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CLHAPTER ONF

For centuries, teachers have been teaching and
students have been doing whatever it is that students do.
It is only in this century, however, that any systematic
and sustained attempt has been made to study the nature and
the results of the interaction between teacher and student,
and, during this period, progress has been painfully slow,

The educational psychologist is taced witn serious
difficulties in doing research on human learning and
nerformance. If research is to be done in a school, the
cooperation of administrators and teachers must bpe
obtained, and experiments must be tailored to fit the
organizational structure of the school. Even then, it is
very difficult to obtain detailed information on student
verformance over a long period of instruction. It may be
vossible to obtain an adeguate description of social
processes from a discreet distance, but it seems almost
impossible to obtain detailed profiles of individual
student responses in this way. 1In order to obtain the data
necessary to investigate cognitive performance, it is
necessary to record student behavior in great detail.

Since it is impractical to maintain teams of research
workers in a classrcom without completely disrupting the
process to be observed, the systematic jinvestigation of
nroblem solving behavior has been restricted to the
laboratory. Laboratory research on these issues has been
hampered by the difficulty in obtaining adequate samples of
subjects willing to work on problem-solving tasks over a
long neriod of time.

The advent of computer-assisted instruction makes it
possible to circumvent some of these difficulties. when a
student does oroktlems at a computer terminal, it is
possible to record a complete profile of his typed
responses (as well as the time to each responsc), Since
the collection of these responses is automated, and
therefore invisible to the student, it 1is possible to
record problem solving behavior over a long period of time
without disrupting the process being observed. In a
semester of work in mathematics done at a computer
terminal, it is relatively easy to obtain complete profiles
of individual student solutions to hundreds of problems.




This implies a further advantage of using CAI for
r esearch on problem solving, In a laboratory experiment or
in classroom observation, the subjects (or students) are
aware that their efforts are beinyg recorded, It has been
shown that, under such conditions, subjects tend to modify
their behavior to fit the expectations of the experimenter
(Neisser,1967), To the extent that data collection is
truly invisible, this more subtle source of possible bias
in the data is also eliminated.

The use of a CAI curriculum as a context for research
on cognitive processes still presents serious difficulties
however, In order to exploit its full potential, we must
develop technijues for analyzing and interpreting the data
collected, The principal ourpose of this research was to
develoo such technigues for examining the details of
student proof behavior.

The traditional tools used to analyze tne results of
educational and opsychological experiments are, of course,
available and have been used. Regression analysis, for
example, hAas been used extensively in investigating the
effects of curriculum structure on student performance,
The analysis of variance has been used to compare CAI to
more traditional types of instruction, and to examine the
effect nroduced by varying certain conditions witnin CaI,

It is clear that the use of such techniques can make a
valuable contribution to our understanding of student
behavior, but all of these studies deal with global
measures of performance. They tell us how well students
perform under various conditions; they do not tell us how
students perform - what they actually do. If the solution
to a problem requires a sequence of steps rather than a
single response, then this distinction 1is of great
importance. The total time taken to solve a problem or the
number of errors may be adequate measures Of a student’s
overall performance, but they tell us nothing about how
individual students solve problems, An analysis that makes
use only of summary measures of performance igynores the
structure of student solutions, and, so, does not exploit

the full potential of CAI as a setting for educational
r esearch.

[\\ In this study a particular type of problem solving

behavior 1is investigated. 1In the following sections, some
techniques for analyzing the details of student proot
behavior in a complex CAI setting are developed and then
used to evaluate a specific aspect of the Stanford
Logic-Instructional System (LIS).

7/




LIS 1is designed to allow students considerable
latitude in the construction of proofs, anud students work
at their ovm nace and develop their own strategies tor
finding oroofs, By measuring the actual variation in a
sample of bproofs collected under ordinary operatiny
conditions, it is possible to characterize tne
effectiveness of the curriculum in encouraging diversity in
the students’ approaches to proof construction, This
research was motivated by a desire to estimate how much
variation (in the types of proofs yenerated) actually
occurs when students work through the current LIS
curriculun,

The data collection facilities for LIS store a
complete racord of each student’s typed responses, and it
is possible to examine the exact seguence of steps for
every proof. It is possible, therefore, to determine the
number of classes of equivalent proofs in a sample of
student proofs, hut first it is necessary to specify a set
of criteria that separates proofs 1into <classes, and so
defines what is meant by the statement that two proofs are
equivalent,

The objective of the initial phase of this study is to
formulate such criteria. Five distinct procedures are
develonred each of which classifies any sample of proofs
into a set of mutually exclusive and exhaustive subsaets,

thus defininy a partition on the sample. The procedures
are essentially definitions of what it means to say that
two proofs are equivalent or not equivalent, These

vartitions are then shown to be nested in the sease that if
two oroofs are egquivalent under the i~-th partition, they
are also equivalent under the (i+1)-th partition. A
detailed develonment of these procedures 1is presented in
Chapter III.

The second purvose of this study was to deterwmine the
amount of variation that actually occurs in the structure
of the proofs produced by a sample of college students for
the problems in the LIS curriculume The proois constructed
by 23 Stanford University students for 125 separate
derivation problems in the LIS curriculum are used ror this
purnose., In order to determine how this variation s
distributed through the curriculun, each problem is
analyzed separately.

For all of the problems included in this study and
each set of criteria, the student proots are assigned to
equivalence classes. The numbers of classes for the five
partitions for a problem are taken as separate measures of




the variability of the student proofs for that problem.

The results indicate that there is relatively 1little
variability for the earliest problems and considerable
variability for the later problems, The 1increase in
variability through the curriculum is not smooth. Tnere is
a gradual increase from the first problem considered to tne
50-th problem (approximately), but even the last of these
early problems shows relatively little variation among the
proofs generated. There 1is then an abrupt increase in
variability and subsequently a continued gradual increase.
The rule, Replace Egquals(RE), 1is introduced in the
curriculum just before the abrupt increase in variability;
this initial indication of the importance of RE |is
confirmed by the subsequent regression analysis,

Regression analysis 1s wused to pinpoint variables
defining structural properties of the problems which
predict variability among the student proofs. The results
indicate that relatively simple measures of structural
complexity (for example, the number of steps in the
standard proof for a problem) are good predictors of the
amount of superficial variation in the sample of proofs,
such as differences in the order of the steps, but
relatively poor predictc.s for the more substantial
variations such as differences in the rules used to
construct the prcof. As the importance of these measuras
of structural complexity systematically decreases from the
first to the fifth partition, the importance of the nunmber
of theorems (and axioms), as predictors of variability,
increases. This analysis is described in Chapter IV, and

the results of the analyses are presented in Chapters V and
VI,

Spmamm—y
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The use of a nested sequence of measures, rather than
a single measure, makes the detection of this trend
possible, The results indicate that the regression
equation whicl. sest predicts variability is quite sensitive
to changes in the measure of variability, If a single
measure of var:iability (partition) were used, there would
have been no indication of the sensitivity of the results
to the definition of equivalence, and it is likely that
erroneous conclusions would be drawn. For example, if only .
the first partition had been wused, it would seem that
theorems are relatively poor predictors of variability; in
fact, the other four partitiouns indicate that theorems are
very important predictors of variability.

[OS ol |
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In general, the most significant kinds of variability
(for example, differences in the rules used to construct a
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oroof) depend on the number and type of rules that are
available when the proof is done; Replace -Equals and the
theorems acre especially important. Where variablility in
student proof behavior is desired, the more powerful rules
should be introduced as soon as possible, =

In a third part of this study, an attémpt was made to
identify patterns of proof behavior that characterized
groups of students ©Over the sample '6f problens, This
attempt took 'advantage of thé fact thati inetric functions
for the sét of studénts can be easily defided in' terms oOf
the classification procedures. Ce

: : ' I Al ot

The 'search for patterhs in student proof behavior was
exploratory " ‘in nature, If definable ‘patternsi’had been
detected, théir properties would have been inveéstigated,
and further research in this dJdirection would have been
suggested..” Ih fact, no indication of the existence of
definable p'a‘t_t'ern's"-'was"detected;. el

.

The fallure 'Of this part of 'the:. study to yield the
¥#sired resultd wa8 ‘"not surprisings The problems in the
lesiic curriculum a¥e quite heterogeneous, and~ differences
i proofs from'problem to problem are much more pronounced
than the diffeérences between students: for -argiven problem,
Since these ‘dfforts failed to reveal '‘any sustantial
results, and the guiestions raised here are peripheral to
the main purpose -of' thé-study, this part ‘of the study is
not discussed’'in ‘the fMain bedy of the text.:* The methods
developed for ‘this “ipart 'of* the study, ‘ihowever, make
possible a more systematic analysis of problem solving
behavior 'and should be> useful in:future studies dealing
with probleh- solving behavior, - sor a: description of the
analysis is included as Appendix A,

Overall, this''study indicates that the use of formally
defined partitions over sets of ::complex behaviors (in this
case, proofs) ¢éan provide!san intuitively satisfying and
fruitful “technique’® fort.iexamihing: the details of complex
behavior, - R s “ -
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CHAPTER TWO

I have included this brief description of the
oneration of the Logic Instructional System (LIS) for those
with no porevious experience of it} some discussion of the
curriculum is also included. The description is far from
complete, but I hope that it is sufficiently detailed to
enable the reader to follow the development in subsequent
sections. Further discussion of the material included in
this chapter can be found in James Moloney’s dissertation
(Molonev, 1972) and in several papers by Patrick Suppes
(suppbes, 1965,1970,1971). A new irstructional system for
elementary logic, which has many features in common with
the system discussed here, 1is described in detail in a
recent paper by Adele Coldberg (Goldkerg 1971).

The first part of the curriculum is designed to give a
thorough introduction to sentential 1logic. Once the
student has acquired an understanding of sentential logic,
he uses this knowledge in his study of elementary algebra.
In sentential 1logic, the approach used 1is a natural
deduction treatment in which the students are taught rules
of inference, such as modus ponens, and prootf procedures
(conditional proof and indirect proof). Some examples of
the rules of inference are:

(A) Affirm the antecedent - AA
From (1) ¢ => R
and (2) @
infer (3) R

(B) Form a con junction - FC
From (1) o
and (2) R
infer (3) Q and R

Using the rules of inference, the student is asked to
construct a mathematically valid proof of some specified
sentence (formula) from a given set of premises. The proof
consists of a sequence of steps, each of which utilizes one
of the rules of inference. The computer does not interfere
with the course of the student’s attempt to find a proof as
long as his steps are valid applications of the rules orf
inference; the computer does act as a proof-checker to
determine if each new step is valid, and types an error
message whenever a rule is used incorrectly. This gives
the student the freedom to construct his own proof, subject

11




to the constraint that each step be a correct application
of some rule,

In the second part of the curriculum, the student is
first taught certain rules about the identity relation
(e.g. adding a term to both sides of the equation). Then
he 1is given a set of axioms for an additive group (i.e.
commutativity, associativity, and the properties of zero
and negative numbers). From these axioms and the set of
rules, he constructs proofs for a number of theorems about
addition. In his proofs, he can use any theorems that he

has already proved as well as the axioms and rules that he
has learned.

The remainder of this paper deals exclusively with
derivation problems, and I shall restrict the following
discussion of LIS to 1its derivation mode, ignoring its
other modes. -

Each derivation problem consists of a formula to be
derived and a sequence of k (with k possibly equal to 0)
formulas called premises., The Kk premises arge numbered
sequentially from 1 to k. The student is required to find
a sequence of valid steps that lead to the formula to be
derived; when this formula is generated, LIS types CORRECT
and continues with the curriculum.

Essentially what a student does at each step of a
proof is to give a formal justification of the step that he
wants to take. These justifications are coded as short
mnemonics., Most codes require auxilliary information or
parameters; the student types these as pref ixes or
postfixes to the code name, The prefixes are line numbers
and specify the lines already in the proof that are to be
operated on in order to generate the new 1line. For
example, the left conjunct rule, LC, requires a single line

reference, the line number of a conjunction already in the
derivation.

Postfix numbers can be either occurrence numbers or
literal numbers. For example, an occurrence number is
required by the commute disjunction rule to specify which
disjunction of a complex formula is to be commuted. A
literal number is required by the number definition rule to

specify the number for which a definition is to be
generated.,

Let us consider a very simple example - problem
406.6: : :
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Derive: Q
P (1) r
P (2) R => ¢
Q is the sentence to be-derived, .and.lines (1) and (2) are
nremises, The number; 1, 4is the line number of the

sentence, R, and the number, 2, isrthe line number of the
sentence, R-DQ., . . i '

The student generates new Lines by meking use of the
rules available torhim.. If the Student' now types, 2.14A,
LIS generates a.-new. sentence labeled, (3)."'The ‘proof then
looks like this: GV

..+ -“CORRECT - . T R oy
v : T S L i,

AA is a mnemonic:.for affirm - the vantecedent : (modus
ponens). ...The .format, .for the . use of  this rule is n.maA
where n ig:. the line numher of a.conditional,  and m is the
line number of the antecedent . .of the conditional in line
(n}. In this case, line (2) is a conditional and line (1)
is the antecedent: of :that jconditional, ! LIS, therefore,
acceots thisninstruction.andngeperates;:.Q;-.as line (3);
2.1AA is a --yalid Step, ' of. ; the proof. ' Since, Cy is the
sentence to be:derived, the computer' itypes CORRECT and the
proof is complete. W : K

If, instead of 2.13A, .the student types 1.2AA, then
LIS would ngf,accept the.dnstruction, and no new line would
be generated.: An;error_message is typed by the computer
(in . thig,: case, LINE. 4-IS-NOT A CONDITIONAL), and LIS then
waits for the student’s next instruction. Each instruction
1s checked to insure that every sentence generated is
Justified: by .the, correct-use-of a rule:of inference; axiom,
or theoremw,_, yusue . L AR o ’

pife 1= Lol 3 o x G LIDe fam SRS ‘ | o

The pyoof for:this yexemple requires only :d  single
step, bg;y-pxsgbwqglduacgapt any-.other -valid step as well.
If the studeat,chposes to yse the double inegatitaon riulencon
line 1, for example, then line 3 is generated ass ix:J: o

]

(3) NOT(NOT R). R




Since this is not the formula to be derived, LIS would wait
f or another instruction, .

As indicated above, lines are numbered consecutively
as they are generated, and, with one exception, eacn valid
instruction generates a new line.. The instruction DLL,
delete last 11ne, does not generate a new line. Instead,
it erases all ' internal references to the last line
generated; 'for'LIS, that line no.longer exists (of course,
the deleted line’ ig not erased from the student s paper
copy of the’ derivation) The next line generated will have
the number &f tHe last line deleted. A sequence ot DLL’s
may be' used ‘to delete a sequence of llnes starting from the

most. recently generated line and yorkinq backwards through

the' ‘d€rividtion. = 'fhe student, however,. cannpt delete
oremises and he cannot delete any line in hnhis derivation
without prev1ously deleting all subsequent_lines.

RYYRIE

In our example, the student may dec1oe that he «aoes
not . 'need line (3), ang type a DLL, .as his second
instruction. ¥ If he then types 2.1AA, his record of the
derivation would appear asg _— E

Derive: Q

P " (1Y R . et
P (2 R= 0 Lo eT
1DN'  '(3) NoT(NOT R) .
DLL ;

27184 (3) Q

PR 188 . " .

CORRECT

: A 2 - - i

If he had tyved a_ second DLL 1nstead of the AA
instruction, he ‘'would be told that line. (2) ‘1s a premise,
and cannot be deleted. He could, however, have typed 2.1AA

directly after 1DN _‘and the derivation woxld khen appear
ass . :

e 3 s AT
pae st

E Derive: u;' s sQineltaf

(1)
P 1) K. ST
: ST RNRA P 0 SRR )
| : (2) R >~~ "3 ‘«' ‘ LnTloR
e 1DN (3) NoT(KQ ,) et nd 5
57 2,1AR_(4) @ . {0 p29U T
LOC ., PR LA bﬁh RISIOR S BE ¥ o5 € SLEN
CORRECT o
10w - Tig D

R TT PR TR tw -

Line (3) in this derivation does not bring the student
any closer to a solution, but it is a valid instruction and
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is accepted by LIS, The four lines listed do constitute an
acceptable proof, but 1line (3) 1is not really used; a

precise definition of ‘unused line’ will be given in the
next chapter.

In this example, the use of DLL is a matter of
convenience, but there are two situations where it may be
necessary to eliminate some 1lines from a partially
completed solution, LIS will not generate more than 31
lines for any problen, None of the problems in the
curriculum require more than 3| lines, but a student can
easily generate 31 lines without completing a derivation by
producing one or more false starts, When this happens, it

is necessary to delete some unused lines before continuing
with the derivation,

The other situation that requires the deletion - of
lines from a partial solution involves the working premise
rule, WP, Working premises must be used in con junction
with either the conditional proof rule, CP, or the indirect

oroof rule, IP, A brief description of these rules will be
given before continuing with the discussion.,

WP allows the student to introduce any formula or
sentence as a working premise, He may then instruct LIS to
generate new lines from this working premise until he has
generated the consequent of the conditional that he wishes
to prove; CP is8 then used to generate the conditional
sentence, Alternately, the student may derive a
contradiction hy using a working premise, and then use IP
to generate the denial of the working premise.

The use of WP begins a subsidiary derivation that must
be completed before the solution is completed. The line
generated by WP and all subsequent lines up to, but not
inciuding, the next 1line generated by a CP or an IP, are
indented on the student’s paper copy of the derivation to
indicate that they are part of the subsidiary proof,
Generating the formula to be derived in a problem within a
subsidiary derivation does not constitute a proof for the
problem; a different problem, with an additional premise,
has been solved, While the student has a working premise
that has not been referenced by a CP or an IP step, he |is
still in.-a subsidiary proof and cannot complete the proof,

The student may find that he has introduced a working
premise that he does not wish to use, Any working premise
which is not used (with either CP or IP) must be deleted

before the proof is completed, :
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If many lines must be deleted for either of these
reasons, it may be more convenient to end the session and
then begin a new session, The same problem 1is presented
again, and the student can then restart it,

The final point to be discussed here 1is the use of
substitution 1instances for axioms and theorems. A student
uses an axiom or a theorem by typing its code and then
hitting the enter key. LIS then types a statement of the
axiom or theorem and a list of variables in the theorem
that require substitution ,and asks that a speciric term be
substituted for each of these variables.,

To use the additive inverse axiom, the student types
AI. LIS types the statement of the axiom, A+(-A)=0, on the
same line, and requests the single substitution required
for AI Dby typing A: on the following line. The student
can then reply with any term. For example, if the student
wishes to generate for line (n), 6+(-6)=0, he must tvpe the
number, 6, after the the computer types an A: .,

Al A+(-A)=0
A: 6 (n) &+(~6)=0

Axiomns are introduced in the same way that the other ruies
are introduced, Theorems are presented as derivation
problems, and hecome available for use after they have been
provedl,

I shall conclude this discussion with an example of a
proof for a derivation problem from the algebra part of the
curriculum, A brief explanation of each step is given
after the solution, Further examples are presented in
Appendix C,

406,24:

DERIVE: A+A=3+3 =) A+A=6

P (1) A=3 => 6=A+A

P (2) 3+3=A+A =) 3=A
wp (3) A=3+3

DLL

WP (3) A+A=34+3
3CE1 (4) 3+3=A+A
2,4AA (5) 3=A

5CE1 (6) A=3

1.6AA (7) 6=A+A
3.7CP (8) A+A=3+3 ~> 6=A+a
8CF2 (9) A+A=3+3 =) A+A=6

16
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CORRECT

Lines (1) and (2) are premises and are typed by SLAP
as part of the problen. The student’s first step is a
working premise (first line (3)). This is a valid stepn and
is accepted by SLAP, but it is not the working pranise tlrar
the student wants. Therefore he deletes it in his next
step and generates a new working premise (second line (3)).
CF is then used to commute the expressions in 1line (3)
(prefix number is 3) around the first equal sign (postfix
number is 1) to generate line (4)e Line (5) is generated
by applying AA to lines (2) and (4). Lines (6) and (7) are
generated by wusing CE and ... respectively, Next,
conditional proof is used to generate the conditioneal
formula in line (8). This step has two 1line references.
The first line referred to is a working premise as it must
be, and the second line referred to is the line that is to
be the conseguent of the conditional formula. Since line
(8) terminates the Ssubsidiary derivation begun in line (3),
the indenting that began in line (3) terminates at line
(8)s Line (9) is generated by another application of the
CE rule. Since line (9) is the formula to be derived and
since the student is no longer in a subsidiary proof, ‘the
proof is accepted and LIS types CORRECT.
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CHAPTER THREE

In this charter, the classification procedures which
are the basis for this study are described. 1In section
3.1, an informal introductory description of the criteria
is oresented. In section 3.2, the procedure is developed
formally, and in the last =cection 3.3, an example is
described in detail,

Given any two proofs for a derivation problem, we want
to be able to decide that the proofs are equivalent (given
some set of criteria) or that they are not equivalent; in
order to do this, we must define a partition on the set of
proof s.

