DOCUMENT RESUME

ED 072 632 A ' o EM 010 720
AUTHOR Freed, Michele; Bunderson, C. Victor
TITLE . Development of an APL Program for Generating

Punctuation and Usage Exercises in Freshman English.
- Technical Report Number 13, ° X '
INSTITUTION Texas Univ., Austin. Computer-Assisted Instruction
Lah.) :
SPONS AGENCY National Science Foundation, Washington, D.C.
PUB DATE Dec 71 o

NOTE 26p.
EDRS PRICE MF-$0.65 HC-$3.29 .
DESCRIPTORS *College Freshmen; *Computer Assisted Instruction;

*Computer Programs; *Fnglish Education; Language;
Language Arts; Program Descriptions; *Punctuation

’ During the years 1968-1971, the Computer-Assisted
Instruction Laboratory at the University of Texas at Austin has
developed and implementeq three major program designs for use in
teaching English punctuation and usage. The initial design was a
frame-by-frame approach in which each instruction was prepared by the
author and coded separately. The second program-took the parts of the
original program that could be generalized (i.e., the sentences from
- the quizzes, exercises, and examples) and put them into sentence
pools that were referenced by the program. The third program utilized
the workable concepts of the second progrzm, added to them,
elaborated on them, and translated the entire program into APL }
(programing language) . Comparisons among the features of the three
versions are made, and an appendix provides a number of flow charts
from the programs. (Author/RH) :)

.
AN I;;_-;;‘@f‘,

> 4]
AN s ot il b, A A dseiaid g, e s s 1«

)

S

o ,b;u. B
S

9

Sl

7 s
PR
L

1

R

el i

e

s

o i
N

1y B ' A . i

" o
& oy < AT e S ' N L
.) , Ta «ni L : ,.,.w‘\‘.,z oh, e L; o: Joasn . .:. \«:K
[SN oA ¥oa L I R VT B R
: ——— ? R K P AN o 3

ce ¥ .
"t snk o b b v

Full Tt Provided by ERIC

~
-

T e e ot e el s e e e - ROt .

U.S.DEPARTMENT OF HEALTH.
EDUCATION & WELFARE
OFFICE OF EDUCATION
THIS OOCUMENT HAS BEEN REPRO-
OUCEQ EXACTLY AS RECEIVEQ FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPiN-
IONS STATEO 0O NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EQU-

CATION POSITION C”* POLICY.

DEVELOPMENT OF AN APL PROGRAM FOR
GENERATING PUNCTUATION AND USAGE
EXERCISES IN FRESHMAN ENGLISH

Michele Freed and (. Vietor Bunderson

Technical Report No. 13-

" December 1971

Supported by:

THE NATIONAL SCIENCE FOUNDATION
Grant GJ-509 X :

The University of Texas at Auslin ,
Computer-Assisted Instruction Laborvalory
Austing Texas 78712

e W Sk s g e oy o e v

/
|
i
i
:

S A e A AR, S W AT A AR A b < e o

PUNCT COURSE DEVELGPMENT

During the years'1968-1971, the Computer-Assisted Instruction
Laboratory at The University of Texas at Austin has developed and imple-
mented three major program des1gns for -use in teacn]ng English punctuation

and - usage. The initial design was a frame by frame’ approach in which each

instruction was prepared by the author and coded separately. The second

program took tne parts of the original nrogran that could be generalized,
i.e., the'sentences from the quizzes, exercises, and examp]es, and put
them into sentence pools that wene referenced by the program. The third
program has utilized the workable cdncebtsrof the second program, added to

them, e]aborated on them, and translated the entire program into APL.

