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ABSTRACT

The Maryland Refutation Proof Procedure Systems (MRPPS) is an

interactil perimental system intended for studying deductive search

methods. Although the work is oriented towards question answering,

MRPPS provides a general problem solving capability.

There are three major components within MRPPS. These are:

(1) an inference system,

(2) a search strategy, and
S

(3) a base clause selection strategy.

The inference system is based on the resolution principle and performs the

logical deductions specified. The user may select from a wide variety of

refinements of resolution. Current refinements are: set of support, linear,

P1, SL, input, and combinations of the above. Paramodulation and deletion

by tautologies and subsumption are also provided with the system.

The search strategy directs the deductions to be made by selecting

from clauses already generated those that have. the best merit. The merit

of a clause is given by f(n) = wog(n) + wihi(n) + w2h2(n) + + wkhk(n).

If the user can specify tie-breaking rules for equal values of clause merit,

an upwards diagonal search results in the sense of Kowalski. The upwards

diagonal search included in MRPPS generalizes the Kowalski upwards diagonal

search to an n-dimensional search.

The base clause selection strategy determines which facts and general

axioms to select from the data base. Such a clause may be selected

regardless of whether or not it has the best merit.

Heuristic techniques are applied within each of the three major

components. This technical report describes the current implementation of

MRPPS. It describes each of the components and how they are integrated



into what has been termed the Q* algorithm.

HIPPS is written in FORTRAN V for the UNIVAC 1108 (a version of

FORTRAN IV) and runs under EXEC 8 at the University of Maryland. The

current imp'mentation is core bound and requires approximately 60K

words of memory to run, of which 35K is for the data base and for

working storage.
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1. Introduction

In this interim report we describe research being performed at the

University of Maryland in the area of Question- Answering (QA) Systems.

The major goal of the research is to attempt to provide some insight in-

to the problem of performing deductive searches in a QA System. We

therefore do not emphasize the natural language aspects of question-

answering. The approach we have taken is to design and implement a QA

System which provides the flexibility to experiment with various search

heuristics as well as with different inference systems. The purpose of

this technical report is to describe such a system termed the Maryland

Refutation Proof Procedure Systems (MRPPS).

The deductive capability of MRPPS is provided by the resolution

principle as developed by Robinson [1965a]. Many refinements of resolu-

tion are provided within MRPPS as described in this report. MRPPS

consists of not only inference mechanisms but also a search strategy

that directs the search for an answer to a query. Such a system has been

termed a proof procedure system by Kowalski [1970b]. A refutation proof

procedure is a term which applies to proof procedures in which the proof

consists of a refutation of the negation of a statement to be proved.

A refutation proof procedure system may therefore be defined as a system

P(I,E) that consists of two basic parts:

(1) a set of inference rules I based upon the resolution prificiple and

(2) a search strategy y for I.

The inference rules restrict the application of resolution to particular

subsets of S , the set of clauses that could potentially enter into the

proof. Examples of these rules are set-of-support and P1- deduction (as

well as unrestricted binary resolution with factoring). On the other
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hand, the search strategy determines which two clauses from S should

be chosen to resolve next as determined by some cost function f applied

to each clause. Whether or not the two clauses chosen will actually be

resolved is determined by the inference system in force, which "filters

out" non-permissible inferences. We have also added to MRPPS a third

major component in addition to the inference rules and search strategy:

(3) a selection strategy for determining the sequence and timing

in which data entries and general rules are to be brought to

bear on the problem.

The second of the above system components will be called the

deduction strategy while the third component will be called the base clause

selection strategy. These two components, together, comprise a search

algorithm which we call the Q* search algorithm. The design of this

algorithm has been strongly influenced by the 1 * algorithm of Kowalski.

[1970b]. The deduction strategy builds upon and extends analogous parts

of the 1 * algorithm to permit additional heuristic considerations to be

employed. The base clause selection strategy, which has no analog in

the 1* algorithm, permits the selective use of data and axioms, and also

permits heuristic and semantic considerations to be brought to bear on

the problem. Use of the selection strategy leads to a rapid and

efficient derivation of a refutation in many instances.

The inference component of the system is based on the first-order

predicate calculus, and in particular, on the Robinson resolution prin-

ciple (Robinson {1965a]) and refinements thereof. This component

permits the selection of one of several inference systems, or of combina-
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tions of these inference systems, for any given run of MRPPS.

Details of each of these three main system components are described

in this report. The major innovations incorporated in MRPPS are

listed below:

(1) MRPPS utilizes a refutation proof procedure that includes

both heuristic search and logical deduction. In the past,

most systems have used ad hoc approaches in either or both

of these processes whereas MRPPS integrates and coordinates

the two processes based on Kowalski's work.

(2) The concept of upwards diagonal search has been extended

to the case where the heuristic component is a linear

combination of an arbitrary number of heuristics.

(3) The concept of merit sets developed by Kowalski has been

modified. Whereas Kowalski primarily treated the case of

clause length and level as heuristic measures, MRPPS allows

various additional heuristics to be defined.

(4) The concept of using cluster analysis as a basis for

deriving heuristic measures has been introduced.

(5) A selection strategy is used for introducing base clauses

into the search space. This strategy delays clauses from

being used to generate inferences until it is essential that

the clause be brought in. The strategy is such that base

clauses are not given merit unless they are determined to

be relevant to the search in progress.

Work on the effort began approximately in February 1972. The above

three parts of the system were designed and implemented between the start-
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ing date and August 1972. The system is written in FORTRAN V for the

UNIVAC 1108 (a version of FORTRAN IV) and runs under EXEC 8 at the

University of Maryland(1). The system can be used from teletype and

has interactive capabilities that permit the user to select a wide

range of options to run his problem. Primitive capabilities exist to

enter, update, and maintain new data bases. The routines to handle the

data base are described in an appendix to this report(2). The entire

system is core.bound and requires approximately 60K words of memory to

run, of which 25K is for programs and 35K is for data storage, including

the entire data base and working storage.

A data base is currently being used that consists of genealogical

information about Eskimos. It is expected :hat experimentation with

this data base and others will be performed to gain insight into infer-

ence mechanisms, heuristics, and semantics that might be useful for QA

systems.

(1)FORTRAN was chosen primarily because of availability and a high .de-
gree of main*,enance at the computer center.

(2)This appendix is not included with this report,.but may be obtained
upon request from the authors.
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2. Background

A QA System has been characterized by Kuno [1967] as consisting

of:

(1) a source language input;

(2) a syntactic analyzer;

(3) a semantic analyzer;

(4) an inference and search mechanism; and,

(5) an output language.

There have been a large number of research efforts devoted towards QA

Systems as evidenced by state-of-the-art summaries by Simmons [1965,

1970], Minker and Sable [1970], Montgomery [1969, 1972], Salton [1968],

Bobrow, Fraser, and Quillima [1967].

The developments reported upon in the above survey articles have

-primarily emphasized the natural language processing portion represented

by the source language, syntactic analysis, and semantic analysis. The

major purpose of this effort is to investigate the inference and search

mechanisms of suCn systems. If an inference mechanism is important to

an application area, one can always simplify the source language input

by placing the burden of the work on the user and hence, avoid machine

problems in syntactic and semantic analysis. However, if the inference

mechanism is weak in its deductive capabilities, or cumbersome, a QA

System may not be a viable tool.

A number of QA Systems have been designed that contain a deductive

capability. There have been three major areas of development which may

be termed

(1) the predicate calculus approach;

(2) the relational system approach; and,
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(3) the procedural language approach.

In the predicate calculus approach data is represented by instan-

tiated predicate expressions such as I (z: , Sara) and the rules

used to define predicates and their interrelationships are in the form

of general axioms such as FATHER(x, y) A FATHER(y, z) GRANDFATHER(x, z) .

Pioneering work in this approach was first performedby Darlington

[1962] who applied results by Davis and Putnam [1960] to perform deduc-

tive searches. Green and Raphael [1968] were the first to employ the

Robinson Resolution Principle [1965a] in QA Systems. Darlington [1969]

continued his efforts in QA Systems and has speculated that an inference

system based on A-ordering, P1- deduction and renaming, and set-of-

support should be used for QA Systems. Darlington [1971] is continuing

his work and is developing a system based on second order logic. Coles

[1969] has performed some studies on QA Systems, but his results are in-

conclusive. Thus, the work has emphasized the "logical" aspects of in-

ference making in contrast to the heuristic aspects, and little experi-

mentation has been performed in each case.

In the relational data system approach, a set of subroutines exist

that may be linked together to derive other relations. The subroutines

handle some general cases such as relational "composition". Two rela-

tions may be composed when the relation P1(x,y) and the relation

P2(y,z) can yield a third relation P3(x,z) . A number of QA Systems

have been designed using such general principles. A system termed

Relational Store Structure (RSS), developed by Marill [1967], contains

some general rules of this type and can, for n-ary relations, perform

deductive searches. A breadth-first search is employed to derive infer-

ences. Another system with a similar approach, but which only handles
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'Anpry relations was developed by Ash and Sibley [1968]. Feldman

alza keener [1968] have also developed a system for performing

inferences with binary relations.

In the procedural language approach, a language is available in

which the user can write procedural statements that permit deductive

searches. A system designed by Levien and Maron [1965] provides a pro-

cedural language, INFEREX, for specifying queries. Hewitt [1970] has

developed PLANNER, a procedural language for problem solving

PLANNER contains an automatic backtracking mechanism. OA4, a system

similar in design to PLANNER has been developed by Rulifson [1971].

MOlermott and Sussman [1972] have developed a procedural language called

CONNIVER that is similar to PLANNER, but requires no backtracking. Also,

Feldman et al [1972] have developed SAIL which is an extension of the

LEAP language and has capabilities similar to CONNIVER.

Except for the recent developments of PLANNER, QA4, CONNIVER, and SAIL,

the approaches taken to date have not used heuristic techniques exten-

sively to enhance the search for a solution and decrease the search time.

There has, in general, been little work in applying heuristic techniques

to theorem proving or to QA Systems in general. Norton [1972] has per-

formed sane experiments with a theorem prover that inclUdes paramodula-

tion. A major part of this study is the development of techniques to

permit heuristics to be added to deductive searches so as to help guide

the search. We are not convinced that the simple addition of heuristics

is sufficient. Extensive semantic information will also have to be used.

In his thesis, Kowalski [1970a] developed the concepts of a refu-

tation proof procedure system and of a search strategy that can be eLployed

in a theorem proving environment. The work by Kowalski generalizes
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the results developed by Hart, Nilsson and Raphael [1968] for state-

space problems to theorem proving situations. Assuming that meaningful

heuristics can be developed, Kowalski shows how to apply the results to

theorem proving and has placed the results on a firm theoretical basis.

Meltzer [1971] provides a very lucid elaboration of Kowalski's work.

Initial work convinced us 'that a proof procedure system alone will

not be adequate for QA Systems. SoMe strategies must be used to decrease

the number of clauses that are to be passed to the QA System. Semantic

information about the particular domain, and the general rules used to

deduce new results must be brought to bear on the problem. This report

describes some of our considerations todate. .As more experience is

gained, we expect that additional semantic considerations will be de-

veloped. Indeed, at the time of this report, we are investigating other

considerations. As this report was being written, we learned of inde-

pendent work by Travis, Kellogg, and Klahr [1972] who, although taking a

somewhat different approach than described in this report, have similar,

if not identical ideas in this particular area. The work by Travis et

al does not use theorem-proving techniques. MRPPS is similar to the work

by Allen and Luckham [1970] who have developed an interactive theorem-

proving system.
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3. Current Search Strategies for Theorem Proving

3.1 Ordered Search Algorithms

In order to more clearly understand the operation of the Maryland

Refutation Proof Procedure System described in the following sections,

the basic concepts underlying current search strategies that may be used

for theorem proving will be discussed. Many of these searching algori-

thms have defined a costing function f that is used to evaluate the

relative merit (i.e., cost) of all those nodes of the search space that

are available for expansion. At each step of the algorithm, the node

with the smallest cost is expanded next and its successors are placed

back on a list containing all unexpanded nodes. In addition, each time

a node is expanded, its removed from this list. The nodes on this

lis' are then reordered with respect to f , the node with the smallest

f value is chosen for expansion, and the process is repeated until a

solution is found (or the list is empty). This is essentially the pro-

cedure used in the A* algorithm of Hart, Nilsson, and Raphael [1968].

It has been customary to define the above merit function as

f(n) = g (n) h (n) where g (n) is an estimate of the ac Dual cost of a

minimal cost path from a start node of the search space to the node n ,

and h(n) is a heuristic estimate of the actual cost from node n to

a solution node. For the problem domain of theorem proving using re-

solution, the following analogies may be established between a state-

space search (as in A*) and the search for a null clause:

(1) states (nodes)

(2) starting states

clauses

data base clauses, clauses from

the general axioms and clauses

from the negation of the question
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(3) operators

(4) goal state

or theorem

binary resolution and factoring

null clause (0 )

When using an ordered search algorithm for theorem proving such as

that described above, it is necessary to order all the clauses in the

data base in the sequence of best merit first, to avoid having to search

the entire data base for the clause with best merit. This means that in

setting up a data base, one must specify the merit for all the data

base entries and axioms and then sequence them in merit order. Whenever

the user wishes to alter the definition of f(n) , the data base must be

reordered again. A great deal of work is therefore required at the time

the set S is defined to the system. In addition to the large amount

of work entailed in evaluating f(n) for each clause in advance, the

above method has a further disadvantage of requiring the value of the

heuristic function h(n) to be fixed in advance of a proof. What would

be more desirable would be to avoid calculating f(n) prior to a proof

and to permit h(n) to be based upon the query inputted to the system

at run-time. We shall see that this will be possible to achieve.