It would have been possible to have trained human
judges make the decisions, but I decided not to use this
technique for two reasons., First, it is an onerous task to
examine carefully 25 or 30 separate proofs each consisting
of 20 or 30 steps. It is difficult to remain consistent
for a single problem, and it is much more difficult to
maintain consistency from problem to problem. Second, 1if
this orocedure were used, it would be impossible to specify
orecisely the criteria employed.

With these difficulties in mind, I have decided to
snecify in advance a precise set of criteria for
classifving proofs. This eliminates the problem of
maintaining consistency throughout the classification and
oermits an unambiguous statement of the criteria wused in
obtaining my results.

Five distinct sets of criteria for classifying proofs
are defined in section 3.23 each of these sets of criteria
is shown to define a partition (and thus an equivalence
relation) on any set of proofs. It is also demonstrated
that the sequence of partitions is nested in the sense
that, if two proofs are eguivalent under the i-th
partition, they are also equivalent under the (i+1)=th
partition. In the following paragraphs, these results are
presented informally.

3.1 - INTRODUCTION TO THE CLASSIFICATION CRITERIA
The equivalence relations are defined in terms of
specific one-to-one mappings (correspondences) of

components of one proof onto components of another. If a
mapping of the specified form exists between two proofs,

i8
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they are equivalent, otherwise they are not. The proof
elements that are mapped and the nature of the mappings
vary from one equivalence relation to another, but in each
case, the equivalence of two proofs depends on a mapping
(correspondence) between component parts of the proots.

I will begin the discussion with the fifth partition,
where the criteria for equivalence are least stringent, ana
work backwards to the first partition, where the «criteria
are most stringent, The nesting of the partitions is a
consequence of the fact that restrictions are added at each
level, from the fifth partition to the first. The
classification procedure is illustrated in section 3.3,
where the resulting partitions for each of tre five sets of
criteria are presented for a small sample of proofs.

For the fifth equivalence relation, the set of
elements of each proof is the set of all rules that appear
at least once in the used steps of the proof. The mapping
for this partition requires that the elements mapped onto

each other be the same rule; two proofs are equivalent if’

they use exactly the same rules.

The fourth partition also requires that equivalent
oroofs have the same set of used rules, but imposes the
additional requirement that the rules occur the same number
of times in both proofs. Therefore, proofs that are
eguivalent wunder the fourth partition will also Dbe

equivalent under the fifth partition; the partitions are
nested.

The elements mapped under the remaining partitions are
the steps of the bproofs. Under the third partition,
equivalent proofs must contain the same number oOf steps,
and the steps mapped onto each other must use the same
rule. The additional requirements added at the third
vartition are more complicated than those for any of the
other partitions. The description included here is very
brief and incomplete in some details. One of the
requirements of the third partition is that corresponding
steps have identical argquments (arguments specify how the
rule is to be applied - see Chapter II and section 3 of
this chapter). The third partition also places
requirements on the structure of the proof, on the
relationship between the steps in the proof. The principal
requirement, added at this 1level, 1is that the steps
referred to by corresponding steps must correspond. If D
and D’ are equivalent proofs under the third partition,
d(i) in D corresponds to d’(i’) in D’, d(i) refers to d(j),
and 4°(1°) refers to d’(j’), then d(j) corresponds to
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a‘(j’). This condition
the order of the steps sinc
the stens that they refe

implies a partial restriction on
e valid steps always come after

I tO; no additional restrictions
are nlaced on the order of steps at tnis

sense, made explicit in section 3.2,
same structure,

level, In a
proofs must have the

The second partition imposes all of the requirements

of the third and also reguires that the ordinal position of
corresponding steps in equivalent proofs be the same,

The first partition is defined by the identity
relation. The nesting of the partitions results from the
fact that, for i = 1y¢4044, the mapping for the i~th
partition imposes all of the conditions of the (i+1)-th
partition along with additional conditions,

3.2 DEFINITION OF THE CLASSIFICATION PROCEDURE

The development that follows will take as primitives,
the smallest units of student behavior evaluated by the
Logic Instructional System (LIS); these units will be
called instructions., A student constructs solutions to the
derivation problems on the LIS by typing a sequence of
instructions. A valid solution to a derivation problem
will be called a derivation or ‘proof’; a forwmal definition
of a proof will be presented below,

An instruction is a string of characters (modified
ASCII including blank spaces) followad by a carriage return
Or an enter character. The carriage return or enter
character signals LIS that the instruction is complete.

After an instruction has been typed by the

student,
the system responds in onz of three wiays; instructions may
be classified into three mutually exclusive and exhaustive

categories on the basis of this respolise. If the response
is an error message, the instruction will be called an
E~-instruction. If the response is a request for further
information, the instruction will be called an
I-instruction (intermediate instruction). If LIS responds
by typing a new formula, then the instruction is called an
L-inst ruction. If the student types ‘DLL’ followed by a
‘Carriage return or enter Character, then the system gives
No cvert response, but deletes all internal references to
the last formula generated. This special type of
instruction is also classified as an L-instruction,

Dez 1: A sequence of instructions is an L-
if the last instruction in the

step 1if and only
sequence 1is a




L-instruction and all previous instructions in the
sequencCe are I-instructions,

1a: A sequence of instructions is an E-step if and only
i the last instruction in the Sequence 1is an
E-instruction and all oprevious instructions in the
sequence are I-instructions,

‘

2: The formula tyned by the system after the 1last

instruction in an L-steo is said to be generated by
the L-sten,

3: In a sequence of steps, all steps between any Wwp

step and the first IP or CP step following the WP step
are called conditional steps.

Def 4: The subsequence of L-steps in a sequence of steps
is a proof (or derivation) of the line, L, if and only
if the last L-step in the subsequence generates L and
is not a conditional step.

As defined here a student’s proof for a problem
consists only of L-steos, and the subsequent analysis
treats only these L-steps; E-steps are excluded from the
definition of proof, and student errors will not be
included in the following analysis, At this point in the
discussion, the distinction between L-steps and E-steps

will be dropped, and the term ‘step’ will be used to
designate L-steps,

The sequence of steps that defines a proof generates a
sequence of formulas with the formula to be derived as the
last formula in the sequence. LIS associates with each of
these formulas an integer that identifies it fcr subsequent
reference. These integers are called labels, . A proof,
then, consists of a sequence of labeled steps (L-steps) in
which the last step in the sequence of steps generates the
formula to be proved.

. For the purposes of the following discussion, it will
be useful to decompose any step into three functional

components. A step is then viewed as an ordered triple
consisting of:

(1) a sequence, possibly null, of numerals (called
references) that are the labels of some previous steps
in the proof

s mwmd P
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(2) a string of letters designating one of a finite set f
rules of derivation

(3) an argument 1list, possibly null, whicnh provides
additional information on how the rule of the step is
to be apolied :

Further discussion of labels, rules, and argument lists can
be found in Chapter 1II.,

Lo/
1]
rh

5: A step d(1) is said to refer to a step d(j) if the
label d(j) is equal to a reference of d(i) .

o
o
()}

6: There exists a chain of reference from d(i) to d(j)
i1ff there

exists a seguence of steps d’(1)...4°(k), such
that:
(1) d(i) =d°(1) and d(n) = a°(k)
(2) for all i=1,...k-1 , d’(i+1) refers to d‘(i)

o
o
r

1: A step,d, in a derivation,D, is said to be used if
d is the last step in D, or if there 2xists a chain of
reference from d to last step.

|93

h 2: If 4 is a used step in D, and d refers to d’, then
d’ is a uged step in D,

Pf: Let 4 be the last step in D. Since d is usad in

D, there exists a chain of reference d,..d4a . But d

refers to d’; so d4’,d,...,4 1is alsp a chain., Since

there exists a chain from d’ to 4", d’is a used step
in D,

Let S designate a finite set of proofs for some
derivation problem. S = {D,D’,D ...},

@)

ef 8¢ <1>D" iff D and D’ are derivations in S, and D is
identical to to D’.

Th 3: <1> is an equivalence relation on S.

Pf: The identity relation is an equivalence relation.

Definitions 9 and 10 are complicated by the unijque
properties of Indirect Proof (IP), IP is the only rule in
the set of available rules that requires more than two
references. For steps with rules that require two
references, the interpretation of the step depends on the
order of the references. The valid use of AA, for example,

22




recuires that that the first reference be the labbel ot an
imnlicationn  and that the secon:d formula referred to ve the
antecedent of this conditional, For 1Iv», the first
reference must b2 the lab2l of a working prenise, but the
onlv remircanent on the second and third tvaierences is that
they be the labals of two forwulas, one ol which is tne
necation of the other, 1\ change in the ornier OFf these two
references has no effecl on the validity of the step and no
effect on the formmla ¢enerated by the step.,

The secon.d and  third sets of equivalence criteria
(Def 9 and Def 10) place restrictions on the orler of tne
referenc:= in each sten, and it 1is desirable that the
second and third references in IP steps be exceptions te
these restrictions, In order to do this, a sepnarate
restriction on tha order of the references is speciii- {or

IP,

Def 93 DK2>D’ iff D an’ D’ are derivations in 3, and there
exists a mapping of the used steps > D onto the used
steps of D’, with the following proparties: let d(m)
in D man into 4‘'(m’) in D’

(1) 4f d(m)->d’(m’) and d(m) is the n-th step in the
subsecquence of used steps of D, then d‘(m’) is the
n-th step in the subseqguence of used steps of DY,

(2) d(m) and 4’ (n’) have the same rule, and the same
arqument list,

(3) &f d(m) uses a rule that requirs=s either one or two
references and d(m) refers to d(i), <(j), (A(i) if
d(m) has ouly onwe refec=inc-), thea d’(m’) reiers to
a’(i’), a’(j") and d(4)->a’(1’), da(3)->a’(j’).

(4) if d(m) has rule IP, then d(m) refers to a(i), 4d(3j),
d(k) and d°(m’) refers to a4’(i’), da’(j‘), a’(x’).
d(i)->a’(1’), and either d(j)->a’(j’}), d(k)=>a’(k’) or
a(j)->a’(x"), da(r)->a’(j’).

Th 4: <2)> is an equivalence relation,

Pf: The proof consists of showing that the three
properties that define an equivalence relation hold
for <2>3; in this proof, numerals used as subscripts
designate the first, second, or third step referred to

by some step.

(A) Symmetry D{2>D

Define a mapping of D onto D such that d(m)=>d(m),
It 1is clearly true that properties (1) and (2) of (2>
hold. If d refers to some Sequence of steps d(i),
i=1,2,3, then d(i)->d(1i); so properties (3) and (4)
also hold.

(B) Reflexivity If DK2D>D‘ then D’{2>D.

Assume that D<{2)>D’.Then there exists a mapping,
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d(m)->d’(m’), with properties (1) to (4). For D’<2>D,
define the inverse mapping 4’ (m’)=>d(m).

Since properties (1) and (2) hold for the mapping
of D onto D’, they hold for the mapping of D’ onto D.

Let d° be any step in D’, and let d be the step in
D that maps into d’ under D->D’; wunder D’-)D , d’=>d.
If d in D refers to d(i), i = 1,2, and d-)a’ in D’,
then <’ refers tod’(i), i = 1,2 where d(i)->a’(1),
i =1,2 (by property (3) of D=)>D’)., under the inverse
mapoing &°->d, d’ refers to d‘(i‘), i’ = 1,2, and
d’(1)->d(i1), i1 = 1,2 .Therefore property (3) holds for
the inverse mapping.

If 4 has rule, IP, then d and d° have three line
references. d refers to d(i), i = 1,2,3 and d° refers
tod’(i), i = 1,2,3. Under D-)>D’, either d(i)->a‘ (1),
1 =1,2,3, or  d(1)->a‘(1), a(2)->d’(3) and
d(3)->d"(2). If the former condition holds, then
d’(4)->d(i1), 4 =1,2,3 under D’-PD. 1If the latter
condition occurs, then d°(1)->a(1), d’(3)->d(2), and
d’(2)->a(3). In either case, property (4) nolds for
D'->Do
Transitivity If D<2>D’ and D’<2>D" then D<2>d",

Assume that D<2>D’ and D’<2>D . Then there exist
mappings D->D’ and D'->D, with properties (1) to (4).
Let d be any step in D; d->d° and d’~>d . Define a
new mapping from the used steps of D onto the usad
steps of D such that d->d for all d, in D.

By oroperty (1) of D->D’ and D'->D , if d is the
n-th step in D then d is the n-th step in D ,
Property (1) holds for the new mapping.

Since d has the same rule and sequence of arguments
as d’ and g' has the same rule and sequence of
argument as d , 4 and d have the same rule and the
same sequence of arguments, Property (2) holds for
the new maovping.

Let d refer to d(i), £ = 1,2 , d° refer to d‘(i),
1=1,2, and 4 refer tod (i), 1 = 1,2, Under the
new mapping d->d, and d(i)->da (i), i = 1,2,

If 4 has rule, IP, then d,d°,and d all have three
line references. Under D->D°, g(1)->d'(1),‘ and under
D’->D", d(1)=>d (1); under D->D", d(1)->d (1)  For
the second and third references there are four
possible cases, since there are two cases for D->D°
and two cases for D'-)D , Assume that d(2)=->a’(3),
d(3)->d;(2), and d’(2)->da"(2), a‘’(3)->a"(3). Then
d(2)->a (3) and 4(3)->d (2), and property (4) holds in
this case, In a similar fashion, it can be shown that
property (4) holds in the other three cases as well.




Def 10: ©D<3>D’ iff D and D’ are derivations in 5, and
there exists a mapping of the used steps of D onto the
used steps of D', with the following properties:
d(m)=>a’(m’)

(1) d(m) and d'(m’) have the same rule - and the same
arqument list,

(2) 4f 4(m) uses a rule that requires either one or two
references and d(m) refers to d(i), d(j) (d(i) if 4
has only one reference), then d'(m’) refers to d(i‘),
d(j’) and a(i)->a’(i’), d(j)->a’(j’).

(3) if 4 has rule, IP, then 4 refers to d(i),d(j),d(k) and
d’ refers to Aa’(4i’), d°(j’), a’(k’). d(i)=->a’(i’),
and either d(j)->a‘(j’), da(x)=>d’(k’) or da(j)->a‘’(x’),
d(k)=->a‘(j’).

Th 5¢ <3>is an equivalence relation on S.
Pf: The proof of theorem 5 follows the same pattern as
the proof of theorem 4,

Derivations on the logic program consist of a sequence
of steps and each step applies one of a finite set of
rules. Let R(i) be the i-th rule in the set of rules; i =
1y+¢+eyM. The order of the rules is not important,

Def 11: R(i) is said to occur in D, if some used step in D
applies R(1i),

Since rules may occur more than once in a derivation,
we will designate the number of occurrences of R(i) in D by
N(i)s It should be emphasized that the definition of
occurrence for a rule is restricted to used steps. The

sequence of numbers, N(i), is a frequency distribution over
the set of rules.

Def 123 D<K4>D’ iff D and D’ are derivations in S, and for
every rule, the frequency of occurrence in D is the

same as the frequency of occurrence in D’; for
i =1,...,M, N(i) "—'N'(i)o

Th 6: <4> is an equivalence relation on S,

(A) Identity D<4>D D has the same frequency distribution
for rules as itself,

(B) Reflexivity If DK4>D’ then D’<4)D. If D<K4>D’, then
N(1) = N'(1), 1 = 1,...,M. But then D’<4)>D. "

te¢) Transitivity If DC4>D’ and D'<4>D", then D<4>D".
Assume that D<42D° and D‘<4>D . Then N(i) = N'(i),

and N°(1) = N (i), i=1.,M Therefore
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N(i) = %" (i), i = 1,..,H4 ana D<4a>D",

Def 13: D(5>D’ iff D and D’ are derivations in S§, and a

le rule occurs in the used steps of D iff the same r
occurs in the used steps of D°; for i = 1,¢¢.,M
N(i) = 0 iff N’(i) = O,

pPf: Eere the frequency distribution over the set of
rules is reduced to a set of 0-1 variables, 0(i). Let
O(i) = 1 if h(i) is not equal to O and let O(i) = © if
N(i) is egual to 0. This theorem is then a special
case of the previous theorem.

Th 7t <5> is an equivalence relation on S.

8: Let D and D’ be solutions to some derivation

problem. For i = 1,...,4, if D<i>D’ then DKi+1)>D’.

Pf:

(1) If D{1>D°, then D is identical to D’; D=D’. &since <2)>
is an equivalence relation, D<2>D or 0<2>D’.

(2) If DC2>D’, then a mapping D->D’ exists with properties
(2) to (4) of definition 9., The weaker mapping of
definition 10 is defined by these three properties.
So DE3>D’.

(3) If DC3>D’, then there exists a mapping, D-)>D’, with
property (1) of definition 11. For every occurrencec
of R(i) in D, here is a corresovondiny occurrence ot &
in D', So N(i) = N°(i) for i = 1,..,M , and D<4>D’.

(4) IF DK4>D°, then N(i) = N°(i) for i = 1,..,. so
o(i) = 0°(i) for i = 1,..M and D¢5>D’,

3.3 EXAMPLE OF CLASSIFICATION OF PROOFS

Eight vroofs for oroblem 414035 are included in this
section to illustrate how the nested classification
nrocedures workK. Although these proofs were selected from
the data wused 1in this study, they are not ineant to be
renresentative of the general data base or even the data
for this problem. The proofs 1in this subsample were
selectud so that the numnber of classes would decrease v
one or two from each partition to the next. Problem 414(35
was selected for two reasons, First, the proofs generated
for it show enough differences at each level of equivalence
to illustrate the procedure. Second, the proots are short
enough to permit a relatively clear presentation of thne
differences without the distraction of too much detail.
The statement of problem 414035 is:

414035:

‘A1’ STANDS FOR THE ADDITIVE INVERSE AXION.
DERIVE: 3+(A+(-a))=3
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The eight nroofs are found in Tabla 1, and are lalcled
from A to B for ease oOf reference. Under tne first
rartition, each nroof in the subsample defines a separate
eauivalence class; the eight proofs were chosen so that
this would be the case,

None of the proofs in Table 1 are identical, but they
all have certain things in common. Each uses the two
axioms, AI (additive inverse axiom) and Z (zero axiom), and
some subset of the following rules:

. — add equal terms to both sides of an equation
-~ commute addition

commute around an equal sign

- logical truth

. — renlace equals

MO0
703 P
!

The similarity in the proofs is not surprising since they
are all proofs for the same formula.

The equivalence classes under the second partition arc
also defined by paradigm proofs for eacn class; the

paradiaqm oroofs for the second partition are 1listed in
Table 2,

Proofs C and F are now equivalent., In prooi r (see
Table 1 for the oriainal form of proof rF), the first step
is not referred to by anyv susequent steo; the first step is
an unused step and is eliminated from the proof before the
comparisons for the second classification are d&one, The
line reference numbers in bproof F are also changed to
reflect the elimination of the first step. when this 1is
done proofs C and F are identical,

The paradigm proof for proof H is also changed. The
DLL step and the CE step, that was deleted by the DLL, are
removed. In this case, no changes in 1line reference
numbers are required. In proof B, an unused LT step is
removed and subsequent line reference numbers are changed.

The paradigm proofs for the third partition are listed
in Table 3. Under this partition, proofs A and E are
equivalent, and proofs C, D and F are equivalent.

