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ABSTRACT
The objective of this study was to review and

integrate the various methodologies used in the study of individual

growth (especially academic growth) This was'accomplished by means

of Joreskog's general model for the analysis of covariance

structures, i.e., each of the disparate methodologies available from

the literature was shown to be a special case of Joreskog's general

model. Two general considerations enter into the study of growth and

its determinants:. (a) making provision for errors of measurement, and

(b) constructing a model which relates growth to its determinants in

a causally meaningful way. Errors,of measurement
typically involve

questions about the reliability and/or valid4Ix.of measures, i.e.,

only indirect measures of the. desired variable (Conatruct) are

available. Multiple measures of each construct would appear necessary

to deal with measurement errors in a quantitative manner.,For. this

purpose the Mlltitrait/multimethod
approach devised by Campbell.and

Fiske (1959) is. a useful approach since in- principle. it allows for

correlated errors of measurement. Because the Campbell-Fiske approach

does not specify the exact relationships bptween.observed variables

and constructs, a factor, analytic formulation of their approach was

used in order to summarize various approaches to measurement error.

The constructs, which represent the growth. variable and its

determinants, were then interrelated in terms: of a linear structural

(causal) model. The implications of this model, which itself is a

special case of Joreskog's general model, were considered.
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I. Summary.

The objective of this study was to review and integrate the various
methodologies used in the,,study of individual growth (especially
academic growth): This was accomplished by means of Joreskog's general
model for the analyis of covariance structures, i.e., each of the
disparate methodologies available from the literature was shown to be
a special case of-jOreskog's general model. Tworgeneral considerations

enter into the study of growth and its determinants: (a) making

provision for errors of measurement and (b) constructing a model which
relates growth to its determinants in a causally meaningful way.
Errors of measurement typically involve questions about the reliability
and/or validity of measures, i.e., only indirect measures of the
desired variable (construct) 'bare available. Multiple measures of each

construct would appear necessary to deal with measurement errors in a
quantitative manner. For this purpose the multitrait-multimethod Ap-
proach devised by Campbell and Fiske (1959) is a useful approach since

in principle it allows for correlated errors of measurement. Because

the Campbell-Fiske approach does not specify the exact relationships
between observed variables and constructs, a factor analytic formulation
of their approach was used in order to summarize various approaches to
measurement error. The constructs, which represent the growth variable
and its, determinants, were then interrelated in terms of a linear
structural (causal) model. The implications of this model, which
itself is a special case of Jdreskog's general model, were considered.
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II. Introduction

This project was a review and synthesis of educational measurement
methodologies for studying growth. To this end the initial phases
consisted of a review of relevant literature in econometrics,
psychometrics, statistics and sociometry. Some of the concepts which
developed from this review seemed worthy of immediate dissemination
via formal and informal publication media. In particular the following

articles commented on separate aspects of our review:

Werts, Charles E., JOreskog, Karl G., & Linn, Robert L. Comment

on "The estimation of measurement error in panel data."
American Sociological Review,1971, 36, 110-113.

Werts, Charles E.,1 Linn, Robert L. Comment on Boyle's "Path

Analysis and Ordinal Data." American Journal.of Sociology,

1971, 76, 1109-1112.

Werts, Charles E., & Linn, Robert L. Errata to the Werts-Linn
Comments on Boyle's "Path Analysis and Ordinal Data."
American Journal of SociolagL, 1972, in press.

Werts,.Charles E., Linn, Robert L., & JOreskog, Karl G. Another

perspective on "Linear regression, structural relations,
and measurement error." Educational and Psychological
Measurement, in press.

Werts, Charles E.6, Linn, Robert L., & JOreskog, Karl G. A
congeneric model for platonic true scores. Research
Bulletin 71-22, Educational Testing Service, Princeton,
New Jersey, May 1971. Also in Educational and
Psychological Measurement, in press.

Werts, Chal:les E. , & Linn, Robert L. Estimating true scores

using group membership. Educational and Psychological
reasbrement, in press.

Linn, Robert L., & Werts, Charles E. Errors Of inference due

to errors of measurement. Research Bulletin 71 -7,

Educational Testing Service, Princeton, New Jersey,
February 1971. Also in Educational and Psychological
Measurement, in press.

Werts, Charles E., Jiireskog, Karl G., & Linn,,_ Robert L.
Identification and estimation in path analysis with
unmeasured variables. 'Research Bulletin 71-39,
Educational Testing Service, Princeton, New Jersey,

June 1971. Also in American Journal of Sociology,

in press.
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alerts, Charles E., Linn, Robert L., & JOreskog, K. G. Intraclass

reliability estimates: testing structural assumptions.
Educational and Psychological Measurement, in press.

Copies of these articles are included in the Appendix. Those aspects

directly relevant to the project goalcere treated in the review
sections which folloW.

For heuristic pu.4roses the review and synthesis of the literature

has been treated in two parts. The first part (Sec. III)"labelled
"Quantifying Unmeasured Variables" treats the general methodological
considerations relevant to growth studies and a wide variety of the
problems involving errors of measurement and causal analyses. This

part will appear in a new book, Theories and strategies of measurement

in the social sciences H. M. Blalock, editor. BlalOck's books are

widely used in the social sciences as textbooks.

The second part of our review (gee. IV) labelled "A multitrait-

multimethod model for studying growth" reviews various psychometric,

formulations, specifically relevant to growth studies and. formally

treats them as a special case of Areskog's general moiel for the

analysis of covariance. Implications for factor analytic studies of
growth data and for studies of the determinants of growth are
detailed. This part will appear. in Educational and Psychological
Measurement and has been released in preliminary form using the

Educational Testing Service ReSearch Bulletin series.

-3-
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III. General Methodological Considerations: Quantifying Unmeasured
Variables

Social scientists frequently wish to make inferences about the
"effects" of hypothetical constructs which are not directly measured,
e.g., only the symptoms, antecedents, and/or consequences of the
construct may be measurable. In recent years a variety of statistical
procedures have been introduced to help quantify the relationships
among observed variables and constructs in an attempt to increase
the rigor and validity of such inferences. The purpose of this essay
is to introduce the various concepts and to consider the numerous
assumptions involved in these procedures so that the user will be
aware of analytical potentials and limitations.

1. Validity

A basic concept in the discussion of n i ectly measured concepts
is that of.yalidity. This refers to the rellrfonship between-an
observed variable (X) and the unmeasured construct (Y) . We shall
discuss models in which it is assumed that the relationship is
linear, i.e.,

(_ ) X = bY + I.+ e

where b- is the slope of the regression of X on. Y, I is the inter-
cept of this regression line, and e is a residual which is taken to
be independent of Y . Econometricians (e.g., Goldberger, 1970)
typically specify b = 0 , I = 0 , and e is labelled a disturbance
instead of the psychometric term errors of measurement. Despite the
crucial importance of this linear relationship, it is seldom that
data analysts substantively justify this assumption. For example,
ability and achievement test scores are generally assumed to have a
linear relationship with their underlying true scores, however
Carver,(1969) has persuasively argued that there is a curvilinear
relationship between knowledge (the construct) and test scores in
classroom learning, i.e., more knowledge is required to increase the
test score one point at the high end of the scale. When psychologists
use the term validity coefficient they are usually referring to the
correlation (i.e., R) between the observed variable and.the

construct (i.e., true score) assuming the residuals of X on Y to

be independent of Y (Guilford, 1954, Chap. 14). As long as
consideration is limited to a single variable X and a single
construct Y the linear relationship is not a real limitation, unless
an added constraint such as equal intervals is added, because the Y
could be transformed. to yield a linear relationship with X . With
two X's for a'single construct the limitation becomes a real one.

It is useful to distinguish between the terms reliability and
validity. A traditional test theorist will typically consider the
correlation between parallel forms (X1 and X

2
) of a test to. be

-4-



the reliability coefficient. As illustrated in Fig. 1.a, the model

here is X
1
=b1 Y+11+el and X2 = b2Y + 12 + e2 where e

1
and

e
2

are assumed independent of each other and of Y ; which implies

that Ree = ReY = ReY = 0 Test forms are said to be parallel

l 2 l 2

when the variances of e
1

and e
2

are equal (i.e., V
e

= Ve ) ,

1 2

b
1

= b
2

and I
1

= I
2

. It follows that for parallel forms the

correlation between the observed measures will equal the square root

of the correlation of either measure with the construct, i.e..,

RX X
=reliabi2.ity coefficient. If the variable

1 2 1 2
which is being measured by the parallel forms (i.e Y) is itself a

symptom of another construct (e.g., Z) then new assumptions must be ..

made, e.g., Y = bZ + p where p is independent of Z , e
1
and e2

.;

3

i

as shown in Fig. lb. In this case the correlatilns between

parallel observed-measures and Z are Rx =
X Z RYZ

R
X Y

R Rx = Ryz qc
1 2

2 1

X
In this model the X

1
on Z residuals have

the form (X - b
i
bZ) = bip + ei and the covariance between the X

1

and X
2

on Z residuals will equal b
1
b2 V . Therefore these

residuals are in general correlated and Rx +.11E7- or
x
1
Z x

2
Z

1 2
2

RX Z
and R.x. x

1 2 1 2Z
cannot be estimated, however R.. X

is the upper

limit for these correlations, i.e., reliability sets au upper bound

on validity. For illustrative purposes consider the problem of

measuring achievement in mathematics for 9th grade students in city,

A. Two (or more) parallel forms of widely used mathematics tests,

standardized on national samples, can be readily obtained and

administered. These forms typically have very similar item formats,

the items differing mainly with respect to the numbers inserted in

the problems. Because these tests cater to a wide variety

of schools the items necessarily cover material which is common to

most curricula at this level. Insofar as the curriculum in city

A has special emphasis, not generally taught elsewhere, the

nationally standardized tests'will be partly irrelevant (i.e.,

invalid) to city A. The parallel forms would correspond to X
1

and

X. 13. in Fig. 1.,the variable Y would represent achievement on

generally taught problems, and Z would be the achievement of students

in city A. If the discrepancy between Y ant. Z is very great, as

inferred from curricular differences, then city A could build

equivPlent forms.which more precisely cover their coursework, which

might then correspond to the, model in Fig. l.c. It is always necessary

-5-
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Fig. 1. Reliability and validity models.
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for the researcher to exam,lhe test materials in order to see how well

the constructbeing measured by that test corresponds to the construct

relevant to the research project. In many cases he may decide to use

two measures of a construct with very different types of item formats

in order to obtain a model like Fig. 1.c, i.e., the very similarity of

item formats may give the scores aome covariation which does not

represent association due to the underlying constcuct to be measured

(as in Fig. 1.b).

Instead of validity coefficieuts, factor analysts (e.g., Harman,

1967) refer to factor loadings. A factor loading is the regression

weight of an observed score on a factor (viz., construct). The models

in Fig. 1.a and 1.c correspond to a single, factor model and the

standardized fector loading is equal to the correlation of the observed

score with the factor like the corresponding reliability and validity

coefficients. If there were more than one factor, but these factors

were uncorrelated as in an orthogonal aolutiou, then the standardized

factor loading would still equal the correlation. In the case of

correlated factors as in all cblique solution, the standardized factor

loadings are standar4ized partial regression weights which are

called path coefficients by path analysts ,(e.g., Duncan, 1966;

Wright, 1934).

The. regression V,Ag.ht in Equation (1) bas:.cally states the

relationship letween the units of measurement of the observed

variable and that of the construct. A weight equal to unity corre-

sponds to the assumption that the observed measure and the construct

have the same units of measurement. Psychological test theorists

and econometricians usually make this assumption, whereas path

(Blalock, 1969; Costner, 1969) and factor analysts commonly assig,

the factor a variance of unity (i.e., Vy = 1). As shall be noted

later, this assumption creates no difficulty untla. the problem

involves multiple measures of a construct and/or growth along the

same dimension over time (Werts, Sdreskog, & Linn, 1972).

2. Multiple Measures of a Single Construct

Although econometricians rarely are concerned with_ multiple

measures -)f a conatnlot, test theorists and path and factor analysts

have written extensively on this topid. Much of modern test theory

(Lord & Novick, 1968) is derived,assuming.at least two tau equivalent

measures of the underlying true score (i.e., construct). Tau,

equivalent measures (e.g.., X1 and X2) are those in which the

observed on true regression weights- are unity (i.e., 1)1 = b2 = 1),

the intercepts are equal (i.e., I
1

= I
2
) and the errors of

measurement are independent of each other and of the true score.

Essentially tau equivalent measures are the same except that I # I
2

In contrast to the parallel forms assumptions discussed previously,

the error varioroOs are not assumed equal (i.e.., 'el
0 V

e2
) for tau

12
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equivalent or essentially tau equivalent measures, which means that

the tests may have different reliabilities (i.e.-, differing error
variances). Since by assumption X

1
= Y +-

1
+ el and X

2
= Y + I

2
+

e2 , the covariance C
X X

= V
Y,

i.e., the covariance between the
1 2

i observed scores is equal to the variance of the true scores. The true

variance divided by the observed variance (e.g., V
X

) for a test
i

yields the reliability, i.e., Vy Vxi

Essentially tau equivalent and tau equivalent measures assume that
the observed measures of the construct have the name units of measure-
ment. When measuring different symptoms or indicators of an under-
lying construct it is quite common to have different units,.e.g.,
income and occupation as indicators of socioeconomic status typically
are measured in different units. In this case the unit of the

construct is arbitrary and. is usually fixed by'assigning a variance
of unity, although it is also possible to identify. the unit of one of
the measures with that of the construct by specifying the corresponding
regression weight to be unity. JOreskog (1971) calls the various

measures of the construct congeneric.Measures (b
1

b
2

b ), whereas

factor analysts would say that a single factor structure has been.
assumed. In each case the errors or residuals are assumed independent
of each other and of the construct.

3. Identification

The concept of identification is crucial to any comparison of

methods. Mathematicians and econometricians (e.g., Fisher, 1966)
have long been interested in developing procedures for dealing with
identification problems. Whereas true score theorists and path
analysts usually attempt to build identified models, the majority of

factor analysts have dealt with highly underidentified models.
Although in principle sociologists were exposed to the identification
issue in relation to latent structure analysis (e.g., Lazarsfeld,
1950), the recent papers on this subject by path analysts (e.g.,

Boudon, 1965; Blalock, 1966) have probably had a wider impact. The

term identifiable will be used here in the sense defined by Fisher

(1966, p. 25): "We shall speak of that' equation as identifiable
(or identified) if there exists some combination of prior and posterior
information which will enable us to distinguish its parameters from
those of any other equation in the same form."

To illustrate the identification problem let us consider a single

factor model from the perspective of path analysis (Costner, 1969).
Suppose we are given four observed measures (X

1
, X

2
, X3 , X4) of

the factor go . The single factor model specifies that Xi = `

biY +,Ii + ei where all e
i

are independent of each other and of Y

-8-
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The model is depicted in Figure 2 using path analysis notation,

i.e., when variables are independent no arrows connect them. To

obtain the expected covariances (C
ij

) between two observed measures

(X
i

and X3) ve would multiply the corresponding pair of equations

t6 `O taint

(2)- C F b b.VCif
'

(3) and Vx = b.VY +% Ve

The term expected refers to the value of a parameter to be expected in

a model without saMplinK or model specification errors. Specification

errors refer to the incorrect choice of a statistical model (Theil,

1937). It is convenient to arrange the expected variances and co-

variances given by equettons (2) and (3) into an expected variance-

covariance matrix (E) , e.g., in the four variable case:

Z =

[V1
C
12 C13

c
14

C12 V2 c
23 C24

C13 C23
V3

C34

LC14

C
24

C
34

V
4

To see if.this model is identified, the path analyst (e.g., Costner,

1969""icall"otaxistandardizeallvariables"--=VX VX
2 3

V
X

V.= V = l) and then derive the equations for each expected

4

correlation (R
11

) in terms of the path coefficients (b
i
) of the

model, e.g.,

C1

and

* *
R
12

= b
1
b
2

* *
R13 = bib3

* *

R14 blb4
* *

R
23

= b
2
b
3

* *
R
24

= b
2
b
4

'* *
= b

3 ir



el e
3

P.4

Fig. 2. A single factor model.
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Using any three measures (Xi , X.
J

, and Xk) it is possible to

solve for the unknown (b
*
)
2

= (R
ij
R
ik

) R
jk

. Thus all parameters

(b
i
) are identified, in the sense that each parameter may be stated

as a function of potentlplly observable information. The actually

observed sample variances and covariances could also be arranged in

a matrix (5) . The observed matrix '(S) may differ from the

expected matrix (E) because of sampling and specification errors.

The model is usually judged to be incorrect if E and S differ

very much, i.e., when the observed data does not fit the model.

Quite sophisticated techniques are now available to obtain parameter

estimates which minimize in some sense the difference between the

observed matrix and the expected matrix computed from the parameter

estimates (Hauser & Goldberger, 1970; JOreskog, 1970).

The equations relating the expected correlations (R
ij

) to the

*
model parameters (bi) are called path equations by path analysts.

When the parameters are identified by these equations, a model is

called just identified if the number of observable quantities (Rid)Rij

equals the number of unknown parameters (b ) in the path equations

and overidentified if the observables exceed the parameters. If the

number of unknown parameters exceeds the number of observables, then

the model is underidentified even though a subset of the parameters

may be identified.

JOreskog labels models which are overidentified as.confirmatory.
In confirmatory factor studies the experimenter has already obtained

a ..,rtain amount of knowledge about'the variables measured and

thsrefore-is in a position to formulate a model which is to be tested

fcr fit to data. Most factor analysts deal with highly under-

identified models; exploratory factor procedures being used to

suggest an appropriate number of factors to use and a preliminary

interpretation of the data. In contrast, econometricians, path

analysts, and classical test theorists usually deal with identified

models which reflect substantive theoretical considerations. It is

logicalty possible for the model suggested by exploratory procedures

to be identified, but factor analysts have typically not examined

this question because their main interest is in fit, not in

Uentifiability.
1r

4. Multif actor Models

Let us consider a simile two factor (Y1 and Y
2
) model

(Fig. 3) in which there is only nue observed measurer X
1

and X
2
)

of each factor, i.e., X1 = b1Y1 + 11 + el and X
2
+ I

2
+ e

2

16



e
1

e
2

L.

1

Fig. 3. A simple two factor model.
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where el and e2 are independent of each other and Yl and Y2 .

When all variables are standardized there is one observed correlation

(R
12

) and three unknown correlations (Rx = b1 p and

1 1 1 2

Rx = b2) among "variables (i.e., the model is underidentified)

2.2
and R12 = Rx Ry

1 2 2 2
. Psychometricians call the correlation

1

between the factors (Ry y )

1 2
case of tests, the publisher usually provides test reliabilities

the unattenuated correlation. In the

(labelled R11 and R22)

estimate (denoted by "^")

appropriate factor, i.e.,

reliabilities we may

which in this model might be used to

the square of the correlation with the

R11 RX Y

2
and R22 = Rx

.
Given these

11 2 2

estimate .the correlation between factors as:

klY2 R12
1R

11
R22

This procedure is nailed correcting for attenuation.

A. Exact Functional Relationship Among Factors
O

Statisticians (e.g., Kendall & Stuart, 1961) and econometrfcians

(e.g., Johnston, 1963, Chap. 6) have been interested in the variation

of the Fig. 3 model in which bl = b2 = 1 and the factors have an

exact functional relationship, i.e., Y2 = I + BY, a d = 1
Y
1
Y
2

It might for example be hypothesized that in a 'cltss

intelligent and motivated students, the amount

math course (Y
2
) will be directly proportiona

mathematics skills (Y
1
) at the beginning of the course because, e.g:,

those who know more are better able to understand the teacher.

Neglecting variable,means, since there are three unknown

parameters (b
1

, b
2

, B) and only one observed corre tion (R
12

) ,

this model is underidentified. Isaac (1970) reviews e estimating

formulae for the case in which the error variances and/or

f equally
will learn in a
their relevant

V or their ratio V
e

V
e2

1

are known.

'e2

-13-



B. Stochastic Components

: Johnston (1963, p. 148) notes that the exact functional relatfon-

stlip model discussed above "hardly seems appropriate for econometric

work, since if it were true, all points would ,be exactly on a straight

line. A stochastic component
of behavior would seem an essential'in

economics." This comment probably applies to all the social sciences

in which it is generally necessary in linear structural models to

assume that all the other unmeasured variables influencing a variable

of interest are independent of the influences that are measured

(Blalock, 1967). It seems most unlikely, for example, that there are

not other disturbing factors which will influence mathematics

achievement.

Adding .a stochastic disturbance term, p , representing these

other variables, the equation between the factors becomes Y2 == I +

a Y
1
+ p where p is independent of Y

1
and b

1
= b

2
= 1 . The

analysis of this stochastic model is discussed by Johnston (1963,

Chap. 6). One approach assumes that the error variances V
e

and

1

V
e2

are known, which is equivalent to the psychometrician's approach

since knowing the'error variances the reliabilities can be computed,

i.e., Rii = V Y/VX
where V

Y
= VX -.V_ . Because R. is

i i i
ei Y

1
Y2

identified by the formula for attenuation; it follows that and

therefore V
11

are also identified, itiev,- =
Y Y

177 7:77V
'1 2

Y
2 .1

. The difficulty'WIth this approach lies
and Vu = VY2

-
2vy

1

in the problem of obtaining reasonable estimates of the error variances.

Even when reliabilities are given as in the case of many published

tests, these figures may be erroneous to an unknown degree for the

particular subpopulation being tested.

Another. approach is the use of instrumental
variables, i.e., in

this case, a variable (Z) which is independent of both the errors

e
l'

and e
2

.
In'this case the regression weight 8' may be

estimated as 0 = cov (Y
2
Z) cov (Y

1
Z) . It may be shown that the

X
..

reliability coefficient for X1 is
R11 Z

which
X.IX ÷ RX

1 .2 , 2

from the previous section can be seen as the solution for the squared

factor loading in the single factor model in which X1 , X2 , and Z

are congeneric measures
L.11

2
Y
1

X
1
X
2
RX

2
Z RX Z

and

1

i
RY Z RX ZRX.Z ÷ RX X 1

Further analTsis would show that V

1 2 1 2j

and V
p

are not identified. The basic-problem in use of instrumental'

-14-
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variables is that we are seldom in a position to.check whether this

variable is in fact independent of errors, yet the estimates are

likely to be highly dependent on which such variable is selected

(Blalock, Wells, & Carter, 1970). The same problem plagues the use

of the congeneric model since it is seldom obvious exactly which

observed measures really are indicators of the same ulderlying

trait assuming independent errors. It is interesting o note that

in these models an instrumental variable substitutes for a congeneric

measure, i.e., what is needed is'a third measure which is independent

of the errors in the other two variables. For illustrative purposes

consider the problem of measuring differential student math achieve-

ment given the scores from two different nationally distributed

objective examsi one perhaps using a problem format and another a

multiple choice format; whose validities for the curriculum of

interest are unknown. A third congeneric measure might well be the.

course gri'des given by the teacher. The logic here is that these

should all be tapping the achievement dimension but to differing

degrees and there is no a priori reason-to believe that errors of

measurement among these measures are.correleted.since very

different formats are involved. Sometimes, however, achievement

tests are given in batteries such that the needed third measure

might be in another content area. For example, English achievement

scores might be available. It is unlikely that this test is

correlated with errors of measurement on the two otijective math

tests and this could therefore serve as an instrumental variable.

C. Model with Multiple Indicators

Economists (e.g., Goldbcrger, 1970) and sociologists (e.g.

Blalock, 1969; Costner, 1969) rarely have the data to estimate

reliability from independent sources, whereas psychometricians and

factor analysts (at least implicitly) frequently do so. A

traditional technique of this type used by psychometricians is the

split half procedure (e.g., Guilford, 1954, p. 377). The items on

a test are split in half (e.g., odd items assigned to one-half and

even to the other) and the correlation between the halves used to

estimate the reliability of the whole test, assuming tha;. the halves

are equivalent measures. Various formulae are used to aljust for the

fact that the halves are not as long as the whole test and therefore

not as reliable (Guilford, 1954, Chap. 14). These reliability

estimates may then be used to estimate the unattenuated correlation

between two tests, i.e., the correlation between the two true factors

underlying the observed measures.

The logic of the split half approach is worth further study.

Changing to a double subscript for each observed measure (Xi4)

where j refers to the jth construct (f ) and i to theJ

i
th th

indicator of the j construct; then in the split half

procedure the equations are:

-15-
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22
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1

* *

bl222
RX.12X22

b-

Solution of these equations indicates that all the reliabilities .

(b
ij

) and the unattenuated correlation (R._ ) are identified

2

without further assumptions. This model is overidentified since

there is one more equation than unknown parameters, i.e., there is

one degree of overidentification which is equivalent to one degree. of

freedom in J6reskoes (1970) general model for the analysis of co-

variance structures (which may be used for estimation purp4es).

