DOCUMENT RESUME

ED 071 923

8E 015 697

AUTHOR

Kane, Robert B.; Holz, Alan W.

TITLE

A Technique for Studying the Organization of Mathematics Text Materials. Final Report.

INSTITUTION SPONS AGENCY Purdue Research Foundation, Lafayette, Ind. National Center for Educational Research and

Development (DHEW/OE), Washington, D.C. Regional

Research Program.

BUREAU NO PUB DATE

BR-1-E-131

GRANT

Nov 72 OEG-5-72-0011 (509)

NOTE

344p.

EDRS PRICE DESCRIPTORS MF-\$0.65 HC-\$13.16

*Instructional Materials; *Mathematics; Mathematics

- Curriculum; *Mathematics Education; *Textbook

Evaluation: Textbook Research: Textbooks

ABSTRACT

The validity and the reliability of a technique for identifying and studying presentation variables in mathematics texts were investigated in this study. A category system for classifying messages in mathematics texts in terms of mathematical content and processes and in terms of mode of representation, procedures for applying this system to texts, and a method for analyzing the information collected through these techniques were developed. Sections of twelve textbooks ranging from grade levels four through twelve as well as six pairs of contrived passages were analyzed using these methods. Results showed that this type of analysis can be used to describe the nature of the presentation in mathematics text passages, that through these methods data are provided on variables which statistically differentiate among textbooks, and that there were no significant differences between groups of raters using this technique to analyze the textbooks. (Author/DT)

US DEPARTMENT OF HEALTH
EDUCA ON A MELPARE
OFFICE OF EDUCATION

TO SHAPE A SHA

Final Report

Project No. 1-E-131

Grant No. OEG-5-72-0011(509)

A Technique for Studying the Organization of Mathematics Text Materials

Robert B. Kane and Alan W. Holz

Purdue Research Foundation

Lafayette, Indiana

The research reported herein was performed pursuant to a grant with the Office of Education, U. S. Department of Health, Education, and Welfare. Contractors undertaking such projects under Government sponsorship are encouraged to express freely their professional judgment in the conduct of the project. Points of view or opinions stated do not, therefore, necessarily represent official Office of Education position or policy.

U. S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE

Office of Education Bureau of Research

TABLE OF CONTENTS

																Page
LIST	OF TAB	LES .	•	•	•	•		•			•	•			•	vi
LIST	OF FIG	URES.	•	•	•					•	•	•	•		•	ix
ABSTR	ACT .		•	•	•	•	•	•	•	•	•		_			хi
СНАРТ	'ER												•	-	•	
I.	INTRO	NIICTT	ON													_
	111110	D UC11	OM.	. •	•	•	•	•	•	•	•	•	•	•	•	1
	Need	for t	he S	tud	у.											1
	Intro	ducti	on t	o t	he (CMM.	ГТ	ech	nia	ue	•	•	•	•	•	1 3 7
	Overv:	iew o	f th	e S	tudy	· .	•	•			•		•	•	•	7
	Signi	fican	ce o	f t	he S	stu	lv		•	•	•	•	•	•	•	10
							-,	•	•	•	•	•	•	•	•	10
II.	BACKG	ROUND	OF	THE	STU	IDY		•	•	•	•	•	•	•	•	12
	Approa	aches	to	Pre	sent	ind	σ M:	atha	em a	tic	e i:	•				
	Text	t For	m		30110	- + 112	5 1.70	a C11(Cma	LIC	2 11	1				1.0
	Descri	iptiv	e an	d C	· ompa	rat	tive	• S	tud	ies	of	•	•	•	•	12
		hemat:				•	.• .	•	•	•	•	•	•	•		15
	System	natic	Res	ear	ch o	fN	lati	nema	ati	cs	Tex1					18
	Sequ	ience	The	ory	•	•	•	•	•	•	•					18
	Neat	JAULI.	LLY i	o cuc	TTES	•	•		•		_			_	_	22
	Method	lolog:	ical	Tec	chni	que	es a	and	Ot1	her	Re1	at	ed	•	•	
	Rese	earch						•					-			26
	Summan	rv .	_	_				•	•	•	•	•	•	•	•	29
		,	•	•	•	•	•	•	•	•	•	•	•	•	•	49
III.	DEVELO	PMENT	r of	ты	: СМ	мт	TEC	ואטי	T () 11	:						7.0
	221220	/	. 01	1111	. CM	141 T	111	`1114 1	ı Qui	· ·	•	•	•	•	•	30
	Dave 1	nmani	- ^£	4 h a	CM	МТ	C - 4				_ 4 _					
	Develo	pmen		the	CM	MI	Cat	ego	ory	Sy	steग	l .	•	•	•	32
	Descri	PETOI	1 01	tne	· CM	М1.	Cat	ego	rıe	es	•	•	•	•	•	39
	Desc	ripti	con c) Į) ime:	nsı	on	1 (cate	ego:	ries	•	•	•	•	39
	nesc	ripti	con o) i [)ime	nsi	.on	2 (Cate	go	ries	•	•	•	•	44
	Proced	lures	for	Usi	.ng	the	CM	MT	Sys	te	n.		•			45
																45
	Part	ition	ning	Pas	Sag	es	int	o N	less	age	es		_	_		46
	Weig	hting ng Pa	Mes	sag	es							_	_	_	Ť	48
^	Codi	ng Pa	issag	es	•				_				•	•	•	50
	Gene	ral (Codin	ig P	roc	edu	res		_		•		•	•	•	50
	No	tes o	n Us	ino	Di	men	sin	n 1	Ca	ite	ori	ec	•	•	•	50
	No	tes o	n IIe	ino	Di	nen	sin	n 2	. C	{ 1'	20~; 2017	~3 Ar	•	•	•	52
	0		03	6	,		310	** 4	, ua	· LC)	SULL	てろ	•	•	•	34

CHAI	PTER			Page
	Range of Application and the Sampling			
	of Passages.			53
	Description of CMMT Analysis	•	•	33
	Listing.	•	•	54
	Matrices	•	•	54
	Proportions	•	•	54
	A Method of Estimating Rater Polishility	•	•	60
	Description of CMMT Analysis Listing. Matrices Proportions A Method of Estimating Rater Reliability	•	•	64
IV.	PROCEDURES FOR THE EMPIRICAL STUDIES	_		67
		•	•	07
	ine validity Study.			67
	Materials Studied	_	•	68
	Method of Studying the Materials		•	77
	The Reliability Study.	•	•	84
	Materials	•	•	85
	Subjects	•	•	0.5
	Design of the Reliability Study	•	•	86
	Method of Analyzing the Peliability Date	•	•	87
	The Validity Study. Materials Studied Method of Studying the Materials The Reliability Study. Materials Subjects Design of the Reliability Study. Method of Analyzing the Reliability Data.	•	•	87
V.	RESULTS OF THE EMPIRICAL STUDIES			
		•	•	92
	Results of the Validity Study	_		92
			•	92
	Focus Passage FP1.	•	•	03
	Focus Passage FP3.	•	•	07
	Focus Passage FP5.	•	•	101
	Focus Passage FP8	•	•	101
	Focus Passage FP11	•	•	100
	Focus Passage FP12	•	•	109
	Descriptive Results for the Contribut	•	•	113
	Focus Passage FP1. Focus Passage FP3. Focus Passage FP5. Focus Passage FP8. Focus Passage FP11 Focus Passage FP12 Descriptive Results for the Contrived Passages. Contrived Passages CP2a and CP2b. Contrived Passages CP4a and CP4b. Contrived Passages CP6a and CP6b. Contrived Passages CP7a and CP7b. Contrived Passages CP9a and CP9b.			
	Contrived Dassages CD2s and once	•	•	117
	Contrived Passages CP4a and CP2b.	•	•	118
	Contrived Passages CP4a and CP4b.	•	•	123
	Contribut Passages CP6a and CP6b.		•	128
	Contribut Passages CP7a and CP7b.	•	•	133
	Contrived Passages CP9a and CP9b.			137
	CULTIVED Passages (Plna and CD10h			142
	ocacistical Results.			117
	Statistical Results. The Sampling Problem. Correlational Comparisons of Passages	•		147
	Outerational Comparisons of Dassauge			1 5 0
	TUGILLIYINE Presentation Variables			1 6 7
	NOULLO OF THE KELIANTITY ATHAY			1 - 0
	Between-Rater Results	•	•	150
	Within-Rater Results	•	•	150
	Between-Rater Results . Within-Rater Results . Investigator Reliability .	•	•	10/
		•	•	1/3
VI.	SUMMARY, CONCLUSIONS, AND DISCUSSION			176
		-	-	/
	Summary of the Research		•	176
	conclusions and Discussion.			180

								•						Page
														6-
Develor						•		•	•	•	•	•	•	180
The Va.	liai	ty S	tuay	•	•	•	•	•	•	•	•	•	•	183
The Rel	Liab	ilit	y St	udy	•	•	•	•	•	•	•	•		185
Recommend	lati	ons	for	Fur	thei	r Re	sea	arc	h.	•	•	•	•	188
BIBLIOGRAPHY.	•		•	•	•	•	•	•	•	•	•	•	•	191
APPENDICES														
Appendix	A :	Rat	er T	rair	ning	Во	ok.	let						196
Appendix	B:	Cri	teri	on I	ass	age	В	ook	let		_			262
Appendix	C:	Val	idit	y Fo	cus	; ₽a	SS	age	s.	_	•			275
Appendix		Con	triv	ed I	ass	аσе	S			•			•	285
Appendix		CMM	T An	alve	:is	Com	กมา	ter	Dr	oar	am •	•	•	317
Appendix		Com	pute	r Di	, + 0	·am	for	, C	COT	+ KI	am	•	•	317
Appendix	• •	Do 1	iabi	1:+1	CO	on.	101	 	**	L				7 2 1
Appendix	c.	Com	Tabl	TT C)		ETT	TC1	ren	Coo	•		•	•	321
Appendix	о.	Com	pute	1 PI	ogr	ams	I	r	SCO.	rın	g			
A	**	Cri	teri	on	'as s	age	S	•	_ •	•	. • .	•	•	325
Appendix	н:		pute											
		Cri	teri	on F	lati	ngs	•				_			330

)

The second of the second secon

LIST OF TABLES

Table	P	age
1.	CMMT Proportions for Illustrative Passage	63
2.	CMMT Analysis of Focus Passage FP1	93
3.	CMMT Analysis of Focus Passage FP3	98
4.	CMMT Analysis of Focus Passage FP5	102
5.	CMMT Analysis of Focus Passage FP8	106
6.	CMMT Analysis of Focus Passage FP11	110
7.	CMMT Analysis of Focus Passage FP12	114
8.	CMMT Analyses of Contrived Passages CP2a and CP2b	119
9.	CMMT Analyses of Contrived Passages CP4a and CP4b	124
10.	CMMT Analyses of Contrived Passages CP6a and CP6b	l 29
11.	CMMT Analyses of Contrived Passages CP7a and CP7b	L 3 4
12.	CMMT Analyses of Contrived Passages CP9a and CP9b	.38
13.	CMMT Analyses of Contrived Passages CP10a and CP10b	.43
14.	Correlations between Increasing Samples and Entire Experimental Sections	48
15.	Number of Passages Necessary to Sample to Reach and Maintain Correlations of	
1.6		49
16.	Average Correlations of Passages within and between Textbooks	51

Table		Pag	ge
17.	Results of λ^2 Tests for Comparing Average Correlations between Textbooks	. 1	5 2
18.	Homogeneity of Variance Tests for Presentation Variables	. 1	54
19.	Analysis of Variance Tests for Presentation Variables	. 1	56
20.	Summary of Newman-Keuls Tests for Presentation Variables	. 19	5 7
21.	Internal Consistency Estimates for between-Rater Scores	. 15	59
22.	Homogeneity of Variance Tests for between-Rater Scores	. 10	6 0
23.	Between-Rater Analysis of Variance for Dimension 1	. 16	51
24.	Between-Rater Differences among Passages on Dimension 1	. 16	52
25.	Between-Rater Analysis of Variance for Dimension 2	. 16	53
26.	Between-Rater Differences among Passages on Dimension 2	. 16	54
27.	Between-Rater Reliability Coefficients	. 16	56
28.	Internal Consistency Estimates for within-Rater Scores	. 16	57
29.	Homogeneity of Variance Tests for within-Rater Scores	. 16	8 8
30.	Within-Rater Analysis of Variance for Dimension 1	. 16	9
31.	Within-Rater Differences among Passages on Dimension 1	. 17	0
32.	Within-Rater Analysis of Variance for Dimension 2	. 17	1'
33.	Within-Rater Differences among Passages on Dimension 2	. 17	2

viii

•	Table										Page
	34.	Within-Rater	Reliability	Coeffi	cient	ts	•	•	•	•	174
	35.	Investigator	Reliabilitie	es .	•						175

LIST OF FIGURES

Figure				Page
1.	Rational for Dimension 1 CMMT Categories .		•	37
2.	Uniform Subdivision of Illustrative Passage	•		47
3.	CMMT Partition of Illustrative Passage			49
4.	Coded Illustrative Passage		•	51
5.	CMMT List for Illustrative Passage		•	55
6.	Dimension 1 Interaction Matrix for Illustrative Passage	•	•	56
7.	Dimension 2 Interaction Matrix for Illustrative Passage	•	•	58
8.	Between-Dimension Interaction Matrix for Illustrative Passage	•	•	59
9.	Method of Computing between-Rater Reliability Estimates			65
10.	Materials Used in the Validity Study	•	•	78
11.	Analysis of Variance Design for Identifying Differences between Textbooks	•		83
12.	Experimental Procedure for the Reliability Study	•	•	88
13.	Analysis of Variance Design for Assessing Passage Rating Difficulty and Differences between Groups			00
14.	Summary of Reliability Coefficients Computed	•	•	89
	for Each Group of Experts on Each Criterion Passage			91

ABSTRACT

In this research a technique for identifying and studying presentation variables in mathematics text was developed and investigated. These presentation variables concern the manner in which mathematics text is communicated in printed form. From a developmental point of view the purpose of the research was to develop a technique of studying presentation variables in mathematics text. From an empirical point of view the purpose of the research was to investigate the validity and reliability of the technique.

The developed technique has three basic components.

The first component consists of a two dimensional system of categories, called the CMMT category system, for classifying messages in mathematics text. Dimension 1 of the system classifies messages in mathematics text in terms of mathematical content and processes. Dimension 2 of the system classifies messages in terms of mode of representation. The second component of the developed technique concerns procedures for applying the category system to classify messages in mathematics text. The third component, called CMMT analysis, is a method of analyzing the information collected

by applying the CMMT categories to mathematics passages.

CMMI analysis utilizes a computer program to provide information about an analyzed passage in the form of a sequential list of messages in the passage, interaction matrices showing the relationships among types of messages, and various proportions reflecting the frequency with which types of messages appear. The union of the three components is called the CMMT technique.

The purpose of the validity study was to investigate the validity of the CMMT technique as a means of studying presentation variables in mathematics text. Validity was studied in a descriptive and statistical manner. Sections of twelve textbooks ranging from grade levels four through twelve as well as six pairs of contrived passages were submitted to CMMT analysis. The results of the validity study indicate +' : (1) CM T analysis can be used to describe the nature of the presentation in mathematics text passages, (2) passages sampled at random from textbook sections tend to correlate high! with the entire sections from which they are sampled, (3) passages sampled from the same textbook tend to correlate more highly than passages sampled from different textbooks, and (4) CMMT analysis provides data on variables which statistically differentiate among textbooks.

The purpose of the reliability study was to determine within- and between-rater reliability estimates for subjects using the CMMT technique. Three groups of subjects consisting of mathematics education specialists, secondary

mathematics teachers, and student teachers of secondary mathematics were trained in the use of the CMMT technique. On two occasions these subjects coded six criterion passages. The results of the reliability study were (1) there were no statistical differences between groups of raters, (2) some passages were statistically more difficult to code than others, (3) between-rater reliability coefficients for dimension 1 categories ranged from approximately .50 to .80 while for dimension 2 they ranged from about .75 to 1.00, (4) within-rater reliability coefficients for dimension 1 categories ranged from about .60 to .90 while for dimension 2 they ranged from about .75 to 1.00, and (5) investigator reliability measured in terms of the codings of subjects averaged .77 for dimension 1 categories and .99 for dimension 2 categories.

The conclusion which may be drawn from the validity and reliability studies is that the CMMT technique has potential for becoming a useful technique for investigating presentation variables in mathematics text. Future research will have to determine if this potential will be realized.

CHAPTER I

INTRODUCTION

Need for the Study

A major component of mathematics instruction is necessarily the instructional materials used. Usually these materials are in the form of printed text. The past fifteen years has seen the production of vast amounts of various mathematical text materials produced by publicly supported writing groups as well as by many independent authors and publishing firms.

Aside from the actual mathematical subject matter, which is essentially common to all recent mathematics text-books, different writing groups and authors hold differing views on how mathematics should be presented. Advertisements for new textbooks would have the reader believe that each set of mathematics materials offers a unique (and superior) approach to the presentation of mathematics in printed form. While the advertising claims no doubt overemphasize the point, casual comparisons of modern mathematics textbooks reveal that while content seems indeed to be similar, approaches to presenting this content appear varied.

Unfortunately, research concerned with the investigation of presentation variables in mathematics text is practically

non-existent. In fact, it is very difficult to even establish what constitutes a given approach to presenting mathematics text, much less to compare various approaches. There have been great numbers of descriptive and comparative studies of "modern" and "traditional" approaches to mathematics instruction and most of these studies include written materials. However, these studies typically confound presentation variables with content and teacher variables making the results, when there are any, uninterpretable in terms of presentation approaches.

There has been some research relating more specifically to written materials than the broad descriptive and comparative studies referred to above. Research has been conducted in the sequencing of mathematical instructional materials and work is continuing in this area (Heimann 69). Others have studied the relationship between reading ability and mathematics text. Progress has been made toward adapting ordinary English readability techniques for use on the language of mathematics (Kane, 1970).

Research which effectively studies printed mathematics materials is indeed sparse. Other than in the areas of sequence theory and readability there appears to be no research designed to systematically study mathematics text. Additional significant variables in mathematics text need to be identified and methodologies for investigating these variables need to be developed.

Introduction to the CMMT Technique

In this research a technique for identifying and studying presentation variables in mathematics text was developed.
These presentation variables, which concern the manner in
which authors attempt to communicate mathematics in printed
form, were investigated in terms of various content and
representational structures in mathematics text.

The structure of any object may be defined by its elements and by the interrelationships among these elements. These interrelationships concern the sequencing or ordering of the elements and the frequency with which the various elements occur. When considering the presentation structure of mathematics text, the elements may be thought of as messages. The interrelationships among the messages determine the organization of the material.

A mathematics text passage can be thought of as consisting of a series of messages. In terms of formal mathematical content, the basic message types can be conceived of as undefined terms, definitions, axioms, and theorems. Definitions require examples and theorems require proofs. For mathematics to be meaningful, applications are required. To help the student learn the mathematics, exercises and problems are usually provided. In terms of representation of the content, the basic messages can be conceived of as consisting of words, special mathematical symbols, or various types of illustrations.

These considerations of mathematical content and mode of representation along with extensive examination of existing mathematics textbooks led to the development of a two dimensional category system for classifying messages in mathematics text. This system of categories is given next.

Classification of Messages in Mathematics Text
(CMMT Categories)

<u>Dimension</u> 1: <u>Content</u> <u>Mode</u> Blank Space 1. Definition (Meaning of words and symbols.) 2. Generalizations (Rules, axioms, theorems, Reception formulas, etc.) 3. Specific Explanation (Concrete examples, (Exposition) specific discussion.) 4. General Explanation (Proofs, general discussion.) 5. Procedural Instruction (Directions.) Developing Content (Questions in exposition, developmental activities, guided discovery exercises, etc.) Messages Understanding Developed Content (Exer-7. requiring cises involving routine computation, practice, identification, etc.) responses. (Exercises, 8. Applying Developed Content (Real world problems, applications of generalizaproblems, etc.) tions in concrete situations, etc.) 9. Analyzing and Synthesizing Developed Content (Proving propositions, finding new relationships, unguided discovery, etc.)

10. Other Material (Headings, non-mathematical materials, etc.)

<u>Dimension</u> 2: <u>Representation Mode</u>

7. Combinations of Illustrations with Written Text (Flow charts, mathematical tables, tree diagrams, etc.)

The CMMT category system is applied to mathematics text passages in much the same way that many other observation scales are applied to the phenomena they measure. The basic unit of measure used is one-fourth of a line of print. An area unit is used so that quantitative aspects of the organization of passages can be described in terms of the space devoted to the various types of messages. To apply the category system, a page of text is partitioned into sections conforming to the format of the page. A category number for each dimension of the CMMT system is recorded for each section of this partition.

When classification of all messages in a passage is completed the information may be analyzed in ways which

reflect both sequential and quantitative aspects of the organization of the passage. Sequential aspects are represented by making an ordered list of the classifications following the natural flow of the printed material. Matrices, similar to those used in interaction analysis (Flanders, 1970, pp 77 - 86) are used to analyze the nature of the interactions among the CMMT categories in each dimension. Quantitative aspects of a passage are described by determining the proportions of messages of various types and logical combinations of types. All of the descriptive information for a given passage is called the CMMT analysis for that passage. A computer program is used to derive the CMMT analysis of a passage from a rater's codings.

Thorough descriptions of the CMMT categories and specific procedural rules are used by raters applying the CMMT category system to mathematics text passages. The procedural rules describe general procedures for raters to follow and give specific decision rules for dealing with such problems as the classification of units containing more than one type of message and what to do when in doubt about the classification of a message. A method of estimating rater reliability adapted from interaction analysis (Flanders, 1960) is used to estimate the reliability of CMMT raters.

In summary, this study concerned the development of a technique for studying presentation variables in mathematics text. The basic components of the technique are the CMMT

category system, the procedures for using the CMMT categories, and CMMT analysis. The union of these components is called the CMMT technique.

Overview of the Study

This study had purposes which were both developmental and empirically oriented. From a developmental point of view, the purpose of the study was to develop and refine the CMMT technique. From an empirical research point of view, the purpose of the study was to investigate the reliability and validity of the CMMT technique as a measurement instrument.

The development of the CMMT technique was an evolutionary process. The germinal idea was developed from classroom interaction analysis studied by Flanders (1970), Amidon (1967) and others. The idea was to use a technique similar to interaction analysis to study mathematics text. The first step in the development of such a technique was to examine existing mathematics textbooks and to begin forming a classification system. Successive tentative category systems were developed, tried out on mathematics textbooks, submitted to critical discussion, and revised. As the category system was being developed a theoretical rationale for the choice of the categories also began to evolve. Thus, the final form of the CMMT category system was based on both practical experience and theoretical considerations.

Procedures for using the system to code text materials were also developed. Procedural matters which were dealt with included the choice of the unit of observation, decision rules, sampling procedure, and the scope or range of application. Simultaneous with the development of the CMMT category system and procedures, the method of CMMT analysis and a method of estimating rater reliability were developed. Computer programs were written for deriving the CMMT analysis of a passage from a rater's codings and for determining rater reliability estimates. Chapter 3 is devoted to a detailed discussion of the development of the CMMT technique.

The specific purposes of the empirical part of the study were:

- To investigate the validity of the CMMT technique as a means of studying the organization of mathematics text.
- 2. To investigate the reliability of raters trained in the use of the CMMT technique.

To carry out these purposes, twelve textbooks ranging from grade four through grade twelve were studied. A total of 99 passages from the twelve textbooks plus twelve contrived passages were submitted to CMMT analysis in the validity portion of the study. Certain focus passages were used to demonstrate that CMMT analysis can be used to describe the organization of mathematics text. The contrived

passages, which were written in pairs following opposing organizational plans, were used to show that CMMT analysis reflected these plans. Successive correlations were made between entire sections of the textbooks and increasing samples of passages chosen randomly from these sections using data from the CMMT analyses. These correlations were used to determine what constituted an adequate sample of passages from the textbooks. Passages within textbooks were also correlated using data from the CMMT analyses. These correlations were compared to correlations between passages from different textbooks to determine if passages within textbooks correlated more highly than passages between textbooks. Finally, an analysis of variance model was used to identify differences between the twelve textbooks on a number of CMMT organizational variables.

Three groups of subjects including university seniors studying to become secondary mathematics teachers, practicing secondary mathematics teachers, and professional mathematics education experts were used to study rater reliability. The subjects in each group studied a training booklet to learn the CMMT technique and then rated six criterion passages on two occasions separated by a minimum four week period of time. Repeated measures analyses of variance were performed to determine if within- and between-rater differences existed between the groups of subjects and to determine if differences existed in the rating difficulty of the criterion

passages. Within- and between-rater reliability coefficients were determined for the subjects in each group who obtained proficiency in the application of the CMMT technique. Chapters 4 and 5 are devoted to a discussion of the reliability and validity studies.

Significance of the Study

The CMMT technique has import for both practical application and research. Since CMMT analysis provides a means of describing the presentation of mathematics text in a specific concrete manner, it could be used to provide valuable information about existing textbook materials. Publishers may wish to use CMMT analysis to help describe the nature of their textbooks. Authors and editors of mathematics textbooks may wish to use CMMT analysis to assist them in the writing and revision of text material. Textbook selection committees may wish to use CMMT analysis to help them gain more information about the textbooks they are considering. CMMT analysis could be utilized in mathematics teacher education programs as an aid in the study of mathematics materials. Thus, CMMT analysis could become a valuable practical tool for helping publishers, authors, textbook selection committees, and students of mathematics education gather information about mathematics instructional materials.

From a research point of view, the CMMT technique offers a way of manipulating and controlling variables in

comparative studies of written mathematics text materials. Researchers could contrive materials which systematically vary on a number of CMMT organizational variables. The relationships between these variables and learner outcomes could then be investigated. Since the CMMT technique can be applied to any mathematics text materials, it is possible that results of completed comparative studies could be more meaningfully interpreted by submitting the materials used in these studies to CMMT analysis. Researchers may wish to use CMMT analysis to search for organizational differences among existing mathematics textbooks. Thus, CMMT analysis could prove useful in research for both identifying and systematically studying organizational variables in mathematics text.

CHAPTER II BACKGROUND OF THE STUDY

The first thrust of the revolution that swept mathematics education in the post-Sputnik era had to do with changing the content of school mathematics. A comparison of the tables of contents of textbooks used today with those used in the 1950's reveals the success of this part of the revolution.

A second thrust of the school mathematics revolution dealt with how mathematics should be presented to students. Romberg (1969) states that while there is now considerable agreement about what mathematics should be taught there is not agreement about how it should be taught. Clearly, how mathematics should be taught is closely related to how it should be presented to students in written form. This chapter discusses presentation approaches employed by authors of mathematics textbooks, research on mathematics text which has been carried out, and research methodologies related to those used in this study.

Approaches to Presenting Mathematics in Text Form

Different writing groups and authors hold differing

views on how mathematics should be presented in written form.

Beberman (1958) described the presentation approach utilized

by the University of Illine's Committee on School Mathematics (UICSM). This approach which has come to be known loosely as "guided discovery" used problems and exercises to develop concepts and skills. The UICSM approach was based on the belief that the student will come to understand mathematics if he plays an active part in developing mathematical ideas and procedures. According to Beberman, UICSM materials stressed precision in the use of mathematical language with the final verbalization of concepts being delayed until after the student has worked with the concepts and come to understand them.

Wooten (1965) described the more traditional expository presentation approach taken in materials written by the School Mathematics Study Group (SMSG). Typically SMSG materials consisted of an exposition of a mathematical concept followed by exercises and problems over the developed content. Interesting applications and extensions of the developed content were included periodically as problems; however, subsequent content development was not usually dependent on these problems. Like UICSM materials, SMSG materials stressed the precise use of mathematical language but no attempt was made to provide extensive experience with concepts before verbalization.

The differences of presentation exemplified by UICSM and SMSG materials are typical of the types of differences in presentation which can be found in other mathematics text materials. An examination of existing mathematics textbooks

reveals a number of apparent presentation variables in mathematics text. These apparent variables include quantitative variables such as the amounts of verbal material, symbolic material, illustrative material, blank space, expository material, exercises, problems, etc. They also include sequential variables such as the degree of integration of exercises with exposition, the placement of illustrations, the order of presentation of examples and generalizations, etc. Finally, these variables include certain qualitative variables such as the levels of abstraction, concreteness, generality, application, etc.

The advertisements of textbook publishers also indicate the existence of a number of approaches to the presentation of mathematics in text form. The advertisements claim that various books utilize the discovery approach, the manipulative approach, the structural approach, the axiomatic approach, the informal approach, the inductive approach, the workbook approach, the application approach, the spiral approach, the programed text approach, etc. While it is not always clear exactly what all of these terms mean, the advertisements support the contention that there are a variety of approaches to presenting mathematics in printed form.

In summary, there are apparent identifiable presentation variables in mathematics text. Some of these variables have been described by authors such as Beberman and Wooten.

Others can be inferred from the examination of existing

textbooks and from advertisements for new mathematics textbooks. Unfortunately, research relating specifically to presentation variables in mathematics text is practically nonexistent. There has been some research relating to other specific variables in mathematics text and to mathematics text in general. This research is discussed in the following sections.

Descriptive and Comparative Studies of Mathematics Text

Romberg (1969) reviewing current research in mathematics education reported little research specifically concerned with mathematics text. He reported a number of descriptive studies related to the effectiveness of instructional programs and many of these studies included written materials. However, the main emphasis of these studies appeared to concern the mathematical content—i.e., could a certain topic be taught to a given group of students. No control or comparison groups were present in these studies and instructional variables other than written text were present to confound any results. Hence, these descriptive studies only remotely relate to the study of mathematics text and no generalizations about variables in mathematics text can be made from them.

Romberg (1969) also reported that numerous studies have been conducted comparing "modern" and "conventional" mathematics instruction and most of these studies included written materials. However, he found it difficult to make any generalizations about the effectiveness of written materials

from these studies. Most of the studies were small "one shot" affairs in which no significant differences were found. When differences were found it was usually not clear how treatments actually differed and confounding variables such as teacher influence and between student interactions were usually present. Thus, the results of these comparative studies were uninterpretable in terms of the learning materials used.

Kieren (1969) reviewed the research in discovery learning in mathematics and found that published research in the area was large in volume and generally poor in quality.

There have been a great number of studies comparing "discovery" and "traditional" approaches to mathematics teaching which have utilized written materials. Kieren noted, however, that each researcher seemed to have a different conception of what constituted a "discovery" and a "traditional" treatment. In addition to this lack of operational definition of treatments, he suggested that discovery research generally suffers from a bias of having the development effort expanded on the discovery treatment. Hence, it is very difficult to make many conclusions about mathematics text from the research reported in Kieren's review.

By far the most comprehensive study comparing mathematical text materials is the National Longitudinal Study of Mathematical Abilities carried out by the research group of the School Mathematics Study Group (Wilson, et al., 1969).

In that study the relative effects of a number of mathematics textbook series were studied over a period of several years. A vast amount of data concerning achievement and attitude was collected and submitted to intense and sophisticated analysis. While the study avoided many of the problems inherent in smaller comparative studies the results do not shed much light on the question of what constitute effective approaches to presenting mathematics in written form.

Apparently, all that can be said about written materials from the results of the study is that book A appeared to be superior to book B in some aspect of student achievement or attitude. It is impossible to identify what variables made the approach of book A superior to that of book B.

Thus, in the past there have been great numbers of descriptive and comparative studies involving mathematics text. These studies have ranged from small "one shot" studies to the extensive National Longitudinal Study of Mathematical Abilities. A search of research since the time of Romberg's and Kieren's reviews in 1969 reveals that little has changed. Descriptive and comparative studies involving mathematics text continue to be done. The recent studies appear to suffer from the same deficiencies described by Romberg and Kieren and the differences, when there are any, do little to identify specific meaningful variables in mathematics text.

Both Romberg and Kieren in their reviews infer a need for long range systematic research of mathematics text.

Important variables in mathematics text need to be identified and methodologies for studying them need to be developed. Descriptive and comparative studies involving mathematics text have done little to meet this need. Fortunately, there has been some research relating more specifically to mathematics text than these broad types of studies. This research is discussed in the next section.

Systematic Research of Mathematics Text

Two areas where some systematic research of mathematics text has been carried out are the areas of sequence theory and the readability of the language of mathematics. These areas of research will now be discussed in turn.

Sequence Theory

Heimer (1969) described the research and development efforts toward producing an adequate sequence theory in mathematics instruction. He defined instructional sequence to mean the order in which the learner interacts with the units of content. Heimer claimed that every effort to construct mathematical materials demands decisions about structuring the content and designing and ordering instructional tasks. Thus, sequence theory has important implications for the study of variables in mathematics text.

A major theoretical formulation of sequence theory which has implications for the sequencing of mathematics text concerns Gagne's learning hierarchies. According to

Gagne (1968) a subject may be organized into hierarchical structure with a terminal task at the top and prerequisite tasks below. To learn the subject a learner starts at the bottom of the hierarchy and works his way up through the prerequisite tasks to reach the terminal task at the top. This theoretical formulation has been particularly appealing for the design of sequences in mathematics text since mathematics has a logical structure which is hierarchical in nature.

Heimer (1969) claimed that a critical analysis of the nature and role of learning hierarchies gives rise to a number of issues which need exploring. These include:

- 1. How is a learning hierarchy constructed?
- 2. How is the validity of a learning hierarchy to be determined?
- 3. What is the relationship between an hypothesized learning hierarchy and the associated presentation sequence for instruction?
- 4. What is the connection between the logical structure of the content and the associated learning hierarchy? Heimer in his review indicates that a number of studies (e.g., Gagne & Paradise, 1961; Gagne, 1962; Gagne et al., 1962; Merrill, 1965; and Briggs, 1968) have explored these questions and he called for continued systematic research in the area. Such studies have obvious implications for the design of sequences in mathematics text.

The position of Ausubel (1963) on learning hierarchies and sequencing is not unlike Gagne's. Ausubel claims that most tasks can be analyzed into a hierarchy of learning units. He stated that the sequential organization of subject matter can be useful with each new increment of knowledge serving as an anchor for subsequent learning. Ausubel's conceptualization of advance organizers, which appear to consist of general non-technical overviews or outlines of the content to be learned, also has implications to the construction of sequences in mathematics text. Several studies by Ausubel and others (e.g., Merrill & Stolurow, 1965; Ausubel, Robbins & Blake, 1957; Woodward, 1966; and Scandura & Wells, 1967) concerning advance organizers have been conducted, but the results are inconclusive. A major problem with these studies seems to be that no generally accepted operational definition of advance organizers has been established.

Suppes (1967) has been another contributor to the theory of sequencing in mathematics instruction. Suppes subscribes to the idea of the importance of content structure in the study of learning sequences. He has theorized about the connection that exists between the psychological processes of acquisition and the logical structure of mathematical concepts. He has made only a few tentative hypotheses regarding this and systematic long-range research is needed in the area. The implications such research would have for the design of mathematics text are clearly important.

There have been many studies concerning sequence theory other than those closely related to the theories of Gagne, Ausubel, and Suppes. Some researchers (e.g., Roe, Case, & Roe, 1962; Roe, 1962; Payne, Krathwohl & Gordon, 1967; and Pyatte, 1969) have studied the effects of "logically ordered" versus "scrambled" sequences in programed text, but the overall results have been inconclusive. Heimer (1969) indicated that the effect of scrambling may be dependent of the size of the learning unit which was scrambled, on the logical interrelatedness of the content being presented, and on the validity of the order of the "logical" sequence which was scrambled. Heimer questioned the purpose of studies of scrambled order sequences and inferred that the results of such studies add little to the knowledge of how to construct effective sequences.

A number of studies reported in Heimer's review concerned the evaluation and/or contrasting of sequence strategies in mathematics materials. These studies involved the tree-graph structuring of content into concepts and subconcepts (Newton and Hickey, 1965), the effect of structurally related classes of previous learning on problem solving (Scandura; 1966a, 1966b, 1966c), multiple concept versus single concept sequences (Short and Haughey, 1967), and variables of repetition and spaced review (Reynolds et al., 1964). Hickey and Newton (1964) also set forth a set of eight hypotheses for the study of structure and sequence.

In concluding his review of the research in sequence theory, Heimer stated that knowledge about the construction of efficient instructional sequences in mathematics materials was desperately sparse. He indicated that while a number of researchers are working in the area there is a need for systematic long-range programs of research of the sequencing of instructional materials in mathematics.

The research in sequence theory briefly described here is only tangentially related to the type of presentation variables in mathematics text investigated in this study. Hence, the research in sequence theory was not reviewed in depth. An area of research more closely related to this study is the area of the readability of mathematical language discussed in the next section.

Readability Studies

Readability formulas have been widely used to assess the ease with which written material can be comprehended by readers. A readability formula is a prediction equation. The predictor variables typically include such variables as average sentence length, the number of difficult words according to some standardized vocabulary list, the number of personal pronouns, and others. These predictor variables depend only on the reading materials and not on the reader. The criterion measure, on which a readability formula is validated, is some measure of the comprehensibility of the material such as readers' comprehension test scores, expert judgement, or other validated readability formulas.

Thus, a readability formula can be applied to written text independent of the reader to assess the readability of the material. Care should be taken, however, when applying readability formulas to written material. Any measurement instrument is valid for a given purpose, for specific subjects, and specific content. Therefore, a given readability formula should only be applied to measure the readability of material similar to the material which was used in its validation and for subjects comparable to the subjects on which it was validated.

Most readability formulas were validated using materials of a general reading nature. Kane (1968, 1970) described some of the differences between ordinary English and mathematical English. For example, he pointed out that mathematical English has a specialized vocabulary and contains special symbols not found in ordinary English. He discussed the inappropriateness of applying existing readability formulas to mathematical writing. Chall (1958, p. 125) noted that it is questionable whether existing readability formulas are valid for estimating reading difficult; of mathematics textbooks.

Nevertheless, a number of researchers (Heddens & Smith, 1964a, 1964b; Wiegand, 1967; Smith, 1969; Cramer & Dorsey, 1969) have used standard readability formulas in an attempt to measure the readability of mathematics textbooks. In these studies mathematical words were usually classified as

difficult words and mathematical symbols were ignored in applying the formulas. For reasons described above the results of these studies are highly suspect.

A few researchers have made progress toward adapting regular readability techniques to the language of mathematics. The cloze procedure has been used by researchers as a measure of the readability of ordinary English. Cloze tests are constructed by deleting words or symbols from passages and replacing them with blanks which subjects attempt to fill-in with the correct word. Hater (1969) validated the cloze procedure as a measure of reading comprehension on the language of mathematics at grade levels 7 through 10.

Most readability formulas utilize some measure of vocabulary difficulty. Because of the specialized nature of mathematical vocabulary and mathematical symbolism, word familiarity lists constructed for ordinary English are inadequate for measuring the familiarity of mathematical language. Byrne (1970) established a measure of the familiarity of mathematical terms and symbols to seventh and eighth grade students in the United States.

Building on Hater's and Byrne's research Kane, Hater, and Byrne (1970) constructed a readability formula for the language of mathematics. This formula predicts mean cloze scores for seventh through tenth grade students on mathematics passages. The predictor variables in this formula were the number of mathematics words not on the list of

mathematics words judged known by 80 percent of the seventh and eighth graders in the United States and the number of different words with three or more syllables. These variables accounted for 60 percent of the variation in mean cloze scores for the criterion passages. These researchers are continuing work toward the construction of a second formula based on a broader sample of materials than the initial formula.

Kulm (1971) studied the readability of elementary algebra textbooks. He used multiple regression analysis with criterion measures of mean cloze scores to search for predictors of readability. He found that the percentage of mathematical symbols, the percentage of mathematical vocabulary words, average sentence length, and the percentage of questions were the best four predictors accounting for approximately 40 percent of the variation.

While the research in the readability of the language of mathematics is not directly related to the technique of studying presentation variables in mathematics text developed in this study, one major aspect of the readability research is similar. Readability formulas provide a means of obtaining specific information about mathematics text. This study represents an extension of readability studies in the sense that its purpose was to develop a technique for obtaining other useful information about mathematics text. On the other hand, the methodology of constructing prediction

equations is not employed in this study. Methodological techniques and other research directly utilized in this study are described next.

Methodological Techniques and Other Related Research

The germinal idea for the technique of investigating presentation variables in mathematics text which was developed in this study came from the systems of classroom interaction analysis developed by Flanders (1970), Amidon (1967) and others. These systems of interaction analysis utilize sets of categories for classifying types of student and teacher classroom behaviors. The classifications of the behavior in classrooms are then analyzed to describe the nature of the interaction which has taken place.

An observer utilizing an interaction analysis system classifies the type of behavior occurring in a classroom at time intervals of say every three seconds. The sequence of these classifications is then listed to describe the sequence of behaviors which occurred in the classroom. The percentage of observations in each category or logical combinations of categories are computed to describe the amount of time devoted to various behaviors. Interactions which exist between the classified behaviors are analyzed with the use of a matrix. For an n category system, an n x n matrix is constructed with the ijth entry representing the frequency with which category i was followed by category j in the observer's sequence. Various interactions between the classified behaviors can be

described in terms of the entries in certain regions of the matrix.

The technique of interaction analysis has led to a great deal of fruitful research in analyzing teaching behavior. Application of interaction analysis has been made to problems of improving teacher behavior and to the training of teachers. While interaction analysis research and its applications are interesting, it is the technique of interaction analysis which is important to the study presented here. The idea of this study was to develop a system of categories for classifying material in mathematics text and to use a technique similar to interaction analysis to analyze the interrelationships among classifications.

The first major problem to be faced was the construction of a category system for classifying the material in mathematics text. As a theoretical starting point three established classification systems were drawn upon. Bloom (1956) presented a system for classifying educational objectives. This hierarchial system is summarized below.

- Knowledge involves the recall of specifics, methods, or processes.
- 2. Comprehension involves the understanding and use of material without relating it to other material or seeing its full implications.

- 3. Application involves the use of abstractions in particular and concrete situations.
- 4. Analysis involves the breakdown of material into its constituent elements so relations between ideas are made explicit.
- 5. Synthesis involves the putting together of elements so as to form a whole.
- 6. Evaluation involves judgments about the value of material.

The National Longitudinal Study of Mathematical Abilities (Wilson, et al., 1969, pp. 39-40) developed a system not unlike the Bloom system to classify materials for testing mathematical abilities. These categories are summarized below.

- 1. Computation straight forward manipulation according to rules.
- Comprehension emphasis on demonstrating understanding of concepts and relationships.
- 3. Application requiring recall of knowledge, selection of operations, and performance of operations.
- 4. Analysis requiring a non-routine application of concepts.

Finally, Bruner (1967) described a system of representation which had implications for the category system

developed in this study. He theorized that the representation of material may be symbolic, iconic, or enactive.

Symbolic representation is exemplified by languages and systems of mathematical symbols. Iconic representation concerns pictures, illustrations, and physical models. Enactive representation involves the manipulation of real objects.

Summary

There are apparent variables in the presentation of mathematics text. These variables have been described by mathematics textbook authors and can be inferred from observations of textbooks. Research related to mathematics text consists of descriptive studies, comparative studies, sequencing studies, and readability studies. Little is known from the research about presentation variables in mathematics text.

In this study the technique of classroom interaction analysis served as a model for the development of a technique for studying presentation variables in mathematics text. Classification systems of Bloom, the National Longitudinal Study, and Bruner served as a theoretical starting point for establishing a system of categories for classifying material in mathematics text. The category system and technique which were developed are described in the following chapter.

CHAPTER III

DEVELOPMENT OF THE CMMT TECHNIQUE

One of the main purposes of this study was to develop a technique for identifying and studying presentation variables in mathematics text. These presentation variables concern the manner in which authors attempt to communicate mathematical content in printed form.

Presentation variables in mathematics text were studied in terms of both content and representational structures within mathematics materials. The structure of any object is determined by its elements and by the interrelationships among its elements. In considering presentation structures of mathematics text, the elements are called <u>messages</u>. The interrelationships among the messages in mathematics text determine the <u>organization</u> of the material.

As a first step in the development of this technique for studying the presentation of mathematics text, a means of identifying the basic elements or messages had to be developed. To accomplish this, a system of categories for classifying messages in mathematics text was devised. The categories in this system define the message types investigated in this study. The classification system is called the CMMT category system. The letters CMMT stand for "Classification of Messages in Mathematics Text."

The second step in the development of this technique was to devise a method of describing and analyzing the interrelationships among the messages in mathematics text. These interrelationships, which determine the organization of mathematics text, concern the ordering or sequencing of the messages and the frequencies with which the messages occur. The method which was developed for analyzing the organization of the messages is called CMMT category system and method of analysis along with the procedures for using the category system are the basic components of the CMMT technique.

The specific developmental objectives of the study were:

- 1. To develop a system of categories for classifying the messages in mathematics text.
- 2. To develop complete, usable descriptions of these categories.
- 3. To develop procedures for using the category system to classify messages in mathematics text.
- 4. To develop a method of analyzing the organization of mathematics text from the classification system.
- 5. To develop a method of estimating reliability for raters using the category system.

This chapter is devoted to describing how each of these developmental objectives was attained.

Development of the CMMT Category System

The CMMT category system grew out of considerations which were both theoretical and practical in nature. Theoretical considerations concerned the structure of mathematical systems, cognitive processes used in learning mathematics, and systems of representation of learning material. Practical considerations concerned the nature of existing mathematics textbooks—i.e., the types of things which are possible to classify in mathematics text. The CMMT category system which was included in Chapter 1 is repeated here for convenience. It is followed by a description of its development.

Classification of Messages in Mathematics Text
(CMMT Categories)

Dimension 1: Content Mode

Blank Space 1. Definition (Meanings of words or symbols.) Generalizations (Important rules, axioms, theorems, formulas, etc.) Messages requiring 3. Specific Explanation only Exposition (Concrete examples and reception. discussion in specific terms.) General Explanation (Proofs of propositions, general discussion, etc.)

5. Procedural Instructions (Directions.) Developing Content (Questions in exposition, developmental activities, guided discovery exercises, etc. 7. Understanding Developed Messages Subclassi-Content (Exercises involvcalling fications ing routine computation, for of quespractice, identification, responses tions, etc.) other exercises, Applying Developed Content than problems. (Real world problems, reception. activities, applications of generalizations in concrete situations, etc.) 9. Analyzing and Synthesizing Developed Content (Proving propositions, finding new relationships in developed content, unguided discovery,

10. Other Material (Headings, non-mathematical materials, etc.)

<u>Dimension</u> 2: <u>Representation Mode</u>

0. Blank Space

Written 1. Words text. 2. Mathematical Symbols 3. Representations of Abstract Ideas (Venn diagrams, geometric diagrams, mapping pictures, etc.) 4. Graphs (Number lines, coordinate graphs, bar graphs, etc.) Illustration 5. Representations of Physical Objects or Situations (Plans, maps, cross sectional drawings, photographs, etc.) 6. Non-mathematical Illustrations (Motivational photographs, cartoons, etc.)

7. Combinations of Illustrations with Written Text (Flow charts, mathematical tables, tree diagrams, etc.)

The development of the CMMT category system began with the examination of a number of existing mathematics textbooks. From the beginning the broad division between exposition and exercises or problems was apparent. It was obvious that books differed in the amount of space devoted to exposition versus exercises and problems. From these initial observations the broad categories of messages requiring only reception versus messages calling for responses beyond reception were abstracted.

Another major distinction made clear by the examination of existing textbooks concerned the mode of presentation of mathematics text. Materials appeared to vary with respect to the amounts of words, mathematical symbols, and illustrations which were present. It was clear that there were interactions between these modes of representation and classifications concerning content. Thus, it was decided to construct a two dimensional system of categories with dimension 1 classifying mathematical content and dimension 2 classifying the type of representation used.