If we examine proofs C and D in Table 2, we see that
each has four steps. The first two steps in D are
identical to the first two steps in C but the order is
reversed; this change in order has no effect on the form of
the lines generated. The rules for the last two steps are
the same in the two proofs, but the lin2 reference numbers

21
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are different., This difference is due to tne fact that the
order of the first two steps is differcat in the two
proofs, The third step (CE1) in each proof refers to the
previous AI step. The fourth step in each provi refers to
the 2 step and the CE step in that order. The structure of
the two ©proofs is the same, and the apparent differences

all result from the arbitrary reversal of the first two
lines,

The equivalenca classes for the fourth partition are
defined by frequency distributions over the available rules
(see Table 4), For convenience, the distributions in
Tabla 4 and Table 5 are taken over the limited set of rules
that actually appnear in the subsample,

In going from the third opartition to the rourthn
partition, three classes are combined into one class
(A,4,8,E). The oroofs in this class have the sane number
of steps and the same frequency distribution over tne
rules, The differences that exist between these proofs
(see Table 3) are in the order in which the operations are
verformed, and the lines in the proot that the operations
are oerformed on,

In order to clarify the distinction between the third
and fourth partitions, I will compare two proofis (A,n and
B) that are equivalent under the fourth partition but not
under the third, The first three steps in the two proois
are the same, The rules for the remaining steps are also

the same, but they are used somewhat differently in the two
DIOOLS,

In both cases, the objectjive @f the third and <fourth
stens is to replace the term, 043, in line 3 by the term,
o If some line in a proof is of the form A=B, where A
and B are terms, the replace equals rule, RE, allows the
substitution of B for any occurance of A in ,the proof.
Using line 2 and RE, any occurance of, 340 can be
replaced by 3 ., The term that appears in 1line 3 is,

0+3 , and, RE cannot be used with line 2 to replace this
term by, 3.

The A,H proof resolves this difficulty >y usin the CA1
step (commute addition around the first plus siygn in the
equation) on line 2 to form line 4, 0+43=3", 1In step 2, ki
is wused 1in  conjunction with line 4 to replace, 0+3 , in

line % by, 3,

The B proof uses CA3 (commute addition aroungd the
third plus sign) on 1line 3, changing, 043 , to, 3+0 . KE
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is then used with line 2 to generate line 3.

The sixth sten is the same for both proofs. This is a
relatively minor variation but it does indicate a
difference of apnroach in producing proofs, -

The only change in going from the fourth pAactition tvo
the fifth partition is the inclusion of proof G in the
A,H,B,E class. Proof G has a useless transformation in the
third step that is corrected in the fifth step. Thus there
are two unnecessary uses of the CA rule in proof G.
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FIRST PARTITION

A+(=34)=0

3+0=3
(A+(-a))+3=0+3
0+3=3
(A+(-A))+3=3
3+(A+(-2))=3

3=3

A+(=2)=0

3+0=3
(A+(=-A))+3=043
(A+(-A)) +3=3+0
(A+(-A))+3=3
3+(A+(-2a))=3

3+0=3
A+(-a)=0
O=A+(-A)
3+(A+(-A))=3

A+(-A)=0
3+0=3
O=A+(-A)
3+(A+(-A))=3

A+(-A)=0
(A+(-A))+3=0+3

" 3+(A+(-A))=0+3
3+0=3

0+43=3
3+(A+(-A))=3

3=3

3+0=3
A+(-A)=0
O=A+(~-a)
3+(A+(~n))=3
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TABLE 3.1 CONTINUED

. . .AIO’A (1) A+(—A)=0 G
1. . .AE.’B (2) (A+(‘A))+3=0+3
2, . «CAl, . ® (3) ((—A)+A)+3=0+3
3. . .CA3.* (4) ((-A)+A)+3=3+0
4, . JCAl.*® (5) (A+(=A))+3=3+0
5. . .CAZ.* (6) 3+(A+(—A))=3+O
. . 020.3 (7) 3+0=3
60 7. .RE1.* (8) 3+(A+(—A))=3
. . .AI.’A (1) A+(-A)=0 H
1. . +AE, ,3 (2) (A+(-A))+3=0+3
. . oZo ,3 (3) 3+0=3
30 L] oCE1o* (4) 3=3+0
. . oDLLo*
3. L] .CA1 o* (4) 0+3=3
2., 4, +RE1,¥# (5) (A+(-A))+3=3
5. . .CAZ.* (6) 3+(A+(-A))=3
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TABLE 3.2 - SECOND PARTITION
. «AI,,A (1) a+(-a)=0 A
. 020'3 (2) 3+0=3
1. +.AE,.,3 (3) (A+(-A))+3=04+3
2. .CA1.* (4) O+3=3
) 5. .CA2.* (6) 3+(A+(=A))=3
. .AI. ,A (1) A+(-A)=O B
. iZs,3 (2) 3+0=3
1. +.AE,.,3 (3) (A+(-A))+3=0+3
3. +CA3,.# (4) (A+(-A))+3=3+0
4, 2 «RE1,.% (5) (A+(-a))+3=3
5. «CA2 . % (6) 3+(Aa+(-a))=3
eZe,3 (1) 3+0=3 C,F
. . «AIl., ,A (2) A+(—A)=O
2. . .CE1.* (3) O=A+(-A)
1. 3. .RE1.¥ (4) 3+(A+(-a))=3
. «AI.,A (1) A+(-a)=0 D
[ 020,3 (2) 3+O=3
: 2. 3. .RE%.* (4) 3+(A+(-a))=3
k [ «AL, ,A (1) A+(_l’\5)=0 B
2. .CAZ.* (3) 3+(A+(-A))=O+3
. eZ4,y3 (4) 3+0=3
4. [ OCA1 o* (5) O+3=3
3. 5. .RE1.* (6) 3+(A+(“"A))=3
. .AI. ,A (1) A+(-A)=O G
- 1. .AE.,3 (2) (A+(‘A))+3=O+3
; 2. +CA1.* (3) ((=A)+A)+3=0+3
L. 3. .Ca3,* (4) ((-A)+A)+3=3+0
4. +CAt,. ¥ (5) (A+(=A))+3=3+0
i e« 4Z.,3 (7) 3+0=3
6. 7. .RE1.* (8) 3+(A+("A))=3
i e« o« JAIL.,A (1) A+(-a)=0 H
- 1« « <AE.,3 (2) (A+(=A))+3=0+3
(] oZo ,3 (3) 3+O=3
r 3. .CA1.* (4) O+3=3
IL_ 2. 4 .RE1.* (5) (A+(‘A))+3=3
5. «CA2,.* (6) 3+(A+(-a))=3

32

©

ERIC

Aruitoxt provided by Eic:




28

TABLE 3.3 - THIRD PARTITION

. «AI.,A (1) a+(-a)=0 - A,H
] Zo’3 (2) 3+0=3
1. AE.,3 (3) (A+(-a))+3=0+3
2. CAatl,.* (4) 0+3=3
3. 4 +RE1.# (s) (A+(-a))+3=3
5. .CAZ.* (6) 3+(A+(‘A))=3
. +Al. ’A (1) A+("A)=0 B
. eZ¢,3 (2) 3+0=3
3. .CA3.* (4) (A+("A) )+3=3+0
4, 2 «RE1.%* (s) (A+(-A))+3=3
] -Zo’3 (1) 3+0=3 C’F,D
o +AIL.,A (2) A+(-a)=0
. .CE1.* (3) 0=A+("A)
1. 3. .RE1.% (4) 3+(A+(-a))=3
. «AI.,A (1) a+(-a)=0 E
1. +AE, ,3 (2) (A+(-a))+3=0+3
. 2, 3 (4) 3+0=3
4. [} .CA1 o* (5) 0+3=3
3. 5. JRE1.* (6) 3+(Aa+(-a))=3
. +AI,,A (1) A+(-a)=0 G
1. .AE. ,3 (2) (A+(=A))+3=0+3 )
3. .CA3 * (4) ((-A)+A)+3=3+0
4. .CA1.* (5) (A+("A))+3=3+0
S. «.CA2, % (6) 3+(Aa+(-a))=34+0
. . oZo’3 (7) 3+0=3
6. 7. J.RE1,.% (8) 3+(A+(-a))=3
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CHAPTER FOUR

Since one objective of the logic program is to develop
flexibility in the student’s approach to the construction
of proofs, it is desirable to avoid the inclusion of
derivation problems which encourage stereotyped proof
behavior. For the future development of this curriculum
(an@ similar curricula), it would be useful to know how the
attributes of derivation problems affect the degree of
diversity found in proof behavior. The analysis described
below is designed to identify those characteristics of
derivation problems which best predict the amount of
variation found in a sample of proofs for the problems,
For each problem in the curriculum and for each set of
criteria, student proofs were classified into equivalence
classes. The number of different classes occurring for a
varticular problem was used as a measure of variability of
student proofs for the problem.

After the sample of proofs had been partitioned, the
relationship between the number of classes per problem and
the structural attributes of the problems was investigated
using multiple linear regression.

Since linear regression is a commonly used technique,
the details of this method will not be included here. A
Giscussion of the way in which regression analysis was used
in this study and of the assumptions involved in using
regression is found in section 4.5. The model assumed in
all of the analyses is linear:

Y =a#*X + eee + a ¥ X + e
j 1 1,3 n n,j j

where Y(j) is the value of the dependent variable for the
j-th problem, X(i,j) is the value of the i-th independent
variable for the j-th partition, the a(i) are constants,
and e( j) is the error term for the j-th problem.,

For each of the five measures of variation, a separate
regression analysis was run, with the number of classes per
problem as the dependent variable. The independent
variables used are similar to those used in a previous
study of the stanford Logic- algebra curriculum (Moloney,
1971), and these variables are discussed in section 4.4.

4o




31

Dur ing the summer quarter of 1970, the
Logic-Instructional system was used as an integral part of
the introductory logic course (Philosophy 157) at .Stanford
University. The students were proctored duraing their
sessions at the computer terminals by the philosophy
graduate students who gave the lectures in the course. The
course consisted of two hours of traditional classroom
instruction each week in addition to the time spent working
at the computer terminals,

The LIS curriculum emphasizes the construction of
formal proofs, and it 1is the behavior of students in
constructing such proofs that is examined in this
dissertation, Four of the 27 students who enrolled in this
course failed to complete some parts of the curriculum
included in this studvy, and these students have been
dropped from the analysis.

The fact that approximately fifteen vpercent of the
original sample were dropped because they failed to
complete a substantial part of the curriculum raises the
possibility that the results of this study are biased by
the selection of the more successful students, If we
assume that there is no interaction effect
(student-problem), the elimination of the data for these
students would tend to affect the results for all problems
in the same way, but would not bias a comparison between
problems, Moreover, the inclusion of proofs by students
who did only part of the curriculum would introduce bias
into a comparison between problems, because the results for
some problems would be affectd by these students while
others would not. So, it 1s necessary to drop these
students and accept the possibility c¢f bias arising from
selection,

A similar problem of non-random selection arises when
the full set of 27 students is considered, since these
students selected themselves for this study by deciding to
enroll fo Philosophy 157 in the Summer of 1970. The extent
to which the findings of this study can be generalized to
other curricula and other student populations will depend
on the extent to which the tasks and the population in this
study are representative of the target tasks and
population,

Even for the 23 students who completed the part of the
curriculum included in this study, some data were lost
because of machine failure; this problem will be discussed

36
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in the next section., A relatively complete set of data is
available from these students for the problems in lessons
405 to 415, and it 1is the 127 proof problems in these
lessons that are considered in the analysis.,

4.3 DEPENDENT VARIABLES (MEASURES OF VARIABILITY)

In the analysis reported in Chapters V and VI,
stepuise regression was used to relate five measures of
variation in the sample of proofs to 17 wvariables that
characterize the nature of the problem. A separate
regression analysis is presented for each of the five
measures of variation. In this section, the dependent
variables (measures of variation) are discussed, and in the
next section the independent variabl~s are discussed.

For each of the problems under consideration there are
approximately 23 proofs in the sample, and the same 23
students are used for all problems, The five sets of
equivalence criteria defined in Chapter III generate a
nested sequence of five partitions on the sample of proofs
for each problem, The first dependent variable, C1, is
defined to be the number of classes under the first
partition. The variables, C2 to C5, are defined to be the
number of classes under the second to the fifth partitions
respectively, The full set of proofs for any problem
generates a single value for each of the five dependent
variables, the number of classes of proofs for the five
partitions.

Even for those students who completed the lessons of
the curriculum included in this study, there was some loss
of data due to machine failure, and the data lost in this
way cannot be recovered. Since the machine failures that
cause this type of data 1loss are independent of the
students’ behavior, the loss is assumed to be random,

If no data had been lost, the sample of proofs for the
23 students and 127 problems in this study would consist of
2,921 proofs. Out of this number, 51 proofs were lost
because of machine failure. Although the percentage of
missing proofs is quite small (1.7 percent), this loss of
data could be a serious problem,

The definitions of the dependent wvariables make it
difficult to deal with the poblem of missing data. Failure
to include the proofs of one or more students cannot
increase the number of classes found, and can decrease this
number. Missing data, therefore, introduces a bias toward
lower values for all five dependent variables on the
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problems with an incomplete sample of proofs, It should be
emphasized that this bias results from the nature of the
dependent variables, and exists even though the 1loss of
data is random.

There are 89 problems with no missing proots, 28
problems with one proof missing, eight problems with two
missing proofs, one problem with three missing proofs, and
one problem with four missing proofs. The two problems
with more than two missing proofs were not used in the
analysis that follows, and the results for the other 125
problems were modified to correct for the missing proofs.

In order to correct for the missing data, some
assumptions must be made about the functional relationship
between the number of classes in the sample of proofs and
the total number of proofs in the sample. Using the
relationship assumed, the number of classes in a sample oOf
21 or 22 proofs can then be extrapolated to a hypothetical
sample c¢f 23 proofs.

The nature of the dependent measures being used in
this research implies that they are monotonically
nondecreasing functions of the number of problems in the
sample because the inclusion of another proof in the set
being partitioned cannot decrease the number of subsets
dexined by the partition but can increase this number by
one. Therefore, the desired functional relationship must
have a positive slope.

As the number of proofs that have been partitioned
increases, the probability that an additional proof would
specify a new class (not fall into a «class already
specified) decreases, S0, an accepable candidate for the
functional relationship between the number Of classes and
the number of proofs should have a negative second
derivative.

Examination of the set of student proofs for a
representative sample of problems indicated that the
relationship between the number of classes in a random
subset of proofs and the number of proofs in the subset is
approximated by the following formula:

B
CL = A*(SL) (1)

Where SL is the number of problems in the subset, CL is the
number of classes, and A and B are constants that depend on
the problem. For A positive and B between zero and one,
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this function meets both of the criteria specified above.
Since a sample of one proof will always have one class, A
is equal to 1; and (1) formula reduces to:

B
CL = (SL) (2)

The value of B for any problem can be estimated from the
number of <classes in the available set of proofs for the
problems Taking the logarithm of both sides of (2) gives:

ln(CL) = B * 1n(SL) (3)

and B is then aiven by:

1n(CL)
B =& ——waaa (4)
1n(SL)

Since the ‘actual values of CLL. and SL are available for each
problem, an estimate of B for each problem can be obtained
using (4). The predicted value for a full set of 23 proofs
can then be calculated from formula (2).

Using this technique, tables of the predicted values
of CL for the possible range of the observed values of CL
have been computed, and are included in Tables 1 and 2.
Since the observed values of the dependent wvariables
(number of classes of proofs) are integers, the corrected
values for these variables are rounded to integers, The
final correction criteria are listed in Table 3.

As a partial check on the impact of this correction
procedure on the final results, the analyses to be
discussed in Chapter V were also run without the eight
problems that are missing two proofs. There were no major
changes in the results when this was done. The corrected
values for the dependent variables are used in all of the
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analyses reported in this paper

4.4 - INDEPENDENT VARIABLES

The set of independent variables used in this study is
very similar to the set of variables used by James Moloney
in a previous study of the same curriculum (Moloney, 1971).
A list of the variables used in the present study is
included as Table 4.4.

The first five variables listed in Table 4.4 quantify
various types of structural complexity that can appear in
the problem statements. Since these variables do not play
a very prominent role in the analysis that follows and
since the definitions for these variables are clear, they
will not be discussed further here. 1In the remainder of
this work, these variables will be called the
‘oroblem—structure variables’.

s13(av RE), s17(R INF), s18(av TH), S19(AV AX),
s20(TOT R), S21 (PSLI) AND S22(POSIT) are all defined in
terms of the problem’s position in the curriculum, 513(Aav
%) is a O0-1 variable and indicates whesther the problem
appears before (S13=0) or after (S13=1), the introduction
of Replace Equals, s17, S18, and S19 are counts of the
numbers of rules of inference, theorems, and axioms that
are available when the problem is reached in the
curriculume S20(TOT R) measures the total number of rules
available when the problem is encountered, and is equal to
the sum of s17, S18, and S19. S22(POSIT) is defined as the
ordinal position of the particular problem in the sequence
of problems considered in this study; this wvariable 1is
included to <check for any general order effect in the
curriculum, These variables are referred to as the
‘rule-position variables’.

The last group of variables to be considered are those
that Moloney calls the ‘standard proof variables’; the
variables in this group are Ss11(RE), S12(CP), S14(AXIOM),
S15(THERM), and S16(STEPS). The values of the standard
proof variables for a problem are defined in terms of a
*standard’ proof for the problem. The standard proofs used
in this study are those constructed by Moloney; the same
set of problems were done independently by the present
author and no changes were found to be necessary. The
criteria wused in constructing these proofs are given by
Moloney:
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Several criteria were used by the author in
generating the standard proofs., First, the
author worked through the entire set of problems
included in this study two times. The proofs
generated the second time through are used as
standard. An attempt was made to construct
proofs with a minimal number of 1lines. Also,
within the constraint of producing a minimal
proof, an attempt was made to use rules and
theorems most recently introduced, wherever
possible, It is the judgement of the author that
the great majority of the proofs produced are
minimal in the sense of containing the 1least
possible number of 1lines.

Since it is the standard proof variables that dominate the

discussion in Chapters V and VI, some further discussion of
these variables is appropriate,

S16(STEPS) is just the number of steps in the standard
proof, and functions as a simple measure of the length of
the problem, The types of steps that appear in the standard
proof has no effect on this variable.

S11(RE) is the number of occurrences of the rule,
Replace Equals, in the standard proof. Replace Equals is an
important rule in the algebra part of the curriculum because
it permits the student to replace any expression(A) in a
formula by an expression(B) that has been shown to be equal
to expression(A). This allows the student to develop parts
of an equation independently and then to combine these
partial results into a single formula, thus it provides a
mechanism for the use of subsidiary derivations. The
problems included in this study are all drawn from the part
of the curriculum dealing with algebra.

S14(AXIOM) and S15(THERM) count the number of
occurrences in the standard proof of axioms and theorems
respectively. The use of any of the five axioms or six
theorems 1is counted as an occurrence; the axioms (or
theorems) have equal weight and no distinction is made
between then. If an axiom (or theorem) is used more than
once, each application is counted as an occurrence. If the
standard proof for a problem uses a particular axiom as the
rule in two separate steps, another axiom in a third step,
and none of the remaining steps use axioms, then the value
of S14 for the problem would be three.
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4,5 REGRESSION ANALYSIS

Since regression analysis is a standard technique 1in
educational research, the statistical theory will not be
developed here; the way in which regression is to be used in
this study and the assumptions made in interpreting F-ratios
in regression analysis will be discussed. :

The research reported here is exploratory. Its primary
aim 1s to determine those quantifiable characteristics of
proof problems in algebra that account for the amount of
variation found in a sample of proofs for these problems,
No attempt is made to test a preconceived hypothesis, and
little attention is given to the coefficients of the linear
equations that result from the regression analyses.

The analyses reported in Chapters V and VI examine in
great detail the relationshipe¢ found in the data. The
emphasis is on determining how the variation in the sample
of pvroofs is related to the features of the proof problems
defined by the independent variables, The use of five
different measures of variability makes it possible to
examine how the relationship between variability and problem

type changes as a function of the kind of variability
measured,

If the F~ratios that appear in the results of the

regression analyses are to be considered, the validity of
the assumptions that underlie the usual interpretation of
these F-ratios should be examined, The model being used
here is a simple linear model and the assumptions are that
the errors are independently and normally distributed with
zero mean and constant variance., For the analyses discussed
in Chapter V (using the full set of problems), there is
clear indication that the assumption of homogeneity of
variance is violated. The variance seems to be an
increasing function of the predicted value of C1, Attempts
to eliminate this nonhomogeneity by transforming the
observed values of C1 failed.