_ PUNCT

Course Design

The f1rst program, ca]]ed PUNCT was deve]oped and tested under a
grant from the McGraw-Hil1 Pub]1sh1ng Company. PUNCT is an adaptation_of
the programmed text English Review Manual by James Gowen. For PUNCT the

text was reorganized to permit the student to progress through the course

.at his own rate, skip units which he understands, take instructional sequen-

ces for unlts he does not understand and request remedial instruction on

topics related to instructional sequences Because -the student continually

' 1nteracts with it, the program is more than an expensive page turner. [he

computer gives the student.constant feedback eva]uat1ng his input and deter-

mining his path through the course.

e e b same oo e ks

LA O B T o s

PR R

[PUR e Y e S I o e o

Disadvantages

The course is massive and each frame has been indiv%dua]ly designed
and coded. Because of the method of coding and preparation used for imple-
mentation in Coursewriter II, PUNCT is almost impossible tordebug comp]eteiy.
For a course designed in this way, the author writes résponses for correct;
wrong, and unanticipated answers for each'frémef A modification such as
replacing a sentence requires new coding for the entire sentgnce--the speci-
fication .of the anticipated}light pen response areas, new text dispjays,,

and qewireSponse messages.‘“Motivated by these problems, the authoring team

adapted PUNCT to a new design, PUNCTZ~CW. '

PUNCT2-CW

Course Design _ 7
 This adaptatipn of PUNCT'was designed under a grant from fhe National

Science Foundation. PUNCT2-CW, like PUNCT, is programmed in Coursewriter I1I

for use on the IBM 1500 system with a 1512 qathode;ray~tube (CRT) and 1{ght
'pen. The format of PUNCT is retained while the- hard-coded sentences are
replaced by calls to a data base, in fhis course a pool of sentences. These -
sentences are divided into groups according to sentence patterns whichlare'
cailed sentence prototypes. Although the logic for the PUNCT2-CW program
design is sound in its organizétion and generalization, most of its advant-

' ages are negated by slow system response time.

Disadvantages

The Coursewriter language, even when used by a clever and experienced

programmer, is not the powerful and rapid tool needed for string processing

IS

e h TS MBI A Wha sa g} SR L WD K 230 P N

et Nrsmtn e, S T 1A

et s e A W AT s G g U Tk vy W s e Sy

3

such as that demanded for the effective impfeméntation of PUNCTZ-CN. On-
- line debuéging of PUNCT2-CW wasﬁdoné only when no students orﬁother course
authors weré signed on the system because execution of PUNCT2-C“ at one
terminal slowed the system beyond a reasonable response time fbr other
users. The slowing of the system is attributable to the frequent calling
¢* functions which must be moved in and out of“core memory. _
The primary goals of the PUNCT2-CW designer were to e{iﬁinate hard-
co&ed sentences, and @o provide authors with a convenient way to manipulate
and add to the sentence poo{."PUNCTZ-CW’was a limited success. The macros
designed for PUNCT2-CW were limited in scope and not-all of the fr;mes in
PUNCT were translatable into thé data base design. InStead,-in fhe segpenys
selected for adaptation these unique frames were hérd-coded for PUNCTZ-CN
as well. The guthor entry systgm remqihed complex; the macros had many
variables; and intricate branching linked the macros together.. (For further,
explanation of PUNCT2¥CN, see National Science Foundation Teéhnica] Report £.)

Because of these disadvantages, PUNCT2-CW was altered and translated into.

APL; this version is called PUNCT2-APL.

PUNCT2-APL

Course Design

When designing PUNCT2-APL, which was also designed under a National
Science Foundation grant, the insfruptiona] design team utilized and éxpanded
the original data base concept. In this APL adaptation the disadvantages of
_PUNCT2-CW were eliminated while positive modifications were made. The format

of PUNCTZ-APL is éssentiai]y the same as that of PUNCT2-CW with the most

3
7
s
1
:
H
§-

R R AR AU AP e T W s VA s i) o e

.significant variations being the programming language and the type of

terminal used. Using APL, the designers were .able to create a course

with the data base capab111t1es of PUNCT2- cw and the response time of

PUNCT.

COMPARISONS

~ Language and Terminal Differences

Although it‘offers a display with'versatile response and insert
capabilities4 the 1500 CRT proves to be 1imiting. The distance 11m1tat1on

of the CRT terminal from the computer becomes important if mass d1ssem1na-

“tion is a cons1derat1on Connected by telephone line to the computer, the -

360/50 typewr1ter term1na1 used for PUNCT2-APL can be placed in locations
which are eas11y accessible to students, such as study facilities in dormi-
tories or terminal'centers in vartous campus locgtions.

