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ABSTRACT

For Contract DEC - X - 71 - 0042 (057)
by Associate Professor D.E. Alexander

The objective of this project was to design a course where each student

learns engineering statics using self-paced modular units. This course has

been constructed and used here at the Un'versity of Washington and at some

nearby community colleges. the course has been organized into a learning

hierarchy of 14 modules. Each module begins with a behaviorable objective for

the complete module and is then broken down into units with assessment tasks

and terminal objectives for each unit. Each student decides when he wants to

take an achievement test, on each module. When he passes the test (there is no

grade, only pass or fail for each module, also no time limit in any test) he

proceeds to the next higher module. Successful achievement tests on 10 modules

gives a "C" grade, 12 a "B" grade and all 14 an "A".

All classroom lectures haT been replaced by classroom consulting by the

instructors. The results of student surveys are included in the body of this

report. Since this technique has been developed, many other instructors are

presenting classes in this self-study manner. This quarter I am offering a

course in digital computation and numerical methods using the same format.
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August 12, 1972

Innovative Project in Engineering Statics
Daniel E. Alexander
Department of Mechanical Engineering

1. INTRODUCTION

The objective of this project was to construct a course in which the student
learns engineering statics using self-instructional units. All of this material
is to be presented using a three-dimensional approach. This course has been con-
structed and used for the last four quarters here at the University of Washington
and one quarter at Everett Community College.

2, COURSE FORMAT

A detailed format of the course is enclosed with this report. Some unit::
are enclosed with this report.

3. INSTRUCTORS AND STUDENTS INVOLVED IN THE COURSE

Instructors Sections

Fall Quarter M. Ekse, H. Strausser,
4D. Alexander

Winter Quarter H. Chenoweth 1

Spring Quarter

Sumer

4. STUDENT PROGRESS

W. Chalk, J. Morrison
H. Chenoweth, D. Alexander
W. Zimmerman at Everett
Community College

5

D. Alexander 1

Records were kept of the time needed for each student to complete each unit
and also the time needed to complete the course. The time needed to finish a unit
and be prepared for an achievement test on the unit averaged out to be between 4
and 6 hours. The fastest student finished the course in 3 weeks. Almost all of the
students finished the course before finals week. The fastest student had an overall
grade point of 3.93 for two years. The next fastest student took 3 1/5 weeks, his
overall grade point after 7 quarters is 1.86. The next fastest student needed 6
weeks to complete the course. During 3 of the 4 quarters, a girl finished first. The
slowest students have needed 2 quarters to achieve C grades.



5. GRADES EARNED

For all 11 sections A 116

B 39

C 21
D 3

E 5

PW 18

6. STUDENT EVALUATION
All students were asked to evaluate the course in the Fall quarter. No formal

evaluations were taken during the other quarters, but spot evaluations were given

to some students and the evaluations were the same as during the Fall quarter.

7. COMMENTS

Careful notes were kept of feed-back from the students and instructors using the

units. This feed-back has been used to rebuild most of the units and it was found

necessary to add a basic unit on the slide rule. Also a teachers manual with a com-

prehensive set of achievement tests for each unit has been constructed.
The course has been presented without using formal timed tests. This made it

impossible to measure objectively the student achievement in the course vs the

achievement in the regular courses. However the individual tests given have all

been much more difficult than the tined conventional tests. The anount of material

covered in this course has been about 40% greater than in the conventional course.
It is obvious that all students do not and can not learn at the same rate. Many

students have to repeat units at the first of the course and some even toward the

end of the course. The instructors and students all like the idea of keeping a

student in a unit until he can actually demonstrate that he knows the material.

Other instructors in the college of engineering are now presenting courses in this

self-instructional manner. EE has at least three courses, ME has one, Chem. E one,

and the college courses have at least three. All of these instructors have either

attended one of the Engr. 180 sessions or attended a seminar where I presented the

course. Everett Community College has adopted our Engr. 180 course for next year.

Also as a direct result of a teaching institute that I sponsored in 1971, almost all

the community colleges, universities, and colleges that teach engineering in the

northwest have one or more self-instructional courses.
In my opinion many courses will be presented as self-instructional courses in the

future. The students like them and the instructors who have been involved like them.

Some faculty and administrators have told me they cannot justify spending their time on

this type of educational research as against the traditional engineering and scientific

research. I believe both types of research are needed at the university level.



ENGINEERING 180

1. Professors Alexander, Chalk, Chenoweth, and Morrison

2. Engineering Statics Traditionally an engineering student studies a series of

courses that leads to an engineering design course. A typical series is shown

below.

Engineering -- Engineering Dynamics -0- Mechanics -41'. Material-SO-Engineering-a-Design

Problems Statics of Materials Science Lab.

The first course is an introduction to engineering analysis and problem solving.

Engineering statics is concerned with constructing equilibrium diagrams and

determining the external loads that act on stationary structures. Dynamics

includes the studies of pure motion and the external loads that act upon members

that are not at rest. Mechanics of materials begins the study of the internal

conditions of a body acted upon by external loads. Material science is taught in

the Department of Metallurgy and is concerned with the internal structures of

different materials and how materials react to loads, temperature changes, etc.

In the engineering laboratory course the student tests actual members for

deflections, failures, etc. Then in the design course the student can draw on

all of these courses plus math, chemistry, physics, etc. to design actual engi-

neering structures or members. Each of the courses depends upon the ability of

the student to visualize and construct good equilibrium diagrams and to find

the external loads acting upon any member, this is the material learned in

engineering statics.

3. The Course A flow chart of the course is drawn on page 2. The course has been

organized into 14 units at three levels. Each unit has been designed to be

self-instructional and each student works through each unit at his own pace.

Each unit begins with an objective for the complete unit. This tells the student

exactly what is to be learned in the unit. The unit is then broken down into

learning sub-units with a terminal objective written for each sub-unit. When a

student decides that he fully understands the terminal objective, he then works

the self-assessment task written for the learning sub-unit. When he completes

the task, he checks it with one of the professors. When he has finished a

complete unit and decides that he is ready to demonstrate his grasp of the mater-

ial in the unit, he takes an achievement test on the complete unit. When he has

passed the test (there is no grade, only pass), he can then proceed to the next

unit.
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4. Course Conduct The professors will be in Room 326 during the following hours:

9:30 - 10:30 10:30 - 11:30 11:30 - 12:30

Monday Chalk Chalk

Tuesday Morrison Morrison Morrison

Wednesday Chalk Chenoweth

Thursday Chenoweth Chenoweth

Friday Alexander Alexander

The instructors will work with the students on an individual basis to check

units and give tests. No lectures will be given. Mostly the professors will

be consultants helping the students in any way. During the first five weeks

of the course, it is important that the students come to Room 326 and work with

the instructors at least four times per week including one day for testing.

Achievement tests will be given and graded in Room 321 only during the course

hours.

5. Achievement Tests Each student will take an individual test on any unit when

he decides he is ready. All achievement tests will be given in Room 327. All

the tests will be prepared by Professor Alexander and administered by Professors

Alexander, Chalk, Chenoweth, and Morrison. There will be no time limit on any

test, all tests will be closed book, and each test will be graded by one of the

instructors with the student before the student leaves the testing room. Before

being allowed to take an achievement test on a unit, the student must have one

of the professors sign the unit. No penalty will be given for a non-passed test

6. Grades Grades will be given for the number of successful units completed as

sin below.

Total Units 5 6 8 10 12

Level 3
2 3

Level 2 1 3 3 4

Level 1 5 5 5 5 5

Grade
A

Lcel 1 units must be taken in order. Level 2 and level 3 units can be taken

in any order except three level 2 units must be completed before taking any



level 3 units. Also the units must be completed as shown on the following

schedule:

Unit 1 Friday March 31

2 Thursday April 6

3 Wednesday April 12

4 Tuesday April 18

5 Monday April 24

6 - 12 At least one per week

If a unit is not completed on time, it will not count toward a grade and the

student will have to complete an extra unit for his grade. Also a pass must

be earned for all level 1 units. It is hoped that all students will get ahead of

the minimum schedule.

7. Office Hours The four professors will be available in their offices during their

regular office hours. These times will be announced later.

8. Study Rooms Room 326 is available for study M W F 1:30-2:30 and T 1:30-3:30.

Room 327 is available all day every day.

9. Student Supplies Each student must have a slide rule, some engineering paper,

two triangles, a protractor, an engineers scale, a mechanical pencil, and a

2H drafting pencil.

10. Text The text is "A Self-Learning Course in Engineering Statics" by D.E. Alexander.

It costs $9.00 and will be given out in units as the student progresses through

the course.
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ENGINEERING 180 Fall 1971

Student evaluation of self study course designed and constructed by D. E. Alexander
Seventy-nine (79) students from four classes.
Two classes by D. E. Alexander 38 students

Two classes by M. Ekse and H. Strausser 41 students

You are just now finishing a course in engineering statics where you learned the

material using self-paced self-study units with written objectives, no lectures,

and individual non-timed tests.

1) Did you like the units approach as compared to the

Yes No

conventional course: 79 0

2) Do you feel that you knew the material when you

finished each unit? 79 0

3) Do you like the testing program? 78 1

4) Do you like the grading system? 79 0

5) Do you like the non-lecture consulting type teacher

relationship? 79 0

6) Would you like to take dynamics using this system? 79 0

7) Would you recommend that Engr. 180 be taught this

way next quarter? 79 0

8) What grade would you assign the course compared to

other freshman and sophomore courses? A B C D

76 3

Comments - All good, Typice listed below.

Best course I've ever taken.

Liked it all the way.

Want more.

Learn more.

Good feedback.

Excellent student-teacher relationship.

Learned much more.

Almost too gcod.

Want this to continue.

This is the first time I have been in a class like this, and it is very refreshing
to experid.ce a class with such a free attitude. The learning experience is left

up to the student.

E
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Engineering 180 (Cont.)

Good change from conventional class structure.

Less pressureyet you still learn more than normal.

Superior to conventional course - can work at own speed.

After the problem set and similar test, you may even over learn it which is better

for retention.

Testirg program was flexible and often I felt that I learned something instead

of merely reciting back information. Also, I like to have lots of time.

Grading system great, unambiguous, you can get what you are willing to work for.

Liked non-lecture consulting type teacher relationship. Get to talk to professors

and get questions answered. Normally in a lecture class, you don't know the

instructor, his goals for the class are unknown and the prof. gives out pearls of

wisdom which are usually redundant, whereas this course is much more applied and

less su7erfluousknowledge, which you don't use anyway.

It is very complete, step by step approach to the problem solving of statics. I

feel very grateful to be able to take this course in such a manner. I hope to see

dynamics taught this way.

Much less pressure and I've learned more in this course than any conventional course.

Don't like Prof. Strausser. He talks down like he's too good to teach this low

level class.

You learn more this way,only a couple of spots in units hard to understand. Good

work, Prof. Alexander.

This course allows for much feedback to the student, letting him know how he stands

in relation to the course at all times.

Good -- almost too good--takes desire away from other courses.

Best part of the course was the few minutes the instructor would spend each day

with the individual student.

Course excellent. Course makes studying a learning process rather than a competi-

tive one. I would recommend all science and math courses being taught in the same

way'

Student-teacher relationship gives more meaning to the class thus stimulating more

interest in the course.

This method of teaching a difficult subject matter is very easy to follow,

informative and interesting.

I was very impressed with the class in general. At all times I knew exactly where I

stood. The units were clear and the work was difficult, but interesting.

Undoubtedly, the best overall course I've taken at the University.



UNIT 1

FUNDAMENTALS

Af THE END OF UNIT 1, YOU WILL BE ABLE TO VISUALIZE FORCE

FIELDS ACTING UPON ENGINEERING MEMBERS, CONSTRUCT POINT

FORCE RESULTANTS OF THESE FORCE FIELDS, AND DEMONSTRATE

ADDITION AND RESOLUTION OF POINT FORCES WITH THE PARA-

LLELOGRAM LAW AND WITH MOMENT EQUATIONS.

Introduction

Engineering statics is the study of forces acting upon stationary structures. The

space surrounding the structures is assumed to have a constant air pressure and temperature.

Lengths within the space are measured in feet, and forces are measured in pounds.

The action between two members that affects the size, shape or motion of the members

is called a force. Forces are classified as contact forces (when two members actually contact

each other) or as distant forces (when two members are attracted to each other by magnetism

or gravity). In engineering statics only actions between stationary members will be considered.

The study of forces acting upon engineering members involves four principles which will

be developed: (1) the principle of a force field, (2) the principle of a point force, (3) the

parallelogram law for the addition of point forces, and (4) the principle of moments.

Copyright 1971 by D. E. Alexander FD 1
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The Principle of a Force Field

Figure FD 1(a) shows a student's hand which has gradually pushed directly against a

round block attached to a compression scale until the scale reads 12 pounds. A method of

identifying the action against the student's hand and against the block will be devoloped

when the scale is he...e. at 12 pounds.

Figure FD

Wherever the student's hand contacts the block, contact forces are built up. It will

be assumed here that the contact forces are uniformly distributed over the entire contact

area and that the intensity of the contact forces is uniform over the entire contact area.

These contact forces will be represented by arrows acting against the student's palm as

shown in (b). With the assumption that the contact forces are uniform in intensity and

uniformly distributed over the entire contact area, there would be an infinite number of

arrows, all of the same length. For convenience, only a limited number are drawn. The

distributed force system acting against the student's palm is called a force field and is

labeled FF1. Force field arrows are always drawn with half arrowheads, as shown in (b).

When the spring scale reads 12 pounds,the magnitude of the total force field FF1 is 12

pounds. No attempt is made to draw the lengths of the arrows to scale, but with the

assumption that the contact is uniform, the arrows will all be of the same lengths in the

same ,Uxection.

The action of the student's palm against the block is equal and opposite to the action

of the block against the st dent's palm. Figure FD 1(c) shows force field FF2 acting

against the block. FF
2
is equal and opposite to FF1, with a magnitude of 12 pounds.



Figure FD 2

(b)

FD 3

(d)

Figure FD 2(a) shows a student holding a homogeneous cylinder with a weightless cord.

This time the distant attraction of the earth for the cylinder is acting on the cylinder.

This attraction acts uniformly throughout the cylinder. It is called gravity and is repre-

sented by force arrows acting downward as shown in (b). Again, the force would be most

accurately represented with an infinite number of arrows, but only a limited number can be

drawn. If the cylinder weighs 4 pounds, FF1 = 4 pounds. In (c) FF, is drawn as a uniform

force field acting cis the lower surface of the cylinder. For convenience, gravity force

fields are usually drawn either on the top or bottom of a member. Although it is not shown,

a force field equal and opposite to FF, will be acting upon the earth.

In (d) some transverse sections of the supporting cord are shown exposed with their

acting force fields. It is assumed that each force field is evenly distributed over tne

exposed surface. Notice that although the magnitude of all the force fields in (n Ire

equal, the force fields are not drawn to scale.
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Figure FD 3
(b)

In figure FD 3(a) a student is holding an eraser in his hand. The force fields acting

upon the eraser are to be shown. Usually the object being analyzed is drawn as if it is

isolated from its surroundings as shown in (b), then the force fields that are acting against

it are shown. FF
1

is the force field due to gravity. FF
2
acts as shown in (b) to support

the eraser. Force field FF
3
acting against the hand is equal and opposite to FF

2 .

(a)

Figure FD 4

In figure FD 4(a) a uniform horizontal beam E supports symmetrical loads C and D and

rests on smooth horizontal supports at A and B. The force fields acting on all the members

are to be constructed. In (b) the members are isolated from each other with their force

fields shown. Although FF1, which is due to the weight of beam E, acts over the entire beam,

for convenience only a small cut-out section is shown. It is assumed that all the members

are rigid; for rigid members the shapes of the contact force fields can be assumed to be

symmetrical. The actual shape of the force field depends upon the loading and material in

contact, but only the simplest symmetrical force fields will De used in this presentation.

AT THIS POINT YOU SHOULD BE ABLE TO VISUALIZE FORCE FIELDS

ACTING ON SIMPLE ENGINEERING MEMBERS AND BE ABLE TO CON-

STRUCT THE FORCE FIELDS ON THREE-DIMENSIONAL DRAWINGS. FD 1
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The Principle of e Point Force

Any force acting upon an object is distributed over a contact surface or a volume.

In this presentation these distributed force systems are called force fields. After

identifying a force field acting upon an objcz..ct, the for field is sometimes replaced

by a single point force.

An example of a point force replacing a force field is shown in figure FD 5. In (a) a

student is pushing with his palm directly against a smooth surface until the compression

spring registers .L2 pounds. In (b) the student's hand and the scale are redrawn separated

from each other with their acting force fields shown. Now in (c) each force field is

replaced by an arrow passing through the center of its field. Each arrow represents a point

force which has the sane magnitude and direction as the force field it replaced. Each point

force is called the resultant of its force field, thus the resultant of FF1 is F1 with a

magnitude of 12 pounds. Point force arrows are drawn with full arrowheads to distinguish

them from the force field arrows with the half-arrowheads.

Since FF
1
and FF

2
are equal and opposite to each other, it would follow that their

point force resultants F1 and F2 are also equal and opposite to each other. The placement

on an object of a point force resultant cannot be an exact placement, since the point force

is purely inagninary and abstract. It must only pass through the center of the force field

it replaces.



(a)
(b)

Figure FD 6

Figure FD 6(a) shows a weight hanging on a cord. The force fields shown in (b) have

been replaced by their point force resultants in (c). Again, these point force resultants

pass through the centers of their force fields. F2 passes through a point called the center

of gravity of the cylinder.

1:5

(b)

Figure FD 7

(C)

The eraser being held by a student's hand in figure FD 7(a) is shown with its force

fields in (b) and its point force resultants in (c). Try picking up an eraser and feeling

the point force resultant of the eraser's weight. This should help to show that any point

force is purely imaginary.
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lb)

(a)

Figure FD

The symmetrically loaded engineering structure shown in figure FD 8(a) is redrawn in

(b) with the force fields shown and in (c) with the point force resultants of these force

fields.

NOW IF YOU ARE GIVEN A SIMPLE ENGINEERING STRUCTURE, YOU

SHOULD BE ABLE TO CONSTRUCT THE FORCE FIELDS ACTING UPON

THE INDIVIDUAL MEMBERS AND BE ABLE TO REPLACE THOSE FORCE

FIELDS BY THEIR POINT FORCE RESULTANTS. FD 2



8 Parallelogram Law for the Addition of Forces FD

Figure FD 9 is an isometric drawing of a horizontal stationary ring with four vertical

holes a, b, c, and d drilled through it. The ring is assumed to be weightless and the

holes frictionless. Spring scales S1 and S2 are attached through holes a and b and

gradually pulled while maintaining the ring in its original horizontal position until S1

reads 20 lbs. S2 also reads 20 lbs and it is found by trial and error that the centerlines

of S1 and S2 must be horizontal and colinear (on the sane straight line) or the ring will

not stay in its original position. Force fields FFI and FF2 are shown on the drawing with

their point forces F1 and F2. F1 and F2 are equal, opposite, colinear and horizontal.

7
3
(17.4 lb) +

4
(12.2 lb) =

2
(20 lb)

Figure FD 9

Now an experiment is to be performed. S1 and S2 are to be released, then two other

spring scales are to be attached through holes c and d. These two scales and S1 are to be

gradually pulled while keeping S1 and the ring in their original positions, until S1 again

reads 20 lb. S2 has now been effectively replaced by the new scales.

It is found by experimentation that the two new scales must always be pulled in the

sane horizontal plane as Sl. However, they can be pulled in a variety of directions, and

for each set of directions will read different magnitudes. One combination is shown in the

drawing where S3 and S4 replace S2. When S3 and S4 are pulled in the directions shown and

Sl registers 20 lbs, S3 reads 17.4 lbs and S4 reads 12.2 lbs.

FF3 and FF4 are shown in figure FD 9 with their point forces F3 = 17.4 lbs and F4 =

12.2 lbs drawn to scale. When the action lines of point forces F3 and F4 are extended,

they are found to meet at point 1 on the line of action of F2. Now, if a parallelogram is

drawn to scale at point 1 with F3 and F4 as its sides, it is found purely from graphical

measuring that the diagonal of the parallelogram is equal to F2. In order for the point



FD
forces to intersect each other in this manner, eadh one must be transmitted along its line of 9

action. This is sometimes called the principle of transmissibility of a point force.

Since the point forces all act in. the sane plane, a plan view of part of the ring can

be drawn to a larger scale in figure FD 10. Notice that the parallelogram for F3 and F4 can

be drawn two ways. The solution will be the same when the arrowheads cone together at one

end of the parallelogram (dotted example) as it is. when the tails meet (shown with solid

lines).

7
3
(17.4 lb) + .4 (12.2 lb) r2(20 lb)

5
(79.2 15) + r

6
(74.7 lb) = '2 (20 lb)

F7(16.2 lb) 4- r (11.7 lb) = F2(20 lb)

F9(11.5 lb) + T10(8.5 lb) = T2(20 lb)

F11(14.4 1,4 +
12

(14.4 lb) = '2 (20 lb)

Figure FD 10

Fit

The centerlines of other spring combinations that can be found by trial and error are

also shown in figure FD 10. When pulled as shown, S5 and S6 replace S2. Their point forces

F
5

and F
6
are found to be coplanar (in the same plane) and concurrent (the lines of action

meet at the sane point) with F2 and form the sides of a parallelogram which has a diagonal

equal to F2. Other sets that can replace S2 are S7 and S8, S9 and S10, and Sll and S12.

All of these sets are found to have point forces that are coplanar with F2 and all are

concurrent and form parallelograms with diagonals equi;1 to F2, except the parallel set of

S9 and S10. The case of parallel forces will be treated later in a spe^:al section.
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Of course, each of the experiments could have been performed in the reverse order. For

instance, the three springs Sl, S3 and S4 could have been applied first, then the right-

handed pair, S3 and S4, could have been replaced by S2. When S2 is replaced by S3 and S4,

point force F2 is replaced by F3 and F4. In reversing the order, F3 and F4 would be replaced

by F2. In either case, F2 is called the sum or resultant of F3 and F4, while F3 and F4

are called components of F2 along their direction lines. F9 and Flo are not usually referred

to as components of F2.

The results of experiments are usually written in the form of a law. The law for the

addition of ford -s is called the parallelogram law. It states that when a single load is

to be replaced by two loads, their three point forces (1) must have lines of action that are

coplanar and concurrent, and (2) must form a parallelogram at the point of concurrency, with

the diagonal equal to the single point force (called the resultant) and its sides equal td

the other two point forces (called the components). Conversely, when two loads are to be

replaced by a single load, tneir two point forces (called components) must (1) be coplanar

and concurrent, and (2) form the sides of a parallelogram at their concurrent point, whi-h

has a diagonal (called the resultant) equal to the point force of the total load.

Quantities that obey the parallelogram law when added are called vector quantities or

vectors. A vector has these characteristics: (1) a magnitude, (2) a line of action, a

direction, and a sense, that is, it is a directed quantity, and (3) a vector obeys the

parallelogram law when added to another of its kind or when replaced by others of its kind.

A point force is therefore a vector, as represented by a full z,ircw. The length of the arrow

represents the magnitude of the point force, the position of the body of the arrow represents

the line of action and direction of the point force, the poth'ition of the arrowhead represents

the sense of the point force, and these point forces are combined only with parallelogram

addition. Vectors will be written in this presentation with bars over them (example - F3),

and the magnitudes of the vectors will be written with capital letters (examples - F3, F4).