There are two more limitations of the A* algorithm when it is used

for theorem proving. First, it must be modified to allow the applica-

tion of successor-generating operators requiring more than one input

(e.g., resolution). This means that all of the successors for a clause

cannot be formed at one time since that clause may later resolve with

another clause that has not even been generated yet. Second, at any

stage of a proof, every clause in the entire search space is potentially

available for interaction with the clause being expanded (by

_ resolution or paramodulation). Of course various inference systems
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could restrict the number of interactions, but experience with many

theorem provers has shown that in general, space would still be exhaus-

ted before a solution would be found. What is needed is some technique

for being more selective about which clauses are allowed to interact so

that inferences are generated in a more optimal order than in A*. For

instance, whereas the A* algorithm would find all successors for a

clause C at once, an improved strategy might expand a successor of C

before finding the rest of C's successors,if it decided that the course

of action might be more productive than the latter. The 1* algorithm

-of Kowalski [1970b], described in the next section, attempts to alleviate

these last two problems.

3.2 Improving the Ordered Search Algorithm The y* Algorithm

The 1* algorithm employs a cost function f(n) = g(n) + h(n) to

measure the merit of a clause C(n). In the ensuing discussion, g(n)

will be defined as the level of the clause .C(n) , and h(n) as its

length. Kowalski defines both a diagonal search strategy using a dia-

gonal merit ordering sd and also an upwards diagonal strategy using

an upwards diagonal merit sdu. Let n and n' be two nodes of our

search space. Then

(1) n sd n' (n has better or equal diagonal merit than

n') iff f(n) s f(n')

(2) n sdiu n' (n has better or equal upwards diagonal merit

than n') iff f(n) s f(111) and h(n) s h(ni) whenever

f(n) = f(n') .

It should be noted that (1) defines the diagonal search which is very

similar to the A* algorithm mentioned previously. For an upwards dia-

gonal search, if two clauses C(n) and C(n') have equal f values,

we then expand that clause which is the shorter of the two since this

(3.1)
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action has the greatest possibility of producing shorter clauses (per-

haps the null clause).

As clauses are generated during the search (by inclusion from the

base set S , by resolution, or by factoring), they are placed in dis-

joint sets called A sets (actually implemented as lists). Thus a

clause C(n) is stored in set A(i,j) if it has level j and length

i . This is different than the A* strategy where clauses are essentia-

lly separated into disjoint subsets according to f value rather than

by both g and h values separately.

y attempts to generate clauses approximately in upwards'diagonal

merit order. That is, the strategy would try to generate clauses for

set A(i,j) before those in A(ii,j1) if:

(1) i + j < + j' or (3.2)

(2) i + j = + j' and i <

If y is generating clauses for the set A(i,j) it may do so in the

following ways:

(1) if j = 0 , then a clause from the data base of length i

may be placed in A(i,j) ;

(2) if j > 0 , a clause in A(i + 1 , j - 1) may be factired; or

(3) if j > 0 , a clause C(ni) in A(ii,ji) may be resolved

against C(n2) in A(i2,j2) where

12 2

j max(jl'i2) + 1

Note that at the start of a proof, all of the A-sets are empty

(unlike A*). They are filled by a routine called FILL(i,j) that

generates either by (1) or (3) above, clauses of merit (i,j) . Note
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that during FILL(i,j) , all parent clauses of resolvents formed by (3)

are clauses previously generated and placed in A-sets of better merit

than (i,j) . When no more clauses can be formed in this manner,

FILL(i',j') is called where is the "next" merit after (i,j)

with respect to the ordering sdu . FILL(0,0) is called when 1 begins.

A second subroutine, RECURSE(C(n)) , is called whenever FILL(i,j)

generates a clause C(n) . Because C(n) is a newly formed clause, it

may very well interact with other clauses previously generated to pro-

duce a new inference. Thus, RECURSE(C(n)) generates by (2) or (3)

above, all clauses of merit (i',j') <du (i,j) that are immediate de-

scendents of C(n) . Upon generation of the successor C(n') ,

RECURSE(C(n')) is called to form immediate successors of clause C(n')

This recursive process continues until some level of RECURSE(C(ni))

fail:, to generate any clauses meeting the above merit constraints.

(NotethatthisdoesnotmeanthatC(."11) has no successors at all.)

Control is then returned to the previous level of RECURSE which contin-

ues to find the "next" successor for the clause C(ni_i) local to its

level of recursion. Eventually FILL is.re-entered, and the FILL-ing

and RECURSE-ing process continues until the null clause is found (or

time or space bounds are exceeded).

Although the 1 algorithm is theoretically very elegant, it is

bound to fail for any practical application where the data base is

fairly large (several hundred clauses perhaps). This is because typi-

cal question-answering data bases consist primarily of unit clauses,

(i.e., clauses of merit (1,0)). Thus, when FILL(1,0) is called, aZZ

of these units will be placed in A(1,0) before FILL(0,2) is called.

As in the A* algorithm, we have again deluged our theorem prover with

data clauses, most of which are totally irrelevant to the query.
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3.3 An Example Using the I* Algorithm

As an exmaple of the kind of trouble one can get into, let the data

base S consist of ISI clauses, ISI 1 of which are units. Among

the units are the clauses F(Jack, Sally) and F(Harry,.Jack)' where

F(x,y) may be interpreted as "x is the father of y". The single non-

unit (in clause form) is -F(x,y) V -F(y,z) V G(x,z) which states:

"if x is the father of y and y is the father of z, then x is the grand-

father of z."

Now suppose that the negation of the query is -(ix) G(x, Sally) .

In clause form this is -G(x, Sally) . We assume that there is no

data base clause of the form G(A, Sally) for some constant A , such

that an immediate contradiction would be possible. Also assume that in

the implementation of Eic, all supported clauses are stored separately

from the non-supported clauses of the same merit so that no explicit

tests need be made to determine whether a clause has support or not.

When FILL(1,0) is called, each unit base clause is brought in

one by one. As each clause C is generated, RECURSE is called with C

as its argument. Since C cannot be factored (we assume a fully factor-

ed data base), C is resolved against all clauses in A(1,0) that have

alreadg been generated and that have support. Since only -G(x, Sally) has

support, no resolvents are formed until this clause is brought in.

When it is, it is resolved against every clause in A(1,0) . We fail

in each case since no direct contradiction exists. We thus continue to

fill A(1,0) until we have brought in all ISI unit clauses and have

attempted ISI resolution operations. Note that this figure includes

the theorem that is also of merit (1,0). No more clauses are generated

at all until FILL(3,0) is called and I* then brings in the general

axiom -F(x,y) V -F(y,z) V G(x,z) . RECURSE is called and -F(x, Sally)
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immediately resolves with the axiom to yield -F(x,y) v -F(y, Sally) of

merit (2,1). Thus, ISI + 1 resolution operations have been attempted

so far.

Now when RECURSE is called, -F(Sally, Sally) is formed as a factor

of merit (1,2). Let us assume that no other clause successfully re-

solves with -F(Sally, Sally) when RECURSE is called. However, tests

are made against all clauses in A(1,0) as well as -F(Sally, Sally)

itself. This is allowed since a resolvent of c
1

E A(1,0) and c
2
E A(

1,2) has merit (0,3) sdu (3,0); the same applies to A(1,2) . Thus

ISI + 1 tests are made. Next, all unit base clauses are resolved

against the clause in A(2,1) . This is permissible since a clause in

A(1,0) resolves with a clause of A(2,1) to give a clause of merit

(1,2) sdu (3,0). Recall that we are filling A(3,0) . In the worst

case F(Harry, Jack) and F(Jack, Sally) might be the next to last

and last clauses on the A(1,0) list. Thus ISI - 1 resolutions would

be attempted before -F(Je.r.k, Sally) would be placed in A(1,2) . When

this clause is RECURSE-d on, another ISI steps are taken before 0

is found and placed in A(0,3) . Thus a total of 41SI 1 resolution

steps were needed to answer a very simple questiori These figures

ignore the possibility that -F(x,y) V -F(y, Sally) might have resolved

with other units before resolving with F(Harry, Jack) . Thus for large

ISI , a proof might never have been found. Thus it seems that a search

strategy is not practical for question-answering systems if it uses only

length and level as components of f and employs no strategy for selec-

ting semantically appropriate clauses from the data base.
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4. Maryland Refutation Proof Procedure System (MRPPS)

4.1 Introduction to MRPPS

4.1.1 Overview of the System

The development of a new refutation proof procedure system has been

*
!motivated by the limitations of search strategies such as L and

A* , most of which have been mentioned in the previous section. These

limitations are as follows:

(1) the data base must be reordered whenever the definition of

f(n) is altered so that the clause of best merit may be

easily located;

(2) the merit of base clauses must be calculated prior to a

proof;

(3) clauses are selected from the data base without reference to

any semantic information; and,

(4) the merit function f(n) = g(n) + h(n) is composed of only

twc parameters where g(n) and h(n) may be composite func-

tions but are considered as single values.

It should be clear that the first three limitations must be corrected

in order to successfully answer questions about a large data base.

However, at the present time, it is not known whether the last point is

really a limitation since composite g and h functions may permit as

much discrimination between clauses as does an evaluation function f

with several separate components. This question should be answered

through further experimentation.

As described in the introduction, MRPPS consists of three main

components: a set of inference rules, a deduction strategy, and a
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base clause selection strategy. The last two together comprise the Q*

search algorithm that controls the search for a refutation. Figure 1

gives an overview of the system and shows how the three main components are

integrated into the system. Note that solid lines represent con-

trol paths whereas dotted lines represent data paths between components

of the system. MRPPS is controlled by an executive that communicates

with the user as well as with the deduction strategy routines and data

base creation and maintenance routines. There is also a freestore

maintenance routine that handles the allocation and return of core

storage.

The data base of MRPPS may be separated into two different data

structures at the user's option. The first form indexes clauses by

predicate sign, then by each predicate name of the clause, and within

equal predicate names, by clause length. The second form has one additional

level of indexing; namely, within predicate names, clauses are indexed

by term names, and further indexed by clause length if the term names

are identical. Thus, a greater degree of discrimination is permitted in

the second form than the first. It is advisable that the user enter

an axiom into the first structure, only if it contains no functions or

constants. In this way, the base clause selection strategy will select

clauses in as optimal a fashion as possible.

There are several implementation details that should be mentioned

here. As noted previously, MRPPS is implemented on the UNIVAC 1108.

Since addresses on the 1108 are 16 bits long, only 65K words of memory

may be accessed directly. However, up to 262K words may be referenced

by indirect addressing. Since 65K is not a realistic limitation for an
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experimental system, all data referencing is therefore done indirectly,

even though a loss of speed is suffered.

In addition, the current version of the system is core-based. For

large data bases, however, this is out of the question, and thus it is

planned that future versions of MRPPS will have the capability of

accessing data on peripheral devices rather than only in core.

MRPPS has been designed to be a flexible as well as a computation-

ally efficient system. We have attempted to provide a wide variety of

inference mechanisms as well as various heuristic measures for use

during the search for refutations. Details of the inference routines will

be discussed in section 4.1.2, the deduction strategy will be described in

section 4.5 and the base clause selection strategy will be described in

section 4.4. Where appropriate, references are given for the various

techniques that have been used in MRPPS.
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4.1.2 Inference Systems Implemented

MRPPS allows the user considerable flexibility in choosing which

inference mechanisms (or combinations of mechanisms) to use. The follow-

ing inference mechanisms are currently implemented. With each infer-

ence mechanism we provide a reference to the relevant literature.

(1) Binary Resolution and Factoring (Robinson [1965a])

Unrestricted resolution allows resolution between any two

clauses C1 E S and C2 E S on two literals, 21 E C1 and

2,

2
E C

2
, where S is the set of clauses available for consider-

ation by resolution at some stage of a se^rch. S contains all

factors and resolvents generated during the search and those base

clauses made available by the base clause selection strategy.

(2) Set-of-Support (Wos, et al [1965])

In this inference system, the set S is subdivided into two

subsets K and S-K such that S-K is satisfiable. Clauses in

K are said to have support and thus initially, K consists of all

clauses from the negation of the theorem. A resolvent R(C C )
l' 2'

is permitted if and only if C1 E K and C2 E S , and each resol-

vent is placed in K when it is formed. Set-of-support is impor-

tant since it restricts the set of different potential proofs.

(3) P1-Deduction (Robinson [1965b], Meltzer [1966])

A resolvent R(C1,C2) is permitted if and only if either C1

or C
2

is a positive clause.

(4) Linear Resolution [Luckham [1968], Loveland [1968])

A linear derivation from a set of base clauses S is a

sequence of clauses Ci,C2,...,Cn such that C1 E S and each
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C. isaresolventofC1 .an: B where either1+1

a) B is a base clause

b) B is an ancestor of C1 . .

(5) input Resolution (Chang [1970])

This is the same as linear resolution except that B may only

be a base clause. Input resolution is not complete.

(6) Linear Resolution With Selection Function (Kowalski and

Kuehner [1972])

SL-resolution is a refinement of linear resolution and is

very similar to model elimination (Loveland [1969]). The funda-

mental difference between linear and SL-resolution is that in the

latter, a single literal is selected from each clause Ci in the

linear derivation. When input resolution is performed on the

clause Ci , only the selected literal may he resolved upon,

whereas in linear resolution, any literal could be resolved upon.