With the CRT the student is able to use the light pen to simulate
inserting punctuation in a sentence, but the student s typing the punctuation
in the proper pos1t1on serves the same purpose In the Coursewr1ter versions
of PUNCT and PUNCTZ CW, the student touches, w1th the 11ght pen, a word which
he wants punctuation to follow; if his response is correct, the punctuat1on-
nark is inserted. If his response is incorrect, he is given a message which
tells him that his response is incorrect. The response time in PUNCT, because
of 1ts stra1ghtforward progranm1ng, is almost immediate. System response

t1me is so slow on PUNCT2- CN that it proh1b1ts running ‘test students. After

venter1ng a light pen response, the student must wait until his answer is

processed and evaluated before he can make another response. The APL lang-

uage used in PUNCT2-APL efficiently handles the process1ng demanded by the

-~

A e e s

YT T mTIOTAA MR GW T LA, S e

el T - e e s S oteer £ r e SR Ry A

qaté base and promotes modular programming. The student'types in his
:dditions for an entire sentence before he enters his response. The
system respongs by typin§ an X under each incorrect punctuation'mark
inserted by the student an& under the position of each_omitted punctuation
mark. The entire corrected sentence is then typed for the student. Using
APL, the designers were able to create a course,witn the data capabilities
of PUNCT2-CH and the response time of PUNCT. '

The initial reaction of the designers to using the typewriter
terminallfor PUNCT2-APL was negative because the student would have to
wait for the information to be typed rather than have the rapid present-A
ation of a new screen of information on the CRT. However, the Coursewriter

version of PUNCT2 moves so slowly that the PUNCT2-APL student using a type-

writer would probably have the new message typed to him before the PUNCT2-CW |

/
student u51ng a CRT has his answer processed

Another disadvantage of PUNCTZ-APL is that APL does not have a lower

-case alphabetic keyboard. This problem is most obvious in units dealing

with capitalization. However, once the student adjusts to seeing only upper
case letters, a convention can be established tor use on exercises dealing
with capitalization. : o

In some exercises the APL terminal has advantages. Several units

of PUNCT are designed with a format other than the 1ight pen format discussed

“above and adapted to PUNCTZ-CN In these units, dealing with quotation

marks and apostrophes, the student s responses must be more precise than
those obtained by p01nt1ng W1th a 11ght pen. The PUNCT student spaces

through the d1sp1ayed sentence and types punctuat1on marks in the correct

B N DUV

¥
N
L Ao b el enmibls s -

&

o e e Rk A A Y ST Ay 2o 1m0 e o bt TN ot b [y e s

,pos%tions. The student must learn conventions for moving the cursor more
than one space at a time; if many users are signed on simultapeqpsly, the
. student might wait several seconds between each move of the cursor. Ali
PUNCT2-APL exercises employ for the response format the technique of spacing
through the sentence. The APL terminal has a power Space key which e]imih-
ates the time delay without sacrificing precision. <The student- presses the
power space and the type ball moves across the line to the position in which
the student wants to iﬁsert punctuation. This new fomat pérmitg the easy
adaptation of certain PUNCT segments to APL which would not have been readily
adapted to the PUNCT2-CH format.
4 The PUNCT2-CW design was limited so that not all frames in PUNCT
were recoded for PUNCT2-CW. Instead all of the generalized frames from
several lessons were translated, but many oné-of-a-kihd frames remained
bard coded. By expanding the PUNCT2 capabilities in APL, the programmer
has been able to eliminate the rehaining hard coding ‘that was necesséry in
PUNCT2~CW. New functions and new sentence prototypes have been‘designed éo
that all sentences can be randomly selected frpm the sentence bool. An
example of a hard-coded frame in PUNCT2-CW which is generatedAin the APL
‘version is one in which the student is asked to identify certain elements
in a sentence. The WHICH function is used to match the student's answer
with the néme of a sentence unit, and a response is created which identifies
the unit in a randomly selected senten;e. Mod{fication of the course,
addition of new sentences, and debugging caﬁ be done more easily in PUNCT2-APL.
Flowcharts of eleven rébresentative functions are given in the appendix.
PUNCT2-CW lacks the wrong answer (wa) capaﬂi}itigs assumed in