52 11.21°.-F4
F=20"FF2

1 2
11/.0 6-1 F;

(0)

0 3 6,

I 1

0 SO

IC; 11.76

(b) Cc)

Figure FD 11

FE;a



FD 11
Figure FD 11(a) shows a horizontal ring held by S1 and S2. The parallelogram law is

to be used (1) to replace S2 by point force components along the action lines a and b, and

(2) to replace S2 by a set of components, one along b and the other through point c.

For case (1) a plan view is drawn to scale in (b) of the right half of the ring with

FF
2
and F r2 shown along with lines a and b. Next, a parallelogram is drawn to scale at

point 1 with f2 as its diagonal and F3 and F4 as its sides. F3 and F4 are the point forces

of two loads acting at a and b.

For case (2) a plan view is drawn to scale in (c). FF2 and F2 are shown, and the

action line of Fb can be drawn. T and f intersect at point 2, therefore PC must pass

through point c and point 2. Pc can now be placed on the diagram. Now F2 can be replaced

by components Ti) and Tc as shown by the parallelogram. Replacing a point force by com-

ponents is sometimes called resolution.

if; 9.81°

20 lb

0 3 6

0 ,3016

F =16 6 lb 4
16.616= I(b)

Figure FD 12
(c)

The three loads S3, S4, and S1 hold the ring in a stationary position in figure FD 12( .).

In (b), loads S3 and S4 are to be replaced by their point force resultant using the parallel-

ogram law, then in (c) the point force resultant of S1 and S4 to be found using the

parallelogram law.

in (b) T14 and F3 are combined at their intersection point. In (c) F1 and f '14 intersect

as shown and combine with a parallelogram to give their resultant R2.

AT THIS POINT, IF YOU ARE GIVEN AN OBJECT AU UPON BY TWO

OR MORE LOADS, YOU SHOULD BE ABLE TO REPLACE ANY ONE OF THEcr.:

LOADS BY POINT FORCE COMPONENTS USING THE PARALLELOGRAM LAW.

ALSO, IF YOU ARE GIVEN AN OBJECT ACIED UPON BY THREE OR MORE

COPLANAR NON-PARALLEL LOADS, YOU SHOULD BE ABLE TO FIND THE

POINT FORCE RESULTANT OF ANY TWO OF THE LOADS USING ME

PARALLELOGRAM LAW. FD 3
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Moment of a Point Force

FD

P

F 20Th

(a)
Figure FD 13

(b)

Figure FD 13(a) shows a ring which was originally held in a stationary horizontal

position by loads S1 and S2. S2 was then replaced by S3 and S4, and, while maintaining the

ring in its c.riginal horizontal position, the three scales were pulled until S1 registered

its original magnitude of 20 lbs. It was found that S1 and S2 were colinear, and that S2,

S3, and S4 were coplanar and concurrent. In (b) a plan view of the ring is constructed with

F1, F2, F3, and Y:4 drawn to scale along their action lines on the outside of the ring. r2,

F3, and F4 are related to each other as shown by the force parallelogram drawn to scale at

their point of concurrency 0. Now a point P is chosen in the plane of F2, F3, and Tv Some

new relationships are to be developed between F2 and its components F3 and 74 with respect

to point P.

A plan view of the right half of the ring is drawn in figure FD 14. Point P is shown,

and the point forces F2, F3, and are drawn to scale on their lines of action The point

of concurrency U is also shown.



ED
First, a relationship between r2 and point P

13

is to be developed. A straight line s is drawn

from P to 0. Using the parallelogram law, T2 is

replaced with components 15 and E, which are

parallel and perpendicular, respectively, to

line s. Line a is next drawn from P perpendicular

to the line of action of F9. Notice that the

angles labeled 6 are equal, so from similar

triangles,

s
F2

E

Next, F3 is to be related to point P. Com-

ponents A and B, which are parallel and perpen-

dicular to s, replace F3. Line b is drawn from P

perpendicular to the action line of F3. Angles

labeled 0( are equal, so from similar triangles,

s
F
3

b

F 4 is now to be related to point P. IT and C7, perpendicular and parallel to s, replace

F4, line c is drawn from P perpendicular to Fu, and the angles 4 are equal, so

s F4

H

F2 is the resultant of F3 and T4' so the component of F2 perpendicular to line s must

equal the sum of the components of T, and F4 which are perpendicular to s. This means that'

E , B +

These are colinear, so E = B + H

Substituting the first three equations into this equation gives

aF2 bF3 cF4

s is the denominator for each term and can be cancelled, leaving

aF
2

= bF
3
+ cF

4

This equation relates the resultant 1.-'2 and its components F3 and F4 with point P. The

product aF2 is called the moment of F2 with respect to point P and can be written MF

2
The product bF3 is called the moment of T3 with respect to P, or

"
Mr /p. Mr /, is the product,3"

'4
cF4. In the use of this equation, P is called the moment center, a is called the moment arm

(or lever arm) of F2 with respect to P, and b and c are the moment arms of r3 and F4 with

respect to P. If the lengths are in inches and the forces in pounds, the units for moments

are inches times pounds or inch-pounds.



14 FD

The relationships between the point force F. and its components F3 and F4 with respect

to point P resulted in an equation. The terms in any equation must have signs. The usual

sign convention for mcments is that a moment will be called positive if the force arrow

points counterclockwise on the lever arm and negative :f the force arrow points clockwise

on the moment arm. Some examples of positive and negative moments of point forces are Shown

in figure FD 15,

F

A 8

Fs

c

411/11111

x(

M = t eFs

A4F6/ C =-14

Fg

"Fi/A "ye c F3

AlF2/A"11-bF
klEt/s dF4

Figure FD 15

M /.1D
#1F7

MF7/E=

+j F8

M F8/E 'LS Fe

AT THIS POINT, IF YOU ARE GIVEN COPLANAR POINT FORCES AND

A POINT IN THEIR PLANE, YOU SHOULD BE ABLE TO IDENTIFY THE

MOMENTS OF THE POINT FORCES WITH RESPECT TO THE POINT USING

CORRECT SIGNS.
FD 4



Measured Moments

FD

Figure FD 16

15

0 3 6,11,1
I I

3o

The right half of the ring from figure FD 14 is redrawn in figure FD 16. The mathe-

matical moments are to be found using measured lever armc. '.Dr the moments of F2, F3, and F
4

with respect to point P.

MF +(11o6)(20) =. +232 in-lb

2

m
F
3
/P = +(3)(24) = +72 in-lb

MF +(8.3)(19.3)= +160 in-lb
4

'F20 = MF MF = +72 + 160 = +232 in-lb
3 4

In the derivation of the moment equation, the distance s was cancelled. This point

P is a random point and the moment of the resultant F2 will equal the moment of its components

F3 and ri7ititect to any point in the plane of F2, F3, and T4.

To illustrate this, a point Z is also shown in the plane of F2, F3, and F. in figure

FD 16. Perpendicular lines d, e, and f are drawn and measured.

m
F
2
/Z = MF

3
/Z + MF

4
/Z

Therefore, + (6.2)(20) = + (12.0)(24) - (8.5)(19.3)

+ 124 = + 288 - 164

NOW IF YOU ARE GIVEN A DIAGRAM SHOWING COPLANAR POINT

FORCES ACTING ON AN OBJECT, YOU SHOULD BE ABLE TO FIND

THE MOMENTS OF THE POINT FORCES WITH RESPECT TO ANY

POINT IN THEIR PLANE. FD 5
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Using Moments to find Components

P45HING

S12

,1/

Si'

2016
1

(a)

FD

I.

/

'.512

1 inch = 10 inches

Figure FD 17
(b)

In figure FD 17 a ring is acted upon by loads S1 and S2. Sll and

S2 while keeping the ring in its original position. The magnitudes of

be found using moment equations. A portion of the plan view of the rin

showing F2,
'11' and 1512.

Remember that the Moment of the resultant F2

of its components F11 and F12 with respect to any point.

First, P12 will be found. A point X is chosen anywhere along the

T
11'

. -the equation of the moments of the point forces with respect to X

The lever arms for the three point forces are drawn and scaled from the

S12 are to replace

Sll and S12 are to

g is drawn in (b),

equals the moment

line of action of

can now be written.

drawing.

MF
2
/X = MF

11
/X MF

12
/X

+ (17.45)(20) = (0)(F
11

) + (17.1)(F
12

)

F
12

= 20.4 lb

To find the magnitude of T711, a point y is chosen anyplace on the action line of F12.

Perpendicular moment erns are drawn and scaled.

MF
2
/Y MF

12
/Y MF

11
/Y

-(6.57)(20) = (0)(F
12

) - 12.9(F
11

)

F
11

= 10.4 lb

NOW YOU SHOULD BE ABLE TO REPLACE A POINT FORCE BY POINT

FORCE COMPONENTS ALONG DESIGNATED DIRECTIONS BY USING

MOMENT EQUATIONS. FD 6



Using Moments to find Resultants

(a)

FF3

FD 17

In

o O

0

Figure FD 18

e -13"

12 lb

Figure FD 18(a) shows a vertical slab acted upon by two loads. The single point force

resultant F4 of loads S2 and S3 is to be found, using moment equations.

A plan view of the slab is drawn to scale in (b), with T2 and F3 shown. The line of

action of their resultant T
14
will be found first.

A point A is located 3 inches from the line of action of T2 and 4 inches from the line

of action of T . Point A is on the line of action of the resultant of" F2 and F3, since

Mi
4
/A MF

2
/A MF

3
/A

0 = + (3)(16) (4)(12)

Another point B is located 6 inches and 8 inches from the action lines of T2 and F3.

The action line of F4 has now been established, since it must pass through points A and B.

The magnitude of F4 now can be found by choosing an arbitrary point C on the line of

action of F3. Perpendiculars e and f are drawn and measured.

M
F4 /C

= M
F
2
/C

+ M
F
3
/C

(f)(F
4

) = (e)(F
2

) + 0

(8)(F
4

) = (13)(16)

F4 = 26 lb

NOW YOU SHOULD BE ABLE TO FIND THE SINGLE POINT FORCE

RESULTANT OF ANY TWO COPLANAR LOADS BY SING MOMENT

EQUATIONS. FD 7



18 Point Force Resultants of Multiple Loads ED

The acting leads on the apparatus shown in figure FD 19(a) are the weights of the two

blocks and the spring pull. The system is symmetrical about the centerline of the spring

scale. The single point force resultant of these acting loads is to be found (1) using the

parallelogram law directly, and (2) using a moment equation.

(6)

Figure FD 19

A 3-D diagram is drawn in (b) showing the three force fields. Their point force

resultants are superimposed on the diagram. Since the point forces are coplanar, a 2-D

diagram showing the point forces can be drawn to scale in (c). The action lines of 7.1 and

r2 meet at point P, so Fl and F2 are added at P to find their resultant R1. Next, the

action lines of RI and r3 are extended and found to meet at point T. 7 is the sum of PI

and F3 at T. The magnitude, line of action, direction, and sane of R are now known.

Method (2) begins with diagra. (c) drawn to scale with Fri, F2, and r3 shown. Now in

(d) r r
2'

and F3 are added with a triangle (this technique can easily be derived from the

parallelogram law) to find R = 53.9 lb. Next, the line of action of R must be found in (c).

Line mt is first drawn perpendicular to R in (d). Next, line m is drawn from reference

point 0 in (c) parallel to mt. 7 acts perpendicular to m in (c) at an exact distance from

0. This distance will be called e.

The moment of R equals the sum of the moments of 71, T2, and F3 with respect to 0.

MR/0 MF
1
/0 MF

2
/0 MI'

3
/0

- (e)(53.9) = (3)(20) - (3.5)(20) (6)(30)

e = 3.53 inches.

The line of action of R can now be placed perpendicular to line m 3.53 inches from 0.

This checks with the first method.

WHEN YOU ARE GIVEN AN OBJECT ACTED UPON BY LOADS THAT REDUCE

TO COPLANAR NON-PARALLEL POINT FORCES, YOU SHOULD BE ABLE TO

FIND THE SINGLE POINT FORCE RESULTANT OF THE LOADS USING

EITHER DIRECT PARALLELOGRAM ADDITIONS OR MOMENT EQUATIONS.
FD 8



Parallel Systems
FD 19

Many times in engineering statics two parallel loads are replaced by one load. When

the two loads are replaced by their force fields and these in turn are replaced by their

point forces, these point forces do not intersect. Therefore, the parallelogram law cannot

be used directly to add parallel point forces. Graphical and moment equation techniques

will be developed now for finding the resultant of two parallel point forces.

lb

,2,
R.4516

da.8.33it'

(a) lc)

Ti

ri

0 20 4016
31111, tiff,

Figure FD 20

5. 33in1

Figure FD 20(a) shows a vertical member acted upon by two horizontal loads S1 and S2

that are to be replaced by a single load.

In (b) the force fields that represent the two loads are shown together with the

point forces that replace them. C and D are coplanar but not concurrent. Point force C

can be replaced by two components E and F which are coplanar with D. F be added with

D to give R1. R1 can now be added to E to give Rwhich is the single point force resultant

of C D. R is scaled and found to equal 45 lbs, with a line of action 5.33 inches above

U. This point force resultant 7 represents a single load that could replace Si and S2.

The point force resultant of Si and S2 can also be found using moments, as shown in

(c). The three vectors are coplanar, R acts parallel to 7 and 5 towards the right, and

+ 15, so the magnitude of 7 = 20 + 25 = 45 lbs. Also, the moment of R equals the

moment of 7 plus the moment of D with respect to any point. Taking the top of bracket B

as a reference, distance d can be found:

MR/B MD/B MC/B

- (d)(45) = -(3)(25) - (15)(20)

d = 8.33 inches.

7 can now be placed on diagram (c).

The two methods check each other. S1 and S2 can be replaced by a 45 lb single spring

that is coplanar and parallel with them and positioned 5.33 inches above S2.

NOW YOU SHOULD BE ABLE TO FIND THE SINGLE POINT FORCE

RESULTANT OF TWO PARALLEL LOADS, BOTH GRAPHICALLY AND

WITh momEars. FD 9
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Point For Resultants of Solid Objects

0 5

0 3

10
lb

= 4.63 lbs/

R2 -12.3 1b5

The single point force resultant of the

.,r R=16.93'

"<e1
(b) Figure FD 21

solid object in figure FD 21 is to be found.

(c)

The object can be mentally pictured as if it were two simple objects, as shown in (b).

This type of object is called a composite object. (The composite objects presented in this

unit will be made up only of rectangular, triangular, and circular blocks. The centers of

gravity of these common objects can be found in an engineering handbook.) Each simple

object has a gravitational force field acting downward that has the same shape as the object.

For the lower rectangle the point force resultant acts through the center of gravity of

the rectangle (at w/2 and 1/2 from any corner) and has a magnitude of

R
2
= (6)(2)(4)(.257) = 12.3 lb

The triangular shape has a point force resultant that acts through its center of

gravity (1/3 and w/2 from the right front corner) and has a magnitude of

(6)(2)(3)(.257)
R
1

:1 4.63 lb
2

The two resultants are parallel, so a 2-D diagram (c) can be used to find the single

resultant 17 of Te".1 and R2.

R =
1

+ R2 = 4.63 + 12.3 = 16.93 lb

MR/X MR
1
/X MR

2
/X

(d)(16.93) = (2)(4.63) + (3)(12.3)

d = 2.73 inches.

T can now be placed with its correct magnitude, direction, sense, and line of application

in (c).

The composite member shown in figure FD 22(a) also has a single resultant. The resultant

is to be found using a moment equation. First, in (b), the member is mentally replaced by

three known shapes. The block and wedge are considered to be solid with their resultants



FD

0 3 6
lb

I

0
sin

2.71bs

ICY

0.94Ibs

R=12.56Ibs

(c)

4-;"

6'"

.10 .8 lbs

X

s,- ,10. e
0" Ib5

.7
0

(b)

Figure FD 22

21

acting downward. The resultant of the cylindrical hole is considered to act upward, and

all three resultants are coplanar. In (c) the three point force resultants are drawn in

2-D with their correct magnitudes, directions, senses, and lines of application. The

magnitude of the single vector resultant must be equal to the sum of the magnitudes of the

vertical forces.
R = 10.8 + 2.7 - 0.94 = 12.56 lbs acting downward in The

plane of the three point forces.

In addition, the moment of the resultant about some point X must equal the sum of the

moments of the individual parts about the same point.

MR/X = MF2/X MF1/X MF3/X

(d)(12.56) = (6)(10.8) + (10)(2.7) - (4)(0.94)

d = 7.01 inches from the right edge of the member.

WHEN A COMPOSITE OBJECT HAS POINT FORCE RESULTANTS THAT ARE

COPLANAR, YOU SHOULD BE ABLE TO FIND THE SINGLE POINT FORCE

RESULTANT FOR THE COMPOSITE OBJECT. FD 10



UNIT 2

EQUILIBRIUM DIAGRAM

WHEN YOU HAVE FINISHED UNIT 2, IF YOU ARE GIVEN AN ENGINEERING

STRUCTURE, (1) YOU WILL BE ABLE TO VISUALIZE THE 3-D FORCE

FIELDS ACTING ON THE COMPLETE STRUCTURE AND ON ANY INDIVIDUAL

MEMBER OF THE STRUCTURE, (2) YOU WILL BE ABLE TO CONSTRUCT

FREE-BODY (F-B) DIAGRAMS IN 3-D OF THE STRUCTURE OR ANY MEMBER

OF THE STRUCTURE USING POINT FORCES IN PLACE OF THE FORCE FIELDS,

AND (3) YOU WILL BE ABLE TO CONSTRUCT 2-D F-B DIAGRAMS OF THE

STRUCTURE OR ANY MEMBER OF THE STRUCTURE USING POINT FORCES.

Introduction

In Unit 1 you learned how to visualize force fields acting upon members and then how

to replace these force fields by their point forces. In this unit more involved engi-

neering structures and members will be analyzed. These structures will be shown in 3-D

diagrams with force fields and point forces. 2-D diagrams will then be drawn of each

member with the point forces shown. Only the relative positions of the force fields and

point forces will be considered in this unit. All the structures analyzed in this unit

will be in static equilibrium, that is, when they are acted upon by forces, they will not
deflect or move from their stationary positions.

Forces Between Bodies

Force fields acting upon a body are caused either by direct contact with another body

or by a magnetic or gravitational attraction between the body being studied and another body.

The force fields acting between bodies are always equal and opposite. This means that the

action (a force field) of body A on another body B will be equal and opposite to the action

(a force field) of the body B on body A. The point forces that replace the force fields

will be colinear, equal, and opposite to each other.

Copyright - 1971

D. E. Alexander
EQU 1



2 EQD

Figure EQD 1(a) shows an isometric drawing of a horizontal stationary beam H that is

loaded with a wooden block A, another beam B, and a concrete blocx C. Beam H is resting

upon two horizontal smooth supports D and E which are assumed to be rigidly attached to

the ground. All the force fields acting upon each member are to be shown in 3-D. Each
member is then to be shown in 3-D and 2-D with point forces replacing the force fields they
represent. Members A, B, D, and H are assumed to be rigid, homogeneous and symmetrical about
their vertical centerlines ( ct:s). These vertical areare in the same vertical plane.

Figure EQD 1

I

Di

t

(d)

The force fields acting upon each member are shown in (b). FF10 represents, the weight

of H but only a small section of this force field is shown. Each contact force field in (b)
is an evenly distributed force field. In (c) all the force fields have been replaced by
their point forces. Each point force acts through the center of its force field and all

the point forces are in the same vertical plane, that is, they are coplanar. Although, of
course, the four members are themselves 3-D and could not be in a single plane, the point

forces that represent the force fields between them are coplanar. This type of system is
called a coplanar system. The members are shown in (d) in 2-D with point forces.



Engineering Pins

Many times engineering members are connected to other members with round pins. Figure

EQD 2 will be used to analyze the force fields acting upon a pin. The force fields acting

upon weight W, pin A, fitting B, and cord C will be found. It is assumed that A, B, and C

are weightless and rigid and that pin A is frictionless. The system is also symmetrical

about the vertical of cord C.

EQD 3

(a) (b)

Figure EQD 2

(c)

In (b) the members are separated. It is further assumed that pin A has snug fits with

W and B and that uniform force fields act at each contact surface. FF
6
then acts upward

against the pin and is uniformly distributed over its contact area as shown. FF7 acting

against the fitting is equal and opposite to FF6. FF8 acts uniformly over its area and

must balance FF7. Since the pin is symmetrical about a vertical 4, FF4 and FF5 are equal

to each other as shown. FF2 and FF8 are equal and opposite to FF5 and FF4. Remember

again that all the force fields are assumed to be evenly distributed over their contact

areas.

In (c) the force fields have been replaced by point forces with each point force

acting through the center of its force field.



EQD

An isometric space diagram of a horizontal beam H, this time supporting a load P with

a pinned yoke B, is shown in figure EQD 3(a). Beam H is supported at its right end by a

roller C and at its left end by a pin E held in a bracket D. The system is coplanar, the

pins are friction free with snug fits, all members are weightless except H and P, and all

members are rigid. All the members are to be drawn in 3-D with force fields, in 3-D with

point forces, and in 2-D with point forces.

(c)

(d)

H

Figure EQD 3

6;1

(e)

In (b) all the members are drawn in exploded 3-D and all the for fields that act

against all the members are shown. All the force fields are evenly distributed. Notice

that roller C has line contact with its support and member H so its force fields FF, and

FF
2
are line fields.

In (c) the isometric drawings show the members with the point force resultants of the

force fields. All of these point forces act through the centers of the fields they represent.

The 2-D space diagram is drawn in (d) and the 2-D diagrams with point forces in (e).

Notice that some of the arrows in (e) actually represent two force fields.

AT THIS TIME IF YOU ARE GIVEN AN OBJECT THAT IS LOADED WITH VERTICAL

LOADS AND CONSTRAINED BY PINS AND ROLLERS, YOU SHOULD BE ABLE TO

PLACE ON 3-D DRAWINGS THE FORCE FIELDS ACTING UPON ALL THE MEMBERS,

THEN SHOW THE EQUIVALENT POINT FORCES ON 3-D DIAGRAMS, AND FINALLY

SHOW THE POINT FORCES ON 2-D DIAGRAMS. EQD



Two-Foroe Members EQD

Ff.;

(b) (c)

Figure EQD 4

An experiment is to be performed with rod A held by a student, as shown in fig'Jre EQD 4(a).

The student will load member A by pushing or pulling through the ball and socket joints

without moving member A. He finds from experimenting that he can (1) push his hands toward

each other along the of A or (2) pull his hands apart again along A's 4L . If he pushes or

pulls in any other direction, member A will not remain stationary.

Diagram (b) shows the force fields and the corresponding point forces that are the

results of pushing on the rod. The force fields FF1 and FF2 are equal and opposite. The

point forces F1 and F2 are also equal and opposite and colinear along the ct of A. Diagram

(c) shows the force fields and point forces caused by pulling on A. Again the point forces

are equal, opposite and colinear along the t of A.

The type of member shown in figure EQD 4 is called a two-force (2-F) member. A 2-F

member can be described as a member loaded only at two places by evenly distributed force

fields, and must therefore be weightless with frictionless supports at two places and no

loads between the two supports. When the two force fields are replaced by their point forces,

these two point forces must be equal and opposite and colinear with the t of the member.

Figure EQD 5

Ff;

jFz

/F4 (b)

FF4

/ Ffe
§

/
FF5

FI
Another example of a 2-F member is shown

in EQD 5. F1 and F2 must be equal and opposite

FF./ along the c of the 2-F member C, as shown in

(b). This mans that FF
1
and FF

2
must be equal

and opposite. FF5 and FF6 on pin D are equal to

each other. This means that for C to be a .2-F

member, the two hands must be equal distances from the t of C

and both must apply the same pressure. Of course, the hands

could both pull and the result would be the same with all the

force fields and point forces in (b) reversed. In addition,

F3 is equal and opposite to F4 and F9 is equal to F8.