As the category system began to evolve, a theoretical rationale for the choice of categories took shape. The subclassifications of exposition in the content mode are based on considerations of the structure of mathematical systems. The elements of the structure of a mathematical system may be thought of as undefined words, definitions, axioms, and theorems. Theorems are statements requiring

verifications which are called proofs. Many times general mathematical concepts are explained in terms of specific instances which are called examples. It was decided to classify messages requiring only reception on the part of the learner in terms of these elements of the structure of mathematical systems.

In order for mathematics to become meaningful to a learner, he must interact with it. To help meet this need most textbooks provide exercises and problems. Some textbooks contain other interrogative material woven into the exposition. The problems and questions in mathematics textbooks play various roles in helping students learn mathematics. Some exercises serve to make the learner participate in the development of content. Others aid the learner in understanding concepts of skills. Some problems require the student to extend developed content through application, analysis, and synthesis. Thus, it was decided to classify messages in the content mode requiring responses beyond reception in terms of the cognitive processes required of the learner.

Bloom (1956) provided the hierarchical classification of cognitive processes listed below.

- 1. Knowledge
- 2. Comprehension
- 3. Application
- 4. Analysis

- 5. Synthesis
- 6. Evaluation

The National Longitudinal Study of Mathematical Abilities (NLSMA) utilized a system of classifications similar to the Bloom classifications (Wilson, et al., 1969, pp. 39-40). The NLSMA system is listed next.

- 1. Computation
- 2. Comprehension
- 3. Application
- 4. Analysis

The subclassifications of problems and exercises used in the content mode of the CMMT category system are similar to the two classification systems given above. The relationship between dimension 1 of the CMMT system and these other two systems is summarized in Figure 1.

Dimension 2 of the CMMT category system deals with how mathematical content is represented. The rationale for the subclassifications of this dimension is derived from Bruner's system of representation (Bruner, 1967, pp. 10-14), from the literature on the readability of the language of mathematics, and from the level of abstraction present in mathematics text illustrations. Brunner theorizes that the representation of material may be symbolic (language), iconic (pictorial), or enactive (manipulative). Although mathematics text by nature is not enactive the symbolic-iconic distinction is an apparent representational variable in mathematics text. This

Structure of a	Classifications					
Mathematical System	CMMT	Bloom	NLSMA			
Undefined Words Definitions	1					
Axioms Theorems	2	1 & 2	Not			
Examples	3	·	Applicable			
Proofs	4					
Processes Used in Studying Mathematics Text	X	X				
Developing Content Understanding Developed Content	6	1 & 2	1 & 2			
Applying Developed Content	8	3	3			
Analyzing and Synthesizing Developed Content	9	4 & 5	4			

Note: Blank Space (0), Procedural Instructions (6), and Other Materials (10) are essentially non-mathematical in nature and are excluded from the above table. However, these types of messages occur frequently in mathematics textbooks and therefore are included in the CMMT system.

Figure 1
Rational for Dimension 1 CMMT Categories

distinction provides the rationale for the broad classifications of written text and illustration.

Readability literature indicates that the distinction between words and mathematical symbols may be an important variable related to the readability of the language of mathematics (Kane, 1970). This distinction serves as the rationale for the subclassification of written text into words and mathematical symbols. The subclassifications of illustration are based on the level of abstraction of the illustration. Categories (3) through (5) of dimension 2 of the CMMT system represent a range in levels of abstraction with (3) representing the most abstract and (5) the least abstract type of illustration.

In summary, the rationale for the choice of the CMMT categories is based on both practical and theoretical considerations. As the system evolved decisions as to what classifications would be theoretically meaningful had to be made in the light of the practicality of using the system to classify messages in existing mathematics text. Several tentative classification systems were developed, tried out on existing materials, submitted to critical discussion, and revised. The classification system which in the end was developed is not the only possible system. Further research will have to determine if it is a system which is usable and meaningful.

Description of the CMMT Categories

As the final form of the CMMT category system began to take shape, tentative descriptions of the categories were written. These descriptions were used in the classification of messages in existing text. Problems in applying these descriptions were noted and on the basis of this experience the descriptions were revised and refined. The resulting complete descriptions follow.

Description of Dimension 1 Categories

- 0. Blank Space: Any unit which is completely blank.
- Definition (Meanings of words or symbols.):
 Messages whose primary purpose is to give the mathematical meanings of words, symbols, or phrases.
 Any statement of a definition or any description of a mathematical term. May be integrated into the written text or set off as a formal definition.
- 2. Generalization (Important rules, axioms, theorems, formulas, etc.): Messages whose primary purpose is to give important general mathematical concepts, ideas, or procedures. Any statement of an axiom or theorem. May be integrated into the written text or formally set off as a rule, formula, principle, etc.
- 3. Specific Explanation (Concrete examples and discussion in specific terms.): Messages whose primary purpose is to give specific or concrete instances of general definitions, axioms, or theorems. Any

discussion or explanation of concrete examples.

May be integrated into written text or specifically set off as formal examples.

- 4. General Explanation (Proofs of propositions, general discussion, etc.): Messages whose primary purpose is to explain or discuss general concepts, ideas or procedures. Any proof of a formal proposition.

 General statements which seek to clarify, justify, show how or why, etc. May be used to introduce, relate, or summarize aspects of a passage. Expository statements with mathematical content which are not clearly classifiable as 1 through 3.
- 5. Procedural Instructions (Directions.): Procedural directions appearing anywhere in a text passage.

 May indicate to the reader what he is to do with a set of exercises or problems. May be stated in the form of a question. Does not apply to directive statements containing substantial mathematical information.

Typical examples:

- a. Solve the following equations.
- b. Complete.
- c. Look at Figure 7.
- d. What are the solution sets for the open sentences below?
- 6. <u>Developing Content</u> (Questions in exposition, developmental activities, guided discovery exercises, etc.):

Questions, activities, or exercises designed to help develop content. May call for verbal discussion, physical activity, or thought or written responses. May be designed to guide the student to discover some mathematical concept. Exercises or problems whose primary purpose is to develop or present new content. Questions, activities, or exercises integrated into the exposition which are designed to make the reader participate in the development of the content.

7. Understanding Developed Content (Exercises involving routine computation, practice, identification, etc.): Exercises which are clearly on the knowledge or comprehension level of Bloom's Taxonomy. May involve lowest level of application where a generalization is used in a situation essentially identical to the situation in which the generalization was presented in the text. The emphasis here is on understanding the content which was presented in the text. May involve the recall of specific information and procedures or the understanding of presented content with only routine alterations of material. May involve the use of material without relating it to other materials or situations or seeing its broader implications.

Typical examples:

- a. Exercises of a purely computational nature.
- b. Exercises intended to give practice in a skill or procedure.
- c. Exercises which are essentially the same as examples given in the text. That is, exercises whose solutions depend on the imitation of examples worked out in the text.
- d. Problems which require only a direct routine application of a definition or generalization. Such as finding the circumference of a circle with a given radius. (Where the emphasis is on understanding the gener lization rather than on using it to find solutions to problems.)
- 8. Applying Developed Content (Real world problems, applications of generalizations in concrete situations, etc.): Exercises or problems which are on the application level of Bloom's Taxonomy. The emphasis here is on using the content presented in the text in a new or different situation. The new situation may be mathematical or a real life or physical situation. May involve the use of an abstraction in a concrete situation which the student has not seen before. Involves the recall and understanding of information and in addition the utilization of the content in a non-routine manner to find the answer to a problem.

Typical examples:

- a. Using general formulas or procedures to solve mathematical problems.
- b. Using general mathematical principles developed in the text to find solutions to real life problems. (Word problems.)
- c. Applying general definitions, axioms, and theorems in concrete situations or to specific mathematical models.
- d. Interpreting concrete examples in terms of general structures.
- 9. Analyzing and Synthesizing Developed Content
 (Proving propositions, finding new relationships
 in developed content, unguided discovery, etc.):
 Problems which are on the analysis or synthesis
 level of Bloom's Taxonomy. May involve the breakdown of content into its basic elements so that
 relationships between ideas are made more explicit.
 Typical examples:
 - a. Problems requiring the proof or disproof of a proposition.
 - b. Problems requiring the discovery of new ralationships between elements of developed content.
- 10. Other Material (Headings, non-mathematical materials, etc.): Messages not fitting categories 0 through 9.

 May be headings of sections, exercises, etc. May be

motivational or historical material. Messages which are non-mathematical in character.

Description of Dimension 2 Categories

- 0. Blank Space: Any unit which is completely blank.
- Words: Messages which are made up predominately of ordinary English words.
- 2. <u>Mathematical</u> <u>Symbols</u>: Messages which are made up predominately of mathematical symbols.
- 3. Representations of Abstract Ideas: May be drawings to illustrate abstract sets, Venn diagrams, mapping pictures, geometric diagrams, etc.
- 4. <u>Graphs</u>: May be bar graphs, line graphs, circle graphs, etc. Or, may be number lines or various types of coordinate system graphs.
- 5. Representations of Physical Objects or Situations:

 Must have some mathematical content. May be drawings or photographs of real objects or living things which illustrate mathematical content. Could be cross sectional diagrams, maps, plans, charts, etc.
- 6. Non-mathematical Illustrations: Non-mathematical in nature and not illustrating any mathematical content being considered. May be motivational or historical cartoons, photographs, or drawings.
- 7. Combinations of Illustrations with Written Text:

 May be some sort of diagram which contains substantial mathematical information in the form of words

or symbols. Includes all mathematical tables, flow charts, tree diagrams, etc.

Procedures for Using the CMMT System

As the definitions of the CMMT categories were being developed a number of procedural matters dealing with how to use the system in classifying messages in mathematics text had to be considered. These procedural matters concerned the unit of observation, the method of subdividing material for classification, coding procedures, specific decision rules to use when deciding between conflicting classifications, general approaches to classifying passages, the scope or range of application of the system, and the sample size to use when analyzing material in existing textbooks.

Unit of Measure

It was decided that an area unit of measure would be used so that the material in a passage could be represented quantitatively in terms of the space devoted to various categories and to logical combinations of categories. From experience rating textbook passages it was learned that, except for the symbol-word classifications, messages as classified by the CMMT system usually took up more area than one-fourth of a line of print. It was also found that units smaller than one-fourth of a line of print tended to make the task of classifying the messages in a passage too tedious. Thus, the area of one-fourth of a line of print

on a given page was chosen as the basic unit of measure for that page. A "greatest part rule" was made for classifying units containing more than one type of message.

Partitioning Passages into Messages

Initially it was thought that to code a page of text all that was needed was to arbitrarily partition the page into units and then proceed to code each unit. To do this a uniform rectangular grid was drawn with each section in the grid having an area of one-fourth of a line of print. Such a subdivision of a page of text is shown in Figure 2.

Experience showed that the uniform grid method of partitioning a page of text had a number of drawbacks. Typically the format of a page of mathematics text did not conform well to the grid. Much of the time the natural divisions between types of messages on a page did not fit the arbitrary divisions imposed by the grid. The grid produced many subdivisions containing parts of two different types of messages and this made classification difficult. The grid also tended to divide single messages into a number of units and this made the task of coding the units unnecessarily repetitive.

Because of the problems inherent with the uniform grid, it was decided to use a method of subdivision which would more closely conform to the natural divisions between types of messages. This subdivision of a page of text is determined by first drawing boxes around each illustration, sentence, exercise, section heading, and blank space which appears on a

(Reprinted by permission. <u>Elementary School Mathematics</u>, Book 4, hicholz and O'Daffer, Addison-Wesley Publishing (or pany, 1968.)

Division-and-sets-	
Here is a way to think about division	
Think: There are 3 sets of 5 in a set of 15. Write: 15 ÷ 5 = 3 5 is the divisor. 3 is the quotient.	Think: There are 5 sets of 3 in a set of 15. Write: $15 \div 3 = 5$ 3 is the divisor. 5 is the gliotient.
EXERCISES 1. Draw a set of 18 dots on your paper. Ring as many sets of 6 as you can.	
2. Draw a set of 24 dots on your paper. sets of 4 as you can. Solve the equa	· · · · · · · · · · · · · · · · · · ·
3. Draw a set of 32 dots on your paper. sets of 8 as you can. Solve the equa	
4. Study the sets. Then solve the equa [A] (ion. * * * * * * [c] * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
5. Give the missing numbers.	1÷7=ini 20÷4=ini
[A] There are ∰ sixes in 36. 36 ÷ 6 = [n] }	[B] There are sevens in 28. 28 ÷ 7 = [n]

Figure 2

page. Sentences are then further subdivided by separating the words from the mathematical symbols. Experience showed that this more natural method of subdivision produces a partition of a page which is easier to work with than the partition determined by the uniform grid. An example of a partitioned passage is given in Figure 3. This partition can be compared with the partitioning by the rectangular grid given in Figure 2.

Weighting Messages

Even though the uniform rectangular subdivision was rejected, a basic area unit was retained in the sense that when a CMMT analysis is made of a passage each subdivision is weighted in terms of its area. This unit of area is the area occupied by one-fourth of a line of print in the passage being analyzed. Its length is determined by one-fourth of the distance between the right and left margins of a full line of expository print. Its height is the distance between the lower edges of two successive lines of expository print.

Each subdivision in a coded passage is weighted to the nearest number of units which it occupies. Thus, if a subdivision covers the area of approximately two and one-fourth lines of print it receives a weight of nine. If it takes up the area of two-thirds of a line of print it receives a weight of three. Subdivisions taking up less than one-eighth of a line of print receive a weight of one.

(Reprinted by permission. Elementary School Mathematics, Book 4, Eicholz and O'Daffer, Addison-Wesley Publishing Company, 1968.)

Division and sets						
Here is a way to think abo	ut divisior	1.				
Think: There are 3 sets of 5 in a set of 15.			: are 5 sets a set of			
Write: $15 \div 5 = 3$		Write	: 15 ÷ 3 =	5		
5 is the divisor. 3 is the quotient.			3 is the d 5 is the q			
EXERCISES			_			
1. Draw a set of 18 dots on you Ring as many sets of 6 as yo [A] How many did you find?	ou can.	cive the	equation, 1	8÷6=	n:	
2. Draw a set of 24 dots on you sets of 4 as you can. Solve t					<u> </u>	₩ ***•
3. Draw a set of 32 dots on you sets of 8 as you can. Solve t						
3. Study the sets. Then solve t	he equation	on.	·			
	(B) * * * *	* * * * *	, * [c]			*
24 ÷ 6 = 'n	21	÷7= n		20÷4	1= <u>.</u> n:	
Give the missing numbers.]					
[A] There are IIII sixes in 36. 36 ÷ 6 = [N]			e are 🏢 se 7=.ni	vens in	28.	

Figure 3

CMMT Partition of Illustrative Passage

In CMMT analysis, these weights are used to determine areas devoted to the various types of messages in a passage. The weighting of subdivisions in terms of area allows the method of subdividing a passage to be somewhat arbitrary with the weighting system correcting for any differences in subdivisions determined by different users.

Coding Passages

After a passage has been subdivided the messages in each subdivision are classified on both dimensions of the CMMT category system. This is done by recording a symbol of the form m-n in each subdivision, where m is the classification on dimension 1 and n is the classification on dimension 2 of the CMMT category system. Figure 4 is an example of a coded page of text.

General Coding Procedures

Experience coding passages using the CMMT system led to the discovery of some general procedures and decision rules which proved useful. These are presented below in outline form as notes on using the CMMT technique.

Notes on Using Dimension 1 Categories.

Λ. Begin by mentally delineating between the blank spaces (0), exposition (1 - 4), messages requiring responses (5 - 9), and other material (10). This will make the task of making finer distinctions easier.

(Reprinted by permission. <u>Elementary School Mathematics</u>, Book 4, Eicholz and O'Daffer, Addison-Wesley Publishing Company, 1968.)

Division/สาd set	S	0						
Here far way to think about division.								
Think: 3-/ There are 3 sets of 5 in a set of 15.		Think: There are 5 sets of 3 in a set of 15.						
Write: $\frac{3}{3}5 - \frac{7}{2}5 = 3$	0	Write: 157-38	=5 0					
5 is the city 3 is the city		3 is tile 5 is the	Hivisor. Auotient.					
		0						
1. Draw a set of 18 do Ring as many sets of [A] How many did y 2. Draw a set of 24 do sets of 4 as your can	of Gas you can. Out find? [B] Is Gayour paper Solve the secua	Solve the equation, Ring as many tion, 24 ÷ 4=2.0	18÷6= n: 7-2.					
3. Draw a set of 32 do sets of 8 as you can			O .					
4. Study the sets. The	n/solle the equal	tion.	0					
	**	* 7 * 3 * * [0	7 5 3, 0					
0 24762 in	0 2	1-77-2-ni 0	20 ÷ i4 = i n:					
5. Give the missing numbers.								
[A] There are 🖺 six	es in 36.	[B] There are	évens in 28.					
36 - 6 = :n!								

Figure 4

Coded Illustrative Passage

- B. To rate exposition (1 4):
 - First identify definitions (1) and generalizations (2).
 - 2. Of the remaining exposition, classify all messages giving specific instances of more general content as specific explanation (3).
 - 3. Classify the remaining exposition as general explanation (4).
- C. To rate messages requiring responses (5 9):
 - 1. First identify procedural instructions (5).
 - Base decisions involving exercises and problems
 (6 9) on the processes involved. Do not base
 these decisions on the difficulty of the problem
 or exercise.
- D. Illustrations as well as written messages must be classified on dimension 1. The classification of an illustrative message is determined by the same rules as the classification of written messages. If a diagram illustrates a definition it is classified as a definition, if it illustrates a proof it is classified as fied as general explanation, etc.
- E. When in doubt about how to classify a message reread the descriptions of the appropriate categories.

Notes on Using Dimension 2 Categories.

A. To decide if a written message in a unit is predominantly words or symbols, count the words necessary to say the

message. If the symbols account for more than or the same number of these words as the ordinary English then classify the message as symbols (2). Otherwise, classify the message as words (1).

B. When classifying messages (3 - 7) identify the non-mathematical illustrations (6) first. Then make the remaining classifications. When in doubt reread the appropriate category descriptions.

Range of Application and the Sampling of Passages

The range of applicability for the CMMT technique was

conjectured to be grade levels 4 through 12. This range was

chosen since children in grades K through 3 seldom study

mathematics through reading text materials and since most

college mathematics textbooks are formal in nature and

written for specialized audiences.

Typically mathematics textbooks are divided into large sections which cover a single broad topic or set of related topics. In turn, these sections are usually divided into short lessons. In each lesson a set of related concepts are presented. When sampling text passages for CMMT analysis entire lessons should be sampled. Only in this way can the organization of the material in a text be adequately described.

Description of CMMT Analysis

When a passage of text has been coded using the CMMT system, the information obtained may be displayed and analyzed in the following ways.

Listing

The sequence of messages in a passage may be displayed by listing them in the order in which they appear in the text. This order is determined by following the natural flow of the material through the subdivisions of the partition used in the classification process. The natural flow of the material is basically a left-to-right and top-to-bottom ordering with modifications to accommodate the format of the passage. In the list, the classifications for each dimension of the category system and the associated weight are recorded for each subdivision of the partition. The manner in which the list may be used to analyze the sequential nature of a passage is illustrated in Figure 5 which is the list for the illustrative passage coded in Figure 4.

Matrices

Matrices are used to analyze the interactions between categories in each dimension and the interaction between dimensions of the CMMT system. For interactions between categories within dimensions a matrix of the frequency with which a given message is followed by another given message is used. This yields a 10×10 matrix for dimension 1 and

(The weight indicates the number of area units of approximately one-fourth of a line of print devoted to each message recorded in the list.)

Figure 5
CMMT List for Illustrative Passage

a 7×7 matrix for dimension 2. The manner in which these within dimension matrices are used to analyze passages is illustrated below by the matrices for the illustrative passage coded in Figure 4.

Dimension 1 Categories

	1	2	3	4	5	6	7	8	9	10
1	R	0	1	0	0	0	0	0	0	1
2	0	Q	0	0	. 0	0	0	0	0	0
3	2	0	N6 1	0	0	0	0	0	0 -	ı
4	0	0	1	X	0	0	. 0	. 0	0	0
5	0	.0	['] 0	0	×	0	2	0	0	Ó
6	0	0	0	0	0	Q,	0	0	0	.0
7	0	0	0	0	2	0	35	0	0	0
8	. 0	0	0	0	0	0	0	Q	0	0
9	0	Ò	0,	0 ,	0	0	0	0	Q	0
10	0	0	0	1	0	0	1	0	0	9

Figure 6

Dimension 1 Categories

Dimension 1 Interaction Matrix for Illustrative Passage

The notes which follow describe the dimension 1 interaction matrix given in Figure 6.

a. Entries in the matrix are in terms of units of onefourth of a line of print. Entry n in row i and
column j indicates units of type i were followed by
units of type j, n imes in the passage. Blank
space is ignored.

- b. The sum of the entries in the shaded area represents the number of shifts between messages requiring only reception and messages requiring responses. in the passage analyzed in the above matrix there was only one such shift, from category 10 to category 7.
- numbers of successive repetitions of categories.

 The 16 in position (3,3) and the 35 in position
 (7,7) indicate that the passage analyzed in the above matrix consisted mainly of examples (category 3) and comprehension exercises (category 7).
- d. Off diagonal entries in area A represent shifts between expository categories. There were four such shifts in the passage analyzed in the above matrix.
- c. Off diagonal entries in area B represent shifts between categories requiring responses. In the passage analyzed there were four such shifts, all between directions (category 5) and comprehension type exercises (category 7).
- f. Rows 2, 6, 8, and 9 contain all zeros, indicating that in the passage analyzed no generalizations were made, there were no developmental exercises, and no exercises or problems requiring application or higher mathematical processes.

Dimension 2 Categories

Figure 7

Dimension 2 Interaction Matrix for Illustrative Passage

The notes which follow describe the dimension 2 interaction matrix given in Figure 7.

- a. Entries in this matrix are in terms of weights.

 Entry n in row i and column j indicates units of type i were followed by units of type j, n times in the passage. Blank space is ignored.
- b. The sum of the entries in the shaded area of the matrix represents the number of shifts between written materials and illustration. In the passage analyzed in the above matrix there were 10 such shifts.
- c. Entries on the diagonals represent numbers of successive repetitions of categories. The 29 in

position (1,1) and the 18 in position (3,3) indicate that the majority of the material consisted of word messages (category 1) and illustrative representations of abstract ideas (category 3).

- d. Off-diagonal entries in area A "epresent shifts between symbols and words within the written message. There were 10 such shifts in the passage analyzed above.
- e. Off-diagonal entries in area B represent shifts between types of illustrations. There were no such shifts in the passage analyzed above.

To analyze interactions between dimensions of the CMMT category system, a 10×7 matrix is used. The between dimension interaction matrix for the passage coded on page 21 is given below.

Dimension 1 Categories

		1	2	3	4	5	6	7
Dimension 2 Categories	1	4	0	0	0	0	0	0
	2	0	0	0	0	0	0	0
	3	8	2	8	A 0	0	0	0
	4	2	0	0	0	00	0	0_
	5	4	0	0	0	0	0	0
	6	0	0	0	_ 0	0	0	0
	7	16	7	15	B 0	0	0	0
	8	0	0	0	0	0	0	0
	9	0	0	0	0	0	0	0
	10	2	0	0	0	0	0	0

Figure 8

Between Dimension Interaction Matrix for Illustrative Passage

The following notes describe the between dimension interaction matrix given in Figure 8.

- a. Entries in this matrix are made in terms of weights.

 Entry n in row i and column j indicates units of
 type i on dimension 1 were of type j on dimension
 2, n times in the passage.
- b. Entries in area A show the presentation mode used for the exposition. The matrix above shows that the exposition in the passage analyzed consisted of four units of definition presented in words (row 1), 18 units of specific explanation presented in words, symbols, and illustrations (row 3) and two units of general explanation in words (row 4).
- c. Entries in area B show the presentation mode used for exercises and problems. The matrix shows that in the passage analyzed four units were word directions (row 5) and 38 units were comprehension exercises presented in words, symbols, and illustrations (row 7).

Proportions

The list and the matrices are used to describe sequential aspects of mathematics passages. Proportions computed in terms of the weights of the various messages are used to describe quantitative aspects of the organization of passages. The defining formulas for the proportions are

given below. In the defining formulas, $c_{n,i}$ = the number of units devoted to category i on dimension n.

Proportion of blank space in total passage.

$$c_{1,0} / \sum_{0}^{10} c_{1,i}$$

Proportion of category j in non-blank material dimension 1.

$$c_{1,j}/\sum_{1}^{1} c_{1,j}$$

Proportion of category j in non-blank material dimension 2.

$$c_{2,j}/\sum_{1}^{7}c_{2,i}$$

Proportion of exposition in non-blank material.

$$\sum_{i=1}^{4} c_{i,i} / \sum_{i=1}^{10} c_{i,i}$$

Proportion of content development in non-blank material.

$$\left(\sum_{1}^{4} c_{1,i} + c_{1,6}\right) / \sum_{1}^{10} c_{1,i}$$

Proportion of exercises in content development.

$$c_{1,6}/(\sum_{i=1,i}^{4} c_{1,i} + c_{1,6})$$

Proportion of exposition in content development.

$$\sum_{i=1}^{4} c_{i,i} / \left(\sum_{i=1,i}^{4} c_{i,i} + c_{i,6}\right)$$

Proportion requiring responses in non-blank material.

$$\sum_{5}^{9} c_{1,i} / \sum_{1}^{10} c_{1,i}$$

Proportion of mathematics illustration in non-blank material.

$$\sum_{3}^{5} c_{2,i} / \sum_{1}^{7} c_{2,i}$$

Proportion of illustration in non-blank material.

$$\sum_{3}^{7} c_{2,i} / \sum_{1}^{7} c_{2,i}$$

The proportions computed for the illustrative passage coded on page 21 are given in Table 1.

The proportions in Table 1 indicate that in the passage analyzed the non-blank material consisted mainly of specific explanation or examples (category 3 of dimension 1) and comprehension exercises (category 7 of dimension 1). Slightly over one-half of the material consisted of word messages (category 1 of dimension 2), about one-third consisted of abstract illustrations (category 3 of dimension 2), and the remainder consisted of mathematical symbols (category 2 of dimension 2). The passage can be characterized as consisting of about one-third exposition and about two-thirds exercises and problems. All of the content development material was presented in an expository manner.

A computer program was written to do the work of deriving the CMMT analysis for a passage from a rater's codings. The

Table 1
CMMT Proportions for Illustrative Passage.

Proportion of b	lank space in total pas	sage .409
Proportion of ea	ach category in non-bla	nk material.
Category	Dimension 1	Dimension 2
1	.060	.537
2	.000	.119
3	. 269	.343
4	.030	.000
5	.030	.000
6	.000	.000
7 8	.552	.000
	.000	
9 10	.000	
	.030	
Proportion of ex	xposition in non-blank	material .358
Proportion of co	entent development in	.358
Proportion of ex	ercises in content dev	elopment .000
Proportion of ex	position in content de	velopment 1.000
Proportion requi	ring responses in non-	blank .612
Proportion of ma	thematics illustration	in .343
Proportion of il	lustration in non-blan	k material .343

output of this program includes the list, the matrices, and the proportions for the analyzed passages. The Fortran statements for the program and data set up for using it are included in Appendix E.

A Method of Estimating Rater Reliability

A method of estimating the reliability of raters using the CMMT technique has been adapted from a method of estimation used in interaction analysis (Flanders, 1960, p 161). This method first proposed by Scott (1955), is based on an adjusted proportion of agreement between raters. The estimate can be made whenever two or more raters code the same passage. It is relatively easy to compute and interpret. Thus, the estimate is more practical than other possible reliability coefficients based on analysis of variance or on correlational procedures.

Scott's coefficient is called "pi" and is determined by the formula

$$\pi = \frac{P_0 - P_e}{1 - P_e}.$$

 $P_{\rm O}$ is the proportion of agreement between two raters. $P_{\rm e}$ is the proportion of agreement between two raters expected by chance which is found by squaring the proportion of classifications made by the raters in each category and summing these over all categories. That is,

$$P_{e} = \sum_{i}^{k} P_{i}^{2},$$

where $P_{\bf i}$ is the proportion classified as category i out of k categories. The coefficient π can be expressed in words as the amount that two observers exceeded chance agreement divided by the amount that perfect agreement exceeds chance.

When determining a between-rater reliability estimate for more than two raters, the Scott coefficient is determined for each pair of raters and the average of all such pairs is taken as the reliability estimate. When investigating the reliability of raters using the CMMT technique, an estimate is made for each dimension of the category system. The computational formulas are given in Figure 9.

Reliability Estimate for Two Raters on Dimension n.	$\pi_{n} = \frac{P_{o} - P_{e}}{1 - P_{e}}$
Proportion of Agreement between Two Raters on Dimension n.	$P_{o} = \frac{\text{(Number of agreements on } \\ \text{dimension n)}}{\text{(Total number of messages)}}$
Proportion of Agree- ment Expected by Chance between Two Raters on Dimension n.	P _e = P _i ² where (Number of dimension messages classed as i by first rater plus the number classed as i by second) P _i = by second) 2 (total number of messages)

- a. Blank space (category 0) is ignored in reliability computations.
- b. For more than two raters compute all pairs of coefficients and average.

Figure 9

Method of Computing between-rater Reliability Estimates.

The Scott coefficient for estimating reliability may be used to determine a within-rater reliability coefficient by computing the proportion of the time a rater agrees with himself on two trials separated by a period of time. A Scott coefficient of .85 or above is considered to be a reasonable level of performance for raters using interaction analysis (Flanders, 1960, p 166). Acceptable levels of performance using the CMMT technique will have to be determined by research. The computer program found in Appendix F is used to compute Scott coefficients from the ratings of observers.

CHAPTER IV

PROCEDURES FOR THE EMPIRICAL STUDIES

The main purposes of the empirical studies were

- 1. To investigate the validity of the CMMT technique as a means of studying the organization of mathematics text.
- 2. To investigate the reliability of raters trained in the use of the CMMT technique.

This chapter is devoted to describing the procedures which were used to achieve each of these purposes.

The Validity Study

Validity was studied in both a descriptive and a statistical manner. A number of passages were chosen from mathematics textbooks and submitted to CMMT analysis by the investigator. These passages were used to demonstrate how CMMT analysis may be used to describe the organization of mathematics text. The data from the CMMT analyses were also submitted to correlational analysis and to analysis of variance in order to show further evidence of validity of the CMMT technique.

The specific validity objectives were

1. To demonstrate that CMMT analysis can be used to

- describe the organization of existing mathematics text passages.
- 2. To demonstrate that CMMT analysis reflects similarities and differences between passages the known organizational similarities and differences.
- 3. To determine if CMMT analyses of entire sections of textbooks can be closely approximated by sampling a small number of CMMT sample passages.
- 4. To determine if the CMMT analyses of passages sampled within the same textbook are more closely related than the CMMT analyses of passages sampled from different textbooks.
- 5. To determine if the data obtained from CMMT analysis may be used to identify significant differences in organization between different mathematics textbooks.

The Materials Studied

The CMMT technique was designed to be applied to mathematics materials at approximately grade levels 4 through 12. Hence, questions of validity needed to be studied at a range of grade levels using various mathematical topics. The materials used in the study were grouped into three sets. The levels and corresponding topics for each set were

- Set 1. Upper Elementary Materials (grades 4 6)
 Arithmetic, Geometry, Introductory Algebra.
- Set 2. Junior High School Materials (grades 7 9)
 Arithmetic, Algebra, Geometry, Probability.

Set 3. Senior High School Materials (grades 10 - 12)

Algebra, Geometry, Trigonometry, Algebraic

Structure.

Twelve textbooks were chosen on a rational basis to obtain samples of all the topics and levels indicated above. Eight of the twelve textbooks were published by eight different commercial publishers. The other four books were written by feur different mathematics curriculum groups. This selection procedure was used to insure coverage of a variety of topics, levels, and text types. No attempt was made to generalize about a particular publisher's or study group's textbooks in this study.

The textbooks studied were:

- Set 1: B1. Elementary School Mathematics, Book Four, by Eicholz and O'Daffer, C 1968 by

 Addison-Wesley Publishing Company.

 (Grade level 4)
 - B2. <u>Learning Mathematics</u>, by Deans, et al., C
 1368 by the American Book Company.

 (Grade level 5)
 - B3. Exploring Elementary Mathematics, Five, by Keedy, et al., C 1970 by Holt, Rinehart and Winston, Inc.

 (Grade level 5)
 - B4. Six, Modern School Mathematics, by Duncan, et al., C 1967 by Houghton Mifflin Company.

 (Grade level 6)

- Set 2: B5. Seeing Through Mathematics, Book One,
 by Van Engen, et al., C 1962 by Scott,
 Foresman and Company.

 (Grade level 7)
 - B6. Mathematics for Junior High, Volume 2,

 Part II, by the School Mathematics Study

 Group, C 1961 by Yale University Press.

 (Grade level 8)
 - B7. Unified Modern Mathematics, Course II,

 Part I, from the Secondary School Mathematics Curriculum Improvement Study, C

 1969 by Teachers College, Columbia University.

 (Grade level approximately 8)
 - B8. Contemporary Algebra, Book One, by Smith, et al., C 1962 by Harcourt, Brace and World, Inc.

 (Grade level 9)
- Set 3: B9. <u>Book Six</u>, <u>Relations</u>, from the Comprehensive School Mathematics Program, C 1971 by CEMREL, Inc.

 (Grade level approximately 10)
 - B10. High School Mathematics, Unit 6, Geometry, by the University of Illinois Committee on School Mathematics, C 1960 by University of Illinois Press.

Bll. <u>Contemporary Algebra</u>, <u>Second Course</u>, by Mayor and Wilcox, C 1965 by Prentice-Hall, Inc.

(Grade level 11)

B12. Algebra with Trigonometry, by Fehr, et al.,
C 1963 by D. C. Heath and Company.

(Grade level 12)

From each of these twelve textbooks one experimental section was selected on a rational basis to cover the topics listed above for the various sets of material. The experimental sections, including 99 passages covering 310 pages, served as data sources for the study of the validity objectives. The sections and corresponding topics are listed below.

- ES1. Arithmetic

 (Chapter 3 of B1: Multiplication and Division,
 14 passages, pages 72-87)
- ES2. Geometry

 (Chapter 7 of B2: Geometry, 9 passages, pages 229-242)
- ES3. Arithmetic
 (Chapter 2 of B3: Addition and Subtraction,
 13 passages, pages 31-51)
- ES4. Introductory Algebra
 (Chapter 5 of B4: Statements, 11 passages, pages 130-141)

- ES5. Arithmetic

 (Unit 7 of B5: The Rational Numbers of Arithmetic, 9 passages, pages 308-327)
- ES6. Probability

 (Chapter 8 of B6: Probability, 6 passages,
 pages 311-345)
- ES7. Geometry

 (Chapter 3 of B7: An Introduction to Axiomatic

 Affine Geometry, 6 passages, pages 120-173)
- (Chapter 4 of D8: Operations with Algebraic Expressions, 11 passages, pages 119-135)
- ES9. Algebraic Structure

 (Chapter 2 of B9: Ordered Pairs and Relations,
 4 passages, pages 27-69)
- ES10. Geometry

 (Section 6.07 of B10: Similarity, 5 passages,
 pages 6-179 to 6-218)
- ES11. Algebra
 (Chapter 7 of B11: Exponents and Radicals,
 10 passages, pages 201-216)
- ES12. Trigonometry

 (Chapter 12 of B12: Trigonometric Functions,

 7 passages, pages 427-448)

A focus passage representing a specific instance of the topics and levels to be studied was chosen on a rational basis from each of the twelve experimental sections. Some of these passages served as data sources for studying how CMMT analysis could be used to describe the organization of existing text. Others provided the mathematical material from which pairs of passages were contrived for studying how CMMT analysis can be used to compare similar passages. The focus passages were also used as practice and criterion passages in the reliability study discussed in the next section. The various focus passages and corresponding topics are listed below.

- FP1. Division and Sets
 (Page 73 of B1)
- FP2. Circumference
 (Pages 231-233 of B2)
- FP3. Commutative Property of Addition
 (Page 32 of B3)
- FP4. Using Equations and Inequalities
 (Pages 136-137 of B4)
- FP5. Multiplication of Rational Numbers
 (Pages 324-325 of B5)
- FP6. Probability of A or B
 (Pages 328-332 of B6)
- FP7. Some Logical Consequences of the Affine Axioms
 (Pages 128-135 of B7)

- FP8. Expressions with Grouping Symbols (Page 132 of B8)
- FP9. Cartesian Products and Relations
 (Pages 47-53 of B9)
- FP10. Mean Proportional and the Pythagorean Theorem (Pages 6-203 to 6-207 of B10)
- FP11. Fractional Exponents
 (Pages 210-211 of B11)
- FP12. Extending the Abs and Ord Functions (Pages 431-432 of B12)

From each of six focus passages a pair of contrived passages was written. Each contrived passage covered the same mathematical material as the focus passage on which it was based. The passages in a contrived pair were written following different organizational plans and were approximately the same length. The twelve contrived passages were used to study how CMMT analysis reflects similarities and differences between passages with known organizational similarities and differences. The organizational plans followed i constructing the contrived passages are listed next.

1. Plans of the contrived passages based on FP2.

High proportion of developmental exercises. Low proportion of explanation. Dimension 1: Integration of exercises with expository. CP2a: Other aspects constant with CP2b. Dimension 2: Constant with CP2b. No developmental exercises High proportion of explanation. Dimension 1: Exposition separated from exercises. CP2b: Other aspects constant with CP2a. Dimension 2: Constant with CP2a.

2. Plans of the contrived passages derived from FP4.

Dimension 1: {
 No examples.
 High proportion of general explanation.

CP4b: {
 Dimension 2: {
 Use of mathematica illustrations.
}

Other aspects constant with CP4a.

3. Plans of contrived passages derived from FP6.

CP6a:

Dimension 1: Constant with CP6b.

High proportion of symbols and illustrations.
Low proportion of words.

CP6b:

Dimension 1: Constant with CP6a.

CP6b:
Low proportion of symbols and illustrations.
High proportion of words.

4. Plans of contrived passages based on FP7. General explanation followed by generalization sequences. Other aspects constant. Dimension 2: Constant with CP7a. Generalization followed by general explanation sequences. Other aspects constant. Constant with CP7a. 5. Plans of contrived passages based on FP9. Low proportion of definition, generalization, and general explanation.
High proportion of examples.
Exercises integrated with Dimension 1: exposition. CP9a: Dimension 2: Constant with CP9a. High proportion of definition, generalization, and general explanation. Dimension 1: Low proportion of examples. Exposition separated from CP9b: exercises. Dimension 2: Constant with CP9b. 6. Plans of contrived passages based on FT'0. High proportion of exposition. Low proportion of exercises and problems. CP10a: Illustrations grouped separate f: om written text. Other aspects constant with CP10b. Low proportion of exposition. Dimension 1: High proportion of exercises and problems. CP10b: Illustrations integrated with Dimension 2: written text.

Other aspects constant with CPlOa.

The choice of the organizational plans followed in the preparation of a given contrived pair of passages was made on a rational basis depending on the related focus passage. For example, if the focus passage contained mostly manipulative algebraic material no attempt was made to contrive passages with differing illustrative material. Thus, the material in the focus passages limited to some extent the organizational variables which could be manipulated in the contrived passages. No attempt was made in this study to exhaust or even adequately sample all possible organizational variables which could be investigated. The contrived passages served only to demonstrate the feasibility of using CMMT analysis to describe the organization of passages.

The chart in Figure 10 summarizes the selection and preparation of the materials used in the validity portion of the study. The labeling scheme used here for materials will be used throughout the remaining chapters to refer to materials.

Method of Studying the Materials

All of the materials described in the previous section were submitted to CMMT analysis by the investigator. These analyses were used to attain the validity objectives given on page 2.

The focus passages FP1, FP3, FP5, FP8, FP11, and FP12 were used to demonstrate that CMMT analysis can be used to describe the organization of mathematics passages. These

Existing Textbooks

(Twelve books of various types selected with four books corresponding to each set level.)

Twelve Textbooks Set 1 (grades 4-6): B1 - B4 Set 2 (grades 7-9): B5 - B8 Set 3 (grades 10-12): B9 - B12

(One section from each textbook selected to correspond to various topics.)

Twelve Experimental Sections Set 1: ES1 - ES4 Set 2: ES5 - ES8 Set 3: ES9 - ES12

(One focus passage selected from each experimental section.)

```
Twelve Focus Passages
Set 1: FP1 - FP4
Set 2: FP5 - FP8
Set 3: FP9 - F.12
```

(Pairs of contrived passages corresponding to FP2, FP4, FP6, FP7, FP9, and FP10 prepared following opposing plans of organization.)

```
Twelve Contrived Passages
Set 1: CP2a, CP2b, CP4a, CP4b
Set 2: CP6a, CP6b, CP7a, CP7b
Set 3: CP9a, CP9b, CP10a, CP10b
```

Figure 10

Materials Used in the Validity Study.

passages are included in Appendix C. The CMMT analyses of these passages were studied in detail. The manner in which the analyses reflected the organization of the passages is discussed in Chapter 5.

The CMMT analyses of the contrived passages were compared and contrasted to see how they reflected the organizational plans of the passages. The manner in which the CMMT analyses described the planned similarities and differences between the contrived passages in each pair is discussed in detail in the next chapter. The contrived passages are included in Appendix D.

To determine if CMMT analyses of entire sections of textbooks can be closely approximated by sampling a small number of CMMT sample passages, successive correlations were made between each entire experimental section and increasingly larger random samples of passages from the same section. For these correlations, 25 items of data readily available from the CMMT analyses of the entire sections and the samples were used. These items of data are listed below.

- The average number of non-zero entries in the dimension 1 interaction matrices.
- 2. The percentage of off-diagonal entries in the dimension 1 interaction matrix.
- 3. The percentage of shifts between exposition and exercises in the dimension 1 interaction matrix.

- 4. The average number of non-zero entries in the dimension 2 interaction matrices.
- 5. The percentage of off-diagonal entries in the dimension 2 interaction matrix.
- 6. The percentage of shifts between written and illustration in the dimension 2 interaction matrix.
- 7. The average number of non-zero entries in the between-dimension interaction matrices.
- 8. The percentage of blank space.
- The percentage in each category (1 10) on dimension 1.
- The percentage in each category (1 7) on dimension 2.

The following procedure was used in making these successive correlations. A passage was selected at random from a given section and the above data from the CMMT analysis of the entire section was correlated with the corresponding data for the passage. Then another passage was randomly selected from the remaining passages in the section, combined with the first passage for CMMT analysis and the same correlational procedure was repeated. The process was continued until all passages in the section were sampled. It was determined how many passages it was necessary to sample in order to reach and maintain correlations of .90 and .95

between the sample and the entire section. The entire procedure was repeated for each of the twelve experimental sections.

To determine how closely the CMMT analyses of passages sampled within the same textbook are related, each passage in an experimental section was correlated with each other passage in the section using the 25 items of CMMT data listed above. The average of these within-textbook correlations was computed for each experimental section. A λ^2 test suggested by Ostle (1963, p. 227) was used to test for significant differences among the twelve average within-textbook correlations.

In addition, the average correlation between all possible pairs of twelve passages, one chosen at random from each experimental section, was computed using the 25 items of CMMT data. This average between-textbook correlation was compared with each of the twelve within-textbook average correlations to determine if the within-textbook passages correlated significantly higher than the between-textbook passages. The λ^2 test mentioned above was also used for making these comparisons.

To determine if the data obtained from CMMT analysis could be used to identify significant differences in organization between different textbooks, an analysis information was used. The variables investigated in this manner were variables which could be readily obtained

from the CMMT analyses of the passages. These variables were chosen to represent the types of CMMT variables it is possible to study. They do not exhaust all possible CMMT variables which could be investigated. The sixteen variables which were investigated are listed next.

- 1. Total units per passage.
- Number of non-zero entries in the dimension 1 interaction matrix per passage.
- Percentage of off-diagonal entries in the dimension
 l interaction matrix per passage.
- 4. Percentage of shifts between exposition and exercises per passage.
- Number of non-zero entries in the dimension 2 interaction matrix per passage.
- 6. Percentage of off-diagonal entries in the dimension 2 interaction matrix per passage.
- Percentage of shifts between written and illustration per passage.
- 8. Number of non-zero entries in the between dimension interaction matrix per passage.
- 9. Percentage of blank space per passage.
- 10. Percentage of exposition per passage.
- 11. Percentage of content development per passage.
- 12. Percentage of activities in content development per passage.
- 13. Percentage of exposition in content development per passage.

- 14. Percentage requiring responses per passage.
- 15. Percentage of mathematical illustration per passage.
- 16. Percentage of illustration per passage.

Each of the above variables was submitted to a one-way unequal cell analysis of variance as illustrated in Figure 11 (Winer, 1962, pp. 96-104). In this design, passages within textbooks are used in place of the more typical subjects within treatments. Thus, in the analysis of variance MS between treatment is interpreted as MS between textbooks and MS within treatments is interpreted as MS within textbooks. When significant differences were found between the experimental textbooks on a given variable, the Numan-Keuls Sequential Range Test (Winer, 1962, p. 80) was used to obtain an ordering of the textbooks on the variable.

	B1	B2	 •	B12
	x _{1,1}	X 1,2		x
				• 1
		:		
Variable m	x _{i,1}	x,,2		x, 12
	•			•
		:		•
	X 13,1	X 9,2		X 7,12

x_{i,j} = variable m CMMT score on passage i of textbook Bj.

Figure 11

Analysis of Variance Design for Identifying Differences between Textbooks.

The Reliability Study

To study the reliability of raters trained in the use of the CMMT technique, a rater training booklet and a booklet of criterion passages were prepared. The materials for these booklets were drawn from the validity materials described in a previous section. Three groups of subjects studied the training booklet individually and on two occasions coded the passages in the criterion booklet. These passages were scored in terms of the preportion of agreement of each subject with the most frequent ratings of the meassages. A repeated measures analysis of variance model was used to analyze the differences between groups and between the rating difficulties of the criterion passages. The five subjects in each group who received the highest scores were considered proficient in applying the CMMT technique and were defined as experts in their groups. Within- and between-rater reliability coefficients were determined for the experts in each group.

The specific reliability objectives were:

- 1. To determine if there are significant differences between groups of raters with differing academic background and experience.
- 2. To determine if there are significant differences in the level of rating difficulty between different types of passages.

- To determine between-rater reliability coefficients tor raters who obtained proficiency in the CMMT technique.
- To determine within-rater reliability coefficients for raters who obtained proficiency in the CMMT technique.
- 5. To determine a reliability estimate for ratings made by the investigator in the validity portion of the study.

Materials

A training booklet was written for subjects to use in training themselves in the use of the CMMT technique. The booklet consisted of an introduction to the CMMT categories, thorough descriptions of the categories, procedural suggestions for applying the CMMT system, and many-keyed practice passages. Descriptive material in the training booklet was based on the developmental work discussed in Chapter 3. The practice passages included were selected from the textbooks studied in the validity portion of the study and represented a range of subject matter and grade levels. Each practice passage was followed by a coded version of the passage so that subjects could obtain some feedback as they learned the system. A copy of the training booklet is included in Appendix A.

The booklet of criterion passages, included in Appendix B, consisted of six partitioned passages to be coded by the

passages FP1, FP8, and FP12 of the validity study. The other three criterion passages were contrived passages CP2b, CP6a, and CP10b. One focus passage and one criterion passage corresponded to each of the three levels of materials studied in the validity study. The criterion passages ranged in subject matter over arithmetic, algebra, geometry, probability, and trigonometry. None of the criterion passages was taken from the same experimental section as practice passages used in the training booklet. The order in which the criterion passages appeared was randomized for each booklet. This was done to avoid any possible order effect in the analysis of passage rating difficulty.

