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Welcome to the study of physics. This volume, more of a

student's guide than a text of the usual kind, is part of a

whole group of materials that includes a student handbook,

laboratory equipment, films programmed instruction, readers,

transparencies, and so forth. Harvard Project Physics has

designed the materials to work together. They have all been

tested in classes that supplied results to the Project for

use in revisions of earlier versions.

The Project Physics course is the work of about 200 scien-

tists, scholars, and teachers from all parts of the country,

responding to a call by the National Science Foundation in

1963 to prepare a new introductory physics course for nation-

wide use. Harvard Project Physics was established in 1964,

on the basis of a two-year feasibility study supported by

the Carnegie Corporation. On the previous pages are the

names of our colleagues who helped during the last six years

in what became an extensive national curriculum development

program. Some of them worked on a full-time basis for sev-

eral years; others were part-time or occasional consultants,

contributing to some aspect of the whole course; but all

were valued and dedicated collaborators who richly earned

the gratitude of everyone who cares about science and the

improvement of science teaching.

Harvard Project Physics has received financial support

from the Carnegie Corporation of New York, the Ford Founda-

tion, the National Science Foundation, the Alfred P. Sloan

Foundation, the United States Office of Education and Harvard

University. In addition, the Project has had the essential

support of several hundred participating schools throughout

the United States and Canada, who used and tested the course

as it went through several successive annual revisions.

The last and largest cycle of testing of all materials

is now completed; the final version of the Project Physics

course will be published in 1970 by Holt, Rinehart and

Winston, Inc., and will incorporate the final revisions and

improvements as necessary. To this end we invite our students

and instructors to write to us if in practice they too discern

ways of improving the course materials.

The Directors
Harvard Project Physics
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Prologue The triumph of Isaac Newton in uniting motion and

astronomy is nne of the glories of the human mind, a turning

point in the development of science and man. Never before

had a scientific theory been so successful in predicting the

future, and never before had the possibilities for future

development in science seemed so unlimited.

So it is not surprising that after his death in 1727

Newton was practically deified, especially in Englaad, by

poems such as this one:

Newton the unparallel'd, whose Name
No Time will wear out of the Book of Fame,
Celestial Science has promoted more,
Than all the Sages that have shone before.
Nature compell'd his piercing Mind obeys,
And gladly shows him all her secret Ways;
Gainst Mathematics she has no defence,
And yields t'experimental Consequence;
His tow'ring Genius, from its certain Cause
Ev'ry Appearance a rriori draws
And shews th'Aimight Architect's unalter'd Laws.

Newton's work not only led others to new heights in science,

but altered profoundly man's view of the universe. Physicists

after Newton explained the motion of planets around the sun

by treating the solar system as a huge machine. Although the

parts of the solar system are held together by gravitational

forces rather than by nuts and bolts, the motion of these

parts relative to each other, according to Newton's theory,

is still fixed forever once the system has been put together.

We call this model of the solar system the Newtonian

world-machine. It is a theoretical system, not a real one,

because the mathematical equations which govern its motions

take account of only a few of the properties of the real

solar system and leave out others. In particular, the equa-

tions take no account of the structure and chemical composi-

tion of the planets, or the heat, light, electricity and

magnetism which are involved. The Newtonian system takes

account only of the masses, positions and velocities of the

parts of the system, and the gravitational forces among them.

The idea of a world machine does not derive entirely from

Newton. In his Principles of Philosophy, Rene Descartes,

the most influential French philosopher of the seventeenth

century, clearly stated the idea that the world is like a

machine. He wrote:

I do not recognize any difference between the machines
that artisans make and the different bodies that nature
alone composes, unless it be that the effects of the ma-
chines depend only upon tne adjustment of certain tubes
or springs, or other instruments, that, having neces-
sarily some proportion with the hands of those who make
them, are always so large that their shapes and motions
can be seen, while the tubes and springs that cause the

(Fran_ J. 1. DesnAulier. The
tieutonian System of the Vorld.
the Seat hodel of Goverment.
ar Alleyorical Pom).

1
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"The Ancient of Days" by Wil-
liam Blake, an English poet
who had little sympathy with
the Newtonian style of "natural keep it from getting "out of order." "Just so," he continued,

philosophy."

effects of natural bodies are ordinarily too small to
be perceived by our senses. And it is certain that all
the laws of Mechanics belong to Physics, so that all
the things that are artificial, are at the same time
natural.

Robert Boyle (1627-1691), a British scientist who studied

the properties of air (see Chapter 11), expressed the mech-

anistic viewpoint even in his religious writings. He argued

that a God who could design a universe that would run by it-

self like a machine was more wonderful, and more deserving

of human worship, than a God who simply created several dif-

ferent kinds of matter and gave each a natural tendency to

behave in the way it does. Boyle also thought it was'insult-

ing to God to believe thi.t the world-machine would be so badly

designed as to require any further divine intervention after

it had once been created. He suggested that an engineer's

skill in designing "an elaborate engine" is more deserving of

praise if the engine never needs supervision to regulate it or

2

...it more sets off the wisdom of God in the fabric of
the universe, that he can make so vast a machine per-
form all those many things, which he designed it should,
by the meer contrivance of brute matter managed by cer-
tain laws of local motion and upheld by his ordinary
and goneral concourse, than if he employed from time
to time an intelligent overseer, such as nature is
fancied to be, to regulate, assist, and controul the
motions of the parts....

According to Boyle and many other scientists in the seven-

teenth and eighteenth centuries, God was the first and great-

est theoretical physicist. God, they said, set down the laws

of matter and motion; human scientists can best glorify the

works of God by discovering and proclaiming these laws.

Our main concern in this unit is with physics after

Newton. In mechanics the Newtonian theory was developed to

accommodate a wider range of concepts. Conservation laws

became increasingly important. These powerful principles

offered a new way of thinking about Newtonian mechanics, ana

so were important in the application of Newton's theory to

other areas of physics.

Newton's mechanics treats directly only a small range of

experiences, those concerning the motion of simple bodies.

Will the same theory work when applied to phenomena on earth

as well as to those in the heavens? Are solids, liquids and

gases really just machines, or mechanical systems, which can

be explained by using the same ideas about matter and motion

which Newton used in explaining the solar system?

At first sight, it might seem unlikely that everything

can be reduced to matter and motion, because we feel, hear,



smell and see many things that seem different from matter

and motion. What about colors, sounds, odors, hardness and

softness, temperature and so forth? Newton himself believed

that the mechanical view would be useful in investigating

these other properties. In the Preface to the Principia he

wrote:

I wish we could derive the rest of the phenomena of
Nature by the same kind of reasoning from mechanical
principles, for I am induced by many reasons to sus-
pect that they may all depend upon certain forces by
which the particles of bodies, by some causes hither-
to unknown, are mutually impelled towards one another,
and cohere in regular figures, or are repelled and
recede from one another. These forces being unknown,
philosophers have hitherto attempted the search of
Nature in vain:, but I hope the principles here laid
down will afford some light either to this or some
truer method of Philosophy.

Knowing the laws of motion, scientists after Newton strove

to apply them in many different areas. We shall see in this

unit how successful the Newtonians were in explaining the

physical world.

16.

;

x.

1FDIPtY."
ry,

tf ,

17,

A small area from the center of
the picture has been enlarged to
show what the picture is "really"
like. Is the picture only a

. J collection of dots? Knowing the

underlying structure doesn't
spoil our other reactions to the
picture, but rather gives us an-
other dimension of understanding
it.
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The Cultural Impact of the Newtonian Viewpoint

The century following the death of

Newton in 1727 was a period of consoli-

dation and further application of New-

ton's discoveries and methods. The ef-

fects of these discoveries and methods

were felt also in fields outside science.

During the 1700's, the so-called Age

of Reason or Century of Enlightenment,

the viewpoint which we have previously

called the Newtonian cosmology became

firmly entrenched in European science

and philosophy. The impact of Newton's

achievements may be summarized thus:

he had shown that man, by observing and

reasoning, could uncover the workings

of the physical universe. Therefore,

his followers argued, man shoUld be

able to understand not only nature but

also society and the human mind by the

same method. As the French science

writer Fontenelle (1657-1757) expres-

sed it:

The geometric spirit is not so
bound up with geometry that it
cannot be disentangled and carried
into other fields. A work of
morals, or politics, of criticism,
perhaps even of eloquence, will be
the finer, other things being equal,
if it is written by the hand of a
geometer.

The English philosopher John Locke

(1632-1704) reinforced Newton's influ-

ence; he argued that the goal of philoso-

phy should be to solve problems that

affect our daily life, and to deal with

things that we can actually know about

by observation and reasoni 1 g. "Reason

must be our :.est judge and guide in all

things," he said. Locke thought that

the concept of "natural law" could be

used in religion as well as in physics,

and the notion of a non-emotional, non-

fanatical religion appealed to many

Europeans who hoped to avoid a revival

of the bitter religious wars of the

1600's.
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Locke advanced the theory that the

mind of the new-born baby contains no

"innate ideas;" it is like a blank piece

of paper on which anything may be written,

If this is true, then it is futile t,

search within ourselves for a God-giver

sense of what is true or morally right.

Instead, we must look at nature and

society to discover there any "natural

laws" that may exist. Conversely, if

we want to improve the quality of man's

mind, we TLst improve the society in

which he lives.

Locke's view also seems to imply an

"atomistic" structure of society: each

person is separate from other individuals

in the sense that he has no "organic"

relation to them. Previously, political

theories had been based on the idea of

society as an organism in which each per-

son has a prescribed place and function.

Later theories based on Locke's ideas

asserted that government should have no

function except to protect the freedom

and property of the individual person.

Although "reason" was the catchword

of the eighteenth-century philosophers,

we do not have to accept their own judg-

ment that their theories about improving

religion and society were necessarily the

most reasonable. It might be more accu-

rate to say that men like Voltaire ap-

proached a subject with strong opinions,

and then tried to use rational arguments

to justify those opinions; but these men

would not give up a doctrine such as the

equal rights of all men merely because

they could not find a strictly mathemati-

cal or scientific proof for it. Newtonian

physics, religious toleration and repub-

lican government were all advanced by thn

same movement, but this does not mean

there is really a logical connection

among them.



The dominant theme of the 1700's was

moderation the happy medium, based on

toleration of different opinions, re-

straintof excess in any direction, and

balance of opposing forces. Even reason

was not allowed to ride roughshod over

religious faith; atheism, which some

philosophers thought to be the logical

consequence of unlimited rationality,

was still regarded with horror by most

Europeans. The Constitution of the

United States of America, with its in-

genious system of "checks and balances"

to prevent any faction from gettirg too

much power, is perhaps the most enduring

achievement of this period. It attempts

to establish in politics a stable equi-

librium of opposing forces similar to

the balance between the sun's gravita-

tional attraction and the tendency cf

a planet to fly off in a straight line.

If the gravitational attraction increased

without a corresponding increase in

planetary velocity, the planet would

fall into the sun; if its velocity in-

creased without a corresponding increase

in gravitational attraction, the planet

would escape from the solar system, and

its inhabitants would soon freeze to

death. Just as Newtonian mechanics

avoided the extremes of hot and cold by

keeping the earth at the right distance

from the sun, so the political philoso-

phers hoped to avoid the extremes of

dictatorship and anarchy by devising a

system of government that was neither

too strong nor too weak.

According to James Wilson (1742-1798),

who played a major role in drafting the

American Constitution,

In government, the perfection of
the 'hole depends on the balance
of the parts, and the balance of
the parts consists in the indepen-
dent exercise of their separate
powers, and, when their powers
are separately exercised, then in

their mutual influence and opera-
tion on one another. Each part
acts and is acted upon, supports
and is supported, regulates and
is regulated by the rest.

It might be supposed, that these
powers, thus mutually checked and
controlled, would remain in a
state of inaction. But there is
a necessity for movement in huran
affairs; and these powers are
forced to move, though ;till to
move in concert. They move,
indeed, in a line of direction
somewhat different from that, which
each acting by itself would have
taken; but, at the same time, in a
line partaking of the natural direc-
tions of the whole the true line
of public liberty and happiness.

In literature many men welcomed the

new viewpoint as a source of novel meta-

phors, allusions and concepts which they

could use in their poems and essays.

Newton's discovery that white light is

composed of colors was reflected in many

poems of the 1700's (see Unit 4). Samuel

Johnso advocated the literary use of

words drawn !tom the natural sciences,

defining many such words in his

Dictionary and .11ustrating their appli-

cation in his "Radler" essays.

Other writers, such as Pope and Swift,

distrusted the new cosmology and so used

it for purposes of satire. In his epic

poem The Rape of the Lock, Pope exagger-

ates the new scientific vocabulary for

comic effect. Swift, sending Gulliver

on his travels to Laputa, describes an

academy of scient.sts and mathematicians

whose experiments and theories were as

absurd as those of the Fellows of the

Royal Society must have seemed to the

layman of the 1700's.

The first really powerful reaction

against Newtonian cosmology was the

Romantic movement. This movement was

started in Germany around 1780 by young

writers inspired by Johann Wolfgang von

Goethe. The most familiar examples of

5



Romanticism in English literature are

the poems and novels of Blake, Coleridge,

Wordsworth, Shelley, Byron and Scott.

The Romantics disliked the notion

that everything should be measured by

the use of numbers; they emphasized the

importance of quality rather than quan-

tity. They preferred to study the

individual, unique person or experience,

rather than make abstractions and gen-

eralizations. They exalted emotion and

feeling oyez reason and calculation.

They abhorred the theory that the uni-

verse is like a piece of clockwork,

made of inert matter set into motion

by a God who can never afterwards show

His presence. As the historian and

philosopher of science, E. A. Burtt said,

...it was of the greatest con-
sequence for succeeding thought
that now the great Newton's
authority was squarely behind
that view of the cosmos which
saw in man a puny, irrelevant
spectator (so far as a being
wholly imprisoned in a dark room
can be called such) of the vast
mathematical system whose regu-
lar motions according to mechanical
principles constituted the world
of nature. The gloriously roman-
tic universe of Dante and Milton,
that set no bounds to the imagina-
tion of man as it played over
space and time, had now been
swept away. Space was identified
with the realm of geometry, time
with the continuity of number.
The world that people had thought
themsel'es living in--a world
rich with colour and sound, redo-
lent with fragrance, filled with
gladness, love and beauty, speak-
ing everywhere of purposive
harmony and creative ideals was
crowded now into minute corners
in the brains of scattered organic
beings. The really important
world outside was a world hard,
cold, colourless, silent, and
dead; a world of quantity, a
world of mathematically computable
motions in mechanical regularity.
The world of qualities as immedi-
ately perceived by man became just
a curious and quite minor effect
of that infinite machine beyond.

6

The Romantics insisted that phenomena

should not be analy;.ed and reduced to

their separate parts by mechanistic

explanations; instead, they argued that

the whole is greatsr than the sum of its

parts, because the whole (whether it be

a single human being or the entire uni-

yer aded by a spirit that cannot

be a-. ex,Aained but can only be

intuitively felt.

Continental %eaders of the Romantic

movement, such as the German philosopher

Friedrich Schelling (1775-1854), did not

want to abolish scientific research.

They did want to change the way research

was being done, and they proposed a new

type of science called "Nature Philoso-

phy." It is important to distinguish

between this nature philosophy and the

older "natural philosophy," meaning just

physics. The nature philosopher does not

analyze phenomena into separate parts or

factors which he can measure quantita-

tively in his laboratory or at least

that is not his primary purpose.

Instead, he tries to understand the

phenomenon as a whole, and looks for

underlying basic principles that govern

all phenomena. The Romantic philosophers

in Germany regarded Goethe as their

greatest scientist as well as their

greatest poet, and they pointed with

pride to his theory of color, which

flatly contradicted Newton's theory.

According to Goethe, white light does

not consist of a mixture of colors; the

colors are produced by the prism acting

on the light which is itself pure. In

the judgment of all modern physicists,

Newton was right and Goethe was wrong,

so nature philosophy seems to be a fail-

ure if judged by this very important

example. However, this is not the whole

story.



The general tendency of nature philos-

ophy was speculative, and insofar as it

encouraged speculation about ideas which

never be testable by experiment,

Ilmsophy was strongly condemned

17 scle,,tists. Indeed, the reaction

against nature philosophy was so strong

that several scientific discoveries did

not receive proper recognition when first

announced because they were described in

language "contaminated" by philosophical

speculation. Among these discoveries was

the generalized principle of conserva-

tion of energy, which is described in

Chapter 10. It is now generally agreed

by historians of science that nature

philosophy played an important role in

the historical origins of this discovery.

This is perhaps not surprising, since the

principle of conservation of energy con-

firms the viewpoint of nature philosophy

by asserting that all the "forces of

nature" heat, gravity, electricity,

magnetism and so forth are really just

different forms or manifestations of one

underlying "force" which we now call

energy.

It is impossible to say whether the

viewpoint of nature philosophy was good

or bad for science; it has often merely

encouraged futile speculation and disre-

gard for precise measurements, but in

one or two very important cases it has

led to important discoveries.

Much of the dislike which Romantics

(and some modern artists and intellectuals)

expressed for science was based on the

notion that ,cientists claimed to be

able to find a mechanistic explanation

for everything, including the human mind.

If everything is explained by Newtonian

science, then everything is also deter-

mined. Many modern scientists no longer

believe this, but scientists in the past

have made statements of this kind. For

example, the French mathematical physicist

Laplace (1749 -182;) said:

We ought then to regard the present
state of the universe as the effect
of its previous state and as the
cause of the one which is to
follow. Given for one instant
a mind which could comprehend
all the forces by which nature
is animated and the respective
situation of the beings who
compose it--a mind sufficiently
vast to submit these data to
analysis it would embrace in the
same formula the movements of the
greatest bodies of the universe
and those of the lightest atom;
for it, nothing would be uncertain .

and the future, as the past, would
be present to its eyes.

Even the ancient Poman philosopher

Lucretius (100-55 B.C.), who supported

the atomic theory in his poem On the

Nature of Things, did not go as far as

this. In order to preserve some vestige

of "free will in the universe, Lucretius

suggested that the atoms might swerve

randomly in their paths. This was still

unsatisfactory to a Romantic scientist

like Erasmus Darwin (grandfather of

evolutionist Charles Darwin) who asked

Dull atheist, could a giddy dance
Of atoms lawless hurl'd

Construct so wonderful, so wise,
So harmonised a world?

The nature philosophers thought they

could discredit the Newtonian scientists

by forcing them to answer this question;

to say "yes," they argued, would be

absurd, and to say "no" would be disloyal

to their own supposed beliefs. We shall

see in this Unit how successful the New-

tonians were in explaining the physical

world without committing themselves to

any definite answer to Erasmus Darwin's

question. Instead, they were led to the

discovery of immensely powerful and

fruitful laws of nature.

7
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9.1

91 Conservation of mass. If the universe is to go on forever,

then the stuff of which it is made cannot disappear. That

the total amount of material in the universe does not change

is really an old idea. The Roman poet Lucretius (first cen-

tury B.C.) restated a belief held in Greece as early as the
fifth century B.C.:

...and no force can change the sum of things; fur there
is no thing outside, either into which any kind of mat-
ter can emerge out of the universe or out of which a
new supply can arise and burst into the universe and
change all the nature of things and alter their motions.

(On the Nature of Things)

Just twenty-two years before Newton's birth, the English

philosopher Francis Bacon included the following among his

basic principles of modern science:

There is nothing more true in nature than the twin prop-
ositions chat "nothing is produced from nothing" and
"nothing is reduced to nothing"...the sum tote of mat-
ter remains unchanged, without increase or diminution.

(Novum Organon (1620), ii, 40)

These quotations illustrate the belief that the amount of

physical matter that makes up the universe remains the same

no new matter appears and no ola matter disappears. While

the form in which matter exists may change, matter in all our

ordinary exoerience appears to be somehow indestructible: if

we break up a large boulder into dust and pebbles, we do not

change the amount of stone in the universe.

To test the belief that the quantity of matter remains

constant, we need to know how to measure that quantity. Sci-

entists recognized several centuries ago that it should not

be measured by its volume. For example, if we put water in

a container, mark the water level, and then freeze the water,

we find that the volume of the ice is larger than the volume

of the water we started with. This is true even if we are

careful to seal the container so that no water can possibly
come in from the outside. Similarly when we compress some

gas in a closed container, the volume of the gas decreases,

even though now of the gas escapes from the container.

Following Newton, we have come to regard the mass of an

object as the appropriate measure of the amount of matter it
contains. In our use of Newtonian theory we have been assum-

ing that the mass of an object does not change. But what if

we burn the object to ashes or dissolve it in acid? Does its A sample of gas undergoing a

mass remain unchanged even in such chemical reactions? decrease in volume and increase
in pressure. (This was one of

A burnt match has a smaller mass than an unburnt one; an the earliest high-speed flash

iron nail as it rusts increases in mass. Has the mass of
photographs.)

these things really changed? Or does something escape from

9
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9.1

the match, and is something added to the iron of the nail,

that will account for the changes in mass? In the eighteenth

century there was a strong faith that any changes of mass in

chemical reactions could be accounted for by assuming that

there is something that escapes or something that enters from
outside. Not until the end of the eighteenth century, how-

ever, was a sound experimental basis for this faith provided

by Antoine Lavoisier (1743-1794).

Lavoisier caused chemical reactions to occur in closed

flasks and caref Illy weighed the flasks and their contents

before and after the reaction. For example, he showed that

when iron was burned in a closed flask, the mass of the iron

oxide produced was equal to the sum of the masses of the iron

and the oxygen used in the reaction. With experimental evi-

dence like this at hand he was able to announce with confi-
dence:

We may lay it down as an incontestable axiom that in
all the operations of art and nature, nothing is cre-
ated; an equal quantity of matter exists both before
and after the experiment,...and nothing takes place
beyond changes and modifications in the combinations
of these elements. Upon this principle, the whole art
of performing chemical experiments depends.

[Traite Elementaire de Chimie (1789)]

Lavoisier was convinced that if he put some material in

a well-sealed bottle and measured its mass, then he could re-

turn at any later time and find the same mass regardless of

what happened to the material inside the bottle during the

interval. Despite changes from solid to liquid or liquid to

gas, etc., despite changes of color or consistency, despite

even violent chemical reactions of the material inside the

bottle, at least one thing would remain unchanged the mass
of what is in the bottle.

In the years after Lavoisier's pioneering work, a vast

number-of similar experiments were performed with ever in-

creasing accuracy and always with the same result. As far

as can be measured with sensitive balances (having an accu-

racy of better than 0.000001%), mass is conserved in chemical

reactions, even when light and heat are allowed to enter or
leave the system. Despite changes in location, shape, chemi-

cal composition and so forth, the mass of aay closed system
remains constant. This is the statement of what we shall
call the law of conservation of mass.

Q1 If 50 cc of alcohol is mixed with 50 cc of water, the mix-
ture amounts to only 98 cc. Is this a contradiction of the law
of conservation of mass?

Q2 It is estimated that every year at least 2000 tons of me-
teoric dust fall on to the earth. The dust is mostly debris

In some open-air reactions
mass seems to decrease, while
in others it seems to increase.

The meaning of the phrase
"closed system" is discussed
in more detail in Sec. 9.5.

Try these end-of-section ques-
tions before going on. Answers
are at the very end of the book.

11



TRA.ITE
ELEMENTAIRE

DE CHIMIE,
PRESENTE DANS UN ORDRE NOUVEAU

ET D'APRES LES DiCOL/ VERTES MODEENES;

Avec Router:
Par M. LAY Offit , lr ranairAte del

5.1Ktl It la Saran Royals eft Mitten , lu
Saran: l'Agntaltatt lc Pant & tOtleartt , le
in Sancti Royale At Lortdra , it l'Inflitui it
Bllort , le in Sante Harelip. it Balte , le
"flu le Phelaiellhee r Radon MaatAtfle
Pala. 6:.

TOME PREMIER.

A PARIS.
Cher CUCNET, bbnire . rue & Mud Serpente.

14. DCC. LXX XIX.
Lau k Pnralot 6 trfatiltalt du &leant 6 set in

&ad &yak It Hanka

Antoine Laurent Lavoisier (1743-
1794) is known as the "father
of modern chemistry" because he
showed the decisive importance
of quantitative measurements,
established the principle of
conservation of mass in chemical
reactions, and helped develop
the present system of nomencla-
ture for the chemical elements.
He also measured the amount of
heat produced by animals, and
showed that organic processes
such as digestion and respira-
tion are similar to combustion.

To earn money for his scientific

research, Lavoisier invested in
a private company which collected
taxes for the French government.
Because the tax collectors were
allowed to keep any extra tax
which they could get from the
public, they acquired a reputa-
tion for cheating and became one
of the most hated groups in
France. Lavoisier was not direct-
ly engaged in tax collecting, but
he had married the daughter of
an important executive of the
company, and his association with
the company was one of the rea-
sons why Lavoisier was guillotined
during the French Revolution.

Madame Lavoisier, who was only
fourteen at the time of her mar-
riage, was both beautiful and
intelligent. She gave great as-
sistance to her husband by taking
notes, translating scientific
works from English into French,
and making illustrations. About
ten years after her husband's

execution, she married another
scientist, Count Rumford, who is
remembered for his experiments
which cast doubt on the caloric
theory of heat.

12

Conservation of mass was demon-
strated in experiments on chem-
ical reactions in closed flasks.
Precision equal-arm balances
were used by Lavoisier and other
chemists of the time.



that was moving in orbits around the sun.
a) Is the earth a closed system as regards the law of

conservation of mass?

b) How large would the system including the earth have to
be in order to be considered very, very nearly closed?

c) The mass of the earth is about 6 x 1021 tons. Do you
want to reconsider your answer to part (a)?

Q3 Which one of the following statements is true?
(a) Lavoisier was the first person to believe that the

amount of material stuff in the universe did not
change.

(b) Mass is destroyed when heat enters a system.
(c) A closed system was necessary to establish the law of

conservation of mass.
(d) The change in mass of a closed system is constant.

92

9.2 Collisions. Looking at moving things in the world around us

very easily leads to the conclusion that everything set in

motion eventually stops; that every clock, every machine

eventually runs down. It would appear that the amount of

motion in the universe is decreasing, that the universe, like
any machine, is running down.

To seventeenth-century philosophers the idea of a universe
that was running down was incompatible with the idea of the

perfection of God; surely He would not construct such an im-
perfect mechanism. It was felt that if the right way could
be found to define and measure motion, the quantity of motion
in the universe would prove to be constant.

What is that "right" way to define and measure motion? In
what way is motion sustained? What principle is at work
which keeps the world machine going? To answer these ques-
tions we can look at the results of experiment. In our first
experiment, we use two carts on "frictionless" wheels (or

better, two dry-ice pucks or two air-track gliders) to which
lumps of putty haire been attached so that the carts will

stick together when they collide. As you can see when you do

the experiment, if the masses of the two carts are it

equal and if the carts are made to approach each

other with equal speeds and collide head-on, they

stop after the collision: their motion ceases. Is

there anything related to the motion which does not
change? Indeed there is. If we add the velocity
v
A of one cart to the velocity v

B of the other cart,

we find that the vector sum does not change. The

vector sum of the velocities of the carts is zero

before the collision and it is zero after the colli-
sion.

C

We might wonder whether this "conservation of ve-

locity" holds for all collisions;, for we have chosen A

I
=0ITA
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92
a very special circumstance in the example above:

carts with equal masses approaching each other with

equal speeds. Suppose we get away from this special

situation by making the mass of one of the carts

twice the mass of the other cart. We can do this

conveniently by putting on top of one cart another

cart just like the others. Then let the carts ap-

proach each other with equal speeds and collide, as

before. This time the carts do not come to rest.

What happens, rather, is that there is some motion

remaining, and it is in the direction of the initial

velocity of the more massive cart. Our earlier

guess that the vector sum of the velocities might be

conserved in all collisions seems to be wrong. An-

other example of a collision will confirm this con-

clusion.

This time let the first cart have twice as much

mass as the second, and let the second cart have

twice as much speed as the first. When the carts

collide head-on and stick together, we find that

they stop. The vector sum of the velocities is

equal to zero after the collision, but is not equal

to zero before t."e collision.

It appears that the definition of quantity of mo-

tion must involve the mass of a body as well as its

speed if the quantity of motion is to be the same

before and after the collision. Descartes had sug-

gested that the proper measure of a body's quantity

of motion was the product of its mass and its speed.

The examples above, however, show that this is not a

conserved quantity. In the first and third colli-

sions, for example, it does not equal zero for

either cart before the collision, but after the

collision it equals zero for each of them.

But with one very important modification of Descartes'

definition of quantity of motion, we can obtain a conserved

quantity. Instead of defining "quantity of motion" as the

product of mass and speed, we define it, as Newton did, as
the product of mass and velocity. On the next page the

momentum equations are worked out for the three collisions

we have considered. The conclusion is that in all three

cases where we have considered head-on collisions between

carts, the motion of the two carts before and after the

collision is described by this equation:

Before: + -ir* kA a

Acter cit, -*/
. C)

8

mAvA + mBvB = mAvA , + mBvB (9.1)
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Analyses of Three Collisions

In Section 9.2 we discussed three examples of
collision between two carts. In each case the
carts approached each other head-on, collided,
and stuck together. We will show here that in
each collision the wtion of the carts before
and after the collision is described by a gen-
eral equation namely,

4 4 4
M V M_V M v' + m v'AA ni3 AA BB (9.1)

where mw and mB are the masses of the carts, and
4
v
A

and v
B

are their velocities before the colli-

sion, and ;VI and ;1'3 are their velocities after

the collision.

Example 1:

Carts with equal masses and equal speeds
(but opposite directions of motion) before
the collision. The speed of the stuck-
together carts after the collision is zero.

In symbols:

mA DB'
4 4
vB = -vA,

4 4
VA e v'

B
= 0

Bffore the collisions, the sum of the values of
my is given by:

4
M V ca_v = mB(4A)AA nB

mAvA mBvA

(mA mB)A*

Since mA = mB, the vector sum equals zero. Af-

ter the collision, the sum is given by:

A
v
4

A
mB vB

4
m ' + m_vt = m

A
(0) + mB(0) = O.

Thus both before and after the collision, the
vector sum of the products of mass and velocity
has the same value: zero. That is just what
Eq. (9.1) demands; hence it does describe the
collision correctly.

16
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Example 2:

Carts with equal speeds before the collision.
The mass of one cart is twice that of the other.
The velocity of the stuck-together carts after
the collision is found to be 1/3 the original
velocity of the more massive cart.

In symbols:

mA 2mB'
4 4
vB = -vA,

A B
= = 1/3;

A

Before the collision:

4 4

MAVA MBVB (2mB)&A mB"A)

mBvA.

After the collision:
4 4

4 4 v
A

v
A

mAvA mBv; (2mB)
+ a_ --

3 B 3
4

mBVA

Again Eq. (9.1) describes the collision correct-
ly, since the sum of my is the same before and
after the collision.

Example 3:

The mass of one cart is twice that of the
other. The speed of the less massive truck is
twice that of the more massive truck before the
collision. The speed of the stuck-together carts
after the collision is found to be zero.

In symbols:

mA 2mB'
4 4
vB .2VA9

V't UVi M 0
.A B

Before the collision:

(2mB);A mB (-2/1A)

= 0

After the collision:

m,k; mt;1; (2mB) (0) + mB (0)

= 0

Thus Eq. (9.1) can be used to describe this
collision also.
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where mA and m
B are the masses of the carts, v

A and v
B

are

their velocities before the collision and v
A ' and vB ' are

their velocities after the collision.

Q4 Why is each of the following not a good measure of quan-
tity of motion?

a) speed
b) velocity
c) the product of mass and epeed

Q5 Two carts collide head-on and stick together. In which
of the following cases will the carts be at rest after the
collision?

Cart A
Speed

Cart B

SpeedMass Mass
a) 2 kg 3 m/sec 2 kg 3 m/sec
b) 2 kg 2 m/sec 3 kg 3 m/sec
c) 2 kg 3 m/sec 3 kg 2 m/sec
d) 2 kg 3 m/sec 1 kg 6 m/sec

9.3Conservation of momentum. Equation (9.1) is the mathematical

expression of a conservation law. For the colliding carts

that we have considered, it says that the vector sum of the

carts' quantities of motion is the same before and after the
collision. Because the product of mass and velocity plays

such an interesting role, we give it a better name than "quan-

tity of motion"; we call it "momentum."

In Unit 1, initial and final
velocities were represented as
v
i
and v

f . In Eq. (9.1) they

are represented by 0' and 4"

because we now need to add sub-
scripts such as A and B.

The momentum of a collection or system of objects (for ex-

ample, the two carts) is the vector sum of the momenta of

the objects that make up the system. In each of the collisions

that we examined, the momentum of the system was the same be-

fore and after the collision. The momentum of the system was

conserved.

Although we obtained it by observing collisions between

two carts that stuck together when they collided, we shall

see that the law of conservation of momentum is a very general
law. The momentum of la system is conserved provided that

one condition is met.

To see what that condition is, let us examine the forces

acting on the carts. Each cart experiences three forces: a

downward (gravitational) pull
gray exerted by the earth, an

upward push P. exerted by the floor, and, during the collision,

a push F exerted by the other cart. The first two forces

evidently cancel, since the cart is not accelerating up or
down. Thus the net force on each cart is just the force ex-

erted on it by_the other cart. (We are assuming that fri.c-

tional forces, which are also forces exerted on the carts,

have been made so small that we can neglect them here. That

was the reason for using dry-ice pucks, air-track gliders or

carts with "frictionless" wheels.)

Forces on cart B during colli-
sion. V

BA is the force exerted

on cart B by cart A. (Cart A
is not shown in the figure.)
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9.3

The two carts comprise a system of (two) bodies. The

force exerted by one cart on the other one is a force exerted

by one part of the system on another part; it is not a force

on the system as a whole. No net force is exerted on either

cart by anything outside the system. Therefore the net force

on the system as a whole is zero.

This is the condition that must be met in order for the

momentum of a system of bodies to stay constant, to be con-

served.

If the net force on a system of bodies is zero, the mo-

mentum of the system will not change. This is the law of

conservation of momentum.

So far we have considered only instances in which two

bodies exert forces on each other by direct contact and in

which they stick together when they collide. But the re-

markable thing about the law of conservation of momentum is

how generally it applies.

It is valid no matter what kind of forces the bodies exert

on each other: gravitational forces, electrical or magnetic

forces, tension in strings, compression in springs,. attraction

or repulsion it doesn't matter.

Furthermore it doesn't matter whether the bodies stick to-

gether when they collide or whether they bounce apart. They

don't even have to touch (as when two strong magnets repel;

see Study Guide 9.6).