(a)

EQD

Figure EQD 6

The structure shown in figure EQD 6(a) shows a weight W being supported by two members

A and B. The system is coplanar, that is, the es of A, B, and W are coplanar. A and B

are considered to be weightless and the connecting pins friction free.

Now, in (b), diagrams of A and B are drawn with their force fields shown. FF3 is

replaced by F3, which is on the of A. FF1 and FF2 are equal, so the corresponding point

forces F1 and F2 can be replaced by F4. F4 is equal and opposite to F3 and is also on the

st of A. Member A is also called a 2-F member, even though it is loaded at 3 places.

Wherever the loads on a member can be replaced by two point forces that are colinear with

the ct of the member, the member is railed a 2-F member. Member B can be analyzed in a

similar manner. It is called a 2-F compression member.

The structure shown in figure (c) is also coplanar and supports load W. In (d) Fri is

a uniform force field. Its corresponding point for is F1. 'FF2 and FF3 are avAl, so the

point forces F2 and F3 are also equal and can be replaced by F4. F4 must be colinear, equal,

and opposite to F1. A it of the member can be drawn along the action lines of F1 and F4;

this is called the effective ct of the member. Because this ¢ can be drawn, member C is

a 2 -F member. Member D is also a 2-F member with an effective t as shown. The actual

shape of a 2-F member is not important as long as an effective tt can be found.

AT THIS POINT YOU SHOULD BE ABLE TO IDENTIFY 2-F MEMBERS

AND THEIR EFFECTIVE S. EQD-



Forces with Unknown Directions
EQD 7

Figure EQD 7

(c)

P:4

F2

(')

Up until now members have been loaded so that the directions of the loads could be

determined by inspection. In figure EQD 7(a) and (b) weight W is constrained by a smooth

sloping surface at B and a frictionless snug pin A. The system is coplanar.

Because the surface at B is smooth, the reaction there is a line field perpendicular

to the sloping surface (this reaction is the same as it would be if W rested on a roller

at B). However, the direction of the force field acting on W at A is unknown. FF1 is

therefore drawn with wavy arrows in the cut-away view shown in (c), to illustrate that it

has no known direction. For the same reason, FF2, FF3, FF4, FF5, and FF6 on pin A and its

bracket are also drawn with wavy arrows. In (d), the 2-D diagram, the point forces Fl, r2,

F3, and F
4
are also drawn with wavy arrows, since their directions are unknown.

In engineering statics, members are connected by smooth surfaces, rough surfaces,

frictionless pins, rollers, ball-and-socket joints, friction surfaces and other means. On

the next two pages, figure EQD 8 illustrates some types of contact and distant force

relationships. Whenever the directions are unknown, wavy arrows are shown for both the

force fields and the point forces. The examples marked with au. asterisk (*) will be studied

in later cases; all others should be analyzed and understood at this time.
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Gravity

Point force acts
through the center

of gravity

I I

t

I

Magnetic attractions

Point force acts
through the centroid
of the magnetic field

Frictionless roller

Line contact,
resultant acts

perpendicular to
the surface

Frictionless pin

Resultant acts
"Irough the pin t,

its direction
oetermined by loading

Smooth surface,
line contact

Resultant acts
perpendicular to

the surface

Smooth surface,
area contact

Resultant acts
perpendicular to

the surface

3-D 3-D diagram 2-D 2-D diagram
space showing space showing
diagram force fields; diagram point forces

Figure EQD 8



EQD 9
Rough surface,
line contact

1- resulta:

of

.

1,y loadin;, an:

contact materia:-

3-D

space
diFxram

3-D diagram
showing

force fields

2-D

space
diagram

Figure EQD 8

------- ..
2-D diagram
showing

point forces

*Friction surface,

area contact

Direction of
resultant determined

by loading and
contact materials

Ball and socket,
no load between the
frictionless sockets

Two-force member,
resultants at each
socket are colinear

'Ball and socket,
loaded between the
frictionless sockets

The resultants at
each socket are

not colinear

Cantilever bean
Wild connection)

Resultants reA,Ice

to a syste-, of

Ilr,e forces

Shaft-bt: tr-Lni;

Resultant acts
perpendicular
to the shaft,

lirec'Hon determined
:., loading



Free-Body (F-B) Diagrams

Figure EQD 9(a) shwas a frame supporting two loads. These loads cause other loads to

be built up on each member of the frame. The loads upon each individual member can all be

represented by forces fields. Assunptions are made that all the members of the frame are

weightless, all the pins are friction free with snug fits, and all the members of the

frame have Cs that are coplanar, thus all the force fields are evenly distributed over

their areas of application.

Figure EQD 9

In (b) each member of the frame is drawn as if it is isolated with only the force

fields that act against it. These diagrams are called free-body (F-B) diagrams. Each of

these F-B diagrams will now be analyzed.

Member B is a 2-F tension member so FF
5
and FF

6
must be equal and opposite with known

directions. The force fields on pin E are FF28, which is equal and opposite to FF5, and

FF
26

and FF
27'

which are equal to each other.



EQD 11

D is also a 2-F tension member. FF
17

and FF
16

are equal to each other; in addition,

FF
18

equals FF19.

Pin M is acted upon by three other members: B, C, and D. FF7 is equal and oppositt

to FF6 on B. FF
9

a.id FF
8
are equal and opposite to FF

17
and FF

16
on D. Although rFil

and FF10 are equal and opposite to FF13 and FF12 on C, their directions are unknown so all

are drawn with wavy arrows.

Member C is acted upon by FF14, which is caused by weight Wl; FF13 an,' F1-12 which arc_f

equal and opposite to FF11 and FF10 from pin M; and FF15 (unknown direction) caused by pin F.

Pin F is acted upon by F ?22, which is equal and opposite to FF15, with FF23 and FF24,

all of which are represented by wavy arrows.

Member A has seven acting force fields. These are FF1 and FF2, caused by the roller;

FF3 and FF4, from pin E; FF21 and FF20 (unknown direction) from pin F; and FF25 (unknown

direction) caused by pin G.

(a)

Figure E. 10

(5)

The complete frame is drawn in figure EQD 10(a) as a 3-D F-B diagram with point forces

replacing the force fields. 3-D F-B diagrams of each of the members are -Lrawn with point

forces in (b).



EQD

C

Figure EQD 11

(b)

The complete frame is drawn as a 2-D F-B diagram in figure EQD 11(a) with point forces;

in (b) 2-D F-B diagrams are drawn with point forces on all the members. This type of 2-D

F-B diagram is widely used in engineering statics. To properly construct and use the 2-D

F-B diagrams, it is essential that you are able to visualize: (1) the 3-D F-B diagrams

with force fields, and (2) the 3-D F-B diagrams with point forces. Notice that single

arrows in the 2-D F-B diagrams can actually represent two separated force fields.

Some basic F-B diagrams are shown on the next two pages in figure EQD 12. They should

be studied at this time.

NOW, IF YOU ARE GIVEN A 3-D SPACE DIAGRAM OF A STATIONARY

STRUCTURE, YOU SHOULD BE ABLE TO: (1) VISUALIZE 3-D F-B

DIAGRAMS OF EACH MEMBER OF THE STRUCTURE USING FORCE FIELDS,

(2) CONSTRUCT 3-D F-B DIAGRAMS OF EACH MEMBER OF THE STRUCTURE

USING PO...11T FORCES, AND (3) CONSTRUCT 2-D F-B DIAGRAMS OF EACH

MEMBER OF THE STRUCTURE USING POINT FORCES. EQD 3

0,



EQD
In free-body diagrams such as these, all pins are assumed to be
frictionless and all members weightless, unless shown otherwise

13

Para:lel
point :Jrce
sys4em

Non -u; l form

loading reduces to

a single resultant
through the log's
center of iTravity

Forces cl'ting a,

contact ,urface;
are equal

and o; )osite

Lower fo,e field
is tralv. Tidal in
shape, with its

direction dependent
upon loading an.:
contact slat; ace

c(ndition.3

.,;go,. 10,

Since a L L the

constraints are
ball and socket ,

all the rnelat,en;

are two-force

3-D 3-D free-body 2-J 2-D free-body

space diagram showir- space diagram showing

force fielch, diagram point forces

Figure EQD 12



:71 free-body diagrams such as these, all pins are assumed to be
frictionless and all members weightless, unless shown otherwise EQD

0

Despite the bal
and sc (et at it.
bottom support,
the sloping pole

is not a
two-force member

Frame is made
up entirely of

two-force members

Loading &ten:lines
the direction of
the force field on
the left-hand pin

Direction of
force field on the
upper connection

is tu2Known

Many asF-nption,;

about symmetry are
made in the 2-D
free-body diagram

-D 3-D free-body 2 -U 2-D free-body
:pace diagram showing space diag-am showing
diagram force fields diagram poil,t forces

Figure EQD 12





FD

FD 3(A) Replace S2 by point forces

acting along lines a and b.

0 5 10Iwt l'"
0 5 10m

FD 3(B) Find the point force resultant

of S3 and S4.



FD

E4
hi

Fs
1Id / 9
1

\ A ,10.4.
(' D: 1

_.------51- N,, \ 1 i

1

`13,C
1

Mr3 / 4.-2

A4F3 /0 42

Mc:I/13 =

A F4/ e

16-

F5/1)
=

/1/1 F5/E =

M
F6/ D

A4F6/ E

Finish the moment equations using the correct signs.

0

25

11 1 1 1'7 lc)
o 5 lam

Find the moments of Sl, S2, and S3 with respect to points P and Q.



FD 6

O. 3
16/n3

FD

0 5 10,
PHIM

0 5 1011)

Replace S2 by point force components along lines c and d using

moment equations.

47 qib
in1

FD 10 Find the point force resultant of the composite object.



0 3 6 lb FD 27
I I i
0 3 6

ED 7 Find the single point force resultant of the 30 lb and 40 lb loads.

Use moment equations only.

FD 8

...11,

Find the point force resultant of the 25, 50, and 40 lb loads using a
force triangle and a moment equation. Check with direct parallelogram

addition.



28 FD

o io 20th

o s loin

(a)

.1110====mw.

(b)

(c)

FD 9(A) Use the parallelogram law to replace the acting loads with a single
point force in (b).

FD 9(B) Check your answer by using a moment equation in (c).



UNIT 3

EQUILIBRIUM ANALYSIS

AT THE END OF UNIT 3 YA: -1VLN A 3-. SiACF -F A . :ANA::

STRUCTURE mvi Is LOALLL WITH C',FLANAS YADE "-V, L, OF A

OF TWO-FORCE (2-F) ANL TEREE-FORUE IF TEE TI7CTUF:

COIISTRAI:iE AT TWO PLACES SO Ai TEE LIRECTIONS OF ONE CONSTRJ:INT IS KNWN,

YOU WILL BE ABLE TO FDD 7:41-2 REACTIONS ()N TEE STRUCTURE AT ITS CONSTRAI

=NO, F-g -)IAGRMS WITE FORCE F-B WITH 1-= 17.7ATT.

Introduction

The equilibriumdiagnims develoi:ea in Cnit 2 were u,=.ed to viFu,.1ize in 3-:

force fields acting upon complete structures and their indiviaual diaranc

were then constructea in 3-D and 2-2 with the force fields rseplace,i bv their :Jint fmr,

resultants. In this unit F-ti diagrams r.-,e used Idth tne parallel.',-ram law mr)m-n1

equations to determine tne lines of actian, direction-, :t-E.:e;z, ynd r.,14nituJe:- th-

fcrce resultants of the force fielas that are ,actin g on a coplanar ,ftruLture ti,

tructure is in static equilibrium.

Two-Force Members

In unit 2 you learned what a two-force (2-F) member is. When only two loads act upon an

object which is in equilibrium, the two point force resultants of the loads must balance each

other. To do this, they must be colinear with the effective 4 of the object, opposite in

sense, and equal in magnitude. This is called the two force principle.

Cc)

The 2-F principle is illustrated in figure EQA 1. In (a) object M is assumed to !-,c

weightless and loaded through two frictionless ball-and socket joints. FF1 and FF2 represent

the loads. Equilibrium of the object can be established by either pulling as shown in (b) or

pushing as shown in (c). r, and r2 rust be colinear, opposite in sense, and equal in magni-

tude. 7.1. and F2 are equal and opposite vectors, so vector equations can be written for them.

P
1

= - P
2

or P
1

+ P
2

= 0 or z:r = 0

EQA 1



2 EQA

Three-Force Members

Object M in figure EQA 2(a) is assumed to be weightless. It is loaded at tnree friction-

less ball-and-socket joints A, B, and C. Loads which are represented by FFI, FF2, and FF,

gradually applied while keeping the member M in stationary equilibrium. , ,

pojnt force resultants of their force fields.

ca.; u .1: I a:

:= c-.iin,! . ,

arall,,!1, 2) add the par.F:ile:-.4ram t- z,ro 3)

7andT,with rssect ar.v point in their p.,ane im 7:

(b)

Figure EQA 2

(C)

The system oluillt:riuln, so an. , 'no 1, bdi,Ince

, that ,, %.ber. Lne rt;. thei , : must L , '

, and . 1 n.ust T t-ht, I rh 2 r,hcil

mu, =, 1.), ti:'' 2-i princi:1-, w]th and oHual, il.i oplo:,:te to 7. it

: -t en shown tnat , . and their resultant 71 muLt copianar and eHther concurrent

.,,,ararte.1.Sincer,,211.1 7 DP colinear 'hen T 7 5 and must ne an c,
, 3

concurrent or parallel.

The results of these deductions are shoran in EQA 2(b) and (c). P2 and P3 are shown as

being concurrent with F1 at r in (b) or parallel to it in (c). You already know that since r2

and F3 are concurrent at 0,a parallelogram can be drawn at c showing F2 + F3 : Rl, as in (b),

Pi must be colinear with, and equal, but opposite to R1. For the parallel case in (c), r2

F3 equals R2 which is also colinear with, and equal, but opposite to F1.

For (b) FL + 73 = 71, but 71 =
15

sc T +
3

r. This bfacome'iT+F+7.-= 1

that can be written V" : O. in (e) r = 7 72 1 '2' R22 = -'1' s° r2
3 1.1cr Z T = O.

A random point ran be chosen in the pLane Qf 7

Pow in (b) fn. X- + anc t ion >1
F 3/P

.7 MR
/P

1



EQA 3

Cori ining these gives !. co. IprisT,/. . F3/: F-

= 0 which can be writtenZ:M;, = 0. Again In (c) + + : 2-"r =

Sc for either (b) or (c), f F = 0 ano = v where P an. 11

of 71, T2, and F3.

A principle that applies to a member which is loader; at only three places can now be

stated. When an object is in equilibrium under the action of three loadsitne

resultants of the loads must (1) be coplanar, (2) be concurrent or parallel, (3) add with tho

parallelogram law to a zero resultant (EP = 0), and (4) the summation of the moments of the

three point forces with respect to any point in their plcine must equal zero (E.. ).

Thisis called the three-force (3-F) principle. This principle will now be applied to find tht
reactions on some simple structures.

Three-Force Member Reactions

C

b-30"

(c?

Figure EQA 3

I

ro
(6)

Member A shown in figure EQA 3(a) and (b) is symmetrically loaded by weight B, con-

strained by a frictionless roller C and a frictionless pin D, and is assumed to be weightless.

Since member A is loaded at three places, it is called a three-force (3-F) member. The acting
load is weight B. The loads acting against A at C and D are called reacting loads or reac-

tions, and the point force resultants of these loads are also usually referred to as the
reacJons on member A. The point forces representing the reactions on member A at C and D
will be found using the 3-F principle.

Remember that if member A is symmetrically loaded by weight B that the vertical 4 !srl
A and B must be coplanar.



EOA

} I lo}r H1 I

30 lb

i-irst a diagram is drawn to scale A. in (c). p1

drawn, with D, rolier C, and weignt h remover. 'F and can be 71c' t in :11.

'ex/ 7
1
dnu T are superimposed upon the tiagtar. i:.t :srce repidc_e it

and of course acts through the cen:.,.r ot its !drde Nov andand inten,,ect p

P. 7 must therefore act tnrough the o! hole F an,-; :),-;0 can r,

diagram. PF3 nas the same Lriredtion as 73 and can aLS Le plddec on the diaera.%.

(._) is now a 3-D F-B diagram of merzr A.

The directions. 3ensec, and lines of action d did 7 are now wa, It:

ldiu out to :rcale at point

a,tron Lines of F. and 7 '3 are extended through 'oint . 'Inc a is drawn from t.10 ,

arallel to 7 , line a i Cr&dri from the tail of 7 parallel to F . Next a!r.

radded on 7, and 73 at point F. A parallelogram no nit; ,eon constr. :dted : int (,

is equal and oppcite to the single pc:nt re,ultant of 7 plu,7 . .nat

tne parallelogram at P shoo:s +.73 = (n = cr.' 7 +3+ = E 7

Altnougn tne parallelogram in (c) , dra%n to scale, it is difficult to med=ure

magnitudes of the point rolces in an Isometric view. ror this reason 2-D didgrIg (a) i

drawn. 7'
1'

7
2'

and are coplanar in (c). New the .airLE, procedure in (d) ar in (c) will

give the directions, senses, lines of action, and magnitude, of 7, and r3. 2i Wiaran, (d)

is drawn to scale. T
1
and F2 are placed on their correct lines of applicatien,2, ahu xt

to meet at P, 73 is drawn through the ct or hole D and i. This completes tne 2-D F-B

diagram. Now a parallelogram is constructed to scale at F with 71 as its revered riagrvi

and F2 and T
3
as its sides. 7

2
and F3 are measured giving P2 = 18 lb and F3 = 34.. IA .

'2
and F3 are now known, they are the point force resultants of the force field:, actin'

against member A at C and D.

The magnitudes of 79 and T3 can also be founu using 2-D F-B diagrams drawn to so-

and moment equations. The 2-D F-B diagram in figure EQA. 4(a) is drawn to scale and will

used to find the magnitude of 72.

In (a) 7, and 72 are placed in the diagram and as before intersect at P. can

be drawn on the diagram as it acts through the t of D anu point P.

MF Hp. M. must equal hero with respect to any point. Point D (the ie )

1 2 3
.111 be used as a moment center to find F.>.



(a)

EGA 5

5 ",Iii, ti1
60 /6

Figuce EQA 4

Line a is drawn from the of E perpendicular tc the line of action c' 1:ne :

drawn from the ¢ of D perpendicular to the line cf 7 The :e :1gths a di.:

are 3 inches and 5 inches as shown in figure EQA 3(b).

Now m + m_ + 0 or MD = 07
3
/D

1
/D -F

2
/D

. (3)(30
(s)

(0) (F2) (a) (F,) + (D) tF2) = 0

(0) (F
3

) (3) (30) + (5) (F
2

) =

F-13diagramMwillpeusedtcfindtc-7,As 1)elore 7- 17,, anti

intersect at P. Next a point X is chosen as the line o: aLt:on of 7
2'

Perpendicular

can be drawn from X to the line of action of F'1 and :t ; lenItn scaled. Next line

drawnfromXperpendiculartotnelinecfactionofrLine d is scaled as 3., inched;.

f M
X
= 0 or M

F /X
+ E

F /X F /X =
0

2 1 3

(0) (F ) + (4) (30) - (3.5) (r ) = 0
3 F3 (4()3(.()))

Li

These answers check with those found by the direct paralleloonam law additicn.

(a)

figure EQA 5

.32 /6

an)

The 3-F principle will now be used to find the reactions at A and B for 3 -i '

shown in figure EQA 5(a) and (b). The system is coplanar, that is the is of M, B, A, and
T are coplanar. Me.nber M is weightless, and the connections of B, C, and A are frictionle-.

It is not necessary to drawn a 3-D F-B diagram as the system is coplanar, however it

is always necessary to visualize the 3-D F-B diagram.



3216

A

EQA

A 2-D F-B is in :igJre b(a) arc

lines of action. The act line ..-: mt.st Int- (:no )

(the intersection point c: 7 anc T. ). cin 7
Lelanci:Ig the know. 7c. Scaling th- = an.

FR = 28.3 lb.

drd..71 tC

Figure EQA 6

F-

(b)

40lb

Instead o. constructing a parallelogram at the point of concurrency, it is also possible

to find the magnitudes of PA, rip and Pc with the device shown in (b), called a closed force

polygon. To construct such a polygon for these forces, a line representing the known point

force Pc is first laid out to scale a-ywhere on the figure but parallel to Fds line of action.

From the head of r a line is constructed parallel to FB and from the tail of r another

line is drawn parallel to FA. The intersection point of these two lines determines the head

of FB and the tail of A.5 FB and P
A

can be directly measured on th, polygon. Comparison of

figures (a) and (b) indicates that the closed force polygon method nalt n:

rce parallelogram , and that the results found with the two methods wi!1

However the closed force polygon method is more convenient since the pohgcn luire, fe.d,

linos ana need not Le construct at the point of com:urrencv n! the f;,rnc

To find F
A

and F
B
using moment equations, another F-B diagram is drawn to scale in figure

EQA 7. Again the action lines of rip Pc, and FA are concurrent at point P. To find Fa, con-

struct and measure lever arms a and b and take moments about the (t. of pin A.

a = 11.4 inches and b = 12.9 inches

::14A = °

+(11.4)(32) - (12.9)(F
B

) = 0

F
B

= 28.3 lb

To find FA, construct and measure lever .zus c and

d and take moments about the It of pin B.

c = 5.4 inches and d = 6.8 inches

-(5.4)(32) + (6.8)(F
A) = 0

F
A

= 25.4 lb



EOA

GIVEN A 3-F MEMBER LOADED AT ONE PLACr AND CONS?RAINED

AT TWO PLACES ONE OF WHICH HAS A RE/AcisION OF KNOWN

DIRECTION, YOU SHOULD BE ABLE TO DRAW TI-1 NECESSARY Fn

DIAGRAMS AND FIND THE REACTIONS AT THE CONSTRAINTS USING

A FORCE POLYGON OR MOMENT EQUATIONS.

Reactions on Structures Containing 2-F and 3-F Members

7

EQA-1

The coplanar structure shown in figure EQA 8(a) and (b) consists of two rrimbers

loaded at their concurrent point. The loads on members Ai: and BC are to Le fOU:1:.

5/
i I i i I

0 56

Figure EQA 8

A 2-D F-B diagram c) the structure is drawn to a larger in (c).

act along the effective cts,f their mambers as shown. At P the t,in is left in !L

structure, the load W and 1t3 vertical supporting :hank are removed, and 7,

acting downward through the pin. The closed for pAy4on in (d) can t,e, conntrucI.-c: tr,

scale, and the magnitudes oc forces LAB and :' can be measure:. FAB = 43 IL anl

F
BC

= 69 lb.

Also in (c) momont equations can be used to check the values found for :n

The action lines of all the point forces are known, so perpendicular lever arm: can be

drawn and measured, and the equations can be completed.

To find F
AB c = 0

+(11.1)(F
AB

) (12)(40) = 0

FAB = 43.2 lb

To find F
BC

-(12)(40)+ (7.0)(FBc) = 0

FBC = 68.6 lb

The answers check with those found by parallelogram addition.
AB
and FBC are of course

the point force resultants of force fields that act on any transverse section of AB and BC.
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The structure snown in figure EQA 9(a) and (b) is Jsed to support a

reactions at B and D are wanted. The mempers are assumed to be weightless, :cplanar,

joined with frictionless pins.