Subj**ec**ts

Three groups of subjects from different populations were used as CMMT raters in the reliability study. The groups were

- Group 1. Doctoral students and faculty members in mathematics education.
- Group 2. Experienced secondary mathematics teachers with or near a Master's degree.
- Group 3. University seniors preparing to become teachers of secondary mathematics.

Subjects in group 1 consisted of people working in mathematics education or recent graduates in mathematics education from Purdue University, the University of Georgia,

and California State Polytechnic College. Subjects in group 2 consisted of members of Purdue University's 1971

N.S.F. Summer Institute for secondary mathematics teachers.

Subjects in group 3 consisted of Purdue students in Education 304S which is a course in the metho.s of teaching secondary school mathematics offered during the professional semester of the senior year. All subjects participated on an invited basis. There were 15 subjects in each group.

Design of the Reliability Study

hach group of subjects used the training booklet to learn the use of the CMMT technique. Subjects were directed to train themselves by studying the booklet. After this self-training, subjects were directed to code the criterion passages on two different occasions separated by an interval of at least four weeks. Subjects worked individually and were instructed to spend a maximum of four hours on the training booklet and one hour on each rating of the criterion passages. Subjects were allowed the use of the training booklet for reference during the rating of the criterion passages. The experimental procedure is illustrated in Figure 12.

Method of Analyzing the Reliability Data

To obtain between-rater scores, each subject's criterion passages for trial 1 were scored in terms of the proportion of a reement with criterion scores based on the most frequent classifications of the messages in these passages. To

Subjects	Subjects individually trained using the training booklet.	Trial 1: Subjects rated criterion passages.	Four week waiting period.	Trial 2; Subjects rated criterion passages again.
1+ Group 1 .				
1+ Group 2 .				
1→ Group 3 .				

Figure 12
Experimental Procedure for the Reliability Study.

obtain within-rater scores each subject's criterion passages were also scored in terms of the proportion of messages rated the same on both trials. In addition to an overall score of each type, a between- and within-rater score on each CMMT dimension was obtained for each subject on each passage. A computer program was written to score the criterion passages and to compute the KR20 reliability coefficient for each CMMT dimension of each passage. This program is included in Appendix G.

To assess differences between groups and between the rating difficulty of passages on each of the CMMT dimensions in terms of each scoring procedure, four repeated measures analyses of variance were performed. The design for these analyses of variance which is given in Winer (1962, pp. 302-318) is illustrated in Figure 13. Appropriate a posteriori tests were made when differences among means were found.

		Passages						
		Leve	el 1	Leve	e1 2	Level 3		
Subjects		FP1	CP2b	FP8	CP6a	FP12	CP10b	
Group 1	1+ 5+							
Group 2	1+							
Group 3	1+ 5+							

Level 1 (grades 4 - 6).
Level 2 (grades 7 - 9).
Level 3 (grades 10 - 12).
Analysis 1: Dimension 1 between-rater scores.
Analysis 2: Dimension 2 between-rater scores.
Analysis 3: Dimension 1 within-rater scores.
Analysis 4: Dimension 2 within-rater scores.

Figure 13

Analysis of Variance Design for Assessing Passage Rating Difficulty and Differences between Groups.

For a number of reasons, high levels of performance were not expected of all subjects. Subjects could not be expected to be highly motivated in this situation. They were not required to spend a great deal of time training considering the complexity of the task. Further they had no opportunity to ask questions or to receive any other type of live feedback. Hence, it was not expected that all subjects would become proficient in the technique with the training they received. In order to estimate reliability, subjects obtaining proficiency were needed. In an attempt to obtain such subjects, the top five subjects in each group were selected on the basis of average overall first trial scores. These experts from the respective groups were used to determine reliability estimates.

Between- and within-rater reliability coefficients for each group of experts were determined for each criterion passage on each dimension of the CMMT system. This was done by computing the average Scott reliability coefficients described in Chapter 3 for each group of experts and each passage. A summary of all reliability coefficients computed for each group of experts on each passage is given in Figure 14.

To complete the reliability study a check was made of the reliability of the investigator. This was done by computing the proportion of agreement between the investigator and the between-rater criterion ratings on each criterion

		Between-rater	Within-rater
Scott	Dimension 1	$\frac{\sum_{i \leq j}^{\pi_{i}} \pi_{i}}{10}$	$\frac{\sum_{k=1}^{5} \pi_{1k}}{10}$
Coeffi cient s	Dimension 2	$\frac{\sum_{\mathbf{i} \leq \mathbf{j}}^{\pi_{2}\mathbf{i}\mathbf{j}}}{10}$	$\frac{\sum_{k=1}^{5} \pi_{2k}}{10}$

 $[\]pi_{\text{mij}}$ = between-rater Scott coefficient for dimension m and expert pair (i,j).

Figure 14

Summary of Reliability Coefficients Computer for Each Group of Experts on Each Criterion Passage.

passage. A Scott reliability coefficient was also computed between the investigator and the criterion ratings on each criterion passage. These coefficients were used to infer the reliability of the ratings made by the investigator in the validity study.

 $[\]pi_{mk}$ = within-rater Scott coefficient for dimension m and expert k.

CHAPTER V

RESULTS OF THE EMPIRICAL STUDIES

This research concerned the development of the CMMT technique for studying presentation variables in mathematics text. The purpose of the empirical studies was to investigate the validity and reliability of the CMMT technique. The results of these studies are presented in this chapter.

Results of the Validity Study

The validity results are both descriptive and statistical in nature. The descriptive results illustrate how CMMT analysis may be used to describe and compare mathematics text passages. The statistical results concern the number of passages which provide an adequate sample from a textbook section for CMMT analysis, correlational comparisons of the CMMT analyses of passages within and between textbooks, and the identification by CMMT analysis of presentation variables on which textbooks can be differentiated.

Descriptive Results for the Focus Passages

In order to illustrate how CMMT analysis may be used to describe mathematics text passages, focus passages FP1, FP3, FP5, FP8, FP11, and FP12 are presented in detail. These passages are included in Appendix C. In this section, a

short description of the level and content of each of the passages is given. Each description is followed by the CMMT analysis of the passage described, which in turn is followed by a brief discussion of what the analysis shows.

Focus Passage FP1. This passage dealt with the relationship between sets and division at the Fourth grade level. It was a one page passage consisting of two simple examples of how division may be interpreted in terms of sets, followed by a set of exercises quite similar to the examples. The CMM analysis of focus passage FP1 is given in Table 2.

Table 2

CMMT Analysis of Focus Passage FP1.

		List.			
		Dim. 1	Dim. 2		Weight
Exposition	Heading Intro. Statement Example followed by definition.	$\begin{bmatrix} 0 \\ 3 \\ 3 \end{bmatrix}$	1 0 1 0 1 3 2	Word, illustration, symbol sequence	1 3 2 2 4 4 1 2
	Example followed by definition. Heading	$ \begin{array}{c} 1 \\ 0 \\ 3 \\ 3 \\ 0 \\ 1 \\ 0 \\ 0 \end{array} $	0 1 3 2 0 1 0 1	Word, illustration, symbol sequence	1 4 4 . 1 2 2 5 1 7

Table 2. cont.

	Exercise	\[\begin{pmatrix} 7 \\ 7 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Word, symbol	7 1 6
	Exercise	{ 7 7 7 0	Word, symbol.	5 1 6
	Directions	5	1	2
Lxercises	Exercise	- [7 7 7 0	3] Illustration, 2] symbol.	5 1
	Exercise	$\left\{\begin{array}{c} 7\\7\\7\end{array}\right.$	3] Illustration,2] symbol.	5
	Directions	5 7	1 1] Word,	2
	Exercise	7	2 symbol.	ī
	Exercise	0 -{ 7 7 0	Word, symbol.	1 2 1 1

Dimension 1 interaction matrix.

			1	Dimer	15 1 0 1	n I (Jateg	g o r 1 e	S		
		1	2	3	4	5	6	7	8	9	10
	1	2	0	1	0	0	0	0	0	0	0
	2	0	, O	0	0	0	0	0	0	0	0
	3	2	0	16	0	0	0	0	0	0	0
	4	0	0	1	Y	0	6	0	0	0	0
Dimension 1	5	0	0	0	0	2	0	2	0	0	0
(ateg o ries	6	0	0	0	0	0	Q	0	0	0	0
	7	0	0	0	0	2	0	35	0	0	0
	8	0	.0	0	0	0	0	0	B	0	0
	9	0	0	0	0	0	0	0	0	B	0
	10	0	0	0	1	0	0	1	0	0	B

Table 2. cont.

	_	•	. •
Dimoncion	•	1 n f o r o c ' 1 o	n motoriv
17 1 111 12 11 2 1 1 1 1 1	4	interactio	11 1118 LIIX.

		Di	men	sion	2 Ca	5		
		1	2	3	4	5	6	7
	ì	29 A	4	3	0	0	0	0
	2	6	Ø	2	· ·	0	0	0
Dimension 2	3	0	5	18	0	0	0	0
Categories	4	0	0	0	Q	0 _ E	0	0
	5	0	0	0	0	S,	0	0
	6	0	0	0	0	0	B	0
	7	0	0	0	0	0	0	Q

Between dimension interaction matrix.

		D	imen	sion	ı 2 Ca	ite g	ories	5
		1	2	3	4	5	6	7
	1	4	0	υ	0	0	0	0
	2	0	0	0	0	0	0	0
	3	8	2	8	A 0	0	0	0
	4	2	0	0	0	0	0	0
Dimension 1	5	4	0	0	0	0	0	0
Categories	6	0	0	0	0	0	0	0
· ·	7	16	7	15	B 0	0	0	0
	8	0	0	0	0	0	0	0
	9	0	0	0	Û	0	0	0
	10	2	0	0	0	0	0	0

Table 2. cont.

CMMT proportions.

Proportion of blank space in total passage .41
Proportion of each category in non-blank material.

Category	<u>Dimension 1</u>	Dimension 2
1 2 3 4 5 6 7 8 9	.06 .00 .26 .03 .03 .00 .55 .00	. 54 . 12 . 34 . 00 . 00 . 00 . 00
Proportion	of exposition in non-blank	material .36
Proportion material	of content development in m	nen-blank
Proportion	of exercises in content dev	velopment .00
Proportion	of exposition in content de	evelopment 1.00
Proportion material	requiring responses in non-	-blank
Proportion non-blank m	of mathematics illustration naterial	n in .34
Proportion	of illustration in non-blar	nk ma te rial .34

The CMMT list for passage FP1 revealed that the passage consisted of two example-definition sequences followed by a set of exercises. The interaction matrices showed that there was some interaction among categories on dimension 1 (10 off-diagonal entries) while there was relatively more interaction between categories 1, 2, and 3 of dimension 2 (20 off-diagonal entries). The most numerous messages were examples (3) and exercises (7) and these two types of messages were represented in all of the three basic modes (rows 3 and 7 of the between-dimension matrix). The CMMT proportions indicated that the content development was entirely expository and accounted for a little more than one-third of the passage while the exercises accounted for a little less than two-thirds of the passage.

Focus Passage FP3. This fifth grade passage concerned the Commutative Property of addition. It consisted of a short sequence of developmental questions culminating in a statement of the Commutative Property. This developmental material was followed by a set of simple exercises. The CMMT analysis of focus passage FP3 is given in Table 3.

Table 3
CMMT Analysis of Focus Passage FP3.

Table 3. cont.

Dimension 1 interaction matrix.											
		Dimension 1 Categories									
		1	2	3	4	5	6	7	8	9	10
	1	Q	0	0	0	0	0	0	0	0	0
	2	0	\Q_1	0	0	0	1	0	0	0	0
	3	0	0	Q	0	0	0	0	0	0	0
	4	0	G	0	2	0	0	0	0	0	0
Dimension 1	5	0	0	0	0	3	1	2 B	0	0	0
Categories	6	0	1	0	0	1	52	0	0	0	1
	7	0	0	0	0	1	0	M	0	Ú	0
	8	0	0	0	0	0	0	0	Q	0	0
	9	0	0	0	0	0	0	0	0	\Q	0
	10	0	0	0	0	1	1	0	0	0	3

Dimension 2 interaction matrix.

Dimension 2 Categories

		1	2		4	5	0	7_
	1	31	A 6	0	0	1	0	0
	2	5	24	0	0	0	0	0
Dimension 2	3	0	0	9	0	0 B	0	0
Categories	4	0	0	0	Q	0	0	0
	5	1	0	0	0	23	0	0
	6	0	0	0	0	0	Q	0
	7	0	0	0	0	0	0	Ja.

Table 3. cont.

Rotwoon	dimoncion.	interaction	matriy
DOCKOCH	u imension	1 II CO L ACCION	muci in

T		^	a .	
Dimen	sion		Catego	ories

		1	2	3	4	5	6	7
	1	0	0	0	0	0	0	0
	2	10	0	0	0 A	0	0	0
	3	0	0	0	0	0	0	0
	4	0	0	_0	0	0	0	0
Dimension 1	5	6	0	0	0	0	0	0
	6	17	14	0	0 B	24	0	0
Categories	7	0	16	0	0	0	0	0
	8	0	0	0	0	0	0	0
	9	0	0	0	0	0	0	0
	10	5	0	0	0	0	0	0

CMMT Proportions.

Proportion of blank space in total passage .21
Proportion of each category in non-blank material.

Category	Dimension 1	<u>Dimension 2</u>
1	.00	.42
2	.11	.32
3	.00	.00
4	.00	.00
5	.07	. 26
6	.60	.00
7	.16	.00
8	.00	
9	.00	-
10	.05	
Proportion of ex	onsition in non-blank mater	rial 11

Proportion of exposition in non-blank material .11
Proportion of content development in non-blank material .71
Proportion of exercises in content development .85
Proportion of exposition in content development .15

Table 3. cont.

Proportion	requiring responses in non-blank material	.83
Proportion material	of mathematics illustration in non-blank	. 26
Proportion	of illustration in non-blank material	.26

The CMMT list for passage FP3 indicated that the basic sequencing of this passage consisted of developmental exercises, generalization, developmental exercises, and comprehension level exercises. The matrix for dimension 1 revealed a number of interactions (10 off-diagonal entries) all involving categories 5, 6, and 7. While there was little interaction between illustration and written material shown in the dimension 2 matrix, there were a number of interactions between word and symbol entries (11 off-diagonal entries in region A). The between dimension matrix showed that more than one representational mode was used only in the case of developmental exercises (row 6). The CMMT proportions demonstrated that the passage consisted of about 15 percent exposition with about 83 percent of the messages requiring responses. While about 26 percent of the passage was in the illustrative mode this consisted of a single illustration.

Focus Passage FP5. In this junior high school level passage multiplication for rational numbers was defined.

The passage consisted of a series of developmental exercises interwoven with exposition. Most of the passage was

developmental with only a few practice exercises included at the end. The CMMT analysis of the passage is given in Table 4.

Table 4

CMMT Analysis of Focus Passage FP5.

Table 4. Cont.

Dimension 1 interaction matrix.

		Γ)imer	nsi o n	. 1	Categ	orie	es		
	1	2	3	4	5	6	7	8	9	10
1	85	0	0	1	2	0	0	0	0	
2	0	VQ "	0	0	0	0	0	0	0	(
ļ		\		ì						

Dimension 1
Categories

		. 1	<i>•</i>		1					
2	0	Q	0	0	0	0	0	0	0	0
3	1	0	3.0	0	0	0	0	0	0	0
4	0	0	1	37	1	4	0	0.	0	0
5	0	0	0	2	5	3	1	0	0	0
6	2	0	0	2	3	37	0 • F	0	0	0
7	0	0	0	0	0	0	3	0	0	0
8	0	0	0	0	0	0	0	B	0	0
9	0	0	0	0	0	0	0	0	8	0
10	0	0	0	1	0	0	0	0	0	8

Dimension 2 interaction matrix.

Dimension 2 Categories

		1		3	4	5	0	/
	1	109	A 6	0	0	0	0	0
	2	5	83	0	0	0	0	0
Dimension 2	3	0	0	9	0 F	0	0	0
Categ or ies	4	0	0	0	, O	0	0	0
	5	0	0	0	0	B	0	0
	6	0	0	0	0	0	B	0
	7	0	Ú	0	0	0	0	B

Table 4. cont.

Retween	dimansion	interaction	matriv
DELWEEL	0.0000	Interaction	matrix

		D	imen	sion	2 Ca	tego	ries	3
		1	2	3	4	5	6	7
	1	22	3	0	0	0	0	0
	2	0	0	0	0	0	0	0
	3	0	60	0	A 0	0	0	0
	4	43	0	0	0	0	0	0
Dimension 1	5	11	0	0	0	0	0	0
	6	36	2	0	0 B	0	0	0
Categories	7	0	4	0	0	0	0	0
	8	0	0	0	0	0	9	0
	9	0	0	0	0	0	0	0
	10	3	0	0	0	0	0	0

CMMT Proportions.

Proportion of blank space in total passage .12
Proportion of each category in non-blank material.

Category	Dimension 1	Dimension 2
1	.14	.63
2	.00	.37
3	.33	.00
4	.23	.00
5	.06	.00
6	.21	.00
7	.02	.00
8	.00	
9	.00	
10	.02	

Proportion of exposition in non-blank material .70
Proportion of content development in non-blank material .91
Proportion of exercises in content development .23
Proportion of exposition in content development .77

Table 4. cont.

Proportion	requiring responses in non-blank material	. 28
Proportion material	of mathematics illustration in non-blank	.00
Proportion	of illustration in non-blank material	.00

The CMMT list for passage FP5 showed a varied sequence of developmental exercises interwoven with general explanation, examples, and definitions. The dimension 1 matrix showed a number of interactions among seven categories of the system (24 off-diagonal entries). There were 13 interactions between exposition and messages requiring responses in this passage (13 entries in the shaded region). The dimension 2 matrix revealed interactions only between words and symbols (11 entries in region A). The between dimension matrix showed that except for the examples which were entirely symbols the passage was predominantly words. The CMMT proportions showed that the passage consisted of 90 percent content development of which about 80 percent was exposition. About 30 percent of the messages required responses. There were no illustrations.

The CMMT analysis of passage FP5 may be somewhat misleading in one respect. In the passage the examples were physically isolated from the rest of the passage as shown in the analysis. However, the reader was referred to the various examples throughout the developmental material. Thus, there was really more interaction between examples and other

categories than indicated by the analysis.

Focus Passage FP8. This passage concerned the use of grouping symbols in beginning algebra. The passage consisted of an expository section, in which general explanation and examples were interwoven, followed by numerous exercises on removing parentheses from expressions. The CMMT analysis for the passage is given in Table 5.

Table 5

CMMT Analysis of Focus Passage FP8.

	Lis	t.	
	Dim. 1	Dim. 2	Weight
Exposition -	Heading	1 0 1 - Words 2 - Symbols 1 - Words 1 0 1 - Word, Symbol 0 1 - Words 0 2 1 - Word, Symbol	2 6 8 11 1 7 3 15 5 18 2 7 6
Exercis e s —	Heading	1 0 1 - Words 2 0 - Symbols	1 7 4 12 12 18 6

Table 5. cont.

Dimension 1 interaction matrix.												
		Dimension 1 Categories										
		1	2	3	4	5	6	7	8	9	10	
	1	Q	0	0	0	0	0	0	0	0	0	
	2	0	Q	A 0	0	0	0	0	U	0	0	
	3	0	0	36	2	0	0	0	0	0	ì	
	4	0	0	2	32	0	0	0	0	0	1	
Dimension 1	5	0	0	0	0	3	0	1	0	0	0	
Categories	6	0	0	0	0	0	B	0	0 B	0	0	
	7	0	0	0	0	0	0	29	0	0	0	
	8	0	0	0	0	C	0	0	B	0	0	
	9	0	0	0	0	0	0	0	0	B	0	
	10	0		1	1	1	0	0	0	0	X	

Dimension 2 interaction matrix.

Dimension 2 Categories

		1	2	3	4	5	6	7
	1	48	A 4	0	0	0	0	0
	?	3	36	0	0	0	0	0
Dimension 2	3	0	0	Q	0	0	0	0
Categories	4	0	0	0	6	0 . H	0	0
	5	0	0	0	0	B	0	0
	6	0	0	0	0	0	8	0
	7	0	0	ΰ	0	0	0	8

Table 5. cont.

Between	dimen	SION	intera	action	matrix.

		Dimension 2 Categories									
		1	2	3	4	5	6	7			
	1	0	0	0	0	0	0	0			
	2	0	0	0	0	0	0	0	. `		
	5	9	30	0 1	0	0	0	0			
	4	35	0	0	0	0	0	0			
Dimension 1	5	4	0	0	0	0	0	0			
Categories	6	0	0	0 I	0	0	0	0			
Categories	7	0	30	0	0	0	0	0			
	8	0	0	0	0	0	0	0			
	9	0	0	0	0	0	0	0			
	10	4	0	0	0	0	0	0			

CMMT Proportions.

Proportion of blank space in total passage .41
Proportion of each category in non-blank material.

Category	Dimension 1	Dimension 2
1	.00	.47
2	.00	.53
3	.35	.00
4	.31	.00
5	.04	.00
6	.00	.00
7	. 26	.00
8	.00	
9	.00	
10	. 0 4	
Proportion	of exposition in non-blank material	.67
Proportion	of content development in non-blank ma	terial .67
Proportion	of exercises in content development	.00
Proportion	of exposition in content development	1.00
Proportion	requiring responses in non-blank mater	ial .30
Proportion	of mathematics illustration in non-bla	ınk
material		.00
Proportion	of illustration in non-blank material	.00

The list for passage FP8 revealed an exposition-followed-by-exercises sequence. The exposition consisted of general explanation and examples. The dimension 1 matrix shows the passage contained little interaction between mathematical messages (enly 5 off-diagonal entries for categories 1 - 9). The dimension 2 matrix showed some interaction between words and symbols (7 off-diagonal entries in region A). The between dimension matrix showed only four of the nine mathematical content categories were present with the explanation consisting entirely of words and the exercises consisting entirely of symbols. The CMMT proportions indicated about two-thirds of the passage was exposition and about one-third was comprehension level exercises. The passage was about 47 percent words and about 53 percent symbols with no illustration.

Focus Passage FP11. This passage from second year algebra developed the definition of fractional exponents. The passage began with general and specific explanation leading to the definition. This was followed by some practice exercises with answers which served to complete the development of the concept of fractional exponents. The passage concluded with numerous exercises dealing with changing back and forth between fractional exponent and radical notation and with evaluating numerical expressions containing fractional exponents. The CMMT analysis for the passage is given in Table 6.

Table 6

CMMT Analysis of Focus Passage FP11.

	Lis	t.		
	Dim. 1	<u>Dim. 2</u>		Weight
He ad i	ng ————10	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$		2 9
	Examples 0	2 0		8 8
Exposition —	Examples $ \begin{vmatrix} 0 \\ 3 \\ 0 \end{vmatrix}$	1 0		9 3
Exposition —	_ 3 _ 0	2 0		10 10
	Definition $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$		3 1
lleadi		1 1		8 1
	Direct: ons - 5	0 1		3 4
Developmental _ Exercises	6 0	2 0		3 1
j	Directions - 5	1 2	Word	2 3
Headi		0 1	— Symbol Combinatio n s	3 1 3
Speci Ex pl a	ific anation 0 3	0 2 0		8 4
Head		1 1		3 2 2
	Practice 7	0 2		2 14
	Directions 5	0		2 2 2 2
	Practice 7	0 2		2 14
lixercises —	Directions 5	0		2 2
Exercises ———	Practice 7	0 2		2 16
	Directions 5	1 0		2 2
	Practice 7	2		9
	Directions 5	1 0		2 2 9 3 1 3 3
	Practice 7	2 0		3 1
	<u> </u>		·	

Table 6. cont.

Dimonsion	7	interaction	matrix
Dimension		interaction	marrix

Dimension 1 Categories

		1	2	3	4	5	6	7	8	9	10
	1	3	0	0 A	1	0	0	0	0	0	0
	2	0	Q	0	0	0	0	0	0	0	0
	3	1	0	34.2	0	0	0	0	0	0	1
	4	0	0	0	7	0	0	0	0	0	1
Dimension 1	5	0	0	0	0	8	2	5 I	0	0	0
Categories	6	0	0	0	0	1	4	0	0	0	1
	7	0	0	0	0	4	0	31	0	0	0
	8	0	0	0	0	0	0	0	Q	0	0
	9	0	0	0	0	0	0	0	0	Q	0
	10	0	0	2	0	2	0	0	0	0	3

Dimension 2 interaction matrix.

Dimension 2 Categories

		<u>_</u>			4	5	6	7
	1	40,	11	0	0	0	0	0
	2	10	78	0	0	0	0	0
Dimension 2	3	0	0	9	0	0	0	0
Categories	4	0	0	0	JO,	0	0	0
	5	0	0	0	0) Q	0	0
	6	0	0	0	0	0	Q	0
	7	0	0	0	0	0	0	8

Table 6. cont.

	Betwo	en	dime	nsio	n int	crac	ction	n mat	trix.		
			D	imen	sion	2 Ca	at e go	ries	5		
			1	2	3	4	5	6	7		
		1	3	1	0	0	0	0	0		
		2	0	0	0	0	0	0	0		
		3	18	26	0	0	0	0	0		
		4	8	0	0	0	0	0	0		
,	Dimension 1	5	15	0	0	0	0	0	0		
	Categories	6	0	6	0 F	0	0	0	0		
		7	0	56	0	0	0	0	0		
		8	0	0	0	0	0	0	0		
		9	0	0	0	0	0	0	0		
		10	7	0	0	0	0	0	0		
			CM	MT P	ropor	rtion	ıs.				
	ortion of b la								rial		. 28
_	gory			-	encio			mace		Dimenci	on í

	CMMT Proportions.	
Proportion	of blank space in total passage	.28
Proportion	of each category in non-blank material	
Category		Dimension 2
1	.03	. 37
2	.00	.63
3	. 32	.00
4 5	.06	.00
	.11	.00
6	.04	.00
7	.40	.00
8	.00	
9	.00	
10	.05	
Propo r tion	of exposition in non-blank material	.40
Proportion	of content development in non-blank ma	terial .45
Proportion	of exercises in content development	.10
Proportion	of exposition in content development	.90
Proportion	requiring responses in non-blank mater	ial .55

.00

.00

Proportion of mathematics illustration in non-blank

Proportion of illustration in non-blank material

materia1

The CMMT list for passage FP11 reflected a sequence consisting of exposition, developmental exercises, and comprehension level exercises. The dimension 1 interaction matrix showed there was some interaction among categories (21 off-diagonal entries) of which twelve were interactions between categories 5, 6, and 7 (12 off-diagonal entries in region B). The dimension 2 matrix showed some interaction between words and symbols (21 off-diagonal entries). The between dimension matrix showed that only in the case of examples were both words and symbols used (row 3). The CMMT proportions indicated that the messages were about 45 percent content development of which about 90 percent was exposition and about 10 percent developmental exercises. About 54 percent of the messages required responses. About 37 percent of the messages were words and 63 percent were symbols. were no illustrations.

Focus Passage FP12. This passage from trigonometry concerned the development of functions relating the time a particle moves along a square at a constant rate to the first and second coordinates of the particles. The passage consisted of exposition followed by exercises and applications demanding modifications of the developed functions. The CMMT analysis of the passage is given in Table 7.

Table 7
CMMT Analysis of Focus Passage FP12.

Table 7. cont.

	Dimension 1 interaction matrix.													
				Dime	nsi o :	n 1 (Cate	gori	es					
		1	2	3	4	5	6	7	8	9	10			
	1	R	0	0 A	0	0	0	0	0	0	0			
	2	0	Q	0	0	0	0	0	0	0	0			
	3	0	0	38	1	0	0	0	0	0	0			
	4	0	0	1	45	0	0	0	0	0	1			
Dimension 1	5	0	0	0	0	Q	0	1	0	0	0			
Categories	6	0	0	0	0	0	R	0	0 B	0	0			
	7	0	0	0	0	0	0	9	1	0	0			
	8	0	0	0	0	0	0	0	68	0	0			
		Λ	Λ	^		_	•	•	_ `	_				

Dimension 2 interaction matrix.

10

Dimension 2 Categories

0

		1	2	3	4	5	6	7
	1	91	A 1	0	4	0	0	0
	2	4	14	0	0	0	0	0
Dimension 2	3	0	0	9	0	0 3	0	0
Categories	4	1	3	0	34	0	0	0
	5	0	0	0	0	R	0	0
	6	0	0	0	0	0	Q	0
	7	0	0	0	0	0	0	B

Table 7. cont.

Betwe	en	dime	nsion	in	terac	ctio	n mat	trix
		D	imens	ion	2 Ca	atego	ories	5
		1	2	3	4	5	6	7
	1	0	0	0	0	0	0	0
	2	0	0	0	0	0	0	0
	3	0	12	0	A 36	0	0	0
	4	47	0	0	0	0	0	0
Dimension 1	5	1	0	0	0	0	0	0
Categories	6	0	0	0	0	0	0	0
	7	4	6	O	B 0	0	0	0
	8	39	0	0	22	0	0	0
	9	0	0	0	0	0	0	0
	10	6	0	0	0	0	0	0

CMMT Proportions.

Proportion of blank space in total passage .11
Proportion of each category in non-blank material

Category	Dimension 1	Dimension 2
1	.00	. 56
2	.00	.11
3	. 28	.00
4	.27	.34
5	.01	.00
6	.00	.00
7	. 06	.00
8	.35	
9	.00	
10	.03	*******

Proportion of exposition in non-blank material .56
Proportion of content development in non-blank material .56
Proportion of exercises in content development .00
Proportion of exposition in content development 1.00
Proportion requiring responses in non-blank material .41
Proportion of mathematics illustration in non-blank material .34
Proportion of illustration in non-blank material .34

The CMMT list for passage FP12 demonstrated an exposition-followed-by-exercises sequencing. The exposition consisted of general explanation which was followed by some examples which were followed by more explanation. The exercises consisted of comprehension level exercises followed by some application level exercises. The dimension 1 interaction matrix showed that there were few interactions (only 7 off-diagonal interactions). There were relatively more interactions on dimension 2 (13 off-diagonal entries) with eight interactions between written material and illustration (8 entries in the shaded regions). The between dimension interaction matrix showed that the examples consisted of symbols and illustration (row 3) while the general explanation consisted of words. Exercises and problems were presented in all three representational modes. The CMMT proportions demonstrated that the passage was about 55 percent exposition and 41 percent exercises. The representation was 56 percent words, 10 percent symbols, and 34 percent illustration.

Descriptive Results for the Contrived Passages

To illustrate how CMMT analysis can be used to compare
and contrast text passages, six pairs of contrived passages
were written following contrasting organizational plans.
These passages are included in Appendix D. In this section,

a description of each pair of contrived passages is given. Each of these descriptions is followed by the CMMT analyses of the passages in the pair described. The manner in which these CMMT analyses reflect the planned organization of the passages in the pair is discussed.

Contrived Passages CP2a and CP2b. These contrived passages were based on focus passage FP2, which was a grade five treatment of circumference. Contrived passage CP2a was constructed to contain a high proportion of developmental exercises and a low proportion of explanation. Exercises were integrated with expository material. Contrived passage CP2b was constructed to contain a high proportion of explanation, no developmental exercises, and separation of exposition from exercises. An attempt was made to hold dimension 2 constant over both passages.

The CMMT analyses of these passages are given in Table 8.

Table 8

CMMT Analyses of Contrived Passages CP2a and CP2b.

,					_				
118	t for]]]	st for CP2b.				
		Din. 2	weight		Dim. 1 Dim. 2	Weight			
Heading	10	1 0	1 3	Heading	- 10 1 0 0	1 3			
	6	1	3		4 1	3			
	6	U 3	3		0 0	3 \$			
	0	0	1		0 0	1			
	1 6	1	3 15		1 1	3 11			
	0	0	2		3 1	6			
	0	0 5	1		0 0	1 3			
	0	0	2		0 0	2			
	6 0	5 0	3 2		3 5	3 2			
Exposition	6	5	3		3 5	3			
	0 5	() 1	6 7		0 0	6 9			
and	U	O	7	Exposition	0 0	8			
Developmental	0 0	7 0	19		3 7	13 6			
Excresses	b	1	14		3 1	15			
	0	0	2		0 0 2 1	1 9			
	1	1	1		1 1	4			
	0	2	1		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 5			
	0	0	2		0 0	1			
	6	1	5 4		2 1 2	5 4			
	0	0	11		0 0	11			
	[6	1 ()	13		1 0 0	13			
Heading	10 0	1	1 7	Heading	- 10 1	1			
	ſŝ	1	3 3		$\begin{bmatrix} 5 & 1 \\ 0 & 0 \end{bmatrix}$	12			
	0 7	0	1		7 7	18			
	Ú	3 0	3		0 0 5 1	7 3			
	0	3	3 3		0 0	1			
	7	0 2	ì		0 0	3 3			
	0 7	U 2	1		7 3	3			
	ΰ	0	1		7 3	3 3			
	8 0	1 0	4		0 0	3			
	8	3	4		7 3	3 3			
Exercises	0 8	0 1	4 7	Exercises	7 2	1 1			
ind	0	0	1	and	7 2	1			
Problems	8 0	1 0	9 3	Problems	0 7 2	1 1			
117010	8	1	11	TTODICHS	0 0	1			
	0 8	0	t 6		7 2	1			
	U	U	5		8 1	4			
	0	1 41	2 9		8 3	4 4			
	9	1	9		0 0	4			
•	9	1) 3	5		8 1	7 1			
	0	ti	1		8 1	6			
	8	1 ?	12		0 0	2			
	8	t	i		0 0	11 6 7			
					8 5	7 8			
					į v	v			

Table 8. cont.

bimension I interaction matrix for CP2a.

Directsion 2 interaction matrix for CP2a

1 2 3 4 5 6 7

1 1 1 1 A 3 4 0 2 0 1

2 4 0 0 0 0 0 0

3 3 1 15 0 0 0 0

4 0 0 0 0 0 0

5 2 0 0 0 13 0 0

C 0 0 0 0 0 0 0

7 1 0 0 0 0 0 0

Dimension 2 Categories

Dimension 1 interaction matrix for CP2b

Dimension 2 interaction matrix for 6.2b

Dimension 2
(ategories | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

1 | 100 | A | 2 | 3 | 0 | 2 | 0 | 2 |

2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |

4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |

6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

7 | 2 | 0 | 0 | 0 | 0 | 0 | 29

Dimension 2 Categories

Table 8. cont.

CMMI Proportions	Passar	te CP2a	Passage (P2b		
Proportion of blank spice in total pissage		3.2		36	
frequestion of each citizery in non-blank material	Din 1	Dim 2	Dim 1	Dim 2	
1 2 3 4 4 5 6 7 8 9	.04 .04 .00 .00 .05 .45 .03 .24 .13	.64 04 09 .00 07 00 .09	04 09 29 16 03 00 .18 .20 .00	61 05 11 00 08 .00	
Preportion of exposition in non-blank material dioperty of content development in non-blank material Proportion of exercises in content development from ition of exposition in content development discontion requiring responses in non-blank material broportion of mathematics illustration in non-blank material discontion of illustration in non-blank material	08 53 .84 16 .91 17 26		.59 .59 .00 1 00 40 .19		

The organizations of contrived passages CP2a and CP2b were reflected by the CMMT analyses of the passages. The CMMT lists indicated that essentially the same sequence was used for both passages except that developmental exercises were used in passage CP2a where explanation was used in passage CP2b. The lists also revealed that similar sequences of dimension 2 categories are found in both passages.

The dimension 1 interaction matrices revealed that passage CP2a contained seven interactions between exposition and exercises and only one interaction between exposition categories, while passage CP2b contained one interaction between exposition and exercises and eight interactions among exposition categories. These interaction differences reflected the planned degree of integration of exposition and exercises in the two passages. The dimension 2 interaction matrices showed a high degree of similarity between the two passages in the interaction of categories in the representational mode as planned.

The CMMT proportions reflected the planned differences in quantity of explanation and exercises between the two passages. Passage CP2a contained less than 10 percent exposition while passage CP2b contained about 60 percent exposition. About 90 percent of the messages in passage CP2a required responses while only about 40 percent of

passage CP2b required responses. The dimension 2 propor tions were approximately the same for both passages.

Contrived Passages CP4a and CP4b. These passages were based on focus passage FP4 which was a sixth grade passage on the use of equations and inequalities to solve verbal problems. Contrived Massage CP4a was constructed to contain a high proportion of examples and a low proportion of general explanation while contrived passage CP4b was constructed to contain no examples and a high proportion of general explanation. Passage CP4a utilized nonmathematical motivational illustrations and passage CP4b utilized illustrations with mathematical content. The CMMT analyses of these passages are given in Table 9.

Table 9

CMMT Analyses of Contrived Passages CP4a and CP4b.

List for	CP4a.	List for CP4b.
## Dim. 1 ## Heading 10 0	Dim. 2 Weigh	Heading
Applications and	2	Heading ————————————————————————————————————

Table 9. cont.

Di ension l'interaction matrix for (P4a)

Dimension I tategories

		1	-	3	4	5	t	7	8	9	10
	1	18	o	U	0	0	0	0	0	0	0
	2	0	, 8′	U	A ^O	0	0	U	0	U	0
	3	U	U	उभ	Ûυ	0	0	0	0	U	1
bransish I	1	0	0	ij	ેધ	0	6	J	0	0	U
ate got as	ς	U	O	0	υ	į	U	0	1	0	0
	t.	U	U	0	υ	ú	¥	U	U B	U	0
	7	0	0	0	U	υ	υ	`ų	Ü	U	0
	ਰ	U	0	Ú	υ	U	0	U	N	U	5
	9	Û	o	0	Û	U	U	U	0	0	0
	10	U	U	ı	U	1	0	6	4	U	3/2

Dimens in 2 interaction matrix for CP4a

Dimension 2 Categories

		1	2	5	1	5	6	-
	i	03	A 6	Ü	υ	0	5	0
	2	6	· v	υ	0	0	0	0
Tibension 2	3	0	0	ų	0	0	0	U
itegories	4	υ	0	0	Ų	Ú	0	U
, , , , , , , , , , , , , , , , , , ,	,	υ	0	ø	U	ų į	B U	U
	t,	4	υ	0	U	U	`32	0
	7	0	0	0	O	1)	0	Q
	,		,					

Dimension 1 interaction matrix for CP4b

Pimension i Categories

Dimension 2 interaction matrix for CP4b.

Dimension 2 Lategories

Dimension 2 (ategories

				•	J	U	,
1	04	4 5	0	0	4	0	1
2	5	`\u	0	0	0	0	0
3	0	0	Q	0	0	0	0
4	O	0	υ	` Q	0 .	0	0
5	4	0	0	0	311	Ü	U
6	0	0	0	0	0	E	0
7	0	0	0	0	Ð	O	M

Table 9. cont.

CMMI Proportions	Passa	ge CP4a	Passage CP4b		
Proportion of blank space in total passage		. 33			
Proportion of each category in non-blank material.	Dim 1	Dim. 2	Dim. 1	Dim. 2	
1 2 3 4 5 6 7 8 9	.00 .00 .23 .00 .03 .00 .00 .31 .00	54 .04 .00 .00 .00 .00 .41 .00	.00 .00 .00 .22 .03 .00 .00 .73 .00	55 .04 .00 .00 .33 .00 .08	
Proportion of exposition in non-blank material	. 23		. 22		
Proportion of content development in non-blank material	.23		. 22		
Proportion of exercises in content development	.00		.00		
Proportion of exposition in content development	1.00		1.00		
Proportion requiring responses in non-blank material	. 34		. 76		
Proportion of mathematics illustration in non-blank material	.00		.42		
Proportion of illustration in non-blank material	.41		.42		

The CMMT lists for contrived passages CP4a and CP4b revealed the similar sequential nature of the two passages. These lists were almost identical with dimension 1 categories 3 and 10 and dimension 2 category 6 in passage CP4a replaced by dimension 1 categories 4 and 8 and dimension 2 categories 5 and 7 in passage CP4b. The interaction matrices revealed little difference between the two passages on either dimension with the exception of nine interactions between the exercises and motivational illustrations on dimension 1 in passage CP4a.

The major differences between these passages were reflected by the CMMT proportions. Passage CP4a contained about 22 percent examples and no general explanation, while passage CP4b contained no examples and about 22 percent general explanation. The dimension 1 proportions also showed that in passage CP4a about 33 percent of the messages required responses, while in passage CP4b about 75 percent of the messages required responses. This difference was a result of the fact that the illustrations were of a non-mathematical nature in passage CP4a, but contained mathematical information which could be used in the solution of the problems in passage CP4b. The dimension 2 proportions revealed that word and symbol content were nearly the same for both passages. Both passages consisted of about 40 percent illustration, but in

passage CP4a these illustrations were motivational while in passage CP4b 33 percent were illustrations of physical situations and about 8 percent were tables.

Contrived Passages CP6a and CP6b. These passages were based on focus passage FP6 which was a junior high treatment of the probability of the event A or B where events A and B have given probabilities. Dimension 1 categories were held constant in the construction of these passages. Passage CP6a was constructed to contain high proportions of symbols and illustrations and low proportions of words. Passage CP6b was constructed to contain high proportions of words and few symbols or illustrations. The CMMT analyses for these contrived passages is given in Table 10.

Table 10

CMMT Analyses of Contrived Passages CP6a and CP6b.

Heading	
Control Cont	ight
Control	1 3
Question 6 2 1 Definition 1 1 1 1 1 1 1 1 1	12 1 3 - 2 2
Definition 1 1 1 6 Generalization 2 1 Definition 1 1 1 Centralization 2 1 Definition 1 1 1 Centralization 2 1 Definition 1 1 1 Centralization 2 1 Heading 10 1 1 Stample	9 6 1 48 5 3 8
Trimple 0	3 3 4 9 1
trimple	3 2 4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16 13 11 11
$\begin{bmatrix} 0 & 0 \\ 3 & 1 \end{bmatrix}$	6
Explanation	10 2 15 1 3 3 3 3 3
3 0 0	1
Definition $\begin{bmatrix} 1 & 1 \\ 1 & \end{bmatrix}$ $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	1
Generalization \[\begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 3 & 1 \\ 0 & 0 & 3 \\ \end{pmatrix} \]	4
8 5 Illustration 16 8 2 1	
$\begin{pmatrix} 6 & 0 \\ 5 & 1 \end{pmatrix}$ words, Symbols $\begin{pmatrix} 8 \\ 2 \end{pmatrix}$	
8 5 5 5 8 5 11 11	
8 2 8 1 8 19 0 0 19	
8 5	
$\begin{bmatrix} 8 & 2 \\ 0 & 0 \\ 8 & 1 \end{bmatrix} $ Words, Symbols 10 4	

Table 10. cont.

Dimension 1 interaction matrix for CP6a. Dimension 1 interaction matrix for CP6b. Dimension 1 Categories Dimension 1 Categories 1 2 3 4 5 6 7 8 9 10 2 1 17 0 1 A 0 0 0 0 0 1 Dimension 1 Dimension 1 Categories Categories 000000000000 Dimension 2 anteraction matrix for CP6a Dimension 2 interaction matrix for CP6b. Dimension 2 Categories Dimension 2 Categories 0 Dimension 2 Dimension 2 0 0 0 4 0 0 Citégories Categories 1

Table 10. cont.

Between Dime	1.510	n in	terae	- (t 101	ı ma	trix	for	- CP6a	Between Dime	n < 10	n int	terac	tion	ı mat	rıx	101	crob
		Dim	ensi.	on 2	(at	egor	ies				Dime	91151	on 2	Cati	gora	es	
		1	2	3	4	5	6	7			1	2	3	4	τ	b	7
Discussion 1 Categories	1	8	2	0	0	0	0	0	Dimension 1 Categories	1	10	U	υ	0	9	U	0
	2	7	6	U	. 0	U	O	0		2	20	O	0	0	0	0	0
	3	36	18	0	0	10	U	()		3	91	i	U	0	0	U	0
	4	10	0	0	o	0	0	0		4	10	0	0	0	υ	0	0
	5	0	0	O	O	υ	0	0		5	0	U	0	0	0	0	0
	b	0	2	0	0	U	υ	0		b	3	C	0	0	0	U	0
	7	U	0	υ	υ	U	O	U		7	0	0	0	0	0	ij	0
	8	16	27	U	O	34	0	U		8	98	0	0	0	0	O	0
	9	O	U	O	O	U	0	U		9	0	0	U	0	0	0	0
	10	2	0	0	0	U	0	0		10	2	U	0	U	0	υ	U

CMMI Proportions	Passa	де СРба	Passage CP6b		
Proportion of blank space in total passage		. 39		30	
Proportion of each category in non-blank material	Dim 1	D1m. 2	Dim. 1	Dim. 2	
1 2 3 4 5 6 7 8 9	06 07 .36 06 00 01 00 .41 00	.44 31 .00 .00 .25 .00	.04 08 .39 .04 .00 .01 .00 .41 .00	.99	
Proportion of exposition in non-blank material Proportion of content development in non-blank material Proportion of exercises in content development Proportion of exposition in content development Proportion regularing responses in non-blank material Proportion of mathematics illustration in non-blank material Proportion of illustration in non-blank material	.55 .56 02 .98 .44 25		.56 .58 .02 .98 .43 .00		

The CMMT lists for contrived passages CP6a and CP6b demonstrated that the two passages followed almost identical sequences on dimension 1. The lists showed that passage CP6a consisted of combinations of words, symbols, and illustrations on dimension 2, while passage CP6b was almost entirely words.

The interaction matrices for the two passages supported the contention that the passages are similar sequentially on dimension 1. The larger entries on the diagonal of the dimension 1 matrix for passage CP6b indicated that the passage with high word representation took up more area than the passage in which symbols were used. The dimension 2 interaction matrices demonstrated the differences between the representational natures of the two passages. In passage CP6b there were only two interactions between words and symbols. The between dimension interaction matrices also showed these representational differences between the two passages.

The CMMT proportions for the two passages demonstrated that the passages are very similar on dimension 1. On dimension 2, passage CP6a was about 44 percent words, 31 percent symbols, and 25 percent illustration. Passage CP6b was over 99 percent words.

Contrived Passages CP7a and CP7b. In these passages an attempt was made to vary the dimension 1 sequence and hold all other aspects of the CMMT analyses constant. The passages were based on focus passage FP7 which was concerned with the development of some consequences of the axioms of affine geometry. In passage CP7a proofs preceded statements of the theorems, resulting in a series of 4,2 sequences. In passage CP7b statements of the theorems preceded the proofs, resulting in a series of 2,4 sequences. The CMMT analyses of these passages are given in Table 11.

	list	for CP7a			List	for (P7b,	
	Dim 1	Dam 2	Weight		Dim 1	D1m 2	beight
He iding	10	1 kords 0	2 2	Heading	- 10 0	l - Words O	2
Lyp1 mation	1 4	1 2 11 11 11 12 13 14 15 15 15 15 15 15 15	10 4 on 1	Generalization	2 0 1	1 - Words 0 3 7	\$ 3
Typiumacion	4 4	1 2 Words, Symt	6	Explanation	1 4 4 4	1 111ustratio	1
Concralization	- 2	0 1 Words	1 4		4	2]	ì S
Explanation	{	3] Illustration 3 Words	on, 10	Generalization Explanation	0 2 4 4	1 - Words 3 Illustratio	
Generalization	Î 4	l Words	10	Generalization	0	l J Words 0 1 - Words	11
Explanation	4 4	I Illustration 2 Words, Symbol 1	on, 7 ools 2 10	Explanation		3 Illustratio 2 Words, Symb	,
Generalization	- 2	0 1 - Words 3	3 4 16	Generalization	0 2	1 J 0 1	10 3 5
lx, landtion	4 4 4 4 4 4	1 Hilustratic holds, Synt		Explanation	0 4 4 4 4	O 3 Illustratio	11
	4 4	1 2 1	2 1 5	Heading	10	2 1 1 - Words	1 13 1 3
Generalization	2	0 1 Words	6		5 0	0	2 2
Heading -	- 10 0 5 0	1 Words 0 1 0	2 1 3 2 2	Problems	9 0 9	1 0 1 0 Words	6 2 10 2 6
Problems	9 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 1 0 1 0	10 2 6 2		0 9 0	0 1 0	2 6 2
	0	1 0	6 2				

Table 11. cont.