This has the effect of eliminating redundant proofs.-

All of the first six inference systems, with the exception of in-

put resolution are complete and sound.

(7) Combinations

MRPPS allows many combinations of the above inference systems

to be used simultaneously, although in some cases, the resulting

inference system may not be complete. For instance if set-of-

support and P1-deducticn were used concurrently, we could guaran-

tee completeness only if the conjectured theorem together with all

positive clauses had support. The user must determine for himself

whether the combination that he is using is complete. The system
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does not automatically prevent incomplete combinations of systems

from being used.

(8) Paramodulation (Robinson and Wos [1969])

Paramodulation is a substitution rule that infers new clauses

by substituting a term t1 for a term t2 in a clause C such

that t
1

equals t
2

. The resultant clause C' is said to be in-

ferred by paramodulation. More formally, suppose that there exists

a predicate E(t1,t2) that expresses the equality of terms of

t
1

and t
2

. Let A and E(t1,t2) v B be two clauses whose

variables have been standardized apart. Here B is the remainder

of the clause containing E(t1,t2) . Suppose that a term t in A

and t
1

have a most general common instance:

t
1
a = ta .

Let A' he the result of replacing in Aa some single occurrence

of ta by t2a . Then the clause A' v Ba is inferred by para-

modulation.

Paramodulation is important since it circumvents the problem

resulting when equality between terms is handled by resolution.

It is available in MRPPS as an option to the user whereas -esolu-

tion and factoring are always performed. It has been shown by

Robinson and Wos [1969] that paramodulation is complete when used

in a functionally reflexive system; i.e., for all functions f ,

x. . implies f(x.,...) = f(x.,...) .x3

4.1.3 Deletion Rules Used in MRPPS

Whenever a clause is generated by any means during a proof, various

checks may be made to determine if the clause is redundant. A clause
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is considered redundant if it has already been formed before, or if its

presence will contribute nothing to the search process. If any of

these conditions are detected, the clause may be deleted (if so desired

by the user).

MRPPS employs three optional deletion rules: deletion of tautolo-

gies, of alphabetic variants, and of subsumed clauses. A set S of

clauses (namely all the clauses in our generated search space) is un-

satisfiable irrespective of whether or not tautologies are deleted. If

they were left in the search space, however, they would only tend to

generate irrelevant inferences. Since detection of tautologous clauses

is a reasonably efficient process, it is therefore advantageous to al-

umys perform tautology elimination. Also, completeness is not lost

for any of the above systems.

We may define subsumption as follows: a clause C1 subsumes a

clause C
2

if Cla c C2 for some substitution a . It has been shown

that the unsatisfiability of a set of clauses S is not affected if a

clause C1 E S subsumes a newly formed clause C2 , and C2 is con-

sequently deleted immediately after it has been formed. This is a

special case of subsumption that preserves the completeness of the

search strategy. Difficulties can occur if C2 subsumes C1 and C1

is arbitrarily deleted (see Kowalski [1970a]). The process of subsump-

tion is often costly in terms of computer time since a search of the

set of generated clauses is necessary every time a clause is formed

during a proof; furthermore, the subsumption test is itself a time-

consuming operation. This option must therefore be used with care.

Since subsumption is relatively time-consuming, as a compromise we

employ a third deletion rule for alphabetic variants. Two clauses are

said to be alphabetic variants of each other if they are identical up
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to a change of variable names. Thus, C1 = P(f(a,x),y) is a variant

of C2 = P(f(a,z),x) . It should be clear that C1a s C2 and thus C2

can be safely removed since it is subsumed by C1 . This rule has the

advantage that it is computationally efficient whereas in general, sub-

sumption is not. Our experience has indicated that many redundant

clauses are formed in a typical question answering search, and that

deletion of alphabetic variants is advisable.

4.2 A Generalization of Y* and Upwards Diagonal Search

4.2.1 A Revised Definition of Diagonal and Upwards Diagonal Merit Order-

ing

As described in Section 3, when f(n) is defined in terms of only

clause length and level it does not discriminate well enough between those

clauses that are relevant and those that are not, and it is doubtful

that any costing function composed on only two clause features would be

sufficient. It should be possible to define a more effective costing

function by letting g(n) and h(n) be linear combinations of clause

features, such that g(n) and h(n) are considered as single values.

Alternately, f may be redefined to be a linear combination of an

arbitrary number of functions rather than just one or two such that each

function retains its value rather than being imbedded in g(n) or h(n).

For instance, we might like f to be of the form f(n) = wog(n) + +

w2h2(n) , where the wi are weights. Here g could be clause level,

h1 could be clause length and h2 could be some form of functional

complexity.

We would like to define our evaluation function f to be a func-

tion of 2m =." 0 arguments. That is, v = f(wi,w2,...,wm; fl,f2,...,fm)

where v is the value of the function, the wi are weights and the

fi are feature values for a node in our search space (i.e., a clause).
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We'might then define f to be a linear discriminant function of the

form

f(W,F)
wlfl w2f2 wmfm

(4.1)

where W is the row vector of weights and F is the column vector of

features. Thus (4.1) can be re-written as a vector product:

f(W,F) = W. F .
(4.2)

The function f(W,F) defines a point in one-space and the vector W

defines a point in m-dimensional weight space whereas F defines a

point in m-dimensional feature space. Since the latter is a Euclidean

space we shall call it Em

As an extension of this definition, we may redefine the merit

orderings sd and sdu so that we can distinguish between clauses of

equal f value. This parallels equation 3.1. Let node n have fea-

ture vector F and node n' have feature vector F' . In addition,

let W be the weight matrix with off-diagonal elements equal to zero

and with diagonal elements w1,w2,...,wm . Then

(1) n sdu n' iff f(W,F) s f(W,F'); (4.3)

(2) if f(W,F) = f(W,F') then n sdu n' iff wlfl s wifi ;

(3) if f(W,F) = f(W,F') and wifi = wifi then n sdu n' iff

w2 f
2
sw

2 2
f'

'

(m) if f(W,F) = f(W,F') and for j = 1,...,m 2 , w.f. = w.f!
J J j

then n sdu n' iff w f s w f'
m-1 m-1 m-1 m-1

If in addition, wm_ifm_i = then n = du xi'. Note that the

case of w
m
f
m = w

m m
f' was not stated since if the equality
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condition holds for Steps 1 to m-1 and if w f = w m'
m-1 m-I -1

f
m-1

then w
m
f
m

= w
m m
f' since f(W,F) = f(W,F') .

Equations 4.1 and 4.3 essentially define linear transformations

upon the feature vector F to produce a new vector F . The

first transformation,

duced a new vector F

tion:

Ti(F)
F

T
1

, was of the form T
1

: Em 4- El and pro-

in one-space E
1

by the following matrix transforma-

(ffl
(W1f1 w2

f
2

+ + wmfm). (4.5)

f
m

The second transformation Tm was of the form T
m

: Em 4- Em and form-
.

ed F in m-space Em by the following transformation:

Tm(F) =

O

0
11

:1

)

2

f
m

wlfl

(

w
2
f
2

w f /
m m

(4.6)

As an example of such a transformation, let m = 4 , F(0,1,0,1) and

the diagonal elements of w = (1,2,1,1). Then

F = T4(F) = W F

1 tm

l

(10) (20)

L.) 1 1 1
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These two transformations are two members of a family of linear trans-

formations we'shall call T . Each Ti ET is defined Ti: EM E
i

1 s i s m . Each vector component of F E E1 will be a linear combina-

tion of some subset of the components of F E Em . Nodes of our search

space are thus evaluated on the basis of their merit which is repre-

sented by an i-dimensional vector in E
i

, namely F (not F).

We must thus work directly with the transformation matrix W

instead of a vector W as before. It will be convenient to define W.

th
as the vector representing the j row of W ; similarly, fj and fj

.th
are the j-- elements of F and f respectively. F is then derived

from F by the following transformation:

w11w12 .. .w
lm

w21w22 'w2m

Ifl
I

f
2

W1 F

w2 F

Ti(F) = = W F= (4.7)

W. W. .W.11 12 Lm f
m

W. F

As an example of a linear transformation of F , let T3: E
4

E
3

Then F = W F might be represented by

.
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3 0 0 1
f
1

f

2
/3f1

f
4

0 1 0 0 ) f
3

f
2

0 0 2 1
f
4

2f3 + fit/

where fl = WI F = 3f1 + f4

i2 = W2 F = f2 and

f3 =W3 F = 2f3 + f4

Keeping this transformation in mind, we may now give a revised de-

finition for s
d

and s
d
u with respect to the transformation Ti:

Em Ei . This new definition.will be termed ordering-A. Let node n

have feature vector F and node n' have feature vector F' . W is

the weight matrix with i rows and m columns. Define

i i

f(W,F) = W..F = f. (4.8)
j=1 3 j=1 1

That is, f is the sum of the components of F . Note that some other

measure of diagonal merit could have been used. The above form was

chosen because it resembles a linear discriminant function.

Diagonal and upwards diagonal merit for ordering-A can thus be de-

fined by:

(1) n sdn' iff f(W,F) s f(W,F') ; (4.9)

(2) if f(W,F) = f(W,F') , then n sdu n' iff Wi F s Wi F' ;

(3) if f(W,F) = f(W,F') and WI F = WI F' then n sdu n'

iff W
2

F sdu W2 F' ;

(m) if f(W,F) = f(W,F') and for j = m - 2, wiF =

then n sdu n' iff fin-1 F s U ;11-1 F'
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If in addition
' -1

F = W ;11-1 F' then n =
d
u n'

We thus see that the merit vector 7 is composed of i components,

each of which is a linear combination of some subset of m clause fea-

tures. However, up to this point, we have not related the concept of

distinct g and h functions with that of multiple components of F .

In order to do this, some components will be defined as "g-type" and

others as "h-type" since certain features inherently are a measure of

the cost of a path from a start node to a node n , whereas others are

a measure of the heuristic cost of a path from node n to a goal node.

One would expect a search strategy that utilizes this information to

perform better than one that does not. Note that for ordering-A, the

lower subscripted components of F are minimized before those numbered

higher. Since the heuristic function h should in practice be mini-

mized before the g function, the user should make sure that the lower

numbered components correspond to the heuristic component h .

A variation of ordering-A that differentiates more between g and

h parameters will be called Ordering-B. In this ordering all h com-

ponents would by convention be the subvector (W1 F , W2 F)

woulegcmporientswouldbe(c,
)

.F,I,L
2
.F,...,W. F) where

+ 1

there are j h-components and i-j = k g-components for the transfor-

mation .r.: Em Ei . Let

H =1WFandG=IW F
t=1 t=j+1

(4.10)

for node n ; H' and G' are defined simParly for node n' .

Diagonal and upwards diagonal merit for Ordering-B can thus be de-

fined by:



(1) n sdu n' iff f(W,F) s f(W,F') ;

(2) if f(W,F) = f(W,F') then n sdu n' iff H s H' ;

(3) if f(W,F) = f(W,F') and H = H' then n sdu n' iff

W. F s W. F' (i.e., we are comparing the first g
J +1 j+1

components);

(4.11)

(k+1) if f(W,F) = f(W,F') , H = H' and for 2. = j+1,, i -.2 ,

1-1 W1-1
F' ;

(k+2) if in addition, F = Wi_, F' then n sdu n' iff

W
1

F s W
1

F' (i.e., we now start discriminating on the

basis of h components);

(i) if f(W,F) = f(W,F') , H = H' , and for t = j+1 1-1

WQ F = Wk F' and for t = 1 - 2, Wi F = Ili F'

then n sdu n' iff W. F s W F' .

j-1 j-1

If in addition Wj_, F = 141j..1 F' then n = =du n' . Thus, whereas

Ordering-A treats all merit parameters alike (except for their order in
A A A

the sequence F1,F2,...,Fi defined by the user), Ordering-B groups all

h-parameters together and minimizes their sum before resorting to pair-

wise parameter comparisons. At the present time, it is not clear which

method leads to a more efficient search strategy. Further experimenta-

tion will hopefully help us in this regard.

It is interesting to note several special cases of the above two

orderings that result when the transformation Ti: Ern Ei is varied.

In all these cases, however, Ordering-A is identical to Ordering-B
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since only two components of F are allowed.

The above merit orderings are identical to a strictly diagonal

merit ordering (i.e., only values of f(W,F) are compared) when

i = 1 and T1 Em .÷ El is used (equation 4.5). For i = 2 ,

T
2'

en E2 is the transformation used. If in addition, m = 2 and

w.
3k

= (S.
3k '

the orde ing defined is the same as that described by

Kowalski [1970b]. Thus, if fl = g and f2 = h

0

ff 1

)
=

ff 1 )
0 1 / 2 2

and

(4.12)

f(W,F) = fl + f2 = g + h

A similar case occurs when m = 2 , fl = g , f2 = h , wll (1-w) '

w
22

= w(0 s w 1) , and wr =
w21 21

0 . Then

=

( \1-63 o

o w

((1 -w)g

wh
(4.13)

and f(W,F) = (1-w)g + wh corresponds to the representation of evalua-

tion functions given by Pohl [1970]. A more general case that can be

made to conform to Pohl's representation is for T2: t E2 and

m Z 2 . Recall that we defined f(W,F) to be y W. F . If i = 2 ,

j=1 3

W, F may be thought of as g and W2 F as h , where g and h

are composite functions. If we now assign additional weights (1-w)

and w to g and h respectively, we can redefine f as
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2

f(W,F) = a.W.

j=1
W
1

F + wW
1

F (4.14)

where a
1

= 1-w and a
2
=W, Oswsl.