Among the plots of residuals against the independent
variables, the strongest indication of this lack of
homogeneity of variance is found for $22(POSIT); there is an
abrupt increase in variance just after the introduction of
the rule, Replace Equals. This discontinuity seems to be a
property of the curriculum and not a function of the scale
chosen for the dependent variable. It is unlikely that any
continuous transformation (change of scale) for the
dependent variable will eliminate the nonhomogeneity of
variance. ‘
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However, there is no serious violation
of variance if only the problems
introduction of RE are considered.
anAalysis

of homogeneity
that appear after the

In Chapter VI, the
described in this chapter will be repeated, using

only the problems that appear after the introduction of KE
and that do not have any axioms.




TABLE 4.1

PROJECTED NUMBER OF CLASSES FOR 23 STUDENTS
WHEN 21 SOLUTIONS ARE ACTUALLY CLASSIFIED

_ THE MODEL USED IS, GIVEN BY:
S S S BN B B
CL = A*(SL)

WHERE CL IS THE NUMBER OF CLASSES
SL IS THE NUMBER OF SOLUT;QNS

OBSERVED CORRECTED

EST-B¥*

— anp e w—

1.00000

2,00000

3.00000
4.00000
5.00000 . -
6.00000, " -
7.00000° "
8.00000 - % *
9.00000° =~

10.00000 " :

11.00000': *''"

12.00000 /; '}

13.00000 -

14,00000.

15.00000"

16.00000" "

17.00000°

18.00000
19.00000
20,00000
21.00000

EST-B IS

1.00000
2.04186
3.10012
4.16917
5.24633
6. 32999

7.41908" "

8.51285"°

9.61072
10.71225

11.81708"

12.92492 "
14,03552 “*%
15. 14868 - i .
16,264234 "«

17.38200
18, 50186
19.62369"

20,74739

21, 87285”
23, 00000

\

« 00000
.22767
+ 36085
. 45534
+52863
.58852
63915
68301
«72170
. 75630
.78761
.81619- . -
.84248,{%“-
.86682 ‘U
8894810 .
910680000,
.93059 "0t
« 94937
«96713
1.0000Q"""

o

1.0

THE ESTIMATED VALUEiOF B
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\
;.:ﬂ I‘C
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'{ PROJECTED NUMBER OF CLASSES FOR 23 STUDENTS
i WHEN 22 SOLUTIONS ARE ACTUALLY CLASSIFIED

THE MODEL USED IS GIVEN BY:

B
CL = A*(SL)

WHERE CL IS THE NUMBER OF CLASSES
SL IS THE NUMBER OF SOLUTIONS

i OBSERVED CORRECTED EST B#%
1.,00000 1.,00000 « 00000
2.00000 2,02004 022424
3. 00000 3.04777 «35542
4,00000 4,08054 «44849
5.00000 5.11707 «52068
6.,00000 6.15661 «57966
7.,00000 7. 19865 262953
8. 00000 8.24285 67273
9,00000 9, 28892 «71084
10.00000 10.33667 « 74492
11.00000 11.38594 «77576
12.00000 - 12,43657 .80391
13.00000 13.48847 282980
.- 14.00000 14.54154 .85378
15.00000 15.,59568 «37610
16,00000 16.,65084 «89698
17, 00000 17.70695 «91659
) 18. 00000 18.76395 «93508
{ 19. 00000 19.82180 «95257
20.00000 20.88045 «96917
- 21,00000 21,93986 « 98495
22,00000 23,00000 1.00000

EST-B IS THE ESTIMATED VALUE OF B
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FINAL_CORRECTION CRITERIA_FOR_THE_DEPENDENT VARIABLE

ONE MISSING PROQF

NUMBER OF CLASSES FOUND
0 - 13
14 - 22

TWO MISSING PROOFS

NUMBER OF CLASSES FOUND
o- 7
8 - 16
17 - 21
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CHANGE

0
+1

CHANGE

+2

St




S6
s7

S8

s9

$10
S11
$12

s13

s14
S15
S16
S17
s18
$19
s20

s21
S22

(WORDS)
(sYMBL)

(LoGeN)

(PAREN)

(PREMS)
(RE)
(cp)

(AV RE)

(AXIOM)
(THERM)
(STEPS)
(R INF)
(AV TH)
(av ax)
(TOT R)

(PsL1)

(POSIT)

LIST OF INDEPENDENT VARIABLES

NUMBER OF VORDS PER PROBLEM

NUMBER OF SYMBOLS IN THE FORMULA TO BE
DERIVED

NUMBER OF LOGICAL CONNECTIVES IN THE
FORMULA TO BE DERIVED

DEPTH OF WESTING OF THE MOST DEEPLY
NESTED NESTED EXPRESSION IN THE FORMULA TO
BE PROVED

NUMBER OF PREMISES

THE NUMBER OF OCCURRENCES OF REPLACE EQUALS
THE NUMBER OF OCCURRENCES OF CONDITIONAL
PROOF (CP)

A 0-1 VARIABLE INDICATING THE
AVAILABILITY OF REPLACE EQUALS

THE NUMBER OF OCCURRENCE OF ANY AXIOHM

THE NUMBER OF OCCURRENCES OF ANY THEOREM
THE NUMBER OF STEPS IN THE STANDARD PROOF
THE NUMBER OF RULES OF INFERENCE AVAILABLE
THE NUMBER OF THEOREMS AVAILABLE

THE NUMBER OF AXIOMS AVAILABLE

THE TOTAL NUMBER OF RULES AVAILABLE WHEN
THE PROBLEM IS DONE

THE NUMBER OF PROBLEMS SINCE THE LAST
INTRODUCTION OF A RULE

THE ORDINAL POSITION OF THE PROBLEM IN THE
PORTION OF THE CURRICULUM BEING STUDIED
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CHAPTER FIVE

In this chapter, the results of the regression
analyses for the full set of problems will be examined. A
separate regression analysis was run for each of the five
partitions discussed in chapter 3. For the first analysis,
the number of classes in the first partition of the proofs
for a problem is taken as the value of the dependent
variable, €1, for that problem. Separate dependent
variables (C2 - C5) are defined analogously for each of the
other four partitions, and the regression analyses using
these dependent variables are discussed in order. 1In each

case, the set of 17 independent variables described in
chapter 4 is used.

Since the nonhomogeneity of variance discussed in
chapter IV occurs for all five of the regression analyses
discussed in this chapter, the F-ratios computed in these
analyses will not be interpreted. The discussion here
emphasizes a detailed examination of the results and
ignores hypothesis testing considerations,

The means and standard deviations for the full set or
22 variables (5 dependent and 17 independent) are listed in
Table 5.1, and the correlation matrix 4is found in Table
5624 Variables numbered from 1 to 5 are the dependent
variables, and variables numbered from 6 to 22 are the
independent variables,

Examination of Table 5.2 indicates a number of
interesting trends. The first five columns contain the
correlations of the five dependent variables with each
other, All of these correlations are high (greater than
(0.69), and the partitions closest in the sequence from one
to five have the highest correlations,

The remaining entries in the first five rows are the
correlations between the five dependent variables and the
17 independent varizbles, Many of the correlations are
quite high; the largest is 0.85 between C2 and S11(RE).
Variable, S11, also has large correlations with the other
four dependent variables, and the magnitudes of these
correlations decrease monotonically as we go from C2 to C5,

Another independent variable, S16(STEPS), also has
high correlations with the dependent variables, and these
correlations also decrease monotonically from C2 to (5.
S11 and 816 are both relatively simple measures of the
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structural complexity of the standard proof for a problem.
S16 is the number of steps in the standard proof, while S11
is the number of occurrences of the rule, RE, in the
standard proof. The correlation = between these two
variables is 0.79.

S15(THERM) which is also a standard proof’' variable,
displays the opposite pattern; its correlation with the
first dependent variable is relatively small (0.33) but
increases rapidly from C2 to C5. The correlation of s15
with C5 is 0.68, and is larger than that for any of the
other independent variables.

In Figure 5.1, the correlations of S11(RE),
S16(STEPS), and S15(THERM) with the five dependent
variables are plotted against the ordinal number of the
dependent variable (or equivalently, against the ordinal
number of the partitions that define the dependent
variables). The correlations of S11 and S16 decrease most
rapidly as the definition of the dependent variable changes
from the third to the fifth partition, while the
correlation of S15 with the dependent variable increases
most rapidly from the third to the fifth partition. It
should be noted that the fourth and fifth partitions are
the only partitions that do not depend, at all, on the
order of the steps in a prowf; they depend only on the
rules that are used in the proof.

Variables s13(av RE), S17(R INF), s18(AV TH),
S19(AvV AX), s20(TOT R), and  S22(POSIT) also have
substantial correlations with the dependent variables. The
pairwise correlations between these variables are generally
high, and all are highly correlated (> 0.85) with s22. In
the discussion that follows, these variables will be
referred to as the ‘rule-position’ variables.

The value of the position variable, S22, for a given
problern, is the ordinal position of the problem within the
total set being examined. All of the rule—~position
variables are confounded with the position variable, hence
any contribution that they make to the variance accounted
for by the regression equation may be due to the ordering
of the problems within the curriculum.

The correlations for the remaining variables, called
‘problem—structure variables’, are relatively small, and
they will not be discussed in any detail. These variables
show the same trend as S11 and S16, but the correlations
are much smaller and the pattern is less regular.
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5.2 - ANALYSIS BASED ON THE FIRST PARTITION

The first dependent variable to be Considered is C1,
the number of classes found in the sample when the firsc
partition is used to define the dependent variable, The
outout from the steOwise regression program(BMDO2R) is

presented for the first four steps of the analysis in
Tables 5,3a,B,C,D.

In Table 5.3A, we see that S11(RE) is the first
variable to enter the equation. 511 accounts for 55
percent of the variance in C1, The table of partial

correlations that results after S11 has been partialed out
is worth examining carefully,

With S11(RE) partialled out, the correlation of
S16(STEPS) with C1 is only 0.31, having dropped from 0.72;
S11 accounts for most of the variance that could otherwise
be accounted for by S16. The correlation of S15 (''HERM)

"with the dependent variable increases from 0.33 to 0.40.

This increase is partially explained by the low correlation
of 515 with S11 (0.06); S11 accounts for very little of the
variance that S15 is capable of predicting, while
eliminating much of the variance not accounted for by sS15,
S18(AV  TH) also shows a slight increase, but the
correlations of the other rule-position variables with C1
all decrease; S11 has a correlation of. 0.42 with
S22(POSIT), and is taking out some of the ‘rule-position’
variance, The correlations of the problem—structure

variables with the dependent variable increase slightlyv but
remain relatively small,

The second variable to enter the equation is
S22(POSIT), and the output for this step is found in Table
5¢3Be The coefficient for 822 is positive, and the
coefficient for S11(RE) decreases slightly when S22 enters
the equation. The small magnitude of the coefficient for
522 1is due to the fact that the position variable has a
very wide range compared to the dependent variable,

S22(POSIT) is strongly correlated with the measures of
the complexity of the set of rules available for any of the
proof problems. It is not clear how much of the importance
of this wvariable is due to the availability of rules and
how much is due to the fact that curriculum writers tend to
introduce problems of increasing complexity as the
curriculum progresses(the position effect),

After the variance accounted for by 822(POSIT) has
been .partialed out, the correlations between C1 and all of




the rule-nosition variables drop sharply. The correlations
of S15(THERM) and S14(AXIOM) with the dependent variable
decrease slightly and the correlation of S16(STEPS) with Ci
increases.

S16(STEPS) is the third variable to enter the equation
(Table 5.3C). The addition of S16 to the regression
equation causes the coefficient of S11(RE) to drop to about
one—-third of its value at the previous step. S16 is now
accounting for a substantial part of the variance that had
previously been accounted for by Sii.

At this point, the variance accounted for by S11(RE),
S16(STEPS), and most of the variance accounted for by the
rule—-position variables has been partialed out, The
largest partial correlations are now found for the
variables, S6 to S10, which measure the complexity of the
problem statement. The next independent variable to enter
the equation is S7(SYMBL).

Rather than continue this step-by-step examination oOr
the results of regression analysis, the nature of the
relationship between the dependent variable and the first
three independent variables to enter the equation will be
examined more closely. The summary table for the analysis
is found in Figure 5.4.

A scatterplot of C1 against S11(RE) is presented in
Figure 5.2A. The relationship seems 1linear, but the
variance of C1 for any value of S11 is large, and there 1is
some . indication that the variance is not independent of
S11. The plot of residuals (calculated after all the
variables have entered the equation) against S11 (Figure
5.2B) confirms these observations.

Examination of the plot of C1 against §22(POSIT) in
Figure 5.3A 1indicates a very different situation. For
values of S22 less than 50, both the mean and variance of
the distribution of C1 given S22 have relatively low values
and seem to be independent of S22, For wvalues of S22 above
55, the mean and variance of the conditional distribution
of C1, given S22, again appear to be independent of S22,
but both have much higher values than they did for the
problems with S22 less than 50. The plot of the
residuals(computed after all of the variables have entered
the equation) against S22 in Figure 5.3B does not contain
any evidence for a departure from linearity but does show
clearly the abrupt change in variance.
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A possible explanation of this phenomenon becomes
apparent when the curriculum is examined. Between the
problem :1(lil L22(POSIT) equal to 53 and the problem with
S22 equal to 54, Replace Equals (RE) is introduced., RE
permits the student to substitute for any expression(A), in
a formula, any other expression(B) that has been slown to
be equal to the expression(A). After the formula, A=B, has
been proved, A can be relaced by B in any formula within
the student’s partial proof. This rule greatly increases
the student’s flexibility in the in the order in which he
uses the available rules to construct a proof ; the
partition that defines C1 is sensitive to these differences

in)order (see Chapter II for a more detailed discussion of
RE ).

Figures 5.4A,B contain the corresponding plots for
S16(STEPS). Again there is evidence for a basically linear
relationship and nonhomogeneity of variance, The
indication 1in Figure S5.4A of a possible departure from
linearity is not confirmed by Fiqure 5.,4B. This impression
of non-linearity is due to the six points in the upper
right corner of Figure 5,4A. All six of these problems are
long but straightforward; they do not use any of the more
difficult rules, and they do not involve the recognition of
any complicated sequence of the simpler rules; in spite of
their length, these problems are unusually simple,

Figure 5.5 is a frequency histogram for the residuals.
There 1is no evidence in this figure of any serious
departure from normality. Figure 5.6 is a scatterplot of
the residuals (after all of the independent variables have
entered the equation) against the predicted value of C1; in
this figure, there is clear indication that the assumption
of homogeneity of variance has been violated. The variance
seems to be an increasing function of the predicted value
of C1, Attempts to eliminate this nonhomogeneity
transforming the observed values of C1 failed; a
logarithmic transformation and a square-root transformation
were both used without success,

"Among the plots of residuals against the independent
variables, the strongest indication of this nonhomogenei ty
of variance is found for S22 (see Figure 5,38). The
variance in the residuals 1is not a smoothly varying
function as Figure 5.6 indicates, instead there is an
abrupt increase in variance just after the introduction of
the rule, Replace Equals. This discontinuity seems to be a
property of the curriculum and not a function of the scale
chosen for the dependent wvariable, It is unlikely that any
continuous transformation(change of scale) for the
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dependent variable would eliminate the nonhomogeneity of
variance.

If the analysis is restricted to the problems that
occur after ‘the introduction of RE, the nonhomogeneity of
variance is eliminated. Analyses using this restricted set
of problems are reported in Chapter VI,

A full internretation of these reeults must await the
discussion of the analyses for the other four partitions,
but some prel iminary observations ‘are appropriste nere.

. [ tl .

The f.irst six variaoles wto enter! the ' reyression
equation account for 80 percent of the total variance in
the dependent variable, and the first three: variables
account . for over 74 percent of, the variance, » The simple
linear model that has been assumed fits the .data wvery well,

[y

S ) . . - ARt e '
S11(RE). /is the first variable to enter.rthe f equation,
and accounts; - for 55 percent. of the total:variance in the
dependent variabLe.. " The -dnitial correlation (0.72) of
S16(STEPS) with the dependent variable is almost as high as
that (0.75): for :S11(RE), and the correlation between these
two variables ;.is 0.79., It seems that these two variables
are measuring -similar::properties- of .the problems. Both can
be interpreted: as. relatively ..simple measures of the
complexity of the standard proof for a- problem.

Together, s11(RE) and S16(STEPS) account for almost 73
vercent of the variance in the;.dependent variable. Since
the first partition is sensiti_}ve- to.minor variations in the
proofs, including changes in the order of the steps, it in
not surprising that simple meagures of : comlexity account
for most of the variance, in: €1 (nuhmber;.of classes under the
first partition). Vhen t’ne“ dependant;:'varjable is defined
in terms of the fourth and :£ifth. partitions, which are not
genstive to minor variatigns in';the proofs, -the predictive
power of S11(RE) and S16(STEPS) is greatly.diminished.
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53 — NNALYSIS BASED ON THE SECOND PARTITION

The pattern of results for the second partition (with
C2, the number of classes of proofs under the second
partition, as the dependent variable) parallels the first.
The 1initial correlations are roughly the same., The first
variable to enter is S11(RE). The pattern of partial
correlations that appears after S11 has been included in
the equation (see Table 5.5A) is very similar to that for
the first partition (see Table 5.3A). There is one notable
exception to this generalization. The correlation of
$22(POSIT) with the dependent variable drops more sharply
when S11 is partialled out than it did for the first
partition., As a result, S15(THERM) has the highest partial
correlation in Table 5.5A. The apparent importance of S15
is especially notable, because the first theorém is
introduced only after eighty percent of the problcms
included in this study have been completed, and S15 has a
very small range with only three possible values, 0, 1, and
2. The inclusion of S15 at the second step is due in part
to the fact that its correlation with S11 is only 0.08.

The partial correlations after the introduction of s15
are shown in Table 5.5B. The pattern that appears is very
similar to the pattern found after the introduction of S22
in the previous analysis. Since the correlation between
S15(THERM) and S22(POSIT) is 0.54, it is not surprising
that they have a similar effect on the partial correlations
in the two analyses. The third variable to enter (Table
5.5C) is S16(STEPS) and the fourth is S12(CP). The summary
table for this analysis is found in Table 5.6.

Figure 5.7 is a Plot of the residuals against the the
predicted value of C2, and Figure 5.8 is a plot of the
observed values of C2 against S22(POSIT). The evidence for
nonhomogeneity of variance is even more pronounced than it

was in the previous analysis; the explanation is the same
as it was there.

The only difference between the first partition and
the second partition is that the unused steps in proofs are
not relevant wunder the second partition. Since the
correlation between C1(first partition) and C2(second
partition) is 0.94 it is not surprising that the results

for this analysis are veary similar to the results for the
first partition.

The substitution of S15(THERM) for S22(POSIT) is worth
noting. The importance of S15 as a predictor of the
dependent variable increases consistently as the dependent

od
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variabl changes from the second to the f£ifth partition.

5.4 — ANALYSIS BASED ON THE THIRD PARTITION

Since the analysis for the third partition 1is very
similar to the two analyses already examined, the results
are only sketched. The correlation of S15(THERM) with the
dependent variable increases from 0.30 to 0.36 in changing
from the second to the third dependent variable. The
initial correlations for the rule-position variables are
larger than they were for the second partition. The
initial correlations of S11(Rf) and S16(STEPS) with C3 are
smaller than they were for the second partition, but they
are still quite large.

S11 enters the equation first and has roughly the same
effect on the partial correlations as it did for the second
partition. S15(THERM) and S16(STEPS) are the second and
third variables to enter the equation. The fourth variable
included 1is S14(AXIOM). The first problem structure
variable is not introduced until step five, and contributes
only two percent to the total variance accounted for by the
regression equation. For reference, the results of this
analysis are included in Tables 5 73A,B,C and 5.8.

The problem of the nonhomogeneity of variance is still
present and will not be discussed here. The interpretation
of this analysis will be postponed until the end of this
chapter where the overall pattern of the results will be
discussed.