The law is not restricted to systems of only two objects;

there can be any number of objects in the system. Nor is

the size of the system important. The law applies to the

solar system as well as to an atom. The angle of the colli-

sion does not matter either. All the examples we have con-

sidered so far have been collisions between two bodies moving

along the same straight line; they were "one-dimensional col-

lisions." But if two bodies make a glancing collision rather

than a head-on collision, each will move off at some angle

to the line of approach. The law of conservation of momentum

applies in such two-dimensional collisions also. (Remember

that momentum is a vector quantity.) The law of conservation

of momentum applies also in three dimensions: the vector sum

of the momenta is the same before and after the collision.

On page 20 is a worked-out example to help you become

familiar with the law of conservation of momentum. At the

end of the chapter is a special page on the analysis of a

two - dimensional collision.

There is also a variety of stroboscopic photographs and
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film loops of colliding bodies and exploding objects, which

are available for you to analyze. They include collisions

and explosions in two dimensions. Analyze as many of them

as you can to see whether momentum is conserved. The more

of them you analyze, the more strongly you will be convinced

that the law of conservation of momentum applies to any iso-

lated system.

In addition to illustrating the use cf the law of conserva-

tion of momentum, the worked out example displays a character-

istic feature of physics. Again and again, a physics problem

is solved by writing down the expression of a general law

(for example, Fnet
= r11-a)

and applying it to a specific itua-

tion. Both the beginning student and a veteran research phys-

icist find it surprising that one can do this that a few

general laws of physics enable one to solve an almost infinite

number of specific individual problems. Often in everyday

life people do not work from general explicit laws but rather

make intuitive decisions. The way a physicist uses general

laws to respond to problems can become, with practice, quite

intuitive and automatic also.

All this is being said not to urge that all behavior should

be deduced by applying a few general laws in every social en-

counter, but to explain why the process by which physicists

solve problems seems a bit unfamiliar.

Q6 Which of the following has the least momentum? Which has
the greatest momentum?

a) a pitched baseball
b) a jet plane in flight

c) a jetplane taxiing toward the termiL.C.

Q7 A girl on ice skates is at rest on a horizontal sheet of
smooth ice. After catching a rubber ball thrown horizontally
at her, she moves at 2 cm/sec. Give a rough estimate of what
her speed would have been

a) if the rubber ball were thrown twice as fast?
b) if the rubber ball had twice the mass?
c) if the girl had twice the mass9

d) if the rubber ball were not caught by the girl,
but bounced straight back with no change of speed?

OA Momentum and Newton's laws of motion. In Sec. 9.2 we dis-

covered (perhaps "invented" is a better term) the concept of

momentum and the law of conservation of momentum by consider-

ing the results of experiments with colliding carts. We did

not derive the law from any theory. This is the way the law

was discovered as a generalization from experiment.

It is possible to show, however, that the law of conserva-

tion of momentum is consistent with Newton's laws of motion.

In this section we shall derive the law of conservation of

momentum from Newton's la4s of motion.

."

4

One of the stroboscopic photo-
..

grarhs that appears full-page
in the Student Handbook.
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Example of the Use of the Conservation
of Momentum

Here is an exams.: which illustrates how one
can use the law of conservation of momentum.

(a) A polar bear of mass 999.9 kilograms
lies sleeping on a horizontal sheet of ice. A
hungry hunter fires into him a 0.1 kilogram
bullet moving horizontally with a speed of
1000 m/sec. How fast does the dead bear (with
the bullet imbedded in him) slide after being
hit?

Mass of bullet = m
A

= 0.1 kg

Mass of bear = mB = 999.9 kg

Velocity of bullet before collision
= vA = 1000 m/sec

Velocity of bear collision
= v

B
= 0

Velocity of bullet after collision
= v'

A
Velocity of bear after collision

= v
B

According to the law of conservation of mo-
mentum,

mAvA mB;B mAvA mBvB

Since -4
B

= 0 and1.
B'

= the equation becomesA

mAvA
mA-11A mBq (mA mB);A.

4
4 m

A
v
A (0.1) (1000) kg m/secSo v'

A (mA + rot) (0.1 + 999.9) kg

(0.1)(1000)
m/sec

1000

= 0.1 m/sec.

The corpse of the bear slides across the ice
with a speed of 10 cm/sec.

4 M

(b) Another polar bear, of mass 990 kilograms,
wearing a bullet-proof vest of mass 10 kilograms,
lies sleeping on the ice. The same hunter fires
a bullet at him, as he did in Part (a), but the
bullet bounces straight back with almost no
change of speed. How fast does the bear slide
after being hit by the bullet?

Mass of bullet = m
A
= 0.1 kg

Mass of (bear and vest) = mB = 1000 kg

Velocity of bulle.t before collision
= vA = 1000 m/sec

Velocity of (bear.and vest) before collision
= v

B
= 0

Velocity of bullet after collision
= vA = -1000 m/sec

Velocity of (bear.and vest) after collision
= vl

The law of conservation of momentum states that
4'1

mAvA
MBVB

mAvA %VB.

(0.1)(1000) + 0 = (0.1)(-1000) + (1000)-1;1'1

100 = -100 + 1000 vB

1000 1.0 = 200

vB = 0.2 m/sec.

This time the bear slides along the ice with a
speed of 20 cm/sec -twice as fast as his unfcv
tunate comrade. There is a general lesson her
It follows from the law of conservation of mo-
mentum that the struck object is given less
momentum if it absorbs the bullet than if it
reflects it.

e.



9.4

Newton's second law is a relation between the net force

acting on a body and the mass of the body and its accelera-

tion: P
net

= ma, We can also write the law in terms of the

momentum of the body. If we remember that acceleration is

the rate-of-change of velocity, we can write the second law

as

Atnet m At (9.3)

or
P
net

At = m Av. (9.4)

If m is a constant,

If the mass of the body is constant, the change in its momen- A(mi) = my' - my

tum P(m) is the same as its mass times its change in velocity = m(v1 - 17)

m(60). Then we can write Eq. (9.4) as = m t,17 .

F
net

At = G(mv), (9.5)

that is, the product of the net force on a body and the time

during which this force acts equals the change in momentum of

the body.

Newton's second law, in the form of Eq. (9.5), together with

Newton's third law, ia enough to enable us to derive the law

of conservation of momentum.

Suppose two bodies with masses mA and mB exert forces on

each other. P
AB is the force exerted on body A by body B

and FBA is the force exerted on body B by body A. No other

unbalanced force acts on either body. By Newton's third law

the forces P
AB and FBA are equal in magnitude and opposite

in direction. Each body acts on the other for exactly the

same time At. Newton's second law, Eq. (9.5), applied to

each of the bodies, says

PAB At = (1(m
A A )

FBA At = A(m
B
;
B

)

(9.6a)

(9.6b)

But FAB = -FBA' so the left side of Eq. (9.6a) and the

left side of Eq. (9.6b) are equal in magnitude and opposite

in direction. Therefore the same must be true of the right

sides; that is,

6 (mA;A) -A (mJB) (9.7)

Suppose that the masses m
A

and m
B

are constant. Let ;
A

and v
B stand for the velocities of the two bodies at some

instant and let ;
A

' and ;B' stand for their velocities at

some later instant. Then Eq. (9.7) becomes

mA;As mAvA -(mB;Bi mB;B)*

A little rearrangement of Eq. (S.8) leads to

MAVA MBVB MAVA1 MBVI311

(9.8)

AB

As always with equations containing
vector qualities, the + and -
signs indicate vector addition
and vector subtraction.
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Perhaps you could see even from
Eq., (9.7) that conservation of

momentum is implied. The change
of momentum of one body is ac-
companied by an equal and oppo-
site change of momentum of the
other body. Accordingly the
momentum of the system does not
change during the time inter 1
At.
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which we recognize as Eq. (9.1), the law of conservation of

momentum. The vector sum of the momenta of the bodies at any

instant is the same as the vector sum of the momenta of the

bodies after a time interval At, provided that during that

time interval the only unbalanced force acting on either body

is the force exerted on it by the other body.

What we have done here with a system consisting of two bod-

ies, we could do as well with a system consisting of any num-

ber of bodies. Study Guide 9.18 shows you how to derive the

law of conservation of momentum for a system of three bodies.

Actually Eq. (9.5) is more general than its derivation in-

dicates. We considered a body with constant mass, but in Eq.

(9.5) the change of momentum can arise from a change of mass

as well as from (or in addition to) a change of velocity.

Are there any situations where the mass of a body changes?

As a rocket spews out exhaust gases, its mass decreases. The

mass of a train of coal cars increases as it moves under a

hopper which drops coal into the cars. In Unit 5 you will

learn that any boc.j's mass increases as it moves faster and

faster (although noticeably so only at extremely high speeds).

Since
net = ma expresses Newton's second law for cases

where the mass is constant, it may not be so easy to use this

form to deal with situations, like those above, where the mass

changes; we must use the law in the form of Eq. (9.5). In

fact, that is more nearly the way that Newton formulated the

law in his Principia.

We have shown that the law of conservation of momentum can

be derived from Newton's second and third laws. The law of

conservation of momentum is not a new principle of physics but

is already implicit in Newton's laws. Nevertheless the law of

conservatiol, of momentum enables us to solve many problems

which would be impossible or difficult to solve using Newton's

laws.

For example, suppose a cannon fires a shell. Although ini-

tially at rest, the cannon moves after firing the shell; it

recoils. The expanding gases in the cannon barrel push the

cannon backward just as hard as they push the shell forward.

If we knew the magnitude of the force, we could apply Newton's

second law to the cannon and to the shell to find their accel-

erations, and after a few more steps we could find the speed

of the shell and the recoil speed of the cannon. But, in

fact, we do not know the magnitude of the force; it is prob-

ably not steady and it almost certainly decreases as the

shell moves toward the end of the barrel. Hence it would be

very difficult to use Newton's laws.
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We can use the law of conservation of momentum, however,

even if we know nothing about the force (except that the force

on the shell is always the same magnitude as the force on the

cannon). It tells us that since the momentum of the system

(cannon-plus-shell) is zero initially, it will also be zero

after the shell is fired. Thus the law of conservation of

momentum can be applied to cases where we do not have enough

information to apply Newton's laws.

We pay for our ignorance, however. If we could use Newton's

laws we would be able to calculate the speed of the shell and

the speed of the cannon. But the law of conservation of mo-

mentum only makes it possible to calculate the relative speeds

of shell and cannon.

Mathematically, the reason we obtain more information when

we use Newton's laws is that in that case we have two equa-

tions for the two unknown speeds. The law of conservation of

momentum provides only one equation for the two unknown speeds.

Q$ a) The five engines of the first stage of the Apollo/Saturn
rocket together develop a thrust of 35 million newtons
for 150 seconds. Now much momentum will they give the
rocket?

b) The final speed of the rocket is 6100 miles/hour. Why
can you not compute its mass?

cm Newton's second law can be written Ftt = A(4). Use the
second law to explain the following:

a) When jumping down from a chair, you should bend your
knees.

b) Firemen use elastic nets to catch people who jump out
of burning buildings.

c) Hammer heads are generally made of steel rather than
rubber.

d) The 1968 Pontiac GTO has plastic bumpers which, when
deformed, slowly return to their original shape.

COO A girl is coasting down a hill on a skate board. Can she
make a sharp turn without touching the ground with her foot?

9.5Isolated systems. There are similarities in the ways we test

and use the conservation lawn of mass and linear momentum. In

both cases we test the laws by observing systems that have in

some sense been isolated or closed off from the rest of the

universe.

When testing or using the law of conservation of mass we

arrange a system that is closed, so that matter can neither

enter nor leave. When testing or using the law of conserva-

tion of momentum we set up a system which is isolated in the

sense that each body in the system experiences no net force

originating from outside the system.

It may be difficult or even impossible actually to isolate

a system completcly. Consider for example two dry-ice pucks
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connected by a spring and sliding on a frictionless table.

The pucks and spring form a system from which we exclude the

table and the earth, whose effects on each puck cancel. For

although each puck experiences a downward gravitational force

exerted by the earth, the table exerts an equally strong up-
ward push on it. Thus it appears that the net force exerted

on each puck by bodies outside the system is zero.

But what about the gravitational attraction of the sun or
the moon? Or electric or magnetic forces exerted on the pucks

by bodies outside the system? We cannot be sure that all such

forces are completely balanced, and therefore the spring and

two pucks do not actually form a completely isolated system.

Nevertheless, for all real cases, the unbalanced forces usu-

ally can be kept negligibly small compared to the forces ex-

erted by the bodies in the system on one another, so that for

all practical purposes, the system can be considered isolated.

For example, if two cars are skidding toward a collision,

the frictional force exerted by the road on each car may

be large, perhaps a few hundred pounds. Nevertheless,

it may be considered negligible compared to the immense

force (many tons) exerted by each car on the other when
,9, they collide; during the collision we can consider the

two skidding cars as very nearly an isolated system. If

friction is too great to ignore, the law of conservation

of momentum still holds, but we must apply it to a sys-

tem which includes the objects that provide the friction.

In the case of the skidding cars, we would have,to in-

clude the entire earth in the "closed system".

(211 Which of the following is the way that we define an iso-
lated system when using the law of conservation of momentum?

a) a system in which each object experiences a net force
of zero

b) a system in which each object experiences no forces
exerted by objects outside the system

c) a system on which the net force is zero
d) a system in which the objects exert no forces on one

another

Q12 Explain why the following are not isolated systems.
a) a baseball thrown horizontally
b) an artificial earth satellite

c) the earth and the moon

9.6 Elastic collisions. In 1666, members of the recently-formed
Royal Society of London witnessed an experiment at one of the
Society's regular meetings.

Two balls made of the same hard wood and of equal size were
suspended at the ends of two strings to form two pendulums.
When one ball was released from rest at a certain height, it

swung down and struck the other, which had been hanging with-
out moving.
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After impact the second ball swung up to nearly the same

height as that from which the first had been released and the

first became very nearly motionless. When the second ball re-

turned and struck the first, it was now the second ball which

came nearly to rest, and the first swung up to almost the same

height as that from which it had originally been released.

And so the motion continued, back and forth through many

swings.

This demonstration aroused considerable interest among mem- --.A.,_

bers of the Society. In the years immediately following it

also generated heated and often confusing arguments. Why did

the balls rise each time to nearly the same height? Why was

the motion transferred frcm one ball to the other when they

collided? Why didn't the first ball bounce back or continue

moving slowly forward? Momentum conservation doesn't prohib-

it such behavior.

In 1668 the membership directed its secretary to write to

three men who could be expected to throw light on the whole

matter of impacts. The three men were John Wallis, Christo-

pher Wren and Christiaan Huygens. Within a few months, all

three men replied. Wallis and Wren had partial answers to

explain some of the features of collisions; but Huygens ana-

lyzed the problem in complete detail.

His work was performed in 1667, but his reasoning did not

become public until 1703, when his works, including "On the

Movement of Bodies through Impact," were published posthumous-

ly.

Huygens explained the behavior of the pendulums by showing

that in such collisions another conservation law is at work,

in addition to the law of conservation of momentum. Specifi-

cally, he showed that

mAvA2 mBvB2 = mAvA '2 + mBvB'2. (9.9)

The quantity mv2 came to be called vid viva. Eq. (9.9),

then, is the mathematical expression of the conservation of

yid viva.

We have seen that the momentum of every isolated system of

bodies is conserved, no matter what goes on within the system.

Is the law of conservation of vib viva equally general? Is

the yid viva of every isolated system conserved? It is easy

to see that it is not.

Consider the first example of Sec. 9.2, in which two carts

of equal mass approach each other with equal speeds, collide,

stick together and stop. The yid viva of the system after

the collision is

A.

O

Vid viva is Latin for "living
force." Seventeenth century
scientists were greatly inter-
ested in distinguishing and nam-
ing various "forces." They used
the word loosely; it meant some-
times a push or a pull (the mod-
ern use of the word), sometimes
what we now call "momentum" and

sometimes what we now call "ener-
gy."

Scientists no longer use the term.
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mAy2 mBvB2 mAo, MB(0) 0.

Before the collision the vi4 viva of the system was mi4vA2 +
mBvB2. Since mAvil and mBvB2 are both positive numbers, their
sum cannot possibly equal zero (unless both vA and vB are zero,
in which case there would be no collision--and not much of a
problem). Vi6 viva is not conserved in this collision.

The law of conservation of Vi6 viva, then, is not as gen-
eral as the law of conservation of momentum. Tf two bodies
collide, the Vi6 viva may or may not be conserved.

As Huygens pointed out, it is conserved if the colliding
bodies are hard so that they do not crumple or smash or dent.
We call such bodies "perfectly elastic," and we describe col-
lisions between them as "perfectly elastic collisions." In
perfectly elastic collisions both momentum and Vi6 viva are
conserved.

In most collisions that we witness, vis viva is not con-
served; the total Vi6 viva after the collision is less than
before the collision. Such collisions might be called almost

perfectly elastic, .r partially elastic, or perfectly inelas-
tic, depending on how much of the vi4 viva is "lost" in the
collision. The loss of vi6 viva is greatest when the collid-
ing bodies remain together.

A collision between steel ball-bearings or glass marbles
is almost perfectly elastic, provided that the collision is
not so violent as to damage the bodies; the total vi6 viva
after the collision might be as much as, say, 98% of its value
before the collision. Examples of true perfectly elastic col-
lisions are found only in collisions between atoms or between
sub-atomic particles.

Cra Vi6 viva is conserved
a) in all collisions.

b) only when momentum is not conserved.
c) in some collisions.
d) when the colliding objects are not too hard.
e) only in living systems.

a14 True or false:

Huygens demonstrated an experiment to the members of the
Royal Society that aroused much interest.

o15 In the diagram of the pendula on the last page, why are the
strings parallel instead of attached to the same point at the
ceiling?

Q16 Vi6 viva is never negative because
a) it is impossible to draw vectors with negative length.
b) speed is always greater than zero.
c) it is proportional to the square of the speed.
d) scalar quantities are always positive.

26



97

9.7 Leibniz and the conservation of viz viva. Descartes, believ-

ing that the total quantity of motion in the universe did not

change, proposed to define the quantity of motion of an object

as the product my of its mass and its speed. As we have seen

however, this is not a conserved quantity in all collisions.

For example, if two carts with equal masses and equal speeds

collide head-on and stick together, they both stop after the

collision.

Gottfried Wilhelm Leibniz was aware of the error in Des-

cartes' work on motion. In a letter in 1680 he wrote

M. Descartes' physics has a great defect; it is that
his rules of motion or laws of nature, which are to
serve as the basis, are for the most part false. This
is demonstrated. And his great principle, that the
same quantity of motion is conserved in the world, is
an error.

Leibniz' philosophical studies made him sure that something

was conserved, however; namely, what he called "force". He

described what he meant by "force" in a paper published in

1686 entitled, "A short demonstration of a famous error of

Descartes and other learned men, concerning the claimed law

of nature according to which God always preserves the same

quantity of motion; by which, however, the science of mechan-

ics is totally perverted." He said that

the force must be evaluated by the quantity of effect
it can produce, for example by the height to which it
can raise a heavy load... and not by the velocity it
can impress on [the load].

In this way he was led to identify "force" as viz viva mv2.

As he stated in his "Essay in Dynamics on the Laws of Motion,"

written in 1691,

Now it is found from reasoning and experience that it
is the absolute viz viva or the force measured by the
violent effect it can produce which is conserved and
not at all the quantity of motion.

Leibniz believed that even at the top of its trajectory,

a stone that has been thrown upwards still possesses "force";

as it falls back toward the ground, gaining speed, the "force"

becomes evident again as viz vkva.

But, as Huygens had pointed out, viz viva is conserved in

collisions only if the colliding bodies are hard, that is,

only in elastic collisions. In inelastic collisions the to-

tal viz viva after the collision is less than before the col-

lision. It seems that Leibniz' viz viva is no more a con-

served quantity than Descartes' quantity of motion.

For philosophical reasons, however, Leibniz was convinced

that viZ viva is always conserved. In order to save his con-

"It is wholly rational to assume
that God, since in the creation
of matter he imparted different
motions to its parts, and pre-
serves all matter in the same
way and conditions in which he
created it, so he similarly pre-
serves in it the same quantity
of motion."

[Descartes, Principles of Philo-
sophy, 1644]

If an object is thrown upward,
the height y to which it will

rise is proportional to the
square of its initial speed v:

y = 1/2v2/a .



By "small parts" Leibniz did not
mean atoms. His contemporaries
were speculating about the exis-
tence of atoms, and he himself
had accepted the idea in his
youth, but "reason made me change
this opinion."

Leibniz (1646-1716), a contem-
porary of Newton, was a German
philosopher and diplomat, an ad-
viser to Louis XIV of France and
Peter the Great of Russia. In-
dependently of Newton he invented
the method of mathematical anal-
ysis called calculus. A long
public dispute resulted between
the two great men concerning

charges of plagiarism of ideas.
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servation law, he was obliged to invent an ingenious but un-

proven explanation for its apparent disappearance in inelastic

collisions. He maintained that in such collisions the Vi4

viva is not destroyed "but dissipated among the small parts"

of which the colliding bodies are made.

The question whether quantity of motion my or vi4 viva mv2

was the "correct" conserved quantity was much debated by phi-

losophers and scientists in the early eighteenth century. In

fact, each theory developed into concepts which are fundamen-

tal to modern science. Descartes' my developed into the mod-

ern mv, which, as we have seen inSec.9.3 of this chapter, is

always conserved in an isolated system. Leibniz' Vi4 viva

mv2 very closely resembles the modern concept of energy of

motion, kinetic energy, as we shall see in Chapter 10. Ener-

gy, of which energy of motion is only one of many forms, is

also a conserved quantity in an isolated system.

Q17 According to Leibniz, Descartes' principle of conservation
of quantity of motion was

a) correct, but trivial.

b) another way of expressing the conservation of vis viva.
c) incorrect.

d) correct only in elastic collisions.

Q18 How did Leibniz explain the apparent disappearance of
vi4 vivain inelastic collisions?

Descartes (1596-1650) was the most important French scientist of
the seventeenth century. In addition to his early contribution to
the idea of momentum conservation, he is remembered by scientists
as the inventor of coordinate systems and the graphical representa-
tion of algebraic equations. His system of philosophy, which used
the deductive structure of geometry as its model, is still influen-
tial. Of a sickly constitution, he did much of his thinking while
lying in bed.



John Wallis (1616-1703) was a
professor of mathematics at Ox-
ford. He was later to make one
of the earliest careful analyses
of vibrations, thereby discover-
ing how partial tones are pro-
duced on a stringed instrument.
He also introduced the symbol .
for infinity.

Christiaan Huygens (1629-1695)
was a Dutch physicist. He de-

vised an improved telescope with
which he discovered a satellite
of Saturn and saw Saturn's rings
clearly. He was the first to
understand centripetal force,
and he invented the pendulum-
controlled clock. We shall hear
more of Huygens later. Huygens'

scientific contributions were
major, and his reputation would
undoubtedly have been even great-
er had he not been overshadowed
by his contemporary, Newton.

,I.

St. Paul's Cathedral

Christopher Wren (1632-1723) was
a professor of astronomy at
Oxford and was ;enerally con-
sidered to be one of the out-
standing mathematicians of the
day. He is best remembered as
the imaginative architect of
many impressive buildings in
London, including more than
fifty churches and cathedrals--
Saint Paul's among them.
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A Collision in Two Dimensions

The stroboscopic photograph shows a colli-
sion between two wooden discs. The discs are
on tiny plastic spheres which make their motion
nearly frictionless. Body B (marked +) is at
rest before the collision. After the collision
it moves to the left and Body A (marked -) moves
to the right. The mass of Body B is twice the
mass of Body A: mB = 2m

A . We will analyze the

photograph to see whether momentum was conserved.
(Note: the size reduction factor of the photo-
graph and the (constant)

stroboscopic flash rate
are not given. So long as all velocities are
measured in the same units, it does not matter
what those units are.)

In this analysis we will measure the distance
the discs moved on the photograph, in centimeters.
We will use the time between flashes as the unit
of time. Before the collision, Body A traveled
36.7 ram in the time between flashes: v

A
.

36.7 speed-units. Similarly v; . 17.2 speed-

units and v' = 11.0 speed-units.

The vector diagram shows the momenta mAF;:t and

min after the collision; mA4V; is represented

by a vector 17.2 momentum-units long, and NI./

by a vector 22.0 momentum-units long. (Remember
that mB = 2mA.)

The dotted 0 line represents the vector sum ofm
A A B
vs and m_vs. i.e., the total momentum after

the collision. Measurement shows it to be 34.0
momentum-units long.

The total momentum before the collision is
just mAvA and is represented by a vector 36.7

momentum-units long. Thus, our measured values
of the total momentum before and after the col-
lision differ by only 2.7 momentum-units, a
difference of about 7Z.

You can verify for yourself that the direc-,
tion of the total momentum is the same before
and after the collision.

Have we then demonstrated that momentum was
conserved in the collision? Is the 7% difference
likely to be due entirely to experimental inac-
curacies, or is there any reason to expect that
the total momentum of the two discs after the
collision is really a bit less than before the
collision?

9nog
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Study Guide

9.1 Discuss the law of conservation of mass as it applies to the
following situations.

a) a satellite "soft-landing" on Venus
b) a rifle firing a bullet
c) the manufacture of Styrofoam
c) a person drinking a Coke

9.2 Would you expect that in your lifetime, when more accurate
balances are built, you will see experiments which show that the
law of conservation of mass is not entirely true for chemical re-
actions?

9.3 Dayton C. Miller was a renowned experimenter at Case Insti-
tute of Technology. He was able to show that two objects placed
side by side on a pan balance did not balance two identical ob-
jects placed one on top of the other. The reason is that the
pull of gravity decreases with distance from the center of the
earth. Would Lavoisier have said this experiment contradicted
the law of conservation of mass?

9.4 A children's toy known as a snake consists of a tiny pill of
mercuric thiocyanate. When the pill is ignited, a large, serpent-
like foam curls out almost from nothingness. Devise and describe
an experiment by which you could test the law of conservation of
mass for this demonstration.

9.5 Consider the following chemical reaction, which was studied
by Landolt in his tests of the law of conservation of mass. A
solution of 19.4 g of potassium chromate in 100.0 g of water is
mixed with a solution of 33.1 g of lead nitrate in 100.0 g of
water. A bright yellow solid precipitate forms and settles to
the bottom of the container. When removed from the liquid, this
solid is found to have a mass of 32.3 g and is found to have prop-
erties different from either of the reactants.

a) What is the mass of the remaining liquid? (Assume the

combined mass of all substances in the system is con-
served.)

b) If the remaining iiquid (after removal of the yellow
precipitate) is t..1,en heated to 95° C, the water it con-
tains will evaporate, leaving a white solid. What is
the mass of this solid? [Assume that the water does
not react with anything, either in (a) or in (b).)

9.6 If powerful magnets are placed on top of each of two carts,
and the magnets are so arranged that like poles face each other
as one cart is pushed toward the other, the carts bounce away
from each other without actually making contact.

a) In what sense can this be called a collision?
b) Does the law of conservation of momentum apply?
c) Does the law of conservation of momentum hold for any

two times during the interval when the cars are ap-
proaching or receding (the first called before and
the second called after the "collision")?

9.7 A freight car of mass 105 kg travels at 2.0 m/sec and col-
lides with a motionless freight car of mass 1.5 x 105 kg. The
two cars lock and roll together after impact. Find the final
velocity of the two cars after collision.
HINTS:

a) Equation (9.1) states
4

+ 4 4. 41M V 1" mavB M V' M vAA BB AA BB
What factors in this equation are given in the problem?

b) Rearrange terms to get an expression for v'.
c) Find the value of .%*if v1).

A
A A
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9.8 From the equation

m ir" mBVBAA + DB = mAA + mDB

show that the change in momentum of object A is equal and opposite
to the change of momentum of object B.

9.9 Benjamin Franklin, in correspondence with his friend James
Bowdoin (founder and first president of the American Academy of
Arts and Sciences), objected to the corpuscular theory of light by
saying that a particle traveling with such immense speed (3 x 108
m/sec) would have the impact of a 10 kg ball fired from a cannon
at 100 m/sec. What mass did Franklin assign to the light particle?

9.10 In a baseball game, both the bunt and the long outfield fly
are sacrifice hits. Contrast the collision processes which make
them.

9.11 In the light of your knowledge of the relationship between
momentum and force, comment on reports about unidentified flying
objects (UFO) turning sharp corners.

9.12 A hunter fires a gun horizontally at a target fixed to a
hillside. Describe the changes of momentum of the hunter, the
bullet, the target and the earth. Is momentum conserved in each
case?

9.13 A girl on skis (mass of 60 kg including skis) reaches the
bottom of a bill going 20 m/sec. What is her momentum? She
strikes a snowdrift and stops within 3 seconds. What force does
the snow exert on the girl? How far does she penetrate the drift?

9.14 A horizontal conveyor belt is used to transport grain from
a bin to a truck. A 50.0-kg bag of grain falls straight from a
chute onto the belt every 20 seconds. The velocity of the con-
veyor belt is 4.0 m/sec.

a) What is the momentum gained or lost by a bag of grain
just as it is placed on the belt?

b) What is the average additional force required to drive
the belt when carrying grain?

9.15 The text derives the law of conservation of momentum for two
bodies from Newton's third and second laws. Is the principle of
the conservation of mass essential to this derivation? If so,
where does it enter?

9.16 If mass remains constant, then A(mv) = m(Av), Check this
relation for the case where m = 3 units, v' = 6 units and v = 4
units.

4 4,9.17 Equation (9.1), mAvA + BB = mAAv' + mivB, is a general equa-

tion. For a loaded cannon where the subscripts c and s refer to
cannon and shell respectively,

a) what are the values of vc and vs before firing?
b) what is the value of the left hand aide of the equation

before firing? after firing?
c) compare the magnitudes of the momenta of cannon and shell

after firing.

d) compare the ratios of the speeds and the masses of shell
and cannon after firing.

e) a 10 kg shell has a speed of 1000 m/sec. What is the
recoil speed of 1000 kg cannon?

9.18 Newton's laws of motion lead to the law of conservation of
momentum not only for two-body systems, as was shown in Sec. 9.4,
but for systems consisting of any number of bodies. In this
problem you are asked to repeat the derivation of Sec. 9.4 for a
three-body system.



The figure shows three bodies, with masses mA, ms and mb, ex-

erting forces on one another. The force exerted on body.,A. by
body B is the force exerted on body C by body A is F

CA'
etc.

Using the symbol p to represent momentum, we can write
Newton's second law as:

F
net

At =A (4) = Ap.

Applied to body A, the second law says:

(FAB FAC) At ="*A.
a) Copy the last equation above and write corresponding

equations for body B and body C.
b) According to Newton's third law, FAB =

-FBA, FAC
and

BC
= -i

CB.
Combine these relations with the three

equations of (a) to obtain AiiA +AISB = O.

c) Show that the result of (b) is equivalent to pA + PB +

PC PA PB 4. PC

The last equation says that the rncmentum of the three-body
system is constant during the time interval At.

9.19 A police report of an accident describes two vehicles collid-
ing (inelastically) at a right-angle intersection. The skid
to a stop as shown. Suppose the masses of the cars are approxi-
mately the same. Which car was traveling faster at collision?
What information would you need in order to calculate the speed
of the automobiles?

9.20 Two pucks on a frictionless horizontal surface are joined
by a spring. Can they be considered an isolated system? How
do gravitational forces exerted by the earth affect your answer?
What about forces exerted on the planet earth? Do you wish to
reconsider your answer above? How big would the system have to
be in order to be considered completely isolated?

9.21 Two balls, one of which has three times the mass of the
other, collide head-on, each moving with the same speed. The
more massive ball stops, the other rebounds with twice its orig-
inal speed. Show that both momentum and vis viva are conserved.

9.22 If both momentum and vis viva are conserved and a ball strikes
another three times its mass at rest, what is the velocity of
each ball after impact?

9.23 A student in a physics class, having learned about elastic
collisions and conservation laws, decides that he can make a
self-propelled car. He proposes to fix a pendulum on a cart,
using a "super-ball" as a pendulum bob. He fixes a block to the
cart so that when the ball reaches the bottom of the arc, it
strikes the block and rebounds elastically. It gives the cart a
series of bumps that propel it along.

a) Will his scheme work? (Assume that the "super-ball"
is perfectly elastic.) Give reasons for your answer.

b) What would happen if the cart had an initial velocity
in the forward direction?

c) What would happen if the cart had an initial velocity
in the backward direction?

9.24 A billiard ball moving 0.8 m/sec collides with the cushion
alone the side of the tablo. The collision is head-on and per-
fectly elastic. What is the momentum of the ball before impact?
After impact? What is the change in momentum? Is momentum con-
served? (Pool sharks will say that it depends upon the "English"
(spin] that the ball has, but the problem is much simpler if you
neglect this condition.)

t

n
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9.25 Fill in the blanks:

OBJECT MASS
(kg)

VELOCITY
(a/sec)

MOMENTUM
kg-m/sec

VIS VIVA
kg-m2 /sec

2

baseball 0.14 30.0

hockey puck 50.0 8.55

superball 0.050 1.5

Corvette 1460 1.79 x 106

mosquito 2.0 x 10-6 4.0 x 10-6

9.26 You have been given a precise technical definition for the
word momentum. Look it up in a big dictionary and record its
various uses. Can you find anything similar to our definition
in these more general meanings? Why was the word momentum se-
lected as the name for quantity of motion?

9.27 Descartes defined the quantity of motion of an object +13 the
product of its mass and its speed. Is his quantity of motion con-
served as he believed it was? If not, how would you modify his
definition so it would be conserved?
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10.1

10.1 Work and kinetic energy. In everyday language we say that

we are "playing" when we are pitching, catching and running

on the softball field; when we are sitting at a desk solving

physics problems, we are "working." A physicist would dis-

agree. He would say that while studying we are doing very

little work, whereas on the softball field we are doing a

great deal of work. "Doing work" means something very defi-

nite to a physicist: it means "exerting a force on an object

while the object moves in the direction of the force." Thus

when you throw a softball, you exert a large force on it

while it moves forward about a yard; you Co a large amount

of work. By contrast, turning pages of a textbook requires

you to exert only a small force, and the page doesn't move

very far; you don't do much work.

Suppose, you are employed in a factory to lift boxes from

the floor to a conveyor belt at waist height. Both you and

a physicist would agree that you are doing work. It seems

like common sense to say that if you lift two boxes at once,

you do twice as much work as you do if you lift one box. 'It

also seems reasonable to say that if the conveyor belt were

twice as high above the floor, you would do twice as much

work to lift a box to it. The work you do depends on both

the magnitude of the force you must exert on the box and the

distance through which the box moves.