Figure EQA 9

5 0

2o6 zproi°

The F-B diagram shown in (c) is drawn to a larger scale. P
A is known, so it can be

placed on this F-B diagram. Since member CD is a 2-F member, the line of action of P
D

can be

placed on the F-B diagram, and because FB must be concurrent with FA and rp at point 0, its

line of action is also known. The polygon drawn in (d) shows the magnitudes and senses of FB

and PD.
F
B

= 85.5 lb and F
D

= 101 lb

The same F-B diagram in (c) can be used to find lever arms to use in moment equations:

FMB -0 E MD = 0

-(6.43)(F
D

) + (13)(50) = 0 (2.34)(FD) - (4)(50) = U

F
D

= 101 lb FB = 85.5 lb



EQA

ra:re ABC suppc)rts in 55 1: 1-.>ac '-hro'...41. a pulley a',

wei7htless with frictionle,;s hihs. The hcint re;u7tAnt,F of reaction

and the lr.ad on 7,-=nt: AC are

7'--e-L3"1
(e)

5"

Fiyvie EQA /0

9

A. 3-D diagram of member ABC is drawn to scale in (c). The pins at A, i3, and C
;removed in this diagram but are left in the frame.

The ';racket;
are removed at A ant_:the pulley is removed at B.

Notice in (c) that if the pin at C renoved, the redction at C would con,,lst or-
force field pushing against mamber AC in one direction\ and t,,.c force hushinc
against BC in another direc,ion

. Now if the pin ig left in the structure at C, tw-

FArallel force fields .'Fl and FF2 act vertically up,4ard against the pin, hince the br:o,,
at C is supported by horizontal rollers . These two force fields Fri and FF2 are call's;

the reactions of the bracket against the structure at constraint C. The pins then are '

in the structure when finding reactions whenever more than one member is attachei to 1 Tin
at a constraint. The directions of the force fields acting against the pins at A and B

cannot be determined by inspection, the directions of their point force resultants wil.

found using 2-D F -B diagrams and then 3-1) F-B diagram (c) will be completed.



4"

1MA 0 504

(F, ) = 61(7a)

6-ifth

Fr2

(4)

F.71

55'6

2-D F-B diagram (d) is t.: sca.L4,. tn: (L),

is shown in (d) acting vertically utward agdinbt the o::. -c rY

it actually represents tuo cenarate force

Next 1-B (e) of the Dt.Illev tc , are e,Jal

(e) on their correct line,; o' action. !:),,cc,, (.) :P dr. rn if 7-2, .- 9

TB in (d) is equal ,ind op-cosi-,e to _n (e).

F-B (d) can now be com-lcted, T. and 7 11:er-eLt z 7 CIL L7,0 idc:1 in :t, c

line of action, :orce p;:slygon car tie. draw:., sc to ea- re- in (p).

is double slasned to shwa that it reur.-ents twc 'Throe

Using the direction;- cl rho rot :oro, in (d) tne th-ir re(-

in (c), diagram (c) can now re completed. 3-D diagram (c) ; u(-uallv no L it n. 't

visualized from (a) to reailv understand what the `cant forc,, in Inc :-D _ti,:gram (d)

actually represent.

2-D F-B diagram (h) is drawn to scalf- to find the 'tint torce resultant o: thc 'cal

acting on member AC. Members AC and BC are 2-1' member-, :;o their point _crce^ act calm. t:1,

effective 4'.Z.s.

AC
7 and Tlic are pldced on their correct line_; of action in (h). :orc-

polygon (i) are now be drawn and the magnitude of 17,v2 can be measured giving,
FAC 11

As soon as the directions of the uoint forces are e'ltablished in (d) and (h), moment

equations could be used in place of the force polygon. The magnitudes of T and T
A.

found in the figure using moment equations with measured lever arms.

NOW IF YOU ARE GIVEN A COPLANAR STRUCTURE THAT IS SUPPORTING A COPLANAR LOAD

AND IS COMPOSED OF 2-F AND 3-F MEMBERS AND CONSTRAINED AT TWO PLACES ONE OF

WHICH HAS A KNOWN DIRECTION, YOU SHOULD BE ABLE TO FIND THE STRUCTURE'

REACTIONS OR THE LOADS ON ANY 2-F MEMBER OF THE STRUCTURE USING FORCE

POLYGONS OR MOY7NT EQUATIONS WITH THE NECESSARY FREE-BODY DIAGRAMS. EQA -2



EA
Combinations of 3-F Members -- Combined Diagrams

Figure EQA 11(a) is an isometric drawing to scale of

two smaller pipes B and C. Each pipe is assumed to be of

assumed that each pipe is rigid so that the line contacts

ing structure are uniform. The point force resultants of

the supporting walls on B and C are to be found, first by

with force polygons.

5" 0"
fel 1

50/b 100 /b

a large pipe A being supported Ly

uniform weight per foot. It is also

between A, B, and C and the sJpport-

the reactions of B and C on A an of

using moment equations and then

Figure EQA 11

End views of the pipes are drawn to scale in 2-D in (b). Since the pipes are of uniform

weight per foot and all have the same length, the point force vesultants of all the loads act-

ing upon A, B, and C are coplanar. In (c) F-B diagrams of each pipe are drawn to scale in

2-D.

Pipe A has three point forces on its 2-D F-B diagram, WA is

by B on A and acts perpendicular to the contact surface of B and

C pushing against A is perpendicular to the contact surface of A

Pipe B has four point forces on its 2-D F-B diagram. 08 is

and opposite to R2, and R7 and R8 are caused by the left support

the weight of A, R2 is caused

A, and Ri which is caused by

and C.

the weight of B, R4 is equal

acting against B.

The forces acting on the F-B diagram of pipe C are its weight 0c, R3 equal and opposite

to R1, and Rs and R6 caused by the right support pushing against it.
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Now moment equations will be used to find the magnitudes of Ri and R, on A, R7 and R, on

B, and R5 and Pi on C.

To find R2 on A, a point X is chosen on the line of action of 17\1 as shown in the F-B dia-

gram of pipe A. Perpendicular lever arms a and b are drawn and measured.

a = 12 inches and b = 10.8 inches

(0)(R
1
) - (12)(R

2
) + (10.8)(140) = 0 R, = 126 lh

To find R1 a point Y is chosen on the line of action of R2. Lever arms c and d are

drawn and measured.

c = 11.2 inches and d = 8.2 inches

Erb =o (0)(R
2
) + (11.2)(R1) - (8.2)(140) = 0 R = 103 lb

The F-B diagram of B can now be solved. R4 = 126 lb and Wb = 80 lb, so the two unknowns

R
7
and R

8
can be found.

E M
G

= 0 (0)(R
7

) + (0)(80) - (21.2)(R
8
) + (0.2)(126) = 0 R

8
= 104 lb

E MH = 0 -(13.2)(R
7
) + (13.2)(80) + (3.8)(126) = 0 R

7
= 116 lb

Now the F-B diagram of C can be used to solve for R5 and R6.

(14.0)(R
6
) (14.0)(50) - (6.9)(103) = 0 R6 = 101 lb

(17.8)(R
5

) (15.4)(103) = 0 R5 = 89 lb

To find the reactions on each pipe with force polygons, the F-8 diagram of A is redrawn

in figure EQA 12(a) and its force polygon is drawn in (b). Rl and R2 are then scaled. The

F-B diagram of pipe B is redrawn in (c) and will be used to find R7 and R8. Since 09 and R4

are known (R4 is equal and opposite co R2 found in (b)), these two point forces can be added

to give R9. A four-sided polygon can De used to find R7 and R8 directly. To do this, OE is

first laid out to scale, then R4 is laid out from its arrowhead. The polygon can then be

closed with R7 and R8, just as you would close a three-sided polygon.

Now a F-B diagram of C can be used to find R5 and R6 using a four-sided force polygon as

shown in (f). R
3
is first laid out to scale, then 71 is drawn to scale from its tip. R

5
and

R
6

close the polygon and can be measured.

When drawing four' -sided polygons, the forces are usually added in clockwise order around

the concurrent point, always starting with the known forces.

Notice that R2 and R4 in (6) and (d) are equal and opposite. The two force polygons for

A and B can be superimposed upon each other as in the top half of (g). That is, force poly-

gon WA, Rl, and R2 from A can be drawn as before. Then WE and R4 can be laid out with R4

superimposed on R2 and pointing in the opposite direction. R7 and R8 then complete the force

polygon for B. In the same manner force polygon R3, 0c, R5, and R6 can be superimposed on the
figure. This is ce.led a combined force diagram.
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(a)

(9)

Figure EQA 12
/ /0014

(b)

Also notice that A is a 3-F member since it has one acting load and two reaction loads.

Although B has two acting loads and two reaction loads, the two acting loads 03 and R4 can be

combined into one acting load. The sage applies to pipe C. Pipes B and C are then also

called 3-F members. A 3-F member may be acted upon by any nunber of coplanar loads, as long

as it has only two reactions.

As another example, the reactions on the cylinder B and the member AC in figure EQA D(a)

and (b) will be found using a single combined diagram and then checked using moment equations.

Figure EQA 13
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2-D F-B diagrams of cylinder B and member AC are drawn to scale in figure EQA 14(a) and

(b). The outside reactions on B, Ri and R2,are found using the triangular force polygon shown

in (c). 0
AC

and R
3
are then added to give R

5
as shown in (b). The line of action of R

A
is

now known since Rs, T, and RA are concurrent at P. Now the force polygon in (c) can be com-

pleted with 174AC, RA, and T and the magnitudes measured.

Iwo -8o*

137/6= R,

5
itfitI

/00 1b

(a)

Ra= /5qth
51,

Figure EQA 14

Note that the unknowns in F-B (a) can be found by summing moments about points X and Y and

the unknowns in FB (b) can be found by taking moments about points A and C.

GIVEN A COMBINATION OF 3-F MEMBERS, YOU SHOULD NOW SE ABLE

TO FIND THEIR REACTIONS USING 2-D F-B DIAGRAMS WITH COM-

BINED FORCE POLYGONS OR MOMENT EQUATIONS. EQA 3
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CSC

UNIT 4

COMPONENTS - SUPERPOSITION - CANTILEVER BEAMS

WHEN YOU HAVE COMPLETED THIS UNIT, YOU WILL BE ABLE TO:

(1) FIND THE REACTIONS ON A STRUCTURE MADE UP OF a) A 2-F

AND A 3-F MEMBER OR b) TWO 2-F MEMBERS USING MUTUALLY

PERPENDICULAR POINT FORCE COMPONENTS, (2) FIND THE REAC-

TIONS ON A STRUCTURE MADE UP OF TWO 3-F MEMBERS USING THE

METHOD OF SUPERPOSITION, AND (3) FIND THE REACTION ON ANY

VERTICAL SECTION OF A CANTILEVER BEAM WHICH IS SUPPORTING

A TRANSVERSE LOAD.

Introduction

In Units 2 and 3 vou learned how to construct F-B ::iagrams and fin:'; the unkho,.-,7n n

on coplanar structures that are in equilibrium using, ,%raohical n

the parallelogram law. In this unit the technique of drawing F-B diagrars and u:,init

parallelogram law to firl reactions on coplanar t,tr:ctures will be expanded tc inclutc

use of mutually perpendicular (orthogonal) components ;:f the forces in arithmetic t

moment equations. Another basic tool called surerpos!tion will bu deve2

tne direct parallelogram iurc2 ecuations and moment equations will be u,---ed 1.52 fin! ti,.,

reactions on the rigid connection -f a -antilev,,r beam.

Use of Mutually perpendicular Compcnents :or Feactions

4ir e cSC /
A weightless member M is loaded with a coplanar 32 pound pull and is supported h

roller at B and a frictionless pin at A. The reactions at A and B ar< to be found. The;T>

reactions can .;,a found only with the three force principle as developed in this pres.ntdtion.

The three force principle will be used to find the reactions using five different metho-I'::

1. By direct summation of the point forces.

2. By direct summation of the moments of the point forces.

3. By summation of mutually perpendicular components of the point forces.
4. By summation of the moments of mutually perpendicular components of the point fr/.
5. By a combination of 3 and 4 summation of mutually perpendicular components and

summation of the moments of mutually t'erpendicular comp) rents.



Direct Summation of the Point Forces

! /die
, go / 4

(C)

The first method has already been developed. The free body (d) Is dro,,,n to
scale with F0 and 7

b
as shown. and

B
intersect at point P so

A can De pThcei -n the
free-body diagram. rc is known, the force

parallelogram can be constructed to scale and the
magnitudes of T and T

b
can be measun- 1. The three dimensional fre'A (c) can now be

drawn.

Direct Summation of the Moments of the Point Forces

Measuring a = 11.414 b = 12.9'4

£ M
A = 0 aF

C
+ bF

B
+ OF

A =. 0

(11.4)(32) + (12.9)(F
B
) = 0 FB= 28.3 lb

CSC

= 29.3
43 Alpts..4/4

2.T3,

=32/6

(cl
Fc = 22 /6

Measuring c = 5.4'4 d = 6.8'4
£.MB = 0 cF

C - dFA + OF
B

= 0

(5.4)(32) (6.8)(FA) = 0 F
A = 25.4 ib

(e)

The second method has been develoreo also and b; shown in (e). Again a free-l>=
(e) is constructed to scale with F and T

B
shown. To find magnitud, 1. 7 )

are taken of TB and with h respect to point A as shown next to c 2!).

A is nog _:rawn in
its correct location with its line of action passing thrcugh points A an P. Moments with
respect to B as shown next to (e) give the reaction at A. These magnitudes ci and
can be seen to check with those found by the direct summation of forces. The three dimensinn,11
free-body diagram for this solution is (c), exactly as in the other solution.

Summa ion of Mutually Perpendicular Components of the Point Fc-ces

The third method uses the principle that the three loads acting upon M can be replaced

by their three point force resultants and these point force resultants can be replaced

point force components without altering the equilibrium conditions of the system. Mutually

perpendicular components or orthogonal components are used because mutually perpendicular

components depend only on their resultant and are independent of each other. It is customary

to make one of the components horizontal and the other vertical, as measurements are usually

taken from horizontal or vertical lines. Horizontal and vertical Tv (mutually pert.enTh_ularcily
perpendicular components) of point force V' are independent of each other because 7/, cannot
be replaced using the parallelogram law with

any set of orthogonal components where either
o -e of the set is vertical.

2/6
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FBY

4-x

(3)

CSC

FAv = .7q4 FA

Fc:v= 30La

3

Member M is first drawn to scale (f). Tc, FB, and FA will be placed in order in (f)

and then their horizontal and vertical components will be shown with them.

T has a magnitude of 32 lb and a direction of 20° from the vertical so its horizontal

and vertical components can be found with arithmetic equations. r.'c is drawn dashed at C.

Then a parallelogram is drawn showing To being replaced by horizontal (FCH) and vertical

(T
C

) components. The slope( = 20° ) of r is known so

r F
V

sin
CH= T cos

CV
= 14--

C

7
CH

= (32) (sin 20° ) = 10.95 lb F
CV

= (32) (cos 20°) = 30 lb'

These components can be placed at point C It is not necessary to construct them to an

exact scale, but it is best to show their relationships to -fc to scale as shown in (f).

13
acts perpendicular to the wall so its direction is known. Using the slope Lox of

3/8/8.55 the following relationships hold

F
B =

F
BH =

F
BV

8.55 8 3

or F
BH

= .936 F
B

T
BV

= .351 F
B

These components written in terms of FB can be placed on the free-body diagram at B.

F
A acts through points A and P. The slope of T A can be measured and is found

to be 52.5°. These relationships also hold

cos 52.5o= FAN
FAH = .609 FA sin 52.5° = FAV

F
A F

A

F
AV

= .794 F
A

I
AH

and FA
N

can be placed at A as shown in (f),

FA, FB, and FC are concurrent at point P and can be imagined to act at P. At P for

equilibrium to exist, the three point forces add to a zero resultant T, that is TB +
FC

+

FA = TR. = 0. This zero resultant will have a zero horizontal componer 17/./ and a zero

vertical component RV where 711 =
FBH + FCH +fAH and r TEN + Tcv + TAv.

The horizontal and vertical component sets are colinear, so using signs of fiq. and
, the magnitudes of the components relate to each other as

FBH FCH FAI4 RH (
FFI

) FBV
FCV FAV = RV = 0 (2;F = 0)
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.3C.,

Another way to visualize that FA,
: FCH FBH

0 and
FAV TCV FBV "5 shown

in (g). First, since T,, r,, and
A add to zero and intersect at P, then ..2E

must equal zero for the three point forces. Next the force polygon for the three

forces is drawn in (g). Notice that when 7
'

and F
A are replaced by their vertical

and horizontal components in (g) that FAV +
FBV FCV 0

and r + F - r
H

0
'CH F "B

Now using signs of 41.- and 4-t

4-F -F
CV
+F =

nBy AV

Substituting lc-a V = 3 -5-/ C8

3 /6
. 7 9 Cq

.351 FB - 30 + .794FA = 0

A.< 6-/

FAN

0
FBI! CH 'AE

.34. ATe

/6 95 /6
609 A-4,

- .936T
8 -A
+ 10.95 + = 0

Solving the two independent equations for the two unknowns gives the magnitudes of

TA and TB. F
A

= 25.4 lb F
B
= 28.3 lb

These answers check with the other methods. Again the actual 3-D F-B diagram for

this solution is still (c).

Summation of the Moments of Mutually Perpendicular Components of the Point Forces

It has been developed in the fundamentals

section that the moment of a point force is

equal to the sums of the moments of itc com-

ponents. If the direct moments of the point

forces equal zero with respect to any point,

then the moments of the components of the

point forces must also equal zero with res-

pect to the same point. This principle will

be used in method four. First a free-body

diagram (h) is drawn with the three point

forces shown replaced by their components

as in method 3. To find F
B
moments are

taken of all the components with respect to

point A. Distances used are shown on the

free-body diagram.

5Z5°

I

(A

.11A

(0)(F
AH

) + (0)(F
AV

) - (12)(F
CV

)

(12)(30)

+ (0)(F
CH

) + (8)(F
BH

) + (15)(F
BV

) = 0

+ (8)(.936F
8

) + (15)(.351 F
B

) = 0

To find F
A moments are taken with respect to point B.

F
B
= 28.3 lb

FMB= 0

(0)(F
BH

) + (0)(F
BV

) + (8)(F
C1)

+ (3)(F
CV

) + (8)(F ) (15)(F
AV

) = 0
+ (8)(10.95) + (3)(30) + (8)(.609F

A
) (15)(.794F

A
) = 0

FA = 25.4 lb
As always the results check with the other methods and the actual free-body diagram i,



Combination Method

24,

(.4)

This method is a combination of 3 and 4 without using point P. F-b diagram (.i.) i.

drawn and fc, fa, and FA are replaced by horizontal and vertical components. Tem anu Tcv

are shown on the F-B but their resultant fc is not shown. `CH and 1
CV

aro. drawn so that

To/ is approximately three times as long as TcH. As before Feu = 10.95 lb and Fey = 30

Now I
B
is replaced by FBH and TI

M
in a slightly different manner than before. Insteai

of relating both of them to their resultant, FBH and FBV are related to eac:: other. 17
RH

is labeled and F
BV

= 3/8 F
BH (remember the slope of I

B
is 3/8/8.55).

Next the direction of; is guessed and T, is reblecec by FA14 and Fivi. No relaticn-hi

77 7:have been established yet between
A , FAr., and F

AV'
so F and t

A';
are merely shown actl:..

Ali

through the of pin A.

M
A

= 0 will give F
"EH

(12)(30) = (15) (3/8 r
BH

) + (8)(F
BH

)

F
BV

= (3/8) (26.4) = 9.9 lb

26.4- + 9.91. = 28.3 is

F
BH

= 26.4 lb

FB - V FBH2 FBV2-

The magnitudes of FBH and FBV are now placed on the F-B diagram.

FH = 0

FV=6
FA=

10.95 + F
AH

= 26.4

F + 9.9 = 30

/20 + 15.45t = 25.4 lb

= 15.45 lb

F
AV

= 20.1 lb

The slope angle pethat FA makes with a horizontal line at A can be found

Cos 0,- =
FAIT 15.45
F
A 25.4

.608 = 52.5 °

Notice in this last method that only components are drawn on the F-B diagram. It is

best to put the magnitudes of the components on the F-B for a quick visual check. Also

the 2-D F-B need not be drawn to an exact scale as no measuring is done on the F-B diagram,

all measurements can be taken from the original space diagram (b). As before however the

actual F-B diagram is still (c).



C Ste'
Combination methods will now be used to find the point force resultants of th-.

reactions on three coplanar systems.

t.xample 1

8y = 9 4 /c4

.2 /6'7
Weightless cables OA and 08 support a 26 lb load. he reactions at A and is are to be

found, FB (c) is drawn, T is replaced by Tx (10 lb) and Ty (24 lb), B (actually TB) by
E
x
and I-3-

y
(B
y

= B
x as the slope of 08 is 1/1), and T by Ay and 7

x
(A
x

4/3 A`)

iT°261b

1213

5 -/gure CSC'

To find B

2EM = 0 assume T acts at point 0A 8x =61

(3)(l0) - (4)(24) + (9)(3x ) - (2)(B
x

) = 0

9.4/6 g= /38,1 z 4, 4 ,6 Ry =

Gha k-

Example 2

3/6
/94 y, 44 to
/ 4.4 7' 9.4 7 .4

To find A

°

(5)(10) + (5)(2u) - (9)(A )-(2)

04/ 3 A ) =/''y <;/,

/ 9 -5z "

CSC

3-F member ACD and 2-F member 3C are weightless and coplanar. The pins are frictionless ;.

The reactions at A ana B are to be found. r 2, 4
F-B (c) is drawn. BC has a slope of 6/2.5 so F8 can be replaced by -gi.4 and Ey ( 6/2.5 B ).

Tv and TH complete the F-B diagram.

(2, 9)(8v) 7,

ec 4- -

(3)66>
av z

0

/ 7.S /á
(2,4) 51, S -57. a /4

(c-Iig I.) 74 (s)(/4z ,s/C9 /6 =

44"

(-5-)C
7.?

4,

0.-c)

-5./4

(,

fFv -= 0
//".2 : 348

-
/61 cp



4-- ramp / <

The

CSC

ay
2.5° 2 /.5.-

2 6,4'5 a, C1/:

30 lb,. -*-
Ty ,= 5/ 9

7L. 9 16

60 /4

CH': 30 /6

.57 9/6
-7-V 5,-2 60 °

C = .5-/ 9/e
= 0

io
£A-A/:, 0 z-,474, -0

giues .30
: 9 le

E.,' o 0

(IC )(L3H f - (', k3v
7c (2

()(",-,-?, ) 176 (%31,, )

3)(30.) ( ) /

8v g /2 3
8A, = 26,9 /6 -.1-

', LTjv

v ..5-/ 9 / 2,3
1 2 'e

-9y = 30 24,
3 4; /6 s/:--;gore C--5C 4

coplanar frame supports a 60 lb

members are weightless and frictionless.

F-B diagrams (c) and (d) are drawn, the pin at C is left in (c). All forces are

replaced by horizontal and vertical components. It is not necessary that the components ar'

drawn "pushing" against the frame, for instance at B components BH and By can be drawn

"pulling" on the frame.