Dimension 1 interaction matrix for (P7a.

Dimension 1 (ategories

1 2 3 4 5 6 7 8 9 10 800000000 01003000001 3 0 0 0 0 0 0 0 0 0 4 0 4 0 120 0 0 0 0 0 0 Dimension 1 Categories 7 0 0 0 0 0 0 0 0 0 0 0000000 0 0 0 0 0 0 0 0 22 0

Dimension 2 interaction matrix for CP7a.

Citegories

Dimension 2 Categories

bracuston 2 0 0 0 0 0 0 0 0 0 0 Dimension 1 interaction matrix for CP7b.

Dimension 1 Categories

1 2 3 4 5 6 7 8 9 10 000000000 Dimension 1 (ategories 0 0 0 0 0 7 0

Dimension 2 interaction matrix for CP7b.

Dimension 2

Categories

Dimension 2 Categories

1 2 3 4 5 6 7 109 A 5 0 0 0 0 υ 0

Table 11. cont.

o tween Dine	H 5 1 0	n 10	ter	ctio	11 m z	t 1 1 x	101	CP7a	Between Dame	11510	n int		ction	, ma,	- trix	101	(P?b)
		D 1 m	cns i	on 2	Cito	gor	165				Dime	. 115.1	on 2	(at	got	105	
		1	2	3	1	5	6	7			1	2	3	4	ς,	6	7
	1	U	υ	U	U	U	o	v		1	0	O	0	0	0	U	U
	2	18	U	u	U	U	U	υ		2	18	U	U,	0	U	0	U
	3	U	ι	U	Α U	U	U	U		3	U	0	U	Ò	υ	O	U
	4	6.8	lυ	16	U	U	U	U		4	68	7	40	0	U	U	U
Practision 1	5	7	U	U	U	υ	Ü	υ	Dimension 1	5	2	U	U	0	υ	U	υ
Categories	Ú	U	ø	(1	ų.	U	υ	U	Categories	Ú	U	U	0	0	U	U	U
	7	U	U	U	B U	ø	U	U		7	0	υ	o '	ů	0	U	U
	8	U	U	Ü	U	U	U	U		8	U	Ĺ	0	0	υ	0	U
	9	28	o	4)	U	U	U	U		9	28	0	U	O	υ	9	U
	10	3	0	- ()	U	0	U	υ		10	3	0	U	O	0	0	U

(MEA Proportions	Passaj	ge CP7a	Passa	ge CP7b
Proportion of blank space in total passage		14		. 14
Proportion of each category in non-blank miterial	ը ող <u>1</u>	Dim 2	<u>D110</u> _1	<u>Dim. 2</u>
1 2 3 4 5 6 7 8 9	00 10 00 .71 .01 00 00 00	68 .06 .26 .00 .00 .00 .00	.00 .10 .00 .71 .01 .00 .00 .00	.69
Proportion of exposition in non-blank material Proportion of content development in non-blank material Proportion of exercises in content development froportion of exposition in content development Proportion requiring responses in non-blank material Proportion of mathematics illustration in non-blank material Proportion of illustration in non-blank material	82 .82 00 1.00 17 .26		.81 81 .00 1.00 .17 .27	

The CMMT lists for contrived passages CP7a and CP7b showed the sequential nature of the two passages was as planned. The matrices and the CMMT proportions for both passages were very similar in each case. This demonstrates that the sequential natures of these passages were different but other aspects of the presentation were the same.

Contrived Passages CP9a and CP9b. These passages were contrived from focus passage FP9 which concerned the development of the definitions of cartesian products and relations at the high school level. Passage CP9a was constructed to contain high proportions of definition, generalization, and general explanation and a low proportion of examples. Passage CP9b was constructed to contain low proportions of definition, generalization, and general explanation and a high proportion of examples. In passage CP9a, exercises were integrated with exposition. In passage CP9b, all exercises followed the exposition.

Dimension 2 was held constant over both passages. The CMMT analyses for these passages is given in Table 12.

Table 12
CMMT Analyses of Contrived Passages CP9a and CP9b.

Table 12. cont.

Dimension 1 interaction matrix for CP9a

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 1
 8
 0
 3
 0
 0
 0
 1
 0
 0
 0

 2
 0
 8
 0
 0
 0
 0
 0
 0
 0
 0

 3
 4
 0
 8
 8
 0
 1
 1
 1
 0
 0
 0

 4
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 5
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 6
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 7
 0
 0
 3
 0
 1
 0
 3
 0
 0

Dimension 1 Categories

Unitersion I

bransion 2 interaction matrix for CP9a

Dimension 2 Categories

8 0 0 0 0 0 0 0 0 0 8 0

1 2 5 4 5 6 7

1 8 2 22 0 0 0 0 0 0

2 22 30 0 0 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0

Dimension 1 interaction matrix for CP9b

Dimension 1 (ategories 1 2 3 4 5 6 7 8 9 10

Dimension 1

Pimension 2 interaction matrix for CP9b

Dimension 2 Categories

Dimension 2
Categories

Table 12. cont.

Between Dimension interaction matrix for CP9b Between Dimension interaction matrix for CP9a Dimension 2 Categories Dimension 2 Categories 1 2 3 4 5 6 7 1 2 3 4 5 6 7 0 0 0 0 1 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Dimension 1 Dimension 1 5 10 0 0 0 10 Categories Categories 6 14 2 0 0 0 0 0 0 10 22 19 0 0 0 0 0

CMMI Proportions	Passa	ge CP9a	Passa	ge CP9b
Proportion of blank space in total passage		. 33		. 28
Proportion of each category in non-blank material.	<u> 51m. 1</u>	Dim. 2	<u>Dim. 1</u>	Dim. 2
1 2 3 4 5 6 7 8 3	.07 .00 .54 .00 .06 .07 .24 .00	.63 .37 .00 .00 .00 .00	.10 .02 .00 .43 .07 11 .26 .00	.73 .27 .00 .00 .00 .00
Proportion of exposition in non-blank material	.61		. 55	
Proportion of content development in non-blank material	.69		.65	
Proportion of exercises in content development	10		.16	
Proportion of exposition in content development	.90		.84	
Proportion requiring responses in non-blank material	.37		.43	
Proportion of mathematics illustration in non-blank material	.00		.00	
Proportion of illustration in non-blank material	.00		.00	

The CMMT lists for contrived passages CP9a and CP9b revealed that exercises were interspersed throughout passage CP9a while they all came at the end of passage CP9b. The lists showed that passage CP9a was high in example content while passage CP9b was high in other types of exposition. The CMMT lists for both passages showed a mixture of word and symbol representation with no illustration.

The dimension 1 interaction matrices showed that passage CP9a contained seven interactions between exposition and exercises while passage CP9b contained only one such interaction. This reflected the plan to integrate exercises with exposition in passage CP9b. The dimension 2 interaction matrices showed the passages were somewhat similar on dimension 2. Only regions A in these two matrices contained entries. Passage CP9a appeared to have more interactions between words and symbols than passage CP9b. This resulted from the integration of the exercises with the exposition in passage CP9a. Regions A of the between dimension matrices also revealed the planned differences in types of exposition between the two passages.

The CMMT proportions showed that passage CP9a contained about 61 percent exposition while passage CP9b contained about 55 percent exposition. Passage CP9a was over 50 percent examples while the exposition in passage CP9b contained no examples. Passage CP9b had 43 percent of its

messages requiring responses while passage CP9a had 37 percent of its messages requiring responses. This slight difference resulted from the fact that there was more space devoted to exposition in passage CP9b and not to an absolute difference in the quantities of exercises.

Contrived Passages CP10a and CP10b. These passages were based on focus passage FP10 which was a development of the concept of the mean proportional and the Pythagorean Theorem. Contrived passage CP10a was constructed to contain a high proportion of exposition and a low proportion of exercises and problems. In this passage illustrations were grouped separate from the written text. Contrived passage CP10b was constructed to contain a low proportion of exposition and a high proportion of exercises and problems. Illustrations were integrated with written text. Other aspects were held constant between the two passages. The CMMT analyses of these passages is given in Table 13.

Table 13
CMMT Analyses of Contrived Passages CP10a and CP10b.

Table 13. cont.

Dimension I interaction matrix for (PlOa

Dimension 1 (ategories

Dimension 1 categories

Dimension 2

Dimension 2 interaction matrix for CP10a.

Dimension 2 Categories

1 2 3 4 5 6 7

1 112 A 19 1 0 0 0 0

2 18 23 1 0 0 0 0

3 1 0 118 0 0 0 0

4 0 0 0 0 0 0 0

5 0 0 0 0 0 8 0

7 0 0 0 0 0 0 0

Dimension 1 interaction matrix for CP105

Dimension 1 Categories

Dimension 2 interaction matrix for CP10b.

Dimension 2

Categories

Dimension 2 Categorie

1 2 3 4 5 6 7

1 A A I C 6 0 0 0 0

2 8 N 4 0 0 0 0

3 8 2 6 0 0 0 0 0

4 0 0 0 8 0 0 0

5 0 0 0 0 0 8 0 0

6 0 0 0 0 0 0 8 0

7 0 0 0 0 0 0 0 0

Table 13. cont.

Between Dimension interaction matrix for (PlUa Between Dimension interaction matrix for (PlOb. Dimension 2 Categories Dimension 2 (ategories 1 2 3 4 5 6 7 1 2 3 4 5 6 7 4 1 0 0 0 0 0 5 3 0 0 2 16 0 0 3 12 14 0 83 22 84 0 4 13 11 22 0 Dimension 1 0 0 0 0 5 Categories Categories 0 0 0 0 0 0 0 0 B 6 7 13 5 36 7 5 5 0 9 0 0 0 0 0 0

(MMI Proportions	Passa	ge CP10a	Passa	ge CP100
Proportion of blank space in total passage		. 17		3 7
Proportion of each category in non-blank material.	Dim 1	Dim. 2	91m. 1	D110. 2
1 2 3 4 5 6 7 8 9	.02 .05 .09 .65 .00 .00 .18 .00	. 45 14 . 41 . 00 . 00 . 00 . 00	.04 .09 .04 .25 .00 .05 .20 .30	. 49 .12 .39 .00 .00
Proportion of exposition in non-blank material	. 81		. 42	
Proportion of content development in non-blank material	81		.42	
Proportion of exercises in content development	.00		.00	
Proportion of exposition in content development	1.00		1.00	
froportion requiring responses in non-blank material	.18		5.5	
Proportion of mathematics illustration in non-blank material	.41		39	
Proportion of illustration in non-blank material	.41		. 39	

The CMMT lists for contrived passages CP10a and CP10b demonstrated that passage CP10a contained more exposition than CP10b and that CP10a contained fewer exercises and problems than CP10b. The lists also revealed that illustrations were segregated from the written material in passage CP10a while they were interspersed throughout the written material in passage CP10b.

The dimension 1 interaction matrices also showed the planned differences in quantities of exposition and exercises between the two passages. Region A of the passage CP10a matrix contained 233 entries while region A of the passage CP10b matrix contained 76 entries. Region B of the passage CP10a matrix contained 53 entries all for category 7 while region B of the passage CP10b matrix contained 111 entries of types 7, 8 and 9. The difference between the passages in the placement of the illustrations was shown by the dimension 2 matrices. Passage CP10a contained three interactions between written material and illustration while passage CP10b contained 20 such interactions. The between dimension matrices also showed that passage CP10a contained much more explanation than passage CP10b while passage CP10b contained more and various types of exercises and problems.

The CMMT proportions showed that passage CP10a consisted of 80 percent exposition while passage CP10b consisted of 42 percent exposition. Passage CP10a contained

about 18 percent messages requiring responses while passage CP10b contained about 55 percent of such messages. Each passage contained about 40 percent illustration.

Statistical Results

The statistical results of the validity study concern the problem of the number of passages to sample from a section of a textbook, correlational comparisons of passages within and between textbooks, and the identification of presentation variables on which textbooks differ. These results are discussed in this section.

The Sampling Problem. In order to determine if CMMT analyses of entire sections of textbooks can be closely approximated by sampling a small number of CMMT sample passages, successive correlations were made between each entire experimental section and increasingly larger random samples of passages from the section. For these correlations 25 items of data readily available from the CMMT analyses of the passages were used. The items of data and sampling procedure used were detailed in Chapter 4.

Purdue Statistical Program BMD3D (Dixon, 1970) was used to compute the correlations for the sampling problem. These correlations are given in Table 14.

Correlations between Increasing Samples and Entire Experimental Sections. Table 14

				Number	of	Passages	in Sample	ıle		
	'	1	2	3	₽	S	9	7	∞	9 or more
	ES1	98.	. 64	86.	86.	86.	.97	.97	86.	> .98
	ES2	.81	68.	.91	96.	.97	86.	66.	66.	1.00
	ES3	.97	.95	76.	.97	66.	66.	66.	66.	66.<
	ES4	.81	.93	.94	.98	96.	66.	66.	66.	66.<
Experimental	ES5	.94	96.	86.	96.	66.	66.	66.	6 .	1.00
Section	ES6	66.	86.	66.	66.	66.	1.00			
	ES7	.94	66.	86.	66.	66.	1.00			
	ES8	.92	96.	86.	66.	66.	66.	66.	66.	66.<
	ES9	68.	.91	66.	1.00					
	ES10	.93	96.	.92	86.	1.00				
•	ES11	86.	86.	86.	66.	66.	66.	66.	66.	66.<
	ES12	.94	86.	66.	66.	66.	66.	1.00		

The correlations given in Table 14 revealed that for all experimental sections high correlations were obtained by sampling only one, two, or three passages. The number of passages it was necessary to sample in order to reach and maintain correlations of .90 and .95 between the samples and their sections is given in Table 15.

Table 15

Number of Passages Necessary to Sample to Reach and Maintain

Correlations of .90 and .95 with Entire Sections.

Experimental Section	Total Number of Passages in Section	Sample Size Required for Correlations > .90	Sample Size Required for Correlations > .95
ES1	13	3	3
ES2	9	3	4
ES3	11	1	1
LS4	11	2	4
1:S5	9	1	2
ES6	6	1	1
ĿS7	6	1	2
ES8	11	1	2
ES9	4	2	3
ES10	5	1	2
ES11	10	1	1
ES12	7	1	,

The results given in Table 15 showed that fairly high stable correlations were obtained between the CMMT analyses of entire sections and a sample of only one or two passages. In order to determine more precisely what these correlations mean, further correlational analysis was carried out. The results of this analysis are discussed next.

Correlational Comparisons of Passages. Correlational analysis was used to determine if the CMMT analyses of passages sampled within the same textbook were more closely related than passages sampled from different textbooks. An average within-textbook correlation for each textbook studied was determined by computing the average correlation of all pairs of passages from each experimental section using the same 25 items of CMMT data used in the sampling problem. The average between-textbook correlation was computed by randomly selecting one passage from each of the twelve experimental sections and computing the average correlation between all possible pairs of these passages. The correlations were computed using Purdue Statistical Program BMD3D (Dixon, 1970). Each average correlation was determined by taking the Z transformations of the correlations, computing the mean of these transformed scores, and then taking the inverse Z transformation of the mean (Hays, 1963, p. 608). These average correlations are given in Table 16.

Table 16

Average Correlation of Passages within and between Textbooks.

Average within-Bo	ook Correlations
Experimental Section	Average Correlations (\overline{r}_i)
ES1	.66
CS2	.61
ES3	. 6 4
ES4	.71
ES5	.88
ES6	.95
ES7	.90
ES8	.85
ES9	.78
ES10	. 69
ES11	.93
ES12	.75
Average between-Book Correl	ation .53 (\overline{r}_h)

The results given in Table 16 indicated that for passages sampled within textbooks, average correlations were consistently higher than for passages sampled from different textbooks. To investigate the significance of this apparent difference a number of statistical tests were performed. First, a λ^2 test suggested by Ostle (1963, p. 227) was used to test for differences among the twelve average withintextbook correlations. The result of this test is given in the first line of Table 17. Next, the test was also used to determine if each average within-textbook correlation differed

significantly from the average between-textbook correlation. The results of these tests are also given in Table 17.

Table 17 Results of λ^2 Tests for Comparing Average Correlations between Textbooks.

Hypotheses	df	Observed λ ²	Probability Level
$H_0: \overline{r_1} = \cdots = \overline{r_{12}}$	11	83.89	p < .01
$H_0: \overline{r_1} = \overline{r_b}$	1	2.07	p < .25
$II_0: \overline{r_2} = \overline{r_b}$	1	.65	p > .25
$li_0: \overline{r_3} = \overline{r_b}$	1	1.56	p < .25
$II_0: \overline{r_4} = \overline{r_b}$	1	4.14	p < .05
$II_0: \overline{r_5} = \overline{r_b}$	1	28.79	p < .001
$II_0: \overline{r_6} = \overline{r_b}$	1	70.72	p < .001
$II_0: \overline{r_7} = \overline{r_b}$	1	35.62	p < .001
$II_0: \overline{r_8} = \overline{r_b}$	1	20.76	p < .001
$h_0: \overline{r_9} = \overline{r_b}$	1	9.86	p < .01
$H_c: \overline{r_{10}} = \overline{r_b}$	1	3.32	p < .25
l_{i_0} : $\overline{r_{i_1}} = \overline{r_{b}}$	1	52.66	p < .001
$H_0: \overline{r_{12}} = \overline{r_b}$	1	7.17	p < .01

 $[\]overline{r_i}$ = average within-book correlation for book i, i = 1, 12.

$$\lambda_{.001}^{2}(11) = 31.264$$

$$\lambda_{.2}^{2}$$
 (1) = 1.32330 $\lambda_{.05}^{2}$ (1) = 3.84146

$$)^{2}_{0.5}$$
 (1) = 3.84146

$$\lambda_{.01}^{2}$$
 (1) = 6.63490 $\lambda_{.001}^{2}$ (1) = 10.828

$$\lambda^2_{0.01}(1) = 10.828$$

 $[\]overline{r_b}$ = average between-book correlation.

Table 17 indicates that the average within-textbook correlations differed at the 01 probability level. This suggests that some textbooks investigated contained more highly similar passages as measured by CMMT analysis than other textbooks. For seven of the textbooks investigated the average within-textbook correlation was significantly different from the between-textbook correlation at the .01 probability level. For the remaining experimental sections the within-textbook correlation did not differ significantly from the between-textbook correlation at the .01 probability level.

Identifying Presentation Variables. In order to determine if the data obtained from CMMT analysis could be used to identify significant differences among the experimental sections, analysis of variance was used. The sixteen variables investigated in this manner were variables which could be readily obtained from the CMMT analyses of the passages in the sections. These variables and the analysis of variance design were detailed in Chapter 4.

For each of the sixteen presentation variables investigated, three statistical tests were performed. First, Bartlett's λ^2 test was used to test for homogeneity of variance (Winer, 1962, p. 95). The test was performed using Purdue Statistical Program DATASUM (Dixon, 1976). The results for each variable are summarized in Table 18.

Table 18
Homogeneity of Variance Tests for Presentation Variables.

Variable	Observed λ ²	Probability Level
1	67.5753	p < .001
2	12.5753	p > .25
3	20.8815	p < .05
4	15.5859	p < .25
5	35.5128	p < .001
6	37.6567	p < .001
7	135.6895	p < .001
8	11.1110	p < .25
9	21.1336	p > .05
10	18.0601	p > .1
11	21.4017	p > .05
12	80.5406	p > .001
13	112.8360	p > .001
14	19.5321	p > .1
15	81.2449	p > .001
16	56.8875	p > .001

df = 11 for each variable.

$$\lambda^{2}$$
. 25(11) = 13.7007 λ^{2} . 1(11) = 17.2750 λ^{2} . 05(11) = 19.6751

$$\lambda^{2}_{.025}(11) = 21.9200$$
 $\lambda^{2}_{.01}(11) = 24.7250$ $\lambda^{2}_{.001}(11) = 31.264$

The results summarized in Table 18 indicate that on a number of the presentation variables, homogeneity of variance can not be assumed. If the arbitrary significance level of .05 is used then homogeneity of variance can be assumed for only five of the sixteen variables. If the .01 level is used then homogeneity of variance can be assumed for eight of the variables. These results merely show that on a number of the variables investigated there was greater variation among the passages within some books than in others.

The second test performed on each presentation variable was analysis of variance. Even though homogeneity of variance was not found for all of the variables, Winer (1962, p. 920) and Hays (1963, p. 381) indicate that analysis of variance can be performed under these conditions. To perform the analyses, Purdue EDSTAT program ANOVAR (Veldman, 1967) was used. The results for each variable are summarized in Table 19.

The analyses of variance summarized in Table 19 showed that for all of the variables investigated there were significant differences among the means for the twelve books. These results showed that CMMT analysis statistically differentiated among the textbooks on each of the sixteen variables.

In order to determine the extent of the differences among the textbooks, a third test was performed on each variable. The Newman-Keuls Sequential Range Test (Winer, 1962, p. 80) was used to obtain an ordering of the textbooks on each variable and to find how many pairs of means differed

Table 19

Analysis of Variance Tests for Presentation Variables

Variable	MS between	MS within	F-ratio	Probability
1	602375.3920	13315.3501	45.24	<.0001
2	260.9897	31.8325	8.20	<.0001
3	47.8005	4.3781	10.92	<.0001
4	19.3675	1.4032	13.80	<.0001
5	24.0855	6.9682	3.46	<.0001
6	157.6088	15.7752	9.99	<.0001
7	54.4608	5.9115	9.21	<.0001
8	73.7919	7.4488	9.77	<.0001
9	428.9311	34.1462	12.56	<.0001
10	2799.2132	238.8240	11.72	<.0001
11	3105.0151	286.4841	10.84	<.0001
12	2408.5381	219.7256	10.96	<.0001
13	3234.0415	409.7675	7.89	<.0001
14	2289.6925	236.2882	9.69	<.0001
15	1099.0162	126.0162	8.72	<.0001
16	1216.9134	171.9584	7.08	<.0001

df_{between} = 11 for each variable.

 df_{within} = 90 for each variable.

statistically. For these tests Purdue Statistical Program NKTEST (Dixon, 1970) was used. The results of these tests are summarized in Table 20.

 $\label{thm:continuous} Table\ 20$ Summary of Newman-Keuls Tests for Presentation Variables.

Variable	Number of Pairs of Means Differing at .05 Level.	Number of Pairs of Means Differing at .01 Level.
1	4 4	40
2	23	20
3	28	26
4	24	20
5	4	2
6	28	20
7	14	11
8	28	18
9	29	. 24
10	31	25
11	22	18
12	19	18
13	11	11
1 4	25	20
15	13	11
16	17	10

The Newman-Keuls tests summarized in Table 20 show that on most variables differences were found between many pairs of the twelve books. These results indicate that CMMT analysis could be a powerful tool for differentiating among a number of textbooks on a number of variables.

Results of the Reliability Study

Both between- and within-rater reliability of subjects trained in the use of the CMMT technique were investigated in this study. Three groups of subjects were trained individually and on two occasions coded a set of six CMMT criterion passages. These data were analyzed to determine between- and within-rater differences among the groups and rating difficulties of the criterion passages. The five highest scoring subjects in each group were defined as experts for which between- and within-rater reliability coefficients were determined. The between- and within-rater results are presented below.

Between-Rater Results

Criterion ratings for each message of each passage were determined by computing the most frequent coding of each message by all subjects. The computer program which was used for determining these scores is included in Appendix II. Between-rater scores for each subject on each passage were then computed using the program given in Appendix G. These scores were based on the proportion of agreement between a

subject and the criterion ratings of the messages in each passage. Scores for each CMMT dimension were determined in this way. These between-rater scores were used in all analyses of variance presented in this section.

Since the criterion passage scores were used as test scores for analysis of variance it was appropriate to investigate the internal consistency reliability for these scores. To obtain these estimates, Kuder-Richardson Formula 20 coefficients (Nunnally, 1967, pp. 196-197) were computed for each passage on each CMMT dimension. The computer program given in Appendix G was used to compute these coefficients in addition to scoring the passages. These reliability estimates of the between-rater scores are given in Table 21.

Table 21
Internal Consistency Estimates for between-Rater Scores.

Passage	Dimension 1 Estimate	Dimension 2 Estimate
FP1	.91	.77
CP2b	.83	.73
FP8	. 84	.82
CP6a	. 79	.81
FP12	. 71	.65
CP10b	. 88	.89

Before performing repeated measures analysis of variance on the two sets of between-rater scores, two checks of homogeneity of variance suggested by Winer (1962, pp. 304-305) were made. First, homogeneity of variance of subjects within the three groups was checked. Second, homogeneity of variance of treatment by subjects within groups was checked. The results of these tests are given in Table 22.

Table 22
Homogeneity of Variance Tests for between-Rater Scores.

Homogeneity of variance of subjects within groups.						
	Dimension 1	Dimension 2				
Observed F _{max}	1.58217	6.90149				
Probability	> .05	< .01				
	Homogeneity of variance of treatment by subjects within groups.					
·	Dimension 1	Dimension 2				
Observed F _{max}	1.37293	1.22812				
Probability	> .05	> .05				

 $F_{\text{max}(.01)}$ (3,14) = 5.3

$$F_{\text{max}(.05)}$$
 (3,14) = 3.71

$$F_{\text{max}(.01)}$$
 (3,70) = 2.1

$$F_{\text{max}(.05)}$$
 (3,70) = 1.78

The tests summarized in Table 20 showed that except for subjects within groups on dimension 2 homogeneity of variance could be assumed. Winer (1962, p. 305) indicates that minor violations of the assumptions of homogeneity of variance will not have a great effect on analysis of variance in any event. Thus, it was appropriate to perform the planned analyses of variance. Purdue EDSTAT computer program ANOVAR (Veldman, 1967) was used to perform these analyses on the two sets of between-rater scores. The results of the dimension 1 analysis are given in Table 23.

Table 23
Between-Rater Analysis of Variance for Dimension 1

	Mean Square	df	F-Ratio	Probability
Between Subjects	.0634	44		
Groups	.0076	2	.12	.89
Error (G)	.0660	42		
Within Subjects	.0208	225		
Passages	.1850	5	10.60	.0001
Groups by Passages	.0098	10	.56	.84
Error (P)	.0175	210		
Group Means	₁		- ₂ 707	<u>-</u> .6957
	CP2b FP8 .6889 .8279			

The between-rater analysis of variance summarized in Table 23 shows that on dimension 1 there were no significant differences between groups of raters and no significant interactions between groups and passages. There were, however, significant differences between rating difficulties of the passages. In order to determine which passages differed, the Newman-Keuls procedure suggested by Winer (1962, p. 309) was used. The results of this test are summarized in Table 24.

Table 24
Between-Rater Differences among Passages on Dimension 1.

FP1	СРба	CP2b	CP10b	FP8	Ranked Passages
.0030	.0099	.0284	.0617*	.1674**	FP12
	.0069	.0254	.0587	.1644**	FP1
		.0185	.0518	.1575**	CP6a
			.0333	.1390**	СР2Ъ
				.1057**	CP10b
					FP8
					1
		.0030 .0099	.0030 .0099 .0284 .0069 .0254	.0030 .0099 .0284 .0617* .0069 .0254 .0587 .0185 .0518	.0030 .0099 .0284 .0617* .1674** .0069 .0254 .0587 .1644** .0185 .0518 .1575** .0333 .1390**

^{**} Significant at .01 level.

^{*} Significant at .05 level.

The results of the Newman-Keuls test summarized in Table 24 show that criterion passage FP8 was easier to code on dimension 1 than any other passage at the .01 level of significance. Criterion passage CP10b was easier to rate on dimension 1 than passage FP12 at the .05 level of significance. No other significant differences between the rating difficulties of the passages was shown. The results of the dimension 2 between-rater analysis of variance are summarized in Table 25.

Table 25
Between-Rater Analysis of Variance for Dimension 2.

	Mean Square	df	F-Ratio	Probability
Between Subjects	.0153	44		,
Groups	.0003	2	.02	.98
Error (G)	.0161	42		
Within Subjects	.0056	225		
Passages	.0327	5	6.66	<.0001
Groups by Passages	.0058	10	1.19	,30
Error (P)	.0049	210		
	1		2	3
Group Means:	.9175	. 9	175	.9142
FP1	CP2b FP3	8	CP6a FI	P12 CP10b
Passage Means: .9000	.8822 .96	23 .	9107 .9	206 .9226

The between-rater analysis of variance summarized in Table 25 shows that on dimension 2 there were no significant differences between groups of raters and no significant interactions between groups and passages. There were, however, significant differences in rating difficulty among the passages. The results of the Newman-Keuls test (Winer, 1962, p. 309) to determine which passages differed are given in Table 26.

Table 26
Between-Rater Differences among Passages on Dimension 2.

CP 2b	FP1	CP6a	FP12	CP10b	FP8	Ranked Passages
	0179	.0285	.0384**	.0404**	.0801**	CP2b
	.0178	.0107	.0206	.0226	.0623**	FP1
		.0107	.0099	.0119	.0516**	CP6a
				.0920	.0417	FP12
					.0397	CP10b
						FP8
						1

^{**} Significant at .01 level.

The results of the Newman-Keuls test summarized in Table 26 show that criterion passage FP8 was easier to rate on dimension 2 than passages CP2b, FP1, and CP6a at the .01 level of significance. The results also show that passages FP12 and CP10b were easier to rate on dimension 2 than passage CP2b at the .01 significance level.

The five subjects in each group who received the highest overall average between-rater scores were defined to be experts. The data from the experts were used to determine between-rater reliability coefficients. These reliability coefficients are based on the average Scott reliability coefficient for all pairs of experts in each group on each passage. The Scott coefficient which was described in Chapter 3 can be interpreted as the proportion of agreement between subjects with an adjustment for chance agreement. The computer program included in Appendix F was used to compute the between rater reliabilities which are given in Table 27.

Table 27 revealed somewhat higher between-rater reliabilities on dimension 2 than on dimension 1 of the CMMT system. The table also showed that there was some variation between passages on both dimensions. This variability roughly reflects the results of the analyses of variance.

Table 27
Between-Rater Reliability Coefficients.

	Passage	Dimension 1	Dimension 2
	FP1	. 42	. 76
	CP2b	.63	.89
Croup 1	FP8	. 84	.98
Group 1	CP6a	. 5 5	. 86
	FP12	. 40	. 85
	CP10b	.72	. 94
	FP1	.58	.73
	CP2b	.52	.77
C	FP8	.78	.93
Group 2	CP6a	. 5 7	. 74
	FP12	.55	.96
	CP10b	. 45	.91
	FP1	.55	.93
	CP2b	.63	. 74
Crown 7	FP8	.81	1.00
Group 3	CP6a	.56	.74
	FP12	.52	.83
	CP10b	.60	. 81

Within-Rater Results

Since only thirteen of the original fifteen subjects in groups 1 and 2 completed the second coding of the criterion passages, within-rater results are based on groups of size thirteen. In order to make group 3 of size thirteen, two of the original subjects in group 3 were selected at random and dropped from the within-rater analysis.

Within-rater scores were determined for each subject by computing the proportion of agreement between each subject's first and second codings of the criterion passages. The computer program included in Appendix G was used to determine within-rater scores. The internal consistency estimates for the within-rater scores, which were also computed by the program in Appendix G, are given in Table 28.

Table 28
Internal Consistency Estimates for Within-Rater Scores.

Passage	l mension l Estimate	Dimension 2 Estimate
FP1	.87	.80
CP2b	.88	.72
FP8	. 90	.83
CP6a	. 84	. 78
FP12	.91	. 84
CP10b	.)0	.83

The two checks of homogeneity of variance which were made for the between-rater scores were also made for the within-rater scores before the analyses of variance were performed. The results of these tests are given in Table 29.

Table 29
Homogeneity of Variance Tests for within-Rater Scores.

Homogeneity of va	ariance of subjects	within groups			
	Dimension 1	Dimension 2			
Observed F _{max}	1.4945	5.1818			
Probability	> .05	> .01			
Homogeneity of variance of treatment by subjects within groups.					
	Dimension 1	Dimension 2			
Observed F _{max}	1.1946	1.6207			
Probability	> .05	> .05			

$$F_{\text{max}(.01)}$$
 (3,12) = 6.1

$$F_{\text{max}(.05)}$$
 (3,12) = 4.16

$$F_{\text{max}(.01)}$$
 (3,60) = 2.2

$$F_{\text{max}(.05)}$$
 (3,60) = 1.85

The tests summarized in Table 29 indicated that homogeneity of variance was a safe assumption in this case. Thus, as in the case of the between-rater data, it was appropriate to perform the planned analyses of variance. Again, Purdue EDSTAT computer program ANOVAR (Veldman, 1967) was used to perform these analyses. Results of the dimension 1 analysis are summarized in Table 30.

Table 30 Within-Rater Analysis of Variance for Dimension 1.

	Mean Squa	are df	F-Ratio	Probabilit
Between Subjects	.0889	38		
Groups	.0561	2	.62	.55
Error (G)	.0907	36		
Within Subjects	.0290	195		
Passages	.1377	5	5.29	.0003
Groups by Pa sages	.0271	10	1.04	.31
Error (P)	260	180		
	₁		 2	3
Group Means:	.6971	.68	311	.6447
FP1	 CP2b F	– – – P 8 – C	-	12 CP10b
Passage Means: .6636				15 .6706

The analysis of variance summarized in Table 30 for within-rater scores was quite similar to the dimension 1 between-rater analysis of variance. Again, no significant differences were found between groups of raters and there were no significant interactions between groups and passages. As in the case of the between-rater results there were significant differences between passages. To determine which passages differed significantly in rating difficulty, the Newman-Keuls test suggested by Winer (1962, p. 309) was used. The results of this test are summarized in Table 31.

Table 31
Within-Rater Differences among Passages on Dimension 1.

FP12	CP6a	CP2b	FPi	CP10b	FP8	Ranked Passages
	.0023	.0735	.03_1	.0391	.1598**	FP12
		9212	.0298	.0368	.1575**	CP6a
			.0086	.0156	.1363**	CP 2b
				.0070	.1277**	FP1
					.1207**	C. 10p
						FP8

^{**} Significant at .01 level.

As with the between-rater scores, the within-rater results given in Table 31 showed that focus passage FP8 was significantly easier to code on dimension 1 than the other passages. The results of the dimension 2 within-rater analysis of variance which also parallel the between-rater results are given in Table 32.

Table 32
Within-Rater Analysis of Variance for Dimension 2.

	Mean Sq	uare df	F-Ratio	Probability
Between Subjects	.0226	38		
Groups	.0015	2	.06	.94
Error (G)	.0237	56		
Within Subjects	.0071	195		
Passages	.0481	5	7.96	< .0001
Groups by Passages	.0757	10	.94	.50
Error (P)	.0060	180		
	1		2	3
Group Means:	.8940	. 8	3903	.8989
FP1	CP7b	FP8	 CP6a I	 FP12 CP10b
Passage Means: .8791	.8467	.9415	.8713 .9	9224 .9054

The within-rater analysis of variance summarized in Table 32 showed that on dimension 2 there were no significant differences between groups and no significant interactions. There were differences in the rating difficulty of the passages. The results of the Newman-Keuls test (Winer, 1962, p. 309) to determine which passages differed are given in Table 33.

Table 33
Within-Rater Differences among Passages on Dimension 2.

CP2b	CP6a	FP1	CP10b	FP12	FP8	Ranked Passages
	.0246	.0324*	.0587**	.0757**	.0948**	CP2b
		.0078	.0341*	.0511**	.0702**	CP6a
			.0263	.0433*	.0624**	FP1
				.0107	.0361	CP150
					.0191	FP12
						FP8
						1

^{**} Significant at .01 level.

^{*} Significant at .05 level.

The results of the test summarized in Taile 33 are similar to the corresponding between-rater results. Again, passage FP8 appeared to be the easiest passage to code. Passages CP10b and FP12 were easier to code on dimension 2 than passages CP2b, CP6a, and FP1.

Within-rater reliability estimates were determined for the experts in each group using the computer program included in Appendix F. These within-rater coefficients are given in Table 34.

As in the case of the between-rater reliability estimates, the within-rater coefficients tended to be higher on dimension 2 than on dimension 1. Also, a comparison of the between-rater coefficients given in Table 27 with the within-rater coefficients in Table 34 reveals that the within-rater coefficients tended to be slightly higher. Of the eighteen dimension 1 coefficients, fifteen of the within-rater estimates were higher than their corresponding between-rater estimates. On dimension 2 the within-rater and between-rater coefficients appeared to be quite similar. The within-rater coefficients in Table 34 reflected the variation among passages shown in the analyses of variance.

Table 34
Within-Rater Reliability Coefficients.

	Passage	Dimension 1	Dimension 2
<i>C</i> 1	FP1	.62	. 87
	CP2b	.79	. 79
	FP8	.90	.95
Croup 1	СР6а	.67	.88
	FP12	.77	.96
	CP10b	.71	. 91
	FP1	.68	.81
	CP2b	.79	.83
Group 2	FP8	.83	.90
Group 2	CP6a	.69	.82
	FP12	.61	.88
	CP10b	.78	.88
	FP1	. 66	.99
	CP2b	. 58	.72
Cmann 7	FP8	. 69	.99
Group 3	CP6a	.61	.81
	FP12	. 78	.89
	CP10b	.61	.84

Investigator Reliability

To complete the study of reliability a check was made of the reliability of the investigator. This was done by computing the proportion of agreement between the investigator and the between-rater criterion ratings on each criterion passage. In addition a Scott reliability coefficient was computed between the investigator and the criterion ratings on each criterion passages. These proportions and coefficients which were computed using the program in Appendix F are given in Table 35.

Table 35
Investigator Reliabilities.

Passage		tion of ement	Reliability Coefficients		
	Dimension 1	Dimension 2	Dimension 1	Dimension 2	
FP1	. 74	1.00	.61	1.00	
CP2b	. 90	1.00	.88	1.00	
FP8	.92	1.00	.88	1.00	
CP 6 a	.70	.96	.61	.93	
FP12	. 85	1.00	.81	1.00	
CP10b	.87	1.00	.83	1.00	
Averages	.83	.99	. 77	.99	

CHAPTER VI

SUMMARY, CONCLUSIONS, AND DISCUSSION

Summary of the Research

In this research a technique for identifying and studying presentation variables in mathematics text was developed
and investigated. These presentation variables concern the
manner in which authors attempt to communicate mathematics
in printed form. The variables were studied in terms of
content and representational structures in mathematics text.

The research had purposes which were both developmentally and empirically oriented. From a developmental point of view the purpose of the research was to develop a technique of studying presentation variables in mathematics text. From an empirical point of view the purpose of the research was to investigate the validity and reliability of the technique.

The developed technique has three basic components.

The first component consists of a two dimensional system of categories for classifying messages in mathematics text.

This category system is called the CMMT category system.

Dimension 1 of the CMMT category system which is used to classify messages in terms of mathematical content and process provides subclassifications of the exposition and exercises or problems appearing in mathematics text.

Dimension 2 of the CMMT category system provides a means of classifying the mode of representation used in mathematics text in terms of word, symbol, and illustration classifications.

The second component of the developed technique has to do with procedures for applying the CMMT category system to actual text passages. The basic unit of measure used is one-fourth of a line of print. To apply the category system, a page of text is partitioned into sections conforming to the format of the page. A category number for each dimension of the CMMT system is recorded for each section of this partition and each section is weighted in terms of the unit of measure. Category numbers are recorded following a set of precise definitions and procedures which have been developed.

The third component of the technique developed in this study concerns a method of analyzing the information collected by applying the CMMT categories to mathematics passages.

This method of analysis which is called CMMT analysis consists of a sequential listing of categories, a set of matrices for analyzing interactions among categories, and a number of proportions based on the unit of measure. A computer program is used to determine the CMMT analysis of a passage of mathematics text from a rater's codings.

The union of the three basic components of the technique developed in the study is called the CMMT technique. The development of the CMMT technique was an evolutionary process

hased on practical experience and theoretical considerations. A number of existing mathematics textbooks was examined and tentative category systems were developed, tested, submitted to critical discussion, and revised. As the CMMT technique was being developed a theoretical rationale for the choice of the categories and procedures evolved

The empirical research consisted of two related studies. The validity study was undertaken to gather evidence of the validity of the CMMT technique as a means of studying presentation variables in mathematics text. The reliability study was undertaken to determine if raters could use the CMMT technique in a consistent and reliable manner.

In the validity study twelve mathematics textbooks from grade four through twelve were investigated. The passages in one section of each of these books were submitted to CMMT analysis. A focus passage was chosen from each section for in depth study. Certain focus passages were used to provide descriptive evidence of the validity of CMMT analysis for describing passages. Other focus passages were used to construct pairs of contrived passages with common content but contrasting forms of organization or presentation. These contrived passages were used to provide further descriptive evidence of the validity of CMMT analysis.

Validity was also studied in a statistical manner.

Correlational analysis was used to determine what constituted an adequate sample of passages from textbook sections.

Correlations of passages within textbooks were compared with correlations between passages taken from different textbooks. For all correlations made in the study a set of 25 items of data readily available from the CMMT analyses of investigated passages was used.

To determine if CMMT analysis has validity for identifying presentation variables on which textbooks differ, an analysis of variance model was used. The twelve textbooks investigated were compared on 16 variables readily available from CMMT analyses.

In the reliability study three groups of subjects were investigated. These groups consisted of nathematics education specialists, secondary mathematics teachers, and student teachers of secondary mathematics. The subjects in each group studied a training booklet to learn the CMMT technique and then rated six criterion passages on two obcasions separated by a period of a minimum of four weeks. Repeated measures analysis of variance was used to determine if within- and between-rater differences existed between groups of subjects and to determine if differences existed in the rating difficulty of the criterion passages.

To complete the reliability study a number of reliability coefficients were computed. These included within and between-rater coefficients for each CMMT dimension and each group as well as reliability estimates for the investigator.

Conclusions and Discussion

In this section conclusions and discussion concerning the developmental, validity, and reliability aspects of the research are given.

Developmental Aspects

The development of the CMMT technique must be viewed with two limitations in mind. First, the technique is essentially new. Although similar instruments have been used to study classroom interaction, no other researcher has attempted to use such a technique in a setting similar to this study. Thus, the CMMT technique is not directly a part of any existing theory or body of research. Second, the technique is largely the work of a single researcher. While the investigator did discuss the technique with a number of researchers as it was being developed, the technique does not represent the combined efforts of several equally contributing and involved researchers. To overcome these limitations, a number of other researchers will have to become involved in studying and further developing the technique. A solid theoretical rationale on which to base the technique will have to be established.

Before the CMMT technique can be regarded as a practical and usable technique, researchers must deal with several developmental issues. These issues concern the CMMT category system itself, the procedures for applying the system to text materials, and CMMT analysis. Developmental issues related

to the category system concern the problems of the frequency with which the CMMT categories appear in actual text materials, the continuous nature of some of the classifications, and the mutual exclusiveness of the categories.

The problem of the frequency with which classifications appear in actual mathematics textbooks is illustrated by dimension 1 of the CMMT system. By far the most numerous categorizations of the text materials investigated consisted of specific and general explanation (categories 3 and 4) and exercises (category 7). The other categories tended to appear relatively infrequently. The possibility of combining some of the rarely occurring categories such as definition (category 1) and generalization (category 2) needs to be investigated. Perhaps some of the most frequently occurring categories need to be further subdivided. This may be particularly true of general explanation (category 4) which seemed to become a catchall for expository material.

The continuous nature of the dichotomy between some of the pairs of categories presents another problem on which more developmental effort is needed. The categories of specific and general explanation (categories 3 and 4 of dimension 1) illustrate this problem. It is difficult to determine at what point something is no longer specific and becomes general. Other categories presenting this problem include the exercise and problem classifications on dimension 1 and the illustration classifications on dimension 2.

Effort is needed in the development of more precise definitions of the categories to overcome this problem.

Mutual exclusiveness also appears as a possible problem in the exercise and problem categories on dimension 1. For example real world problems can be of a rote or practice nature and thus classifiable as both exercises (category 7) and application (category 8). Such problems could also play a role in the development of the material and thus be classified in category 6. Further developmental effort is needed to insure the mutual exclusiveness of the categories.

A developmental issue related to the procedures used in applying the category system to actual text materials concerns the time required to code a page. The investigator found the task of subdividing a page, weighting the partitions, coding the material, and transferring the data to computer cards for analysis to be an extremely time consuming process. Although researchers may be willing to spend such amounts of time, it is doubtful that anyone else would. Thus, the technique as it now stands is limited in this respect. Further developmental effort could be directed toward reducing the time requirement.

CMMT analysis also needs further developmental attention. The meaningfulness of the area unit is questionable. Some types of messages such as problems may pack much more into a unit of measure than other messages such as general explanation. A symbolically written message ordinarily uses

Illustrations tend to take up large areas. The same illustration could exist in two passages but be of vastly different sizes thus yielding different CMMT proportions. In light of this the sequential and interaction aspects of CMMT analysis appear to be more meaningful than the CMMT proportions. In any event, future research may lead to the development of some other unit of measure.

There is much developmental work still to be done if the CMMT technique is to become widely used. Whether or not this work should be done will depend on researchers' judgements of the potential of the technique. These judgements should be made in terms of the empirical evidence supplied by the validity and reliability studies. The conclusions which can be drawn from these studies are discussed in the following sections.

The Validity Study

The following conclusions may be drawn from the results of the validity study.

- 1. CMMT analysis can be used to describe the organization of mathematics text passages.
- CMMT analysis reflects similarities and differences between pairs of passages with known organizational makeups.
- 3. CMMT analyses of entire sections of mathematics textbooks correlate highly with the CMMT analyses

of random samples of two or three passages from the sections.

- 4. CMMT analyses of passages sampled within textbooks tend to correlate slightly higher than CMMT analyses of passages sampled from different textbooks.
- 5. CMMT analyses of textbooks measure variables which statistically differentiate among textbooks.

The above conclusions should be viewed within the bounds of certain limitations. Conclusions 1 and 2 are based only on descriptive information. It is the investigator's opinion that the descriptive results given in Chapter 5 support these conclusions.

It is not entirely clear what the correlational conclusions drawn in 3 means in terms of sampling passages from textbook sections for CMMT analysis. While the correlations of sections with two or three sampled passages tend to be above .90 it is difficult to say if this is high enough. Conclusion 4 indicates that caution should be exercised in using a small sample of passages to represent sections of textbooks. While correlations among passages within textbooks tend to be fairly high in some cases, these correlations do not seem to be a great deal higher than correlations among passages from different textbooks.

Certain types of passages within some of the textbooks investigated tended to correlate lowly with other passages in the same book. For example, review passages or passages

consisting only of verbal problems had very low or even negative correlations with the majority of passages within some texts. Perhaps the average within-textbook correlations for the different textbooks serve only to give an indication of the consistency of presentation in the books. Whether this level consistency is important must be determined by further research.

Conclusion 5 may be the most important conclusion drawn from the validity study. Any valid measurement instrument must be able to differentiate among the things it measures, if it is to have any use. CMMT analysis did differentiate among the textbooks in this study on all sixteen variables investigated. It remains for further research to determine if these differences have meaning in terms of any learner variables.

In view of the limitations discussed above it is the opinion of the investigator that the conclusions of the validity study support the contention that the CMMT technique has potential for becoming a valid means of studying mathematics text.

The Reliability Study

The following conclusions may be drawn from the results of the reliability study.

 In terms of both between- and within-rater scores, groups were statistically equivalent on both dimensions of the CMMT category system.