The physicist's definition of work is in agreement with

these common-sense notions. The work done on an object is

defined as the product of the magnitude, F, of the force

exerted on the object and the distance d that the object

moves while the force is being exerted:

W = Fd.

Note that the work you do does
not depend on how fast you do
your job.

(10.1) A more general definition of
work is given in Sec. 10.4.

So far we have not indicated that the concept of work has

any use. You probably realize by now, however, that in phys-

ics the only concepts that are defined are those which are

useful. Work is indeed a useful concept; it is, in fact,

crucial to an understanding of the concept of energy.

There are a great many forms of energy. A few of them

will be discussed in this chapter. We will define them, in

the sense that we will tell h)w they can be measured and how

they can be expressed algebraically. The general concept of

energy is very difficult to define; in this course we shall

not attempt to do so. On the other hand, to define some

particular forms of energy is straightforward, and it is

through the concept of work that the definitions can be made.

The significance of the concept of work is that work rep-

resents an amount of energy transformed from one form to

37



The Greek word "kinetos" means
"moving,"

The name of the unit of energy
and work commemorates J.P.
Joule, a nineteenth century

English physicist, famous for
his experiments showing that
heat is a form of energy (see
Sec. 10.7). The word is pro-
nounced like "jewel."
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another. For example, when you throw a softball (do work on
it), you transform chemical energy, which your body obtains
from food, into energy of motion. When you lift a stone (do
work on it), you transform chemical energy into gravitational
potential energy. If the stone is released, the earth pulls
it downward (does work on it), and gravitational potential

energy is transformed into energy of motion. When the stone
strikes the ground, it pushes the ground downward (does work
on it), and energy of motion is transformed into heat.

On the following page it is shown how we can use the def-
inition of work (Eq. 10.1), together with Newton's laws of
motion, to get an expression for what we have called "energy
of motion." It turns out that if F is the magnitude of the
net force exerted on an object of mass m while the object
moves a distance d in the direction of the force, and if the
object is initially at rest, then

Fd = h mv2 (10.2)

where v is the speed of the object after it has moved the
distance d.

We recognize the left side of Eq. (10.2) as the work done
on the object by whatever exerted the force. (On the follow-
ing page it is "you" who do the work on the object.) The work
done on the object equals the amount of energy transformed
from some form (chemical energy, for example, as on the
facing page into energy of motion of the object. So the
right side of Eq. (10.2) must be the expression for the en-
ergy of motion of the object. Energy of motion is called
kinetic energy.

The kinetic energy of an object, therefore, is defined as
one half the product of its mass and the square of its speed.

(KE) = h mv2. (10.3)

Equation (10.2) says that the work done on the object
equals its final kinetic energy. This is the case if the ob-
ject was initially at rest, that is, if its initial kinetic
energy was zero. More generally the object may already be
moving when the net force is applied. In that case the work
done on the object equals the increase in its kinetic energy.

Fd = A(KE),

where A(KE) = (5 mvz)
final

(5 mvz)
initial'

(10.4)

Since work is defined as the product of a force and a
distance, its units in the mks system are newtons-times-
meters. A newton-meter is called a joule. The unit of en-
ergy is thus one joule (abbreviated 1 J).



Doing Work on a Sled

Suppose a loaded sled of mass m is initially
at rest on the horizontal frictionless surface of
ice. You, wearing spiked shoes, exert a constant
horizontal force P on the sled. The weight of the
sled is balanced by the upward push exerted by the
surface, so is the net force on the sled. You
keep pushing (running faster and faster to keep
up with the accelerating sled) until the sled has
moved a distance d.

Since the net force is constant, the accel-
eration of the sled is constant. Two equations
that apply to motion from rest with constant ac-
celeration are

v =at

and d = 3/4 at2

where a is the acceleration of the body, t is the
time interval during which it accelerates (that
is, the time interval during which a net force

acts on the body), v is the final speed of the
body and d is the distance it moves in the time
interval t.

According to the first equation

t = v/a.

If we substitute this expression for t into the
second equation, we obtain

2 2

d = 3/4 at2 = 1.
7 7

The last equation is a relationship between final
speed, (constant) acceleration and distance moved.

The work that you do on the sled is

Fd = --
v2

).
a

But, from Newton's second law, F = ma. Therefore,

Fd = (ma) x (3/4r) _/4 mv2.

-
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10.2

CH If a Force it is exerted on an object while the object
moves a distance d in the direction of the force, the work
done on the object is

a) Fd.

b) Fd2.
c) F/d.
d) F.

Q2 The kinetic energy of a body of mass m moving at a speed
v is

a) mv.

b) 'env.

c) 2 mv2.

d) m2v2.
e) 1/2 mv2.

Q3 If you apply 1 joule to lift a kg book, how high will
it rise?

10.2 Potential energy. If work is done on an object, its kinetic

energy may increase, as we have seen in the previous section.

But it can happen that work is done on an object with no in-

crease in its kinetic energy. For example, to lift a book

straight up you must do work on the book, even if you lift it

at constant speed so that its kinetic energy stays the same.

By doing work you are depleting your body's store of chemi-

cal energy. But into what form of energy is it being trans-

formed?

It is being transformed into gravitational potential

energy. Lifting the book higher and higher increases the

gravitational potential energy. When the book has been

lifted a distance d, the gravitational potential energy has

increased by an amount Fgrav d, where Fgrav is the weight ofTo lift the book at constant
speed, you gust exert an up-
ward force F equal 4n magni-
tude to the weight Fgrav of
the book.

A set mouse-trap illustrates
elastic potential energy.
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the book.

A(PE) gray = Fgrav d (10.5)

Potential energy can be thought of as stored energy. If

you allow the book to fall, the gravitational potential

energy will decrease and the kinetic energy of the book will

increase. When the book reaches the floor, all of the stored

gravitational potential energy will have been transformed

into kinetic energy.

There are other forms of potential energy also. For ex-

ample, if you stretch a rubber band or a spring, you increase

the elastic potential energy. When you release the rubber

band, it can deliver the stored energy to a paper wad in the

form of kinetic energy.

In an atom the negatively charged electrons are attracted

by the positively charged nucleus. If an electron is pulled

away from the nucleus, the 'ctrical potential energy of

the atom will increase. If the electron is allowed to be

pulled back toward the nucleus, the potential energy will

decrease and the electron's kinetic energy will increase.



The magnetic potential energy
does not "belong to" one mag-
net or the other; it is a prop-
erty of the system. The same
is true of all forms of poten-
tial energy. Gravitational
potential energy, for example,
is a property of the system of
the earth and the elevated
book.

Equations (10.6), (10.7), and
(10.8) are true only if there
is negligible friction.
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If two magnets, with north poles facing, are pushed to-

gether, the magnetic potential energy will increase. When

released, the magnets will move apart, gaining kinetic en-

ergy at the expenSe of potential energy.

Q4 If a stone of mass m falls a vertical distance d, the
decrease in gravitational potential energy is

a) md.

b) mag.

c) magd.
d) k md2.

e) d.

Q5 When you compress a coil spring you do work on it. The
elastic potential energy

a) disappears.

b) breaks the spring.
c) increases.
d) stays the same.
e) decreases.

Q6 Two positively charged objects repel one another. To in-
crease the electric potential energy, you must

a) make the objects move faster.
b) move one object in a circle around the other object.
c) attach a rubber band to the objects.
d) pull the objects farther apart.
e) push the objects closer together.

10.3 Conservation of mechanical energy. In Sec. 10.1 it was

stated that the amount of work done on an object equals the

amount of energy transformed from one form to another. Per-

haps you realized that this statement implies that the amount

of energy does not change, that only its form changes.

If a stone falls, for example, there is a continual trans-

formation of gravitational potential energy into kinetic

energy. Over any part of its path the decrease in gravita-

tional potential energy is equal to the increase in kinetic

energy. On the other hand, if a stone is thrown upwards,

then at any point in its path the increase in gravitational

potential energy equals the decrease in kinetic energy. For

a stone falling or rising, then

A(PE)
gray

= -A(KE).

Equation (10.6) can be written as

A(PE)
gray + A(KE) = 0,

(1 0.6)

(10.7)

which says that the change in the total energy (ICE + PEgrav)

is zero. In other words, the total energy (KE + PEgrav) re-

mains constant--it is conserved.

The total energy is conserved also when a guitar string is

plucked. As the string is pulled away from its unstretched

position, the elastic potential energy increases. When xhe

string is released and allowed to return to its unstretched
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position, the elastic potential energy decreases while the

kinetic energy of the string increases. As the string coasts

through its unstretched position and becomes stretched in the

other direction, its kinetic energy decreases and the elas-

tic potential energy increases. As it vibrates, then, there

is a repeated transformation of elastic potential energy into

kinetic energy and back again. Over any part of its motion,

the decrease or increase in elastic potential energy is ac-

companied by an equal increase or decrease in kinetic energy:

A(PE)
elas = -A(Kr.).

Again, at least for short times, the total energy (KE
PE

elas
) remains constant it is conserved.

(10.8)

Whenever potential energy is transformed into kinetic

energy, or vice versa, or whenever potential energy is trans-

formed into another form of potential energy, the total

energy (KE T PE) does not change. This is the law of con-

servation of mechanical energy.

The law of conservation of mechanical energy is a conse-

quence of the definition of kinetic energy and the definition

of change of potential energy, together with Newton's laws of
motion. In a sense, the law of conservation of mechanical en-

ergy tells us nothing that we do not already know from New-

ton's laws of motion. However, there are situations where

we simply do not have enough information about the forces in-

volved to apply Newton's laws; it is then that the law of

conservation of mechanical energy strongly demonstrates its
usefulness.

An elastic collision is a good example of a situation

where we often cannot apply Newton's laws of motion, because
we do not know the force that one object exerts on the other
during the collision. But we do know that during the actual

collision, kinetic energy of the colliding objects is trans-
formed into elastic potential energy as the objects distort
one another. Then all the elastic potential energy is trans-

formed back into kinetic energy, so that when the objects
have separated, their total kinetic energy is the same as it
was before the collision.

It is important to point out that application of Newton's
laws, if this were possible, would provide more detailed in-

formation; namely, the speed of each of the objects. The
law of conservation of mechanical energy gives us only the

total kinetic energy of the objects after the collision, not
the kinetic energy of each object separately.

Mechanical energy is the concept that Leibniz had been

During its contact with a golf
club, a golf ball is distorted,
as is shown in the high-speed
photograph. As the ball re-
covers its normal spherical
shape, elastic potential energy
will be transformed into ki-
netic energy.
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10.4

W = Fd (Eq. 10.1)

If you do not understand what is

meant by a "component of force,"
work through the section on com-
ponents in the programmed instruc-
tion booklet on vectors.
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groping for in his thinking about the

His via viva differs only by a factor

modern concept of kinetic energy. He

conservation of "force".

of one half from the

had an idea of gravi-

tational potential energy also, in that he maintained that

an object elevated above the ground still possesses "force".

He even measured its "force" by the product of its weight

and its height above the ground, just as we measure gravita-

tional potential energy.

Q7 As a stone falls

a) its kinetic energy is conserved.
b) gravitational potential energy is conserved.
c) kinetic energy changes into gravitational potential

energy.

d) no work is done on the stone.

e) there is no change in the total energy.

Q8 In what part of its motion is the kinetic energy of a
vibrating guitar string the greatest? When is the elastic
potential energy the greatest?

Q9 If a guitarist gives the same amount of elastic potential
energy to a bass string and to a treble string, which one will
gain more kinetic energy when released? (The mass of a meter of
bass string is greater than that of a meter of treble string.)

Forces that do no work. In Sec. 10.1 we defined the work

done on an object as the product of the magnitude of the

force exerted on the object and the distance through which

the object moves while the force is being applied. This def-

inition is satisfactory so long as the object moves in the

same direction as the force, as in all the examples we have

done so far.

But there are cases where the direction of motion and the

direction of the force are not the same. For example, sup-

pose you carry a book horizontally (so that its potential

energy does not change), with constant speed (so that its

kinetic energy does not change). Since there is no change

in the energy of the book, it must be that you did no work

on the book. Yet you did exert a force on the book and the

book did move through a distance.

The force and the distance, however, were at right angles.

You exerted a vertical force on the book upwards to balance

its weight, and the book moved horizontally. We can con-

clude that if a force is exerted on an object while the ob-

ject moves at right angles to the direction of the force, the

force does no work. In order to include such cases, we must

define work more precisely than we did in Sec. 10.1.

The work done on an object is defined as the product of

the component of the force on the object in the direction of

motion of the object and the distance through which the ob-

ject moves while the force is being applied:



where F
fl
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W E Fn d, (10.9)

stands for the component of force parallel to the

direction of motion.

According to Eq. (10.9) no work is done on a suitcase, for

example, when it is moved at constant speed along a horizontal
path. Work is done on it when it is lifted higher above the

ground, increasing its gravitational potential energy.

Whether it is lifted at constant speed straight up to the sec-

ond floor in an elevator, or whether it is carried at con-

stant speed up a flight of stairs or a ramp, there is the

same increase in gravitational potential energy and hence the

same amount of work is done on the suitcase.

i(CoNb FLOOR

Fildr FLOOR

Similarly, whether the suitcase falls out of the second

floor window, or tumbles down the stairs, or slides down the

ramp, the decrease in the gravitational potential energy is

the same; the earth does the same amount of work on it:

W = ma d. If there are no frictional forces, the kinetic en-

ergy of the suitcase will be the same when it reaches the

first floor, no matter how it got there.

The change in gravitational potential energy depends only

on the change in the vertical position of the suitcase, and
not on the path along which it moves. The same is true of

other forms of potential energy: change in potential energy

depends on the initial and final positions, and not on the
path.

C110 When Tarzan swings from one tree to another on a hanging
vine, does the vine do work on him?

0101 No work is done when
a) a heavy box is pushed at constant speed along a rough

horizontal floor.
b) a nail is hammered into a board.
c) there is no component of force parallel te the direc-

tion of motion.
d) there is no component of force perpendicular to the

direction of motion.

(112, A suitcase is carried by a porter up a ramp from the
ground to the second floor. Another identical suitcase is
lifted from the ground to the second floor by an elevator.
Compare the increase in gravitational potential energy in
the two cases.

If there are frictional forces
on the suitcase or other objects
in the system, work has to be
done against these by the ob-
jects as they move. This work
warms up the stairs, the air,
the motor, or the body of the
man; the change in gravitational

potential energy, however, is
the same whether there is fric-
tion or not.
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10.5 Heat energy and the steam engine. Suppose that a book lying

on the table is given a shove and slides along the horizontal

surface of the table. If the surface is rough, so that it

exerts a frictional force on the book, the book will not keep

moving for very long; its kinetic energy gradually disappears.

But there is no corresponding increase in potential energy!

It appears that in this example mechanical energy is not

conserved.

Close examination of the book and the surface of the table,

however, would show that they are warmer than before. The

disappearance of kinetic energy is accompanied by the ap-

pearance of heat. This suggests but by no means proves

that the kinetic energy of the book was transformed into heat;

that is, that heat is one form of energy.

Although scientists today believe that heat is indeed a

form of energy, it was not until the middle of the nineteenth

century that the view of.heat as a form of energy became

widely accepted. In Sec. 10.9 we will discuss the reasons

for its acceptance at that time, and we will see that one of

the reasons was the increased knowledge of heat and work that

was gained in the development for very practical reasons

of the steam engine.

Until about 200 years ago, most work was done by people or

animals. Wind and water were exploited also, but generally

both were unreliable sources of energy and could not easily

be used at thetimes and places where they were needed. In

the eighteenth century there was a great need for an econom-

ical method of pumping water out of mines, which otherwise

became flooded and had to be abandoned. The steam engine

was developed to meet this very practical need.

The steam engine is a device for converting the energy of

some kind of fuel (the chemical energy of coal or oil, for

example, or the nuclear energy of uranium) into heat energy,

and then converting the heat energy into mechanical energy.

This mechanical energy can then be used directly to do work,

or (as is more common now) can be transformed into electrical

energy. In typical twentieth-century industrial societies,

most of the energy used in factories and homes is electrical

energy. Although waterfalls are used in some part of the

country, it is steam engines that generate most of the elec-

trical energy used in the United States today.

The generation and transmission of electrical energy, and

its conversion into mechanical energy, will be discussed in

Chapter 15. Here we are going to turn our attention to the

central link in the chain of energy-conversions, the steam
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engine. As we will see, the development of the steam engine

did not take place because of an application of physics to

engineering; on the contrary, the engineering analysis of the

steam engine led to new discoveries in physics.

Since ancient times it had been known that heat could be

used to produce steam, which could then do mechanical work.

The "aeolipile," invented by Heron of Alexandria about 100

A.D., worked on the principle of Newton's third law (this

principle, of course, had not been announced as a law of

physics in the form we now know it). The rotating lawn

sprinkler works the same way except that the driving force

is due to water pressure rather than steam pressure.

A model of Heron's aeolipile.

Steam produced in the boiler
escapes through the nozzles on
the sphere, causing it to ro-
tate.

A rotating lawn sprinkler.

Heron's aeolipile was a toy, meant to entertain rather than

do any useful work. Perhaps the most "useful" application of

steam to do work in the ancient world was a device invented

by Heron to "magically" open a door in a temple when a fire

was built on the altar. Not until late in the eighteenth

century, however, were commercially successful steam engines

invented.

Today we would say that a steam engine uses up its supply

of heat energy to do work; that is, it converts heat energy

into mechanical energy. But many inventors in the eighteenth

and nineteenth centuries did not think of heat in this way.

They regarded heat as a substance which could be used over

and over again to do work, without being used up itself. The

fact that these early inventors held ideas about heat which we

do not now accept did not prevent them from inventing engines

that actually worked. They did not have to learn the correct

laws of physics before they could be successful engineers.

In fact the sequence of events was just the opposite: steam

engines were developed first by practical men who cared more

about making money than they did about science. Later on,

men who had both a practical knowledge of what would work as

well as a curiosity about how it worked, made new discoveries

in physics.

Heron was a Greek inventor and
mathematician who lived in
Alexandria while it was oc-
cupied by the Romans. His books
survived through the middle
Ages and were circulated widely
in Europe during the sixteenth
century.
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The first commercially successful steam engine was invented

by Thomas Savery (1650-1715), an English military engineer, to

pump water from mine shafts.

In the Savery engine the water in the mine shaft is con-

nected by a pipe and valve D to a chamber called the cylinder.

With valve D closed and valve B open, high-pressure steam

from the boiler is admitted to the cylinder through valve A,

forcing the water out of the cylinder. Then valve A and

valve B are closed and valve D is opened, allowing free access

of the water in the mine shaft to the cylinder.

When valve C is opened, cold water pours over the cylinder,

cooling the steam in the cylinder and causing it to condense.

Since water occupies a much smaller volume than the same

mass of steam, a partial vacuum is formed in the cylinder, so

that atmospheric pressure forces water from the mine shaft

up the pipe and into the cylinder.

The same process, started by closing valve D and opening

valves A and B, can be repeated over and over. The engine

is in effect a pump, moving water from the mine shaft to the

cylinder and, in another step, pushing it from the cylinder

to the ground above.

A serious disadvantage of the Savery engine was its use

of high-pressure steam, with the attendant risk of boiler or

cylinder explosions. This defect was remedied by Thomas

Newcomen (1663-1729), another Englishman, who invented an

engine which used steam at atmospheric pressure.
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In the Newcomen engine there is a working beam with the

load to be lifted on one side and a piston in a cylinder on

the other side. The working beam is balanced in such a way

that when the cylinder is filled with steam at atmospheric

pressure, the weight of the load moves the piston to the

upper end of the cylinder. While the piston is coming to

this position, valve A is open and valve B is closed.

When the piston has reached its highest position, valve A

is closed and valves B and C opened. Cooling water flows

over the cylinder and the steam condenses, making a

partial vacuum in the cylinder, so that atmospheric pressure

pushes the piston down. When the piston reaches the bottom

of the cylinder, valves B and C are closed, valve A is

opened, and steam reenters the cylinder. The combination of

load and steam pressure forces the piston to the top of the

cylinder, ready to start the cycle of operations again.

Originally it was necessary for someone to open and close

the valves at the proper times in the cycle, but later a

method was devised for doing this automatically, using the

rhythm and some of the energy °. the moving parts of the en-

gine itself to control the sequence of operations.

In the original Newcomen engine
the load was water being lifted
from a mine shaft.

In the words of Erasmus Darwin,
the engine

"Bade with cold streams, the
quick expansion stop,

And sunk the immense of
vapour to a drop

Press'd by the ponderous air
the Piston falls

Resistless, sliding through
its iron walls;

Quick moves the balanced
beam, of giant-birth

Wields his large limbs, and
nodding shakes the earth."
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In July 1698 Savery was
granted a patent for "A

new invention for raiseing
of water and occasioning
motion to all sorts of
mill work by the impellent
force of fire, which will
be of great use and ad-
vantage for drayning mines,
serveing townes with water,
and for the working of all
sorts of mills where they
have not the benefitt of
water nor constant windes."
The patent was good for 35
years and prevented New-
comen from making much
money from his superior
engine.
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The Newcomen engine was widely used in Britain and other

European countries throughout the eighteenth century. By.

modern standards it was not a very good engine; it burned a

large amount of coal but did only a small amount of work at

a jerky', slow rate. Nevertheless, because of the demanc: for

machines to pump water from mines, there was a aood market

even for such an uneconomical steam engine as Newcomen's.

t`(ENG.1211:E/Pl'A7))71117/1di(lAftda,venvePineiriel/yFill110

(1)3 When a book slides to a stop on the horizontal rough sur-
f-ce of a table

a) the kinetic energy of the book is transformed into
potential energy.

b) heat is transformed into mechanical energy.
c) the kinetic energy of the book is transformed into

heat energy.

d) th momentum of the book is conserved.

Q14 True or false:

The invention of the steam engine depended strongly on
theoretical developments in the physics of heat.

Q15 What economic difficulties did Newcomen encounter in
attempting to make his engine a commercial success?
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10.6 James Watt and the Industrial Revolution. A greatly improved

steam engine originated in the work of a Scotsman, James Watt

(1736-1819). Watt's father was a carpenter who had a suc-

cessful business selling equipment to ships. James was

sickly most of his life and gained most of his early educa-

tion at home. He spent much of his childhood in his father's

attic workshop where he developed considerable skill in us-

ing tools. He wanted to become an instrument maker and went

to London to learn the trade. Upon his return to Scotland

in 1757, he obtained a position as instrument maker at the

University of Glasgow.

In the winter of 1763-64 Watt was asked to repair a small

model of Newcomen's engine that was used in classes at the

university. In familiarizing himself with the model, he ob-

served that Newcomen's engine wasted most of its heat in

warming up the walls of its cylinder, which were then cooled

down again every time the cold water was injected into the

cylinder to condense the steam. This represented a waste of

fuel because much of the steam was doing nothing but heating

the cylinder walls and then condensing there without doing

any work.

Watt in his workshop contemplat-
ing a Newcomen engine. (A ro-
manticized engraving from a
nineteenth century volume on
technology.)

Early in 1765 Watt saw how this defect could be remedied.

He devised a new type of steam engine in which the steam in

the cylinder, after having done its work of pushing the piston

back, was admitted to a separate container to be condensed.

The condenser could be kept cool all the time and the cylinder

could be kept hot all the time.

James Watt

The actual model of the
Newcomen engine that in-
spired Watt to conceive
the separate condenser.
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In the diagram above of Watt's engine, if valve A is open

and valve B is closed, steam enters the cylinder at a pres-

sure higher than atmospheric pressure, and pushes the piston

upward against the load. When the piston near- the top of

the cylinder, valve A is closed to shut off the steam sup-

ply. At the same time valve B is opened, so that steam

leaves the cylinder and enters the condenser. As the con-

denser is kept cool by water flowing over it, the steam con-

denses. This sets up a difference in pressure between the

cylinder and the condenser and maintains the flow of steam

in the direction toward the condenser. As steam leaves the

cylinder the pressure there decreases and the load (plus at-

mospheric pressure) pushes the piston down. When the piston

reaches the bottom of the cylinder, valve B is closed and

valve A is opened, admitting steam into the cylinder and

starting the next cycle of operations.

Although Watt's invention of the separate condenser might

seem to be only a small step in the development of steam en-

gines, it turned out to be a decisive one. The waste of heat

was cut down so much by keeping the cylinder always hot that

Watt's engine could do more than twice as much work as New-

comen's engine with the same amount of fuel. As a result of
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this saving in fuel cost, Watt was able to make a fortune by

selling or renting his engines to mine owners for the purpose

of pumping water.

The fee that Watt charged for the use of his engines de-

pended on their power. Power is defined as the rate of doing

work (or the rate at which energy is transformed from one

form to another). The mks unit of power is the joule-per-

second, which now is appropriately called one watt.

1 watt E 1 joule/sec.

James Watt expressed the power of his engines in different

units. He found that a strong work horse could lift a 150 -

pound weight almost four feet in a second; in other words it

could do almost 600 foot-pounds of work per second (more pre-

cisely 550 foot-pounds per second). Watt defined this as a

convenient unit for expressing the power of his engines, the

horsepower.

Typical power ratings in horsepower

Man working a pump 0.036
Man turning a crank 0.06
Overshot waterwheel 3
Post windmill 4
Turret windmill 10
Savery steam engine (1702) 1
Newcomen engine (1732) 12
Smeaton's Long Benton engine (1772) 40
Watt engine from Soho (1778) 14
Cornish engine for London water-works (1837) 135
Corliss Philadelphia Exhibition engine(1876) 2500

ESIon7:icR.1374.6L:::=7157iinge7e(t1:17) History of1000
Technology

Another term which is used to describe the economic value

of a steam engine is its duty. The duty of a steam engine is

defined as the distance in feet that the engine can lift a

load of one million pounds, using one bushel (84 pounds) of

coal as fuel.

Duty of Steam Engines

Date Name Duty

1718 Newcomen 4.3
1767 Smeaton 7.4
1774 Smeaton 12.5
1775 Watt 24.0
1792 Watt 39.0
1816 Woolf 68.0
1828 Improved Cornish engine 104.0
1834 Improved Cornish engine 149.0
1878 Corliss 150.0
1906 Triple expansion engine 203.0

Source: H. W. Dickinson, Short History of the Steam Engine

Matthew Boulton (Watt's business
partner) proclaimed to Boswell
(the famous biographer of Samuel
Johnson): "I sell here, Sir,
what all the world desires to
have: POWER!"

The foot-pound is a unit of work
that we shall not use in this

course. One foot-pound is de-
fined as the work done when a
force of one pound is exerted
on an object while the object
moves a distance of one foot.

1 horsepower = 746 watts

The modern concept of efficiency
is related to duty. The effici-
ency of an engine is defined as
the ratio of the work it can do
to the amount of energy supplied
to it. Efficiency cannot ex-
ceed 100%.
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Both power and duty are useful meas-

ures of the value of an engine. Its duty

tells how much work the engine can do

when it uses a given amount of fuel; its

power tells how fast the engine can do

work.

Watt's invention of the steam engine

with separate condenser, so superior to

Newcomen's engine, stimulated the devel-

opment of engines that could do many

other kinds of jobs--running machines in

factories, driving railway locomotives,

steamboats, and so forth. It gave a

powerful stimulus to the growth of in-

dustry in Europe and America, and there-

by helped transform the economic and

social structure of Western civilization.

The Industrial Revolution, based on

the development of engines and machines

for mass production of consumer goods,

greatly raised the average standard of

living in Western Europe and the United

States. Nowadays it is difficult to

imagine what life would be like without

all the things produced by industry. But

not all the effects of industrialization

have been beneficial. The nineteenth-

century factory system provided an op-

portunity for some greedy and unscrupu-

lous employers to exploit the workers.

These employers made huge profits, while

Stephenson's "Rocket"
locomotive (below)

Richard Trevithick's
railroad at Euston
Square, London, 1809
(right)

TREVVVHICKS.
IPORTAILL IMAM ZUG= .

Cakk at, wto ran .

54
MeebanicA

dria
al rarer Ilebausing

Spred .

41;11



Willi J .,

10 6

they kept employees and their families

on the verge of starvation. This situa-

tion, which was especially bad in England

early in the nineteenth century, led to

demands for reform through government

action and legislation. The worst ex-

cesses were eventually eliminated.

As more and more people left the farms

to work in factories, the conflict between

the working class, made up of employees,

and the middle class, made up of employ-

ers and professional men, became more

intense. At the same time, the artists

and literary intellectuals began to attack

the materialistic tendencies of their

society, which was increasingly dominated

oy commerce and machinery. In some cases

they became so fearful of technology that

they confused science itself with technical

applications and denounced both while re-

fusing to learn anything about them.

William Blake asked, sarcastically, "And

was Jerusalem builded here/ Among these

dark Satanic mills?" John Keats was com-

plaining about science when he asked:

"Do not all charms fly/ At the mere touch

of cold philosophy?" But not all poets

were hostile to science, and even the

mystical "nature-philosophy" of the Ro-

mantic movement had something to contrib-

ute to physics.

4611.0
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The "Charlotte Dundas," the first practical steamboat,
built by William Symington, an engineer who had patented
his own improved steam engine. It was tried out on the
Forth and Clyde Canal in 1801.
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See "The Steam Engine Comes
of Age" in the Project Physics
Reader 3.
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Although steam engines are no longer widely used as ditect

sources of power in industry and transportation, they have by

no means disappeared. The steam turbine, invented by the

English engineer Charles Parsons in 1884, has now largely

replaced the older kinds of steam engines, and is now used

as the major source of energy in most electric-power stations.

The basic principle of the Parsons turbine is simpler than

that of the Newcomen ana Watt engines: a jet of steam at

high pressures strikes the blades of a rotor and makes it go

around at high speed.

A description of the type of steam turbine now in

operation at power stations in the United States shows

the change of scale since Heron's toy:

The boiler at this station [in Brooklyn, New York]
is as tall as a 14-story building. It weighs 3,000
tons, more than a U.S. Navy destroyer. It heats steam
to a temperature of 1,050° F and to a pressure of 1,500
pounds per square inch. It generates more than
1,300,000 pounds of steam an hour. This steam runs a
turbine to make 150,000 kilowatts of electricity,
enough to supply all the homes in a city the size of
Houston, Texas. The boiler burns 60 tons (about one
carload) of coal an hour.

The change in tools symbolizes the
change in scale of industrial oper-
ations between the nineteenth cen-
tury and ours,
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The 14-story boiler does not rest on the ground.
It hangs--all 3,000 tons of it--from a steel framework.
Some boilers are even bigger as tal'1 as the Statue
of Liberty--and will make over 3,000,000 pounds of
steam in one hour. This steam spins a turbine that
will make 450,000 kilowatts of electricity all of
the residential needs for a city of over 4,000,000
people!

IT Sr,e., Sta- (VP; 7) , oat ,or I

Q16 The purpose of the separate condenser in Watt's steam
engine is

a) to save the water so it can be used again.
b) to save the heat so it can be used again.
c) to save fuel by avoiding repeated heating and cooling

of the cylinder walls.
d) to keep the steam pressure as low as porsible.
e) to make the engine more compact.

C17 Engine A produces more power than Engine B, but its ef-
ficiency is less. This means

a) A is a bigger engine than B.
b) A does more work with the same

amount of fuel,
but more slowly

Yr?.than B.
c) A does less work

with the same
amount of fuel,
but faster than
B.

d) A does more work
with the same
amount of fuel
and faster than
B.

e) A does less work
with the same
amount of fuel
and more slowly
than B.

v

A modern steam turbine for use
in a city electric power plant,
opened to show the blades of
the rotor.

I
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10.7 The experiments of Joule. In the steam engine a certain

amount of heat is used to do a certain amount of work. What

happens to the heat after it has done the work?

James Prescott Joule

Joule was the son of a wealthy
Manchester brewer. He did his
research at home and it is said
to have been motivated by the
desire to develop more efficient
engines for the family brewery.

Electrical technology was still
a new field in Joule's day.
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The answer commonly given early in the nineteenth century

by most scientists and engineers was that heat can do work if

it passes, for example, from steam at high temperature to

water at low temperature, but that the amount of heat remains

constant. Heat was considered to be a substance, called

"caloric," and the total amount of caloric in the universe

was thought to be conserved.

According to the caloric theory of heat, the way in which

heat can do work is analogous to the way that water can do

work if it falls from a high level to a low level, with the

total amount of water remaining the same. The explanation

was accepted because it seemed plausible, even though no

measurements had been made of the amount of heat before and

after it did work.

There were some dissenting voices; some people favored the

view that heat was a form of energy. One of the scientists

who held this view was the English physicist James Prescott

Joule (1818-1899).

During the 1840's Joule conducted a long series of experi-

ments designed to show that heat is a form of energy. Joule

reasoned that if it could be demonstrated in a variety of dif-

ferent experiments that the same decrease in mechanical energy

always resulted in the appearance of the same amount of heat,

that would mean that heat is a form of energy.

For one of his early experiments he constructed a simple

electric generator, which was driven by a falling weight.

The electric current that was generated heated a wire im-

mersed in water. From the distance the weight descended, he

could calculate the decrease in gravitational potential en-

ergy, while the mass of the water and its temperature rise

gave him the corresponding amount of heat produced. In an-

other experiment he compressed gas in a bottle immersed in

water, measuring the amount of work done to compress the gas

and measuring the amount of heat delivered to the water.

His most famous experiments were performed with an appara-

tus in which descending weights caused a paddle-wheel to turn

in a container of water. He repeated this experiment many

times, constantly improving the apparatus and refining his

analysis of the data. In the end he was taking very great

care to insulate the container so that heat was not lost to

the room; he was measuring the temperature-rise to a fraction

of a degree, and in his analysis he was allowing for the
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small amount of kinetic energy the descending weights had

when they reached the floor.

Joule published his results in 1849. He reported

1st. That the quantity of heat produced by the fric-
tion of bodies, whether solid or liquid, is always
proportional to the quantity of [energy] expended.
And 2nd. That the quantity of heat capable of in-
creasing the temperature of a pound of water
by 10 Fahr. requires for its evolution the expendi-
ture of a mechanical [energy] represented by the
fall of 772 lb. through the distance of one foot.

The first statement is the evidence that heat is a form

of energy. The second statement tells the value of the ratio

between the unit of mechanical energy (Joule used the foot-

pound) and the unit of heat (Joule used the British Thermal

Unit, BTU).

In the mks system the unit of heat is the kilocalorie and

the unit of mechanical energy is the joule. Joule's results

are equivalent to the statement that 1 kilocalorie equals

4,150 joules. Joule's paddle-wheel experiment, as well as

other basically similar ones, has since been performed with

great precision. The currently accepted value for the "me-

chanical equivalent of heat" is

1 kilocalorie = 4184 joules

Joule used the word "force" in-
stead of "energy". The scien-
tific vocabulary was still being
formed.

