ED 070 777

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY

BUREAU NO
PUB DATE
GRANT

- NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME

M 002 301

Wec¢kts, Charles E.; Linn, Robert L.

A Review and synthesis of Educational Measurement

procedures for Studying Growth with the Purpose of
specifying the appropriate applications for These
procedures. Final Report. .

Educational Testing Service, Princeton, N.J. '

‘Office of Education (DHEW) , washington, D.C. Bureau

of Research. - ;

0-0352B A C:::—'
Jun 72 : .

OEG-2-700033(509) : ,

174p. _ _ |

MF-$0.65 HC-$6.58 .
*Academic Achievement; Analysis of Covariance;
critical Path Method; Educational-Research; Factor
Analysis; Literature Reviews; *Mathematical Models;

, *psychometrics; Research Methodology; #Statistics;
‘Technical Repor:es

Joreskog (K“G)3 *Measurement Errors

The objective of this study was to review and

integrate the various methodologies used in the study of individual
growth (especially_academic growth):lThis was ‘accomplished by means
of Joreskog's general model for the analysis of covariance
structures, i.e<, each of the disparate methodologies available from
the literature was shown to be a special case of Joreskog's general
model. Two general considerations enter jnto the study of growth and
its determinants:.(a)-making provision for errors of measurement, and
{b) constructing a model which relates growth to its determinants in
a causally meaningful way. Errors .of measurement typically involve

questions about

the reliability and/or validity of measures, i.e<,

only indirect meagures of the desired va fable (construct) are ,
available. Multiple measures of each construct would appear necessary

to deal with

purpose the
Fiske (1959)

measurement errors in a quantitative manner.. For this
multitrait/multimethod approach devised by Campbell .and
is.a useful approach since in-principle.it allows for .
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I. Summary

The objective of this study was to review and integrate the various
methodologies used in the_study of individual growth (especlally
academic glowth). | This was accomplished by means cof Joreskog's general
‘model for the analysis of covariance structures, i.e., each of the
disparate methodologies available from the literature was shown to be
a special case of-Joreskog's general model. Two general considerations
enter into the study of growth and its determinants: (a) making
provision for errors of measurement and (b) constructing a model which
relates growth to its determinants in a causally meaningful way.

Errors of measurement typically involve questions about the reliability
and/or validity of measures, i.e., only indirect measures of the
desired variable (construct) zare available. Multiple measures of each
construct would appear necessary to dedl with measurement errors in a
quantitative manner. For this purpose the multitrait-multimethod ap-
proach devised by Campbell and Fiske (1959) is a useful approach since
in principle it allows for correlated errors of measurement. Because
the Campbell-Fiske .approach does not specify the exact relationships
between observed variables and constructs, a factor analytic formulation
of their approach was used in order to summarize various approaches to
measurement error. The constructs, which represent tbe growth variable
and its .determinants, were then interrelated in terms of a linear
structural (causal) model. The implications of this model, which’
itself 1s a special case of Joreskog's general model, were considered.
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II. Introduction

This project was a review and synthesis of educational measurement
met-hodologies for studying growth. To this end the initial phases
consisted of a review of relevant literature in econometrics,
psychometrics, statistics and sociometry. Some of the concepts which
developed from this review seemed worthy.of immediate. dissemination
via formal and informal publication media. In particular the following
articles commented on separate aspects of our review:

Werts, Charles E., Joreskog, Karl G., & Linn, Robert L. Comment
on "The estimation of measurement error in panel data."
American Sociological Review,- 1971, 36, 110-113.

Werts, Charles E., "& Linn, Robert L. Comment on Boyle's "Path
Analysis and Ordinal Data.'" American Journal -of Sociology,
1971, 76, 1109-1112. R

Werts, Charles E., & L1nn, Robert L. Errata to the Werts—Linn
Comments on Boyle's 'Path Analysis and Ordinal Data.
American Journal of Sociology, 1972, in press.

Werts, Charles E., Linn, Robert L., & Joreskog, Karl G. Another
perspective on Linear regression, structural relations,
and measurement error." Educational and Psychological
Measurement in press. .

Werts, Charles E., Linn, Robert L., & Joreskog, Karl G. A
congeneric model for platonic true scores. Research
Bulletin 71-22, Educational Testing Service, Princeton,
New Jersey, May 1971. Also in Eduecational and

Psychological Measurement, i press.

Werts, Charles E., & Linn, Robert L. Estimating true scores
using group membership. Educational and Psychological

Meastixement, in press.

Linn, Robert L., & Werts, Charles E. Errors of inference due
to errors of measurement. Research Bulletin 71-7,
Educational Testing Service, Princeton, New Jersey,
February 197i. Also in Educational and Psychological
Measurement, in press.

Werts, Charles E., Jdéreskog, Karl G., & Linn,_ Robert L.
Identification and estimation in path analysis with
unmeasured variables. ‘Research Bulletin 71-39,
Educational Testing Service, Princeton, New Jersey,
June 1971. Also in American Journal of Sociology,
in press.
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Werts,‘Charles E., Linn, Robert L., & JSfeskog, K. G. Intraclass
reliability estimates: testing structural assumptions.
Educational and Psvchological Measurement, in press.

Copies of these articles are included in the Appendix. Those aspects

directly relevant to tha project goal.are treated in the review
sections which follow. :

For heurlstic puiposes the review and synthesis of the literature
has been treated in two parts. 7The first part (Sec. III) “labelled
"Quantifying Unmeasured Variables' treats the general methodological
considerations relevant to growth studies and a wide variety of the
problems involving etrrors of measurement and causal analyses. This
part will appear in a new book, Theories and strategies of measurement
in the social sciences, H. M. Blalock, editor. Blalock's books are
widely used in the social sciences as. textbooks.

.

The second part of our review (Sec. IV) labelled "A multitrait-
multimethod model for studying growth" reviews various psychometric.
formulations specifically relevant to growth studies and. formally
treats them as a special case of Jdreskog's general model for the
analysis of covariance. Implications for factor anmalytic studies of
growth data and for studies of the determinants of growth are
detailed. This part will appear in Educational and Psychological

‘Measurement and has been released in preliminary form using the
Educational Testing Service Reéqarch Bulletin series.
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III. General Methcdoloyical Congiderations: Quantifying Unmeasured
Variables - e

Social scieuntists frequently wish to make inferences about the
"effects" of hypotheticul constructs which are not directly measured,
e.g., only the symptoms, antecedents, and/or consequences of the
construct may be measurabie. In recent years a variety of statistical
procadures have been introduced to help quantify the relationships
among observed variables and constructs in an attempt to increase
the rigor and validity of such inferences. The purpose of this essay’
is to introduce the various concepts and to consider the numerous

'assumptions involved in these procedures so that the user will be

aware of analytical potentials and limitations.

‘1. Validity

A basic concept in the discussion of jndixectly measured concepts
is that of validity. This refers to the relationship between an
observed variable (X) and the unmeasured construct (Y) .  We shall
discuss models in which it is assumed that the relationship is
linear, i.e., .

(.) . X=bY+I+e

wherr b--is the slope of the regression of X onY, I is the inter-
cept of this regression line, and e 1s a residual which is taken to
be independent of Y . Econometricians (e.g., Goldberger, 1970)
typically specify- b=0 , I =0, and e 1is labelled a disturbance
instead of the psychometric term errors of measurement. Despite the
crucial importance of this linear relationship, it is seldom that
data analysts substantively justify this assumption. For examwple,-
ability and achievement test scores are generally assumed to have a
linear relationship with their underlying true scores, however

Carver (1969) has persuasively argued that there is a curvilinear
relationship between knowledge (the construct) and test scores in
classroom learning, i.e., more knowledge is required to increase the
test score one point at the high end of the scale. When psychologists
use the term validity coefficient they are usually referring to the
correlation (i.e., ) between the observed variable and. the

construct (i.e., true score) assuming the residuals of X on Y to
be independent of - Y (Guilford, 1954, Chap. 14). As.long as !
consideration is limited to a single variable X and a single '
construct Y the linear relationship is not a real limitation, unless

~an added constraint such as equal intervals is added, because the Y

could be transformed to yield a linear relationship with X . With
two X's for a single eonstruct the limitation becomes a real one.

It is useful to distinguish between the terms reliability and
validity. A traditional test theorist will tjpically consider the

- correlation between parallel forms (X, and X,) of a test to be
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the reliability coefficient. As illustrated in Fig. l.a, the model

here 1is Xl =Mb1Y + Il + e1 and X2 = b2Y + 12 + e2 where e1 and

e, are assumed independent of each other and of Y ; which implies

that R = R = R =0 . Test forms are said to be parallel
e e, elY ezY
when the variances of. e and e are equal (i.e., V_ =1V ),
1 2 e e,
b1 = b2 and I1 = 12 . It follows that for parallel forms the
correlation between the observed measures will equal the square root

- of the correlation of either measure with the construct, i.e..,

R y; = = = a1 . . var
_ Rle /RXZY RX1x2 -reliability coefficlent. If the variable

wbich is being measured by the parallel forms (L.e., Y) is itself a
symp tom of another construct (e.g., Z) then new assumptions must be
made, e.g., ¥ = bZ + 1 where yu 1is independent of Z , ey and e,

NPTINRISS B A P

- as shown in Fig. 1b. In this case the correlations between
parallel observed -measures and Z are RXlz f RXZZ = RYZ RXlY =

. . _ 2 .
RYZ RXZY = RYZ Rxlxz . In this model the Xl on 2 res;duals have

P mhaes 1) R W o BN

u + e and the covariance between the Xl

1 'S, - =
the form ‘Ki bi bZ) bi
and X

o On Z residuals will equal b1 b2 Vu . Therefore these

residuals are in gereral correlated and RXlxz v RXlz or /—ﬁ;;;ﬂ.
Rxlz and RXZZ cannot be'estimated, hOWever Rilxz is the upper
limit for these correlations,y-i.e., reliability sets an upper boun i
on validity. For 1llustrative purposes consider the problem of }
_measuring achievement in mathematics for 9th grade studenis in city
A. Two (or more) parallel forms of widely used mathematics tests,
standardized on national samples,can be readily obtained and |
administered. These forms typically have very similar item formats,

" the items differing mainly with respect to the numbers inserted in
the problems. Because these tests cater to a wide variety <
of schools the items necessarily cover material which is common to i
most curricula at this level. Insofar as the curriculum in city
A has special emphasis, not generally taught elsewhere, the

® nationally standardized tests will be partly irrelevant i.e.,

invalid) to city A. The parallel forms would correspond to Xl and

X2 in Fig. 1,b, the variable Y would represent achievement on

Y generally taught problems, and Z would be the achievement of students
_in city A. If the discrepancy between Y ané Z 1is very greaft, as
: inferred from curricular differences, then city A zould build ’ 3
‘ equivelent forms.which more precisely cover their coursework, which
might then correspond to' the model in Fig. l.c. It is always necessary
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Fig. 1. Reliability and validity models.




for the researcher to examine tast materials in order to see how well
the construct being measured by that test corresponds to the construct
relevant to the research project. In many cases he may decide to use
two measures of a coustruct with very different types of item formats
in order to obtain a model like Fig. 1l.c, i.e., the very similarity of
item formats may give the scores some covariation which does not:
represent association due to the underlying constiuct to be measured
(as in Fig. 1.b).

¥ omerre—

s ’ Instead of validity coefficiewits, factor analysts (e.g., Harman,
1967) refer to factor loadings. A factor loading is the regression
. weight of an observed score on a factor (viz., construct). The models
* in Fig. l.a and l.c correspond to a single factor model and the
standardized factor loading is equal to the correlation of the obsarved
' score with the factor like the corresponding reliability and validity
\\gsN\\/_‘,-*___,/"coefficients. If there were more than ome factor, but these factors
. were uncorrelated as in an orthogonal solutivii, then the standardized
» factor loading would still equal the correlation., In the case of
correlated factors as in ai cblique solution, the standardized factor
loadings are standarcized partial regression weights which are
called pach coefficisints by path analysts .(e.g., Duncan, -1966;
Wright, 1934) .

: The regression w2ight in Equation (1) bas:ically states the

5 ) relationship bLetween the units of measurement of the observed

: ’ variable and that of the construct. A weight equal to unity corre-
sponds to the assumption that the observed measure and the construct
have the same units of measurement. Psychological test theorists
and econometricians usually make this assumptiom, whereas path

- (Blalock, 1969; Costner, 1969) and factor amalysts commonly assizi
the factor a variance of unity (i.e., 'VY = 1). As shall be ncted

later, this assumption creates no difficulty untl: the problem
involves multiple measures of a construct and/or growth along the
same dimension over time (Werts, Joreskog, & Linan, 1972).

2. Mulfiplé Measurés of a Single Construct

P

Although econometricians rarely are concerned with multiple
. measures f a construct, test theorists and path and factor analysts
have written extensively on this topic. Much of modern test theory
(Lord & Novick, 1968) is'der}ved,assuming'at lezst two tau equivalent
measures of the underlying true score (i.e., construct). Tau
""equivalent measures (e.g., Xl and XZ) are those in which the
observed on true regiession weights are unity (i.e., b1 = b2 = 1),
the intercepts are equal (i.e., 11 = Iz) and the errors of .

measurement are independent of each other and of the true score.
Essentially tau equivalent measures are the game except that I, £ I2 .
Y -~

--In conmtrast to the pdrallel forms assumptions discussed previously,
the error varisr~as ave not assumed equal (i.ev, V¥ # Ve ) for tau
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equivalent or essentially tau equivalent measures, which means that
the tests may have different reliabilities (i.e., differing error

variances). Since by assumption Xl =Y -i-_Il + e and X2 =Y + I2 +

, the covariance =V,, i.e., the covariance between the
2 X1X2 Y
observed scores is equal to ‘the variance of the true scores. The true

variance divided by the observed variance (e.g., Vx ) for a test
i

yields the reliability, i.e., V, =V . : '
Y X . .

TRV T e et g e et 3 e

Essentially tau equivalent and tau e'xuivalent measures assume that
the observed measures of the construct have the same units of measure- -
ment. When measuring dif ferent symptoms or indicators of an under-
lying construct it is quite common to have different units, e.g., .
- ' income and occupation as indicators of socioeconomic status typically
' are measured in different units. In this case the unit of -the ¥
construct is arbitrary and. is usually fixed by assigning a variance
of unity, although it is also possible to identify the unit of one of ' 3
the measures with that of the construct by specifying the corresponding
regression weight to be umnity. Joreskog (1971) calls the various
measures of the construct congeneric measures (b # b #b ), whereas

. factor analysts would say that a single factor structure has been
assumed. In each case the errors or residuals are assumed independent
of each other and of the construct.

B O VN D= T PRV .. SO LR,

3. Identification

4

The concept of identification is crucial to any comparison of
methods. Mathematicians and econometricians (e.g., Fisher, 1966)
have long been interested in developing procedures for dealing with
identification problems. Whereas true score theorists and path
analysts usually attempt to build identified models, the majority of
> factor analysts have dealt with highly underidentified models.
Although in principle sociologists were exposed to the identification
issue in relation to latent structure analysis (e.g., Lazarsfeld,
1950), the recent papers on this subject by path analysts (e.g.,
Boudon, 1965; Blalock, 1966) have probably had a wider impact. The
term identifiable will be used here in the sense defined by Fisher
(1966, p. 25): ''We shall gpeak of that equation as identifiable
(or identified) if there exists some combination of prior and posterior
“ information which will enable us to dis tinguiqh its parameters from
those of any other equation in the same form . .

To illustrate the identification problem let us consider a single
factor model from the perspective of path analysis (Costner, 1969).
Suppose we are given four observed measures . (X 2 ’ XB , Xl;)- of

the factor @) ‘e The single factor model specifies that Xi
; b,Y+ I, +e

i where ail e; are independent of each other and of Y .

-8~
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The model is depictéd in Figure 2 using path aﬁal_ysis notation,
i.e., when variables are independent no arrows connect them. To
obtain the expected covariances (Cij) ‘between ‘two observed measures

(Xi and Xj) we would multiply the corresponding pair of equations

to "oj&g:ain:
r- '— 2 :
(3) and in = biVY +‘Vei ¢ P

-~
-

The term expected refers to the value of a parameter to be expected in
a model without sampling or model specification errors. Specification
errors refer to the incorrect chpice of a statistical model (Theil,
1957). It is convenien% to arrange the expected variances and co-
variances given by equstions (2) and (3) into an expected variance-
covariance matrix (X) ', e.g., in the four variable case:

(v, oy Gy Gy

zi C2 Y2 3 Cu

" ]G3 G3 Yz s
| C14 024 :"34 Vz;‘ ?

To see if this model is identified, the path analyst (e.g., Costner,
1969) typically would standardize all variables w, =V, =V_ =
, }!1 X2 X3
VX = VY = 1) and then derive the equations for each expected
4

: *
correlation’ (Rij) in terms of the path coefficients (bi) of the

model, e.g.,

_ b* *
Ryp =biby
Ry bbr ¢
3~ °1°3 ~
C_ b.*b* . ™~
Riys =P1P4
b
Ry3 = bob3 e
R bib, s
26 = PPy >
and . ok &
Ry, = bgt, -
P - —9— -

e N TE

L
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Fig. ;?‘§A single factor model.
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may be identified. . _ e

_ Using any three measures (Xi s XJ. , and Xk) 4t is possible to

: *.2 . . SR
soive for the unknown (§i) = (Rinik) : Rjk . Thus all parameters
(bi) are identified, in the sense that each parameter may be stated

as a function of potentially observable information. The actually

observed sample variances and covariances could also be arranged in

a matrix (S) . The observed matrix '(S§) may differ from the
expected matrix (I) because of sampling and specification <rrors.
The model is usually judged to be incorrect if I and S differ
very much, i.e., when the observed data does not fit the model.
Quite sophisticated techniques are now available to obtain parameter
estimates which minimize in some sense the difference between the
observed matrix and the expected matrix computed from the parameter
estimates (Hauser & Goldberger, 1970; Joreskog, 1970).

The equations relating the expected correlations (Rij) to the
e

*
mode!. parameters (bi) are called path equations by path analysts.

When the parameters are identified by thes_é equations, a model is

called just identified if the number of observable quantities (Rij)

*
equals tihe number of unknown parameters (bi) in the path equations
A )

and overidentified if the observables exceed the parameters. If the
number of unknown parameters exceeds the number of observables, then
the model is underidentified even though a subset of the parameters

il

Joreskog labels models which are overidentified as. confirmatory.
In confirmatory factor studies the experimenter has a\lready obtained
a =srtain amount of knowledge about the variables measured and
therefore -is in a position to formulate a model which is to be tested
fer fit to data. Most factor analysts deal with highly under-
identified models; exploratory factor procedures being used to
suggest an appropriate number of factors to use and a preliminary
interpretation of the data. In contrast, econometricians, path
analysts, and classical test theorists usually deal with identified
models which reflect substantive theoretical considerationms. It is
logicaltiy possible for the model suggested by exploratory procedures
to be identified, but factor analysts have typically not examined
this question because their main interest is in fit, not in

ifentifiability. P -

4, Multifactor Models

Let us consider a simple two factor (Y, and Y,) model

(Fig. 3) in which there is only nne observed measure Xl and XZ)

of ?ach factor, i.e., Xl = blYl + I‘l + e, and X 2Y2 + I2 + e,

* -11- /J/

K

16
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Fig. 3. A simple ¢wo factor model.
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‘It might for example be hypothesized that in a“clhss bf equally

where ey and e, are iﬁdependent of each other and Yl and Y2 .
When all variables are standardized there is one cbserved correlation

E *
(312) and three unknown correlations (I%(lyl = b1 , RY1Y2 , and

*
Rx v = b2) among “variables (i.e., the model is underidentified)
22

. and R12 = KS(]_Yl RY1Y2 RX?-Y2 . Psychometricians. call the correlation

btetween the factors (FY ¥ ) the unattenuated correlation. In the
172 o ‘ '

case of tests, the publis;her usually provides test reliabilities
(labelled Rll and _R22) which in this model might be used to

estimate (denoted by """) the square of the correlation with the
. ~2 . _ ~9 -
appropriate factor, i.e.. Rll %{1‘11 and R22 = RXZY?_ . Given these

relizbilities we ma.y estimate .the correlation between factors as:

leYz =Ry, * VRyy Ry,

This procedure is called correcting for attenuation.

-

A. Exact Functional Relationship Among Factors
. ©
Statisticians (e.g., Kendall & Stuart, 1961) and econometricians
(e.g., Johnston, 1963, Chap. 6) have been interested in the variation
of the Fig. 3 model in which bl = b2 = 1 and the factors have an

exact functional relationship, i.e., Y2 =1 +BY1 and RYle =1.

’

intelligent and motivated students, the amount hey/will learn in a
math course (YZ) will be directly proportional—to their relevant

mathematics skilds (Yl) at the beginning of the course Because, e.g-j,

those who know more are better able to understand the teacher.

Neglecting variable means, since there are three unknown
parameters (b1 ’ b2 , B) and only one observed corre&tien (RIZ) s

this model is underidentified. Isaac (1970) reviews ‘he estimating
formulae for the case in which the error variances e and/or
1.

v or their ratio V + Vv are known. ) 4
-€2 . €1 €2

-13-
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') are known, which is equivalent to thie psychometrician's approach

.

B. Stochastic Components
. Johnston (1963, p- 148) notes that the exact functional relation-
ship model discussed above "ardly seems appropriate for econometric
work, since if it were true, all points would be exactly on a straight
1ine. A stochastic component of behavior would seem an essential 'in
economics." Thi's comment probably applies to all the social scieaces
in which it is generally necessary in linear structural models to_'
assume that all the other unmeasured variables influencing a variable
of interest are independent of the influences that are measured
(Blalock, 1967). It seems most ualikely, for example, that there are -
not other disturbing factors which will influence mathematics
achievement. : : -
Adding .a stochastic disturbance term, U , representing these:
other variables, the equation between the factors becomes Y2 =14+

BY, +u where u is independent of Y; and Db, = b, =1 ', The

analysis of this stochastic model is discussed by Johnston (1963,
Chap. 6). One approach assumes that the error variances Ve- and
. 1
%2 | - g - “
since knowing the error variances the reliabilities can be computed,
i.e., R,., =V /V. where V, =V -V. . Because : is
ii Yi ki Yi Xi a ei_ NIYZ
identified by the formula for attenuatiom; it follows that B ‘and

——

therefore Vu are also identified, isge.s” g = &{ v JVY < VY
' ' - - 12 2 '1
and Vu = VY - BZVY . The difficulty with this approach lies
2 1 :

' in. the problem of obtaining reasonable estimates of the error variantes.

Even when reliabilities are given as in the case of wany published
tests, these figures may be erroneous to an unknown degree for the
particular subpopulation being tested.

Another approach is the use of instrumental variables, 1i.e., in
this case, a variable (z) which is independent of both the errors
e, and e, In' this case the regression weight B may be

estimated as B = cov (YZZ) : cov (le) . It may be shown that the

reliability coefficient for X is = C % s which
, 1 Ri1 = Rx, 2%, "2

from the p_révious section can be seen as the solution for the squared
factor loading in the single factor model in which xl , X2 , and 2

_are congeneric measures l_ijz(zYl = Rxlle&zz * IS(]_Z and i

2 . A
= % . . Further analysis would show that V
RY-lz Rxlszzz Rxlx2 | ’{ e,

and Vu are not identified. The basic"problem in use of instrumental’

~14-
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variables is that we are seldom in a position to check whether this
variable is in fact independent of errors, yet the estimates are
likely to be highly dependent on which such variable is selected
(Blalock, Wells, & Carter, 1970) . The same problem plagues the use
of the congeneric model since it is seldom obvious exactliy which

‘observed measures really are -indicators of the same ut\ierlying

trait assuming independent errors. It is interesting to note that
in these models an instrumental variable substitutes for a congeneric
measure, i.e., what is needed is' a third measure which is independent

. of the errors in the other two variables. For illustrative purposes .

consider the problem of measuring differential student math achieve-
ment given the scores from two different nationally discributed
objective exams; one perhaps using a problem format and another a
multiple choice format; whose validities for the curriculum of .
interest are unknown. A third congeneric measure might well be the.
course grades given by the teacher. ‘The logic here is that these
should all be tapping the achievement dimension but to differing
degrees and there is no e priori reason “to believe that errors of
measurement among these measures are correladted - since very
different formats are involved. Sometimes, however, achievement
tests are given in batteries such that the needed third measure
might be in another content area. For example, English achievement
scores might be available. It is unlikely that this test is
correlated with errors of measurement on the two objective math
tests and this could therefore serve as an instrumental variable.

I

C. Model with Myltiple Indicators

Economists (e.y., Goldberger, 1970) and sociologists (e.g.,
Blalock, 1969; Costner, 1969) rarely have the data to estimate
reliability from independent sources, whereas psychometricians and,
factor analysts (at least implicitly) frequently do so. A
traditional technique of this type used by psychometriciuns is the
split half procedure (e.g., Guilford, 1954, p. 377). The items on
a test are split in half (e.g., odd items assigned t6 one-half and
even to the other) and the correlation betwezn the halves used to
estimate the reliability of the whole test, assuming tha': the halves
are equivalent measures. Various formulae are used to aljust for the
fact that the halves are not as long ‘as the whole test and therefore
not as reliable (Guilford, 1954, Chap. 14). These reliability
estimates may then be used to estimate the unattenuated correiation
betwecen two tests, i.e., the cotrrelation between the two true factors
underlying the observed measures.

[ |

The logic of the split half approach is worth further study.
Changing to a double subscri[.lpt for each observed measure (X j)
where j refers to the 3t construct (Yj) and 1 to the

‘ith indicator of the’ jth construct; then in the split half

procedure the equations are:

i
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Xp=bufytInten
‘ Xpp =by¥a * I ¥ %21 o
%zs x12_ = b12Y2 + 112 + ey ', and
Xy = byg¥y + 1y % €y

22 22

i
i " Using path analytic procedure we find that:
l . .

* .
= b .b ,
ls‘nle 11°21
b* N b*
t— . ’
) %‘11"12 11°y,v,13

Ry X

| ' 11722

V
] HY ‘s

“—
*

* .
= b R, b
P721x12 21RY1Y2 12

* *.
= b, Ry~g~b and
W 21RY1Y;b29\ ’
* *

=b..b .
&12"22 1% *

Solution of these equations indicates that all the reliabilities .

(b ) are identified >
1] . 102
without further assumptions. This model is overidentified since
there is one more equation than unknown parameters, i.e., theje is
cne degree of overidentification which is equivalent to one degree- of
freedom in Jéreskog's (1970) general model for the analysis, of co-
variance structures (which may be used for estimation purpogzes).
Because the model Wﬁﬁ.ﬂ we may check to see if it i'p reasonable
% * . * S

to believe that b. =D ,b,,=Db , V =V , and V =V

‘ 1 217 7120 227 ey Sp1 e12  ©22
- as asserted in the assumption that split halvés are parallel (Werts &
e Linn, 1971). Even without the assumption of parallel halves ~he model
may be tested for fit to the data. As Guilford (1954, p-. 377) notesy
the difficulty. with the odd-even method is that the observed correlation
between the splits will generally be too high becsuse of "extra-test
determiners contributing. gitively to the observed correlation.” For
example,. testing condt®fons and amount of time devoted to each half
will be nearly constant for the halves. In contrast the alternate
forms method, with at least a day between administrations, 4introduces
a change of conditions which "is more like those changes between

§
~16- ~

) ané the unattenuated correlation (RY
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administration of two different tests or between test administration
and measurement of some criterion in validation" (Guilford, 1954,
p. 377). "1f these other determiners were independent of the true

9 score then in our model these would be equivalent to asserting that
the Corresponding errors were not in fact independent (e.g.,
R % 0 ). If this were the case, it is possible that this
€11%21 ‘ :
might be detected as a lack of model fit to the observed data.
Psychometricians have various other procedures for estimating whole
test reliability from item data (Stanley, 1971), the logic being much
like that discussed here except that each item now becomes an
observed measure. To *the degree that the item data do not fit a
single faztor model these estimates become difficult to interpret
(Werts & Linn, 1970a). Nonetheless, in practice this fit is seldom
checked.
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5. The Multitrait-Multimethod Approach .