The advantages of using a representation such as (4.14) are four-

fold.

(1) As stated previously, it seems intuitive that a search stra-

tegy that differentiates as much as possible between g and

h parameters should perform better than one that does not.

The ordering of (4.14) enables us to do this.

(2) Results have been obtained by Kowalski for the case of

m = 2 , i = 2 with respect to admissibility and optimality.

We therefore know a great deal about how such a search stra-

tegy should behave.

(3) The general definition of.upwards diagonal merit ordering de-

scribes an algorithm for ascertaining whether or not a node

n is of better or equal merit than another node n' . We

have found that such as algorithm is fairly efficient for i = 2

but rapidly becomes computationally inefficient for i > 2. .

We would therefore prefer to use only two components to keep

our search overhead as low as possible.

(4) It seems very likely that the same amount of discrimination

between clauses achieved by the transformation Tm: Em Em

may be obtained through judicious choice of the weights in W

for the transformation T
2

: Em E
2

. If this is the case,

equation 4.14 is the preferable ordering to use.

It is planned that future versions of MRPPS will allow all of the
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above merit orderings including that of Equation 4.14. However, the

current implementation allows only Ordering-A and Ordering-B with an

identity weight matrix W used in conjunction with a transformation

T
m

: EM Em for m = 1.;5 (Section 4.5.3 lists the clause features

currently available). In particular MRPPS now gives the user the cap-

ability of selecting (1) the ordering to be used, (2) which parameters

to treat as "g-type" and which to treat as "h-type", and (3) which

clause feature to assign to each component of F . Note that (2) is

only significant if Ordering-B is chosen.

It should be emphasized that insufficient attention to points (1)-

(3) above can lead to a very inefficient proof procedure. For instance,

if level were considered an "h-type" and length as a "g-type" parameter,

the search process would tend to generate long clauses before shorter

clauses quite contrary to the meaning of heuristic distance!

4.2.2 The Completeness, Admissibility, and Optimality of Ordering-A

and Ordering-B

It is the purpose of this section to show the compatibility of

these orderings with the diagonal and upwards diagonal orderings de-

fined by Kowalski for the function f(n) = g(n) + h(n) . Let sd and

s
d
u be diagonal and upwards diagonal orderings so defined (refer to

Equation 3.1) and let I be a search strategy. Step (1) of Equation

4.9 for Ordering-A is essentially identical to Step (1) of Equation

3.1 that defines a diagonal merit ordering. The other steps of 4.9

serve to discriminate more finely between clauses of equal f values.

Thus, all clauses generated by y using sd for a given f will also

be generated by y using Ordering-A for that f value. Thus, y with

Ordering-A is certainly complete when y when sd
is complete. Also,
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Ordering-A permits at least as "good" or minimal a solution as sd

does, and also allows 1 to be as optimal (i.e., as well informed) as

d
allows y to be. If the heuristics are such that in advance of

performing resolution, the sets to which the resolvent belongs is

known with certainty, and the conditions on the heuristic specified,be-

low are met, then the algorithm is admissible since the null clause is

found on some diagonal. Each diagonal is explored before going on to

the next one. Hence, admissibility cannot be violated.

A similar correspondence can be made between Ordering-B and sdu.

Steps (1) and (2) of Equation 4.11 are essentially identical to Steps

(1) and (2) of Equation 3.1 that define an upwards diagonal merit order-

ing. Again, the remaining steps of Equation 4.11 serve only to dis-

criminate more finely between clauses with equal .f values and equal

H values ( recall that H is the sum of all h-type components of F ).

1 with Ordering-B is therefore complete when 1 with sdu is complete.

Also, Ordering-B is admissible for the same reason that Ordering-A is

admissible.

It should be noted that the completeness, admissibility and

optimality of 1 depends upon the characteristics of the heuristic

components used in the evaluation function F . For instance, if only

the parameter of clause length is used as the heuristic measure, is

not even complete and therefore not admissible or optimal. Although we

do not feel that admisslIdity and optimality are crucial for question-

answering systems, refutation completeness is a more desirable property.

By refutation completeness we mean that 1 will generate the null

clause 0 whenever a contradiction does indeed exist (although the

entire search space need not be generated as is required for complete-

ness). Thui, great care should be taken in choosing the heuristic com-

ponents.
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In relation to the above, Kowalski has shown [1970b] that diagonal

and upwards diagonal merit orderings allowZ to be admissible if the

following two conditions are met :

(1) sd (or sdu) must be 6-finite; that is, for any node n' in

our search space, y will generate only a finite number of

nodes of better or equal merit; and,

(2) that part of '(n) designated as the heuristic function

h(n) must satisfy the lower bound condition; that is,

h(n) h*(n) for all n in the search space, where h* is

the actual heuristic cost of node n , and h is only an

estimate.

In particular, if sd and sdu are 6-finite, diagonal and upwards dia-

gonal search are complete. Optimality follows when h(n) satisfies

conditions (1) and (2) above and also a monotonicity condition, namely:

(3) f(n') < f(n) for n'- n and f(n*) = g(n*) for a null

clause n* , where n'..< n means that node n' is generated

before node n .

4.3 ,Heuristic Measures Used in MRPPS

4.3.1 Clause Level

It is often advantageous to define the evaluation function f

with a component being clause level. The level of a clause is defined

as:

11

0 if C is a base clause

£(C) = max(t(Ci), t(C2)) + 1 where C = Resolvent (C1,C2)

.(C1) + 1 where C = Factor (C1) .

The level of a clause C is a measure of how many inference steps were
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required to derive C from the base clauses. Thus, if level were the

only component of f used with an algorithm such as y , a breadth-

first search would result since all derivations of level i would be

formed before those of level i+1 . Obviously it should not be used

alone. However, it can be valuable when used in conjunction with other

components since it tends to keep the search from running away in an

infinite deduction path.

4.3.2 Clause Length

The number of literals of a clause C is a very rough measure of

the cost incurred in inferring the null clause from C . This heuris-

tic has been used in many other theorem provers (e.g., Garvey and Kling

[1969], Norton [1972]), and is a very effective component of f(n) .

The system QA3.5 used only length as a heuristic function by employing

the unit preference strategy (Wos, Robinson, Carson [1964]). However,

length alone, or even in conjunction with clause level does not lead to

a practical heuristic, as seen in Section 3.3. In combination with

other components, though, length will help the search for a con-

tradiction.

It is interesting to note that if length is the sole heuristic

* ,

useu with the y algorithm (or with the Q* algorithm of MRPPS, to

be described later), a different search results than for unit prefer-

ence as defined in QA3.5. Recall that in the latter, all units are re-

solved against other units to produce all inferences possible. If

none are found, all length two clauses are resolved with all units,

then length three clauses, etc. On the other hand, y would resolve

units with units, then two-clauses with units, then two-clauses with

,*
two-clauses, then three-clauses with units, etc. Thus, 1 tries to
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minimize the length of resolvents, rather than always attempting to

reduce clause length as does the unit preference strategy.

4.3.3 Clause Complexity

A simple definition of functional complexity may also be used as a

heuristic component of f . The complexity of a clause is defined to

be the maximum level of function nesting taken over all predicates of a

clause. For example, the following list gives samples of the complexity

of several clauses:

Clause Complexity

P(x,y)

P(f(g(a)),f(z)) v Q(c)

P(f(a),g(b),h(c,x))

0

3

2

The complexity heuristic is as follows: if C1 and C2 are clauses

with complexity h1 and h2 respectively, and h1 < h2 , then it is

better to generate successors for C1 rather than for C2 . In other

terms, we would like to keep our proof as "simple" as possible with re-

spect to clause complexity.

On the other hand, there is a very good reason to generate clauses

of high complexity before those of low complexity. Clauses tlaat have

deeply nested functions will probably resolve with a very small number

of other clauses whereas a simple clause with variables is apt to re-

solve with a large number.

This effect is compounded when a complex clause is resolved with

another clause by substituting terms containing constants for other

terms. The resulting clause is partially instantiated and thus unlikely
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to resolve with many clauses. Since we are trying to keep the number

of clauses generated to a minimum, this seems like a reasonable approach

to take.

In any case, the above definition of complexity does not seem to

distinguish finely enough between clauses and we do not know whether or

not it will be useful. Perhaps a definition that sums the complexities

of all predicates of a clause would 'yield a better heuristic. Future

versions of MRPPS will utilize different complexity definitions.

4.3.4 Cluster Distance

The heuristics described in the previous sections are syntactic in

nature. That is, they measure properties of a clause which can be de-

termined by simply examining the clause and measuring how much of this

property is present, e.g., how many literals are in the clause. Pre-

vious work in theorem proving has also made use of these types of

measures and although they have proven theoretically useful, they do

not provide sufficient direction to the search to permit its use in

practical situations.

In the present section we shall define a heuristic measure which

is more semantic in nature. The measure will take into account the na-

ture of the general axioms in the system's data base and will provide

some insight as to when in the search certain of the axioms are likely

to be useful. As will be demonstrated by an example, the heuristic

should prove useful in restricting the number of clauses generated du-

ring the course of the search. The use of clusters as a heuristic,

was proposed by Minker in:MinkeranctSable [1270]. It has been defined

more precisely in this report.

Before we are able to define what we mean by cluster distance,
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some preliminary discussion will be necessary to establish what we mean

by semantic clusters relative to which the distances are measured.

In the data base of a question-answering system we shall have a

set A of general axioms given in clause form, A =

By taking an accounting of the predicates occurring in these clauses we

may construct a set P = {P1,P2,...,Pi} of predicates occurring in A .

We may then define an axiom-predicate matrix A = [a..] as the follow-

ing:

if predicate P. occurs at least once in axiom Ai ,

otherwise

regardless of whether it appears as

a negated literal or not negated

We may now define a predicate-predicate matrix B
p

= [b..ij ] as:

B = AT A .

P P P

where AET is the transpose of At,

The matrix B indicates the degree of relatedness of predicates

in the following sense: the value of the element bid of Bp gives

theexactnumberofaxiomsinwhicht)othpredicatesP.1 andP.occur.

If bid # 0 , we may say that Pi and Pj are related. But, if

b..ij =0,thenP1 and P. do not co-occur in any axiom. It may be

that bid = 0 , but that there is some Pk such that bik /I 0 and

bkj # 0 in which case since both Pi and Pj are related to Pk they

are somewhat related to each other. In general, there may be predica-

tes Pk ,...,Pk such that bfl, 0 and ; 0 and
1 '2 "1 'ri

k
# 0 in which case we might say with that P.

'r-1
k
1
k
2

1

and P. are rather tenuously related. If there were no such chain of

predicatesbetureenP1 andP.we would say that they are completely
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unrelated.

The relationships described by the matrix B may be depicted by

a graph. To B there corresponds an undirected graph G , which we

term a semantic graph , containing one node per predicate and an edge

betweenpredicatesP.andP.iffbl.j . In general, the graph

will consist of a number of connected components, that is, of individual

subgraphs which are not connected to each other. We term these connec-

ted components semantic clusters.

We provide the following specific example to make the above notions

more concrete:

The set A of general axiom clauses:

Al. 158(x,y) V P6(f(x),y)

A2. P-2(x,y) V P3(x) V Pi(v,x)

A3. F3(x,y) V P4 (x)

A4. 151(x,v) v 151(y,z) V P2(x,z)

AS. F6(x,v) V 157(x) V p7(y)

A6. F5(x,x) V P4(x)
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The Set P of Predicates:

P IP1'132"'138/

From A we find that the axiom-predicate matrix A has the value:

A=

0 0 0 0- 0 1 0 1

1 1 1 0 0 0 0 0

0 0 1 1 0 0 0 0

1 1 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 0 0 1 1 0 0 0

From A we find the predicate-predicate matrix B" has the value:

2 2 1 0 0 0 0 0

2 2 1 0 0 0 0 0

1 1 2 1 0 0 0 0

0 0 1 2 1 0 0 0

0 0 0 1 1 0 0 0
B =AT A =
P P P 0 0 0 0 0 2 1 1

0 0 0 0 0 1 1 0

0 0 0 0 0 1 0 1
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The semantic graph G corresponding to B is shown below as consist-

ing of two semantic clusters:

Cluster I Cluster II

0\FIGURE 2. A SEMANTIC GRAPH WITH TW CLUSTERS

We note that the clusters give a graphical account of the inter-

relatedness of the various predicates. For example, we see that P1 ,

P2 , P3 are closely interrelated, but are less closely related to, say,

P5 . Also, the predicates in Cluster I are completely unrelated to

those in Cluster II.

Suppose we are presented with a query, either posed in, or conver-

ted to the clause form of the first-order predicate calculus. Suppose

that all of the predicates in the query occur in, say, Cluster I.

Then, any axioms which give rise to Cluster II, i.e., axioms containing

instances of P
6

, P
7

, or P
8

, are irrelevant to responding to the

query and need never be considered for this purpose. Since the

"cluster II" axioms, and any of their successors cannot logically in-

teract with the query clauses, they are never used in the proof. Less

obvious advantages of using the clusters will be discussed presently.