Coursewriter and utilized in PUNCT. The wrong answer logic searched for a

T e

B g

Mt e e i wrws - — e T e e e s e e

match, executed the minor commands associated with the match (such as
displaying a message, étc.)3 and branched back to permit the student to

respond again. In PUNCT anticipation of incorrect responses were coded

only'when thé'author considered an error to be 6ommon. In .PUNCT2-CW,

there is no way for an author to reference a sentence unit without deleting
it from the sentenée, so that no messages telling the student that his
response was incorrect and why are used with the sentences called from the
pool. Instead, every wrong answer elicits a standard response that tells
him that his answer is incorrect, but gives him no specific information.

An APL function (WHICH) has been designed to generate wrong answer responses.
This function takes the name of the unit in which, or the names of the units

between which the student has tried to insert punctuation and creates a -

- message telling the student why his entry is incorrect. The effect of the

messége is that of a specifically written.message in PUNCT except that these
messages are generated and do not have to be ertten for each wrong answer.

The PUNCT student sees essentially.the same course as the student
whpwtakestPUNCTZ-cw;'but since in the latter the sentenées are called from '
a pool rather than being hard coded, the PUNCT2-CW student sees new sentences
in examples, exercises, and yests if he must repeat a seduence, In PUNCT
each sentence is coded as it is needed and if the.authorirefers to the
sentence later in the program, it must be recoded.

In PUNCT2-CW the sentences are loaded randomly into the appropriate

category. The program calls the sentences from the categony'in order as they

are needed. When all sentences of a prototype have been used, the program

starts through the sentences‘agaiﬁ. PUNCT2-APL, on the other hand, generates

£

a list of random rumbers corresponding to the numbers of the sentence-
and uses them in this random order. .If all of the sentences are used, a
list of numbers is generated again and the sentences are reused in the new
random order. .)

An additional feature of PUNCT2-APL is that the student is given
an opportunity to try additional sentences when he makes an error. The
author sets a variable (for the gresent time it is set at five); the student
is presented a sentence of a certain type. If he does.not make the necessary
corrections, he is given the correct answer and another sentence of the same
type to try. The brocedure is continued until the student answers correctly
or has tried five sentences. 7

Author Entry System

PUNCT is an entirely hard-coded course each sentence, anticipated

fresponse, and response message must be ‘written by the author-and coded by

a programmer. Therefore, PUNCT is extremely long and difficult to debug
completely. Any modification entails extensive changes in the course.
Adding drill exercises involves the preparation and ccsing of each sentence
added to the drill and is a long and cumbersome task. PUNCT2-CW is based
on a sentence pool, and a limited number of macros are used to call and
process sentences. Although there is still occasion for error, the format
makes the bulk of the course e.asier to debug. Orills are much easier to

add, but major modifications are difficult to make. In addition to using

-the data-based program for calling sentences from a pool and processing

_answers, the author can add new sentences to the pool which suit-his purpose

and taste without having to specify each anticipated answer and message.

EER N

A teacher might want to insert sentences that are related to other topics
being studied by his students. Hithvthe help of a clerk, he could replace
the old sentence péol with sentgnces more relevart to his class.' An author
who is satisfizd with the sentence pool may change the instruction. A
teacher may fjnd that the approach taken in PUNCT2-CW is too traditional,
but may find the sentences acceptable. - He can write new instructional
frames which can be inserted by a programmer. Another teacher may find
that neither the instructional sequence nor the sentences in the pool are
satisfactory. With orientation and the help of a programmer, the teacher
can write a new course using the macros and structure of PUNCT2-CW. Hecwever,
this last option would entail a great deal of effort on the part of both