F-B (c) can now be completed as shown in the figure. Then the components at C (Cv and C,)

at C on the frame (d) are equal and opposite to the components (Cy and CH) at C on the .they

(c). So with Cy and Cp known, F-B (c) can be completed.

cti re- 1e- 0 r 6 4 3 /b

C23)(3 4) ,1 (2109 2) t 2, 3) (3)(26.14) s / 2 9. /
/ / 7 7 ,27 , 7114 3,2 °

Some cardinal rules in engineering statics. Remember when solving for reactions using

2FH = 0, 2: Fy = 0, and 2rM = 1) Always draw F-B diagrams;put all component magnitudes as

they are found on the F-B diagrams, this will give you a quick visual check of your work. Do

not put spatial dimensions on the F-B diagrams, use the dimensions from a space diagram. 2)

Always check your work with an independent method. 3) Always do neat work that you can be

proud of.

load. The

Avg 64 2 /6

reactions at A and B are w nted if all

AT THIS POINT, GIVEN A COPLANAR STRUCTURE MADE UP OF 2-F

AND 3-F MEMBERS, YOU SHOULD BE ABLE TO CONSTRUCT A 2-D F-B

DIAGRAM OF THE STRUCTURE, REPLACE THE LOADS BY HORIZONTAL

AND VERTICAL POINT FuRCE COMPONENTS, AND WRITE THE FORCE

AND MOMENT EQUATIONS NEEDED TO FIND THE REACTIONS. sc I



Superposition (C

Superposition is a technique used in engineering statics for finding the reactions on

members or structures that have more than one external load. Partial reactions are found for

each load acting alone and these partial reactions are then added by the parallelogram law to

find the total reaction at each constraint.

7-4 .3-9.1"/<1
cc / /o.10",

306

3 OM 50/b
B= (1016

A, 9016. A x=90

=801b (c)

AMA = 0

(4)(30) + (12)(50) = (8)(B)

B= 90 lb

2: F
x

= 0 & 2: F =0

A
x

= 90 lb Ay = 80 lb

A = 120 lb

R .80/b

49.8olb (d)

30 50

a-go")

80 /

(4)(30) + (12)(50) = (d)(80)

d = 9"'

M
A

= 0

(9)(80) = (8)(B)

B= 90 lb

2: F
x

= 0 & 2:F = 0

A
x

= 90 lb A = 80 lby

A = 120 lb

8, -1546

50/6
E32 = 75'

AX, ;15-4 /6=75' A..90 *

4.30/6 (e) Ay2=5046 ()
-1- -2-

EMA = 0 (4)(30) = (8)(B1)
E:MA

0 (12)(50) = (8)(B2) Superposition of -1- and -2-

B
1

= 15 lb B
2
= 75 lb B = 15 + 75 = 90 lb

A
yl

= 30 lb Ax2 = 75 lb A
x
= 15 + 75 = 90 lb

A
xl

= 15 lb Ay2 = 50 lb A
Y

= 30 + 50 = 80 lb

A = 120 lb

3o/ 501b

A8 =80 ib (9)

Figure CSC 8

When an object such as the one shown in CSC 8(a) and (b) is loaded at two places and the

reactions are wanted at A and B, three techniques can be used.

(1) A F-B diagram can be drawn to scale with both of the forces and solved as shown in (c).

(2) The two acting loads can first be replaced by their resultant as in (d) and the prob-

lem solved as shown.

(3) The reactions can be found by first assuming that W, acts alone as shown in (e) and

finding the partial reactions caused by it. The partial reactions caused by W2 acting alone

can then be found as shown in (f). By the principle of superposition the two sets of par-
tial reactions can be added to give the total reactions as shown in (g).



5C

The frame shown in figure CSC 9(a) and (b) is loaded by twc electromagnets C and D. It

is assumed that the structure is weightless with frictionless pins, and each magnet is assumed

to set up an evenly distributed force field of 1 lb. The reactions at A and B are to be found

using superposition.

s =

(7)0) t (4 )694 = OZ)C9a/)
'?1//: 3/4 "QA.,,/

(7)(/) (4)(34 P/p) 2)(4/ii>

78"
= 58 /4

3,14, z .78" gvi .42

G 4 ,./e

r-

. 4 '7 t. i3 6

/11,4 = 0

0 )6 ) f (9)(4). (z)0,,,,,)

8/-12
25/6

r 0
'4/-12 =

CS" s

.13=

S-'/'6',/01/26-seci
, 42 7,- o = 4-2 lb

8// 25- 7 ¢-7 /6

4i/ = 78 , = ./ 3 IA

e - . = , = 2 /

a z 74- / 4 2 A g (.3;01 ,- (21(P 3) t (/4)(2 e rc/Z 12-/

S-C g a /o 04

F-B diagram (c) is drawn and completed with magnet C on and magnet D off. Notice that

with D off, AO is a 2-F member, and the reaction at A therefore lies along the of A .

F-B diagram (d) is drawn and completed with magnet D on and magnet C off. BE becomes a

2-F member, and the reaction at B therefore lies along the 4, of BE.

The partial reactions are superimposed in (e) and can be visually checked by summa-'_on of

forces. It is suggested that you prove to yourself that this example cannot be solved with C

and D both on together.

It should be apparent to you now that with multi-membered frames, the loads cannot be

added to a single resultant actinF upon one member of the frame.



1O CSC

In figure CSC 10(a) and (b) a 20 lb weight is being supported by two coplanar members.

AC is a uniform member weighing 15 lb and BC weighs 10 lb. The reactions at A and B are tc

be found by superposition.

=

13vi: 616
3H/7 316 (315-)(s)
/9v, /6)/6

3 /6

G-Xecle
°

/ 3

//1- =0
(.3)65-) / (5X/3)

8/4

o

=

)6

t
3 3 /6

74 (3)6-?C C) = (/-511(10) / 6674/3 /
/2 9 9 ,2$ /

:::2 .9 4/ '( <SG /O

(b)

e Ale
5)2 4, (9,/

791/3 7 14
171 3 = (6./..C) 7)) 2 /g

e 3 4:9 3 rb

e 3 " 2

/ 3p-
A

5/b

1

/,,,,P,</ /6
(c)

26.6. /-4'

.S1/pe//.onooscd/' ZZ 4/6© .5-4. 6°
9, 4 /.4 X3.9°

Simplified F-B diagrams showing only the 4-.5 of the members are drawn (c), (d), and (e).

(1) is solved with the 15 lb load acting alone, U with the 20 lb load only, and F-B with

the 10 lb load. The partial reaction components are sumperimposed in (f), A force and moment

check is made of (f).

NOW IF YOU ARE GIVEN A STRUCTURE COMPOSED OF TWO 3-F MEMBERS,

YOU SHOULD BE ABLE TO FIND THE REACTIONS USING SUPERPOSITION. CSC 2
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Cantilever Beam Reactions

Frequently in engineering statics it is necessary to analyze the external forces that

would act on an imaginary cut section of a member. When a symmetrical two-force member has

a cross section exposed in a F-B diagram, the external force field acting on this imaginary

section is uniform, symmetrical and acts parallel to the center line of the member. The sense

of the field is determined by the external loads. If the loads push on the member, the field

on the exposed surface also pushes and the member is said to be in compression. If the exter-

nal forces pull on the member, the field on the exposed section also pulls from the exposed

surface and the member is said to be in tension.

Exposed transverse sections are necessary to analyze the reactions at the constraint of

a cantilever beam. A cantilever is a 'ember that is rigidly constrained at one end ani load-

ed sonewnere along its length ( e.g. a diving board with a diver about to dive ). Figure

CSC 11 shows a uniform horizontal cantilever beam which is assumed to be weightless. A method

of finding the forces acting on any vertical section when a vertical load is placed on the

beam is to be developed.

Figure CSC 11

The part cf the beam to be analyzed ex,ends from an imaginary vertical plane A, which is

perpndicular to the axis of the beam, to the right end of the beam. Lines CE and IK indi-

cate where plane A cuts the sides of the beam. Another vertical plane B, which cuts the sides

of the beam along lines FH and LN, is shown two inches to the right of plane A. D, G, J, and

M are the mid-points of their respective lines and indicate the points of intersection of a

horizontal plane which passes through the center line of the beam.



(a)

Figure CSC 12

(b)

If a 50 lb load is applied to the end of the beam as shown in figure CSC 12, the beam

will tend to bend. Careful measurement of a real beam loaded in this way would show that the

distance between C and F (two inches) has increased a suall increment LJ x whereas the dis-

tance between E and H (two inches) has shortened by exactly the same incremental distance

L x. The distance between D and G, however, will not change, and the two cross sections

A and B will both remain as rectangular planes perpendicular to the axis of the beam.

Another experiment can be performed showing that when a tension load is applied to a

sample of material, the sample elongates some distance i D. When the load is increased or

decreased, the change in L D is directly proportional to the change in the load (doubling

the load doubles the deflection, halving the load halves the deflection, etc.). This rela-

tionshdp is also found for compression tests. Furthermore, it is found experimentally that a

given load gives the sane deflection to the sample whether it is applied as a tension load or

a compression load. From this experimental evidence it can be said that a member deflects in

direct proportion to the load applied.

F-B diagrams of the beam with cross section A exposed are drawn in figure CSC 13. These

diagrams show no deflections as the deflections are very small. and do not significantly alter

the shape of the F-B diagram. FFw and Pw are known and can be placed on the two F-B diagrams,

The first experiment showed that maximum deflection occurs at both the top and bottom

of the beam while no deflection occurs at the middle. In addition the elongation of the

upper half varies uniformly from DG to CF and the shortening of the lower half varies uniform-

ly from DG to EH. This is true because cross sections A and B remain as rectangular planes

perpendicular to the axis of the beam. Therefore a force field varying from zero at JD to a

maximum at IC must be acting upon the top half of the beam at section A to put it in tension

; t
4

awas.,aluovvarteryx

(4)



lb)

1 inch = 6 inches

1 inch = 100 lb

Figure CSC 13

Each of the force fields can be replaced by a point force resultant acting through its

effective center, which in this case is two inches from the centerline of the beam. These

two point force resultants, together with the point force resultant of the load, establish a

system of three point forces which must, by the three force principle, be concurrent at some

point on the line of action of Pw. PT, the resultant of the upper force field, and Pc, the

resultant of the lower force field, are equal in magnitude and act through points two inches

above and below the center line of the beam respectively. Their lines of action must there-

fore meet with the action line of P at point P, which is on the centerline of the beam, as

shown in (a) and (b). The magnitudes of P, and P, can then be found by constructing a paral-

lelogram of forces as shown in (c). Force fields FFT and FFC have the same slopes as the

point force resultant FT and FC.

AT THIS POINT, GIVEN A CANTILEVER BEAM LOADED ON ONE END,

YOU SHOULD BE ABLE TO VISUALIZE THE FORCE FIELDS ACTING

ON A CROSS-SECTION OF THE BEAM AND DETERMINE THEIR POINT

FORCE RESULTANTS USING THE PARALLELOGRAM LAW. CSC-3

z :40.0--/. 2 l
..,.......eyants.......m......, ha+.11..1



/4 CSC
Vertical Shears and Bending Moment Couples on Cantilever Beams

1 inch = 6 inches

finch= 100 lb

(a)
Fw =50`s

A

Fry = 1004

0

my) a,
"."-- f 0)

v...5-oLD

501

2'"
2/N

Fi,ure CSC 14

The 3-D F-B diagram of the cantilever beam with its

loads is redrawn in figure CSC 13(a) and the two-dimensional

F-B diagram is redrawn in (b) with the three acting mint

forces Pw, PT, and Pc . Sometimes it is convenient to

replace the point force reactions by mutually perpendicular

components as in (b) where FT is replaced by PTH and TV
and P is replaced by PcH and and P

TV
can in

turn be replaced by a single vertical component V, as shown

in (d). This vertical component is called the vertical

shear. The remaining components F are coplanar,

equal in magnitude, and opposite in sense, with their lines

of action displaced a distance (in this case four inches)

apart. The two horizontal point force components form a

point force system that is called a couple which for a

cantilever beam is called a bending moment couple.

The point force components representing the couple and

the vertical shear can be found using arithmetic equations.

P P
T'

and P and their components obey the three-forceW'

principle. Therefore in (d) for r P V, and P
TH' CH' W'

2: Fv = 0 V = 50 lb

22 = 0 zn = F

Mo = 0 (2)(F.1) (2)(F
CH

) = (8)(50)

4 F
CH

= 400

F
CH

= 100 lb F
TH = 100 lb



CSC /5-
Another cross section seven inches from the right end of the beam is to be investigated

for the magnitudes o: its vertical shear and couple. A three-dimensional F-B diagrar is

drawn in figure CSC 15(a) showing FFw and Fw, and a two-dimensional F-B diagram is drain in

(b) showing Fw. At the exposed section, V is shown acting vertically, and T
TH

and T. are

drawn horizontally 2 inches from the beam .

AO°

FFc

Now

FFiv

Figure CSC 15

F

75Le:Fcti

0

V= 5018
(4)

2: FV =O V =50lb

2: FH = 0
F TH FCH

MO = 0 (2)(F
TH

) + (2)(F
CH

) = (6)(50)

4 FTH = 360

I
TH

= F
CH

= 75 lb

= SoLa

The vertical shear is found to be 50 lb acting vertically upward, and the bending moment

couple consists of two 75 lb parallel point forces acting horizontally 4 inches apart as

shown in (b).

AT THIS POINT, GIVEN A CANTILEVER BEAM LOADED ON ONE END,

YOU SHOULD BE ABLE TO FIND THE VERTICAL SHEAR AND THE

BENDING MOMENT COUPLE ACTING ON ANY VERTICAL CROSS-SECTION

USING FORCE AND MOMENT EQUATIONS. CSC 4



EQA

EQA 1(A)

tin
= 4

in

1
in

= 101b

I-5

The object is in equilibrium as shown with a rough horizontal surface and

a smooth sloping surface. If the object weighs 10 lb, find the point force

reactions on the two supporting surfaces (a) using a force polygon, and (b)

using moment equations.
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EQA 1(B)

EC

11n = 301b

1
in

= 5
in

Find the reaction on pin A using a force polygon. Check with a moment

equation. The member is weightless and the pins are frictionless.

50 lb



EQA 2(A)

E(

rn

; 7

lin 6in

Find the reactions at A and B using moment equations. Members AC and BC
are weightless and pins A, B, and C are frictionless.
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EQA

EQA 2(B)

tin
= 101b

If the members are weightless and the pins are frictionless, what are the

reactions at A and B?



111 EQA 2(C)

E0A

1
in

= 5
in

Find the reactions at A and B for the frame sLJwn. State 7the assumptions

needed in your solution.



Assumptions: Weightless members and

frictionless pins.

EQA 2(D)

EQA

yin rin

Find the reaction at B and the directicn of the reaction on the pin Gt A.

What force is acting on member AC?



111. EQA 3(A)

EQA
21

tin
=

in

lin - 2001b

Find the point forces acting on each weightless cord using one combined

force diagram.



EQA 3(B)

EQA

Pins and surfaces

are frictionless. in _lb
1 = bu

1
in

= 5
in

Find the reactions at A and B using one comtined diagram.
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Copyright 1971

D. E. Alexander

UNIT 7

ENGINEERING FRAMES

AT THE END OF THIS UNIT, GIVEN A 3-D DIAGRAM OF AN ENGINEERING

FRAME SUPPORTING A LOAD, YOU WILL RE ABLE TO FIND THE HORIZON-

TAL AND VERTICAL POINT FORCE COMPONENTS OF THE FORCE FIELDS

ACTING ON THE CONTACT SURFACES OF ALL THE MEMBERS OF THE FRAME.

Figure EF 1

The three stationary loaded structures in figure EF 1 are engineering frames. Frames are

used to support loads and are assumed to be made up of weightless and rigid 2-F and 3-F mem-

bers joined with frictionless pins. The frames in this unit are symmetrical about a vertical

plane which contains the centerline of each member of the frame including the load, the three

frames then are called coplanar systems.

The horizontal and vertical point force components of the force fields acting upon each

member including the pins of the three frames in figure EF 1 will now be found.

EF 1



The first frame to be analyzed is drawn to scale in figure EF 2 in 3-D (a) and in 2-D (b)

with dimensions. Next 2-D F-B diagrams of the whole frame and each member are drawn in

figure EF 1. The first step in drawing a F-B diagram is to draw each member to scale without

showing any ,Jomponents. At each contact surface a forc, field acts. Each for=e field is men-

ta'1v replaced by a single point force and this point force is in turn replaced by horizontal

and vertical components using the parallelogram law . Only these components are shown in the

F-B diagrams. Although these components are abstract, it is easier to imagine that the compo-

nents are actually active on the members.

Assume now that the.F-B diagrams in EF 3(a) and (b) are drawn without any components

shown. Each set of components at each contact surface will now be added to each F-B diagram.

Arrowheads and magnitudes will be omitted except for the load until later, since it cannot

be determined by inspection whidh direction the components are "pushing" against the members.

The directions and magnitudes will be then found using arithmetic equations. It is only

necessary at this time to show the lines of action of the components.

Figure EF 3



EF F 3

F-B (17) will be analyzed first. 0
v
and 0 H act on the exposed surface of the

rope. Both Qv and OH are single components and are given a single slash as shown. At the

lef-tezdof t7 a single load acts. It is replaced by PH and but without arrowheads. 7-

and r
H actually represent a single force field which acts against the rope, however, they any

drawn as if they act through the (t of the removed pin F. PH and are single slashed. The

lengths of the components need not be drawn to scale.

The F-B diagram for pin F is next. It has a load caused by the rope and two symmetrical

loads caused by member DF. The load caused by the rope has two =nponents which must be equal

and opposite to pH and Pv on (11]) . These are drawn as PH1 and and act through the of

the pin. Pv2 and PH2 are double slashed to show that they actually represent two force fields.

Figure EF 3(c) is an exploded isometric drawing of the joint at pin F and clearly shows how

pin F is loaded by one force field caused by the rope and by two force fields from member DF.

F-B 0.j0 has a set of double components FH3 and FV3 that are equal and opposite to pH2

and Pv2 on pin F. Ev and E9 are caused by AE acting through the removed pin E. At pin D

double slashed point force components Dv and DH are caused by member DC.

It is not possible to determine whether the components come from single or doubt' fcr,:p

fields with 2-D drawings, you must refer to the 3-D diagram figure EF 2(a).

6131
F

2 Fv3/2

611

FYI

Hy2

F 2; (c)v2/2

O

Figure EF 3

The point force components ;/, Av, AH can now be placed in F-B diagram in figurc,

EF 3(a). Cv, Av, and AH are all single slashed.

Following the above procedure, you should now be able to analyze the rest of the F-B

diagrams yourself. The joint at pin B is shown in isometric in figure EF 3(d) to help you.

Four things should be apparent to you in your study of the F-B diagrams: (1) all the loads

are replaced by vertical and horizontal components, (2) the H and V components are left with-

out arrowheads except the external load and are not drawn with their lengths to scale,

(3) wherever a component represents a single force field, it is single slashed, and wherever

a component actually represents two force fields, it is double slashed, (4) the loads between

connecting members (usually members only connect with pins) are equal and opposite force

fields, so their sets of components are equal and opposite. For instance, BV and EH on DC cre

equal and opposite to BV1 and EH1 on pin B, and BH3 and BV3 on AE are equal and opposite to

E
H2

_and BV2 on pin E.
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Fv/ =Mil'

xR4.16

z10 6 g
5,, 201.6

61=2* /6

a 14 =244
=ioth

2416

5/b

EF

12

9*-41

(b)

J2 2th
16

4
1 24 /*

11216 0/6

1216 Av=27.81
51.5

Figure EF 4

and all the F-B diagrams are redrawn in figures EF 4 and EF 5. The magnitudes

in force andsenses of all the components will now be found using the parallelogram law

moment equation form. As the components on each F-B diagram are found, their magnitudes and

senses will be placed on the drawings.

W WH WV
13 12 5

W
V

= 10 lb W
H

= 24 lb
=

ZFx = 0 F
H

= 24 lb Fy = 0
V
F = 1016

The arrowheads and magnitudes are now placed on the F-B diagrams.

Pvi and FH1 are equal and opposite to and PH on W, so

r
V1

= 10 lb F
H1

= 24 lb

2:F
x
and EF = 0 F

H2
= 24 lb F

V2
= 10 lb

F-B diagram OF can now be completed.

FH3 and P
V3

are equal and opposite to FH2 and r
1/2

VIA = 0 (A is the center of pin A.)

(37)(Fv3) + (24)(FH3) = (25)(Cv)

(37)(10) + (24)(24) = (25)(CV) CV = 37.8 lb

2:Fx and ZFy = 0 AH = 24 lb AV = 27.8 lb

on F. (Tii3 and TV3 "push"

against () but can

be shown "pulling")



F
H3

EF 5

= 24 lb Fv3 = 10 lb 2:14D = 0 (D is the center of pin D.)

(30)(Fv3) = (25)(Ev) (30)(10) = (25)(Ev) Ev = 12 lb

2:Fy = 0 Dv = 2 lb LH and EH cannot be found yet.

F-B O D
V1

= 2 lb

F-B (D D
V3

= 2 lb

DH, z-26.

Dyi =216

Dm =2/6

D
V2

= 2 lb tIl and DH2 are unknown now.

VIE = 0 (9)(Dv3) + (12)(DH3) = (9)(C.1)

(9)(2)"12" 3)=0)(37-8)R:i3
EF

X
and lEF = 0 B = 39.8 lbY V

B
H

= 26.9 lb

=26.9 1L,

Dim= 26.9/6

DR =26.96

Ey3 = 12 lb

Bie = 26.0

N
2781

by =2 lb

E112z. 2916

V
E ...2.q/bZr

F3 =1016Y

Vk\ EV -1216Z.7,

= 2.9/6
DR3-= 2 6.9 6

43=2'

13. 39.816 --Cs/-c-4 16

F-B G) DH2 = 26.9 lb

13.45*
F-B 0)) DH = 26.9 lb 2.:F

X
= 0 E

H
= 2.9 lb 13.45*

F-B (D EH1 = EH2 = 2.9
lb E

V1
= E

V2
= 12 lb

PZ94.

Eyi =1216

By= 39. 8Th

Eft = 26.916

EH, =2.816
=12/6

Bv2= 39.86

-0- BR2-= 26.9 lb13H, =26.9

PH1 =
26.9 lb

3 z '6 19 916

39.816

26.916

19.916F-B 6-.2) E
V3

= 12 lb EH3 = 2.9 lb

ZFx and EFy = 0 BH3 = 26.9 71 B
V3

= 39.8 lb

F-B (15-4) BH1 = 26.9 lb rom ODB
V1

= 39.8 lb both f

BH2 BV2 =
both from26.9 lb 39.8 lb

2F,Fx = 0 2:Fy = 0 Checks.

= 3q. elm

26.916

19.916

1345'6
13.45 16

Figure EF 5
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EF

1' 5- --+.-5

Figure EF 6

The second frame from EF 1 is redrawn in EF 6(a) and (b). Again the frame is considered

to be rigid and weightless, the pins frictionless, and the frame and all its members synretri-

cal about a vertical plane through the 4. of the rope. The components of the loads acting on

all the members are to be found. F-B diagrams are drawn in EF 7 and EF 8. Pin C is shown in

isometric with its connecting members in EF 8(a).

GH 78/6

GF is a 2-f member.

=36th

pvi = 3ib

0PIN

Figure EF 7

PV2 = 3th

EM
A

= 0 (10)(39) = (5)(G. )

AV = 39 lb AH = 78 lb

It is known by inspection that

W
VI

= 36 lb

By inspection

WHO= 15 lh

=15/b

Wy =/51b

Wv = 361b

WI, = 3 6 ib

Who-15lb

=151
= 345

GH = 78 lb

W
V.

V
W
H

13 = 12 =

.7// and PH are found by

°PULLEY

ki:739 lb

inspection



13v= 61.45th

= 5t

A .39th

382= 95 5/

AC

_All= 7816

EF

CH, =15/6

C =17516

= 22.45

131,2= 61.4516

By, =95 5 lb

By, = 61 45 -lb

CV/ = 3611)

Cv3 = 22.4 516

= 32.56 7

Cv4= 58 45/6

CH4=32.51b
Cv2= 58.45/6

43= 17.5 /6 0

= 58.451 F-1/3

=110.
DH2=110.546

D =58.4516 @ = 58.4516 ri; lb mF = 749

lb

=110.56

= 58.45/6

CF

By inspection

EMC = 0

CH4
32.5

(b) a 7816
" 1 G3oo--

F =76 b

(8.5)(78) = (6)(Dii) DH = 110.5 lb

lb Dv and Cv4 cannot be found yet.