Units for expressing amount of

heat were devised before it was
realised that heat is a form of
energy. The BIM is the amount
of heat that must be added to a
pound of water to increase its
temperature by 1 Fahrenheit de-
gree. The kilocalorie is the
amount of heat that must be
Added to a kilogram of water to

It is generally accepted now that heat is not a substance, increase its temperature oy
1 Celsius (or "Centigrade")
degree. In fact, the BTU and

with

arc all different units of the
the foot-pound and the joule,

but a form of energy. In particular, it is one of the forms

of internal energy, that is, energy associated with the mole-

cules and atoms of which matter is composed. This view of

heat will be treated in detail in Chapter 11.

In an inelastic collision, some (or all) of the kinetic

energy of the colliding objects is transformed into internal

energy, so that after the collision the objects have less

kinetic energy than before. (Leibniz had expressed somewhat

the same idea when he said that the t viva was -"dissipated

among the small parts" of the colliding objects.)

Q18 According to the caloric theory of heat, caloric
a) is a form of water.

b) can do work when it passes between two objects at the
same temperature.

c) is another name for temperature.
d) is produced by steam engines.
e) is a substance that is conserved.

Q19 The kilocalorie is
a) a unit of temperature.
b) a unit of energy.
c) the same as a BTU.
d) equal to 772 foot-pounds.
e) an amount of water.

CaD In Joule's paddle-wheel experiment, was all the gravitational
potential energy used to heat the water?
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10.8 Energy in biological systems. All living things need a sup-

ply of energy to maintain life and to carry on their normal

activities. Human beings are no exception; we, like all ani-

mals, depend on the food we eat to supply us with energy.

Human beings are omnivores; they eat both animal and plant

materials. Some animals are herbivores, eating only plants,

while others are carnivores, eating only animal flesh.

Carbohydrates are large mole-
cules made of carbon, hydrogen,
and oxygen. A simple example
is the sugar glucose, the chem-
ical formula for which is
C 6 H 1 206

Otft'af-!;.

Ultimately, however, all animals, even carnivores, obtain

their food energy from plant material. The animal eaten by

a lion, for example, has previously dined on plant material

(or perhaps on another animal which had eaten plants).

Green plants obtain energy from sunlight. Some of the

energy is used to enable the plant to perform the functions

of life, but much of it is used to make carbohydrates out of

water (H20) and carbon dioxide (CO2). The energy used to

synthesize carbohydrates is not lost; it is stored in the

carbohydrate molecules in the form of chemical energy.

The process by which plants synthesize carbohydrates is

called photosynthesis. It is still not completely under-

stood; research in the field is continuing. It is known that

the synthesis takes place in a large number of small steps,

and many of the steps are well understood. When man learns

how to photosynthesize carbohydrates without plants, he may

be able economically to produce food for the rapidly increas-

ing population of the world. The overall process of pro-

ducing carbohydrates (the sugar glucose, for example) by

photosynthesis can be represented as follows:

carbon thox,rts, t wcaTer t eter99 cyucose -f- oxygen

The energy stored in the glucose molecules is used by the

animal which eats them to maintain its body temperature, to

keep its heart, lungs, and other organs operating, to enable

various chemical reactions to occur in the body and to do
work on external objects. The process whereby the stored

energy is made available is complex. It takes place mostly
in tiny bodies called mitochondria which are found in all

4g cells. Each mitochondrion contains catalysts (called en-,.,-44!hAllat

zymes), which, in a series of about ten steps, split theElectron micrograph of an energy-
converting mitochondrion in a bat glucose molecules into simpler molecules. In another se-
cell (200,000 times actual size). quence of reactions these molecules are oxidized, releasing

most of the stored energy, and forming carbon dioxide and
water.

The released energy is used to change a molecule called

adenosine di-phosphate (ADP) into adenosine tri-phosphate
(ATP), a process which requires energy. In short, the chem-
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ical energy originally stored in the glucose molecule is

eventually stored as chemical energy in ATP molecules.

The ATP molecules pass out of the mitochondrion into the

body of the cell (the cytoplasm). Wherever in the cell en-

ergy is needed, it can be supplied by an ATP molecule, which

releases its stored energy and changes to ADP. Later, in the

mitochondrian, the ADP will be converted again to energy-

rich ATP.

The overall result of this process is that glucose, in

the presence of oxygen, is broken into carbon dioxide and

water, with the release of energy:

glucose r oxygen Carbon dioxide water -4- energy.

Animals and plants are mutually necessary. The water and

carbon dioxide exhaled by animals are tided by plants to syn-

thesize carbohydrates, releasing oxygen in the process. The

oxygen is used by animals to oxidize the carbohydrates. The

energy "used up" by animals (and to a lesser extent, by

plants) is continually replenished by energy from sunlight.

Proteins and fats are used to build and replenish tissue,

enzymes and padding for delicate organs. They also can be

used to provide energy. Both proteins and fats enter into

chemical reactions which result in the formation of the same

molecules as the splitting carbohydrates; from that point

the energy-releasing process is the same as in the cas, of

carbohydrates.

The human body can be regarded as resembling in some re-

spects an engine. Just as a steam engine uses chemical en-

ergy stored in coal or oil as fuel, the body uses chemical

energy stored in food. In both cases the fuel is oxidized

to release its stored energy, violently in the steam engine

and gently, in small steps, in the body. In both the steam

engine and the body, some of the input energy is used to do

work and the rest is used up internally and lost as heat.

Some foods supply more energy than others. The energy

stored in food is usually measured in kilocalories,

could just as well be measured in joules or even

pounds or British Thermal Units. The table below

energy content of some foods.

Food Energy Content

but it

in foot-

gives the

Beef (Hamburger)
Whole Milk
Sweet Corn
White Rice
Potatoes (boiled, _peeled)
wheaIWTIole meal)

3880 kilocalories per kg
T R)

1270
890
770

The chemical energy stored in
food can be determined by burn-
ing the food in a closed con-
tainer immersed in water and
measuring the temperature rise
of the water.

Adapted from U.S. Dept. Agric.,
Agriculture Handbook No. 8, June
1950.
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If the temperature of the body
changes by a few degrees, it se-

riously affects the rate at which
important chemical reactions go
on in the body.

62

10.8

A large part of the energy you obtain from food is used

to keep your body's "machinery" running and to maintain your

body's temperature at the correct value. Even when asleep

your body uses about one kilocalorie every minute! This

amount of energy is needed just to keep alive.

To do work you need a supply of extra energy-and only a

fraction of it can be used to do work. The rest is wasted

as heat; like any engine, the human body is not 100% effici-

ent. The efficiency of the body when it does work varies

with the job and the physical condition and skill of the

worker, but probably in no case does it exceed 25%.

In the table below are estimates of

healthy college student uses energy in

They were made by measuring the amount

exhaled, so they show the total amount

including the amount necessary just to

tioning.

the rate at which a

various activities.

of carbon dioxide

of food energy use,

keep the budy func-

Activity Rate of using food energy

Sleeping 1.0 to 1.3 kilocalories per min
Eiiini--pwn -1 . T to 1. b- .
Sitting stial:--__ ____1.6 to 1.9________
-SIiaing__

3.8
1:9--to 2:1

14-ilking
___ _ _ _ __

Running fast 8 to
Swimming

.______

According to the data in the table, if a healthy college

student did nothing but sleep for eight hours a day and lie

quietly the rest of the time, he would still need at least

1700 kilocalories of energy each day. There are countries

where large numbers of people exist on less than 1700 kilo-

calories a day. In India, for example, the average is 1630

kilocalories a day.* (In the United States the average is

3100 kilocalories a day.*) About half the population of

India is on the very brink of starvation and vast numbers of

other people in the world are similarly close to that line.

According to the Statistical Office and Population Divi-

sion of the United Nations, the total food production of all

land and water areas of the earth in 1950 added up to 5760

billion kilocalories a day. The world population in 1950

was about 2.4 billion. If the available food had been

equally distributed among all the earth's inhabitants, each

would have had 2400 kilocalories a day, only slightly over

the minimum required for life.

In 1963 it was estimated that the population of the world

would double in the next 35 years, so that by the year 2000,

*U.N. Yearbook of National Accounts Statistics, 1964.
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it will be 6 billion. Furthermore the rate at which the

population is increasing is itself increasing! The problem

of supplying food energy for the world's hungry is rapidly

becoming one of the most important problems mankind has ever
faced.

Q21 Animals obtain the energy they need from food, but plants
a) obtain energy from sunlight.
b) obtain energy from water and carbon dioxide,
c) obtain energy from seeds.
d) do not need any supply of energy.

Q22 The human body has an efficiency of about 20%. This
means that

a) only one-fifth of the food you eat is digested.
b) four-fifths of the energy you obtain from food

is destroyed.

c) one-fifth of the energy you obtain from food is
used to run the "machinery" of the body.

d) you should spend 80% of each day lying quietly
without working.

e) one-fifth of the energy you obtain from food is

used to enable your body to do work on external
objects.

7.6

The Metropolitan Museum of Art

"The Repast of the Lion" by
Henri Rousseau
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10.9 The law of conservation of energy. In Sec. 10.3 we intro-

duced the law of conservation of mechanical energy, which

can be used only in situations in which no mechanical energy
is transformed into heat energy or vices- versa. Some physi-

cists thought there were other forms of energy in addition

to kinetic energy and potential energy, but they did not

know how to measure them quantitatively.

Early in the nineteenth century developments in science,

engineering and philosophy suggested that all forms of energy

(including heat) could be transformed into one another and

that the total amount of energy in the universe is constant.

The newly developing science of electricity and magnetism,

for example, showed that electricity was related to a number
of other phenomena. Volta's invention of the battery in 1800

showed that electricity could b4 produced in chemical reac-
tions. It was soon found that electric currents could pro-

duce heat and light. Oersted discovered in 3820 that an

electric current produces magnetic effects. In 1822, Seebeck

discovered that if heat is applied to the junction between

two metals, an electric current is set up, and in 1831,

Faraday discovered electromagnetic induction: a magnet moved

near a coil of wire produced an electric current in the wire.

To some speculative minds these discoveries indicated a

unity of the phenomena of nature and suggested that they

were all the result of the same basic "force". This vague,

imprecisely formulated idea bore fruit in the form of the

law of conservation of energy: all the phenomena of nature

are examples of the transformation from one form to another,

without change of quantity, of the same basic thing: energy.

The invention and use of steam engines played a role in

the establishment of the law of conservation of energy by

showing how to measure changes of energy. Practically from

the beginning of their application, steam engines were eval-

uated by their duty, that is, by how heavy a load they could

lift and how high they could lift it when they consumed a

certain supply of fuel. In other words, the criterion was

how much work an engine could do for the price of a bushel

of coal: a very practical consideration which is typical of

the engineering tradition in which the steam engine was de-

veloped.

The concept of work began to be used in general as a meas-

ure of the amount of energy transformed from one form to

another (even if the actual words "work" and "energy" were not
used) anc: thus made possible quantitative statements about the

transformation of energy. For example, Joule used the work
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Energy Conservation on Earth

A6

Nuclear reactions inside

0

the ..ArLh pro,ace energy )
at&

at a rate of 3 x 1017W k

The nuclear reactions in
the sun produce energy
at a rate of 4 x 1026W

The earth receives about 8 x 1017W from the sun, of which
5/8 is immediately reflected - mostly by clouds and the
oceans.

Of that part of the solar energy which is not reflected,...

...7 x 10
16
W ....3 x 10

16
W ,..2 x 10

17
W

heats heats the evaporates
dry land air, producing water

winds

Most of the energy given to water
is given up again when the water
condenses to clouds and rain; but
every second about 1015 Joules
remains as gravitational potential
energy of the fallen rain.

Some of this energy
is used to produce

..: 3 x 1010W of hydro-
electric power

Controlled nuclear
reactions produce 3 x 10 1W
3 x 109W in electrical
power

12_
10 w is
used in
generating
3 x 1011W of
electrical
power

...4 x 10
14
W

is used by
marine plants

for

photosynthesis

..5 x 10
13
W

is used by
land plants

for

photosynthesis

Ancient green plants Present-day green
have decayed and plants are being
left a store of used as food for
about 5 x 1022 Joules man and animals,
in the form of providing energy
oil, gas, and at a rate of
coal. This store 3 x 1011W
is being used at a
rate of 4 x 1013W.

electrochemistry light communication mechanical
power

10
13
W is

used in
combustion
engines.

About 3/4
of this is
wasted as
heat; less
than

3 x 1012W
appears as
mechanical
power

-%44.41164,Direct use
as raw

3 x 10
13

materials

is used for plas-

for tics and

heating; chemicals

this is accounts

equally for 1012W
divided

between
industrial
and domestic
uses.
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an experiment using the large flow of neutrinos that comes

out of a nuclear reactor. (The experiment could not have been

done in 1933, since no nuclear reactors existed until nearly

a decade later.) Again, the faith of physicists in the law

of conservation of energy turned out to be justified.

We believe this will probably always be the case: any ap-

parent exceptions to the law of conservation of energy will

sooner or later turn out to be understandable in a way which

does not force us to give up the law. At most, they may force

us to postulate new forms of energy so that the law will become

even more generally applicable and powerful.

The French mathematician and philosopher Henri Poincare

expressed this idea in 1903 in his book Science and Hypothesis.

Since we can not give a general definition of energy,
the principle of conservation of energy signifies simply
that there is something which remains constant. Indeed,
no matter whatrie-,,775Eions future experiences will give
us of the world, we are sure in advance that there will
be something which will remain constant and which we
shall.be able to call eneux.

Q23 Tte significance of German nature philosophy in the history
of science is that

a) it was the most extreme form of the mechanistic viewpoint.
b) it was a reaction against excessive speculation.

c) it stimulated speculation about the unity of natural
forces.

Q24 Discoveries in electricity and magnetism early in the nine-
teenth century contributed to the discovery of the law of conser-
vation of energy because

a) they attracted attention to conversions of energy from
one form to another.

b) they made it possible to produce more energy at less
cost.

c) they revealed what happened to the energy that was appar-
ently lost in steam engines.

d) they made it possible to transmit energy over long dis-
tances.

Q25 The development of steam engines helped the discovery of the
law of conservation of energy because

a) steam engines produce a large amount of energy.
b) the caloric theory could not explain how steam engines

worked.

c) steam engines used up so much water that other sources of
energy had to be found.

d) the concept of work was developed in order to compare the
economic value of different engines.

Q26 According to the first law of thermodynamics
a) the net heat added to a system is always conserved.
b) the net heat added to a system always equals the net work

done by the system.
c) energy input equals energy output if the internal energy

of the system does not change.
d) the internal energy of a system is always conserved.

Q27 Both Mayer and Joule helped establish the law of conserva-
tion of energy. Compare their approaches to the question.
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The ultimate source of most of
the energy we use is the sun.
Water warmed by the sun evapo-
rates to form clouds from which
the rain falls to replenish the
rivers that drive the hydro-
electric generators. Winds,

that pushed Phoenician ships
to the Pillars of Hercules and
beyond, that made possible
Columbus' voyage Lnd Magellan's
circumnavigation of the world,
are produced when the sun warms
parts of the earth's atmosphere.

The energy we obtain from
food was once solar energy,
locked into molecules in green
plants by the complex process
called photosynthesis, and re-
leased in our bodies by the
process called respiration.

Coal and oil, still our
major sources of industrial en-
ergy, are fossilized remains c
plants and animals, with energy
from sunlight still locked within
their molecules.
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Study Guide

10.1 An electron of mass 9.1 x 10-31 kg is traveling 2 x 106
meters per second toward the screen of a television set. What
is its kinetic energy? How many electrons like this one would
it take to make up a joule of energy?

10.2 Estimate the kinetic energy of each of the following:
a) a pitched baseball
b) a jet plane
c) a sprinter in a 100-yard dash

d) the earth in its motion around the sun

10.3 As a home experiment, hang wsights on a rubber band and
measure its elongation. Plot the force s. stretch on graph
paper. How could you measure the stored energy?

10.4 A penny has a mass of about 3.0 grams and is about 1.5 milli-
meters thick. You have 50 pennies which you pile one above the
other.

a) How much more gravitational potential energy has the top
penny than the bottom one?

b) How much more have all 50 pennies together than the bot-
tom one?

10.5 Discuss the following statement: All the chemical energy
of the gasoline used in your family automobile is used only to
heat up the car, the road, and the air.

10.6 A 200-kilogram iceboat is supported by a smooth surface of
a frozen lake. The wind exerts on the boat a constant force of
1000 newtons, while the boat moves 900 meters. Assume that fric-
tional forces are negligible, and that the boat starts from rest.
Find the speed after 900 meters by each of the following methods:

a) Use Newton's second law to find the acceleration of the
boat. How long does it take to move 900 m cers? How
fast will it be moving then?

b) Find the final speed of the boat by equating the work
done on it by the wind and the increase in its kinetic
energy. Compare your result with your answer in (a).

10.7 The figure shows a model of a carnival "loop-the-loop." A
car starting from a platform above the top of the loop coasts
down and around the loop without falling off the track. Show
that, to successfully traverse the loop, the car need start no
higher than one-half a radius above the top of the loop. Neglect
frictional forces.
HINT: The centripetal force required at the top of the loop

must be greater than the weight of the car.

10J6 A cardboard tube a meter long closed at both ends contains
some lead shot. It is turned end for end 300 times, each time
allowing the shot to fall the length of the tube and come to rest
before inverting it again. If the shot loses a negligible amount
of heat to the tube, what is the increase in temperature? Try
it

10.9 An electric coffee pot holds a kilogram (about a quart) of
water and is rated at 600 watts. Starting from room temperature
(20°C), cstimate how long it will take the water to reach boil-
ing temperature. What assumptions have you made?
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10.10 Show that if a constant propelling force F keeps a vehicle mov-
ing at a constant speed v, the power required is equal to Fv.

10.11 The Queen Mary, one of Britain's largest steamships, has been
retired to a marine museum on our west coast after completing
1,000 crossings of the Atlantic. Her mass is 81,000 tons (75 mil-
lion kilograms) and her maximum engine power of 234,000 horsepower
(174 million watts) gives her a maximum speed of 30.63 knots (16
meters per second).

a) What is her kinetic energy at full speed?
b) What constant force would be required to stop her from

full speed within 10 nautical miles (20,000 meters)?
c) What power would be required to keep her going at full

speed against this force?

d) Assume that at maximum speed all the power output of
her engines goes into overcoming water drag. If the
engines are suddenly stopped, how far will the ship
coast before stopping? (Assume water drag is constant.)

e) The assumptions made in (d) are not valid for the follow-
ing reasons:

1) Only about 607. of the power delivered to the

propellor shafts results in a forward thrust to
the ship; the rest results in turbulence, even-
tually warming the water.

2) Water drag is less for lower speed.
3) If the propellors are not free-wheeling, they

add an increased drag. Which of the above rea-
sons tend to increase, which to decrease the
coasting distance?

f) Explain why tugboats are important for docking big
ships.

I0011 SOSO

ate"
I IL Oil

air
1101.1

ai. 11111121%

73



74

10.12 Consider the following hypothetical values for a paddle-
wheel experiment like Joule's: a 1 kilogram weight descends
through a distance of 1 meter, turning a paddle-wheel immersed in
5 kilograms of water.

a) About how many times must the weight be allowed to fall
in order that the temperature of the water will be in-
creased by 1/2 Celsius degree?

b) List ways you could modify the experiment so that the
same temperature rise would be produced with fewer falls
of the weight? (There are at least four possible ways.)

10.13 On his honeymoon in Switzerland, Joule attempted to measure
the difference in temperature between the top and the bottom of a
waterfall. Assuming that the amount of heat produced at the bot-
tom is equal to the decrease in gravitational potential energy,
calculate roughly the temperature difference you would expect to
observe between the top and bottom of a waterfall about 50 meters
high, such as Niagara Falls.

10.14 Devise an experiment to measure the power output of
a) a man riding a bicycle.
b) a motorcycle.
c) an electric motor.

10.15 When a person's food intake supplies less energy than he uses,
he starts "burning" his own stored fat for energy. The oxidation
of a pound of animal fat provides about 4,300 kilocalories of en-
ergy. Suppose that on your present diet of 4,000 kilocalories a
day you neither g-in nor lose weight. If you cut your diet to
3,000 kilocalories and maintain your present physical activity,
about how many weeks would it take to reduce your mass by 5
pounds?

10.16 About how many kilograms of boiled potatoes would you have to
eat to supply the energy for a half-hour of swimming? Assume that
your body is 20% efficient.

10.17 In order to engage in normal light work, an average native of
India needs about 1,950 kilocalories of food energy a day, whereas
an average West European needs about 3,000 kilocalories a day.
Explain how each of the following statements makes the difference
in energy need understandable.

a) The average adult Indian weighs about 110 pounds; the
average adult West European weighs about 150 pounds.

b) India has a warm climate.
c) The age distribution is different in India.

10.18 Show how the conservation laws for energy and momentum apply
to a rocket lifting off.

10.19 In each of the following, trace the chain of energy trans-
formations from the sun to the final form of energy:

a) A pot of water is boiled on an electric stove.
b) An automobile accelerates from rest on a level road,

climbs a hill at constant speed, and comes to stop at
a traffic light.

c) A windmill in Holland pumps water out of a flooded field.

10.20The two identical space vehicles shown here were drifting
through interstellar space. Each was struck by a 10-kilogram me-
teor traveling at 100 m/sec. Which rocket was knocked further
off course? Explain.

10.21A 2-gram bullet is shot into a tree stump. It enters at a
speed of 300 m/sec and comes to rest after having penetrated 5 cm
in a straight line. Compute the average force on the bullet dur-
ing the impact, and the work done.



10.22 In the Prologue to Unit 1 of this course, it was stated that
Fermi used materials containing hydrogen to slow down neutrons.
Explain why collisions with light atoms would be more effective in
slowing down neutrons than collisions with heavy atoms.

10.23 The actual cost of moving furniture and individuals various
distances is shown in the following tables. Using these tables,
discuss the statement: "the cost of moving is approximately pro-
portional to the amount of work that has to be done on it, using
the physicist's definition of work."

Truck Transportation (1965)

Weight Moving rates (including pickup & delivery)

from Boston to:

Chicago
(967 miles)

Denver
(1969 miles)

Los Angele3

(2994 miles)

100 lbs $ 18.40 $ 24.00 $ 27.2c
500 92.00 120.00 136.25
1000 128.50 185.5' 220.50
2000 225.00 336.00 406.00
4000 384.00 606.00 748.00
6000 576.00 909.00 1122.00

Air Cargo Transpoa'ation (1965)

Weight Moving rates (including pickup & delivery)

Chicago

from Boston to:

Denver Los Angeles

100 lbs $ 13.95 $ 25.57 $ 29.85
500 70.00 127.50 149.25
1000 129.00 216.50 283.50
2000 248.00 413.00 527.00
4000 480.00 796.00 1024.00
6000 708.00 1164.00 1255.00

Personal Transportation (1965)

One way fare from Boston to:

Chicago Denver Los Angeles

Bus $33.75 $58.40 $88.75

Train $47.85 $79.31 $115.24

Airplane
(jet coach)

$53.39 $107.36 $167.58
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11.1

11,1 An overview. During the 1840's many scientists came to the

conclusion that heat is not a substance but a form of energy

which can be converted into other forms (see Chapter 10).

Two of these scientists, James Prescott Joule and Rudolf

Clausius, then took what seemed to be the next logical step:

they assumed that since heat can be changed into mechanical

energy and mechanical energy can be changed into heat, then

heat itself might be a form of mechanical energy. They pro-

posed, as a first approximation, that "heat energy" is simply

the kinetic energy of atoms and molecules.

Since nineteenth-century scientists could not observe the

motions of individual molecules, they could not check di-

rectly the hypothesis that heat is molecular kinetic energy.

Instead, they first had to work out some mathematical pre-

dictions from the hypothesis, and then try to test these pre-

dictions by experiment. For theoretical reasons which we will

explain below, it is easiest to test such hypotheses by work-

ing with the properties of gases, and therefore this chapter

will deal primarily with what is called the kinetic theory of

gases.

The development of the kinetic theory of gases in the

nineteenth-century led to the last major triumph of Newtonian

mechanics. By using a simple theoretical model rf a gas, and

applying Newton's laws of motion, scientists could deduce

equations which related observable properties of gases--such

as pressure, density and temperature to the sizes and speeds

of molecules. With these equations, kinetic theorists could

(1) explain the known relations between observable prop-

erties of gases, such as "Boyle's law";

(2) predict new relations, such as the fact that the vis-

cosity of a gas increases with temperature but is independent

of density;

(3) infer the sizes and speeds of the molecules.

Thus the success of kinetic theory indicated that Newtonian

mechanics could be used to investigate the properties of mat-

ter as observed in the laboratory, and for the first time

provided a reliable way of estimating the properties of in-

dividual molecules.

By applying Newtonian mechanics to a mechanical model of

gases, however, the kinetic theorists made another discovery:

they found physical situations in which Newtonian mechanics

is not valid. According to kinetic theory, the energy of a

molecule should be equally shared by the motions of all the

atoms inside the molecule. But the properties of gases

Recall from chemistry that
molecules may contain several
atoms.
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deduced from his "equal sharing" principle were definitely

in disagreement with experiment. Newtonian mechanics could

be applied successfully to the motions and collii,ions of

molecules among each other in a gas, but not to the motions

of atoms inside molecules. It was not until the twentieth

century that an adequate theory of the behavior of atoms--

quantum mechanicswas developed (see Unit 5).

Kinetic theory also revealed another apparent contradic-

tion between Newtonian mechanics and observable properties of

matter: this is the problem of "irreversibility." An inelas-

tic collision is an example of an irreversible process; other

examples are the mixing of two gases, or scrambling an egg.

Can irreversible processes be described by a theory based on

Jewtonian mechanics, or do they involve some new fundamental

law of nature? In discussing this problem from the viewpoint

of kinetic theory, we will see how the concept of "randomness"

was introduced into physics.

Modern physicists do not take seriously the "billiard ball"

model of gas molecules nor did nineteerth-century physicists,

for that matter. The simple postulates of the model have to

be modified in many respects in order to ..,et a theory that

agrees well with experimental data. Nevertheless, physicists

are still very fond of the kinetic theory, and often present

it as an example of how a physical theory should be developed.

Perhaps this is only nostalgia for the old mechanistic style

of explanation which has had to be abandoned in other areas

of physics. But as an example of an ideal type of theory,

kinetic theory has exerted a powerful influence on physics

7-search and teaching. In Sec. 11.5, therefore, you will

find one )f the mathematical derivations from a mechanical

model which is used in kinetic theory. This derivation is

given, not to be studied in detail, but as an illustration of

the kind of mathematical reasoning based on mechanical models

which physicists have found to be useful in understanding

nature.

CO Nineteenth-century kinetic theorists assumed that heat is

a) a fluia.

b) molecular.

c) the kinetic energy of molecules.
d) made of molecules.

1

Q2 In the kinetic theory of gases, it is assumed that Newton's
laws of motion (do, do not) apply to the motion and collisions of
molecules.

Q3 True or false: In the twentieth century Newtonian mech-
anics was found to be applicable not only to molecules but
also to the atoms inside molecules.
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11.2

11.2

A model for the gaseous state. What is the difference

between a gas and a liquid or solid? We know by obser-

vation that a liquid or solid has a definite volume. A

gas, on the other hand, will expand to fill any container,

or, if unconfined. will go off in all directions. We can

also find out easily that gases have low densities com-

pared to liquids and solids. According to the kinetic

theory, the molecules in a gas are moving freel_ through

empty space most of the time, occasionally colliding with

each other or with the walls of their container. Further-

more, we assume that the forces between molecules act

only at very short distances, whereas the molecules arc

usually far apart from each other. Therefore gas molecules,

in this model, are considered "free" except during col-

lisions. In liquids, on the other hand, the molecules are

so close together that these forces keep them from flying

apart. In solids, the molecules are usually even closer

together, and the forces between them keep them in a

definite orderly arrangement.

In the nineteenth century, little wal known about the

forces between molecules, so it was natural to apply the

kinetic theory first to gases, where these forces should have

little effect if the theory is right. Physicists therefore

adopted a simple model of gases, in which the molecules are

consideree to behave like miniature billiard balls that is,

tiny spheres which exert no forces at all on each other ex-

cept when they collide. All the collisions of these spheres

are assumed to be elastic, so that the total kinetic energy

of two spheres is the same before and after they collide.

The total volume occupied by all these spheres is assumed to

be very small compared to the total volume of the container.

Note that the word "model" is used in two different senses

in science. In Chapter 10, we mentioned the model of

Newcomen's engine which James Watt was given to repair. That

was a working model which actually could do work, although it

was much smaller than the original engine, and some of its

parts were made of different materials. We are now discus-

sing a theoretical model of a gas; this model exists only in

our imagination. Like the points, lines, triangles and

spheres which are studied in geometry, this theoretical model

can be discussed mathematically, and the results may or may

not be useful to us when we try to understand the real world

of experience. In order to emphasize the fact that the model

is only a theoretical one, we will use the word "particle"

instead of atom or molecule. Atoms and molecules exist and

Weather balloon of U.S. Air Force.
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Sketch of the relative spacing
of atoms in three states of
matter.

from General hemksta 2nd edition,
by Linos ?soling, W.H. Freeman and
Coepany. 0 1953.
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Julius Robert Mayer
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were reaching the same conclusion that the total amount of

energy in the universe is constant on the basis of specula-

tive arguments.

A year before Joule's remark, for example, Julius Robert

Mayer, a German physician, had proposed the law of conserva-

tion of energy. Unlike Joule, he had done no quantitative

experiments, although he had observed physiological processes

involving heat and respiration. He used published data on

the thermal properties of air to calculate the mechanical

equivalent of heat, and obtained about the same value that

Joule did.

Mayer had been influenced strongly by the German philosoph-

ical school now known as Naturphilosophie or "nature-philos-

ophy", which flourished in Germany during the late eighteenth

and early nineteenth centuries. Its most influential leaders

were Johann Wolfgang von Goethe (1749-1832) and Friedrich

Wilhelm Joseph von Schelling (1775-1854). Neither of these

men is known today as a scientist. Goethe is frequently re-

garded as Germany's greatest poet and dramatist, while Schell-

ing is considered only a minor philosopher. Nevertheless,

both of them had great influence on the generation of German

scientists educated at the beginning of the nineteenth cen-

tury. The nature-philosophers were closely associated with

the Romantic movement in literature, art and music, which was

a reaction to what they regarded as the sterility and ethical

indifference of the mechanistic world view of Descartes and

Newton.

To the nature-philosophers the idea that nature is just a

machine made of dead matter in motion was not merely dull,

but actually repulsive. They could not believe that the

The word "gas" was original'y
derived from the Greek work
"chaos"; it was first used by
the Belgian chemist Joan
Baptista van Helmont (1580-
1644).
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have definite properties that can be determined in the lab-

oratory. Particles are imaginary objects, such as perfectly

elastic spheres, whose properties as defined in our theoreti-

cal model may or may not be similar to those of atoms and

molecules. We will develop the model in such a way that it

can be used to explain as well as possible the particular

properties of gases in which we are interested.

Our model of a gas consists of a large number of very

small particles in rapid, disordered motion. We now know

enough about gases to say more precisely how we should in-

terpret this phrase if we want to have a useful model. "A

large number" here means something like a billion billion

(1018) or more. "Very small" means about a hundred-millionth

of a centimeter (10-8 cm, or 10-1c meters) in diameter.

"Rapid motion" means a speed of a few hundred meters per sec-
ond. In the following sections we will see how the mcdel was

used by kinetic theorists to arrive at these estimates.

What do we mean by "disordered"? In the nineteenth cent-

ury, kinetic theorists assumed that if they could follow the

motion of an individual molecule they would see it move in a

definite way determined by Newton's laws of motion. However,

it would be very difficult to calculate the properties of the

kinetic theory gas model if we had to apply Newton's laws to

a billion billion particles. We don't know in what direction

any given particle will be moving. Furthermore, even though

we can estimate the average speed of the particles, different

particles will have different speeds and each particle will

frequently change its speed. Therefore from our viewpoint

the motions of the individual particles are disordered and

unpredictable, and it is useful to assume that these motions

are random even though we believe that they are really deter-



the goal was

"That I may detect the inmost force which binds the
world, and guides its course."

At first glance it would seem that nature-philosophy had

little to do with the law of conservation of energy; that law

is practical and quantitative, whereas nature-philosophers

tended to be speculative and qualitative. In their insis-

tence on searching for the underlying reality of nature,

however, the nature-philosophers did influence the discovery

of the law of conservation of energy. They believed that

the various forces of nature gravity, electricity, magne-

tism, etc. are not really separate from one another, but

are simply different manifestations of one basic force. By

encouraging scientists to look for connections between dif-

ferent forces (or, in modern terms, between different forms

of energy), nature-philosophy stimulated the experiments and

theories that led to the law of conservation of energy.

By the time the law was established and generally accepted,

however, nature-philosophy was no longer popular. Those

scientists who had previously been influenced by it, includ-

ing Mayer, were now strongly opposed to it. The initial re-

sponse of some hard-headed scientists to the law of conser-

vation of energy was colored by their distrust of speculative

nature-philosophy. For example, William Barton Rogers,

founder of the Massachusetts Institute of Technology, wrote

home from Europe to his brother in 1858:

"To me it seems as if many of those who are discussing
this question of the conservation of force are plunging
into the fog of mysticism."

However, the law of conservation of energy was so quickly and

Goethe thought that his work on
color theory (which most modern
scientists consider useless)
exceeded in importance all his
poems and plays.

Friedrich von Schelling
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know where a given particle is at any particular time.

In summary: we are going to discuss the properties of a

mechanical model for gases. The model consists of a large

number of very small particles in rapid disordered notion.

The particles move freely most of the time, exerting forces

on each other only when they collide. The model is designed

to represent the structure of real gases in some ways, but

it is simplified in order to make calculations possible. By

comparing the results of these calculations with the proper-

ties of gases it is possible to estimate the speeds and sizes

of molecules, assuming that the model itself is a reasonably

good description of gases.

Q4 Molecules exert forces on one another

a) only when the molecules
b) only when the molecules
c) all the time.
d) never.

are far apart.
are close together.

Q5 Why was the kinetic theory first applied to gases rather than
to liquids or solids?

