
DOCUMENT RESUME

ED 072 632 EM 010 720

AUTHOR Freed, Michele; Bunderson, C. Victor
TITLE Development of an APL Program for Generating

Punctuation and Usage Exercises in Freshman English.
Technical Report Number 13.

INSTITUTION Texas Univ., Austin. Computer-Assisted Instruction
Lab.

SPONS AGENCY National Science Foundation, Washington, D.C.
PUB DATE Dec 71
NOTE 26p.

EDRS PRICE MF -$0.65 HC-S3.29
DESCRIPTORS *College Freshmen; *Computer Assisted Instruction;

*Computer Programs; *English Education; Language;
Language Arts; Program Descriptions; *Punctuation

ABSTRACT
During the years 1968-1071, the Computer-Assisted

Instruction Laboratory at the University of Texas at Austin has
developed and implemented three major program designs for use in
teaching English punctuation and usage. The initial design was a
frame-by-frame approach in which each instruction was prepared by the
author and coded separately. The second program-took the parts of the
original program that could be generalized (i.e., the sentences from
the- quizzes,Y exercises, and examples) and put them into sentence
pools that were referenced by the program. The third program utilized
the workable concepts of the second program, added to them,
elaborated on them, and translated the entire program into APL
(programing language). Comparisons among the features of the three
versions are made, and an appendix provides.a number of flow charts
from the programs. (Author/RH)

U.SDEPARTMENT OF HEALTH.
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT PAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
IONS STAVED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION C^ POLICY.

DEVELOPMENT OF AN APL PROGRAM FOR

GENERATING PUNCTUATION AND USAGE-

EXERCISES IN FRESHMAN ENGLISH

Michele Freed and C. Victor Bunderson

Technical Report No. 13-

December 1971

Supported by:

THE NATIONAL SCIENCE FOUNDATION
Grant GJ-509 X

The University of Texas at Austin
Computer-Assisted Instruction Laboratory

Austin, Texas 78Y1

PUNCT COURSE DEVELOPMENT

During the years'1968-1971, the Computer-Assisted Instruction

Laboratory at The University of Texas at Austin has deVeloped and imple-

mented three major program designs for.use in teach /ng English punctuation

and usage.' The initial design was a frame by frame; approach in which each

instruction was prepared by the author and coded separately. The second

program took the parts of the original program that could be genei'alized, _

i.e., the-sentences from the quizzes, exercises, and examples, and put

them into sentence pools that were referenced by the program. The third

program has utilized the workable concepts of the second program, added to

them, elaborated on them, and translated the entire program into APL.

PUNCT

Course Design

The first program, called PUNCT, was developed and tested under a

grant from the McGraw-Hill Publishing Company. PUNCT is an adaptation.of

the programmed text English Review Manual by James Gowen. For PUNCT the

text was reorganized to permit the student to progress through the course

at his own rate, skip units which he understands, take instructional sequen-

ces for units he does not understand, and request remedial instruction on

topics related to instructional sequences. Because the student continually

interacts. with it, the program is more than an expensive page turner. fhe

computer gives the student.constant feedback evaluating his input and deter-

mining his path through the course.

Disadvantages

2

The course is massive and each fieme has been individually designed

and coded. Because of the method of coding and preparation used for imple-

mentation in Coursewriter II, PUNCT is almost impossible to debug completely.

For a course designed in this way, the author writes responses for correct;

wrong, and unanticipated answers for each frame. A modification such as

replacing a sentence requires new coding for the entire sentence--the speci-
,

fication.of the anticipated
1

light pen response areas, new text displays,,

and new response messages. ` "Motivated by these problems, the authoring team

adapted PUNCT to a new design, PUNCT2-CW..