- 2. In terms of both between- and within-rater scores, some passages were significantly more difficult to code than other passages on both CMMT dimensions.
- Most between-rater reliability coefficients on dimension 1 ranged between .50 and .80.
- 4. Most between-rater reliability coefficients on dimension 2 ranged between .75 and 1.00.
- 5. Most withir-rater reliability coefficients on dimension 1 ranged between .60 and .90.
- 6. Most within-rater reliability coefficients on dimension 2 ranged between .75 and 1.00.
- 7. Investigator reliability measured in terms of codings of the subjects averaged about .77 on dimension 1 and .99 on dimension 2.

These conclusions must also be viewed within the limitations of the reliability study. It should be kept in mind that subjects in this study trained themselves in the use of the CMMT technique and were not requested to spend large amounts of time on the project. With improved training techniques it would not be unreasonable to expect raters to achieve higher levels of reliability. The slightly higher within-rater reliabilities achieved on dimension 1 seem to support this.

The lack of differences between groups may also be a reflection of the individualized training and the short training period. Possibly no group of subjects was trained

long enough for the differences in experience and education among the groups to have any effect. It is also a possibility that a lack of motivation on the part of all subjects to spend five or six hours on the required task had a leveling effect on the results.

The reliability coefficients of the investigator's codings must be interpreted cautiously. It is the feeling of the investigator that the dimension I average estimate of .77 is low. This coefficient was computed in terms of the most frequent ratings made by the subjects in the experiment. Some of these ratings were not based on an overwhelming concensus of the subjects. In fact, many were based on a minority opinion. It is the opinion of the investigator that in most cases where he disagreed with the most frequent ratings he was right and the subjects were wrong.

It remains for further research to determine what levels of reliability can be obtained by subjects with improved and prolonged training. It also remains for research to determine what levels of reliability are necessary for the technique to be of practical value. It is the opinion of the investigator that the conclusions drawn from the results of the reliability study indicate that the CMMT technique has potential for becoming a reliable technique for studying mathematics text.

Recommendations for Further Research

There is a clear need for research which systematically studies mathematics text. Techniques for doing this in a meaningful way are not plentiful. The CMMT technique represents an attempt to develop one technique for studying presentation variables in mathematics text. The potential of the technique as a useful means for studying mathematics text is the crucial factor. Further reserach will have to determine if its potential will be realized. Recommendations for the directions such research should take are given in this section.

Before the CMMT technique can be used to undertake studies of mathematics text, the developmental and reliability problems discussed in the previous section should be resolved. Studies investigating these problems should involve a number of researchers and subjects over a period of time. In these studies developmental problems could be investigated in conjunction with investigations of reliability. Researchers should work directly with subjects to determine where coding difficulties are encountered. Training procedures should be investigated in terms of what levels of reliability can be obtained in given time intervals.

After the developmental and reliability issues have been satisfactorily settled, researchers will be able to undertake actual studies of mathematics text. These studies could take a number of forms. Descriptive studies could be

carried out in which the nature of the presentation in various textbooks is merely described in terms of CMMT analysis. Comparative studies of the presentation in various textbooks in terms of CMMT analysis could also be carried out. These descriptive and comparative studies, while providing information about the presentation in particular textbooks, could also seek to operationalize in terms of CMMT analysis the meaning of such terms as "discovery" or "conventional" approaches to presenting mathematics text.

Studies in which connections between learner variables and CMMT analysis patterns are investigated will need to be undertaken. Such studies could attempt to explain some of the results of existing comparative studies of mathematics text, such as the National Longitudinal Study, in terms of CMMT analysis. A regression analysis model could be used in an attempt to identify certain CMMT patterns which produced superior achievement or attitudinal results in existing studies.

Experimental studies could compare learner outcomes on text passages which are constructed to have given CMMT analysis patterns. These studies could search for patterns of presentation which produce specific learner outcomes such as superior performance of basic skills, superior problem solving, positive attitudes toward studying mathematics textbooks, etc. The patterns investigated in these studies will have to be chosen on some theoretical basis and/or in

terms of the outcomes of the types of studies described in the previous two paragraphs.

CMMT technique to practical use. Textbook authors may wish to use CMMT analysis as a tool in the construction of mathematics text materials. Publishers may wish to use CMMT analysis information to help in describing their textbooks to educators. Textbook selection committees may wish to use the CMMT analyses of the textbooks they are considering to aid them in their decisions. Teacher education programs in mathematics may wish to make use of the CMMT technique in training teachers in the evaluation of mathematics text materials. These practical applications should be made only after positive results of further research on the CMMT technique have been received.

BIBLIOGRAPHY

- Amidon, E. J., & Hough, J. B. (Eds.) <u>Interaction analysis</u>; <u>Theory</u>, <u>research and application</u>. Reading, Mass.: Addison-Wesley Publishing Company, Inc., 1967.
- Ausubel, D. P., Robbins, L. C., & Blake, E. J. Retroactive inhibition and facilitation in the learning of school materials. <u>Journal of Educational Psychology</u>, 1957, 48, 334-343.
- Ausubel, D. P. The psychology of meaningful verbal learning. New York: Grune and Stratton, 1963.
- Beberman, M. An emerging program of secondary school mathematics. Cambridge, Mass.: Harvard University Press,
- Bloom, B. S. (Ed.) Taxonomy of educational objectives handbook I: Cognitive domain. New York: David McKay Co., 1956.
- Briggs, L. J. <u>Sequencing of instruction in relation to</u>
 <u>hierarchies of competence</u>. Pittsburgh: American
 Institute for search, 1968.
- Bruner, J. S. <u>Toward a theory of instruction</u>. Cambridge, Mass.: Harvard University Press, 1967.
- Byrne, M. A. The <u>development of a measure of the familiarity</u> of <u>mathematical teris and symbols</u>. Doctoral dissertation, Department of Education, Purdue University, 1970.
- Chall, J. S. Readability: An appraisal of research and application. Ohio State University Bureau of Educational Monographs, 1958, No. 34.
- Comprehensive School Mathematics Program. <u>Book six</u>, <u>relations</u>. St. Ann, Missouri: CEMREL, Inc., 1971.
- Cramer, W., & Dorsey, S. Science textbooks how readable are they? Elementary School Journal, 1969, 70, 28-33.
- Deans, E., et al. <u>Learning mathematics</u>. New York: American Book Company, 1968.

- Dixon, W. J. (Ed.) BMD biomedical computer programs (2nd Ed.). Berkeley, California: University of California Press, 1970.
- Duncan, E. R., et al. <u>Six</u>, <u>modern school mathematics</u> New York: Houghton Mifflin Company, 1967.
- Eicholz, R. E., & O'Duffer, P. G. <u>Elementary school mathematics</u>, <u>book four</u>. Reading, <u>Mass.: Addison-Wesley</u>,
- Fehr, H. F., et al. Algebra with trigonometry. Boston: D. C. Heath and Company, 1963.
- Flanders, N. A. (1960) The problems of observer training and reliability. In Amidon and Hough (Eds.), <u>Interaction Analysis</u>: Theory, research and application. Reading, Mass.: Addison-Wesley Publishing Company, Inc., 1967.
- Flanders, N. A. Analyzing teaching behavior. Reading, Mass.: Addison-Wesley Publishing Company Inc., 1970.
- Gagne, R. M., & Paradise, N. E. Abilities and learning sets in knowledge acquisition. Psychological Monographs:

 General and Applied, 1961, 75(14).
- Gagne, R. M. The acquisition of knowledge. <u>Psychological</u> Review, 1962, 69, 355-365.
- Gagne, R. M., et al. Factors in acquiring knowledge of a mathematical task. <u>Psychological Monographs</u>: <u>General and Applied</u>, 1962, 76(7).
- Gagne, R. M. Learning hierarchies. Educational Psychologist, 1968, $\underline{6}(1)$, 3-6.
- Hater, M. A. The cloze procedure as a measure of the reading comprehensibility and difficulty of mathematical English. Doctoral dissertation, Department of Education, Purdue University, 1969.
- Hays, W. L. <u>Statistics</u>. New York: Holt, Rinehart, and Winston, 1963.
- Heddens, J. W., & Smith, K. J. The readability of elementary mathematics books. The Arithmetic Teacher, 1964a, 11, 466-468.
- Heddens, J. W., & Smith, K. J. The readability of experimental mathematics materials. The Arithmetic Teacher 1964b, 11, 391-394.

- Heimer, R. T. Conditions of learning in mathematics sequence theory development. Review of Educational Research, 1969, 39(4), 493-507.
- Hickey, A. E., & Newton, J. M. The <u>logical basis of teaching</u>: I. The <u>elfect of subconcept sequence on learning</u>. Newburypoit, Mass.: ENTELEK Inc., 1964.
- Kane, R. B. The reacability of mathematical English.

 <u>Journal of Research in Science Teaching</u>, 1968, 5,
- Kane, R. B. The readability of mathematics textbooks revisited. The Mathematics Teacher, 1970, 63(7), 579-581.
- Kane, R. B., Hater, M. A., & Byrne, M. A. A readability formula for the language of mathematics. Paper presented at the meeting of the National Council of Teachers of Mathematics, Anaheim, California, 1970.
- Keedy, M. E., et al. Exploring elementary mathematics, five. New York: Holt, Rinehart, and Winston, 1970.
- Kieren, T. E. Activity learning. Review of Educational Research, 1969, 39(4), 509-522.
- Kulm, G. The readability of elementary algebra textual material. Doctoral dissertation, Teachers College, Columbia University, 1971.
- Mayor, J. R., & Wilcox, M. S. Contemporary algebra second course. Englewood Cliffs, N. J.: Prentice-Hall, 1965.
- Merrill, M. D. Correction and review on successive parts in learning a hierarchical task. <u>Journal of Educational Psychology</u>, 1965, <u>56</u>, 225-234.
- Merrill, M. D., & Stolurow, L. M. Hierarchical preview versus problem oriented review in learning an imaginary science. American Educational Research Journal, 1966, 3, 251-261.
- Newton, J. M., & Hickey, A. E. Sequence effects in programmed learning of a verbal concept. <u>Journal of Educational Psychology</u>, 1965, 56, 140-147.
- Nunnally, J. C. <u>Psychometric</u> theory. New York: McGraw Hill Book Company, 1967.
- Ostle, B. <u>Statistics in research</u>: <u>Basic concepts and techniques for research workers</u>. Ames, Iowa: The lowa State University Press, 1963.

- Payne, D. A., Krathwohl, D. R., & Gordon, J. The effect of sequence on programmed instruction. American Educational Research Journal, 1967, 4, 125-132.
- Pyatte, J. A. Some effects of unit structure of achievement and transfer. American Educational Research Journal, 1969, 6, 241-261.
- Reynolds, J. H., et al. <u>Repetition and spaced review in programmed instruction</u>. Wright-Patterson Air Force Base, Ohio: Behavioral Sciences Laboratory, December, 1964.
- Roe, A. Comparison of branching methods for programmed learning. <u>Journal of Educational Research</u>, 1962, <u>55</u>, 407-416.
- Roc, K. V., Case, H. W., & Roe, A. Scrambled versus ordered sequence in auto-instructional programs. <u>Journal of Educational Psychology</u>, 1962, 53, 101-104.
- Romberg, T. A. Current research in mathematics education. Review of Educational Research, 1969, 39(4), 473-491.
- Scandura, J. M. Algorithm learning and problem solving.

 <u>Journal of Experimental Education</u>, 1966a, <u>34</u>(4), 1-6.
- Scandura, J. M. Prior learning, presentation der, and prerequisite practice in problem sc.ing. <u>Journal of Experimental Education</u>, 1966b, 34(4), 12-18.
- Scandura, J. M. Problem solving and prior learning.

 Journal of Experimental Education, 1966c, 34(4), 7-11.
- Scandura, J. M., & Wells, J. N. Advance organizers in learning abstract mathematics. American Educational Research Journal, 1967, 4, 295-301.
- Secondary School Mathematics Curriculum Improvement Study.

 <u>Unified modern mathematics, course 2, part 1.</u> New
 York: Teachers College, Columbia University, 1969.
- School Mathematics Study Group. Mathematics for junior high, volume 2, part 2. New Haven, Connecticut: Yale University Press, 1961.
- Scott, W. A. Reliability of content analysis: The case of nominal coding. <u>Public Opinion Quarterly</u>, 1955, <u>19</u>, 321-325.

- Short, J., & Haughey, B. Study of sequencing strategies.

 Proceedings of the 75th Annual Convention of the American Psychological Association, 1967, 2, 17-18.
- Smith, F. The readability of junior high school mathematics textbooks. The Mathematics Teacher, 1969, 62, 289-291.
- Smith, R. R., et al. <u>Contemporary algebra</u>, <u>book one</u>. New York: Harcourt, <u>Brace</u>, and World, Inc., 1965.
- Suppes, P. Some theoretical models for mathematics learning. $\frac{\text{Journal of Research and Development in Education}}{\underline{1}, 5-22}$
- University of Illinois Committee on School Mathematics.

 High school mathematics, unit 6, geometry. Urbana,
 Illinois: University of Illinois Press, 1960.
- Van Engen, H., et al. <u>Seeing through mathematics</u>, <u>book one</u>. Chicago: Scott, Foresman and Company, 1962.
- Veldman, D. J. Fortran programming for the behavioral sciences. New York: Holt, Rinehart, and Winston,
- Wiegand, R. B. Pittsburgh looks at the readability of mathematics textbooks. <u>Journal of Reading</u>, 1967, <u>2</u>, 201-204.
- Wilson, J. W., Cahen, L. W., & Begle, E. G. (Eds.) NLSMA report: The development of tests, No. 7, SMSG.

 Stanford, California: Stanford University Press, 1969.
- Winer, B. J. Statistical Principles of Experimental Design. New York: McGraw-Hill Book Company, 1962.
- Woodward, E. L. Comparative study of teaching strageties involving advance organizers and post organizers and discovery and non-discovery techniques where the instruction is mediated by computer. Doctoral dissertation, Florida State University, Tallahassee, 1966.
- Wooten, W. SMSG: The making of a curriculum. New Haven, Connecticut: Yale University Press, 1965.

196

APPENDIX A

RATER TRAINING BOOKLET

Content

Ι.	Introduction to the CMMT Categories	•	•	197
II.	Description of Dimension 1 Categories			205
III.	Notes on Using Dimension 1 Categories	•		210
IV.	Description of Dimension 2 Categories	•	•	212
V.	Notes on Using Dimension 2 Categories		•	213
VI.	Procedural Suggestions for Rating Passages.	•	•	214
VII.	Practice Passages and Keys	_		215

I. Introduction to the CMMT Categories

The CMMT category system is a system of categories for classifying messages which appear in mathematics text. CMMT stands for "Classification of Messages in Mathematics Text." The CMMT category system which is two dimensional is given below.

CMMT Category System

		or out of the state of the stat	
Dimension 1 :	Con	tent Mode	
	0.	Blank Space	
	$\overline{1}$.		
	2.	words or symbols.) Generalizations (Important	
Messages requiring only reception.	3.	rules, axioms, theorems, formulas, etc.) Specific Explanation (Concrete examples and discussion in specific	Exposition
	4.	terms.) General Explanation (Proofs of propositions, general discussion, etc.)	
1	5.	Procedural Instructions)
	6.	(Directions.) Developing Content	
		(Questions in exposition, developmental activities, guided discovery exercises, etc.)	
Messages calling	7.	Understanding Developed Content (Exercises involving routine computations,	Subclassi- fications
for responses		practice, identification, etc.)	of questions, exercises,
other than reception.	8.	Applying Developed Content (Real world problems, applications of generaliza-	problems, activities, etc.
		tions in concrete situa-	
	9.	tions, etc.) Analyzing and Synthesizing	
		Developed Content (Proving propositions, finding new	9
		relationships in developed	
+		content, unguided dis- covery, etc.)	
	10.	Other Material (Headings, non-	mathematical

materials, etc.)

Dimension 2:	Pres	esentation Mode				
	0.	Blank Space				
Written text.	1.	Words Mathematical Symbols				
Illustration	3. 4. 5.	Representations of Abstract Ideas (Venn diagrams, geometric diagrams, mapping pictures, etc.) Graphs (Number lines, coordinate graphs, bar graphs, etc.) Representations of Physical Objects or Situations (Plans, maps, cross sectional drawings, photographs, etc.) Non-mathematical Illustrations (Motivational photographs, cartoons, etc.)				
	7.	Combinations of Illustrations with				

Written Text (Flow charts, mathematical

tables, tree diagrams, etc.)

The CMMT category system is used to classify messages in mathematical passages. To do this, the passage is partitioned into units determined by a set of rules and the format of the passage. Each unit is then classified with respect to both dimensions of the CMMT category system. The following page is an example of a page of text which has been rated using the CMMT technique. The symbol m-n recorded in a given unit indicates that the message in that unit is classified as category m on dimension 1 and category n on dimension 2.

(/)					
the order principle for addition	0				
Give the mir sing numbers Remember the					
13. 4 O'del principle for addition.	mades applicated				
5-2 Since 8 7 15, we know that 7 4 4 4 5 5 6 13 + 15 28, we know that 1!	8 = n. c-2 o				
- 1 - ' - ' - OBBC!' 120 4. 260 - 600 1 1 ' - 1	The state of the s				
6-2. Since 5237 + 6435 = 11,672, we know	w that 6435 + 5233 = int.				
When we change the order of the ad	dends, we get the same sum				
ALRCISES -	0				
- Andrew to the statement of the stateme	3				
i. Each exercise suggests an example of the I order principle. Give the example. 5'-1	O				
[A] A A A A [A]	1] Start at 9. Count forward 4.				
-3 AA - A	Start at 4. Count forward 9.				
2-2 (Answer: 4 -2=2-4)	ten, eleven, 10-5				
7-/[c] Jump 3 feet. Then jump 4 feet.	twelve, thirteen				
7-5	- Tools Sign				
3 feet 4 feet	0				
7-/ Jump 4 feet. Then jump 3 feet.					
7.5					
4 feet 3 feet					
2. Write on your paper the equations that are c	examples of the order principle.				
$ c ^2 + b = 6 + 9$ $ c ^2 + b = 46 + 23$ $ c ^2 + 26 = 70 + 60$					
25 + 45 = 45 + 25 10 16 = 15 + 36 16 42 + 35 - 52 12					
3. Which equations in exercise 2 are true?					
1. Solve the equations.	The state of the s				
[R] D 1 10 = 10 1 13 7-2. [1-1 5280	1-3202 - 3292 - 11 7-2				
	(17 (b) = 35 + (n, +17);-3-				
The second secon	+50) (-11/4-15) (24-4-263)				

(Reprinted by permission.

Elementary School Mathematics, Book 4,
Eicholz and O'Daffer, Addison-Wesley
Publishing Company, 1968.)

When the CMMT classification of all messages in a passage is completed the information may be analyzed in ways which reflect both sequential and quantitative aspects of the organization of the passage. Sequential aspects are represented by making an ordered list of the classifications following the natural flow of the printed material. A matrix similar to those used in Flanders' interaction analysis is used to analyze the nature of the interactions among CMMT categories. Quantitative aspects of a passage are described by determining the proportion of messages in the various categories and in logical combinations of categories. All of the descriptive information for a given passage is called the CMMT analysis for that passage. The CMMT analysis for the passage on page 3 follows.

201

List of Messages in Order of Occurrence

Dim. 1	Dim. 2	Weight	
10 0 5 4 0 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7	1 0 1 0 2 1 2 1 2 1 2 1 2 0 1 0 1 0 1 0	3 1 2 3 1 1 2 1 2 1 3 1 1 3 4 4 4 1 3 3 1 4 4 4 4 2 4 4 4 2 4 4 4 4 8 2 4 4 4 4 4	(The weight indicates the number of area units of approximately 1/4 of a line of print devoted to each message recorded in the list.)
•	-	1. 4	

End

Frequency M	latrix fo	r Dimension	1
-------------	-----------	-------------	---

0	0	0	0	0	0	0	0	0	0
0	3	0	0	0	0	0	0	0	1
0	0	7	0	0	0	i	0	0	0
0	0	0	4	1	1	0	0	0	0
0	0	1	1	4	0	2	0	0	0
0	1	0	0	0	12	0	0	0	0
0	0	0	0	2	0	34	0	0	1
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	1	0	0	13

(The entry n in row i and column j indicates message type i was followed by message type j, n times in the passage. Blank space is ignored in this matrix.)

Proportion in Each Category for Dimension 1

Category	Proportion
0	.225
1	0
2	.043
3	.087
4	.065
S	.087
6	.141
7	.402
8	0
9	0
10	.174

Proportion Exposition .196

Proportion Content Development (1 thru 4 plus 6) .337

Proportion Requiring Responses in Content Development .419

Proportion of Exposition in Content Development .581

Proportion Requiring Responses .630

Frequency Matrix for Dimension 2

25	7	1	0	2	l	0
7	23	0	0	0	0	0
0	1	5	0	0	0	0
0	0	0	0	0	0	0
2	0	0	0	6	0	0
1	0	0	Q	0	11	0
0	0	0	0	0	0	0

Proportion in Each Category for Dimension 2

Category	Proportion		
0	. 225		
2	.391 .326		
3 4	.065		
5	.087		
6 7	.130		
	U		

Proportion Mathematics Illustration .152

Proportion Illustration .283

Interaction Matrix Dimension 1 and 2

0	0	0	0	0	0	0
4	0	0	0	0	0	0
0	2	6	0	0	0	0
6	0	0	0	0	0	0
8	0	0	0	0	0	0
4	9	0	0	0	0	0
10	20	0	0	8	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
4	0	0	0	0	12	0

(The entry n in row i and column j indicates message type i on dimension 1 was of type j on dimension 2, n times in the passage.)

The information about a mathematics passage which is provided by CMMT analysis could be used for a number of purposes involving both practical application and research in mathematics education.

- 1. CMMT provides a means for describing mathematics text in specific terms. Such information could be useful to textbook authors, publishers, and textbook selection committees.
- 2. CMMT provides a means of manipulating and control'ing textual variables in experimental studies
 using printed mathematics material. Thus it could
 be a useful instrument for researchers studying
 mathematics text materials.

The purpose of subsequent sections of this booklet is to provide the reader training in the use of the CMMT technique for classifying messages in mathematics text. Complete descriptions of all of the categories with examples and general procedural techniques are given in the following sections of the booklet. The final section includes numerous keyed practice passages which the reader may use in training himself in the use of the CMMT technique.

- 11. Description of Dimension 1 Categories
- 0. Blank Space: Any unit which is completely blank.
- 1. Definition (Meanings of words or symbols.): Messages whose primary purpose is to give the mathematical meanings of words, symbols, or phrases. Any statement of a definition or any description of a mathematical term. May be integrated into the written text or set off as a formal definition.
- 2. Generalization (Important rules, axioms, theorems, formulas, etc.): Messages whose primary purpose is to give important general mathematical concepts, ideas, or procedures. Any statement of an axiom or theorem. May be integrated into the written text or formally set off as a rule, formula, principle, etc.
- 3. Specific Explanation (Concrete examples and discussion in specific terms.): Messages whose primary purpose is to give specific or concrete instances of general concepts, ideas, or procedures. Specific examples of general definitions, axioms, or theorems. Any discussion or explanation of concrete examples. May be integrated into written text or specifically set off as formal examples.
- 4. General Explanation (Proofs of propositions, general discussion, etc.): Messages whose primary purpose is to explain or discuss general concepts, ideas or procedures. Any proof of a formal proposition. General

statements which seek to clarify, justify, show how or why, etc. May be used to introduce, relate, or summarize aspects of a passage. Expository statements with mathematical content which are not clearly classifiable as 1 through 3.

5. Procedural Instructions (Directions.): Procedural directions appearing anywhere in a text passage. May indicate to the reader what he is to do with a set of exercises or problems. May be stated in the form of a question. Does not apply to directive statements containing substantial mathematical information.

- a. Solve the following equations.
- b. Complete.
- c. Look at Figure 7.
- d. What are the solution sets for the open sentences below?
- 6. Developing Content (Questions in exposition, developmental activities, guided discovery exercises, etc.):

 Questions, activities, or exercises designed to help develop content. May call for verbal discussion, physical activity, or thought or written responses.

 May be designed to guide the student to discover some mathematical concept. Exercises or problems whose primary purpose is to develop or present new content.

 Questions, activities, or exercises integrated into the

- exposition which are designed to make the reader participate in the development of the content.
- 7. Understanding Developed Content (Exercises involving routine computation, practice, identification, etc.):
 Exercises which are clearly on the knowledg? or comprehension level of Bloom's Taxonomy. May involve lowest level of application where a generalization is used in a situation essentially identical to the situation in which the generalization was presented in the text.

 The emphasis here is on understanding the content which was presented in the text. May involve the recall of specific information and procedures or the understanding of presented content with only routine alterations of material. May involve the use of material without relating it to other materials or situations or seeing its broader implications.

- a. Exercises of a purely computational nature.
- b. Exercises intended to give practice in a skill or procedure.
- c. Exercises which are essentially the same as examples given in the text. That is, exercises whose solutions depend on the imitation of examples worked out in the text.
- d. Problems which require only a direct routine application of a definition or generalization.

Such as finding the circumference of a circle with a given radius. (Where the emphasis is on understanding the generalization rather than on using it to find solutions to problems.)

8. Applying Developed Content (Real world problems, applications of generalizations in concrete situations, etc.):
Exercises or problems which are on the application level of Bloom's Taxonomy. The emphasis here is on using the content presented in the text in a new or different situation. The new situation may be mathematical or a real life or physical situation. May involve the use of an abstraction in a concrete situation which the student has not seen before. Involves the recall and understanding of information and in addition the utilization of the content in a non-routine manner to find the answer to a problem.

- Using general formulas or procedures to solve mathematical problems.
- b. Using general mathematical principles developed in the text to find solutions to real life problems. (Word problems.)
- c. Applying general definitions, axioms, and theorems in concrete situations or to specific mathematical models.
- d. Interpreting concrete examples in terms of general structures.

9. Analyzing and Synthesizing Developed Content (Proving propositions, finding new relationships in developed content, unguided discovery, etc.): Problems which are on the analysis or synthesis level of Bloom's Taxonomy. May involve the breakdown of content into its basic elements so that relationships between ideas are made more explicit.

- a. Problems requiring the proof or disproof of a proposition.
- b. Problems requiring the discovery of new relationships between elements of developed content.
- 10. Other Material (Headings, non-mathematical materials, etc.): Messages not fitting categories 0 through 9. May be headings of sections, exercises, etc. May be motivational or historical material. Messages which are non-mathematical in character.

- III. Notes on Using Dimension 1 Categories
 - A. Begin by ment by delineating between the blank space (0), exposition (1 4), messages requiring responses (5 9), and other material (10). This will make the task of making finer distinctions easier.
 - B. To rate exposition (1 4):
 - 1. First eliminate definitions (1) and generalizations (2).
 - 2. Of the remaining exposition, classify all messages giving specific instances of more general content as specific explanation (3).
 - 3. Classify the remaining exposition as general explanation (4).
- C. To rate messages requiring responses (5 9):
 - 1. First eliminate procedural instructions (5).
 - Base decisions involving exercises and problems
 (6 9) on the processes involved. Do <u>not</u> base
 these decisions on the difficulty of the problem
 or exercise.
- D. Illustrations as well as written messages must be classified on dimension 1. The classification of an illustrative message is determined by the same rules as the classification of written messages. If a diagram illustrates a definition it is classified as a definition, if it illustrates a proof it is classified as fied as general explanation, etc.

E. When in doubt about how to classify a message reread the descriptions of the appropriate categories.

- IV. Description of Dimension 2 Categories
- 0. Blank Space: Any unit which is completely blank.
- 1. <u>Words</u>: Messages which are made up predominately of ordinary English words.
- 2. <u>Mathematical Symbols</u>: Messages which are made up predominately of mathematical symbols.
- 3. Representations of Abstract Ideas: May be drawings to illustrate abstract sets, Venn diagrams, mapping pictures, geometric diagrams, etc.
- 4. <u>Graphs</u>: May be bar graphs, line graphs, circle graphs, etc. Or, may be number lines or various types of coordinate system graphs.
- 5. Representations of Physical Objects or Situations:

 Must have some mathematical content. May be drawings or photographs of real objects or living things which illustrate mathematical content. Could be cross sectional diagrams, maps, plans, charts, etc.
- 6. <u>Non-mathematical Illustrations</u>: Non-mathematical in nature and not illustrating any mathematical content being considered. May be motivational or historical cartoons, photographs, or drawings.
- 7. Combinations of Illustrations with Written Text: May be some sort of diagram which contains substantial mathematical information in the form of words or symbols. Includes all mathematical tables, flow charts, tree diagrams, etc.

- V. Notes on Using Dimension 2 Categories
- A. To decide if a written message in a unit is predominately words or symbols, count the words necessary to say the message. If the symbols account for more than or the same number of these words as the ordinary English then classify the message as symbols (2). Otherwise, classify the message as words (1).
- B. When classifying messages (3 7) eliminate the non-mathematical illustrations (6) first. Then make the remaining classifications. When in doubt reread the appropriate category descriptions.

- VI. Procedural Suggestions for Rating Passages
- A. Before beginning to rate a passage get a broad idea of its general nature. Read through the passage once to get an understanding of the content.
- B. When learning how to rate materials it may be helpful to make all ratings for dimension 1 first and then go through the passage again for dimension 2 classifications.
- C. When making decisions consider the context in which the message appears. Decide what purpose the message is playing in the passage. If a unit appears to fit more than one category of a dimension decide which category is predominate. Do not change from one unit to the next when in doubt whether or not the classification should be changed.
- D. Refer back to the appropriate descriptions of categories and notes in sections II through V when in doubt. Use the rules given to make all decisions. Do not invent new rules of your own to follow.

VII. Practice Passages and Keys

Instructions for Using Practice Passages

- A. Rate each practice passage in this section by classifying each unit with respect to both dimensions of the CMMT category system as in the example passage in section I. Record the appropriate symbol of the form m-n in each unit. Refer back to any materials in this booklet as needed.
- B. When you have completed rating a practice passage check your ratings against the keyed passage on the page following the practice passage.
- C. Rate practice passages until you feel you have mastered the CMMT technique. If you agree with the key more than 90% of the time you should feel fairly comfortable. Rate practice passages until you have achieved the 90% level.
- D. When you have mastered the CMMT technique rate the passages in the CMMT Technique: Experimental Passage Booklet.

Using the order and grouping principles					
Change the	Change the grouping and the product is the same.				
These examples help sl affect the product, 2 x	how how order and grouping $10 \times 3 \times 10$.	ng changes			
We could group these:	We could group these:	We could group these:			
2×10×3×10 20×3×10 60×10 600	$ \begin{array}{c} 3 \times 10 \times 3 \times 10 \\ 30 \times 2 \times 10 \\ 60 \times 10 \\ 600 \end{array} $	$ 2 \times 10 \times 3 \times 10 $ $ 30 \times 2 \times 10 $ $ 60 \times 10 $ $ 600 $			
We could group these:	We could group these: We could group these: We could group these:				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
multiply any two factors Study this example.	and grouping principles, you stirst and get the same pr				
1. Explain step 1.		20°×30¹			
2. Which two factors were chosen to multiply first in step 2? (2 \times 3) \times (10 \times 10) (2 \times 3) \times (10 \times 10) (3 \times 10) (4. Solve: 20 \times 30 = [N] (600)					
EXERCISES					
1. Solve the equations. [A] $40 \times 60 = 4 \times 10 \times 6 \times 10 = [n]$ [E] $80 \times 90 = 8 \times 10 \times 9 \times 10 = [n]$ [B] $50 \times 60 = 5 \times 10 \times 6 \times 10 = [n]$ [F] $30 \times 50 = 3 \times 10 \times 5 \times 10 = [n]$ [C] $60 \times 70 = 6 \times 10 \times 7 \times 10 = [n]$ [C] $90 \times 600 = 9 \times 10 \times 6 \times 100 = [n]$ [D] $70 \times 80 = 7 \times 10 \times 8 \times 10 = [n]$ [N] $800 \times 80 = 8 \times 100 \times 8 \times 10 = [n]$					

(Reprinted by permission.

Elementary School Mathematics, Book 4,

Eicholz and O'Daffer, Addison-Wesley

Publishing Company, 1968.)

key to Practice Passage 1

I take a dia and and	I tained the order lind grouping principles 2					
Using the order and grouping principles						
Change the	Change the grouping and the product is the same.					
These examples help staffect the product, 2×3		ing chang	es o			
We could group?hise:	We could group these:	We co	uld group: Cleso:			
2×10×3×10 20×3×10 60×10 600	2×10×3×10 30×2×10 60×10 3-2 600		$3 \times 3 \times 10$ $3 \times 2 \times 10$			
We could group these:	We could grouß ধ্ৰভe:	We cou	uld group 40 ese:			
2×10×3×10 6×10×10 6×100 3-2 600	2×10×3×10 100×2×3 100×6 600		10×3×10 0×10×3 200×3 3-2 600			
l						
multiply any two factors	4-1 and grouping principles, s first and get the same p		0			
multiply any two factors Study this example.إسا	and grouping principles,		0			
multiply any two factors	and grouping principles,	roduct.	0			
multiply any two factors Study this example. [1] DISCUSSION EXER J. 52-5 1. Explain ste(31.) 2. Which two factors were multiply first in step 2? 3. Explain steps 3 and 4. 4. Solve: 20 × 30 = [n] 6-7	and grouping principles, s first and get the same position of the same of the	20 (1) (2 (2) (2)	O ×30 3-2 ×10)×(3×10) ×3)×(10×10) ×100			
multiply any two factors Study this example. [1] DISCUSSION EXER J. 52 5 1. Explain ste(52.] 2. Which two factors were multiply first in step 2? 3. Explain steps 3 5 in 4. 4. Solve: 20 × 30 = [n] 6-7 EXERC: 375	and grouping principles, s first and get the same position of the same of the	20 (1) (2 (2) (2) (3) 6;	O ×30 3-2 ×10)×(3×10) ×3)×(10×10) ×100			
multiply any two factors Study this example. [1] DISCUSSION EXER 1.523 1. Explain ste(3.1) 2. Which two factors were multiply first in step 2? 3. Explain steps 3 and 4. 4. Solve: 20 × 30 = [n] 6-7 EXERC: 275 [and grouping principles, is first and get the same process to chosen the chosen chosen to chosen the chosen chosen to chosen the chosen	20 (1) (2 (2) (2) (3) 6) (4) 60 (5) = 8 × 10 (6) = 3 × 10 (7) = 9 × 1	0 (×30) 3-2 ×10) × (3 × 10) ×3) × (10 × 10) ×100; (0) 10=[n] (0) × 10=[n]			

(Reprinted by permission.

Elementary School Mathematics, Book 4,
Eicholz and O'Daffer, Addison-Wesley
Publishing Company, 1968.)

Practice Pa	ssage 2					
MUCTORIO	Minn.					
1. Try find	ing the 📑	. : product	a without par	icil	and pap	er.
$a. 4 \times 5$		b. 3			c. 9 × 30	
$d. 3 \times 4$	10	e. 7	< 600	ſ.	8×7 ,	000
$g. 4 \times 3$,000	h. 5	< 80,000	i.	4×60	,000
2. How do product	es tha di like, 5 %	istributi 1,0337pc	ve property	hel ple	p us fin te.	id a
1			+ 600 + 60			
	= (5 >	< 4,000)	+ (5 × 600)) +		
uct wa	3. a. Explain how each partial prod- uct was found. 6,294					
b. Add to find the product. c. Find the partial products in 720						
$\frac{1}{6 \times 4}$		n prom	(Ct) 10	1	1,600	
d. Add to	find the	product		4	8,000	
			pertial products where form.	មែ ខ	is we mu	ılti-
$ \begin{array}{r} 42,5 & 3 \\ \times 6 \\ \hline 8 \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			4 2,5 5,4	8 3 × '6',	
DTERCISES						
Multiply.	-		DA P die Nie Wellengegade en deltas de le sejambas justicipa.		-	
1. 3,691 _ <u>×5</u>	2. 7, 0	29 <3	3. 5,497 · ×7		4. 9,90 ×	02 (8
5. 34,000 ×4	ы. 5 9,		7. 95,374 ×0		8. 40,0	

(Reprinted by permission.
Lxploring Llementary Mathematics, Five, Keedy, et al., Holt, Rinchart and Winston, Inc., 1970.)

Key to Practice Passage 2

1. Try finding these products without pencil and paper. a. 4 × 50 6-2 b. 3 × 800 6-2 c. 9 × 30 6-2 d. 3 × 40 6-2 c. 7 × 600 6-2 f. 8 × 7,0006- g. 4 × 3,0006-2 h. 5 × 80,0006-2 i. 4 × 60,0005 2. How does the distributive property help us find a product like 5/× 3,683? Copy and complete. 5-; 5 × 4,683 = 5 × (4,000 + 600 + 80 + 3) = (5 × 4,000) + (5 × 600) + (5 ×) = 20,000 + + + =	Rey to Pract	ice Passage	: 2			
1. Try inding these products without pencil and paper. a. 4 × 50 6-2 b. 3 × 800 6-2 c. 9 × 30 6-2 d. 3 × 40 6-2 e. 7 × 600 6-2 f. 8 × 7,0006- g. 4 × 3,0006-2 h. 5 × 80,0006-2 i. 4 × 60,0003 2. How does the distributive property help us find a product like 5/×i,683? [Copy and complete. 5-; 5 × 4,683 = 5 × (4,000 + 600 + 80 + 3) 0 = (5 × 4,000) + (5 × 600) + (5 ×) 1 = 20,000 + + + 20,000 + + + 20,000 + + + 20,000 + + + 20,000 + + + 20,000 + + + 20,000 + + + 20,000 + + + 20,000 + + + 21,000 + + + 22,000 + + + 24,583 6-2 0 1,600 4. In the short form we add partial products as we multiply [Copy and complete the short form 5-1] 0 42,583 6-2 × 6 × 6 × 6 × 6 × 6 × 6 × 6 × 6 × 6 ×	MULTIPLIC	MF.JIV		0		
d. 3 × 40 6-2 e. 7 × 600 6-2 f. 8 × 7,0006- g. 4 × 3,0006-2 h. 5 × 80,0006-2 i. 4 × 60,0003 2. How does the distributive property help us find a product like 5 × 1,683? Copy and complete. 5-; 5 × 4,683 = 5 × (4,000 + 600 + 80 + 3) 0 = (5 × 4,000) + (5 × 600) + (5 ×) + (5 ×) = 20,000 + + + = 0 3. a. Explain how each partial prod-6-1 uct was found. 0	1. Try findi	ng these prod	ucts with	out pencil	5-/ and par	er.
g. 4 × 3,000 & -2 h. 5 × 80,000 & -2 i. 4 × 60,000 & -2 2. How does the distributive property help us find a product like 5 × 4,683? Copy and complete. 5 - 1	a. 4 × 5	0 6-2 b.	3×800	C-2	2. 9 × 3	0 6-2
2. How does the distributive property help us find a product like 5.7 1.683? Copy and complete. 5-1 5 × 4,683 = 5 × (4,000 + 600 + 80 + 3) 0 = (5 × 4,000) + (5 × 600) + (5 ×	d. 3 × 4	0 6-2 e.	7×600	6-2 1	. 8 × 7	,0006-2
Froduct like; $5/\times 3$, 683 ? [Copy and complete. $6-1$] $5 \times 4,683 = 5 \times (4,000 + 600 + 80 + 3)$ $= (5 \times 4,000) + (5 \times 600) + (5 \times -)$ $= 20,000 + = -$	g. 4 × 3	,0006-2 h.	$5 \times 80,0$	00 6-2 i	. 4 × 6	0,000 3-7
5 × 4,683 = 5 × (4,000 + 600 + 80 + 3) C	2. How doe 6-1 product !	s the distrib ike النهرية,683	utive pro?	operty he	lp us fi	nd a
Copy and complete the short form 5-1 Copy 6-1 Copy 6-						•
3. a. Explain how each partial prod-6-1 uct was found. b. Add to find the product! 6. Find the partial products in 6-1 6 × 42,583 6-2 d. Add to find the product. 6. Add to find the product. 720 1. Add to find the product. 720 720 720 720 720 720 730 740 740 750 760 770 770 770 770 770 77	0	$= (5 \times 4,0)$	00) + (5	× 600) ··	+ (5 × - + (5	
uct was found. 0		= [<u></u>			
c. Find the partial products in 6-1 6 × 42,583 6-2 d. Add to find the product. 6 × 42,583 6-2 48,000 4. In the short form we add partial products as we multiply. Copy and complete the short form.5-1 42,5 8 3 6-2 × 6 9 8 Multiply. 5-7 1. 3,691 7-2 × 5 Multiply. 7-7 2. 7,029 7-2 × 8			rtial prod		6,294	0
1,600 d. Add to find the product. 4. In the short form we add partial products as we multiply. Copy and complete the short form.5-1 4 2,5 8 3 X 6 8 4 2,5 8 3 6-2 X 6 9 8 4 2,5 8 3 X 6 9 8 4 2,5 8 3 X 6 4 2,5 8 3 X 6 X 6 9 8 Multiply. 5-7 1. 3,691 X 5 X 6 X 7 X 7 X 7 X 7 X 7 X 8 X 9,902 X 7 X 8	b. Add to	find the prod	क्ति!	0	***************************************	
d. Add to find the product. 4. In the short form we add partial products as we multiply Copy and complete the short form.5-1 4 2,5 8 3 6-2 × 6 8 4 2,5 8 3 6-2 × 6 9 8 Multiply.5-7 1. 3,691 7-2 × 5 2. 7,029 7-2 × 5 3. 5,497 7-2 × 6			oducts in	16-1		
4. In the short form we add partial products as we multiply. Copy and complete the short form. 5-1 0 4 2,5 8 3 6-2					· .	
ply. Copy and complete the short form.5-1 O $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u></u>	-1	0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4. In the sho	rt form we ad	ld partial	products	as we m	ulti-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	4 1		<i>i</i> : 4 4		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 2,5 8 3	4 2,5 8 3	6-2 4	2,5836-1	4 2,5	8 36-2
Multiply. 7-7 0 1. 3,691 7-2 2. 7,029 7-2 3. 5,497 7-2 4. 9,902 7-2 ×8			I -	<u> </u>	I	$\frac{\times 6}{198}$
Multiply. 5-7 1. 3,691 7-2 2. 7,029 7-2 3. 5,497 7-2 4. 9,902 7-2 ×8	O			0		
1. $\frac{3,691}{\times 5}$ 7-2 2. $\frac{7,029}{\times 3}$ 7-2 3. $\frac{5,497}{\times 7}$ 7-2 4. $\frac{9,902}{\times 8}$	Multiply.5-1		MUISES	<u> </u>		
$\frac{\times 5}{\cdot}$ $\frac{\times 3}{\cdot}$ $\frac{\times 7}{\cdot}$ $\frac{7-2}{\cdot}$ $\frac{\times 8}{\cdot}$	1 2 601		3.	5,497_	4. 9,9	002
5. 34,0007-2 6. 59,1027 7. 95.374 8. 40.608	<u>×5</u>	<u>×3</u>		<u>×7</u> /-L		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	• 7	_ •	7. 9		'	_ [

(Reprinted by permission.

Laptoring Elementary Mathematics, Five, Keedy, et al., Hole, Rinehart and Winston, Inc., 1970.)

	221						
Key to	Practice	Pass	age 3				
U SLAG L	quations .	a lug	tary Winds		•		
À	12 foot bar	gi bu	culpinto 3) piec	es of equa	il length.	To find
the len	gth ofzengr	piec	o, consider	tho	equation	0	
	0		.2 3 · x =				
Solving	this occupit	ion w	ezwi x	= 4,	Hence, 3	ich piece i	s 4 feat
long.	()					
Fi	ve girls va	nt to	3.hj.re 23 a	pples	evenly.	To find th	e greatest
number o	of whole app	ples	ench girl c	an go	t, conside	3-/ or the inequ	ual v
	0		3-1-5 K	23 .	O) ,*	
Using th	ne replacement	ent so	of whole	numb	ers, the s	solution set	t is 3-1
{ 0, 1,	2, 3, 4	3 So	the greate	st nw	mber of ap	ples each	girl 3-/
	is 4.						
Exercise		0					
Write an	d solve cq	ation	s or inequa	aliti	es to answ	er the prol	olems. 5-/
1. In 3 days the liner on which Carol was traveling steamed 1536							
3-1 miles. If it steamed the same distance each day then how far							
8-1 010	it go each	day?	Ó				
10-6							
c4 .	many tile m with leng						_
₍₃ u.	ere with 12	Inch	sides?		10-6		

ERIC Full Text Provided by ERIC

Practice Passage 3 (cont.)

Key to Practice Passage 3 (cont.)

Practice Passage 4		
Using Equations and Inc	qualities	
Equations and ineq	pullities can be used to solve real world prob	lens
To do this follow the s	tcps outlined below.	
1. Express the un	known quantity or what you want to find as	
some symbol, s	cy x. ;	
2. Using the info	rmation given write an equation such as	
	a + x = b	
or an inequali	ty such as	
	x • c < d	٠
relating x to	known quantities a, b, c, and d.	
3. Solve the equa	tion or inequality to find the values of x	
and thus the a	nswer to the problem.	
Exercises		
Write and solve equatio	ns or inequalities to answer the problems.	
1. In 3 days the line	r on which Carol was traveling steamed 1536	
miles. If it steam	med the same distance each day how far did	-
it go each day?		
?	?	
	day 1 day 2 da	.y3
gravit	any z	
. 	d it take to cover the floor of a rectangular	
room with length 2	O feet and width 13 feet if the tile are	
square with 12 inc	h sides? 20	
	š [:	
,	for the second s	1

Key to Practice Pas	sage 4			
Uning Equations and D	ion Milles ()		
Equations and inc	galities can b	ekrand to nolv	e real world prot	lens
To do this follow the	steps outlined	below. O		
1. Express the t	unknown quantity	or what you w	ant to find as	
some symbol,	say x.	0		
2. Using the in	in ation liven	write an equat	ion such as	
U	я + x 42	. 0		
or an inequal	Hely such as			
0	x • c < d4	-2		•
relating x	to known quantit	ies a, b,48,2	nd d.	
3. Solve the equ	untion or inequa	lity to find t	he values of x	
and thus the	answer to the p	oroblem. O		
Exercises 0				<u>.</u>
Write and solve exhat	ions or inequali	ties to answer	the problems.	
1. In 3 days the lin	ner on which Car	col was traveli	ng stealed 1536	
8-1 miles. If it st	eamed the same o	distance each	lay how far did	
8-1 it go each day?	0			
7		?	7 4	
8-5	dayl	day 2	d	ey3
Story		acy a		
	uld it take to	cover the floor	of a rectangula	r
and the langeth				
3-/ room with length		2.0		
0			· · · · · · · · · · · · · · · · · · ·	
		ـــر ،		
!	· · · · · · · · · · · · · · · · · · ·	-5		
i	5w			
	}. }.			
	8	-5		

Practice Passage 4 (cont.)

3. How many	5 foot coords can be made out of 17 boards of length
12 feet?	5' 5' 2'
4. If you bo	ought 25 hotdogs for a cook-cut and each person at the
cook-out	has to have 3 hotdogs, what is the greatest number of
people yo	ou could have at the cook-out?
5. In a dart	game Sam scored 25, 10, 25, and 35. Penny scored 25,
25 , 15, ·	nd x0. Who can the game and by how much?
	Sam Panny

key to Practice Passage 4 (cont.)