11.3 The speeds of molecules. The basic idea of the kinetic the-

orythat heat is related to the kinetic energy of molecular

motion had been frequently suggested in the seventeenth

century. In 1738, the Swiss mathematician Daniel Bernoulli

showed how the kinetic theory could be used to explain a

well-known property of gases: pressure is proportional to

density (Boyle's law). Bernoulli assumed that the pressure

of a gas is simply a result of the impacts of individual

molecules striking the wall of the container. If the density

were doubled, there would be twice as many molecules striking

the wall per second, and hence twice the pressure.

See "On the kinetic theory of
gases" and "The Law of Disorder"
in Project Physics Reader 3

Pressure is defined as the per-
pendicular force on a surface
divided by the area of the sur-
face.



Hermann von Helmholtz

Helmholtz's paper, "Zur Erhaltung
der Kraft," was tightly reasoned
and mathematically sophisticated.
It related the law of conserva-
tion of energy to the established
principles of Newtonian mechanics
and thereby helped make the law
scientifically respectable.
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John Herapath

tigations of energy conversion; still others from a combina-

tion of factors.

The wide acceptance of the law of conservation of energy

owes much to a paper published in 1847 (two years before

Joule published the results of his most precise experiments)

by the young German physician and physicist,.Hermann von

Helmholtz and entitled "On the Conservation of Force." In the

paper Helmholtz holdly asserted the idea that others were

vaguely expressing; namely, "that it is impossible to create

a lasting motive force out of nothing." The idea was even

more clearly exp :eL,sed many years later in one of Helmholtz's

popular lectures-

We arrive at the conclusion that Nature as a whole
possesses a store of force [energy] which cannot in
any way be either increased or diminished, and that,
therefore, the quantity of force [energy] in Nature
is just as eternal and unalterable as the quantity
of matter. Expressed in this form, I have named the
general law 'The Principle of the Conservation of
force [energy].'

Any machine or engine thAt does work provides energy

can do so only by drawing from some source of energy. The

machine cannot supply more energy than it obtains from the

source, and when the source is depleted, the machine will stop

working. Machines and engines can only transform energy;

they cannot create it or destroy it.

A collection of bodies moving and colliding and exerting

forces on one another makes up a system. The total kinetic

energy and potential energy of the bodies in the system is

the internal energy of the system. If objects outside the

system do work on the bodies in the system, the internal en-

ergy of the system will increase. The internal energy will

M 3

on neighboring particles, if these forces are inversely pro-

portional to the distance between particles. Although Newton

did not claim that he had proved that gases really are com-

posed of such repelling particles, other scientists were so

impressed by Newton's discoveries in other areas of physics

that they assumed his theory of gas pressure must also be

right.

The kinetic theory of gases was proposed again in 1820 ay

an English physicist. John Herapath. Herapath rediscovered

Bernoulli's results on the relation between pressure and

density of a gas and the speeds of the particles. In modern

symbols, we can express these results by the simple eoustion

P =
1
- Dv'

where P = pressure which the gas exerts on the container,

D = density (mass/volume) and v = average speed. (This equa

tion is important still, and will be derived in Sec. 11.5)

Since we can determine the pressure and density of a gas by

experiment, we can use this result to calculate the average

speed of the molecules. Herapath did this, and found that

the result was fairly close to the speed of sound in the cas,

about 330 meters per second for air.

Herapath's calculation of the speed of an air molecule

(first published in 1836) was an important event in the

history of science, bu it was ignored by most other scien-

tists. Herapath's earlier work on the kinetic theory had

been rejected for publication by the Royal Society of London,

and despite a long and bitter battle (including letters to

the Editor of the Times of London) Herapath had not succeeded

in getting any recognition for hir theory.

James Prescott Joule did see the value of Herapath's work,



servation of energy has become one of the most fundamental

laws of science. We shall encounter it again and again in

this course: in the study of electricity and magnetism, in

the study of the structure of atoms, and in the study of nu-

clear physics.

The principle of conservation of energy has been so suc-

cessful and is now so firmly believed that most physicists

find it almost inconceivable that any new phenomenon will be

found that will disprove it. Whenever energy seems to appear

or disappear in a system, without being accounted for by

changes in known forms of energy, physicists naturally pre-

fer to assume that some unknown kind of energy is involved,

rather than accept the possibility tnat energy is not con-

served. We have already mentioned one example of this atti-

tude: the concept of "internal energy" was introduced in

order to preserve the validity of the principle of conserva-

tion of energy in the case of inelastic collisions and fric-

tional processes. In this case, the physicist's faith in

energy conservation was justified, because other evidence

showed that internal energy is a useful concept, and that it

changes by just the right amount to compensate for changes

in external energy.

Another recent example is the "invention" of the neutrino

by Wolfgang Pauli in 1933. Experiments had suggested that

energy disappeared in certain nuclear reactions; but Pauli

proposed that a tiny particle, the neutrino, was produced in

these reactions and, unnoticed, carried off some of the energy.

Physicists believed in the neutrino theory for more than

twenty years even though neutrinos could not be directly found

by any method. Finally, in 1956, neutrinos were detected, in

See "Energy" in Project Physics
Reader 3

See "Scientific Cranks" in
Project Physics Reader 3.
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principles of kinetic theory in almost the form we accept

them today. Soon afterwards, James Clerk Maxwell in Britain,

and Ludwig Boltzmann in Austria, started to work out the full

mathematical details of the theory.

The Maxwell velocity distribution. Not all molecules in

a gas have the same speed. In 1859 Maxwell suggested that

the speeds of molecules in a gas could be described by a

statistical law: most molecules have speeds not very far

fro:. the average speed. but a few have much lower speeds

and a few have much higher speeds.

Maxwell's law of distribution of molecular speeds can be

illustrated by the following analogy: if a marksman shoots

a gun at a target many times, some of the bullets will prob-

ably hit the bullseye, but others will miss by smaller or

larger amounts. Suppose we count the number of bullets that

hit the target at various distances to the left and right of

the bullseye, and make a graph showing the number of bullets

at these distances.

(a) (b) (c)

g

left right

The graph showing the distribution of misses illustrates

a general principle of statistics, the law of normal distri-
h.f.;^fl. 4r nem

TARGET PRACTICE EXPERIMENT
(a) Scatter of holes in target;
(b) target marked off in dis-
tance intervals left and right
of center; (c) frequency dis-
tribution of holes left and
right of center. If, as in
(d), there is a very large
number of cases, such distribu-
tion often closely approximate
the mathematical curve called
the "normal distribution."

(d)
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Direct Measurement of Molecular Speeds

A narrow beam of molecules is formed by letting a hot gas pass
through a series of slits. In order to keep the beam from spread-
ing out, collisions with randomly moving molecules must be avoided;
therefore, the source of gas and the slits are housed in a highly
evacuated chamber. The molecules are then allowed to pass through.
a slit in the side of a cylindrical drum which can be spun very
rapidly. The general scheme is shown above.

As the drum rotates, the slit moves out of the beam of molecules
so that no more molecules can enter until the drum has rotated
through a whole revolution. Meanwhile the molecules in the drum
continue moving to the right, some moving fast and some moving
slowly.

Fastened to the inside of the drum is a sensitive film which
acts as a detector; any molecule striking the film leaves a mark.
The faster molecules strike the film first, before the drum has ro-

tated very far.

The slower molecules hit the film later, after the Arum has ro-
tated farther. In other words, molecules of different speeds strike
different parts of the film. The darkness of the film at any point
is proportional to the number of molecules which hit it there.
Measurement of the darkening of de film shows the distribution of
molecular speeds.

The speckled strip at the right
represents the unrolled film, showing
the impact position of molecules over
many revolutions of the drum. The
heavy band indicates where the beam
struck the film before the drum
started rotating.

A compLrison of the experimen-
tal results with those predicted
from theory is shown in the graph.
The dots show the experimental
results and tle solid line rep-
resents the predictions from
the kinetic theory.
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What reason do we have for thinking that Maxwell's dis-
tribution law really applies to molecular speeds? Several

successful predictions based on this law gave indirect sup-

port to it, but it was not until the 1920's that a direct

experimental check was possible. Otto Stern in Germany, and

later Zartmann in the United States, devised a method for

measuring the speeds in a beam of molecules (see the illus-
tration of Zartmann's method on the preceding page). Stern,

Zartmann and others found that molecular speeds are indeed

distributed in accordance with Maxwell's law.

Q6 In the kinetic theory of gases it is assumed that the pres-
sure of a gas is due to

a) gas molecules colliding with one another.
b) gas molecules colliding with the walls of the container.
c) repulsive forces exerted by molecules on each other.

Q7 The average speed of molecules in a gas can be calculated if
we know

a) the pressure of the gas and the volume of the container.
b) the mass of the gas and the volume of the container.
c) the pressure of the gas and its density.

11.4 The sizes of molecules. Is it reasonable to suppose that

gases are composed of molecules that move at speeds of sev-

eral hundred meters per second? In 1857, a Dutch meteorol-

ogist, Christian Buys-Ballot, pointed out that if this were

really true, one would expect gases to diffuse and mix with

each other very rapidly. But anyone who has studied chem-

istry knows that if hydrogen sulfide or chlorine is generated

at one end of a large room, it may be several minutes before

it is noticed at the other end. Yet, according to the ki-

netic-theory calculations we mentioned in the last section,

each of the gas molecules should have crossed the room

hundreds of times by then. Something must be wrong with our

model.

Rudolf Clausius realized that this discrepancy was a valid

objection to his own version of the kinetic theory. In his

paper published in 1856, he had assumed that the size of

the particles is so small that they can be treated like

mathematical points. If this were true, particles would

almost never collide with each oth,r. However, in order to

account for the gas properties pointed out by Buys- Ballot

that is, the slowness of diffusion and mixing Clausius de-

cided to change the model. He thought it was likely that in

real gases, the molecules are not mathematical points but

have a finite size. He re.alizec, that if the model were made

more realistic by assuming that -he particles have finite

size and can therefore collide with each other, it would

then be possible to explain why gases do not diffuse rapidly.

The larger molecules are, the
more likely they are to collide
with each other.
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Averages and Fluctuations

Molecules are too small, toe numerous, and
too fast for us to measure the speed of any one
molecule, or its kinetic energy, or how far it
moves before colliding with another molecule.
For this rea3on the kinetic theory of gases
concerns itself with making predictions about
average values. The theory enables us to pre-
dict quite precisely the average speed of the
molecules in a sample of gas, or the average
kinetic energy, or the average distance the
molecules move between collisions.

The average of a small number of cases can-
not be predicted very well. Although the
average height of adult American men is 5'91/2",
it would be very unlikely that the average
heigi of any particular group of 10 men would
be that value. However, statistical preuictions
can be very precise for very large sets of val-
ues. The average height of all adult men in
Ohio would be very close to 5'93i". The preci-
sion in predicting average values for very large
samples is what makes the kinetic theory of
gases so successful, for molecules are very
numerous indeed.

A simple example of a statistical prediction
is the statement that if a coin is tossed many
times, it will land "heads" 50 percent of the
time and "tails" 50 percent of the time. For
small sets of tosses, there will be many "fluc-
tuations" away from the predicted average of
50% heads. The first chart at the right shows
the percentage of heads in twenty sets of 30
tosses each. Because there are more ways that
30 tosses can split 15-15 than split any other
way, 50% is the most probable value for every
set. But often the split is not 15-15.

The next chart shows the percentage of heads
in each of twenty 90-toss sets. There are still
fluctuations from the most probable 45-45 split,
but the fluctuations are generally smaller com-
pared to the total number of tosses. Large
fluctuations from 50% are less common than for
the smaller 30-toss sets.

The last chart shows the percentage of heads
in each of twenty 180-toss sets. There are
certainly fluctuations, as there always will be,
but they are generally smaller compared to the
total number of tosses in a set. Large fluc-
tuations from 50% are still less common.

OF.w- ,011)
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Statistical theory shows that the average
fluctuation from 50% for sets of tosses shrinks
in proportion to the square root of the number
of tosses. We can use this rule to compare the
average fluctuation for sets of, say, 100,000,
000 tosses with the average fluctuation for
sets of 100 tosses: since the 100,000,000-toss
sets have 1,000,000 times as many tosses as the
100-toss sets, their average fluctuation in
percentage of heads should be 1,000 times

smaller!

These same principles hold for fluctuations
from average values of any randomly- distribui.ed

quantities, such as molecular speed, or distance
between collisions. Since even a thimble-full
of air contains about a quintillion (1018) mole-
cules, large fluctuations in observable gas be-
havior are extremely unlikely.
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Even though an individual molecule has an instantaneous

speed of several hundred meters per second, it changes its

direction of motion every time it collides with another

molecule. Consequently it doesn't get very far away from

its starting point.

Clausius now was faced with the dilemma that plagues

every theoretical physicist. If a simple model is modified

to explain more observable properties, it will then be more

complicated, and one usually will not be able to deduce the

predictions of the model from Its basic assumptions without

making some approximations. If the theoretical predictions

don't agree with the experimental data, one doesn't know

whether this is because one of the assumptions of the model

is wrong, or because some error was introduced by the ap-

proximations made in doing the calculation from the model.

(This situation has been somewhat improved in the twentieth

century by the availability of fast electronic computers,

but the problem is still a serious one.) The development of

a theory often involved a compromise between two criteria:

adequate explanation of the data and mathematical conveni-

ence.

Clausius found a temporary solution by making only a small ---\

change in the model: he assumed that the particles are not

points but spheres of diameter d. Two particles will collide ( CLI14111-61-11)

\

with each other if their centers come within a distance d; \
'--- --lee

all collisions are still assumed to be perfectly elastic. 1.4 smq

Using his new model, Clausius proved mathematically that

the "mean free path" of a particle (defined as the average

distance it travels between collisions) is inversely pro-

portional to the square of the diameter of the particles.

The probability that a particle will collide with another

one is proportional to the cross-sectional area of a par-

ticle, and this area is proportional to the square of its

diameter. The bigger the particle, the more likely it is to

collide with others, and the shorter its mean free path will

be.

Within a few years it became clear that the new model

was a great improvement over the old one. It turned out

that other properties of gases also depend on the size of

the molecules, and by combining data on several such prop-

erties it was possible to work backwards and determine fairly

accurate values for molecular sizes.

It was first necessary to find a precise theoretical rela-

tion between molecular size and a measurable property of gases.

This was done by Maxwell soon after Clausius' paper on the

The relation between mean free
path, collision probabilty and
molecular size will be invesci-
lated in the experiment which
goes along with this chapter.
Mathematical derivations will
also be found in the discussion
of this experiment in the Student
Handbook.



See "James Clerk Maxwell" in
Project Physics Reader 3
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mean free path was published. Fortunately, a record of some

of Maxwell's earliest thc.ights on kinetic theory has been

preserved in his correspondence. On May 30, 1859, Maxwell

wrote a letter to Sir George Gabriel Stokes, a prominent

mathematical physicist and expert on the properties of fluids:

I saw in the Philosophical Magazine of February '59, a
paper by Clausius on the 'mean length of path of a par-
ticle of air or gas between consecutive collisions,'....
I thought that it might be worih while examining the
hypothesis of free particles acting by impact and com-
paring it with phenomena which seem to depend on this
'mean path.' I have therefore begun at the beginning
and drawn up the theory of the motions and collisions
of free particles acting only by impact, applying it to
internal friction [viscosity] of gases, diffusion of
gases, and conduction of heat through a gas...

...I do not know hou far such speculations may be found
to agree with facts, even if they do not it is well to
know that Clausius' (or rather Herapath's) theory is
wrong and at any rate as I found myself able and will-
ing to deduce the laws of motion of systems of parti-
cles acting on each other only by impact, I have done
so as an exercise in mechanics. One curious result
is that u [the viscosity coefficient] is independent
of density... This is certainly very unexpected, that
the friction should be as great in a rare as in a ,..anse
gas. The reason is, that in the rare gas the mean
path is greater, so that the frictional action extends
to greater distances.

Have you the means of refuting this result cf the
hypothesis?

Notice that Maxwell seems intrigued by the mathematical prop-

erties of the model. Yet he expects that the only contribu-

tion that his calculations will make to science may be to

refute the theory by showing that it leads to predictions

that disagree with experiment.

Maxwell's calculations showed that the viscosity of a gas

should be proportional to the mass and average speed of the

individual molecul-s, an versely proportional to the

cross-section area of each molecule:

my
viscosity 0 --.

According to kinetic theory, the absolute temperature of the

gas is proportional to the square of the average speed of the

molecules (Sec. 11.5). Maxwell's formula therefore indicates

that the viscosity of a gas should increase with the temper-

ature; it should be proportional to the square root of the

absolute temperature. This would be markedly different from

the familiar behavior of liquids, whose viscosity decreases

with temperature.

Stokes' reply to Maxwell's letter has been lost, but we

can guess that h. told Max, Ill that the existing experimental
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data (on the viscosity of gases at different temperatures and

densities) were inadequate to test the kinetic-theory predic-

tion. At the time, n one had any reason to think that gases

would behave differently from liquids in this respect. The

need to make careful measurements of gas viscosity did not

arise until Maxwell showed that such measurements would be

of great theoretical significance in testing the kinetic

theory of gases.

Although his fame rests mainly on his theoretical dis-

coveries, Maxwell was quite competent in doing experiments,

and he decided to make his own measurements of the viscosity

of air. He used a laboratory in his own house in London;

one can imagine the puzzlement of his neighbors who could

look in the window:

For some days a large fire was kept in the room, though
it was in thn midst of very hot weather. Kettles were
kept on the fire, and large quantities of steam allowed
to flow into the room. Mrs. Maxwell acted as stoker,
which was very exhausting work when maintained for sev-
eral consecutive hours. After this the room was kept
cool, for subsequent experiments, by the employment of
a considerable amount of ice.

Maxwell had already published his prediction about gas

viscosity, along with several other mathematical theorems

deduced from the assumptions of the model, before he did

these experiments. It was therefore a pleasant surprise

when he found that the prediction was right after all. The

viscosity of a gas does increase with temperature, and does

not change at all over a very large range of densities.

This success not only made Maxwell himself a firm believer

in the correctness of the kinetic theor}, but also helped

to convert many other scientists who had been somewhat

skeptical.

Now that a definite relation had been established between

an observable property of. gases viscosity and the size of

molecules, it was possinle to use experimental data to obtain

information about molecules. However, Maxwell's theory re-

lated the viscosity not only to the cross-section area :f

single molecule, but also to its mass. The mass of a mole-

cule was still an unknown quantity, although one could meas-

ure the total mass of all N molecules in the gas. It was

still necessary to estimate the value of N, the number of

nolecules in the gas.

In 1865, the Austrian physicist Josef Loschmidt made the

first quantitative estimate of molecular size from kinetic

theory by combining viscosity measurements with data on the

comparative volumes of liquids ani gases. Loschmidt reasoned
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that molecules are probably closely packed together in the

liquid state, so that the volume of a given sass of liquid

is approximately the same as the total volume of all the

molecules in the liquid. The volume of the liquid can

therefore be used to calculate the rroduct Nd3, and mea-

surements of the same substance in the gaseous state can be

used to calculate Nd2. It was ther nossible to compute N

and d separately.

Loschmidt used this method to estimate the diameter of an

air molecule. He obtained a value of about a millionth of a

millimeter (or 109 meters). This is about 4 times as large

as modern values, but it is amazingly accurate considering

the fact that before 1865 no one knew whether a molecule was

bigger than a thousandth of a millimeter or smaller than a

trillionth of a millimeter. In fact, as Lord Kelvin remarked

five years later,

The idea of an atom has been so constantly associated
with incredible assumptions of infinite strength, ab-
solute rigidity, mystical actions at a dista:ce and in-
divisibility, that chemists and many other reasonable
naturalists a modern times, losing all patience with
it, have dismissed it to the realms of metaphysics, and
made it smaller than 'anything we can conceive.'

Kelvin showed that other methods could also be used to esti-

mate the size of atoms. None of these methods gave results

as reliable as did the kinetic theory, but it was encourag-

ing that they all led to the same order of magnitude (within

50 percent) for the size of a molecule.

Loschmidt's method of calculating d could also be used to

calculate N, the number of molecules in a given volume of

gas. The number of molecules in a cubic centimeter of gas

(at 1 atmosphere pressure and 0°C) is now known as Loschmidt's

number; its presently accepted value is 2.687 x 1019.

Q8 In his kinetic-theory model Clausius assumed that the parti-
cles have a finite size, instead of being mathematical points, be-
cause

a) obviously everything must have some size.
b) it was necessary to assume a finite size in order to

calculate the speed of molecules.
c) the size of a molecule was already wall known before

Clausius' time.

d) by assuming finite-size molecules the theory could ac-
count for the slowness of diffusion.

C19 Maxwell originally thought that he could refute Ole kinetic
theory by

a) proving that not all molecules have the same speed.
b) proving that molecules have a finite size.
c) proving that the thecretical prediction that gas vis-

cosity is independer of density disagrees with ex-
periment.

d) proving that gas viscosity does not decrease with in-
crease in temperature.
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11.5 Predicting the behavior of gases from the kinetic theory.

Galileo, in his Dialogues Concerning Two New Sciences (1638),

noted that a vacuum pump cannot lift water more than about

34 feet (101/2 meters). This fact was well known; pumps were

being used to obtain drinking water from wells and to remove

water from flooded mines. One important consequence of the

limited ability of pumps to lift water was that some other

method was needed to pump water out of deep mines. This need

provided the initial stimulus for the development of steam

engines (Sec. 10.5). Another consequence was that physicists

in the seventeenth century became curious about why the

vacuum pump worked at all, as well as about why there should

be a limit to its ability to raise water.

Air Pressure. As a result of experiments and reasoning

by Torricelli (a student of Galileo), Guericke, Pascal and

Robert Boyle, it was fairly well established by 1660 that

the vacuum pump works because of air pressure. This pres-

sure is sufficient to balance a column of water high enough

to exert an equal pressure in the opposite direction. If

mercury, which is. 14 times as dense as water, is used in-

stead, the air pressure can raise it only TT as far, that

is, about 0.76 meter. This is a more convenient height for

doing laboratory experiments and therefore much of the seven-

eenth-century research on air pressure was done with the

mercury "barometer" designed by Torricelli.

It seems curious at first glance that the height of the

mercury column which can be supported by air pressure does

not depend on the diameter of the tubethat is, it doesn't

depend on the total amount of mercury, but only on its

height. To understand the reason for this we must distin-

guish between pressure and force. Pressure is defined as

the magnitude of the force on a surface divided by the area

of the surface:

P = F/A. (11.2)

A large force may produce only a small pressure if it is

spread over a large enough area; for example you can walk

on snow without sinking in if you wear large snowshoes. On

the other hand, a small force may produce a very large pres-

sure if it is concentrated in a small area. Women wearing

spike heels can ruin a wooden floor or carpet; the pressure

at the pla a where their heels touch the floor is greater

than that under an elephant's foot.

In 1661 two English scientists, Richard Towneley and

Henry Power, discovered a basic .tion between the pies-

sure exerted by a gas and its density: the pressure is pio-

This section treats some optional
special topics.

Torricelli's barometer was a
glass tube standing in a pool
of mercury. The air pressure
on the pool supported the col-
umn of mercury in the tube.

See "The Barometer Story" in
Project Physics Reader 3
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Boyle's law: pressure is pro-
portional to density, if the
temperature is held constant
when the density changes.

See "The Great Molecular Theory
of Gases" in Project Physics
Reader 3

We are assuming here that the
particles are points with zero
size, so that collisions between
particles can be ignored. If the
particles did have finite size
the results of the calculation
would be slightly different, but
the approximation used here is
accurate enough for most pur-
poses.

work = force x distance; if

distance = 0, then work = 0
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portional to the density. Thus if the density of a given

mass of air is doubled, by compressing it, its pressure will

be twice as great. Since the density is defined as mass di-

vided Zy volume, this relation can also be stated: the prod-

uct pressure x volume is constant. Robert Boyle confirmed

this relation by extensive experiments, and it is generally

known as Boyle's law.

Kinetic explanation of gas pressure. According to the

kinetic theory of gases, the pressure of a gas is the aver-

age result of the continual impacts of many small particles

against the wall of the container. It is therefore reason-

able that the pressure should be proportional to density;

the greater the density, the greater the number of particles

colliding with the wall. Moreover the pressure must depend

on the speed of the individual particles, which determines

the force exerted on the wall during each impact and the

frequency of the impacts.

We are now going to study the model of a gas described in

Sec. 11.2: "a large number of very small particles in rapid

disordered motion." Rather than trying to analyze the motions

of particles moving in all directions with many different

velocities. we fix our attention on the part:.-les that are

simply bouncing back and forth between two opposite walls of
a box. Hardly any molecules in a real gas would actually

move in just this way, but the basic physical factors involved

in the theory.can be understood fairly well with this

simplified model. We will assume, then, that all the

particles in our model are moving with the same speed,

either right or left. In addition, we will assume that

particles never hit each other, but when they hit the

sides of the box they bounce off elastically, simply

reversing their direction.

For a later part of the argument we will want to be

able to move one of the walls, so we will make that

wall a piston which snugly fits into the box. It can

be shown from the laws of conservation of momentum

and energy that when a very light particle bounces

elastically off of a much more massive stationary object,

very little of its kinetic energy is transferred. That

is, the particle reverses direction with very little

loss in speed. Bombardment by a tremendously large

number of molecules would move tle wall, however, so

we will provide an outside force just great enough to

keep the wall in place.

How large a force will these particles exert on the
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piston when they hit it? According to Newton's second law,

the force on the particle is equal to the product of its

mass times its acceleration (f = n1.-). As was shown in Sec.

9.4, the force can also be written as

A(mv)
F =

at

where L(mir) is the change in momentum. To find the average

force acting on the wall we need to find the change in mo-

-mentum per second due to molecule-wall collisions. By

Newton's third law the average force acting on the wall is

equal and opposite to the average force acting on the mole-

cules.

Let a single molecule of mass m move in a cubical con-

tainer of volume L3 as shown in the figure. The molecule,

moving with a speed vx, is about to collide with the right-

hand wall. The momentum of the molecule just before col-

lision is mvx. The molecule collides elastically with

the wall and rebounds with the same speed. Therefore the

momentum after the collision is m(-v
x

) = -mv
x

. The

change in the momentum of the molecule as a result of this

collision is

-mvx -mvx = -2mv
x

.

The time between collisions of one molecule with the

righthand wall is the time required to cover a distance 2L

at a speed of vx; that is, 2L/vx. If 2L/vx = the time be-

tween collisions, then vx/2L = the number of collisions per

second.' Thus, the change in momentum per second is given by

Note that all the vectors con-
sidered in this derivation have

only two possible directions: t,
the right or to the left. We
can therefore indicate direction
by using + and - signs respec-
tively.

(change in momentum _(change in momentum\ (number of collisions)
per second /-k in one collision Pck per second

2

MV
x
/L (-2mvx) x (v

x
/2L)

But by Newton's second law the change ip momentum per

second equals the average force. Therefoie, -rm/c/L =

average force acting on molecule due to the wall; and by

Newton's third Jaw, +nn/c/L = average force acting on the wall

due to the molecule. Thus the pressure due to one molecule

moving with a speed vx is

P = F/A = F/L2 = mlqc/L3 = mv/V.

There are N molecules in the container. They will not all

move with the same speed, but we only need to know the aver-

age speed in order to find the pressure. More precisely, we

need the average of the square of their speeds in the x-

direction, and we call this quantity, 1./c. The pressure on

the wall due to N molecules will be N times the pressure due

MIRMW..z



Recall that density is

D =
mass

-
Nm

volume V

94

n.5 Optional

to one molecule, or P = Nmv:2</V. We can express the square of

the average speed in terms of the velocity components as fol-

lows: v2 = v2 + v2 + v2
z

Also, if the motion is random,

then there is no preferred direction of motion and v2 = v2 =

112. These last two expressions can be combined to give

2 2 1 2V2 = 3vx or vx = v .

By substituting this expression into our pressure formula,

we get

P = 1
N mv2/ V.

3

Our final expression for the pressure in terms of molecular

speed v and density D is therefore

1-P = , DvJ (11.3)

This formula agrees with Boyle's law pressure is proportional

to density if we can assume that the other factor on the

right-hand side of Eq. (11.3), namely v2, is constant.

Since the mass of the particles is constant anyway, this

amounts to the same thing as assuming that the total kinetic

energy of all the particles (hNmv2) is constant.

Why should the total kinetic energy of a gas of particles

remain constant when its pressure and density change? If we

can answer that question, we will be able to say that the

kinetic-theory model explains one of the properties of real

gases, Boyle's law.

At first sight it would seem that the kinetic energy of

the system would not remain constant when we change the pres-
sure or density. Suppose we reduce the outside force that

holds the piston in place. What will happen? The force on

the piston resulting from the collisions of the particles

will now be greater than the outside force, and the piston

will start to move to the right.

As long as the 'iston was stationary, the particles did

not do any work on it, and the piston did not do any work on

the particles. But if the piston moves in the same direction

as the force exerted on it by the particles, then the parti-

cles must be doing work on the piston. The energy needed to

do this work must come from somewhere. But the only source

of energy in our model is the kinetic energy of the particles.

Therefore the kinetic energy of the particles must decrease.

Another way to look at this problem is to apply the laws

of conservation of momentum and mechanical energy to the col-

lisions between the particles and the piston. According to
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the principles stated in Chapter 10, if a light particle col-

lides with a heavy piston which is moving in the same direc-

tion (that is, away from the particle), then the speed of the

particle will be smaller when it bounces off, even if the

collision is perfectly elastic. Therefore its kinetic

energy is smaller.

If we had increased the outside force of the piston in

stead of decreasing it, just the opposite would happen. The

piston would move to the left, doing work on the particles

and increasing their kinetic energy. This result could also

be predicted from the principles of conservation of momentum

and mechanical energy.

The kinetic energy of the particles in our model is not

constant when pressure and density change. On the contrary,

it will increase when the pressure increases, and decrease

when the pressure decreases. Therefore the model does not

explain Boyle's law unless we can find some reason why the

kinetic energy of the particles should remain constant when

the pressure changes.

In order to keep the kinetic energy of the particles con-

stant, even though changes in pressure would tend to change

the kinetic energy, we must provide some supply of energy.

This energy supply must have the following two properties:

(1) it must add kinetic energy to the gas particles when-

ever they lose energy because the pressure decreases;

(2) it must take away kinetic energy whenever the particles

increase their kinetic energy because the pressure increases.

In ether words, the energy-supply must always act in such

a way as to maintain a constant amount of kinetic energy in

a gas.

It such an energy supply were included in the kinetic-

theory model, this model would then provide a satisfactory

explanation for the pressure of air and other gases.

The effect of temperature on gas pressure. Robert Boyle,

writing in 1660 about the pressure of air, recognized that

heating a gas would increase its volume. Many experiments

were done throughout the eighteenth century on the expan-

sion of gases by heat, but the results were not consistent

enoulh to establish a quantitative relation between volume

and temperature.

It was not until about 1800 that the law of thermal expan-

sion of gases was definitely established by the French chem-

ist Joseph-Louis Gay-Lussac (1778-1850). Gay-Lussac found

that all the gases he studied air, oxygen, hydrogen, nitro-

Maxwell sugsted the following
analogy: "r.en air is compressed
the sides Jf the vessel are mov-
ing to meet the molecules like a
cricket bat swung forward to
meet the ball, and the molecules
like the cricket ball rebound
with a greater velocity than
before. When air is allowed to
expand the sides of the vessel
are retreating like the crick-
eter's hands when he is stop-
ping the ball and the molecules
rebound with diminished velocity.
Hence air becomes warmer when
compressed and cooler when al-
lowed to expand." (from notes
for an unpublished lecture, in
the Maxwell collection at Cam-
bridge University)

See Study Guide 11.14



On the Celsius scale, water
freezes at 0 and boils at 100°,
when the pressure is equal to
normal atmospheric pressure. On
the Fahrenheit scale, water
freezes at 32 and boils at
212°.
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gen, nitrous oxide, ammonia, hydrochloric acid, sulfur diox-

ide and carbon dioxide changed their volume by the same

amount when the temperature changed by the same amount. The

amount of volume change was always proportional to the change

in temperature, as long as the pressure remained constant.

On the other hand, if the volume (or density) was held con-

stant, the change in pressure would always be proportional

to the change in temperature.

The experimental data obtained by Power, Towneley, Boyle,

Gay-Lussac and many other scientists can be summarized by a

single equation, known as the ideal gas_law

P = kD(t + 273) (11.4)

where t is the temperature on the Celsius scale and k is a

number which is constant when the pressure, volume and temper-

ature of the same sample of gas are changed.

This equation is called the ideal gas law because it

does not apply accurately to real gases except at very low

pressures. It is not a law of physics in the same sense as

the law of conservation of momentum, but rather a first ap-

proximation to the properties of real gases. It is not valid

when the pressure is so high, or the temperature is so low,

that the gas may change to a liquid.

Why does the number 273 appear in the ideal gas law?

Simply because we are measuring temperature on the Celsius

scale. If we had chosen to use the Fahrenheit scale, the

equation for the ideal gas law would be

P = kD(t + 460)

where t is the temperature on the Fahrenheit scale. In

other words, the fact that the number is 273 or 460 has no

real significance, but depends on our choice of a particular

scale for measuring temperature. However, it is significant

that the pressure and volume of a gas depend on temperature

in such a way that the product of pressure times volume

would be zero when the temperature decreases to a certain

value.

1

T e value of this lower;, possible temperature is -273.16°

Cels'us (459.69° Fahrenheit). Both experiment and thermo-

dynamic theory have shown that it is impossible actually to

cool anything all the way down to this temperature. However,

temperature can be lowered in a series of cooling operations

to within a small fraction of a degree above the limit.

Lord Kelvin proposed to define a new temperature scale,

called the absolute temperature scale. Sometimes it is called
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the Kelvin scale. The absolute temperature T is equal to 273

degrees more than the Celsius temperature, t:

T = t + 273 (11.5)

The temperature t = - 273'C, w:lich is unattainable, is now

T = 0 on the absolute scale, and is called the absolute zero

of temperature.

The ideal gas law may now be written in the simpler form:

P = kDT (11.6)

Note that the ideal gas law includes Boyle's law as a special

case: when the temperature is held constant, the pressure is

proportional to the density.

Neat and molecular kinetic energy. Now that we have rede-

fined Boyle's law by adding the condition that the temperature

must be kept constant when pressure and density change, we

can go back to the kinetic-theory model and see what is

needed to put it into agreement with the properties of gases.

To do this, we compare the two equations

1
P =

3
Dv2 (theory)

and

(11.3)

P = kDT (experiment). (11.6)

These two equations are consistent only if we assume that

1 IDv = kDT:

that is, that v2 = 3kT.