The multitrait-multimethod matrix technique (Campbell & Fiske,
1959) Has been of considerable interest to-psychologists because
it provides information on the conﬁérgeﬁt (confirmation by independent
" measurement procedures) and discriminant (separation cf one trait
from another) validity of theoretical constructs (i.e., traits). The
problem of measuring mathematics achievement as opposed to achievement
in English may be used to illustrate these concepts. To measure
math achievement we might use three measures including one "subjective"
measure, course grades, and two "objective' measures” consisting of a
multiple choice and a mathematics reasoning test (perhaps con-
structed by the publisher of the course material). Despite the
differences in format, each measure in principle is simply another
demonstration of the student's grasp of the subject matter and should
therefore tend to give fairly consistent results. Insofar as the
results are indeed consistent, convergent validity is demonstrated.
The logic underlying convergent validity is much like that of the
congeneric model previously discussed. The emphasis on different
methods of measurement represents an attempt to ensure that the
correlations among variables as much as possible represent commonality
with the underlying trait rather than consistencies due to similarities
of testing methods. Thus, use of different methods tends to support
. the assumption of independent errors required by the congeneric model.
\3 Now suppose that English achievement were also obtained from three
measures whose format was Jike that used for math achievement, i.e.,
course grades, a multiple choice and a reasoning test. Discriminant
validity would be demonstrated if it could be shown that the trait
(i.e., fdctor) underlying the math measures were distinctly different
from the trait underlying the English measures. Acgording to Campbell
- _ and Fiske, convergent validity is demonstrated by *at least moderate
— ) correlaticrs betweean different methods measures of the same trait
~ and discririinant validity is shown by a higher correlation between
independen: efforts {i.e., methods) to measure the same trait than .
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between measures designed to get at different traits using the same
method. From our perspective discriminant validity consists of
demonstrating that the true correlation between two traits is meaning-
fully less than unity. Werts and Linn (1970b) have discussed the
Campbell-Fiske approach from this perspective. The analytical
procedures devised by Campbell and Fiske (1959) are not of interest
here because no attempt was: made to specify the nature of the re-
lationship between the observed measures and the tralit or methods
factors. It should be clear from our previous statements that an
observed variance-covariance matrix is interpretable ohly from the
perspective of an hypothesized model. Campbell and Fiske's argument
that the researcher should obtain measures of a trait which differ as
much as possible in measurement technique, in order to improve con-
vergent validity, is very pertinent. From the multitrait-mu-timethod.
perspective the typical psychometric approach, which attempts to devise
c.ternate forms with almost identical format, would be criticized

as lacking in convergent validity. -

A variety of analytical methods have been proposed for iaulti-
trait-multimethod data (e.g., Boruch, Larkin, Wolins, & McKinrey,
1970), however only Jbreskog's confirmatory factor analytic approach
will be considered here. Suppose that it were assumed that each
observed measure were a function of only one trait (Y,) and one

me thod (Mk) factor in a linear fashion;fi.e.,w. 3
xjk = ajij + bjkMk;+ Ijk + ejk
where ‘ xjk = measure -reflecting combination of trait j
and method k
ajk = rgégession weight of xjk on trait ?j , and
bjk = regression weight of Xjk on method Mk .

Assume also that all residuals are independent of each other and of all
factors. It may be shown that at least three traits and three methods
must be used in order for this model to be identified, given that all
factors may be oblique, i.e., correlated. To understand the connection
with models discussed earlier, consider two different method measures
of the same trait, e.g., Xll and X12 (illustrated in Fig. 4). It

can be seen that there are several sources of the observed correlation
* % * * * %
s 1.0, Rx1 = a .a., + a b,, + a bs, +

%119 Ky, | f11f12 1%y, M,"12 12%, M, P11

* %* )
b RM b,. . If the methods factors were independent of the trait

11 1M2 12

factor, the model would in principle be like a congeneric model with
correlated residuals. Such a model has been proposed by Guttman (1953)
in relation to obtaining reliability estimates from nonindependent

item data. If the methods factors were independent, we would have the

. —18-
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congeneric medel basic to true score theory. Thus we see that the
traditional test theory approaches discussed earlier may be considered
the special case of the'multitrait—multimethod approach in which
methods factors are agsumed to be independent of each other and of the
trait factors. The notion of reliability as the ratio of true variance
to observed variance 1is only meaningful in the case where errors are
independent in this way, i.e., no such neat partitioning of variance

is possibie in the general multitrait-multimethod approach.

6. Functional Relationships Among Factors

) Whereas the econometricians and path analysts postulate functional
relationships among the factors, psycholbgists and factor analysts '
seldom do so. Both the multitrait-multimethod approach and true score
theory focus only on errors of measurement. In part, this situation
arises because psychologists are usually taught to avoid making causal
inferences from correlations. Sometimes antecedent (i.e., causally
prior) variables are gtatistically controlled in order to i{nsure that
a particular correlation is not spurious, however systematic pro-
cedures for analyzing sources of a correlation (e.g., path analysis)
are viewed with suspicion. ' :

The function of causal hypothesas can be illustrated by an
example taken from Werts and Linn (1970b) . Suppose. there were a linear

causal rglationship between variables (Y2 = BY1 + p); where Yz is

measured directly and Y1 indirectiy by two indicators (X1 = blY1 +

e s X, = bZYl + ez) . . This is a single factor model and B* may be

estimated as:

]
1

(B%)

’,folY Rev, ¥ X,

2 272

For example, if RX1Y2 = ,20 , Rx2Y2 .40 , and RX1X2 = ,80 then
gt = .32 . Most educational psychologists, in their search for school
effects, would not even consider the possibility that gseveral measured
variables might be indicators of the same underlying construct (i.e.,
Yl) and would proceed using the regression equation:

Y, = byX; + byX, * I3 +ey

yielding sindardized weights of b’i Z - .33 and b’é =z 4+.67 . If for
example Xl were proportion of faculty with doctorates and X2 were

number of books per pupil in the library, it might well be supposed
that both of these variables are {ndicators of school affluence (i.e.,
Yl) . Certainly the regression procedure,which ig typical of school

effects studies; would yield no hint of how Y1 influences Y2 , 1.e.y

~20~
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-the weights b1 and b2 are opposite in sign, yet both reflect the

5 same underlying varisble. The use of regression equaticns in this way

P represents an attempt to avoid theory, finding influences by seeing

‘ ' if a variable increases the percentage of predictable variance in the

outcome. It is better to specify the theoretical structure being

pospulayed, so that appropriate analytical procedures may be designed. ~
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Another area where it is important to spacify functional relation~
ships is in the study of the determinants uf growth. Test theorists
have long been concerned with the problem of estimating growth in the
presence of errors of measurement (e.g., Harris, 1963). The special
feature of this area is that an initial status and a final status are’
assumed to have identical units of measurement. If the initial status

is X1 blYl + 11 + e and the final statqs X2 = b2Y2 + 12 + e »

then the equal units assumption is equivalent to b. = b, . Various
procedures (e.g., Cronbach & Furby, 1970) attempt toO estImate the
true change Y, - Y, from the observed scores and known reliability
' coefficients for the initial and final measures. From these data a ;
measure of the reliability of dif ferences, 1i.e., the correlation of the 3
observed difference X2 - Xl with the true difference Y2 - Y1 may be %

¢ a A Wik

obtained. It was originally thought that if the reliability of

dif ferences was low then our abiliry to estimate true change would be
low; however, Crombach and Furby (1970) and Werts and Linn (1970a) have
demonstrated the use of information on other variables to help estimate ,
change. The logic of tnis approach is an extension of the rationale °

enunciated earlier with regards to instrumental variables, i.e., both

causes, effects, and other correlates of growth carry information which

can be used to estimate model parameters and therefore to improve

estimates of factor scores.

BTN NGt PORHCEIE YWY

_ Several educational researchers (Bloom, 1964; Thorndike, 1966)
have been concerned with the determinants of (Y. - Yl) and in essence

have argued that if the imitial status (Yl) is uncorrelated
with gain (Y2 - Yl) then the determinants of change during this time

L Satasdek

4
v
14

o interval are different from those which produced the initial level of
competence (Yl) - No such conclusion is warranted (Werts, Joreskog,

& Linn, 1972) since without including in the functional model various
determinants of growth, it is impossible to make any statements about
the effect of these determinants. As the path analysts have so
frequently shown, no correlation, even 2ero, is interpretable in a
causal sense except in the framework of a causal model. It is quite
possible because of counterbalancing influences, for Y2 - Yl to be

STRNTO TR AP TR UGN PO

uncorrelated with Y1 and yet initial status may influence gain

either positively or negatively. ) 41
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An it_;jportanb featura of growth studies is that the variance of
the i'nitiél:vand final status factor (Yl and YZ) +ig identified~

by the scaling assumptio‘;n’ bl = bé . Fpr convenience test theorists
usually assign the valiue b, = b, = 1, i.e., that the factors have”

the same units as the observed measures, the variance of the factors
then being determined by the known reliabilities. In the typical
achievement study the true variance increases over time (VY > VY )
_e.gi, because some students will pursue the study of mathematics M
awhereas others will avoid advanced courses. The usual factor and
path analysis approach of standardizing all factors (e.g., VY = VY )
1s clearly unsatisfactory for growth studies because it ignores L '
changes in true variance. Even if there were no errors of measurement,
standardization of variables is undesirable in growth studies.

. Lo

then the assumption bl' = b2 will idehtify. the variance of the final--

S Psychometricians have usually dealt with models in which one measure : ‘
Ly . of .a construct was available, but when several measures with different '

T units are obtained the variance of the construct becomes arbitrary. ¢ :

- i - If the initial status facior is assigned a variance of unity (VY =1) : i
e ' : . . .o : " ) 1 . . . % -

* ‘and b
1 ;¢ Py

identified. Werts, Joreskog, and Linn (1972) .show that if we have,
A e.g., tworcongeneric measures of Y, (xll and -x-l?.) which are

*

" status factor (Werts & Linn, 1970b) given that b are

. repééted at a later time '(X21 and X22 'respeétively-)', then it is

- .possible to .test whether the assumption bi = bé is comp_atible with . ,
b. = b, . In other words the ratio Vi, :V identified by the ‘ Fe
"3 4 ) o . YZ Yl 4 _

assumption that ’bl = b, .may be different from the ratio of these

- variances gi\}en by the assumption that:'_ b3 = b4 aﬁd this will 'shlqw

up as a ':significant! it{crease'.in lack of fit of the model to the data
when the added assumption by = b4 is imposed on the model.  This

test indicates whether it is reasonable’ to believé"that both measures P
have equal units over time. - N :

q{._'Other Coms tructs in Statistical Procedures - o - . ’

et

S . G .

. In this section we propose to demonstrate that statistical _ 4
_ _ procedures frequently imply constructs which mafly researchers 'are not - a 1
Yoo aware of; Forxr:-illustrative purposes:- consider a g uasi—en_qgeri’t’netital- ' .
- (Campbell & Stanley, 1963) study in:which four different procedures ’ ' .
for teaching. fifth grade mathematics are randomly ‘assigned to four
available schools in a district.. The mathematics, achievement:of each

_student is measured at. the beginning and end of fifth grade using -
parallel forms of a test which provide good: coverage of . the material = '~

3
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taught in the various schools (i.e., the test has face validity). As
- frequently happens.in naturalistic'studies it is found that the mean
achievement scores at the beginning of the fifth gradéT differ. To
avoid interpretive complications assume perfect validity.  Suppose
that the mean results for schools are as shown in Fig. 5, i.e., the
ordering of the schools remained constant. over time but the spread of
means increased in proportion to the "initial mean. One possible
‘ﬁ ' statistical procedure which the data seem to fit is the analysis of
variance of repeated measures (Winer, 1962, Chap. 7) which basically-
consists of subtracting the initial means from the final means and
testing to see if these differences are the same from school to schonl..
Since these differences range from 20 units to 5 units for schools #1 °
and f##4 respectively, it is clear that this procedure would conclude
that there is a treatment (i.e., school) effect, i.e., school #1 is
the most and #4 the least effective. A second statistical procedure
which the data fit is the analysis of covariance with initial status
controlled (Winer, 1962, Chap. 11). Since the final means are
perfectly correlated with the initial means it may be shown that
this procedure will indicate no treatment (i.e., school) effect,
given the standard analysis of ‘covarjiance assumptions (Werts & Linn,
1972). In -order to understand these ‘séemingly contradictory
interpretations, we need to ponder the following hypothetical question:
. For any given school, what would the final mean be if no treatment
_ had been applied? The analysis of variance in essence assumes that
- =+ for each, school, if no treatment had been given, then the final mean
v would be the same as the initial mean. In contrast the atelysis of . 2
' \ ngaria’nce assumes that if no treatment were given then the final i R
#ean would be completely predictable from the initial mean, i.e., in
our illustration the final means are perfectly correlated with initial
means. There is no law of nature- that either case is necessarily so,
which means that neither statistical procedure may be appropriate.
Furthermore, our analysis has assumed the appropriateness of a linear

addition model, which may not provide a reasonable simulation of the
reality being investigated. ‘

i A e ST o

A slighf variation in the above - problem occurs when some measure :
is being obtained in a time series and at some point a n'ew\treatment
is imposed. Such . a.case might be in the ‘math achlevement of students
who are being followed from ‘grade schogl into high school’ ,

_ Thistlethwaite and Campbell .(1960) hgfe argued that if the past
treatment trend continues on the p treatment trend then no treatment
_effect may be. inferred. In real life, however, students who go to a
superior high school' have probably gone to superior grade schools:and
vice versa., If so, then it is quite possible that . the effective high
school would do well if it could continue the. learning progress its
. students were making before entry. A treatment effect might well be

.. evidenced by”a'-"straight trend line from grade school through high

- gchool. Again, the .unobserved construct is: What would the group

. mean be if thére were no’ treatment? -~ Without this information no '

_gtatements about treatment effects are warranted, nor can anybody

- validly assert that a particular ‘statistical analysis is appropriate,

.

~
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except within the context of a particular model with fts associated
assumptions, o

8, Hypotheses About. Changes in Means

The discussion to this point has been devoted to the analysis of
the observed variance-covariance matrix. In some problems, however,
hypotheses really concern structures (i.e., restrictions) on the means
of variables, e.g., if we gave a class some special assistance in
yocabulary we would like to observe an increase in the average
. vocabulary score of the group, i.e., the correlation between initial

and final vocabulary scores would not be the relevant statistic’to
analyze,  In such cases the neglect of means (common. among path’
analysts) would lead to uninterpretable results, . '

&

Educational researchers interested in growth have encountered

® ' the problem of means because of the 'way that tests are constructed
(e.g., Carver, 1970). The procedures used in test development _ , .
. ’ typically strive to maximize the discrimination between individuals,
e.g., items that are answered %otrectly by almost everyone at the end
of a course tend to be omitted since ‘these serve to show similarities ‘ -

among individuals, Yet it may be precisély these ‘items that show the
general progress of the class during the course, The item analysis
procedures thus. prevent measurement of true change in means over time,
o Congider the extreme case in which the students have no familiarity
- TH with the: subject matter being taught, which would mean that an
initial test of their knowledge in this subject would yield a zero
. score for,the whole class. . A parallel test given at the end of the
course would show varying degrees of. knowledge attained, i.e., a.
‘ positive mean and variance. -iThe initial test scores would be
- expected to have a zero (meaningless) correlation with the.-final i
- gcores and the final wean would represent the average level of course

o R b S e A BN

effectiveness. If initially students had little or.mno familiarity ERE
with the subject matter then the reliability of the initial. test Q
might be quite low and yet this measure might be appropriate for 3
measuring changes in student knowledge during the -course, Obviously .

path coefficients would be irrelevant to.the issue.

. - As noted above, parallel tests are assumed to have the same
"underlying mean, Thus, underlying the various observed test means,
there is assumed to be a common true score mean, If the means do not
differ ‘significantly, then the best estimate of the true mean-is the
grand medn of the observed tests.. Notice that if the. grand mean is .
used as the best estimate of the common test mean, then this will @ :
affect our estimates of variances and covariances since these are .. R
_measures of -deviation from the grand mean? This mutual interdependence '
is recognized in JBreskog's (1970) general model, which allows for
‘simultaneous estimation and hypothesis {'testing,.give'_n_ restrictions on
s |
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both means and the variance-covariance matrix. We may, for example, '
wish to test the hypothesis that the txue score means over time
increase linearly (or exponentially). '

9, General Considerations

It is relatively easy to find a linear structural model which
fits the data quite closely, e.g., factor analysts may -keep adding
factors until a good fit is obtained. With a modicum of thought it
is also relatively easy to obtain a model which.is consistent with
our theory, when this model is just identified (i.e., there is a

~~unique solution -fgr’ each parameter), because the matrix estimated
from the model () will in general equal the observed matrix (s .
Given overidentification, it is possible that the model may be
rejected because of poor fit to the data. In such cases it is
ST usually possible to find a less restrictive model which will fit the
L v . data better, but this model may not be substantively plausible. It
- is extremely difficult to demonstrate that (a) a model' approximately

)

.simulates reality, (b) it provides ‘better simulation than another’

model, (c) the constructs defined by the model have greater explana-
| tory power than the observed variables from which they are derived,
and (d) these constructs are in any sense useful in promoting better ' ¢
research. In most cases it seems reasonable to suppose that several "
plausible models may be found, all of which are consistent with the
.observed data, It would then be necessary to deduce what data would - et
need to be collected to discriminate among these models. :

g

a

Some of the concepts discussed in previous sections suggest some
cautions in interpreting observed variance-covariance matrices. Grant-
ing the validity of using correlations at all (see Tukey, 1954, for a
discussion of this question), it should be clear from the section on |
the multitrait-multimethod procedure that the probable existence of o ' ~
errors of measurement and multiple indicators of underlying variables
will necessarily make any interpretation a chancy affair, Furthermore,,
even if the unattenuated correldtions' among the relevant constructs R
were known, correlations are by no'means self-interpreting in a causal
sense (Blalock, 1964). Thus an observed correlation may be completely

7 spurious due to the presence of a common antecedent variable (which
must be controlled). While most psychologists.use the concept of = - o
spuriousness, the notion of controlling a variable in a chain of causes !
to see if this variable explains the observed association (Blalock,
1964) is almost unknown at present. It should not be inferred, however,
“that a causal analysis of the correlations is appropriate’ to every ?
problem (Bailey, 1970)- N = o :

-~ .

Most applications of factor analysis, path analysis, and test
" ‘theory can probably be described as ‘exploratory or speculative in the
serise that the analysis was performed because the researcher was
familiar with that.technique rather than because it could be
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N demonstrated that his approach provided a better simulation of the
¢ _ process-under study, We are thus in.the unenviable position of dis-

. i
cussing statistical techniques without knowing when they should be :3
used. The value of these techniques has yet to be demonstrated 'in

most of the social sciences with the possible exception of economics. = !
. : 3
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1IV. A Synthesis of Fsychometric Literature:

e e o

. A Multitrait-mul timethod

Model for Studying Growth

Weris and Linn (1970a) have éuggésted\that a multitrait-
multimethod approach (Campbell & Fiske, 1959) might be used for study-
ing growth, The purpose of this paper is to detail such a model and
to outline implications for the study of growth. The major focus of
our, exposition will be the logic of this model rather than the estima-—
tion of parameters or testing the fit of the model to data. A compre-
hensive discussion of appropriate estimation and' fit-testing procedures
may be found in JUreskog (1970a) , whose general model for the analysis
of covariance structures subsumes the models used in this paper.

fﬁj> ‘The Model

i

The multitraitemu§:§method aﬁiroggh may be treated as a problem
in confirmatory factor analysis (J8reskog, 1970a, 1971). . For illus--
trative purposes we will consider the example of three traits and
three methods since this is the minimum number of traits and methods
required -to produce unique (defined in JBreskog, 1969, pp. 185-186)
parameter estimates, given the assumption that each observed -measure
loads on only one trait and one method factor and all factors are
oblique. The general factor analytic model is:

.

REREAS @
wﬁere y is the vector of observedbsco;es,
" E is thé:mean_vector of \2 .
é. is a matrix of factor ibadings,
T is:a vector of common factor Scoreé,vand
e. is a vector of unique~fact9r ééores~corresﬁbnding to
-~ sgpecific factors and/or. errors of measuremént.
For our example: . - .. »
y' = (¥71,¥21:¥31:Y125¥225Y32:913923,¥33) > (1a)
where in 'yij , 1 = method and j = trait,
TT = (1), Ty Tyl My My (1b)
where Tj‘=_the j =-th trait facté;f
- M, = the i -th method factor, .. .. -
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where Aij are loadings on trait factors and

By o
The expected variance—covariance matrix L .0f y 1is then given by

are loadings on method factors.

2 = AQA' + 92

~ o~

@ S B

where = g2 is a didgonal matrix whose elements are the variances of - - ?

e . Since all factors are oblique, in our example:

VT1 Symetric -] B N
1T T . - | . |
c C v, o i
T1Ty T3 T3 - ;

Ciy Cp oy C v, : - (2a) : P
ks My "TZMI. TyM My , | ) '

_ G Cow oy G v o |7
- - | TaM Ty T, g, . - o
- e G G c v
TiMy TMy T3y ‘-M1M My

S ' e - - R ; g

-~

e, ey

where the C 's are covariances and the V 8 are variances.

Following JBreskog (1970a), parameters will be labelled as one of
three kinds':_(l) fixed parameters :‘that have been assigned given values;
(2) constrained parameters that are unknown but equal to one or more

v \’. . , Y
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other parameters; and (3) free parameters that are unknown and not
constrained to be equal to any other parametene The term "jdentifiable"

will be used.in the sense defined by Fisher (1966, p. 25): "we shall

speak- of that equation as identifiable (or identified) 1if there exists
some combination of prior and posterior information which will- enable us
to distinguish its parameters from those of any other equation in the

same form." For the models studied in this paper, the term "identifiable"

‘is synonymous with the factor analyst's term "unique solution," i.e., a

solution-is "unique" 'if all linear transformations of the factors that
leave the fixed parameters unchanged also leave the free parameters
unchanged. ‘As JBreskog (1970b) notes: '"'Before an attempt ispmade to
estimate’ a_model of this kind, the identification problem,mustgbe '
examined;" The number of overidentifying restrictions on the Mmodel is
frequently of interest, for example, after standardizing faéﬁéT'vqriances
=.1) the three method by three trait model has three
i ’ R
overidentifyiug restrictions, i.e., Z- has 45 distinct variances and
covariances as compared to 42 free parameters to be estimated (18 factor
loadings, 15 factor covariances in ¢°, and nine residual variances in
6-). The number of overidentifying restrictions are the degrees of
freedom (df) for the test statistic in JBreskog's general model (1970a,
p. 241, sec, 1.,4). The "path analysis" approach used by Werts and Linn
(1970a) can be very useful in exploring the identification question in
overidentified models. However, as noted by.Hauser and Goldberger (1970)
the "path analysis" literature does not adequately deal with the estima-
tion problem in overidentified models, in part because the sample~
population distinction is blurred; :

(i.e., VT;.% Vﬁ

‘The:multitrait—multimethod'approach considered above does not
consider any functional relationships among the trait factors, i.e.,
the approach deals only with errors of measurement. In the study of
growth, these trait factors correspond to initial status, final status,
‘and the determinants of growth and a ‘structural model showing the rela-
tionship among these variables must be specified. Substantive inferences
about growth are based on estimates of the parameters of the structural

model,

Suppdse that the structural model for growth took the form:

= D. T. - . ¢ ;
Ty = D.lTl + D,T, + & | \3)
where T, is the final status, Té is the initial status, and_v_T;1 is a

determinant of growth; all other influences on growth (represented by
“E.) being independent of T, ~and T, . In this model the initial status

T, may influence the rate of growth, The parameters of equation'(3) are .

‘just identifiable in terms of the elements of & , i.e., the number of
.restrictions on .the overall model is not changed. - Assuming that T3 and

T are measurements on the same dimension as implied by the terms

"initial" and "final" Status,.growth' (a) is equal to T, -~ T, . Werts .

and Linn (1970b) have shown that the regression weights for Ty fand T,
are: SR o C . - '
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| ' : . D, =D » (4) :
i ) . : -1 ATl'TZ ‘ J
and . ' . @
D,=1+D : v (5) 5 4
» 2 ATVZ'Tl g

, where i1s the regression weight of A on T .with T : o
ATl T2 1 [
controlled and D - {8 the regression weight of A on T, with, '
ATZ'Tl _ oot T
Tl controlled. In other words D, represents the direct influence
of Tl on growth and D2 represents the direct influence of initial
"status on growth plus unity (which represents that part of T3 which
is initial status), ‘Since " T3 = A+ T2 , substitutihg equations (4)
and (5) into (3) yields: 4

| - . A= DM‘I.T2 T, +'DAT2.T1 T, + & . * (6)
ul In terms of"'r.l » T, and £, equations (1v), (1(.;, and (2a) become- -
hé I* = (Tl’T2’27“rk~23 My o, a2 &
| ! A, O 0 By, 0 o ™ |
,‘:.A21 0° | 0 0 Bél 0 i
Ay 00 0 o0 By
0 A, 0 B, 0 0
e* ={0 A22 0 0 B22 '0 | 37.. (7b) \
0. A, 0.0 .0 B, . |
A13Dy Ay 3D, A3 B3 00 | i ;
AysP1 Ag3Py g3 00 By O o o
T [ AaaPy AgaDy A3 0 0 By, % |

and
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N Symmetric - i
C 1
T1T, ,
0 o Vv

3 .
% = | C Chn. C 1 . (7¢)
T My ToM; EMy -
C C N 1
TM, CTM, CEM, CMle
c Co. C C C 1,
| TiMy ToMy EMy MMy LM

‘respectively. If the analyst wished to scale a factor by the unit of a

particular measure this may be accomplished by setting the A, slope
for the measure equal to unity (in which case the variance of he cor-
responding factor should not be standardized but left free to be
estimated by the program)., The assumption that T, and T3 are
measures on the same dimension.is equivalent to setting the same method
regression weights equal, i.e., in our example K.=a ’ A 23
and A32 A33 . As detailed by Werts and Linn (1970a) the effect of
these restrictions is that the’ ratio of the variance of ‘T3 to T, is
fixed, For estimation purposes It is convenient to standardize all
factors .except . T whose variance is fixed in relation to T, . The
model defined by equations -(7a), (7b), and (7¢) is no longer a simple’
factor analysis model, but may be estimated using JBreskog's (1970a)
general model for the analysis of covariance structures. For this pur-
pose. A* 'may be rewritten as the product of two matrices:

A% = Bpk*
where
| 1. 00 0 0 0 0 0 ;
0 1 O 0 0 0 b \ X
00 1°°0 00 0 .0 0 |
000 1 00 O Q,,M,o,,,,,,,,/d
3 = 00 0._.0-1"0 0 : .
" 1oo0o0 001 0 0 O
0.0 0 000 A,y 0 O
0 00 0 0.0 0 Ay 0
(0000 000 0 0 Ay
_ o
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and . _
[A; 0 0 B, 0 0O ‘
Ay 0 0 0 By O
B4 0 0 0 0 By
: 0 4, O Blé' 0_0
Mr= |0 Ay 00 By, 0 '
0 Ay 0 0 0 By,
s D, D, 1 X;3 0 0. | ' s
E ( Dy Dy 10 xp3 O
_f D1 Dy 1 0 0 xg |

and X;3= Byafhiy s Xpy " 323’“23 ;:;x33‘= B3z/Ay3 + By substitution:®

e _BA**Q*A**'B' +0?

~

which is a 5pecial case of Joreskog s (l970a) general ‘model,

In using ‘the’ computer program (J!Sreskog, Gruvaeus, & van- Thillo,

' 1970) the parameters A, s Ay, Agy 1In . A** -ghould be constrained

to be equal to. A13 , A23 » and A33’2 respectively ‘in B - The result- . r
ing model has 45 distinct variances”and covariances in § and 40 free -
and constrained parameters (17 in A** y 14 in 0* s 9 in 6 , none in "

B 'because of equality restraints), which means that the model has five
dveridentifying restrictions (df). The advantage of casting the analy~ -
sis in .terms of JBreskog's general model is that, given the assumption
that the observed variables’ are distributed normally, various hypotheses
about the model may be tested in large samples. In particular, we
A may wonder if trait factors are uncorrelated with methods factors and . ' i
3 ’ ) methods factors: with each other as ‘assumed by Cronbach \and Furby (1970) "
. and Werts and Linn (1970a) in their analysis of growth, To make this
: ‘test, the analysis’ woulu be run with the model.of (1a), (lb), and (lc), . _ SRR
. _ ' and (2a) with VT = V = VT = VM = V = -VM = 1 and then: the anal- - . .00
L jould b dl ithz. ool % 2 " & e | | N
- A sis wvou e made w ' = o= = = = = 4
CEe st HORE he CT IlMZ v~T1M3 2 1 .frZMZ‘ ‘T My 3
’63;—032 CMM & CMM e Forour example, the' - | ' 3
~initial analysis would yield a chi-square with three df for” testing the Co
. fit of the model to: the data, The se€cond analysis would yield a chi-
. square with 15 df since 12 additional restrictions have been made. The

[ : - 1increase in chi—square witn 12 df is a test of the tenability of the .

. o
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additional restvrictior;'s. Starting with thé same initial model, the
tenability of assuming that A12 = A13 , A22 = A23 , and A'32 = A33

may be tésted (dropping the Vp = 1"~ assumption) using the increase:

- ‘ :
in chi-square with 2 df. Likewise starting with these assumptions

(i.e., equations (7a), (7b), and (7c), and df = 5) hypotheses about .
growth can be tested, e.g., D; can be set equal to zero and the
resulting change in x°~ (df = 1) 1is a test of whether T directly
influences growth. To test whether initial status directly influences
growth (i.e., whether Dy, ., = 0) , Dy would be set equal.to unity
21 -
(see equation (4)), the increase in x2 (df = 1) testing this hypoth~-
esis. The fit of the observed variance~covariance matrix S to the
estimated elements of % may be used. to form some judgment“as_ to cha;,\ges
in fit resulting from additional restrictions, especially when the X~
test is inappropriate because the assumption of multivariate normality
is not reasonable. - .