3. How sont	5 foot poords can be sade out of 17 bourds of length
8-1 12 feet?	8-5 17 5' 5' 2'
4. If you bo	night 25 holdogs for a cook-out and each person at the
8-1 cook-out	has to have 3 hotdogs, what is the greatest number of
people yo	u could have the cook-out?
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	grac San scored 25, 10,825, and 35. Penny scored 25,
8-225, 15,	id . O. Wo con the come . Sathy now much?
0	Sam Panny

3 30 Exploring ideas	Paris COUNTRIES Paris Norway Ottawa France , Madrid Spain Canada
Ordered pairs	
For some time now you have been studying	01
sets and conditions In this lesson and in several of the lessons that follow, you will apply what you have learned to sets and conditions	m is the capital of n .
that differ in some ways from those you have already studied. A Look at DI. Think of the capitals whose	Paris is the capital of n .
this set of cities set A Tabulate A. B Think of the countries whose names are	m is the capital of Spain.
listed as a set of countries Name this set of countries set B Fabulate B. C Is it possible to decide whether the idea ex-	04
pressed by the sentence in D2 is true or false? Explain your answer. D How many different variables are there in	Paris is the capital of Spain.
the condition expressed in D2? How many dif- ferent variables were there in the conditions	H When you replace n by Spain, you obtain
that you studied in previous lessons? E You will use the members of set A as replacements for m in the condition expressed	the condition expressed in D4. Is it possible to decide whether the idea expressed by the sentence in D4 is true or false? Explain your
m D2 Why can you use Parts as a replacement for m? Why should you not use Spain as a	answer. 1 When a condition contains two variables,
replacement for m? F. When you replace m by Paris, you obtain	must you make a replacement for each variable in order to obtain a statement?
the condition expressed in to3. Why is it not possible to decide whether the idea expressed	J Now replace m by Paris and n by Spain. Do you obtain the statement expressed in D5? Is
by the sentence in D3 is true or false? G You will use the members of set B as replacements for n in the condition expressed in	You used Paris as a replacement for m and Spain as a replacement for n in the condition
for n? Why should you not use Paris as a replacement placement for n?	"m is a capital of n." Notice that you used a pair of objects to obtain the statement expressed in D5.

(Reprinted by permission.
Seeing Through Mathematics, Book 1,
Vanlangen et al., Scott, Forsman and
Company, 1962.)

Key to Practice Passage 5

Ordered pairs	Paris COUNTRIES Paris Norway Ottawa 6-7 France , Madrid Spain Canada
a or some time now you have been studying sets and conditions. In this lesson and in several of the lessons that follow, you will apply what you have learned to sets and conditions that differ in some ways from those you have already studied. A Locietat D1. Think of the capitals whose names are listed in D1 as a set of cities. Name	Paris is the capital of n.
this set of said set A. far liste A B. Think of the countries whose names are listed as a set of countries. Name tolviset of countries set B. Talgalife B. C. Is it possible to decide whether the idea expressed by the sentence in D2 is true or false? Lyplain you arrewer. D. How many different variables are there in	Paris is the capital of Spain. Paris is the capital of Spain.
the condition expressed in D2? How many different variables were there in the conditions that you studied in previous lessons? D E You will use the members of set A as replacements for m in the condition expressed in D2. Why can you used first as a replacement for m? Why should and not use Spain as a replacement for m?	H When you replace n by Spain, you obtain the condition expressed in p4. Is it possible to decide whether the idea expressed by the sentence in p4 is true or false? Expand your answer. I When a condition contains two variables, must you make a replacement for each vari-
the condition expressed in D3. Why is it not possible to decide whether the idea expressed by the sentence in D3 is true or false? G You will use the members of set B as replacements for n in the condition expressed in D2. Why can you to a pain as a replacement for n'' Why should well not use Paris as a replacement for n'?	able in order to obtain a statement? Now replace m by Pakes and n by Spain. Do you obtain the statement expressed in D5? Is the statement true? You used Paris as a replacement for m and Spain as a replacement for n in the condition "m is a capital of n." Notice that you used a pair of objects to obtain the statement expressed in D5.

Practice Passage 5 (cont.)

	"The ordered pair
K The first object of the pair, Paris, is the	(Paris, Spain)
first component of the pan (The first compo-	
tion is a member of what set?	
t. The second object of the pair. Spain, is the	whose first component
vecond component of the pair. The second com-	is Paris and
ponent is a member of what set?	whose second component
In the exercises above, you used a city for	is Spain"
the first component and a country for the	n6
second component of is pair of objects. A pair	VICTOR DURING THE PROPERTY OF
of objects whose components occur in a special	
order is an ordered pair.	A Paris is the capital of Norway.
M Look at D6. Notice that the names of the	B Paris is the capital of France.
components of the ordered pair Paris, Spain	c Paris is the capital of Spain.
are written within parentheses. 106 also shows	D Paris is the capital of Canada.
how to read and write the name of this ordered	E Ottawa is the capital of Norway.
pair.	F Ottawa is the capital of France.
N Think about the condition " m is the capital	G Ottawa is the capital of Spain.
of n." When you replace m by a member of	H Ottawa is the capital of Canada,
(Paris, Ottawa, Madrid) and n by a member	1 Madrid is the capital of Norway.
of (Norway, France, Spain, Canada), do you	J Madrid is the capital of France.
obtain a statement? Do the sentences in D7	K Madrid is the capital of Spain.
express all the statements you can obtain?	L Madrid is the capital of Canada.
o For each statement expressed in D7, write	• •7
the name of the ordered pair that was used to	
make replacements Which Go you write first,	
the name of the replacement for m or the name of the replacement for n ?	x < y.
	A = (1, 2, 3, 4).
P Which of the stateme its expressed in D7 are true?	$B = \{2, 4, 6\}.$
	- o3
a What ordered pairs were used to obtain true statements?	- Control of the Cont
R Read the symbol. (Paris, Norway) and	jects in why the objects occur in a special
? (Paris, Norway). How do the ideas ex-	order Lie object that occurs first is the first
pressed by these symbols differ?	Component (kim) (mant) of the ordered pair. The object that occurs second is the second
	component of the ordered pair
ow you will study some conditions that	. Alianau moderni iery operodnik. "Alian pod w rumom av strone
concern numbers. You will also learn about or-	3 Also read the tabulations of sets A and B ir
dered pairs whose consequents are numbers.	ps. You will use the members of set A as re
A lee . the cp in sense , ce in 18. What are the	placements for x in $x \le y$. You will use the
variables in the condition expressed by the	members of set B as replacements for y in
all and the second rest the second rest the second rest the second rest that the second rest	A s ,
and the second s	A THE PERSON SECTION CONTINUES OF THE ACT OF

key to Practice Passage 5 (cont.)

0	"The ordered pair	0
K The first object of the pair, Paris, is the	12.6	(Paris Search
fust component of the pair The first compo-		(Paris, Spain)
nent is a member of this 3 set?		3-1
t. The second object of the pair, Spain, is the	whose first compor	
second component of the pair. The second com-	is Paris and	0
ponent is a member of what set?	whose second comp	oonen
In the exercises above, you used a city for	is Spain"	
the first component and a country for the	06	
second component c' pair of objects A pair	-	
of objects whose components occur in a special	<u> </u>	***
order is an ardered pair.	A Paris is the capit.	-
M Loo-47 D6. Notice that the names of the	Paris is the capit.	
components of the or just pair Paris, Spain	C Paris is the capita	- '
are written within parentheses. D6 also shows	D Paris is the capita	
how to read and write the name of this ordered	E Ottawa is the car	
pair.	F Ottawa is the car	
N Think about the con impin "m is the capital	G Ottawa is the car	
When you replace m by a member of Paris, Ottawa, Madeus) and n by a member	H Ottawa is the cap	
of (Norway, France, Spain, Canada), do you	1 Madrid is the capital of Norway.	
obtain a statement? Do the centences in D7	J Madrid is the capital of France.	
express all the statements you can obtain?	к Madrid is the capital of Spain. L Madrid is the capital of Canada.	
o For each statement expressed in D7, write	la mand is the car	atar or Canada.
the name of the ordered pair that was used to	D 07	İ
make replacements. Which do you write first,		* ************************************
the name of the replacement for m or the name	x < y.	
of the replacement for n ?	A = (1, 2)	, 3, 4}.
P Which of the state, let's expressed in D7 are	$B = \{2, 4\}$, 6}.
true?		
O What ordered pairs of cused to obtain true	08	
statements?	or dered pair world and	par) A par d ob-
R Read the symbols (Paris, Norway) and	jects i <u>n which the obje</u>	cts occur in a special
(Paris, Norway). How do the ideas ex-	order The object that component (kom ps/nor	
pressed by these symbols differ?	The object that occurs component of the ordere	
VI	TO THE WINDS OF THE WAR WAS ARREST TO THE PARTY OF THE PA	
1 Now you will study some to had in that		<i>O</i>
	B Also read the tabuari	
	D8. You will use the me	· · · · · · · · · · · · · · · · · · ·
	placements for iv ilent's	
	members of set B as r	epiacements for y in
3011017001	** 4.y. ! D	

Practice Passage 5 (cont.)

C To obtain a statement from a condition in	
two variables, you may tracke replacements for	x < y.
how many variables?	$A = \{1, 2, 3, 4\},\$
Do the sentences in p9 express all the state-	$B = \{2, 4, 6\}.$
ments that you can obtain from $x < y$ when	p8
you use the members of set A and set B, tabu-	The manufacture of the property of the second of the secon
lated in p8, as replacements for y and y?	1<2, 2<2, 3<2, 4<2
E Think of the statement expressed by the first	
sentence in p9. (1, 2) was used in making re-	
placements to obtain this statement D10 shows	1 < 6. $2 < 6$. $3 < 6$. $4 < 6$.
a short and convenient way to read and write	! a9
the name of this ordered pair.	- William E. C.
F. School four of the statements expressed in	"The ordered pair
1991 or each statement, name the ordered pair	
that was used in making replacements for x	(1,2)
and r	one, two"
6 Which statements expressed in D9 are true?	010
What ordered pairs were used to obtain true	
statements?	Four conditions are expressed in exercises 6
H. The sentences $x + y = 4$ and $x + y = 4$ ex-	through 9. Use the members of set C, tabu-
press two conditions How many different	lated below, as replacements for x . Use the
variables are there in each condition? How do	members of set D, tabulated below, as replace-
the two conditions differ?	ments for y For each exercise write sentences
	to express all the statements that you can ob-
In this lesson you have learned that ordered	tain from the condition. Then write "T" after
pairs are used to make replacements for two	each sentence that expresses a true statement.
variables.	$C = \{2, 4, 6\}.$ $D = \{5, 10, 15\}.$
On your own	66 + x = y. $8x + 4 = y$.
Write a name for each of the ordered pairs	7.c + 5 < y. $9.y > x + 1$.
described in exercises 1 through 5.	to In each ordered pair expressed below, the
1 The ordered pair whose first component is	second component is 3 times the first compo-
Mark Twain and whose second component is	acut. One of the components is missing Copy
Tom Sawyer	cach symbol and supply the name of the miss-
2 The ordered pair whose first component is	ing component.
Mary and whose second component is guitar	(1,) (4,) (, 9) (2,) (, 24)
3 The ordered pair whose first component is	11 In each ordered pair expressed below, the
15° and whose second component is 8 P.M.	first component is 3 more than the second com-
4 The ordered pair whose first component is	panent. One of the components is missing.
Larry and whose second component is 141	Copy each symbol and supply the name of the
5 The ordered pair whose first component is	missing component.
I and whose second component is 13	(8,) (, 18) (12,) (, 29) (, 1)

Key to Practice Passage 5 (cont.)

C To obtain a statement from a condition in	a < 11. 3-2
two viriables, you many of all e replacements for	$A = \{1, 2, 3, 4\}.$
how many variables?	$B = \{2, 4, 0\}.$
Do the sent nees in 10 press all the state-	
ments that you can obtain from $x < y$ when	ii 103 <i>O</i>
you use the members of the A and set B, tabu-	ALL REAL PROPERTY NAME AND THE PROPERTY OF THE
lated in pS ₁ is replacer that 4 for x and y?	1 < 2, $2 < 2$, $3 < 2$, $4 < 2$.
E. Think of the statement expressed by the first	$1 < 4$, $2 < 4$, $6 \cdot 3 < 4$, $4 < 4$,
sentence in p9, (1,2) was full in making re-	1 < 6. $2 < 6$. $4 < 6$.
placements to obtain the automent D10 shows	
a short and convenient - is to read and write	C9 C
the name of this ordered and 9	
r Silver four of the to haints expressed in	" he ordered pair
19 I or each statement, may e the ordered pair	(1,2)
that was used in making replacements for v	·
and v.	ene, two" 3-1
6 Which statements expressed in D2 are true?	PERSONAL MANUAL MANUAL CATA TAL INCOME AND
What ordered pairs we sets d to obtain true	
statements?	Four conditions are expressed in exercises 6
# Ther entences x + y - 4 mil'x + y == 4 ex-	through 9. Use the numbers of set C, tabu-
* press two conditions flow, many different	lated below, as repairments for x. Use the
variables are there in each condition? How do	members of set D, t'ou' ted below, as replace-
the two conditions with the two conditions of the two conditions o	ments for valor each services write sentences
for the land of the same of th	to express all the smart jents that you can ob-
In this lesson you have barned that ordered	tain from the condition; then write "T" afc
pairs are used to make replacements for two	each sentence that espirises a true statement.
variables.	$C = \{2, 3, 3, 5, 10, 10, 15\}$. 7-2
Onthernan	601 v-7 v. 1 -2 8 x + 4 - v. 7-2
Write a name for color of the ordered pairs	x + 5 < y, 1.7 $ y > x + 1, 7 - 2$
described in Corrise, I drough 5.	to In each oregres p in expressed below, the
1 The ordered pair whose fast component is Mark Twam and whose cond component is	second componed is 3 times the first compo-
Tom Sawyer	nen. One of the co Its is messing. Copy
	each syn of and supply the name of the miss-
2 The order digital whose first component is	ing composient.
Mary and wife decement of a conent is guitar	(1,) (1,) + (2,) (24)
3 The order of party and this temporant is 15° and whose second component is 8 mm.	1) in each ordered pair expressed below, the
5 The ordered per a control transforment is	first component is 3 more than the second com-
I trivial who a west temporary of 141	powert? One of the: acongos is missing.
Consolidation v. and component is	Copy caches subcland supply the name of the
Land whose securities against it 13	in promise at the control of the con
a man with a property (b) 1 to the R 12	$(1, 1)$ $(1, \log_{10}(12, 1))$ $(1, 29)$ $(1, 1)$

(Reprinted by permission. Contemporary Algebra, Book i, Smith et al., Harcourt, Brace and World, 1962.)

Key to Practice Passage 6

Gra	phing Lineafak Jualities 🧳			
62				
2-3	The graph of $3\sqrt{3/4y} < 12$ is the set satisfy the inequality. Below is a method	of phase whose coordinates		
-	the include type tensor is a method	Toys, and medianty.		
5 300	PLE	\		
2 7000		3-14		
	$G \tilde{\mathbf{x}} = 3x - 4y < 12.$			
	\Rightarrow Graph-the equation $3x - 4y = 123$			
		8+6-0B3-1-3(1-6-1)		
	$\begin{bmatrix} x & 3 & 4 & -4 \\ -3 & 7 & 4 & -4 \end{bmatrix}$	(-4, -1) + 0 - + + 1		
	$y - 3 \mid 0 \mid -6$	(6 - 4)		
	Use a dashed-line to represent the			
0	Use a dashed-line to represent the graph of the line, as shown at the			
	right.	1 0		
	Points on on ride of the line have			
	coordinates satisfy the inequality. Do the coordinates of A satisfy			
	3x 6 = 4 < 12? Is $3(6) - 6 = 4 < 12?$ Is $18 + 6 = 6 < 12?$			
	Then A is not on the graph of $3x - 4$			
	of B art's [y 3r - 4y-212? Is 3(-4)			
	The state of the s	0		
	All points on the same sale of the	line as B have coordinates		
	that satisfy $3x - 3 \le n \le 12$. Shade	<u> </u>		
b	this side of the line tas shown at the right. (Dees are to-collicult to do			
U	by hand, The portun shown shaded	3-4		
	represents the half-plane that is the	2		
	graph of 3x - 34722 12. It extends	8-6-4-2 2(16-1)		
	indefinitely upware the left. The dashed him manot part of the graph	-2/1		
	of the inequality. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
	$\frac{2x - 4y}{2}$ for a linear inequality secause the boundary of its graph is a	- CILLIANI III		
	traight line.	0		