1If we multiply both sides of the last equation by 7 m, we

get the interesting result that

1 F
= 3I my - mkT.

Thus the theory implies that the average kinetic energy per

particle is proportional to the absolute temperature!

We pointed out earlier that the kinetic-theory model of a

gas would not be able to provide an explanation of Boyle's

law unless there were some kind of energy supply which could

keep the kinetic energy of the particles constant when the

pressure changes. Now we know how this energy supply should

be controlled: by a thermostat. If we simply keep the sur-

roundings of the gas at a fixed temperature, then the average

kinetic energy of the molecules will also remain fixed.

Whenever the kinetic energy momentarily decreases (for ex-

ample, during expansion) the temperature of the gas will drop

below that of its surroundings. Heat will then flow into the

gas until its temperature comes back up to the temperature of

the surroundings. Whenever the kinetic energy momentarily in-
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Our life runs down in sending
up the clock.

The brook runs down in sending
up our life.

The sun runs down in sending up
the brook.

And there is something sending
up the sun.

It is this backward motion to-
ward the source,

Against the stream, that most we
see ourselves in,

The tribute of the cu:rent to
the source.

It is from this in nature we
are from.

It is most us.
(Robert Frost, West-Running
Brook p. 37)
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creases (for exam?le, during compression) the temperature of

tne gas will rise above that of its surroundings. Heat will

then flow out of the gas until its temperature comes back

down to the temperature of the surroundings. The natural

tendency of heat to flow from hot bodies to cold

bodies is just what we need to keen the average ki-

netic energy of the particles constant.

Q10 The pressure of a gas depends upon the square of the speed
of the molecules because

a) the momentum changes upon impact with the
b) the time between impacts is shorter for high speed

molecules.
c) a combination of (a) and (b).
d) the area of the wall is measured in squared units of

length.

WI If a piston is pushed into a container of gas, what will
happen to the total kinetic energy o: the molecules of gas?

Q12 Which of the following results when the ideal gas law is
combined with the kinetic theory?

a) P is proportional to T.
b) P is proportional to v2.
c) limv2,is proportional to T.

The second law of thermodynamics and the dissipation of en-

ergy. At the beginning of this unit we mentioned a basic

philosophical theme of the Newtonian cosmology: the idea

that the world is .like a machine whose parts never wear out,

and which never runs down. This idea inspired the search for

conservation laws for matter and motion, and up to now it

might seem that the search has been successful. We can
rt

measure "matter" by mass, and "motion" by momentum or

kinetic energy. By 1850 the law of conservation of mass had

been firmly established in chemistry, and the laws of con-

servation of momentum and energy had been firmly established

in physics.

Yet these conservation laws could not banish the suspicion

that somehow the world is running down, and the parts of the

machine are wearing out Energy may be conserved in burn-

ing fuel, but it loses its usefulness as the heat diffuses

into the atmosphere. Mass may be conserved in scrambling

an egg, but structure is lost. In these transformations,

something is conserved, but also something is lost. Some

processes are irreversible they will not run backwards.

The first attempts to formulate quantitative laws for ir-

reversible processes in physics were stimulated by the

velopment of steam engines. During the eighteenth and

teenth centuries, the efficiency of steam engines--the

of mechanical work that could be obtained from a given

de-

nine-

amount



amount of fuel energy--was steadily increased (see Sec.
10.6). In 1824, a young French engineer, Sadi Carnot,

published a s'Iort book entitled Reflections on the Motive
Power of Fire. Carnot raised the question: what is the max-

imum efficiency of an engine? By careful analysis of the

flow of heat in the engine, Carnot proved that there is a

maximum efficiency, always less than 100%. There is a fixed

upper limit on the amount of mechanical energy that can be

obtained from a given amount of heat by using an engine,

and this limit can never be exceeded regardless of what
substance steam, air, or anything else is used in the en-
gine.

Even more ominous than the existence of this limit on ef-

ficiency was Carnot's conclusion that all real engines fail

to attain the theoretical limit in practice. The reason is

that whenever a difference of temperature exists between

two bodies, or two parts of the same body, there is a

possibility of doing work by allowing heat to expand a gas

as the heat flows from one body to the other. But if heat

flows by itself from a hot body to a cold body, and we do

not design our engine properly, we will lose the chance of

doing work that might have been done.

Carnot's analysis of steam engines shows that the process

of equalization of temperature by the flow of heat from hot

bodies to cold bodies represents a waste of mechanical en-

ergy. This is what we mean when we say that energy is "de-

graded" or "dissipated"--the total amount of energy is always

the same, but energy tends to transform itself into less

useful forms.

After the discovery of the law of conservation of energy,

Carnot's conclusions about steam engines were incorporated

into the new theory of heat (thermodynamics) and became

known as the second law of thermodynamics. This law has been

stated in various ways, all of which are roughly equivalent,

and express the idea that the tendency ot heat to flow from

hot to cold makes it impossible to obtain the maximum amount

of mechanical energy from a given amount of heat.

Carnot's analysis of steam engines implies more than this
purely negative statement, however. In 1852, Lord Kelvin

generalized the second law of thermodynamics by asserting

that there is a universal tendency in nature toward the dis-
sipation of energy. Another way of stating this principle

was suggested by Rudolf Clausius, in 1865. Clausius intro-

duced a new concept, entropy, which he defined in term^ of

the heat transferred from one body to another. We will not

discuss the technical meaning of entropy in thermodynamics
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"La miserable race hu-
maine perira par le
froid."

"Ce sera la fin."

11.6

but simply state that whenever heat flows from a hot body to

a cold body, entropy increases. It also increases whenever

mechanical energy is changed into internal energy, as in

inelastic collisions and frictional processes. All these

changes can be identified with increasing disorder of the

system. And indeed entropy can be defined as a measure of

the disorder of a system. So the generalized version of the

second law of thermodynamics, as stated by Clausius, is

simply: the entropy of a system always tends to increase.

Irreversible processes are processes for which entropy

increases; hence they cannot be run backwards without vio-

lating the second law of thermodynamics. For example, heat

will not flow by itself from cold bodies to hot bodies; a

ball dropped on the floor will not bounce back higher than

its original position; and an egg will not unscramble itself.

All these (and many other) events, which could take place

without violating any of the principles of Newtonian mechan-

ics, are forbidden by the second law of thermodynamics.

Lord Kelvin predicted, on the basis of his principle of

dissipation of energy, that all bodies in the universe would

eventually reach the same temperature by exchanging heat

with each other. When this happens, it will be impossible

to produce any useful work from heat, since work can only be

done when heat flows from a hot body to a cold body. The

sun and other stars would eventually grow cold, all life on

earth would cease and the universe would be dead. This

"heat death," which seemed to be an inevitable consequence

of thermodynamics, aroused some popular interest at the end

of the nineteenth century, and was described in several

books written at that time, such as H. G. Wells' The Time

Machine. The American historian Henry Adams, who learned

about thermodynamics through the works of one of America's

greatest scientists, J. Willard Gibbs, argued that the sec-

ond law could be applied to human history. He wrote a series

of essays which were published under the title The Degrada-

tion of the Democratic Dogma. The French astronomer Camille

Flammarion wrote a book describing all the possible ways in

which the world could end; we have reproduced from his book

two illustrations showing an artist's conception of the heat

death.

313 The "heat death of the universe" refers to a state

a) in which all mechanical energy has been transformed into
heat energy.

b) in which all beat energy has been transformed into other
forms of energy.

c) in which the temperature of the universe decreases to ab-
solute zero.

d) in which the supply of coal and oil has been used up.
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014 Which of the following statements are consistent with the
second law of thermodynamics?

a) Heat does not naturally flow from cold bodies to hot
bodies.

b) Energy tends to transform itself into less useful forms.
c) No engine can transform all its heat input into mechani-

cal energy.

d) Most processes in nature are reversible.

11.7 Maxwell's demon and the statistical view of the second law

of thermodynamics. Is there any way of avoiding the heat

death? Is irreversibility a basic law of physics, or only

an approximation based on our limited experience of natural

processes?

The Austrian physicist Ludwig Boltzmann used the kinetic

theory of gases to investigate the nature of irreversibility,

and concluded that the tendency toward dissipation of energy

is not an absolute law of physics but only a statistical one.

Boltzmann argued that if one were to list all the possible

arrangements of molecules in a gas, nearly all of them would

have to be considered "disordered." Only a few of them, for

example, would have all the molecules in one corner of an

otherwise-empty container. It is to be expected that if we

start from an ordered arrangement of molecules, the arrange-

ment will inevitably become less ordered, simply because

most possible arrangements are random. Similarly, if we put

a hot body (whose molecules are moving rapidly) in contact

with a cold body (whose molecules are moving slowly), it is

almost certain that after a short time both bodies will have

nearly the same temperature, simply because there are many

more possible arrangements of molecular speeds in which fast

and slow molecules are mixed together, than arrangements in

which most of the fast molecules are in one place and most

of the slow molecules are in another place.

According to Boltzmann's view, it is almost certain that

disorder will increase in any natural process that we can

actually observe. The second law is therefore a statistical

law that applies to collections of large numbers of mole-

cules, but may have no meaning when applied to individual

molecules. Since it is a statistical law, there is a

remote possibility that a noticeably large fluctuation

may occur in which energy is concentrated rather. than

dissipated.

See "Maxwell's Demon" in
Project Physics Reader 3

To illustrate Boltzmam's argu-
ment we might consider shuffling
a pack of cards. Most possible
arrangements of the cards are
more or less disorGered. If we
start with an ordered arrange-
ment for example, the cards
sorted by rank and suitthen
shuffling would almost certainly
lead to a more disordered ar-
rangement. Nevertheless it does
occasionally happen that a player
is dealt 13 spades even if no
one has stacked the deck.

Drawing by Steinberg; /..) 1963. The New Yorker Uterine, Inc.
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Hov Maxwell's "demon" could use
a small, massless door to in-
crease the order of a system
and make heat flow from a
cold gas to a hot gas.

A B

n7

For example, the molecul2s in a glass of water are usually

moving randomly in all directions but they might all just

happen to move in the same direction at the same time. The

water would then jump out of the glass. (The glass would

have to move downward at the same time since momentum must

still be conserved.) In this case a disordered motion has

suddenly turned into an ordered motion; entropy has decreased

instead of increased, and the second law of thermodynamics

(regarded as an absolute law of physics) has been violated.

Such large fluctuations seem extremely unlikely, yet if they

can occur at all we must recognize that the second law is

not a fundamental law of physics.

Maxwell proposed a "thought experiment" to show how the

-> second law of thermodynamics could be violated by an imagi-

. nary person who could observe individual molecules and sort

,d them out, thereby causing heat to flow from cold to hot.

j7.. Suppose a container of gas is divided into two parts, A and

(a) Initially the average KE of
molecules is greater in A.

:172:',77a-atSM:77777,,Tams..,
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(b) Only fast molecules are al-
lowed to go from B to A.

B, by a diaphragm. Initially the gas in A is hotter than

the gas in B. This means that the molecules in A have

greater average speeds than those in B. However, since the

speeds are distributed according to Maxwell's distribution

law (Sec. 11.3), a few molecules in A will have speeds less

than the average in B, and a few molecules in B will have

speeds greater than the average in A.

Maxwell saw that there would be a possibility of making

heat flow from a cold gas to a hot gas because of this over-

lapping of the distributions for gases at different temper-

ature. "Now conceive a finite being," Maxwell suggested,

"who knows the paths and velocities of all the molecules by

simple inspection but who can do no work except open and

--.

close a hole in the diaphragm by means of a slide without

(c) OnlyOnly slow molecules are al-
lowed to go from A to B.

as mass." (If the slide has no mass, no work will be needed to
.,

..,.... 1 Fi move it.) Let this "finite being" observe the molecules In

A, and when he sees one coming whose speed is less than the

(d) As this continues, the aver-
age KE in A increases and
the average KE in B decreases.
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average speed of the molecules in B, let him open the hole

and let it go int., B. Now the average speed of the molecules

of B will be even lower than it was before. Next, let him

watch for a molecule of B. whose speed is greater than the

average speed in A, and when it comes to the hole let him

draw the slide and let it go into A. Now the average speed

in A will be even higher than it was before. Maxwell

concludes:
Then the number of molecules in A and B are the same as
at first, but the energy in A is increased and that in
B diminished, that is, the hot system has got hotter
and the cold colder and yet no work has been done, only
the intelligence of a very observant and neat-fingered
being has been employed.
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The imaginary "being who knows the paths and velocities

of all the molecules" has come to be known as "Maxwell's

Demon." Maxwell's thought experiment shows that if there

were ary way to sort out individual molecules, the principle

of dissipation of energy could be violated. Some biologists

..ave suggested that certain large molecules, such as en-

zymes, may actually be able to guide the motions of smaller

molecules, building up ordered molecular systems in living

beings in just this way.

Q15 In each of the following, which situation is more 'ordered?

a) an unbroken egg; a scrambled egg
b) a glass of ice and warm water; a glass of water at uni-

form temperature

Q16 True or false?

a) Maxwell's demon was able to circumvent the second law of
thermodynamics.

b) Modern physics has made a Maxwell's demon.
c) Maxwell believed in the existence of his demon.

11.8 Time's arrow and the recurrence paradox. time have a

direction? Is there any real difference between going for-

ward and going backward in time? These questions lie at the

root of the problem of irreversibility.

Toward the end of the nineteenth century, a small but in-

fluential group of scientists began to question the basic

philosophical assumptions of Newtonian mechanics and even

the very idea of atoms. The Austrian physicist Ernst Mach

criticized Newton's concepts of force, mass and absolute

space, and argued that scientific theories should not depend

on assuming the existence of things (such as atoms) which

could not be directly observed. Typical of the attacks on

atomic theory is the argument which the mathematician Ernst

Zermelo and others advanced against kinetic theory: the

second law of thermodynamics is an absolutely valid law of

physics because it agrees with all the experimental data,

but kinetic theory allows the possibility of exceptions to

this law; hence kinetic theory must be wrong.

The critics of kinetic theory could point to two apparent

contradictions between the kinetic theory (or in fact any

molecular theory based on Newton's laws of mechanics) and

the principle of dissipation of energy: the reversibility

paradox and the recurrence paradox. Both paradoxes are

based on possible exceptions to the second law. In consider-

ing their relevance to the validity of kinetic theory, we

have to decide whether it is good enough to show that these

exceptions would occur extremely rarely, or whether we must

exclude them entirely.

See "The Arrow of Time" in
Project Physics Reactor 3
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A few of the scientists who made significant
contributions to the development of the kinet-
ic theory of gases and thermodynamics

1

3

4
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1 James Clerk Maxwell

2 Ludwig Boltzmann

3 William Thomson
(Lord Kelvin)

4 Sadi Carnot

5 Rudolf Clausius



George Wachington

Frederick the Gieat

Benjamin Franklin

Leonhard Euler

Joseph Black

Joseph Priestley

:es 1850
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Pierre Laplace

Benjamin Thompson, Count Rumf,rd

John Dalton

Jean Baptiste Fourier

Karl Friedrich Gauss
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David Hume

Immanuel Kant

Friedrich von Schelling

John Stuart Mill

CD

IP Alexander Pope

Samuel Johnson

4 William Hogarth

Robert Burns

Johann Wolfong von Goethe

"illiam Blake

Joshua Reynolds

Thomas Gainsborough

John Singleton Copley

Francisco Goya
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Jacques Louis Davie

John Keats
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Charles Dickens

Ferdinand Delacroix
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4 George Frederick Handel
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11.8

The reversibility paradox was discovered in the 1870's
by Lord Kelvin and Josef Loschmidt, both of whom were sup-
porters of atomic theory; it was not regarded as a serious
objection to the kinetic theory until the 1890's. The para-
dox is based on the simple fact that Newton's laws of motion
are reversible in time. Imagine that we could take a motion
picture of the molecules of a gas, colliding elastically ac-The reversibility paradox: Can
cording to the assumptions of kinetic theory. When wea model based on reversible

events explain a world in which showed the motion picture, there would be no way to tellso many events are irreversible?
whether it was being run forward or backward either way
would show valid seauences of collisions. But motion pic-
tures of interactions involving large objects (containing
many molecules) do have obvious differences between forward
and backward time directions.

There is nothing in Newton's laws of motion which dis-
tinguishes going backward from going forward in time. How
can the kinetic theory explain irreversible processes if it
is based on laws of motion which are reversible? The exist-
ence of irreversible processes seems to indicate that time
flows in a definite directionfrom past to future in con-
tradiction to Newton's laws of motion.

Ay Lord Kelvin expressed the paradox,

If...the motion of every particle of matter in the uni-
verse were precisely reversed at any instant, the course

L'Ii!d4"
Jr le

ilik of nature would be simply reversed for ever after. The
"" bursting bubble of foam at the foot of a waterfall would

reunite and descend into the water; the thermal motions
would reconcentrate their energy, and throw the mass up
the fall in drops reforming into a close column of as-
cending water. Heat which had been generated by the
friction of solids and dissipated by conduction, and
radiation with absorption, would come again to the place
of contact, and throw the moving body back against the
force to which it had previously yielded. Boulders
would recover from the mud the materials required to
reblild them into their previous jagged forms, and
would become reunited to the mountain peak from which
they had formerly broken away. And if also the materi-
alistic hypothesis of life were true, living creatures
would grow backwards, with conscious knowledge of the
future, but no memory of the past, and would become
again unborn. But the real phenomena of life infinitely
transcend human science; and speculation regarding con-
sequences of their imagined reversal is utterly unprof-itable.

w.r4

Kelvin himself, and later Boltzmann, used statistical ideas
to explain why we do not observe such reversals. There are
a large number of possible disordered arrangements of water
molecules at the bottom of a waterfall; only an extremely
small number of these arrangements woule lead to the process
described in the above quotation if we could reverse the
velocity of every molecule. Reversals of this kind are pos-
sible in principle, but very unlikely.
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The recurrence paradox revived an idea that had been fre-

quently used in ancient philosophies: the myth of the

"eternal return." According to this myth, the history of

the world is cyclic; all historical events are repeated over

and over again, and the people who are now dead will someday

be born again and go through the same life. The German

philosopher Friedrich Nietzsche was convinced of the truth

of this idea, and even tried to prove it using the principle

of conservation of .snergy. He wrote:

If the universe may be conceived as a definite quantity
of energy, as a definite nunber of centres of energy
and every other concept remains indefinite and there-
fore useless--it follows therefrom that the universe
must go through a calculable number of combinations in
the great game of chance which constitutes its exist-
ence. In infinity, at some moment or other, every pos-
sible combination must once have been realized; not
only this, but it must have been realized an infinitc.
number of times.

Nietzsche claimed that his proof of the ?ternal return re-

futed the theory of the heat death. At about the same time,

in 1889, the French mathematician Henri Poincare published a

similar theorem on the recurrence of mechanical systems.

According to Poincare, his recurrence theorem impli.2d that

while the universe might undergo a heat death, it would ul-

timately come aliv. again:

A bounded world, governed only by the laws of mechanics,
will always pass through a state very close to its ini-
tial state. On the other hand, according to accepted
experimental laws (if one attributes absolute validity
to them, and if one is willing to press their conse-
quences to the extreme), the universe tends toward a
certain final state, from which it will never depart.
In this final state, which will be a kind of death,
all bodies will be ac rest at the same temperature.

...the kinetic theories can extricate themselves
from this contraeiction. The world, according to them,
tends at first toward a state where it remains for a
long time without apparent change; and this is consis-
tent with experience; but it net remain that way
forever; ...it merely stays there for an enormously
long time, a time which is longer the more numerous
are the molecules. This state will not be the final
death of the universe, but F. sort of slumber, from
which it will awake after millions of centuries.

According to this theory, to see heat pass from a
cold body to a warm one, it will not be necessary to
have the acute vision, the intelligence, and the dex-
terity of Maxwell's demon; it will suffice to have a
little patience.

Though Poincare was willing to accept the possibility of

a violation of the second law after a very long time, others

were less tolerant. In 1896, Ernst Zermelo (at that time a

student of Max Planck) published a paper attacking not only

The World's great age begins
anew,

The golden years return,
The earth doth like a snake

renew
His winter weeds outworn...

Another Athens shall arise
And to remoter time

Bequeath, like sunset to the
skies,

The splendour of its prime...

Percy Bysshe Shelley, "Hellas"
(1822)
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Record of a particle in Brownian
motion. Successive positions,
recorded every 20 seconds, are
connected by straight lines.
The actual paths between re-
corded positions would be as

erratic as the overall path.

11.8

the kinetic theory but the mechanistic conception of the

world in general, on the grounds that it contradicted the

second law. Boltzmann replied, repeating his earlier expla-

nations of the statistical nature of irreversibility. When

these did not satisfy Zermelo, Boltzmann (half-seriously)

proposed the following hypothesis: the history of the uni-

verse is really cyclic, so that the energy of all its mole-

cules must eventually be reconcentrated in order to start

the next cycle. During this process of reconcentration, all

natural processes will go backward, as described by Kelvin

(above). However, the human sense of time depends on natural

processes going on in our own brains. If the processes are

reversed, our sense of time will also be reversed. Therefore

we could never actually observe "time going backward" since

we would be going backward along with time.

The final outcome of the dispute between Boltzmann and

his critics was that both sides were partly right and partly

wrong. Mach and Zermelo were correct in their belief that

molecular and atomic processes cannot be adequately described

by Newton's laws of mechanics; we will come back to this

subject in Unit 5. Gases are not collections of little bil-

liard balls. But Boltzmann was right in his belief in the

usefulness of the molecular model; the kinetic theory is

very nearly correct except for those properties involving

the detailed structure of molecules.

In 1905, Albert Einstein pointed out that the fluctuations

predicted by kinetic theory should produce an effect which

could be observed and measured quantitatively: the motion of

very small particles in liquids. Subsequent studies of this

motion (called "Brownian motion" after Robert Brown, the

English botanist who had observed it in 1828) confirmed

Einstein's theoretical calculations. This new success of

kinetic theory, along with the discoveries in radioactivity

and atomic physics at the beginning of the twentieth century,

persuaded almost all the skeptics that atoms really exist.

But the problem of irreversibility and the question of

whether the laws of physics must distinguish between past and

future, are issues that still interest physiCists today.

Q17 The kinetic energy of a falling stone is transformed into
heat when the stone strikes the ground. Obviously this is an ir-
reversible process; we never see the heat transform into kinetic
energy of the stone, so that the stone rises off the ground. The
reason that the process is irreversible is that

a) Newton's laws of motion prohibit the reversed process.
b) there is a very small probability that the disordered

molecules will happen to arrange themselves in the way
necessary for the reversed process to occur.

c) the reversed process would not conserve energy.



018 Which of the following is a reversible process?

a) a pendulum swinging in air.
b) water falling in a cataract.
c) two molecules colliding perfectly elastically.
d) an ice cube melting in a glass of warm water.,

019 The recurrence theorem states that any giver. arrangement
of molecules will be repeated after a long enough time. The
theorem

a) appears to contradict the principle of dissipation of
energy.

b) was discovered by ancient philosophers.
c) was disproved by Poincare.
d) applies orly to the molecules of living systems.
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11.1 List some of the directly observable properties of gases.

11.2 What could kinetic theorists explain about gases?

11.3 Where did Newtonian mechanics run into difficulties in
explaining the behavior of molecules?

11.4 Distinguish between two uses of the word "model" in science.

11.5 Randomness can be used in predicting the results of flipping
a large number of coins. Give some other examples where random-
ness is useful

11.6 The speed of sound in a gas is about the same as the
average speed of the gas molecules. Is this a coincidence?
Discuss.

11.7 Consider the curves showing Maxwell's distribution of
molecular speeds.

a) All show a peak.
b) The peaks move toward higher speed at higher tempera-

tures.
c) They are not symmetrical like normal distribution curves.

Explain these characteristics on the basis of the kinetic
model.

11.8 Many products are now sold in spray cans. Explain in terms
of the kinetic tleory of gases why it is dangerous to expose the
cans to high tempiratures.

11.9 Benjamin Franklin in 1765 observed that not more than a
teaspoonful of oil covered half an acre of a pond. Suppose that
one cubic centimeter of oil forms a continuous layer one mole-
cule thick that just covers an area on water of 1000 square
meters.

a) How thick is the layer?
b) What is the diameter of a single molecule of the oil?

11.10 How did Clausius modify the simple "model" for a gas?
What was this new model able to explain?

11.11 How did Josef Loschmidt estimate the size of a molecule?

11.12 The atmospheric pressure of air is balanced by a column of
mercury of height 0.76 meters or by 10.5 meters of water.
Air is approxtmately a thousand times less dense than water.
Why can you not say the atmosphere is only 10,000 meters de;;?

11.13 The spike heel on a girl's shoe is a square, one cent: .ter
on an edge. If her mass is 50 kilograms, how many atmosphEres
of pressure are exerted when she balances on one heel?

11.14 If a light particle rebounds from a massive, stationary
piston with almost no loss of speed, then, according to the prin-

ciple of Galilean relativity, it would still do so from a maiina
piston in the frame of reference of the moving piston. Show.that
the rebound speed as measured in the laboratory would be less from
a retreating piston, as is claimed at the top of p. 95. (Hint:
Express the speed of the particle relative to the piston in terms
of their speeds in the laboratory frame.)

11.15 Clausius' statement of the second law of thermodynamics is:
"Heat will not of its own accord pass from a cooler to a hotter
body." Show in words how a refrigerator can operate.



11.16 When a gas is compressed by pushing in a piston, its tempe.-
ature increases.

a) Explain this fact in two ways: first, by using the first
law of thermodynamics and second, by using the kinetic
theory of gases.

b) The compressed air eventually cools down to the same
temperature as the surroundings. Explain this heat
transfer in terms of molecular collisions.

I1.17 Why, if there is a tendency for heat to flow from hot to
cold, will not the universe eventually reach absolute zero?

11.18 How did Maxwell's demon hope to circumvent the seccrd law
of thermodynamics?

11.19
a) Explain what is meant by the statement that Newton's

laws of motion are time-reversible.
b) Describe how a paradox arises when the time-reversibility

of Newton's laws of motion is combined with the second
law of thermodynamics.

11.20 Since molecular motions are random, one might expect that
any given arrangement of molecules would recur if he waited long
enough. Explain how a paradox arises when this prediction is
combined with the second law of thermodynamics.

11.21 Many philosophical and religious systems of the Far East
and the Middle East include the ideas of eternal return and
resurrection. Read about some of these philosophies and dis-
cuss them in the light of your knowledge of the second law of
thermodynamics.
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12.1

121 Introduction. Waves are all around us. Water waves, espe-

cially, whether giant rollers in the middle of the ocean or

gently formed rain ripples on a still pond, are sources of

wonder or amusement. If the earth's crust shifts, violent

waves cause tremors thousands of miles away. A musician

plucks a guitar string and sound waves pulse against our
ears. Someone stumbles on a crowded dance floor and a wave

of bumping or crowding spreads through the adjacent dancers.

Wave disturbances may come in a concentrated bundle like the

shock front from a single clap of the hands or from an air-

plane flying at supersonic speeds. Or the disturbances may

come in succession like the train of waves sent out from a

steadily vibrating source, such as an alarm clock.

As physics has progressed over the last hundred years,

vibrations and waves of a less obvious kind have been dis-

covered. Electromagnetic waves in particular have been

found to be fundamental to nearly everything we can sense

about our universe. Most of our explanations of energy

transfer involve waves.

So far we have been thinking of motion in terms of indi-

vidual particles. As we begin to study the cooperative mo-

tion of collections of particles, we shall recognize how

intimately related are the particle and wave models we make

of events in nature.

If you look at a black and white photograph in a newspaper

or magazine with a magnifying glass, you discover that the

picture is made up of many little black dots printed on a

white page(up to 20;000 dots per square inch). If you do

not use the magnifier, you will not see the individua dots,

but a pattern with all possible shadings between completely

black and completely white. The two views emphasize different

aspects of the same thing.

In much the same way, the physicist often has available

several ways of viewing events. For the most part, a parti-

cle view has been emphasized in the first three units. In

Unit 2, for example, we treated each planet as a particle ex-

periencing the sun's gravitational attraction. The behavior

of the solar system was described in terms of the positions,

velocities and accelerations of point-like objects, but this

viewpoint is far from a complete description of our planetary

neighbors.

In the last chapter we saw two different descriptions of

a gas. One was in terms of the behavior of the individual

particles making up the gas. We used Newton's laws of motion

to describe what each particle does, and then we used average

A small section from the
lower right of the photo-
graph on the opposite page.
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12.2

values to describe the behavior of the gas as a whole. But

we also discussed a qas with the aid of concepts such as

pressure, temperature, heat and entropy, which refer to a

sample of qas as a whole. This is the viewpoint of thermo-

dynamics, which does not depend on assuming Newton's laws or

even the existence of particles. Each of these viewpoints

served a useful purpose and helped us to understand what we

cannot directly see.

See "Introduction to Waves" and Now we are about to study waves, and once again we find
"What is a Wave" in Protect

alternative points of view. Most of the waves discussed inPhysics Reader 3

this chapter can be described in terms of the behavior of

particles, but we also want to understand waves as disturb-

ances traveling in a continuous medium. We want, in other

words, to see the picture as a whole, not only individual

dots.

12.2 Properties of waves. What is a wave? We begin our study of

waves with a simple example. Suppose that two people are

holding opposite ends of a rope. One person snaps the rope

High-speed photograph of ripples up and down quickly. That puts a sort of hump in the rope,
produced by a milk drop, which travels along the rope toward the other person. The

traveling hump is a wave.

Originally, the rope i.", held motionless. The height of

each point on the rope depends only upon its position along

the rope. When one person snaps the rope, he creates a rapid
. change in the height of on end, and the disturbance then

moves away from its source. The height of each point on the

rope depends upon time as well as position.

The disturbance is a pattern of displacement along the

rope. The motion of the displacement pattern is an example

of a wave. The snapping of the one end is the source of the

wave, and the rope is the medium in which the wave moves.

These four terms are common to all mechanical wave situations.
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Consider another example. Drop a pebble into a pool of

still water, and a series of circular crests and troughs

spread over the water's surface. This moving displacement

pattern of the water surface is a wave. The pebble is the

source, the moving pattern of crests and troughs is the wave

and the water surface is the wave's medium.

In rope waves and water waves, we can see the media, the

source and the disturbance. However, in our analysis we want

to concentrate on the wave the moving pattern. Each of

these waves consists of changing displacements from the equi-

librium height of successive parts of the medium. Thus we
can refer to these as waves of.displacement.



If we can see the medium and recognize the displacements,

then we can see waves. As we proceed, we should be prepared

to find waves in media we cannot see (such as air) or which

are disturbances in properties we cannot detect with our eyes

(such as pressure, or electric fields).

A loose spring coil can be used to demonstrate three dif-

ferend kinds of waves. If the end of the spring is moved

from side to side, as in Fig. 12.1 (a), a wave of side-to-

side displacement will travel along the spring. If the end

of the spring is moved back and forth, as in Fig. 12.1 (b),

a wave of back-and-forth displacement will travel along the

spring. If the end of the spring is twisted, a wave of angu-

lar displacement will travel along the spring. Waves like

Fig. 12.1 (a), in which the displacements of the spring are

perpendicular to the direction the wave travels, are called

transverse waves. Waves like Fig. 12.1 (b), in which the

displacements are in the direction the wave travels, are

called longitudinal waves. And waves like Fig. 12.1 (c),

in which the displacements are twisting in the direction of

travel of the wave, ate called torsional waves.

All three can be set up in solids. In fluids, however,

transverse and torsional waves die out very quickly if they

can be produced at all. Thus sound waves in air and in water

are longitudinal the molecules of the medium are displazed

back and forth along the direction that the sound travels.

It is often useful to make a graph of wave patterns. It

is important to note that the graph always has a transverse

appearance, even if it represents a longitudinal or torsional

wave. Thus in Fig. 12.2 the pattern of compressiors in a

sound wave is represented by a araph. The graph line goes

up and down to represent the increasing and debreasing den-

sity of the air,.not to represent an up and down motion of

the air.

A complete description of transverse waves involves a

variable which descriptions of longitudinal or torsional

waves do not: the direction of displacement. The displace-

ments of a .,ongiiudinal wave can be in only one direction

the direction of travel of the wave. Similarly, the angular

displacements of a torsional wave can be around only one

axis the directicn of travel of the wave. But the displace-

ments of a transverse wave can be in any and all of an in-

finite number of directions. This is easily seen on a rope

by shaking one end around randomly instead of straight up

and down or straight left and right. For simplicity, the

diagrams of rope and spring waves in this chapter have shown

rnwsWAsji-PA,044.01%%VtA?
(c)

Fig. 12.1 Three tyres of waves
on a coil spring. In (c), small
markers have been put on the top
of each coil.

P

Fig. 12.2 (a) "Snapshot" rep-
resentation of a sound wave
progressing to the right. The
dots represent the density of
air molecules. (b) Graph of
air pressure P vs. position x
at the instant of the snapshot.
P is the normal, undisturbed
value of pressure.
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Fig. 12.3 Different
polarization planes of a
transverse wave.

4.

Fig. 12.412.4 The interaction of a
polarized rope wave is sketched
for three different orientations
of a slotted board. The same
short wave train approaches the
slotted board in each of the
three sketches. Depending on
the orientation of the slot,
the train of waves (a) goes
entirely through the slot; (b)
is partly reflected and partly
transmitted; or (c) Is completely
reflected.
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transverse displacements consistently in a single plane.

When the displacement pattern of a transverse wave lies

in a single plane, the wave is said to be polarized. For

waves on ropes and springs we can observe the polarization

directly. However, there is a general way of identifying a

polarized wave, whether we can see the wave directly or not

find some effect of the wave which depends on angular posi-

tion. An example of the principle is illustrated in the

diagram below, where the interaction of a rope wave with a

slotted board is shown to depend on the angle of the slotted

board. Each of the three sketches begins with the same wave.

In general, if we can find some effect of a wave which depends

similarly on angular orientation, we can conclude that the

wave is polarized. Fur`her, we can conclude that the wave

must be transverse rather than longitudinal or torsional.

Some interesting and ir,,ortant examples of this principle

will be presented in Chapter 13.

All three kinds of wave have an important characteristic

in common. The disturbances move through the media and away

from their sources and continue on their own. We stress

this particular characteristic by saying tf:t these waves

"propagate," which means we imply more than that they "travel"

or "move."

An example will clarify the difference between waves which

do propagate and those which do not. Almost every descrip-

tion of the great wheat plains of our middle west, in Canada,

or in Central Europe contains a passage about the beautiful

wind-formed waves that roll for miles across them. The dis-

turbance is the swaying motion of the wheat. And the regions

of that disturbance do indeed travel, but they do not propa-

gate. That is, the disturbance does not originate at a

source and then go on by itself but needs to be continually

fanned by the wind. When the wind stops, the disturbance

stops too. In this regard the traveling "waves" of swaying

wheat are not at all the same as our rope and water waves,

12.3

and we shall therefore concentrate on waves that originate

at sources and propagate. For the purposes of this chapter,

waves ara disturbances which propagate in a medium.