Because the model s_ deli ied we may check to see if it .4 reasonable

*. *

tobelievethatb,=b21
, bi

2
= b22 , V

ell
= V

e21
, and

i

rel2 = V

as asserted in the assumption that split halvis are parallel (alerts &

Linn, 1971). Even without the assumption of parallel halves Alemodel

may be tested for fit to the data. As Guilford (1954, p. 377) notes;

the difficulty. with the odd-even method is that the observed correlation

between the splits will generally be too high because of "extra-test

determiners contributing-
_itively to the observed correlation." For

example,. testing con ons and amount of time devoted to each half

will be nearly constant for the halves. In contrast the alternate

forms method, with at least a day between administrations, introduces

a-change of condition: which "is more like those changes between

-16-
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administration of two different tests or between test administration
and measurement of some criterion in validation" (Guilford, 1954,

p. 377). If these other determiners were independent of the true

score then in our model these would be equivalent to asserting that

the -Corresponding errors were not in fact independent (e.g.,

0 0 ). If this were the case, it is possible that thisR
e
11
e
21

might be detected as a lack of model fit to the observed data.
Psychometricians have various other procedures for estimating whole
test reliability from item data (Stanley, 1971), the logic being much

like that diE.cussed here except that each item now becomes an

observed measure. To the degree that the item data do not fit a
single factor model these estimates become difficult to interpret
(Werts & Linn, 1970a). Nonetheless, in practice,this fit is seldom

checked.

5. The Multitrait-Multimethod Approach

The multitrait-multimethod matrix technique (Campbell & Fiske,
1959) has been of considerable interest to psychologists because
it provides information on the convergent (confirmation by independent

measurement procedures) and discriminant (separation cf one trait
from another) validity of theoretical constructs (i.e., traits). The

problem of measuring mathematics achievement as opposed to achievement
in English may be used to illustrate these concepts. To measure

math achievement we might use three measures including one "subjective"

measure, course grades, and two "objective" measures-consisting of a

multiple choice and a mathematics reasoning test (perhaps con-
structed by the publisher of the course material). Despite the

differences in format, each measure in principle is simply another
demonstration of the student's grasp of the subject matter and should
therefore tend to give fairly consistent results. Insofar as the

results are indeed consistent, convergent validity is demonstrated.
The logic underlying convergent validity is much like that of the

congeneric model previously discussed. The emphasis on different
methods of measurement represents an attempt to ensure that the
correlations among variables as much as possible represent commonality
with the underlying trait rather than consistencies due to similarities

of testing methods. Thus, use of different methods tends to support
the assumption of independent errors required by the congeneric model.
Now suppose that English achievement were also obtained from three

measures whose format was ]ike that used for math achievement, i.e.,

course grades, a multiple choice and a reasoning test. Discriminant

validity would be demonstrated if it could be shown that the trait
(i.e., factor) underlying the math measures were distinctly different
from the trait underlying the English measures. According to Campbell

and Fii ..ke, convergent validity is demonstrated by at least moderate
correlaticr,s between different methods measures of the same trait
and discriminant validity is shown by a higher correlation between
independeni- efforts (i.e., methods) to measure the same trait than

-17-
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between measures designed to get at different traits using the same

method. From our perspective discriminant validity consists of

demonstrating that the true correlation between two traits is meaning-

fully less than unity. Werts and Linn (19700 have discussed the

Campbell-Fiske approach from this perspective. The analytical
procedures devised by Campbell and Fiske (1959) are not of interest

here because no attempt was° made to specify 'the nature of the re-

lationship between the observed measures and the trait or methods

factors. It should be clear from our previous statements that an

observed variance-covariance matrix is interpretable day from the

perspective of an hypothesized model. Campbell and Fiske's argument

that the researcher should obtain measures of a trait which differ as

much as possible in measurement technique, in order

vergent validity, is very pertinent. From the mult

perspective the typical psychometric approach,which
a;.ternate forms with almost identical format, would

as lacking in convergent validity.

to improve con -

itrait
attempts to devise
be criticized

A variety of analytical methods have been proposed for iaulti-

trait- multimethod data (e.g., Boruch, Larkin, Wolins, & McKinney,

1970), however only Areskog's confirmatory factor analytic approach

will be considered here. Suppose that it were assumed that each

observed measure were a function of only one trait (Yj) and one

method (Mk) factor in a linear fashion0.e.,_

where

Xjk = ajkYj + bjkMk + Ijk + ejk

X
jk

= measure-reflecting combination of trait

and method k

ajk = regiession weight of

b
jk

= regression weight

X
jk

on trait Y, , and

of X
jk

on method Mk .

Assume also that all residuals are independent of each other and of all

factors. It may be shown that at least three traits and three methods

must be used in order for this model to be identified, given that all

factors may be oblique, i.e., correlated. To understand the connection

with models discussed earlier, consider two different method measures

of the same trait, e.g., X11 and X
12

(illustrated in Fig. 4). It

can be seen that there are several sources of the observed correlation
* *

Rx
x12

i.e., Rxi
1 12

a11a12 all"Y
1
M 1312 a12"Y

11 1 I

Is*

"11"M
1
M
2
u'2

If the methods factors were independent of the trait

factor, the model would in principle be like a congeneric model with

correlated residuals: Such a model has been proposed by Guttman (1953)

in relation to obtaining reliability estimates from nonindependent

item data. If the methods factors were independent, we would have the

. -18-
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congeneric model basic to true score theory. Thus we see that the

traditional test theory approaches discussed
earlier may be considered

the special case of the multitrait-multimethod
approach in which

methods factors are assumed to be independent of each other and of the

trait factors. The notion of reliability as the ratio of true variance

to observed variance is only meaningful in the case where errors are

independent in this way, i.e., no such neat partitioning of variance

is possible in the general multitrait-multimethod approach.

6. Functional Relationships Among Factors

Whereas the econometricians and path analysts postulate functional

relationships among the factors, psychologists and factor analysts

seldom do so. Both the multitrait-multimethod
approach and true score

theory focus only on errors of measurement. In part, this situation

arises because psychologists are *usually taught to avoid making causal

inferences from correlations. Sometimes antecedent (i.e., causally

prior) variables are statistically controlled in order to insure that

a particular
correlation is not spurious, however systematic pro-

cedures for analyzing sources of a correlation (e.g., path analysis)

are viewed with suspicion.

The function of causal hypotheses can be illustrated by an

example taken froth Werts and Linn (1970b). Suppose there were a linear

causal relationship between variables (Y2 = BY
1
+ p); where Y

2
is

measured directly and Y1 indirectly by two indicators (X1 = b1Y1 +

el , X2 = b2Y1 + e2) . .This is a single factor model and B* may be

estimated as:

(B*) = / Rxiy2Rx2y2 i Rxix2

For example, if Rxiy = .20 , R_
x Y x

1
X
2

.40 , and R_ = .80 then

2 2 2

B* = .32 . Most educational
psychologists, in their search for school

effects, would not even consider the possibility that several measured

variables might be indicators of the same underlying construct (i.e.,

Y
1
) and would proceed using the regression equation:

Y2 = biX1 + b2X2 + I3 + e3 ,

yielding Wndardized weights of bt ; - .33 and bl = +.67 . If for

.example X
1

were proportion of faculty with doctorates and X2
were

number of books per pupil in the library, it might well be supposed

that both of these variables are
indicators of school affluence (i.e.,

Y1) . Certainly the regression procedure, which is typical of school

effects studies', would yield no hint of how Yl influences

-20-
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-the weights b
1

and b
2

are opposite in sign, yet both reflect the

same underlying variable. The use of regression equations in this way

represents an attempt to avoid theory, finding influences by seeing

if a variable increases the percentage of predictable variance in the

outcome. It is better to specify the theoretical structure being

postulated, so that appropriate analytical procedures may be designed.

A. Growth Studies

Another area where it is important to specify functional relation-

ships is in the study of the determinants ul growth. Test theorists

have long been concerned with the problem of estimating growth in the

presence of errors of measurement (e.g., Harris, 1963). The special

feature of this area is that an initial status and a final status are

assumed to have identical units of measurement. If the initial status

is XI b1Y1 + + el and the final status X2 = b2Y2 + 12 + el ,

then the equal units assumption is equivalent to b
1

= b
2

. Various

procedures (e.g., Cronbach & Furby, 1970) attempt to estimate the

true change Y2 - Yt from the observed scores and known reliability

coefficients for the initial and final measures. From these data a

measure of the reliability of differences, i.e., the correlation of the

observed difference X
2
- X

1
with the true difference Y

2
- Y

1
may be

obtained. It was originally thought that if the reliability of

differences was low then our ability to estimate true change would be

low; however, Cronbach and Furby (1970) and Werts and LInn (1970a) have

demonstrated the use of information on other variables to help estimate

change. The logic of this approach is an extension of the rationale

enunciated earlier with regards to instrumental variables, i.e., both

causes, effects, and other correlates of growth carry information which

can be used to estimate model parameters and therefore to improve

estimates of factor scores.

Several educational researchers (Bloom, 1964; Thorndike, 1966)

havci been concerned with the determinants of (Y
2

- Y1) and in essence

have argued that if the initial status (Y1) is uncorrelated

with gain' (Y2 - Yl) then the determinants of change during this time

interval are diffeient from chose which produced the initial level of

competence (Y1) No such conclusion is warranted (Werts, J6reskog,

& Linn, 1972) since without including in the functional model various

determinants of growth, it Is impossible to make any statements about

the effect of these determinants. As the path analysts have so

frequently shown, no correlation, even zero, is'interpretable in a

causal sense except in the fraiteiqork of a causal model. It is quite

possible because of counterbalancing
influences, for Y2 - Yi to be

uncorrelated with Y
1

and yet initial status may influence gain

either positively or negatively.

-21-
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An important - feature of growth studies is that the variance of

the initial and final status factor (Y
1

and Y
2
) is identifiedr-

by the scaling assumption bl = b2 . For convenience test theorists

usually assign the value b
1
= b = 1 , i.e., that the factors have

the same units as the observed measures, the variance of the factors

then being determined by the known reliabilities. In the typical

achievement study the true variance increases over time (V > Vy )

2 1

because some students will pursue the study of mathematica

.*whereas others 'will avoid advanced courses. The usual factor and

path analysis approach of standardizing all factors (e.g., Vy = Vy )
1 2

is clearly unsatisfactory for growth studies because it ignores

changes in true variance. Even if there were no errors of measurement,

standardization of variables is undesirable in growth studies.

Psychometricians have usually dealt with models in which one measure

of.a construct was available, but when several measures with different

units are obtained the variance of the construct becomes arbitrary.

If the initial status factor is assigned a variance of unity (Vy = 1)

1

then the assumption bl = b2 will identifythe variance of the final--
* *

status factor (Werts & Linn, 1970b) given that b
1

and b
2

are

identified. Werts, JOreskOg, and Linn (1972) .show that if we have,

twocongeneric measures of Y1 (X11 and X12) which are

repeated at a later time (X21 and X,,,respeCtively), then it is

possible to test whether the assumption b
1
=.b

2
is compatible with

b = b In other words the ratio. V. .: V identified by the
3 4

V.
Y1

assumption that b
1 2
= b may be different frot the ratio of these

variances giNien by the assumption that b
3
= b

4
and this will 'show

up as a 'significant increase_ in lack of fit of the model to the data

when the added assumption b3 = b4 is imposed on the model. This

test indicates whether it is reasonable: to believe -that both measures

have equal units over time.

Other Constructs in Statistical Procedures

In this section we propose to demonstrate that statistical

procedures frequently imply constructs which many researchersare not

aware of;,' For illustrative purposes:cOnSider.a quasi - experimental

(Campbell. & Stan'ey, 1963). study in which four different:procedures

for teachinvfifth grade mathematiCS are'randomly:aasigned-tojour

available .schools in a_district..Ihe mathemics/achievementof each

.studentjs:measUred at. the beginning and end:ofjifth grade using

parallel forms of a test which provide,goOUcoverageOf:the material



111

taught in the various schools (i.e., the test has face validity). As

frequently happens in naturalistic studies it is found that the mean

achievement scores at the beginningsof the fifth grade differ. To

avoid interpretive complications assume perfect validity. Suppose

that the mean results for schools are as shown in Fig. 5, i.e., the

ordering of the schools remained constant over time but the spread of

means increased in proportion to the initial mean. One possible

statistical procedure which the data seem to fit is the analysis of

variance of repeated measures (Winer, 1962, Chap. 7) which basically-

consists of subtracting the initial means from the final means and

testing to see if these differences are the same from school to school..

Since these differences range from 20 units to 5 units for schools #1

and #4 respectively, it is clear that this procedure would conclude

that there is a treatment (i.e., school) effect, i.e., school #1 is

the most and #4 the least effective. A second statistical procedure

which the data fit is the analysis of covariance with initial status

controlled (Winer, 1962, Chap. 11). Since the final means are

perfectly correlated with the initial means it may be shown that

this procedure will indicate no treatment (i.e., school) effect,

given the standard analysis of .covar),ance assumptions (Werts & Linn,

1972). In order to understand these 'seemingly contradictory

interpretations, we need to ponder the following hypothetical question:

For any given school, what would the final mean be if.no treatment

had been applied? The analysis of variance in essence assumes that

for each, school, if no treatment had been given, then the final mean

would be the same as the initial mean. In contrast the Alysis of

covariance assumes that if no treatment were given then the final

mean would be completely predictable from the initial mean, i.e., in

our illustration the final means are perfectly correlated with initial

means. There is no law of nature that either case is necessarily so,

which means that neither statistical procedure may be appropriate.

Furthermore, our analysis has assumed the appropriateness of a linear

addition model, Which may not provide a reasonable simulation of the

reality being investigated.

r-

A slight variation in the above problem occurs when some measure

is being obtained in: a time series and at some point a new treatment

is imposed. SuCh.e,hase might be in the math achievement' of students

who are being followed from grade schoo into high schoOl:,

Thistlethwaite and Campbell (1960) h e argued that if the past

treatment. trend continues on the p treatment trend then no treatment

effedt may beinferred. In real fe, however, students who go 'to a

superior high school have probably-gone to superior_grade schoolscand

vice versa. If so, then it is quite possible that.the effective high

school would do well if it could continue the. learning progress its

students were 'making before entry. A treatment effect might well be

evidenced by 'a - straight trend line from grade school through high

school. Again, the.nhobserVed construct is: What would the group

Mean be if there.Were no'treatmeni? Without this information no

statements about treatment effects are warranted, nor can anybody

validly assert that a particular statistical analysis is appropriate,

!r.



V

150

140

130

120

110

100

Initial Finak.

Fig. 5.. Mean math scores.



a

1.

o

except within the context of a particular model with its associated

assumptions.

8. Hypotheses About Chews in Means

The discussion to this point has been devoted to the analysis of

the observed variance-covariance matrix. In some problems, however,

hypotheses really concern structures (i.e., restrictions) on the means

of variables, e:g., if we gave a class some 'special assistance in

''vocabulary we would like to observe an increase in the average
,vocabulary score of the group, i.e., the correlation between initial

and final'vocabulary scores would not be the relevant statistic to
analyze. In such cases the neglect of means (common among path
analysts) would lead to uninterpretable results.

,.-..j.,

. .
.

.

'
Educational' researchers interested in growth have encountered.

the problem of means because of the.way that tests are constructed

(e.g., Carver, 1970). The procedures used in test development
typically'striveto maximize to discrimination between individuals,
e.g., items that are answered ,otrectly by almost everyone at the end

of a course tend to be omitted since these serve to show similarities
among individuals. Yet it may be precisely these items that show the
general progress.of the class during the course. The item analysis

procedures thus. prevent measurement of true change in means over time.

Conglider the extreme case in which the students have' no familiarity

with theiubject matter being taught, which would mean that an

initial test of their knowledge in this subject would yield a zero

score for, the whole class. __A parallel test given at the end of the

course would show varying degrees of.knowledge attained, i.e., a.

positive mean and variance. .1The initial test scores would be

expected to have a zero (meaningless) correlation with the .final

scores and the final mean would represent the average level of course

effectiveness. If initially students had little or. no familiarity

wiTh the subject matter then.the.reliability of the initial test

might be quite low and yet this measure might be appr6priate for

measuring changes in student knowledge during the course. Obviously

path coefficients would be irrelevant to :the issue.

.
As noted above, parallel tests are assumed to have the same

'Underlying. mean. Thus, underlying the various observed test means,

there is assumed to be a common true score mean. If the means do not

differaignificantly, then the.best estimate of the true meanis the

grand mean of the observed tests.. Notice that if the grand mean is

used as the best estimate of the common test mean, then this will

affect our estimates of variances and covariances since these are

measures of.deviation from the grand -mead: This mutual interdependence

is recognized in areskog's, (1970) general Model, .which allows for

simultaneous estimation and hypothesis testing given restrictions on

..-..



both means and the variance-covariance matrix. We may, for example,

wish to test the hypothesis that the true score means over time

increase linearly (or exponentially).

9. General Considerations

It is relatively easy to find a linear structural model which

fits the data quite clbSely, e.g., factor analysts may-keep adding

factors until a good fit is obtained.: With a modicum of thought it

is also relatively easy to obtain a model which.is consistent with

our theory, when this model is just identified (i.e., there is a

unique solution for each parameter), because the matrix estimated

from the model (E) will in general equal the observed matrix (S) .

Given overidentification, it is possible that the model may be

rejected because of poor fit to the data. In such cases it is

usually possible to find -a less restrictive model which will fit the

data better, but this model may not be substantively plausible. It

is extremely difficult to demonstrate that (a) a model approximately

-simulates reality, (b) it provides' better simulation than another'

model, (c) the constructs defined by the model have greaier explana-

tory'power than the observed variables froM which they are derived,

and (d) these constructs are in any sense useful:in promoting better

research. In most cases it seems reasonable to suppose that several

plausible models may be found, all of which are consistent with the

observed data. It would then be necessary to deduce what data would

need to be collected to discriminate among these models.

Some of the concepts discussed inprevious sections suggest some

cautions in interpreting observed variance-covariance matrices. Grant-

ing the validity of using correlations at all (see Tukey, 1954, for a

discussion of this question), it should be clear from the section on

the multitrait-multimethod procedure that the probable existence of

errors of measurement and multiple indicator's of underlying variables

will necessarily make any interpretation a chancy affair. Furthermore,,

even if the unattenuated correlations' among the relevant constructs

were known, correlations are by normeans self-interpreting' in'a causal

sense (Blalock, 1964). Thus an obserVed correlation may be completely.

Spurious due to the presence of a common antecedent variable (which

must be controlled). While mostpsychologists.use the concept of .

spuriousness, the notion of controlling a variable in a chain,of causes

to see if this variable explains the observed association (Blalock,

1964) is almost unknown at present. It should not be inferred, however,

that a causalanalysis of the correlations is ppropriateto every
4

problem (Bailey, 1970).

Most applications of factor analysis, path analysis, and test

theory can probably be described asexpIOratory or speculative in the

sense that the analysis was performed because the researcher was

familiar with that.technique rather than because it could be

-26-
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demonstrated that his approach provided a better simulation of the

process-under study. We are thus in.the unenviable position of dis-

cussing statistical techniques without knowing when they should be

used. The value of these techniques has yet to be demonstrated' n
most of the social sciences with the possible exception of economics.
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IV. A Synthesis of Psychometric Literature: -A Multitrait-multimethod

Model for Studying Growth

Werts and Linn (1970a),have suggested that a multitrait-

multimethod approach (Campbell & Fiske, 1959) might be used for study-

ing growth. The purpose of this paper is to detail such a model and

to ov.tline implications for the study of growth. The major focus of

our, exposition will be the, logic of this ,model rather than the estima-

tion of parameters or testing the fit of the model to data. A compre-

hensive discussion of appropriate estimation and'fit-testing procedures

may be found in J8reskog (1970a), whose general model for the analysis

of covariance structures subsumes the models used in this paper.

The Model

The multitrait7mu-timethod aisirqf:ch may be treated as a problem

in confirmatory factor analysis (J8reskog, 1970a, 1971).. For illus-

trative purposes we will consider the example of three traits and_

three methods since this is the minimum. number of traits and methods

required to produce unique (defined in J8reskog, 1969, pp. 185-186)

parameter estimates, given the assumption that each observed measure

loads on only one trait and one method factor and all factors are

oblique. The general factor analytic model is:

f. y . p+ AT + e

y is the vector of observed scores,

p is the mean vector of y

A is a matrix of factor loadings,

T is-a vector of common factor scores, and

e is a vector of unique factor scores-correspo- nding to

specific factors and/or. errors of measurement.

where
r4

For our example:
,

Y (Ylla21 ,Y-31'3712a22,Y32,313iY23,Y33)

where in vaij , i = method and j = trait,

'T' = (T T T M M M )l' 2' 3' l' 2' 3

where Tj the j'-th trait factor,7

M = the i -th method factor,

(1)

(la)

s
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(1c)

where A
ij

are loadings on trait factors and

B
ij

are loadings on method. factors.

The expected variance-covariance matrix. E of y is then given by

MA'. -I- 8 (2)

where 8
2 is a diagonal matrix whose elements are the variances of

e . Since ell factors are oblique, in our example:

=

T
1

C
T T
1 2

CT1T3. 1 3

M1.

-Symmetric

V
T3

(2a)

where the C 's are covariances and the V 's are variances.

Following JBreskOg (1970a),.parameters. will be labelled. as one of
three kinds: .(1) fixed parameters that have been assigned givenyalues;
(2) constrained parameters that are unknown. but equal to one or more
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other parameters; and (3) free parameters that are unknown and not

constrained to be equal to any other jj'aramettaie The term "identifiable"

will be used.in the sense defined by Fisher (1966, p. 25); "we shall

speak-of that equation as identifiable (or identified) if there exists
some combination of prior and posterior information which will enable us
to distinguish its parameters from those of any other equation in the
same 'form." For the models studied in this paper, the term "identifiable"
is synonymous with the factor analyst's term "unique solution," i.e., a
solution is "unique" 'if all linear transformations of the factors that
leave the fixed parameters unchanged also leave the free parameters

unchanged. As J8reskog (1970b) notes: "Before an attempt is( ade to

estimate'a,model of this'kind, the identification problem must be

examined; The number of overidentifying restrictions on We/model is

frequently of interest, for example, after standardizing factor variances

(i.e., VT: = VM ='..1) the three method by three trait model has three

3
i

overidentifyiug restrictions, i.e., I- has 45 distinct variances and
covariances as compared to 42 free parameters to be estimated (18 factor

loadings, 15 factor covariances in (I) , and nine residual variances in

6 ). The number of overidentifying restrictions are the degrees of

freedom (df) for the test statistic in J8reskog's general model (1970a,

p. 241, sec. 1.4). The "path analysis" approach used by Werts and Linn

(1970a) can be very useful in exploring the identification question in

overidentified models. However, as noted by,Hauser and Goldberger (1970)

the "path analysis" literature does not adequately deal with the estima-

tion problem in overidentified models, in part because thesaiple-

population distinction is blurred:.

The multitrait-multimethod approach considered above does not

consider any functional relationships among the trait factors, i.e.,

the approach deals only with errors of measurement. In the study of

growth, these trait factors correspond to initial status, final status,

and the determinants of growth and a structural model showing the rela-

tionship among these variables must be specified. Substantive inferences

about growth are based on estimates of the parameters of the structural

model.

Suppose that the structural model for growth took the form:

T3 = D1T1 + D2T2 + (3)

where T3 is the final status, T2 is the initial status, and TI is a

determinant of growth; all other influences on growth (represented by

E.) being independent of T1 and T2 . In this model the initial status

1 '2
may influence the rate of growth. The parameters of equation (3) are,

just identifiable in terms of the elements of (I) , i.e.., the number of

restrictions on.the overall, model is not changed. Assuming that T3 and

T
2

are measurements on the same dimension as implied by the terms .

"initial" and "final" status, growth, (A) is equal to T3 7 T2 . Werts

and Linn (1970b) have shown that the regressiOn weights for T1 and T2

are;



and

= D
ATrT2

D
2

= 1 + D
AT .T

1

(4)

(5)

where DAT'T is the regression weight of A on ,with T2
1 2

controlled and D isthe regression weight of A on T2 with NAT
2'

T
1 2

T
1

controlled. In other words D
1

represents the direct influence
of T1 on growth and D2 represents the direct influence of initial

status on growth plus unity (which represents that part of T1 whidi

is initial status). 'Since T3 = A + T2 , substituting equations (4)
and (5) into (3) yields:

A = D
AT .T

2

T1 + D
ATVT1

T2 + E

T
2

and E , equations (lb), (lc), and (2a)

(6)

become:

T* = (r1,T2,;mt,J12,m3)

0A11 B
11

A
21

0 ' 0 0 B
21

A
31

0 0 0 0
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Symmetric
c
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0 0

cT1M1 cT2M1
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M
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1
M
2

1

c T1M3
CT2M3 C043 CM1M3

Cm
2 3

1

( 7 c)

respectively. If the analyst wished to scale a factor by the unit of a
particular measure this may be accomplished by setting the Ai. slope

for the measure equal to unity (in which case the variance of ihe cor-

responding factor should not be standardized but left free to be
estimated by the program). The assumption that T2 and T3 are

measures on the same dimension is equivalent to setting the same method

regression weights equal, i.e., in our example X.12 = A13 , A
22

= A
23

and A
32

= A
33

As detailed by Werts and Linn (1970a) the effect of

these restrictions is that the ratio of the variance of .T
3

to T
2

is

fixed. For estimation purposes it is convenient to standardize all

t factors except T3 whose variance is fixed in relation to ,T2 . The

model defined by equations (7a), (7b), and (7c) is no longer a simple
factor analysis model, but may be estimated using JBreskog's (1970a)
general model for the analysis of covariance structures. For this pur-

pose. A* may be rewritten as the product of two matrices:

where

= BA**

1 0 0 0 0 0 0 0 . 0

0 1 0 0 0 0 0 0 0

0 0 1 '0 0 0 0 0

boo
0 0 -1-- 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 '0. A
13

0 0

0 "0 0 0. 0 '0 A2 0

0 0 0 0. 0 0 0 0.