0 CV1
and CH1 are equal and opposite to CV and CH in (W)

CH1 =
15 lb C

V1 :"
36 lb

CH2
is equal and opposite to CH4 from (:) CH2 = 32.5 lb CH3 = 17.5 lb

CH5 = 17.5 lb ZMB = 0 (2.5)(17.5) + (5)(Cvs) = (1)(78) + (2)(39)

By and BH are now known. Cv5 = 22.45 lb
16.25
2q.2,5/b

2,.,,,/All by inspection

r

31 6.11,225
b 16.2560 Checks

11

8
22516

/6

/5/6

875-lb

/b

219225 \
2q.2251b---1

\36/6
16251:

5-70,

8.75168.75-th

11.225/b
11.225h
(a)



The third frame is redrawn in figure EF 9, and F-B diagrams of all the members are shown

in figure EF 10. The horizontal and vertical components or. pulleys D and B and pins D and B

can be found as before. However, when F-B diagrams O1 , AO , and @ are drawn, no moment

equation can be written that will have only one unknown. On F-B Ol a moment equation MA = 0

will relate E
H
and E

V'
On F-B CE 1110 = 0 will also relate EH and E. These two equations

with two unknowns can then be so'Ned. The procedure is shown below.

O pulley WV = 18 lb
V

WH = 24

pin All known now.

OD pulley BV = 48 BH = 24

(D pin Known now.

BH3 and By3 known from pin B.

(L-1) Du and DH3 known from pin D.

(I) 2:MA

(3)(30) + (41)(30) = (36)(EH) + (48)(Ey)

O = 0
MC

0)(12) + (4)(24) = (6)(EH) + (30)(Ey)

Slight rearrangement of the above equations yields

6 EH + 8 Ey = (3)(5) + (41)(5) = 220 from

6 EH + 30 Ey = (20)(12) + (4)(24) = 336

Simultaneous sol tion of these equations gives

Ey = 5.3 lb and EH = 29.6 lb

Rest by inspection.

By inspection

and



EF 9

All the F-B diagrams can now be completed and the actual loads at each contact surface

can be found. For instance, (Ev
2

+ EH
2
)

1/2

= E, where E is the magnitude of the rorce field

acting at constraint E.
A At, = 2q. 6/b

A v =547/

a

B

Eu = 2(1.6Th

E

Ev 5,316

3016

PULLEY

V
Bfri-= 48/ /w,3,04)

All=246
Buz= 246

2c1,1b 0774N 4v2=4816

B V3 = 48/6

B11---246
wm=246

144/-718th

131, -7 48 lb

Pig 7- 24 ib

D,, =2416

Dv =121

6.7/6

Cwa -= 5. 6 to

Cv2 = 6 716

Cv =6.716

Figure EF 10

0 PIN

-DPI= 24th

Dv2=12Ib

(DPW- LE r

30/13

NOW IF YOU ARE GIVEN A LOADED ENGINEERING FRAME, YOU SHOULD

BE ABLE TO FIND THE POINT FORCE COMPONENTS OF THE FORCE FIELDS

ACTING UPON EVERY MEH3ER OF THE FRAME. EF 1



UNIT 10

TRUSSES

AT THE END OF THIS UNIT IF YOU ARE GIVEN A SPACE DIAGRAM OF

A TRUSS, YOU SHOULD BE ABLE TO SOLVE FOR THE FORCES IN THE

TRUSS MEMBERS USING (1) THE METHOD OF JOINTS, (2) THE METHOD

OF SECTIONS, AND (3) A COMBINED DIAGRAM.

Introduction

A framework composed of I-beams, channels, .s, bars, and other special shaped engin-

cering members that are joined only at their ends to form a rigid structure is called a

truss. Bridges, roof supports, and cranes are usually made up of combinations of trusses.

Each truss is essentially a series of connected triangular shapes. In this unit only coplanar

trusses will be considered. An example of a typical coplanar truss is shown in figure TR 1(a).

The bridge actually consists of two coplanar trusses joined by the cross beams. The bridge

deck has been omitted in (b) to show has the members supporting it transfer the loads from

the deck to the bottom joints of the two trusses.

idealized as fricHoilltss
, pins,, ... 't,-.- i 1 ...,/ I. ..,,,,. 1 .BAs.

..o.,.. III ,,,
!...'.

..iAt'r :II
1/4 s w/ 10 s' ..:,..r. III "...,

'. .

ul

idealized as
U ,z.FAWyes

i111"0.4

!ilk

idealized as
frictionless pill

win
tit

,-,
,

(1) Figure TR 1

Idealized as
criehalless roller

(b)

For purposes of analysis, the truss is idealized by making some assumptions. (1) The

individual members are considered to be wr ghtless, r4.gid, and coplanar. (2) The members
are connected at each joint by a single ctionless pin (as shown in the isometric, the

actual connection could be a welded or riveted gusset plate), and no member is continuous

throuel a joint. (3) All the loads are assumed to be applied only on the pins and at each
joint the of the members and the external loads are coplanar and concurrent with the

of the connecting pin. With these assumptions and idealizations, each truss is a

coplanar system, each joint is a concurrent system, and each member is a 2-F member capable

of resisting either pure tension or compression.

TR 1
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Some external loads have been assumed at joints T, U, and V. These loads are caused

by vehicles, wind, and the weight of the road bed. The point force resultants of the loads

acting on the members ill now be found using three different methods.

Method of Joints with Components

The F-B of the idealized truss is shown in figure TR 2. Since every member is consider-

ed to be 2-F and the forces at each joint are concurrent, only the i's of the members are

drawn. The loads are replaced by their point force resultants and are in kip (1,000 lb) units.

Before the forces in the members can be determined, the unknown support reactions FR and Pw

must be found.

Figure TR 2

The connection at R is a smooth

roller so the direction of FR

known to be vertically upward, but

the direction of the reaction at

W is unknown by inspection so

F is drawn as a wavy arrow.

F
R
can be found by taking moments

about W.

Mw = 0 -12I x -3T

(-121 + 165) x (-I -23)

-281 x (-1 -33)

- 401.xFRj =0

which gives FR = 4' and FR = 4j

Tel can be found by summing forces. S7F 7. 0 FW + (1 - 2T) + (-33) + (-1 - 33) + (43) = 0

= 21 + 4j and F14 = 4.47k

The F-B diagram is redrawn in figure TR 3(a). A convenient system for referring to all

the point forces acting on the members of the truss is called Bow's notation. This consists

of placing a small letter in any space that is between two outside forces or two members as

shown. For joint R Lhe forces reading in a clockwise order are called al, Fe, and ea as

shown in (b). For S the forces are 5h, fig, gi, and fa as shown in (c). Joint point forces

are always read in a clockwise order.



Figure TR 3

Joint R will be analyzed first since it contains only two unknawn forces. The point

forces acting on its two members due to the 4
k

load will be found.

of

fe

ea= se

(0)

Figure TR 4

In figure TR 4(a) a F-B diagram is drawn of joint R with the 4k load ea and the ts

of the two unknown forces al std E. Next of is replaced by horizontal and vertical

components as in (b). 1:Fv = 0 gives afv = 4k as in (c). The slope of ate. is 4/3 so afH

= 3
k
as shown in (d). 1FFH = 0 in (e) gives fe = 3

k
. F-B (f) shows the actual point force

resultants 2 and fe that act on members RS and RT. Force oE acts toward joint R, so it

puts member RS in compression (C). Force re acts away from joint R, so it puts RT in tension
(T). All of this work could be done on one F-B diagram.

Now joint T can be solved as it has only two unknowns.

First external load de is replaced by horizontal and

vertical components. Member RT is in tension so and its

force arrow on joint T still points away from the joint,of .3k T sd.lk so point force of on joint T is equal and opposite toi es
fe on joint R. Now Fi and gd can be found by summing

forces horizontally and vertically.
Figure TR 5



4 TR

Joints S, U, V, and W can be solved in the same manner. A joint can be solved when

it has two or less unknown point forces. All the joint F-B diagrams are shown related

to each other in figure TR 6.

R k

VA C

A

144
/if

2

f2
li/jk

A' 7 i. sk r

T Figure TR 6
13 V

The horizontal and vertical comments are usually left on the F-B diagrams and the

actual point forces with their T or C labels are placed on each member.

AT THIS TIME, GIVEN A COPLANAR TRUSS, YOU SHOULD BE ABTA

TO FIND THE POINT FORCE RESULTANT OF THE LOAD ON ANY MEM-

BER USING THE METHOD OF JOINTS.

Method of Sections

.....
. ..,,r, '' ......., ,......,,

siii

/ .
, /, .0 - ..,- ...1

,...44z,..,,, .,, ...,
, .1. .1-..,, i . .
// ill ., .-,'-',.4/ : ,, ., e

'".19 I , .. ..,,
di11'.ilt"://

'Wu *
4t 041

.$
( ) Figure TR 7

R

A
t
i

/6'

/2' T 6 \

d 4s) 'A

re;

V

TR 1



TR 5

The 3-D space diagram of the truss from figure TR 1 is redrawn in figure TR 7(a) ard the

2-d F-B diagram is redrawn in (b) with all the outside loads shown. This time the point force

resultants of the loads on members SU, SV and TV (a1, fig and gd) are to be found using the

method of sections.

A cutting plane A-A is drawn through the F-B diagram as shown in (b). Another F-B

diagram is then drawn of the portion to the left of the cutting plane as shown in figure TR 8.

This F-B diagram is in equilibrium so WI, hg, and gb become the point force resultants of

external loads and can be found using force and moment equations.

Assume SU is in tension.

(/ Taking moments about point S will involve only one

unknown gd. Assume TV to be in tension.

fPIS = 0

-165 x (-1-31) + (-161 - 121) x (43)

+ (-161) x (gdi) = 0 or -16R - 48R + 16gdR = 0

gd = 4k and gd . 41

Member TV is therefore a tension membe- with

a force magnitude of 4k .

V

My = 0

x (-1 -35) + (-161 + 165) x (ahi) + (-261) x (43) = 0

48R - 16AhR - 112 R = 0 eh = 4
k

an = -41

- sign means wrong

direction assumed for aR)

Member SU is a concession member, its point force resultant is 4k.

= 0 will give rig and hg (45) + (-1 - 31) + (41) + (- 41) + (fig) = 0

hg = 1
2
+ 1

2
= 1.41k

Member SV is therefore a tension member with a force magnitude of 1.41k. The

completed F-B diagram is shown in figure TR 9(a). This F-B should check by summing

forces g F = 0 ah +Tg + ga +TR = 0

- 41 + - 3 - 41 - - + 41 = 0

i components - 4 +1+ 4 -1= 0

j components - 1 - 3 + 4 = 0
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6 TR

Of course the other half of the truss is also in equilibrium as shown in (b).

Summation of forces and moments will show that F-B (b) is correct,

41)

gk":10

(a)

Figure TR 10

(6)

The method of sections will now be used to find the point force resultants of the loads

acting on members A, B, and C of the derrick in figure TR 10(a). The load of 16k is being

raised with no acceleration. An idealized 2-D space diagram of the coplanar truss that

contains members A, B, and C is shown with dimensions in (b).

X

2.2-41

2

(c)
q k

Figure TR n

yk

3

(a)

8
yk

The F-B in figure TR 11(a) is used to find the components of the loads on the cable,

and the F-B in (b) is used to find the components of the load on the pin at Y. Now the

F-B diagram shown in (c) can be drawn and the method of sections used to find the point

force resultants of the loads on A, B, and C.

.-",



TR 7

To find pp, assume A is a tension member and take =ants about X.

2gx = 0 (241 + 123) x (-81 - 43) + (121 + 63) x (31 - 43) (12j) X (-pAl) = 0

-96R + 96R - 48R - 18R + 12F
A

= 0

FA = +66
FA 5.5kT12

To find FB assume it is a tension force and take moments about Y.

= -1 FBI + 1 = - .707F + .707 F 3.
D D D

1.41 1.41

FI = 0 (-12i - 63) x (31 - 41) + (-241 - 12j) x (-.707FB1 +

+ 18R - 17F? - 8.5FBR = 0

F
B
= 2 59kT

.707F
B
3) = 0

To find F
c
assume it is a compression force and take moments about Z.

FC = 2 Fdi + 1 = .894Fer + .447FJ
2.24 T-24

= 0 (241 - 6j) x (31. - 41) + (361) x (-81 - 43) + (121 - 123) x

(.894FJ + .447 F5) = 0

- 96R+ 18R - 244R + 5.37q + 10.74FdE = 0

F
C

= 13 8kC

Check by summing point forces.

+ -ft
B
+ PC + (31 - 43) + (-81 - 43) = 0

PA = - 5.51

FB = -.707 (2.59) 1 + .707(2.59)5 = 1.821 + 1.823

= .894 (13.8) I + .447(13.8)3 = 12.41 + 6.23

-5.51 - 1.821 + 1.821 + 12.31 + 6.2j + 31 - 43 - 8i - 4j = 0

i components

j components

- 5.5 - 1.82 + 12.4 + 3 - 8 = 0

+ 1.82 + 6.2 - 4 - 4 = 0

The values of; 'TB
'
and Tr are usually placed on the F-B diagram after they are

checked as shown in (c).

NOW YOU SHOULD BE ABLE TO USE THE METHOD OF SECTIONS TO

FIND THE POINT FORCE RESULTANTS OF THE LOADS ACTING UPON

MEMBERS OF A GIVEN COPLANAR TRUSS. TR 2
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8 Maxwell Diagram or Combined Force Polygons TR

The point force resultants of the loads acting on all the members of the truss in figure

TR 12(a) will now be found by using a graphical technique called a Maxwell diagram. The 2-D

F-B diagram is drawn to scale in (b) and the reactions at the constraints found previously

are placed on it as single point forces with their correct directions. First a 2-D F-B

diagram of joint R is drawn as shown in (c). Next a for polygon of the three point forces

is drawn to scale starting with the known force Fa and continuing in a clockwise order

with of and re as shown in (d). Forces of and fe are then scaled and put on the F-B diagram

as in (e). Force of puts member RS in compression and force re puts member RT in tension.

2.3q

11,
. 0-Figure TR 12

/,,,

1.

///
,

e'.
NV

4..
(1 inch = 6 kips) 46)

dpef,5 kc
.?" 5 9K 3' 3./44.

fe$3kr jk f 3

(c) el d I (3)3 e f e

The F-B diagram for joint T can be solved as it has two unknown forces. Force de is

known and since J =-1, force polygon (g) can be drawn beginning with de followed by ef,

and Ea. Forces fg and gd can be scaled. Members ST and TV are tension members with loads

of 3kT and 4kT.

This procedure can be continued joint by joint as shown in figure TR 13(a). Each force

polygon is drawn around its joint. The scales have been enlarged in figure 13 for clarity.

All of the force polygons will now be combined into force polygon.

The procedure starts by drawing to scale the point force polygon of the outside loads as

shown in (b). This consists of point forces 5E, EC, Ja, de, and -ea plotted in a clockwise

with their arrcwheads drawn.

Now beginning with ea {polygon eale(I)can be drawn superimposed upon (b) as shown in (c).

No arrows are put on of and fe, but their directions must be visualized as indicated by the

half arrows in (c). The magnitudes can then be measured and the forces listed as of =
k
C

and fe = 3kT.

Polygon(2)defgd can be drawn upon (c) as shown in (d). Note that J is opposite to

fe in(1). The polygon gives fg = 3kT and gd = 4kT.

Polygon()can be superimposed upon (d) as shown in (e). This process can be continued

with polygonsG4),andauntil (f) is complete. This combined set of force polygons is

called a Maxwell diagram. With only a single F-B diagram of the truss, this combined

diagram gives graphically the point forces acting upon each member of the truss.

.,



O1 of = 5 k C

fe = 3kr

(/) fg = 3kr

gd = 4kT

0 ah = 4 k C

hg = 1.41
k
C

0

1

TR

b

9

ID hi = 21r

is = 5)cl'

(5) bi = 5kC

0 a check

e
(b) (c)

Figure TR 13
(4

The main difficulty students have when constructing a

Maxwell diagram is in determining whether the members are in

compression (C) or tension (T). You must visualize the in-

dividual joint F-B diagrams as in TR 13 and mentally place

the arrows representing the forces on these F-B diagrams.

If the arrow points toward a joint, the member is in com-

pression. If the arrow points away from the joint, the

member is in tension.

Always start with the outside force polygon as in

TR 13(b). This polygon has arrowheads, and it must close

or you have made a mistake in calculating the reactions.

If you are neat and careful, the last joint polygon ® when superimposed on (f) will also

close.

(e)

(1)



4

10 TR

Another brief example of the construction of a Maxwell diagram for a truss is shown in

figures TR 14 and TR 15. This example should be carefully studied before you attempt to solve

any problems this way. The isometric space diagram and its 2-D F-B diagram are drawn to scab

in figure TR 14(a) and (b) with the loading shown on (b). In (c) and (d) the reactions

are found graphically.

(a) 05?



TR

tK

4. kOir

0 2 4 6 Fee

i Figure TR 15

In figure TR 15(a) the 2-D F-B diagram is drawn to a larger scale and Bow's notation is

applied. The combined diagram is constructed (f). First the outside for polygon abcdefa is
constructed to scale with its arrowheads shown. Either joint fagf or efle can be drawn next,
and the remaining joint force polygons drawn one by one. The forces acting on each member are
shown in (a) with their magnitudes and proper C or T notations.

AT THIS TIME WHEN YOU ARE GIVEN A LOADED COPLANAR TRUSS, YOU

SHOULD BE ABLE TO FIND ITS REACTIONS AND THEN FIND THE FORCES

ACTING ON EACH MEMBE2 OF THE TRUSS USING A MAXWELL DIAGRAM. TR-3
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UNIT 12

HYDROSTATICS

AT THE END OF THIS UNIT IF YOU ARE GIVEN A FLAT COMPOSITE

SURFACE SUBMERGED IN A STATIONARY FLUID, YOU WILL BE ABLE

TO FIND THE POINT FORCE RESULTANT OF THE FLUID PRESSURE

ACTING AGAINST THE SURFACE.

Introduction

In the work so far in engineering statics, loads have been applied to solid objects

by other solid objects or by gravity. These loads were always distributed loads and in

most cases for analysis were replaced by their point force resultants. In this unit flat

surfaces will be submerged under a fluid and the distributed loads caused by the fluid

will be replaced by their point force restints. The fluids used will be stationary and

non-compressible. A non-compressible stationary fluid is found from experimentation to be

unable to exert any friction forces, that is it can exert only normal forces on any surface.

Developement

/75ore /LAOS /

The tank in figure HDS 1 is filled with water. The point force resultants of the

distributed force fields that act upon flat surfaces A, B, C, and D are to be found. The

dimensions and locations of each surface will be given as it is analyzed.

HOS



HDS

Water is a non-compressible fluid. Any stationary surface submerged in stationary

water has a distributed load (a force field) acting upon it due to the water. This dis-

tributed load is generally called a hydrostatic load. The intensity of this force field

is called pressure. This pressure (force field intensity) depends only upon the depth

any the density of the water above it. Also it is found from experimentation that the

;::ensure at any depth acts perpendicular to any surface at the same depth with the same

intensity. That is the pressure at any depthtfor a static fluid is constant in any

direction.

A-C

I I

(6)

A:y /L../ D S

(C)

The weightless pipe P has been inserted into the tank of water to a depth h. Then

the lower end has been sealed by plate L The pipe full of water is then removed from the

tank. Plate H is then mentally removed in (b) and a F-B diagram of the pipe filled with

water in drawn.

It is assumed that the air pressure is negligible so there is no force field acting

on the upper free surface S. One force field caused by gravity acts vertically downward,

it is distributed throughout the complete volume of the water but is represented by FF,

acting as shown. When plate H is mentally removed, force field FF2 acts upward to keep

the water in the pipe. FF2 is uniformily distributed over area A. In (c) force field

FF3 is shown acting against plate H. FF3 is equal and opposite to FF2. Now looking at

FF2, each individual half arrow can to thought of as the intensity (pressure) of the

force field. Pressure p2 on FF2 is equal to pressure p3 on FF3. F-B diagram (d) can now

be drawn of the pipe filled with water with F1 and F2 replacing FF, and FF2.



3
Now letting V equal the volume of the water, A the lower surface of the water,y the

density of the water (.0361 lb /cu -in), p2 the pressure of FF2 (p2A = FF2), and p3 the pressure
of FF3 (p3A = FF3), the relationships will developed between p2, p3, A, h, and e .

(4)
?. 9 t-

= = x9 h 2-

4/so pe, 5.

Sine 44-3 = GF2

That is the pressure at any distance h under water is equal to h times the density of
the water. This is a linear relationship

because doubling h doubles the pressure, halving
h halves p, etc.

Q 1 4 71 p 2 z h

P,= %
ft"

"3 pia

, h. a-
, , h 3 a.

tea h¢t
pi? h h4

Now portion E of the tank is redrawn in figure HDS 3. The force fields and their

intensities (pressures) acting against surfaces K, L, and M will be analyzed.

Surface K is at a constant depth h, so its force field FF1 will be a uniform force

field acting perpendicular to K. Its pressure p = hr and of course is uniform over area K.

That is pi = p2 = p3 = p = h y .

Vertical surface L has a distributed force field FF
2
acting perpendicularly against it.

This force field intensity (pressure) varies linearly from zero at the free water surface

to pressure p4 = h 1- at height h. Also pressure P5 = hi and pressure p6 = h2 a- .

Sloping surface M has a force field FF3 that acts perpendicular to its surface as

shown. Since the intensity (pressure) at any point is directly proportional to the height

to the free surface and y- of the fluid, pressure p7 = h3 a' , pressure p6 = h4 , and

pressure ps, = h . Some of the pressures on the three surfaces are summarized in the

figure.
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Figure /1.0.5 (6)

Now looking at surface A in figure HDS 1, the point force resultant of the force field

acting against surface A due to the water pressure will be found.

3-D diagram HDS 4(a) is drawn of surface A. Force field FFA acts against the surface

with its intensity (pressure) being a minimum on the top of the surface and varying linearly

to a maximum at the bottom of the surface. The point force resultant FA of FFA is shown,

its magnitude and line of application are to be found.

In (b) the surface is redrawn in 3-D with the force field deleted for convenience and

dA is drawn on the surface dimensioned with y and x as shown. Line OS is the intersection

of surface A and the free water surface. Vertical line OV is any arbitrary vertical line

that intersects OS.

dF ooi dA pdA iy dA

F on A = fAcIF. tli;ydA which is X times the first moment of A with respect to OS

So the magnitude of FA is (the density of the fluid) times c (the distance from the free

fluid line to the centroid of the surface A) times the submerged area A.

Now the distances b and e to the line of action of FA
will be fcund. Vertical

distance b will be found first. Remember for force field FFA
that the moment of the

resultant point force FA equals the sum of the moments of the distributed forces in the

field with respect to any point or line.

So with respect to OS

Mf
/OS AIFFA /C15

(b)(FA) = J Cy)4F = f (j) pcill = f ya-50,4 triA ydA

b KIA yacIA _ .4 ya I
4 r c cA
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I
x is called the moment of inertia of surface A with respect to OS (the free surface).

The term cA is the first moment of surface A with respect to OS.

Next the arbitrary vertical line OV is drawn. Distance e will now be found.