We note that in the above definitions we have used only the

general axioms as the basis for forming the semantic graph. We believe

that the facts stored in a QA System's data base will be predominantly
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in the form of fully-instantiated unit clauses which do not, in the

above sense, interact with other axioms. Should any of the facts be re-

presented in clauses of length greater than one, then these too would

be included in the axiom-predicate matrix. Furthermore, in the event

that there are fully-instantiated unit clauses whose predicates do not

occur in the general axioms, explicit entry of these predicates into

the axiom-predicate matrix would be made. Such predicates would give

rise to isolated points in the semantic graph.

At this point we are now ready to define what we mean by cluster

distance. Two alternative definitions will be presented, the min

cluster distance of a clause and the max cluster distance. These dis-

tances are measured from a clause to a set of clauses. The set of

clauses we measure the distance to will be those derived from the nega-

tion of a query. The distance is measured relative to the semantic

clusters developed from the set of general axioms.

Let A be a set of general axioms, and let G be the semantic

graph derived from A as described above. Before defining the cluster

distance of a clause from a set of clauses, we define the usual graph-

theoretic distance measure:

DEFINITION 1. (Graph-Theoretic Distance)

Let P. and P. be two nodes (predicates) in G . Then the

(graph-theoretic) distance between Pi and Pj , denoted d(Pi,Pj) ,

isalelengthoftheshortestpathinGfrom Pi to P. . If P.

and occur in different clusters of G , then o(P.,P.3 ) is set to

co

DEFINITION 2. (Max Cluster Distance)

Let C be a clause in which there occurs the predicates
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P1,P2,..,Pn , and let Q be a query in which the predicates Q1,Q2,

...,Qm occur. Then the max cluster distance of C from the query

Q , denoted vQ(C) , or simply v(C) when Q is understood, is given

vn(C) = max {min {6(Pi,Qi)}} .

'4 Pi E C Qj E Q

It will be shown below how this distance measure may be used to advant-

age by a heuristic search algorithm. For the moment, we content our-

selves with some example computations of the max cluster distance of a

clause.

EXAMPLE

Let the negation of the query, which we denote by {1.Q} , and the

clause C be as given below:

{.1Q} : P1 v P3

C Pi v P5

Then vQ(C) , relative to the semantic graph Gp of Figure 2 is cal-

culated below:

v
Q

1

(c) = max {min {6(P.,P.)}}
P.ECP.EQ j

= max

= max

= max

= 2.

(min 16(P1,P1)' 6(P1,P3)' min {6(P5'131)' 6(P5'133)}1

{min {0,1}, min (3,2))

{0,2}

Thus, clause C is a max cluster distance of 2 from query Q .

It
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EXAMPLE

Suppose that Q and G are as given in Figure 2, and the

clause C is P
7
V P

6
. Then we have

VC) = max {min{d(P7,P1), d(P7,P3) , min{d(P6,P1), d(P6,P3)

= max {min{..,..} min {co,a}}

= max {co,co}

If clause C happened to be an axiom in the data base, then one could

tell by its max cluster distance from the query that it is irrelevant

in processing the query.

EXAMPLE

Suppose we have

{'I'Q}: P1 P8

C :

4
v P

6

G : as above

Then we have

vQ(C) = max{min{d(P4,P1), 6(P4,P8)}, min{6(P6,P1), 6(P6,P8)}}

= max{ min{ 2 ,min{ , }

= 2.

Thus, we see that if each of the predicates of the clause occurs in a

cluster with at least one of the query predicates, then the max cluster

distance of the clause from the query will be finite.

A distance measure which is analogous to the above is the min

cluster distance:
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DEFINITION 3. (Min Cluster Distance)

Given the assumptions of Definition 2, above, the min cluster dis-

tance of C from query Q , denoted AQ(C) , or simply A(C) when Q

is understood, is given by

An

1)1

(C) = min {min {8(1)4,Q4)}} .`4.EC-Q3 EQ j

Below we will show how the min cluster distance may be used in directing

a search.

EXAMPLE

Suppose we have the unsatisfiable set of clauses {U,q,-15,RT,PQ,iir} .

The semantic graph for these clauses (based on the three non-unit

clauses) is

G
p

P Q R T

\ /
Assume that the negation of the theorem is P . Then the min cluster

distances relative to P are:

C 8 T p P RT PQ

A(C) 2 3 1 0 2 0 1

In this example, assume the merit function is simply the composite of

length and min cluster distance and that each A(i,j) corresponds to

A(length,A) . The algorithm will behave like the y* algorithm (section

3.2) in all respects except for the substitution of A for level.

1. Fill(0,0) is unsuccessful: A(0,0) = y

2. Fill(0,1) is unsuccessful: A(0,1) = y
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3. Fill(1,0) is succes sful: A(1,0) =

Recurse(P) is unsuccessful

4. Fill(0,2) is unsuccessful: A(0,2) -

5. Fill(1,1) is successful: A(1,1) =

Recurse(Q) is successful:

6. Fill(2,0) is successful: A(2,0) =

Recurse(PQ) yields Q : A(1,1) =

Recurse(Q) yields 0 : A(0,2) =

A summary of the steps in the search follows.

1. FE A(1,0)

2. 0,E A(1,1)

3. PQ E A(2,0)

4. Q E A(1,1) (from 1,3)

5. OE A(0,2) (from 2,4)

(I)

{0

{PQ}

{-0c0

{ 0 }

If the search were performed by the 1* algorithm using length and

level, the following steps would have occurred:

1. S E A(1,0)

2. T. E A(1,0)

3. Q E A(1,0)

4. FE A(1,0)

5. RT E A(2,0)

6. R E A(1,1) (from 2,5)

7. PQ E A(2,0)

8. Q E A(1,1) (from 4,7)

9. 0 E A(0,2) (from 3,8)
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While the above example handles just a trivial problem, we can

observe from it how the use of the cluster distance discriminates, among

clauses of equal length, in favor of those which are more "closely re-

lated" to, and in this sense, more relevant to the query. On the other

hand, the 1 algorithm, using only length and level cannot accomplish

this sort of discrimination and so it generates all of the unit clauses

before bringing in the two-clauses. Of course, the use of clustering

would also permit these unit clauses to enter if the search were any

deeper. However, if there were any base clauses whose predicates are

not in the semantic cluster with query predicates, such clauses could

be generated by 1 , but not by the cluster distance based algorithm.

Aside from prohibiting base clauses which are unrelated to the

query from entering the search space, the cluster distances appear to

be useful heuristics for still other reasons. In the first place,

they will have the effect of sequencing the -.ioms which will enter the

search in such a way that when an axiom is generated, it has a good

chance of being used in an inference. Secondly, it has the effect of

ordering the inferences in such a way that the clauses which are more

closely related to the query are used in inferences before more "dis-

tant" clauses. Whether the min cluster distance is better than the max

cluster distance or vice versa, must be determined by experimentation,

as indeed, must the question of whether or not this measure will have

any utility at all for question answering systems.

Cluster analysis may be used in another way. If one finds clusters

of the clauses that result from the axioms, then these clauses should be

located near one another. This is particularly true when the data base is

stored on peripheral devices. Then, when one clause is brought into core,

a clause in the same cluster might also he brought into core.



49

4.4 The Base Clause Selection Strategy of MRPPS

4.4.1 General Discussion

It was noted in Section 3.1 that search algorithms such as the A*

*
or 1 algorithms require that the merit of all clauses in the starting

set S be established prior to the start of the search so that the

clauses may be ordered by their merit. This requirement has at least two

disadvantages. In the first place, if the merit of a clause is to depend

upon the query, as is the case with the cluster heuristic, then the merit

of clauses in the data base must be calculated, and the data base reordered,

at the start of every search. For any "reasonably" sized data base, this

situation would clearly be intolerable. Furthermore, and of even greater

significance, the static assignment of merit to the base clauses at the

start of the search ignores relevance clues which may become evident during

the course of the search or which may be provided initially. In fact, as

it will be shown, it is often possible to glean from a given search step

which of the available base clauses would be 'best", in some sense, to

generate ('dd to an A-set) next. As a trivial example of this, suppose

that the search strategy has somehow generated the unit clause fvF(Jack,

Sally) , and is now ready to bring in an axiom from the data base.

Suppose that the merit function is composed of clause length and clause

level. Then, with respect to this merit function, the clause M(Rita, Mike)

and F(Jack, Sally) would be indistinguishable, as would be the large bulk

of unit clauses in the system's data base. Thus, the clause brought in

next would be a matter of how the clauses happened to be ordered even though

the clause F(Jack, Sally) , if brought in, would lead to an immediate

refutation. Similarly, the use of the clusterhg heuristic, while it might

restrict consideration to only the unit "F" clauses, the obvious best

clause would be indistinguishable from a possbily large list of other such

clauses.
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The above observations have led to the development of the Q*

search algorithm which embodies two search. strategies. One strategy,

called the deduction strategy, (or the deduction algorithm), determines

which inferences to attempt next and forms deductions by resolution,

factoring and paramodulation. This is essentially the 1 algorithm

(Section 3.2) with several modifications (to be described in Section 4.5).

The second strategy is the base clause selection strategy (or algorithm)

which determines the next base clause to be generated. It is this latter

strategy that is the subject of the present section.

The base clause strategy is in part based upon the premise that no

axiom should be generated unless, at a minimum, it possesses a literal

which will unify with a literal of a clause already generated. At that

time, a base clause may become a "candidate for generation." For certain

inference systems stricter constraints may be imposed. For example, if

the inference system is, or includes, set-of-support, then only axioms

which could interact logically with a supported clause will be considered

for generation. In this case an axiom will be considered for generation

if it possesses a literal which is opposite in sign to and unifies with a

literal of a supported clause which has already been generated. Similar

restrictions for other inference systems are possible. However, the re-

strictions imposed are such that the refutation completeness of the Q*

algorithm is preserved.

From the above comments it should be evident that the base clauses

are not initially assigned a merit. Rather, each base clause is initially

assumed to have an undefined merit, which is only to become defined when

the clause becomes a candidate for generation. Furthermore, not all

candidates will have their merit calculated explicitly when they become

candidates. In general, their merit will be defined implicitly by

virtue of their membership in a list of clauses of equal merit.
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For example, suppose a clause has been generated which contains the

literal r(x,y) . Then the list of data clauses F(al,b1), F(a2,b2),

n'
b
n

) would all become candidates for generation. But all of

these clauses have the same merit with respect to length, level,complex-

ity, and cluster distances, and so we need only assign a merit value to

the list which applies to all of its members. By this use of dynamic

merit calculation for base clauses and implicit clause merits, we are

able to avoid a great deal of computation.

The use of these lists of base clauses has another striking advant-

age which is central to the base clause strategy. Suppose we have one

list of candidate base clauses which have become candidates because of

the generated literal 'F(x,y) , and another list of candidates because

of the generated literal 'F(x, Sally) . For example, one might have:

1,F (x, Sally) points at the list F(Jack, Sally) , and .1,F(x,y) points

at the list F(al,b1) , F(a2,b2),...,F(an,bn) . Then, while all of

these data axioms have equal merit with respect to the merit function

used by the deduction strategy, the base clause strategy will rank

F(Jack, Sally) above the other clauses. This is done by virture of

the presence of the constant "Sally" in the generated literal. Thus,

if we are asked a question about an individual, we wish to explore

avenues which are relevant to that individual before we explore other

avenues. If, by pursuing this policy we come across another individual,

then that individual, being relevant to the first, will also be used to

direct the search.

From the above discussion we see that the query will have a strong

influence on the search. Its literals will be used to establish which

base clauses should become candidates for generation, and its constants
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will be used to order the candidates. Generated clauses will be used

in the same way. Thus, if we have a constant in one literal of the

query, resolving on this literal will often have the effect of forming

an instantiated literal in the resolvent whose occurrence in the resol-

vend was uninstantiated; the term used in the.instantiation will be re-

levant to the query constant. By transferring these clues from parent

clauses to generated clauses by means of instantiations, the generated

clauses can have a profound effect on the search for relevant base

clauses.

In Figure 3 is depicted a refutation which could easily have been

derived using the above ideas. In that example, suppose the query was

"Who is Sally's mother's mother-in-law?" As a wff, this query might

have been phrased:

(3x)(3y)(ML(x,y) A Iffy, Sally)) .

In clause form, the negation of the query would be

Ar(x,y) V fl(y, Sally) .

Suppose we had among the general axioms the two axioms

(a) fT(u,v) V li(v,w) V ML(u,w) , and

(b) r(x,y) V 71(z,y) V H(x,z) .

(a) states that if "u" is the mother of "v" and if "v" is the hus-

band of "w" , then "u" is the mother-in-law of "w" , while (b) states

that if "x" is the father of "y" and "z" is the mother of "y"

then "x" is the husband of "z" . Suppose also that there are a

large number of data axioms describing who is the mother and who is the

father of particular individuals, among which were the three needed for
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M1(x,y) v F1(y, Sally) M(Rita, Sally)

ML (x, Rita) M(u,v) v 1-1-(v,w) V ML(u,w)

Fi(u,v) v Fi(v, Rita) F(x,y) v M(z,y) V H(x,z)

Fl(u,v) V r(v,v) V Fi(Rita, y) M(Rita, Sally)

Fi(u,v) V r v, Sally) F (Jack, Sally)

R(u, Jack) M(Rose, Jack)

FIGURE 3. REFUTATION BASED ON INSTANTIATED LITERALS
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the refutation: M(Rita, Sally) , M(Rose, Jack) , and F(Jack, Sally) .