5.5 — ANALYSIS BASED ON THE FOURTH PARTITION

For two proofs to be equivalent under the fourth
partition, they must have identical frequency distributions
over the set of available rules, In the regression
analysis with C4 as the dependent variable the general
pattern of the results changes. S20 (TOT R) is the first
independent variable to enter the egquation, The value of
S20 for a problem 1is just the total number of rules,
including axioms and theorems, that are available when the
poblem appears in the curriculum, After the second
partition, the size of the 1initial correlation of the
dependent variable with S11(RE) and S16(STEPS) declines,
while the correlations of the dependent variable with
S15(THERM), S14(AXIOM), and the rule-position variables
increases. The rate of increase is highest for S15 (THERM)
but several of the rule-position variables had much larger
correlations with C1 and C2 than S15 , and some of these
still have larger correlations with the dependent variable,

99

Prrrrranas

——y




ey
' .

l'\-—l_ﬂ-rlu’,

[ ey}
t

51

Cc4,

After S20(TOT R) has entered the regression equation,
the partial correlations for all of the other rule-position
variables drop sharply (see Table 5.9a). The partial
correlation for S15 also decreases, but the decrease for

this variable is smaller than that for the other
rule-position variables,

The second variable included in the equation 1is
S11(RE). With the introduction of s11, the partial
correlation of S16(STEPS) drops dramatically, and the

partial correlation of S15 increases by over 50 percent
(see Table 5.9B).

The third variable to enter is s15 (Table 5,9C), and
S14(AXIOM) 1is the fourth, A summary table for this
analysis is found in Table 5.10, The homogeneity of
variance assumption is again violated.

The fourth partition 1is the first of the five
partitions for which the order of the steps in a proof is
irrelevant, and it is the first partition for which S11(RE)
is not the first variable to enter the regression equation,
In changing from the third partition to the fourth, the
correlation of S11 withe the dependent variable drops from
0.78 to 0.59. Although S11 still has a prominent position

in the analysis, it does not dominate the results as it did
in the previous analyses,
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5.6 ANALYSIS BASED ON THE FIFTH PARTITION

In the analysis for the fifth partition, S15(THERM)
enters first. Its initial correlation with the dependent
variable is not much larger than the correlation £for some
of the rule-position variables (S20, Ss22), The
correlations of S11 and S16 with the dependent variable are
almost as large as that for S15.

After S15 has been taken into account, the partial
correlations of S11 and S16 increase. The partial
correlations of the other rule- position variables decrease
but remain relatively large.

The second and third variables added are S11 and
S14(AXIOM). The results for this analysis are found in
Tables 5.11A,B,C and Table 5.12.

Figure 5.9 contains the plot of C5 against S22(POSIT).
The variance in C5 for the first 50 problems is practically
zero; there are only four problems in this group with more
than one class in the sample of student proofs. After the
point in the curriculum where RE is introduced, there is
evidence for a systematic dependence of variance on problem
nosition Figure 5.10 contains a plot of residuals against
the predicted value of C5; there is again a strong
indication of nonhomogeneity of variance. It would seem
here that the nonhomogeneity has two components: the
complete lack of variance for the problems with values of
S§22(POSIT) less than 50, and a gradual increase in variance
with increasing values of S22 for the remaining problems.

The initial correlation matrix (Table 65.2) and the
analyses display a clear pattern., As we proceed from C1 to
C5, the importance of S11(RE) and S16(STEPS) diminishes and
the importance of S15(THERM), S14(AXIOM), and the
rule-position variables increase. The remainder of the
discussion in this chapter will investigate these trends.

Figures 5.11A,B,C,D,E contain respectively the plots
of the dependent variables, C1 to C5, against S15(THERM).
In Figure 5.11A, there is relatively little indication of
any functional relationship between C1 and S15. The
impression that there is a relationship between the two
variables grows from one partition to the next,

Only three values (0,1, and 2) for S15 appear in the
data. There are 107 problems with S15 equal to zero, 11
problems with S15 equal to one, and 7 problems with S15
equal to two. In Figure 5,25A, the range of the
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conditional distribution of C1 given that S15 is equal to
zero is 22 (from 1 to 23), covering the entire possible
range for the dependent variables. The ranges for the
conditional distributions of C1 given that S15 equals one
or two are also large, but not as large as the range for
the problems that do not use theorems.

One implication of the nested character of the
partitions is that the number of classes for any problem is
a non-increasing function of the ordinal number of the
partition. The value of the dependent variable cannot
increase from any partition to the next, and can decrease
(unless 1t is already equal to one)., This property of the
sets of classification criteria is reflected in the data;
the means of all three of the conditional distributions of
the dependent variable decrease as the dependent variable
changes from one partition to the next (Note that in

Figures 5.11A,B,C,D,E, the scale of the dependent variable
changes).

The relationship between the means of the three
conditional distributions does not change much from one
vartition to the next. 1In all five plots, the mean of the
conditional distribution of the dependent variable, given
S15(THERM), increases as S15 increases. The relationship
seems to be nonlinear with a positive, increasing slope,
but the small number of problems with two theorems in their
standard proof makes this hypothesis quite unreliable. A
single additional problem with S15 equal to two, and with
low values for the dependent variables, would eliminate
this impression of nonlinearity.

The most significant change that occurs from one
partition to the next is the decrease in the variance of
the dependent variable when S15 equals zero. By the £fifth
partition (C5), the ranges of the three conditional
distributions are almost equal. For problems using
theorems, the number of classes is less sensitive to the
strictness of the definition of equivalence than for
problems not using theorems, The large amount of variation
that appears for some of the problems that do not use
theorems in their standard proofs rapidly disappears for
the progressively less strict sets of equivalence criteria.

Figures 5.12A,B,C,D,E, containing the plots of the
five dependent variables against S11(RE), indicate the
nature of these problems, A strong linear relationship
between C1 and S11 in evident in Figure 5.26A; in general,
problems with high values for C1 also have high values for
S11. In the progression to the least strict set of
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equivalence criteria (the fifth partition - C5), the value
of the dependent variable decreases for all of the
oroblems, but the decrease is greater for the problems with
high values for si11. In Figure 5,12B, with C2 as the
dependent variable, a strong linear relationship 1is still
apparent, but in Figure 5.12C this relationship has become
obscure, By the fifth partition, Figure 5.12E, the
existence of any linear relationship is not obvious.

An examination of the sample of proofs constructed for
the problems in the curriculum tends to confirm the
conclusions implicit in these results (specific examples
will be discussed in Chapter VII). Problems that require a
large number of steps (high values for $16) and involve
extensive use of RE (high values for S11) tend to have a
substantial number of superficial differences in the proofs
generated, Variation in the order in which the rules are
used is very common for these problems. The first two
partitions (C1 and C2) and to a lesser extent the third
partition, are sensitive to this type of variation, while
the fourth and fifth partitions are not.

Problems that require the use of theorems (S15) tend

to produce more basic variations in the proofs generated.

The theorems chosen and the rules used in con junction with
the theorems differ from one student to another. All five

sets of classification criteria are sensitive to this type
of variation.
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M
VARIABLE
CLAsS1 1
CLAsS2 2
CLAS3 3
CLAS4 4
CLAS> 5
WORDS 6
SYMBL 7
LOGCN 8
PAREN 9
PREMS 10
RE 1
CP 12
AV RE 13
AXIOM 14
THERM 15
STEPS 16
R INF 17
AV TH 18
AV AX 19
TOT R 20
PSLI 21
POSIT 22

EANS
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D STANDARD DEVIATIONS FOR FU

MEAN

8.80800
5.84800
5.00000
3.36000
2.89600
14.43200
12.20000
0.26400
0.84000
0.52000
0.74400
0.23200
0.58400
0.27200
0.20000
3.76800
16.,93600
0.68000
1.80000
19.41600
6.74400
64.24000

SET

STANDARD DEVIATION

60

6.76053
5.99201
5.06092
3.39449
2.86757
7.30260
6.72501
0.46043
0.82696
0.84815
1.09915
0.42381
0. 49488
0.55903
0.52363
2.56256
2.15056
1.50054
2.18130
5.11352
5.20995
37.09847
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TABLE 5.2 '
CORRELATION MATRIX FOR FULL SET '
VARIABLE '
NUMBER 1 2 3 4 5 -
1 1.000 0.940 0.919 0.806 0.709
2 1.000 0.973 0.820 0.694 l
3 1.000 0.882 0.774
4 1.000 0.947
5 1.000 I
MATRIX CONTINUED
VARIABLE l
NUMBER 6 7 8 9 10
1 0.256 0.189 -0.066 . 0.266 -0.171 '
2 0.157 0.097 -0.058 0.190 -0, 091
5 0.090 -0.004 -0.211 0.105 -0.230 l
6 1.000 0.800 0.115 0.591 -0.344
7 1.000 0.215 0.776 -0.325
8 1.000 -0.164 0.059 n
9 1.000 -0.398
10 . 1.000
MATRIX CONTINUED
VARIABLE ‘
NUMBER 11 12 13 14 15 -
2 0.825 -0.069 0.577 0,299 0.305 )
3 0.776 "0. 094 0.560 0. 305 0.362 to
4 0.593 =0.137 0.546 0.335 0.558
5 0.447 -0.186 0.515 0,325 0.680
6 0.055 0.134 -0.026 0.030 -0.164 I
7 -0.034 0.230 ~0.118 ~0,032 -0.147
8 0.007 0.923 -0.116 -0.187 -0.221
9 0.043 -0.123 0.013 0.060 0.056 l
10 0.118 0.021 -0.115 -0,233 -0,200
1 1,000 0.025 0.574 0.219 0.076
12 1.000 -0.074 ~0.166 ~-0.211
13 1.000 0.412 0.324 l
15 1,000 I
o 61 .
ERIC 1
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TABLE 5.2 CONTINUED

MATRIX COWTINUED

VARIABLE
. NUMBER 16 17 18 19 20
j 1 0.717 0.609 0.315 0.511 0.567
L 2 0.791 0.525 0.254 0.428 0.478
3 0.731 0.537 0.295 0.468 0.512
i 4 0.495 0.560 0.487 0.579 0.625
. 5 0.333 0.547 0.603 0.630 0.676
6 0.199 0,093 -0,080 0.017 0.023
7 0.151 -0.003 -0.245 -0.170 -0,.145%
9 0.146 0.126 -0.120 0.045 0.037
10 0.004 ~-0.357 -0.223 ~0.366 -0.372
11 0.789 0.447 0.131 0.264 0.339
12 0.258 -0.187 -0.212 -0,290 -0,264
13 0.343 0.861 0.384 0.699 0.773
g 14 0.168 - 0.444 0.153 0.534 0.459
16 1.000 0.252 0.016 0.136 0.169
] 18 1.000 0.670 0.764
‘ 19 1.000 0.950
, 20 1.000
|
{
MATRIX CONTINUED
} VARIABLE
' NUMBER 21 22
1- 1 -00045 00616
1. 3 -0.060 0.548
4 -0.152 0.621
i 6 0.196 0.051
7 0.263 -0.094
- 8 Oo 361 -00203
§, 9 0.041 0.055
- 10 0.107 -0.338
i 11 0.035 0.417
1 12 0.312 -0.197
1. 13 -0.170 0.852
14 -0.197 0.451
7 15 -0.291 0.542
i_ 16 0.116 0.232
17 -0.096 0.942
» - 18 -00300 00666
} 19 ~0. 385 0.896

21 1.000 -0.126




58

FIGURE 5.1

CORRELATIONS BETWEEN DEPENDENT AND INDEPENDENT VARIABLES

AGAINST THE ORDINAL NUMBER OF THE DEPENDENT VARIABLE
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TABLE S5S.3A

STEP NUMBER 1 FOR C1

VARIABLE ENTERED 11
MULTIPLE R 0.7454
STD. ERROR OF EST. 4.5247

ANALYSIS OF VARIANCE:

DF SUM OF SQUARES MEAN SQUARE F~-RALIO
REGRESSION 1 3149.172 3149.172 153,818
RESIDUAL 123 2512.220 20,473
VARIABLES IN EQUATION: ( CONSTANT= 5.39683 )
VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
RE 11 4.58491 0. 36968 153.8182 (2)

VARIABLES NOT IN EQUATION:

VARIABLE PARTIAL CORR. TOLERANCE F TO ENTER

CLAS?2 2 0.86164 0.3186 351.6484 (1)
CLAS3 3 0.81121 0.3984 234.7856 (1)
CLAS4 4 0.67721 0.6479 103.3474 (1)
CLASS 5 0.63109 0.8003 80.7507 (1)
WORDS 6 0.32348 0.9970 14,2575 (2)
SYMBL 7 0.32289 0.9988 14.1999 (2)
LOGCN 8 -0.10773 0.9999 1.,4326 (2)
PAREN 9 0.35043 0.9981 17.0792 (2)
PREMS 10 -0.39108 0.9861 22.0288 (2)
CcP 12 -0.11810 0.9994 1.7257 (2)
AV RE 13 0.40453 0.6710 23.8705 (2)
AXIOM 14 0.34103 0.9519 16.0561 (2)
THERM 15 0.40457 0.9943 23.8768 (2)
STEPS 16 0.31366 0.3774 13.3124 (2)
R INF 17 0.46326 0.8004 33.3360 (2)
AV TH 18 0.32916 0.9829 14.8243 (2)
AV AX 19 0.48899 0.9301 38.3384 (2)
TOT R 20 0.50090 0.8850 40.8629 (2)
PSLI 21 -0,10685 0.9988 1.4090 (2)
POSIT 22 0.50386 0.8261 41.5112 (2)




TABLE 5,.3B

STEP NUMBER 2 FOR C1

VARIABLE ENTERED 22
MULTIPLE R 0.8176
STD. ERROR OF EST. 3.9244

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE F~RATIO
REGRESSION 2 3788,.,482 1894. 241 122,995
RESIDUAL 122 1878.910 15.401

VARIABLES IN EQUATION: (CONSTANT= 1.77608 )
VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
RE 11 3.63703 0.35277 106.2927 (2)
POSIT 22 0.06734 0.01045 41.5112 (2)

VARIABLES NOT IN EQUATION:

VARIABLE PARTIAL CORR., TOLERANCE F TO ENTER
CLAS2 0.84628 0.2791 305.3467 (
CLAS3 0.77260 0.3376 179.1791 (
CLAS4 0.56538 0.4789 56.8495 (
CLASS 0.48513 0.5420 37.2435 (
WORDS 0.35670 0.9960 17.6399 (
SYMBL 0.42634 0.9912 26.8789 (
LOGCN 0.,00735 0.9488 0.0065 (
PAREN 0.38235 049965 20,7176 (
PREMS -0422391 0.8041 6.3863 (
(0] 2 -0,00345 0.9472 0.0014 (
AV RE ~-0,02069 0.2165 0.,0518 (
AXIOM 0.17291 0.7951 3.7292 (
THERM 1! 0.16912 0.6787 3.5626 (
STEPS 0.47427 0.3661 34,5456 (
R INF -0,01520 0.1095 0.0279 (
AV TH -0,01999 0.5305 0.0484 (
AV AX 0.09758 0.1829 1.1632 (
TOT R 0.,05289 0.0466 0.3394 (
PSLI '~ =0,03409 0.9750 0.1408 (

o3 S A mg T AP IR TE Sy E 2 SW aw
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TABLE 5.3C

-

STEP NUMBER 3 FOR C1

VARIABLE ENTERED 16
MULTIPLE R 0.8615
STD. ERROR OF EST. 3.4756

f

ANALYSIS OF VARIANCE:

DF SUM OF SQUARES MEAN SQUARE F-RATIO
, REGRESSION 3 4205.775 1401,925 116,058
% RESIDUAL 121 1461.617 12,079
i VARIABLES IN EQUATION: ( CONSTANT= -1.57704 )
! VARIABLE COEFFICIENT STDe ERROR F TO REMOVE
- ' RE 11 1.32601 0.50221 6.9716 (2)
. STEPS 16 1.18310 0.20129 34.5456 (2)
‘) POSIT 22 0.07691 N.00940 66,9611 (2)

VARIABLES NOT IN EQUATION:

gy

VARIABLE PARTIAL CORR. TOLERANCE F TO ENTER
CLAS2 2 0.79913 0.2082 212,0490 (1)
. cLas3 3 0.71970 0.2802 128.9437 (1)
] CLAS4 4 0.55845 0.4651 54,3861 (1)
-~ CLAS5 5 0.51081 0.5389 42.3653 (1)
WORDS 6 0.27328 0.9269 9.6852 (2)
I SYMBL 7 0.34745 0.9132 16.4753 (2)
‘ LOGCN 8 -0,24721 0.7712 7.8108 éz)
PAREN 9 0.33706 0.9596 15.3808 (2)
: PREMS 10 -0.12535 0.7547 1.9155 (2)
] CcP 12 -0.21275 0.8219 5.,6890 (2)
- AV RE 13 0.04882 0.2126 0.2867 (2)
- AXIOM 14 0.15938 0.7913 3.1275 (2)
l THERM 15 0.20591 0.6782 5.3130 52)
R INF 17 0.01525 0.1091 0.0279 (2)
AV TH 18 -0,00390 0.5298 0.0018 (2)
AV AX 19 0.07102 0.1819 0.6083 (2)
)_ TOT R 20 0.06583 0.0466 0.5223 (2)
PSLI 21 -0.10357 0.9609 1.3011 (2)
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TABLE 5, 3D

STEP NUMBER 4 FOR C1

VARIABLE ENTERED 7
MULTIPLE R 0.8793
STD. ERROR OF EST. 3.2726
ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE F-RATIO
REGRESSION 4 4382,222 1095,556 102.295
RESIDUAL 120 1285.170 10.710 :
VARIABLES IN EQUATION: ( CONSTANT= -3.40709 )
VARIABLE COEFFICIENT STDe ERROR F TO REMOVE
SYMBL 7 0.18562 0.04573 16.4753 (2)
: RE 11 1.75889 0.48475 13.1654 (2)
¢ STEPS 16 0.95828 0.19746 23.5509 (2)
POSIT 22 0.07832 0.00886 78.2004 (2)

VARIABLES NOT IN EQUATION:

VARIABLE PARTIAL CORR. TOLERANCE F TO ENTER
CLAS2 2 0.80379 0.2030 217.2378 (1)
CLAS3 3 0.70265 0.2663 116.0447 (1)
CLAS4 4 0.56703 0.4620 56.3933 (1)
CLASS ) 0.52462 0.5372 45.1883 (1)
WORDS 6 =0,00504 0.3414 0.0030 (2)
LOGCN 8 -0.29910 0.7646 11.6915 (2)
PAREN 9 0.11373 . 0.3805 1.5593 (2)
PREMS 10 -0.00155 0.6586 0.,0003 (2)
cp 12 : -0,27704 0.8082 9.8928 (2)
AV RE 13 0.07042 0.2121 0.5930 (2)
AXIOM 14 0.17299 0.7912 3.6708 (2)
THERM 15 0.26313 0.6695 8.8519 (2)
R INF 17 -0,09389 0.1002 1.0583 (2)
AV TH 18 0.09157 0.4966 1.0064 (2)
AV AX 19 0.16595 0.1721 3.3700 (2)
TOT R 20 0.17178 0.0435 3.6184 (2)
PSLI 21 =0.20193 0.9092 5.0587 (2)




SUMMARY TABLE FOR C1 ON THE FULL SET OF PROBLEMS

STEP
NUM

VARIABLE
ENT REM R

MULTIPLE
RSQ

INCREASE
IN RSQ

LAST REG
COEFFICNTS

F VALUE
FOR DEL

1
2
3
4
5
6
7
8
9
10
1
12
13
14
15
16

RE 11
POSIT 22
STEPS 16
SYMBL 7
LOGCN 8
THERM 15
AXIOM 14
AV RE 13
PAREN 9
WORDS 6
Ccp 12
PSLI 21
R INF 17
TOT R 20
PREMS 10
AV TH 18

0.74540
0.81760
0.86150

0.87930

0.89080
0.89760
0.90450
0.90890
0.91100
0.91180
0.91260
0.91300
0.91330
0.91350
0.91350
0.91360

0.55562
0.66847
0.74218
0.77317
0.79352
0.80569
0.81812
0.82610
0.82992
0.83138
0.83284
0.83357
0.83412
0.83448
0.83448
0.83466

0.55562
0.11285
0.07371

0.03099

0.02036
0.01216
0.01243
0.00798
0.00382
0.00146
0.00146
0.00073
0.00055
0.00037
0.00000
0.00018