ome logice	d Consequence	រច្ចារី ហ៊ុខ	whichs :
Theorem 1:	If a is a li	ine in pla	ne W then there is a point in W
	which is not	; in m.	
- W		T	Suppose m is a line in plane T.
			By Axiom 1(a) there is a line n in 17
A B		В	with n ≠ m. By Axion 1(b) there are
1 Km			distinct points A e d B in line n.
			Now if both A and B were in m them
ve vould ha	ve := n whic	ch is not	ene case. Hence, at least one of the
points A or	Bis <u>not</u> in	m. Thus,	we have the above theorem.
Theore 2:	There are at	least th	ree non-collinear points in a given plane.
4	4		By Axiom 1(a) there exists a line m
8		В	in a plane T. By Axion 1(b) there
		~~~	are distinct points A and B on m.
c'			By Theorem 1 there exists a point C
			in plane W but not in line m. Hence,
			we have our second theorem.
Theorem 3:	'wo distinct	lines car	n not have fore than one point in common.
2	123		Let m and n be two distinct lines in
A	R	<u></u>	a plane 7. We know such lines exist
Second By		& 30   	by Axiom 1(a). Assume there are two
4	1		distinct points A a d B so that A2 m A n
			and Bem An. Then m and n are two
distinct lines each containing points A and B. But, this is impossible by			
Axion 2. H	ence, the abo	ve assumo	tion is impossible and we have proven
Theorem 3.	AA1		THE STATE OF THE S



Key to Practice Passage 7

So ie Logic.	d Contrapances of the	Suctions O
		and W then there is a point in W
O	which is not in m.	O
	43.3	Suppose m is a line in plane T. 4-1
		by Axiom 1(a) there is a line of in 97
	Α Β	with note. By Axion 1(b) there are
1		distinct points A 2 d B in line n.
4-1	( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	Now if both A and B were in m then
we vould ha	ve = n which is not	who case. Hence, at least one of the all
		, we have the above (Affirea.
Theore 2:	There are at least t	hree non-collinear points in a given plane.
4	1	By Axiom 1(a) there exists a line m
	B	in a plane i. By Axion 1(b) there
	27-3	are distinct points A and B on m.
C	•	By Theorem 1 there exists a point C
		in plane we but not in line m. Hence
	O	we have our second theorem.
Theorem 3:	Two distinct lines co	an not have sore than one point in common.
1	10 14-3	Let m and n be two distinct lines in
A	50	a plane 77. We know such lines exist
- 1A	6 3	by Axiom 1(a). Assume there are two
6	A STATE OF THE PARTY OF THE PAR	didiret points A a d 3 so unat A2 m A n
	and the state of t	and Bum in. Ther m and n are two ?-!
distinct lines each containing points A and B. But, this is impossible by		
Axion, 2. Ho	once, the above grapm	otion is impossible and we have proven
Theorem 3.		



# Practice Passage 7 (cont.)

Theorem 4: If w a - point in a plane of then there is a line in or		
which does not contain A.		
Let A we amy point in W. By Axiom 1(a)		
there are two distinct lines nadn		
in W. If either m or n does not		
contain A then the theorem is true.		
Suppose n and n both contain A. Then		
there exist points B and C with B in m,		
C in n, $B \neq A$ , and $C \neq A$ b), Axiom 1(0).		
Furthermore, B \neq C by Theorem 3. Now,		
there is a line 1 containing B and C by Axiom 2. This line 1 can not		
contain A since if it did we would have A, B, and C all on 1 and $1 = = n$		
which is impossible. Thus, we have established the above theorem.		
Exercóses		
Prove the following theorems.		
1. Theore : 5: If A is a point in plane W then there are at least two		
lines in W each containing point A.		
2. Theorem 6: There are at least three non-concurrent lines in plane N.		
3. Theorem 7: If each of two lines in $N$ is parallel to the same line in $N$		
then they are parallel to each other.		
4. Theorem 8: If m is any line in plane W then there are at least two		
poi ts in W which are ot in line m.		
5. Theorem 9: If A is any point in plane fr then there are at least two		
lines in T which do not contain A.		



key to Practice Passage 7 (cont.)

Theorem 41	if a a solution optime we shen there is a like to w
	which does not contain as
\(\frac{1}{N}\)	Let A be any witht in Cr. of and . 10.  There are two distinct lines . a d n
L'AN	e, - 3 in W. If either m or n dees not
	contain A then the theorem is true.
-	Suppose and n both contain A. Then it,
	there exist points 3 and C with B in m,
2	Gin n, $B \neq A$ , and $C \neq A$ or $Ax 10 ft (0)$ .
	Turchermore, by Clay Theorem 3. Now,
onere is a lin	ie I containing B and C by Axiom 2. This line I can not 4-
contain A sinc	ce if it did We would nave A, B, and C all of Tand l = 1 = n
Exercises impor	hiple. Thus, we have established the above theorem.
	Grad Constant
· <del>************************************</del>	oving illeorens.
1. Theorea 5:	If A is a point in plane W then there are at least two
0	lines in W each containing point A.
Z. Theorem 6:	There are at reast three non-concurrent lines in plane W.
3. Theorem 7:	If each of two lines in. T is parallel to the said line in St
0	then they are parallel to each other.
. Theorem 8:	f n is any line in plane W then there are at least the
Ø	por ts in W which are of in line m.
Theorem 9:	If A is any point in plane W then there are at least tin
Ö	lines in 7 which do not contain A.



### Practice Passage 8

a ne logic 1 donlegaenden	of the Axtors
6 m	V: Suppose with the line in plane W.
	B, Axion 1(a) there is a line n in To
A G	with n ≠ m. By Axiom 1(b) where are
Su S	distinct points A and 3 in line n.
	Now if both A and B were in m then
	is not the case. Hence, at least one of the
	Thus, we have the following theorem.
Theorem 11 If m is a line	in plane Ti then there is a point in Ti
which is not in	m.
A	Now, by Axiom 1(a) there exists a line
5	m in plane T. By Axio., 1(b) there
•	are distinct points A and B on m.
C	By Theorem 1 there exists a por .t C
f the same of the same continues to the same same and the same same and the same same same same same same same sam	in plane W out not in line m. Hence,
h ve our second theorem.	
'heorem 2: There are at les	est three non-collinear points in a given plane.
di managara da	Let m a.d n be two distinct lines in
4	a plane TT. We know such lines exist
8 6	U. Axiom 1(a). Assume there are two
	distinct noines A and B so that A 2 m A n
MANY ON THE STATE OF THE STATE	and 35 m A n. Then and n are two
ì	ing points A a d B. But, there is in a sible
of I could. Hence, the above	e accomption is impossible and we have proven
want of The assistant le	es can not have ore than one point in comon,

key to Practice Passage 8

Constitute to the transfer of the	10 - the axio 3 0
1 < m 4-	Siprose : 18 % Line in plans W. &
(-10 1/-	B, Axion 1(a) there is a line . in Tr. i-1
n 0	3 with . = 1. By Axiom 1(b) there are
(m)	distinct points A am 3 in line n.
	Now if both A rid s were in m then 2, -/
no region ve Entrant	ch ir not the case. Hence, at leart one of the spi
on the Aor site of an	m. Thus, we have the following theorem.
theore. The fr m is a li	ine in plane W then there is a point in T
o which is not	lin a.
1 Canada	Now, by Axiom 1(a) there exists a line
6	m 211 parties to the sy take of 100 chere
	are distinct points A and 3 on m.
c' 4-3	By Wheorem 1 there exists a point C
The fact of the contract of th	in plane W but not in line m. Hence, "-1
a h ve our second theor	·e.i.
hore is there are at	Jeant three non-collinear points in a given plane.
12	4-3 Let mod n be two distinct lines in
0	a prate *f. We know each lines exist
82 2.0	b, Axion 1(n). Assume there are two
( ) management of the second	distinct points A and B so that A 2 m A n
للمنتسلين والمراز المستقرية والمستقران والمراز المرازي المرازع المرازع المرازع المرازع المرازع المرازع المرازع	and in in in Then and n are two 4-1
a to throes each con-	a rag coinc. A a d B. Dut, the is is osible 3-1
	ovo accompanion is graphicable and we have proven
ne wind budness.	0
	or enginet have one when one worth in course.

Practice Passage 8 (cont.)

m	How let a be in point in plane If.	
1 A	By Axiom 1(n) there are two distinct	
7	lines was a n in W. If both m and	
17	n contain A then we have points b and C	
The state of the s	with B in n, C in m, $A \neq 3$ , and $A \neq C$	
A	by Axiom 1(b). Furthermore, d \neq C	
n	because of Theorem 3. Therefore, there	
83 >	is a line 1 contai ing B and C by	
	ain A since if it did we would have	
A. B. and 0 all so I and $l=m=n$		
	ere is a line 1 in W with A not on 1.	
Clearly, if A n n then either n or n does not contain A. Thus we		
have established the following the	orem.	
Theorem 4: If A is a point in a pl	ane of then there is a line in of	
which does not contain A.		
Exercises		
Prove the following theorems.		
1. Theorem 5: If A is a point in a	lane W then there are at least two	
1. Theorem 5: If A is a point in plane W then there are at least two		
lines in 7 each containing point A.  Theorem 6: There are at least three non-concurrent lines in all and the state of the		
. !		
3. Theorem 7: If each of two lines in Wis parallel to the same line in W		
then they are parallel to each other.		
. Theorem 8: If m is any line in plane 77 then there are at least two		
points i: W which are not in line m.		
. Theorem 9: If the spray point in	plane W then there are at loant two	
lines in T which do	not contain A.	
All bandalis and an analysis a	The state of the s	



kev to Practice Passage 8 (cont.)

FI	how let have no point in clane is and	
ia .A	By Axiom 1(n) there are two distinctific	
4-3	lines m a d n in N . If woth m and	
4-3	n contain A then we have points 3 and C	
K m	with B in n, C in $\sqrt{n}$ , $A \neq B$ , and $A \neq C$	
A	by Axion 1(b). Furtherpre, d # C 4.2	
	because of Theorem 3. Therefore, there	
C C S	is a li e 1 contai ing B and C by	
Axiom A. This li e l can not con	tain A since if it did we would have	
A, B, and C all 4-71 and 1 = m = 1	which is F.possible. Thus we have	
move. Upgain case Ag man then there is a line 1 in W with A not on 1.		
Clearly, if in n m then either m or n does not contain A. Thus we'ld		
ave established the following theorem.		
Theorem 4: If A is a point in a plane of then there is a line in ?		
o which does not contain	1 A. O	
Lxifeits 0		
Prove the followift-Acorems.	0	
1. Theorem 5: If A is a point in	plane then there are at least two	
O lines in 77 each co	outaining point A.	
2. Theorem 6: There are at least	thred non-concurrent lines in plane T.	
3. Theorem 7: If each of two line	es in Wis parallel to the same line in W	
() then they are parel	lel to each other.	
4. A mor 8: If a is an line is	place Then here are at least two	
(j hornsei, Wwich	ere not in line m.	
and the control of th		
and the control of th	n nlone W then there are of least two	



### Practice Passage 9

1.6. Graph of a Function. The	graph of a function is the	
Let of points each point of which has as its first coordinate an element.		
of the domain and as its second coordinate the corresponding element.		
of the large. According to the definition	of a function an element	
or the domain is a coordinate of one and or	ly one point of the graph.	
(inten a graph, we may desire to know	w whether it could be the	
suph of a function. If only the graph is	given, we would assume	
tird the graph defines the donain and ra	nged We would need to !	
check to see whether the graph could be	e used as the rule for a	
i pinction.		
Also, given a domain and range, we ma	y desire to know whether	
tre graph could be used as the rule for a fi	inction. One such check	
is made by the use of a vertical line. I If th	e number 1 is an element	
for the domain and elements of the domai	n are represented on the	
1. A-axis, place a vertical line through 1 on	the N-axis. I if this line	
mich eets more than one point of the graph	the graph is not the rule 1	
for a function. This is true for any elemen	nt of the domain.	
An alternate check may be used if the	number of points on the	
risph is limite. Write the coordinates of i	he boints on the graph.	
If any last coordinate is used for two diffe	rent points, the graph is	
not the rule for a function.		
Examples		
	-Y/1 -+ + +	
1. Domain: {1, 2, 3, 4}		
Range: {1, 2, 3}	·	
the rule for a function using this		
domain and range?	0; x	
Could the graph in Fig. 4.4 be the rule for a function using this domain and range?  Fig. 4.4		

(Reprinted by permission.

<u>Contemporary Algebra</u>, <u>Second Course</u>,

<u>Mayor and Wilcox</u>, <u>Prentice Hall</u>, 1965.)



### Rey to Practice Passage 9

1.6. Graph of Diffraction. The graph of a function is the			
st of points each point of which has as its fest wordingto an element			
of the domain and as its second coordinate	the corresponding element		
o'the range. According to the definitio	nof a function, an element		
of the domain is a coordinate of one and c	iny due point of the grach.		
Given a graph, we may desire to kri	Awhether it could be the		
caph of a function. It only the graphs	ie given, we would assume		
that the graph defines the domain and i	auge. We would need to		
check to see whether the graph could	Gelised us the rule for a		
imetion.	5		
Also, given a domain and range, we pr	nay desire to know whether		
the graph could be used as the rule for a	unction. One See check		
o made by the use of the Astron line. If t	he number Lis an element		
of the domain and elements of the dorks	of the domain and elements of the doughigure represented on the		
N-axis, place a vertical line blirough 1 on the N-axis. If this line			
mtersects more than one point of the graph, the graph is not the rule			
for a function. This is true for any element of Faddomain.			
An alternate check may be used if tlandmber of points on the			
raph is timite. Write the coordinates of Empoints on the graph.			
if any most coordinate is used for two distrest points, the graph is			
not the rule for a function.			
• /2			
Samles	- Y \( \) ' - f - \( \) - f - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \) - \( \)		
1. Dom. sp.: -{1, 2, 3, 4}			
10 1000 11 2 3	3-2		
Could the graph in Fig. 4.4 be			
the rue ron i function using this	0000		
domain and range?			
The same of the sa			
Fig. 4.4			



## Practice Passage 9 (cont.)

through more the finite number of partes of these point numbers 1 and 2 point.  2. Graph the following Domain: $\{x x \in I_0\}$ Range: $\{y y \in I_0\}$ Rule: $\{0 \le x < 1 \le$	$\begin{cases} 7, 0 \leq x < 4 \end{cases}$	Since there are a lid write the coordi- 2.2), (3,1), (4,1). The
3. Graph the following Domain: R Range: R Rule: $y = x^2$ - The complete gray shown.	!!	v v v v v v v v v v v v v v v v v v v
for a function? [In	Exercises 1 through 1	2 could be the rule omain is [1, 2, 3, 4]
and the range is {	2.	3.
Y	**************************************	Y



key to Practice Passage 9 (cont.)

The Expect is no. A vertical Inathrough I on the X-axis passes
Therefore in one point on the carpin. Since there are a
I faile number of pent on the caph, we could write the coord-1
rates of the epoints (1,1), (1,2), (1,3), (2,5,7(2,2), (3,1), (4,1). The
numbers I and B are used as first greenhates of more than one
point.
2. Graph the folic This function.
Domain: $\{x \mid x \in R, 0 \le x < 4\}$
Range: $\{y y\in R\}$
Rule: $0 \le w \le 1$ , $y = 1$
$1 \leq x < 2, y = 2$
$2 \le x < 3, y = 1$
$ S \leq x < 4, y = 2$
3. Graph the follows of function.
Domain: R
Range: R 3 2
Rule: $y = x^2$
The complete grap personal be
shown.
Exymples
CO TOTAL TOTAL PROPERTY CONTRACTOR ASSOCIATION ASSOCIA
Which of the graphs in Exercices I through 12 could be the rule
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 (Ar Thintenn / I in Pactelsen I through o the domain significant
for trunction? In Exercises 1 through 6 the domain is [1, 3, -2, 4] and the trunce is [-1], 9, 2].
and the truge is \ -1\}0, \\ 2\}.
and Gayunge is $\{-1\}$ or $\mathbb{Z}_2$ .
and the truge is \ -1\}0, \\ 2\}.
and the truge is \ -1\}0, \\ 2\}.
and G-yinge is \{-1\}0\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
and the tange is [-1]; 0; 7, 2].
and the tange is [-1]; 0; 7, 2].



## Practice Passage 10

	<del></del>
MULTIPLICATION	OF REAL NUMBERS
New, let viole est applica operatio	on on the real numbers, the operation multi-
paction. Since munipacation is an	operation, it exercise to each ordered pair
of real numbers a unique real number	ber. This third real number is called the
product of the even pair of real num	bers. A study of some of the specific facts
of multiplication indicates that mult	iplication is commutative and associative,
and that there is an identity element	for multiplication. We record these dis-
coveries in the following postulates:	
(CPM) $V_x Y_y xy = yx $ (APM) $V_x$	$_{\mathbf{r}} \vee_{\mu} \vee_{\mathbf{r}} (xy) \mathcal{L} = \lambda(yz)   (PM1) \vee_{\mathbf{r}} \chi 1 = \chi$
("ecan that we can indicate a produc	et by juxtaposition as well as by the use of
raised dot or a times sign [ I he abbr	reviation "CPM" refers to the commutative
ecter to?	o the abbreviations "APM" and "PMI"
(C.C. 10;	
PRACTICE EXFRCISES	
Prove the multiplication theorems in	Exercises 1-4.
₹	
$V_{i}V_{ij}V_{i}(xy)z = (xz)y$	$2. \ \forall_x \forall_y \forall_z (xy)z = (zy)x$
$3, \forall_{n} \forall_{n} \forall_{n} \forall_{n} \{(uv)x\}v = (ux)(vv)$	4. V. Ix + x
Repeat Exercise I on page 22 but f	for multiplication instead of addition.
	seorem analogous to the one on addition

(Reprinted by permission. Algebra with Trigonometry, Fehr et al., Heath, 1963.)



### rry to Practice Passage 10

Now, let's lot, it another operation of the real numbers, the operation multiple from Stave annualization is agong ration, it assents to each ordered pair of it it is all manuscript at manuscript. This third real mention be its called the product of the secondary of the same of the same of the same of the same of the specific facts of multiplication ratio attention that multiplication is commutative and associative, and that there is an identity element for multiplication. We record the secondary of the third ratio and independent of multiplication. We record the secondary of the coveries in the folk, which is postulates:  (CPM) VY:	O MULTIPLICATION C	CARTIE NUMBERS	O
Since annualization is agony nation, it assems to each ordered pair of real numbers a remainder of manner. This third real rate bet is called the perimet of the restriction nation of the second and acts that multiplication is commutative and associative, and that there is an identity element for multiplication. We record to discoveries in the foliage position of position as well as by the use of a rate of discoveries in the aboreviation "CPM" refers to the commutative principle for multiplication. What do the abbreviation "APM" and "PMI" refer to?  Prove the multiplication. What do the abbreviation "APM" and "PMI" refer to?		<u></u>	
Since annualization is agony nation, it assems to each ordered pair of real numbers a remainder of numbers. This third real ratio ber is called the product of the each number of real numbers. A study of some of the specific facts of multiplication national advantagement for multiplication. We record the dissociative, and that there is an identity element for multiplication. We record the dissociative coveries in the foliaging positiones:  (CPM) $V_{NN} = v_{NN} $ (APM) $V_{NN} V_{NN} = x_{NN} $ (PMI) $v_{NN} = x_{NN} $ (APM) $v_{NN} = v_{NN} = x_{NN} $ (APM) $v_{NN} = v_{NN} = x_{NN} = x_{$	Now, let's look at another operation to	of the real numbers, the ope	ration multi-
of real numbers a smooth real number. This third real rate bet is called the product of the even pair of the sembers. A study of some of the specific facts of multiplication materials that multiplication is commutative and associative, and that there is an identity element for multiplication. We record to see discoveries in the folkyway (postulates:)  (CPM) $V_{x}V_{y} = v_{y}V_{y} = (v_{y}PM) - V_{x}V_{y}V_{y} = v_{y}V_{y} = v_{$	I pleation   Since inmoffication is again	p ration, it assens to each	ordered pair
coveries in the folky of the product of multiplication is commutative and associative, and that there is an identity element for multiplication. We record the discoveries in the folky of postulates:  (CPM) Vy/ - y/ (APM) Vy/ - y/ (APM) Vy/ - (APM) (APM	Let real runnbers a unique real number	The third reasons ber	is called the
of multiplication radicates that multiplication is commutative and associative, and that there is an identity element for multiplication. We record for see discoveries in the folk [A] [ postulates:]  (CPM) VM = ym [(APM) VMy/(2)] = \(\lambda(yz)\) (PMI) \(\lambda(z) = x\) [(Recal) that my can indicate a product by juxtaposition as well as by the use of a radical day of a radics simal if ne abbreviation "CPM" reason to the commutative principle for multiplication. What do the abbreviation "APM" and "PMI" reter to"]  PRACTICE FIREMISES  Prove the multiplication theorems in Exercises 1-4.	product of the accountry of the second	is. A styly of some of the	specific facts
coveries in the folkyway (postulates:)  (CPM) Variable yet (APM) Varyvayay = x(yz) (PMI) 22 = x  [Recall that the conjunction of product by juxtaposition as well as by the use of a raised day of this ession.) I ne abbreviation "CPM" release to the commutative principle for multiplication. What do the abbreviations "APM" and "PMI" refer to?  Prove the multiplication theorems in Exercises 1-4.	of multiplication radicates that multipl	ication is commutative and	l associative.
(CPM) VNI Par ye [(APM) VNyV2(2)] = \(\lambda(yz)\) (PMI) \(\lambda = x\) [Accell that the early and indicate a product by juxtaposition as well as by the use of a raised day of a traces sign.] In a abbreviation "CPM" revers to the commutative principle for maltiplication. [What do the abbreviation. "APM" and "PMI" refer to?  PRACTICE [First 2] SES  Prove the multiplication theorems in Exercises 1-4.	and that there is an identity element for	or multiplication. We reco	ration dis-
[Recall that "group indicate a product by juxtaposition as well as by the use of a raised day of a raises sina.] It is abbreviation "CPM" reves to the commutative gracinic for maltiplication. What do the abbreviations "APM" and "PMI" reter to?  **PRACTICE first also is a factor of the commutative product for maltiplication. What do the abbreviations "APM" and "PMI" reter to?  **Prove the multiplication theorems in Exercises 1-4.		0	ر و در
[Recall that "It can inclease a product by juxtaposition as well as by the use of a raised day of a lastes sign.] It is abbreviation "CPM" resease to the commutative transmic for multiplication. What do the abbreviations "APM" and "PMI" inter to?  Prove the multiplication theorems in Exercises 1-4.	(CPM) V ₂ V ₂ · C ₂ · yr (APM) V ₂ V _y	$V_{z}(yz) = \lambda(yz)$ (PMI)	NaC = x
Prove the multiplication theorems in Exercises 1-4.	·		
Prove the multiplication theorems in Exercises 1-4.	fixees that we can indicate a product i	ov juxtaposition as well es l	by the use of
Prove the multiplication theorems in Exercises 1–4.			
Prove the multiplication theorems in Exercises 1-4.		the abbrevictions "APM"	and "PM1"
Prove the multiplication theorems in Exercises 1-4.	Teler to 7	_	]
Prove the multiplication theorems in Exercises 1-4.		0	Ì
Prove the multiplication theorems in Exercises 1–4.	PRACTICE PRACTICES		
<del>-</del> 0	Prove the mu' Daviden theorems in Ex	orginas Ind	
· VVV(6)::. (m)::1 0::12 VV:2(3	state that so the growth theorems in Ex	creises 1—4.1	
· VVV(6) (m)	7	•	
$2. \ \forall_z \forall_y \forall_y \forall_x (x ) x = (zy) x$	1. Y.Y.Y.(K) (Z. (xz)y	$2. \ \forall_x \forall_y \mathcal{F}_{\mu}(x) \mathcal{I}_{z} = (zy)x$	Ø
$3. \forall \forall \forall \forall y \forall \exists x = (ux)(vy) \qquad 4. \forall \forall \exists x \exists x \Rightarrow 0$	$3. \forall \forall \forall \forall y \forall : \exists x = (ux)(xy)$	4. V. 19 = 22:	C
5. Report if a signoser's 226न्स दिविधानी विद्यान का कार्यान करें			
6. State and the a multiplication theorem analogous to the one on addition	6. State and grand indirection theo	orem analogous to the one	on addition
in Exercise 2 of page 23.	in Exercise 2 on page 23.	Ö	



### Practice Passage 10 (cont.)

### O OMICCA ROT ENGIONIZA ENT The postulates and theorems on addition we have collected so far deal with those properties of audition that concern the order in which addition is performed There is another property of addition which is quite different. Recall that addition is an operation which assigns a unique real number to each ordered pair of real numbers. Now, there are certain ordered pairs of lednumbers to which addition assens the first number of the ordered pair. For example, addition assigns S to (S, 0), $\overline{\phantom{0}}$ 9 to $(\overline{\phantom{0}}9, 0)$ , and $\pi$ to $(\pi, 0)$ . In fact, no matter what real number you pick, you can always find a second real number to add to it so that the sum is identical with the first real number chosen that is, $\nabla_x \beta_y x + y = x.$ Moreover, there is a second real number which will work for all cases other words, $\exists_{\nu} \forall_{x} \, x \, + \, y = \, x.$ This last generalization is a short way of saying that the operation addition has an identity element. And, as we know, 0 is such an identity element for addition. We express this property of addition in the postulate: (PA0) $V_x x + 0 = x$ which is called the principle for adding 0. PRACTICE EXERCISES Prove each of the following theorems. $1. \forall_z 0 + x = x$ $2. \ \forall_z \forall_y (x+0) + (0+y) = x + y$

key to Practice Passage 10 (cont.)

O ONICCA INCOVERSIONING SHY	0
D D	
The postulates and theorems on addition we have collected so	far deal with
those properties of addition that concern the order in which as	duition is per-
formed There is another property of addition which aguite di	icient,
Recall that addition is an operation which assigns a unique r	cal rumber to
each ordered pair of real thinhoers. Now, there agrees ain ordere	d pairs of real
numbers to which addition assigns the first number of the order	red pair. For
example, Simiton assigns 8 to (8, 0), $-9$ (2.4.2.9, 0), and $\pi$ to (	r, 0). In fact,
no matter what real number you pick, you can glyays find a see	ond real num-
ber to add to it so that the sum is identical with the first real num	ber chosen —
that is,	
V. Fy Xeging = X.	
Moreover, there is a second real number which will work for	all cases 4.
other words.	
3, V. X3, 2 = X.	
This last generalization is a short way of daying that the oper	ation addition
has an identity element And, as we know, 0 is success ident.	v element for
addition. We express this property of fallion in the postulat	e·]
addition. We express this property of the postume	<del></del> J
$(PAO)  \forall x = 0 = x$	· · · · · · · · · · · · · · · · · · ·
which is called the pf. nesple for adding 0.	
which is called the principle you allow go	
<u> </u>	
PRACY & E-FYERCISES	
	-
Proj Feath of the following theorems.	
A	
1. V. 0 1. 2. X	
2. $\forall_{x} \forall_{y} = f_{x}(0) + (0 + y) = x + y$	
7, 613	

### Practice Passage 11

Cartegian Products of Rel tions
Let $A = \{1, 2, 3\}$ and $E = \{a, b\}$ . Forming the set of all ordered
nairs whose first component is from A and whose second component is from
d we have $\{(1,a),(2,a),(3,a),(1,b),(2,b),(3,b)\}$ . This set is denoted
{1, 2, 3} X {a,b} or A % B. A % B is read " A cross B" and is called
the <u>contestion are just</u> of A and B. Notice that in this example or ordered
nair (x,:) E {1, 2, 3} x {a, b} if and only if x & {1, 2, 3} and y & {a, b}
Now letting $M = \{ \phi, \Delta \}$ and $N = \{ \Delta, \varpi, \Box \}$ we have,
$\mathbb{N} \times \mathbb{N} = \{(4,\Delta), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5), (4,5),$
example above $A \times B = Q$ . But, if the example above $A \times B = Q$ .
* * *
1. Give the roster name for each of the following certesian products.
a. {\alpha, 3, 7\} \times \{0, \alpha, 3, 5, 6\}
0. 2 ₃ X 2 ₅
c. {x   x ∈ w and x < 4} X { z   z ∈ W and z + 5 ≤ 11}
d. A X A where $A = \{x \mid x \in w, x \text{ is even, and } x < 9\}$
}}
Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$ .
Let $R = \{(1,a), (2,b), (3,a)\}$ .
Then RCAX3. We say the set R is a relation from A to B.
Surpose S= {(1,b), (3,b)}.   Since S C A X B, then S is also a relation
from A to B.
te H
2. Take up a realtry, from the first set to the second set in each part
of exerge 1.
3. Take no a relation from the second set to the first set in each part
. 1 . 1020.
The American American Company of the

acy to Practice Passage 11

	TITE	O	Enterpolity materials with the State of Contracting Co
	l .: = {a, b} .	Forming the set	of all orders.
ich vhose fir. '. componer	nt is from A and	whose secon Lan	ponent is from
.m. ve ( (1, n), (2, a), (	3,a)[(4,£),(2,b)	(3,b)}. This so	Ers Menoted
11, 4, 31X (4) 13 W.A.	in. Milia is re	end " A fervis b"	and is called
the cortect of the second seco	i and B. Notice	that in this of	.mle ordered
1 mm (42,1) & {1 , 33,11 }			<del>-</del>
1 The Marie Control of the 2 to the	A CONTRACTOR OF THE PROPERTY O	The state of the s	
11.31 17 7 (8,13), (4,11), (3			
FIRE HAT SEE FO	. But, if the e	Alaple above A X	B = 0 . 2 - 2
The second contract contract contract contract of the second contract contr	*	<b>*</b>	0
1. Give her foster make f		ollowing cartesis	an products.
. "L". R. [4, 3, 7] 16 30, 2	, 3, 5, 63		0
202.0. 2, 18 25	4)		<i></i>
7-22 c. {x   x ; n / m x < 4	AND RESIDENCE AND A RESIDENCE OF THE PARTY O	-	6
13-12, d. a & A shore A = {x	IX & w, x is ev	en, and x < 9}	9
**	#	*	0
Let $R = \{1, x, 3\}$ .  Let $R = \{(1, x), (x, b)\}$		•	0
Dr. Then R.C.A W	e saj tilasjet R	is a relation fro	m A to u.
? ne sa \$(1.1), (2,6)}	ATTACAMENT TO STATE OF THE PARTY OF THE PART		
1. 1.0 3. I was not a some the second second	enter – Mantelandringenskeren i Digge Printe Printe V – Mantelandringen i Kritisty (skilater)	CALL TO BEE AT THE REAL PROPERTY AND A THE PROPERTY	
to the same of the same of the same of the same same of the same o	to white the district production on the state of the stat	k)	
	and first pet	o the second ad-	in each part
of extension and	P. A. S. P. M. A. L. V. W. A. Andringing in	anne i malandi sakilikaka kilaka akkala akkala kala kala	TO RECEIVE AND ADDRESS OF A SECRETARIAN AND A
· · · · · · · · · · · · · · · · · · ·		ne distinct	The state of the second
		11 to a series of the series o	The second secon

Practice Passage 11 (cont.)

Tactife Tassa	SC 11 (COII)	· ) ranneamanner en er britanner	HERMANIC KLANFILM, MICHAEL PROGR	AND SOUTH AND SOUTH	and the second s
Let A = <b>{</b> x	} x 1. ' '//1e	human being J			
Let $B = \mathbf{\xi} y$	fe ife il	.e human being	}		
Let R = { (	bis the	daughter of	aadaist	he father	oi bj.
Then R & A	122 and hence	e R is a rela	tion from A	to B. We	might call
this relation	the fither-day	ighter relatio	n.		
Let U . {x	is a human	being 3			
Let S = { '	a, b) lais the	brother of b	3		
Then S C U	i and Sis	s a <b>re</b> lation f	rom V to V.	Notice th	nat the
set U is used a	as with the fi	irst and secon	d set i the	cartesia	n product
in this example	e. In such a	case we say S	is a <u>relat</u> i	on on U.	
	ħ	*	*		·
4. List two e	lements of the	father-daugh	ter relation		
5. List two e	le ents of une	e brother rela	tionship.		
6. which of the	he following s	sets are relat	ions? Give	the roste	r names
of those w	ach are relat	tions.			
a. {2x +	3) x & W, y	% W, x ≪ 5, a	:ıd y <b>&lt;</b> 3 €		and the second s
b. Z ₃ X Z	4				
c. {(x +	5, 3x) x <b>§</b> W	and x < 3}		بيرانحسف بدرستار ومنظة قير	
d. {1, ∠,	6 1: 1, -1,	3, 2}			
е. Ф					
···	¥	*	₩		
Let W becau	e :e' of whole	numbers.			
Let $L = \{0, 1\}$	c il sı المَّارِّرِ .	ich that x + c	= y3		
Since L C	. / Wichen L i	is : relation	on W. L is	such an i	noortant
relation or #	wat wa give i	it a special n	ame. Lis co	lled tie	"less than"
Augustus un ma	کینی کے کیا۔ کا کینی کی ایک ایک ہے	whote L by 😘	eid veren	همده محمد دمید. در سم ایداری از این ۳ در سما ایداری از این ۳	. Jito indice
t) + (7,3) 6	i hair of the	e statements 5	L 9 ona (5,	9) ร L โลยกา	the sale
en e e e e e e e e e e e e e e e e e e			Administration descriptions and the second of the second o	**	and the second of the second o
					THE A STREET LANGUAGE WATER SPICE A PRODUCTION

Key to Practice Passage 11 (cont.)

7.2 Let $A = \{x \mid x \mid x \mid x \}$ ale human being?		÷**********			
3-2 Let B = Ey y is a ferale human being 3		O			
3.2 Let $R = \{(a,b) \mid b \text{ is the daughter of } e$	للسيديي	a is t	he fat	her of b}.	
3-2 Then R C A X B and hence R is afrefat					
this relation the Reifr-daughter relation			0	<u> </u>	
3-2 Let $V = \{x \mid x \text{ is a human being}\}$	<del>i</del>				
3-2 Let $S = \{(a,b) \mid a \text{ is the brother of b}\}$	<b>-</b>		0		
3-2 Then SCUXU and Sis a marion fi			Notic	estract the	
set U is used as both the first and second					
in the example. In such a case we say S					
* *		#		0	
4. List two elfactils of the father-daught	ter re	lation		0	
5. List two elements of the brother related	tionsh	nip.		0	
6. which of the illowing sets are relate	ions?	Give	the 🔀	ager names	
of those which here relations.			,	0	
7.7. a. {2x + 3y   x & W, y & W, x < 5, e	nd y <	3 3		0	
7-2b. 23 X Z,				0	
$2^{-2}$ and $2^{-2}$ $(x + 5, 3x)$ $(x + 5)$ $(x + 5)$ $(x + 5)$				0	
7-2d. {1, 2, 6} 15-1, -4, 3, 2}				0	
7-12e. Ø				0	
* *		₩		0	
find Let W in the set of whole numbers.		<del></del>	<del></del>	0	
Let $L = \frac{2}{6}(x,y) \stackrel{?}{=} 0 \in \mathbb{N}$ such that $x + c$	= y}				
The dines LC . IX Withon L is a micropion of	on W.	L is	such 🖔	p. ideortant	
I resotion 'ngw that we give it a special na				and the second s	
relegination a. I is usually do the L by & a					
in the state of the section of the s	L9:	13 - E.	)) <b>ខ</b> ហ្វើ	moon the some	
				U'	



# Practice Passage II (cont.)

	H	*	₩		<del></del>
7.	a. Define the relation 🕽	on Winter	ms of ordered	pairs.	
	b. List five ordered pai	rs in the rel	ation > on W	•	
	c. Rewrite (a,b)g> as a	> b for each	gf your answ	ers to b.	
8.					where
	R represents the relation				
	*	#	*		



257

may to Practice Passage 11 (cont.)

#	#	#	3)
7.6 mi Deime to relation >	on W in ter	ms of ordered p	eirs.
Col. List five ordered pairs	s in the rel	ation > on W.	
(~i_ Rewrite (a,b)2> as a	b for each	obyghr answer	s to b.
d. Revelted your ensuers to ex	cercises 4 a	nd 5 in the for	x R y where
R represents the relation	given in ea	ch problem.	
*	#	*	0



Practice Passage 12

Tractice rassage 12
Cirterian Products and Melitions
Consider arbitry sets A and B and the set of all ordered pairs whole
first comment is an element of A and whose second component is an element
of a. Such sets of ordered pairs are important in many branches of mathe-
matics. We now take the following formal definition.
Definition 1: For all rets A and B,
$A \times = \{(x,y) \mid x \leq A \text{ and } y \leq B\}.$
ARB is read "A cross B " and is called the cartesian
product of A and B.
An i mediate consequence of this definition is the following theorem.
Theorem 1: (a,b) & A X & 😂 a & A and b & 3.
rroof: $(\Rightarrow)$ Let $(a,b) \in A \times B$ . Then $(a,b) \in \{(x,y) \mid x \notin A \text{ and } y \notin B\}$ .
50, a £ A ond <b>5</b> g d.
(43) Let a $\mathcal{E}$ A and b $\mathcal{E}$ B. Then (a,b) $\mathcal{E}_{\mathcal{E}}(x,y) \mid x \in A$ and $y \in B$ = $A \times B$ .
Definition 2: Let A and B be arbitary sets.
Let R C A X B.
Then R is called a relation from A to B.
This definition tells us that an subset of a cartesian product of two
sets is relation from the first set to the second set. When RCAXA
we have a relation from A to A. In this case we say R is a relation on A.
The idea is relation is an important mathematical concept. Many relations
ca & found a dare used in everyda, life. Among these are all the
cools, and relationships between peculc.
Let R be relation. Singe R & A.J. B for some sets L and B we k ow
the elecate of A rust be ordered pairs. Thus we can write (a,b) & R
to a now the ordered pour (a,b) is in the relation d. grant times we write
The same of the sa



Key to Practice Passage 12

Cortesian Products∦	Melations		0			
Concider arbitary sets A and B and the set of all ordered pairs whose						
first component is an element of A and whose second co ponent is an element						
of s. Such sets of						
	the following			0		
Definition 1: For a	libets A and B	,		0		
3 1	$I=I_{r}(x,y)$ x S					
0 4-3-8	is read! A cr	oss B " and :	is called t	the <u>cartesian</u>		
	ict of A and B.					
An immediate co	orsequence of the	is definitio	m is the fo	ollowing theorem.		
Theorem 1: (a,b) & 7	limiti 🖨 a B	E 3 d bno A		0		
Proof: (⇒) Let (d	tope ax B. Th	nen (#67-E {(	x,y)	A and y & Bg.		
6 So, a	Land b & B.		0			
0 (¢) Let a	framd b E B.	Then (a,6)	<b>2</b> {(x,y)   x	5 A and y 5 B = 4 X 3.		
Definition 2: Let	And B be arbi	tary sets.				
	hta x B.			0		
Then	R/Is called a	relation from	<u>A to B.</u>			
This definitio	n tells us that	an; subset o	of a cartes	sian product of two		
sets is a relation	from the first	set to the so	econd set.	When RCAXA 4-2		
we have a relation	from A to A. I	n this case	wed-aty Ris	a <u>relation</u> on A.		
The idea of a fulch	ion is an impor	tant mathema	tical conce	ept. Meny foliations		
ca be found and ar	e used un every	day life. A	mong these	ere all the!		
piological relatify			0			
Let R be a lei	Ation. Since	162×B fo	r some sev	and B we k ow		
the ele ents of R a	nust beforeered	pairs. Thus	wifed wr	ite (a,b) & R 4-2		
to show the ordered	d pair (a,b) is	in the relat	ion R.   Hal	n; times we write/		
a R b to indicate	ind (a, b) & R.	Both of the	se statt .e	nts mean exacul;		
the same only.	0					



# Practice Passage 12 (cont.)

- x	crcises
1.	Give the roster have for each of the following cartesian products.
	a. {<, 3, 7}x{0, 2, 3, 5, 6}
	b. 2 ₂ × 2 ₅
L	c. $[x   x \in W \text{ and } x < 4] \times [z   z \in W \text{ and } z + 5 \le 11]$
	d. AXA where $A = \{x \mid x \in W, x \text{ is even, and } x < 9\}$
۷.	hake up a relation from the first to the second set in each part
	of exercise 1.
3.	Lake up a relation from the second set to the first set in each part
_	of exercise 1.
4.	List two elements of the father-daughter relation.
5.	List two elements of the brother relation.
6.	which of the following sets are relations? Give the roster names
	of those which are relations.
	a. {2x+3⟩ x € W, y € W, x < 5, and y ≤ 3}
	b. Z ₃ X Z ₅
	c. $2(x + 5, 3x)$ x % W and x $\leq 3$
	d. {1, \(\alpha\), \(\beta\), \(\chi\), \(\chi
	е. Ф
7.	a. Define the relation "less than" on W in terms of ordered pairs.
	b. List five ordered pairs in the relation "less than" on W.
	c. Rewrite (a,b) & "less than" as a < b for each of your answers to b.
8.	Repeat exercise 7 for the relation "greater than" on W.
9.	Rewrite ; our answers to exercises 4 and 5 in the form x R y where
	R represents the relation given in each problem.



Key to Practice Passage 12 (cont.)

exeld to fo		0					
1. Give the	rostur	fulfor each of	C the i	Collow	ing c	rteni	an products.
7-2a. {<, 3,	7}×{	0, 2, 3, 5, 6}				0	
7-20. Z3 X	: g					0	
7-2c. {x   x	§ ₩ a	nd x < 4} x {z  2	2 <b>8</b> 4 8	nd z	5 ≤	11}	0
7-24. AXA	whore	$A = \{x \mid x \leq W, x \in W\}$	c is ev	ren, a	nd <b>x &lt;</b>	93	0
		ion from the firs	st to t	he sec	cond s	set ih	each part
7-1 of exercis	se 1.				0		
3. імке цэ а	relat	ion from the seco	ond set	, to th	ne fir	est se	t in each part
7-1 of exercis	se 1.				0		-
7.1 List two o	lomen	ts of the father-	-daught	er rel	ation	1.	0
57-1List two e	lenen	ts of the brother	relat	ion.			0
6. South of t	he fo	llowing sets are	relati	ons?	0ive	the	oster names'
		ars relations.					
		€ W, y € W, x <	5, and	у 🗲 3	3	· · · · · · · · · · · · · · · · · · ·	0
7-2b. 2, X 2							
		x & W and x 4	3 }				0
	33 X	<b>[-1, -4, 3, 2]</b>					
7-20. Q					<del></del> .	<del></del>	0
		elation "less tha					
		dered pairs in th					
<del></del>							answers to b.
		7 for the relati					
		swers to exercise			_	iorm .	
/hr represen	ts the	e rel .tion given	in eac	n prob	Tem.		0



#### APPENDIX B

### CRITERION PASSAGE BOOKLET

#### Instructions

- 1. Use the CMMT technique to rate each of the following passages. Be sure to record a rating of the form m-n in each non-blank unit. Record 0 in each completely blank unit.
- 2. Rate the passages in the order presented. However, you may go back and change classifications in rated passages if you change your mind.
- 3. Refer to the <u>Rater Training Booklet</u> whenever you wish while rating the experimental passages.
- 4. Return this booklet to me in the envelope provided when you have completed the rating of all passages.



## Focus Passage EP1

Division and sets	
Here is a way to think about	aivision.
Think: There are 3 sets of 5 in a set of 15.  Write: $15 \div 5 = 3$	Think: There are 5 sets of 3 in a set of 15.  Write: $15 \div 3 = 5$
5 is the divisor. 3 is the quotient.	3 is the divisor. 5 is the quotient.
EXERCISES 1	
1. Draw a set of 18 dots on your Ring as many sets of 6 as you [A] How many did you find?  2. Draw a set of 24 dots on your page 1.	can.  [B] Solve the equation, $18 \div 6 = \pi$ paper. Ring as many
sets of 4 as you can. Solve the 3. Draw a set of 52 dots on your pasts of 8 as you can. So we the	paper. Ring as many
4. Study the sets. Then soive the	equation.
	* * * * * * * * * * * * * * * * * * *
24÷6=``	$21 \div 7 = [n]$ $20 \div 4 = [n]$
UNO the mestry numbers.    In there are secs in 35.    z0 ÷ 6 =	[12] There are sevens in 28. $23 \div 7 = 1$

, and and o'r er, Addison-Wesley Puol Sning , ay, 1968.



## Contrived Passage CP2b

direumferenc	:e		<del></del>		
A circi	c like a ploy, or	is a plane clo	sed figure.		***************************************
			$\sum$		7
<del></del>	timee around a c	***************************************			
	de a: perioter		3		
find the lon	gth of each side	of a polygon o	and then add	these lengt	hs
to find the	peri .eter of the	polygor. You	could use a	tape measur	e to
find the lir	cunferences and	diameter length	ns of the obj	ects below.	
100	el el	can		plate	
The tao	le palow gi <b>v</b> es d	he circumferenc	e, diameter.	length, and	
quotient of	circumference di	vided by diamet	er length of	each of th	€88
objects.					
	<u>Cr. unferença</u>	Dinacter Length	<u>Circuat</u>	erence r Length	7
Moel	88 inches	28 inches	3 1/7		
Can	33 inches	12 inches	3 1/6	···	1
Plate	31 iches	10 inches	3 7/4	υ Ο	1
	ryttiserier Carasan feiseataret zaties auruspiluser gest		AND COMPANY OF THE PARTY OF THE PARTY.		
Notice	the vhile the c	ircuaferences d	iffer and th	e dia eter	Lengulis
differ, the	quincents of circ	cusference divi	ded by dinne	ter length o	io
/ Lion .	ک در دوند پرسان در بر مارد	may pecasse of	iCCuluCj	or mentions	iito j
ince the number	sers in the last	column differ	at all:		

It is true unit when the circulference of any circle is divided							
of the length of a disceter of that circle, the quotient is lawys							
the same number. This number is named by the Greek letter 77 (pi).							
The number W is about 37. Notice how close to 37 each of the							
numbers in the final column of the above table is.							
If C stands for the circumference of a circle and d stands for							
the diameter then							
a. $\frac{C}{d} = \pi$							
$b \cdot C = d \cdot \pi$							
and c. $d = \frac{0}{11}$							
You can use formula (b) with 3 for W to find the circumference							
of circle when you know the length of a diameter. You can use formula							
(c) to find the length of a dimmeter of a circle when you know the							
cir unference.							
Exercises							
1. So place the caule.							
Circusferance Dinseter Radius							
5 inches							
4 feet							
3) inches							
d							
r							
G							



Word about the	
ring the circulteren	ce of each circle in 2 through 9.
2.	3.
4. (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/2) (1/	5. <b>2</b> /2/2/2/2
6. d = 17 ; ards	7. $\mathbf{r} = \frac{1}{2}$ inch
3. $d = 7/11$ inch	9. $r = 3/4$ mile
10. a. What is the	distance flong the circle from A to B?
	A (16 61.) B
b. What is the	distance along the circle from A to D if you
travel in th	e direction of the arrow?
c. What is the	distance from A to D if you travel in the
o posite dire	
11. A Herry-go-gound	ackes 30 complete turns. How any feet will
	e each travel if Marthas horse is on the inner
ring and Ronald!	s is on the outer ring?
	1007

## Focus Passage FP8

Expressions with Grouping Symbols	
In the preceding exercises you used the distributive law to get a simplered brain expression. For example, $z = 3(x^2 + 5) = xx - 6x + 15 = -15 = -15$ , so the order sion $2x - 2x + 5$ such that the new expression no locative relative parent to a parent plane of the pression of the parent plane of the pare	
74-11 S 2	
Rewrite without parentheses and combine like terms.	
1: $6 - 4(2x - 5) = 6 - 8x + 20 = 26 - 8x$	
2: $8 - (3x - 5)$ Think: $8 - 1(3x - 5)$	
8 - (3x - 5) = 8 - 3x + 5 = 13 - 3x	
3: $6 + (9 - 7x)$ Think: $6 + 1(9 - 7x)$	
6 + (9 - 7x) = 6 + 9 - 7x = 15 - 7x	
Brackets [ ] are used just as parenthered to group numbers and a received expressions, to them an expression has two or more pairs of grouping symmet, it is usually refer to begin by removing the inner-to-est pair. The ionowing example shows how to remove grouping symbols and then to combine like terms.	
3x - 4[2x - 5(x - 2)] = 3x - 4[2x - 5x + 10]  Removing ( ) $= 3x - 4[-3x + 10] $ Combining $= 3x + 12x - 40 $ Removing [ ] $= 15x - 40 $ Combining	
terms terms	
You rive the following without grouping symbols and combine like terms:	
1. $9 - (7a - 3)$ 2. $9 - (7a + 3)$	
3. 4 - (- 7a - 2) 4. 5 - (7a - 3)	
$\frac{7a + (2a - a)}{6a + (2a - 3)}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\frac{11. \ \ x - (3 + 2)}{(2. \ \ x - (-3 + 2))}$	

Reprinted by permission. Contemporary Algebra. Book One, its, et al., narcourt, Brace and World, Inc., 1864.)

ERIC AEINI SPAN PROVIDENCE PROVID

# Contrived Passage CP6a

Propagaty of A or 8	
Sun the pointer on the dual be	2
WO R G	= red = blue = green = yellow = white
r(1) = 1/5 $r(1) = 3$	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	rice out of 5 equally likel; outcomes.
So $P(R \text{ or } G) = \sqrt{5}$. Source that $P(R)$	= $1/5$ and $P(3) = 1/5$. So in this
• ce, $P(R \text{ or } G) = P(R) + P(G)$.	
In the active existe are pointer	can not stop on both R and G.
initis, the evenus R and G e n not b	oth occur at the same time.
Byrata a and B are called mountly ex	clusive if and only if they
count both occur at the same time.	
: mapose you spin the pointer	on the dial pictured below.
	Ye 3 3
I(9) = P(1 or 3 or 1) = 3/5.	3
· (n) = ?	
the exit (3 or even) on occur	$\frac{1}{\sqrt{1 + \frac{1}{2}}} = \frac{1}{\sqrt{1 + \frac{1}{2}}} = \frac{1}{\sqrt{1 + \frac{1}{2}}} = \frac{1}{\sqrt{1 + \frac{1}{2}}}.$
$0 = \{ (s : (s : (s : s) \neq P(s) +$	

*	
7	red she o into our stop at coth 3
nd in even walker. So the even	ts B and even re not suitally exclusive.
Die to econos sove illa	strate the following a portant principle
of probability.	
A and 3 r. also bey enclue:	ive evaluatif and only if
P(A or B) = (A) + P(B),	
This result to a callener lised to	o fore then two events as in the
following state ent.	
E. ,E., ,Em ere peirwi	se mutually exclusive events
(i.e. B; id L; remated	ly ecclusive for i \neq j.)
if and only fir(3, or En or	$ P(E_h) = P(E_h) + P(E_h) + P(E_h). $
Exercises	
1. 8	a. $P(2) = ?$
A Second Control of the Control of t	b. P(7) = ?
7/	c. P(even) = ?
J. James V	d. F(odd) = 7
	e. ?(₹ 3) = ?
5/3	f. P(≥6) = ?
	z. P(<1) =?
3 ' ''	in. $P(\text{between } C = A(3) = 3)$
2. Suppose a conde die is rolled	d.
a. P(1 or 6) = ?	1 000
by P(term) = c	
a. P(n:t, 1) = ?	
1. P(odd) = 7	
*. r(:0, 1),)	

3. Suppre Carrier socied twice		
1. P(N?) = . (M? = head 1	st toss, tail 2nd	toss.)
o. P(VII) = ?		
c. P(TH) = ?		
3. P(TT) = ?		
e. Are Hi and TH mutually exc	clusive events?	
f. Are Hi . d 'IT autually exc	clusive events?	
g. P(at low tone head) = ?		
h. P(at least one tail) = ?		
4.	a. P(R) = ?	
0, 1	b. P(B) = ?	
	c. $P(Y) = ?$	
	d. $P(5) = $	
n.	e. P(even) = ?	
1 6	f. P(odd) = ?	
B	g. P(R or odd)	
Contract of the second	h. P(2 or even)	
	i. P(b or 🚉 3)	- ! .
	j. P(Y or 🚄 6)	
. Which ories of events i	n o through j are.	utually exclusive

Pocus Passage FP12

Economic Novice of the sas

Notice that since the blue of motion of the particle along the square is restricted by no month, and middle of a contain of all and old is the set of non-time in the set of months and the restricted that a minimum of the motion of the transfer positive numbers to measure the time of motion when the particle moves in the countering knass direction, and use negative numbers to measure of time of motion when the particle moves in the clockwise direction.

counterclockwise	clockwise	clockwise
22 02	,0) (1,0) (1,0) (1,0) (1,0)	$\begin{array}{c c} \sqrt{2} & \sqrt{2} - 1 \\ \hline \sqrt{2} & \sqrt{2} \end{array}$
$abs \left(\frac{3}{2}\sqrt{2}\right) = -\frac{1}{2}$	$abs\left(-\frac{3}{2}\sqrt{2}\right) = -\frac{1}{2}$	abs $(1 - 4\sqrt{2}) = \frac{2 - \sqrt{2}}{2}$
$\operatorname{ord}\left(\frac{3}{2}\sqrt{2}\right) = \frac{1}{2}$	$\operatorname{ord}\left(-\frac{3}{2}\sqrt{2}\right) = -\frac{1}{2}$	$ord (1 - 4\sqrt{2}) = \frac{\sqrt{2}}{2}$

To find the value of abs for ordl for a given argument k, let the particle start at the point (1,0) and abve along the square at the rate of 1 unit per a round for k seconds a non-orection of motion is counterclockwise if the argument is counterclockwise if the argument is nonline [The value of abs 1 for one 1), then a concern all conducts of the anal position.]

--

1. Comente,		
(a) abs $(-\sqrt{2})$	(b) ord $(\sqrt{2})$	(c) abs (-1)
(d) end(-1)	(e) abs $(-5\sqrt{2})$	(f) ord $(-6\sqrt{2})$

2. Sketch graphs of about 1 ord for the argument-interval from -10 to 10.

~ y ~,

3. Place a regular hexagon with radius 1 on a coordinate place in such a way that its center has coordinates (0,0) and (1,0) of its verters has coordinates (1,0). The approve P move on the leading of the conference of the confer

The transfer of the form of the forest of th

(Reprinted by permission.

Algebra with Trigonometry, Fehr, et al., D. C. Heath and Company, 1963.)

Contrived Passage CP10b

From Proportion: 1 and the Pythagorean Theorem	
Definition. 1: Given segments AB, CD, and EF.	
Then CD is the mean proportional between AR and EF	
If and only if $\frac{AB}{AB} = \frac{CD}{CD}$.	
CD EF	
Theorem 1: The altitude to the hypotenuse of a right triangle is a	
mean proportional between the segments into which the foot	
of the altitude divides the hypotenuse.	
c Proof: Since ADC • CDB is a similarity it	
follows by definition of similarity	
that $\frac{AD}{CL} = \frac{DC}{DB}$ and the proof is	
complete.	
A X h y B	
¥←——— c ———>	
Theorem 2: The sum of the squares of the measures of the legs of a right	
triangle is the sare of the measure of the hypotenuse.	
C Proof: Since ACD ABC is a similarity we	
have $\frac{\triangle D}{\triangle C} = \frac{\triangle C}{\triangle B}$ or $\frac{X}{D} = \frac{D}{C}$.	
So, b ² = x·c. Similarly, CBD ** ABC	
is a similarity and $\frac{DB}{CP} = \frac{CB}{AB}$ or	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$a^2 + b^2 = x \cdot c + y \cdot c = (x + y) \cdot c = c^2.$	
Theorem 2 is an important theorem in geometry. It is called the	
Lyth govern Theorem.	
ມາດກວ່າ ອອສ	
For their & not when hyporchise c and logs a and b find the measure	
of the third side.	
() () -). J	

0, n=9, n=13/	
c, a = 3/1, c = 1	
d. b = 1/3, c = 3/1.	
e. a = 3, b = \$\vec{a}\	
z. Find BC, AD, and AD. A	
3. Find BC and DE.	**5 a B
7. ") nd AC, BC, and DB. C	5 c
A 12 D 2	Σ _R .
5. Find the altitude of an equala	teral triangle in terms of the side
length s.	S E
6. Interpret the Pythegorena Theo	rom in terms of area.
1-4.7	ind the the area, of the equares?

Use the figure to give an area proof of the Pythagorean Theorem. 3. Use the figure to give an area proof of the Pythagorean Theorem. Let W be the point of intersection of the diagonals of the square. \overline{XZ} be parallel to the hypotenuse of (6) the right triangle. Let WY + XZ. How can square (6) be disected into five regions four of which are congruent to (1), (2), (3), and (4) and one which is congruent to (5). (You can cut regions congruent to (1) through (5) out of some paper and try to fit them into region (6) if you have trouble. plain how this proves the Pythagorean Theorem. b.

APPENDIX C

VALIDITY FOCUS PASSAGES

Focus Passage FP1

Division and sets —

Here is a way to think about division.

Think: There are 3 sets of 5 in a set of 15. Write: $15 \div 5 = 3$	Think: There are 5 sets of 3 in a set of 15. Write: $15 \div 3 = 5$
5 is the divisor. 3 is the quotient.	3 is the divisor. 5 is the quotient.

EXERCISES ·-

- 1. Draw a set of 18 dots on your paper.
 Ring as many sets of 6 as you can.
 [A] How many did you find? [B] Solve the equation, 18 ÷ 6 = n.
- 2. Draw a set of 24 dots on your paper. Ring as many sets of 4 as you can. Solve the equation, $24 \div 4 = [n]$.
- 3. Draw a set of 32 dots on your paper. Ring as many sets of 8 as you can. Solve the equation, $32 \div 8 = [n]$.
- 4. Study the sets. Then solve the equation.

- 5. Give the missing numbers.
- [8] There are \mathbb{Z} sixes in 36. [8] There are \mathbb{Z} sevens in 28. $36 \div 6 = 3$ $28 \div 7 = n$ (Reprinted by permission. Elementary School Mathematics, Book ., Eicholz and O'Daffer, Addison-Wesley Publishing (30.2) by, 1968.)

Focus Passage FP3

THE COMMUTATIVE PROPERTY OF ADDITION

1. a. How many fingers are shown in A? How many fingers are shown in B?

- b. A number sentence for A is 2 + 5 = 7. Write a number sentence for B.
- c. Is 2 + 5 = 5 + 2 a true sentence?
- 2. Solve.

$$a. 3+6=n$$

b.
$$6 + 3 = n$$

a.
$$3+6=n$$
 b. $6+3=n$ c. $3+6=n+3$

d.
$$12 + 17 = n$$

d.
$$12 + 17 = n$$
 e. $17 + 12 = n$ f. $n + 17 = 17 + 12$

Two whole numbers may be added in either order without affecting the sum. This is the commutative property of addition.

3. Add. Why are these sums the 34 25 same? We check by adding in the +25+34opposite direction.

EXERCISES

Solve.

1.
$$7+9=9+\Box$$

2.
$$47+3=n+47$$

3.
$$\Box + 10 = 10 + 8$$

4.
$$n+94=94+38$$

4.
$$n+94=94+38$$
 5. $86+48=n+86$ 6. $13+n=29+13$

6.
$$13+n=29+13$$

Add. Check by adding in the opposite direction.

(Reprinted by permission. Five, Exploring Elementary Vinthematics, Keedy, et al., Holt, Rinchart and Winston, Inc., 1970.)

74

Exploring Ideas

Multiplication of rational numbers

n unit 6 you learned that multiplication of natural numbers is a mapping of the set of ordered pairs of natural numbers onto the set of natural numbers. You also learned that the product of two natural numbers is a natural number. In this lesson you will learn how to find the product of two rational numbers.

- A Look at D1. What are the first and second components of each ordered pair of rational numbers named in the display?
- B $(\frac{2}{3}, \frac{3}{4})$ is mapped onto the product $\frac{2}{3} \times \frac{3}{4}$. Describe the other mappings represented in D1.
- c Read sentence A in D2. Sentence A expresses a true statement about the product of the rational numbers $\frac{2}{3}$ and $\frac{3}{4}$. The number $\frac{6}{12}$ is the product of $\frac{2}{3}$ and $\frac{3}{4}$? Is 12 the product of the numerators of $\frac{2}{3}$ and $\frac{3}{4}$? Is 12 the product of the denominators of $\frac{2}{3}$ and $\frac{3}{4}$? Remember that when we mention numerators and denominators, we are referring to the fractions that indicate the rational numbers.
- **D** Sentence B also expresses a true statement about the product of two rational numbers. What are these numbers? Is $\frac{16}{9}$ their product?

The product of two rational numbers is a rational number indicated by a fraction. The numerator of the fraction is the product of the two numerators, and the denominator is the product of the two denominators. The work that follows will help you use variables to develop the definition of the product of two rational numbers.

Product of rational numbers closure property of multiplication; well defined property of multiplication

$$\begin{pmatrix} \binom{1}{1}, \frac{1}{4} \end{pmatrix} \qquad \begin{pmatrix} \binom{8}{10}, \frac{2}{1} \end{pmatrix} \qquad \begin{pmatrix} \binom{4}{5}, \frac{5}{4} \end{pmatrix} \qquad \begin{pmatrix} \binom{32}{3}, \frac{0}{8} \end{pmatrix}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\frac{2}{3} \times \frac{3}{4} \qquad \frac{8}{10} \times \frac{2}{1} \qquad \frac{4}{5} \times \frac{5}{4} \qquad \frac{32}{5} \times \frac{0}{8}$$

$$A_{\frac{1}{4}}^{2} \times \frac{1}{4} = \frac{6}{12}$$

$$B_{10}^{-8} \times \frac{2}{1} = \frac{16}{10}$$

$$c^{-\frac{2}{3}} \times \frac{1}{4} = \frac{2}{3 \cdot 4}$$

$$D_{10}^{8} \times \frac{2}{1} = \frac{8 \cdot 2}{10 \cdot 1}$$

$$\mathbf{E} \stackrel{a}{b} \times \stackrel{c}{d} = \stackrel{ac}{bd}$$

ο3

Universe for a and c = N. Universe for b and d = C.

$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$
.

$$F = \frac{5}{8} \times \frac{1}{5} = \frac{5}{8} \times \frac{5}{5}$$

$$F = \frac{5}{8} \times \frac{1}{5} = \frac{5 \times 1}{8 \times 5}$$
. $H = \frac{75}{1} \times \frac{1}{4} = \frac{75 \times 1}{1 \times 4}$.

$$G_{6}^{1} \times \frac{2}{3} = \frac{7 \times 2}{6 \times 3}$$

$$G_{6}^{-7} \times \frac{2}{3} = \frac{7 \times 2}{6 \times 3}$$
. $I_{4}^{-3} \times \frac{4}{3} = \frac{3 \times 4}{4 \times 3}$.

product of two rational numbers. The universe for a and c is N. The universe for b and d is C. For each replacement of a, b, c, and d. 3×3=3

- E Look at D3. Does sentence C express a true statement? Does sentence D express a true statement? Explain your answers.
- 1 Now look at sentence E in D3. Think of § and \hat{g} as any two rational numbers. The universe for a and c is N. The universe for b and d is C. I, the numerator of pd the product of

a and ϵ ? Is the denominator of 85 the product of b and d?

Now we can define the product, $\frac{9}{8} \times \frac{1}{4}$, of the rational numbers g and §. The universe for a and c is N. The universe for b and d is C. For each replacement of a, b, c, and d, $\frac{1}{6} \times \frac{6}{9} = \frac{6}{9}$.

- G Read sentence F in D4. What replacements were made for the variables in $\frac{a}{b} \times \frac{a}{b} = \frac{a}{b}$ to obtain the statement expressed by sentence F? Is the statement true? How do you know?
- H What replacements were made for the variables in $\S \times \S = \S \S$ to obtain the statement expressed by sentence G? By sentence H? By sentence 1? Is each of the statements true?

Decide whether each of the following sentences expresses a true statement or a false statement.

$$\mathbf{E} \quad \frac{7}{8} \times \frac{1}{4} = \frac{7}{32}. \quad \mathbf{K} \quad \frac{16}{5} \cdot \frac{3}{10} = \frac{48}{50}. \quad \mathbf{M} \quad \frac{4}{3} \cdot \frac{1}{9} = \frac{5}{12}.$$

$$J_{\frac{3}{2}}(\frac{1}{2}) = \frac{4}{3}$$
. $L_{\frac{3}{2}} \times \frac{6}{7} = \frac{8}{5}$. $N_{\frac{3}{2}}(\frac{1}{17}) = \frac{133}{132}$.

(Reprinted by permission. Seeing Through Mathematics, Book One, Van Engen, et al., Scott, Foresman and Company.)

Focus Passage FP8

Expressions with Grouping Symbols

In the preceding exercises you used the distributive law to get a simpler algebraic expression. For example, 2x - 3(2x + 5) = 2x - 6x - 15 = -4x - 15. The expression 2x - 3(2x + 5) was changed to -4x - 15. Note that the new expression no longer contains parentheses as grouping symbols. You can change an expression with parentheses to one without them by using the distributive law.

EXAMPLES

Rewrite without parentheses and combine like terms.

1:
$$6 - 4(2x - 5) = 6 - 8x + 20 = 26 - 8x$$

2:
$$8 - (3x - 5)$$
 Think: $8 - 1(3x - 5)$

$$8 - (3x - 5) = 8 - 3x + 5 = 13 - 3x$$

3:
$$6 + (9 - 7x)$$
 Think: $6 + 1(9 - 7x)$

$$6 + (9 - 7x) = 6 + 9 - 7x = 15 - 7x$$

Brackets [] are used just as parentheses to group numbers and algebraic expressions. When an expression has two or more pairs of grouping symbols, it is usually easier to begin by removing the innermost pair. The following example shows how to remove grouping symbols and then to combine like terms.

4:
$$3x - 4[2x - 5(x - 2)] = 3x - 4[2x - 5x + 10]$$
 Removing ()
= $3x - 4[-3x + 10]$ Combining terms in []
= $3x + 12x - 40$ Removing []
• = $15x - 40$ Combining terms

EXERCISES

Rewrite the following without grouping symbols and combine like terms:

1.
$$9 - (7a - 3)$$

2.
$$9 - (7x + 3)$$

3.
$$9 - (-7a - 3)$$

4.
$$9 + (7a - 3)$$

5.
$$7a + (2a - 3)$$

6.
$$7a - (+2a - 3)$$

7.
$$7a - (2a - 3)$$

8.
$$7a - (2a + 3)$$

9.
$$7a - (-2a + 3)$$

10.
$$7a + (-2a + 3)$$

11.
$$x - (3 + 2x)$$

12.
$$x - (-3 + 2x)$$

13.
$$x - (-3 - 2x)$$

15.
$$-(a-b)+b$$

17.
$$5 + (2x - 3)$$

19.
$$2x + 2[x + 3(x - 5)]$$

21.
$$7y - 4[y + 2(y - 8)]$$

23.
$$8[3x-2(x-5)]$$

14.
$$(a+b)-b$$

16.
$$-(a-b)-b$$

18.
$$2a + (a - 7) + 9$$

20.
$$5[x-8(x-2)]+10x$$

22.
$$-6[7m - 2(6m - 9)] - 8m$$

24.
$$9[3x - 7(x - 9)] - 12x$$

(Reprinted by permission. <u>Contemporary Algebra</u>, <u>Book One</u>, Smith, et al., Harcourt, Brace and World, Inc., 1962.)

Focus Passage FP11

7.6. Fractional Exponents. Let x be a positive number. To take the $\sqrt{x^6}$, we should think, "What is one of the two equal factors having a product of $x^{6?}$ "

 $x^{5} \cdot x^{3} = x^{6},$ $\sqrt{x^{6}} = x^{3}.$ $x^{2} \cdot x^{2} = x^{4}$ $\sqrt{x^{4}} = x^{2}$ $x \cdot x = x^{2}$ $\sqrt{x^{2}} = x$ $x^{5} \cdot x^{(7)} = x$ Since Also $x^{(?)} \cdot x^{(?)} = x$

To indicate \sqrt{x} using an exponent we must find an exponent such that when it is added to itself, the sum equals one. This exponent is ½.

 $x^{\frac{1}{2}} \cdot x^{\frac{1}{2}} \cdot x^{\frac{1}{2}} \cdot x^{\frac{1}{2}} \cdot x^{\frac{1}{2}} = x^3$ $\sqrt[5]{x^3} = x^{\frac{1}{2}}$

We see from these examples that we may define x^{i} as $\sqrt[b]{x^{a}}$, if $b \neq 0$. Consider the domain of each of the variables in the following examples and exercises as the set of positive real numbers.

Examples

- 1. Write the following radicals by the use of fractional exponents:
 - (a) $\sqrt[3]{xy^2}$ (b) $2\sqrt[5]{yz^2}$
- 2. Write with radicals in simplest form:
 - (a) $2x^{\frac{1}{2}}$ (b) $a^{\frac{1}{2}}b^{\frac{3}{2}}$ (c) $(ab)^{-\frac{1}{2}}$

Answers:

1. (a)
$$\sqrt[3]{xy^2} = x^{\frac{1}{2}}y^{\frac{1}{2}}$$
 (b) $2\sqrt[4]{yz^2} = 2y^{\frac{1}{2}}z^{\frac{1}{2}}$ (e) $x^{j}\sqrt{x} = x^{j}x^{\frac{1}{2}} = x^{\frac{1}{2}}$

2. (a)
$$2x^{\frac{1}{2}} = 2\sqrt{x}$$
 (b) $a^{\frac{1}{4}}b^{\frac{3}{2}} = \sqrt[4]{ab^3}$ (c) $(ab)^{-\frac{1}{2}} = \frac{1}{\sqrt{ab}} = \frac{\sqrt{ab}}{ab}$

Exercises

Write with fractional exponents:

1.
$$\sqrt[3]{x^2}$$

$$2. \sqrt[4]{\eta^3}$$

(c) $x^3\sqrt{x}$

1.
$$\sqrt[3]{x^2}$$
 2. $\sqrt[4]{y^3}$ 3. $\sqrt[6]{x}$ 4. $\sqrt[6]{a}$ 5. $2\sqrt{w^3}$

6. $5\sqrt{b}$	7. \sqrt{xy}	8. \sqrt{ab}	9. $\sqrt{x^2y^3}$	10. $\sqrt{xy^2}$
11. $\sqrt[3]{xy^2}$	12. $\sqrt{a^2b^3}$	13. $x\sqrt{y}$	14. $a\sqrt{b}$	15. $x^2\sqrt{x}$
16. $a\sqrt{a}$	17. \sqrt{bx}	18. $\sqrt[4]{ay^2}$		
Write with	radicals:	Ţ.		
19. $x^{\frac{1}{2}}$	20. $y^{\frac{3}{4}}$	21. a^{l}	22. $c^{\frac{5}{4}}$	23. $2a^{\frac{1}{2}}$
$21, 3b^{3}$	25. $(2x)^{\frac{1}{2}}$	26. $(3y)^{\frac{1}{2}}$	$27. x^{\frac{1}{2}}y^{\frac{2}{3}}$	28. albi
29. $2^{3}x^{\frac{1}{2}}$	$30.5^{\frac{3}{5}}y^{\frac{3}{5}}$	$31. xy^{3}$	32. $ab^{\frac{3}{2}}$	33. $x^{\frac{1}{2}}y^{\frac{1}{2}}$
31. $a^{\frac{2}{3}}b^{\frac{1}{3}}$	35. $w^{\frac{1}{2}}y^{\frac{1}{4}}$	36. $x^{\frac{1}{2}}y^{\frac{2}{3}}z^{\frac{5}{6}}$		y
Write with	radicals and	simplify:		
37. $x^{-\frac{1}{2}}$	38. $a^{-\frac{3}{3}}$	$39. bc^{-\frac{1}{2}}$	40. $am^{-\frac{1}{2}}$	41. $(ab)^{-\frac{1}{2}}$
12. $(xy)^{-1}$	43. $(a^3b)^{-\frac{1}{4}}$	41. $2a^{-1}$	$45. 5b^{-\frac{1}{4}}$	46. a [‡]
17. b [§]	$48. \ a^{\frac{1}{2}}b^{\frac{3}{2}}$	$49, x^{\frac{5}{2}}y^{\frac{1}{2}}$	50. 2a [§]	51. 4b ³
52. $(a^3)^{-\frac{1}{2}}$	53. $(b^2)^{-\frac{1}{2}}$	54. $a^{\frac{3}{2}}b^{-\frac{1}{2}}$	55. $x^{\frac{1}{2}}y^{-\frac{1}{2}}$	56. $a^2b^{\frac{1}{2}}c^{-\frac{1}{2}}$
Find the va	lue of the foll	owing:	v	
57. 4 ³	$58.9^{-\frac{1}{2}}$	59. 16 ³	60. 83	61, 25 ⁻¹
62. $(3^{\frac{1}{2}})^{-2}$	63. $(4^{\frac{3}{4}})^{-3}$	64. (0.008) ¹	65. $(0.25)^{\frac{1}{2}}$	
67. $(\frac{1}{2})^{-\frac{3}{2}}$,	(4)
Simplify:				
$968. [(a^{n+1})(a$	n-1)] ¹	69. $(b^{\frac{2}{y}})^{2y}$	$•70. (a^{\frac{2}{2}}$) ^r / ₂

(Reprinted by permission. Contemporary Algebra, Second Course, Mayor and Wilcox, Prentice-Hall, Inc., 1965.)

Focus Passage FP12

Extending the abs and ord functions

Notice that since the time of motion of the particle along the square is measured by nonnegative numbers, the domain of abs and ord is the set of nonnegative numbers. We can extend these functions so that their domains will include the negative real numbers by considering the direction of motion of the particle. Use positive numbers to measure the time of motion when the particle moves in the counterclockwise direction, and use negative numbers to measure the time of motion when the particle moves in the clockwise direction.

To find the value of abs [or ord] for a given argument k, let the particle start at the point (1,0) and move along the square at the rate of 1 unit per second for k seconds. The direction of motion is counterclockwise if the argument is positive and clockwise if the argument is negative. The value of abs [or ord] is the first [or second] coordinate of the final position.

432

PHACTICE EXTRCISES

~

1. Compute.

- (a) abs $(-\sqrt{2})$
- (b) ord $(-\sqrt{2})$
- (c) abs(-1)

- (d) ord (-1)
- (e) abs $(-5\sqrt{2})$
- (f) ord $(-6\sqrt{2})$
- 2. Sketch graphs of abs and ord for the argument-interval from -10 to 10.

44

3. Place a regular hexagon with radius 1 on a coordinate plane in such a way that its center has coordinates (0,0) and one of its vertices has coordinates (1,0). *Let a particle P move on the hexagon starting in position A and either counterclockwise or clockwise at the constant rate of 1 unit per second. Sketch a graph of the function which relates the first coordinate of each position to the

time of travel to that position. [Use the argument-interval from -12 to 12.] Tell the domain and the range of this function. Is the function periodic? If so, what is a period of the function?

4. Repeat Exercise 3 for the regular octagon whose center has coordinates (0, 0) and whose vertex A has coordinates (1, 0).

(Reprinted by permission. Algebra with Trigonometry, Fehr, et al., D. C. Heath and Company, 1963.)

285 APPENDIX D

CONTRIVED PASSAGES

Contrived Passage CP2a

Is a circle a closed plane figure? Now do you know?

Gircu forence

The distance around a corcle	e is called its circumference. Circumference
is to a circle as?	is to a polygon. How would you
use · ruler to find the perimeter	of a polygon? How would you use a
tape measure to find the circumfo	crences of the objects below? How
would you find the diameter lengt	hs?
wheel	can plate

Copy and complete the table below. For 4 and 5 choose two circular objects and measure the circumference and diameter of each.

	Circumference	Diameter Length	Circumference Diameter Length
Whecl	88 inches	28 inches	
Can	38 inches	12 inches	
Plate	$31\frac{3}{4}$ inches	10 inches	
(4)			
(5)			

Are the five circumference lengths in your table different? Are the director lengths different? How much difference is there octween the numbers in the lost column? Home two numbers which all the numbers

in the last column are between.

It is true that when the circumference of any circle is divided by the length of a diameter of that circle, the quotient is always the same number. This number is named by the Greek letter \Re (pi). The number \Re is about $3\frac{1}{7}$. How near to $3\frac{1}{7}$ were your answers in the last column of the above table?

If C stands for the circumference of a circle and d stands for the dis eter then

a.
$$\frac{C}{d} = \frac{?}{?}$$
b. $C = \frac{?}{?} \cdot \frac{?}{?}$

and

c.
$$d = \frac{?}{?}$$
.

How can you use the length of a diameter of a circle to find the circumference? How car you use the circumference of a circle to find the length of a diameter?

Exercises

Find the circumferences of the circles in 1-4.

1.

2.

- 3. directer = 17 yards
- 4. radius = $\frac{1}{2}$ inch
- 5. a. What is the distance along the circle from A to B?

b. What is the dist nce whong the circle from A to D if you may sure in the direction of the arrow ?

- c. what is the distance fro. A to D if you go in the possible direction?
- 6. A merry-go-round makes 30 complete turns. How many feet will Ron ld and Martha each travel if Martha's horse is on the inner ring and Ronald's is on the outer ring?

- 7. a. What fraction of 180° is x°?
 - b. What fraction of one-half of the circumference is the shortest distance along the circle from A to P?

- c. Write a formula finding the shortest distance along the circle from A to P in terms of x and the diameter d.
- d. Write a formula for finding the longest distance along the circle from A to P in Larms of x and the dissector d.
- e. If $x^{\bullet} = 60^{\bullet}$ and d = 5 inches what is the shortest distance along the circle from A to P? What is the longest such distance?

Girculforence

Contrived Passage CP2b

A circle like a ploygon is a plane closed figure.

The distance around a circle is called its circumference. Circumference is to a circle as perineter is to a polygon. You could use a ruler to find the length of each side of a polygon and then add these lengths to find the perileter of the polygon. You could use a tape leasure to find the circumferences and diameter lengths of the objects below.

The table below gives the circumference, diameter length, and quotient of circumference divided by diameter length of each of these objects.

	Gircunference	Dia neter Length	Circumference Diameter Length
wheel	33 inches	28 inches	3 1/7
Can	33 inches	12 inches	3 1/6
Plate	31 3 inches	10 inches	3 7/40

Modice that while the circumferences differ and the diameter lengths differ, and quotients of circumference divided by diameter length do not refer very such, it is only because of inaccuracy of measurement that the numbers in the last column differ at all!

It is true that when the circumference of any circle is divided by the length of a director of that circle, the quotient is lways the same number. This number is named by the Greek letter π (pi). The number π is about $3\frac{1}{7}$. Notice how close to $3\frac{1}{7}$ each of the numbers in the final column of the above table is.

If C stands for the circumference of a circle and d stands for the diameter then

a.
$$\frac{C}{d} = \frac{?}{?}$$
b. $C = \frac{?}{?} \cdot \frac{?}{?}$
c. $d = \frac{?}{?}$

You can use for ula (b) with 3 for n to find the circumference of reircle when you know the length of a diameter. You can use formula (c) to find the length of reir letter of a circle when you know the circumference.

Exercises

1. Co place the sable.

Circuaference	Dia.:eter	Redius
	5 inches	
		4 feet
3) inches		
	d	
		r
С		

Find the circumference of each circle in a through 9.

4-

3.

4.

5.

- 6. d = 17; ards
- 3. d = 7/11 inch

- 7. $r = \frac{1}{2}$ inch
- 9. r = 3/4 mile
- 10. a. What is the distance clong the circle from A to B?

- b. What is the distance along the circle from A to D if you travel i, the direction of the arrow?
- c. What is the distance from A to D if you travel in the opposite direction?
- 11. A nerry-go-mound wakes 30 complete turns. How any feet will Ronald and Martha each travel if Marthas horse is on the inner ring and Ronald's is a the outer ring?

Contrived Passage CP4a

Using Liustions of Incomplities

A 14 foot board is cut into 3 pieces of equal length. To find the length of each piece, consider the equation

$$3 \cdot x = 12$$
.

Solving this equation we find, x = 4. Hence, each piece is 4 feet long.

Five girls want to share 23 apples evenly. To find the greatest number of whole apples each girl can get, consider the inequality

Using the replacement set of whole numbers, the solution set is {0, 1, 2, 3, 4}. So the greatest number of apples each girl can {et is 4.

Exercises

Write and solve equations or inequalities to answer the problems.

1. In 3 days the liner on which Carol was traveling steamed 1536 miles. If it steamed the same distance each day then how far did it go each day?

2. How many tile would it take to cover the floor of a rectangular room with length 20 feet and width 13 feet if the tile are

3. How many 5 foot boards can be made out of 17 boards of length 12 feet?

4. If you bought 25 hotdogs for a cook-out and each person at the cook-out has to have 3 hotdogs, what is the greatest number of people you could have at the cook-out?

5. In a dart game Sam scored 25, 10, 25, and 35. Penny scored 25, 25, 15, and 20. Who won the game and by how much?

Contrived Passage CP4b

Using Equations and Inequalities

Equations and inequalities can be used to solve real world problems. To do this follow the steps outlined below.

- Express the unknown quantity or what you want to find as some symbol, say x.
- 2. Using the information given write an equation such as

$$a + x = b$$

or an inequality such as

relating x to known quantities a, b, c, and d.

3. Solve the equation or inequality to find the values of x and thus the answer to the problem.

Exercises

Write a A solve equations or inequalities to answer the problems.

1. In 3 days the liner on which Carol was traveling steaded 1536 miles. If it steamed the same distance each day how far did it to each day?

2. How many tile would it take to cover the floor of a rectangular room with length 20 feet and width 13 feet if the tile ars

3. How many 5 foot sourds can be sade out of 17 boards of length

4. If you bought 25 hotdogs for a cook-out and each person at the cook-out has to have 3 hotdogs, what is the greatest number of people you could have at the cook-out?

5. In a dart game Sam scored 25, 10, 25, and 35. Penny scored 25, 25, 15, and 20. Who won the game and by how much?

5am 25	Panny 25
10	25
2.5	15
35	20

Contrived Passage CP6a

rrouditty of A or J

S in the pointer on the dial below.

υ = olue

G = ¿reen

Y = 3 allow

W = white

$$r(\omega) = 1/5$$

The event (R or G) can occur twice out of 5 equally likely outcomes. So P(R or G) = 2/5. Notice that P(R) = 1/5 and P(G) = 1/5. So in this eas, P(R or G) = P(R) + P(G).

In the above explored me pointer can not stop on both R and G.
That is, the events R and G can not both occur at the same time.
Events A and B are called <u>mutually exclusive</u> if and only if they can not both occur at the same time.

Low suppose you spin the pointer on the dial pictured below-

$$P(o(3)) = P(1 \text{ or } 3 \text{ or } 5) = 3/5.$$

$$P(even) = T$$

and what (B or even) can occur twice out of five possible attendes. So P(B or even) = 2/5. But, P(B) = 1/5 and P(even) = 2/5. So the code $P(B \text{ or even}) \neq P(B) + P(\text{even})$.

In the example just considered the pointer can stop at both B and even are not mutually exclusive.

The two examples above illustrate the following important principle of propagatity.

A and B are mutually exclusive events if and only P(A or B) = P(A) + P(B).

This result can be generalized to more thin two events as in the following statement.

E: ,E, , ... ,E, are pairwise autually exclusive events

(i.e. E; and E; are mutually exclusive for $i \neq j$.)

if and only if $P(E_i \text{ or } E_k \text{ or } \cdots E_k) = P(E_i) + P(E_k) + \dots + P(E_k)$.

Ex rcises

1.

a.
$$P(2) = ?$$

b.
$$P(7) = ?$$

c.
$$P(even) = ?$$

d.
$$P(odd) = ?$$

e.
$$P(<3) = ?$$

f.
$$P(\ge 6) = ?$$

g.
$$P(<1) = ?$$

2. Coppose · single die is rolled.

a.
$$P(1 \text{ or } 6) = ?$$

b.
$$F(even) = ?$$

d.
$$P(odd) = ?$$

e.
$$P(\text{not 1 or 6}) = ?$$

3. Supar . a Contract rest of 14200.

a.
$$P(h.) = 7$$
 (III = head 1st toso, tell and toss.)

2.
$$P(T_{-}^{2}) = ?$$

e. Are III and TH mutually exclusive event.?

f. are HH .d Tr utually exclusive events?

4.

a.
$$P(R) = ?$$

b.
$$P(_{\sim}) = ?$$

c.
$$P(Y) = ?$$

d.
$$P(5) = ?$$

e.
$$P(even) = ?$$

$$f. P(odd) = ?$$

g.
$$P(R \text{ or odd}) = ?$$

h.
$$P(D \text{ or even}) = ?$$

i.
$$P(sor \le 3) = ?$$

j.
$$F(Y \text{ or } < 5) = ?$$

ت ند:

k. Maich pairs of events in e through j are autually exclusive?

Contrived Passage CP6b

Probability of A or B

The pointer on a circular dial spins and stops on one of five sectors of equal area. The sectors are colored red, blue, green, yellow, and white. The probability that the pointer stops on plue is 1/5. What is the probability that the pointer stops on red?

The event the pointer stops on red or green can occur twice out of five equally likely possible outcomes. So the probability of red or green is 2/5. Notice that in this example the probability of red is 1/5 and the probability of green is also 1/5. So in this example the probability of red or green is equal to the probability of red blue the probability of green.

In the above example the pointer on the dial can not stop at both red and green. That is, the events red and green can not both occur at the same time. Two events that can not both occur at the same time are called <u>autually exclusive</u> events.

Now suppose we number the colored sectors of the dial in the above example. Let the red sector be numbered one, blue we two, green we three, yellow be four, a d white we five. The event the pointer stops at lue or an even number can occur twice out of five possible outcomes. That is, two out of the five possible sectors would produce the required event. So the probability of plue or even is 2/5. But, in this example the probability of plue is 1/5 and the probability of one even number is 2/5. So in this example the probability of plue is 1/5 and the probability of clue or even is not equal to the sum of the probabilities of plue and even.

In the example just given the pointer can stop at both olue and on even number. That is, the events blue and even can both occur at

the same time. So in the example the events are not autually exclusive.

The two examples above illustrate the following important principle of proxibility.

Two events are mutually exclusive if and only if the probability of one or the other is the sum of the probabilities of each one.

This result can be generalized to more than one event as in the following state sent.

We events are pairwise utually exclusive (i.e. each pair of these events is a mutually exclusive pair.) if and only if the propability of the first or the second or ... the nth event is the sum of the propabilities of each single event.

Exercises

- 1. A dial is divdied into eight sectors of equal area and numbered one through eight. When the pointer is spun what is the probability of
 - a. Letting two?
 - b. _etting seven?
 - c. Letting an even number?
 - d. .etting a . odd number?
 - e. getting a number less than three?
 - f. getting a number greater than or equal to six?
 - g. getting a number less than one?
 - h. getting a number between zero and nine?
- 2. Suppose a single die is rolled. What is the probability of
 - a. getting one or six?
 - b. getting an even number?
 - c. getting an odd number?
 - d. getting something other than one?
 - e. not getting one or six?

- 3. Suppose coin is tossed twice.
 - a. What is the probability of jetting two heads?
 - b. Of getting a head a d then a tail?
 - c. Of getting a tail " d then a head?
 - d. Of getting two tails?
 - e. Are getting a head a d then a tail a.d getting a tail and then a head mutually exclusive events?
 - f. Are getting two heads a d getting two tails mutually exclusive?
 - g. W. : is the probability of getting at least one head?
 - h. what is the probability of getting at least one tail?
- 4. Suppose a circular dial is divided into twelve sectors of equal area numbered one through twelve. Suppose sectors one through six are red, sectors seven through nine are blue, and the remaining sectors are yellow. What is the probability of
 - a. Jetting red?
- b. getting blue?
- c. getting yellow?
- d. getting five?
- e. getting an even?
- f. getting an odd?
- g. Letting red or a odd?
- h. Detting blue or an even
- i. getting a blue or a number less than or equal to three?
- j. getting a jellow or a number less than six?
- k. Which pairs of events in e. through j are mutually exclusive?

Contrived Passage CP7a

Some Logic 1 Consequences of the Axions

Suppose m is a line in plane \P .

D. Axiom 1(a) there is a line n in \P with $n \neq m$. By Axiom 1(b) there are distinct points A and B in line n.

Now if both A and B were in m then

we would have m = n which is not the case. Hence, at least one of the points A or B is not in m. Thus, we have the following theorem.

Theorem 1: If m is a line in plane T then there is a point in T which is not in m.

Now, by Axiom 1(a) there exists a line m in plane T. By Axiom 1(b) there are distinct points A and B on m.

By Theorem 1 there exists a point C in plane T but not in line m. Hence,

we have our second theorem.

Theorem 2: There are at least three non-collinear points in a given plane.

Let mad n be two distinct lines in a plane T. We know such lines exist b. Axiom 1(a). Assume there are two distinct points A and B so that A m n n and B m n. Then a and n are two

distinct lines each co the ing points A a d B. But, this is impossible by Axiom 4. Hence, the above assumption is impossible and we have proven our third theorem.

Theorem 3: Two distinct li es can not have more than one point in common.

Now let A be no point in plane Π .

By Axiom 1(a) there are two distinct

lines m a d n in Π . If both m and

n contain A then we have points B and C

with B in n, C in m, A B, and A \neq C

by Axiom 1(b). Furthermore, B \neq C

because of Theorem 3. Therefore, there

is a line 1 contailing B and C by

Axiom 2. This like 1 can not contain A since if it did we would have A, B, and C all on 1 and l = m = n which is impossible. Thus we have shown that in case At mAn then there is a line 1 in π with A not on 1. Clearly, if A t nA m then either a or n does not contain A. Thus we have established the following theorem.

Theorem 4: If A is a point in a plane Then there is a line in T which does not contain A.

Exercises

Prove the following theorems.

- 1. Theorem 5: If A is a point in plane W then there are at least two lines in T each containing point A.
- 2. Theorem 6: There are at least three non-concurrent lines in plane T.
- 3. Theorem 7: If each of two lines in Tris parallel to the same line in Tris parallel to the same line in Tris parallel to each other.
- 4. Theorem 8: If m is an line in plane T then there are at least two points i. T which are not in line m.
- 5. Theorem 9: If A is any point in plane T then there are at least two lines in T which do not contain A.

Contrived Passage CP7h

so a Logical Condequences of the axioms

Theorem 1: If x is a line in plane Π then there is a point in Π which is not in Π .

Suppose m is a li e in plane T.

By Axiom 1(a) there is a line n in T

with n \neq m. By Axiom 1(b) there are

distinct points A and B were in m them

we ould have n = n which is not the case. Hence, at least one of he moin is A or B is not in π . Thus, we have the above theorem.

Theore at least three non-collinear points in a given plane.

By Axion 1(a) there exists a line m in a plane T. By Axion 1(b) there are distinct points A and B on m.

By Theorem 1 there exists a point C in plane T but not in line m. Hence, we have our second theorem.

Theore: 3: I'wo distinct lines can not have more than one point in common.

Let a and n be two distinct lines in a plane T. We know such lines exist by Axiom 1(a). Assume there are two distinct points A a d B so that A m A n and B C m A n. Then m and n are two

distinct lines each contriring points A and B. But, this is impossible by Axion 2. Hence, the above assumption is impossible and we have proven Theorem 3.

Theorem 4: If A is a point in a plane of then there is a line in of which does not contain A.

Let A be any point in \P . By Axiom 1(a) there are two distinct lines m a d n in \P . If either m or n does not contain A then the theorem is true. Suppose m and n both contain A. Then there exist points B and C with B in m, C in n, B \neq A, and C \neq A by Axiom 1(b). Furthermore, B \neq C by Theorem 3. Now,

there is a line 1 containing B and C by Axiom 2. This line 1 can not contain a since if it did we would have A, B, and C all on 1 and 1 = n = n which is impossible. Thus, we have established the above theorem.

Exercoses

Prove the following theorems.

- 1. Theore: 5: If A is a point in plane of them there are at least two lines in of each containing point A.
- 2. Theore 6: There are at least three non-concurrent lines in plane T.
- 3. Theorem 7: If each of two lines in T is parallel to the same line in T then they are parallel to each other.
- 4. Theorem 8: If m is any line in plane W then there are at least two points in W which are of in line m.
- 5. Theorem 9: If A is any point in plane of then there are at least two lines in of which do not contain A.

Contrived Passage CP9a

Cartesian grodu to a filter tions

Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$. Forming the set of all ordered only whose first component is from A and whose second component is from B we have $\{(1,a),(2,a),(3,a),(1,b),(2,b),(3,b)\}$. This set is denoted $\{1, 2, 3\} \times \{a,b\}$ or $A \times B$. A $\times B$ is read "A cross B" and is called the cartesian product of A and B. Notice that in this example and ordered over $\{(2,1) \in \{1, 2, 3\} \times \{a, b\}$ if and only if $X \in \{1, 2, 3\}$ and $Y \in \{a, b\}$. Now cetting $E = \{+, A\}$ and $Y = \{A, *, \Box\}$ we have,

 $\mathbf{x} = \{ (+, \Delta), (+, \pm), (+, \square), (\Delta, \Delta), (\Delta, \pm), (\Delta, \square) \}$. Notice that in this ext. The M \cap N = $\{\Delta\}$ $\neq \emptyset$. But, if the example above $\mathbf{A} \times \mathbf{B} = \mathbf{\Phi}$.

- 1. Give the roster name for each of the following cartesian products.
 - e. {2, 3, 7} x {0, 2, 3, 5, 6}
 - J. Z3 X Z5
 - c. $\{x \mid x \in W \text{ and } x < 4\} \times \{z \mid z \in W \text{ and } z + 5 \le 11\}$
 - d. A X A where $A = \{x \mid x \in w, x \text{ is even, and } x < 9\}$

Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$. Let $R = \{(1,a), (2,b), (3,a)\}$.

Then RCAXB. We say the set R is a <u>relation from A to B</u>.

Suppose S= {(1,b), (3,b)}. Since SCAXB, then S is also at relation from A to B.

- 2. Lake up a relation from the first set to the second set in each part of exercise 1.
- 3. Take up a relation from the second set to the first set in each part of exercise 1.

Let $K = \{x \mid x \text{ is } b \text{ sale human being} \}$

Let B = {y | y is a female human being}

Let $R = \{(a,b) \mid b \text{ is the daughter of a and a is the father of b} \}$

Then $R \subset A \times B$ and hence R is a relation from A to B. We might call this relation the father-daughter relation.

Let $U = \{x | x \text{ is a human being } \}$

Let $S = \{(a,b) \mid a \text{ is the brother of } b\}$

Then SCUXU and S is a relation from U to U. Notice that the set U is used as both the first and second set in the cartesian product in this example. In such a case we say S is a relation on U.

- 4. List two elements of the father-daughter relation.
- 5. List two elements of the brother relationship.
- 6. which of the following sets are relations? Give the roster names of those which are relations.

- b. Z3 X Z4
- c. $\{(x + 5, 3x) | x \in W \text{ and } x < 3\}$
- d. {1, 2, 6} x{-1, -4, 3, 2}
- е. ф

Let w be the set of whole numbers.

Let $L = \{(x,y) | \exists c \in \mathbb{N} \text{ such that } x + c = y\}$

Since L C W X W then L is a relation on W. L is such an important relation on w that we give it a special name. L is called the "less than" relation on W. We usually denote L by < and write 2 < 3 or 2 L 3 to indicate that (2,3) E L. Both of the statements 5 L 9 and (5,9) E L mean the same thing.

- 7. a. Define the relation > on W in terms of ordered pairs.
 - b. List five ordered pairs in the relation > on W.
 - c. Rewrite (a,b) > as a > b for each of your faswers to b.
- 8. Rewrite your answers to exercises 4 and 5 in the form x R y where R represents the relation given in each problem.

Contrived Passage CP9b

Cortesian Products and Relations

Gondider arbitary sets A and B and the set of all ordered pairs whose first comment is an element of A and whose second comment is an element of D. Such sets of ordered pairs are important in many branches of mathematics. We now make the following formal definition.

Definition 1: For all sets A and B.

 $A \times B = \{(x,y) \mid x \in A \text{ and } y \in B\}.$

A X B is read " A cross B " and is called the <u>cartesian</u> product of A and B.

An i mediate consequence of this definition is the following theorem. Theorem 1: (a,b) E $A \times B \iff$ a E A and b E B.

Proof: (\Rightarrow) Let (a,b) $\in A \times B$. Then (a,b) $\in \{(x,y) \mid x \in A \text{ and } y \in B\}$. So, a $\in A$ and b $\in B$.

(\Leftarrow) Let a ξ A and b ξ B. Then (a,b) ξ ξ (x,y) | x ξ A and y ξ B ξ = A ξ 3. Definition 2: Let A and B be arbitary sets.

Let R C A X B.

Then R is called a relation from A to B.

This definition tells us that any subset of a cartesian product of two sets is a relation from the first set to the second set. When R C A X A we have a relation from A to A. In this case we say R is a relation on A. The idea of a relation is an important mathematical concept. Many relations call be found and are used in everyday life. Among these are all the biological relationships between people.

Let R be a relation. Since R C A \times B for some sets A and B we know the ele ents of R must be ordered pairs. Thus we can write $(a,b) \le R$ to show the ordered pair $(a,b) \le R$ be to indicate that $(a,b) \le R$. Both of these statements mean exactly the same thing.

Exercises

- 1. Give the roster name for each of the following cartesian products.
 - a. {2, 3, 7}x{0, 2, 3, 5, 6}
 - D. Z. X Z.
 - c. $[x | x \in W \text{ and } x \in 4] \times [z | z \in W \text{ and } z + 5 \le 11]$
 - d. A X A where $A = \{x \mid x \le w, x \text{ is even, and } x < 9\}$
- 2. Make up a relation from the first to the second set i. each part of exercise 1.
- 3. Lake up a relation fro . the second set to the first set in each part of exercise 1.
- 4. List two elements of the father-daughter relation.
- 5. List two elements of the brother relation.
- 6. Which of the following sets are relations? Give the roster names of those which are relations.
 - a. $\{ \angle x + 3y \mid x \in W, y \in W, x < 5, \text{ and } y \le 3 \}$
 - b. Z3 X Z5
 - c. $\{(x + 5, 3x) | x \in W \text{ and } x \leq 3\}$
 - d. $\{1, 2, 3\} \times \{-1, -4, 3, 2\}$
 - e. **(**
- 7. a. Define the relation "less than" on W in terms of ordered pairs.
 - b. List five ordered pairs in the relation "less than" on W.
 - c. Rewrite (a,b) & "less than" as a < b for each of your enswers to b.
- 8. Repeat exercise 7 for the relation "greater than" on W.
- 9. Rewrite your answers to exercises 4 and 5 in the form x R y where R represents the relation given in each problem.

hean Proportional ... the Pythalorem Theorem

Since ADC \longleftrightarrow CD. In Figure I is a smallerity, it forms from the definition of singlerity that $\frac{AD}{CD} = \frac{DC}{DD}$. That is, it follows that $\frac{X}{AD} = \frac{AD}{Y}$. So, $A^2 = X \cdot Y$ and $A = X \cdot Y$.

The segment OD is said to be a mean proportional between the segments AD and DB. You can compute the measure of OD by just computing the square root of the product of the measures of AD and DB. So, we have the following theorem.

Theorem 1: The altitude to the hypotenuse of a right triangle is a lean propor ional between the segments into which the foot of the altitude divides the hypotenuse.

Also in Figure 1, since ACD ALC is a similarity, it follows that $\frac{AD}{AC} = \frac{AC}{AB}$. So, $\frac{AC}{AC}$ is a mean proportional between $\frac{BD}{AC}$ and $\frac{BA}{AB}$. These results are useful in establishing one of the most important theorems in conservy, since from them it follows that

 $b^2 = x \cdot c$ and $a^2 = y \cdot c$.

Therefore, $a^2 + b^2 = y \cdot c + x \cdot c = (y + x) \cdot c = c^2$. Thus we have proved the Pythagorean Theorem.

Theorem 2: The sure of the squares of the leasures of the legs of a right triangle is the square of the measure of the hypotenuse.

The Pythagorean Theorem is a surprising result, especially if you interpret it in eras of area. In Figure II, squares are drawn on each of the sides of a right triangle. Since the area-measure of a square is the square of the reasure of oe of its sides, the Pythagorean Theorem tells us that the sum of the area-measures of the squares on the legs is the area-reasure of the square on the hypotenuse.

for of the converse figure (1) we can see how it is possible to disect the lettert agree into five regions, four of which are congruent to regions (1), (2), (3), and (4) and one of which is congruent to square (5).

Other that a promises to the Pithagorean Theorem is illustrated by Figure IV and Figure V. In Figure IV we have $(a+b)^2 = 4 \left(\frac{1}{2} a \cdot b\right) + c^2$. So, $a^2 + 2ab + b^2 = 2a \cdot b + c^2$. Hence, $a^4 + b^2 = c^2$. In Figure V we have $c^2 = 4 \left(\frac{1}{2} a \cdot b\right) + (b-a)^2 = 2a \cdot b + b^2 - 2a \cdot b + a^2 = a^2 + b^2$.

Finally it is possible to use the Pythagorean Theore to find unknown lenghts in right triangles as illustrated of the following examples.

Let all Find 30 in Figure VI.

Since $a^2 + 7^2 = 25^2$, it follows that $a^2 + 49 = 625 \cdot nd$ that $a^2 = 576$. Hence, $a = \sqrt{576} = 24$. So, BC = 24.

Example 2: Find AB in Figure VII. Since $c^2 = 6^2 + 10^2$, it follows that $c = \sqrt{136} = 2\sqrt{34}$. So, $Ab = 2\sqrt{34}$.

in Figure VIII.

Since $(AB)^2 = (AD)^2 + n^2$, it follows that $n^2 = 6^2 - (\frac{6}{2})^2 = 36 - 9 = 27$. So, $h = \sqrt{27} = 3\sqrt{3}$.

Lxercises

1. For right ABC with hypotenuse c and legs a and b find the measure of the third side.

a.
$$a = 2$$
, $s = 5$.

c.
$$a = 3/2$$
, $c = 2$.

d.
$$b = 2/3$$
, $c = 3/2$.

e.
$$a = 3$$
, $b = \sqrt{a}$.

Find the indicated measures in Figure X.

3. Find the indicated leasures in Figure Xf.

4. Find the indicated leasures in Figure AII.

Contrived Passage CP10b

Mean Proportional a c the Pythagorean Theorem

Definition 1: Given segients AB, CD, and EF.

Then \overline{CD} is the <u>mean proportional</u> between \overline{AB} and \overline{EF} if and oly if $\overline{AB} = \overline{CD}$.

Theorem 1: The altitude to the hypotenuse of a right triangle is a mean proportional between the segments into which the foot of the allitude divides the hypotenuse.

Proof: Since ADC \longleftrightarrow CDL is a similarity it follows by definition of similarity that $\frac{AD}{CD} = \frac{DC}{DB}$ and the proof is complete.

Theorem 2: The sum of the squares of the seasures of the legs of a right triangle is the square of the seasure of the hypotenuse.

Proof: Since ACD ← ABC is a similarity we

have
$$\frac{AD}{AC} = \frac{AC}{AB}$$
 or $\frac{x}{b} = \frac{b}{c}$.
So, $b^{2} = x \cdot c$. Similarly, CBD \longleftrightarrow ABC
is a similarity and $\frac{DB}{CB} = \frac{CB}{AB}$ or $\frac{y}{a} = \frac{a}{c}$. So, $a^{2} = y \cdot c$. Thus,
 $a^{3} + b^{3} = x \cdot c + y \cdot c = (x + y) \cdot c = c^{3}$.

Theorem 2 is an important theorem in geometry. It is called the Pythagorean Theorem.

Exercises

- 1. For right A ABC with hypotenuse c and legs a and b find the measure of the third side.
 - a. a = 2, b = 5.

b.
$$a = 9$$
, $i = 13/4$.

c.
$$a = 3//$$
, $c = ...$

d.
$$b = \frac{1}{3}$$
, $c = \frac{3}{2}$.

e.
$$a = 3$$
, $b = \sqrt{a}$.

2. Find BC, AD, and BD.

3. Find BC and DE.

4. Find AC, BC, and DB.

5. Find the altitude of an equalateral triangle in terms of the side

6. Interpret the Pythagorean Theorem in terms of area.

What are the areas of the squares?

How are the areas of the squares related?

Why?

7. Use the figure to give an area proof of the Pythagorean Theorem.

3. Use the figure to give an area proof of the Pythagorean Theorem.

9. Let W be the point of intersection of the diagonals of the square. Let $\overline{\text{AZ}}$ be parallel to the hypotenuse of the right triangle. Let $\overline{\text{WY}} \perp \overline{\text{XZ}}$.

- a. How can square (6) be disected into

 five regions four of which are congruent to (1), (2), (3), and

 (4) and one which is congruent to (5). (You can cut regions congruent to (1) through (5) cut of some paper and try to fit them into region (6) if you have trouble.)
- b. Explain how this proves the Pythagorean Theorem.

APPENDIX E

CMMT ANALYSIS COMPUTER PROGRAM

- 1. This program performs the CMMT analysis for mathematics text passages. Rater codings are punched on data cards. The output of this program includes the CMMT lismatrices, and proportions for each passage analyzed. Any number of passages may be analyzed in a single run.
- 2. Fortran Program Statements.