7357

40

Imo



and

and x13 = B1

A** =

13 '

A11
0 0 B11 0 0

A
21

0 0 0 B
21
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A
31

0 0 0 0 B
31

0 A
12 0

B 0 0
12

0 A22 0 0 B
2

0

0 A
32

0 0 0 B
32

D
1

D
2

1 Y
13

0 0
"

D1 D2

D1 D2

'1 0 X23

1 0 0

0

X33

X23 1:1 15,23/A23 x33 = B33/A3

E = BA**0*A**411 + e2

By substitution::

which is a special case of. JOreskog' (1970a) general model.

.
. In using the computer program (areskog, GrUvaeus,'

1970) the parameters
-'Al2.' A22 ,

A32 in -A** .should be constrained

to be equal to.. A13 , A23 , and A33- respectively'in The. result-

ing model has 45 distinct variances and covariances in I and 40 free
and constrained parameters (17 in A**. ,14 in 0* , 9 in 8 , none in .

B because of equality restraints), which meansrhat the model has five
6veridentifying restrictions (d).' The advantage of casting the analy-
sis in.terms of.JBreskojes.general model is that, given the assumption
that the observed variables. are distributed normally, -various hypotheses
about the model-may be teated.in-large :samples.

. In particular,. we
may wonder if trait -factors are uncorrelatedwith methods factors'and

.

methods factorswith each other'as'assUmed by aronbach,and.Furby (1970)
and Werts and Linn (1970a) in their analysis:of-growth. To make this
test,.theanalysia.Wouldbe run.with. themodel,o1 D.a), (lb), and (lc),
and (2a) with :vT.

T
xv: = 1 and then the anal-

1 2
T
3

Ml
2 - 3.-

:..ysis.Would be made with CT = CT = m 7
m ..= C.T M1 .1- 2,. 1"3 2". 1

T
2 2' 2

,C
T' M CT

=-CT if = Cm =.,c14.14 014. 0 .-.For'our example,. the
3 1 3

M
2' . 3 1. .. 1 2i 1 3 2,3 .- ..- ',-

initial' analysiswoUldyield.a chisquare with three df for:resting the
fit of the model to the data. 'Thesecond:analysis.would yield a Chi-
squarewithj5 df since 12 additional restrictions have been made. The
increase in chi-square. with.12dfis a test of the tenability of the

.
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additional restrictions. Starting with the same initial model, the

tenability of assuming that Al2 = A13 , A22 = A23 , and A32 = A33

may be tested (dropping the VT = 1 assumption) using the increase

3

in chi-square with 2 df. Likewise starting with these assumptions

(i.e., equations (7a), (7b), and (7c), and df = 5) hypotheses about_

growth can be tested, e.g., D1 can be set equal to zero and the

resulting change in x
2 (df = 1) is a test of whether T2 directly

influences growth. To test whether initial status directly influences

growth (i.e., whether D = 0) , D2 would be set equal to unity
AT2.T1

(see equation (4)), the increase in x
2 (df = 1) testing this hypoth-

esis. The fit of the observed variance-covariance matrix S to the

estimated elements of E may be used-to form some judgment as to changes

in fit resulting. from additional restrictions,
especially when the -X-

test is inappropriate because the assumption of multivariate normality

is not reasonable.

As originally conceived by Campbell and Fiske (1959) the multitrait-

multimethod approach required each trait to be measured with each method,

as in the example analyzed above. The linear structural model approach

proposed herein requires that model parameters be identifiable, a ques-

tion which is unrelated to whether each trait is measured with each

method. In order to fix the ratio of the variance of the final status

to the initial status factor, only one pair of initial and final measures

with the same units of measurement are required, i.e., the three sets of

initial-final measures in our example serve to overidentify this vari-

ance ratio. The identification problem would be greatly simplified if

one of these same method sets were replaced with different method mea-

sures, even though the resulting matrix would no longer be in the form

required by Campbell and Fiske. Campbell and,Fiecke's argument that dif-

ferent method measures of a trait are requiiedqb improve convergent

validity appears fundamentally sound and is a basic premise in our anal-

ysis. We have abandoned the particular type of analysis used by Campbell

and Fiske because it fails to specify the underlying structure being

postulated, and does not allow for nonsymmetrical method-by-trait

combinations.

Relationship to Classical Test Theory

The.MUltitrait7Multimethod
formulation can be'shOwn to include

Various procedures derived from classical test 'theory as special cases,

e.g., the commonly used formulaS for reliability of differences, -orrela-

tion of true initial status with. true gain,-and the correlation of true

scores over time can be derived from the multitrait-multimethod model by

imposing specifiable restrictions. To illustrate this point we shall

examine the case of two parallel measures' (v12 , y22)
given initially

-
and two finally (y13 , y23) First let us consider the analysis given
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the traditional assumptions that all errors of measurement are independent

of each other and of the true scores. In our formulation this is equiva-

lent to asserting that there are no methods factors. Without further

assumptions the model may be represented in terms of equation (1) as

Y (Y12'5'22'3713'5'23)
(8a)

T = (T2,T3) , (8b)

A =

A
12

0

A
22

0

0 A
13

0 A23

(8c)

and

(I) cs

e
2
=

VT

[C
T

2

T
2 3

V
e12

0

0

0

3

V
e22

0

o .

Ve13

0 V
e23

(8d)

(8e)

Assuming that initial and final status are on the same scale,. "parallel"

test assumptions are equivalent to (areskog,.1971) fixing ik12

A
22
-A

13
=A

2 e e
= 1 and constraining.t.

7:
.

' .and AI

C3 12 22 13. e23

All parameters are identifiable and df = 5 . Identification still occurs

'without theerror variance.assuMptions. ,(df = 3) , i.e., in true score

lexicon, "essentially tau-equivalent" measures (Lord .61' Novick, 1968,

pp..47-50) would suffice. If we choose to use nonparallel or "congeneric"

(JBreskog, 1971) measures, one pair of measures over time.being on the

same scale (e.g.,. Al2 =:A13). vT. could be arbitrarily standardized.
_

. .

_
2

.

(=. 1), yielding an identifiable model with'. df = In all these .cases;

grOwth.statistics.may be obtained from the parameter estimates or the

model can be transformed to obtain growth statistics directly. Inserting

T
3
= T

2
+ A then. .

. . . .

- '
..

Tic= (T
2 '

.. ,A) .. (9a)
,- :
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1'

7

Al2. 0

A22 0.

A
13

A
13

A
23 A23'

where. Al2 = A13. by assumption, and

V
T
2* =

1.

where V
T = 1. for convenience.
2

Relevant groWth statistics are:
A

PT
2A

VT
3

= correlation of initial status with gain

eT
2

A kirtac
2 ,

= 8 -
T
2A

T '
2

= V . + + 2a
T A andT2 A
.2

15T3 1 6AT'

(9b)

(9c)

(10a)

(10b)

(10c)

(10d)

Similarly if parametef estimates were derived from the original model
of equations (8a), (8b);' (8c), (8d), and (8e), growth statistics can
be obtained by

5T T e3 2 2
T T
3 2

7 1

OA = VT +OT 28
T T

. 2 3 2 3

CT = and
AT

2
'A. '2

c.

.1



Following JBreskog (1971) the parallel test assumption can be tested

(given multivariate normality) by comparing the chi-square for the

"essentially tau-equivalent" model to that for the "parallel" test

model; the difference in chi-square with df = 2 is a test of assump-

tions that V
el2

-= V and V
el

= Ve
. Similarly therincrease

e 23
in chi-square from the

22
"congeneric3" model to th "essentially tau-

equivalent" model (df = 2) is a test of the.agsumptions that An =

and A
= A 23

If the parallel test assumptions are accepted
A22 13
thenthe population reliability at the initial time may be estimated

by (VT + V. ) and reliability at the final time by VT

2 2 -12* '3

+ ie ) The reliability for each test is the square of the

3 13
corresponding standardized factor loading in the case of "essentially

tau-equivalent" or "congeneric" measures., Another statistic of inter-

est in the traditional psychometriCsliterature is the reliability of

differences .(pA) which is defined as the true variance of the dif-

ferences divided by the variance of the observed differences. In the

parallel case the estimated iopulation error variances can be used to

.obtain pA directly:

0A
CrA.

. VA + Ve + V.
12

With "essentially tau-equivalent" assumptions,no statement is made

about equality of error variances so that four reliabilities may be

estimated:

(12a).

A
PA

I+ V + V
12 e13

V.A
(12c)

i/ + i + Vr
el2 e23

(12b)

^1.11 (12d)pa
+ v + V.

8" e22 -13

A
TIL +

e22 e23

(12e)



Formulas (12a), (12b),.(12c),,(12d), and (120" are based on the

assumption that the true scores haye the same units as the observed

scores, which is not true in the case of congeneric measures. Since

the regression of observed on true differences is equal to the xegres-
sion of observed on true scores (Werts & Linn, 1970a, equation (25))

it is only necessary to standardize this weight-with the appropriate
variances to obtain the.reliability of differences for all cases, e.g.,

in the congeneric case if A then
12 ' A13.

A A

.+ V 2C(Y129 y13)
Y12 Y13.

(12f)

A A A

where. V , V and C(v129 y13)
are the estimated elements in

Y12 Y13

This formula uses estimated elements in E which are provided

in the computer outputkfor Aireskog's program (JB reskog, Gruvaeus, &

van Thilld11970).;- The program computes the elements in E from the

estimates for the underlying parameters, e.g., 8(Y12' Y13) -= 112A13eT
2
T
3

This. model (all measurement errors independent) may be used to clarify

traditional procedures for obtaining growth statistics. For example,

consider the case in which one initial and one final test is given. AT

common procedure is to obtain split half reliabilities at-each time and

use the6e to correct for_ attenuation. If y
12

and y92 are the 'ini-

tial split halves and y13
and y23 the final split halves, this case

corresponds'exactlyto the parallel measure case analyzed above. The

difference from the traditional procedure is that the complete variance-

covariance matrix for the split halv.es is computed and used in the analy-

sis. As shown above, the "parallel" and "essentially.tau-equivalent"

assumptions can be tested against the ,congeneric model andie congeneric

model is overidentified. From, this perspective the traditional procedure

neglects useful information about correlations among split halves and

thereby loses ,the possibility Of rejecting the model because of poor fit

to the data:,and,of_analyzing the data making only congeneric test assump-

tions. To-understand the connection. with the traditional formula it is

of interest to standardize E into a correlation matrix (correlations

generated by the model are indicated by symbol p ) and to show the rela-

tionships to standardized model parameters (denOted by asterisk):

A A

P(3712°713) At2PT2T3A13
A A A.

P (Y12'Y23) -= Alt2PT T A/3
2 3

P(Y22°71 ) 1* 13 I*-,22 T T 13
2 3e

P(Y22'Y23) A224
2 3

123

-41-
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P(Y12,Y22)

- P(Y13'5723) 113/23

(13e)

(130

If parallel test assumptions are valid then 112 = 112 and 43 = A23 ,

in which case equations (13a), (13b), (13c), and (13d) are identical and

should be recognized as the traditional correction for attenuation,

except that. the correlations are drawn from t rather than from the.

observed correlation matrix S . .Equations (13e) and (130, under

parallel test assumptions, are simply the assumption that the'reliability

defined as the squared correlation (i.e.
' 1

A*
2 - 1

A*
3

) of the observed

With the true score is equal to the correlation. between two *parallel

tests,' but again the correlations are drawn from E not from S What

these equations show is that it is not necessary for the reliabilities of

the split halves to be equal in order to identify the unattenuated cor-

relation- pm m' given uncorrelated errors. If the estimates of the

elements in .E fot the parallel case are examined it will be found .that

because of thestructural specifications: _ 1 , 1 =
. Y12 Y22, Y13 Y23. '

a(Y12' Y13)
C(y13, Y23) :a(5722' Y13) e(Y22' Y23) ' a(Y12' Y22) .= 17T2

8(Y134 y2) =
3

and
a.(Y12' Y1-) e(Y22' Y23) =.

2
T
3

Translating
,

the equation for the reliability of differences into the elements of 2

Or

8(Y12'122) (Y13, Y23) 2e(Y12' 5713)

VY
fiN7 ''''28(Y12' Y13)

12 -13

A A A A A

Vy12 P(5712' Y22) Vv
13
P(Y13' Y23) '- Y12' y13

A -

V + V - 4(y
12'

Ph -

A

Y12 Y13

(14a)

(14b)

Equation (14b) ehouldbe recognized as the traditional formula for the

reliability of diffetences, noting howeverthat,the estimates are drawn
,

from , not from the observed matrix S .iTheessentially tau-

equivalent case differs from the parallel case in' that the corresponding

varl.ances in 2 are not required to be equal, however' the covariances

between independent measures of different traits-are still equal to the

covariances between the corresponding traitslactors.. This means that

'formula (14a) could be used for any pair of tau-equivalent tests over

time. For. congeneric measures the formula involves, the pairs of measures

which-have the same units over time, e:g., if Al2 = A13 then equation

(12f) may be translated into
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(A* ) 2 6ic' )2 - 21* A* sA,

Y12 12
13 . 12 1T-T2T- v(

3 T'Yl2r3r1-3
(14c

fr

12 Y13 T
4.(Y12'Y13)Pv-12 -13

Equation (14c) is the reliability of differences formula given by Werts

and Linn (1970a, equation (26)) for the case of correlated errors over

time for the pair of measurements on the same scale, i.e., the Werts

and Linn formula is also appropriate to the independent error case when

applied to the elements of g rather than S . If formula (14c) applies

to'correlated errors using congeneric measures then it may be specialized

for the parallel measures case, e.g., if Y12
and y13 have noninde-

pendent errors and y12 and y23 have independent errors:
A A

A A

(a) A13 = A3 , by parallel test assumptions,'therefore A* A*
12 1 T T

A A

Al2A! .131,

2

(b) but P
(v

. I*
1

1*

-12, Y23) 2 23T
2
T
3

Since

12 J. -12' Y22)A* = o(Y

equation (14c) becomes

IP(Y13' Y23) VV VNI 11.4 V
A A

12 '22 Y 23

VV
12
P(Y12' Y22) + Vy13P(Y13' Y23) 2P(Y12' Y23 213

'

, A A A A

-12
+ Cry

13
4(Y12' Y13) sTint

(14d)

Equation (14d) is the fOrMula for the reliability of differences for

"linked" (i.e., correlated errors) parallel test' measures given by

Cronbach and Furby (1970, equation (6)), which can be seen to be the

parallel measure specialization of-the WertsLinn equation for noninde-

pendent congeneric measures. Similarly from equations.*(11a), (llb);

,(11c), (11d), and (11e) it follows that the estimated correlation Of

status with gain is:

PT
2
67T

2
26T' T

2

(15a)

In the congeneric case with Al2 = A13 , this may be transformed into



A 6T T A*Py
2 3 4" -13 12 -12-

PT A = (15b)

2

h.*0 + A*123 0 - 21; A* A* fi
12 y12 y13 T2T1 V

2 13 y12 y13

Formula (1513) is the correlation of status with gain given by Werts and

Linn (1970a, equation (28)) for thecase of congeneric measures and cor-

related errors, i.e., the formula applies also to the independent error

case. In the 'case of parallel independent measures p
T2T P(Y12' y13)

r. ,

7 dP kY12' Y22)13(Y13 9 y23)
which when substituted into fokmule (15b)- -

yields the traditional formula for the correlation of Status with gain
.

as applied to the elements of g :

.

A .

P(Y1295713)1 .r3(Y120722) Vy
12

V63(Y129Y220(Y1PY22)
+ A( )11 2kY

{1)712 P Y13 Y23 Y13 12 Y12 Y1/

Our purpose in demonstrating relationships to traditional formulations is

pufely heuristic, since Aireskogis program yields estimates of model param-

eters given the structural assumptions specified byathe investigator, i.e.,

the traditional formulas apply to the elements of T which are not

directly observable but which are estimated as a function of the parameter

estimates. Traditional psychometric approaches have dealt with models,

which are just identified which means that models which exactly reproduce

the observed variance-covariance matr:7', can be employed.,(iTh., S = E ) .

The limitation in this approach is that.overidentificatioeis necessary if

.the fit of the model to the data is to be. tested.

In this paragraph we propose to use our model to specify' the condi-,

tions implicit in Cronbach's (1960,'pp.. 136-139) discussion of coefficients

of "stability" and "equivalence." Cronbach uses an example in'which two

forms of the Mechanical Reasoning Test of the DAT were used, the same forms

being used for test and retest purposes...When the same form is repeated,

the test-retest correlation is higher than the test- retest correlation

between different forma,sUggesting the presence of "long-lasting test-

specific" factors. The implication is that the errors of measuremenifor

the same test repeated are.,not independent. Assuming that both forms

were repeated and errors:of measurement independent for different-forms,

the-model for parallel measures-rta' of .the form:
o

y = + AT

where

(Y12, Y22' y13, y23

(16a)

(16b)

(15e)



where y12 and y13 are the same test as are y22 and y23

T
(T2, T3,

3' e12, e22
e13, e

23
) (16c)

and

rrriPtte:V It 7'31,!..:"9':.
r!!

A =

I 0 1 0 0 6
looloo
0 1001 0
0 1 0 0 0 1

1VT2

CT.T VT

0 0 V
12

Symmetric

o. o o v
ee22

0 0 C 0 Ve12e13
0 Vel3

0. 0 0 c
e e

0' V
e

22 23 23_

where -V = V , = V .

e12 e22 e13 e23

(16d)

(16e)

The model of (16a) is the special case of factor analysis in which
9 the residual factors are treated as latent factors. Examination of 2

shows that the same test errors of measurement are nonindependent,
C
e e and C 0 All parameters are identifiable and' df = 3
12 22

e
22

e
23.

(10 distinct elements in E. less 7 free and constrained parameters).
Essentially tau-equivalent assumptions would still have provided identifi-
cation but with only one overidentifying restriction (since V # V. ,

-12 -22
Ve 0 Ve ) An:interesting case.occurs with congeneric assumptions in

13 23

which case the model is underidentified; however, the unattenuated trait

E4 .

correlation o is just identified

2T
(Y12' Y23)8(Y22' y13) 4

.3

8(31.12' 5722)C(5713' y23)] '
Identification may be achieved with the

congeneric model by repeating only one test (assuming A
12

= A13 ) and

using differeat method measures for y
22 and y

23
in which case the

model is:
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Al2 0 0 6"

A=
A
22

0 0 1 0 0

0 A
13

-0 0 1 -0

0 A
23

0 0 0 1

where A
1

= A
13

by assumption, and

1

C
T T
2 3

0 0

0 0

0 0'

0 0

Vel2

0

Symmetric

V
e
e22

f
12e13

0

0 0

e13

0 V
e23

(16f)

(16g)

This model is just identified (10 distinct elements in E less 10
parameters to be estimated). Let us return to Cronbachts example in
which there are Forms A (y

12
) and B

Y22)
( initially and. retests on
'

Forms A' .(y2.3) and B. (y23) three years later. Cronbach partitions
the,variance using the immediate and-retest correlations among forms
(assumed parallel) which in our model corresponds to the elements of
p. We may.translate-CrOnbachls partitioning procedure into functions
of the model parameters in equations (16a), (16b), (16c), (16d), and
(16e) as follows:'.

"Lasting General Varl,ance" p(y12, y23) = At2p(T2, T3)A13 which

according to the model equals o(v
.-22' y13) = A22p(T2, T3)At3

2...'"TemporarY General Variance" = o(v v ) o(v v ) = Al2Al2 -y22) '23'
At2p(T2, T2)A13 which accordinvto the model equals o(v

y22)'
v
22'

P(Y22' y13) 7 At2Al2 AI2p(T2, T3)At3.. In principle there is a

different "Temporary. General Variance".for the end time p(y11, y23)

p(y12, y23) At3A23 Al2p(T2, T3)A13 which equals p(5,13, y23) -

P(Y22' Y13) A13A23 A22P-(T2' T3)A413

"Lasting Specific Variance" for Formik
P (Y12' Y13) (y12, y23)

P(Y12'.Y13). P(Y22' Y13) = J1 (1/2)

2

P(e12' e13) 11 (1/.3)

2
and



for Form B
-
(v v )

'"
(NJ

22' -23' 12' Y23) (Y22' Y23) (Y22' Y13)

- (Al2) 2 fp(e22' e23)1/1 (A23) 2

4, "Temporary Specific Variance" [1 - P(Yi2' Y22)] \ (13(Y12'.Y13)

P(Y12' Y23)3 [1 "712, 722)] ("712, 713) P(722' Y13)3

1-
A12A 1'z2

1-
(Al2) 2 P(e12,

e13)11 -_(A13)2 for the 'correlations

used by Cronbach, but in principle there are three .other temporary

specific variances 1 - Al2Al2 - (Al2)20 (e22' e23) 4(1 (A23) 2 '

1 - AII3A23 - -
2

(Al2)2 (e12' el3) J 1 (1°13)
, and 1 - A13A13-

11 - (Al2)
2

p(e22, e23) f1 (A23) 2

It can be seen that Cronbach's procedure for partitioning of variance

involves complicated functions of the model parameters. Not only is it

simpler to analyze observed correldtions in terms of a set of structural
parameters, but it allows for analysis of overidentified models. Further

light can be shed on the assumptions implicit in the model of .(16a), (16b),,

(16c), (16d), and (16e) by asking what variables account for the correlated

errors. Assuming that a single factor (M1) underlies the correlation for

Form A and another factor (M2) for Form B the model becomes:

y = u + AT + "e'

where

041

and

Y 74, (Y12, y22; Y13' Y23)

T = (T2, T3, M1, M2) ,

et = (e.12,
e22'

e3)

A=

1 0 B12 0 1

1 0 0 B22

0 1 B13
13

0 1 ' 0 B
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=

0 0 1

o 0 0

(17f)

Analysis of the identification problem shows that B12, B22,
B13, and

B23 are not separately identifiable; only the products (Bi.2 B13) and

(B22 B23)
are identified. This meanstt* in JBreskog's program we

may arbitrarily set B12 = B13 and Bi2.= B23 without disturbing the

estimation for other parameters. Assuminig B12 = B13 and B22 = B23
'

this model is a simple transformation,of (16a)0,(16b), (16c), (16d),

and (16e) .under essentially tau-equivfalent assumptions, that is,

V '017 ,V & V in equation-(16e). In particular it can
e
12 e22

e13 e23

be seen that it must tiaasailmed that 141 and M2 are uncorrelated.

It is possible to deal with oblique true and method factors but usually

more different method measures are required as in otir 3 trait x 3

method.. example in Section I.

When methods of. measuring a trait are made as different as possible,

it is usually the case that the units of neasurement are different,

which Means that. congeneric rather than essentially tau - equivalent or

parallel:assumptions are appropriate. Werts and Linn (1970a) consider

growth:models based on congeneric measures, e.g., in one:case they use

threscongenei1C' measures of T2 and two congeneric measures of T3 ;

allowing for same test correlated erromover time. This model is .

overidentified, but no attempt was made to deal with this complication.

Phrasing this problem in terms of JBreskog's general model:

y = u + AT + e

(Y12' y22, y32, Y13' y23)

where v
12 '

and v
13

are linked as are Y22
and

'

T = .(T2, T3, M1, M2)

-A
12

0 B
12

A
22

0 0

A A32
Oi 0

0 B
13

0 A .0

53

0

B
22

0

0

B23
23_

(18a)

(18b)

(18c)

(18d)

17"



Assumingthat Al2 = A13

(I) =

, A22

1

CT T
2 3

0

-0

= A
23

V
T
3

0 1

0 .0 i

and for

(18e)

convenience that B
12

=

B
13 B22 B23 , this model.has four overidentifying restrictions (15

'

distinct elements in E less 11 parameters to be estimated). Werts

and Linn give two formulas (1970a,_p. 198, equations (28) and (29)) for
estimating the correlation of,status with gain involving observed cor-
relations and variances whereas areskog's approach generates a single
estimate by equation (15a). In essence Werts and Linn dealt with the

elements of the observed variance-covariance matrix S which may yield

inconsistent estimates of p
T A

whereas uch inconsistency cannot arise
A

with respect to the elements
2
in . areskog has an unpublished operat-

ing program for estimating factor scores within the confirmatory factor
analysis model (areskog, 1971). As Cronbach and Furby (1970) note,

however, there is seldom need for such estimates.

Relationship to Factor Analysis

A common practice in the factor analysis of growth data is to com-

pare standardized factor loadings at one time to the loadings for the

same set of measures at a later time. If the pattern of loadings remains

constant over time the inference is drawn that the factors are measuring

essentially the same dimension at different times. For example we might

have threemeasures of T
2 12at time 1 with factor loadings 0., = .30 ,

A*
22

.40
'
and AL, = .50 and identical loadings on T3 when these

--
measures are repeated at time 2, i.e., A* = .30 = .40 , and

.50 . For heuristic purposes let us
13
suppose tha the repetitionA33 = -

of tests .did not result in methods factorsnd that the true variance

increased from VT2 = 1.0 to VT3 = 1.5 over time and C-
T
2
T
3

= 1.2

It 'may be immediately inferred that the error variances for all tests

increased over time since the test reliabilities (in this model tbe

squared factor loadings) remained constant and the true variance increased.
However, Wiley and Wiley (1970) have persuasively argued that it is more
likely that error variances are a test characteristic which is likely to

remain constant over time. If this is so, then an increase in true vari-

ance along the same dimension will necessarily mean that the reliabilities

of the tests will increase over time, i.e., the standardized factor load-

ings will increase. In the-same fashion it may be deduced that if for

any given test.. over time the unstandardized regression weights (Ai2 = Ai3)

and the error variances 01ei2 = Vei3) are equal, then in general

the standardized factor loadings (AI
j
) are not proportional from one

i

time to another. We conclude that comparison of standardized factor

49+)
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loading patterns over time provides no logical base for any conclusions

about whether pretests and posttests are measuring the same--variable.