/ /SI / 0 7

e

Afj

fi,)e ) 0/4
4

= y 0/4
eroxy

,c,

a fif I /9

y0/,9

1= 462
fy d

I
xy

is called the product of inertia of the area with respect to axes OS and OV at

-7;

point 0 (the intersection of OS and OV), cA is the first moment of the acea with re5pec'

to line OS.

I
x

T:ie two terms b =
cA

field FFA.

I

and e = a actually locate the centroid of the volume of force
cA

Now a statement can be made. The magnitude, direction, and line of action of the

point force resultant of the distributed load acting upon a vertical flat surface A

submerged in a static fluid can be found. Its magnitude is F = X cA where r is the density

of the fluid, c is the vertical distance from the free surface of the fluid to the centroid

of surface A, and A is the total area of surface A.

The point force resultant F has the same direction as its force field FF. Its line

of action passes through the centroid of its force field. The centroid can be found by

I
x

b = I
x is the moment of inertia of the submerged surface with respect to thecA

intersection of the submerged surface and the free fluid surface. This line

will be called OS.

cA is the first moment of the submerged surface with respect to line OS.

b is the vertical distance from line OS to the point force resultant F.

I
xy is the product of interia of the submerged surface with respect to the

intersection of OS and any arbitrary vertical line OV that intersects OS.

cA is the first moment of the surface with respect to line OS.

e is the horizontal distance from line OV to point force resultant F.

I

e =
cA
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Vertical Surfaces
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The single point force resultant of the hydrostatic load acting on the triangular sarface

B will now be found. Surface B is redrawn in 3-D and 2-D in figure HDS 5 and its dimensions

are shown. The top of B lies on the free water surface. Its force field FFB is shown with

its resultant FB. Now the magnitude and line of action of FB are to be found.

Ais = .0 34 / /6/0-)-14
c = 6 /4
/9 : (61)(1) 34,,.:

(z)

= Zy
c

6 =

C.

/44'2
6-- 6)63 )

-7.413

c

(-6)(34.)

#c-el -= 6034 /) (6) (34)
= 7. 6' /6

=QS ".2
71 11411- the Ere AVAlciAl) (0/ ,q)2-

xce _ (61)(9)3
1z Qz) /42,0 4d2: (34)(/47- /3o el /A

14/: Zos =

- 6 1,i
/51 t

/62 4 /300
rrlieasueei

= 140
6441

1.0 4

0 S)

- 7 e., eh,'" .6 L.1

ClOOL/A f.6,'" -5

s.oV

449 c c ALA 72./4
72

-7:7:(-. 7X- 4)(:?C)

-
,9. 44

2-4 t.

- L in

7. 2 5., ply it ,,e r. htoe

5-* -

e is ro7eato"so( ,14e.
r/ Y h / 0 V

The single point force resultant of the hydrostatic load acting upon composite surface

C will now be found. The surface is redrawn in figure HDS 6. It is then replaced by the

rectangular And triangular surfaces.
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Sloping Surfaces

/C; /e /7:0-5 7

The point force resultant of the distributed load acting on sloping surface 0 will n,,w

be found. First 3-D and 2-D diagrams are drawn in figure HDS 7. Next the point force

resultant and its location will be derived analytically. The intersection of surface D with

an extension of the free water surface is labeled OM. Line ON is a line parallel to surface

D. Element dA is chosen a distance a below the water surface

./C d,o = c69 k 4 c,// = a- y

or, .1 .9 1,4 eSo z c4 /q

dA

As before for a vertical surface the magnitude of F on a sloping surface is )5' times

c (the vertical distance to the centroid of the surface) times the submerged area.

The line of action of FD is needed.

To boo' 6

N/FD/0/4 = Akccx/o A4 4 co . f ,I a- 9 sin 44 I/9 z a- 5,0 0 .fc/ 2die
,P

b = .? .3/4 & f a C/41e A " ...2:" OM

/r4D 2 i'. 4 S //, 0 0 I 4whits
=

a- 1,1 el j
.9.

5' " --,r7z s ,0

7;, c
1.4 fr-o /0,v = ,c a /a

e= e $;4 49
r e f yd..?

e 5,, 04/,7 r 5/4 d 4,

olh Zos- 44/

1'7/7- 9
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Now the point force resultant of the hydrostatic load acting on surface D will be found

when c = 11 inches, 6- = 30°, and the diameter of D is 7 inches. Distance s to OM is then

11 / sin 30° = 22 inches, ON is drawn 2 inches from the edge of surface D.

e

= (.0 36/)/i(749 4 f = / 673 le A = (77) (3. z ; 38. 52'

O

s,9
-Z-0Ai / /9 .5 2

((/g) 084)(22)1
/ 61 / 6 4

r, 7 /6, )
z 22.(22)(38. f/

0 - 0 4,

#9

¢G o)
z z )(.18,44) z S.. *-5- -1 C.- ej.

Zec r 4 // //7

6 Al

0 71 (2 1 1 -- 2 1. ) CP. )
g(GG IL

c 4s / /4

Distances b and e locate the centroid of force field FFD. Whenever the surface is

symmetrical (I
xy

= 0), its force field will be symmetrical and distance e can be found by

inspection. That is in this example FD will lie on yy.

Engineering Applications

/riyorc- /7'..42,5' 8

Plate P in figure HDS a weighs 85 lb and is held in a wooden trough by frictionless

pins at A and B. The plate makes a snug fit with the sides and bottom of the trough. The

pin reactions are to be found with the water level as shown if all contact surfaces between

P and the trough are considered to be frictionfree.
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3-D and 2-D F-B diagrams are drawn. Fp is known. F must be founc! and 1.sidc,-.

F-B diagrams.
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/Cefatc /7/0-1 /0

The symmetrical gate is centered over a 10 inch diameter opening. The upper

gate is acted upon by water, the lower by fluid mud. The weight L needed to keep

closed is to be found, also the components of the load on A. The gate is assumed

weightless and the pin at A frictionless.

611

Mud
.07

half of the

the gate c

to be weig

/711, s //

((; /7! -;.?..;(1)

3-D and 2-D F-B diagrams
are constructed of the gate with the pin at A removed. The

loads from the water and the mud will be handled separately.



) z
cyv 4// // 46 e

g
Eau - A's

.(036 /)(6.rt)(..?9.21
/.6

/

1-1D5

/4/4" c4-Xr) es' ,4
(.5)(77)

3y. 2 L

(2)

z-v // r 1 7- ,4 ce/ 4

(//16.4.24 9Z)*,(f)4. _

(.4; SP 2) (..? z)

Tie Gt.afer //se

,41."0 al T e- 'I 74e

/ 929

ec

The force field for the fluid mud pressure has a pressure at the intersection of thewater and the mud of (9)(.0361) = .324 lb/sq-in. This is equivalent to a height of .3241.07
4.65 inches of mud. FM will be found as if 4.65 inches of mud is acting. Line CM willbe 4.65 inches above the plane separating the mud and the water.
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NOW IF YOU ARE GIVEN A FLAT SURFACE SUBMERGED IN A STATIC FLUID, YOU SHOULD
BE ABLE TO FIND THE MAGNITUDE AND LINE OF APPLICATION OF TEE POINT FORCE
RESULTANT OF THE HYDROSTATIC FORCE FIELD THAT ACTS UPON THE SURFACE.
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UNIT 13

VIRTUAL WORK

AT THE END OF THIS UNIT IF YOU ARE GIVEN A SINGLE MEMBER

OR A COMBINATION OF TWO OR THREE MEMBERS ACTED UPON BY

COPLANAR LOADS OR COUPLES, YCU WILL BE ABLE TO FIND THE

STATIC EQUILIBRIUM POSITION OF THE SYSTEM USING THE PRINCIPLE

OF VIRTUAL WORK.

Introduction

In your work in equilibrium in the previous units, you have been concerned with

finding the reactions on stationary engineering members using the parallelogram law in

its force and moment equation ms. In this unit you will learn how to find the

equilibrium position for a system that is acted upon by external loads. To find this

equilibrium position, active-force diagrams, displacements, and work relationships will

be used in place of free -body diagrams with force and moment equations.

Work

Fi3 (4 re VW 2

2

h

1 t

E

1

L21 L2J

(b)

9 *FF

Weight W in figure VW 1 is resting in position 1 on collars A and B. C and D are

frictionless vertical guides. Next a load L is gradually applied to block W through

the frictionless connection E in the direction shown. L is increased until we5ght W is

being held in position 1, at this time load L becanes constant. Then L is pulled until

block W moves with no acceleration to position 2 as shown in (b). Weight W has now been

moved through the vertical distance h.

V W



When weight W is moved a vertical distance h, it is said that work has been done on

W. The magnitude of this work is (W)(h). W in lb and h in inches, so the units for

work are in - lb.

The work to raise W was done by load L. In other words pulling in the direction

L with a force field FF will give the work equal to (W)(h). This work wa.; done hy FF

r^ing from 1 to 2. It is found from experimentation that if L is measured, re;laceJ Iv

FF and then F, then (F cos 0 )(h) is equal to (W)(h). That is the work .lone

vertically a distance h is (F cos G )(h). It is also found from experimentation that %.(11

is not a vector quantity but is a scalar quantity, so when work equations are used, a

the manipulations of real numbers can be used. This means that work quantities have

and can be added or multiplied using real number manipulations.

It is easy to confuse effort with work. For instance as L is grad,;ally increase::

until weight W is not supported by the collars, effort must be applied to E, tut no

is done. Effort is needed to simply hold the weight. Now as L is pulled until is i

position 2, the effort of F sine does no work. Also as G is varied, the effort nee,:ej.

to raise weight W varies. With a large e much more effort is needed than with a small G.

Virtual Displacement and Virtual Work

pas. 'ton 1

FF

t/Irrj, yip
N posit ion 2

1 I

ISS

F4V FA o'Figure VW 2
(b)

A 3-D drawing figure VW 2(a) shows a ring held in equilibrium in a horizontal

position by loads Si, S3, and S4. A plan view of the ring is drawn next (b). Now the

whole system is displaced in (b) a distance SX. to the right from the original position

1 to position 2 while keeping the ring in equilibrium with Sl, S3, and S4. Distance s

is on the order of dx and is called a virtual displacement.

The work dc,1c by FF3 during displacement $ x is (F3 cos ed(Sic) or (F3H )( Sx),

this will be called positive work. Notice that F3V does no work during thesl displacement.

The work done by FF4 when displaced is (F4 cos ez)(SX..) or (F4H)(SX) and is also positive.

Now FF
l
acts toward the left and is displaced to the right. The work done by the horizontal

force field FF1 during displacement 6X. is ( F1 cos 03)($)(-) or - (F1)(b;L).
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You know the system is in equilibrium whether at rest at 1, moving with

between 1 and 2, or at rest at 2. So XF = 0 for the system and the sum of

compone-ts equals 0 for the system. 77F
x

= 0 0 F-- + -
3H F4H F1H = 0

Multiplying each term by kitgives (F3p)(SX) + (F4H)(5x) - (Fim)(ix. ) = 0

This states that the work done by the three loads during the virtual displacement

is zero.

3
no acceleration

the horizontal

tL fif B F.

1"7--

..----4'
/ \

Fi

c60

4W

Now in (c) the ring is kept in equilibrium and displaced a vertical displacement Sy

upward. FF3 does work of (F3v)(15y), FF4 0-F (F4V)(3)' and FFI does work of

F
1V

(Sy) = zero work.

Using EFy = 0 .

F4V F1V = 0
Multiplying by Sy (F3v)(Sy ) - (F4v)(Sy)+ (Fiv)(6y) =0

This states that the work done by the three loads during a virtual displacement Sy = 0.

The ridg could be displaced while in equilibrium through any virtual displacement

in any direction and the work done would be zero.

Now in figure VW 3, the ring is distoaced through a small angle 80 which is on

the order of de) . The work done by eacn point force when the ring is rotated through

will be found.

First the work done by F3 when it is rotated through Se will be found. Line a (solid)

is drawn from P to F
3
at position 1. Then the ring is rotated through Se to position 2.

Line X(dotted) is then drawn. Next F
3
is replaced by A and B where A is parallel to line

a and B is perpendicular to line a. For a small se chord aSe is equal to arc a.59,

When F
3
is rotated a small 60 from position 1 to position 2, A does no work. The only

work done is (B)(a.60). But aB is the moment of F
3
with respect to point P, so the

Figure VW 3

work done is (aB) ( ) = (MF3/p) (Se ).

Similarily F1 does work of (-C)(b Se) = (MF p)( be)*
1/

And F2 does work of (-E)(c 50) = (MF p) e ).

2/
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Muse are all virtual work quantities as se is a virtual rotation.

2:Mr, = 0 for the system while in equilibrium, correct signs can be used

give

r P 'F
1/

P MF
4/

P
0

'3/

'1,11,inlying by SO, (M p)(69) - (MF p)( 6()) ." (Mr )(SG) = 0
3/ 1/ 4iP

is ',,tates that when a body in equilibrium under the action of external loads is

t.nrough a virtual angle SO , the work done by the external loads is zero.

Looking back at the derivation, you can see why SO must be on the order e .e must he small enough so that the physical geometry remains constant when 66

The work done during a virtual displacement, either translation or rotation, i.

%irtual work -uld written St).

Now a principle can be stated. When a body is acted upon by external loads and is

equilibrium, the extra external work needed to give the body a virtual displacement

.!.erc. Or stated another way, if a bod is in equilibrium under the action of external

.:!lq and is displaced a virtual displacement, the external loads do no work, This is

the principle of virtual work and is written W= 0.

Positon of a Single Member Acted Upon by Coplanar Loads

r (dr e V Of hi

b

e N(

e

q,
\

60

Sy

W = 2516

W.25/6

Member M in figure VW 4(a) is weightless, supports loads W and P through fricti(mle

nnections, and is supported at S with a frictionless pin. The equilibrium position

te he determined (angle e) using the principle of virtual work,

In (b) a diagram is drawn of the of M. The equilibrium position is assumed (angle )

shown with the full line diagram. Now M is displaced through 60 to the dotted pc';itic:n.

in-r > is in equilirium, 6,3 = 0 for the virtual displacement se . The only f,-)rce:

that do work during the virtual displacement SO are W and P, so only W and F are shr,w:

the diagram. Diagram (b) is called an active-force diagram.

Now the work done by P during 5# is Ps), , also during sio work is done by - s'j



VW

= 0 P 6z W Ss =0
Notice that SX. = 18 SO co50 and = R i8 sine

so 20(18 b9 cease) 25(9' 86 3 "/

Dividing by 5E3

Solving for
25 CI 50) 0) = 0

tafri e sine = (20)(16) _ 1. 6
cos C9 (2 5 ) )

Figure VW 5

5
C 1Tc.]

x (1))

= 30"
il

e = 58°

The weightless bar B on VW 5(a) supports a 10 lb weight and is held in equilibrium

by a horizontal push of 5 lb. The vertical and horizontal walls are frictionless. Angle
is to be found for static equilibrium using W = 0.

The active force diagram (b) is drawn (solid line) with e assumed. From C to 1) is

labeled x, from D to A is y. Now B is given a horizontal virtual displacement 5X, this
gives A a vertical virtual displacement 5 .

= 0 55x, 10(2/3 5,y) =- 0
Now Sx anc( osius-t be related to eaeln other.

Zg +- y2 = 3oz -ligerentiatii45 yiald5 2xcix + 2ydy
Now let- 5,t dz and bLy de so 2x bx Zy 59 0 or by = SZ

The minus sign shows that as y gets tenser z gets shoe-rer.
5ibititutini in 50 =t) 55x 10(2/5)(9 5x) =

5 /0(2/3)(X/9) = 0
c_ot e = = .75 6 = cot-ICT5) = 536

79:9

NOW IF YOU ARE GIVEN A MEMBER THAT IS IN EQUILIBRIUM

UNDER THE ACTION OF COPLANAR uakbs, YOU SHOULD BE ABLE

TO DETERMINE ITS EQUILIBRIUM POSITION USING THE PRINCIPLE

OF VIRTUAL WORK WITH AN ACTIVE-FORCE DIAGRAM. VIA/ /



V W
i.,]uilibrium Position of a Single Member Acted Upon by Loads and Couples

05.1 I
/// (b )

to.r°

25 lb

1

t

Cc )

Figure VW 6(a) shows a weightless member A loaded by weight W (25 lb) and force

`.fields FF
1

(30 lb) and FF
2

(30 lb). Angle e is to be found when the system is in static

equilibrium. Notice that FF1 and FF2 form a couple.

Active force diagram (b) is drawn with the three loads replaced by their point forces.

The system is then displaced through the virtual angle SO. Point Force Ft does work of

(i 1r ) (Se) when it is rotated through O. F
2
does work of (MF

2/B
)(b(9) during this

'1/

rctltion. The total work done by F
1
and F

2
during 5(9are (MF

1/

+ MF
B
)(se ). Mr

P
2/ 1/

1: equal to th moment of the couple formed by F1 and F, with respect to P. Thi:,.
.*:/'

ilso the moment of the couple with respect to any point. It can be said then that when

tLi couple is rotated through a 561 virtual rotation angle, the virtual work done is (Mc)

(56) or (C)(S19). It can also be deduced that when a couple is translat,,d through a

strrlight line translation SX, it does no work as the work done by one of the forces would

be equal and opposite to the work done by the other force.

Now active-force diagram (c) is drawn with load W and couple C. The system is in

equilibrium and is again rotated through 50 . The couple does negative work against the

notation. ;:

6 U o cSO ÷ y" = 0

(24/0) (25)(2o e ..5;r1 0 ) =

Sine = 2/0 .4/63 e = 28.6°
500



(a)

Sloping member A in figure VW 7(a) is loaded as shown. The floor and wall are

frictionless and angle e is to be found when the system is in static equilibrium.

Active-force diagram (b) is drawn with an assumed 6 . Now if the 20 lb force is
given a to the :left at B, the bar at D will rise a Sy. The virtual distances the

20 and 15 lb point forces move can be found, but the virtual angle through which the

coupl- rotates is not known. A new technique will be developed to find this 5e
The new technique is shown on the active-force diagram (c). This time the bar is

first given a horizontal displacement ia as shown. Then the bar is rotated about B
until it matches the position of the dashed bar in (b). During the 6X displacement
the 20 lb force does work of 20Sx. During the rotation the 15 lb force does work of
15by and the couple does work of 10060.

= 0 20 SX -r 155y 100 Se = 0
the jeometrj, = 50 Se 5ine and $.9 110 fib cos e

20(5o 50 sine) 15(4'0 Se co-se) ÷ 100 5e = 0
10 s in 0 6 <05 e 4- 1 = 0
105in - 6 11 1 # 1 = 0
(lo sin a t 1)2 = (6 )2

100 sin2 6, 4- 20,51,1E1 -fr 1 = 360- 5/.1269
in a = -26 z 202 4". NU 3 6 )(

2(136) =

NOW IF YOU ARE GIVEN A SINGLE MEMBER IN EQUILIBRIUM

UNDER THE ACTION OF LOADS AND COUPLES, YOU SHOULD BE

ABLE TO FIND ITS EQUILIBRIUM POSITION USING THE

PRINCIPLE OF VIRTUAL WORK.

26°

v w

7



a

30

yo/
EcJilibrium Positions Determined for a System of Connected Members

111&16.F,gure VW°
(b)

The two blocks in figure VW 8(a) are in static equilibrium. The equilibrium

position of the system is to be determined using $0q). In (b) an active-force diagram

is drawn with 9, assumed. The length of the weightless rope is such that angle oc is

80° in (1.0. Angle 61 will be found.

First for each weight the tangential component is found in terms of W.

WTI = WI cos et = 30 oS ei PUTi = 50 cos E32
The .5,..stekv-s is now cii,s placed throu3h Se.

U= 0 Writ- -68 = 0 "30 cos r se 50 cns92 r SO - 0
'30 cos ea 1- 50 CO5 (9.2 = 0

.4/so r 80° t a, = 180" 62 = 100° ef

.5u6st itutivi9 30 cos el r 50 cos(loo- . 0

-30 cos ei 50 [C0s100. CO3 e, ,0100. 0,] =
'30 8.48 -111.2 tan e, = 0 tan a, = .403 6),- 23.8°

Three frictionless links in figure VW 9(a) weigh as shown. The three angles

6 Grand 613 are to be found when the 10 lb horizontal load is applied.

First active-force diagram (b) is drawn for link A and angle 6; is found. It is

assumed that the 5 lb point force acts through the center of the link.

Now active-force diagram (c) is drawn with links B and A joined with frictionless

pin D. Link B is given a virtual displacement S . Remember that link A has a known

equilibrium angle 6, with a vertical line. This angle will not change during the virtual

displacement be .

Angle 9, can be found with active-force diagram (d). This time when the system is

displaced through 1,9 , angles 0, and 9, remain constant with a vertical line.

av =0
105X 5 Sy/2 =0 10 46,5in 5 Z SA c osA

(b) -tan 6, = 2--5 =.25 e, =
10

10SX. 569 -6S9/2 =0 10202 5ine2 5742e6.102- 6746046

taY762 = .8 = 30.7 ° =0



W -9

lb

F ig u re VW 10

(a)

The

/c,"4

16 lb weight in figure VW

The equilibrium angle

on the active-force diagram (b).

As always angle e is assumed

10 lb push.

.se (b)

SU = 0 16 Sy 1Obx = o
Notice &flat

then

)6* -1/0coSt9 aeld y = 5-0.5/n0
dz e .-sx dy. 50 cos de = by
16(5Ocosebe) 10(40 iine se) = 0
tan& (i6)(5)/(1000) 2 8 = 63-'1°

10(a) is being held in equilibrium by a horizont.il

e is to be found when the dimensions are as shown

to be the equilibrium angle and the system is given a .16,

NOW IF YOU ARE GIVEN A SYSTEM OF TWO OR THMEE

MEMBERS IN EQUILIBRIUM, YOU SHOULD BE ABLE TO

FIND THE EQUILIBRIUM POSITON OF THE SYSTEM!

USING VIRTUAL WORK. V W 3
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BEAM DIAGRAMS

GIVEN A BEAM SUPPORTING TRANSVERSE LOADS, AT THE END OF

THIS UNIT YOU WILL BE ABLE TO CONSTRUCT LOAD, SHEAR, AND

BENDING MOMENT DIAGRAMS FOR THE BEAM.

Introduction

The structural members labeled B in figure BD 1 are called beams. Beams are generally

long, slender members used for supporting loads that are transverse to their Cs. Each of

the beams shown below will be analyzed in this unit for the external reactions at its con-

straints and for the internal reactions on any vertical section of the beam.

Figure BD 1

BD



2 BD
Uniformly Loaded Beams

The first beam to be analyzed in this unit is shown in figure BD 2(a). The reactions at

its supports will be found, then internal reactions will be found for any vertical section of

the beam. The beam is assured to be weightless.

To find the reactions, F-B diagram (b) is drawn. The larger block weighs (15)(8)

(10)(.1) = 120 lb, the smaller one (6)(8)(5)(.1) = 24 lb. Each block is replaced in (b)

by its force field which is assumed to be evenly distributed. It is further assumed that

the 6 inch and 8 inch supports have evenly distributed force fields. The magnitudes of

FF
3
and FF

4
will be found by replacing each force field with its point force resultant

and finding the resultants using moment equations.

= 0

'4

gives F
3

(19)(120) + (49)(24) = (36)(F
3

)

F
3
= 96 lb

2:MF = 0
(13)(24) + (36)(F

4
) = (17)(120)

3
F
4

= 48 lb

Now an imaginary vertical section is to be exposed 19 inches from the left end. A F-B

diagram is drawn in figure BD 2(c) of the portion of the beam from the exposed section to the

left end of the beam. You have learned in the development of a cantilever beam that the force

fields that act on the exposed section must balance the acting force fields on the rest of the

beam, that is FF5 and FF6 must balance FF4 and FF7. FF7 = 1/8 of FFI = (1/8)(120) = 15 lb.