As originally concgived by Campbell and Fiske (1959) the multitrait~
multimethod approach required each trait to be measured with each method,
as in the example'-analyzed'above. The .linear structural model approach
proposed herein requires that model parameters be identifiable, a ques-
tion which is unrelated to whether each trait is measured with each
method. In order to fix the ratio of the variance of the final status

“to the initial status factor, only one pair of initial and final measures -

with the same units of measurement are required; i.e., the three sets of
initial-final measures in our example serve to overidentify this vari=
ance ratio. The identification problem would be greatly simplified if
one of theése same method sets were replaced with different method mea-
sures, even though the resulting matrix would no longer be in the form
required by Campbell and Fiske. Campbell and, Figke's argument that dif-
ferent method measures of a trait are requif’ed"‘f’é_"i'mpijove convergent
validity appears fundamentally sound and is a basic premise in our anal-
ysis. -We have abandoned the particular type of analysis used by Campbell
and Fiske because it fails to specify the underlying structure being

~ postulated, and does not allow for nomsymmetrical method-by—-trait

~ combinations. Lo - B

L.

" “ Relationship to Classical Test Theory

The multitrait-multimethod formulation can be shown to include

. various procedures derived from classical test theory as special cases,

" e.g., the commonly used formulas for reliability of differences, ~orrela-
tion of true initial status with. true gain, “and the correlation of true ’
scores over time can be derived from the multitrait-multimethod model by
imposing specifiable restrictions. To illustrate this point we shall
examine the case of two parallel measures (yjy » Ypp) 8lven initially

_and two finally (y13 » ¥93) o First let us consider the analysis given.
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g the traditibnal assumpticns that all errors of measurement are independent '
of each other and of the true scores. In our formulation this is equiva- '
. lent to asserting that there are no methods factors. Without further
agsumptions the model may be represented in terms of equation (1) as
y = (yl2:Y22ay13aY23) Ty o .. (8a) i
T= (TyTy) NGO e
o App O fw o / s ‘
' A 0 :
A= 022 A : (8¢c)
~ 13 T . . .
LO : A23_ , : : | ' | g
VTz '
P = C . ) (84d)
- T,T, 'T '
_ B et - T o _— b
and _ o o Co , | : .o Y
12 © ” ‘ f}
9. 0 Ve‘ A ‘
, 8 .= . 22 _ (8e)
~ 0 0 Vo : ; ,
13
L _ 23 . S ‘;

Assuming 'thalt"lin.itial‘ and final status are on the same scale, "parallei'_'

test assumptions are equivalent to (J8reskog, 1971) fixing Ajpp =

A, =A .= A . =1 and constraining V., =V and 'y .“ V. e
22 713723 R T 12~ °2 v f13 °23

All parameters are identifiable and df = 5 . Identificatien still occurs

-without the error variance assumptions. (df = 3) , i.e., in true score
lexicon, "essentially tau-equivalent” measures (Lord & Novick, 1968,

pp.  47-50) would suffice. If we choose to use nonparallel or "congeneric"
(JBreskog, 1971) measures, one pair of measures over time being on the
same scale (e.g.,. A12 =-'A1'3)' y - V'T” could be arbitrarily standardized-

(= 1),. yielding an idéntifi_aBle model. with>* df =1 .. In all these cases, : ’ i
_growth statistics. may be obtained from the parameter estimates or the 4o
 model can be transformed to obtain growth statistics directly. - Inserting R e
Ty =Ty 4 A them: . o T L | R
:i qit:,‘ .:n:ﬁn.'bﬁ‘z T*'§ (T2_Af;é) : ’ . _  .Juu‘ . ] (93) | ; . ‘3  :‘7u 
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- where V =

T,

Arp

| A,
A* = 22
Ayqg
| A23

1. for convenience.

Relevant growth statistics are:

p
T,A

.\ o
"

Similarly if
of equations

)] =
TT,T,

Dyn =
aT,

correlation of initial status with gain

| 6TZA ¥ J?;agg.i,

1+D,. .
ATy

. V : Cn - s and
2 A7 T

parameter estimates were deri

A

¢ + ¥
T,T, * 't

bess

' .
PN

(9b)

. (9¢)

e (10a)
(100)

(10¢)
J

(104)

ved from the original model
(8a), (8b)y (8c), (8d), and (8e), growth statistics can
be obtained by - o _ : ;

(11a)

(11b)

@& (11c)

(114d)

(11e)




Following J8reskog (1971) the parallél test assumption can be tested
(given multivariate normality) by comparing the chi-square for the
"essentially tau-equivalent" model to that for the "parallel” test .
model; the difference in chi-square with = df = 2 1is a test of assump- _
tions that V. -=V. -and V., =V, . Similarly thecincrease
elz e el e : %

in chi-square from the "congeneric" model to th "essentially tau-
equivalent" model (df = 2) 1is a test of the'a§sumptions that Aq, =

‘ A22 and Ai3 = A23» . If the parallel Pest assumptions are accep%ed

i
| then_the population reliability at the initial time may be estimated
}
|

by V. % (V. + V_, ) and reliability at the final time by V., =+ ’
Ty " " Ty 0 edb Iy

(VT3 + Vel3) . The reliability for each- test is the square of the : ' o
corresponding standardized factor loading in the case of "essentlally
tau-equivalent" or "congeneric" measures. Another statistic of inter-
est in the traditional psychometric litevature is the reliability of
differences . (pA)' which is defined as the true variance of the dif-
ferences divided by the variance of the observed differences. 1In the
parallel case the estimated population error variances can be used to
_obtain Py directly: - ”

VA'.

‘\.’ ’ 6A = A

7 A
_ 12 - %13 .

: "With "essentially tau-equivalent" assumptions.no statement is made
Lo about equality of error variances so that four reliabilities may be

. B ‘ (12a) | '

P ol
: estimated: " - :
‘ h . A VA T
pA = a - N -9 (12b)
! 12 13
: * :
i » S | o .
I; 'A' = A A £ : A s ' (1ZC)
i v'A +V, TV, :
: ~

3 ey . o
By = @ o
- : V +V. +V ?
A~ "€ €13 -
o Al N
‘ pA = A r"; A A A ) ’ ' (12e)
VA +. ve + ve. . )
. 22 23 .




Formulas (12a), (12b), .(12¢), (12d), and (12e) are based on the
. assumption that the true scores have the same units as the observed
_scores, which is not true in the case of congeneric measures., Since

the regression of observed on true differences is equal to the regres- -

sion of observed on true scores (Werts & Linn, 1970a, equation (25))

it is only necessary to standardize this weight with the appropriate

variances to obtain the. reliability of differences for all cases, e.g.,

in the congeneric case if A12 = A13- then

'_-_".7_..::," T -..'.’.::.__ S etin ] ,7 el il g eidnit * ,‘-3‘

. e o : i \7 v i
. R ~ A2 A 2

h Pa =412 x 0 (12£) j

. : V., 4+ - 2C 5

N - ‘ Y1p Vy13 ' (le’ Y13) 2
~ ' l ~ . ~ - L M : ',?

where. Vv |, V and C(yqy,9, yqq) - are ‘the> estimated eléments in A

e Yyt s 12* Y13 e e s L .

£ . This formula uses estimated elements in ' § "which are provided e

. ~ in the computer output &for JBreskog's program (JBreskog, Gruvaeus, & k

van Thillc, 1970). The program computes the elements in % from the

estimates for the underlying parameters, e.g., 6(y12, ¥13) = A12A136T T e
. . - 2 .

This model (all measurement errors independent) may be used to clarify
traditional procedures for obtafning growth statistics. For example,
~consider the case in which one initial and one final test is given. A
common procedure is to obtain split half reliabilities at -each time and ‘
use these to correct for attenuation. If y and y,, are the 'ini-
tial split halves and '-yl3 and ypq the final split ﬁalves, this case
corresponds exactly -to the parallel measure case analyzed above. The
difference from the traditional procedure is that the complete variance-
covariance matrix for the split halves is computed and used in the analy- S
sis, 'As shown above, the "parallel" and "essentially tau-equivalent" ] -
assumptions can be tested against the congeneric model and"ghe congeneric )
model is overidentified. From this perspective the traditional procedure )
neglects useful information about correlations among split halves and 3
thereby loses the possibility of rejecting the model because of poor fit ;
to the data. and .of. analyzing the data making only congeneric' test assump-

tions. To understand the cognec;:ion with the t:r“aditional formula it is

of interest to standardize ! into a correlation matrix (correlations
generated by the model are indicated by symbol p ) and to show the rela-

. tionships t.fo" standardized model parame_t:eré (denoted by asterisk):

s T R R

T . . ' s P(lesyl.3) = AiszZI:iAts | o (133)‘1»
o S e P (¥925¥y9). =_~3,’2‘2$T T K’is': | " (13¢0) .
. : Q - ' L 2 3‘. .

A% bp 5 Bk, : (13;1)

o ‘p(yZ23y23) )Ty

b1

o Y




D(le,yzz) = AizAa‘z N | o (13e) : )
= Ax A% . s .

If parallel test a'ssumptions are valid then sz = A% and 3*3 = A% ’

in which case equations (13a), (13b), (13c), and (13d) are identical and

should be recognized as the traditional correction for attenuation,

except that.the correlations are drawn from 2 rather than from the

observed correlation matrix § . _Equations (13e) and (13f), under :
parallel test assumptions, are simply the assumption that the reliability ' »
defined as the squared correlation (i.e., A’izi’“’é’g A*_) of the observed - ‘
with the true score is equal to the correlation between two parallel

tests,” but again the correlations are drawn from I mnot from S . What o _
these equations show is that it is not necessary for the reliabilities of
the split halves to be equal in crder to identify the unattenuated cor- <. P
relation- pTzT; given uncorrelated errors. If the estimates of the

A ) 'g .
‘elements in .& fo the parallel case are examined it will be found -tha

because of the structural specifications: ¢ =10 \ij =9 '
: ° - = o Yyig T Y22’ Y13 Y23’ ¢

" ' 2 -
O . - A. . . A .= A =I.‘ i . i
C(y13-’ }’23) ‘VT3 and . C;(le’ YY13)‘ C‘(y?_z. ly23). CT2T3 . - Translating |
L . . R . . . i
the equation for the reliability of differences into the elements of § i
i . _A . - .. o | . .
| L COupe 3y * BUay Yp9) - 26(y150 713) c o |
. o + e . | |
B . _ - Y12 Vi3 - y12l. }’13

<>

. 5 ans Yoo) ¥ V. 0 aas You) = 26019 ¥13) Ay ¥ : | |
g2 Y22 T Tyt A 28 A T WY1 Va3 oy |

R . Vi
A~ A ~ . ~ A A\
3 o, v + VvV - ZQ(y s Vo) V.V 13’4/{
| Y Yiz - 12 A3 ¥yp YagT

Equation (14b) should be recognized as the traditional formula for ‘the
reliabjlity of differences,. noting however that -the estimates are drawn
from I , not from the observed matrix S . ~ The essentially tau- .
equivalent case differs from the parallel case in that the corresponding
variances in° £ are not required to be equal, however the covariances
between independent measures of different traits-are still equal to the
" covariances between the corresponding traits.factors. This means that
‘formula (l4a) could be used for any pair of tau-equivalent tests over
time. For congeneric measures the formula involves the pairs of measures
which-have the same units over time, e.g., if Aj5 = Ayq then equation
_-(12f) may be i:ransl‘a'ted into L ‘ :

hadt

* h2-
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. tocorrelated errors using congeneric measures then it may be specialized
for the parallel measures case, €.g., if y12' and Y13 have noninde-

. parallel measure specialization of the Werts-Linn equation for noninde-

(1le), (11d), and (1le) it follows that the estimated correlation of
Status with gain is: . A ; matec

- -
T Gt i Gyp? - 2Ry g [V Vs
- Y12 Y13 : 273y Y12 Y13
By = - (14¢)

i+ -2 G0
Y12 Y13 p(ylz’y13)J Y12 Y13

Equation (l4c) is the reiiability of differences formula gi%/en by Werts
and Linn (1970a, equation (26)) for the case of correlated errors over
time for the pair of measurements on the same scale, i.e., the Werts
and Linn formula is also appropriate tc the independent error case when

applied to the eiements of .$ rather than § . If formula (l4c) applies

-~

pendent errors and Vi, and Y93 have independent errors:’

A% = A% : Ak AR D =
(a) A13 A§3 s l?y parallel test assumptions, therefore A12A13pT2T3
MaASsPr,T, »
(b) but p,. . =A% Rx o . '
N (y195 ¥23) 1272371,y
Since ; '

AlZ. ‘ D(y]_z, y?z) s _{3 D(yl3, YZ3) s Yip Y9 s "»Y13. '}’2'3 ’
equation (l4c) -becomes : 2

- n v
- ‘ vylzp(ylz, ¥oo) *+ Vy13D(Yi3, ¥93) = 29(?12;‘Y23)V/V12V13
6A= ' A A - A A - .(ll‘d)
: U+ - 20y v19) [VioVi3 a
Vy o T Vo 120 Y13 V12"13

Equation (14d) is the formula for the reliability of differences for

"linked" (i.e., correlated errors) parallel test measures given by
Gronbach and Furby (1970, equation (6)), which can be seen to be the

pendent congeneric measures, Similarly from equations.'(1la), (11b),

o Cp.r, = V1 ..
u . 32 2 .
P = - e (15a)
TZA A~ ~ ~ PN N
v, (v + V., = 2Cy o )

/ T, Ta Ty Tl

In the congeneric Jcas.xe with A, =‘>A13 , this may be _tra;isformed into .
=43 1

_///' SRR R




Pp p = : . —— . (15b)

2 .
a2a A2 PN P PN A . A
* * - * A%
j CAREEE AN By 0 MaBts [3, 9

Formula (15b) is the correlation of status with gain given by Werts and
9 Linn (1970a, equation (28)) for the case of congeneric measures and cor-
- related errors, i.e., the formula applies also to the independent error
case, In the case of parallel independent measures Pp . = D(les Y13) "

% JEZylz, y22)6(y13’ y23) which when subsfitutea into %p%mula (15b)

yields the traditional formula for the correlation of ét§tus.with gain
as applied to the elements of g . N ' o

0 (¥10syea) [V, = 0(310sY )/‘7 8 .
12913 /Yy, 122Y22) [ Yy, | 150

6 =
T,A
2 ~ / L t A " A~ A~ . i A A
Jp(ylstZZ) p(ylstZZ)Vylz + D(Y13sY23)Vy13.- 2°(y12’yl§) /VYIZVYIS

‘Our purpose in demonstrating relationships to traditional formulations is
purely heuristic, since J8reskog's program yields estimates of model param-
eters given the structural assumptions specified by the investigator, i.e.,
the traditional formulas apply to the elements of I which are not
directly observable but which are estimated as a function of the parameter
estimates., Traditional psychometric approaches have dealt with models |
which are just identified which means that models which exactly reproduce
the observed variance-covariance matr: can be employed (i.B., S =1 ).
The limitation in this approach is that overidentification”is necessary if
.the fit of the model to the data is to be tested.

In this paragraph we propose to use our model to specify the condi- - : . T
. tions implicit in Crombach's (1960, pp. 136-139) discussion of coefficients

of "stability" and "equivalence." Crombach uses an example in which two

forms of the Mechanical Reasoning Test of the DAT were used, the same forms o
being used for test and retest purposes. - When the same form is repeated, i ho
the test-retest correlation is higher than the test-retest correlation
between ‘different forms, suggesting the presence of "long-lasting test— .
specific® factors, The implication is that the ‘errors of measurement' for S ‘
the same test repeated are not independent. Assuming that both forms -
were repeated and errors of measurement independent for different forms,
the-model for parallel measures?YE of .the form: ‘

.0

P y = u+ ATV . ‘ (163)
where _ : e
' y = (Yiés Y92 Y139 Yié) . (18b)
[5d
by
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where Y12 and yi3 are the same test as are Yo9
f . - ¢ . .
T = (Ty, T35 €35 €995 €195 €53)
1.0 100 0
{10010 0
A=10.1 001 o
Lp 1000 1}
and ) ) B
'
T,
Cov V Symmetric
TyTy T4 | ym
0 0 v
E
~ lo. 0 0 v
| . Y
. 0 0 c, 0 v
. ©12%13 €13
0 0 0 . 0
i | 22523
where - V =V -,V =V .
12 %22 " 13 23

and Yo3
, (1é6c)
(16d)
)
|
!
{16e)
A
®23|

The model wf (16a) is the special case of factor analvsis in which

9. the residual factors are treated as latent factors.

:C and Ce 40,

e 22923

®12%22

Examination of ¢
shows that the same test errors of measurement are nonindependent, i.e,,
All parameters are identifiable and df 3

(10 distinct elements in z 1ess 7 free and constrained parameters)
Essentially tau-equivalent assumptions would still have’ provided identifi-

) ' o cation but with on1y one overidentifying restriction (since \'

Ve #V. ).
%137 %237
- which case the model is underidentified' however
correlation O
S : L Moy

C(le’ y22)C(y13’ Y23)]

2 ‘3

using different method measures for y22
. model is: ’ o :
. .;4

P

;45_;: .

# \A
e1p " ey 7

‘An, interesting case ‘occurs with congeneric assumptions in

the unattenuated trait
"is just identified [p T, = C(ylz, y23)C(y22, yi3) ¥

’ Identification may be achieved with the
congeneric model ‘by - repeating only one test (assuming - A

g = A; i3 ) and

and y23' in which case the

A M e
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- A= : (16f£)
v ~ 0 A . . .

0 A23 0 0 01

where A12v= A13 by assumption, and

— -,

. . 1' . ’ . _ ‘n

\ Symmetric . - -

, T,y T4 |

0 o v, |
e 1o 0 o0 ' e
L €22

0 0 0 v

€12%13 €13
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This model is'just_identifiéd (10 distinct elements.in z léss 10
parameters to be estimated), Let us return to Cronbach's example in
which there are Forms A (y12) and B (y22) initially and retests on

Forms A’ (yz-) and B (y,,) three years later, Cronbach partitions
the.variancé using the immédiate and retest correlations among forms
(assumed parallel) which in our model corresponds to the elements of
Z°. We may -translate -Cronbach's partitioning procedure into functions

of the model parameters in equations (16a), (16b), (16c), (16d), and .
‘(Eﬁe) as follows: = L / i

1. "Lasting General vafiancéﬂf=lp(yié. ) = Afzp(Té- T4)A3; which
Aaccordipguﬁo the model equals p(yzz, yi3) = Agzp(Tz, T3)Ai3 .
2. "Temporary General Variance" = p(y12? 222) = p(¥19s Ypq) = A% A%, -
: Yo,)
p(y22’ y13?_=kA§2A§2 - A%zp(TZ{ Tﬁ)Aiﬁ.', In p:incipl%:theré is a '
A.diffgrent “Tg@pqréry,cenetal Variance",for'the endﬂtimé p$y13"y23) - .
p012s ¥23) = Afghgy - AL (T, TAY,
P(razs ¥13) = AYaARy - A%,0(Ty, Ty)A%, .

AA{Zp(TZ, TZ)A§3 which according:to the model equéls p(ylz,

which equals p(y13, y23) -

| P(y19s .¥13) = P(¥99s y13) =\/1 - (A%,) % plegy, eg3) 1 - (A¥;)" and

3. "Lasting Specific»Variancé" fgr'forQLA p(ylzg.y13).- 9(y12’1y23) = - -
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for Form B p(y,,» Yyq) - p(y19s Yg3) = P (905 ¥9q) = p(ygqs ¥13) =

- wgp? oteg0 091 - ag?

4, "Temporary Specific Variance" [1 - p(in’ yzz)]'- [p(ylz,'y13) -

0y ¥o9)1 = [1 "p-(,ylz’ y92) 1 = [0(¥y19s ¥13) < 0lygps y13)1 =

I

—3 N RPN .
1- ATZAEZ-_J']_ ""(_A_?.Z) p(e12’ e13) /1 ._”(Afé) for the correlations

:used by Cfonbach, Bﬁt in principle there are.threé_bther temporary

S

12722

1- Ai3A§3 - 4 1- (Aiz) p(e129 313). \, 1 - (A’i3) . and 1 - A'11¢3A§3_ |
1- (A% )2 (e €na) jl - (A*.-)z : ' o . .
ot o o

It can be seen that Cronbach's procedure for partitioning of variance
involves complicated functions of “the model parameters, Not only is it
simpler to analyze observed correlations in terms of a set of s;ructurél
parameters, but it allows for analysis of overidentified models. Further
light can be shed on the assumptions implicit in the model of (16a), (16b),
(16c), (16d), and (16e) by asking what variables account for the correlated
errors. Assuming that a single factor (M,) underlies the correlation for
Form A and another factor (MZ) for Form B the model becomes:

specific v?giancés 1 - Ak A% ;-/1 - (A§2)2_D(é22, e23)\/1‘- (A§3)2 R

SR

c’é‘:«

R TIra ;,-‘a;;,__:_;-.;t;.‘.';_, Siny
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y=u+AT+e | (17a)
.. %‘ .

where
(17b)

g
w0

" (y12’ y22’. ylja Y23) )
T (Tyy Tqs My, My) (17¢)

vy

n

a . e'. = -(eiZ’_éEZ’ ei3, e23) . (174d)

-

(17e)

b = O O
o W O
o
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Analysis of the identification probiemﬁéhows that 3123 322, Bi3, and
B,q are not separately identifiable; dply the products (312 Bl3) - and
(322 323) are identified, This means[th t in J8reskog's program we

| may arbitrarily set By, = B;, and  Bj, 323' without diéturb{ng the
| estimation for other parameters. Assuming By, = 313 and By, = 323 ’

this model is a simple transformation,of {(16a),¥(16b), (16¢), (18d),

and (16e) .under essentially tau-equivialent assumptions, that is,

v # Vo s Yo # Ve' in equaticn-(16e). In particular it can
12 22 13 23 ' : : :

‘be seen that it must be assumed that M; and M, are uncorrelated.

It is péssible to deal with oblique true and method factors but usually
mere different method measures are required as in our 3 trait x 3
method.example in Section I. ) ' Y -

‘When methods of measuring a trait are made as different as possible,
it is usually the case that the units of measurement are differemt,
which means that. congeneric rather than essentially tau-equivalent or
parallel .assumptions are appropriate, Werts and Linn (1970a) consider
growth-models based on congeneric measures, e.g., in one case they use
three congeneric measures of T, and two congeneric measures of T, , S
allowing for same test correlated errors.over time. This model is ~. -
overidentified, but no attempt was made to deal with this complication,

Phrasing this problem in terms of JBreskog's general model: _
: y=u+ AT+e . (18a)
o X

¢ y = (120 Y220 Y320 Y130 Y23) (18b)

e

where y,, and y;4 are linked as are y,, and y,s .

. [} '£_= '(Tz ’. T3’ M]_’ Mz) ) (18(:)
Ap 0 B o ]
14 0 07 By : R
N=la, 0f 0 0 | S asd) . C L
o Ay hy 0 )
10 Ayz O . By
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o =| (18e)
0 0 1 : _ ,
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Assuming that A12 = A13 s A22 = A23 and for convenience that B12 =

. ,B13 , B22 = B23 , this model.has four overidentifying restrictions (15
o distinct elements in I 1less 1l parameters to be estimated). Werts 3

: and Linn give two formulas (1970a, p. 198, equatioms (28) and (29)) for 3

estimating the correlation of status with gain involving observed cor- g

. relations and variances whereas JBreskog's approach generates a single 3
estimate by equation (15a). In essence Werts and Linn dealt with the '

elements of the observed variance-covariance matrix § which may. yield

inconsistent estimates of Pr A whereas 'such incousistency cannot arise

with respect to the elements in % , JBreskog has an unpublished operat-
ing program for estimating factor scores within the confirmatory factor :
analysis model (JBreskog, 1971). As Cronbach and Furby (1970) note, g
however, there is seldom need for such estimates,

Relationship to Factor Analysis

—~— . -

A common practice in the factor analysis of growth data is to com-
pare standardized factor loadings at one time to the loadings for the
same set of measures at a later time, If the pattern of loadings remains
constant over time the inference is drawn that the factors are measuring
essentially the same dimension at different times. For example we might
have three.measures of T, at time 1 with factor loadings AT4 = ,30 ,
A§2 = ,40 , and Ag, = .50 and identical loadings om T, when these ;

measures are repeated¢ at time 2, i.e., A¥ = ,30 A%, = .40 , and ;

A§3 = ,50 ., For heuristic purposes let uS suppose thaé the repetition ' 3

. , of tests .did not result in methods factorsgand that the true variance ;
increased from _VT = 1,0 to VT = 1,5 over time and CT . T 1,2 ., by

It may be immediat%ly inferred thgt'the error variances forzail tests i

increased over time since the test reliabilities (in this model ‘the ;

squared factor loadings) remained constant and the true variance increased, »

However, Wiley and Wiley (1970) have persuasively argued that it is more ’ =

likely that error variances are a test characteristic which is likely to

_remain constant over time. If this is so, then an increase in true vari-

ance along the same dimension will necessarily mean that the reliabilities

of the tests will increase over time, i.e., the standardized factor load-

ings will increase. _In the-same fashion it may be deduced that if for

ary given test.over time the unstandardized regression weights (A12 = Ai3) ' ]

and the error variances (V, =7V, 3) are equal, then in general
i2 '

*

o 12 . i
the standardized factor loadings (Aij) are not proportional from one

o et

time to another, We conclude that~¢omparison of standardized factor

P
49<;
=8I
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loading patterns over time provides no logical base for any conclusions
about whether pretests and posttests are measuring the same“variable.

It appears to us that such an assumption, which in this model is equiva-
lent to equality of unstandardized regression weights over time (e.g.,
Ay =»A13) , is basically not testable within the framework of this
model. 1t would seem better not to make dubious assumptions that either
the reliability or the error _variance are relatively constant (over time)
test characteristics, but to build modgls and gather requisite informa-
tion such that these model parameters are identified, '

While it is not possible to test the.assumption that A, = Alg s
it is quite possible for this assumption to be incompatible with tl]ie
assumption that A,, = Ajq . The ratio %)f VT3 to VT2 resglting f rom
A12 = A13 may differ from the ratig re;ulting fyx.'om A22 =_A23 . '?his
may be tested by the increase in ¥ (df = 1) resulting from the addi-
tion of A22 = A23 to the model in which A12 = Aq . Within the frame-
work of this model, if it is true that the corresponding pairs of tests

over timé in_fact have the same units, then the scaling of V, to Vg
should be the same for each pair. . ' ° _ -3 2

The finding that the data are consistent with the hypothesis that
A12 = Al and. A 9 = A2 does not ‘necessarily imply that the units of
measurement for t?‘xe corresponding pairs of tests over time are the same -
since it'is quite possible for the scaling to be erroneous for both pairs
of tests but in the same way., If the data are inconsistent with the
hypothesis that A12 = A4 and A22 = A23 we could conclude that the -
units over time are not the same for both sets of tests, but it is still
possible that the units are the same for one of the-sets over time. Even
if it could be shown that ‘A;, ="A;4 , this would only be evidence '
consistent with, not p/roof o%, the aypothesi‘s that the scales are measur-
ing the~same proekes-bver time. ! B

. Determinants of Growth o e

’

We~ts and Linn (1970b) have considered the problem of making infer- -
ences about the determinants in a linear model., The Werts-Linn formula-
tion was based on classical true score assumptions, i.e., -no provision
was made for methods factors. For heuristic purposes let us reconsider.
the problem of growth determinants, formulating the.three trait, three
method model in terms of growth (T3 =T, + A) :

. R L
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Tt should be noted that although this formulation does not directly
involve the. parameters of the underlying growth model A = DAT T Tl +
D,m - T, + £ , however, the regression -weights are: 1°72
AT,.T; "2 ’ _ _ .