It appears to us that such an assumption, which in this model is equiva-
lent to equality of unstandardized regression weights over time (e.g.,

A
12 = A13) ,

is basically not testable within the framework of this

model. It would seem better not to make dubious assumptions that either

the reliability or the error,variance are relatively constant (over time)

test characteristics, but to build modals and gather requisite informa-
tion such that these model parameters are identified.

While it is not possible to test the assumption that A19 = Al ,

it is quite possible for this assumption to be incompatible with tfie

assumption .that A22 = A23 . The ratio of VT to VT resulting from
3 2

A
12

A
13

may differ from the ratio resulting from A
22

= A
23

. This

may be tested by the increase in x
2

(df = 1) resulting from the addi-

tion of A
22

= A
23

to the model in which A 12 = A 13 Within the frame-

work of this model, if it is true that the corresponding pairs of tests

over time in_fact have the same units, then the scaling of VT to V
T

should be the same for each pair:. 3 2

The finding that the data are consistent with the hypothesis that

A
12

= A
13

and. A
22

= A
23

does not necessarily imply that the units of

measurement for the corresponding pairs of tests over time are the same
since it is quite possible for the scaling to be erroneous for both pairs

of tests but in the same way. If the data are inconsistent with the

hypothesis that A
12

= A
13

and A
22

= A
23

we could conclude that the

units over' time are not the same for both sets of tests, but, it is still

possible that the units are the same for one of the-sets over time. Even

if it could be shown that -A -.A13 '
this would only be evidence

consistent with, not proof or, the Hypothesis that the scales are measur-

ing the,,,s4gle,proebes>6er time. j

Determinants of Growth

We-ts and Linn (197Db) have considered the problem of making infer-

ences about the determinants in a-linear model. The Werts-Linn formula-

tion was based on classical true score assumptiond, i.e.,,no provision

was made for methods factors. For heuristic purposes let us reconsider

the problem of growth determinants, formulating the.three trait, three .

method model in terms of growth (T3 = T2 + A) :

-50-



B
4V

T = (T , T
2
, A,.M1, M2, M

3
)
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11

0

A
21

0

A
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0

0 A
12

A
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0 A
32

0 A
12

0 A
22

0 A
32
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1
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C
T
1
M
2

C C
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2
M
3

CT 2A2

(19a)

0 B
11

0 0

0 0 B2
1

0

0 0 0 B
31

0 B
12

0 0

0 0 0 B
22

0

0 0 0 B
32

A12 B
13

0 0

A
22

0
B23.

0

A
32

0 0 B
33

(19b)

3

VA

CAN1
1

C C
M1MAM2

2

1

CAM3
C-m

1- M3 C1.12M3 4V

(19c)

Tt should be noted that although this formulation does not directly

involve the parameters of the underlying growth model A = D T +

D
AT T

T
2

4- , however, the regressiOnweights are:
AT

l'
T
2

1

2' 1

and

C C C
T A T T
1 2 1

T
2

T 2 - C
2

T 1T2

:T
1

CT
2

T
1

(19d)

(19e)



Traditional test theorists (e.g.; Bloom, 1964; Thorndike, 1966)
have been very,concerned with and have drawn substantive .inferences
about the "determinants of growth from the correlation of status with
gain,_ usually corrected for "attenuation." Hoi4ever, as detailed by
Werts and Linn(1970b), in a 1Mnear structural model prime interest is
in the model parameters DA, ,. and D

AT T since if either one is
l"2 2 1

zero the inference will be drawn that the corresponding variable does otdirectly influence gain., -Except in the case in which initial status
is uncorrelated with all determinants of growth', knowledge of the
correlation of status with gain, p

TA ' does not allow us to draw
2

inferences about model parameters. It is quite possible for

to be completely spuriouS due to a common antecedent Influence or it
is quite possible for 4

12
to be zero without imply ng that D

AT1*T2
or D

AT2.T1
be zero. IciOr this reason we question Thbrndike's (1966,,

.p. 124) interpretation.: "In considerable part, the factors that produce
gains during a specified time span appear to be different from those
that produced the level of competence exhibited at the beginning of the
period." Our objection is that Thorndike'd conclusion was made from the
correlation of status with gain, without specifically introducing into
the analysis any presumed determinants of growth. In a linear structural
model the total association of initial status with growth is an insuffi-
cient basis for drawing inferences about. the various possible determinantsof growth.

Discussion

The variety of test response tendencies covered by the rubric
"methods factors" appear to be an almost. universal complication in
sociopsychological growth studies. Even. though in principle the
multitrait-multimethod model presented in this ipaper provides for
"methods factors," it does not follow that this model does in fact pro-
vide a better simulation of, reality than previous models whitE have
typiCally ignored methods factors by assuming independent errors of
measurement. It may be expected that our procedure will typically yield.
different parameter estimates (e.g., correlation of Status. with gain)
thanhprevious procedures, but what has been learned about ,growth and its
determinants thereby? What is learned'about reality from the overwhelm-
ing concern of the, factor analyst with statistical fit? There is no
guarantee that the'best fitting model yields substantively meaningful.
results (e.g., Werta, J8reskog, & Linn, 1271). Why bother with com-
plicated structural models involving unmeasured variables when it is
likely that a simple regression equation involving only measured,varia-
bles-Will .provide the best prediction of the criterion? From our perspec-
tive, if the researcher's basic interest is in reality, then the, research
must be designed to explore reality, i.e.; to:offer evidence as to which
of the initially plausible alternative hypotheses (modeli) provides the

-52-



better simulation. In some cases this may involve a study of the

theoretical implications to see what information is necessary to

discriminate between the alternative models. In other cases the

study may be a continuing one as in the building of models to
simulate the national economy, in which ease the ability to better
predict new yearly data is used to discriminate among models-Our
purpose in making these remarks is to heighten the awareness of
researcheis that parameter estimates, such as the reliability of
gain scores, are always made within the framewOrk of a whole set
of untested assumptions. about the nature of reality. It is mis

leading to talk about "the correlation of status with gain" since

the meaning of this parameter is totally a function of the partic-

ular model used to derive thef-parameter. In most cases in which

this type of estimate has been used, no effort has -been made to
examine the validity, or even plausibility of the models 6derlying

these estimates. The linear structural model presentea hereih is

as suspect as any other model and needs to be justifie'd as one of

the plausible alternative hypotheses, prior to data analysis.
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V. Conclusions

Sections III and IV constitute fulfillment of the project
objectives as stated in .the original proposal. The entire written

output of this project has been or is in the process of being dis-

seminatto the various relevant audiences. All material has been

published or been accepted for formal publication in the final form
given in this report.

The substantive conclusions of this project are stated in

sections III and IV. While we have succeeded in integrating the
methodological literature within ttiecope of the project, the
limitations of our approach need to be stated. The study of the
methodological literature alone cannot lead to any conclusions
about which kinds of educational growth problems it would be
appropriate to apply these methods to. It 4s.much clearer in the

physical sciences that quantitative analysis is appropriate only
when the. mathematical model underlying the analytical procedure
approximately simulates the process .under study. In the social

sciences it is typically unclear whether the-model underlying the
statistics.being used has any resemblance to the.phenomenoA, usually
because-we know very little about how the phenomenon actually works.
In ourjudgment, prig_ rity should be given to work that attempts to /

match methodology to particular substantive problems.

,

4

4,1
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VI. Appendix

1. Comment on "The estimation of measurement error in panel data."
1

2. Comment on Boyle's "Path analYsia and ordinal data."

3. Errata to the WertsLinn comments on Boyle's "Path analysis
and ordinal data."

4. Another perspective on "Linear regression, structural
relations,'and measurement error."

5. A congeneric model for platonic true scares.

6. Estimating true scores using group membership.

7. Errors of inference due to,errors of measurement.

8. Identification and estimation in path analysis with
Unmeasured variables.

9. Intraclass reliability estimates: Testing structural
asAmptions.



V , C

iteprocucea oy an onsetset process.

COMMENT* ON "THE ESTIMATION OF
MEASUREMENT ERROR IN

PANEL DATA"

Wiley 'and Wiley 41970) have made a con-
tribution to the literature on dealing with errors
of measurement by showing how to build a
model employing the assumption of homogeneity

[

of error variance in panel data. They argue that
this assumption is more plausible than the as-
sumption that the reliability remain§ constant

i` over time (Heise, 1969). Since we have avail-
, able data which allow a statistical test of which

iassumption is the most plausible, this note was
written to give the results of this test and to
demonstrate how such tests can be performed

i

*The research reported herein was performed
pursuant to Grant No. OEG-2- 700033(509) with
the United States Department of Health, Educa-
tion, and Welfare and the Office of Education.
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when at least four sequential measurements are
available.

The model employed by Wiley and Wiley I
(1970) is shown in Fig. 1. In this model the I
reliability of a measure (zt) is the square of;
the correlation (p1) between that measure and
its underlying true score (Es). Denoting a*n and
as., as the standardized path coefficients cor-
responding to an and a. respectively, path analy-
sis indicates that the correlations generated by
the model ire:

P(Xi xs) = Pt en A,
p(xi xi) =pi a*. as, p,
P (Xs xs.) =Ps asst Ps

It follows from (1) that

e(xi x,) P (x1r.)
p(air..)

P(X1 X*) P NI 4)
P(44)

[Ps a*] a '1
P(" ) P (4 :,)

(4)
p(Ii x,)

Thus, without making any assumptions about
homogeneity of error variances or reliabilities,
it has been demonstrated that the reliability of

X X
:1 (p',) is identifiable, and hence also that the

2 3
corresponding error variance V(e,) =V(z.)
[1 4] and true score variance V(E,) =V(z,)

(2)

(3)

21
the fourth

32 that Wiley and Wiley (1970) made about the

Now Consider the case 'in which four sequen-

sures z, and sr., only the products [hen] and

tial measurements are available, Making the

[has.] are identifiable.

a
first three, the model in Fig. 2 is obtained.

c Generalizing the results of equations (2), (3),
2 3 and 4.4I, we see that in Fig. 2:

2 62 e.3

(a) ph V (e,) , V(E1), and the product [has.]
may be identified using either xl, as, and za or xi,
1, and z,

(b) p,, V(e,), V(C.), and the product [e.asit]
may be identified using either z1, x, and z, or
x,, xl, and z4.
Path analysis of Fig. 2 also indicates that
p(xi srd) =pia*n pa and p(x, x,) = pia*. ass, a% Ph

FIGURE 1. A Three Wave Model which means that as., is overidentifted. There-
110
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MEASUREMENT, ERROR 1 1 1

e4 Table 1. Correlations for Quantita-
tive (below Unities) and
Verbal (above Unities) Test
Scores.a

X Grade
4

a
43

Fromm 2. A Four-Wave Model

fore a.= ass, \NW ÷V(FI) is identifiable.
Generalizing to multiple wave. panel studies, we
may state that, when the assumptions of the
Wiley and Wiley structural model are given,

error variances, true score variances, and un-
standardized regression weights between cor-
responding true scores are identified for all but
the first and last measures. For this reason it
appears unnecessary to make either the equal
reliability or the equal error variance assump-
tion for inner measures. However, one might
wish to know which is the better assumption to

.S 7

7

9

11

1.000

.742

.718

.687

.849

1.000

.747

.686

9 11

.795 .779

.868 .838

1.000 .860

.791 1.000

a Standard deviations for quantitative
scores are 8.986, 13.771, 16.986, and
17.699, respectively; standard devia-
tions for verbal scores are 11.748,
12.704, 13.756, and 14.379, respec-
tively.

make about the first and last measures in order
tc identify the corresponding true and error
variances and regression weights among true
scores. Given at least four-wave data, sug-
gestive but not conclusive evidence about which
(if either) assumption is better may be ob-
tained by comparing the estimated error vari-
ances and reliabilities for the inner measures.

The four-wave data to be analyzed using the
model in Fig. 2 were collected in a longitudinal
study (Anderson and Maier, 1963), which in-

Table 2. Model Parameter Estimates and Goodness of Fit Tests.

Model

Fig. 2

6132 in 1

P2 P3

V(c2) V(e3)

Fig. 2

a
32

1

P2 P3

V(c2) V(c3)

Estimates
t

1918211 P2
03 I041431

*
A32 -

2 d.f. p

it
SCAT-V Data

.884 ;960 .942 .912 .959 1.38 1 .240

.877 .941 ". .927 .903 1.000 42.61 2 .000

.816 ..952 .9S2 .956 .959 2.17 2 . .338

.887 .950 .952 '.908 .960 12.18 2 .002

SCAT-Q Data

.851 .872 .919 .860 .925 2.78 .095'

.823 .840 .899 .852 1.000 42.77 2 .000

.557 .699 .899 .894 .924 5.40 2 .067

.851 .873 e918 .861 .925 2.80 2 .247

.

tThe symbol "^" denotes an estimate of a
data. 63

pulatiWparameter based on sample
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eluded a gioup of students tested in the Sth,
7th, 9th and 11th grades with the School and
College Ability Tests (SCAT), which yields a
Quantitetive (Q) and a Verbal (V) score. Table
1 gives (previously unreported) correlations and
standard deviations on these tests for a sample
of 703 males with complete data.

As Goldberger (1970) notes, the path analysis
literature offers no guidance in systematic
estimation of overidentified models, such as that
depicted in Fig. 2. To obtain estimates, we used
ibreskog's (1970a) general method for the
analysis of covariance structures with its as-
sociated computer program (Joreskog et al.,
,1970). The four-wave model in Fig. 2 is of the
quasi Markov simplex type, the analysis and
programming of which is discussed in detail by
J5reskog (1970b).. Under the assumption that
the observed distributionsAre normal (reason-
able for these data), J5reskog's procedure yields
maximum likelihood estimates of model param-
eters and a' large sample chi squaredtest is com-
puted for testing the fit of the model to the
data. Furthermore, the program allows certain
model parameters to be specified as equal to
other parameters or to some constant. This is
useful for the present problem because the chi
square fit before imposing a restriction (e.g.,
equal error variances) can be compared to the
chi square fit for the more restricted model as
a measure of the tenability of that restriction.
The analysis proceeded in four steps:

1. The model in Fig. 2 was analyzed without
assumptions about equal error variances or
reliabilities.

2. To test whether it is reasonable to believe
that E, and E. are perfectly correlated, the a
priori restriction that 0,2=1.0 was imposed. The
chi square for this condition less the chi square
for the first condition is the chi square with
one degree of freedom for testing the restric-
tion.

To test the equal reliability assumption,
the a priori specification was made that Po= Ps.
The chi square in this condition less the chi
square in the first condition yields a chi square
with one degree of freedom for this hypothesis.
This assumption is equivalent to the assertion
that the error variances are a fixed proportion
of the corresponding testvariances.'

4. To test the equal error variance assump-
tion, the specification was made that ,V(e.) =
V(es). The chi square test of this hypothesis is
the. difference between the chi square for this
condition and the one for the first condition and

r also has one degree of freedoni.
The results of the above analysis are shown

in Table 2. 'In step one, fin. both SCAT-V and

SCAT-Q, the x' is small, indicating a good fit.
The pattern of the estimates is reasonable in
that Pp and P. are approximately equal (published
test reliabilities. are equal and of the same order
of magnitude as these estimates), whereas
[P.P.,]. and [pP.] are lower, as expected
since they are the product of a reliability and a
true factor correlation. When the assumption
that 0,1=1 is inserted, the x' increased signif-
icantly (>40) for both SCAT-V an SCAT-Q.
The third step testing the equal reliability as-
sumption yielded a fairly good fit, and the
difference x' does not st'ggest that this hypoth-
esis shouldbe rejected; however.[PAI] appears
unreasonable since it is approximately equal to
P. and Ps. For SCAT-V [All*,] is slightly larger
than A and A, which would require Pd. to be
greater than 1.0 for A to equal PI and pi. In
step 4 the difference x' for SCAT-V. is statis-
tically significant (x'i=12.18 2.38=10.8) al-
though the absolute magnitude of the difference
may not be too important. The step 4 results
are more sensible- than the step 3 results since
[p,aio.] and [0,1*,.] are both less than P, and P..
The step 4 difference x' for SCAT-Q (like step
3) is not statistically significant. Overall, these
results suggest that the equal reliability assump-
tion gives a good statistical fit but yields
theoretically unreasonable results; whereas the
equal error variance assumption may yield
poorer fit but estimates which are like the
original model of step 1.

CHARLES E. WERTS
KARL G. J6RESKOG
ROBERT L. LINN

Educational Testing Service
Princeton, N.
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COMMENTS ON BOYLE'S "PATH ANALYSIS AND
ORDINAL DATA"1

Boyle (1970) has made a significant contribution to the literature in
showing how to use dummy variables in path analysis as a device for
investigating scale characteristics. However, a path analysis is applied
in causal analyses without. provision for unmeasured "underlying"
variables, there is an implicit assumption that the causative variables
are measured without error (i.e., perfect reliability and validity). When
each scale unit of an independent variable is treated as a category in
Boyle's procedure, no measurement error corresponds to no errors of

placement into categories. If there are placement errors, then the ob-
served scale category may not Correspond to the "true" scale category,
that is, the dummy variable set used by Boyle to code the scale units for
an independent variable would correspond to an observed set of fallible
variables which are indicators. of an underlying set of ."true" dummy
variables. Figure 1 illustrates the relationships among true and ob-
served dummy variables for a four-unit scale, residual arrows correspond-

ing to errors of placement into that scale category. The number of ob-
served dummy variables (Da, Db, DO is me; less than the number of
scale units or categories, and the true dummy variables: (T., Tb, Ti). are
shown as nonindependent because inclusion in one category necessarily
involves exclusion from another category. Since dummy variables are
dichotomous,- the product moment correlations among these variables

are 4, coefficients. Application of path principles to figure 1 shows that
the system is underidentified since there are only three correlations
among observed variables as compared with nine unknowns (three cor-
relations among errors, three correlations among true dummy variables,,
and three reliabilities). One solution to the underidentification problem
is to use at least three experimentally independent indicators of the
.independent variable, each of which has the same number of scale
categories. For example, in the case of three independent indicators each

of which' has four levels' (i.e., categories), the resulting path diagram
would include three "observed". dummy variables (e.g., Dal, Do.)

for each "true" dummy variable (e.g., DO, the placement errors for a
given category on one measure being independent of, placementerrors in
the same or different categories for the other two measures. A path

The research raported herein was performed pursuant to grant no. OEG-2-7000
33(509) with the United States Department of Health, Education, and Welfare and

the Office of Education. -
66,, 1109
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Via. 1.--Path diagram showing relationships among true and observed dummy

variables for a four-unit scale.

analysis of this diagram shows that the system is overidentified (36

observed correlations vs. 21 unknown correlations and path coefficients).

When the usual dummy variable coding is used (Decomposition II in

Boyle's table 1), the correlation (0) between any two true dummy

variableS is a function only of the true proportion in these categories:

kr, = .1a Pb

QaQA

where char; is the correlation between T. and To, P. is the true propor-

tion in category a, Pb is the true proportion in category b, Qa = 1 P.,

and G = 1 Pb.

It follows tfrom equation (1) that if the correlations among the three

true dummy variables are identifiable, then the proportions of the true

classification in each category may be identified. The variance of a di-

chotomous variable is equal to the proportion in that category times the
_proportion not in that category (e.g., Va = P.Q.), and the mean is

equal to the proportion in that category (e.g., Pa). The variances and

the correlations could be used to calculate covariances or unstandard-

1110
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ized regression weights as desired. A 'dependent variable (Y) may be

added to the path diagram, path analysis principles again allowing us to

find the equations for the unstandardized regression weights on each of

the true dummy variables. When thee second type of dummy variable
coding in Boyle's table 1 is used, the true regression weights represent
the difference between the true Y mean of the group coded "1" in that
dummy variable and the true Y mean of the reference group. When
Boyle's (1970) first type of dummy variable. coding (Decomposition I in

table 1 of Boyle's paper) is used, then the true regression weights repre-

sent the true difference between successive category means, that is, a

test of the equal interval assumption under "effect" sealing. This anal-
ysis indicates that one of the reasons that the observed regression weights

may differ from one scale category to the next is that the degree of mea-

surement error may differ at different points on the scale.
The analytical model discussed above would still apply if the observa-

tions consisted of three independent sorts into a set of nominal categories.

In this case the analysis is.equivalent to an analysis of variance with fal-

lible group information, and the problem is whether the true group means

really differ, that is, whether the regression weights for the true dummy

variables are all zero.
In passing it might be noted that for overidentified models of the type

discussed above, a procedure for estimating the parameters of the
model is needed: As Goldberger (1970, p. 25) notes: "the path anal-
ysis literature offers no guidance on systematic estimation of over-
identified models." Because the distribution of variables (true and
observed) is inultinomial, the function to be minimized (Mote and An-

derson 1965; Cochran 1968, pp. 647-48) for estimation purposes is a X2

involving observed and hypothetical ("expected") probabilities. The

dummy variable path analysis equations therefore must be translated

into probability functions to obtain estimates in overidentified models.

In our opinion, path analysis is useful in this type of problem because it

helps deal with questions of identifiability, and it is easier for the" re-
searcher to conceptualize the relationships among variables.

CHARLES E. WERTS
ROBERT L. LINN

Educational Teeing Service
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Werts St.Linn (1971) pointed out that Boyle (1970) had implicitly

assumed that the causative variables were measured Further

study of literature Cochran, 1968; Evans, 1970;iterature re. ating to this problem (e.

0
4

I

I

: ; --...__. .

Anderson; 1959) indiCates that the Wert.! s-ann procedure for dealing Withcategorical

errors of measurement is incorrect. The' purpose of this note is to set the

-. .

record straight.

As a,basis for generalization to palychotomous variables, first

consider the case of three independent fallible dichotomous measures X

(j = 1, 2, 3) of an underlying true dichotomy (T). The observed categories

will be labelled k = I, 2 and the true categories 2 = 1, 2. The relationship

between X, and T can be expressed as a function of -the conditional

probabilities 'P{X = kIT = 2}= 0
jk2j

for e
a
ch combination of k and.:

: P{X: =11T =1) = 0 P{X. =11T = 2} = 0
i12 '3 J

.,p{x- = 21T = 1} = 0' and.P{X = 21T = 2} = 0 .

i 1 , i i22

a

J
0.,

21
is commonly labelled the proportion orfalse negatives and 0 the

J12
7--

proportion of false positives. The sum of the conditional probabilities for

a fixed value of st is unity i.e., 0 + 0 = 1 and 0 + 0 = 1.
J11 i21 . i12 . J22

k k,

Pi':-:=

"

Define P = P{T = 2} and P ='P{X = k} where E PT) = 1 and E 1.

T
2.

j j Jk.

.
model parameters to be estimated are the conditional probabilities

r:

fitir each observed measure and the true proportions in each category. Since each

The research.reported.herein was performed pursuant to Grant No.
OEG-2-700033.(509) with the United States Department of Health, Education,
and Welfare and the Office of Education.
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object is categorized by each different measure the proportion of

'objects for each combination of observed categories can be computed.

Define P
jk,j'

= P{X = kl X = k', X " =-k"} where; if t
10,j"k

In the three measure case the observed data consist of eight joint

probabilities P11 ,21,31, r11;21,32, P11,22,31, P11,22,32, P12,21,31,

P12,21,32, P12,22,31, and P-12 ,22 ,32. The next step is to relate these

observed Probabilities to the model parameters. Starting with P11,21,31

we ohtain:

41 (P11,21,30 " P{X1 = 1, X2 = 1, X3 = 1, T = 1} + P{X1 = 1, X2 = 1, X3 = 1,T =2}

Exprebsed in terms If conditional probabilities the proportions are

Of

P{X1=1,X2=1,X3=1,T=1} = P{14=11X2=1,13=1,T=1}P{X2=11X3= 1,T=1}P{X3=217=1}P{T=1}1

06'
P{X1 i*1,X27.1,X3=1,T=2} = P{X1=11X2=1,X3=1,T=2}P{X2=1IX3 =1,T=2}P{X3=11T=2}P{T=2 }.

The assumption that the measures are independent implies that

P{X1 113(2 = 1, X3 = 1,*T

P{X2 = 1IX3 = 1, T = } = P{X2 ' lIT = 1) = 0211,

P{X1 = *2 = 1, X3 = 1, T '2} " P{XI lIT = 2} = 0112,

,P{X2 =1IX3 = 1,3 = 2} = P{X2 = lIT = 2} F 0212'

Thus, by substitution:

C.(P11,21,31) 7 eill 021.031 "T1 +.9112 0212 0312 13T--11, (1)

While this process could be repeated for each of the observed joint

probabilities,. for identification.purposes.it is better to.replace these by

= 1) = l!oci = lIT = =

and

the following set:

and
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P11,21 = P11,21,31 P11,21,32 ,

P11,31 = P11,21,31 47 P11,22,31 '

P21,31 = P11,21,31 12,21,31

Pll = P11,21,31 + P11,21,32 "I" P11422,31 P11,22,32

P21 = P11,21,31 P11,21,32 + P12,21,31 4" P12,21,32 , and

?-31 = P11,21,31 + P11,22,31 P12,21,31 + P1.2,22,31

Following the procedUre used for 11,21,31P it may be shown that:

E (P11,21) = 6111;6211 PT + 6112 6212 PT2,

6(1311,31) 6111 0311 PT1 + 6112 6312 P32$

6(1'21,31) = .6211 6311 .PT, 6212 6312 PT2,

er(P11) = 6111 PT, +.6112

g (P21) = 6211.PT1 "1" 6212

e (P31) = 6311. PT + 6312

P
T2

,

PT`
2

and.