153.8182
41,5112
34.5456

16,4753
11.6915

7.4174
7.9252
5.3051
2.6769
0.9327
0.9691
0. 5098
0.4201
0.1295
0.1035
0.0532

1.18711
-0.08912
1.22277
0.24390
=1.30055
3.95143
1.95110
4.61910
-0,99653
0.068359
-1.56661
0.11952
0.33589
0.40774
-0.14266
-0.11983
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FIGURE S.2A C1 VS S11(RE)
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FIGURE 5.2B Ci RESIDUALS(YBAXIS! Vs s1 X~-AXIS
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FIGURE 5.3B C1 RESIDUALS (Y-AXIS) Vs s22 (X-AXIS
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FIGURE 5.,4B C1 RESIDUALS(Y-AXIS) VS S16 (X-AXIS)
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FIGURE 5.5 RESIDUALS FOR C1 ON FULL SET
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FIGURE 5.6 RESIDUALS(Y-AXIS) VS COMPUTED C1 (X-AXIS)
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TABLE 5.5A

STEP NUMBER 1 FOR C2

VARIABLE ENTERED 1
MULTIPLE R 0.8255
STD. ERROR OF EST. 3. 3960

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE F-RATIO
REGRESSION 1 3033.612 3033.612 263.048
RESIDUAL 123 1418.500 11.533

VARIABLES IN EQUATION: (CONSTANT= 2. 50000 )
VARIABLE COEFFICIENT STD. ERROR F TO REMOVE

RE 1 4,50000 0.27746 263.0485 (2)

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR. TOLERANCE F TO ENTER
CLAS1 0.86164 0.4443 351.6484
CLAS3 0.93263 0.3984 815.0219
CLAS4 0.72735 0.6479 137.0459
CLASS 0.64321 0.8003 86,0897
WORDS 0.19866 0.9970 5.0125
SYMBL 0.22315 0.9988 6.3933
LOGCN -0.11393 0.9999 1.6044
PAREN 0.27417 0.9981 9.9159
PREMS -0, 33548 0.9861 15.4720
Cp -0.15758 0.9994 3.1065
AV RE 0.22351 0.6710 6.4153
AXIOM 0.21421 0.9519 5.8670
THERM 0.43154 0.9943 27.9194
STEPS 0.40362 0.3774 23.7427
R INF 0.30920 0.8004 12,8968
AV TH 0.26045 0.9829 8.8783
AV AX 0. 38593 0.9301 29,3512
TOT R 0.37298 0.8850 19.7140
PSLI =0.12433 0.9988 1.9155
POSIT 0.35226 0.8261 17.2837

PN NN SN PN P S P P, P, P P, P, P, P, P, fr, P P, P,
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TABLE 5.5B

STEP NUMBER 2 FOR C2

VARIABLE ENTERED 15
MULTIPLE R 0.8607
STD. ERROR OF EST. 3.0760

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE F-RATIO
REGRESSION 2 3297.779 1648, 889 174.269
RESIDUAL 122 1154.333 9.462

VARIABLES IN EQUATION: (CONSTANT= 2.01589 )
VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
RE 11 4.39924 0.25204 304.6665 (2)
THERM 15 2.79542 0.52905 27.9194 (2)

VARIABLES NOT IN EQUATION:

VARIABLE PARTIAL 'CORR. F TO ENTE

TOLERANCE

CLAS1
CLAS3
CLAS4
CLASS
WORDS
SYMBL
LOGCN
PAREN
PREMS
Cp

AV RE
AXIOM
STEPS
R INF
AV TH
AV AX
TOT R
PSLI

POSIT

0.83282
0.91680
0.65084
0.53160
0.30345
0.31983
-0.02064
0.27906

"=0.27730

-0.07435
0.08903
0.25665
0.50798
0.17564

-0.11355
0.19027
0.14303
0.00352
0.14642

0.3716
0. 3058
0.3831
0. 3804
0.9685
0.9780
0.9507
0.9953
0.9423
0.9539
0.5920
0.9504
0.3721
0.6870
0.4177
0.6315
0.5307
0.9118
0.5638

273.8946
637.7576
88,9216
47.6637
12.4510
13.7872
0.0516
10.2185
10.0796
0.6726
0.9668
865322
42.0828
'3.8516
1.5806
4.5451
2.5270
0.0015
2.6509
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TABLE 5.5C

STEP NUMBER 3 FOR C2

VARIABLE ENTERED L)
MULTIPLE R 0.8987
STD. ERROR OF EST, 2,6605

ANALYSIS OF VARIANCE:

DF SUM OF SQUARES MEAN SQUARE F-RATIO
REGRESSION 3 3595,.649 1198.550 169,330
RESIDUAL 121 856,463 7.078
VARIABLES IN EQUATION: (CONSTANT= -0.42479 )

VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
RE 11 2.56248 0.35733 51.4245 (2)
THERM 15 3.15129 0.46086 46.7565 (2)
STEPS 16 0.99152 0.15284 42.0828 (2)

VARIABLES NOT IN EQUATION:

VARIABLE PARTIAL CORR. TOLERANCE F TO ENTER
CLAS1 1 0.79795 0.3126 210.3244 (1)
CLAS3 3 0.90031 0.2524 513,4358 (1)
CLAS4 4 0.66405 0.3717 94.6522 (1)
CLAS5 5 0.57592 0.3784 59.5561 (1)
WORDS 6 0.21999 0.9131 6.1030 (2)
SYMBL 7 0.21586 0.9024 5.8648 (2)
LOGCN 8 ~0.31725 0.7650 13.4296 (2)
PAREN 9 0.21581 0.9594 5.8619 (2)
PREMS 10 -0.22143 0.9130 6.1869 (2)
CP 12 -0.33090 0.8205 14.7554 (2)
AV RE 13 0.21921 0.5707 6.0573 (2)
AXIOM 14 0.30548 0.9503 12.3505 (2)
R INF 17 0.29589 0.6715 11.5139 52)
AV TH 18 -0.08413 0.4150 0.8555 (2)
AV AX 19 0.26132 0.6287 8.7949 (2)
TOT R 20 0.24136 0.5224 7.4228 (2)
PSLI 21 ~0,06375 0.8999 0.4896 (2)
POSIT 22 0.24837 0.5544 7.8890 (2)
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TABLE 5.6

SUMMARY TABLE FOR C2 ON THE FULL SET OF PROBLEMS

STEP
NUM

RE
THERM
STEPS
CcpP

R INF
SYMBL
AXIOM
AV TH
PAREN
AV RE
PREMS
R JNF
WCRDS
LOGCN
TOT R
PSLI
17 posIT
18 R INF

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

VARIABLE
ENT REM

11
15

16

12
17

7
14
i8

9
13
10

6
8
20
21
22
17

MULTIPLE

R

0.82550
0.86070
0.89870
0.91030
0.91750
0.92270
0.92540
0.92760
0.93020
0.93080
0.93160
0.93160
0.93180
0.93200
0.93200
0.93200
0.93210
0.93220

RSQ

0.68145
0.74080
0.80766
0.82865
0.84181
0.85138
0.85637
0.86044
0.86527
0.86639
0.86788
0.86788
0.86825
0.86862
0.86862
0.86862
0.86881
0.86900

INCREASE
IN RSQ

0.68145
0.05935
0.06686
0.02098
0.01316
0.00957
0.00499
0.00408
0.00483
0.00112
0.00149
0. 00000
0.00037
0.00037
0.00000
0.00000
0.00019
0.00019

F VALUE
FOR DEL

263. 0485
27.9194
42.0828
14,7554

9.8915
7.5359
4.0936
3.3821

4.1235
0.9606
1.3115
0.0000
0.3128
0.2403
0.0443
0.0161

0.2098
0.0541

LAST REG
COEFFICNTS

1.96598
4.09484
1.18386
-2,.31862
0.13185
0.18167
0.91066
~0.68172
-1.20807
2.02866
=0,.32617

0.02218
~0,67460
0.43478
0.07729
=0.07002
0.13185




FIGURE 5.7 RESIDUALS(Y-AXIS) VS COMPUTED C2 (X-AXIS)
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TABLE 5.7A

STEP NUMBER 1 FOR C3

VARIABLE ENTERED 11
MULTIPLE R 0.7756
STD. ERROR OF EST. 3.2074

ANALYSIS OF VARIANCE:

DF SUM OF SQUARES MEAN SQUARE F~RATIO
REGRESSION 1 1910.612 1910.612 185.718
RESIDUAL 123 1265.388 190.288
VARIABLES IN EQUATION: (CONSTANT= 2.34300 )
VARIABLE COEFFICIENT STD. ERROR F TO RCEMOVE
RE 1 3.57124 0.26205 185.7180 (2)

VARIABLES NOT IN EQUATION:

VARIABLE PARTIAL CORR., TOLERANCE F TO ENTER
CLAS1 1 0.81121 0.4443 234.7856 (1)
CLAS2 2 0.93263 0.3186 815.0219 (1)
CLAS4 4 0.83027 0.6479 270.7244 (1)
CLASS 5 0,75699 0.8003 163.7349 (1)
WORDS 6 0.23239 0.9970 6.9648 (2)
SYMBL 7 0.25048 0.9988 8.1666 (2)
LOGCN 8 -0.15681 0.9999 3.0757 (2)
PAREN 9 0.,28592 0.9981 10,8615 (2)
PREMS 10 -0.34984 0.9861 17.0132 (2)
CP 12 -0.17927 0.9994 4.,0508 (2)
AV RE 13 0.,22317 0.6710 6.3948 (2)
AXIOM 14 0.21914 0.9519 6.1542 (2)
THERM 15 0.48212 0.9943 36.9456 (2)
STEPS 16 0.30604 0.3774 12.6072 (2)
R INF 17 0.33766 0.8004 15,6997 (2)
AV TH 18 0.30959 0.9829 12,9327 (2)
AV AaX 19 0.43118 0.9301 27.8611 (2)
TOT R 20 0.41934 0.8850 26,0303 (2)
PSLI 21 -0.13847 0.9988 2.3850 (2)
POSIT 22 0.39085 0.8261 21.9981 (2)

(S




TABLE 5.7B

STEP NUMBER 2 FOR C3

VARIABLE ENTERED 15
MULTIPLE R 0.8332
STD. ERROR OF EST. 2.8215

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE F-RATIO
REGRESSION 2 2204. 741 1102.371 138,469
RESIDUAL 122 971.259 7.961

VARIABLES IN EQUATION: (CONSTANT= 1.83217 )
VARIABLE COEFFICIENT STD. ERROR F TO REMOVE

RE 1 3.46491 0.23119 224.6214 (2)
THERM 15 2.94969 0.48528 36.9456 (2)

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR. TOLERANCE F TO ENTER
CLAS1 1 0.76904 0.3716 175.1465

CLAS?2 0.91680 0.2593 637.7576
CLAS4 0.77492 0.3831 181.€814
CLASS 0.67509 0.3804 101.3209
WORDS 0.36348 0.9685 18.4193
SYMBL 0.36927 0.9780 19.1047
LOGCN -0.05831 0.9507 0.4128
PAREN 0.29772 0.9953 11.7679
PREMS -0.28985 0.9423 11.0976
Ccp -0.08929 0.9539 0.9724
AV RE 0.07017 0.5920 0.5988
AXIOM 0.27219 0.9504 9.6822
STEPS 0.41779 0.3721 25.5870
R INF 0.19246 0.6870 4.6544
AV TH =0.09804 0.4177 1.1744
AV AX 0.21889 0.6315 6.0894
TOT R 0.16844 0.5307 3.5331
PSLI 0.00457 0.9118 0.0025
POSIT 0.16471 0.5638 3.3741
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TABLE 5,.7C

STEP NUMBER 3 FOR C3

VARIABLE ENTERED 16
MULTIPLE R 0.8646
STD. ERROR OF EST. 2.5741

ANALYSIS OF VARIANCE:

DF SUM OF SQUARES  MEAN SQUARE F-RATIO
REGRESSION 3 2374.276 791.425 119,446
RESIDUAL 121 801.724 6.626
VARIABLES IN EQUATION: (CONSTANT= ~0.00914 )

VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
RE 1 2.,07922 0.34573 36.1688 (2)
THERM 15 3.21817 0.44589 52.0915 (2)
STEPS 16 0.74803 0.14788 25.5870 (2)

VARIABLES NOT IN EQUATION:

VARIABLE PARTIAL CORR,
CLAS1 1 0.72310
CLAS2 2 0.90031
CLAS4 4 0. 78554
CLASS 5 0.71158
WORDS 6 0.29879
SYMBL 7 0.29004
LOGCN 8 -0.29810
PAREN 9 0.24474
PREMS 10 ~-0.24173
CP 12 -0.29142
AV RE 13 0.16750
AXIOM 14 0.30546
R INF 17 0.28416
AV TH 18 -0.07074
AV AX 19 0.27260
TOT R 20 0. 24455
PSLI 21 -0.04786
POSIT 22 0.24282

85

TOLERANCE
0.3126
0.1924
0.3717
0.3784
0.9131
0.9024
0.7650
0.9594
0.9130
0.8205
0.5707
0.9503
0.6715
0.4150
0.6287
0.5224
0.8999
0.5544

F TO ENTLR
131.,5064
513.4358
193.3721
123.0865
11.7629
11.0216
11.7034
7.6457
7.4475
11.1367
3.4641
12,3493
10.5409
0.6035
9.6334
7.6331
0.2755
7.5186
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SUMMARY TABLE FOR C3 ON THE FULL SET OF PROBLEMS

STEP
NUM

-k = b el o
OV BWN=O0VONCOWUVLWN =

RE
THERM
STEPS
AXIOM
SYMBL
1094
PAREN
AV TH
AV AX
LOGCN
PREMS
R INF
WORDS
PSLI
POSIT
AV RE

VARIABLE
ENT REM

11
15
16
14

7
12

9
18
19

8
10
17

6
21
22
13

MULTIPLE

R

0.77560
0.83320
0.86460
0.87810
0.89090
0.90120
0.90480
0.90720
0.91090
0.91210
0.91270
0.91290
0.91310
0.91310
0.91320
0.97340

RSQ

0.60156
0.69422
0.74753
0.77106
0.,79370
0.81216
0.81866
0.82301
0.82974
0.83193
0.83302
0.83339
0.83375
0.83375
0.83393
0.83430

INCREASE
IN RSQ

0.60156
0.09267
0.,05331
0.02353
0.02264
0.01346
0.00650
0.00435
0.00673
0.00219
0.00109
0.00037
0.00037
0.00000
0.00018
0.00037

§6

F VALUE
FOR DEL

185,.7180
36,9456
25.5870
12,3493
13,0033
11.6125

4.2352
2.,8131
4.5963
1.4453
0.7322
0.2761
0.2529
0.0155
0.0595
0.2126

LAST REG
COEFFICNTS

1.72670
4.12214
0.68129
0.82434
0.22774
-1.17221
-1.41810u
-0.2463b
0.58843
=1.49248
=0. 19960
0.64315
0.02520
0.07453
-0,06885
0.89661
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TABLE 5.9A

STEP NUMBER 1 FOR C4

VARIABLE ENTERED 20
MULTIPLE R 0.6255
STD. ERROR OF EST, 2.6592

ANALYSIS OF VARIANCE:

DF SUM OF SQUARES MEAN SQUARE F-RATIO
REGRESSION 1 558,996 558.996 79.048
RESIDUAL 123 869,804 7.072
VARIABLES IN EQUATION: (CONSTANT= -4.70182 )
VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
TOT R 20 0.41522 0. 04670 79.0482 (2)

VARIABLES NOT IN EQUATION:

VARIABLE PARTIAL CORR. TOLERANCE F TO ENTER
CLAS1 1 0.70182 0.6787 118.4180 (1)
CLAS2 2 0.76067 0.7716 167.5221 (1)
CLAS3 3 0.83827 0.7379 288.,3557 (1)
CLASS 5 0.91114 0.5436 596.3591 (1)
WORDS 6 0.13812 0.9995 2.3725 (2)
SYMBL 7 0.15679 0.9788 3.0747 (2)
LOGCN 8 0.01529 0.9254 0.0285 (2)
PAREN 9 0.12225 0.9986 1.8509 (2)
PREMS 10 0.07217 0.8616 0.6387 (2)
RE 1 0.51945 0.8850 45,0829 (2)
CP 12 0.03775 0.9301 0.1741 (2)
AV RE 13 0.12590 0.4021 1.9650 (2)
AXIOM 14 0.06831 0.7889 0.5720 (2)
THERM 15 0.27869 0.6166 10.2733 (2)
STEPS 16 0.50709 0.9716 42,2307 (2)
R INF 17 0.02415 0.2239 0.0712 (2)
AVTH 18 0.01788 0.4167 0.0390 (2)
AV AX 19 -0.06170 0.0969 0.4663 (2)
PSLTI 21 0.04150 0.9144 0.2105 (2)
POSIT 22 0.06814 0.0520 0.5691 (2)
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TABLE 5.9B

STEP NUMBER 2 FOR C4

VARIABLE ENTERED 1
MULTIPLE R 0.7453
STD. ERROR OF EST. 2.2816

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE F-RATIO
REGRESSION 2 793,689 396.845 76.231
RESIDUAL 122 635,111 5,206

VARIABLES IN EQUATION: (CONSTANT= -3.80896 )
VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
RE 11 1.33047 0.19815 45,0829 (2)

TOT R 20 0.31825 0.04259 55.8293 (g

VARIABLES NOT IN EGUATION:
VARIABLE PARTIAL CCrile TCLERANCE £ 10 ENToR
CLAS1 1 0.55316 0.3328 53. 3476

CLAS2 0.67451 0.2743 101.0027
CLAS3 0.79170 0.3284 203.2142
CLASS 0.922C0 0.4899 686.,1566
WORDS 0.13115 0.9969 2,1175
SYMBL 0.17381 0.9786 3.7691
LOGCN -0.04940 0.9142 0.2960
PAREN 0.12321 0.9976 1.8652
PREMS ~-0.08903 0.7943 0.9667
CP -0.03268 0.,9153 0.1294
AV RE -0.19930 0.2925 5.C047
AXIOM 0.03388 0.7844 0.,1391
THERM 0.44406 0.5962 29,7202
STEPS 0.185190 0.3664 4.2930
AV TH 0.1525¢ 0.3982 2.8843
AV AX 0.04883 0.0931 0.2892
PSLI =0.04256 0.8940 0.2196
POSIT -0.18213 C.0435 4.1512
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TABLE_5.9C ____

STEP NUMBER

VARIABLE ENTERED 15
MULTIPLE R 0.8020
STD. ERROR OF EST. 2.0528

ANALYSIS OF VARIANCE:

DF SUM OF SQUARES
918.926
509.874 4.214

REGRESSION 3
RESIDUAL 121

VARIABLES IN EQUATION:
VARIABLE COEFFICIENT
RE 1 1.51015
THERM 15 2.48564
TOT R 20 0.14754

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR.
CLAasH 0.55736
CLAS?2 0.64216
CLAS3 0. 76820
CLASS 0.90518
WORDS 0.26274
SYMBL 0.22974
LOGCN -0.03065
PAREN 0.11340
PREMS ~0.14879
cp -0.01658
AV RE -0.09770
AXIOM 0.28085
STEPS 0.21363
R INF 0.01678
AV TH -0.12131
AV AX 0.12385
PSLI 0.01364
POSIT ~0.05951

&9

(CONSTANT=

3 FOR C4

MEAN SQUARE
306,309

-1.12523 )

Ff TO REMOVE
69,3844 (2)
29,7202 (2)

8.8680 (2)

STD. ERROR
0.18130
0.45595
0.04949

TOLERANCE F TO ENTER
0.3272 54.0763
0.2540 84,2096
0.2971 172.7806
0.3443 544.2899
0.9480 8.8981
0.9737 6.6866
0.9119 0.1128
0.9952 1.5633
0.7866 2.7168
0.9138 0.0330
0.2730 1.1565
0.5365 10.2758
0.3663 5.7383
0.1596 0.0338
0.2785 1.7924
0.0913 1.8692
0.8805 0.0223
0.0397 0.4264
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TABLE 5.10

SUMMARY TABLE FOR C4 ON THE FULL SET OF PROBLEMS

STEP
NUM

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

TOT R
RE
THERM
AXIOM
WORDS
STEPS
PAREN
LOGCN
TOT R
SYMBL
AV TH
R INF
POSIT
AV AX
PSLI
AV RE
Cp
PREMS

VARIABLE
ENT REM

20
11
15
14
6
16
9
8

7
18
17
22
19
21
13
12

10

MULTIPLE

R

0.62550
0.74530
0.80200
0.81930
0.3730
0.84040
0.84320
0.84710
0.84710
0.85110
0.85320
0.85490
0.85540
0.85600
0.85790
0.86010
0.86050
0.86060

RSQ

0.39125
0.55547
0.64320
0.67125
0.70107
0.70627
0.71099
0.71758
0.71758
0.72437
0.72795
0.73085
0.73171
0.73274
0.73599
0.73977
0.74046
0.74063

INCREASE
IN RSQ

0.39125
0.16422
0.08773
0.02805
0.02982
0.00520
0.00471
0.00659
0.00000
0.00679
0.00358
0.00290
0.00086
0.00103
0.00326
0.00378
0.00069
0.00017

F VALUE
FOR DEL

79,0482
45,0829
29,7202
10.2758
11.8369
2.0728
1.9620
2.6536
0.0023
2.8960
1.5032
1.2176
0.3643
0.4798
1,.2987
1.6328

0.2912

0.0415

LAST' REG
COEFFICNTS

0.89661
1.,01207
4,28564
1.25623
0.06957
0.,29581
=1.19005
-1.63819

0.10362
0.78169
1.80194
-0.201086
1.14620
0.19715
1.94633
0.53331
-0.05619




TABLE 5.11A

STEP NUMBER

15
0.6799
2.1112

VARIABLE ENTERED
MULTIPLE R
STD. ERROR OF EST.