the teacher and programmer. Nevertheless, the basic design provides a

flex1bility for the teacher who is willing to devote time to making the

course suit his needs. -

Great advanéza;;fs;ibward a simplified author entry syrstem have been
made during the project deveiopment. The most dramatic difference in author
entry systems is illustrated by the author's drafts of the pretest on dates
and addresses from all three courses in Appendices 1, 2, and 3. These drafts
indicate that the PUNCT author had to specify all details for the programmer.
He wrote each question, correct answer, wrong answer, and unanticipated 7
answer responses as well as the instructional unit. The author was aware
of the Coursewriter language and of@en used code to communicate with the
programmer. Very little creativity remained within the programmer's realm
of responsibility; he kept score, prepared screen displays. and created

macros to relieve the ;edium of his work.

The breakdown of tasks was somewhat different in PUNCT2-CH and

PUCT2-APL. Because the course was already written, the author worked

with an instructional designer.who created the data-based system using

_ the course material of PUNCT. The instructional designer was aided by

a skilled programmer who prepared the Coursewriter macros for PUNCT2-CH

and the funct}ons for PUNCT2-APL to meet the design specifications.

Programmers utilized these maéros and functions in course implemenfation.
Although the aﬁthor entry system‘of PUNCTZ-QH is less detailed

than that of PUNCT, it is not a system that can be used easily and without

exténsive orientation: The macros used fbr calling and corrébting,sentences

pulled from the sentence pod],have seVgra] variables and must be psgd in

éonjunction with Coursewritér funct{onS'and coding. Branchingrbecomés |

intricate when corrections are made for a list of sentences as inna pretest.

Six macro calls are needed to select and display-a sentence, process answvers,

- display the sentence with student corrections, and display it with the

corrections that the student has omitted. These macros are described in
detail in National 3cience Foundation Technical Report 6. ‘Both the author

and programmer must be aware of macro capabilities. Adding new sentences

“to the.data base requires many steps including changing Qariablés in several

macro calls. A sentence is added to the pool by macro §E;aftef it has been

processed by subroutine zipzip. Zipzip is executed at a typewriter terminal

with a clerk entering the sentence units one at a time. The product of
zipzip is a string of numbers indicating the number of units in the sentence,
the length of each unit, the length of the last word of each unit, and the

sentence with unit markers.

[USRp—

'
s WA oh e Tyt - oo Aasenmnt it

1

PUNCT2-APL provides a simplified author entry eystem. 0ne-function
call repléces Six macre calls and extensive coding in PUNCT2-CW. For
examble, the statement 3 DO 3 5 determines that a prototype 3 sentence is
being called and that sentence units 3 and 5 are to be deleted. This same
funct%on processes answens, generates messages, and inserts the correet_:
answer. Subroutine zipzip is unnece;sarx in PUNCT2-APL since all necessary
computation occurs within the functjon. Insteed, sentences are loaded with
markers () that indicete the end of sentence units. For example, a

typlcal sentence entry would be: :

SENTENCE='I HAD",~INDEED~,~HOPED YOU WOULD ASK THAT QUESTION
The deletion of sentence units 2 and 4 uouldvresult in the pregentatinn of .
the sentence with commas deleted. :
In addltJon to be1ng easier to work with, the APL functlons also
ellmlnate the need for the extensive branchlng used with the Coursewrlter
macros. To replace an entlre sentence in the senterce. pool one llne of
code instead of numerous macro calls must be changed. To change a sentence
in PUNCT a complete new set of coding must be prepered—and inserted in

place of the old.

PUNCT2-APL appeared toc be a success, but the equipment necessary to

Vtest it on a large number of students was not available at the University,
SO an ef%ort'was made to adapt the material once again to the IBM 1500
system. The pnevious 1500 version had been programmed inVCoursewriter II
and the language was thought to be the difficulty. The new version was to

be in APL. The adantation was not difficult to make. However,: early in

Lt Suplobt Ny A T e £+ 4o

12

~ the process it became apparent that the system rathe® than the language

was the problem. Once again the system response time became so long that
fhe program was nof>uoﬁkable; the t}anslation from 360 to 1500 APL was
discontinued. This version, had it.proved workaple, wpuld'have been pre-

ferred because it employed the 1ight pen and CRT.