PT,
.

2

(2)

(3)

(4)

(5)

(6)

(7)

Note that even though we started with eight joint probabilities, we have only

seven equations because of the condition that all the observed probabilities sum

to unity. If the model parameters are identifiable then it should be pOssible

to solve-these.equations for each parameter in terms ofothe expected

probabilities. For this purpose it is convenient to define:

Cjk,j vk 5 ) 6(p )t (P )jk,j'k jk j'k' '

`45'(Pjk,j110,fiku) I&(Pjk)i C.00,juku -[B(Pfkv)]Cjkale

[t(Pre)] Cjk,j1k1 '4;(13J

For the dichotomous case QT

we obtain:
1

6 (P. ) 6(P ), and Q = 1 - P
j "k" T T

.1'

. SOlving.equations 1 through 7 for PT

2' -2
Q - P
T1 T1

p
Ti

Q

C11,21,31

/C11,21 C11,31 C217,173.



Equation -(8) shows that P and P = 1 - P are identified. Further
T2T1

analysis yields:

and

0112 = (pil)
11,21 611,31

TI

621,31
QT1 :).

(9)
4"

0212
.

i/1

611,21 621,31
= Pyl,

) 611,31

/ .-

/

1611,31

621,31
0312 =E(P")

(QT,')PT1

611,21

) 01)

QT1

Since P and P
T2

are identified, equations (0),. (10),. and (11) shoir that
TI

6112, 6212, 0312 and therefore .0122 = 1 -3112, 0222, = 1.H 0212, and 0322: .=

1 - 0312 are identifiable. Given P
Ti P 6112,._ 0212, and,6312 identified,

' T2

.equations (5), (6), and (7) show. that Om' 6211 and and therefore

6121.= 1 0111, 0221, = 1 0211, and 0321 = 1 - 0311 are identifiable.

Since the model of seven equations 'in seven unknowns (i.e., just

identified), parameter estimates can be obtained which will exactly

reproduce the observed probabilities, i.e., the observed joint, probabilities

Would equal the, expected joint, probabilities estimated from the parameter

estimates. The above analysisshowsthat;the true proportions may be identified given
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.three independent dichotomous measures, a point which Werts & Linn (1971).

failed to discover. The right side numerator of equation (8) is the expected value

of the triple covariance between X1, X2, and X3; which is the crucial

piece of information neglected in the Werts-Linn path approach. Furthermore,

path analysis usually ignores variable means, which would result in neglect of

Ilk 64

equations (9), (10), and (11) which involve means (P ),
jk

Next consider the trichotomous case in which k = 1,2,3, 2.71,203 and j=1,2,3

given the assumption of independent measures. The relationship between the

j
th observed trichotomy and the true trichotomy involves nine conditional

:, * * * *
Probabilities: 0

j11
, 0

j12'
0
j21

and 6j22 as defined previously plus

i
P{X

i
'= lIT = 3) = 0 PfX

j
= 2IT'= 3) = 0*

13'
j23'

V *
P{Y = 3IT 1} = e

j31'
P{N = 3IT = 2) 7 e

j32'.
and P{X = 3IT = 3) = 0

33
* *

By definition: 0
j11'

0
j21'

+0j31 0
j12.

+ 0
j22

+ 0
j32

= 0
j13

+ 0
j23

+
j33

= 1.

Let K = total number of categories and J = total number of indpendent measures.

!The observed data consist of the Kj=27 joint triple probabilities Pik,210,3k",

one of which may be expressed as a function-of the other 26.

2 *
There are JK = 27 0

jkl'
JK of which can be stated as aifunction of the

*-
.others because for a fiXed I the 0

jk2,
sum to unity and K =3 P

T

one- of which it can be stated as 1 mintik the sum of the others...

4

;5,



Therefore there are a total of JK(K-1) + (K-1) = 20 incklpendent.parameters to be

estimated from the K 1 = 26 independent observed joint probabilities,

i.e., the model has six.overidentifying restrictions. This does not

necessarily mean that all parameters ate-identified-and-itcptintiple-the

expected value of each P
jk,j'k ,j"k"

should be derived as done previously

-and the equations solved for each parameter. Rather than attempt. this directly,

- .

it can be eeen.-'th if category three were collapsed into category 2 then
. ,

the analysis would be identical to that shownefor dichdtomoue variables.

The relationships would be (*refers to probibilities prior to collapsing categories):

12a

6J11 = 0
fll

12b

and .0 (1- =
9* * * *

j12
P
Ti

P +OP
j12 T2 j13 T3

12c

From our previous analysis we know that the parameters in.the right side

of equations 12a,b, & c can be identified from

P11,21,31 =.1311-'i21,31,

*
.P11,21,32 = P11,21,32 P11,21,33,

*
1,1,.22,31 = 1311 ;22014.1311 X23,31,

_ * -* . .

P11,22,32.= P11,22,32 4 P11,23,32 P11,22,33 4-41,23,33,

* * .

--

P12,21,31 = P12,21,31+ P13,2 31,

* * * 2-77:v\. *
+ P1,21,32

P12,21,32 = P12 32,4 P12,21 33 + P1j
,
21

,
3
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P12,22,31 = r
n
12,22,31 + P12,23,31 + P13,22,31 P13,23,31, and

P12,22,32 = P12,22 P12,22,33 + P12,23,32 + P12,23,33 P13,22,32 +

* * *
P13,22,33 + P13,23,32 + P13,23,33.

These eight Pik,j,k,,j"k" could be entered into the analysis shown for

dichotomies and the corresponding parameters in 12a,b, & c identified.

In a similar fashion if we collapse category 1 into 3 then:-

*
Pm Pm ,

12 J-2

0j22
6

j22 j22

and ej23 (1-1)
T2 ) j21 TI

+ bj23* PT3*

The right hand parameters in 12d,e, & f would be identi ed from:

71

i

P12,22,32

P12,22,3

P12,23,32

P12,23,33

P13,22,32

P13,22,33

P13,23,32

7..1312,22,3

= r1222P12-22,.91

*

= P12,23,32

*
= P12,23,33

*
= P13,22,32

= P13,22,33

*
= P13,23,32

+ r12,22,33,P12,22,33,

4. P12,21,32

*
+ r12,21 33

+ P11,22,32,

*44

+ P13,22,31

*
+ P13 21 32

, ,

*
+ r12,23,3

+ P11,22,33

*
+.P11,23,32

+ P12,21,31,

*
+ P11,22,31,

*
+ P11,21 32,..and

12d

12e

12f

'

P13,23,33
* *

=P13,23 33 + P13,23,31

P11.,,2301 + P11,21,33

*
+ P13,21,33

+ P1131

*:

+ P1.3,21,31
*

P11,23 33 + /

These eight Pjk,j,k,,juk" could likewise be entered into the analysis for

dichotomied7wete the'iWo categories are k =:2,-3 instead of 1C= 1;2 as
*. * *

shown in our original analysis. _,e can conclude that P . P .,,'and-P-
T1 ..,J2, T3



are identified from 12a,d.
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and elii, 0211, 0311, 0122, 0222, and 0322

from equations 12b,e . The remaining 12 parameters in equations 12c and f

have six conditions imposed by equations 12c,f 'so we need six more

equations for identification. The simplest set, which is independent of

information used in the dichotomdrus analyses is:

and

P11,22

*

=
* *

P11,22,31.+ P11,22,32

* ,*

+.P11,22,33,

,*
P11,3 = P11,21,32 4' rI1,22,32 + r11,23,32

.*
P12,21 = P12,21,31

,*
+ P12,21,32 + P12,21,33

P12,31 = P12,21,31 + PI2,22,31 + P12,23,31

fc

P21,32 = P11,21,32 + P12,21,32 + P1-3,21,32

* * * *

P22,31 = P1I,22,31 + P12,22,31 + P13,22,31

AppliCation of the procedure used to derive equation (1) yields:

*
.
c,-.11,22) = 01110221PT1 + 01120222PT2 + 01130223!T3,

cc
**

=
* * *

61103211'T1
* It' * *- * *

+ °110322PT2 4.e1103231'T3P
;0' 1 1 9

32)

* * * .* * * *. * *

g(P12,2).) = 6121e211PT1 + .e120212PT +0123020PT
3

2 ,

1* * ; * *

-4

ZT0112,31) = 61210311P.
r1

4-, 012.0312PT2 +,61230313PT3,
.....

* * * * * * * * * *
rs,(P21,32) = 02118321PTi + 02120322P +.0213 323PT3 P

and 6(P22.3
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Equations (13) in combination with previously identified parameters

and equations (11) and-(12c,f)identify the remaining parameters. Note

-that six equations have not been used, these representing the six degrees

of overidentification. 'The method which appears appropriate for estimating

parameters when the observed variables are independenepolychotomous

measures is discussed in Anderson (1959, sec. 3.6) and Cochran (1968,

sec. 6). In this procedure a chi square function.involving. the observed

and estimated expected joint probabilities is minimized as a function of

the model parameters. The resulting x with degrees of freedom equal to

the number of overidentifying restrictions,is a measure of, the titof

the model to,tNa data. Our analysis indicates that given three independent

polychotomies (K= 3) all model parameters are identifiable. The'number

of overidentifying restrictions is equal to (Kj 7.1) + 1)(K - 1)

whereJ'= the number of independent measures and K. =.the:-number of categories.

We may now consider exactly why the Werts -Linn analysis was

inappropriate to the 'problem.. For this purpose it is helpful to put the

conditional probabilities into matrix.form where columns refer to observed.

categories and rows td true categories:
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6
"t1

11

6
J11

*
012

e
j13

6/
j21

*
e
j'22

e
*

J23

031

*
032

e
*

J33

(14)

*
As noted 'earlier each row in 6 sums to unity. If the true categories 1,

2, and 3 actually form an ordered set of classifications such that category .

1 is "closer" to 2 than to 3 then we would expect that clasSificatOry errOrs

would-be more likely for neighboring categories, i.e., 6.

J12
>: 6 J13- and . .

* * .
. . . !

6
j32

> 0
31'

In contrast, if the true categories are basically unordered,
j

it would be more reasonable to expect the likelihood of misclassification

*
to be similar for any of the other classes, i.e., 6

J12
2'8

*

J13' 6 J2*1 1f6 *J23'
... _ .

* *
and 6 = 6

J33
In other words the probability of misclassification is a

function of the Underlying scale or "true" category in the case of ordered

categories and is not in the case of unordered Categories. Warts & Linn

implicitly assumed that the errors for one category were uncorrelated with

the underlying "true" dummy variable for the same and for other categories

which translated into the present framework corresponds to the analysis for

an unordered scale i.e., for an ordered scale the errors would be correlated

with the "true" dummy variables for other categories. It can be algebraically

Shown that theWerts-Linn procedure leads to incorrect formulae for the
-

expected. Value of the observed joint probabilities when the categories are
I

) I

ordered. nSince Boyle (1970) was examining the problem of ordered categories

(i.e., scales) the Werts-Linnapproach is not relevant to his problem..

80
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Another perspective on "Linear regression,. structural

relations, and measurement error.

Charles E: Werts, Robert L. Linn, and

Karl G. Areskog

Abstract

A stochastic disturbance term appeare to be essential for structural

models in the social sciences. The analysis of such models is considered

from the perspective of Jgreskog's (1970) general model for the analysis

of covariance structure.
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Another perspective on "Linear regression, structural relations, and

measurement error."

Charles E. Werts, Robert L. Linn, and

Karl G. Joreskog t

Isaac (1970) has performed a useful service in dispelling the common

Misconception that parameters estimated in a regression analysis are necessarily

those involved in a structural relation. Researchers who "Would use the formulae

supplied by Isaac should be warned, however, that these apply to a model which

is seldom, if ever, relevant.. Johnston (1963, pg. 148) notes that this model

"hardly seems. appropri ate for econometric work, since, if it were true, the

only reason for points not lying exactly' on a straight line would be errors of

observation. A-stochastic component of behavior would seem an essential in

economics . " This, comment applies equally to psychology) in Vich _the usual

type of relationship- is like that between fathers and sons height, where even

if there were no errors of measurement the cor lation would be less than

perfect. Adding a stochastic disturbanctterm, p , the model becomes Y = a + gx +

Rather than review the. analysis of this model, which is covered by Johnston

.,.(1963; Chap. 6), we propose to consider the probleM from the 'perspective of

Joreskog's (19.70) general model- for the..analysis of covariance structures.

Joreskog '11970 pg 239) .considers

a daf, ,:iatrix X = .v2 a. of X obseiN'al ions on p response .variable.8 and the

following mOdel. flows..of ,X are independently distributed, each-having a
norinal distribution With the same variance- covariance matrix E of the form

E B(AcI,A1:-0112)B1+ 02,-
. ,

where A {aj. is.hn X x g matrix offrank g and P {pi,} is,a h x T., inatrik,of rank h, both

being fied.rnatrkes with f X'and = (g,1};. i3 = ffiii,),,A.= 0/.;,}; tlie,synimetrie

matrix .4:0.'4 diatronid Inatrices. (Ski';ii) and p - ";t>;jf)) }:aro parameter:.
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Means, variances and covariances are
structured in terms of the parameters

in B, A. cll. IF and 0
which may be (a) "fixed" parameters

that have been assigned given values, (b) "constrained" parameters that are

unknown but equal to one or more other parameters, and (c) "free" parameters

that are unknown and unconstrained.

For analytical
purposes.let us start with a stochastic disturbance term

and errors-of measurement as given by Isaac (1970, pg. 214). In this model

the observed
variables (lower case

letters) are x = X+ e and y = a + 0 X'+

p + e In this problem the question of means is not important (since a

can be estimated from the 8 estimate, a = y - a )0 and we may proceed by

considering the structure of the variance-covariance
matrix of the observed

variables. The observed vector is (y, x), the factors are. (X, p, c,,, ),

B is.an identity matrix, T and 0 = 0,

1 1 o

A 1 0 0

7e-r2 0 0
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Since there are 2 x 3 -; 2 distinct elements in E and five free parameters,

this model is underidentified by 2 restrictions (d.f. = 3-5). If the error

variances' andIV1
x
were known apriori (possibly computed from known

reliabilities for measures), then the model would be just identified and the

associated computer program (Areskog, Gruvaes, and von Thillo, 1970) could

be used to obtain maximum likelihood.estimates of parameters. Because'

the model is just identified, the estimated elements of E would exactly

equal corresponding elements in the observed variance-covariance matrix.

Isaac's model involves the deletion of p, i.e., the second column in. A and

0 , in which case there are still 3 distinct elements in E but the number

r 2 2 2

of free parameters has been reduced to four (0, cc , 67 , T
ex
) so that

,

C
Y

only one additio assumption is needed for, identification. If as in

2 ,

Isaac's cas ,
c

is known, then' all parameters are identified. When

A
.theratio of .the error variances X is known (Isaac's case #3) then 7 and 0 = 0

as before, but now:

1 0

0
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This model has two elements in 4) constrained to be equal and two free parameters

1
(since V--is' "fixed") and the model is just identified. Isaac's fourth case,

. -2 2

in whichT and are both known, is of interest because when these are
e e
x

inserted in 4) the model has one overldentifying restriction. Assuming that the

observed distributions are normal, a chi-square with one degree of freedom is

generated which tests the fit of the model to the data. In general, Isaacs

equation (3) is not the maximum likelihood solution for this ovexidentified

model; this difference arising because equation (3) uses only. the ratio of

the error variances, neglecting the absolute values.

-.'k

-Because most effects have multiple causes, it is of interest to consider

the case of an exact functional model in whiCh there are only three variables

X,Y; and Z and causation may occur in any direction. With any variable held

constant the true correlation between the other two is perfect, i.e., the

true partial correlation between any two variables with the third controlled-',t

is unity.' However, the partial correlation is equal to the product of the

two corresponding partial regfession weights, e.g:, PXY.Z 13YX.Z
1.0

in this model. Therefore, the partial regression 'yeight in one direction is the

inverse of that in the opposite direction with the same variable controlldd,

fl = lig.7 . In the model Y .--,a + ..X.71- ,te_.., the stochastic term
XY.Z A .,

. .

represents the effects of.all other influences. which are assumed. to be independent

of. X. The partial



the reciprocal relationship ,gxyri_ = 1/
YX.At

stochastic disturbance term model. Since, is independent of

holds in the

1
but of course since/c is not

Y on X.

X ' YXye.t. YX

independent of Y this relationship holds only for

A variety of other solutions to the identification .problem may be used

instead of or in combination with thos discussed by Isaac. For example, if a

"congeneric" mcasure (Joresko'g, 1970, sec.

were

X

2.2) x
1
of X (x

1
= /6' X e"x )

x X :'
1 1

added to the model with the stochasti.c disturbance term, then ,, g
X '

1

cr62x

, and the sum of + vc- would be identified. The-

classic psychometric assumption of equal reliability means that the error

variances are proportional to the

and y were equal then X ='cr-r.
2

/

assumption in. combination with the

true variance, e.g., if the reliability of x

2 21"
This equal reliability

(x
/ Crx.; -

congeneric measure_of X would identify
2

andgye P2 se arately. i2.
n

1

principle, this congeneric measure serves much the

.1

same purpose as the pconometrician's use of an "instrumental variable"

(Johnston, 1963, sec. 6.5) i.e. , a, variable which is independent of the

measurement errors 0" and 6 . For example, if an instrumental variable z

were available for Isaac's model, the observed vector would be. (y, x, z), the

factors are .(X, Z, ,

Y Ex)'
B' an identity matrix, `Is and 0= 0,

1

1

is
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41

and 4)

C XZ

XZ

Z

-6-

---

0 0
2
EY 0

0 0 0
ex

For convenience a factor Z has been defined identical to z (i.e.,z = q;)

however we could have considered the model ,z = Z + h which' would have

identified the parameters, <2 'T-2 V-- 2. and C but not cr2 and .
' X' Ey' Ex' XZ Z z

f f
t

Joreskog's general model thus allows the analyst considerable flexibility in his

choice of econometric and/or psychometric procedures for dealing with errors_of

measurement.

In summary, we recommend use of Jereskog. s general model because: (a)

It is.unnecessary to have estimating foryulae for each special case, especially

:.

since such formulae do not apply to overidentified models. (b) Attention is

focussed on .the problem of identification which is prerequisite to any understanding

of the results. (c) Given multivariate normality 'of observed variables,, a chi-

squared goodness of fit test is available. If. for example in Isaac's ca-se #4

we

X

wished to test the hypothesis that was 'a given value, then the increase in

(with one degree of freedom) resulting from changing,1.? to a fixed parameter,

used singly or in combination, .so that whatever information is available,may

a test of the tenability.. of thi7s hypothesis. (d) A variety of assumptions. may
I. -I

incorporated,, hopefully achieving an overidentified model which can-be tested
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Footnote

A
1The estimating formula for 4 in case #3, given by equation (3) in

Isaac (1970, pg. 215) has a x left out of the denominator. Kendall and Stuart (1961)

recommend that the positive root be used. Johnston (1963, pg. 154), however,

recommends that the positive root should be used when coy (x,y) is positive

and the negative root when Cov(x,y) is negative.

it.
The research reported herein was performed pursuant to Grant Noo,,,...OEG-2-700033(509) with the United States. Department of Health, Education,

4;'
I
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A CONGENERIC MODEL FOR PLATONIC TRUE SCORES

Charles E. Werts) Robert L. Linn, and Karl J8reskog

Abstract

To resolve a recent controversy between Klein and Cleary and Levy,

a model for dichotomous congeneric items is presented which has mean

errors of zero, dichotomous true scores that are uncorrelated with errors,

and errors that are mutually uncorrelated.



A CONGENERIC MODELJOR PLATONIC TRUE SCORES
1

Charles E. Werts, Robert L. Linn, and Karl J8reskog

In a discussion of platonic true scores, Klein and Cleary (1967) state

that_the use of platonic true scores makes the assumptions of classical test

theory generally untenable. They illustrate their argument with dichotomous

items and a dichotomous true score and show that: "The classical test

2 2
theory formulation a

X
= aT

2
+ a.E , can only be true if the mean error is

not zero" (Klein & Cleary, 1967, p. 78). This statement is based on the

following definitions of observed (X), true (T), and error ,(E) scores:

(1 if phenomenon is present
T =

tO if phenomenon is absent

4
it

(1 if pllenothenon is rated ks present

X,N! ,

( 0 if phenomenon is rated as absent

, I
, .

and E=X7T. Klein :and CleAry go .onto consideritwo parallel dichotomous

items, X
1

and-21
2

, and shoW that the ,lovariance between E1
and E is

- 2-

positive when the errors, E
1

an E
2

have zero means. With correlated

error scores, the correlation between two parallel items overestimates the

item reliabilities. In response,' Levy. (1969) argued that the classical

assumptions can be shown to holdjor. a dichotomous item if

a if phenomenon is rated as present

b iif phenomenon is rated, as absent j

scores (T) are defined as above and E=XrT aS before. This, modifi-

ipion will indeced make it possible for the error to be zero and the'

covariance between

Thowever.'levy-does

to be.zero. As Klein and Cleary (1969 ). _note,

provide a Means of 'solving for "a" ..and" "b"



knowledge of T . In any practical application, T would be unknown and

therefore "a" and "b" would be unknown. Also, no way of obtaining item

reliabilities is presented. The-purpose of this paper is to provide an

alternative formulation which allows for the model' parameters to be deter-

mined given the structural specification of zero mean error and no corre-

lation among errors for different items or between errors and true scores.

Our approach is drawn from latent structure analysis

the special case of dichotomous latent variables.

(Anderson, 1959) for

. I. A Congeneric Model for Dichotomous Items

The equation for congeneric-tests is given by,J8reskog (1968, 1970,

dl

1971) as

= B . +
3.3 Eii

where.T.is the true score for person i

is the observed .score on item. j for person i

B
OT

is the slope of the X on Ti regression line,
.

ij .

is the:intercept of thisregresSionline and10

E. is the error. for person- i on item 0

To illustrate the application of this definition to the case in whichrx.

--andT.are both dichotomoUS (scored 1 '0), consider the case of three

items, Oich'is the minimum number of items required.to identify model
.

parameters uniquely, given experimentally,independent measures. The

43?

equations are
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where the E 's are mutually uncorrelated and are uncorrelated with T .

2

In the case of dichotomous variables

and

P(X. = 1, T = 1) - P(X. = 1)P(T =
B
jT

= ___J
P(T = 1 P(T = 0)

- P(X. = 11T = 1) - P(X. = 11T = 0

Ij = Pbc = B. P(T = 1) = P(x. = 11T = 0) .

JT 0

This model is somewhat more complicated than tie Model considered by

Klein and Cleary (1967) where X = T + E with X , T , and E all taking

values of 0 or 1. In essence, the 'congeneric model is equivalent to the

model suggested by Levy (1969) if his "a" and "b" are allowed to vary

from item to item. For a given item, " .." would equal I.)/B.
J jT

"b." would equal -Ij /B.
jT

, and Levy's error would equal, the error of

equations 1, 2,, or 3 divided by BiT . To illustrate the, point that the

congeneric model does allow for the traditional psychometric assumptions

in the dichotomous case; consider the following example constructed using
1

the equations provided by-Anderson (1959, sec. 2.4).

1. The 0. (proportion of false negatives P(Xj = OIT =

P(Xj = 0,T = 1) P
T

), 0.. (proportlon of false positives, i.e.,
j

P(X =11T = 0) = P(X.
J

= 1,T = 0) -:- (1 - PT)) and. P
T

(the true pro-

'2 portion P(T = ) )are given as:

0 = .40

0
2

= .50 ,

and

= .10,

= 3Q

The expected marginal distributions CP. = Prob (X. =
J



f

3. The expected joint probabilities for pairs of items,
Piit

Prob (Xj = 1, Xj, = 1) = (1 - 0j)(1 - 0j,)PT +f0j0j,QT (j j') are:

P12
.272 , P13 = .390 , and P23 = .384.

4. The expected joint probability for three items, P =

Prob (x. = 1, Xj ,= 1, x.,, = 1) = (1 9.)(1 0J1 )(1 -
.

0. ,)P
T

+ 0.0j,0
J

(..( .V!) is P123 = .2328 .

5. The regression weights (B.t = 1 - O.
J

- 0.
J

) are B
1T

= .60

= .10 , and B
3T

= .60 .

s

.

6. The intercepts ( I . = P .
!

-
1 jT
B P

T
=0

j
) are I

1
= .10 , I

2
,= .50 I-

s

and 13 = .30 . The .possible events tor combinations of the three items and

the proportion of people in each-event are shown in Table 1. The means of

the errors are zero, the true score is uncorrelated with the errors and the

errors are uncori.elated with each other.