PUNCT2-CW

Course Design

This adaptation of PUNCT,was designed under a grant from the National

Stience Foundation. PUNCT2-CW, like PUNCT, is programmed in Coursewriter II

for use on the IBM 1500 system with a 1512 cathode-ray, tube (CRT) and light

pen. The format of PUNCT is retained while the.hard-coded sentences are

replaced by calls to a data base, in this course a pool of sentences. These

sentences are divided into groups according to sentence patterns which are

called sentence prototypes. Although the logic for the PUNCT2-CW program

design is sound in its organization and generalization, most of its advant-

ages are negated by slow system response time.

Disadvantages

The Coursewriter language, even when used by a clever and experienced

programmer, is not the powerful and rapid tool needed for string processing

3

such as that demanded for the effective implementation of PUNCT2-CW. On-

line debugging of PUNCT2-CW was done only when no students or other course

authors were signed on the system because execution of PUNCT2-CW at one

terminal slowed the system beyond a reasonable response time for other

users. The slowing of the system is attributable to the frequent calling

V functions which must be moved in and out of'core memory.

The primary goals of the PUNCT2-CW designer were to eliminate hard-

coded sentences, and to provide authors with a convenient way to manipulate

and add to the sentence pool. PUNCT2-CW.was a limited success. The macros

designed for PUNCT2-CW were limited in scope and notall of the frames in

PUNCT were translatable into the data base design. Instead, in the segments

selected for adaptation these unique frames were hard-coded for PUNCT2-CW

as well. The author entry system remained complex; the macros had many

variables; and intricate branching linked the macros together.. (For further,

explanation of PUNCT2-CW, see National Science Foundation Technical Report E.)

Because of these disadvantages, PUNCT2 -CW was altered and translated into.

APL; this version is called PUNCT2 -APL.-

PUNCT2-APL

Course Design

When designing PUNCT2-APL, which was also designed under a National

Science Foundation grant, the instructional design team utilized and expanded

the original data base concept. In this APL adaptation the disadvantages of

PUNCT2-CW were eliminated while positive modifications were made. The format

of PUNCT2-APL is essentially the same as that of PUNCT2-CW with the most

4

significant variations being the programming language and the type of

terminal used. Using APL, the designers were able to create a course

with the data base capabilities of PUNCT2-CW and the response time of

PUNCT.

COMPARISONS

Language and Terminal Differences

Although it offers a display with versatile response and insert

capabilities, the 1500 CRT proves to be limiting. The distance limitation

of the CRT terminal from the computer becomes important if mass dissenlina-

-- 'tion is a consideration. Connected by telephone line to the computer, the

360/50 typewriter terminal used for PUNCT2-APL can be placed in locations

which are easily accessible to students, such as study facilities in dormi-

tories or terminal centers in various campus locations.

With the CRT the student is able to use the light pen to simulate

inserting punctuation in a sentence, but the student's typing the punctuation

in the proper position serves the same purpose. In the Coursewriter versions

of PUNCT and PUNCT2-CW, the student touches, with the light pen, a word which

he wants punctuation to follow; if his response is correct, the punctuation.

mark is inserted. If his response is incorrect, he is given a message which

tells him that his response is incorrect. The response time in PUNCT, because

of its straightforward programming, is almost immediate. System response

time is so slow on PUNCT2-CW that it prohibits running test students. After

entering a light pen response, the student must wait until his answer is

processed and evaluated before he can make another response. The APL lang-

uage used in PUNCT2-APL efficiently handles the processing demanded by the

r-

1

5

data base and promotes modular programming. The student types in his

additions for an entire sentence before he enters his response. The

system responds by typing an X under each incorrect punctuation mark

inserted by the student and under*the position of each omitted punctuation

mark. The entire corrected sentence is then typed for the student. Using

APL, the designers were able to create a course with the.data capabilities

of PUNCT2-CW and the response time of PUNCT.'