```
DIMENSION A(10,7), B(10,10), C(7,7), M(45)
    N=0
  44 BLANK=0.0
    TOTAL=0.0
    DO 1 I=1,10
    00 1 J=1,7
   1 A(I \cdot J) = 0 \cdot 0
    DO 2 I=1.10
    D0 2 J=1,10
   28(I*J)=0.0 ---
    DO 3 I=1.7
    DO 3 J=1,7
3 ·C(1+J)=0.0-----
    JJ1=0
    JJ2 = 0
    N=N+1 -
                   9 READ(5,4) (M(K),K=1,45)
   4 FORMAT(15(12,11,12))
JF(M(1).EQ.99) GO TO 45 - - ----
    IF (JJ1.EU.0) WRITE (6,96) N
  96 FORMAT(19H0 LIST FOR PASSAGE ,14)
    I = 1
    J = 2
    K=3
```



```
8 J1=M(I) -
    J2=M(J)
    J3=M(K)
    IF(J1.EQ.88) GO TO 5
    IF(J1.6T.10.0R.J1.LT.0) GO TO 46
    IF(J2.GT.7.0R.J2.LT.0) GO TO 46
IF(J3.LT.0) GO TO 46
    WRITE(6,60) J1,J2,J3
 60 FORMAT (5X,316)
    IF(J1.EQ.0) GO TO 6- -- ------
    A(J1,J2) = A(J1,J2) + .J3
    IF(JJ1.NE.0) B(JJ1.J1)=B(JJ1.J1)+1.0
 IF(JJ2.NE.0) C(JJ2,J2)=C(JJ2,J2)+1.0
    8(11,11)=8(11,11)+13-1
    C(15,15) = C(15,15) + 13+1
    JJ1=J1
    JJ2=J2
    GO TO 7
7 I=I+3
    J=J+3
    K=K+3----
    TOTAL=TOTAL+J3
    IF(J.LT.45) GO TO 8
IF (J. GT. 45) GO TO 9
  5 CONTINUE
    WRITE (6.70) TOTAL
 70 FORMAT(14H0 TOTAL UNITS ,F6.0)
    PBLNK=BLANK/TOTAL
    WRITE (6,10) N,PBLNK
 10 FORMAT(31HO PROPORTION OF BLANKS PASSAGE .14.F8.3)
   WRITE (6,50) N - --- - - - --- -
50 FORMAT (35HO FREQUENCY MATRIX MODE 1 PASSAGE ,13)
   DO 11 K=1,10
   WRITE(6,12) -(B(K,L),L=1,10)
12 FORMAT(2H0 ,10F6.0)
11 CONTINUE
   00 13 I=1,10
   DO 13 J=1,10
13 B(I,J)=B(I,J)/(TOTAL -BLANK-1.0)
  "WRITE(6,51) "N " " " " " --- --- ---
51 FORMAT (36HO PROPORTION MATRIX MODE 1 PASSAGE +13)
   DO 14 K=1.10
14 WRITE (6,15) (B(K,L),L=1,10)
15 FORMAT (2HO .10F6.3)
   WRITE (6,52) N
52 FORMAT (43HO PROPORTION EACH CATEGORY MODE 1 PASSAGE .13)
  00 16 I=1.10
  B([,1)=B([,1)+B([,2)+B([,3)+B([,4)+B([,5)+B([,6)
  C+B(I+7)+B(I+8)+B(I+9)+B(I+10)
   47 [11 (02-7) E(I,1)
17 FORMAT (3X.F6.3)
16 CONTINUE
```

```
P1=8(1,1)+B(2,1)+P(3,1)+B(4,1)
    P2=P1+0(6,1)
   P3=H(6,1)/P2
   P4=P1/P2
   P5=8(5,1)+8(6,1)+8(7,1)+8(8,1)+8(9,1)
    WRITE (6,61) P1
61 FORMAT (27HO PROPORTION OF EXPOSITION , F6.3)
   WRITE (0,62) P2
62 FORMAT (33HO PROPORTION CONTENT DEVELOPMENT .F6.3)
   WRITE (6,63) P3
63 FORMAT (47HO PROPORTION ACTIVITIES IN CONTENT DEVELOPMENT +F6.3
   WRITE (6,64) P4
64 FORMAT (47HO PROPORTION EXPOSITION IN CONTENT DEVELOPMENT , F6.3
   WRITE(6,65) P5
65 FORMAT (39HO PROPORTION REQUIRING OVERT RESPONSES , F6.3)
   WRITE(6,53) N
53 FORMAT (35HO FREQUENCY MATRIX MODE 2 PASSAGE ,13)
   DO 19 K=1,7 ---
   WRITE(6,20) (C(K,L),L=1,7)
20 FORMAT(2H0 ,7F6.0)
19 CONTINUE
   00 21 I=1.7
   DO 21 J=1,7
21 C(I,J)=C(I,J)/(TOTAL-BLANK-1.0)
   WRITE(6,54) N
54 FORMAT (36HO PROPORTION MATRIX MODE 2 PASSAGE ,13)
   DO 22 K=1,7
22 WRITE(6,23) (C(K,L),L=1,7)
23 FORMAT (2HO , 7F6.3)
   WRITE (6,55) N
55 FORMAT (43HO PROPURTION EACH CATEGORY MODE 2 PASSAGE , 13)
   DO 24 I=1,7
   C(I,1)=C(I,1)+C(I,2)+C(I,3)+C(I,4)+C(I,5)+C(I,6)+C(I,7)
   WRITE(6,25) C(1,1)
25 FORMAT (3x, F6.3)
-24 CONTINUE ----
   P6=C(3,1)+C(4,1)+C(5,1)
   WRITE (6,26) P6
26 FORMAT (31HO PROPORTION MATH ILLUSTRATION , F6.3)
   P7=P6+C(6,1)+C(7,1)****
   WRITE(6,27) P7
27 FORMAT (29HO PROPORTION OF ILLUSTRATION , F6.3)
   WRITE (6,59) N
59 FORMAT (43HO INTERACTION MATRIX MODES 1 AND 2 PASSAGE . 13)
   00 36 K=1,10
   WRITE(6,37) (A(K,),L=1,7) ....
37 FORMAT(2H0 ,7F6.0)
36 CONTINUE
   GO TO 44
46 WRITE(6,47) J1,J2,J3
of the FARAT (1540 ERROR IN DATA, 315)
40 STUP
   END
```


3. Date Arrangement on Input Cards for a Given Passage.

Columns 1 and 2: Dimension 1 classification, right

adjusted.

First Message:

Column 3: Dimension 2 classification.

Columns 4 and 5: Weight of the message,

right adjusted.

Second Message: Repeat above for columns 6 through 10.

Continue through the passage using 75 columns of each card. Columns 76 through 80 may be used for identification information. After the last message is punched, punch 88 in the following two columns. Each passage to be analyzed starts on a new card.

4. Data Deck Order.

First Passage Cards.

Second Passage Cards.

Last Passage Cards.

Final Card of Data Deck: Punch 99 in columns 1 and 2.

APPLNDIX F

COMPUTER PROGRAMS FOR SCOTT RELIABILITY COEFFICILATS

- These programs compute the Scott reliability coefficients for each dimension of the CMMT category system.
 The programs compute the coefficients for any number of pairs of subjects.
- 2. Fortran Statements of the Dimension 1 Program.

```
DIMENSION -11 (38) ; 12 (38) ; P(10)
   0=NN
1+NN=NN 0S
   v1=0
21 T=0.0
   \Lambda=0.0
   f)0 1 K=1,10
 1 P(K) = 0.0
10 READ (5.2) (I1(K),K=1.38)
 2 FORMAT(3812)
   IF([1(1).EQ.-1) GO TO 6
  IF(T)(1).E0.99) GO TO 20
  READ (5,2) (12(K),K=1,38)
  00 3 K=1,38
  IF(T1(K).EQ.0) GO TO 33
  IF(T1(K) \cdot EQ \cdot I2(K)) \land = A+1 \cdot 0
  M=I_1(K)
  P(M) = P(M) + 1 \cdot 0
  M=12(K)
  P(M) = P(M) + 1.0
  T=T+1.0
 3 CONTINUE
  GO TO 10
33 PU=A/T
  00 4 K=1,10
4 P(K)=(P(K)/(24T)) ##2
  PF = P(1) + P(2) + P(3) + P(4) + P(5) + P(6) + P(7) + P(8) + P(9) + P(10)
  P=(PO=PE)/('-PE)
  N=N+1
  WRITE (6,7) NN.N
 7 FORMATIZAHODIMENDION 1 PAIR ($14,2H $,14,2H ))
  WR(TF(6,8) PO
 R FORMATIZSHOPROPORTION OF AGREEMENT .F8.6)
  WRITE (6.9) R
9 FURMATICZHORELIABILITY ESTIMATE .FR.6)
  CA TO 21
6 SIUP
  END
```


3. Fortran Statements of the Dimension 2 Program.

```
DIMENSION-11(38),12(38),P(7)-----
           NN = 0
  20 NN=NN+1
           N=0 . --
  21 T=0.0
           A=0.0
           DO 1 K=1.7
     1 P(K) = 0.0
  10 READ(5,2) (I1(K),K=1,38)
     2 FORMAT (3812) =
           IF (I1(1).EQ.-1) GO TO 6
           IF([1(1).E0.99) GO TO 20
           REAU(5+2) (12(K)+K=1+38)
           00 3 K=1.38
           IF (I1 (K) .EQ.0) GO TO 33
           IF (I1 (K) .EQ.12(K)) A=A+1.0
           M=11(K)
           P(M) = P(M) + 1.0
           W=15(K) --- --
           P(M) = P(M) + 1.0
           T=T+1.0
     3 CONTINUE --
                                                                The second secon
           GO TO 10
 33 PO=A/T
           DO 4 K=1.7
    4 P(K) = (P(K)/(2^{h}T))^{h}
           PE = P(1) + P(2) + P(3) + P(4) + P(5) + P(6) + P(7)
       * R= (PU-PE) / (1-PE) ** **
           N=N+1
           WRITE (6,7) NN,N
-7 FORMAT (20HODIMENSION-2 -PAIR-(+14+2H-++14+2H-))
           WRITE (6+8) PO
     8 FORMAT (25HOPROPORTION OF AGREEMENT .F8.6)
           WRITE (6.9) R =
     9 FORMAT (22HORELIABILITY ESTIMATE ,F8,6)
           GO TO 21
     6 STOP-----
           END
```


4. Data Arrangement for Input Cards for a Given Subject on Dimension n, n = 1, 2.

Columns 1 and 2: Subject's dimension n rating of first message, right adjusted.

Columns 3 and 4: Subject's dimension n rating of second message,

right adjusted.

First Card: {

Repeat for as many columns as necessary up through column 76.

Columns 77 through 80: Identification information.

Second Card (If necessary) Continue above.

Continue until all messages are punched.

Note: Messages coded 0 are not punched on the data cards. Each pair of columns before the end of the passage must have a positive entry.

5. Data Deck Order.

First card for subject m.

First card for subject n.

Cards for subject .

a. Cards for subject
pair (m,n):

Last card for subject m.

Last card for subject n.

First subject pair cards.

Second subject pair cards.

First

Subgroup:

Last subject pair cards.

End of subgroup card: Punch 99 in columns 1 and 2.

b. Order
 of pairs
 in deck:

•

Repeat for as many subgroups as desired.

•

Last data card in deck: Punch -1 in columns 1 and 2.

APPENDIX G

COMPUTER PROGRAMS FOR SCORING CRITERION PASSAGES

- 1. These programs compute between- and within-rater scores for subjects using the CMMT technique to code a given passage. The output consists of scores for each dimension, overall scores, and the KR-20 reliability estimate for each CMMT dimension. The programs will score up to 60 subjects' ratings on a given passage.
- 2. a. Fortran Program Statements for One Card Passages and Between-Rater Scores.

```
101 DIMENSION IC1 (3g), IC2 (3g), T1 (10), T2 (7)
102 DIMENSION IS1 (3R) , IS2 (3R) , P1 (10) , P2 (7)
103 DIMENSION R1 (60), P2 (60), PV1 (38), PV2 (38)
201 NN=0
202 DO 1 K=1,10
  1.71(K) = 0.0
204 Dn 2 K=1.7
2 T2(K)=0.0
    DO 42 K=1.60
    P1(K) = 0.0
 42 H2(K)=0.0
104 ng 34 K=1,38
    PV1(K) = 0.0
 34 PV2(K)=0.0
105 PFAD(5,3) (IC1(K),K=1,38)
106 RFAU(5,3) (IC2(K),K=1,3A)
  3 FORMAT (3812)
107 Un 4 K=1,38
    Jr (IC1(K).F0.0) IT=K-1
    IF (IC1 (K) .EQ. 0) GO TO 19
    Mi=IC1(K)
    M2=1C2(K)
    T1(M1) = T1(M1) + 1_0
  4 T_2(MC) = T_2(M2) + 1.0
 19 X=T2(1)+T2(2)+T2(3)+T2(4)+T2(5)+T2(6)+T2(7)
 17 PFAD(5,3) (IS1(K),K=1,38)
703 IF (ISI(1).FO.-1)GO TO 18
108 PFAU(5,3) (IS2(K),K=1,38)
    00.5 K=1.10
  5 FT (N)=0 . 6
    nn 6 K=1,7
```



```
6 P2(K)=0.0
109 DO 7 K=1.38
    IF(ISI(K).F0.0) GO TO 20
    M = IC1(K)
    N= IS1 (K)
    IF (M.EQ.N) P1 (M) =P1 (M) +1.0
    IF (M+EQ+N) PV1 (K) =PV1 (K) +1.0
   M=IC2(K)
   N= [S2 (K)
    IF(M.tO.N) PV2(K)=PV2(K)+1.0
 7 JF(M.EQ.N) P4(1)=P2(M)+1.0
20 S1=P1(1)+P1(2)+P1(3)+P1(4)+P1(5)+P1(6)+P1(7)+P1(8)+P1(9)+P1(10
   Sp=P2(1)+P2(2)+P2(3)+P2(4)+P2(5)+P2(6)+P2(7)
   NN=NN+1
   WRITE (6,8) NN
 8 FORMAT (30HORETHEEN RATER SCORES SUBJECT , 16)
   WPITE(6.9) X.S1.S2
 9 FORMAT (42HONUMBER OF ITEMS AND NUMBER RIGHT EACH DIM, 3F8.2)
   R1 (NN) = S1
   R>(NN)=52
   no 10 K=1.10
   IF(T1(K).NE.0.0) P1(K)=P1(K)/T1(K)
10 If (T1(K).E0.0.0) P1(K) = 1
   WDITE(6,11) (PI(K),K=1,10)
11 FORMAT (26HOSCORF EACH CATEGORY DIM 1,10F6.3)
   Si=Sl/X
   WPITE (6,12) S1
12 FORMAT(13HO SCURE DIM 1,F8.3)
   no 13 K=1,7
   IF (T2(K) .NE. 0.0) P2(K) =P2(K)/T2(K)
13 IF(T2(K).E0. 0.0) P2(K)=+1
   WPITE (6,14) (P2(K), K=1,7)
14 FORMAT (26HOSCOHF EACH CATEGORY DIM 2,7F6.3)
   S>=S2/X
   WPITE (6:15) S2
15 FORMAT (13HO SCURE DIM 2,F8.3)
   Si = (51 + S2) / 2.0
   WOITE (6,16) SI
16 FORMAT (15HO OVERALL SCORE, F8.3)
   Gn TU 17
18 Sp01=0.0
   Sp02=0.0
   DO 32 K=1.IT
   PV1 (K) =PV1 (K) /NN
32 PVS(K)=PVS(K)/NN
   00 33 K=1,IT
```



```
Sp01=SP01+PV1(K) * (1-PV1(K))
33 SP02=SP02+PV2(K) *(1-PV2(K))
   X411=0.0
   0.0=SIMX
   DO 36 K=1.NN
   XHIJ=XHIJ+BJ(K)
30 XMIZ=XMIZ+R2(K)
   XMJ1=XMI1/NN
   XMIS=XMIS\NN
   Vy1=0.0
   VY2=0.0
   00 36 K=1.NN
   Pi(K) = RI(K) = XMIT
36 P2(K)=R2(K)-XMI2
   Dr 31 K=1.NN
   VY1=VY1+R1(K) 442
31 VY2=VY2+R2(K) ##2
   Vy1=VY1/NN
   NVS=AAS\NN
   7 = I T
   RKK1=(2/(2-1))*(1-(SPQ1/VY1))
   RKK2=(Z/(Z-1))+(1-(SPQ2/VY2))
   WoIIt (6.35) (K1(K),K=1.60)
35 FORMAT (23HODEVIATION SCORES DIM 1.6 (/5x.10F6.2))
   WPITE (6,40) (R2(K) +K=1,60)
40 FORMAT (23HODEVIATION SCORES DIM 2.6(/5X.10F6.2))
   WDITE (6+37) VY1
37 FORMAT (16HOVARIANCE DIM 1 ,F8,3)
   WRITE (6,38) VY2
38 FORMAT (16HOVARIANCE DIM 2 ,F8.3)
   WPITE (6,39) RKK1
39 FORMAT (12HOKH20 DIM 1 .F6.4)
   WOITE (6,41) HKK2
41 FORMAT (12HOKR20 DIM 2 .F6.4)
   STOP
   END
```


- Replace 38 with 76 in program statements numbered 101 through 109 and 17.
- C. Modifications for Within-Rater Scores.

 Remove statements numbered 17, 203 and 108 from the positions given above and place them between statements numbered 34 and 105 so that the order of statements is 34, 17, 203, 108, 105.

 Remove statements numbered 202, 1, 204, and 2, and

Remove statements numbered 202, 1, 204, and 2, and place them between statements numbered 3 and 107 so that the order is 3, 202, 1, 204, 2, 107.

3. Data Arrangement for Input Cards for a Given Subject (or Criterion Scores) on Dimension n, n = 1,2.

Columns 1 and 2: Subject's dimension n rating of first message, right adjusted.

Columns 3 and 4: Subject's dimension n rating on second message, right adjusted.

First Card:

Repeat for as many columns as necessary up through column 76.

Column 77 through 80: Identification information.

Second Card (If necessary): Continue above.

Note: Messages rated 0 are not entered on the data cards. Each pair of columns before the end of the passage must have a positive entry.

4. Data Deck Order.

a. Between-Rater
Scores:

Dimension 1 criterion card(s).

Dimension 2 criterion card(s).

Subject 1 dimension 1 card(s).

Subject 1 dimension 2 card(s).

Subject n dimension 1 card(s), $n \le 60$. Subject n dimension 2 card(s), $n \le 60$. Final card in deck: Punch -1 in columns 1 and 2.

b. Within-Rater
Scores:

Subject 1 dimension 1 card(s),
first rating.

Subject 1 dimension 2 card(s),
first rating.

Subject 1 dimension 1 card(s),
second rating.

Subject 1 dimension 2 card(s),
second rating.

Repeat for each subject up to n, $n \le 60$. Final card in deck: Punch -1 in columns 1 and 2.

APPENDIX H

COMPUTER PROGRAMS FOR DETERMINING CRITERION RATINGS

- These programs compute the most frequent ratings of messages on both CMMT dimensions for any number of raters on any number of passages.
- 2. a. Fortran Program Statements for One Card Passages.

```
DIMFNSION IA (38) + IB (38) + IC (10 + 38) + ID (7 + 38)
20 NO 1 J=1,39
    no 2 K=1.10
  5 \text{ ic}(K*I) = 0
    110 3 L=1.7
  3 \cdot (1.4J) = 0
 1 CENTINUE
 6 PFAD (5,4) (IA(K), K=1,38)
 4 FURNAT (3812)
    I~(I4(1).E0.-1) 60 TO 7
    Is (IA(1),EQ,-2) GO TO SI
   RFAD(5,4) ([3(K),K=1,33)]
   n' 5 J=1,38
   IF (IA(J).EV.)) GO TO 6
   K = IA(J)
   I = IH(J)
   I \cap (K,J) = I \cap (K,J) + 1
 5 I^{n}(I, *J) = In(L*J) + 1
   Gr TU 6
 7 no 3 K = 1.33
 3 THE [TE (5,9) (IC(J,K), J=1,10)
 9 F(84) T (18 -1015)
   D' 10 K=1,38
11 F: 79AT (12 ,715)
10 M (F. (5,11) (IO(J,K);J=1,7)
   or 10 20
21 5700
   F > 1)
```


b. Fortran Program Statements of Two Card Passages.

```
DIMENSION IA (52), IB (02), IC (10,52), ID (7,52)
20 P' 1 U=1,52
   no 2 K=1,10
 2 I((K,J) = 0
   DC 3 1=1.7
 3 T'(1,J) = 0
 J CONTINUE
 6 RFAD (5,4) (IA(K), K=1,52)
 4 FCRMAT (3012/1 I2)
   TF (14(1).E0.-1) GU TO 7
   IF (IA(1).FO.-2) 60 TO 21
   READ(5,4) (Ta(K),K=1,52)
   Dr 5 J=1,52
   IF (IA(J).EQ.0) GO TO 6
   K = Ih(J)
   L = IB(J)
   JC(K+J) = IC(K+J) + 1
 5 \text{ If}(L_{2}) = \text{ID}(L_{2}) + 1
   GC TO 6
 7 00 8 % = 1.52
 8 WGITE (6,9) (IC (J,K), J=1,10)
 9 FORMAT (1H ,1015)
   no 16 K=1,52
11 FCP"AT (1H +715)
10 WEITE (5,11) (TD (J,K),J=1,7)
   60 TU 20
90 TS
   FID
```

- 3. Data Arrangement for Input Cards for a Given Subject on Dimension n, n = 1, 2.
 Same as item 3 of Appendix G.
- 4. Data Deck Order.

Subject 1 dimension 1 card(s).

Subject 1 dimension 2 card(s).

Subject n dimension 1 card(s).

Subject n dimension 2 card(s).

End card(s) for first passage: Punch -1 in columns

1 and 2. Use two of

these for two card

passages.

Repeat for as many passages as desired.

Last card(s) in deck: Punch -2 in columns 1 and 2.

Use two of these for two card passages.