CH What kinds of mechanical waves can propagate in a solid?

Q2 What kinds of mechanical waves can propagate in a fluid?

Q3 What kinds of mechanical waves can be polarized?

Q4 Suppose that a mouse runs along under a rug, causing a bump
in the rug that travels across the room. Is this moving disturb-
ance a propagating wave?

12.3 Wave propagation. Waves and their behavior may perhaps best

be studied by beginning with large mechanical models and fo-

cussing our attention on pulses. Consider, for example, a

freight train with many cars attached to a powerful locomotive

standing still at a railroad crossing. If the locomotive

starts abruptly, a disturbance or a displacement wave will be

transmitted down the line of cars to the very last one. The

shock of the starting displacement proceeds from locomotive

to caboose, clacking through the couplings one by one. In

this example, the locomotive was the source, the freight cars

and their couplings were the medium and the "bump" traveling

along the line of cars was the wave. The disturbance pro-

ceeds all the way from end to end, and with it goes energy

in the form of displacement and motion. Yet no particles

of matter are transferred that far; each car only jerks

ahead. How much time does it take or the effect of a dis-

turbance created at; one point to reach a distant point?

The time interval depends upon the speed with which the dis-

turbance or wave propagates. That, in turn, depends upon

the type of wave and the characteristics of the medium. In

any case, the effect of a disturbance is never transmitted

instantaneously. Time is needed for each part of the medium

to transfer its energy to the next part.

A very important point: energy
transfer can occur without
matter transfer.

An engine starting abruptly
can start a "bang" wave
along a, line of cars.
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Fig. 12.5 A rough representa-
tion of the forces on a small
section of rope as a transverse
pulse moves past it.

The exact meaning of stiffness
and density factors is different
for different kinds of waves and
different media. For tight
strings, for example, the stiff-

ness factor is the tension T in
the string and the density fac-
tor is the mass per unit length
mI4 The propagation speed v is

v
mik
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The series of sketches in Fig. 12.5 represent a wave on a

cope as seen by a series of frames of a motion picture film,

the frames being taken at equal time intervals. The pieces

of rope do not travel along with the wave, but each bit of

the rope goes through an up-and-down motion while the wave

moves to the right. Except at the source of the disturbance

on the left, each bit of the rope goes through exactly the

same motion as the bit to its left, but its displacement is

delayed a moment from the bits closer to the source.

Consider a small section of the rope, labeled X in the

diagrams in the margin. When the pulse traveling on the

rope first reaches X, the section of rope just ahead of X

exerts an upward force on X. As X moves upward, a restoring

force pulling X down arises from the next section on. The

further up X moves, the greater the restoring forces becomes.

So eventually X stops moving up and starts down again. The

section of rope ahead of X is now exerting a restoring force

and the section behind it is exerting an upward force, so the

trip down is similar, but opposite, to the trip up. Finally

X is returned to the equilibrium position and both forces

vanish.

The time required for X to go up and down, that is, the

time required for the pulse to pass, depends on two factors:

the magnitude of the forces on X and the mass of X. To put

it another way, and more generally: the speed with which a

wave propagates depends on the stiffness aid on the density

of the medium. The stiffer the medium, the greater will be

the force a section exerts on neighboring sections, and sc

the greater will be the propagation speed. The greater the

density of the medium, the less it will respond to forces,

and so the slower will be the propagation. It can be shown

1.!lat the speed of propagation of a wave depends on the ratio

of a stiffness factor and a density factor.
. . _

Q5 What is transferred along the direction of wave motion?

Q6 On what two properties of a medium does wave speed depend?

12.4 Periodic waves. Most of the disturbances we have considered

up to now have been short-lived and sudden. The waves set

up by single disturbances are called pulses, e.g., th_ snap-

ping of one end of a rope or the dropping of a stone in a

pond, or the sudden bumping of one end of a train. In each

case we see a pattern running along the medium with a certain

velocity. Continuous regular rhythmic disturbances in a

medium result from periodic vibrations which cause periodic

waves in that medium. A good example of such a vibration is



12.4

a swinging pendulum. The swinging is periodic in time, and

the pendulum bob executes simple harmonic motion. Another

example is the up-and-down motion of a weight at the end of

a good spring. The maximum displacement from the position of

equilibrium is called the amplitude A and is shown in Fig.

12.6 The time taken to complete one oscillation is called

the period and labeled T, while the frequency, or number of

vibrations per second, is symbolized by f.

What happens when such a vibration is applied to the end

of a rope? Let us think of an experiment where one end of

a rope is fastened to an oscillating weight. As the weight

vibrates up and down, we observe a wave "traveling" along the

length of the rope.

We observe moving crests and troughs along the length of

a uniform rope. The source executes simple harmonic motion

up and down, and ideally every point along the length of the

rope executes simple harmonic motion in turn. The wave tray- ,cl

els forward to the right as crests and troughs in turn re-

place one another, but the points along the rope simply cl
A

oscillate up and clown following the motion of the source.

The distance between any two consecutive crests or any two

consecutive troughs is always found to be the same along the

length of the rope. This distance is called wavelength

of the periodic wave, and is denoted by the Greek letter A

(lambda). As in Fig. 12.7, the amplitude of the wave is

represented by A.

When a single pulse moves irom one part of the medium to

another, it is fairly clear what is meant by the speed of

the pulse. All we need in principle is a clock and a meter

stick; watch the front edge of the pulse, and the speed of

the pulse is quickly found. But what if we cannot observe

the source or the beginning or ending of a wave train? We

will show that the speed of a periodic wave can be easily

found from its frequency and wavelength.

As a wave progresses, each point in the medium oscillates

periodically with the frequency and period of the source.

Figure 12.8 illustrates a periodic wave moving to the right,

frozen every 1/4 period. Follow the progress of the crest

that started out at the extreme left. The time it takes

this crest to move a distance of one wavelength is the time

it takes a point in the medium to go through one complete

oscillation. That is, the crest moves one wavelength A in

one period of oscillation T. The speed of the crest is

therefore

distance travelled A
v =

tine taken T

Fig. 12.6

Fig. 12.7

Fig. 12.8
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The wave generated by a simple
harmonic vibration is a sine
wave. It has the same shape as
a graph of the sine function
familiar in trigonometry.

12 4

The speed of this wave is the same thing as the speed of any

one of its crests. We say, therefore, that the speed of the

wave,

v wavelength A

period of oscillation T

1
But T = f , where f = frequency (see Unit 1, Chapter 4,

page 106). Therefore v = fa, or wave speed = frequency x

wavelength.

We can also write this relationship as A = i or f = T.

These expressions imply that, for waves of the same speed,

the frequency and wavelength are inversely proportional--a

wave of twice the frequency would have only half the wave-

length, and vice versa. This inverse relation of frequency

and wavelength will be useful in other units in this course.

Fig. 12.9 A "snapshot"
periodic wave moving to
right. Letters indicat
of points with the same
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In Fig

The crest

positions

12.9, sets of points are marked which are in step.

points C and C' have reached maximum displacement

in their vibrations in the upward direction. The

trough points D and D' have reached maximum displacement

positions in the downward direction. The points C and C'

have been chosen such that they have identical displacements

and velocities at any instant of time. Their vibrations are

identical and in unison. The same is true for the points D

and D'. Indeed there are indefinitely many such points along

the length of the wave which are vibrating identically. Note

p
/41

of a
the

e sets

phase.

that C and C'

are D and D'.

phase with one

separated from

nA, are all in

D

by definition are a distance A apart, and so

Points such as C and C' are said to be in

another as are also points D and D'. Points

one another through distances of A, 2A, 3A,...

phase with one another. These can be anywhere

along the length of the wave and need not correspond with

only the high or low points. For example, points such as

P, P', P", are all in phase with one another. They are each

separated from the other by the distance X.

Some of the points are exactly out of step. Point C

reaches its maximum upward displacement at the same time

that D reaches its maximum downward displacement. At the

instant that C begins to go down, D begins to go up. Points



such as these are called one-half wave out of phase with

respect to one another; C and D' also are one-half wave out

of phase. Points separated from one another through dis-

tances
2

3A

' 2

5A
'"'tancesof

2
----are one-half wave out of phase.

Q7 Of the wave variablesfrequency, wavelength, period, ampli-
tude and polarization--which ones describe

1) space properties of waves?
2) time properties of waves?

Q8 How can
regular sine

"wavelength" be defined for a wave that
wave?

Q9 A vibration of
1) What is the
2) What is the
3) If the wave

wavelength?
you need to

Isn't a

100 cycles per second produces a wave.
wave frequency?
period of the wave?
speed is 10 meters per second, what is the
(You can look back to find the relationship

answer this.)

CHO If points X and Y on a periodic wave are one-half wave "out
of phase" with each other, which of the following must be true?

a) X oscillates at half the frequency at which Y oscillates.
b) X and Y always move in opposite directions.
c) X is a distance of one-half wavelength from Y.

12.5 When waves meet: the superposition principle. So far we

have considered single waves in isolation from other waves.

What happens when two waves encounter each other in the same

medium? Suppose that two waves approach each other on a

rope, one traveling to the right and one traveling to the

left. The series of sketches in Fig. 12.10 show what hap-

pens. The waves pass through each other without either be-

ing modified. After the encounter, each wave shape looks

just as it did before and is traveling along just as it was

before. This phenomenon of passing through each other un-

changed is common to all types of waves. You can easily see

that it is true for surface ripples on water. (Look back,

for example, to the opening photograph for the chapter.)

You could infer that it must be true for sound waves by re-

calling that two conversations can take place across a table

without either distorting the other.

But what is going on during the time when the two waves

overlap? They add up. At each instant the rope's displace-

ment at each point in the overlap region is just the sum of

the displacements that would be caused by each of the two

waves alone. If two waves travel toward each other on a

rope, one having a maximum displacement of 1 cm upward and

the other a maximum displacement of 2 cm upward, the total

maximum upward displacement of the rope while these two waves

pass each other is 3 cm.

What a wonderf.aly simple behavior, and how easy it makes

everything! Each wave proceeds along the rope making its

0

Fig. 12.10 The superposition of
two rope waves. The dashed
curves are the contributions of
the individual waves. As an
example, in the fourth sketch
the displacement OA plus the
displacement OB gives the re-

sulting displacement of the
rope OC.
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Fig. 12.11

Fig. 12.12

12.5

own particular contribution to the rope's displacement no

matter what any other wave may be doing. If we want to know

what the rope looks like at any instant, all we need do is

add up the displacements due to each wave at each point along

the rope. We say that waves obey a superposition principle.

figure 12.11 shows another case of wave superposition. Notice

that when the displacements are in opposite directions, they

tend to cancel each other. This still fits the addition rule,

since one direction of displacement is considered negative.

The superposition principle applies no matter how many

separate waves or disturbances are present in the medium.

The examples shown in Figs. 12.10 and 12.11 illustrate the

principle applied when only two waves are present, but we can

discover by experiment that the superposition is just as valid

when there are three, ten, or any number of waves. Each wave

makes its own contribution and the net result is simply the

sum of all the individual contributions.

This simple additive property of waves permits us to add

waves graphically. You should check the diagrams with a ruler

to see that the net displacement (full line) is just the sum

of the individual displacements (dashed lines) in these two

cases.

We can turn the superposition principle around. If it is

true that waves add as we have described, then we can think

of a complex wave as the sum of a set of simpler waves. In

Fig. 12.12 at the left, a complex wave has been analyzed in-

to a set of three simpler waves.

The French mathematician Jean-Baptiste Fourier announced

a theorem in 1807 that any periodic oscillation, regardless

of its complexity, can be analyzed as the sum of a series of

simpler regular wave motions. Fourier was interested in the

theory of heat, sound, light and electricity, and his theorem

became a basic tool for harmonic analysis in all these areas.

Fourier showed the general validity of the superposition

principle.

C11 Two periodic displacement waves of amplitudes Al and A2 are
passing through a point P. What will be the greatest displace-
ment of point P?

lo12 The superposition principle states that wave amplitudes add.
Wow then can waves cancel each other out?

Jean-Baptiste Fourier (1768-1830),
a tailor's son who became a bril-
liant mathematician in Napoleonic
France.



12.6 A two-source interference pattern. We can see the superposi-

tion principle at work in the important wave phenomenon known

as interference. Figure 12.13 is a photograph of ripples

spreading away from a small sphere, vibrating up and down

into the water surface. What we see here is the spatial

pattern of the water level at an instant. Fig. 12.14 is a

photograph of the water surface when it is agitated by two

vibrating spheres. The two small sources go through their

up and down motions together, that is, the sources are in

phase. The photograph catches the pattern of the overlap-

ping waves at one instant, called an interference pattern.

Can we interpret what we see in this photograph in terms

of what we already know about waves? And can we describe

how the pattern will change with time? If you tilt the page

so that you are viewing Fig. 12.14 from a glancing direction,

you will see more clearly some spokes or strips of intermedi-

ate shade neither as bright as the crest, nor as dark as

the trough of waves. This feature can be easily explained by

the superposition principle.

.yt

The ripple tank, being used here by students to
observe a circular pulse, can be fitted with
vibrator to produce periodic wavetrains. Fig.
12.13 is an instantaneous photograph of the
shadows of ripples produced by a vibrating point
source. For Fig. 12.14 there were two point
sources vibrating in phase.

12.6

Drawing of surface wave on
water.

A "ripple tank" set-up for
viewing the behavior of waves.

Fig. 12.13

Fig. 12.14
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Fig. 12.15

Superposition of
circular pulses.

Fig. 12.16 Diagram representing the
superposition of pulses in Fig.
12.15.. In (a) two crests are
arriving at the vertical line.
In (b) a crest is arriving together
with a troue. The dark and half-
dark balls show the net displacement.
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Suppose that two sources produce identical pulses at the

same instant, each pulse containing one crest and one trough

as shown in Fig. 12.15. The height of each crest above the

undisturbed level is equal to the depth of each trough below.

The sketches show the patterns of the water surface after

equal time intervals. As the pulses spread out, the points

at which they overlap move too. In the figure we have placed

a completely darkened circle wherever a crest overlaps another

crest, a blank circle wherever a trough overlaps another

trough, and a half-darkened circle wherever a crest overlaps

a trough. Applying the superposition principle to this situa-

tion, we conclude that the water level is highest at the com-

pletely darkened circles, lowest at the blank circles, and at

the equilibrium height at the half-darkened circles. Each

of the sketches in Fig. 12.15 represents the spatial pattern

of the water level at an instant. The dotted curves in the

last sketch in Fig. 12.15 are the paths followed by the over-

lap regions during the time covered by the earlier sketches.

At points in Fig. 12.15 which are marked with darkened and

blank circles the two pulses arrive in phase, as shown in

Fig. 12.16(a). The waves reinforce each other causing a

greater amplitude and are thus said to interfere constructive-

ly. All such points are at the same distance from each

source.

At the points in Fig. 12.15 marked with half-darkened cir-

cles, the two pulses arrive completely out of phase, as shown

in Fig. 12.16(b). Here the waves are said to interfere de-

structively, leaving the water surface undisturbed. All such

points are one crest-trough distance further from one source

than from the other.

Now we can interpret the photograph of Fig. 12.14. The

centers of what we called "strips of alternating character"

are areas where waves cancel or reinforce each other, called

nodal or antinodal lines, respectively. Look closely at

Fig. 12.17 and notice its symmetry. The central spoke or

strip labeled Ao is an antinode where reinforcement is com-

plete. As the waves spread out, points on these lines are

displaced up and down much more than they would due to either

wave alone. The outside nodes labeled Ny represent lines

where destructive interference is at a maximum. As the waves

spread out, points on these lines move up and down much less

than they would due to either wave alone. You should compare

the drawing in Fig. 12.17 with the photograph in Fig. 12.14

to make sure you know which are the antinodal lines and

which are the nodal lines.
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Fig. 12.17 A "snapshot" diagram

of the interference pattern due
to two in-phase periodic sources
separated by four wavelengths.
The letters A and N designate
antinodal and nodal lines. The
dark cir:lzs indicate where
crest is meeting crest, the

blank circles where trough is
meeting trough, and the half-
dark circles where crest is
meeting trough.

Fig. 12.18
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If we know the wavelength A and the source separation,

then we can calculate the angles that these lines make with
the central line Ao. Or, if we know these angles and the

source separation, then we can calculate the wavelength. The
observation of a two-source interference pattern allows us
to make a wavelength calculation, even if we are unable to
see the waves directly! For example, an interference pattern
in sound can be created with two loudspeakers being driven
in phase, and nodal and antinodal points can be located by
ear. But if you do the experiment indoors, you may discover

unexpected nodal points or "dead spots" caused by reflections
from walls or other obstacles.

What determines the positions of the nodal and
antinodal lines? Figure 12.18 shows part of the pattern

of Figure 12.17. At any point P on an antinodal line, the

waves from the two sources arrive in phase. This occurs
where P is some whole number of wavelengths further from

one source than from the other; that is, where the dif-

ference in distance S2P - ff7r) = nA, A being the wave-

length and n being any whole number (including zero). At
any point Q on a nodal line, the waves from the two

sources arrive exactly out of phase. This occurs where

$
5Q is some odd number of half-wavelengths (7 A, 7 A, 7 A,

etc.) further from one source than from the other; that is,
where SiQ - S2Q = (n + A. If the distance 2. from mid-

way between the sources to a detection point is much

larger than the source separation d, so that the point
lies on the relatively straight part of the nodal or anti-
nodal line, then there is a simple relationship between

the node position, the wavelength A and source separation
d. The details of the relationship and the calculation of
wavelength are described on the next page.



Calculating Wave Lengths from an Interference Pattern

d = separation between sources Si and S2 (they
may be two sources that are truly in phase,
or two slits through which a previously
prepared wave front passes)

= distance from sources to detection line
parallel to the two sources

x = distance from center line to point P
along the detection line

Waves reaching P from Si travel farther than

waves reaching P from S2. If the extra distance

is X (or 2%, 3', etc.), the waves will arrive in

phase and P is a point of strong wave disturbance.
1 3 5

If the extra distance is TX (or 7X, 7%, et.),

the waves will arrive out of phase and P is a

point of weak wave disturbance.

With P as center we draw an arc of a circle of

radius PS2; it is indicated on the figure by the

dotted line S2M. Then line PS2 = line PM and

therefore the extra distance that the wave from

SI travels is the length of the segment SIM.

Now if d is very small compared to 2., the

circular arc S2M is a very small piece of a large

circle and is practically the same as a straight

line. Also the angle S1MS2 is very nearly 90°,

so that triangle SiS2M can be regarded as a

right triangle. Furthermore angle S1S2M is

equal to angle POQ. Then right triangle S1S2M

is similar to right triangle POQ.

So S M
1

x
(12.1)

S
I
S
2

OP

But S
1
M is the extra distance traveled by the

wave from source SI. For P to be a maximum of

disturbance, S
1

M must equal X (or 2X, 3X, etc.),

S1S2 is the source separation d. OP is ver:,

nearly equal to t. Then Eq. (12.1) becomes

and

x

T
A =

d
x

(12.2)

(12.3)

If we measure the source separation d, the

distance 4 and the distance x to the first

disturbance maximum beside the center, we can

calculate the wavelength from Eq. (12.3).

This analysis allows us to calculate the

wavelength of any wave phenomenon, whether it

is water ripples, sound, light, etc.; it will

therefore be found very useful in later Units.

d

x
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Q13 Are nodal lines in interference patterns regions of cancel-
lation or regions of reinforcement?

Q14 What are antinodal lines?

Q15 Nodal points in an interference pattern occur where
a) the waves arrive "out of phase."
b) the waves arrive "in phase."
c) the point is equidistant from the wave sources.
d) the point is one-half wavelength from both sources

Q16 Under what circumstances do waves from two in-phase sources
arrive at a point out of phase?

12.7 Standing waves. If both ends of a rope or spring are shaken

very carefully, with the same frequency and same amplitude,

a very interesting phenomenon can be produced. The inter-

ference of the identical waves coming from both ends will

result in certain points on the rope not moving at all! In

between these nodal points, the rope oscillates back and forth

with no apparent propagation of wave patterns. This phenome-

non is.called a "standing wave" or "stationary wave" and is

pretty to watch. (Using the superposition principle, you

can show that this is just what would be expected from the

addition of the two oppositely traveling waves.)

The same effect can be produced by the interference of a

continuous wave with its reflection. To.make standing waves,

there do not have to be two people shaking the opposite ends

of the rope; one end can be tied to a hook on a wall. The

train of waves sent down the rope by shaking ore end will re-

flect back frcm the fixed hook and interfere with the new,

oncoming wave and can produce the standing pattern of nodes

and oscillation. In fact, you can go further and tie both

ends of the rope to hooks and pluck or hit the rope. From

the plucked point a pair of waves go out in opposite direc-

tions and then reflect back and forth from the fixed hooks.

The interference of these reflected waves traveling in oppo-

site directions can produce a standing pattern just as before.

Standing waves on guitars, violins, pianos and all other

stringed instruments are produced in just this fashion. Be-

cause the vibrations of strings are in standing waves, the

vibration frequencies depend on the speed of wave propagation

along the string and the length of the string.

The connection between length of string and musical tone,

recognized over two thousand years ago, was of the greatest

importance in contributing to the idea that nature is built on

mathematical principles. When strings of equal tautness and

diameter are plucked, pleasing harmonies result if the lengths

of the strings are in the ratios of small whole numbers: Thus

the ratio 2:1 gives the octave, 3:2 the musical fifth and 4:3

the musical fourth. This striking connection between music

EMI
A vibrator at the left produces
a wave train that runs along

the rope and reflects from the
fixed end at the right. The
sum of the oncoming and the re-
flected waves is a standing
wave pattern. This stroboscopic
photograph shows 12 instanta-
neous positions of the rope.

Painting on a Greek vase
from 5th century B.C.

Museum of Fine Arts, Boston
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and numbers encouraged the Pythagoreans to search for other

numerical harmonies in the universe. The Pythagorean ideal

strongly affected Greek science and became an inspiration for

much of Kepler's work. In a generalized form, the ideal

flourishes to this day in many beautiful applications of

mathematics to physical experience.

Using nothing more than the superposition principle, we

can now state the harmonic relationship much more precisely.

Standing patterns can be produced by reflections from the

boundaries of a medium only for certain wavelengths (or fre-

quencies). In the example of a string fixed at both ends,

the two ends are fixed and so must be nodal poin:s. Thus

the longest traveling waves that can set up standing waves

on a rope will be those for which one-half wavelength just

fits on the'rope. Shorter waves can produce- standing pat-

terns with more nodes, but only when some number of one-half

wavelengths just fit on the rope. The shorter wavelengths

correspond to higher frequencies, so the principle can be

stated that on any bounded medium, only certain frequencies

of standing waves can be set up. On an idealized string,

there are in principle an unlimited number of frequencies,

all simple multiples of the lowest frequency. That is, if

fo is the lowest possible frequency of standing wave, the

other possible standing waves would have frequencies 2f0,

3f0,.... These higher frequencies are called "overtones" or

"harmonics" of the "fundamental" frequency fp.

In real media, there are practical upper limits to the

possible frequencies and the overtones are not exactly simple

multiples of the fundamental frequency (that is, the overtones

are not s..rictly harmonic). In more complicated systems than

stretched strings, like the enclosure of a saxophone, the

overtones may not be even approximately harmonic. As you

might guess from the superposition principle, standing waves

of different frequencies can exist in a medium at the same

time. A plucked guitar string, for example, will oscillate

in a pattern which is the superposition of the standing waves

of many overtones. The relative oscillation energies of the

different overtones of string instruments or in the enclosure

of horns and organ pipes determine the "quality" of the sound

they produce. The difference in the balance of overtones is

what makes the sound of a violin distinct from the sound of

a trumpet, and both distinct from a soprano voice, even if

all these are sounding with the same fundamental frequency.

Q17 When two identical waves of frequency f, traveling in oppo-
site directions, interfere to produce a standing wave, what is
the motion of the medium at

1) the nodes of the standing wave?
2) the antinodes (loops) of the standing wave?

------
--------- - -------
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A rubber "drumhead" first at rest, then made to vibrate in
each of four of its many possible modes.
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Q18 If the two interfering waves have wavelength A, what is

the distance between the nodal points of the standing wave?

Q19 What is the wavelength of the longest traveling waves which
can produce a standing wave on a string of length L?

Q20 Can standing waves of any frequency, as long as it is higher
than the fundamental, be set up in a bnunded medium?

12.8 Wave fronts and diffraction. Waves go around corners. We

are so used to sound waves doing this that we scarcely

notice it. This phenomenon of the energy of waves spread-

ing into what we would expect to be "shadow" regions is

called diffraction.

Once again we turn to water waves to see this point best.

From among all the arrangements of barriers that can result

in diffraction, we will concentrate on two. The first of

these is shown in Fig. 12.20, which is a photograph of

straight water waves being diffracted through a narrow slit

in a straight barrier. The barrier is parallel to the wave's

crest lines, and the slit is less than one wavelength wide.

Figure 12.21 is a photograph of the second barrier arrange-
ment we want to investigate. There are two narrow slits in

the barrier, and the pattern of the diffracted wave is the

same as that given by two point sources which are in phase.

We get the same kind of result no matter how many narrow

slits we put in the barrier placed parallel to the incoming

wave. That is, the pattern of the diffracted wave is just

that which would be produced if a point source were put at

the center of each slit position, with such sources in phase.

We can describe these and all other diffraction patterns

if we understand a characteristic of waves, first enunciated

by Christiaan Huygens in 1678 and now known as Huygens' prin-

ciple. Before giving a statement of the principle, we need

the definition of a wave front.

What we have called crest lines and trough lines of water

waves are special cases of wave fronts. For a water wave, a

wave front is an imaginary line along which every point on

the water's surface is in exactly the same stage of its vi-

brational motion, that is, in the same phase. Crest lines

are wave fronts, since every point on the water's surface

along a crest line has just reached its maximum displacement

upward, is momentarily at rest, and will start downward an

instant later. For "straight-line" water waves, all wave

fronts are straight lines parallel to each other. For circu-

lar waves, the wave fronts are all circles.

For sound waves created by a handclap, the wave fronts be-

Diffraction of ripples around
the edge of a barrier.

jCs

Fig. 12.20 Diffraction of
ripples through narrow opening.

Fig. 12.21 Diffraction of
ripples by two narrow openings.
The diffracted waves spread out
and overlap, producing the same
interference effect as we stud-
ied for two actual sources in
Section 12.6.
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come at a distance very nearly spherical surfaces. At large

distances from such a source of sound, i.e., where the radii

of the spherical wave fronts are large, a small section of

the wave front is nearly flat. Thus circular or spherical

wave fronts become virtually straight-line or flat-plane

wave fronts at great distances from their sources.

Now here is Huygens' principle as it is generally stated

today: every point on a wave front may be considered to be-

have as a point source for waves generated in the direction

of the wave's propagation. As Huygens said:

There is the further consideration in the emanation
of these waves, that each particle of matter in which
a wave spreads, ought not to communicate its motion
only to the next particle which is in the straight line
drawn from the luminous (source) point, but that it al-
so imparts some of it necessarily to all others which
touch it and which oppose themselves to its movement.
So it arises that around each particle there is made a
wave of which that particle is the center.

The one-slit and two-slit diffraction patterns are cer-

tainly consistent with Huygens' principle. In the two-slit

case (Fig. 12.21), each wave front arrives at the two

slits at the same time, so the oscillations in the slit

are in phase. That is why the interference pattern produced

by the waves diffracted through these slits matches that

produced by two point sources which oscillate in phase.

REFRACTION
OVER SHOALS

Diffraction of ocean waves at a breakwater.



We can understand all diffraction patterns if we keep A o
both Huygens' principle and the superposition principle in

mind. For example, consider a slit, wider than one wavelength, \
in which case the diffraction pattern contains nodal lines.

figure 12.22 shows why nodal lines appear. There surely exist

points like P that are just A farther from one side of the

slit A than from the other side B. In that case, AP and OP

differ by one-half wavelength A /2. In keeping with Huygens'

principle, we imagine the points A and 0 to be in-phase

point sources of circular waves. But since AP and OP differ

by A /2, the two waves will arrive at P completely out of

phase. So, according to the superposition principle,

waves. from A and 0 will cancel at point P.

But the argument made for the pair "sources" at A and

0 can also be made for the pair consisti. j of the first point

to the right of A and the first to the right of O. In fact,

the same is true for each such matched pair of points all the

way across the slit. Since the waves originating at each

p 4.r cancel, the point P is a nodal point on a nodal line.

Then we should see nodal lines in the diffraction pattern of

a slit wider than A, and we do, as Fig. 12.23 shows. If the

slit width is less than A, then there can be no nodal point,

since no point can be a distance A farther from one side of

the slit than from the other. Slits of widths less than A

behave nearly as point sources. The narrower they are, the

more nearly their behavior is that of point sources.

We can measure the wavelength of a wave by investigating

the interference pattern where the diffracted waves overlap.

For example, we can analyze the two-slit pattern (Fig. 12.21)

in just the same way we analyzed the two-source interference

pattern in Sec. 12.6.

The larger the wavelength compared to the distance between

the slits, for two-slit interference, the more the interfer-

ence pattern srreads out. That is, as A increases or d de-

creases, the nodal and antinodal lines make increasingly

large angles with the straight-ahead direction. Similarly,

for single-slit diffraction, the pattern spreads when the

ratio of wavelength to the slit width increases. For a

given slit width, the longer wavelength diffraction is the

more pronounced. That is why, when you hear a band playing

around a corner, you hear the bass drums and tubas better

than the piccolos and cornets even if they have equal energy

output.

Sound waves have been understood to behave according to

these rules of interfprence and diffraction for a long time,

but light, as we shall see in Chapter 13, was only proven to

exhibit interference and diffraction after 1800. The reason

Fig. 12.22
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for this delayed discovery is primarily the fact that diffrac-

tion effects are much less for very short wavelengths. Meas-

urements of light had to be extraordinarily accurate to show

that light can bend around corners and can be made to inter-

fere. These properties of light seem contrary to everyday

experience, in contrast to the next two properties of wave

motion we shall consider, namely reflection and refraction.
.

Q21 What characteristic do all points on a wave front have in

common?

CE22 State Huygens principle.

Q23 Why can't there be nodal lines in a diffraction pattern from
an opening less than one-half wavelength wide?

Q24 What happens to the diffraction pattern from an opening as
the wavelength increases?

Q25 Diffraction of light went unnoticed for centuries because
a) light travel.) so fast.
b) light has such a short wavelength.
c) light was seldom sent through holes,
d) light waves have a very small amplitude,

12.9 Reflection. In addition to passing through one another and

spreading around obstacles in their paths, waves also bounce

away wherever they reach any boundary to their media. Echoes

are familiar examples of the reflection of sound waves. The

property of reflection is shared by all waves, and again the

superposition prin-iple, as well as Huygens' principle, will

help us understand what is happening when reflection occurs.

We send a wave down the rope toward an end which is tied

to a massive solid object, such as a wall in a building. The

force that the wave exerts at the rope's end cannot do any

work when the end does not move. If the rope is tied tightly

to a hook securely fastened to a massive wall, the energy

carried in the wave will not be absorbed at the rope's end.

Then the wave will bounce back or be reflected, and ideally

it will continue to carry the same energy.

What will the wave look like after it is reflected? The

striking result is that the wave is flipped upside down on

reflection. As the wave comes in from left to right and en-

counters the fixed hook, the hook must exert a force on the

rope while the reflection is taking place. The description

of the detailed way in which that force varies in time is

complicated. The net effect is that an inverted wave of the

same form is sent back down the rope.

------\..1C

So far we have been dealing with reflections of one-dimen-

- sional waves. If we now turn our attention to the two-dimen-

sional water surface waves, we can have variously shaped

crest lines, variously shaped barriers from which to get re-Fig. l2.?.4
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flections, and various directions in which the waves can ap-

proach the barrier.

If you have never watched closely as water waves are re-

flected from a fixed barrier, you should do so before another

day passes. Any still pool or water-filled wash basin or

tub will do to watch the circular waves speed outward, reflect

from rocks or walls run through each other, and finally die

out.

Dip your finger tip into and out of the water quickly, or

let a drop of water fall from your finger into the water.

Now watch the circular wave approach and then bounce off a

straight wall or a board. The long side of a tub is fine as

a straight barrier.

Figure 12.25 pictures what you will see, where S is the

point of the waves' 'source. Three crests are shown in the

sketches. You may see more or fewer than three good ones,

but that does not matter. In the upper sketch, the outer

crest is approaching the barrier at the right. The next two

sketches show the positions of the crests after first one

and then two of them have been reflected. The dashed curves

in the last sketch are an attempt to show that the reflected

wave appears to originate from a nonexistent source S' behind

the barrier, S' being as far behind the barrier as S is in

front of it. The imaginary source at the point S' is called

the image of the source S.

We looked at the reflection of circular waves first, be-

causc that is what one is likely to notice first when study-

ing water waves. But it is easier to see a general principle

in operation when we look at a straight wave front reflecting

from a straight barrier.

If we push a half-submerged ruler or any straightedge

quickly back and forth parallel to the water surface, we will

generate a wave in which the crests lie along straight lines

over a large fraction of the ruler's length. Figure 12.26 (a)

shows what happens when this wave reflects obliquely from a

straight barrier. The first sketch shows three crests ap-

proaching the barrier; the last shows the same crests as

they move away from the barrier after the encounter. The

two sketches between show the reflection process at two dif-

ferent intermediate instants.

Fig. 12.25

Fig. 12.26 (a)

135



(b)

(c)

Fig. 12.27 The reflection of
parallel wave fronts from
circular and parabolic
boundaries.

Fig. 12.26(b)

The sketches in Fig. 12.26 (b) include dashed construction

lines which were drawn so that they are perpendicular to the

wave's crest lines. Imaginary lines of this kind are called

rays, and they are often helpful when describing wave behav-

ior. The important feature of a ray is that the wave's veloc-

ity at any point lies along the ray at that point.

The behavior of the wave upon reflection, as pictured in

Fig. 12.26, is described easily in terms of rays. As shown

in the first sketch, a representative ray for the incident

wr,ve makes the angle 0i with a line drawn perpendicular to

the reflecting surface. (The perpendicular is the dotted

line in the figure.) A representative ray for the reflected

wave makes the angle Or with the same perpendicular line.

The experimental fact is that these two angles are equal; the

angle of incidence Oi is equal to the angle of reflection Or.