Insert Table about here

0

II.- Identification

In an actual problem the situation would be reversed from the example

shown in section I, i.e., the probabilities P1, P2,
P3, P12' P13' 1723'

and P
123

correspond to 'observed scores, and it would be desirable\.to

identify the seven parameters, 06,0,0,0,'.0, and P . In
\ 1

,

2_ 3_ 1 ,2 , 3 T

principle, one could solve the seven equations for this purpose:

= (I -
91)31-P'4. (1)19T"..

e2117T
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12
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3
= (1

D
23'

= (1

P
123

= (1
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- el) i - e
2
)P
T + (1)1°2 T ) (2-ds.):-----..

-. e
1
)(1 - e

3
)P
T
+

(1)103QT
) (2e)

- e
2
)(1 - 6

3
)P
T
+
0203QT ) (2f)

- e
1
)(1 - e

2
)(1 - e

3
)P

T
+ 0

1
0
2
0 Q,
3 i

(2g)

The solution to these equations is facilitated by noting that in the congeneric

model the expected covariance (C..JJ,) between two items is given by

C..JJ , = BJ B., V ,

T T T

where VT is the variance of T . Translating into probabilities:

(p.., - Phi.,) = (1 - - j)(1 - ei, - oi,)PT4 (3)JJ

This means that

C12 P12 P1P2 (1 el 411)(1 62 4)2)PTQT

c
13

= P13 - P
1
P3 = -

81
- 0

1
)(1 - 63

4)3)PlAr

c
23

= P
23

P
2
P
3
= (1 T 82 0

2
)(1 e

3
03)PlAr

These .equations can be solved for

6

C
12

C13

C23=
23

PTQT. 1

C C
(1' )2

'q'

12 23 B2
2' iT Q13' 2T r`T '

)2 Cl3C23
2

C12
-

. 97

(4a)

(1,.b)

(4c)

(5a)

(5b)

(5c)
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The triple covariance C.23 is defined (Boudon, 1968, p. 226) as the
expectation of the prbducti of the deviations of all three variables
simultaneously, which is equal in the dichotomous case to C123 =

P123
P1(P23 P2P3) P2(P13 P1P3) P3(P12 P1P2) P1P2P3

Using equations (2a, b, c, d, e, f) equation (6) may be translated to
n (n2 2

C123. B1TB2T183TPT'T''T PT) and from equations (5a, b, we obtain

Nic c c _. -12 13 23(oC
123

=

Applying these equations to our example,

rkCompute covariances by equations (4a, b, c):

C
12 = .0141v, C

13 = .0864 , and C
23 = .0144.

2.Usingequation(6) compute01237.001728 .

3. From equation (7),

It-

0123
(0e -

04082 7r

12 13 23

Solving for PT = 1 - QT we obtain PT = .60

(6)

(7)

5. From equations (5a, b, c) and substituting.n this value of P
T '

.60

= .10 ,

B 3T=
.60 .

6. .It tli.h-lL shown (equations: 2a, b, c) that 0i = Pi - BjTPT per-...

mdtting calculation of 0 = I
i

:

i

408



,

;;

_7_

I
1
= 01 = .10 ,

12 =

I
3

=

0
2

0
3

=

=

.50 ,

.30 .

7. Since ej = - B. - 0j ,

(91 = .30 ,

'V
e
2

= .4o ,

8
3

= .

8. Item reliabilities R are Rii = B2 ilPIQT/P;Qj , i.e.,

R11= .3478 ,

,

tIrk

In the case of three congeneric items the model parameters are just

identified, i.e., there are seven equations in seven unknowns, which is the

R
22

= .0097 ,

R33 = .385o .

reason that the parameters may be obtained as an exact function of the

observed probabilities. In the case of overidentified models one of the

estimating procedures discussed by Anderson (1959) can be used. One

procedure minimizes ' a X2 function of the observed probabilities (P0) and

the expected probabilities (PE) generated as a function of the parameter

estimates (Cochran, 1968; Mote & Anderson, 1965). In the general case of

items there will be (2J
- 1) independent observed probabilities in the

cross-tabulation table from Which (2J + 1) parameters are to be estimated.

In the special case of two items of equal accuracy the reliability is the

correlation between these items,but the model pezzameters cannot be identified

.")



(Cochran, 1968, sec. 6) since

i.e., there are only two

4 parameters (e,0,pT) .

P
E
(X

1
= 1, X

2
= 0) PE(Xl = 0

'

X
2

= 1)

independent probabilities to estimate three

Variations

It is sometimes the case that three items with errors that are uncorre-

labed with true scores or errors of other items are available but one of

these measures another variable, i.e.,

= B1T1 + + El
'

X2 = B2T1 + I2 + E2
'

X. =BT+I+E.
5 3 2 3 3

(8)

In econometrics X
3

is called an "instrumental" variable (Johnston, 1963,

X
3

p. 165). The equation for can be transformed into

where

333

* *X =BT +I +E
3. 3 1 3 3

B3 = BT
2
T
1

B3

is identified but and
2 1

variables, therefore, the true proportion P
T
1

in section II by treating X3 as a congeneric

,

B
3

= (1 - e
3 3

0 )(1 - e
T

0T ,where 0T

BT T
B

3
are not.

(8a)

In the case of dichotomous

may be estimated as shown

measure of T
1

and

=P(122 = 1) and=
1--

et)

T
= Pill

2
= 1(T

1
= 0) . The yalidity of such an analysis

'1

the correctness of the independence assumption.

is dependent on

The above analysis can be extended to the case of four items with

mutually uncorrelated errors and no correlation between error and true

scores, two of each measuring different variables:
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Xi = B1T1 + Il + El
'

X2 =. B2T1 + I
2

+ E
2 '

(9)
X =BT + I + E
3 3 2 3 3

x4 = B4T2 + 13 + E3

Following the above line of reasoning all parameters in this model (PT ,

1
P(T1 = 1,T2 = 1), PT, e1, e2, e3, (94, ol, 412, o3 ; and 0h) may be

2
identified. There are 15 independent proportions in the cross-tabUlation

table, so that the minimized ,X
2'

would have four degrees of freedom. In

principle, a measure of the tenability of certain assumptions is obtained

from changes in the X
2

. For example, if it were desired to test the

hypothesis :,t-,l-mt X1 and X
2

were of equal accuracy, incresces in the

total )e. (with two degrees of freedom), resulting from setting e
1

= e
2

and 0
1

= 0
2

, would be an indicator of the tenability of this hypothesis.

",-;17.1

I
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Footnotes

1
The research reported herein was performed pursuant to Grant No.

OEG-2-700033(509) with the United States Department .of Health, Education,

and Welfare and the Office of Education.

2
The true scores are not independent of the error scores or errors of

each other, as 'is assumed :In Anderson's (1959) derivations; however, for

our purposes the assumption that these variables are uncorrelated yields

the same formulas,



Table 1

Possible Events for Three Congeneric Dichotomous Items

Proportion
of People X1 X2 X

3
E
1

E, E
3

.2268 1 1 1 1 .3 .4 .1-----

.0252 1 1 1 0 .3 .4 -.9

.1512 1 1 0 1 .3 -.6 .1

.0168 1 1 0 0 .3 .6 -.9

.0972 1 0 1 1 -.7 .4 .1

.0108 1 0 1 0 -.7 .4 -.9

.0648 1 0 0 1 -.7 -.6 .1

.0072 1 0 0 0 -.7 -.6 -.9

.0060 0 1 1 1 .9' .5 .7.

.014o 0 1 1 0 .9 .5 -.3

.0060 0 1 0 1 .9 -.5 .7

.0140 0 1 0 0 ,9 -.5 -.3

.0540 0 0 1 1 -.1 .5 .7

.1260 0 0 1 0 -.1 .5 -.3

.0540 0 0 0 1 -.1 -.5 .7

.1260 0 0 0 0 -.1 -.5 -.3



Estimating True Scores and True Group Means

From Multiple Independent Measures

Charles E. Werts and Robert L. Linn

Abstract

Given multiple independent measures of an underlying true factor

and information on group membership' it is possible to compute a set of

observed group means for each measure. Given a. least three tests,
'i

these sets o means may be used to compute the reliability of the means

for each teS-. The procedure for estimating true scores from the

reliabilities of the individual tests and the group means is derived.
,---

.
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Estimating True Scores and True Croup Means

From Multiple Independent Measures
1

Charles E. Werts and Robert L. Linn

The classical approach to estimating true scores giVen group membership

information is to use the formula

A

Tij .. = Rj R (X. - R.)XX 1 j

A

where T. is the estimated true score,
ij

1. is the observed mean of group j

R
xx

is the test reliability, assumed homogeneous

across groups,
.4

X:ij is the observed score.for person i in group j .

If two parallel tests were available the reliability could be computed as the

correlation between tests, however, two sets of observed individual, values and

group means would be observed. The estimation problem is to use both sets

of data to obtain a better true score estimate than could be obtained from either.

ti

The general; problem of using group information tc estimate true scores

given multiple measures will be considered in this paper.

For illustrative purposes consider the case where congeneric

measures of an underlying true score factor are available. Congenerick1jmeasures ( Xij ) are related to the true score (-T. ):

1
The research reported herein was performed pursuant to Grant No. CEG

1-6 -061830-0650 Project No. 6-1830 with the Office df Education, U. S.
Department of Health, Education and Welfare.

t
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Xijk Bk + Mk 4

where Xijk is theobsery i value on person i in group j for

test k

Tij isrtid-tnderlying true factor, C

B
k

is the slope of the kth test on Tij

(2)

M
k

is the intercept. of the regression line of the k
th

test

scores on the true score,

e
ijk

are error components for

zero mean for all levels

individual i on test k with

of .Tij

Equation (2) shows that congeneric tests may differ in units of measurement,

reliability and mean, but that they all load on the same'underlying factor.

Three tests is the minimum number needed to solve for the reliability of each

test (Lord & Novick, 1968, equation 9.12.4). The group means may be obtained

for each test and from equation (2) it follows that:

= B T + + ;
jk j jk (.3)

where RI'
jk

is the observed group mean for group j on test k and

T. is the group mean on the true score.

For a given test it-is useful to derive the condition under which the

observed group means do not help to estimate the true score. In the predic-!-ton

equation for the true score, Tij = BtXijk + B"Rjk + eljk ,the condition that

the group means do nct help is-that B" = 0 . By definition:

B" =

V C - -C-
Xk T Xk T Xk X. A

k



where V
Xk

is the variance of X
ijk

k

V-
X

is the variance cf Rjk

CTX Rjk
k

- is the covariance of Tip and

Cmx
is the covariance ofT.. and X.. , and

CxRk is the covarianc-NAJaltrand Xijk .

It follows that B" = 0 implies Vx CTR
.

= CTx, Cx R . Since it can be shown
k .k k k k

that CTX - = C-- and C - = V-
X'

, B" - 0 means that C-- /V- = C /V or
TX

k
X
k k k

TX
k

X
k

TX
k

X
r

k

B- = B . We know, however, that B- - = B = B therefore:BT- BTX
XkT X

k
T k

B-r. B- - = B B
TA XkT TXk X

k X
T or R- - = R

X
2

kT ,T where R__
.X
k
T is the

reliability of test k .

In other words for a given test, the observed group means will not improve

the predictiGn of the true score when. the reliability o2 the means equals the

reliability of the individual scores for each tBst. Since it is generally'

found that group means have a higher reliability than the individual scores,

knowledge of group .weans can usually be expected td improve the estimation

of true scores.

OurgeneralstrategyforestimatingthetruescoreTijwill be to derive

expressions. for the correlation of the true score with each set of the observed

. individual test scores and of each set of observed group means. These

correlations and the set of correlations among the observed variables

(and I(
jk

) then permi us to Solve for the standardized partialXijk

regression weights for predicting T.. .from the'observed variables. The
2.0

correlation of R. 'with Ti (R= ) can be derived:
jk j

$,



a. From equations and (j) it follows that

CTR = B C-k TT '

where Cift, is the covariance of T. and T...

b. Since C-. =V (the weighted variance of the means)
T

TXk k T

B V-
T

RTICk -------

V
T

V-
Afik vTt7-

X
k ITT

C. By definition Bk = RTxk V VTXk

therefore: V-
T

V
T

d. By substitution

(fik)

2

Rink
RTXk

Ank

cxk

= Rfilk V5-c V-
T

k

ry
k

V
XkV

(14)

Since the standard deviations of the means ([ ) and of the individual

values (.; V ) can be computed directly from the data, the correlation ofX
k

the observed group means for test k with the true score can be computed from

the reliabilities for the means (RT2
2
) and the individual scores (RTy ).

, 2

. 1C9



Since equation (2) is a factor analytic model with one common factor

T. and equation (3) a factor model with the common factor T, the
ij

reliabilities%.correspond to the square of the corresponding (standardized)

factor loading. Joreskog (19690 discusses the factor analysis of congeneric

measures in considerable detail. With more than three measures the model

can be tested to see how etnsistent the congeneric assumption is with the

data. Stronger assumptions about the tests (e.g., equivalency) can be

readily incorporated into the analysis.

In summary then\-th computational procedure involves:

1. Calculation of the group means for each of the k tests,

2. Creation of a new set of k variables by assigning to each

individual the mean of his group on each of the k tests,

3. Intercorrelation of all 2 k variables and computation of

standard deviations.

4. Factor analysis of the k sets of test scores using as input the

correlations among those tests from step 3. If Joreskogts (1969a) confirmatory

factor analysis procedure is used for this purpose a chi-squared gOodness of

fit measure will toobtained along with maximum likelihood estimates of the

factor loadings (which are squared to obtain reliability estimates for that

test).

5. Factor analysis of the k sets of group means using as input

the correlations among those tests from step 3. If desired, factor score

estimates of the true group means may be obtained.

6. Tha correlations of the k scts.of group means with the true

score can be computed from equation.(4) where RT.. is the factor loading for

test k computed in step 4, Rp. is the factor loading for test k group means

computed in step 5, "cis the standard deviation of the indiVidual'scores

110
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on test k computed in step (3) and 5---is the standard deviation of the

group means on test k computed in step (3).

7. The next step is computation of the standardized regression

weights for predicting the true score from the 2 k observed variables. The

correlations among the observed variables from step (3), the correlations

of the k sets of test scores with the true score are the factor loadings from

step (4), and the correlations of the k sets of group means from step (6)

may be used in the "normal equations" to solve for the desired regression

weights (Walker & Lev, 1953, pgs. 324-336). These weights could in turn be

used to estimate a standardized true score for each individual from his

observed test scores and group mean on each of the tests.

Variations

The above procedure requires that the means for each group on each test

be computed and that these mean values be assigned to individuals so that a

set of variables is created which may be intercorrelated. The advantage of

this approach is that the reliabilities of the means may be computed for

each test and the true group means estimated as factor scores. Instead of

this analysis a factor analytic model might be postulated to account for all

the correlations among the 2 k observed (Xijk and Xjk) variables. This

model would have:

1. A total of (2k + 2) factors including T. T.
J

and a

residual factor for each of the observed 2k variables.

2. All residual factors involving different tests would be

assumed independent corresponding to the congeneric assumption, whereas

each pair of residuals corjzsponding to the same, test data would be

nonindependent (because the group means are computed from the individual

scores for a given test).

1.11

1
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.3.Eachoftheldouldload.onT.and each of the R wouldXijk
ij

.

loadon11.0Tijandll.l.muld be nonindependent, their correlation being

equal to the true correlation ratio.

4. Because reliabilities are desired the correlation matrix would

bethebasicingutdataandtherarianceofT.a.nd T. would be set equal to.
.J

unity.

5. This factor model would have a vector of order 2 k of observed

scores and a vector of order 2 k + 2 factors and no vector cf unique scores.

Mhen k 3 the model is overidentified and Joreskogfs (1969c) confirmatory

factor analysis program could be used for estimation purposes. The program

would estimate the factor loadings, the error variances, and error covariances

among nonindependent residuals.

6. if .the analysis were repeated specifying that for each test the

loading of X.. on T were equal to the loading of R on T. , then a test..
ilk jk J

of the assumption that for each test the reliability of the means equalled

that of the individual scores would be the change in the chi-squared with k

degrees of freedom.

In the event that it is desired only to improve the estimation of the

overall true scores using group information a more direct approach may be

taken by coding the group information as a set of dummy variables (Bj).

The mbdel for this analysis given three congeneric tests is depicted in

Figure 2:

112
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eijl

Figure 2. Estimating true scores with dummy variables.

The covariance between the dummy variables and an observed set of test
ft

scores will be a function of true mean differences between groups and the

reliability of the means for that test. In essence, the dummy variables

add information about the true group means to the estimation of Tij .

Since the last dungy variable is perfectly predictable from the other dummy

variables it may be deleted from the computations. Since the dummy variables

.i13

r
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in part represent overlapping information about group memberstdp.(e.g.,

a person in one group is not in the next group) the residuals are shown as

correlated in Figure 2. The factors are now (T

e2 es(j_1) and the observed vector (Xiji

5 e ijl eij2 eij3 esi 1

The hypothesized factor loading matrix is:

Xij2 Xij3
'

g 000g
1 ' 2

B
1

B
2

B
3

B
sl

B
s2

1 0 0 0 0..,.0

0 1 0 0 0....0

0 0 1 0 0....0

0 0 0 1 0.

0 0 0 0 1....0

. .

.0 I

L--
The hypothesized variance-oovariance matrix of the factors is:

0 0 0

=110

1

0
eij1

0 0 Ve2

0 0 0
e..
113

0 0 0 0 V el

Symmetric

0 0 0 0 c
e e

V
e

. 1 2
: :2
is

0 0 0 0 Cee .C.
d

...V
. e."

. 114
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This approach becomes computationally awkward when the number of groups

becomes large, in which case it may prove easier to first compute the

means and proceed as shown in the previous section.

In passing, the relationships with a one way analysis of variance with

a fallible dependent variable might be noted. The problem in that case would

be whether the true means differed from one treatment group to the next, i.e.,

whether VT - ,;p. O. In the model used above to test for equal reliabilities this

would correspond to the hypothesis that,TT
- 0 since this correlation is the=

correlation ratio, i.e., Ail = VT . To test the hypothesis the

analysis caula be rerun with,TT a "fixed" parameter set = 0 and the

difference in chi squared Values (one degree of freedom) would be the

appropriate significance test. One might consider using the congeneric

model for the analysis of variance where the treatment effects are measured

in terms of several symptoms rhich presumably reflect some underlying process

which is not directly measured. Providing that the errors of measurement.between

symptoms are independent and .the bylvtoms are ainearily related to the under-

lying process; the congeneric model might proVide a morelklid test of the

hypothesis.

cvs
3/10/70
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ERRORS OF INFERENCE DUE TO ERRORS OF MEASUREMENT

Robert L. Linn and Charles E. Werts

A

Educational Tbsting Service

Abstract

Failure to consider errors of measurement when using partial correla-

tion or analysis of covariance techniques can result in erroneous conclu-

sions. Certain aspects of this problem are discussed and particular

attention is given to issues raised in a recent article by Brewer, Campbell,

and Crano.
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ERRORS OF INFERENCE DUE TO ERRORS OF MEASUREMENT1'2

Robert L. Linn and Charles E. Werts

Educational Testing Service

Brewer, Campbell, and Crano (1970) have justifiably criticized the use

of partial correlation procedures in hypothesis testing research where errors

of measurement are not taken into consideration. Ignoring measurement errors

is much more serious w en dealing with partial correlations than when dealing. .

with simple zeroOrder correlations. In the latter case we know that the

effect of errors of measurement, that are mutually uncorrelated and uncorrc-

lated with true'scores, is to reduce the absolute value of the zero-order

correlation between the fallible measures. As Lord (1965) has pointed out,

however, we cannot ordinarily know the effect of such errors of measurement

on a partial correlation. Errors of measurement can increase or decrease

the magnitude of a partial correlation and may even result in a partial corre-

lationof a different sign.

As an alternative, Brewer et al. (1970) have suggested that factor

analytic techniques be used to test a single-factor model before drawing

conclusions about the nature of underlying conceptual variables. The pur-

pose of the present paper is to reconsider the issues raised by these authors

and the reasoning that led to their conclusions. Attention also will be

given to some related arguments that were made in a recent attack on some

commonly used methods for the evaluation of compensatory educational programs

(Campbell & Erlebacher, 1970). Our thesis is that the basic problem is a

lack of relevant information--a problem that cannot be resolved by the choice

of a statistical procedure.

118
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Relationship between Factor and Partial Correlation Analyses

1

Ignoring errors of measurement, the relationship between the loadings on

a single common factor and the partial correlations in the ease of three

variables is straightforward. The squared factor loadings on a single common

factor can be expressed:

Aid..P.

Pjk
(1)

for iljlk = 1,2,3.; i ? j / k , where ai is the factor loading on the

single common factor for variable i and the p 's are the intercorrelations

among the variables, i,j,k . When pjk = 0 , 4 is undefined. Assuming

none of the three zero-order
correlationsequal zero, the squared factor load-

ing can beyritten as a function of the partial correlation, pjk.i

where

C =

a
2

= 1 - C
Pjk.i '

)71-- pi j pik

Pjk

(2)

Provided that C is positive, it may be seen from (2) that when pjk.i = 0 ,

a. = 1.0 and when p. < 0 , a.
2

> 1.0 .jk.i

Frederic Lord (personal communication) suggested that the relationship

between the factor and partial correlation analyses could be clarified by an

exampl such as the one depicted in Figure 1. Given AX = .50 , the

possible values of
PX X

and are contained in the ellipse in Figure 1.-1 3 .x2X3
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Regions of the figure that contain negative partial correlations are indicated.

Factor loadings are denoted by ai and regions that contain imaginary load-

ings or squared loadings greater than 1.0 are indicated.

Insert Figure 1 about here

On line segment ac P23.1
0 and al = 1.0 , on line segment bd

P13.2 = 0 and a2 = 1.0 , and on line segments aeb and cfd o-12.3 0 and

a
3

1.0 . Imaginary values of the a 's occur when one of the three zero-

order correlations is negative while the other two are positive.

Bias in Partial Correlation

Brewer et al. (1970) argue that errors of measurement introduce a

". .

systematic bias into partial correlations. Mor.! specifically, they state:

. the assumption is made that the variable being oartialled out contains

no unique components and. is measured without error. Using partialling tech-

niques when these assumptions are not met introduces systematicjaas toward

the unparsimonious conclusion that more conceptual factors are involved in a

phenomenon than may actually be the case" (Brewer et al., 1970, pp. 1-2).

Although it is true that this may be the effect of a violation of the assump-

tion of an error free measure, the bias may be in the opposite direction. It

is easy to construct an example where the direction of the bias is toward a

1Ft

more parsimonious conclusion that fewer conceptual factors are involved in a

phenomenon than is actually the case. Suppose, for example, that thrd'e]stent

variables ( TI , T2 , and T3 ) had the following intercorrelations in the

population:



-4-

. .6 ,

2

PT 1T3
.6 ,

and
2 3

=.18d

The correlation between T
2

and T
3

with T
1

partialed out is -.28125

and the corresponding conclusion is that more than one conceptual variable

is involved in this phenomenon. Suppose, however, that only a fallible

measure of the first variable, say Xi , was available, where

X1 = T1

and E
1

is =correlated with T
1

, T
2

, or T
3

. Further, assume that

the variance of X
1

is equal to twice the variance of T
1

(i.e., the

reliability of X1 is .50). Under these conditions the resulting intercor-

relations among T2 , T3 , and X1 would be:

441C1T2
.6,/.5 .424

PX - .6 /75 = .424

PTT = .18
23

The correlation between T
2

and T
3

with X
1

partialed out would be 0.0

which would result in the more parsimonious, but erroneous conclusion that a

4

second conceptual variable is Tiot required. There is no intention to imply

by-this-illustration-that-the-bia::-.of-errora-of-measurement is- typical y;-or

even frequently, in the direction of producing a partial correlation that is

closer to zero: Rather the.point is that the direction of the bias cannot

ti

be determined without imposing additional assumptions (e.g., all reliabilities
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and all zero-order and partial correlations among true scores are nonnegai.ive)

and/or obtaining additional information such as the reliabilities of the

1

measures. Given clitrisical test theory assumptions, an estimate of the partial

correlation among underlying true scores may be obtained by simply applying

standard corrections for attenuation tc the zero-order correlations. As Lord

(1963) has noted, tht. need to make corrections for attenuation ":..poses

somewhat of a dilemma, since, first, it is often hard to obtain the particular

kind.of reliability coefficients that are required for making-the appropriate

correction, and,:further, the partial corrected for attenuation may be seri-

ously affected by sampling errors. These obstacles can hardly justify the

use of an uncorrected coefficicInt that may have the wrong sign, however"

(Lord, 1963, p. 36).

The Single Factor Model vs. Partial Correlations

As noted above, Brewer et al. (1970) have suggested that a single-factor

model be tested before conclusions are drawn about the nature of underlying

conceptual variables from partial correlations. We shall argue that partial

correlation analyse3 and factor analyses are based on different models and

pose different questions. Knowing that a single factor can reproduce the

intercorrelations among three observed fallible variables is not sufficient

to draw conclusions about the partial correlations among the underlying con-

ceptual variables or true scores that correspond to the observed scores.

Assuming that three infallible measures ( T
1

, T2 , and T3 ) have a

multivariate normal distribution, the partial correlation between T2 and

T
3

with T
1

partial6d out has a very simple interpretation. It is equal

-7

to the zero-order correlation between T2. and T
3

for any subpopulation



defined by a particular value of T
1

. Thus, it provides a means of investi-

gating the relationship between T2' and T
3

with Ti held constant in the

above sense. The=question of whether or not T2 and T3 are related when

T
1 is held constant is not the same al the question answered by a test for

single factoredness for the observed scores. This is, in principle, acknowl-

edged by Brewer et al. (1970) in footnote number 3 where they discuss an

example in which the control variable (I.Q.) has a factor loading of .43.