The resultant of FF
4
and FF

7
is R where R = 48 - 15 = 33 10.

In addition the moment of R equals the sum of the moments of FF4 and FF7 with respect to

the exposed section.

MR/S = MF7/S MF
4/S

-(d)(33) = +(.5)(15) - (16)(48)

d = 23.05 inches to the left of the exposed surface.

For equilibrium to be maintained, this 33 lb force must be balanced by the resultants of

FF
5
and FF

6
acting at the exposed surface. Remember from the cantilever development that the

force fields on an exposed section vary from zero at the neutral axis to a maximum at the top

and bottom, the two force fields must be equal, they are triangular in shape, their resultants

pass through their effective centers, and their resultants balance the acting loads' resultant.

FF5, F
5'

FF
6'

and r
6
can now be drawn with their correct directions in (c) .

Now in (d) the point force resultants are drawn ( i the exposed surface. In (e) they

are replaced by vertical and horizontal components, that is, A + B = F5 and D + C = F6.

Remember from the cantilever section that B + C = V which is called the vertical shear,

and A and D form a couple called the bending moment couple. V can be represented by one

vertical point force. The couple formed by A and D has no resultant force but only a

resultant moment, so a curved arrow is used to represent this moment. In (f) V = B +

and the curved arra4TIrepresents the bending moment couple. The magnitudes of V and M

can be found using F-B (c). Imagine that the F-B diagram (c) is constructed only with

FF4, FF7, V, and M acting on it.

Fv 0- Mneutral axis

V = 48 - 15 = 33 lb # M =-(.5)(15) + (16)(48)

= 760.5 in -lb ')



BD

All dimensions in inches

For both blocks, Density = 0.1 lb /in3

3

FF

(b ) tF, = 96/11

lq

Also acting on the exposed section is

(d)

Figure. BD 2

a uniformly distributed line force

`field caused by the direct application of the 120 lb load. This line force

field is called w and is equal to the weight of the block divided by the

length of the block, w = 120 lb/8 inches = 15 lb/in.

These three types of reactions will now be found for a number of vertical

sections of the bean using F-B diagrams.

( 0
7605* in-46



dx ---

V"0

yfe0
(4.1.8

0 V =16

1DM. 16

Gu 8
/6 ll= 32

tp N.64
w - 8

V- if-8) x /44

c.,.; .8

V=

14=336

w.0
V = '18

)M -528
1.4) gO

w =0 V= 4-8

)Mx 720

15
V'3

796.5

32

BD

Beginning with a section a distance dx from the left end of the beam, 2-D
and 3-D F-B diagrams are constructed and solved for w, V, and M in figure BD 3.
Individual F-B diagrams are drawn in 2-D for le1.6ths from the left end of the
beam of 2 inches, 4 inches, 6 inches, 10 inches, etc., until the last F-B is
of the complete beam. F-B diagrams of sale of the sections are drawn in 3-D
with their solutions worked out.

The following sign conventions will be used for the values of w, V, and M:

w is positive when 4 , negative when

V is positive when , negative when t

M is positive when ), negative when
The values of w, V, and M are in the following units:

98

w is
V is
M is

in
in
in

lb/in
lb
in-lb

V = 16*

6i4b

w =81/11

w = 8

V = 2(8) = 16

M= 1(16) = 16

cusr15

)M=772.5
V =27

/20
w 75

>1=624
V:=-72/20
w=0

1741
'ff

31 .4) = 264

-72

48

.4

/6

26 *

I I

1.2

2

VE06
48 lb/in
6

:Yle 045

V r- "18 /1)

V = wdx

co =8* m = dxwdx u2

0

Lte
is

I

M IN /11

w 8 /4

)/v1 = 528 b''/1' ;44

W=0n
w = 0

V = 48

M = 11(48) = 528

as dx 0

as dx
2

7= 0

w 8

V = 6(8) = 48

M = 3(48) = 144

45
=-15/14

V 3 lb

48

Figure BD 3

= 746 5 fri-lb

w = -15

V = 48 - 3(15) =3

M = 18(48) - 1.5(45)

= 864 - 67.5 = 796.5

M' 62Y (n -ib

w = -15

V = 48 - 8(15) = -72

M = 23(48) - 4(120)

= 1104 - 480 = 62"



120
w

35
V- 72

120

48

-186

V =-36

BD

W =0

V= 48 - 120 = -72

M = 32(48) - 13(120)

= 1536 - 1560 = -24

-1

12, 36 w -12
tb

kith_ V- 0 w

4/ -IwY)M--240

120 iflA w = 12
72

V=24
4)M =-216

w
I
z

)M- 142

w 0
V =2L# 118

)M=-72
w r0

5

120

48 .
04

M =-240i"

72 co -12tn
w = 12

V= 48 - 120 + 6(12) =0

M = 38(48) - 19(120) + 3(72)

= 1824 - 2280 + 216 = -240

V =/6 96
) M --32 w = -4

V = 48 - 120 + 8(12) - 2(4) = 16
/6 M = 48(48) - 29(120) + 12(96) - 1(8)

V=8 o
so = 2304 - 3480 + 1152 - 8 = -32

)M--8
k 120
11

Z
W0'0

)M=0 48 24

.1 24
118

11iff4
96 V= 0/6

57
iiNI / r 0

IND-V )M°0 w = o 96 )M-06'16

120 iiiii 24`' Is 0 V = 48 - 120 + 96 - 6(4) = 0
(t) = 0 ibA

iiiii q6 iiii V=0 M = 57(48) - 38(120) + 21(96) - 8(24)

60 ...1)M-0 = 2736 - 4560 + 2016 = 192 = 0

4 -41-7-----mi-T--to -0 w, V, and M for each exposed vertical beam section
,....,

48 96 will now be plotted as ordinates vs the beam lengths as

48

Figure BD 3 Abscissas using the established sign conventions of

, +Vi, and +Min.



6

6+ I2 + 8" + 9 + 8"+ 6+6;,..0%.
...

,201b 2stil)

8!b 96m

BD

0

cl ii;fn 0

-27

-36

-72

796.5
772.5

720 #i/ex IV2

M = I 4 it+.4t8

M= 621,- 72x

14 24-72z+ V
M = -72 +2

Mn216°244% IM=

-8 0 0
-72

-186

Figure BD 4
-2 -216

90

-192

lb ®

V
0

f /4 -lb 0



BD
Figure BD 4 is now drawn. The beam length

then vertical lines a and b are drawn. Next a

the F-B diagram of the entire beam are drawn in

Next a base line d is drawn and the values

is laid out to scale horizontally in (71) 7

base line c is drawn and the force fields from

. This will be called the F-B diagram.

of w from the F-B diagrams in BD 3 are plotted

to scale vs the length x from the left end to give curve (3) .

Base line e is then drawn and the V values from the F-B diagrams in BD 3 are plotted to
scale to form curve (4)

Next on the f base line the values of M are plotted for each of the F-B diagrams to
give curve

The curves in BD 4 will now De analyzed. First the the curves will be compared in the

region where x varies from 0 to 6 inches from the left end of the beam. Looking at curve (3)

you can see that w is a straight line since w = 8 lb/in for any value of x. The V curve

between 0 and 6 inches also forms a straight line with the equation V = 0 + mx = 0 + x =

8x lb. For M between 0 and 6 inches, M = 0 when x = 0, 16 when x = 2, 64 when x = 4, and 144

when x = 6.

The equation for w (from x = 0 to x = 6) is w = 8, and V (x = 0 to x = 6) is V = 8x.

Comparing them V = 8x is the integral of w from x = 0 to x = 6 written

V = rwdx = jr8dx = 8irdx = 8x

Now try integrating the V curve and see if ;7' matches the answers from the F-B diagrams

for M. 8
2

M= J7Vdx = jr8xdx = r 4x
2

When x = 0 M = 0

x = 2 M = 4x
2

= 16
All calculated values from the F-B diagrams

x = 4 M = 4x
2

= 64 check with those found by the integration

x = 6 4x
2 method.

M = = 11;4

Between x = 0 and x = 6 the w, V, and M curves are related to each other as

V = Pdx and M = j7Vdx or w = and V =
dx dx
dV dM

In other words the V curve is the integral (area under) the w curve, the M curve is

the integral (area under) the V curve, the w curve is the derivative (slope) of the V curve,

and the V curve is the derivative (slope) of the M curve.

Letting x = 0 at 6 inches, the three curves from 6 inches to 18 inches (now x goes from

0 to 12) relate as w = 0 V = 48 M = 144 + 48x .

All the equations are now placed on the diagram in figure BD 4. You should be able to

verify all the rest of the equations.

This set of curves, that is w vs x, V vs x, and M vs x, is called a set of beam curves

or beam diagrams. It is a single diagram that shows the values of w, V, and M for all sec-

tions of the beam.

The relationships between the curves are sometimes referred to as laws. If the w curve

is ("Ailed a lower curve, V is the next higher curve relative to w, and M is the next higher

curve relative to V.
Law #1: The length of the ordinate at any point on any curve is equal to the slope of

the next higher curve at the sane corresponding point.

Law #2: Between any two ordinates on any lower curve, the area underneath the curve is

equal to the change in length of the ordinates on the next higher curve, between the same

correspohdinr ordinates.



BD

A section of the beam 21 inches from the left end and dx long has been drawn in a 3-D

F-B diagram in figure BD 5. Relationships will be derived between w, V, and M on this F-B.

wdx On the left face of the section V = 3 lb and acts upward.

M = 796.5 in-lb and acts clockwise and w = 15 lb/in and acts

V -di' downward. On the right face w still is i5 lb /in acting downward.

V acts downward and is 3 lb minus some dV as x increases. V can

M-* dM
be placed on the diagram as M + dM.

therefore be drawn on the right face of the section as V dV.

M is counterclockwise and equals 796.5 in-lb plus some dM, so it

V

dx Figure BD 5

EF
V

= 0 V - (wdx) - (V - dV) = 0 wdx = dV

dx
ZM

ri face 2
= 0 - M - Vdx + (wdx) + M + dM = 0

ght

-Vdx + dM = 0, since w
(d2)

2

is negligible

dV dM
w -

dx
or wdx = dV or V = wdx V = dx or Vdx = dM or M = Vdx

These are the same equations that were developed using the F-B diagram approach.

Knowing how the w, V, and M curves are related, it is not necessary to draw F-B diagrams

to find the reactions on any vertical surface, only a F-B diagram of the complete beam is

needed. The w, V, and M .urves can then be plotted from this one F-B diagram. Figure BD 6

shows a loaded beam. The F-B diagram, w, V, and M curves are to be plotted below the beam.

The F-B diagram is drawn first. Reactions FF1 and FF2 are found by imagining each force

field being replaced by its point force and taking moments about each point force. The

lengths of the force fields are not plotted to scale on the F-B diagram.

Next the w curve is plotted using the F-B diagram. In interval 1, w = 120/12 = - 10,

in 2 w = 0, in 3 w = 108/3 = + 36, in 4 w = 0 , in 5 w = 108/9 =+ 12, in 6 w = 0, and in

7 w = 96/6 = -16. The w curve need not be drawn to an exact vertical scale. Equations can

be written for w in each interval.

Next the V curve can be plotted using the w curve and the two derived curve laws. V

has a zero ordinate when x = 0. In interval 1 w has a constant negative ordinate so V has

a constant negative slope. Also in 1 the area under the w curve ( - 10 x 12 =-120) is the

Change in the V curve so at x = 12, V = - 120. In interval 2 w = 0 so V remains constant

at - 120. In 3 w is positive so V has a positive slope and the positive change in V is

(3)(36) = + 108, so at x = 3 in interval 3, V = - 120 + 108 = - 12. In 4 V is constant at

- 12. In 5 V has a pos :tive slope and V = - 12 + 108 = + 96 at x = 9. In 6 V remains

constant. In 7 w = - 16 so V has a negative slope. The change in V in 7 is (6)(-16) = - 96

which brings V to 0 at the free end of the beam. The V curve has units of lbs but need not

be drawn to an exact scale vertically. The equations for V for each interval are shown below.

The M curve can now be plotted using the V curve and the two -.Ierived curve laws. M

begins with a zero ordinate at x = 0. In interval 1 V has a negative increasing ordinate,

so M must have a negative increasing slope. The area under the M curve in 1 is (-12)(120)

12 = -720 so M = -720 at x = 12. In 2 V has a constant negative ordinate so M has a constant

negative slope, also the area under :he V curve is (5)(-120) = - 600 so at x = 5 in 2

M = - 720 - 600 = - In 3 V has a negative decreasing ordinate so M has a negative



decreasing slope. At the beginning of 3 M has a

negative slope of - 120 , at the end M has a slope

of 12. The ordinate of M at the end of 3 is

- 1320 - 198 = - 1518. In 4 V has a constant

negative ordinate so M has a constant negative

slope. At x = 9 in 4 M = - 1518 - 108 = -1626.

V has a negative ordinate at the beginning

of 5, the ordinate becomes 0 and equals 96 at

the end of 5. The M curve in 5 begins with a

negative slope, decreases to a zero slope, and

then increases to a positive slope of 96. The

best way to find the ordinate for M at x = 9 in

interval 5 is to write the equation for V (V =

-12 + 12x), then integrate it to get M (M = -1626

- 12x + 6x
2
) and set x = 9. This gives M =

- 1248 at x = 9.

In 6 V is positive so M is positive and = -1248

+ (96)(10) = - 288 at x = 10. In 7 V has a constantly

decreasing positive ordinate so M has a constantly

decreasing positive slope. At x = 6 in 7 M = -288

+ (96)(6) /2 = O. This checks as M must equal ze-o

at the free end of the beam. Again M has units of °rdin

BD DDENSITY = 0.2
LB

/IN
3 9

/ 23 4 5 6 7

Fi /2. -Vels14

F-A4ii
120*

56

*

F = 108 "111 /08
w = 36

,o W:0

ate
=Slope

in-lb and need not be plotted to scale. All the -/

equations for M can be found by integrating the

appropriate V curves.

To find the maximum value of M in interval 5,

set V = -12 + 12x = 0 and get x = 1. Then Mmax

= - 1626 - 12(1) + 6 (1)
2

= - 1632.

Shear and bending moment equations.

1

2

3

4

5

6

7

V = - 10x M = -5x
2

V = - 120 M = -720 - 120x

V = - 120 + 36x M = -1320 + 18x2 -

V = - 12 M = -1518 - 12x

V - 12 + 12x

V = 96

V = + 96 - 16x

AT THIS POIll, IF YOU

OF A BEAM LOADED WITH

AT TWO SUPPORTS WHICH

YOU SHOULD BE A:-I E TO

DIAGRAM AND THE w, V,

120x

M = -1626 + 6x2
- 12x

M = -1248 96x

M = -288 - 8x 2
+ 96x

0

wz-- -10

area= - /to
change in

ord, nate

/08

94 pcsitiVC

deara51.179

OrdinalC

Iv =12
w 0 # 1,,

Liw=-16

V

-12
negative
increasing
ordinate

ARE GIVEN A 3-D DIAGRAM

UNIFORM LOADS AND SUPPORTED

ALSO HAVE UNIFORM LOADING,

CONSTRUCT THE 2-D F-B

AND M CURVES FOR THE BEAM.

-/Z0

negative
increasing
slope

area= /78
change in 28e
ordinate

13l0
/5/13

4

T/624

30

BD - 1

IL-6,-
positive

decreasing
slope

- /2.98

Max=-1632

Figure BE 6



10 BD Beams with Idealized Point Forces and Point Couples

Figure BD 7

124 10"--121-

-4+
--BI I 1

-451-- -.1114-

1r
,,fib 1

'132

111124 i2111

.
F2=244,

jr

F, = le

.

t FtI

lit

V

12 /b

I

(7---,:

401IW
/

-23F I

-l2*

.
en-/b

F-B2

C

t#1

In figure BD 7, F-B 1 is the F-B diagram of the

given beam showing the distributed loads that act on the

beam. The w, V, and M curves that show the reactions

occurring on any cut section of the beam are constructed

as before. It is sometimes convenient to replace the

distributed loads with point forces as shown in F-B 2.

To illustrate this in figure BD 7 the w, V, and M curves

derived from F-B 2 are superimposed on the curves from

F-B 1. The curves derived from F-B 1 (distributed loads)

are constructed with solid lines, and those from F-B 2

(point forces) are constructed with dotted lines.

The construction of the dotted w, V, and M curves

will now be explained. Since there are no distributed

loads in F-B 2, w = 0 over the entire length of the beam.

(This makes sense, since a point force on the F-B dia-

gram would have to be plotted as an infinitely tall and

vanishingly narrow area on the w curve.)

Since w = 0 for F-B 2, it is necessary to develop a

new technijue to draw the V curve Starting from the

left end of the beam, V = 0 for 2 - Ax inches, since

there are no loads on the beam in this interval. Then at

x = 2 + Lx inches, V = 12 lb acting downward, which is

positive on the V curve. V continues to be equal to a

positive 12 lb until x = 12 - Ax inches. At x = 12

+ Q x inches, the application of the point force F2 from

F-B 2 causes V to become equal to 12 lb acting upward,

so V = -12 lb. V remains constant at this magnitude

until X = 22 - Ax inches. In the interval between

x = 22 + Ax inches and the end of the beam at x = 24

inches, V = 0. To visualize this method of drawing the

V curve for F-B 2, imagine that F-B diagrams are drawn

of ..)-eam sections just to the left and just to the right

of a point force load. The two isometric drawings below

show haw V changes between x = 12 - Ax inches and

x = 12 + Ax inches.

Actually, the V curve is discontinuous at each point

force, and is plotted LNxto the left and 4octo the right

of a point force. This results in a vertical change in

the V curve equal to the magnitude of the point force in

the F-B diagram, as indicated by the connecting lines

between F-B 2 and the dashed V curve in figure BD 7.
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Once the V curve for F-B 2 has been found, it can
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be integrated to find the corresponding M curve, just as

'1* 7"#- 6+-7"121°
-40--

F19,

--1/1---1/1-- 1,1
Irf;s611 41"201

111F6..2016 Itift4,-

F3 a eb c. 120 in -/b

IP'

6

4
l4:

,20 skt

6th
1

=6'

-I- '

V

-if spin

[20fil'n
Illib

-6'

60 en-lb
ab,
I
il

/

the w curve for F-B 1 is integrated to find its corres-

ponding V curve. Caiparison of the moment curves for

F-B 1 and F-B 2 indicates that a point force approxima-

tion of the loads causes only slight changes in the M

curve. The critical intervals on the M curves are mag-

nified below to show the differences between the two

curves.

Figure BD 8 shows another beam for which the w, V,

and M curves derived from a F-B diagram showing the

point force resultants of the loads will be superimposed

on the curves from a F-B diagram showing the distributed

loads on the beam.

F-B 1 is the F-B diagram showing the distributed
lb

loads on the beam in figure BD 8. The w, V, and M

curves derived from it are constructed with solid lines

using the methods developed in previous examples. F-B 2

shows the point force resultants of these loads, and the

curves from it are constructed with dotted lines.

Notice that the point force resultants of FF1 and FF2

are replaced by a point couple on F-B 2. The w and V

curves for F-B 2 are drawn with the same techniques used

4' in figure BD 7. The point couple has no effect on

either the w curve or the V curve.

The M curve for F-B 2 is plotted with a technique

similar to that used for plotting a V curve in the inter-

val around a point force , between x = 0 inches and

x = 12 - Ax inches, the M curve is the integral of the

/6 V curve, just as it has been in previous examples. How-

ever between x = 12 - Ax inches and x = 12 + Ax
inches, the M curve undergoes a sudden increase equal to

the magnitude of the point couple in F-B 2. Between

x = 12 + Ax inches and the end of the beam at x = 24

inches, the M curve is ag.tin equal to the integral of

6" the V curve. The discontinuity in the M curve at x = 12

inches can be explainel by imagining that F-B drawings

are drawn of sections of the beam just to the left and

420 ''' /4 just to the right of the point of application of the

couple in F-B 2 as shown in the isometric drawings

below. The ordinate change on the M curve is not

C = 120 lb-in acting ;), but is a couple of 120 lb-in

acting fr.)that is suddenly needed to keep the second

4.-4. isometric F-B in equilibrium, this is a positive change.



12 BD It is frequently necessary to analyze beams

that are loaded both by distributed loads and loads

that can be approximated with point forces and

point couples. The following two examples demon-

strate how w, V, and M curves for such beams are to

be drawn.

Figure BD 10 shows the w, V, and M curves for

/0 a cantilever beam. The hanging weight is represen-

ted by a point force on the F-B diagram, and the

two blocks are represented by distributed loads.

The beam itself is considered to be weightless.

To find the reactions at the left end of the

beam, it is necessary to mentally represent W1 and

W2, the weights of the blocks, with their point

force resultants, as shown on the F-B diagram in

Figure BD 10. These dotted point forces on the

F-B are used only to find reactions..

Mleft end =
0 M

1
= +6(9) + 21(12) + 23(8)

V
1
= +490 in-lb

2:F
V

= 0 V
1

= 9 + 12 + 8

V
1

= 29 lb

al
DENSITY=

4
/pv3

0/Ad Ev s//)/1/ /u Cyes

BERM LE/Atni = 26"1

Figure BD 10

5

To construct the w curve, it is necessary to

remember that the shape of a distributed load is

the same as the shape of the block that causes it.

Since the block on the left is triangular, this

means that the w curve must be triangular in the

interval tetween x = 3 inches and x = 12 inches

from the left end of the beam. At x = 3

w = (9)(4)(5)(.1) /9 = 2 lb/in, at x = 12

a= 0, so between x = 3 and x = 12 w = -2 + 9x.

The initial ordinate on the V curve is not the

29 lb point force acting , but is a 29 lb point
It

force that balances it on a F -3 diagram so must be

29 lb .
The initial ordinate on the M curve is

not 490 in-lb acting( , but 490 in-lb acting ),

so it is negative.
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In the F-B diagram of the beam shown in 13

DENSITY= 0 4 11/INA figure BD 11, the left-hand reaction is represented
owes.04,5

"iCNe, by an evenly distributed force field and the right-

hand reaction is represented by a point force re-

sultant since the roller causes a line force field

to act on the beam. The weight of the block is dis-

5 tributed over its contact area as shown in the F-B

diagram. The hanging weight is assumed to cause a

i< 45 lb point for and a 4(45) = 180 in-lb point

couple, both acting 2 inches from the right end of

the beam.

Once the F-B diagram has been established,

the w, V, and M curves can be drawn using the tech-

niques developed in previous examples.

Most of the time the curves are used to find

the maximum shear and maximum bending moment.

The maximum value of the vertical shear can be

found by inspection. It is - 151 lb in interval 5.

It is not - 151 + 48.

The maximum value of M is either in interval 4

or - 270 in-lb at the end of interval 5. In

interval 4

wV : x
2

44/

Figure BD 11
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M = 260 63x - 3x
2
- x

3
/3

Setting V = 0 gives x or V = 63 - 6x - x
2

gives x =46 inches.

M = 260 + 63x - 3x
2

-
MaX

459.41r1-1b.

27

x
3
/3

=0

when x =SS inches

NOW IF YOU ARE GIVEN AN ISOMETRIC DRAWING

OF A WADED CANTILEVER OR A SIMPLY SUP-

PORTED BEAM, YOU SHOULD BE ABLE TO CON-

STRUCT w, V, AND M CURVES FOR THE BEAM.

YOU SHOULD BE ABLE TO DRAW THESE CURVES

FOR DISTRIBUTED LOADS, IDEALIZED POINT

FORCES, OR POINT COUPLES. BD-2
270
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