You can prove it for yourself in the laboratory.

Reflection also occurs from other kinds of surfaces than

plane reflectors or mirrors. Many other kinds of wave re-

flectors are in use today, such as radar antennae and infra-

red heaters. Figure 12.27 (a) & (b) shows how straight-line

waves reflect from two circular reflectors. A few incident

and reflected rays are shown. The dotted lines are perpen-

diculars to the barrier surface; in these cases the perpen-

diculars are along radius lines of the two circles. While

rays reflected from the half circle are headed off in all

directions, the rays reflected from the small segment of a

circle come close to converging toward a single point. How-

ever, a parabolic curve will focus straight-line waves pre-

cisely; similarly, a parabolic surface will reflect plane

waves to a sharp focus. An impressive example of this

is the radio telescope, where huge reflectors are used to de-

tect faint radio waves from space. Conversely, spherical

waves originating at the focus will become plane waves on re-

flection from a parabolic reflector. The automobile headlamp

and the flashlight reflector are familiar examples.
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Q26 Why is a "ray" an imaginary line?

Q27 What is the relationship between the angle at which a wave
front strikes a barrier and the angle at which it leaves?

Q28 What shape of reflector can converge parallel wave fronts to
a sharp focus?

Q29 What happens to wave fronts originating at the focus of such
a reflecting surface?

12.10 Refraction. What happens when a wave propagates from one

medium to another medium in which its speed of propagation

is different? We begin with the simple situation pictured

in Fig. 12.28 where two one-dimensional pulses approach a

boundary separating two media. We are assuming that the

speed of the propagation in medium 1 is greater than it is

in medium 2. We might imagine the pulses to be in a light

rope (medium 1) tied to a relatively heavy rope or slinky

(medium 2). Part of each pulse is reflected at the boundary

Fig. 12.28. A pair of pulses en-
countering a medium in which the
propagation speed is reduced.

-+

Fig. 12.29. A continuous wave-
train entering a medium in which
the wave speed is reduced. The
effects of the reflected wave
train have been neglegted.
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with the reflected component flipped upside down relative to

the incident pulse. (We might have expected this, since the

heavier rope is trying to hold the boundary point ced in a

way analogous to the rope reflection at a fixed point dis-

cussed earlier.) But we are not particularly interested

here in the reflected wave. We want to see what happens to

that part of the wave which continues into the second medium.

As shown in Fig. 12.28, the transmitted pulses are closer

together in medium 2 than they are in medium 1. Is it clear

why that is so? The speed of the pulses is less in the heav-

ier rope, so that the second pulse is catching up during the

time it is still in the light rope and the first pulse is

already in the heavy rope. In the same way that the two

pulses come closer and stay closer, each separate pulse is

itself squeezed into a narrower spatial form. That is, while

the front of the pulse begins to enter the region of lesser

speed, the back of the pulse is still moving with the greater

speed, and thus crowding the pulse into a narrower space.

Something of the same sort happens to a periodic wave at

such a boundary. Figure 12.29 pictures this situation where,

for the sake of simplicity, we have assumed that all of the

wave is transmitted, and none of it reflected. Just as the

two transmitted pulses were brought closer and each pulse

was squeezed into a narrower region in Fig. 12.28, so here

the spatial pattern is squeezed tighter too. That means that

the wavelength X2 of the transmitted wave is shorter than the

wavelength XI of the incoming, or incident wave.

Although the wavelength changes when the wave passes ...cross

the boundary, the frequency of the wave certainly cannot. If
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the rope is to be unbroken at the boundary, then the pieces

immediately adjacent to the boundary and on either side of it

must certainly go up and down together. The frequencies of

the incident and transmitted waves must, then, be equal. So,

since there is no point to labeling them fl and f2, we shall

simply label both of them f.

We can write down our wavelength, frequency and speed re-

lationship for both the incident and transmitted waves sepa-

rately:

Alf = vi and 12f = V2.

If we divide one of these by the other, cancelling the f's,

we get

Al VI

A2 v2

which tells that the ratio of the wavelengths in the two me-

dia equals the ratio of the speeds.

We can make the same sort of boundary for water ripples.

Experiments show that the waves move more slowly in shallower

water. A boundary can be created by laying a piece of

plate glass on the bottom of a ripple tank to make the

water shallower there. Figure 12.30 shows the case where

the boundary is parallel to the crest lines of the incident

wave.

Figure 12.30(a) is a three dimensional picture of what

happens at the boundary. Figures 12.30(b) and (c) are cross-

section and top views. The photograph Fig. 12.30(d) shows

what is actually seen in a ripple tank. The results are the

same as those we have already described when a heavy rope is

tied to the end of a light one. In fact, the edge view shown

in Fig. 12.30(b) could as well be a representation of the

rope case.

(b)

(a)

Oaf Mr.
(c)

Fig. 12.30 Refraction of water
ripples over a glass plate.

1

(d)
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Fig. 12.31 Refraction
of water ripples over
glass plate.

ti

Fig. 12.32. Diagram of rays for
refracting wavefronts. O1 and
02 are the angles the rays make
with a line (dotted) perpendic-
ular to the boundary.

The ratio 01/02 is roughly the
same as v 2 /vi. The exact rela-
tionship is sin 0 /sin 02= v2/v 1.
(See Study Guide 12.3.)

Refraction of
ocean waves

approaching
shore.
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Water waves offer a possibility not present for rope waves.

We can arrangc to have the crest lines approach the boundary

at an angle. That is, we can see what happens when the

boundary is not parallel to the crest lines. The photograph

in Fig. 12.31 shows what happens when a ripple tank wave ap-

proaches the boundary at the angle of incidence 01. Not

only do the wavelength and speed change as the wave passes

through the boundary, but the direction of the wave propaga-

tion changes too. Figure 12.32 illustrates the way this

comes about. As each part of a crest line in medium 1 enters

medium 2, its speed lessens, and, thus, the crest lines in

medium 2 are turned from the orientation they had in medium 1.

When a wave passes into a medium in which the wave

velocity is reduced, the wave fronts are turned so that they

are more nearly parallel to the boundary. This is what is

pictured in Fig. 12.31, and it accounts for something that

you may have noticed if you have been at a beach at an ocean

shore. No matter in what direction the waves are moving

far from the shore, when they near the beach their crest-

lines are practically parallel to the shoreline. A wave's

speed is steadily being reduced as it moves into water that

gets gradually more shallow. So the wave is being refracted

continuously as if it were always crossing a boundary

between different media, as indeed it is. The refraction

of sea waves is so pronounced that wave crests can curl

around a small island with an all-beach shoreline and provide

surf on all sides.
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Q30 If a periodic wave slows down on entering a new medium, what
happens to (1) its frequency? (2) its wavelength? (3) its direction?

Q31 Sketch roughly what happens to a wave train which enters a
new medium where its speed is greater.

12 11

12.11 Sound waves. Sound waves are mechanical disturbances that

propagate through an elastic medium, such as the air, as

longitudinal or compressional displacements of particles in

that medium. Whether the substance of the medium is in a

solid, liquid, or gaseous state, longitudinal waves of pres-

sure from some vibrating source will move through the coop-

erating particles of that material medium. If these waves

strike the ear, they can produce the sei,sation of hearing.

The biology and psychology of hearing is as important to

the science of acoustics as is the physics of sound. But

for now you may also be interested in the ways in which sound

waves exhibit all the properties of wave motion that we have

considered thus far in this chapter.

Sound waves can be used to demonstrate all but one of the

properties of wave motion in general. The frequencies, veloc-

ities, wavelengths and amplitudes of periodic sound waves can

be measured, and they can be shown to produce reflection, re-

fraction, diffraction, interference and absorption. Only

the property of polarization is missing, because sound waves

are longitudinal compression waves.

Vibrating sources for sound waves may be as simple as a

tuning fork or as complex as the human larynx with its vocal

cords. Sound energy may be transferred through materials as

diverse as a quartz crystal and the earth's crust, water of

the sea or extremely thin helium gas; in short, any material

medium may transmit sound vibrations.

Pulses of sound waves may meet our ears as "clicks" or

"dits" or "barns." But when we hear steady tones or buzzes

or hums that do not fluctuate, you may be sure that a peri-

odic vibration is generating a periodic wave or set of waves.

Audible simple harmonic motion is best illustrated by the

steady "pure tone" given off by a tuning fork, although today

electronic devices can generate far more "pure" single-

frequency sounds than can a tuning fork. The "pitch" of a

sound we hear depends on the frequency of the wave.

People can hear waves with frequencies between about 20

cycles per second and 20,000 cycles per second. Dogs can

hear over a much wider range (15-50,000 cns), and, as men

have only recently learned, bats and porpoises hear and feel

frequencies up to about 120,000 cps.

See "Musical Instruments and
Scales" and "Founding a Family
of Fiddles" in Project Physics
Reader 3.
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See "Silence Please" in Project
Physics Reader 3.
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Loudness or volume is a subjective estimate of intensity,

and the latter is defined in terms of power, that is, as the

number of watts per square centimeter falling on a surface

perpendicular to a wavefront. So adaptable is the human ear

that an exponential scale is used to measure loudness of

sound. Figure 12.38 illustrates the wide range of intensi-

ties of familiar sounds, relative to a threshold level of

10-16 watts per square centimeter.

Relative
Intensity Examples

1 Threshold of hearing (in anechoic chambers)
101 Normal breathing
102 (Rustling) leaves in a breeze
103 Empty movie house
104 Residential neighborhood at night
105 Quiet restaurant
106 Two-person conversation
107 Busy traffic
108 Vacuum cleaner
109 Water at foot of Niagara Falls
1010 Subway train
1011
1012 Propeller plane at takeoff
1013 Machine-gun fire, close range
1014 Military jet at takeoff
1015
1016 Wind tunnel (test facility)
1017 Future space rocket (at lift -off)

Fig. 12.38 Levels of noise intensity above 1012 times threshold
intensity can be felt as a tickling sensation in the ear; beyond
1013 times threshold intensity, the sensation changes to pain and
may damage the unprotected ear.

That sound waves take time to travel from source to re-

ceiver has always been fairly obvious. Sights and sounds

are often closely associated in the same event (lightning

and thunder, for instance), and sound is usually late com-

pared to the sight. In 1640 the French mathematician Marin

Mersenne first computed the speed of sound in air by timing

echoes over a known distance.

It took another seventy years of refinements before

William Derham in England, comparing cannon flashes and

noises across 12 miles, came close to the modern measurements:

sound in air at 68° F moves at 1,125 feet per second.

As for all waves, the speed of sound waves depends on the

properties of the medium the temperature, the density and

the elasticity. Sounds travel faster in liquids than in

gases, and faster still in solids, because in each state the

elasticity of the medium is greater. In sea water, its speed

is about 4,800 ft/sec; in steel, it is about 16,000 ft/sec;

its fastest known speeds occur in quartz, about 18,000 ft/sec.
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Interference of sound waves is evident in the acoustically

"dead" spots found in many large halls, such as railroad ter-

minals, ballrooms, stadiums and auditoriums. Another inter-

esting example of sound interference is the phenomenon known
as beats. When two notes of slightly different frequency

are heard simultaneously, they interfere to produce beats,

or an intermittent hum. Piano tuners are able to make very

fine adjustments in pitch by listening to beats.

Diffraction is perhaps the most distinctive property of

sound waves. Sound waves readily turn around all corners

and bend around all barriers to bathe the listener anywhere

within range and within the same media. This behavior of

sound waves is consistent with Huygens' principle. Any

point on a sound wave front meeting an obstacle may act as

a new source for a new series of waves radiating in all di-

rections from that point. The ability of sound to diffract

through narrow openings or diffract around several sharp

corners is surprisingly potent. Sound reflects, like rope

or water waves, wherever it encounters a different medium

or a boundary to its confinement. Echo chamber effects,

often artificially produced by electronics, have become fa-

miliar to listeners who enjoy popular music. The architec-

tural accidents called "whispering galleries" (there is one

under the dome of the U. S. Capitol) show vividly how sound

waves can be reflected to a focus. The weirdly "live" sound

of a bare room results from the multiple reflections of waves

which are usually absorbed by furniture, rugs and drapes.

Scientists have recently devised rooms which maximize echoe

called reverberation chambers, and others which minimize

them, called anechoic chambers. Both are special laborato-

ries of great value to the study of acoustics.

Refraction of sound accounts for the fact that we can some-

times see lightning without hearing thunder. It also accounts

for most of the shortcomings of sonar devices (sound naviga-

tion and ranging) used at sea. Sonic refraction is used for

a variety of pur-oses today, among them the study of the

earth's deep structure and seismic prospecting for fossil

fuels and minerals.

In 1877 the third Lord Rayleigh wrote The Theory of Sound,

which is often considered the culmination of Newtonian mech-

anics applied to energy transfer. Only a decade earlier the

great German physicist physiologist Hermann von Helmholtz

had written The Sensations of Tone, a detailed study of mu-

sic and hearing. Together these two scientists established

the science of sound on a firm Newtonian basis. Acoustics

was a marvelous integration of Newtonian science.

An example of "beats." Two

wave trains of different fre-
quencies fl and f

2
interfere

to produce a wave which fluc-
tuates in amplitude at a fre-

quency (f1 - f 2 ) .

An anechoic chamber being
used for research in acoustics.

Adjustable ceiling surface
at the Lincoln Center for
the Performing Arts are
used to control the acous-
tical properties of the
hall.
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All this happened before electromagnetic and atomic

physics had progressed very far. With the advent of radio

waves, of the vacuum tube and electronics, of ultrasonic and

infrared research, and of quantum and relativistic physics,

the science of acoustics gradually came to seem a very

restricted field of study which might be called "small

amplitude fluid mechanics." The wave viewpoint, however,

continued to grow in importance.

Q32 List five wave behaviors that can be demonstrated with sound
waves.

Q33 Why can't sound waves be polarized?

. _



12.1 Pictured are two idealized rope waves at the instants be-
fcre and after they overlap. Divide the elapsed time into four
equal intervals and plot the shape of the rope at the end of
each interval.
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\ /
12.2 Repeat Exercise 12.1 for the two waves pictured below.

G
12.3 The diagram below shows two successive wave fronts, AB and

CD, of a wave train crossing an air-glass boundary.

a) Label an angle equal to angle of incidence 0A.

b) Label an angle equal to angle of refraction 8B.

c) Label the wavelength in air AA.

d) Label the wavelength in glass AB.

e) Show that vA/vB = AA/AB.

f) If you are familiar with trigonometry, show that

sin 8A/sin eB = xA/xB.

12.4 A straight-line wave approaches a right-angle reflecting
barrier as shown in the figure. Find the shape, size and direc-
tion of propagation of the wave after it is completely reflected
by the barrier.

/
/



12.5 A straight-line wave in a ripple tank approaches a boundary
between deep and shallow water as shown. Describe the shape of
the wave as it passes through the boundary and then as it con-
tinues in the shallow water.

w

12.6 A periodic ripple-tank wave passes through a straight bound-
ary between deep and shallow water. The angle of refraction is
30°. The propagation speed in the deep water is 0.35 m/sec, and
the frequency of the wave is 10-cycles per sec. Find the wave-
lengths in the deep and shallow water.

12.7 A straight-line ripple-tank wave approaches a narrow region
B of shallow water as shown. Prove that the crest line of the
wave when in region C is parallel to the crest line shown in re-
gion A when regions A and C have the same water depth.

1,7

12J8 The wave below propagates to the right along a rope. What
is the shape of the wave propagating to the left that could for
an instant cancel this one completely?

12.9 The velocity of a portion of rope at some instant is the
superposition of the velocities of waves passing through that
portion. Is the kinetic energy of a portion of the rope the
superposition of the kinetic energies of waves passing through
that region?

12.10 Trace the last three curves of Fig. 12.12 and add them graph-
ically to obtain the original curve.

12.11 What kind of interference pattern would you expect to see
if the separation between two in-phase sources were less than
the wavelength A? Where would the nodal and and antinodal lines
be if the two in-phase sources were separated by the distance A?
By A/2? Convince yourself that one additional nodal line appears
on each side of the central antinodal line whenever the separa-
tion between the two in-phase sources is increased by one wave-
length.

12.12 Estimate the wavelength of a 1000 cycles per second sound
wave in air; in water; in steel (refer to data in ..ext). Do the
same if f = 10,000 rns. Design the dimensions of an experiment
to show two-source nterference for 1000 cps sound waves.
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12.13 If you were to begin to disturb a stretched rubber hose or
slinky with a frequency that precisely matched a standing wave
frequency, would standing waves appear immediately? If not,
what factors would determine the time delay?

12.14 A megaphone directs sound along the megaphone axis if the
wavelength of the sound is small compared to the diameter of
the opening. Estimate the upper limit of frequences which are
diffracted at a cheerleader's megaphone opening. Can you hear
what a cheerleader shouts even though you are far off the axis
of his or her megaphone?

12.15 Suppose that straight -line ripple waves approach a thin
straight barrier which is a few wavelengths long and which is
oriented with its length parallel to the wavefronts. What do
you predict about the nature of the diffraction pattern along
a straight line behind the barrier which is perpendicular to
the barrier and passes through the center of the barrier? Why
do people who design breakwaters need to concern themselves with
diffraction effects?

12.16 By actual construction with ruler and compass show that the
sketches in Fig. 12.25 appear to be rays originating at 5'.

12.17 Sketch the "image" wave for the wave shown in each of the
sketches in Fig. 12.26 (a). What relationship exists between the
incident image wave and the real reflected wave?

12.18 With ruler and compass reproduced Fig. 12.27 (b) for yourself
and find the distance from the circle's center to the point P
in terms of the radius of the circle R. Make the radius of your
circle much larger than the one in the figure.

12.19 Convince yourself that a parabolic reflector will actually
bring parallel wavefronts to a sharp focus. Draw a parabola
and some parallel rays along the axis as in Fig. 12.27 (c).
Construct line segments perpendicular to the parabola where the
rays hit it, and draw the reflected rays at equal angles on the
other side of these lines.

12.20 Recalling that water surface waves travel slower in shallow
water, what would you expect to happen to the shape of the fol-
lowing wave as it continues to the right? Pay particular atten-
tion to the region of varying depth.

Can you use the line of reasoning used above to give at least
a partial explanation of the cause of breakers near a beach?

12.21 Look at Fig. 12.32. Convince yourself that if a wave were
approach the boundary between medium 1 and medium 2 from

below, along the same direction as the refracted ray in the
figure, it would be refracted along the direction of the
incident ray in the figure. This is another example of a
general rule: if a wave follows a set of rays in one direc-
tion, then a wave can follow the same set of rays in the op-
posite direction. In other words, wave paths are reversible.

12.22 Can you explain how sound waves are being used to map the
floors of oceans?

12.23 When a sound source passes us, whether it be a car horn, a
train whistle, or a racing car motor, the pitch we hear goes from
high to low. Why is that?
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12.24 Directed reflections of waves from an object occur only
when the wavelength is small compared to the dimensions of the
object. This is true for sound waves as well as for any other.
What does this tell you about the sound frequencies a bat must
generate if it is to catch a moth or fly? Actually some bats
can detect the presence of a wire about 0.12 nm in diameter.
What frequency does that require?

12.25 Suppose you can harely'hear in an extremely quiet room a
buzzing mosquito at a :istance of one meter. What is the sound
power output of the mosquito? How many mosquitoes would it take
to supply the power for one 100-watt reading lamp? If the swarm
were at ten meters' distance, what would the sound he like?

Refraction, reflection, and diffraction of waves around Farallon Island,
California. There are breakers all around the coast. The swell coming
from top right rounds both sides of the island, producing a crossed pat-
tern below. The small islet 'radiates' the waves away in all directions.
(U.S.Navy photograph.)
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Epilogue Seventeenth-century scientists thought they

would eventually be able to explain all physical phenomena

by reducing them to matter and motion. This mechanistic

viewpoint later became known as the Newtonian cosmology,

since its most impressive success was Newton's theory of

planetary motion. Newton and his contemporaries proposed

to apply similar methods to other problems (see the Prologue

to this unit).

The early enthusiasm for this nt.w approach to science is

vividly expressed by Henry Power in his book Experimental

Philosophy (1664). Addressing his fellow natural philosoph-

ers (or scientists, as we would now call them), he wrote:

You are the enlarged and elastical Souls of the world,
who, removing all former rubbish, and prejudicial
resistances, do make way for the Springy Intellect to
flye out into its desired Expansion...

...This is the Age wherein (me-thinks) Philosophy comes
in with a Spring-tide...I see how all the old Rubbish
must be thrown away, and carried away with so powerful
an Inundation. These are the days that must lay a new
Foundation of a more magnificient Philosophy, never to
be overthrown: that will Empirically and Sensibly can-
vass the Phaenomena of Nature, deducing the causes of
things from such Originals in Nature, as we observe are
producible by Art, and the infallible demonstration of
Mechanicks; and certainly, this is the way, and no
other, to build a true and permanent Philosophy.

In Power's day there were still many people who did not

regard the old Aristotelian cosmology as rubbish to be

thrown away. For them, it provided a reassuring sense of

unity and interrelationship among natural phenomena which

was liable to be lost if everything was reduced simply to

atoms moving randomly through space. The poet John Donne,

in 1611, lamented the change in cosmology which was already

taking place:

And new Philosophy calls all in doubt,
The Element of fire is quite put out;
The Sun is lost, and th'earth, and no man's wit
Can well direct him where to l'oke for it.
And freely men confesse that this world's spent,
When in the Planets, and the Firmament
They seeke so many new; then see that this
Is crumbled out againe to his Atomies.
'Tis all in peeces, all coherence gone;
All just supply, and all Relation...

Newtonian physics provided powerful methods for analyzing

the world, and for uncovering the basic principles that

govern the motions of individual pieces of matter. But

could it also deal successfully with the richness and

complexity of processes that take place in the real world,

as well as idealized frictionless processes in a hypotheti-

cal vacuum? Can colors, sounds and smells really be reduced



to nothing but matter and motion? In the seventeenth cen-

tury, and even in the eighteenth century, it was too soon

to expect Newtonian physics to answer these questions;

there was still too much work to be done in establishing the

basic principles of mechanics and applying them to astronomi-

cal problems. A full-scale attack on the properties of

matter and energy had to wait until the nineteenth century.

We have seen in this unit some of the successful generali-

zations and applications of Newtonian mechanics which were

accomplished by the end of the nineteenth century: the con-

servation laws, new exnlanations of the nronerties of heat

and gases, and estimates of some properties of molecules.

We have introduced the concept of energy to link mechanics

to heat, to sound and (in Unit 4) to light, electricity and

magnetism. We have also noted that the annlication of

mechanics on a molecular level requires statistical ideas

and leads to interesting questions about the direction of

time.

Throughout most of the unit we have emphasized the

application of mechanics to separate pieces or molecules

of matter. But using a molecular model was not the only

way to understand the behavior of matter. Without depart-

ing from the basic viewpoint of the Newtonian cosmology,

scientists could also interpret many phenomena (such as sound

and light) in terms of wave motions in continuous matter.

By the middle of the nineteenth century it was generally

believed that all physical phenomena could be explained by

either a particle theory or a wave theory. In the next

unit, we will discover how much validity there was in this

belief, and we will begin to see the emergence of a new

viewpoint in physics, based on the field concept. Then,

in Unit 5, particles, waves and fields will come together

in the context of twentieth century physics.

'
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Brief Answers to Unit 3 Study Guide

Chapter 9

9.1 Discussion

9.2 Yes

9.3 No

9.4 Discussion

9.5 (a) 220.2g

(b) 20.2g

9.6 (a) Discussiori

(b) Yes

(c) Yes

9.7 0.8 m/sec

9.8 Derivation

9.9 3.33 x 10-6 kg

9.10 Discussion

9.11 Discussion

9.12 Discussion

9.13 1200 kg-m/sec

400 nts

30 m

9.14 (a) 200 kg-m/sec

(b) 10 nts

9.15 Yes

9.16 Derivation

9.17 (a) 0

(b) 0

M V + M -V
c c s

(c) M -11 = -M V
c c s s

(d) V /V = M /M
s c c s

(e) 10 m/sec

9.18 Derivation

9.19 Left car

(1) speed of one car or

(2) mass of cars

Distance

Force

9.20 Discussion

9.21 Derivation

9.22 One-half initial speed in
opposite directions

9.23 (a) No

(b) Continues forward

(c) Continues backward

9.24 .8 kg-m/sec forward

.8 kg-m/sec away

1.6 kg-m/sec away

No

9.25 4.2 kg-m/sec, 1260 kg-m2/sec2

0.171 kg, 427.5 kg-m2/sec2

0.075 kg-m/sec, 0.1125 kg-m2/sec2

111.0 m/sec, 1.62 x 104 kg-m/sec

10-4 kg, 0.2 m/sec

9.26 Discussion

9.27 No, discussion

Chapter 10

10.1 1.82 x 10-18 j

5.5 x 1017 electrons

10.2 (a) 67.5 j

(b) 4.5 x 109 j

- (c) 3750 j

(d) 2.'7 x 1033 j

11.3 Discussion

10.4 (a) .00225 j

(b) .056 j

10.5 Discussion

10.6 (a) 5m/sec2

19 sec

95 m/sec

(b) 95 m/sec

10.7 Derivation

10.8 22°

10.9 9.3 min

10.10 Derivation

10.11 (a) 9.6 x 109 j

(b) 4.8 x 105 nt

(c) 7.68 x 106 watts

(d) 880 m

(e) 1 & 2 increase

3 decreases

(f) change direction

10.12 (a) 1046 times

(b) increase weight

decrease amount of water

increase height of fall

lower specific heat

10.13 0.12°C

10.14 Discussion

10.15 3 weeks

10.16 1.5 kg

10.17 Discussion

10.18 Discussion

10.19 Discussion
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10.20 Undamaged rocket

10.21 1800 nts

90 j

10.22 Discussion

10.23 Discussion

Chapter 11

12.6

12.7

12.8

12.9

12.10

12.11

12.12

XD = .035 m

a
s

= .025 m

Derivation

Reflection

No

Construction

Construction

Discussion11.1 Pressure, density,

temp., viscosity 12.13 No, discussion

12.14 100 and 1000 cps11.2 Discussion
yes11.3 Discussion

12.15 Maximum11.4 Working model,
12.16 ConstructionTheoretical model
12.17 Construction11.5 Discussion
12.18 R/211.6 No, discussion
12.19 Construction11.7 (a) probable speed
12.20 Discussion(b) average speed
12.21 Discussion(c) no negative speeds
12.22 2d = vt11.8 P . T

11.9 (a) 10-9m 12.23 Doppler Effect

(b) 10-9m 12.24 3 x 104 cps

2.5 x 106 cps11.10 Discussion
12.25 1.27 x 10-11 watts11.11 Discussion

8 x 1012 mosquitoes11.12 Density changes

wind-tunnel test11.13 50 atmospheres

11.14 5 atmospheres

11.15 Discussion

11.16 Discussion

11.17 Discussion

11.18 Discussion

11.19 Discussion

11.20 Discussion

11.21 Discussion

Chapter 12

12.1 Construction

12.2 Construction

12.3 (a) BAC = 0
A

(b) ACD = e
B

(c) BC = X
A

(d) AD = X
B

(e) Derivation

(f) Derivation

12.4 Straight-line

12.5 Two straight-line waves inclined

toward each other
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Answers to End of Section Questions

Chapter 9 Q18 He said that the vis viva was "dissipated
among the small parts" of the colliding bodies.

QI No. Don't confuse mass wi,1 volume.

Q2 a) No; its mass increases by 2000 tons a
year.

b) The solar system.
c) The earth is very nearly a closed system;

2,000 tons is a very small fraction of the
earth's mass.

Q3 Answer (c).

Q4 All three quantities are not in general con-
served; it is the product of mass and velocity
which is conserved.

Q5 In cases (a), (c) and (d) the two carts will
stop after the collision, since their momenta
before collision are equal in magnitude and
opposite in direction.

Q6 Least momentum: a pitched baseball (very small
mass and fairly small speed).

Greatest momentum: a jet plane in flight
(very large mass and high speed).

Q7 a) about 4 cm/sec. Faster ball delivers more
momentum to girl.

b) about 4 cm/sec. More massive ball delivers
more momentum to girl.

c) about 1 cm/sec. With some gain in momentum,
more massive girl gains less speed.

d) about 4 cm/sec. Momentum change of ball (a
vector '.) is greater if its direction reverses.

(These answers assume the mass of the ball is
much less than the mass of the girl.)

Q8 a) A(mv) = F (At) = (35 x 106 newtons) x
(150 sec.)

= 5.2 x 109 kg m/sec.
b) Mass of rocket changes as it burns fuel.

Q9 In cases (a), (b) and (d), At is lengthened,
thereby decreasing F. In case (c),at is short,
making F large.

Q10 No, not if the girl and skateboard are an
isolated system. (In fact, a skillful skate-
boarder can use frictional forces to make sharp
turns.)

Q11 Answer (c).

Q12 In cases (a) and (b) the earth exerts a net
force on the system. In case (c) the sun exerts
a net force on the system.

Q13 Answer (c); vis viva is conserved only if
the colliding objects are very hard.

Q14 False. Huygens explained the demonstration.

Q15 With parallel strings, the balls will collide
horizontally.

Q16 Answer (c); the square of any number is
positive.

Q17 Answer (c).

Chapter 10

Ql Answer (a).

Q2 Answer (e).

Q3 about .2 meters.

Q4 Answer (c).

Q5 Answer (c). An increase in potential energy
equals the work you do on the spring.

Q6 Answer (e). You must do work on the objects
to push them closer together.

Q7 Answer (e). Kinetic energy increases and
gravitational potential energy decreases. Their
sum stays the same (if air resistance is
negligible).

Q8 Kinetic energy is greatest at midpoint, where
string is unstretched. Potential energy is
greatest at extreme position, where the speed
of the string is zero.

Q9 Both will gain the same amount of kinetic
energy (conservation of mechanical energy).
The less massive treble string will gain more
aced, however.

Q10 No. The force on Tarzan is inward along the
radius while he moves along a circular arc.

Q11 Answer (c).

Q12 Some increase in gravitational potential
energy in both cases.

Q13 Answer (c).

Q14 False. It was the other way around.

Q15 Savery's patent prevented Newcomen from
profiting much from his engine.

Q16 An. 'er (c).

Q17 Answer (c).

Q18 Answer (e).

QI9 Answer (b).

Q26 Nearly all. A small amount was transformed
in kinetic energy of the slowly descending
weights.

Q21

Q22

Q23

Answer (a).

Answer (e).

Answer (c).
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Q24 Answer (a).

Q25 Answer (d).

Q26 Answer (c).

Q19 Answer (a). The ancient philosophers
postulated recurrence but did not "dis-
cover" it as a theorem in mechanics.

Q27 Joule's approach was experimental, whereas Chapter 12
Mayer's was theoretical (although he used data
which had resulted from the experiments of
ethers). Ql Transverse, longitudinal, and torsional waves.

Chapter 11

Ql Answer (c).

Q2 It is assumed that Newton's laws do apply.

Q3 False. Quantum mechanics is needed to treat
the motion of atoms within molecules.

Q4 Answer (b).

Q5 In gases the molecules are far enough apart
that the rather complicated intermolecular forces
can safely be neglected.

Q6 Answer (b).

Q7 Answer (c).

Q8 Answer (d).

Q9 Answer (c).

Q10 Answer (c). Greater speed means greater
momentum change in each collision and also more
collisions per second.

Q11 Molecules will bounce off the piston with
greater speed than before, so the total kinetic
energy will increase.

Q12 Answer (a) is the ideal gas law and answer
(b) is the prediction of kinetic theory. When
combined they result in the prediction that KE
is proportional to T.

Q13 Answers (a), (b) and (c) are consistent with
the second lew of thermodynamics.

Q14 Answer (a).

Q15 a) An unbroken egg is more ordered.
b) A glass of ice and warm water is more

ordered.

Q2 Only longitudinal waves. Fluids can be com-
pressed, but they are not stiff enough to be bent
or twisted.

Q3 Transverse waves.

Q4 No. The movement of the bump in the rug de-
pends on the movement of the mouse; it does not
go on by itself.

Q5 Energy. (Pnrticles of the medium are not
transferred along the direction of wave motion.)

Q6 Stiffness and density.

Q7 1) Wavelength, amplitude, polarization.
2) Frequency, period.

Q8 Wavelength is the distance between two points
of the wave that are moving in the same way. The
wave does not have to be a sine wave; any re-
peating wave pattern has a wavelength.

Q9 1) 100 cycles per second.
2) 0.01 seconds

speed 10 m/sec
3) wavelength = -

frequency 100 cycles/sec
= 0.1 meter (per cycle).

Q10 Answer (b).

Q11 Greatest displacement of point P is (A1 + A2).

Q12 Wave amplitudes are positive or negative quan-
tities; they add algebraically.

Q13 Nodal lines are regions of cancellation.

Q14 Antinodal lines are regions of reinforcement;
the amplitude there is greatest.

Q15 Answer (a)

Q16 Waves from two in-phase sources arrive at a
point out of phase if the point is one-half wave-
length (or 3/2, 5/2, 7/2, etc.) farther from one
source than the other.

Q16 a) True Q17 1) No motion at the nodes.
b) False 2) Greatest motion at the antinodes.
c) False

Maxwell's demon is an imaginary, hypothetical Q18 Distance between nodes is A/2.
device.

Q17 Answer (b).

Q18 Answer (c).
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Q19 Wavelength = 2L, so that one-half wavelength
just fits on the string.

Q20 No. The frequency must be one for which the
corresponding wavelength is such that 1 or 2 or
3 or ... half-wavelengths fit between the bound-
aries of the medium.



Q21 All points on a wave front have the same phase;
that is, they are in the Eame state of motion.

Q22 Every point on a save front may to considered
to behave as a point source for waves gens.ated
in the direction of the wave's propagation.

Q23 At no point in space is the distance to one
edge of the slit one-half wavelength farther than
the distance to the other edge.

Q24 As the wavelength increases, the diffraction
pattern becomes more spread out and the number
of nodal lines decreases.

Q25 Answer (b). Waves with short wavelength are
less noticeably diffracted than waves with long
wavelength.,

Q26 Because light diffracts, it is impossible ac-
tually to produce a "ray of light."

Q27 The angles are equal.

Q28 Parabolic.

Q29 The reflected wave fronts are parallel wave
fronts.

Q30 1) Frequency does not change.
2) Wavelength decreases.
3) Its direction of propagation becomes

closer to the perpendicular to the boundary
between the media.

Q32 Superposition, reflection, refraction,
diffraction, interferrence.

Q33 Sound waves are longitudinal; only transverse
waves can be polarized.
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