- L | . “Cpoam Cralrot

: ' 1 257172 :
- Dy = : s . (194d)
o — . o R . =
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‘Traditional test theorists (e.g., Bloom, 1964; Thorndike, 1966)
have been very, concerned with and have drawn substantive .inferences
about the determinants of growth from the correlation of status with
gain, usually corrected for "attenuation.," However, as detailed by
Werts and Linn’-(1970b), in a limear structural model prime interest is
in the model parameters DAT T. and DAT T since 1f either one is

: 1°%2 2°71 :

zero the inference will be drawn that the corresponding variable does not
directly influence gain.—Except in the case in which initial status
1s uncorrelated with all determinants of growth, knowledge of the

correlation of status with gain, Pr A does not allow us to draw
. 2 )

inferences about model pzirémeters. It is quite possib.le for Pp A
. ' , 2
to be completely spurious due to a commén antecedent }.nfluence or it
is quite possible for pi to be zero without implying that D
1: A R B . AT]..TZ
or DAT T be zero. \"Ef:r this reason we question Thorndike's (1966,
. 2. '1

P. 124) interpretation: "In considerable part, the factors that produce
gains during a specified time span appear to be different from those
that produced the level of competence exhibited at the beginning of the
period." Our objection is that Thorndike's conclusion was made from the
correlation of status with gain, without specifically introducing into

" the analysis any presumed determinants of growth. In a linear structural

model the total association of initial status with growth 1is an insuffi-

clent basis for drawing inferences about the various possible determinants
of growth., : ‘

Discussion‘

The variety of test response tendencies covered by the rubric
"methods factors" appear to be an almost universal complication in -
sociopsychological growth studies, Even. though in principle the
multitrait-multimethod model presented in this .paper provides for
"methods factors," it does not follow that this model does in fact pro-
vide a better simulation of reality<«than previous models whifh have
typically ignored methods factors by assuming independent errors of
Mmeasurement., It may be expected that our procedure will typically yield
different parameter estimates (e.g., rorrelation of status with gain)
than fprevious procedures, but what has been learned about growth and its

~determinants thereby? What is learned about reality from the overwhelm-

ing concern of the factor analyst with statistical fit? There is no
guarantee that the best fitting model yields substantively meaningful -
results (e.g., Werts, JBreskog, & Limn, 1971). Why bother with com-
plicated structural models involving unmeasured variables when it is.
likely that a simple JLegression equation involving only measured varia-
bles-will provide the best prediction of the criterion? From our perspec-
tive, if the researcher's basic interest is in reality, then the research

. must be designed to explore reality, i,e., to offer evidence as to which

of the initially plausible 'alternativevhypotheses (models) provides the
=52~ .
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better simulation. In some cases this may involve a study of the _
theoretical implications to see what information is necessary to 4
discriminate between the alternative models. In other cases the 3
study may be a continuing one as in the building of models to
simulate the national economy, in which case the ability to better
predict new yearly data is used to discriminate among models. ~-Our
purpose in making these remarks is to heighten the awareness of
researchers that parameter estimates, such as the reliability of
gain scores, are always made within the framework of a whole set :
of untested assumptions about the nature of reality,' It is mis~ 4
leading to talk about.'the correlation of status with gain" since &
the meaning of this parameter is totally a functicn of the partic- i
ular model used to derive thekparameter. In most cases in \wﬁ;ch ' ;
this type of estimate has been used, no effort hes-been made to

- examine the validity or even plausibility of the models {nderlying
. these estimates. The linear structural model presented herein is
as suspect as any other model and needs to be justified as one of
the plausible alternative hypotheses, prior to data anglysis.
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V. Conclusions -

Sections III and IV constitute fulffllment of the project
objectives as stated in.the original proposal. The entire written
output of this project has been or is in the process of being dis-
seminatgd to the various relevant audiences. All material has been
published or been accepted for formal publication in the final form
given in this report, -

The substantive conclusions of :this project are stated in
sections III and IV. While we have succeeded in integrating the
methodological literature within the’ scope of the project, the-
limitations of our approach need to be stated, The study of the -
methodological literature alone cannot lead to any conclusions
about which kinds of educational growth problems it would be
appropriate to apply these methods to. It 'is much clearer in the
physical sciences that quantitative analysis is appropriate only
when the mathematical ‘model underlying the analytical procedure
approximately simulates the process under study. In the social
sciences it is typically unclear whether the model underlying the
statistics. being used has any resemblance to the:phenomenon, usually
becaugse we know very little about how the phenomenon actually ‘works,
In our: judgment, pridrity should be given to work that attempts to !
match methodology to particular substantive problems.
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COMMENT* ON “THE ESTIMATION OF
MEASUREMENT ERROR IN
- PANEL DATA"

Wlley ‘and Wiley - (1970) have made a con-

" tribution to the literature on dealing with errors

of measurement by showing how to build a
" model employing the assumption of homogeneity
of error variance in panel data. They argue that
this assumption is more plausible than the gs-
- sumption that the reliability remains constant
over time (Heise, 1969). Since we have avail-
. able data which allow a statistical test of which
assumption is the most plausible, this note was
written ‘to give the results of this test and to
! demonstrate how such tests can be performed

*The research reported herein was performed
pursuant to Grant No. OEG-2-700033(509) with

tion, and Welfare and the Office of Education.
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Ymm 1. A Three Wave Model
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when at least four sequenhal measurements are
available.

The model employed by Wiley and Wiley |
(1970) is shown in Fig. 1. In this model the |
rcliability of a measure (x;) is' the square of;
the correlation” (p1) between that measure. and’
ite underlying true score (§). Denoting a*n and
a*, as the standardized path coefficients cor-
|espondmg to an and a, respectively, path analy-
sis indicates that the correlations generated by
the model are:

l’(xn !l) =patnp N .
p(X: X¢) =py 2% 2% iy ' ¢Y)
P(Xs ) =1 2% Ps

It follows from (1) that

M= p(X, X2) p (T !e)

r(mix) @

‘ s P(X1 Xs) 8 (X, !c) }
[pa%]'= —_'. T &)
[ﬁl a%,]'= P_(!; :‘()xrx(';‘ :C) (4)

Thus, without making any assumptions about
homogeneity of error variances or reliabilities,
it has been demonstrated that the reliability of
%, (¢%) is identifiable, and hence also. that the
corresponding  error variance V(e)=V(x)
[l_ %] and true score variance V(&) =V(x,)

+V(e) is identifiable. For the two outer mea-
sures x, and X», only the products [pa*a] and
[rsa*s] are identifiable. '

Now consider the case’in which four. sequer.-
tial measurements are available, Making the
same assumptions about the fourth measure
that Wiley and Wiley (1970) made about the
first three, the model in Fig. 2 is obtained.
Generalizing the results of equations (2), (3),
and (4, we sce that in Fig. 2:

- (a) p., V(es), V(&), and the product [pa*s)
" may be identified using either x,, x,, and x, or x,,
Xy and b

(b) s, V(a), V(E.), and the product [ra*a)
may be idertified using either x, x, and x, or
Xy K, and x.

Path analysis of Flg 2 also indicates that
l’(x: X)) =pa%s ps and I’(xl xa) pa*naty, a¥y p,
which means that a*. is overidentified. There-
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m. e . e ) - R

Cemd




1y
e ¢ ¢ ' ¢, Table 1. Correlations for Quan"tita-
! 1 2 3 tive (below Unities) and
| Verbal (above Unities) Test
l : ] Scores.a
x x x x  Grade .5 7 9 11
1 2 ’ 3 L .
_ s | 1.000 .849 795  .779
. a a a T .742  1.000  .868  .838
; 21 : 32 ; “3__& 9 718 747 1.000  .860
Tl - $2 ta 1 11 .687 ,686 - .791 . 1.000 1
8geandard deviations for quantitative’
6, Qz 93 9“ scores are 8.986, 13.771, 16,986, and

AN

\

At

Ficure 2. A Foﬁr-Wave Model

fore 8m=2a%s VV(&) TV(&) is identifiable.
Genéralizing to multiple wave- panel studies, we
may state that, when the assumptions of the
Wiley and Wiley structural model are given,
error variances, true score variances, and un-

* standardized regression weights between cor-

responding true scores are jdentified for all but
" the first and last measures. For this reason it
appears unnecessary to make either the equal

MEASUREMENT ERROR

e Y AL b

17.699, respectively; standard devia-
tions for verbal scores are 11.748,
12.704, 13.756, and 14.379, respec-
tively., - .

make about the first and last measures in order
tc identify the corresponding true and error
variances and regressicn weights among true
scores. Given at least four-wave data, sug-
gestive but not conclusive evidence about which
(if either) assumption is better may be ob-
tained by comparing the estimated error vari-
ances and reliabilities for the inner measures.

reliability or the equal error variance assump- The four-wave data to be analyzed using the
tion for inner measures. However, one might model in Fig. 2 were collected in a longitudinal
wish to know which is the better assumption to study (Anderson and Maier, 1963), which in- 3%
Table 2. Model Parameter Estimates and Goodness of Fit Tests.
- Estimates’ -Pit
. R 'a" ﬁ. “x? d
Model _ ' [91921] az 53 [54 43] 32 1- X .£. P
o t SCAT-V Data _ :
‘ * \ ' " Fig. 2 .884 .960 .942 912 .959 1,38. 1 .240
' ayy = 1 877 .941° .927  .903  1.000 | 4z.61 2 .000 -
f 0, = o3 .816 .95z .95z  .956  .959 | 227 2. .338 : .
Vie,) = V(ey) .887  .950 .952 . ".908 960 | 1218 2 .00z |
‘o e . . . . . SCAT.Q Data . . . ' ".%
- Fig. 2 851  .872 .919  .860 925 | 2078 1 095 L
a3, = 1 .823 _ .840 .899 852 1.000 | 42,77 2 .000
_ _ by ™ Py .557 899 .899 894 .24 | s.a0 2 .067
e V(ep) = V(eg) - .851 ° 873 . .918 .861 .925 2.80 2 .247 o
EMC SR . YThe symbol """ denotes an estimate of a popul.atx'gg:parameter based on sample
SRS .data. . gt N :

Aruitoxt provided by Eic
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cluded a group of students tested in the Sth,
7th, 9th and- 11th grades with the School and
College Ability Tests (SCAT), which' yields a
Quantitetive (Q) and a Verbal (V) score. Table
1 gives (previously unreported) correlations and
standard deviations on these tests for a sample
of 703 males with complete data.

As Goldberger (1970) notes, the path analysis
literature offers no guidance in systematic
estimation of overidentified models, such as that
depicted in Fig. 2. To obtain estimates, we used
Joreskog’s (1970a) general method for the
analysis of covariance structures with its as-
sociated computer program (Joreskog et al.,
,1970), The four-wave model in Fig. 2 is of the
guasi Markov simplex type, the analysis and
programming of which is discussed in detail by
Joreskog (1970b).. Under the assumption that

"<the observed distributionsdfre normal (reason-
able for these data), Joreskog’s procedure yields
maximum likelihood estimates of model param-
"etérs and a'large sample chi squared.-test is com-
puted for testing the fit of the model to the
data. Furthermore, the program allows certain
model parameters to be specified as equal to
other parameters or to some constant. This is
useful for the present problem because the chi
square fit before imposing a restriction (e.g.,
equal error variances) can be compared to the
chi square fit for the more restricted model as
a measure of the tenabhility of that restriction.
The analysis proceeded in four steps: .

1. The model in Fig. 2 was analyzed without
assumptions about equal error variances. or
reliabilities.

2. To test whether it is reasonable to believe
that ¢, and & are perfectly correlated, the a
priori restriction that a¥s =1.0 was imposed. The
chi square for this condition less the chi square
for the first condition is the chi square with’
one degree of freedom for testing the restric-
tion. .

.3. To test the equal reliability assumption,
the a priori specification was made that ps=ps.
The chi square in this condition less the chi
square in the first condition yields a chi square
with one degree of -freedom for this hypothesis.
This assumption is equivalent to'the assertion

that -the error variances.are a fixed proportion .  °*

of the corresponding test.variances.”

4. To test the equal error variance assump-
tion, the specification was made that .V(e) =
V(e). The chi square test of this hypothesis is
the.difference between the chi square for this

" condition and the one for the first condition and

-

< also has one degree of freedom. |

The results of the above analysis are shown
in Table 2. In step one, for both SCAT-V and

p—

SCAT-Q, the x* is small, indicating a good fit.
The pattern of the estimates is reasonable in
that #; and #, are approximately equal (published
test reliabilities are equal and of the same order
of magnitude as these estimates), whereas
[P4*s] and [A4*,] are lower, as expected
since they are the product of a reliability and a
true factor correlation. When the assumption
that a*, =1 is inserted, the x* increased signif-
icantly (>40) for both SCAT-V and SCAT-Q.
The third step testing the equal reliability as-
sumption yieldled a fairly good fit, and the
difference x* does not. suggest that this hypoth-
esis should be rejected; however [F4*,] appears
unreasonable since it is approximately equal to
#. and $.. For SCAT-V [A&*,] is slightly larger
than % and A, which would require 4%, to be
greater than 1.0 for 7 to equal % and £. In
step 4 the difference x" for SCAT-V, is statis-
tically significant (x,=12.18-2.38=10.8) al-
though the absolute magnitude of the difference

are more sensible than the step 3 results since
[PA*.] and [£4*,] are both less than & and ..
The step 4 difference x* for SCAT-Q (like step
3) is not statistically significant. Overall, these
results suggest that the equal reliability assump-
tion gives a good statistical fit but yields
theoretically unreasonable results; whereas the
equal error variance assumption may yield
poorer fit but estimates which are like the
original model of step 1.
CuarLes E, WERTS
KARL G. JoreESKoG
RoBeRT L. LINN
Educational Testing Service
Princeton, N. J. g

REFERENCES

Anderson, S. B. and M. H. Maier
1963 “34,000 pupils and how they grew.”
. Journal of Teacher Education, 14:212-216.
Heise, D. R. ,

1969 “Separating reliability .and stability in
test-rctest  correlation.” American  So-
ciological Review, 34:93-101.

Goldberger, A. S.
1970 “Econometrics and psychometrics: A sur-

. * ‘'search Institute Workshop Series, EME
7013, University of Wisconsin,
Joreskog, K. G,

1970a “A general method for analysis of co'-‘

variance structurcs.” Biometrika, 57:239-
a51. .
1970b “Estimation and testing of simplex
64 models.” Research Bulletin 7042, Educa-
tional Testing Service, Princeton, New
. Jersey.
Joreskog, K. G., G. T. Gruvaeus, and M. van Thillo

.may not be too important. The- step 4 results -

vey of communalitics.” Social Systems Re-

-




il e e e Skt asas e il est Aednatnt e ARt e - - Tve T T T '

i o

1]

\

i
- i

!

\

' .
. >
>

POLITICAL COMPLEXITY 13

1970 “ACOVS, a general computer program for . - ot ‘
analysis of covariance structures.” Research . :
Bulletin- 70-15, Educational Testing Serv-
ice, Princeton, New Jersey. ' K
Wiley, D. E. and J. A. Wiley ) o0
1970 The estimation of measurement error in .
* panel dota.” American Sodiological Review, :
) 3s:112-117.
l..
, 0y —t t
' ) i _
{ . !
: | <
i
5 ~ . ?\‘ o _ ;

|
ST

!

[} i
K i
! 1 .
: i
! ‘ o ’




b . aana o - g il WONg T TS R e v

{-

A5

Reprinted from THE AMERICAN JOURNAL OF SOCIOLOGY
Vol. 76, Nu..6, May 1971

© 1971 by The University of Chicago. All rights reserved. .
Printed in US.A.

oy i B e A e i ey a2

N COMMENTS ON BOYLE'S “PATH ANALYSIS AND
ORDINAL DATA™ : ' :

\
aad

Boyle (1970) has made a significant contribution to the literature in

. showing how-to use dummy variables in path analysis as a device for
Do : investigating scale characteristics. However, if path analysis is applied

‘ in causal analyses without provision for unmecasured “underlying"’
variables, there is an implicit assumption that the causative variables
are measdred without error (i.c., perfect reliability and validity). When®
each scale unit of an independent variable is treated as a category in .
Boyle's procedure, no measurement error corresponds to no errors of
pluccmel),ﬁ into categories. If there are plucengént errors, then the ob-
served scale category may not correspond to the “true” scale category, .
that is, the durnmy variable sct used by Boyle to code the scale units for
an independent variable would correspond to an observed set of fallible
variables which are indicutors of an underlying set of .“true” dummy -
variables. Figure 1 illustrates the relationships among true and ob-
served dummy variables for u four-unit scale, residval arrows correspond-
ing to errors of placement into that scale category. The number of ob-
served dummy variables (Ds, Dy, D¢) is one; less than the number of
scale units or catcgories, and the true dummy vuriablies.-(T., T, T.). are
shown ss nonindependent be(_milse inclusion in one‘cafte'gory necessarily
involves exclusion from unother category. Since dummy variables are
dichotomous, the product moment correlations among these variables
are ¢ coefficients. Application of path principles to figure 1 shows that
the system is underidentified since there are only three correlations
among observed variables as compared with nine unknowns (three cor-
relations among errors, three correlations among true dummy variables,
and three reliabilities). One golution to the underidentification problem™
is to use at least three experimentally independent indicators of the
independent variable, each of which has the same number of scale
categories. For example, in the case of three independent indicators each
of which has four levels (i.e., categories), the resulting path diagram
would include three “observed”’ dummy variables (e.g., Dai, Das, Das)
for each “true” dummy variable (e.g., D), the placement errors for a
given category on one measure being independent of placement errors in o
the same or different categories for the other two measures. A path L e
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Fio. 1.-~Path diagram showing relationships among true and observed dummy
variables for a four-unit scale. i )

analysis of this diagram shows that the system is overidentified (36
observed correlations v$. 21 unknown correlations and path coefficients).
When the usual dummy variable coding is used (Decomposition II in
Boyle's table 1), the correlation (¢) between any two true dummy
variables is a function only of the true proportion in these categories:

onn = NDR )

Qth, '

where ¢r_r; is the correlation between T and T', Pa is the true propor-
tion in category a, Ps is the true proportion in category b, Q. =1-=P,
and Qs =1 — P L : o :
It follows from cquation (1) that if the correlations among the three
true dummy variables are identifiable, then the proportions of the true

’ clnésiﬁctiiign‘in each category may be identified. The variance of a di-
-chotomous variable is equal to the proportion in that category times the

proportion not in" that category- (e.g, Vs = PsQs), and the mean is
equal to the proportion in that category (e.g., Pa). The variances and
the: correlations.could be used to calculate covariances or unstandard-
110 S
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ized regression weights as desired. A dependent variable (Y) may be
added to the path diagram, path analysis prineiples again allowing us to
find the equations for the unstandardized regression weights on each of
the true dummy variables. When the second type of dummy variable
coding in Boyle’s tuble 1 is used, the true regréssion weights represent
the difference between the true Y mean of the group coded “1" in that
dumnmy variable and the true Y mean of the reference group. When
Boyle’s (1970) first type of dummy variahle eoding (Decomposition I in
table 1 of Boyle's paper) is used, then the true regression weights repre-
sent the true diffcrence between successive category means, that is, a

test of the cqual interval assumption under “offeet” sealing. This anal-

ysis indicates that one of the reasons that the observed regression weights
inay differ from one seale eategory to the next is that the degree of mea-
suremnent error may differ ut different points on the scale.

“The analytical model discussed above would still apply if the observa-
tions consisted of three independent sorts inte a set of norainal eategories.
In this case the analysis is.equivalent to ar. analysis of variance with fal-
lible group information, and the problem is whether the true group means
really differ, that is, whether the regression weights for the true dummy
variables are all zero. ‘ _

In passing it might be noted that for overidentified models of the type
discussed above, a procedure for estimating the parameters of the
snodel is needed: As Goldberger (1970, p. 25) notes: “the path anal-
ysis literature offers no guidance on systematie estimation of over-
identified inodels.” Because the distribution of variables (true and
observed) is inultinomial, the function to be minimized (Mote and An-
derson 1965; Cochran 1968, pp. 647—48) for cstimation purposes is a x*
involving observed and hypothetical (“expected”) probabilities. The
dummy variable peth analysis equations therefore must be translated
into probability functions to obtain estimates in overidentified models.
In our opinion, path analysis is useful in this type of problem because it

helps deal with questions of identifiability, and it is easier for the re-

gearcher to conceptualize the relationships among variables.

CuARLES E. WERTS

RosERT L. LINN
Educational Testing Service
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Werts & Linn (1971) pointed out that Boyle (1970) had implicitly

" *’~assumed that the causative variables were measured without error. Further . ‘

) . . .

i
study of literature relating to this problem (e84 Cochran, 1968 Evans, l970'

Anderson, 1959) indicates that the Werts-Linn procedure for dealing with categorical

o errors of measurement 'is incorrect, The purpose of this note is to set the

record straight. A ' . v e o

.As a basis for generalization to polychotomOus variables, first

o

l - e

consider the case of threé independent fallible dichotomous measures X

o 3
g = l 2, 3) of an underlyitig true dichotomy (T) The observed categories . -

will be labelled k =1, 2 and the tru% categories & =1, 2. The relationship

.

between Xj and T can be expressed as'a'function of g‘the conditional -

_probabilities‘P{x:l = k|T = g}= ejkz for each combInation of k and‘z‘ :"
' - R “
: o= =" = CLUP{X. = 1T =2} =06 |
) CR{Xy =T1T =T1) = 0y X, | b=y, ‘
h CP(X; = 2|T =1} = ¢, ,, and-P{X |T =2} =86, .

3 i1 37

A,
1

ej is commonly labelled the proportion of“false negatives andejlé the
L3921 . .

| proportion of false positives. The sum of the conditional probabilities for

. a of v i.e., O + 9 =1 and 8, +6 =1,
_‘”a‘.fixed value of % iS unity i.e » 99007 %40 T 7 312 d22

- k .
| v i
Define P,, = P{T = &} and P, = P{X, = k} vhere £ Py’ = 1 and I PJ v=1. The

. model parameters to be estimated are the conditional prob'abilities

N N . . ‘ ..
for each observed measure and the true proportiuns in each category. Since each‘

* N - . .. . -

‘The research' reported. herein was performed pursuant to Grant No,
OEG-2-700033(509) with the United States Department of Health, Education,
and Welfare and the Office of Education.
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object is categorized by each = different measure. the proportion.ok
’ijects for each combination of observed categories can be computed.

= P{X, = k3 X,, = k',

LDefine ijj k' j"k" ‘ j

Kyn = k") where: 3 4 37 ¢ g,

H-

In the three measure case the observed data consist of eight joint

probabilities P11,‘2;,‘31, P11;21,32, P11,22,31, P11,22,32,‘P12,21,31, : E
Pi2,21,32, Plé,zé’gl,'and»P12,22,32. The next step is to relate these
observed probabilities‘to‘the model parameters. Starting with p11,21,31‘
We'obtainﬁ _ S o P ' ’ '

B S . - ' o )
g (P11,21,31) =P{X; =1, Xp=1, X3 =1, T= 1} +P{X; = 1, X = 1, X3 = 1,T =2}

.Eipressedwin terms QF conditional probabilities the proportions are

P{X;=1|Xp=1,X3=1,T=1}P{X,=1|X5= 1,T=1}P{x3=1|r=1}p{m=1}, and

-1

P{X1—1|X2—1 x3=1 T=2}P{X,=1|X; =1,T= 2}P{X3=1|T 2}p{1=2%

| P{X;=1,%p=1,X3=1,T=1}

P{Xy=1,%,=1,X3=1,T=2}

The assumption that the measures are independent implies that o _ e

1|%,

[
(=)
-
<
w
[}
[
-

L 4
-3
n
[
()
n

Ptk P(x = 1|1 = 1) = onyp L .

P{X2 ,1|X3.

I

—
e

=

n
[
-

[}

P{X, = 1|T =1} = 62115

- : . e L
P{X; = 1|X, 8112 and

[
[
<

w
|
[
-
-3
[\~
—
]

’ P{X; ilT = 2}

- P{Xp -P{Xz

1T

v

2}

‘1|X3 = 1, T = 2} 8212-

.

Thus, by substitution:

5.6P11_,21,31) = 8111 8211 8311 Py +.9112 9212 8312 PTZ;}-&,, e (_1)]
Whilepthis process could be repeated for each of the observed joint

probabilities, for identification purposes it is better to reulace these by

P

the following set:’
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P11,21 = P11 21,31 + P11 21,32,

P11,31 = P11,21,31 + P11,22 31’

'P1,31 = P11,21,31 + P12,21,31 »

P11 = P11,21,31 + P11 21,32 + P11,22,31 * P11,22 32
-~ | )
P21 = P11,21,31 + P11,21,32 + P12,21,31 + P12,21,32 » and
. : - . . . .
¢ P31 = P11,21,31 * P11.22,31 +~1’12 ,21 ,31.F P12 22 31 ¢
. " Following the procedure used for P11 ,21,31 it may be shown that:
F (P1i,21) =0111 0211 Py, * 9112 8212 Py, 5 | (@) .
- E(P11,31) T 0111 8311 By * 6112 Bmu2 B R e
. . . , _ :
€ (B21,31) = %211 8311 Py + 0212 6312 Py o W
' ‘ = + : N : o .
§ (1) = 6111 By *+ 6112 Py s o (5)‘ ’ o
3 & (®21) = 9211-»PT1_+ 9212 P, > ?“d~ o | : (6)
w )
€ (P31) = 8311. Py + 0312 PT:z R )]
- Note that even though we started with eight joint probabilities, we have only

seven equations because of the condition that all the observed probabilities sum
to unity. If the model parameters are identifiable then it should'be possible
to solve theSe equations for each parameter in terms of the expected
. probabilities. For this purpose 1t 1is convenient to define? - e
Cjk,j'k"v = E (ij.j'k'.) - E(ij)& (P vkv) ’

jk,j kl llkll = g(ij jlkl j"k") [e(ij)] lekl j"k" [é(P 'k')]cjk j"k"

- & ..k..)] Cjk j.k. g(P k)8(P ,k,)a(P win) > and QT =1-%,

o R
For the dichotomous case Q = PT . Solving equations ‘1 through 7 for PT
Lo S 1 2 t S ‘ 71
we obtain. - ; | AR R )
‘ B
Lo . O, - PTl»., C11 ,21,31 -

5 P 'QT /Cn 21 011 31 C°1 373




CL '
Equation (8) shows that:PTl and PT2 =1- P'f are identified. Further
analysis yields: '

L ?/ Ca1,31 Qr,

. p - |
6112 = EBi1) _.1611,21 11,31 Py, ) (9
S .

: . Ci1,21 Ca1,51 [P
9212 "f(",u’.f —— 1) o
' : \'011,31 RS

y . ' - o
: P . , /
C11,31 C21,31 T17 &

and 8315 =E,) - S 5 L
. 011’21' QTl . / T
e

Sin(:.e' PTl and PT2 are identified, equations' (95 , (10), and (11) show  that
8112, 8212, 6312 and therefore 8127 = 1-6112, 0222, = 1= 021, and 0355 =
1 - 0312 are identifiable. Given PTIJ’;,. PT2’ 6112, 8212, and 8312 identified,
.equations' (5), (6), and (7)-» show. tha:t 81115 6211 and 63;; and therefore
6121 =1- 614y, 0221 =1 - 8211, and 835, = 1 - 9311 are identifiable.'
Since the model’ consists of seven equations .in seven unknowns (i. e., :]ust
identified) . parameter estimates can be obtained which will exactly ;

. reproduce the observed probabilities, i €y the observed joint, probabilities

would equal the expected joint probabilities estimated from the parameter

iy

4

[ I

estimates. The above analysis shows that the true proportions may be identified given

.
H ¥;
1

T : ‘ ‘a, o

l*i L
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. .three independent dichotomous meastires, a point which Werts & Linn (1971)
failed to discover. The right side numerator of equation (8) is the expected value
e : of the trip1e covariance between Xy, X2, and X33 which is the crucial ' ' \

P ‘ !
piece of information neglected in the Werts—Linn path approach. Furthermore,

path analysis usually ignores variable means, which would result in neglect of

(<Y
equations (9), (10), and (11) which involve means (ij), ! } { Q‘!’ |
. 3 i - J! , 4

T

e

Next consider the trichotomous case in which k = 1,%,3, 2=1,2,3 and j=1,2,3
given the asSumptiOn of independent measures. The relationship between the

jth observed trichotomy and the true trichotomy involves nine conditional ‘
* * o

probabili'ti'es: ejn, ejlz,- 9j21 and 6j22_ ,qs " defined previously plus ;

- =. = * =
P{x,"= 1T .'3} 8,130 | | ) 1>{xj - 2|T = 3} =

s ok ' *
. . P{Xj_= 3|T - 1} = 844, P{xj = 3|T = 2} = 043y and P{x.j
| S S S IS Y L S Sy +e* +oF . =1
. By definition: 810 O521 *'0531 = 8312 %22 T Py32 7 Ty13 T ims 0433 = 1

j23’

3T =3} = ej33

g : q Let K = total number of categories and J = total number of indpendent measures.
i

The observed data consist of the K =27 joint triple probabilities Plk Zk' 3" 5
X - . 3 ‘ : '
i one of which may be expressed as a function.of the other 26.

