-B 1. The curves derived from F-B 1 (distributed lcads)

are constructed with solid lines, and those from F-B 2 i .
(point forces) are constructed with dotted lines.

The construction of the dotted w, V, and M curves
will now be explained. Since there are no distributed
loads in F-B 2, w = 0 over the entire length of the beam.

(This makes sense, since a point force on the F-B dia-
gram would have to be plotted as an infiritely tall and
vanishingly narrow area on the w curve.)

Since w = 0 for F-B 2, it is necessary to develop a
new technique to draw the V curve. Starting from the
left end of the beam, V = 0 for 2 -~ Ax inches, since —~
there are no lcads on the beam in this intervai. Then at

= 2 + AAx inches, V = 12 1b acting downward, which is
positive on the V curve. V continues to be equal to a
positive 12 1b until x = 12 - Ax inches. At x = 12
+ A inches, the application of the point force F, from
F-B 2 causes V to become equal to 12 1lb acting upward,
soV = =12 1b. V remains constant at this magnitude
until X = 22 - Ax inches. In the interval between

= 22 + Ax inches and the end of the beam at x = 24
inches, V = 0. To visualize this method of drawing the
V curve for F-B 2, imagine that F-B diagrams are drawn
of “eam sections just to the left and just to the right
of a point force load. The two isometric drawings below
show how V changes between % = 12 - /AX inches and
x = 12 + Ax inches.

Actually, the V curve is discontinuous at each point
force, and is plotted &HX to the left and axto the right
of a point force. This results in a vertical change in
the V curve equal to the magnitude of the point force in
the F-B diagram, as indicated by tle connecting lines
between F-B 2 and the dashed V curve in figure BD 7.

_~
A ™S .
!

-




Once the V curve for F-B 2 has been found, it can

be integrated to find the corresponding M curve, just as
the w curve for F-B 1 is integrated to find its corres-
ponding V curve. Comparison of the moment curves for
F-B 1 and F-B 2 indicates that a point force approxima-
tion of the loads causes only slight changes in the M
curve. The critical intervals on the M curves are mag-
nified below to show the differences between the two
curves.

20 /6

i —“211'—7""".6.""—7'_'!21'_ and M curves derived from a F-B diagram showing the
_4/5|._ _.M._ _.M._ _..M._ point force resultants of the loads will be superimposed

on the curves from a F-B diagram showing the distributed

FBI l“F,'-;.é“] l mFé.‘?Oﬂ loads on the bean.

Figure BD 8 shows another beam for which the w, V,

m F-B 1 is the F-B diagram showing the distributed
FE,»6™ 1oads on the beam in figure BD 8. The w, V, and M

curves derived from it are constructed with solid lines

ﬁqum“

F<6®  _ c=120in
l" ” ‘\C 120 in-t¢ using the methods developed in previous examples. F-B 2

FB2

L\ | 4 | shows the point force resultants of these loads, and the
“i‘élb curves from it are constructed with dotted lines.
20%, Notice that the point force resultants of FF, and FF,
6"} are replaced by a point couple on F-B 2. The w and V
n

~ curves for F-B 2 are drawn with the same techniques used
w + %,

in figure BD 7. The point couple has no effect on
-4 '%NX either the w curve or the V curve.
The M curve for F-B 2 is plotted with a technique o
similar to that used for plotting a V curve in the inter-
" val around a point force , between x = 0 inches and
\ %x = 12 - Ax inches, the M curve is the integral of the
—-Y l\ \ Ttt—/ 6 YV curve, just as it has been in previous examples. How-

-6 ever between x = 12 - Ax inches and x = 12 + Ax .

inches, the M curve undergoes a sudden increase equal to
60 in-1b the magnitude of the point couple in F-B 2. Between
|" ~ x = 12 + Ax inches and the end of the beam at x = 24
inches, the M curve is again equal to the integral of

——®-2 the V curve. The discontinuity in the M curve at x = 12

inches can be explained by imagining that F-B drawings
are drawn of sections of the beam just to the left and
#/ just to the right of the point of application of the

couple in F-B 2 as shown in the isometric drawings
below. The ordinate change on the M curve is not

C = 120 lb-in acting ), but is a couple of 120 1b-in
acting A that is suddenly needed to keep the second

Zr isometric F-B in equilibrium, this is a positive change.




12 ED It is frequently necessary to analyze beams
that are loaded both by distributed loads and loads
\ DENSITY= 0.1 /A that can be approximated with point forces and .
\f\ 4\( DI/MEN SIS e swewes Doint couples. The following two examples demon- -

strate how w, V, and M curves for such beums are to
be drawn.
Figure BD 10 shows the w, V, and M curves for
a cantilever beam. The hanging weight is represen-
ted by a point force on the F-B diagram, and the
two blocks are represented by distributed loads.
The beam itself is considered to be weightless.
To find the reactions at the left end of the v
beam, it is necessary to mentally represent W, and
w2, the weights of the blocks, with their point

force resultants, as shown on the F-B diagram in
Figure BD 10. These dotted point forces on the

F-B are used only to find reactions.

% 2% g M ceong = 0 My = +6(9) +21(12) + 23(8)
90me l“: W, W, : l ¥, = 490 in-1b
o
= 29 1b

29"

—

To construct the w curve, it is necessary to
remember that the shape of a distributed load is
the same as the shape of the block that causes it.
Since the block on the left is triangular, this
means that the w curve must be triengular in the

16/)1n

interval between x = 3 inches and x = 12 inches .
from the left end of the beam. At X = 3
w = (9)(W)(5)(.1) /9 = 2 1b/in, at x = 12
w = 0, sobetweenx=3andx=12w=—2+—g-x.
The initial ordinate on the V curve is not the
29 1b point force acting { , but is a 29 1b point
force that balances it on a F-3 diagram so:fnust be
29 1b §{ . The initial ordinate on the M curve is

*
076’{ not 490 in-1b acting( , but 49C in-1b acting ),
x

V/b

/59

so it is negative.
M=20%x-196

470
5 -~ x2+29%-403

M=29x 490 -
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B In the F.-B diagram of the beam shown in 13
figure BD 11, the left-hand reaction is represented

hand reaction is represented by a point force re-
sultant since the roller cawses a line force field
to act on the beam. The weight of the block is dis-
tributed over its contact area as shown in the F-B
diagram. The hanging weight is assumed to cause a
45 1b point force and a 4(45) = 180 in-1b point
couple, both acting 2 inches from the right end of
the beam.

Once the F-B diagram has been established,
the w, V, and M curves can be drawn using the tech-
niques developed in previous examples.

Most of the time the curves are used to find
the maximum shear and maximum bending moment.

The maximum value of the vertical shear can be
found by inspection. It is - 151 1b in interval 5.
It is not - 151 + u8,

The maximum value of M is either in interval Uu
or - 270 in-1b at the end of interval 5. In
interval u

w=-6- 2%
V=63 -6x- %
260 + 63x - 3x% - x°/3

M=
Setting V = 0 gives x or V = 63 - 6x - X2 =0
gives x = & 6 inches.
Mmax = 260 + 63x - 3x2 - x3/3 when x =45.5 inches
= 4594in-1b.

NOW IF YOU ARE GIVEN AN ISOMETRIC DRAWING

OF A LOADED CANTILEVER OR A SIMPLY SUP-

PORTED BEAM, YOU SHOULD BE ABLE TO CON-

STRUCT w, V, AND M CURVES FOR THE BEAM.

YOU SHOULD BE ABLE TO DRAW THESE CURVES

FOR DISTRIBUTED LOALS, IDEALIZED POINT

FORCES, OR POINT COUPLES. BD -2
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