They conclude that "...if one has 'factored out' a variable upon which I.Q.

loads only .43, one has not in any meaningful sense 'factored out

(Brewer et al., 1970, p. 7). They go on to indicate that they.are working

on a technique of "focused factoring," wherein the-cointrol variables are

used to define the factor. Hopefully this procedure would exclude from the

communality of-a control variable only that variance that properly might be

considered error variance.

If the observed variables (Xi) are related to their underlying true

scores (Ti) by fl'n model,

X. T3. . E3.. , = 1,2,3

where the errors (E.) are mutually uncorrelated and are uncorrelated with

the true scores, then (1) may be expressed in terms of the correlations among

the true scores, p
T.T

, and the reliabilities of the observedAleasures,
j

p.,i.e.,'-thevarianceofT.divided by the variance of X.
1

. Thus
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ThecorrelationbetweenT.andTkwithT.partialed out is proportional

to

PT.T PT.T.PT.Tjk 131 k

which, given equation (3), equals:

pii
PTT. T.Tka

1ijli
Considering cases where a single factor reproduces the intercorrelations

ariongX1.)X2,andX3and0<2< 1 (i 1,2,3) , the above expression
1

can be seen to have the following implications:

A. When and ,o(ri21, have the same sign,

1. a. < p. implies p_
T .T.

> 0
.T

j 1

2. a.
2

= p. implies p
T.T .T

0
k i

2
3. a1 . > p3..i implies p < 0

T .T .T .
k 1

B. When o
.T T

i j

1.

PT T
have opposite signs,

i k

,2
a. < p

ii
implies

2. a
2

i
p.

<0.T
i

implies pT.

-::These reanits,,ShoW'that whenthe cOrrelations
0
among the.observedscores

are reproduced bya: single factor witfrsquared loadings betWeen 0.and-1 no
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conclusions are warranted regarding the partial correlations among the true

scores. ,Given positive reliabilities and nonzero intercorrelations among

observed scores, if the three observed variables do not fit the single

factor model, then the three partial correlations among true scores may be

positive or negative but not zero.

The relationship between the observed loadingszon a single common factor,

the partial correlatiOns among observed scores, and the partial correlations

among,true scores may be clarified by the example depicted in Figure 2. For

the case p = .50 and p11 = p22
P 33 =

.50 , Figure 2 shows the pos-TiT2

sible values of 0
.T

1
T
3

and
PT T

. A set of regions is defined within
2 3

which the factor loadings on a single common factor, the partial correlations

among observed scores, and the partial correlations among true scores have

specified characteristics. The ellipse in Figure 2 contains the values for

Insert Figure .2 about here

which the determinant of the matrix containing the intercorrelations of Tl ,

T
2

, and T
3

is greater than or equal to zero. Larger values of PT T
1 2

would define a thinner ellipse and smaller values a rounder ellipse. The

numbers inside the ellipse identify the various regions of the ellipse, and

the letters identify line segments separating regions. For the regions in

Figure 2, the factor loadings (ai) for a single common factor that will

_reprOduce the intercorrelations among the observed scores, the partial correla-.

among the observed scores
k.(p. ,'and the partial correlations amongj

are'shown in Table 1. The .values of a.
the true scores (pT.



6.

f.

Vii.:

, .

V .

and p
T .T

for values of..
J k 1

regions are shown in Table 2.
ij
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and p
T.T

1 on the boundaries between
1 k

Insert Tables-1 and 2 about here

As was stated in implications A.2 and B.2 above, pTT .T.
equals

j1. k 1

.zero when a.
2

71
. This occurs on line segments co, do, io, did,

\-IzandLij..144hen2.1 (line segments bo, eo, ho, and ko) the partial;

pjk.i , among observed scores is zero; however,
-f
o....

.T -.T.
is nonzero. Tie

/
j k 1

location of line boh and line eok depends on the magnitude of p
11

and p22 :

'

T
2
T
3

P 11 P TiT2 P Ti T3
and eok is defined byboh is defined by points where p

2-
points where o

TiT3' P22PT T PT T.
A line where a3 = 1 does not exist

1 2 2 3 _

:,..

o o
T3.T

3
'T

2
T
3

for this example because there are no possible _values of and

for which p
T-T

equals, p
33

p PTT . Regions 2a, 3a, 4, 6a, 7a, and:8

1 2
T
1
T
3 2 3 '

.

are of interest-since they define combinationsz-of:,P and p . for
,, -- , T.T T.T -

. 1 j 1 k
.

which a partial correlation for observed scores and a partial correlation for

true scores have opposite sign .. Regions 1, 2a, 3a, 4, 5, 6a, 7a, and 8 are
1 1 ifc .

4 1-

where a satisfactory single-factor solution is obtained yet all three correla-
.

tions between pairs of true scores with-the third true score partialed out are

nonzero. Different conclusions about the number of underlying conceptual

variables.:InvolVed in'the phenomenon presumably would be drawn for instances

in those regions.

This problem should not be dealt with by simply invoking the principle
.4 1

of parsimony and therebyconcluding that the fit of a single factor:model

indicates that there is only oned. sion,underlying the phenomenon. Rather,

the problem should be dealt with by obtaining the additional information that
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is necessary to make inferences within a givenmodel. A brief discussion of

the use of multiple measures to obtain the needed information is presented

below in the section on needed additional information.

Errors of Measurement in the Analysis of Covariance

Campbell and Erlebacher (1970) have provided a much needed criticism

of the common misuse of the' analysis of covariance as a means of trying to

adjust for preexisting differences between experimental and control groups

for the evaluation of compensatory education programs. They argue that

"error" and "uniqueness" in the covariate result in bias when the groups

differ on the direction of underestimating the slope of the regression of

the dependent variable, on the covariate (for a good discussion see Cochran,

Q1968). Porter. (1967) has illustrated the nature of the resulting bias for

various group differences in means on the covariate and on the dependent

variable. When using the analysis of covariance, bias due to errors of

measurement.in.the covariate might make a compensatory education program look'

bad (or good).

The effect of "uniqueness" depends on its sources.. .If uniqueness is'due

to errors.of validity (e.g.; a perfectly reliable symptom of the underlying

variable), then bias will' result in the same irray that it does,fromunreliabil-

ity. On the otherlaand, if, uniqueness merely refers to unshared variance

between the covariate and the dependent variable as in Campbell and Erlebacher's

(1970) treatment:of .covariance adjustments, then the question of bias is

ambiguous.' Given independent.errOrs unshared variancemaY be,dUe to unrelia-

bilityrinvalidity, or a-,lack-of-.perfectcOrrelaticimbetween underlyingaria-

bles. The-latter is not a steurce'of:.bias and should not: be corrected for as

is done by CaMthell-and Erlebacher's adjustment procedure.



This problem needs to be viewed from the perspective of Lord's (1967)

paradox. Lord has shown that the comparison of preexisting toups by means

of an analysis of covariance (statistician 2) and by means of an analysis of

difference scores (statistician 1) can result in paradoxically different

results, both of which are manifestly correct. In his hypothetical illustra-

tive,example, Lord depicted an experiment in which girls, received one diet

and boys another. For each group the mean and variance of the final weight

was identical to the mean and variance of the initial weight. There were

preexisting differences between the groups in mean weight, and for each

group the within-group correlation between initial and final weight was .50.

ASsuming that the weight measures are error free, the above correlation

would be the correlation between true initial weight and true final weight.

In the absence of measurement errors the analysis of mean change would
fil

indicate no "treatment" effect, whereas the analysis of covariance would,

indicate a "treatment" effect.

..Campbell and Erlebacher (1970) have Suggested that in pretest-posttest

designs a "common-factor coefficient" might be used to correct for errors of

measurement and uniqueness in the covariate. Using the proper common factor

coefficients for both pretest and posttest in the standard. correction for

attenuation formula would result in a "corrected" pretest-posttest correla-

tion of 1.00. AsSuming equal coefficients fot the pretest and the posttest,

the common factor coefficient for Lord's example would be .50. Applying this

"correction" would increase the slope of the.within-grotp regression lines, to

1.00 and result in identical intercepts for the two groups. In essence,

Campbell and Erlebacher have devised a roundabout,Way of siding with LOrd's

first statistician. Hawever,:theyhave not:resolved.LOrd'S'paradOx.. Rather
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than impose a restriction, such as the one that the "corrected" correlation

between -pretest and posttest be 1.00 (which, in our opinion, is unjustified),

it would seem far better to conclude with Lord (1967) that ". . there

simply is no logical or statistical procedure that can be counted on to make

proper allowances for uncontrolled preexisting differences between groups"

(p. 305).

Needed Additional Information for Fallible Measures

Dealing with fallible measures will generally require additional assump-

tions.and additional information. In some instances, using parallel forms

of one or more of the measures may provide the needed additional information.

One difficulty with this procedure is that most observed measures are really

symptoms or indirect measures of the variable or influence to be measured,

which is to, say that even if the symptoms were measured with perfect reliabil-

ity, they would be imperfectly correlated with the "true" variable. The

researcher must decide -'hich symptoms are reflections of the relevant under-
,-

lying variable. This question is crucial since different sets of symptoms

will typically define different. `,'true" factors depending, on the particular

statistical procedure employed. The multitra-it-multimethod approach intro-

duced by Campbell and Fiske (1959) attempts to deal,'with this validity problem

by lising different methods of measuring the same variable. COrrelations between

different method measures of the same trait typically will correlate less than

equivalent measures 1e in this-model the classical psychometric approach

using parallel forms is apt to underestimate correlations among underlying

conceptual variables. An alternative way of stating this problem is to assume

that part of the correlation between the two measures' X and of T1 is
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due to correlated errors of measurement and that factors causing this correla-

tion are uncorrelated with the true scores. In this case, the square root of

the correlation between X
1

and X*
1

no longer provides a reasonable estimate

of the correlation between Y'
"1

and T . Assuming that the errors are posi-

tively correlated, the correlatiOn'between X
1

and X*
1

will overestimate

the squared correlation between Xi and Ti and using this inflated coeffi-

cient to correct for attenuation will result in the kind of undercorrection

that Brewer et al. (1970) warned. against. Correlated errors may, in fact, be

one of the reasons that Brewer et al. wanted to correct for "uniqueness."

There are advantages, however, to formulating the problem in terms of corre-

lated errors rather than simply s: ping that we should correct for uniqueness.

The former makes it possible to devise procedures for estimating the desired

coefficient (the correlation between X1 and T
1

) given the possibility of

either positively or negatively correlated errors, whereas the latter only

allows the conclusion that the correlation between X
1

and X*
1

overestimates

the desired coefficient if the errors are in fact positively correlated.

Conclusion

From our perspective, "focusing on the conceptual problem of choosing a

one-factor vs. a two-factor model" (Brewer et al., 1970, p. 3) distracts the

researcher's attention from the task of constructing a model which is consis-

tent with everything we know or hypothesi about the phenomena under study.

Any inferences will necessarily be no morel valid than the assumptions made

about reality. For heuristic purposes we have assumed that the Linear addl-
.

tive model was relevant; however, there is no rule of nature that effects are

rf

either linear or additive. No provision was made, e.g., for catalytic,



feedback, or interactional type influences. It is important for the research

design to be set up to study the question of which of the plausible alternative

models more closely simulates reality: Rather than focus on the conceptual

problem of choosing a one-factor vs. a two-factor model, it seems to us far

more worthwhile to spend time in designing the study to explore the relevant

alternate models, ensuring collection of the information necessary to test

which is the best simulation of reality. Depending on the problem, the factor.

model may be one of the alternatives. The assumption that the factor model is

a priori relevant appeAirs to us.to be unjustified given the cu-Lent state of

the art.
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Footnotes-

1
The research reported herein was performed pursuant to Grant No.

OEG-2-700033.(509) with the United States Department of Health, Education,

and Welfare and the Office of EducatiOn.

?'ode are grateful to Frederic M. Lord for suggesting the idea that was

used for the illustrative example in Figure 1.

it
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Table 1

Values of Factor Loadings and Partial Correlations

for Regions of Figure 2'

Factor Loadings

Partial Correlations

Among Observed Scores

Partial Correlations

Among True Scores

Region a
1

a
2

a
3 P23.1 P73.2 P12.3 PT2T3.T1

P
TiT3.T2

P
TiT2.T5

1

2a

2b

3a

3b

.4.

5

6a

6b

7a

7h

8

9

10

+

+
a

Q-

+

+

+

-

G

-

-

-

i

+

+

+

+

G

+

-

-
.

-

G

-

i

i

+

+

+

+

+

+

+

+

+

+

+

+

i
..

i

+

+

- .

+

+

+

_

_

+

-

-

-

-

+

+

+

+

+

-

+

_

-

-

+

-

+

-

+

+

+

+

+

+

+

+

+

+

+

+ .

,+

+

t

-

-

+

+

+
_

.

-

+

+

-

-

. -

-

+

.

+

+ .

+

-

-

+
-
-

-

+

+

-

+

-

+

+

+

+

-

+

+

+

,
.

+ _, -

+

+

+

a
G denotes that the factor loading is greater than 1.0 in absolute value.
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Table 2

Values of Factor Loadings and Partial Correlations

for Lines'Sep/arating Regions in Figure 1

ii

Line
Segment

Factor Loadings

Partial Correlations

Among Observed Scores

. Partial Correlations

Among True Scores

a'1
a
2 a3 p23.1 p13.2 p12.3 PT2T3.T1 3RI.12

PM
111-M 2LM3

ao

bo

co

do

eo

fo

go

ho
,

io

jo

ko

eo

end

inj

Ua 0

1 +

0

+

+

+

+

C

0

-+

+

+

+

0

11753

-

0

+

+

+

+

+
-v- ,

0

-

-

-

-

-

+

+

+

+

0

-

-

-

-

0

+

-

+

+

+

+

+

+

+

+

+

+

+

+

-

0

+

+

+

'+

+

0

-

-

-

+

+

0

-

-

-

-

::

0

+

+

J.-

-.

+

+

+

+

+

+

+

+

+

+

+

+

0

: 0

+

+ ,5;
+ 1

0 U

U 0

-1 -

-FIT.

-5
- -1

0 U

+'

- - . S33

aU denotes that the factor loading is undefined.

4
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Figure Captions

Fig. 1. Regions which defile values of factor loading and partial

correlations for possible values of ox
X13 Px2x3 given = .50 .

Fig. 2. Regions which define values of factor loadings and partial

correlations for possible values of p
T T

and p
T2 T

1
T
2

T3
given p = .50 ,

13
and

pll P22 P33 .50

r:.
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x2x3
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Identification and Estimation in Path Analysis

with Unmeasured Variables

Abstract

A variety of path models involving unmeasured variables are formulated

in terms of areskog's (1970a) general model for the analysis of covariance

structures.

2.39
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Identification and Estimation in Path Analysis

with Unmeasured Variables*

A variety of authors (e.g., Blalock, 1969; Costner, 1969; Heise, 1969)

have applied path analysis to problems involving-multiple indicators of under-

lying constructs. An important and often algebraically complex feature of

such analysis is the determination of identifiability of model parameters.

The purpose of this discussion is to demonstrate, how a visual inspection of

the path diagram can be used to simplify the identification question and how

these problems may be formulated in J8reskog's (1970a) general model.

I. A Single Factor Model

Consider the case of a single underlying factor (E'A) with three

observed measures .(X1,X2, and X3) .as shown in Figure 1.a. The factor

loa
di ngs PX.F )

in this model equal the standardized path coefficients
i 1

' 3'
(b*
l
b*
2

and b*) , given the assumption that the residuals e
1
,e
2
, and e

3

are independent of each other and of the factor. It is convenient, though

;

not necessary, to assume that both measured and unmeasured variables are

standardized. For heuristic purposes observed correlations will be designated

with "r" and expected values of these correlations by "p" . The expected

correlations will differ from the corresponding observed correlations because

of sampling and model specification errors.

*The- research reported herein as performed pursuant to Grant No. OEG-2-
700033(509) with theUnitedStates-Bepartment of Health,_ Education, and.
Welfare, and the Office of Education.

...
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Fig. 1.a. A Single Factor Model

1,9

-2-

x3
e3

A path analysis of this model yields the equations:

= b*1 b*
2

P13
bilbS

p23 = bp;

Assuming nonzero correlations, equations (1) yield:

2
P12

P13. 2
(b!)

23
PX t

1 1

(14)2,

f (pt)

P1 P23 2 .

pl3'
=

1
and

P13P23 n

P12 3

(1)

Given only three observed'measures the model is just identified, i.e., the

observed and expected correlations are identical. With more than three measures

where i 4 j 4.k and (2a)
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assuming pjk 0 . If there were a causal linkage (e.g., F I I X.)
1 1 2

)

from F1 to X. then p
X.F would be the product of the intervening path

3. 1
coefficients, i.e., the 'product of the Path coefficients in the chain from

F
1

to X. would be identified. If any loading exceeded unity, the model

would be rejected. When there are m > 3 observed measures then the loadings
r-'

will be overidentified. The number of overid.entifying restrictions is simply

the number of distinct correlations m(m - 1) + 2 less' the number (m) of

p
X.F

to be estimated. Maximum likelihood or least squares estimates for over-
].

identified models can be obtained using J8reskog's (1970a) general method for

the analysis of covariance structures.' We use path analysis only to study the

identifiability problem, not for estimation purposes- (Hauser & Goldberger,

1970; Werts, areskog, & Linn, in press).

The above analysis leads to our "rule of three": Whenever the correla-

tions among at least three observed variables may be completely ascribed to

the presence of an underlying factor, then the loadings (correlations) for

each observed variable on that factor are identifiable. An important qualifi-

cation is that the expected correlation between any two observed variables

cannot be zero since equation (2a) would not be defined when that correlation

was in the denominator. In practice, small\expected correlations may lead to

unstable parameter estimates, i.e., highly unreliable measures result in

unreliable parameter estimates.

II. Generalizations

The Figure 1.a. model with or without intervening, unmeasured' variables

going from F1 to Xi is too limited for most causal. analyses. Our purpose

in this section is to consider other causal patterns which satisfy the
,

of three," i.e. in which the observed correlations among three variables. are

142



nonzero and may be ascribed to the presence of an underlying factor. Equations

(1), and therefore (2), would still hold if for one of the measures (e.g., X1 )

X
1
-4F

1
and the residual e

1
of this regression of F

1
on X. were indepen-

dent of the other residuals e
2

and e3 ,
as shown in Figure 1.b.

b*
e 011X I

2*
2 2

Figure 1.b.

Xl

b*
1

b5
4---e

3

If two observed Measures influence, Fi , X1 Fi and X2 -4 F1 then it

is no longer' true that the correlation between these measures equals the product

of the .corresponding path coefficients, e.g., p12 would notin-general equal

b*1 b*
2

Given that all residuals are independent) when there is an intervening

variable (I 1) between. X. and Fl, the correlation.between a pair of observed

variables )C. and X. will equal the product of the intervening path coefficients

when ,X. *-.I F -* , Xi
1

-4 F1 Xi -4 I -4 F X and
1. 1 ji 1 j 1 1 j

Xi Ia. 4-- ; but not when two arrows- point towards -thee same variable,

Xi, -4
1

F
1

-*)(::
1

or Xi' 111 -4
1

-4 F.. X. . In general the correlation
j

between two observed variables may be stated. as the product.of the intervening

path coefficients whenever the causal linkage, between these variables. does not

inClude a variable which is caused by two other variables, i.e., when two

c usal _arrows point towards a variable.. To identify the loadings on a factor
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we need to find three observed variables which,. are causally linked through

that factor, the linkages satisfying the above criteria.

III. Examples

A. Our first example, which corresponds to Figure 1 in Wiley and Wiley

(1970), is shown in Figure 2.a.

Tbt

lFlb

,1

Figure 2.a.

Tracing linkages for

X 4-- F F2 --, -,X
1 1 2 3 3-1-

=

X 4-- F F --+ X
1 1 2

X2

X F F X
2 '2 3

-. 3.

and

Since these three linkages all include F2 and satisfy. the, requirements of the

"rul6 of three ft we may conclude that the'factor loadings (p, ) i.e., the
tir2

correlations of each observed variable with F2 are identified.. Thus,

b*1 b*
11.



The factor loadings on F
1

are not identified because the correlation between

X2 and X3 cannot be completely ascribed to F1 . Likewise the loadings on

F3 are not identified because the correlation between X1 and X2 cannot

be ascribed to F
3

Jareskog (1970b) shows that this model may be estimated

_

by a single factor model with F2 as the common factor and that the example

may be generalized to more than three measured variables.

B. Our second example (see Figure 2.b.) corresponds to Figure 4 in Costner

(1969 ). The analysis is identical. whether F1 F2 or F2 4-- F1

x21

e2

Figure 2.b.

Tracing linkages:

X F X-. -1X1
2 4a)

. (4b)

LI(4c )

if- (4d)

(4e)

(4f )
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For F1
the factor loadings may be identified by linkages lia,b,d or bSr

4a,c,e, i.e., these loadings are overidentified and

*
.X1 F

1

b
1

PX F
b*

2 1
2

PX
b*b* , and

3
F
1

3 5

p
4
F
1
= b4 5

The factor loadings for F
2

may be identified by 4b,c,f or 144,e f

and:

PX
b*b*
1 5

1

p
X

'd
F

. bb2
5
*

-
,

2

p
X-F

2

= b ; , and

Since

b

. .

b*
1

and b*2
are identified , 5b* is also identified by these equations.

'

The analysis may be complicated by assuming el correlated with e3 ,

in which case linkage 1th would not.be valid, however the conditions of the

"rule of three" would still be satisfied for F
1

and F2 and all path

coefficients and correlations between errors are (just) identified. Such a

model would correspond to.Figure 5.a. in Costner (1969).

C. The nextexample, corresponding
to FigUre 1 in Blalock (1963), is

shown in Figure 2.c. This moRl is basically a variation on the model of

Figure 1.b.

146
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Figure 2.c.

X2

T
e2

x3.

T
e3

-,This m9del differs frOm that in Figure 2.a. in that X1 F
1

instead of

F
1

--) X The linkages are:
1

Xi F2 -4 X2

X1 F
1

-4 F2 -4 F3 -4 X3 , and

X2 F2 -4 F3 -4 X3 .

gl

4

Since F
2

is in all three linkages which satisfy the "rule of three," the

factor loadings for F2 are identified and

= broZ. = jr12r13 t r23 , (5a)
1 2

ox = pt. = ir -:

12
r
23

ri3 , and (5b)

----

O = b* = fri3r
.d.)

1 r
X3F2

b
3 5 4 12 '''' (5c)

Since r12 cannot be ascribed to F3 and r
23 cannot be ascribed to F1

. .

t.

1--

the loadings on these factors are not identified. Our heuristic 'device -.would

haVrle been helpful to Blalock (1963) since he obtained the equations correspond-

ing to the linkages shown above, bat did not solve them for the equivalent of

equations 5a,b,. and c.
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.5 55-145 (AI ..:r1904",

D. Our fourth example, shown in Figure 2.d., corresponds to Figure 2 in

Blalock (1963).

6 = residual of F2 on X1 and Fl
1

Figure 2.d.

Tracing linkages which satisfy our rule:

X1
1

--)X2 (6a)

X
1

---, F
1

-) F
2

X
3

(6b)

X < F --) F X and (6c)
2 1 2 3

e
(6d)X4 ---, F2 -4 X3

In this model it is assumed. that X4 is independent of X1 and X2 . The

loadings on Fl. are identified by linkages 6a,b and 'c and therefore:,
= b*

1
(7a)

= b*
2

, and (7b)

b*3 b*
5

(7c)

It is not possible to find three observed variables whose linkages satisfy.
,

....

our rule for F2 , i.e., the linkage -between X
1

and X4 two arrows



-10-

:

pointing at. F2 and the linkage between X1 and X2 does not include

Since P34 bSbt it follows from equation (7c) that
Px

3
F
1
bt P5411

E. The fifth example, shon in Figure 2.e., has the special feature

of two observed nonindependent variables inflbencing an unobserved variable.

It corresponds to Figure 4 in Blalock (.1969).

f--e3

r

Figure 2.e.

e = residual of F
1

on

regression.

When X2 is deleted X1 , x3, and x4 form tre model in Figure 1.b. from

which we conclude that the correlations of. X
1

, X 3 , and X
4

with I' are

identified. Similarly when Xi is deleted the correlations of X-
e

, X3 ,and

X4" with F1 are identified. Given the correlations among X1 , X2, and F1

the path coefficients bI and b; may be identified since:

)

b*2-



Q.

tr
I.

- -

F. Our last example, shown in.Figure:2.f. corresponds to Figure 9.b. in

Costner (1969)

bl

h* 111

F b*
X F --5---e X5 t---e

5

Figure.2.f:

Frot the analysis of the Figure 2.d. model we may deduce that when 4 is

excluded that b*
1

,

2 '

, bg , and bI are identified. Using the

variables :,X1:; X2 , and 4 we know from our analysis of the Figure 1

(PX F )

model that the. correlation of X
4

with F
1

is identified and
4.1

similarlyusint 'X4 X
5
, and X6 we know that the correlation Of 4

with '4:2 (ox;i) is identified. Since the correlations among F/ , F2 ,

and x4....; are identified it follows that the path coefficients bt and .11

which are.functiong;of these correlations, are identified. As compared to

, -

Costner's(1969),rather complex algebraic analysis of this problem, it may

be seen that we are satisfied in merely'knowing that the model parameters

are identified:

IV. Estimation

J8reskog's (1970a) general model for the analysis of covariance

structures can be used to estimate the parameters for the models discussed

5.