Under these circumstances the base clause strategy will assure that the

necessary base clauses are available when they are needed. Note that,

in violation of the 1* algorithm, the two axioms of length three will

be generated in this case before other axioms of length one since the

base clause strategy deemed them to be most relevant at that stage of

the search.

As a final, note we observe an important characteristic of the Q*

algorithm derived from the base clause strategy. In the case that there

is an immediate answer to a question, as in the case of a direct look-

up type question one encounters with conventional data management sys-

tems, then the Q* algorithm will find it immediately. For example,

suppose one asks the question, "Who is the father of Sally?" which

corresponds to the wff (3x) F(x, Sally) . The negation of this query,

r(x, Sally) will be entered into an A-set and the very first clause

provided by the base clause strategy will be F(Jack, Sally) . Thus,

in one step the search will be concluded successfully making this ap-

proach competitive with generalized data management systems which are

basically table look-up methods. This property is noted by Coles [1969]

to be an important one for QA systems, i.e., answering simple questions

quickly and efficiently. In this connection, the actual answer to this,

or any other question, will be available in the system by means of the

Luckham-Nilsson answer extraction algorithm [1970].

4.4.2 The Base Clause Selection Algorithm

The base clause selection algorithm attempts to provide direction-

ality to the overall search for a refutation. This is attempted by

using the literals and constants occurring in the query and in subse-

quently generated clauses as clues to the relevance of axioms in the data

base. Subject to certain constraints to be described below, each
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literal of a generated clause gives rise to an entry on a list called

the SPECLIST (for "specification list"). The list is so named since

each literal entered onto the list is regarded as a specification for

that set of axioms which, in the least restrictive case, contain a lit-

eral which is, or whose negation is, unifiable with the "spec literal".

Each entry on the SPECLIST points at a list of one or more axioms which

have been found to satisfy the specification. The axioms pointed to by

the entries on the SPECLIST are candidates for generation. The SPECLIST

is ordered so that "better" candidates come first; only candidates are

available for generation.

As previously stated, that part of the Q* search algorithm which

is concerned with generating clauses (i.e., adding to A-sets those

clauses obtained from the base clause algorithm or from logically inter-

acting clauses already generated) will be called the deduction algorithm.

The deduction algorithm communicates with the base clause selection al-

gorithm in two distinct ways; one way is direct, the other is indirect.

Each time a clause is generated, that clause together with its merit

(actually, a pointer to the clause and a pointer to its merit) are

placed on a list called USPECS (for "unprocessed specs"); this is the

indirect means of communication. Each time the deduction algorithm

finds it appropriate to try to generate a base clause of merit better

than or equal to M (or sometimes strictly better than M) the base

clause routine BASEC.(for "base clause") is called to attempt to satisfy

the request; this is the direct means of communication. When a request

is made for a base clause satisfying a given merit condition, all of

the entries on USPECS, if any, are processed to produce zero or more

entries for the SPECLIST. Once the SPECLIST has been updated, BASEC

determines whether or not it can return the "best" clause. If it can,
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it does so; otherwise, it exits with failure. In the following two

sections we describe the major functions performed by the base clause

selection algorithm, namely, creating SPECLIST entries, and providing

clauses to the deduction algorithm.

Creation of SPECLIST Entries

Each literal of the clauses found on USPECS, that is, of the

clauses entered into A-sets by the deduction algorithm, is used as a

basis for creating an entry on the SPECLIST. Each SPECLIST entry con-

tains the following information:

a. The address of the literal upon which the SPECLIST entry is

based; this literal will be called the spec

b. The address of the clause containing the spec literal; this

will be called the spec clause.

c. The address of the merit vector for the spec clause; this merit

will be called the spec clause merit.

d. The address of the first axiom of a list of one or more axioms

which are said to satisfy the specification; this first axiom

will be called the spec axiom. The merit of the spec axiom

will be better or equal to the merit of all other axioms in

this list, where this measure of the merit is the same as that

used by the deduction strategy.

e. The address of the merit vector for the spec axiom; this merit

will be called the spec axiom merit.

f. The address of the merit vector giving the (predicted) upper

bound merit of a resolvent of two clauses having merits equal

to the spec clause merit and the spec axiom merit respectively;

this merit will be called the spec upper bound merit.
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g. A code number, called the spec type, which has the value 1 if

the spec literal contains a constant, has the value three if

the spec literal contains a function symbol, but no constants,

and has the value five-if the spec literal contains neither

constants nor functions.

Each clause on USPECS is processed in turn, and is removed from

USPECS when it has been completely processed. The exact nature of the

processing will depend upon the inference system(s) in force. If set-

of-support is in force either by itself, or in combination with other

inference systems, or imbedded within an inference system as it is with

SL-resolution, then any clause found on USPECS which does not have

support will be removed from USPECS and not processed at all. If the

clause does have support, then those of its literals which may validly

be used in an inference (and which are not alphabetic variants of spec

literals already contains in the SPECLIST) will be matched against the

axioms. Axioms containing a literal which is opposite in sign to and

unifiable with the (potential) spec literal will become the axioms

pointed to by the SPECLIST entry. An axiom with the best merit will be-

come the spec axiom. Note that with an inference system such as SL-

resolution, only the selected literal will become the spec literal.

Note also that with "a suitably chosen data structure, the amount of

searching for axioms containing literals which are opposite in sign to

and unifiable with a given literal can be kept to a minimum.

For other than set-of-support based systems, unsupported clauses

(i.e., axioms) can also be used to locate axioms. Furthermore, we must

now be somewhat less selective in considering axioms and ignore the

signs of the unifying literals. Thus, in non-set-of-support cases an
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axiom will become a candidate for generation if it contains a literal

which unifies with a literal of a generated clause when the signs of

the literals are ignored.

The process, then, for creating an entry for the SPECLIST involves

finding the list of candidate axioms for the spec literal, assuring

that one of best merit occurs at the front of the list, and filling in

the remaining spec entries. The spec clause merit is obtained from

USPECS, while the spec axiom merit, and the spec upper bound merit must

be calculated. The spec type must also be determined by scanning the

spec literal for constants and functions. In this regard, we have the

capability which allows a user to specify that certain constants are to

be treated as variables. Thus, certain non-specific, class-specifying

types of constants which occur in a large subset of the data axioms can

be prevented from getting the same privileged status given to more

meaningful constants. In a data base about people, for example, such

constants as "Male" or "Female" might be arguments in literals describ-

ing individuals.

Once the spec is completed it must be placed on the SPECLIST. As

we noted earlier, the SPECLIST will be ordered so that the "best" spec

axiom will be the next one delivered to the deduction algorithm. The

algorithm orders specs by spec type. A spec of type 1 precedes one of

type 3, etc. If a constant occurs in the query, this ordering has the

effect of focusing the search to data axioms in which the query con-

stants occur, and to general axioms which may interact with the constant

carrying literals of the query and those of its successors which receive

constants by instantiation as inferences are made. Among a group

of specs of the same type we are experimenting with various sub-

orderings. Among the properties for basing the sub-orderings, we have
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either tried or may try the following properties:

a. spec upper bound merit

b. spec.clause merit

c. spec axiom merit

d. where the spec literal has a constant, order by how "far away"

that constant is from the query constant (informally, e.g., if

a resolution on a literal P(a,x) of a clause 7(a,x) V Q(x,y)

causes the literal Q(b,y) to occur in the resolvent, (because

the other literal taking part in the resolution was P(a,b) ,

then we might say that b is a distance of one away from a ,

and so on)

e. the number of potential spec literals which were found to be

alphabetic variants of the given spec literal

f. the cluster distance (max or min) of the spec literal to the

query predicates

the degree extracted from the semantic graph G that gives

the number of predicates that co-occur with the predicate of

the spec literal in the axioms

h. the ratio of constant arguments to non-constant arguments.

g.

The "goodness" of the specs might also be defined as a linear combina-

tion of some of the above properties.

Notice that, in general, the spec axioms will not be in merit or-

der (as used in the deduction strategy). This is a very significant

departure from the y algorithm, and it is done at the expense of

losing admissibility. But this sacrifice is only of theoretical impor-

tance since it would seem to be more important in practical applications

to find any solution quickly rather than to carry out an exhaustive
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search and either run out of space or time and find no solution at all,

or to find a simplest solution at great expense.

Handling Requests For Axioms

There are two modes of operation for the base clause request pro-

cessor BASEC; these are the "constants on" mode and the "constants off"

mode. The former mode is used whenever the query contains one or more

constants, while the latter mode is used otherwise. We will describe

the latter mode of operation first.

In the constants off mode, BASEC may receive a request for an axiom

of merit better or equal to 1\1 . If the merit of any spec axiom satis-

fies this condition, the axiom is returned to the requesting program;

otherwise, failure is reported.

Any time an axiom is removed from a SPECLIST entry, the axiom must

be tagged as in use, since it may be pointed at by other entries (there

is never more than one copy of any axiom), and the SPECLIST entry must

be updated. If the removed axiom is the only one in the list of axioms

corresponding to the entry, the entry is removed from the SPECLIST.

Otherwise, an axiom in the list of best merit becomes the new spec

axiom, the spec axiom merit is revised, a new spec upper bound merit is

computed, and the revised SPECLIST entry is reinserted into an appro-

priate position of the SPECLIST.

Before a spec axiom is returned, its in-use status is checked to

determine if it has already been generated. If it has, the axiom is

removed and the SPECLIST is updated as described in the previous para-

graph. This process will be repeated until the spec axiom of the first

SPECLIST entry is not in use, or until the SPECLIST is empty.

In the constants on mode, BASEC can be called either to request an
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axiom of merit better than some merit value M , or to request an axiom

whose merit is equal to M . In the former case, if the spec type of

the first SPECLIST entry is greater than one, or if the spec axiom merit

of this entry is worse than or equal to M , BASEC returns to the re-

questing program and reports failure. On the other hand, if the first

spec axiom merit is better than M , and the spec type is equal to one,

the address of the axiom, together with the address of its merit vector

are returned to the requesting program.

If the request is for an axiom of merit equal to M , the following

processing occurs. If the first SPECLIST entry has spec type equal to

one, and if the spec axiom merit is equal to M , the address of the

spec axiom is returned together with the address of its merit vector.

If the first SPECLIST entry is of type one, and the spec axiom merit is

worse than M and M is worse than a predicted merit, PM , (which

will be described below), then a type three or type five spec axiom is

sought whose merit is better or equal to M . (Only the first type

three and the first type five entries need to be checked.) If such an

axiom is found, it, together with its merit, are returned to the re-

questing program. In any other case, failure is reported to the reques-

ting program.

In the constants on mode only, whenever a type one axiom is return-

ed, its corresponding spec upper bound merit (i.e., the upper bound of

the merit of a resolvent of two clauses whose respective merits are

those of the spec axiom and the corresponding spec clause) will be

saved in the merit vector PM if the current PM value is better

(<
d
u) than the upper bound merit. (PM is initialized with the zero

vector when the system is presented with a query.) On subsequent calls
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to BASEC, PM is used to keep other axioms from being returned until

the requested merit value, M , is worse than PM . This guarantees that

the generated type one axiom which gave rise to the PM value has had a

chance to interact logically with the corresponding spec clause. The

result of such interaction may be (hopefully, it will be) the transfer-

ence of one or more constants of the spec literal and/or spec axiom in-

to literals of the resolvent. Such literals wouldthenbe used to

cause additional axioms to be considered for generation.

4.5 The Deduction Strategy of MRPPS

4.5.1 Introduction

The deduction strategy used'in MRPPS is closely modeled after the

Y,* algorithm of Kowalski [1970b]. The evaluation function f is de-

fined by the user at the time of a proof. In particular, the user may

specify m components for the feature vector F , as well as a linear

transformation matrix W (which currently is an identity transform by

default). If the transformed feature vector is F = (fl,f2,...,fi) =

W F , then the merit for a clause generated during a proof is

M = (fi,f2,...,fi) . The merit orderings sdu used are defined by

Equations 4.9 and 4.11 (refer back to section 4.2.1).

At the present time, the following five parameters are available

to the user for selection as part of the evaluation function F :

1) clause length;

2) clause level;

3) minimum cluster distance;

4) maximum cluster distance; and,

5) clause complexity.
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Various other measures may be incorporated in the future.

The basic idea of the deduction strategy is to generate (or to

bring into an active status) clauses of best merit first, then next best

merit, etc. The methods for generation used are inclusion of a clause

from the set of base clauses, factoring, resolution, and paramodulation.

Only clauses that have been generated (i.e., placed in an A -set) may

interact to generate new clauses. An attempt is made to estimate or

predict the merit of a resolved:; or paramodulant from the merit of its

two parents without explicitly forming the resultant clause. We

therefore interact those clauses that we predict will yield the best

merit successors. This is necessary since in general, we cannot give an

exact formula for the merit of a resolvent or paramodulart but only an

upper bound. If only length and level were used, however, an exact

value would be known. Whenever a clause is generated by any means, its

merit M is calculated (rather than predicted) and it is placed in a

^ ^

merit set designated by A(fi,f2,...,fm) or A(M) . In the following

sections, these ideas will be explained in more detail and the three

major subroutines of the algorithm will be described along with any

(...fferences they have with respect to the y algorithm.

4.5.2 Subroutine NEXTMERIT

Since clauses are to be generated in increasing upper diagonal

merit order, a routine NEXTMERIT is used to enumerate the merit compon-

ents fi in the order that the corresponding A -sets are to be filled.