IR

Tk

R 2 ’ * . ' ) . E
'+ There are JK = 27 ejkﬂ.’ JK of which ¢an be stated as aifunction of the

. . *". .
others because for a fixed % the 6 sum to unity and K =3 P
- jke SO T T, .
one of which it can be stated as 1 minut the sum of the_others._.
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. Therefore there are a total of JR(K-1) + (K-1) = 20 independent parameters to be
estimated from the KJ - 1 = 26 independent observed joint probabilltles:, '
i.e., the model.has aix-overidentifying restrictions. This does not :
necessarily mean‘tha-t all parameters "ar'e"ide'nti'fie'd"and"'in'pri'n‘ciple" the

expected value of each ij _]'k' j"k" should be derived as done previously
b

(....

and the equations solved for each parameter. Rather than attempt: this directly, -

B

it can be seen“tha{ if category three were collapsed into category 2 then
the analysis would be identical to that shown rfor dichotomous variables. '

The relationships would be (*refers to probabilities prior to collapsing categories):

P, =P ' - v - .12a

* '_
1% . ' - 1 -

and ‘g g (1- P )»- 8 * .* P SO T “12¢
' j12 312 T2 j13 ° 1y | - ee ‘

From our previous analysis we_know that the parameters in the right side

K

of equations 12a,b, & c can be identified from

Pll,zl,al.f.Pllgzl,al’ o —
N kL | - L =
P11 ,21,32 = P11 21,32 + F11,21,33,
gk ok :
Py11,22,31 = P11,22,31% P11,23,31,
) Cx % T Y -
P11,22,32'= P11,22,32 * P11,23,32 +  P11,22,33 +-P11 23,33,

SN +P* -_“T' .
‘P12,21,31 = P12 21,317 F13,21,31, o

K * * '"+' \P*\ x
P12321332 = PIZ’Z_].’32’“_"' P12,21,33 . .1_3;;:21,32 +‘ Pla__,zl,33’v




il

P = PY, 05 ap* PY + Py ¥ p} + L ;
12,22,32 = P12 22 32'+ P12 22 33 + P12 23 32 + P12,23 33 F13,22,32 v :
P13 22 33 + P13 ,23,32 % P13 ,23,330 . S e R
These eight P Tt amm could be entered into the ‘analysis shown for |
A jk,3'k’,37k
dichotomies and the corresponding parameters in 12a,b, & c identified. ‘v'
In a similar fashion if we collapse category 1 into 3 then:- _ §
'PT2 P,l,2 s . . 124
. e ﬁ
6122 = ej22 R 4,, | 12e . ‘ . 2
L ' - N "
J xR * * - .
and ej23 (1~ P ) f?jZl Tl + 6j23 PT3 . . , _ 12f ;
i % . S 7
The right hand parameters in 12d,e, & f would be identi ed from:; . ,_ ”
P - J ) ! :

P13 22,32 = P13 22 32 + P11 22 32,

- dichotomies where the two categories are k =2, 3 1nstead of k.= l 2 as’

. % -
' shown 1n our. original analysis._ !{e can conclude that PT 5 PT , and PJ'

SISO gUPPELT S

“ |

* R * * ,
P12,22,31 = P12,22,31 + P12,23,31 + P13,22,31 * P13,23,31» and - N

P12 22 32 ?‘P12,22,32,

% Lk
P12,22 33 = P12;22,31_+ P12,22,33,

P12,23,32 P1 23,32 * P12 ,21,32

R : * * e * .
P12,23,33 = P12 23,33 + P12 21,33 + P12 23 31"* P12 21 315
X . - H X . i 4

) *gy ok R “
P13,22,33 = P13,22,33 + P13,22,31 + P11,22,33 + P11,22,31, ‘ ;

P13,23,32 = P13,23,32 * P13,21,32 + P11 23,32 + P11 21,32, and
Cow ok Cox . /
P13,23,33;-?13 23,33 + P13,23,31 + P13 21 33 % P13,21,31 P11,23,33 + //

”

P11 23 ,31 + P11 ,21,33 P11 21 31 .

These eight ij j'k' 1"k" could likewise be entered 1nto the analysis for
ik

e
T3
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e ' p . * x % * * *
are identified from 12a,d. and 6911, 02115 8311, 9122» 0222, and 0322
from equations 12b,e. The remaining 12 parameters in equétiona 12c and £
have six conditions imposed by equations 12c, "s0 we need six more
equations for identification, 'l'he simplest set, which is independent of
s information used in the dichotomo"y's analyses 1is: - ' "
Py1,22 © P11 ,22,31 + Pu ;22,32 Pu ,22,33° o ' - A
’, P* = P o + P ’ + P
11,32 © 11,2i,32 11,22,32 % 11,23 32>
P P1o 21 31 * -P*' + Py 5'
- Pi2.21 12,21,31 ¥ ¥12,21,32 12 21,33
. l .
’ P} =P + P} ay + PV 'l
12,31 = F12,21,31 12,22, 31 12,23,31° i
5, 3, = Pr; +PYa 4y 4P ]
21,32 11,21,32 12,21,32 13,21,32°
% * * . o¥
and Py 31 = P11,22,31 * P12,22,31 + P13 22,31
T e N o ) o o 2
Application of the procedure used to derive equation (1) yields:
(P1y 22) - 0¥ 00 PSS S SRS RS SOPSE S
E P11,22) = %11 221Pp, F 91120222%y, 113%9223%7 . » | ;
@1 12 = 6% 10%rE + 0} 1285000 + 011383230, | e - R
G (P11,32) = 01110321y + 01120322Py, + O1130323Fy Ry IEN
Py .' L ,
S %k kU k. k& Kk Kk K
€ (P12 21) = 81210211Fp ¥ 01220212P + 01230213F3 : .
L 2lei, TR S s 2
S I L S ' (13) S
P, 31) = 81210311P) + 01 0% ,P5 +.0123631P0 e o
| &(P12,31) = ©1220311%p 1250312Pg, +01230313F, > 2
-~ £k ) = 0F of B 4 0¥ 500 BY +.871393 P ‘ :
&( 21,32) = 921173210y 212 322 T, 2139323%p, v )
----- o and -~ §(P22 31) = .,92_21.93‘-1‘1% +- 92229312P + 92239313PT ..
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Equations (13) in combination with previously identified parameters
and equations (11) and (12c,f)identify the remaining parameters. Note

-that six'equations have not been used, these representing the six degrees

~of overidentification. 'The method which appears appropriate for estimating

parameters when the obsetued'variables are independent'polychotomous
measures is discussed in Anderson (1959, sec. 3.6) and Cochran (1968,

sec. 5)[ In this procedure a chi square function involving the observed . o
I

and'-estimated expected joint probabilities is minimized as a function of
the model parameters. The resulting I with degrees of freedom .equal to

the number of overidentifying restrictions,is a measure of the fit .of

'
]

the model to the data. Our analysis indicates that given)three independent L
- C
polychotomies (K‘ 3) all model parameters are identifiable. The number : I

v

'of overidentifying restrictions is equal to (K - 1) - (JK + l)(K -1 . o

_‘where J = the number of independen: meaSures and K= the number of categories.

' We - may now consider exactly why the Werts-Linn analysis was
. . | S,

inappropriate to the problem. For this purpose it is helpful to put the
conditional probabilities into. matrix form where columns refer to observed

categoriesland roys to_true categories:

R

ALATAL,




. o
RS o
1 % %:
* * * *
G 7| Y2 %22 %32 (14)
0% oF 0"
j13 %523 Oy33

&
] - : . * i ' .
As noted edrlier each row in ej sums to unity., If the true categories 1,

2, and 3 actually ‘form an ordered set of classifications such that category

114 "closer" to 2 than to 3 then we would expect that classificatory errors
: !
. .. ‘ : * *
’ would be more likely for neighboring categories, i.e., lez > j1'3_‘and .
: . . . .

e* ; e*
332 j“l'
it would be more reasonable to expect the likelihood of misclassification

In ccntrast,.if the true‘categories are basically unordered,

*'\o* e* o\,*
j12 = 93130 8521 = 84230

In other words the probability of misclassification is a

to be similar for any<of the other classes, i.e., 0

*
and 6*31 ejaat
function of the underlying snale or "true" category in the case of ordered
cat°gories and is rot in the case of Unordered categories. Werts & Limn

implicitly assumed that the "errors for one category were uncorrelated with

the underlying "true" dummy<variable for the same and for other categories

which translated into the present framework correspOnds to the analysis for

S,

§
an unordered scale i.e., for an ordered scale the errors w0uld be correlated T ; °
i

with the "true" dummy variables for other categories.' It can be algebraically

shown that the Werts~Linn procedure leads  to incorrect formulae for the

‘ L
expected value of the observed joint probabilities when the categories are

ordered. ;; Since Boyle (1970) was examining'the problem of ordered categories \ ‘*h'}

(i.e., scales)the Werts-Linn approach is not relevant to his problem.,

Jﬂ
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Another perspective on "Linear regression, structural

ED 070779

relations, and measurement error.'
Charles E. Werts, Robert L. Linn, and

: : - Karl G. Jgreskog

’ r\"\;Abst;racr.

A stochastic disturbance term appeérs to be essential for structural

T

i)

models in the social sciences. The analysis qf‘SGEh models is considered )

from the bersgective of J8reskog's (1970) general model for the analysis

of covariance structure.
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Another perspective on 'Linear regression, structural relations, and

-.---— measurement error."

Charles E. Werts, Robert L. Linn, and

1] 1.
Karl G. Joreskog
Isaac (1976) has perform_ed af'usefol-"s.er'\/,“i_:c;e ‘in dispelling the common
) .

. " ' . ) . ” » . - .‘ / . ' . ’ o4’
mlsconceptlon that parameters estimated in -a regression analysls,are necessarily

~

those 1nvolved in ‘a structural relatlon. Researchers who would use the formulae
: \.)

- supplied by I.,aac should be warned however that these apply to a model which
is seldom, 1f ever, re1evant.. Johnsten (196a Pg. 148) notes that thlS ‘model
"hardly seems’ appropr: ate for econometrlc work, smce, if it were true the

- ~ only reason.for pomts not 1y1ng exactly on a stralght 11ne would be errors of ..

observation. A stochast1c component of behav1or would seem an essent1a1 in.

[N

_ economics.." 'I‘lus comment app11es equally to psychology) in aguch the usual
" ype of re1at10nsh1p 1s 11ke that between fathers and sons height, where even

1f there were no errors of measurement the coxﬁatlon would be less than

perfect Addlng a stochast1c dlsturbance term, p ", the model becom_es Y = o + gX + p

: Rather than rev1ew the analyS1s of thlS model wh1ch 1s covered by Johnston

-

SRR _,_(1963 Chap 6), we, propose to cons1der the problem from the perspect1ve of B |

Joreskog s. (1970) general model for the analy51s of covarlance structures. \

Joreskog l1970, pg. 239) .considers v

S follo\‘vmg, modcl 10\\s of X are’ mdepcndenth dhtnhuted Lﬂ(‘h having a multn‘nrmte
e normal dxstrxbutxon \uth the same vaviance- covarmnce ma.tm 4 ot the foxm :
S 08
A R _ . i3
: “'herc A {a_u ls an \1 X matm: of ran.\ g q.\d P-l-e {pe Y ls [ h xp m.\tm of mnk h, both .
—-'i:'

.'bema ﬁre m.ttnno \\u:h J £ .\ nnd 7c }J' .:.‘4— {-.m »/3,,} A {,\, b the 5 mnmmc.. “ S e
! 1 ='{; ”} are; p.u‘.uncter. i
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Means, variances and covariances are structured in ‘terms of the parameters

in | o Z,B, A, (P.‘I’and@ -which may be (a) "flxed" parameters

) !
that have been a551gned given values, (b) "constralned" parameters that are .
unknown but e_qual to one or more other parameters, "and (c). "free" parameters

that are unknown and unconstramed

For analytical purposes let us start with a stochastic disturbance term_ A" L
and errors .of measurement as given by Isaac (1970 pg. 214) In this.model C . _ 1
.the observed variab]es (lower case letters) are x = x.+'e,x andy = o+ B X + _ (
u+ ey‘ . ln this problem the question of means is not important' (since o B . ;
can be estimated from the 8 estimate, o= y - B x) and ve may proceed by . | E o

considering the structure of the variance-covariance matrix of the observed

. {
variables. The observed vector is (y, x) the factors are. (X, ¥, sy, ex), ' 't
' |

is an identity matrix, ¥ and 0= o : L o
. _ o

r » 7 ' PR

!
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Since there are 2 x 3 +- 2 distlnct elements in Z and five free parameters, /
thls model is underidentified by 2 restrlction., (d.f. = 3-5). If the error : §

variances(c and V’e were known apriori (p0551b1y computed from known’ ay
reliabilities for measures), then the model would be just identified and the

- -+ . associated ‘computer program (J6reskog, GruvaCS, and von Thillo, 1970) could

be used to obtain maximum likelihood estimates of parameters. Because

the model is just identified, the estimated elements of I would exactly

£ 4%

“equal correspondlng elements in the observed variance covariance matrix.
Isaac's model involves the deletion of u, i.e., the second column in A and

¢, in which case there are <‘ti11 3 distlnct elements in I but the number

r 2 2
of free parameters has been reduced to four (B, Cv Y

I

2

G ) so thaL
x

1 aesumption is needed for identification. If as in

D€
y

: only one additio

Isaac s cas 1, G‘ is known, then' all parameters are identified. When
¢ . A . . ) . . ) .
the .,ratio of the error variances A is known (Isaac's case #3) then ¥ and 0= 0

as before, but now:

™~ . o . -

._\).
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This model has. two element's.in ¢ constrained'{to be equal and two free parameters
y—(sincej J"is "fixed") and the model is just identified 1 .Isaac's‘—f"ourth case, .

in which( and g‘e_ are both known is of interest because when these are’ |

inserted inx4> the mogel has one over:identifying restriction. Assuming that the .

observed distributions are normal, a cni-square with one degree of freedem is :

S :

generated which tests the fit of the model to the data. In general Isaac -8
equation (3) is not the maximum likelihood solution for this overidentified
model ; ‘this difference arising because équation (3) uses only- the ratio of

If ' the error variances, neglecting the absolute values.

s

\ . ) o4 ) :
Because most effects have mu1t1pl° causes, it is of interest to cons1der :

the case of an exact functional model in wh1ch there are only three var1ab1es P . 5

X, Y; and Z and causation may ocecur in any d1rect10n. With any var1ab1e held

constant the true correlation betweeu the other two is perfect i.e., the

™  “ true part1a1 correlatmn between any two var1ab1es W1th the th1rd controlled_.J

H
T
- 7is un1ty. a However, the part1a1 correlation is equal to the product of the .~—.-’»— -

two correspondmg part1a1 regressmn weights, e. g., /OXY 7 ﬂXY z BYX 7 1.

‘in thls model 'I'herefore, the partial regressmn weight in one ’direction is the
inverse of that in the opp051te d1rect1on with the same var1ab1e controlled e. g.,

*
o - . ! .

ﬂXY z l/gyx 7" In the model Y a +[jx + ,u.., the stochast1c term
represents the etEects of a11 other 1nf1uences wh1ch are assumed to be 1ndependent

~of X. The partlal correlat1on/9xY is equal to
. . - _
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Therefore the-reciprocal relatlonsnlp 'éIXY = /ﬂ holds in the .. - TR
{ e

stochastic disturbance term model. S.mce/l is 1ndependeut of X, 'AYX X s

T 7 v
but of course since is not independent of Y this relationship holds only for

Y on X. — —
A variety of other solutions to the identification _problem may be used

mstead of or in combmatlon with thosg d1 scussed by Isaac. “For example, if a

X X +1:‘§x )

_ ‘ 1 !

were added to the model with the stochastic disturbance term, then 4, E;’, X ?
. 4\1

.<rz {éi s (]:i, and the sum ofvf/i + 73 would be identified. “The-

c1a551c psychometrlc assumptlon of equal reliability means that the error

"congeneric" mecasure (.Joreskog, 1970, sec. 2.2) Xy of X ~(x1 ='éx

)
variances are proport10na1 to the true varldnce, e.o., if the re11ab111ty of X

and y were equal then A= '<f2 Q”Z /(r " This equal reliabhility

: s . .. . . -2 .
assumptlon in combinaticn with the congeneric measure\of X would identify Lo

3

aionTheeg ory

N I . . ‘
andq €y separately In ‘principle, tlus congeneric measure serves much the

i

* same purpose as the econometr1c1an s use of an "1nstrumenta1 variab le"

) (John.,ton, 1963, sec. 6.5) i.e.,. a. varlablc which is mdependent of the

-

ik e RTRRITY

measurement errors ¢ _ and véy' . For example, if an mstrumental variable =z
‘were avallable for Isaac! s model, the observed vector would be (y, x, 2), the ‘.
-“_factqrs are (X, Z, Gy’ c-x), B = an 1dent1ty matr1x \yundo 0,

Q
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f X Cxz 0 0
)
| ( C xz <]r/z -0 0
“and & = ' ;. L,
- 0 0 ’J/ei 0
0 0 0 < '-%2( ‘

[

For convenience a factor Z has been defined identical to’ .'zm(i*'.e.’, q; =), .
however we could have considered the model 2 =17 + ¢ wlnch would have "

and Cx but not V’Z d’v’ei

Joreskog s general model thus allows the analyst considerable flexibility in his

identified the parameters,é Q’ V/e (x

‘choice of ‘econometric and/or psychometrio procedures for dealing with errors»_.of

measurement. | . /

- ‘ ’ - '-" .. n" N - - - -. - -
- In summary, we recommend use of Joreskog's general model oecause:  (a) s
It is unnecessary to have est1matJng forpulae for each specml case, especially .

!

since such formulae do not apply to over1dent1£1ed models. ) Attentlon 1s

- focussed on the problem of 1dent1f1cat10n wh1ch 1s prerequ1s1te ‘to any understandmrr

- of the results. (c) G1ven mu1t1var1ate normahty of observed var1ab1es, a chi-

_squared goodness of fit test is ava11ab1e., 1f. for examole, in Isaac's ‘case '#4.

we w1shed to test the hypothes1s that 6 was. a g1ven value then the increase in_

Nt

x (w1th one degree of freedom) resultmg from changmg ’? to a: f1xed parameter, : y

-/A -

1s ‘a test of the tenab111ty of tlurs hypothesrs.r (d) A var1ety of assumpt1ons may

. be used s1ng1y or. 1n comb1nat1on \so that whatever 1nformat1on is ava11ab1e may .
: . u _.; i i
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recommends that the positi\}e root should be used when cov (x,y) is positive

L

-7-

Footnote | L

R

. AN
_lThe estimating formula for B

in case #3, given by equation (3) in
. {

Isaac (1970, pg. 215) has a A '1eft out of the denomiﬂ"'ator. Kendall and Stuart (1961)

recommend that the positive root be used. Johnston (1963, pg. 154), howeVer,

and the negative root when cov(x,y) is negative.

—

Vst

]

+The reseavch reported herein was performed pursuant to Grant No.

o

OEG-2-700033(509) .wit:h the United States .Department of Health, Education,

y

and Welfare and the Office .of Education. = : ;
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; ~._ A CONGENERIC MODEL FOR PLATONIC TRUE SCORES .

T

(\Iharles E. Werts, Robert L. Linn, and Karl J8reskog
\ R

'

. i \"\,ﬁm Abstract
¢ . : f : o
T To resolve a recent controversy.between Klein and Cleary and Levy,
. a model for di‘chot_omous' congeneric items is presented which has mean

errors of zero, dichotomous true scores that are uncorrelated with errors

1

¢ .
v

and errors that are mutualiy uncorrelated.
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A CONGENERIC MODEL .FOR PLATONIC TRUE SCORES™

RN

Charles E. Werts, Robert L. Linn, and Karl J8reskog - o

'
\

- In a discussion of platonic true scores, Klein and Cleary (1967) state

tha¥ the use of pla.tonic true scores makes the assumptions of classical test
theo'ry'g‘enerally untenable. They illustrate their argument with dichotomous
items’ and a dichotomous true score and show that: "The classical test

2 2

theory formulation 0'2 =0q + O » can only be ‘true if the mean. error is

X
not zero' (Klein & Cleary, 1967, p. T8). ‘This statement is based on the .

following definitions of observed (X), true (T), and error (E) scores:

.‘l if phenomenon is present

T = . { .
, IO if phenomenon is absent i

\ : ¢ : J'
L ‘ 1 if phenomenon is rated &s present
' N t

T !0 if phenomenon is rated as absent
' : |

and E X-T7T. Klein and Cleary go on to consider ‘two parallel dichotomous

‘..

1

‘positive hhen the errors, El and E2 f have zero mea.ns. With correla.ted

'error scores , the’ correla.tion between two pa.ra.llel 1tems overestima.tes thte

items, X, a.nd-— 5 and show tha.t the covariance bletween El and E2 is

s

item relia.bilities. In response, 'Levy_ (1969) a.rgued tha.t the cla.ssmal

o j
assumptions ca.n be shown to hold for g:) dichotomous item if i N

a if phenomenon is rated as presentl
T D G S )
: . b 1f phenomenon is ra.ted as a.bsent ’

e, .
; Vi ; o -
W .

‘ true scores (T) a.re defined a.s a.bove a.nd E = X - T a.s before.‘ ‘This, modifi-
. 'c‘tnon w1ll indeed ma.ke 1t poss1ble for t‘he mean error to be’ zero and the/

'_cova.riance between T _la.nd E to be:'zero. As _Klein end Clea.ry (1969) note,

' "b " w1thout

R IR )

L bR A,

@i st
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" equa.t:\.onsv a._re o

knowledge of T . In a.ny practica.l a.ppllca.tlon, T woﬁld'be unknown and

* therefore "a" and "b" would be unknown. Also, no way of obtaining item

religbilities is presen‘ted.. The purpose of this paper is to“ provide an .

alternative formulation which allows for the model' parameters to be deter-

mined given the structural specification of zero mean error and no corre-

lation among errors for different items or between errors and true scores.

Our approach is drawn from l-',a.’rfent.structure analysis (Anderson, 1959) for

the special case of dichotomous -l_a.tent'\'raria.bles.

—

I. A Congenerlc Model for Dichotomous Items

P

The equation for congeneric- tests is given by J8reskog (1968, 1970,

LA

19'_71) as

P

o o . - ot
xij = BjTTi + Ij + Eij R (1)

where: T, is the true score for person i ,

{.7 is _th;gel, f_)bserved,s core on item . j for personv i,

d _ .

Bj.’f' is the_: slope of the xi;] on _Ti regression line,
) I 3 " is the f;i.nt'ercept of %his regression- line, and

Eij: is _the error, for person i; on ui'tem j.._

"o i:l_.lusti*a.te the a.ppllca.tlon of thls defim.tlon to the ca.se in which ™ X,

y ij

a.nd T are both dlchotomous (scored 1, O), conS1der the ca.se of three

1tems, whlch is the minimum number of 1tems requlred to 1dent1fy model

N

pa.rameters unlquely, glven expc.rlmentally, mdependent mea.sures. : The

e PSR T A A ma s e

?

>
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" where the E 's are mutually uncorrelated and are uncorrelated with T .2

" In the case of dichotomous variebles

!

! P[XJ. =1, 7=1)- P{xj =1Jp(r = 1) .
a.n;i '
I, =Plx, =1)-.B, p(r = 1) = plx, =1|T =0) .
J ‘ JT J

- This model is somewhat mo.re complica.ted than t¥e model considered bv
Klein and "élea.ryv' 1967) where X =T + E with X , T,and E all ta.klng
values 6f O_or. 1. In essence, the congenerlc model is equ:wa.lent to the
model suggested by Levy (1969) if his "a" and "’b" ~are al]l;owed to vary
from item to itém. For a éiven item, ' ';e.j " would c;.qt}a.l _‘(l'.- I,j )/BJ.T ’
"B." would éciua.l .-I°/B‘T , 'a.nd .Levy's 'error-would. éql.la.l',the érrqr' of

( : equations l, 2,,or 3 divided by B To illustr'a.te the, pbint that the

- T

congenerlc model uoes allow for the tra.dltlona.l psychometrlc a.ssumptlons

in the'dichotomous case; consider the following example constructed using

 the equations provide'd by~Anderson. (1959, sec. 2.)+)
. l. The ej:_ (proportlon of fa.lse negetives, i. e., P[X =0o|r=1) =

P(XJ' = 0,T = 1)+ P ), ¢,j' (proport.Lon of fa.lse-p051t1ves, ies,

-P(Xj =1]1 = 0] =,p{xj_:_=_ 0) : (1 - B )) »and . PT (the true pro-

—' portion . P{T = 1].) are. given a.s;_

N

1
=
o

-
D
]

|
o

e *= .10 ) 105 = °.5°' ? x-'-“’ =  303

,. a.nd Q‘l‘

;'.."expected ma.rglnal dlstnbutlons (P

! |
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3. The expected joint probabilities for pairs of items, Pj" =

Prob (X, = 1 1) = (1 - i . s L .
ob (X; =1, X, (1 -0)(1 -0, )Py +00.00," (J+3") are:
P)p =272, Pigz=.50, and Pyy = 384, |

4, The expected joint probability for three.items, P..,.,, =

j3'a"!

PrOb {XJ. = 1, XJ.'E 1, XJ.,, = l]= (1- ej)(l - ejl)(l -,ej")PT +°j¢j'?j"QT

(Ned' #3') is Py = w2388 .

5. The regression weights (B, =1 - ej.- oj) are B.. = .60 ,

jt 1T
B2T=.10,and -;BBTT‘&‘ ’ | ' . .
i 4 —'" " l = . - = '
6. The intercepts (I = J!!;BJTPT ¢.) are . I1 - .10, I, .50 ,
and I, = .30 . The possible events for comblnatlons of the three items and

3

the proportlon‘of people in each- event are shown in Table 1. The means of

'—~-..
ARG RRRELE ad

the errors are zero, the true score is_unForrelated with the errors and the

errors are uncorfelated with each other.

. : .~ Insert Table 1 sbout here
II.- Identi:f‘lca.tlon v

identify the seven parameters, e

t
In an actual problem the s1tuatlon would be reversed from the example
shovn rn_sectlon I, 1.e., uhe probab;lltles Pl’ P2, P3, P 12’ P 13 23,
correspond to observed scores, and it would be des1rab1e\to

and P,

123

1) 92) 93) ¢1) ¢2: ¥z and PT . In

principle,-one could solve the seven equatlons for thls purpose.

e . - t

_,_i>1“_ .=' - 8. )P +¢1QT L ,’ . o (ea)

il

e . ey
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Pip =

P13 =

P
25-

Pioz =

..5_
(1 - el)(l - 62)PT +0.0.0
(1 - el)(l -8 )P + 000
_(1 - 92)(1 - 63)131, + ¢2¢3QT g

(1 - el)(l - 92)(1 - QS)PT + ®l®2¢5QT .

(2e)

(2r)

(2g).

The solution to these equat_i‘oris is facilitated by notiﬂng that in the congeneric

model the expected covariance

where VT is the variance of T .

P..
(JJ

This means that

C12

013

023

These .equations

550 = ByrBirnVr o

- PJPJ,) = (1 - 65 =70 )(1 - 650 - )PTQT

"°1)(l " By - 95)P

35" °3)Pp

= P._ - P.P (L -0

12 12 1

(-8 -90)1-0

=P, - PP

15 15 1

= P23 f P2P3 = (1.-._92 - 02)(1 - e3 - ¢3)PTQT .

can be solved for

' ’ 2,' _ 12713
(1-9, - @l) PTQT”f = Gy = Bl PrQq >
C. ¢
‘ 2 0% o
(1-6,-0,)" Q= R BopPrpQy
¢ \\/ ’ » . |
C..C..
2 _ G15%s
(1 -85 - 05)" Py = C1, 3T PpQp

C..,) Dbetween two items is given by

Translating into _probabilitieé:

L

(3)

(4a)

(Lb)
(4e)
(5a)
(5b)

(59)

ey
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The triple covariance 123 is defined (Boudon, 1968, p. 226)-as the
expectation of the products of the deviations of all three variables

s1multaneously, whlch is equal in the dichotomous case to P

Cio3 = 123 °

Pl::(P23 )-P(P PP3)-P(P -PP) PPP- . (6)’

Using equations (2a, b, c, q, e, f) equatLon (6) may be translnted to
0123- = BlTBET 31 TQ’I'(QT - P ) and from equations (5a, b, \c) we obtaln
| /R

c ‘012013 23(Q‘1' - F )

S

(7)

Applying these'equations to our example,
1. Comiaute covariances by equations (kha, b, c):
Cp = _.011+_1_+_,; cl3 = ,0864 , and 023 = 01k},

‘= -.001728 .

2. Using equation (6) compﬁte '0123 :

5. From equation (7)),

' 2 2
C - P
— 125 -.1o8o M :

v °12°13023 VP, TQT_

o
.

Solving for PT =1 - Q‘I‘ we obtain PT = 60 -

>+ From equations (5a, b, .c) and substituting -in this value of p

BlT = .60 )

Byn = .60 . . L

6. It vEn be shown (equatlons 2a, b, c) tha.t ¢j = P, '-:BjTPT per-

“mitting calculatlon of ¢ ‘=71

25
o2

e i e T
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T Since-GJ. =l-B,jT-q.’,j s -
' o=.% ,
6, = 4o
65~ .10 . |
o
8. Ttemrelisbilities Ry, are R = BPrlg/T 0 5 fee., S
- Ry = 478, ,
Rop - 0097

Ry = »38%0 .

Ir the case of three congeneric items the model parameters are just
identified; i.e., there are seven equations in seven unknowns, which is the
rea.son that the parameters may be obtalned as an exact functlon of the
;observed probabllltles. In the case of overidentified models one of the
estimating procedures discussed by An'derson (1959) can be used. One
procedure minimizes' a X2 function of the observed probabllltles (Po) and
the expected pro'babilities (P ) generated as a i‘unctlon of the parameter
estimates (Cochran, 1268; Mote & Anderson, 1965). In the ge'neral, case of
J items there will be (2J - 1) independent observed probabilities in the
cross-tabulation table fz'o'm. which (27 + 1) parameters are to be estimated.
J ~ In the special caSe of two 1tems of equal accuracy the rellablllty is the

correlatlon between these 1tems,but the model parameters . cannot be identified

S

e . - 99




PRYSYS W

LT ——
~.