The initial reaction of the designers to using the typewriter

terminal for PUNCT2-APL was negative because the student would have to

wait for the information to be typed rather than have the rapid present-

ation of a new screen of information on the CRT. However, the Coursewriter

version of PUNCT2 moves so slowly that the PUNCT2-APL student using a type-

writer would probably have the new message typed to him before the PONCT27CW,

student using a CRT has his answer processed.

Another disadvantage of PUNCT2-APL is that APL does not have a lower

-case alphabetic keyboard. This problem is most obvious in units dealing

with capitalization'. However, once the student adjusts to seeing only upper

case letters, a convention can be established for use on exercises dealing

with capitalization.

In some exercises the APL terminal has advantages. Several units

of PUNCT are designed with a format other than the light pen format discussed

above and adapted to PUNCT2-CW. In these units, dealing with quotation

marks and apostrophes, the student's responses must be more precise than

those obtained by pointing with a light pen. The PUNCT student spaces

through the displayed sentence and types punctuation marks in the correct

6

.positions. The student must learn conventions for moving the cursor more

than one space at a time; if many users are signed on simultaneously, the

. student might wait several seconds between each move of the cursor. All

PUNCT2-APL exercises employ for the response format the technique of spacing

through the sentence. The APL terminal has a power space key which elimin-

ates the time delay without sacrificing precision. The student presses the

power space and the type ball moves across the line to the position in which

the student wants to insert punctuation. This new format permits the easy

adaptation of certain PUNCT segments to APL which would not have been readily

adapted to the PUNCT2 -CW format.

The PUNCT2-CW design was limited so that not all frames in PUNCT

were recoded for PUNCT2-CW. Instead all of the generalized frames from

several lesions were translated, but many one-of-a-kind frames remained

hard coded. By expanding the PUNCT2 capabilities in APL, the programmer

has been able to eliminate the remaining hard coding 'that was necessary in

PUNCT2-CW. New functions and new sentence prototypes have been designed so

that all sentences can be randomly selected from the sentence pool. An

example of a hard-coded frame in PUNCT2-CW which is generated in the APL

version is one in which the student is asked to identify certain elements

in a sentence. The WHICH function is used to match the student's answer

with the name of a sentence unit, and a response is created which identifies

the unit in a randomly selected sentence. Modification of the course,

addition of new sentences, and debugging can be done more easily in PUNCT2-APL.

Flowcharts of eleven representative functions are given in the appendix.

PUNCT2-CW lacks the wrong answer .(wa) capabilities assumed in

Coursewriter and utilized in PUNCT. The wrong answer logic searched for a

7

match, executed the minor commands associated with the match (such as

displaying a message, etc.), and branched back to permit the student to

respond again. In PUNCT anticipation of incorrect responses were coded

only when the author considered an error to be common. In,PUNCT2-CW,

there is no way for an author to reference a sentence unit without deleting

it from the sentence, so that'll° messages telling the student that his

response was incorrect and why are used with the sentences called from the

pool. Instead, every wrong answer elicits a standard response that tells

him that his answer is incorrect, but gives him no specific information.

An APL function (WHICH) has been designed to generate wrong answer responses.

This function takes the name of the unit in which, or the names of the units

between which the student has tried to insert punctuation and creates a

message telling the student why his entry is incorrect. The effect of the

message is that of a specifically written. message in PUNCT except that these

messages are generated and do not have to be written for each wrong answer.

The PUNCT student sees essentially the same course as the student

who takes PUNCT2-CW, but since in the latter the sentences are called from

a pool rather than being hard coded, the PUNCT2-CW student sees new sentences

in examples, exercises, and tests if he must repeat a sequence. In PUNCT

each sentence is coded as it is needed and if the author'refers to the

sentence later in the program, it must be recoded.

In PUNCT2-CW the sentences are loaded randomly into the appropriate

category. The program calls the sentences from the category in order as they

are needed. When all sentences of a prototype have been used, the program

starts through the sentences again. PUNCT2-APL, on the other hand, generates

8

a WA of random numbers corresponding to the numbers of the sentence.

and uses them in this random order. If all of the sentences are used, a

list of numbers is generated again and the sentences are reused in the new

random order.