The sequence of merits generated is of course dependent upon whether

the user has chosen Ordering-A or Ordering -B (Equations 4.9 and 4.11,

respectively). In the current version of WITS, it is assumed that all

features take on values of 0, 1, 2, 3,...,n where n is a positive
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integer. Also, only a linear transformation of the foim T
m

: Em E
m

is allowed, m = , and W is the identity matrix. Thus, the

components of F are actually equal to the corresponding components of F.

NEXTMERIT is called whenever a new A-set is to be filled by the

FILL subroutine, at which time it generates the next merit vector F

with respect to the ordering sdu chosen. FILL then attempts to form

clauses of merit M = du.F. As an example of possible sequences gen-

erated during a proof, consider the enumerations given in Figure 4.
A A

Assume for Ordering-B that fi and f2 are "h-type" parameters and

the f
3

is a "g-type" parameter.

4.5.3 Subroutine FILL(M)

At the start of a proof, there exist no A-sets. When the query is

input by the user on the teletype, the merit of each of the n clauses

in the negation of the query is calculated, header cells for the

corresponding A-sets are created, and the clauses are placed in the

correct sets. If M
0

min
d
u is the merit of C. E 4,1Q ,

i = 1 n} then a call to FILL(M0) is made.

Each time FILL(M) is called, a check is made to see if any

clauses are already in the A-set being filled. For instance, clauses

from the negation of the theorem are found in this manner. If a clause

is found, pointers to it and its merit are placed on the list USPECS

(refer back to Section 4.4.2) and the clause is passed to RECURSE. If

no clause is found, FILL attempts to find a base clause of merit

M' sdu M by calling subroutine BASEC. As described earlier, BASEC

processes the entries on USPECS, creates entries on SPECLIST and uses

the literals on the SPECLIST to determine what clause to select from

the data base. If BASEC returns a clause C of merit CM , pointers
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Ordering-A Ordering -B

000 000

001 001

010 010

100 100

002 002

011 011

020 101

101 020

110 110

200 200

003 003

012 012

021 102

030 021

102 111

111 201

120 030

201 120

210 210

300 300

FIGURE 4. ENUMERATIONS OF MERIT VECTORS FOR ORDERING-A AND

ORDERING-B AND T3: E3 E3



66

to C and CM are placed in USPECS and RECURSE(C) is called.

If BASEC fails to find any, suitable clause, resolution is attempted

between clauses already generated. FILL tries to predict the merit of

resolvents by performing calculations upon the merit components of two

prospective parents. They are prospective since we need not look at in-

dividual clauses in making these predictions but only at the merits of

the sets containing the parents. We can thus often eliminate entire

sets of clauses from consideration as parents without forming any resol-

vents at all.

As noted previously, for many types of components it is impossible

to predict exactly the merit for successors. Instead, we can find

either lower bounds or upper bounds for the resulting merit. In attemp-

ting to FILL A(M) , it would be advantageous to be able to guarantee

that no. successor clause would unexpectedly yield merit M' >du M , for

if this did happen, we would have to save it temporarily on a list and

for the time being ignore it since we want to generate all those clauses

of merit sdu M before clauses with worse merit than M . This can be

accomplished by delaying the interaction of two clauses C
1

E A(M1) and

C2 E A(M2) until the upper bound for the merit of their successors

equals M , the merit of the set being filled. That is, after explicit

calculation of a resolvent, we may discover its merit to be better than

or equal to M , but never worse.

*
Note that this is a departure from the technique used in the y

algorithm, since when only length and level are used, the merit of re-

solvents are known exactly. Another difference is that in the Q*

algorithm, M1 and/or M2 may equal M rather than being strictly

better than M as is the case in E . As an example, consider an

evaluation function whose sole component is clause length. The merit
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of a resolvent of C1 of length M1 = £1 and C2 of length M2 =

2,2 is £1 12 - 2 . If M = 2,, then a possible combination of

merits is M
1
= M2 = M = 2 . Thus, if no base clause is found with

merit M , resolution is attempted between clauses previously generated

and whose merit is better than or equal to M .

When no more clauses can be resolved, paramodulation may be attemp-

ted if the user selected paramodulation when the search was initiated.

This process is very similar to that just described for resolution. In

either case, if FILL forms a clause C , its merit CM is calculated,

pointers to C and CM are placed on USPECS as described before, and

RECURSE(C) is called.

As implied above, it is necessary to know the upper bounds be-

tween pairs of feature valiles. The following table gives the upper

bounds between parameter fl of C1 and f2 of C2 for resolution

and paramodulation as used by both FILL and RECURSE.

Parameter resolution paramodulation

length f
1

+ f
2

2 f
1
+ f

2
1

maximum cluster max(fl,f2) max(fl,f2)
'

minimum cluster max d max d

functional complexity f
1
+ f

2 fl + f2

level max(fl,f2) + 1 max(fl,f2) + 1

Here max d is the maximum finite graph theoretical distance in the

semantic graph for the data base.

The complete vector for an upper bound between clauses C1 and

C2 is simply the vector whose components ui are defined as

ui = upper bound(fli,f2i) for feature fli of C1 and f2i of C2 .
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4.5.4 Subroutine RECURSE(C)

During the following discussion of RECURSE(C) assume that M is

the merit of the A-set currently being filled, C is the clause being

recursed upon, and CM is its merit. RECURSE attempts to either (1)

select, appropriate clauses from the data base or to generate all

possible successors of clause C by (2) factoring C , by (3) resolving

C with a previously generated clause, or by (4) paramodulating C with

another clause. In general, any clause generated by (1) must have merit

N <
d
u Cg whereas those generated by (2), (3) or (4) must have merit

N sdu M . Thus, RECURSE proceeds in four stages as described below.

The first stage determines whether there are data base clauses of

merit N <
d
u Chi . BASEC is called and the literals on SPECLIST are re-

ferred to for guidance in selecting the "best" clause to enter into an

A-set. This operation is done during RECURSE (rather than only in

FILL as is the case in ) in order to interact base clauses as soon

as possible after the literals permitting such an interaction are

placed on SPECLIST.

If a clause D is found by BASEC, the merit DM of D is coma-

ted, D is placed in an A-set, pointers to C and CM are saved on a

stack, pointers to I) and DM are placed on USPECS, and RECURSE is

called on D . We have therefore decided to delay recursing on C

temporarily in favor of D since this seems more promising at the mo-

ment.

Note that this operation is not permitted in the 1 algorithm

which requires that base clauses may only be entered into an A-set

during FILL but not during RECURSE. However, between the time a clause

C is generated in FILL, is recursed upon, and control returns to FILL
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again, many literals may have been placed on SPECLIST because of the

inferences generated during this time. Thus in 1 , these literals are

ignored until FILL is re-entered, and we have therefore unnecessarily

delayed the interaction of data base clauses with clauses already gen-

erated. We do not know how much efficiency will be gained by calling BASEC

during RECURSE and it is thus available as an option to the experimenter.

If no more clauses can be generated by Stage 1 of RECURSE, Stage 2

attempts to factor C . Factoring is always performed without any

reference to merits since normally, a factor has better merit than its

parent. If, however, a factor D of merit >du M is formed, RECURSE(D)

is not called but deferred until a future call to FILL. Else, if a

factor D is formed using literals t/ E C and £2 E C , the merit DM

of D is calculated, D is entered into the correct A-set, pointers

to C , t/ , £2 and CM are stacked, pointers to D and DM are

placed on USPECS, and RECURSE(D) is called. If no more factors can

be formed, Stage 3 is entered.

Stage 3 finds all resolvents of C with clauses C' such that

Upperbound (Merit(Resolvent(C,C'))) sdu M . When such a clause D is

formed using literals £1 E C and £2 E C' , its merit DM is calcu-

lated, it is placed in the correct A-set, pointers to D and DM are

placed on USPECS, pointers to C , C' , £1 , £2 and CM are stacked

and RECURSE(D) is called.

If the above upperbound is N >du M , the Tesolvent is not gener-

ated since a future call to FILL(N) will generate the clause. Recall

that RECURSE of formed resolvents of merit N <du M . This was

because when only length and level are used as components of the evalu-

ation function f , it is impossible to form a clause of merit equal to
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'M , whereas in Q* it is quite possible (for example, consider only

length as a parameter).

When Stage 3 fails to find any more resolvents with C , para-

modulation may be attempted in Stage 4, if desired. This process is

similar to that of Stage 3 except that when a paramodulant D is formed

between D and C' , pointers to C and C' and the terms from each

clause used in making the substitutions must be stacked before recursing.

If all four stages cannot generate any more clauses, the stack is

popped and control is returned to the previous level of RECURSE which

continues to find more base clauses or to find more successors to C ,

depending on what stage has resumed execution.

Although selecting base clauses during RECURSE may help optimize

the order of clause generation, it also can cause the generation of

duplicate clauses. For instance, let clause C be stacked because

clause C' has been found by BASEC when RECURSE(C) is called. Then

RECURSE(C') may cause D = Resolvent(C',C) to be formed. When C, is

later unstacked and recursed upon, the same clause D = Resolvent(C,C')

may again be formed. This duplication can be avoided either by checking

for alphabetic variants after forming inferences or by some bookkeeping

procedure. Since alphabetic variants are normally eliminated, Q* uses

this method.

4.5.5 Halting Conditions for the Deduction Strategy

It should be noted that under certain conditions, the deduction

strategy can detect that no more inferences can be produced. If a0 null

clause has been produced up to that point, the search may be halted and

the query may be considered unanswerable or false. This condition may be

detected as follows. At any given point of a proof, WM points to the

worst merit non-empty A-set. The merit of the worst merit resolvent (or
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paramodulant) between C1 E AM) and C2 E A(M) where

M sdu IN is calculated and is pointed to by NV . Any time a clause

of merit N >
d
u WM is formed, WM 4-N and N' is recalculated. If

no null clause has been found after FILL(M') is complete, the search

is halted because no more inferences can be formed.

4.6 The Q* Search Algorithm The Search Strategy of HIPPS

4.6.1 Introduction

This description of the Q* algorithm ties together the deduction

strategy and the base clause selection strategy of MRPPS. Details cover-

ing SPECLIST entries were discussed in Section 4.4. In particular, keep

in mind that each time a base clause is selected, the SPECLIST is re-

ordered, spec literals are removed if necessary, a new spec axiom is

found, and the spec upperbound merit is recalculated. Also, the follow-

ing algorithm does not include provisions for paramodulation since the

control mechansim is identical to resolution. The algorithm employs a

pointer variable n to point at the current clause. The vectors M ,

N , WM , M' , and PM store merit values. The notation PM 4- means

that all components of vector PM are set to 0 . Merit M1 is

better or equal to merit M2 , denoted M1 s MI2 , according to the merit

orderings described in Section 4.2.1. The notation n 4- FILTER(n)

means that clause n is passed to a "filtering" routine that eliminates

tautologies, subsumed clauses, and alphabetic variants. BASER = 1 means

that BASEC is called during RECURSE. With these comments in mind, the

algorithm will now be given.

4.6.2 The Q* Algorithm

[1] [Initialize]. Set PM 4.- , WM , , FILLNODE 4.- 1 ,

STACK1 4- A , STACK2 A, and STACK3 A.

[2] [Enter Query Clauses]
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[2.1] [Test For Constants In Query]. If a constant appears

in a clause of , set CONST 4 1 , otherwise set

CONST 4 0 .

[2.2] [Enter Query Clauses Into Merit Sets]. Enter each

clause of into an appropriate merit set. If the

null clause is in {Q} , print message to this effect

and stop, otherwise, set M to the merit of the best

merit clause in 0,4 , and set FILLMODE 4 1 .

[Fill Merit Set ACM) 1. If FILLMODE = 1 go to [3.1],

otherwise, if FILLMODE = 2 go to [3.2], otherwise go to

[3.3.3].

[3.1] [Fill By Scanning Merit Set]. If there are no clauses

in A(M) to which RECURSE has not been applied, set

FILLMODE 4 2 , and go to [3.2]; otherwise, let n

point at the first such clause, mark the clause as

having been explored by RECURSE, set N M , and go

to [5].

[3.2] [Fill With Base Clause]. If CONST = 1 , go to [3.2.1],

otherwise go to [3.2.2].

[3.2.1] [Constants Are Turned On]. If a constant

occurs in the first spec literal and the

associated spec axiom has merit = M , con-

tinue; otherwise, go to [3.2.1.1]. Let n

point at the spec axiom. set N f M , remove

axiom n from the SPECLIST entry and enter it

into merit set A(N) . Calculate the predicted

merit, m , of a resolvent of two clauses whose
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merits are equal to the merit of the spec

clause and the merit of the spec axiom, re-

spectively. If PM < mp , set PM 4- mp . Go

to [5].

[3.2.1.1] If a constant occurs in the first

spec literal and the associated

spec axiom has merit > M and

M > PM , continue; otherwise go to

[3.3]. Is there a SPECLIST entry

whose spec literal contains no con-

stants? If not, go to [3.3].

Otherwise, if the spec axiom of the

first such entry has merit s M ,

let n point at this axiom, set

N f MERIT(n) , remove clause n

from the SPECLIST entry, enter n

into A(N) , and go to [5].

[3.2.2] [Constants Are Turned Off]. If the spec

axiom of any SPECLIST entry has merit s M ,

call the clause n , set N f MERIT(n) , re-

move clause n from the SPECLIST entry, enter

n into merit set A(N) , and go to [5].