1

[8
0

-8-

L emeepe o7
3

(Cochran, 1968, sec. 6) since PE{Xl =1, X2 =0} & PE[Xl = 0, X2 =1},

i.e., there are only two independent probabilities to estimate three

‘parameters (6,¢,PT)

X, =BT + 1 + B | (8a)
3 371 3 3 7
where '
B* B B
| I
*
B5 is identified but BT T and B3" are not. In the case of dichotomous
ariables, therefore, the true proportlon PT ‘ may be estimated as shown
1 ¥ - '
in section II by treating: )(3 as a congenerlc measure of Tl a.nd
% : . . .
By = (1 - 65-0;)(1 -6, -0, ), where B = P[T - OIT _____ . 1) and
. R 1 1 -
% = P{‘l‘2 = ll'l‘:L =0]J . The yalidityv.of,spch an analysis is dependent on

‘IIT. Variations

It is socmetimes the case that three items with errors that are uncorre-_‘_

lated w_ith true scores or errors of other items are availsgble but one of

these measures another variable, i.e.,

5
"

1= BTy +-_Il +E
Xy = BT, + I, + E, (8)
X =

. B.,T. + I, + .
5 = Byl # I3 4 By o

In cconometrics )(3 is called an "instrumental” variable (Johnston, 1963,

p. 165). The equation for )(3 can be tre.nsformed into

the correctness of ‘the independence assumption.

The above 'a:ielysis" can .be extended ﬁo the' case of fourr"items with’

‘mutually uncorrela.ted errors a.nd no oorrelaulon between error a.nd true

scores, two of each mea.surlng dlfferent varlables.

\
\
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- |
Xl BlTl + Il + El s . ‘{{f,f
B
| Xo = BTy + Iy + By 3
(9)
X, =B,T. + I, +FE ' 3
5 372 3 73 ;
1
X, =BT, +I, +E, . 2
y = Bylp * 15 7 Es 1
Following the above line of reasoning all parameters in this model (PT » ;
" - 1 k

P{Tl = 1,T, = 1},' PT2, 615 65 Oy, O3 ©1, 0, 0, and °l+) may be N .
identified. There are 15 independent proportions in the cross-tabulation ) o

; table, so thaﬁ the minimized ,X2 would have four degrees of freedom. In

principle, a measure of the tenability of certain assuml;tions is obtained i
from changes in the X2 . For example, ii it were desired to test the )

hypothesis that X:L and X2 were of equal sccuracy, increa;:eé in the

total X° (with two degrees of freedom), resulting from setting 6, =6,

and ¢] = ¢2 , would be an indicator of the tenability of' this hypothesis.

—
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AFootnotes

]The research reported herein was performed pursuant to Grant.No.

OEG-2- 700033(509) with the United States Department -of Health, Educatlon,.

and Welfare and the Offlce of Education.

The true scores are not independent of the error scores or errors of

each other, as' is assumed in Anderson'° (1959) derivations; however, for

our purposes the assumptlon that these ﬁﬁ?:ghles are uncorrelated ylelds

the same formulas.
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Estimating True Scores and True Group Means

From Multiple Independen Measures

Charles E. Werts ard Robert L. Linn

8 4 VG L i T bl 18 Y e € ok 2 i i

Abstract
LN .
* CGiven multiple independent measures of an underlying true factor
and information on group membership it is possible to compute a set of 1

observed group means for each measure. Given a least three tests,

these sets 3§ means may be used to compute the reliability of the means

for each test. The proc‘edure for estimating true scores from the

e
I'd

reliabilities of the individual tests and the group means is derived.
\ P

L0




B 3
Estimating True Scores and-True Croup Means ‘ R
. ‘- ‘ ?
From Multiple Independent Measures ‘ ¥

. !
Charles E. Werts and Robert L. Linn )
The classical approach to estimating true scores given group membership i

information is to use the formula: % |
. - ¥ (%, - %) | )
T.. = X. + R X,. - X. 1). K

i Tx iy 0 , > :
n i,
where Ti' is the estimated true score, g i
. | : :
. Yj is the observed mean of group j , 4 -

Rxx is the test reliability, assumed homogeneous
across groups, %’
. 4 ‘,3
xij is the observed score for person i 1in group j . k
If two parallel tests were available the reliability could be computed as the
correlation between tests, however, two sets cf observed individual values and ;
. 1
group means would be observed. The estimation problem is ‘o use both sets §
of data to obtain a better true score estimate than could be obtained fromeither. :
. 7

3 I I
The gerneral, problem of using group information tc estimate true scores 1

; . 1

given multiple measures will be considered in this papér.

a : . . , .-
- . B;

For illustrative purposes consider the case where -congeneric

measures of an underlying true score factor are available. Congeneric

measures (Xijk) are related to theitrue score (T.)s"

3

'The'research reported herein was performed pursuant to CGrant No. OEG~
1-6~061830-0650 Project No. 6-1830 with the Office df Education, U. S.
Department of Health, Education and Welfare.

[ S




“de

2" .« .
- Xige = B Tag "M * G5k 0
g - ,
where xi,jk is the obsery .1 value on person i in group j fer
- test k ,
®
Tij jsr tHe “underlying true factor, © (2

Bk is the slope of the kth test on Tij s
M th

K is the intercept. of the regression line of the k test .
scores on the true score,
eijk are error components for individual i on test k with

zero mean for ail levels of Tij .

2

Equation (é) shows that congenerig t_e;sts may differ in un:.ts of vme'asurement s
reliability and mean, bﬁt_ that they éll load on the same underlying factor.
Three -test_s' is the minimum number needed t_,o solve for the re liability.of eéch
te_st‘ (Lord & Novick, 1968, equation 9.12.4). The gri;tTf)‘ means may be obtained
for each test and from equation (2) it follows that:

xjk =B Tj M +,..ejk s (3)

———

where‘ iJk is the observed group mean for group j on test k and
'fj is the group mean on the true score.

-

For a given test it “is useful to derive the condition under which the
observed group means do not help to estimate the true score. In the prediction

equation for the true score, Tij = B'xijk + B"ijk + ez!.jk ',.the éondition_that

the groﬁp means do nct help is-that B" = O . By definition:

V., €.z -C:7"Cu =
e T h ThH KT , |
V. Vsl ' )

P e % TR K
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where ka is the\yarlance of xijk s

Vik is the variance cf xjk s

CTXk is the covariance of Tij and xjk",

~

' CTxk is the covarlance.of Tij and xijk s, and

Cx ik ;s the covarlancéasd;xzjk_and xijk .

k

. B" = 0 impli P i - . i i
It ?ollows that B O implies ka CTXk CTxk kaxk Since i can be shown
that C,z = Csz and C, 3 = Vz. , B" = 0 means that Czy /Vz =C., /V, or
Xy X, _ Xka Xy TX, X, X, X

BT- = BTXk . We Imow, however, that BikT = Bka = Bk therefore:

R= = =R 2
BT XTI , where kaT is the: “

reliabiiity of test k .

In other words for a given test, the observed group means will not improve
the predicticn of the true score when the reliability o the means equals the
reliabil;ty of the individual scores for each test. Since it is generally’
found that group means have a higher reliability than the individual scores,
kncﬁledge of group .neans can uéually be expected tb‘improve the estimation

of true scores.

Our general strategy for estimating the true score Tij wili be to derive
e¢xpressions’ for the cofrelation of the true score with eaéh set of the observed
individual test scofes and'of each set of observed group means. These
correlations and the set of correlations among the observed v;riables
(xijk énd-ijk) tﬁéh‘permirs us to Solye'for the standardized partial

regression weights for predicting Tiﬁ.from the ' observed variables. The

) e

correlation of xjk with Tij (fikTglcan be dérlved:

B
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a. From equations (¢) and (3) it follows that
CTi'ck = By Cgp »
where C’T‘T 'is the covariance of Tj and Tij' .

b. Since (=. = V=

Fr 7 (the weighted variance of the means)

Che =B Vs and
T k T
,x‘k\-%_ B A _’J‘

c. By definition B = RTKk V{-{T?_T =R,f}-ck Jvik =

therefore: ' VT R"f‘}-[ " f_Vj-(_
N A e U .
T fry, U g,
d. By substitution
/"‘J v-
SRy :ixk - —v-xk— E (L) .
Xy RN

Since the standard deviations of the means ( ) and of the mdindual

%,

values (,,‘ VX ) can be computed directly from the data, the correlation of
: k

the observed group means for test k with the true score can be computed from

the reliabilities for the means (RT- ) and the individual®scores (RTXk

;- 1e9

et S, e s
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Sinée equation (2) is a factor analytic model with one common factor
Tij and equation (3) a factor mpde.l with the common factor v"I". , the
reliabilities correépond to the _Square of the corresponding (standardized)
factor loading. "Jgreskog (1969t) discusses the factor anaiysis of congeneric
measures in considerable detail. With“x'more than three measures the model
can be tested to. see how c‘bhsistent the congeneric assumption is with the
data. Stronger assumptions —éiBout the tests (e.g., equivalency) can be
readily incorporated into thc;, analysis.
- In summary then‘,\tsh computational procedure involves:
1. Calculat(o: of the group means for each of the k tests,
2. Creation of a ne&w set of k variables by assigning to each
-

individual the mean of his group on each of the k tests,

3. Intercorrelation of all 2 k variables ahd computation of

standard deviations.

4. Factor analysis of the k sets of test scores using as input the
correlations among those tests from step 3. If Jgreskog's (1969a) confirmatory
factor anélysis procedure is used for this purpose a chi-squared goodness of
fit measure will ?e:obtainegl along with maximum likelihocd estimates of the
factor loadings (which are sguared to obtain reliability estimates for that
test). )

-.- o 5. Factor analysis of the k sets of group means using as input
the correlations among:those ﬁe‘sts from step 3. If desired, factor score
estimates of the true gréu’p means may be obtained. |

6. The correlations of the k sets of group méané with the true
score can be computed from equa_tion'(h) where RI‘Xk is the factor loading for

IS .

test k computed in step L, R‘fik is the factor loading for test k group means

camputed in step 5, "ka is the standard deviation of the individual scores
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"scores for a given test).

bm

~on test k computed in step (3) and _V-ik is the standard deviation of the

group means on test k computed in step (3).

-~ T The next step is computation of the standardized regression

‘weights for predicting the true score frem the 2 k observed variables. The

correlations among the Sbéerved variables from step (3), the correlations

of the k sets of test scores with the true score are the factor loadings from

step (4), and the correlations of the k sets of group means from step (6)
may be used in the "normal equatiqns" to solve for the desired regression
weights (Walker & Lev, 1953, pes. 321;-336). These weights could in turn be
used to estimate a standardized true score for each individual from his
observed test scores and group mean on each of the tests.
Variations

The above procedure requires that the means for each group on each test
be computed‘ and that these mean values be assigned to individuals so that a

set of variables is created which may be intercorrelated. The advantage of

this approach is that the relisbilities of the means may be computed for

each test and the true group means est:.mated as factor scores. Instead of
this analysis a factor analyt:.c model might be postulated to account for all
the correlations among the 2 k observed (Xijk and ijk') variables. This
model would have: ' ‘

| 1. A total qfa _fzk + 2) factors including T‘ij s TJ. , and a
residual factor for each of the observed 2k variables.

2 A1l residual factors involving different tests would be

assumed independent corresponding to the congenéric assumption, whereas
each pair of residuals corzj‘gsponding to the same test data would be

nonindependent " (because the group means are camputed from the individual
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3. E;ch of the xijk would load. on Tijv and each of the X Sk would

nad on T. - T..
. J 1)

equal to the true correlation ratio.

and "f‘J. would be nonindependent, their correlation being

li. . Because reliabilities are desired the correlation matrix would
be the basic input data and the wvariance of Tij and .Tj would be get equal to.
unity. |

S.. This factor mocel would have a vector of order 2 k of observed
‘scores and a vector of order 2 k + 2 factors and no véctor ¢f unique scores.
Wﬁen k > 3 the model is overidentified and Jgreskog's (1969¢) co.nfirmatory
- factor analysis pi‘ogram could be used for estimation purposes. The program
would estimate thp factor loadings, the error variances, and error covariances
among nonindependent residuals. i

6. If -the analysis were repeated specifying that for each test the
loading of xijk on T;ij were equal to the loading of ijk
of the assumption that for .each test the reliability of the means equalled

on TJ. , then a test

that of the individual scores would be the change in che chi-squared with k
degrees of freedom.
In the event that it is desired only to improve the estimation of the
2
overall true scores using group information a more direct approach may be
taken by coding the group information as a set of dummy variables (Zj).

The model for this analysis given three congeneric tests is depicted in

Figure 2:
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Figure 2. | Estimating tirue scores with dummy variables.

Ry

The covariance between the dunmy variables and an observed set of test

L]
scores will be a function of true mean differences between groups and the

rellability of the means for that test. In essence, the dumnv variables
‘add information about the true group means to the estimation of Ti,] .
' Since the last dunmry v-ariable 1s perfectly predictable from the other dummyy

variables it may be deleted from the camputations. Since the dummy variables
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in part I:epresent overlapping information about group membership (e.g. s
a person in one group is not in the next group) the residuals are shown as
(:\\./‘ .. 0 ’ - T
\<\ coz.'relg.ted i Figure 2. The factors are now ( i’ ei,jl s ei'j2 s ei,j3 s €5 0
— : . _
B ©p >ttt 3 €y(50) and the ok?.served vector (xijl s Xi,j2 s Xij3 > B) 5 By oseees
' z(',j—]). The hypothesized factor loading matrix is: _ ‘
— 1
| By 1 0 0 O..00
' B 0 0 0 0....0
. 2 ‘. /yﬁ‘_ﬁ)
\ /S o B 0 1 © O0....0 ‘
= 3 - !
B.1 0 0 1 0....0 i
B82 } 0 0 0 l LI XY .0 ot
' L] . . . . :
.l- ’Ji . . . . . . g
B,. ; P
' s S(J-l) 0 0 0 . o-- o.l—-[
The hypothesized variance-covariance matr/ig; of the factors is:
l,'f-. 1 gl
> !
0 v ;
# € e, . ~
S ~
‘. 0 0 Ve. .2
‘ , + Symmetric
0 o 0 v '
A ij3
% = 0 0 9 0 Vel
o ¢ 0 0 Co e v, ]
“i‘} L] '.; L] L] ) . l 2 L] 2
¥ ) 0o o0 0 0 Co o' (Cog  weeV_ oo .
-~ 1°(3-1).00 S27(3-1) (3-1)
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This approach becomes computationally'awkward when the number of groups
becomes large, in which case it may prove easier to first compute the ..
means and proceed as shown in the previous section. |

In passing, the relatlonshlps w1th a one way analysis of variance w1th
a falllble dependent variable might be noted. The problem in that case would
be whether the true means dlffered from one treatment group to the next, i.e.,
whether VT. > 0. In the model used above to test for equal rellablll\‘t\.les, this
would corfgspond to the hypothesis that,/‘&T = 0 since this correlatlo;‘ls the
co;;relation ratio, i.e. s /0T"f‘ = m- To test the hypothesis the
analysis coula be rerun with /T'T a "fixed" paraxpeter set. = O and the
difference in chi squaréd values (one degree of freedom) would be the
appropriate significance test. One might consider using tﬁe congenefic
model for the analysis of variance where tﬁe treatmenp effects are measured
in terms of several symptoms ?fh;'x.ch pfesmnably reflect some underlying process
which is not directly measuréd. Providing that the errors of measurement-between
symptoms are independént snd the symptoms are linearily related to the uﬁder-

lying process; lne conéeneric model ﬁight provide a moré‘&alid test of the

hypothesis.

cvs
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ERRORS OF INFERENCE DUE TO ERRORS OF MEASUREMENT

1

Robert L. Linn and Charles E. Werts

i .
Educational Testing Service
Abstract

Failure to consider errors of measurement when using partial correla.-'
tion or analysis of covariance techniques can result in erroneous conclu-
sions. Certain aspects of this problem are discussed and particvlar
attention is given to issues raised in a recent'; article by Brewér‘, Campbell, -

and Crano.
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-. ERRORS OF INFER?NCE DUE TC ERRORS OF MEASUREMENTl’

Robert L. Linn and Charles E. Werts

Educational. Testing Service

~

Brewer, Campbell, and Crano (1970) have justifiably criticized the use
\\. .-
of partial correlation procedures in hypothesis testing research vhere errors

of measurement are not téﬂen into consideration. Ignoring measurement errorc

3

is much more serious when dealing with partial correlations than when dealing. .

——n

with simple zergﬁﬁrder correlations. In the latter case we kncw that the
effect of erroré of measurement, that are mutually ﬁncorrelated and uncorre-
lated with truezscores, ig to reduce the absolute value of the zero-order
correlation between the fallible measures. As Lord (1965) has pointed out,
however, we cannot ordinarily know the offect of such errors of méasureﬁent

on a partial correlation. Errors of measurement can increase or decrease

the magnitude of a partial correlation and may even result in a partial corre-
laticn;of a differént sign.

As an alternative, Brewer et al. (1970) have suggested that factor
analytic techniques be used to test a single-factor model before drawing
conclusions about the na%ure of underlying conceptual variables. The pur-
pose of the present paper is to reconsider the issues raised by these authors
and the reasoning that led to their conclusions. Attention also will be

given to some related arguments that were made in & recent attack on some

commonly used methods for the evaluation of coumpensatory educational programs

" (Campbell & Erlebachef; 1970). Our thesis is that, the basic problem is a

lack of relevant information--a problem that cannot be resolved by the choice

of a statistical procedure.
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Ignoring errors of measurement » the relationship beiween the loadings on

oL Shnlenl A B

a single common factor and the partial correlations in the case of three

variables is straightforward. The squared factor loadings on a."single common

factor can be expressed:

aig% A3 Tik (1)

for 1,3,k =1,2,3; i # 35 #k , where a, 1is the factor loading on the 3 i
J

{
-2a -
‘ |
Relationship between Factor and Partial Correlation Analyses : .

single common factor for variable i and the p 's are the intercorrelations

among the variables, i,j,k . When Py =0, za.i2 is undefined. Assuming

none of the three zero-order correlations equal zero, the squared factor load- |

ing can be wrltten as a function of the partial correlation, pjk it

=l-Cp

& jk.i O’ (2) 5

F2, 3
C = !
Psx

-

“There

Provided that ¢ is positive, it may be seen from (2) that when P k.1 = o,

|
2 2 - ’
a; = l..O and when pjk.i <0, a, >1.0 . . i

o

Frederic Lord (personal communication) suggested that the relationship -

between the fa.ctor and pa.rtla.l correlation ana.'Lvses could be clarified by an

examplg such as the one depicted in Figure 1. Given A X = .50 s the
) Vg N 2
possible values of Py X and Ay 2)( are contained in the ellipse in Figure 1.

"™~
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Factor loadings are denoted by a, and regions that contain imaginary load-

ings or squared loadings greater than 1.0 are ind:cated.

On line segment ac 925 1= 0 and a, = 1.0, on line segment bd
p15.2 = 0 and a5 = 1.0 , and on line sggments aeb and cfd P12.3 = O and
8z = 1.0 . Imaginary values of the a 's occur when one of the threze zero- i.

. - 2
3
4
-3
Regions of the figure that contain negative partial correlations are indicated. ; |
order correlations is negative while the other two are positive.

Bias in Partial Correiation

Brewer et a2l. (1970) argue that errors of measurement introduce a

systematic bi;a.s into partiel correlations. Mor#2 specifically, they state:

". . . the assumption is made that the variable being partialled out contains
no unique components and is measured without error. Using ;é.rtia.lling tech-
niques when these assumptions are not met introduces systelﬁatic_bias' toward
the unparsimonious conclusion tha't more conce’ptuzi.l factors are involved in a
phenomenon than may actually be the case" (Brewer et al., 1970, pp. 1-2).
Although it is true tha.t“-this may be the effect of a violation of the assump-
tion of an error free messure, the bias may be in the opposite direction. It
‘is easy to construct an example where the d:i.rectioﬁ of the bias is to_wa.fd a
more parsimonious conclusion that fewer conceptugl factc;rs are involved in a
phenomenon than is a.ctua.i]y the case. Suppose, for example, that thréé‘ latent ~-—yT

va.ria.ble:s ( Tl , T2 , and '1‘5 ) had the following intercorrelations. in the

: population: | . : .




On = .6 )
T1T2 )
P = . )
T, T3
and p = .18 .
. ’I.‘2T3

e

The correlation between T, and T, with T, partialed out is -.28123
and the corres;;ond:'.ng conclusion is that more than one conceptual variable
is involved in this phenomenon. Suppose, however, that only a fallible

" measure of the first variable, say Xl , was available, where

X1=Tl+ El

o

uy

A 3

1 10 T2 , or T3 . Purther, assume that

the wvariance of 'Xl is equal to twice the wveriance of Tl

1 is .50). Under these conditions the resulting intercor-

and E is uncorrelated with- T

(i.e., the
reliability of X

T, , and X

relations among T2 s 3 would be:

1

=.6/.5 = .k |
“X,T, v

Py - 6 [5 2 ek
o |
pT°T3 = 018 .
The correlation between T2 and T5 with Xl partialed out would be 0.0
which would result in the more parsimonious, but erroneous conclusion that a

a

. ® o
second conceptual variable is 'iot required. There is no intention to imply

by ..t;his.iilustration-that-the-bias-‘~of~errors'~of~measmment--is typicaily;or

even frequent;l.y, in the direction of producing a partial correlation that is
closer to zero; Rather the, point is that the direction of the bias cannot

be determined without imposing additional assumptions (e.g., all reliabilities

-

i
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a.nd. all zero-order and partial correlations among true scores are nonnegative )
a.nd/or obtaining additional information such as the reliabilities of the - |
measures. Giw;en cliussical test theory assumptions, a.n.‘ estimate of the partial
correlation among underlying ti‘ue scores mzy be obtained by simply applying
standard corrections for attenuation to‘ ‘the zero-order correlations. As Lord
(1963) has noted, the¢ need to make corrections for attenuation "i..poses
somevwhat of a dilemme, sfince, .first,. it is often hard to obtain the particular
kind .of reliabi]-i:ty coefficients that are required for making-the appi'opriate
correction, -a.nd,amr‘«:he‘r, the partial corrected for attenuation may be seri-
-ously affected by sampling errors. These obstacles can hardly justify the

use "gf an uncorrected coefficiynt that may have the wrong sign, however"

(Lord, 1963, p. 36).

The Single Factor Model vs. Partial Correlations

As noted above, Brewer et al. (1970) have suggested that a single-factor
model be tested before conclusions are drawn about the nature of underlying
conceptual variables from partial correlations. We shall argue that partial
correlation analyses and factor a.na.lys_es are based on différent models and
pose different questions. Knowing that a single factor can reproduce: the
intercorrelations among three observed fallible variables is not sufficisr‘lt‘ -
to draw conclusidns about the partial correlations among the undez'-'lyinfg'"_éon-

ceptual variables or true scores that correspond to the observed scores.

Assuming that three infallible measures ( Ty, Ty, and Ty ) have a
° . Jv

-
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multivéi-iate normal distribution, the partial correlation between TE- and

T, with Tl ‘ pértia.léd out has a very simple interpretation. It is equal

3 -

. 5 .
to the zero-order corrélation between T2. and T3 for any subpopulation

~or 22
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defined by a particular value of - Tl . Thus, it provides a means of investi-

3 with T’l

The:question of whether or not T2 and T3 .a.re related when"

gating the relationship between T2' and T held constant in the

' above sense,

Tl is held constant is. not the same &=z the question answered by a test for

4

- single factoredness for the observed scores.

edged by Brewer et al. (1970) in footnote number 3 where they discuss. an

o ‘example in whlch the control variable (I.Q.) has a factor loading of 43,

R They cénclude that "...if one has 'factored out' a va.rla.ble upon which I.Q.

‘ loads only .43, one has not in any meaningful sense 'i‘actored out I.Q,'"
(Brewer et al., 1970, p. 7). They go on to indicate that they .are work:mg

on a technique of "focused factoring," where:.n the~90ntrol variables are

used to dei‘lne the factor. Hopefully this procedure would exclude from the

'connmme,llty of-a (-ontrol va.riable only that variance that properly m:Lght be

considered error variance.
If the observed variables (Xi) are related to their underlying true

*

- scores (Ti) by +t~ model,

Xg = T3+ By i=125 ,

(E ) are nm’cua.l.Ly uncorrelated and are uncorrelated wrbh

T o

the true scores, then (l) may be expressed in terms of the correla.tlons among

' where the errors

the true scores y

pT T s a.nd the rella.bllltles of the observed measures,
iy -
Pig i.e., ’che variance of T d:wzded by the vo.r:.ance of X « - Thus
L ) pTTpTT
. .- = R ___g____ . N
R _ & =Py T o o (3)
_ " . <

This is, in principle, acknowl-
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~ The correlation between Tj and Tk with Ti partialed out is proportional
to
) P = Py P
Tl Tyl T
which, given equation (3), equals:
[ :
. Tii
PppPre \=2-1) -
. 1 J 1 k 81

(‘onsmerlng cases where a single factor reproduces the 1ntercorrelatlons

among Xl D S a.nd __X3 and O <a.2 <1 (=12 3) s the above expression

' can be seen to have the fol_low:mg implications: ,/. o
| J h " A. When p,f_T and i‘p;riTk ha.ve_the same sigh,l ' i
1 2 < im li‘ >0
© 8 SPyy MPLAES Opoq o q 2R
Jk i
5 2 _ _— . . A
- 83 T P33 MPLES Ppoqp g7 )
kL
1 3. a2 > impli <o
- © By 7 Pyy HPUES Ppqpop C ;
5 L d kL
a - B. When Pp and pT 7 have opposite signs,
i : ' . CA itj - i*k . ' g
I 10 st < o implies . p ‘< 0 S
: Cme By i - . S S i
R § ii L -T;]Tk'Ti- o | _
: 2 82 implies o o 5 = O
& e ey dmles g g =0
:_f 2 . ~Jd k 71 .
.».?f:.gi»,fEi lmplles pT 7m0

These results show tha.t when the correlatlong among the observed scores _

e ’are reproduced by & single fa-CbOI‘ With squa.red loadings between o a‘nd l’ o .
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conclusions are warranted regarding the partial correlations among the true
scores. , Given positive relisbilities and nonzero intercorrelstions a.mong
observed scores, if the three observed.variables do not fit the single

fa.ctor model, then the three partial correlations among true scores may be

positive or negative but not zero. .

The rela.tionsliip between the observed loa.dingsoo‘ff a single common factor,

the partial correlations a.nong observed scores, and the pa.rtial correlations

anmong . *true scores may be clarified by the example deplcted in F:Lgu_re 2. For

172
sible values of pTlT3 and . Pp T3
whlch the fa.ctor loadings on a single common fa.ctor, the partial correla.tlons

the case Pn ' = .50 and Py = Pop = p33 = .50 , Figure 2 shovrs the pos-. .

« A set of regions is defined within

among observed scores, and the partial corre.'La.tlons among true scores have

specified characteristics. The ell:Lpse in Figure 2 contains the values for °

which the determinant of the matrix containing the 1ntercorrela.tlons of Tl
T, , and T is greater tha,n or equal to zero., Larger values of »p :
would define a th:mner elllpse a.nd smaller values a rounder elllpse. - The

numbers 1ns1de the ellipse 1dent1fy the va.rlous regions -of the ellipse, a.nd )

the letters identli‘y line segments separatlng reglons. For the reglons in .

' Flgure 2 the fa.ctor loa.dings

(a. ) for a single common fa.ctor tha.t w1ll

'.'.reproduce the 1ntercorrela.tions a.mong the observed scores, the pa.rtla.l correla.-
. k3 L !

'tions among the observed scores

(p k 1) > a.nd the partia.l correla.tions among

. the true scores (pTJTk'T ) are shown in Ta.ble l Tbeva..l.ues of a. Jk.i

,,,,,,,,,,,,,,,,,,,,,
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and pT T T for wvalues of pT T" and - pT.'l“ on the boundaries between
j°k’ J i“k
regions are shown in able 2 ' . \

As was stated in implications A2 and B.2 above, Pq ¢ . equals

1 ) k'"i
- o . J o
-zero when 8y = Pig - This occurs on line segments co, do, 1o, jo, cmd

~<and inj. When a2 1 (line segments bo, eo, ho, and ko) the partlal‘

ot

‘ among observed : is nonzero. T e'
ka i g observed scores is zero; however, pT 1T, s

locat:.on of line boh and line eok depends on the magnltude of pyq and p22 :

:b_Oll_.lS defined by points where p = P,.P Pm | and eok is defined bJ
T,&,T3 1177915714 T3 —_—
points where . A l:Lne _where a,3 1 does not exist

Pp p. = PooPp 1T Pp .