An additional feature of PUNCT2-API. is that the student is given

an opportunity to try additional sentences when he makes an error. The

author sets a variable (for the present time it is set at five); the student

is presented a sentence of a certain type. If he does not make the necessary

corrections, he is given the correct answer and another sentence of the same

type to try. The procedure is continued until the student answers correctly

or has tried five sentences.

Author Entry_astm

PUNCT is an entirely hard-coded course; each sentence, anticipated

moonset and response message must be'written by the author and coded by

a programmer. Therefore, PUNCT is extremely long and difficult to debug

completely. Any modification entails extensive changes in the course.

Adding drill exercises involves the preparation and coeing of each sentence

added to the drill and is a long and cumbersome task. PUNCT2-CWis based

on a sentence pool, and a limited number of macros are used to call and

process sentences. Although there is still occasion for error, the format

makes the bulk of the course easier to debug. Drills are much easier to

add, but major modifications are difficult to make. In addition to using

the data-based program for calling sentences from a pool and processing

answers, the author can add new sentences to the pool which suit-his-purpose

and taste without having to specify each anticipated answer and message.

9

A teacher might want to insert sentences that are related to other topics

being studied by his students. With the help of a clerk, he could replace

the old sentence pool with sentences more relevant to his class., An author

who is satisfied with the sentence pool may change the instruction. A

teacher may find that the approach taken in PUNCT2-CW is too trAditional,

but may find the sentences acceptable. He can write new instructional

frames which can be inserted by a programmer. Another teacher may find

that neither the instructional sequence nor the sentences in the pool are

satisfactory. With orientation and the help of a programmer, the teacher

can write a new course using the macros and structure of PUNCT2 -CW. However,

this last option would entail a great deal of effort on the part of both

the teacher and programmer. Nevertheless, the basic design provides a

flexibility for the teacher who is willing to devote time to making the

course suit his needs.

Great advancements toward a simplified author entry system have been

made during the project development. The most dramatic difference in author

entry systems is illustrated by the author's drafts of the pretest on dates

and addresses from all three courses in Appendices 1, 2, and 3. These drafts

indicate that the PUNCT author had to specify all details for the programmer.

He wrote each questioh, correct answer, wrong answer, and unanticipated

answer responses as well as the instructional unit. The author was aware

of the Coursewriter language and often used code to communicate with the

programmer. Very little creativity remained within the programmer's realm

of responsibility; he kept score, prepared screen displays, and created

macros to relieve the tedium of his work.

10

The breakdown of tasks was somewhat different in PINCT2-CW and

PUNCT2-APL. Because the course was already written, the author worked

with an instructional designer who created the data-based system using

the course material of PUNCT. The instructional designer was aided by

a skilled programmer who prepared the Coursewriter macros for PUNCT2-CW

and the functions for PUNCT2-API. to meet the design specifications.

Programmers utilized these macros and functions in course implementation.

Although the author entry system-of PUNCT2-CW is less detailed

than that of PUNCT, it is not a system that can be used easily and without

extensive orientation. The macros used for calling and correcting sentences

pulled from the sentence pool have several variables and must be used in

conjunction with Coursewriter functions and coding. Branching becomes

intricate when corrections are made for a list of sentences as in a pretest.

Six macro calls are needed to select and display-a sentence, process answers,

display the sentence with student corrections, and display it with the

corrections that the student has omitted. These macros are described in

detail in National Science Foundation Technical Report 6. Both the author

and programmer must be aware of macro capabilities. Adding new sentences

to the.data base requires many steps including changing variables in several

macro calls. A sentence is added to the pool by macro meter it has been

processed by subroutine zipzip. Zipzip is executed at a typewriter terminal

with a clerk entering the sentence units one at a time. The product of

zipzip is a string of numbers indicating the number of units in the sentence,

the length of each unit, the length of the last word of each unit, and the

sentence with unit markers.