~ CONCLUSTON _
The .work done on PUNCT2-APL furthers efforts being made- to simplify

the author entry system. By eliminating the need to specify each detail,

the design team has removed an obstacle for the creative author. In addi-

" tion, PUNCT2-APL demonstrates the effective use of modular programming and

a data base for instructioﬁ in English. More importént than the segments
of PUNCT which were adapted to PUNCT2-APL are the concepts that were
developed. These concepts can be extended for use in areas of English

instruction other than those covered by PUNCT.
BRI . B

f

. W . e)

i3

PR O et

e

e
G

P4

i
¥
| ¢
i
i
i
b

PR . - s e a s - . o
P [P NN . P e s s ok 4 4

e s g

b

13
¥

o rnr

N avmen e e o e

o e MR Mo, RN A) 5 e Nt it~ crmsets ey oo

Go

L et A R s o f——

Sets number of
senteuces of each
prototype for this
section of course|

Sets limit of
times student’canﬁ
try exercise.
before going on

’ Calls)
function DATES-\

1st area of comma
instruction

NG

|

Calls func—-
tion ADDRESSES-
2nd area of comma

instruction

~i

End of
course

—>

14

This must be updated as more sentences
are added to prototypes.)

Specifies name of punctuation being
used and loads punctuation mark for
messages to student, Clears counters
and variables.

6ther ﬁﬁits 6f7igstruction will be
added here. -

GO starts the course. It nests all of the other functions. It will
be expanded as other units are programmed. There should be other
main control segments like this one to provide restart points. -

Y s 3 e A e e e e N

33

f"\‘y’_"’.‘u‘ JUCTVN

3
1
!
{
H

x
P R GRS LAy A e St e i+ e <t on

R

A e

b

fod

st et e N

15

DATES 6 Enter)

Value set‘
for AREAD

NEWTEST

Requests
review -

No review

Test on
DATES

Pass
test or 3rd
ailure?

Instructional
sequence on
.DATES

This function has no parameters; it calls an entire unit of instruction
including a pretest and posttests. At EXIT, the student has passed the
Pretest, the posttest, or has been through the instructional unit twice
without being able to pass the posttest. The function ADDRESSES
flowchart is identical to thisgone.

Counters
set

student
in test
mode?

+
4

Reset
counters

e e i~

LOAD
selects
entence

nB S e .

-

DROP \ Does,
. variable
deletes in LOAD have

sentence - - n
chunks) gem!nts

Has
SHOW Counts number student pience t Pe_

tences of d
displays and sen ‘ attempte many times as speci™
prgcesses sggé:ngya:s necessary & fied by initial
tried call

{
H
¢
;
1
!
¥
i
4
§
H
I
k]
¥

sentence

Message to
student
concerning
next sentence

[P U UUUE

This function is called to give a sentence of a snecified prototype to
the student for punctuation additions. D@END is set previously; D@END
determines how many sentences of this type are presented to the student
ig/drill until he gets one correct. On tests DPEND is set at one. For
“the present, DPEND is set at five during the instructional drill.

.
N wvsonin v o e <

17
NEWTEST
Sets switch
failed this to indicate
" test? posttest
No
Sets switch
to indicate .
pretest
Is ‘
Student is given [N© Yes Resets counters
review opgion student on for test
before posttest pretest?
4
y Displays
Does No introductory
gtudent want : message
eview? . for test

4

Sets chances at

N sentence type

to 1 (was 5 in
course)

4

EXIT

This function is called prior to any test. It displays messages and
gives the student an option to review before the posttest., It also

clears counters and sets the loop used in instruction (DPEND) to one
for testing purposes. No parameters are specified.