173 273 _
for this example because there are no poss:.ble values of p and p.
sy T1T3 ToTs
for which Pr. equals - P33Py pT o Reglons 2a, 33., L, §a) Te, and 8
.. T1e 173 7273 . _ -
_‘are of interest. since they def:.ne comb:l.na.t:l.ons of p and p .. for - p

whlch a partial correlation for observed scores and a pa.rtlal correlation for

true scores have ’foppos:Lte s:Lgns.', Reglons 1, 2a, 3a, k4, 5, 6a., "(a., and 8 are :
1 : ke
where a sa.tlsfa.ctory s:.ngle -factor solution is obtalned yet all three correla- i

4:;6"'

‘ tlons between pairs of true scores with’ the third true score partialed out are

nonzero'. ' D;Lﬁ‘ereht conclusions about the number of underlying concepj:u.a.l
! . B . . . » LY . N N )

' varia.bles"involved.iin;-the phenomenon pre sumably, would e drawn for instances

- din. those regions. -

Th:Ls problem should not be dealt with by simply 1nvok1ng 'the pr:.nc:.ple

; Cog 1

: _of pa.rsimony a.nd thereby conclu(xd:.ng tha.‘t the fl‘t of a single fa.ctor model

:1.nd:1.ca.‘tes that there 1s only one dimgps:l.on underlying the phenomenoni. Ra.ther,._}___:

‘, the. problem should be dea.lt wn.th by ob'ta;.n:.ng the additlonal 1nforma.t:1.on that‘




-10-

is necessary to ma.ke inferences w:Lth:Ln a glven model. A brief discussion of '

the use of multiple mea.sures to obtain the needed information 1s presented

below in the section on needed additional :Lni‘orma.tlon.

Errors of Measurement in the Analysis of Covariance

o % Campbeli and Erleba.cher (1970) have prorvided a much.needed criticism

| of the common misuse of the analysis of covarilance as a mea.ns of try:.ng to.
)‘ i a.dgust for preexisting dlfferences ‘between experimental e.nd control groups

' for the evaluation of compensatory education programs. They argue tha.t
error" and "unlqueness" in the covariate result in bias when the groups
differ on the d:.rectlon of underestlmatlng the slope of the regress1on of'
the dependent va.ria.ble , on the covariate (for a good discussion see Cochran,

"1968) Porter. (196"() has illustrated the nature of the resulting blas for

A 'va.r:.ous group d:.fferences in means on the. covariate and on the dependent

variable. " When using the analysis of covariance, bias due to errors of

bad ( or good).

The effect of "unlqueness" depends on 1ts sources.. If unlqueness is’ due

: to errors of validity (e. g:5 & perfectly reliable symotom of the underlylng

ity.- On- the other hand, if unlqueness merely refers to unsha.red va.r:La.nce

o

(1970) trea.tment of .covariance a.dgustments > “then the questlon of bias :Ls

'b:LJ_'Lty 5 1nva.lid1ty or a, la.ck of perfect correla.tion between underly‘lng va.rla.-

. _. .bles. The la.tter :Ls not a. source of bla.s a.nd should not be corrected for a.s

- ;‘d:.s done by Campbell and Erleba.cher s a.daustment procedure

RESEN

_ measurement in the covariate might meke a compensatory education program look

—,

.

va.rla.ble), then b:.a.s Wlll result in ‘the same way. tha.t it does ‘from unrella.bn.l— >

between the covarla.te a.nd the dependent varla.ble as in Campbell and Erleba.cher s

A

a.mb:Lguous. leen :Lndependent errors 5 unsha.red va.rla.nce ma,y be due to unrel:.a.-

p—

4




Z

S

i

et

i}

-11-

This problem needs to be viewed from the perspective of Lord's (1967)

pa.radox. Lord has shcwn that the compa.rison of preexisting bfoups by means
of an analysis of covariance (statlstlcla.n 2) and by means of an analysis of
difference scores (stat1st1c1an l) can résult in paradoxically dlfferent

results, both of wh:\.ch are ma.nlfestly correct. In his hypothetical illustra-

tive, example, Lord depicted an experiment in which girls received one diet

and boys another. For each group the mean and va.ria.nce of the final weight
was :Ldentlcal to the mean and va.rlance of the initial welght. There were'
preex:\.st:mg dlfferences between the groups in mean weight, a.nd for each
group the w1th1n-group correla.tlon between initial a.nd t‘:Lnal welght was 50;
Assuming that the weight measures are error free, the abo.ve correlatlon
would bel the correlation between true initial weight e.nd true final weight. .
~.In the absence of measurement errors ‘the analysis of mean cha.nge would

l|]

1nd1cate no "trea.tment" effect, whereas the analysis of cova.rla.nce would

indicate a "treatment" effect.

Campbell and Erlebacher (19'{0) have suggested that in pretest-posttest
des:Lgns .a "common- fa.ctor coefficlent" might be used to correct for errors of '

measurement and un—:\.queness in the covarla.te. Us:mg the pr0per cormon factor

oeff:\.clents for both pretest a.nd posttest in the sta.nde.ro correction for -

attenua.tlon formula. would resth in a "corrected" pretest-posttest correla.-

v

tlon of l.OO. Assum:i.ng equal coefflclents for the pretest a.nd the posttest ’ e

: “the. common fa.ctor coeffic:!.ent for Lord's exa.mple would be 50. Applylng th:\.s

correct:Lon would 1ncrease the slope of the: w:Lth:Ln-group regress:\.on lines. to .

-l OO and result 1n 1dent1ca.l 1ntercepts for the two groups. In essence,

' 'Ca.mpbell a.nd Erleba.cher ha.ve dev:.sed a rounda.bout wa.y of sid:Lng with Lord'

L]

Wf:\.rst statlstic:\.a.n. However, they have not resolved Lord's pa.ra.dox.
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than impose a restriction, such as the one that the "corrected" correlation

“between -pre‘bes‘b and pos*b*bes*b be 1.00 (which,. in our opinion, is unjus‘bified),

it would seem far better to conclude with Lord (1967) that ". . . there

simply is no logical or statistical procedure ‘bha‘b can be counted on to make

proper allowances for uncontrolled preexisting differences between groups"

(p. 305).

Needed Addi*bional Information for Fallible “Measures'

Dealing with fallible measures w:.ll generally requlre addl*blonal assump-

. tions -and a.ddltlonal information. In some 1nsta.nces P us:Lng pa.rallel forms

of one or more' of the measures may prov:.de the needed addrbn.onal 1nformatlon.

-.One dlfflcul‘by ‘with thls procedure is that most observed measures are- really

5 .
symp*boms or indirect measures of the veriable or _1ni‘luence to be measured,

which is to, say_ that even if the -symp*boms were measured with perfect relishil-
ity, they would be mperfec‘bly correla*bed with the "‘brue variable. The

resea.rcher must dec:Lde ‘uch symptoms are reflec‘blons of the releva.n*b under—

‘lying var:.able. This questlon is crucial s:l.nce dlfferent sets of symp*boms

will *byp:.cally define dlfi‘erent "true" fac*bors depend'.mg on *bhe pa.rtlcular
As*ba*blstlcal procedure employed. The multltralt-multmethod approach 1n*bro-
duced by Campbell and F:Lske (l9/9) a‘btemp*bs *bo deal wrbh *bh:l.s ‘valldrby problem

by us:.ng dlfferent methods oi‘ measur:mg *bhe same varlable. Correlatlons beWeen

NI

l.drt‘feren‘b me*bhod measures of the same tralt ‘byplcally w:.ll correla*be less *bhan

‘ equ:walent measures ’. 1.e., in- ‘bhlS model the cla.ss:.cal psychometrlc approach

v

.us:.ng parallel i‘orms is ap*b to underestlmate correlatlons among underlying
L concep*bual va.rlables. An al‘bernat:we way of s*bat:.ng *bhis problem 1s to assume

-b.-:i’che:b part of the correlation between *bhe two measures Xl a.nd X* of T

1 l

o
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due to correlated errors of measurement and that factors causing this correla-
tion are uncorrelated with the true scores. In this case, the squé.re root of

the correlation between X, and X¥* no longer provides a reasonable estimate

1
of the correlation between ‘,{’l and Tl + Assuming that the errors are posi-
. Al B )
tively correlated, the correlatidn’between Xl anc- X*]‘_ will overestimate
the squared correlation between 'Xl and Tl and using this inflated coeffi-

cient to correct for attenuation will result in the kind of undercorrection

>

‘that Brewer et al. (l9"0)wa:rned aga.mst. Correlated errors may, in fact, be
one of the reasons that Brewer e’c al. wonted to correct for unlqueness. .

There are advantages, however, to formulating the problem in terms.of corre- B
: ' : . - P :
lated errors rather than simply s: ying that we should correct for uniqueness. ;

The former makes it possible to devise procedures for estimating the"’desired|
: |

coefficient (the correlation between X; and T ) given the poss1b111'by of

ke T b

e:L'bher positively or nega.tlvely correlated errors, whereas the- la.'bter only

Famdach AR5

allows the conclus1on that the correlation between X and X*J‘_ overestlma'bes

'bhe desired coefflclent if the errors are in fact pos:L'b:Lvely correlated.

o A a B A e o i

Conclusion
. o . 7

~ From our perspective, "focusing on the 'concepi:-ua.l problem of choosing a

one-factor ‘vs. a two- fa.c'bor model" (Brewer et a.l., 1910, p- 3) dlstracts the

researcher's at‘bentlon from 'bhe task of constructlng a model whlch is consis-
' tent w1'bh everythlng we know or hypothesiz\y about the nhenomena. under” study.

Any :Lnferences will necessarily be no morej valid than the a.ssump'blons ma.de

14

vabout rea.llty For heur:Ls'b:Lc purposes we ha.ve assumed that the Jdineaxr a.dd:L-

; . fa
T

tive model was relevant horwever > there 1s no rule of na.'bure ’cha.t effects are

elther l:Lnea.r or. a.ddltlve No prov1s1on wa.s ma,de, €. g ; for ca.'baly‘tlc,

-~
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=7 model may be one of the a.J’.terna.tives“.»

-

-1~

feedback or interactional type 1nfluences - It is ianortdnt for the-research

design %0 be set up. to- study the questlon of which of the pla.us:.ble a.l’cerna.tlve
models more closely s:.mula.’ces rea.llty. Rather tha.n focus on the conceptua.l
problem of chooslng a one-factor vs. a ‘two-factor model, it seems to us far

more worthwhile to spend time in designing the study to explore the relevant
i

© alternate models, ensurlng collection of the information necessa.ry to test

wblch is the best s:.mula.’clon of reality.

¢

Depending on the problem, Lhe factor -
Thc"e assumption that the factor model is
a pi‘ibri_ relevant appedrs to us.to be unjustified given the current state of

the art.
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-- FPootnotes

) lThe research reported herein was performed puisuant to Grant No.
OEG-2-T00033 (509) with the United States Department of Health, Education,

and Welfare and the Office of Education.

2We are grateful to Frederic M. Lord for suggeéting the idea thet was

used for the illustrative example .in Figure 1.
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. Table-1 i
Values of Factor Loadings and Partial Correlations
foryRegion-s of Figure 2 E
Partial Correlations Partial Correlations :
'Factor Loadings Among Observed Scores Among True Scores 3
Region a a. a Paz = Pez P o ‘ o P,
1 2 3 25.1 "13.2 7123 | "TgTz.Ty TqTz.Tp  T1Tp.Ts
1 + + + + + . + + + '-
; 28, + + + + + + - + +
” 2b G + + - + + - + +
 3a 4 + + + o+ + - +
5b + G+ + - + 4 - +
b + + + + + + P 4 -
5 - - + - - + - - +
6a - - + - - + + - +
6b G - + + - 4 - +o
Ta - -+ - - + - + +
, Tb - ‘G + - + + - + + o
8 - i - . - S R
9 i i i - + + - o+ [
10 - i i i + - g + - I
- . v
el denotes that the factor loading is greater than 1.0 in absolute va.lué.
7 ‘. i
] v T /.
’ B .
i
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Table 2
Va_lues“ of Factor Loadings and Partial Corr:lations
for Line\s\‘Se/I)arating Regions in Figure 1
!H .
otk Partial Correlations . Partial Correlations ‘ ¢
iFactbr Loadings | Among Observed Scores . Among True Scores
Line
Segment a x:! 8z | Poz 1 Pyz s Pro P P P
b 1 % 51 7231 152 P25 | Prorsry Pmsemy Prime.ts
ao v o o[ - + + . + 9 +
bo 1 + + (O + + -. + o+
do + ,/p22 + + + + + 0 +
eo + 1 o+ ’" + 0 + + - 4+
fo .0 U - + - + v - +
‘ ‘go | U O - + T4 - +
i b N <
ho -1 - N 0 - + T4 - o+
io . -Jpll - + ) - - ‘ + 0 - +
jO - "Jpee + ‘ na - - + - * 0 +
ko S - 0 + - + +
eo ' U 0 - + + - + +
cmd + o+ ;3 + + 4 ) > 0
ingc | - - /p53 - - - = 0
\ I denotes that the factor 'loadihg is undefined.
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Figure Captions T
Fig. 1. Regions which define values of factor loading and partial
correlations fbfnpossible values of ; and - g given = .50
| XXy K RS
Fig. 2. -Regions which define values of factor loadings and partial
dorrelations for possibl B i T o= ’
. p ss e values of pT . and Py T given Pp o’ 50 ,
a 173 273 12
a0 Ppy = Pgp = P33.= .50 . '
. , €
t
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Identification and Estimation in Path Analysis .
with Unmeasured Variables ' i
/ Abstract
. ' Y
A variety of péth models involving unmeasured 'variable_s are formulated
- in terms of J8reskog's (1970a) general model for the analysis of covariance
- structures .
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‘Identification and Estimation in Path Analysis

with Unmeésured V.apriableé*

A variety of authors (e.g., Blalock, 1959; Costner, 1969; Heise, 1969)
have applied path analysis to problems involving multiple indicators of under-

lying constructs. An important and often algebraically complex feature of

such analysis is the determination of identifiability of model parameters.

. ‘The purpose of this discussion is to demonstrate how a visual inspection of

the path diagram can be uSed to simplify the identification quest'ion and how

these problems may be formulated in J8reskog's (1970a) general model.

-I. A Single Factor Model

Consider the case of a single underlying factor (ﬁ) with three
observed measures (X l,X » a.nd X ) .as shown in Flgu_re l.a. The factor ,
loadings .;(bX.F ) - in thls model equal the standardized path coefflcients J
(bf,b’é, and bgl) —, given the assumption tnat the residuals e),€,, and . ey

are ind.ependent 'o-f each other and of the factor. It is convenient “though

~not necessa.ry, to assume that both measured a.nd unmeasured varla.bles are

sta.nda.rdlzed - For heuristic purposes observed correlatlons w1ll ‘be designated

“

with "r" and expected vaelyels of these correlations by "p" . The expected

correlations will differ from the corresponding observed correlations because

of sampling and 'model specification errors.

. : N
» .
. . . . . .
T . - . H o ) .
. i .
PR Co T . : . » .
g ; = . . .

-¥The- resee,rch reported herein was performed pursuant to Grant No. OEG-2-

. 700033(509) with the:United States- Department of Health,. Education, and
Welfa;re, and the Office of Educabmn. ' .
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Fig. l.a. A Single Factor Model °

A path analysis of this model yields the equations:
0
- *
-,°12 = b¥bE

.;‘DD L SN - SR : (1)

~re]

and _ o)

v *pk .
o3 = PEP3

Assuming nonzero correlations,’ equations (1) yield: ' | . i

ey

2 P1of15-_ 2
"y
o3 X F

o PioPoz - :

2  Flgve 2 . .

)‘ -——g ,3 Px T and o . ) . (-2)'
_{13' 271 - . _ S .

e

{ 3 o plg i X.F *

-
¥ e . —

L I

Given only three observed measures the model 1s Just identlfied, i.e., the

- observed a.nd expected correla.tions are identlca.l Wl‘Eh more tha.n three mea.sures

(b*)

bl_'vfhere 1#3:{:1{ and R 7(28..)'.

PRF
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assuming Pik 0. 1f there were a causal linkage (e.g., Fp>I > I, - Xi)

from Fl' to X. then Px p would be the product of the intervening path
i"1

coefficien*s, i.e., thé" product of the path coeff:.c:.ents in the chain from

.Fl to Xi would be 1dent1f1ed If any loading exceeded unity, the model
would be rejected. When there are m > 3 observed measures then the loadings

. ‘ r‘-‘
will be overidentified The nunmber of" over:.dentlfylng restrlctlons is simply

the number of d1st1nct correlations m(m - 1) ¥ 2 less" the number (m) of

px F tc be estimated'. Ma.ximum likelihood or least squares estimates for over-~
1 :

1dent1f1ed models can be obtained us1ng Jé!reskog s (1970a) general method for

the analys:.s of covarlance structures.’ We use path analysis only to study the .'
1dent1f1ab111ty problem not for estlmatlon purposes— (Hauser & Goldberger,

1970; Werts, JBreskog, & Linn, in press).

The above analysis leads to our "rule of three": Whenever the'correla-'
tions among at 1east three observeduvariables may be completeiy ascribed to
the presence of an underlylng factor, then the . 1oadings (correlatlons) for
each observed variable on that factor are 1dent1f1ab1e. An '1mportant gual:.fl-
! cation is that the expected correlation between any two observed variables

cennot be zero since equation (2a) would not be de_fined_ when that correlation

wes in the denominator. 1In practice, small\expected correlations may lead to

unstable ‘pa.rameter. estimates, i.e., highly unreliable_ measures result in

unreliable parsmeter estimates.

II. . Generalizations : . oo *..

The F:Lgure l.a. model with or w1thout 1nterven1ng ’ unmeasured var1ab1es

vgoing from Fl to Xi is too 11mted for most causa] analyses Our purpose
] :
in thls section is to cons1der other causal patterns which satlsfy the | I'rule

I
of three," i.e. 3 in which the observed correlations among three varlables are
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when\~x <—Il <—Fl-—>xJ ‘X <—Il—>Fl—>X I X —>Il—>F —)Xj s and
X & Il -.<—-Fi'-' 5 5 but, not--_when two- a.rrows-»-pointv---towa.rds-~the--same»--va.ria.ble,--"
e g., "}E"‘:{:c - Fl S XJ\ or X —) Il -, Fl «— XJ . In general the correla.tlon o
between two observed va.r:ga.bles may be sta.ted as the product of the 1nterven1ng .

_ 1nc1ude a va.rla.ble wh:Lch 1s ca.used by two other vwlables, 1.e., when two v

e usa.l a.rrows pomt towards a. va.rla.ble. To 1dent1fy the loadlngs on a fa.ctor

e

nonzero and mey be ascribed to the presence of an underlying factor. ~Equations

(1), and therefore (2), would still hold if for one of the measures (e.g., Xy )
Xl - Fl and the residual 61 of this regression of Fl on Xi were indepen- \

dent of the other residuals e, and €5 , 88 shown in Figure 1.b.

Figure 1.b.

oo

If two observed measures. influence. F1 ; ey 'Xl 3 Fl and. XE,_’ F-l then it

is no longer true that the’ corre'ia.tion between these measures equals the product

.o_f the’,correspond'ing path coefficients , BuBe s pl2 would not-in- general equa.l
b3es - e | - e 4

Given that all residuals are independent, when there is- an intervening . -

variable (Il) between X, ‘and F,, the correlation. between a pair of observed

weri'a.bles Xi and »'X‘_j w111 equal the product of the 1nterven1ng pa.th coeff101ents

pa.th coefflc:Lents whenever the ca.usa.l llnkage between these va.rla.bles does not '
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»wle need to find three observed variables which.are causally -linked through

that factor, the linka.ge/s satisfying the ab’ove criteria.

ITT. Examples ' ‘ T

A. Our first exair_lple, which corresponds ’co:_Figure ‘1L in Wiley and >Wiley

(1970), is shown -in Figure 2.a. o L
PP |
X, X, X,

¥*
b ng b

1 %2 3 .
Figure 2. a,
Tracing linkages for F2 : f
'Xle—Fl—-)Fe—-)Fs-—)XB,g- j; .
.y . b ] A
Xl e—Fl -_—>F2 —-)X2 , and

Slnce these three llnkages a.ll 1nclude F2 and sa‘blsfy the requ1rem<=nts of the
rule of three we may conclude thab he* factor loadlngs (pX F ) y 1., the .

' c_orrela.‘blons of ea.ch observed va.rla.ble w:L‘bh F2 , are 1dent1f1ed . Thus,

b o= b*b*‘ s o .“v.'"f, ) o '

1}




The factor loadings on Fl are not identified because the correlation between

X2 and X3 cannot be completely ascribed to Fl -« Likewise the loadings on

F, are not identified because the correlation between Xl and X, cannot

b 2

‘bJe ascribed to F3 . J8reskog (1970b) shows that this model may be estimated
by a single factor model with F2 as the common factor and that the example

may be generalized to more than three measured variables.

B. Our second example (see Figure é_.h) corresponds to Figure 4 in Costner

(1969}. - The analysis is identical whether F, —»F, or Fp «Fy «

\ ) -
\/Ml
Figure 2.b
Tracing linka.g.eszb . e 4 i
. o, 'f » _ . St . L. .‘ !
- .Xl_.(— Fla._-"-’. X2__ 2= ‘ : o | B | :(ha)
R Tl R Tt R T o i(w)
CoMperamex, o g

\_,._jw.‘_A._“7-,,_;_“.Ax.e_..epl_-}.{.p.e\._T,.xjw,,__.-__..._l,\..”.__.A..f.-_-.'.A._.'.-,....'.;.._._...3;...,-.M..,W._,.-..-.;. “;..;.j_-...,.._f\,.‘,‘,v.vM,. f;‘-(hd) L
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For Fl‘ the factor loadings may be identified by linkages Ya,b,d or by

—a

- h4a,c,e, i.e., these loadings are overidentified and

o, . =Db¥
XlFl 1
P = b% i
X 2 —
p . = b*b* ) B.n.d . ) ‘r'.
X5Fl 5 5 : : .

*p* “ '
o = b¥Db . _ ' _ '
X),Fy L°5 _ | . ; : wa

The factor loadings for F, may be identified by bb,c,f or kd,e,f

md: - ) . Lt . o~ ‘::‘_
| p . = p¥h* ’ . . )
KaFp PO | | n
P = bXp* , !
XFp 2 |
. P = b%* , and :
X5F2 3

—

A
K, T

S‘ince b*{ -and b*i a.re identified, - b% is. .also iderif{f‘ied' by these equations.

The analysis. may be complica.+ed by a.ssuniing ' ey correle.ted wi_th'

85,

) in whlch ca.Se linkage ltb would not . be va.lld “however Lhe conditions of the

"rule of three" would still be satisfied for Fy a.nd Fp. and all oa.th
coefflcients and correla.tlons between errors are (aust) identified. Such a
model would correspond to Flgure 5 a. in Costner (1969)

C. The next example, correspondlng to Flgure 1 in Blalock (1965), is

' Ushownv’in".Flgure_ 2.c Thi.s mo%gl ls ba.s1ca.lly a. va.rla.tion on the model of

© Figure 1.Db. _’“,.f;'}; R

e ror st e AR T A AT 4 AT

T CO I
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P
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xl
bi . ig, ‘63
i
JOR OBy
*
7 &P
X2_ XB_ _
[
~ 2 5 -
/. Figure 2'0' ) '. : . Y
This model differs from that in F:.gure 2.a. in that X - Fl ~instead of
F -—>X The linkages are: V
.Xl—aFl-—g,Fe—)Xe_ ’ | ]
xl_)Fl_)FQ_)F3__)X3 , and - |
X2 «~F -—>'F3 ——>X3 . ’
4
K Since Fy is in all three linkages which satisf.‘y the ' rule of three,” the '
. ”i"‘ac‘tor»loadings for F2 are :Ldentified and
X Fp 'l,.h Jll2v 15+ 725 7 A o | Y
S e | (5
- 'b?*: — — . SR _
DX3F2 = bbz = \/,1‘131‘23_ k "1'»12 c o | o (5¢)
S:ane rl2 cannot be ascribed to“ F} and r23 ‘carinot be ascribed to Fl ’
-.the load:mgs on these factors are: not :Ldentified. Our heuristic device would
. . S‘.:- .
L ‘have been helpful to Blalock (1963) since he obtalned the equations correspond-
”_‘ :Lng to the linkages shown above, .mt dld not solve them for the equ:.valent of

2 i\ Pk A it
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It is not possible to find three observed variables whose linkages satisfy

L Lh A St

~9- -

D. Our fourth example, shown in Figure 2.d., corresponds to Figure 2 in

Blalock (1963).

6 = residual of F, on X, and Fy .

Figure 2.4d.

Tracing linkages which satisfy our rule: o o ‘ _ A
Xy 2 Fo%p 0 - S R (6a)
X ‘T"F]_ —>'F2.“’X5 ’ | T | (6v)
X, «F) - Fy ——>VX§_, ‘an.d | Jw | _ - | | (6c)
.~x4 S FyoXg L ‘ | | (6d)

In this model i‘t? ié asé;nned that ‘Xh_ is indepéndent‘of%‘xl and X, . The

loadings on F. are identified by linkages 6a,b and c and therefore:

P = b* , . L (Ta)
X,Fy 1_\ ‘ B

o _ b%x , and ' : C L . (7o)
L D o B

B R | e

5

our rule for FE'.", i.e., the lin_kageibetweén Xl‘ and ”Xh_. hal two arrows .

N

\’..; .
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. oo \ v o ') ’ = . B )
. A, )
. _ s T
; ' i | S K ' )
. El ) ‘ -10- : L . w : 0 -
_ Ty ;'.'." 57 m w- ‘,'.':;':'
pointing at F, eand the linkage between Xl and X, does not include F2' ;,r .
! i = b¥ i ' i = * T )
¢ Since P, b5bﬁ it follows from equation (7c) that pX3F1bﬁ 0 51qu5_ | :
E. The fifth example, shown in Figure 2.e., has the special feature ‘s
: : ' . ' R
-of two observed nonindependent variables influencing an unobserved variable., e '_
1 It corresponds to Figure 4 in Blalock (1969). " e T,
n X, —
T 2\ b °3
3. a
S ~@_bﬁ_’xk ey | |
. ’ —_-_. .‘
4 _ Ry -
. _ ‘ 0 = resicual o.f Fl on Xl za.ne“t'.‘"X2 . o
- regression. i #
Figure 2.e. _ . - '
When X, 1is deleted Xy X3 » and Xi; form »-t?‘é model in Figure 1l.b. from i
which we conclude that the correlatibns of Xl ; X3 R ar'ld> Xl} with ‘Fl are’ o
"idg.n‘t;ified. Similarly when "'Xl is. deleted the correlations of X5 » X5 ;and - o .
X, with F, are identified. Given the correlations emong X, 5 Xp and Fl' ~ Lo "" '
the path coefficients b')lk. and - b"e* may be identified since: - .ﬁ g .. "'  :
Ly e e L ’.;; ~ 3 '..‘
%.F, " Pafkop - | o
171, ety .. , _ o - RN
b¥* = . . and S U Sl
1 1%, T
12 ‘ o I S
! ‘ ' , } “oe
. P Py T et S ,'. .
o TEP PR N o
b* = . ¢ . ; ' . )
2 2 : e - '
. " Pie ’ A S
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i
F. Our last example, shown in.Figure;E.f. corresponds to Figure 9.b. in

Costner (1969)

1 | je ‘

X, X6 | JRRNe
i * ’1 * | ]Lg :'* )
o PO M P (72 ) S

X5 Xy ,
3 %
Figure -'2_o'fo‘ ) . o
. “cg ;

>

\-From the analy51s of the Figure 2.d. model we may deduce that when Xh is

* % A ¥ .
excluded that bl b2 s b5 s 5 , 6 , and h7 are 1dent1f1ed U51ng the

varlables -X'_- X2 ,and Xh we know from our analysis of the Plgure 1

-.r

.model that the correlatlon of Xh with F is 1dent1f1ed and

1 (e XhF )
slmllarly-u31ng Xh ) XS’ and X6 we know that the correlanlon of Xh

w1th B (pX F ) is 1dent1l1ed Slnce the correlatlons among Fl » Foo

and Xh" are 1dent1f1ed it follows that the path coefficients bﬁ and . b8 s

which are functlons “of these correlatlons, are identified. As ccmpared to

Y

...,,,

N

COStner s (l969) rather complex algebralc analysis of this problem, it may

be seen that we' are satlsfled in merely know1ng that the model parameters

-

are 1dcnt1f1ed.