11

PUNCT2-APL provides a simplified author entry system. One function

call replaces six macrc calls and extensive coding in PUNCT2-CW. For

example, the statement 3 00 3 5 determines that a prototype 3 sentence is

being called and that sentence units 3 and 5 are to be deleted. This same

function processes answers, generates. messages, and inserts the correct

answer. Subroutine zipzip is unnecessary in PUNCT2-APL since all necessary

computation occurs within the function. Instead, sentences are loaded with

markers (-) that indicate the end of sentence units. For example, a

typical sentence entry would be:

SENTENCE'I HAD-,-INDEED-,-HOPED YOU WOULD ASK THAT QUESTION.-'

The deletion of sentence units 2 and 4 would result in the presentation of

the sentence with commas deleted.

In addition to being easier to work with, the APL functions also

eliminate the need for the extensive branching used with the Coursewriter

macros. To replace an entire sentence in the senterice_pool, one line of

code instead of numerous macro calls must be changed. To change a sentence

in PUNCT a complete new set of coding must be prepared and inserted in

place of the old.

PUNCT2-APL appeared to be.a success, but the equipment necessary to

test iton a large number of students was not available at the University,

so an effort was made to adapt the material once again to the IBM 1500

system. The previous 1500 version had been programmed in Coursewriter II

and the language was thought to be the difficulty. The new version was to

be in APL. The adaptation was not difficult to make. However,, early in

To.

12

the process it became apparent that the system rather than the language

was the problem. Once again the system response time became so long that

the program was not workable; the translation from 360 to 1500 APL was

discontinued. This version, had it proved workable, wouldhave been pre-

ferred because it employed the light pen and CRT.

CONCLUSION

The.work done on PUNCT2-APL furthers efforts being made to simplify

the author entry system. By eliminating the need to specify each detail,

the design team has removed an obstacle for the creative author. In addi-

-tion, PUNCT2-APL demonstrates the effective use of modular programming and

a data base for instruction in English. More important than the segments

of PUNCT which were adapted to PUNCT2-APL are the concepts that were

developed. These concepts can be extended for use in areas of English

instruction other than those covered by PUNCT.

APPENDIX

GO (Enter)

Sets number of

sentences of each
prototype for this
section of course

Sets limit of
times student can
try exercise

before going on

Calls
function DATES -

1st area of comma
instruction

/Calls func-
tion ADDRESSES-

2nd area of comma
instruction

(: End of 2)
course

14

This must be updated as more sentences
are added to prototypes.

Specifies name of punctuation being
used and loads punctuation mark for
messages to student. Clears counters

and variables.

Other units of instruction will be
)0 added here.

GO starts the course. It nests all of the other functions. It will

be expanded as other units are programmed. There should be other
main control segments like this one to provide restart points.

DATES

Value set
for AREAD

Requests
review,

No review

Test on
DATES

Instructional
sequence on

.DATES

Yes
EXIT)

15

This function has no parameters; it calls an entire unit of instruction
including a pretest and posttests. At EXIT, the student has passed the
pretest, the posttest, or has been through the instructional unit twice
without being able to pass the posttest. The function ADDRESSES
flowchart is identical to this one.

DO

sselectssentence

LOAD

16

DROP

deletes
sentence
chunks

Yes

SHOW
displays and
processes
sentence

Counts number:
sentences of

this tyre
student has

tried

Yes

No

Has
his sen-

tence tvoe
been usea'as

many times as speci-
fied by initial

call

Yes

Yes

Message to
student

concerning
next sentence

This function is called to give a sentence of a specified prototype to
the student for punctuation additions. DOEND is set previously; DOEND
determines how many sentences of this type are presented to the student
in drill until he gets one correct. On tests DOEND is set at one. For
the present, DOEND Is set at five during the instructional drill.