I

-

< M e amn o e s o

EE R SR PN

T bt s i s e e s ac R W8 T e ne W e S o

P ———

ENDTEST (Enter >

Loads number of .
- tries available
for student on
ach sentence type

N R VS

' No student
inserted any

incorreﬁt

Display message
indiceting
pass test
. Has
student
inserted more
than aiceptable
. ncorrec
Reset esponses?
counters

Displays
message for
conditional

pass

Reset
Cqunters

EXIT to
next unit /

EXIT to
next unit

Yes

Add to countoer
to indicate
test failure

Has
student:
failed test

3 times?

Fail test Fail test
message message
A 4

Set branch - Set branch
switch switch

EXIT to EXIT to
next unit instruction

This function is called at the end of a test. It checks criterion score
and controls branching, messages, and progression.

[

S W TN ek e g e Wt e oa s A o e

v
R

;a e s o g

ks 7 Mt it w o e

e

11812

Displays
message re:
lists in

_sentence

Y

LOAD

selects
sentence

SEE
displays
sentence

Instruction
message

DO

processes
sentence

Instruction
message

A

LOAD
selects

sentence

Y

SEE
displays.
sentence

Instruction
message

DO
processes
sentence

Has

tudent
agded all

commas ?

19

LIST2 prepares and displays

" - a sentence for correction by

the student. Instructional
messages are embedded,

(LIST is similar in form, but
instruction is different.)

A

LID loads
ideatifica-
tion for

sentence
hunks

Selects chunk

that is to be

fdentified at
this time

Message to
Error : student to
message mark correct
chunk with X

>

Calculates
position answer an X

of X- ~\\i///’

Display student 'S 5 Display
message answer message
"WRONG" orrect? "RIGHT"

'3

Chunk student
has marked
is iden;ified

Was
student
ncorrect?

other items O
n the test to
identify
?

Function WHICH is a drill used jor
teaching identification of parts ol
a sentence.

\
:
A
?
¢
z
H
3
I

——-——

A

o gt e e .

v e | i

LOAD

(Enter >

Display "No
EXIT such type"
: message

- This function selects a sentence
of the appropriate prototype and
processes the sentence before it
is used. '

hiéssen

21

tence t{pe N
same ‘as last
. one?

LID - loads
identification
for sentence
chunks

'S

Deletes last
used sentence

sentence of
this type?

Regeneration
of random
list of
sentences

Select number
of sentences
to be used

Which
sentence
type?

Go to the
appropriate
f

unction for
this sentence

. type

A

Selects sentence
and does
necessary
processing

SHOW

Loads sentence
chunks which are
not displayed

" LOOK2
Builds
Correct
Auswer

typed punc-
tusgion’

ion onl
betweer y
words

between words

Message re:
putting
punctuation

Function SHOW displays a sentence,
accepts and evaluates student input,
gives the student feedback, and
displays the correct sentence.

Counts corroct
and incorrcct
instances of

inserted punct.

Is
entire
sentence

Generates and
displays random
correct answer

message

Marks student
istake with X

WHAT
provides
responses for
student
errors

Displays
message

Showe
corrected
sentence

Was
sentence
alread
corgec

Displays message
telling that
sentence is
correct

]

e = e ¢ s

e A oy T R+ it o, o e

WHAY

knter

LID loads
identifica-

ticn for
sentence
chunks

Clears
counters

Loads error
chunk into
variable

seen previous

chu
?n

message re: this
S38 hunk

1

Mistake
counter
incremented

Checks
to see if

messages for all
errors have been
displayed

Loads chunk
into variable
for next
conparison

PULL2
displays

identifi-
cation

Loads message
for mistakes

‘This function provides responses for student errors.

~
(2

Yas
EXIT

|
!
1
H

= it Wb e et

Sentence
prepared
for
processing

sentence

chunk to be

deleted
2

No

Counter which
keeps track
of chunks
incremented

Sentence chunk

is loaded

for display

. Fh e s M 5 yias M ot o v e e o o s

el
@) .

ERIC

Sentence

is displayed

Function SEE prepares and displays sentence with appropriate sentence
chunks omitted.)

me me sk g g e e - o

EXIT

. '
. Y

e e e bt i 2t