B .
Iv. Estlmatloh

T8reskog s (1970&) general model for the analysis of covariance

structures can be uqed to estlmate the parameters for the models discussed

P 4
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“above. Werts, J8reskog and Linn (in press) discuss the use of JUreskog's ’
model from the perspective 'of‘path a.nal&sis. Use of the associated com-
v > : . ‘:.
puter program (J8reskog, Gruvaeus, & van Thillo, 1970) for the present
- purposes requires the investigator to specify a matrix A corresponding
to the factor loadings in factor analysis; a matrix ¢ which is the variance- i
- covariance matrix of the unmeasured factors, and a matrix © of residual
variances. The matrices B and V¥ in J8reskog's formulac-are taken as the
! identity and zero ma.trix" respectively. -
.Consider for example the model in Figure 1 in which
b*l* -~ - ~ o !
’ . » T p
A = b'é‘ ’ ;ﬂ
*
o3| x 1
¢ =[1] ,
and . N - .
BAA 0 0
1 :
% - | oy
. f '? O O Ve - ) . . - . -_* ' . » _‘b) ‘
i 3 . . .
0 | L .
Define: X = column vector of standardized observed variables, l
3 "J::t . . v . . B . . v
E’ = column vector of factors, and 3
e = column vector of residuals. 3
In matrix terminology: - ' . ' | N o .~,
. ; ; » . N ,' 0 LI . " . ET
. . e . Ve = B g .
X=AF+e . : B L (8) . ]
Equation (8) is shorthand for the path equations (a.l}l‘va.ria.blesi standardized):

b S RS

- 'V‘._-.'.‘,f.:.\:‘»
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= b¥
Xl =bjF, + e,
X2 = b"e‘Fl + €5 , and -
= b¥ . ' | e
X3 3Fl + e3 . ‘

It can be seen tha.t A is the matrix of the coefficients of* Fy - The -
' pa.rameterJ in the matrices specifymg the model. structure in JBreskog s
modelu'e of three kinds: (1) fixed parameters tha.t have been a551gned

éiven values; (2) constrained parameters that are un_known but equal to ©

one or more other parameters; and (3) free parameters that are unknown and

not c.onst'rained to be equal to. any other parameter. In the above ex'am;Jle
“the unity in ¢ is é. fixed paremeter, whereas the b¥ in A and the \}ei
in © "are 'f;ree para)meters .

The expected variance-covariance matrix I for this problem is:
Crents o2 ‘
=AM+ o : . " (9)

where the 1l in ¢ 1is the variance of F for convenience standardized

l )
. {(i.e., equal to unity) and @2 is a diagonal matrix whose elements are the

‘error variances (Ve ) .. Equation (9) should be recognized as a shorthand way
. ' . i .

of expre‘ss‘ingv all the path equatiqns relaﬁing expected model correlations to

model parameters, i.e.,

\ 1 P1e "1; - ~
<1 (where unities indicate observed
i L= e 1 (o] ) . ' -
12 ] e variables were standardized).

Equation (9). states:

P
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i .
1= (b*{)2 yv.ooo, 0T
e s
. 1l
2
l=(b§) +V,
e
l=(b*) +V L1 -
_5
= b¥p%
Ppp = b1
.013 = b?l‘_bg , and

7 - pkp¥
Poy = XY

This short description for a single model contrasts with the path analysis.

approach to estimation used by Costner (1969) and Blalock (1269) in the

bt

folloying respects:
(a.) The matrix £ of expected correlations between observed: variables
will differ from the actually observed matrix, of correlations because of
sampling and/or model specification errors. Thus we do not use observed cor-
relations in our equations as in the usual path analysis approach. Instead,
JBreskog 5 program attempts to minimize the difference’ between observed and
expected varla.nce -covariance matri’ces using either a least squares or ‘maximum
likeli od approach. In large samples, assuming tha.t observ‘ed variables.
are di ributed normally, a chi square statistic is produced which measures
the oryerall f:Lt of the model to _the data. Another way of gauging fit is to-
compare the differences bletﬁeen th'e ‘observed'and eygpected correlations gen-

i N . . fod
L et :

erated by’ the model. .

(v)- The degrees of freedom (af) for the e measure are equal to the

-

number of overldentifying restrict:Lons. - In path analysis this corresponds ’

[ O i o

1o
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~ Likewise the models in Figures 2.a. and 2.c. may be estimated by ignoring °F.

L A aana o - Las - - ey A
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to the number of different ways the path equations may be solved for each
pare.meter. To compute the df it 1is necessa,r\y to count the number of distinct

elements in £ (i.e., m(m+ l) % 2) and subtract the number of para.meters

A

to be estimated (e.g., b¥*,b% v,V 5V, ‘and V, ) . There is no need to
1

1’72’
20 3 : .o
solve the path equations in J8reskog's approach, ulthough ‘éihe' identifiability
must be “known. o ' j

To- a.nalyze the model in Figure l.b., we merely need to note that when

X, and F equa.ls that of

1 ' l

Fl ‘on X-l and the residuals 'aﬂre identical. Thus we may use;_ the same -

] é&re standardized the regression of Xl on

estimatien procedure for this model as for that in Figure l.a. (wheze 6, = e ).

1
and F5 . and treating ~xl,x2, and X3 as indicators of the common i‘ector F2 .
The model in Flgure 2.b. with the added feature of ey and ey corre--

lated requires speciai treatment. The equations are:

>~
!

*
1 =0 F v e

= b¥ ) L
- X2 b2Fl + e2 ) i | : .
Xj 3F2 + e3 y o |
Xh = thz + eh’ B and . 4 . * l S
‘ We'know that b*, is equal to the correlation between F and F -sb ‘

there is no need to replace ¢F,. sby F, ‘and ©

1 2

and e3 S all residuals must be treated

For ia the first four equa.tions.

To specify a correlation between ey

88 fa.ctors, i..e., ~’= (Fl’Fz’el’e2’e3’eh) . THe str,ucture is:

-

9
iy

.’

P
3
%
i
fe

¥
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and

In contrast to previous. formulations the erro'rl variances are standardized
. Tl . T o : '
so that the correlations between el" and’ e and Fy 5

estimatedl) directly and-in A the path coefficient's“o? the observed varia-

Y

and T are

bles on their errors (b*x ) - are estimated. This model has 10 distinct
1

elements in Z and lO para.meters to be estima,ted (b bﬁ',b* sB%

€2

b* ,b* ,bs,p Y, :L.e., the model is just 1dentified. The expected’

®3 . % ©1%3

varlance-cova.ria,nce ma.trix 'z —'MA'. ,' 1.e., the matrix © ‘is ta.ken %o be

- -

r
M

- . 1
The Figure 2 d._mode poses two prob -the, a.r ameters b* P bﬁ'_, a.nd b*

s 0 TP

are not ident:Lfied .and the expected correla.tion between X, and X or

;S §

R et

.‘X'- - is specified as. zero even though the observed correlation may differ

2 _ :

l
) ¥ ) . N . -
/ |3_'.7~17 !
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from zero presumably because of sa.mpllng fluctuations. The analysis in
Section II showed that Xh_ does not contribute to the identification

of para..'\eters, i.e., only the product bij"b* is 1dentif1ed with or without
Xh_ . Wlthou\, Xh_ the model is that of Figure l b. and no purpose is

served by retaining F2 . Assuming all variables are standardized

Xl = blFl + el may- be substituted for Fl = bln:L + e:L as noted _earller.

_.With F, eliminated and knowing that only-the correlation of ‘_X3 with

2

Fl is identified the model may be written as:
= : 1
X, =bF + 6, s (10a)
= b¥F . : . 10b
x2 b2F1 * ey and : . (100)
X, = DADEF, + bEDEX) + ei . where e = b¥0 + e, - . (10¢)

3°°3% 03 3 37757 %

v

For convenlence deflne b* b%Xb*¥ and b¥

el ts = 3 ¥ o = bgbﬁ' . For computatigna.l

51mp11c1ty define a new factor xh which is identical to the observed Xh_. ,

F1

i.e., X = xh_ " The faciors are then F' = (Fl’xh—)

_* -
o
_ b¥% 0
A = 2 )
. !
b¥* b%.
- 735 Sk : : h
o 1 B | o e e
/ ; )
_ Id
. 1 0 :
: ¢=‘ ‘ ’
o vl
T Xy
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v, 0 0 0
1 .
. 0 v 0 0
02 . €2
0 0 veé 0 ’
. Lo . 4
o 0 0 0] .

In the fourth row of @2 the diagonal cell is zero to. indicate the identity

. i .
B Xl; = X, without residuals. If the expected matrix Z is computed, i.e.,

we find: '

Z' = MDA +‘®2
Kk *p¥
VXl ble b b55 0
ey *
ke %, bgeds O
= | . o
Kk * ¥ o
b b55 --b2,b§5 VX5. : b51+ "
v . " p¥ . -
LO' 0 'b51+ ) -\6(1; .

.This_shows that the expected correlations of Xl and X w1th Xh are

/ Zero. This follows from the specifica.tion in . ¢ that xh_ is uncorrela.ted

w1th Fl .

) X

£}

' In the‘ analysisLoLthe_model in Figure 2.e. 3 the correla.tions a.mong 3

19 X2 ,.end : Fl were identified first a.nd then b"i a.nd b* identified

The simplest estima.tion procedure is to estima.te

3

. * *
X2 ’ a,nd. Fl a.nd then compute bl a.nd b2'

This problem can be ha.ndled by deflning

_from these correlations.
. o
the correla.tions among Xl »

from the estima.ted correla.tions/.

" two fe.ctors.‘xl‘ = .Xl aod Xy = X2 .

-

'I'he structura.l equa.tions are:

\ ‘l.




\N.
i

R s

5F 4+ e

3

y, and

X T e

The'facto;:s are F's (x’l s X5 5 El) s

g 1
"__l 0 0

1 O

0
0 0 b¥
0
b

and. ‘ -_ | .‘ L )\‘ !

(@]
(@]
< o o

.
4 '

There are lO distinct elements in z a.nd nine para.meters to be est:.ma.ted

(b3’bt Vx ,V px x’p'X 1F1 ’pX s Ve

- 2 l 2

, and V ), so that the model has one

15,8, 1
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overidentifying restriction. Note thait the estimated elements of ¢ should

be used to estlmate b* and Ab

4 2 (XX maynot equal p_

12

) .

*1%o

In relation to the model in Figure 2.f. Costner (1969) discussed the

problem of ascerteining whether bg was zero and of distinguishing the

bg = 0 model from one in which errors (we.g., ' ez and e), ) were correlated.

To see how this is accomplished in J8reskog's approach,first consider the

model when bg =0 a.nd.treating residuals as factors:

X'= (KXo XsMy XsXe)

' .
F= (FlJFe}el}eeJeBJeu}esJe6)

‘e

b*OlOO'0,00_l
BB© 0 0 1 0. 0. 0 O

bgoo?o_l.ooo

A=1o ¥ 0 0 0 1 0 0
0 .bg 0] p 0 0 1 o}
o v o o o0 .0 o0 1
L—. - - *
g b 0 0 0 0 0 0o
'~b?7‘ 1 0 0 0 0 0 0
0 0 v .0 0 o ‘o o0
e
_ 0 0 0] v 0] 0 0] 0 A
- ea
¢ = o
o 0 0 0 v 0 0O .0
e ‘ :
3
10 0 6 . 0. O V. - O o
e L
. : h
. 0 0 O O 0O — 0 v 0
e. - .
e 5
0 0 0 o .0 0 o V..
" '~ . e
- o . 159‘}‘ . fl .. 6— | ’

SEAEAE SR (A ad xadbrtiin o T Zan NN
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and

5 = ApA (i.e., 62 =0 ).

Note.that we have chosen not to introduce the residual 6 into the analysis

v because we wish to standardize both F, and F y in whlch case p = b* .
1 2 FlF2 T

Thls model is a varlatlon of that in Figure 2.b. and all parameters are

1dent1f1ed. There are 21 distinct elements in £ and 14 parameters to be
estimated,so that there are seven overidentifying»restrictions. To test

bg # O , we specify Xh bgF + bh A + eﬁ y i.e.y, in A the fourth row, :
first column element is left "free" instead of fixed ; Zero. This model

has one more parameter to be estimated and therefore six overidentifying

restrdctions. Thus the original model is more restrictive and will there- ;

fore typically have a larger' X2 . In'large samples, the difference in

X2 between these two nodels, with degrees of freedom equal to the differenoe
- in number of restrictions, can be used to test the hypothes1s that

L # 0 . - Similarly the model w1th e3; and. M correlated
_("free") in ¢ 1nstead of 1ndependent (flxed = O), -would have six degrees

of freedom and the dlfference 1n X . with one degree of freedomhwog;d“be“""

a test of the hypothesis that e3_ and - ey are uncorrelated A comparison

.

of the Xr for. b§ #0 to that for Pe % 0 glves an indication of

: ese),

which is the better fitting model. Costner-(l969, Figure 10) also raises
_ : the question of whether e, and eé are correlated. This hypothesis is

tested by allowing the covariance between""el and e, in ¢ to be "free,"

the change in Xe with one degree of freedom providing the appropriate - '",Erf;fv

statistical test. Hypotheses 1nvolv1ng constralned parameters may be

-

: tested slmilarly, CO- 20 b* bg (Helse, 1969) or V =V, (Wiley &
e—— . ) . . . ( 1_ ., ',‘ .- .
i _ Wiley, 1970) _ ' BRI .
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Ii} can be observed that ‘use of J8reskog's program requires the investi-

< N

gator to know the identification sta.t/us/of each parameter, but does not
require the complex algebraic manipulations provided by Costner (1969)

: | . :
and Blalock (1969). It is .important to recognizé the essentials of each

model in order to fit it into J8reskog's general model. J8reskog s model

a.ssumes tha.t the observed variables are "random" rather than "fixed" but. ! i

'1t is doubtful tha.t most a.pplled socn.ologlsts need to be concerned about

thls _issue whlch is minor in compa.rlson to the usua.l questionable validity"
1

- of measures and models.
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Intraclass Reliabilitvastimates; Testing Structural Assumptions
Werts, C. E., Linn, R. L., and Jbreskog, K. G.-
Abstract

Intraclass correlation reliability estimates are based on the

assumption that the various measures are equivalent. Joreskog's (1970) general

-

model for the analysis of covariance structures can'be used to test the
&

validity of this assumption.
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Intraclass Reliability Estimates: Testing Structural- “Assumpt iL
. '

Werts, C. E., Linn, R, L., and Joreskog, K G.

The validity of using intraclass correlation to estimate reliability
is dependent on a varlety of assumptions (Winer, 1962, Chapter 4; Crombach,
Rajaratnam, &-Gleser, 1963; Stanley, 1971, pps. 420-429). This paper will focus

on testing the assumption that the various measures are "equivalg§§"l}r

"parallel" (Lord & Novick, 1968, pg. 48).

Joreskog's (1970) general model for ‘the analysis of covariances
structures will be used for this purpose. Some implications for . .

generalizability tneory (Cronbach, Rajaratnam, & Gleser, 1963; Rajaratnam,
L . \ .

Cronbach, & Gleser, 1965; Gieser;'Cronbach, & Rajaratnam, 1965) will be

considered.

-

4——/

I. Jdroskog s General Model for the Analysis of Covariance Structures
‘!‘

Quoting Joreskog,vvan Thillo, & Gruvaeus (1971, pg. 2-3):
"The general model considers a data matrix X(N x p) of N observations
on p variates and assumes. that ‘the rows of :k”'ere independently distributed,

each heving a multivariate normal distributicn'with the samegvariance-

covariance matrix I ., It is assumed that

e =M o, | ()

where A(N x g)‘=.(aas) and P(h X p) =i(pti) are known matrices 9f ranks

g and h , respectively, g i,N, ‘h <-p and E(g xh) = (5 i) is a matrix

of parameters;'and that I. hasfthe form

.2 2 -
=B +V)B'+® , - ' (2)
r . . L . @
The research reported herein was performed pursuant to Grant No, —

OEG-2~ -7000 33(509) with the United States Department of Health, Education, ..
and Welfare and the Office 'of . Education. i
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where the matrices B(p xq) = (Bik), Alqg x r) = (A ) , the symmetric
matrix ¢(r X r) (¢ ) and the diagonal matrices W(q X q) = (lewk)

~and : C?(p X p) = ( 13

s

91) are parameter matrices.
. Thus the general model is one where means, variances and covariances

'are structured in terms of other.sets: of parameters that are to be estimated.
In a%y application of this, ;%del p‘, N and X will be given by the data,
-and g , .4h ,"q sy T ,t A and P will be given by the particular applica-
tion. in'any such application we shali;ailow for any one of the parameters

in & . B, A\, %, ¢A and @ to be known a priori and for one or more

subsets of the remaining parameters to have identical but unknown values.

‘Thus parameters/are of three kinds: (i) fixed parameters that have been
LT h
assigned given values, (ii) constrained parameters that are unknown but
-l.‘ ~e '
equal to one)or more other parameters and (iii) free parameters that are

. "_r.
-";‘W.;( VA

‘uanown and not constrained to be equal to any other parameter.
;_‘4, _ﬁgﬁ?

2

.

M-axj‘ The computer :program’ estimates the free and constrained parameters of
M ’

“ /"1.:?33 Ry

'any“§uch modelxb; the maximum 1ikelihood method and provides a test of good-‘

ness of fit of the whole model against the general alternative that P is
square and £ and I are unconstrained. R test of a specified model
.\(hypothesis) may be obtained in large samples, by computing the maximum
likelihood solution under the two modeis and then setting up the likelihood
ratio test (see 1.5). In the specia} Lase when both £ and I are
unconstrained, one may test a sequence of hypotheses.of the form
cp=0" ) - (3)

where C(s x g) and ‘D(h x t) are given matrices of ranks s and t ,

respectively."
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II. Application" . _ ,J'~ o : ' *

T T b
s

AT

i . . . . ." . :.‘ R .::
For 1llustrative purposes consider the situation’'in which four ' f%

a1ternate forms (ratings, etc.) of a test are administered to the same

P

ey
i -;-':"-,;‘ii'x; b3

o e e

B people; the testing conditions being such as to jJustify the assumption that

SRR TR BN

the person's scores on the alternate forms are experimentally
1 oo . _ . e
' independent. In Cronbach's terminology the facet 3

Y.

under consideration is alternate forms and Fhere'are four conditiong of

vthif facet under which each person is observed. The data.would be analyzed 3

Q“L : with aitwo—way analysis of variance (ANOVA) model in which each row _

i

-corresponds to the scores for a given person and each column to a different
< .
measure as shown in Table 1. ) . , :
o ' = 5 5ot . .

'

Alternate Forms

Person X X, X3 Xy Total .| Mean

IV POR A

i
-l
N

a-1]
—

1 1 X X12 X33 Xige| .. Pg

(Y

T2 X1 Xa2 Xo3 ' Xou Py .

=z
=0
-5
g
g
Z'UI

Total T, T, Tz Ty G e ,
L Mean T, T, Ty Ty G ;

I B . . . - . - . a

. Frcmithia table the mean squares between pedple (MSB).,Imean squares

. within peopie_'(MS ) and residual mean squares (MS?) can be computed as

_:vshown in Winer (1962 Chapter 4) Following‘Cronbach, et a1.,~(1§63), the

g ;\ _ }reliability (f’) of the ' ?? ‘measure and the reliability (/Z) 'of a
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composite measure may be estimated as (p = # of measures):

MS. -~ MS ‘
A
/.)1. = b . r . and - ¢ %) | l
MSb + (p -1) MSr _ ) | ;
(\ . . } ) ! ‘
MS - MS - ' N - ;
N\ . . }
Ae 2T . | (5) !
(e MS ' - e
b -

These formulae do not assume that the expected value of the test means are equal;

i "however if the expected value (u) of the. test means is constant (1.e.,

observed mean .differences due'to sampliﬁg error) .then it w0§_1d _be?_'"

apprbpriate ‘to use:

.\ N }&Sb -..MSW : ) - . .
(/:; = ———ﬁ - and ] - ; (6)
o MSb + (p - 'l)MSw '

~ MS, - MS -
A _ b :
. A S .
. R 'Msb : : ) .

To test assumptions using Joreskog's method we can start with a model

0

in which the test means are assumed to differ and all measures have the same

underlying true score, ’)\_. *In terms of kﬂequation”s'(l) and (2) this corresponds

Y

- to aSingle factor O‘) n_lo’del where.the 'obserlved vector is

1 o

ot | ) X = (Xl ’.XZ"" X3 Xu) ’

o

1
g
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g=1[u 5 2 5 3, 1yl

. ) 2 - N ] . N N )
@ is a null matrix and B an identity matrix.
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In this _formula‘tiqn the means ‘in E ;: the factor loadingé in A and the

error variances in Y  are free par_an;:eters. fo be£ estima;:gd. For convenience
the variance of the trﬁe_scores V  has been stéﬁda.rdized (i.e., V =1
in ¢). Since the.;re are 10 distinct elements in I (i.e., ‘p(;‘) + 1) + 2) )
and only eigh‘t; parameters in A and "1’2' to be estimated (i/e., f>1 s by ‘

by , by , Vel_ ey Vea s an'd Veh), this model.has two overidentifying

‘restrictions ‘(degrees of freedom). Whe_n_thé maxiinldm lik.eliho:)d estimation
Pro‘cedureilis"us.ed, J8reskolg-'s proéran; (J'éreskgg; van 'Thillo,'Gru\.raeus, 197;1).
yields a chi(sciuare.measure whiéh, in large samSles and asélmin.g multivariat;_e
normality of. observed‘ variableé; is a measure of the fit <;f the ﬁ}jp_del to‘

the data., In the illustration this XZ with .2.degrxees of fregd;)m.‘:may

be Psed t.o.test the assumption -that the four nf'eééques h;ve‘ a cétmnon‘f trﬁe
score T. If this hypothe_sié is rejected thgn the exaci: meaning of a

reliability estimate is in doubt. Perhaps there is not a single underiying

true factor and/or the error independence aésumptioné .are violaf;éd.- "If t'he‘

'

i ngle faé.tor,model is not rejected then reliabilities ma§ be obtained -

from parameter estimates, i.e.: . oo

‘A2
b

?ai-=L_

2 ‘A




A

1

4 .

additional assumptiéhs (a‘.g., eqhal bi) fhr'identificatidn.

p
3

2}

2 ) , B . 4

A to be equal, obtaining a'm}'ew 'x ‘estimate of the fit of model to the data.

i
-

Given a\minimum of three measures the bi are identified given only ,the

The intraclass correlatiom and generalizab'ility theory proce‘dures
assume that the measures all have the 'same units of measurement i.e., are
| essentially tau. equivalent" (Lord & Novick 1968, pg. 50) It
would not te meaningful to average scores from measures with different

units as is done in Table 1 to obtain person -means.. In Joreskog's method

b, are equal, i.e. % b,'l =by = bz =by=D>b in A. There.fbreﬂt_t_he next step

2 ' ) .
The x will have three additional .degrees of freedom because of this

constraint. The increase'is X - from the previous step (where single

oomqmad

that th:\xnits of measurement are equal. if this’hypothesis is rejected.

then the. ANOVA formulation is rejected whether used for estimating

reliability or for generalizability procedures. - If .the hypothesis of equal

[

units is not rejected then the parameter estimates,,,may, be used to estimate

L] ) A\ e 4
o \ _ re1iabi1ity as follows (p.= # measures) : /\\

)

(10) .

i _ ,
assumptigon of single factoredness. With two measures it is necessary to make

equal units are equivaient to the assumption . that that the regression weights
1

‘

: i ) . Lo
4n the analysis with JOreskog's program is to constrain the parameters in -

factoredness was tes ted) ‘with three degrees. of freedom; tests the hypothesis

N T

R Y B g T
Gy




c ~ 2 P
(pb) + I V -
1=1 1

o

\An exactly equivalent formulation is obtained if we fix all b, in A equal
to unity, allowing V-~ to be free, in which case V~ will replace b“z in
- equations (10) and (11)
The reliability of any single measure from equation (10) may vary

because of differing error variances whereas. équations (4) and (6) imply .that

all meas_ures ‘have the same reliability. It follows that it is necessary to test

.-whether the error variances are indeed equal, i.e., V_ .= V . The third
. . i

_step_" (in addition to previous constraints) in the analysis 1is to constrain:

the error variances in ‘1’ to be equal di.e., V =V =V =V =V,
22 . .3 ey e

'This will add three degrees of freedom and the increase in x from the

second step tests the hypothesis of equal error variances. If this hypothesis
i

is rejected then it may be asserted that equations (5) and N
underestimate the composite re1iability. If this hypothesis is .not

re;]ected then reliability estimates may be obtained directly from

Wy % [

-4

’ ~ parameter .estimates.

”~~

pb) . 1

(pb) + pV

The estimates from fquations (12) and (13) carry the same assumpti ons as

T a1

equations . (&) a%(S) respectively, however different estimates may result..
because (12) and (13) are estimated under structural specifications which

‘

. .are assumed for (&) and (5) but not constrained to follow. Nonetheless

. equations (4) and (S) would in principlglb?Gppropriate in this situation.




et A N oar e D s

S Y A..r,‘\.w..,.--., vt an S

If the expected variance-covariance matrix (2) is examined it will be seen

. that the expected variance (diagonal of ZI) for the different measures are

lﬁ\,
y [ equal as are the expected covariances betWeen measures’ (off diagonal elements

e B

of I). This is precisely the configuration assumed in the ANOVA procedure

when used for testing treatment (between measure) effects (Winer, 1963, pg.
e V'
124). Joreskog s method ‘may also be used to test these "treatment" effects,

i.e. , whether the,_otestA means differ. To do this we would make the additional

constraints that.the elements in £ be eqlual, i.e.y U] = U = U3 = Uy = K.

The resulting increase in x  with three degrees of freedom can be use\.ld"

to test the hypothesis of equal means. If this hypothesis is rejected

' t'nen equations (4) and (5) are more appropriate than (6) or (7) If the

s

hypothesis is not rejected equations 12 and (l3) ‘would still be appropriate,

wu’»

however - the parameter estimatgs will generally differ because of the

>

restriction on the.means. . e

Overall it may be observed that the aboVe fhur analytical steps

‘test: the several aspects of tﬁe ﬁypotﬁes:ts tﬁat tﬁe different -measures
are equivalent.

the implication is that: observed differences in means, variances, and

" covafiances between tests,'are ascribable to .sampling error.

I3

e ™

N

If the hypotheses from eachof the four steps aré not rejected
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ITT. Discussion
i o)

In essence, equation (9) estimates the. rel'lability of a compg.site of

the measures included in the study given the assumpt:ion of a common

- 2
underlying true score. The x measure of fit associated with this

specification is a. test of the validity of this assumption. In contrasts;- L

the intraclass estimate of composite reliability assumes

— i

equivalent measures (implying a single true fact‘?r) From a —

*structural perspective,the intraclass reliability estimate is therefore
{ L4
of limited applicability and even,when measures are equivalent does not

# pr)vide populati0n estimates which ne‘t'essarily are constrained to be
consistent’ with this assumptlon. Furthermore, the intraclass estimate is .
inappropiate when errors of measurement are nonindependent, e.g., if the

measures were ratings and a single judge did two of the ratings,

the errors for these two measures would probably not be experimentally
’ 4o

’ independent ‘due to halo effects. In this situation a single .factor would not

-account £ for the ‘covariances among’ measures 'Using”33r88k081'8 method & .. ...

¥

model could be used which would allow for the appr0priate pair of errors to "¢

i

be correlated (Werts & Linn, in press) In this case, application of equation

(9) would estimate the squared correlation of the composite score to the true
score, whereas equation (5) would yield meaningless results. Given matched

- . (all: persons take all measures) data, certain aspects of generalizability
theory_ may'be considered in light of “the model develOped in. section II. In
! . _
-particular, Cronbach, et al., (1963) require the inves_tigat_or..v.to specify

]

a universe of conditions of observation over T e
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which he wishes to.generalize. The example in section II corresponds to

]
~ ..\J- . 1 .

a single facet design and an investigatox might for example specify conditions
: i = 1,2 as the universe appropriate to his particular study. In

our ' approach equation (8) would provide the reliability estimates

"\

for individual measures and "in equation (9) sums would be taken over i = 1,2

4 . .
to provide,the.composite reliability for this particular universe. If we wished to

L

- " .assume (perhaps because of a X test) that the measures have the same

units of measurement (as does generalizability

—

_ theory),then equations (10) and (11) would apply;.-Generalizability ‘theory
is clearly superior'to intraclass correlation procedures in not requiring.
equivalent measures, but is nof as flexible as Jgreskog's approach

- el

because of the equal units assumption. Cronmbach, et-al., (1963) indicate

that the observed scores are determined by the person's universe (i.eﬁ:

"true") score defined as the first centroid factors of the covariances
between conditions in the universe, other'centroid factors required to

'-account for covariances between conditions, add. residual variance after'

removal of the factors. The variance of the observedbscores for a particular '

: measure equals'the squared factor loading on the universe score plus the‘

i
i

sum of squared loading on the" other centroid factors plus residual variance.

".‘

gFrom’a structural perspective this formulation is problematical because. }
’ l

(a) The first factor may not be the - factor of'interest, e.g.,

I

"methods" factors (Campbell & Fiske, 1959) frequently account for larger

proportions of observed ‘variance than "true,"."trait," or universe factors.-

Y
‘

-(b) In reality there may be several underlying "true" factors and/or "other"

mrt e B L I rre— e e e e v A

sy

1 g0 ol oo
AL

.ih-.

factors, which mayibe’oblique.'.' : Ta
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