[3.3] [Fill By Resolution]. Set FILLMODE f 3 .

[3.3.1] [Find Merit Sets]. Find the next pair of

merit sets A(M1), A(M2) such that

Upperbound(M1,M2) = M . If no such pair was

found and M' > M , go to [4]; else if no pair
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was found and M' = M then stop and declare

the query to be unanswerable; otherwise go to

[3.3.2].

[3.3.2] [Find Clauses in A(M1) and A(M2)]. Let C1

and C
2

be the next pair of clauses in

A(M1) and A(M2) respectively. If no such

pair was gound go to [3.3.1]; otherwise go to

[3.3.3].

[3.3.3] [Find Resolvents of C1 and C2]. Let n

point to the next resolvent of C1 and C2 .

If no such resolvent can be found, go to

[3.3.2]; otherwise, set n t FILTER(n) . If

n should be eliminated, go to [3.3.2]. Else,

let N =-MERIT(n) , enter clause n into

merit set A(N) , and go to [5].

[4] [Find Next Merit Set]. Set M NEXTMERIT(M) , FILLMODE 4 1 ,

and go to [3].

[5] [Create SPECLIST Entries]. For each literal in clause n ,

as permitted by the inference system in force, create a

SPECLI1T ontry as described in Section 4.4.

[6] [Test For Null Clause]. If N > vVM , WM t N , and recalculate

M' to be the merit of the worst merit resolvent between

C
1

E A(WM) and C
2

E A(M) such that M s WM . Else, if

clauSe n is the null clause, print a message that a refuta-

tion has been found, and stop.

[6.2] [Test For Axioms On Merit < N]. If CONST = 0 or if

no constant occurs in the first spec literal,

or if the user has set BASER 4- 0, go to
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[6.3]. If the first spec axiom has merit N , go to

[6.3] ; otherwise, let n1 point at the si:ec axiom and

remove the axiom from the SPECLIST. Calculate the pre-

dicted merit, m , of a resolvent of two clauses

whose merit are equal to those of the spec clause and

the spec axiom, nl , respectively. If PM < mp , set

PM 4-m . Set OP f "Axiom" , and go to [6.4].

[6.3] [Infer Clause of Merit s M].

[6.3.1] [From Factors]. Is there another factor nl

of clause n such that MERIT(n1) s M ? If

not, go to [6.3.2]; otherwise, set

n1 f FILTER(n1) . If n1 Should be elimina-

ted, go to [6.3.1]. Else, OP f "Factor" , and

go to [6.4].

[6.3.2] [Find Merit Set]. Find the next merit set,

A(M") such that Upperbound(N,M") s M . If

no such set was found, go to [6.5]; otherwise,

go to [6.3.2.1].

[6.3.2.1] [Find Next Clause]. Let C1 be

the next clause in A(M") . If

no such clause is found, go to

[6.3.2]; otherwise, go to [6.3.2.2].

[6.3.2.2] [Form Resolvents]. Let n1 point

to the next resolvent of n and

C
1

If no such resolvent can be

formed, go to [6.3.2.1]; otherwise,
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set n1 4- FILTER(n1) . If n1

should be eliminated, go to

[6.3.2.1]. Else, set

OP - "Resolvent" and go to [6.4].

[6.4] [Stack The Current Clause]. STACK1 f n , STACK2 f N ,

bTACK:, 4- OP , set N f MERIT(n1) , enter clause n1

into A(N) , set n f n1 , and go to [5].

[6.5] [Pop The Stack]. If STACK1 = A , go to [3]; otherwise,

n f STACK1 , N f STACK2 , and OP f STACK3 . Tf

OP = "Axiom" , go to [6.2]; otherwise, if OP =

"Factor" , go to [6.3.1]; otherwise, go to [6.3.2.2].

4.6.3 Completeness, Admissiblity, and Optimality of Q*

Search algorithms are said to be complete if all nodes in the search

space will be visited (or generatrAi at some stage of the search. Such

search algorithms might be svirf to be exhaustive. In terms of a theorem

proving problem, a complete search strategy will generate, at some stage

of the search, every clause C such that C is either in, or is deduci-

ble from a starting set ^f clauses (where deductions are made using some

giver. fixed set of inference rules).

The 0* algorithm is not complete in the above sense, since in

general, the algorithm will fail to generate portions of the search

space. In particular, the Q* algorithms will not generate axioms

whose predicates do not occur with query predicates h: a connected com-

ponent of the semantic graph G .

The fact that the Q* algorithm, in general, does not exhaustively

generate the entire searcn space is not a negative aspect of the
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algorithm. Indeed it is a positive aspect. However, we must assure

ourselves that the Q* algorithm is guaranteed to generate the null

clause whenever the null clause is a node in the search space (i.e.,

whenever it would be generated by a complete search strategy). If such

is the case, we will call the search strategy refutation complete.

Using a refutation complete strategy for a question answering system

assures us, at least theoretically, that if a question can be answered

positively, then the search algorithm will find the answer.

The method of making axioms candidates for generation selects

those axioms which contain a literal which will unify (ignoring literal

signs) with a literal of a generated clause. Initially, the query lit-

erals are used for this purpose. Subsequently, the literals of inferred

clauses, and, when the inference system is not employing set-of-support,

the literals of generated axioms will be used for making axioms candi-

dates for generation. Thus, the only axioms which will ever become can-

didates are those which are a finite cluster distance from the query (see

Section 4.3.4). Any other axioms cannot logically interact with the

candidate axioms or the query clauses, or successors of these clauses,

and hence, could never take part in a refutation since the set of axioms

is assumed to be consistent. If a refutation required the use of a

lemma, then the literals of the lemma would descend from possibly more

general instances these literals in the ancestor axioms. Hence these

axioms would become candidates.

It is evident that any axioms required in a refutation will become

candidates for generation at some stage of the search. The remaining

question, then, is whether all of the candidates can be generated.

The base clause algorithm gives preference to those axioms which have
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become candidates because of generated clause literals containing con-

stants. Since there are only a finite number of axioms in the starting

set, these will eventually be exhausted, and hence, at some stage the

other candidate' axioms will be generated. Since the deductive search

strategy is exhaustive, and since all of the axioms which could possibly

be of use will eventually be turned over to that strategy, the Q*

algorithm is refutation complete.

A search algorithm is said to be admissible if it is guaranteed to

find the shortest path to a goal node. In the case of a search algorithm

for the theorem proving problem, an admissible algorithm would be guaran-

teed to find a shortest proof (refutation). The 0* algorithm is not

an admissible algorithm for theorem proving. The algorithm may overlook

a shortest proof because in order to find that proof it would have to

generate axioms to interact iith general literals in the negation of the

theorem (query) before it generated axioms to interact with more specific

literals. For example, suppose that the set S of axioms contains the

clauses,

S = {P(x)7(x), R(x)1(x), Q(xMx), T(a), S(b)}

and that the negation of the theorem contains the two clauses,

0,Q) = {P(a), Q(()} .

The Q* algorithm would first generate P(a) and Q(x) . When these

are generated, entries would be made on the SPECLIST for the literals

F(a) and -q(x) . The candidate axioms for Na) would precede those

for -00 . Thus, the first axior which would be generated is P(x)R(x) .

As soon as it is generated, it would be used in an inference, resulting

in the generation of the clause T(a) . The SPECL1ST entry created for

this literal would again precede that for q(x) , and so the axioms
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R(x)T(a) which would, in turn, be used to enable the axiom T(a) to

.be generated, and immediately thereafter, the null clause would be gener-

ated. Thus, the Q* algorithm will find the refutation

P (x)T(x)

R (x)I(x)

However, a shorter proof is:

NT

g(x)

a) T (a)

Q(x)S(x)

S (b)

Although the Q* algorithm fails to be admissible, we believe that this

will not be a significant disadvantage of the algorithm. If the heuris-

tics prove powerful enough to bring this sort of deductive power to bear

on a large enough class of QA problems in a practical setting, then in-

deed, this will be a small price to pay.
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An admissible search algorithm is said to be optimal if there is no

other "comparable" admissible search algorithm which generates fewer

nodes. Since the Q* algorithm is not admissible, there is nothing to

be said about its optimality.
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5. Conclusions and Future Directions

The main direction of this research is to explore various deductive

search mechanisms for question answering systems. The research has

been restricted to this scope primarily because of limited funding.

It is hoped that in the future we may extend the work to develop a full

QA System. Experiments could then be conducted with all aspects

of such systems rather than only the deductive mechanism. In

particular, it will be important in the near future to consider large

data bases. However, for the present time, we plan to emphasize

experimental work with the current system, investigating small data

bases and incorporating modifications as necessary.

There are several modifications to the existing system that are

in progress. First, the inference mechanism is being expanded to include

A-ordering (Darlington [1969], Kowalski, Hayes [1969], Slagle [1967]).

Darlington [1969] has speculated that A-Ordering is a promising refine-

ment of resolution for QA Systems, although this fact must be supported

by more experimentation than currently exists in the literature. in

addition, since paramodulation is available to the user as an option,

experimentation will be performed with it in conjunction with the Q*

search strategy. We would like to discover whether the heuristics

currently available are sufficient to allow paramodulation to be

used efficiently.

In the area of search strategies WITS currently allows the user

to select

1) the type of generalized merit ordering to be used (i.e. Ordering-A

or Ordering-B),

2) which parameters to treat as "g-type" and which to treat as
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"h- type ",

and 3) which clause feature to assign to each component of the feature

vector F.

It is planned that the Q* algorithm will be modified so that weight

matrices other than an identity matrix wil .e allowed as will as

an ordering corresponding to that of Pohl (eq on 4.14). We presently

do not know whether the generalized merit ordering wi be superior

than an evaluation function f(n) = g(n) + h(n) witi only two com-

ponents. Additional experiments are required in thi regard. In

addition, new combinations of heuristics need to be devi;-601 for the

search strategy.

We believe that the base clause selection strategy is crucial to

a practical QA system and it is in this component that semantics can

be utilized most effectively. Various semantic considerations have

been developed and will be incorporated into the system, although all

of these ideas have not been described in this report.

Experimentation will be performed using the current data base

that consists of genealogical data about Eskimos. Typical data might be

a certain Eskimo's age, name, husband or wife and the names of his or

her children. Since this data base is somewhat limited with respect to

the type of questions that can be asked, it is planned'that other large

data bases will be developed that are stored on auxiliary storage

rather than in core. This would be one step towards our long-range

goal of implementing a large-scale question-answering system of practical

utility. However, this is not within the range of the current funding.

Some promising results have already been obtained using the Eskimo

data base. In fact, using only length and level as heuristics, fairly
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deep proofs have been obtained efficiently with a data base of 300 unit

data clauses and 85 general axioms. In particular, questions such as

"who is Joe's mother's motherinlaw?" that require six inference steps

involving the use of general axioms, have been answered in about one second.

Questions requiring only data facts in order to be answered have

required about .1 second. It is hoped that these times can be shortened

in future versions of MRPPS and that similar results may be obtained

in the future using a much larger (and more realistic) data base.

Several steps have been taken towards developing an entire QA

System that have not been described in this text. The user can enter

his own data base provided it fits in the available space and is

expressible as a set of clauses. In addition, an algorithm to translate

yff's in first-order pfedicate calculus into clause form has been

implemented and integrated with the overall system, as has an answer-

extraction algorithm based on the work of Luckham and Nilsson [1970].

Although we have outlined some of the plans we have concerning

future directions for research in QA Systems at Maryland, there are sev-

eral conclusions that may be drawn from the current work. MRPPS is

designed so that the data base, the inference mechanisms and the search

strategy can be regarded as separate but interacting entities. We

believe that the inference mechanisms may be regarded as primitive

routines (or operators) that logically deduce new clauses. They should

in no way be considered search strategies that select the "most appro-

priate" inference to make. This latter decision must be made by a high-

level control mechanism that references extensive semantic information.

As a step towards building such a control mechanism, we have

utilized some semantic information about the data base by the use of
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cluster heuristics in an evaluation function f(n) = g(n) h(n) and

other heuristics used in the base clause selection strategy. (This

is in contrast to the purely syntactic considerations of the inference

mechanism.) Some preliminary experiments indicate that both of these

techniques are promising. At the same time, it seems clear that much

more semantic information is needed in order to enable efficient

answering or questions. This should be in the form of advice to the

search strategy about which derivation paths are most likely to

succeed or which will probably never succeed. This advice could be

the result of human insight about the problem to be solved (such as

in PLANNER, Hewitt [1970]) or could be generated by the system based

upon past experience with analogous problems.

One way that this could be accomplished is to store proof

schemata of theorems that have been previously proven. Each schema

would consist of several possible derivation paths, each specifying

(among other things) recommended axioms and their corresponding weights

indicating the relative probability that each axiom has of aiding in the

search. These schemata would be referenced continuously during a proof

and would direct the proof to a large extent. Some limited capabilities

currently exist in the system which are able to do this. However, we

would like to try to achieve a more sophisticated mechanism and attempt

to interface it with the Q* algorithm. In any event, some more

"informed" type of planning mechanism is certainly necessary and this

proLlem is currently being addressed.

In general, MPS provides us with a flexible interactive system

in which the parameters may be varied by the user.: Hopefully, we will be

able to gain insight into:
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(a) inference mechansims,

(b) heuristic measures,

(c) and semantic considerations

to help guide a QA System in answering questions. Work with a data

base should permit experiments to be conducted and reported upon

in subsequent reports.
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