1.50
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ab-Ove. Werts, areskog and Linn (in press) discuss the use of J8reskog's

model from the perspective of.path analysis. Use of the associated com-

puter Program (J8reskog, Gruvaeus, &van Thillo, 1970) for the present

purposes requires the investigator to specify a matrix A corresponding

to the factor loadings in factor analysis; a matrix 0 which is the variance-

covariance matrix of the unmeasured factors, and a matrix 8 of residual

variances. The matrices B and ' in J8reskog's formulaare taken as the

identity and zero matrix respectively.

Consider for example the model in Figure 1 in which

b*
1

A . b*
2

b*
3

o ,

and

8.=,

Ve
1

0

0

0

Ve2

0 Ve/

Define: X = column vector of standardizedobserved variables,

F = column vector of factors; and

e = column vector of residuals.

In matrix terminology:

X = AF+ e (8)

Equation (8) is shorthand for the path equations (all variables standardized)

tl
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X = b*F e
1 1 1 1

X
2

= b*F
1

e
2

, and
2

X = b*F e
3 3 1

e3

It can be seen that A is the matrix of the coefficients of- F
1

. The

parameter in the matrices specifying the model structure in J8reskog's

model are of three kinds: (1) fixed parameters that have been assigned

given values; (2) constrained parameters that are unknown but equal to

one or more other parameters; and (3) free parameters that are unknown and

not constrained to be equal to any other parameter. In the above example

the unity in ' is a fixed parameter, whereas the bt in A and the V
1

1

in 8 are free parameters .

The expected variance-covariance matrix E for this problem is:

E = MA'+ 92 (9)

where the 1 in 0 is the variance of F
1

, for convenience standardized

(i.e., equal to unity) and e
2

is a diagonal matrix whose elements are the

error variances (V ) Equation (9) should be recognized as a shorthand way(Ve

of expressing all the path equations relating expected model correlations to

moderparameters, i.e.,

E =

1
P12 P13

p12
1

p23

P 1pia p23

Equation (9) states:

(where unities indicate observed

variables were standardized).



1 = (b* )2 + Ve
1

1

1 = (q)
2
+ V_ 1

c2

1 = (1)2 +
.- 3

=bib *2
2

12

p13 = bps , and

11)6-2 =

This short description for a single model contrasts with the path analysis
.

approach to estimation used by Costner (1969) and Blalock (1969) in the

following respects:

(a) The matrix E of expected correlations between observed variables

will differ froth the actually observed matrix_of correlations because of

sampling and/or model specification errors. Thus we db not'use obserVed cor-

relations in our equations as in the usual path analysis approach. Instead,

areskog's program attempts to minimize the differenoe'between observed and

expected variance-covariance matrites using either a least siquares or maximum

likelilLod approach. In large samples, assuming that observed variables

are di ributed normally, a chi square statistic is produced which measures

the overall fit of the model to the data. Another way of gauging fit is to

compare the differences betWeen the Observed and expected correlations gen-

erated by-the model. .4

(b),, The degrees of freedom (df) for the X
2

measure are equal to the

number of Overidentifying' restrictions. In path analysis this corresponds
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to the number of different ways the path equations may be solved for each

parameter. To compute the df it is necessary to count the number of distinct

elements in E (i.e., m(m+'1) + 2) and subtract the number of parameters

to be estimated (e.g., b*,b*
' 3
b*

'

V V and V ) . There is no need to
1 2 e '

1
e

,

2 e5
solve the path equations in JBreskog's approach, although the identifiability

must be known.

To-analyze the model in Figure 1.b., we merely need to'note that when

X
1

and F
1

are standardized the regression of X
1

on F
1

quals that of

F
1

on X
1

and the residuals are identical. Thus we may use the same

estimation procedure for this model as for that in Figure 1.a. (wheie e1 = el ).

Likewise the models in Figures 2.a. and 2.c,. may be estimated by ignoring 'Fl

and F3 and treating X1,X2, and x3 as indicators of the common Lactor F2 .

The model in Figure 2.b. with the added feature of e
1

and e) corre-

lated requires special treatment. The equations are:

Qr

X
1 1

= b*F
1
+ e

1 )

X
2 2

= b*F
1
+ e

2

X3 = b3F2 + e3

X4 = btF2 + e4 , and

F2 = 13471 + 62

We know that
'1

b*
5

is equal to the correlation between F
1

and F
2

so

there is. no need to replace 1"2.,,tby F1 and 02 is the firO four equations.

To specify a correlation between el and e3 all residuals must be treated

as factors, i.e., F'= (F1,F2,e1,e2,e3,e4) . Tie structure is:

r.

154
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(I)

1.

b*

b*
2

0.

0

0

b*
3

bt

b e
1

0

0

0

.

b*
e2

0

. 0

0

0

b*
e3

am/

0

0

b*
e

1 b.5

b*
5

1

0 0

0

0 0

0 0 0

0 ,

Pe e13

0

0

1

0
"In

0

0

1

3

0

o-

ss.

1

In contrast to previous. formulations the error variances are standardized

so that the correlations between
1

and e
3

and F
1

and F
2

are

estimsted) directly and- -in A the:path coefficient's of the observed varia-
--

bles on their errors

elements in E and

b* pb* ,b*5 ,p )
e3 e4 eie3

variance-covariance

zero.

(bt ) are estimated. This model has 10 distinct
C.

10 parameters to be estimated (bt,b;,bIpbt,b: ,be
e2

i.e., the model is just identified. The expected

matrix- E =AA'. , i.e., the matrix 8 As. taken to be

The Figure 2.d.-moderioses twO5WgingUrr,,---the.441.umeters b* ,

are not identified and the expected correlation between x4._ and X
1

specified as. zero
1.

11, and'b;

or

even though the observed correlation may differ.
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from zero presumably because of sampling fluctuations. The analysis in

Section II showed that x4 does not contribute to the identification

of parweters, i.e., only the product 1I51I is identified with or without

X4 . Without X4 the model is that of Figure 1.b. and no purpose is

served by retaining F2 . Assuming all variables are standardized

X1 = btFi+ el may. be substituted for F1 = btX1.+ el as noted earlier.

With F
2

eliminated and knowing that only-the correlation of X
3

with

F
1

is identified the model may be written as:

X = b*F + e1
3.

X2 = b*F e
2 2

e2 and

X
3 3 5

= b*b*F
1 3 4
+ b*b*X

4 3 3 3
+ e' where e' = b*e + e

For convenience define b35 = bp; and b54. = b3b . For computational

simplicity define a new factor x4 which is identical to the observed X
4 '

i.e., x4 = x4 . -The facers are then F' = (F1, x14)
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0 V 0 0
e
2

0 Vet 0

3

0 0 0 0
-A

In the fourth row of 8
2

the diagonal cell is zero to indicate the identity

X4 = x4 without residuals. If the expected matrix E is computed, i.e.,

E = liDAT + 82 we find:

=

bp55 0

1

bb*
1 2

2
1:1115

0

b*b*- b*b* V
1 35 2 35 X

3'

b514.

This shows that the expected correlations of X
1

and X
2

w ith X
4

are

zero. This follows from the specification in 0 that x4 is uncorrelated

with .F1 .

the analysiaLof_the_mPdei_in Eigure 2.e. , the correlations among

X1 , ,.and F1 were identified first and then WI and b*
2

identified

from these correlations. The simplest estimation procedure is to estimate

the correlations among X1 , X2 and F. and then compute b* and b*
1 2

,

1 2

from the estimated correlations. This problem can be handled by defining

two factors. x1 = X1 and x2 = X2 . The structural equations are':

4.



#1,

03

twi

X = x
2 2

X, = bF1 + e
3

and

X4 = btFi + e4

The factors are F'= (X
1

1

0

0 0

1 0
O 0

O 0 bt

PXx
1 1

X
2

Px x Vx
1 2 2

Ox F Px
1 1 2F1

x2

-19-

, F1)

Px F
1 1

Px
2
F
1

1

and

0 0 0 0

0 0 0 0

82 0 0 V
e3

0

0 0 0 V.

There are 10
;-7

(14,bt,Vx
1

distinct elements in E and nine parameters to be estimated

F F e '
and V ) so that the model has one

IC
1 1 2 1 3

158
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overidentifying restriction. Note that the estimated elements of should

be used to estimate b* and b* (r may not equal p )

1 2 X1X2 X1x2

In relation to the model in Figure 2.f. Costner (1969) discussed. the

problem of ascertaining whether bg was zero and of distinguishing the

b = 0 model from one in which errors (e.g., e3 and ei4. ) were correlated.

To, see how this is accomplished in JOreskog's approachlfirst consider the

model when bg = 0 and treating residuals as factors:

X'. (X1,X2,X3,X4,X3,X6)

(F1,F2,e1,e2,e3,e4,e5,e6)

A

b* 0 1 0
1

..

b* 0 0 1
2

b5 0

o b

o .b5

0 bt

[

o' 0

0 0

0 0

0 0

0 0 0 0

0. 0. 0

1 . o 0 0

0 1 0 0

0 0 1 0

o o 0 1

0 0 0

-b*
7

1 0' 0 0

0

0 0

0 V 0 0 0 0 0
el

0' Ve? 0 0 0 0

0'
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and

E = A4A' (i.e., 62 = o ).

Note that we have chosen not to introduce the residual e into the analysis

because we wish to standardize both F
1

and F
2

, in which case P = b*
F
1
F
2

This model is a variation. of that in Figure 2.b. and all parameters are

identified.' There ard 21 distinct elements in E and 14 parameters to be

estimated so that there are seven overidentifying restrictions. To test

bg / 0 s ecify X = bgFi + b:F2 + e4 i.e., in A the fourth row,

first column element is left "free" instead of fixed = zero. This model

has one more parameter to be estimated and therefore six overidentifying

restrictions. Thus the original model is more restrictive and will there-

fore typically have a larger X
2

. In large samples, the difference in

X
2

between these two models with degrees of freedom equal to the difference

in number of restrictions, can be used to test the hypothesis that

bg / 0 . Similarly the model with e3, and. e4 correlated

("free") in 0 instead of independent (fixed= 0) would have six degrees

of freedom and the difference in X
2

with one degree of freedom would be

a test of the hypothesis that e3. and e4 are uncorrelated. A comparison

of the X,
2

for bg / 0 to that for p / 0 gives an indication of
e3.4

which is the better fitting model. Costner (1969, Figure 10) also raises

the question of whether e
1

and e
2

are correlated. This hypothesis is

tested by allowing the covariance between e
1

and e
2

in 0 to be "free,"

the change in X
2

with one degree of freedom providing the appropriate

statistical test. Hypotheses involving !'constrained" parameters may be

tested similarly (Heise A.969) or = V (Wiley &
° el e6

Wiley, 1970).
7

160
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It can be observed that use of areskog's program requires the investi-

gator to know the identification statue each parameter, but does not

require the complex algebraic manipulations provided by Costner (1969)

and Blalock (1969). It is.important to recognize the essentials of each

model in order to fit it into J8reskog's general model. J8reskog's model

assumes that the observed variables are "random" rather than "fixed" but.

it is doubtful that most applied sociologists need to be concerned about

this issue which is minor in comparison to the usual questionable validity

of measures and models.

ri
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Intraclass Reliability Estimates; Testing Structural Assumptions

Marts, C. E., Linn, R. Ir., and Areskog, K. G.

Abstract

Intraclass correlation reliability estimates are based on the

assumption that the various measures are equivalent. JOreskOg's (1970) general

model for the analysis of covariance structures cane used to test the

validity of this assumption.
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Intraclass Reliability Estimates: Testing Structural-Assumpti ns

Werts, C. E., Linn, R. L., and JOreskog, K. G.

The validity of using intraclass correlation to estimate reliability

is dependent on a variety of assumptions (Winer, 1962,Chapter 4; Cronbach,

Rajaratnam, &.- Gleser, 1963; Stanley, 1971,. pps. 420-429). This paper will focus , .;,

r ,li

\
on testing the assumption that the various measures are "equivalpneipor -t

-'.

. "parallel" (Lord & Novick, 1968, pg. 48).

Ji4reskog's (1970) general model for the analysis of covariances

structures will be used for this purpose. SoMe implications for

generalizability theory (Cronbach, Rajaratnam, & Gleser, 1963; Rajaratnam,

Cronbach, & Gleser, 1965; Glaser, 'Cronbach, & Rajaratnam, 1965) will be

considered.

I. Jaraskogis General Model for the Analysis of Covariance Structures
ewe

Quoting JOreskog, van Thillo, & Gruvaeus (1971, pg. 2-3):

"The general model considers a data matrix X(N x p) of N observations

on p variates and aasumesthat the rows of X are independently distributed,

each having a multivariate normal distribution with the same%variance-

covariance matrix E . It is assumed that

e(X) = AEP ,
(1)

where A(N x g) `=.(a ) and P(h x p)
cts

(p ti) are known matrices of ranks

g and h , respectively, g < N, .11 <.p and E(g x h) = (c4). is a matrix

of parameters; and that E_ has the form

2 2

- E = B (OA' + )13' +0 (2)

The research reported herein was performed pursuant to Grant No.-i

OEG -2 -7000 33(509) with the United States Department of Health, Education, .

and Welfare and the Office:of. Education.
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,.

where the matrices B(p x.q) =.(01.k), A(q x r) = (Akm) , the symmetric

matrix .4.r x r)-=. Nil) and the diagonal matrices ip(q x -60k)

arid_ 6)(ip x p) = (6 '0 ) are parameter matrices.

Thus the general model is One where means, variances and covariances

_ _
are structured in terms of other.sets of parameters that are to be estimated.

/' ;
I

. ,

.. ar In any application of this,model, p , N and X will be given by the data,

and -g ,.!.h , 'ci , r ,' A and P will be given by the particular applica- 0 *,

tion. In any such application we shall'allow for any one of the parameters

in E ,, B , A , (I) , 1p, and 0 to be known a priori and for one or more
;: :".. f .. '

subsets of the 'remaining parameters to have identical but unknown values.
..4

'4,. .. ..

,--- .

Thus parameters/are of.three kinds: (i) fixed parameters that have been
.

1

I one,or 'parameters-) ee parame-or that are

. .. ...' , ,Z

assigned given values,(ii) constrained parameters that are unknown but

equal to more other and (iii Fr

,

, 11

-i;;!x!
, o ., , '

s k \ v-74 .4 .., ,4;,',

0 it, 7 7 ; 'uiiktiown and -not ,cotistrained to be equal to any other parameter.
,-,--- .4's

. ,
...,>,- ..0.--;

/ The cOm5Uter-:prpgram eetimates the free and constrained parameters of l':,-,A

-^- tl.) V:
. .. any lidhNg modelkby the maximum likelihood method and provides a test of good- i

.---77:;.".. A . - (3

. ;' :.. \'

I
r i

ness f fit of the model against the general alternative that P i
1

o o e wo mo agn genra a ena ve a s

square and E and E are unconstrained. 1 test of a specified model

(hypothesis) may be obtained, in large samples, by computing the maximum

likelihood solution under the two models and then setting up the likelihood

ratio test (see 1.5). In the special case when both E and E are
4

unconstrained, one may test a sequence of hypotheses of the form
j

CEO = (3)

where C(s x g) and D(h x t) are given matrices of ranks s and t ,

respectively."
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II. Application'

For illustratiire purposes consider the situation'in which four

alternate forms (ratings, etc.) of a test are administered to the, same

people; the testing conditions being such as to justify the assumption that

the person's scores on the alternate forms are experimentally

independent. In Cronbach's terminology the facet

under consideration is alternate forms and !there are four condition of

this facet under which each person is observed. The data would be analyzed
1

with altwo-way analysis of ,variance (ANOVA) model in which each row

corresponds to the scores for a given person and each column to a different

measure as shown in Table 1.

Person

Alternate Forms

Total MeanX1 X2 X3 X4

1

2

N

X11

X21

XN1

X12

X22

N2

X13

X23

3CN3

X14,:p.

X24

XN4

Pi

P2 ,

*

PN

P1

P2 .

P
N

Total T1 T2 T3! T4

Mean
.

T2
.

T4 G

Table 1

From this table the mean squares between people (MS,)., mean squares

within people (MS ) and residual mean squates. (MS
r
) can be computed as

shown in Winer (1962', Chapter 4).. Following :Cronbadh, et al., (1963), the

! th'
,reliability ,.((1) of the i measure and the reliability (rd) Of a
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composite measure maybe estimated as (p = # of measures):

1

MS - MS
b r

MSb + (p - 1) MSr

'N MS
b

- MS
r

/1
e c

MS
b

and (4)

These formulae do not assume that the expected value of the test means are equal; 4

however if the expected value (II) of the test means is cons tan

observed mean .differences due to sampling error then it would be

appropriate to use:

..
b w/)

i
+ - 1)MS

w

MS - MS
b w

c
MS

b

and

i.e.,

(6)

(7)

To test assumptions using JOreskog's method we can start with a model

in which the test means are assumed to differ and all measures have the same

underlying true score, .) 'In terms of equations (1) and (2) this corresponds

to a single factor (,1') , model wherethe 'observed vector is

= (X1 , X2 X3 X4) ,
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E = (111 , P2 $ P3 ) P4] ,

b

b3

bLf

= [ 1

V.el.

V
e2

0 0

0 0 0 V
eLf

(:)2 is a null matrix and B an identity matrix.
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In this formulation the means in E ,the factor loadings in A and the

2
error variances in IP are free parameters to be estimated. For convenience

the variance of the true scores V has been standardized (i.e., V = 1

in (1)). Since there are 10 distinct elements in E (i.e., p(p + 1) 2)

2
and only eight parameters in A and 4; to be estimated (i.e., bi , b2 ,

b3 , b4 ,V,V,V, and V ), this model has two overidentifying
e1 e2 e3 e4

9

restrictions '(degrees of freedom). When the maximum likelihood estimation

protedurejis used, JOreskog's program (JOreskog, van Thillo,-Gruvaeus, 1971)

yields a chi square measure which, in large samples and assuming multivariate

normality of. observed variables, is a measure of the fit of the model to

2
the data. In the illustration.this x with .2 degrees of freedom may

be used to test the assumption that the four Measures have a coon true

score T'. If this hypothesis is rejected then the exact meaning of a

reliability estimate is in doubt. Perhapi there is not a single underlying

true factor and/or the error independence assumptions -are violated. If the

single factor.model is not rejected then reliabilities may be obtained

from parameter estimates, i.e.:

.^ 2

b.

^ 2
bi +V.

e .
1

11

"
;10c

I
i=1

b
;

i

A 2

and

P P

i=1 '1=1 k
E b +.E V

i e

.1

.168

A.

(8)

(9)

I
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Given a\minimum of three measures the b
i

are identified given only the

assumption of single factoredness. With two measures it is necessary to make

additional assumptions (e.g., equal bi) for identification.

The intraclass correlation and generalizability theory procedures

assume that the measures all have the 'same units of measurement, i.e., are

"essentially tau.equivalent" (Lord & Novick, 1968, pg. 50). It

would not Le meaningful to average\scores from measures With different
1,1

0

units as is done in Table 'l to obtain personineans. In Jgreskog's method

equal units are equivalent to the assumption.that that the regression weights

h are equal, i.e. bl = b2 = b3 = 1,41= b in A. Therefore the next step
..i.

,1,..

in the analysis with'Jgreskog's program is to constrain the parameters in
A.

1

L
A to be equal, obtaining a new x estimate of the fit of model to the data.

2
The x will have three additional.degrees of freedom because of this

2

constraint. The increase 'is X. from the previous step (where single

factoredness was tested) with three degrees of freedom; tests the hypothesis

that tiZ\inits of measurement are equal. If this hypothesis is rejected,

then the.ANOVA formulation is rejected whether used for estimating'

;1-

reliability or for generalizability procedures. If.the hypothesis of equal

units is not rejected then the parameter estimates_may, be tided to estimate
. ,

reliability as follows (p.=, # measures):

-2
b

and
"2 ^
b +V

(10)
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. 2
(pb)

2 P A
(pb) + E V

i=1 ei

An exactly equivalent formulation is obtained if we fix all bi in A equal

.2

to unity, allowing V.jr to be free, in which case V-- will replace b' in

equations (10) and (11).

The reliability of any single measure from equation (10) may vary

because of differing error variances whereas,equations (4) and (6) imply.that

all measures have

.whether the -error

step' (in addition

the same reliability. ,It follows that it is necessary to test

variances are indeed equal, i.e., Ve . = V
e

. The thirdi
to previous constraints) in the analysis is to constrain

-2 ,

T 'to be equa10.i.e.,V=V=V=V= V
el . e2 .a3 e4 e

2
This will'add three degrees of freedom and the increase in X'

the error variances in

second step tests the hypothesis of equal error variances.

is rejected then it may be asserted, that equations (5) and (7)

from the

If this hypothesis

underestimate the composite reliability. If this hypothesis isnot

rejected then reliability estimates may be obtained directly from

parameter estimates:

(Pb)

2

A 2
(pb) + Ve

(12) and

(13)

The estimates from 9quations.(12) ; and (13) carry the same assumptions as

equations (4) and.(5) respectively, however different estimates may result,

because (12) and (13) are estimated ,under structural specifications which

are assumed for (4) and (5), but,not.constrained to follow. Nonetheless

_
.

_equations (4) and (5) would in principl ppropriate sitUation.
.
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If the expected variance-covariance matrix (2) is examined it will be seen

that the expected variance (diagonal of E) for the different measures are ,..

4
equal as are the expected covariances between measures (off diagonal elements

Of E). This is precisely the configuration assumed in the.ANOVA procedure

when used for testing treatment (between measure) effects (Winer, 1963, pg.

124). JOreskog's method may also be used to test these "treatment" effects,

i.e., whether thajtest means differ. To do this we would make the additional.

constraints that the elements in E- be equal, i.e., -.111 = 112 = 113 = 114 = 11,

2
The resulting increase in x with three degrees of freedom can be used

to test the hypothesis of equal means. If this hypothesis is rejected

then equations (4) and (5) are more appropriate than (6) or (7) If the

hypothesis is not rejected equations (12) anch.(13)would still be appropriate,

however the parameter estimates will generally differ because of the

-restriction_on_the_means..

Overall it may be observed that the above fLur analytical steps

_ .

test.the'S-everal aspects' of tile ftypotiles that the'differentmeaanres*

are "equivalent." If the, hypotheses from each of the four steps are not rejected

the implication is that observed differences in means, variances, and

-covafiances between testihare ascribable to sampling error.
(
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III. 'Discussion

1'

In essence, equation (9) estimates the.reliability of a cOmposite.of

the measures included in the study given the assumption of a common

2

underlying true score. The x measure of fit associated with this

specification is a. test of the validity of this assumption. In contrast,-.

the intracldss estimate of composite reliability assumes

equivalent measures (implying a single true factor). From a
_

,structural perspective,theintraclass reliability estimate is therefore

of limited applicability and even,when measures are equivalent does not

4
prtvide population estimates which-otetmssarily are constrained to be

consistent' with this assumption. Furthermore, the intraclass estimate is

inappropiate when errors of measurement are nonindependent, e.g., if the

measures were ratings and a single 'judge did two of the ratings,

the errors for these two measures would probably not be experimentally

independent due to halo effects. In this situation a single factor would not

account for the covariahcesabOng- measures-w-rUsing-Jdreskogls.method

model could be used which would- allow for the. appropriate pair of errors to

7 .

be correlated (Werts & Linn, in press). In this case, application of equation

(9) would estimate the squared correlation of the composite score to the true

score, whereas equatien (5) would yield meaningless results. Given.matched

,
.

.
._

(all persons take all measures) data, certain aspects of generalizability

theory may be considered in light of the model developed in section II. In

1

. ,

.;

particular, Cronbach, et al., (1963). require the investigatorto specify

a universe of conditions of observation over

06
.7

a

o



which he wishes to.generalize. The example in section II corresponds to
. .

!

a single facet design and an investigator might for example specify conditions

= 1,2 as the universe appropriate to his particular study. In

our approach, equation (8) would provide the reliability estimates

for individual measures and:in equation (9) sums would be taken over i = 1,2

to providathe-composite reliability for this particular universe. If we wished to

2

assume (perhaps because of a X test) that the measures hive the same

units of measurement (as does generalizability

theory),then equations (10) and (11) would apply. Generalizability 'theory

is clearly superior to intraclass correlation procedures in not requiring,

equivalent measures,but is no as flexible as Jgreskog's approach

because of the equal units assumption. Cronbach, et al., (1963) indicate

that the observed scores are determined by the person's universe (i.er.,

"true") scare defined as the firk centroid factors of the'covariances

between conditions in the uni,.Terse, other centroid factors required to

account for covariances between conditions, and.residual.variance'after

-

removal of the.faCtors. The variance of the observed scores for a particular

measure.. equals the Squared factor loading on the universe score plus the

sum Of squared loading on the other centroid factors plus residual variance.

.From! a structural 'perspective this formulaticin is probiematiCal because:

(a) The first factor may not be the factor of interest, e.g.,

"methods"Jactors (Campbell & Fiske, 1959) frequently account for larger

e.

proportions of observed variance than .

"true,"."trait,"'or '!'ilniverse" factors.:

.
7 .

-(b) In reality there may be several underlying "true"'1 factors and/or "other"

factors, which maybe oblique. .

.1
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