NEWTEST

Enter

as
student

failed this
test?

Sets switch
to indicate

posttest

Sets switch
to indicate
pretest

Student is given
review option

before posttest

Is

student on
pretest?

Resets counters
for test

Does
tudent want

eview?

Displays
introductory

message
for test

This function is called prior to any test. It displays messages and
gives the student an option to review before the posttest. It also
clears counters and sets the loop used in instruction (DOEND) to one
for testing purposes. No parameters are specified.

ENDTEST

Loads number of ,

tries available
for student on

each sentence type

No

Add to counter
to indicate

test failure

Reset
counters

as
stuHdent

inserted more
than acceptable
o. of incorrec

esponses?
Fail test
message

Fail test
message

(: EXIT to
next unit

Set branCh
switch

Set branch
switch

Reset
Counters

Je

EXIT to
next unit

(EXIT to
next unit

EXIT to
instruction

This function is called at the end of a test. It checks criterion score
and controls branching, messages, and progression.

LIST2 Enter

Displays
message re:
lists in
sentence

sselectssentence

LOAD

4
SEE

displays
sentence

Instruction
message

DO
processes
sentence

Instruction

message

sselectssentence

LOAD

SEE

displays.
sentence

Ihstruction
message

19

LIST2 prepares and displais
a sentence for correction by
the student. Instructional
messages are embedded.

(LIST is similar inform, but
instruction is different.)

i

WHICH c Enter

(LID loads
identifica-
tion for
sentence
chunks

..

Error
message

Display
message
"WRONG"

1

7/14414--
Selects chunk
that is t..:' be

Identified at
this time

Is it
a valid
chunk?

20

Message to
student to

mark correct
chunk with X

4
LOOK2

displays
sentence

Is
student's
answer an X

Chunk student
has marked
is identified

Yes

Display
message
"RIGHT"

I

Function WHIM is a drill used lor
teaching identification of parts el
a sentence.

--,

4

')

t

I

1

1

LOAD

EXIT

21

(Enter
1,

Yes

Deletes last
used sentence

Display "No
such type"

message

This function selects a sentence
of the appropriate prototype and
processes the sentence before it
is used.

LID load's

identification
for sentence

chunks
Is

this las
sentence of
this type?

No

C EXIT

Regeneration
of random
list of

sentences

lc
Select number
of sentences
to be used

/Go to the
appropriate
function for
this sentence

type

i
Selects sentence

and does
necessary
processing

SHOW (Enter

4

Loads sentence
chunks which are
not displayed

LOOK2

Answer

Builds
Correct

..----4L---

Student
input

Yes

Counts correct
and incorrect_

instances of
inserted punct.

Message re:
putting

punctuation
between words

Is
entire

sentence
orrec

Yes
Generates and

displays random
correct answer

message

N

Function SHOW displays a sentence,
accepts and evaluates student input,
gives the student feedback, and
displays*the correct sentence.

Marks student

mistake with X

WHAT
provides

responses for
student
errors

Displays
message

Shows
corrected
sentence

Displays message
telling that
sentence is

correct

EXIT

WHAT

KYes

(Kilter

LID loads
identifica-
tion for
sentence
chunks

Clears
counters

I.-

Loads error
chunk into
variable

Has
student

seen previous
message re: this

chunk

AC.

Mistake
counter

incremented

Checks
to see if

messages for all
rrors have been

displayed

Loads chunk
into variable

for next
comparison

PULL2
displays
identifi-
cation

Loads message

for mistakes

This function provides responses for student errors.'

23

SEE, Enter

24

Counter which
keeps track
of chunks
incremented

Yes
Is

sentence
Chunk to be
deleted

9

No Yes

No

Sentence
is displayed

Sentence chunk
is loaded

for display

Function SEE prepares and displays sentence with appropriate sentence
chunks omitted.