ANALYSIS OF VARIANCE:

DF SUM OF SQUARES

1
123

REGRESSION
RESIDUAL

VARIABLES IN EQUATION: (
VARIABLE COEFFICIENT
THERM 15 3.72353

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR.
CLAS1 0.70420
CLAS2 0.69615
CLas3 0.77228
CLAS4 0.93227
WORDS 0.27808
SYMBL 0.13139
LOGCN -0.08534
PAREN 0.09174
PREMS -0.13052
RE 0.54088
CP -0.05913
AV RE 0.42484
AXIOM 0.46331
STEPS 0.46577
R INF 0.43381
AV TH 0.18192
AV AX 0.40594
TOT R 0.44211
PSLI -0.00168
POSIT 0.45377

1 FOR C5

MEAN SQUARE
471.399
4.457

471.399
548.249

2.15129 )
F TO REMOVE
105.7586 (2)

CONSTANT=
STD. ERROR
0.36207

F 70 ENTER
120.0150
114.7198
180.2896
810.2264
10.2250
2.1433
0.8951
1.0354
2.1142

. 50.4507
0.4281
26.8693
33.3454
33.7991
28.2824
4.1758
24.0704
29.6405
0.0003
31.6352

TOLERANCE
0.8942
0.9068
0.8689
0.6886
0.9731
0.9785
0.9513
0.9969
0.9601
0.9943
0.9556
0.8952
0.9995
0.9998
0.8634
0.4231
0.6810
0.6166
0.9150
0.7060
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TABLE 5.11B

STEP NUMBER 2 FOR C5

VARIABLE ENTERED 11
"MULTIPLE R 0.7872
STD. ERROR OF EST. 1.7830

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE F-RATIO
REGRESSION 2 631.790 315.895 99, 364
RESIDUAL 122 387.858 3.179

VARIABLES IN EQUATION: (CONSTANT= 1,41221 )
VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
RE 11 1.03769 0.14610 50.4507 (2)
THERM 15 3.55872 0.30666 134.6666 (2)

VARIABLES NOT IN EQUATION:

VARIABLE PARTIAL CORR. TOLERANCE F TO ENTE
CLAS1 0.53615 0.3716 48.8150
CLAS2 0.53160 0.2593 47.6637
CLAS3 0.67509 0.3058 101.3209
CLAS4 0.91176 0. 3831 596.3046
WORDS 0.28717 0.9685 10.8751
SYMBL 0.17151 0.9780 3.6673
LOGCN =0.11727 0.9507 1.6871
PAREN 0.08390 0.,9953 0.8577
PREMS =0.24507 0.9423 7.7314
cp -0.09717 0.9539 1.1535
AV RE 0.16089 05920 3.2154
AXIOM 0.41875 0.9504 2547290
STEPS 0.07249 0.3721 0.6392
R INF 0.25235 0.6870 842296
AV TH 0.14447 0.4177 2.5792
AV AX 0.32129 0.6315 13.9278
TOT R 0.30788 0.5307 12.6709
PSLI -0.04050 0.9118 0.1988
POSIT 0.28077 0.5638 10.3548
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TABLE 5.11C

7
STEP NUMBER 3 FOR C5

VARIABLE ENTERED 14
MULTIPLE R 0.8284
STD. ERROR OF EST, 1.6258

ANALYSIS OF VARIANCE:

DF SUM OF SQUARES MEAN 'SQUARE F-RATIO
REGRESSION 3 699,801 233,267 88,246
RESIDUAL 121 319,847 2.643
VARIABLES IN EQUATION: (CONSTANT= 114557 ) -
VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
RE 11 0.88414 0.13661 41.8856 (2)
AXIOM 14 1. 35888 0.26790 25,7290 (2)
THERM 15 3.61508 0.27985 166.8704 (2)

VARIABLES NOT IN EQUATION:

VARIABLE PARTIAL CORR. TOLERANCE F TO ENTER
CLAS1 1 0.44565 0.3149 29,7381 (1)
CLAS2 2 0.48323 0.2422 36.5586 (1)
CLAS3 3 0.64213 0.2832 84.1981 (1)
CLAS4 4 0.89684 0.3300 493,2515 (1)
WORDS 6 0.31066 0.9684 12,8181 (2)
SYMBL 7 0.20321 0.9770 5.1688 (2)
LOGCN 8 -0.03412 0.9097 0.1398 (2)
PAREN 9 0.06757 0.9924 0.5504 (2)
PREMS 10 -0.14585 0.8675 2.6080 (2)
Cp 12 -0.02018 0.9198 0.0489 (2)
AV RE 13 -0.00619 0.4989 0.0046 (2)
STEPS 16 0.08569 0.3720 0.£577 (2)
R INF 17 0.08151 0.5514 0.8027 (2)
AV TH 18 0.04849 0.3931 0.2829 (2)
AV AX 19 0.07521 0.3711 0.6827 (2)
TOT R 20 0.09045 0.3554 0.9899 (2)
PSLI 21 0.06441 0.8625 0.5000 (2)
POSIT 22 0.08181 0.4121 0.8086 (2)

33
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SUMMARY TABLE FOR C5 ON THE FULL SET OF PROBLEMS

STEP
NUM

THERM
RE

AXIOM
WORDS
PAREN
LOGCN
SYMBL
STEPS

OO UVHWN=

9 PREMS 10

10 AV TH
11 R INF
12 PSLI
13 POSIT
14 TOT R
15 AV RE
16 CP

VARIABLE
ENT REM

15
11
14
6
9
8
7
16

18
17
21
22
20
13
12

MULTIPLE

R RSQ
0.67990 0.46226
0.78720 0.61968
0.82840 0.68625
0.84650 0.71656
0.85090 0.72403
0.85280 0,72727
0.85450 0.73017
0.85610 0.73291
0.85680 0.73411
0.85720 0.73479
0.85740 0.73513
0.85750 0473531
0.85770 0.73565
0.85810 0.73634
0.85930 0.73840
0.85940 0.73857

¢4

INCREASE

IN RSQ

0.46226
0.15742
0.06656
0. 03032
0.00747
0.00324
0.00290
0.00274
0.00120
0.00069
0.00034
0.00017
0.00034
0. 00069
0.00206
0.00017

F VALUE
FOR DEL

105.7586

50.4507
25,7290
12.8181
3.1787
1.4294
1.2940
1.1375

0.5597

0.2695
0.1253
0.0910
0.1139
0.3230
0.8699
0.0841

LAST REG
COEFFICNTS

4,05968
0.67997
1.25372
0.07214
=0.87724
=1.10059
0.0647s8
0.11330
-0.11963
=0,10586
0.32683
0.11400
-0.10662
0.58693
1.19229
0.27553
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FIGURE 5.9 CS5 VS s22(POSIT)
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FIGURE 5,10 RESIDUALS(Y-AXIS) VS COMPUTED CS5(X~AXIS)
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- FIGURE 5.11D C4 VS S15(THERM)
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FIGURE 5.11E C5 VS S15(THERM)
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FIGURE 5.12A C1 VS S11(RE)
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FIGURE 5,12B C2 VS S11(RE)
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CHAPTEK SLx

6.1 = INTRODUCTION

In this chanter, the results of regression analyses
over the restricted set of problems, wnich was discussed in
Chapter IV, is be examineds This restricted set consists
of the 54 problems that apoear after the introduction of
Replace Equals and do not have any »remises. As 1in the
previous chapter, a separate analysis was run for each of
the five partitions. The results of these analyses do not
differ sharply from those discussed in chapter five, and
the discussion here will be brief. For the sake of
completeness, however, a full set of tables of results is
included.

Table 6.1 lists the means and standard deviations for
all 22 variables, using the restricted set of problems, and
Table 6.2 is the correlation matrix for these variables. A
plot of the correlations of S11(RE), S16(STEPS), and
S15(THERM) with the dependent wvariable against the ordinal
nunber of the dependent variable for the restricted set of
nroblems is found in Figure 6.1. The pattern in Figure 6.1
is very similar to that in Figure 5.1.

6.2 = REGRESSION WITH C1 AS THE DEPENDENT VARIABLE

For the first regression analysis, C1 1is again the
dependent variable. The results for the first three
variables to enter the regression equation and a summary
for the complete analysis are found in Tables 6.3A,B,C,D.

Together, the first four variables to enter the
equation account for over 70 percent of the total variance
in the dependent variable. This is somewhat less than the
77 percent that was accounted for by the first four
variables when the full set of problems was used, but the
fit is still quite good. Since the predictive power ot
several of the independent variables (S11(RE) and
S22(POSIT) for example) was enhanced by the inclusion of
the first fifty problems, the slight decrease in the
variance accounted for by the regression equation is not
surprising.

The first variable to enter the equation is
S16(STEPS) .« Using the full set of problems and C1 as the
dependent wvariable, S11(RE) was the first wvariable to
enters It has already been observed that $11 and S16 serve
very similar function- as measures of relatively
sunerficial structural complexity. In the analysis of the
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first set of problems, the predictive power of S11 was
enhanced by the fact that the first 53 problems had
uniformly low values for the dependent variable and had
value =zero for S11. It 1is not surprising then that
S16(STEPS) replaces S11(RE) as the first variable to enter
the equation.

The second variable entering the equation, using the
restricted set, is S15(THERM). Using the full set,
S22(POSIT) was the second variable to enter the equation,
The overall predictive power of S22 was also enhanced by
the inclusion of the first 53 problems in the analysis.
With this effect eliminated, S15 is prominent even for the
first partition. The relative predictive power of S15 is
greater for the restricted set of problems, because the
percentage of problems with values of S15 greater than zero
is much larger than it was for the full set.

The third and fourth variables to enter are S14(AXIOM)
and S7(SYMBL). These are the same variables that entered
as the third and fourth variables for the full set of
problems,

At this point it 1is appropriate to discuss the
assumptions in the model for regression, specifically
normality of the distibution of errors and homogeneity of
their variance.

Figure 6.2A contains a histogram for the residuals
after all of the variables have entered the equation. The
distribution does not indicate any serious violations of
the normality asumption. A plot of the residuals against
the computed value of C1 is found in Figure 6.2B. From
this plot, it appears that the homogeniety-of- variance
assumption is not seriously violated for the restricted set
of problems. The highly significant values for the
F-ratios in this analysis and in the other four analyses
presented in this chapter provide reassurance that the
results obtained are not due to chance.

The equation as a whole is significant at the .01
level for all fourteen steps in the stepwise regression
analysis presented. The F-ratios for adding each of the
first four variables in the equation are also significant
at the .01 ievel. Lastly, in Table 6.3D, it can be seen
that the F-ratios for deleting any of the first four
variables are also significant.

The question of statistical significance has been
discussed only very briefly here, and will not be discussed

s
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for the other analyses in this chapter. The reason for
this omission has already been explained.,

6.3

In the regression analysis for the second dependent
variable, S16(STEPS) and S15(THERM) are the first two
variables to enterj; again the patterns £ound in the tables
of partial correlations (Table 6.4A,B), for this analysis,
are generally similar to those for corresponding analysis
of the full set of problems (Tables 5.5A,B). The
differences that do appear in these tables are principally
due to the diminished predictive value of S11(RE) and the
rule—~position variables.

The third variable to enter the equation is s12(cp),
one of the problem—structure variables (Table 6.4C). A
summary of the results for all variables in this analysis
is 1included as Table 6.4D. Using the full set of problems
and the second partition, the regression equation accounted
for 82 percent of the variance in the dependent variable;
with the restiricted set used here, the regression equation
accounts for 79 percent of the variance.

Figure 6.3A contains a histogram of the residuals for
this analysis and Fiqure 6.3B contains a plot of the
residuals against the predicted value of C2. Neither of
these figures indicates a serious violation of the
assumptions.

6.4 = DISCUSSION

The results for the regression analyses using C3, C4,
and GCS as dependent variables follow the pattern
established in the last chapter and will not be discussed
in detail here. For completeness, the results are included
in Tables 6.5, 6.6 and 6.7, and Figures 6.4, 6.5, and 6.6.
There are no serious violations of the assumptions in any
of these analyses.

The evidence for the restricted set of problems tends
to confirm the general conclusions indicated by the
analysis of the full set. There are two types of variation
that appear in the sample of proofs. The first type of
variation consists of the relatively superficial
differences that appear in the proofs. Variation in the
order in which rules are used in proofs is one example of
this type of difference. The definitions of equivalence
for the first two partitions are very sensitive to changes
in order. The definition for the third partition is

159




sensitive to some differences in order but not to all; the
last two partitions completely ignore difference in order.

Both S11(RE) and S16(STEPS) are good pr~-.ctors of the
dependent variables, C1 and C2, for the first two
partitions; their importance systemat1¢x;ly declines for
the last three partitions C3, C4, and C5. It appears that

both of these variables are good predictors of sources of-

variation such as changes in the order in which rules are
used, but are relatively ineffective in predicting more
significant sources of variation such as differences in the
rules used in a proof.

The seccnd principal source of variation found in this
study 1is 1in the rules used to form the proofs. This type
of variation is much more fundamental and important. It is
predicted best by S15(THERM) and to a lesser degree by
S14(AXIOM). All five of the partitions are sensitive to
differences in the rules used in a proof. The relative
importance of the set of rules used increases as we move
from the first partition to the fifth, because other types
of difference are successively being eliminated from
consideration 2s we move from one partition to the next.
The fifth partition is defined only by the particular rules
used in the proofs. So, 1t is not surprising that the
importance of rule-position variables increases from
parition to partition, These observations will be
developed in Chapters VII and VIII.
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MEANS AND STANDARD DEVIATIONS FOR RESTRICTED SE
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VARIABLE MEAN STANDARD DEVIATION
CLAS1 1 13.42593 6.40048
CLAS2 2 9, 31481 6.51797
; CLAS3 3 7.92593 5.63966
; CLAS4 4 5.,37037 3.66161
‘ CLASS 5 4,53704 2.96974
WORDS 6 15.12963 6.55325
3 SYMBL 7 12,38889 6.02954
‘ LOGCN 8 0,20370 0.40653
PAREN 9 1.03704 0.91038
: PREMS 10 0.00000 0.00000
3 RE 11 1.16667 1.17762
cp 12 0.18519 0.39210
, AV RE 13 1.00000 0.00000
’ AXIOM 14 0.55556 0.69137
THERM 15 0.42593 0.68960
STEPS 16 4.66667 3.15032
. R INF 17 18.74074 0.55577
! AV TH 18 1. 40741 1.95727
AV AX 19 3.55556 1.72295
1 TOT R 20 23.70370 3.66848
] PSLI 21 5. 00000 3.49123
o POSIT 22 95,92593 19.84834




VARIABLE
NUMBER

VD whh =
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TABLE 6,2

CORRELATION MATRIX FOR RESTRICTED SET

1.000

MATRIX CONTINUED

VARIABLE
NUMBER

OWVWIODNOULDH WN =

-

6
0.462
0.402
0.413
0.239
0.127
1.000

MATRIX CONTINUED

VARIABLE
NUMBER

-
CVWONGOULILWN =

-
-

- = el
WMHWN

11

0.726
0.804
0.758
0.467
0.265
0. 381
0.254
0.125
0.223
0.000
1. 000

0.934
1. 000

0.387
0.322
0.347
0.117
0.004
0.626
1.000

12
-00077
-00097
-00147
-0,128
-0.217

0.049

0.208

0.943

0. 000

0.095

1,000

0.914
0.972
1.000

-00019
-0.018
-0.100
-0.140
-00249
0.025
0.190
1,000

13

0.000
0.000
0.000
0.000
0.000
0.000
0. 000
0.000
0. 000
0.000
0.000
0.000
0.000

112

0.739
0.747
0.824
1.000

0.324
0.275
0.284
0.098
0.055
0.429
0.747
-0.174
1.000

14
0.116
0.015
0.040
0.066
0.036
0.142
0.060
=0.,209
0.027
0.000
-00023
-0.178
0.000
1,000

0.588
0.556
0.654
0.913
1.00C

10

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

15
0,035
0.028
0.096
0.370
0.559
-0.305
-0.236
0.004
0.000
=0.205
~0.297
0.000
-0.347
1,000




TABLE 6.2 CONTINUED

MATRIX CONTINUED

VARIABLE
NUMBER 16
0.736
0.808
0.727
0.402
0.151
0.444
0.311
0,275
0.221
0.000
0.926
0.204
0.000
-0.009
-0.290
1.000

MATRIX CONTINUED

VARIABLE
NUMBER 21
0.192
0.159
0.106
-0.028
0.319
0.187
0.306
0.059
0.000
0.110
0.221
0.000
-0, 384
0,259
-0.224
-0.353
-0.420
-0.420
1.000
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FIGURE 6.1 l
CORRELATIONS BETWEEN DEPENDENT AND INDEPENDENT VARIABLES
AGAINST THE ORDINAL NUMBER OF THE DEPENDENT VARIABLE
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TABLE 6.3A

STEP NUMBER 1 FOK C1

VARIABLE ENTERED 16
MULTIFLE R 0. 7361
STD. ERROR OF EST. 4,3736

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE F-RATIO
REGRESSION 1 1176.510 1176.510 61.505
RESIDUAL 52 994.693 19,129

VARIABLES IN EQUATION: (CONSTANT= 6.44663 )
VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
STEPS 16 1.49556 0.19070 61.5049 (2)

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR. TOLERANCE F TO ENTER
CLAS2 0.85137 0.3466 134.3401 (
CLAS3 0.81412 0.4713 100.2426
CLAS4 0.71580 0.8385 53.5881
CLASS 0.71352 0.9773 52.8930
WORDS 0.22308 0.68024 2.6,08
SYMBL 0.24619 0.9033 3.2900
LOGCN -0.34100 0.9244 6.7106
PAREN 0.24430 0.9509 3.2370
PREMS 0.00000 1,0000 0.0000
RE 0.17565 0.1432 1.6237
Ccp =0.34264 0.9585 6.7838
AV RE 0.00000 1.0000 0. 0000
AXIOM 0.18092 0.9999 1.7257
THERM 0.38307 0.9162 8. 7709
R INF 0.24683 0.9963 3.3086
AV TH 0.24723 0.9596 3.3202
AV AX 0.32965 0.9474 6.2177
TOT R 0.32552 0.9497 6.0446
PSLI 0.00151 0.9329 0.0001
POSIT 0.345%3 0.9553 6.9142
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TABLE 6.38

STEP NUMBER 2 FOR Ci

VARIABLE ENTERED 15
MULTIPLE R 0.7804
STD. ERROR OF EST. 4,0794

ANALYSIS OF VARIANCE:

TS maw v Gl S

DF SUM OF SQUARES MEAN SQUARE F-RATIO
REGRESSION 2 1322.473 661.237 . 39.734
RESIDUAL 51 848.730 16,642
VARIABLES IN EQUATION: (CONSTANT= 4.63224 )
VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
THERM 15 2.51418 0.84894 8.7709 (2)
STEPS 16 1.65489 0.18583 79.3066 (2)

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR. TOLERANCE F TO ENTER

CLAS2 2 0.82327 0.2715 105.1697 (1)

CLAS3 3 0.77770 0.3691 76.5257 (1)
CLAS4 4 0.65486 0.5807 37.5408 (1)

CLASS 5 0.65929 0.5813 38.4422 (1)

WORDS 6 0.33375 0.7686 6.2674 (2)

SYMBL 7 0.33730 0.8802 6.4188 (2)

LOGCN 8 -0,.27201 0.8637 3.9952 (2)

PAREN 9 0.23464 0.9458 2.9133 (2)

) PREMS 10 0.00000 1.0000 0.0000 (2)
. RE 1 0.12015 0.1389 0.7324 (2)
cp 12 -0.27452 0.8966 4.0751 (2)

AV RE 13 0. 00000 1.0000 0.0000 (2)

AXIOM 14 0.37329 - 0.8663 8.0952 (2)

R INF 17 0.15402 0.9132 12149 (2)

AV TH 18 -0.04632 0.4586 0.1075 (2)

AV AX 19 0.17447 0.7152 1.5697 (2)

TOT R 20 0.10280 0.5303 0.5340 (2)

PSLI 21 0. 14881 0.8287 1.1323 (2)

POSIT 22 0.13856 0.5550 0.9788 (2)

Q ‘ g:l(;




TABLE 6.3C

STEP NUMBER 3 FOR C1

S T e,
-
-—h
[\

VARIABLE ENTERED 14
MULTIPLE R 0.8146
STD. ERROR OF EST. 3.8222

i ANALYSIS OF VARIANCE:

1Y

: DF SUM OF SQUARES MEAN SQUARE F-RATIO
REGRESSION 3 1440.739 480.246 32.873
: RESIDUAL 50 730.465 14.609
,‘
VARIABLES IN EQUATION: (CONSTANT= 2.68057 )
: VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
)_ AXIOM 14 2.32139 0.81589 8.0952 (2)
: THERM 15 3.40299 0.85455 15.8578 (2)
| STEPS 16 1.71563 0.17542 95.6551 (2)
!
VARIABLES NOT IN EQUATION:
{ VARIABLE PARTIAL CORR. TOLERANCE F TO ENTER
| CLAS2 2 0.81228 0.2543 95.0327 (1)
CLAS3 3 0.75434 0.3384 64.6947 (1)
, CLAS4 4 0.60134 0.5054 27.7551 (1)
i CLAS5 5 0.60360 0.4990 28.0841 (1)
v WORDS 6 0.322246 0.7615 5.6861 (2)
SYMBL 7 0.36018 0.8801 7.3045 (2)
T LOGCN 8 -0.16531 0.7623 1.3766 (2)
] PAREN 9 0.22901 0.9424 2.7120 (2)
- PREMS 10 0.00000 1.0000 0.0650 (2)
RE 11 0.11934 0.1388 0.7079 (2)
; CP 12 -0.18254 0.8142 1.6891 (2)
{ AV RE 13 0.00000 1.0000 0.0000 (2)
R INF 17 0.03668 0.815¢ 0.0660 (2)
3 AV TH 18 -0.16474 0.4251 1.3669 (2)
] AV AX 19 -0.02959 0.5145 0.0429 (2)
' TOT R 20 -0.09793 0.4041 0.4745 (2)
3 PSLI 21 0.27278 0.7741 3.9391 (2)
) POSIT 22 -0.03659 0.4415 0.0657 (2)




TABLE 6.3D

SUMMARY TABLE FOR Ci:

STE
NUM

- eamd = o
B WN=0VONOWVHWN =

P

STEPS
THERM
AXIOM
SYMBL
PSLI
RE

cp
PAREN
R INF
AV TH
AV AX
POSIT
WORDS
LOGCN

VARIABLE
ENT REM

16
135
14

MULTIPLE

R

0.73610
0. 78040
0.81460
0.84100
0.85310
0.86410
0.87090
0.87700
0.87890
0.87960
0.88010
0.88140
0.88160
0.88160

RSQ

0.54184
0.60902
0.66357
0.70728
0.72778
0.74667
0.75847
0.76913
0.77247
0.77370
0.77458
0.77687
0.77722
0.77722

INCREASE F VALUE

IN RSQ

0.54184
0.06718
0.05455
0.04371
0.02050
0.01889
0.01180
0.01066
0.00334
0.00123
0.00088
0.00229
0.00035
0.00000

FOR DEL

61.5049
8.7709
8.0952
7.3045
3.6330
3.4873
2.,2580
2.0799
0.6434
0.2448
0.1563
0.4215
0.0474
0.0183

LAST REG
COEFFICNTS

0.75218
4,44347
2.15535
0.41046
0.56270
2,20050
-1.37648
1.,90201
0.92563
1.51330
=0.22560
0.03198
0.61787




FIGURE 6.2A

RESIDUALS FOR C1 ON RESTRICTED SET
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FIGURE 6,28 RESIDUALS(Y-AXIS) VS COMPUTED C1 (X=Pau:
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STEP NUMBER 1 FOR C2

VARIABLE ENTERED 16
MULTIPLE R 0.8083
STD. ERROR OF EST. 3.8743

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUAKLE
REGRESSION 1 1471.128 1471.128
RESIDUAL 52 780,520 15.010

VARIABLES IN EQUATION: (CONSTANT= 1.51042 )
VARIABLFE COEFFICIENT STD. ERROR £ TO REMOVE
STEPS 16 1.67237 0.16893 96,0099 (2)

VARIABLES NOT IN EQUATION:

VARIABLE PARTIAL CORR, TOLERANCE F TO ENTER
CLAS1 1 0.85137 0.4581 134.3401 (
CLAS3 3 0.95144 0.4713 487.1914 (
CLAS4 4 0.78282 0.8385 80.7189 (
CLASS S 0.74691 0.9773 64.3511 (
WORDS 6 0.08080 0.8024 0.3351 (2
SYMBL 7 0.12606 0.9033 0.8236 (
LOGCN 8 -0,42367 0.9244 11.1571 (
PAREN 9 0.16652 0.9509 . 1.4545 (
PREMS 10 0.00000 1.0000 0.0000 (
RE 11 0.25148 0.1432 3.4432 (
CP 12 -0,45399 0.9585 13.2407 (
AV RE 13 0,.00000 1.0000 0.0000 (
AXIOM 14 0.03718 0.9999 0.0706 (
THERM 15 0.46558 0.9162 14,1148 (
R INF 17 0.33577 0.9963 6.4806 (
av TH 18 0.23564 0.9596 2.9984 (
AV AX 19 0.31351 0.9474 5.5590 (
TOT R 20 0.32554 0.9497 6.0453 (.
PSLI 21 -0,08825 0.9329 0.4003 (
POSIT 22 0.33972 0.9553 6.6540 (

NNV NNNNNNNDNNNNNDNNNNNDN= = aaa
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TABLE 6.4B

STEP NUMMBER 2 FOR C2

VARIABLE ENTERED 15
MULTIPLE R 0.8535
STD. ERROR OF EST. 3.4622

ANALYSIS OF VARIANCE:

DF SUM OF SQUARES MEAN SQUARE F-RATIO
REGRESSION 2 1640.320 820.160 68.422
RESIDUAL 31 611,328 11.987
VARIABLES IN EQUATION: (CONSTANT= -0.44301 )
VARIABLE COEFFICIENT STD. ERROR F TO KREMOVE
THERM 15 2.70686 0.72049 14.1148 (2)
STEPS 16 1.84391 0.15771 136.6924 (2)

VARIABLES NOT IN EQUATION:

VARIABLE PARTIAL CORR. TOLERANCE F TO ENTER

CLAS1 1 0.82327 0.3909 105.1697 (1)
CLAS3 3 0.93799 0.3691 366.0775 (1)
CLAS4 4 0.71237 0.5807 51,5183 (1)
CLAS5 5 0.66009 0.5813 38.6080 (1)
WORDS 6 0.20364 0.7686 2.1631 (2)
SYMBL 7 0.22967 0. 3802 2.7842 (2)
LOGCN 8 -0.35585 0.8637 7.2493 (2)
PAREN 9 0.14991 0.9458 - 1.1495 (2)
PREMS 10 0.00000 1.,0000 0.0000 (2)
RE 11 0.19601 0.1389 1.9977 (2)
CcP 12 -0.39212 0.8966 9.,0847 (2)
AV RE 13 0.00000 1.0000 0.0000 (2)
AXIOM 14 0.25175 0.8663 3.3832 (2)
R INF 17 0.23761 0.9132 2.9919 (2)
AV TH 18 -0,16474 0.4586 1.3949 (2)
AV AX 19 0.10800 0.7152 0.5900 (2)
TOT R 20 0.02441 0.5303 0.0298 (2)
PSLI 21 0.08077 0.8287 9.3283 (2)
POSIT 22 0.05684 0.5550 0.1621 (2)
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TABLE 6.4C

STEP NUMBER 3 FOR C2

VARIABLE ENTERED 12
MULTIPLE R 0.8776
STD. ERROR OF EST. 3.2166

ANALYSIS OF VARIANCE:

i DF SUM OF SQUARES MEAN SQUARE F-RATIO
REGRESSION 3 1734.316 578.105 55.874
RESIDUAL 50 517.332 10. 347
VARIABLES IN EQUATION: ( CONSTANT= 0.17969 )
VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
cp 12 -3.58702 1.19009 9,0847 (2)
THERM 15 2.17648 0.69213 9.8886 (2)
STEPS 16 1.90122 0.14775 165,5704 (2)

VARIABLES NOT IN EQUATION:

. VARIABLE PARTIAL CORR. TOLERANCE F TO ENTER
{ CLAS1 1 0.80901 0.3614 92,8201 (1)
f_ CLAs3 3 0.92749 0.3171 301.5748 (1)
CLAS4 4 0.73022 0.5730 55.9761 (1)
: CLASS S 0.66932 0.5721 39,7655 (1)
; WORDS 6 0.17763 0.7602 1.5965 (2)
- SYMBL 7 0.30331 0.8674 4.9644 (2)
LOGCN 8 0.03721 0.1041 0.0679 (2)
T PAREN 9 0.09363 0.9198 0.4334 (2)
PREMS 10 0.00000 1.0000 0.0000 (2)
RE 1 0.12320 0.1323 0.7552 (2)
- _ AV RE 13 0.00000 1.0000 0.0000 (2)
§ AXIOM 14 0.15161 0.7867 1.1528 (2)
R INF 17 0.08547 0.7487 0.3606 (2)
AV TH 18 -0.21655 0.4552 2.4108 (2)
T AV AX 19 -0,04307 0.6177 0.0910 (2)
. i TOT R 20 -0,12015 0.4731 0.7177 (2)
. : PSLI 21 0.13171 0.8201 0.8650 (2)
- POSIT 22 -0,08777 0.4914 0.3804 (2)
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TABLE 6.4D
SUMMARY TABLE FOR C2:

STEP VARIABLE MULTIPLE INCREASE F VALUE LAST REG
NUM ENT REM R RSQ IN RSQ FOR DEL COEFFICNTS
1 STEPS 16 0.80830 0.65335 0.65335 98.0099 1.07026
2 THERM 15 0.85350 0.72846 0.07511 14.1148 4,74007
3 Cp 12 0.87760 0.77018 0.04172 9,0847 -4,37355
4 SYMBL 7 0.88960 0.79139 0.02121 4.9644 0.33321
5 PAREN 9 0.89700 0.80461 0.01322 3. 2381 -1.65153
6 AV TH 18 0.90060 0.81108 0.00647 1.6413 -1.65153
7 AXIOM 14 0.90500 0.81903 0.00794 2,0218 1.31265
8 RE 1 0.90930 0.82683 0.00780 1.9887 2.06043
9 PSLI 21 0.91510 0.83741 0.01058 2.8831 0.30025
10 R INF 17 0.91810 0.84291 0.00550 1.5033 2.,27328
11 POSIT 22 0.91890 0.84438 0.00147 0.4185 -0.11116
12 LOGCN 8 0.91900 0.84456 0.00018 0.0423 0.94639
13 AV AX 19 0.91910 0.84474 0.00018 0.0444 0.35906

14 AV TH 18 0.91910 0.84474 0.00000 0.0001
15 WORDS 6 0.91920 0.84493 0.00018 0.0146 0.01311
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RANGE 10 20 30 40 50
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FIGURE 6.,3B — RESIDUALS(Y-AXIS) VS COMPUTED C2 (X-AXIS)
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STEP NUMBER 1 FOR C3

P VARIABLE ENTERED 11
MULTIPLE R 0.7576
STD. ERROR OF EST. 3.7164

i ANALYSIS OF VARIANCE:

; DF SUM OF SQUARES MEAN SQUARE F-RATIO
REGRESSION 1 967.498 967.498 70,049
: RESIDUAL 52 718,206 13.812
[}
VARIABLES IN EQUATION: (CONSTANT= 3.69312 )

. VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
i RE 11 3.62812 0.43349 70.0494 (2)
‘ VARIABLES NOT IN EQUATION:

VARIABLE PARTIAL CORR. TOLERANCE F TO ENTER

CLAS1 1 0.80970 0.4724 97.0869 (1)
; CLAS2 2 0.93578 0.3532 359.2754 (1)
; CLAS4 4 0.81431 0.7822 100.3802 (1)
' CLASS 5 0.71918 0.9296 54,6369 (1)
_ WORDS 6 0.20568 0.8548 2.2528 (2)
| SYMBL 7 0.24438 0.9356 3.2392 (2)
5 LOGCN 8 -0.30083 0.9844 $.0748 (2)

PAREN 9 0.18015 0.9503 1.7106 (2)
- PREMS 10 0.00000 1..0000 0.0000 (2)
| cp 12 -0,33782 0.99909 6.5699 (2)
- AV RE 13 0.00000 1.0000 0.0000 (2)

AXIOM 14 0.08788 0.9995 0.3969 (2)
v THERM 15 0.39302 0.9579 9.3169 (2)
i STEPS 16 0.10468 0.1432 0.5651 (2)

R INF 17 0.34481 0.9996 6.8820 (2)
.- AV TH 18 0.16658 0.9875 1.4557 (2)
§ AV AX 19 0.32748 0.9720 6.1262 (2)
1 TOT R 20 0.29514 0.9801 4.8664 (2)

PSLI 21 0.03534 0.9879 0.0638 (2)

POSIT 22 0.31943 0.9806 5.7951 (2)
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STEP NUMBER 2 FOR C3

VARIABLE ENTERED 15
] MULTIPLE R 0.79498
STD. ERROR OF EST. 3.4507

ANALYSIS OF VARIANCE:

- oEl GE S e N O o o T W . -

DF SUM OF SQUARES MEAN SQUARE F=RATIC
REGRESSION 2 1076.436 39,218 45,255
RESIDUAL 51 607,268 11.907

VARIABLES IN EQUATION: (CONSTANT= 247952 )

VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
RE 1 3.88574 0.41125 69,2764 (2)
THERM 15 2.14364 0.70229 9,3169 (2)

VARIABLES NOT IN EQUATION:

VARIABLE PARTIAL CORR. TOLERANCE F TO ENLER
CLAS1 1 0.79388 0.4370 85.2225 (1)
CLAS?2 2 C.92834 0.3142 312.0335 (1)
CLAS4 4 0,77776 0.5559 76.5551 (1)
CLASS 5 0.66357 0.5371 39,3372 (1)
WORDS 6 0.34154 0.8013 6.6028 (2)
SYMBL 7 0.35542 0.9004 7.22%90 (2)
LOGCN 8 -0.20917 0.8968 2.2877 (2)
PAREN 9 0.17366 0.9477 1.55%48 (2)
PREMS 10 0.00000 1.0000 0.0000 (2)
CcP 12 -0,25620 0.9104 3.5124 (2)
AV RE 13 0.00000 1.0000 0.0000 (2)
AXIOM 14 " 0426730 0.8700 3.8474 (2)
STEPS 16 0.23743 0.1329 2.9872 (2)
R INF 17 0.26014 0.9121 3.6293 (2)
AV TH 18 -0.19412 0.4571 1.9578 (2)
AV AX 13 0.16016 0.7180 1.3163 (2)
TOT P. 20 0.04303 0.5311 0.0927 (2)
PSLI 21 0.21244 0.8515 2.3631 (2)
POSIT 22 0.08760 0.5554 0.3866 (2)
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STD.

REGRESSION
RESIDUAL

VARIABLE ENTEKED
MULTIPLE R
EKROR OF EST.

VARIABLES IN

VARIABLF

SYMBL
RE
THERM

7

11

15

VARIABLE
CLASH 1
CLAS?2 2
CLAS4 4
CLASS 5
WORDS 6
LOGCN 8
PAREN 9
PREMS 10
Cp 12
AV RE 13
AXIOM 14
STEPS 16
R INF 17
AV TH 18
AV AX 19
TOT R 20
PSLI 21

POSIT

7
0.8278
3. 2575

ANALYSIS OF VARIANCE:
DF SUM OF

3

50

FQUATION ¢
COEFFICIENT

0.21028
3.65488
2.49612

VARIABLES NOT IN EQUATLION:
PARTIAL CORR.

0.76201
0.92249
0.79091
0.68238
0.18041
-0.26918
-0.15661
0.00000
0.00000
0.28652
0.19408
0.40983
-0.05984
0.27572
0.21371
0.18915
0.25172

TABLE 8.5C

STEP NUMBER 3 FOk C3

SQUARFES MEAN SQUARE F~RATLO
1155, 150 385,050 36,288
530554 10.511
(CONSTANT= -0.00639 )
STD. ERROK F TO REMOVE
0.07821 7.2296 (2)
0. 39760 84,4960 (2)
0.67580 13,6423 (2)

0.3740
0.2875
0.5473
0.5338
0.5394
0.6850
0.4039
1.0000
0.8914
1.0000
0.8700
0.1293
0.8315
0.3832
0.6727
0.4481
0.8425
0.4798

TOLERANCYE,

£ TO ENCOr

67.6519
279,8286
81.8544
42.6985
1.6486
3.8278
1.2319
0. G000
6.0946
0. G000
4.3825
1.9180
9.8914
0.1701
4.0315
2.3450
1.8183
3.3149

P T A ke R P Ea Foan B Lo r &

NNNNNNNNNNNNNN-‘-‘-‘-‘
e’ N e S S e e S S S S S sl s ot o St




SUMMARY TABLE FOR C3:

STEP
NUM

VOOV bWN =~

RE
THERM
SYMBL
R INF
PSLI
AXIOM
PAREN
CcP

AV TH
STEPS
LOGCN
POSIT
AV AaX

VARIABLE
ENT REM

1"
15

7
17
21
14

9
12
18
16

8
22
19

125

TA3LE ©,5D
MULTIPLE
R RSQ
0.75760 0.57396
0.79980 0.63908
0.82760 0.68525
0.85910 0.73805
0.86900 0.75516
0.8778¢ 0.77053
0.8859C 9.78482
0.89790 0.80622
0.90590 0.E2065
0.90970 0.82755
0.9118¢ 90.8313¢&
0.9120¢ 0.83174
0.91360 0.83466

INCREASE

1IN RSC

0.57396
0.0657¢
0.04557
0.05280
0.01711
0.01537
0.01429
0.02141
0.01443
0.000690
0.00383
0.00036
0.00292

r VALUE Lasy «kRG
FOR DEL CurFricCuiid
70. 0494 2,938
9.3169 4,62393
7.2296 0.47307
3.8914 3.04043
3.3242 0.43077
3.1591 1.00335
3.,0652 =2.347uo
4.9519 -000b024
3.5415 0.5e327
1.7355 0.51954
U. 07061 -0.23139
0.7454 1.385005
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1 FIGURE 6.4A — RESIDUALS EFOR C3 ON KESTRICTED SET
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FIGURE — RESIDUALS (Y-AXIS) VS COMPUTED C3 (X-AXIS)

-40 97

-3,94

-2.90

-1.87

-0. 83

0.21

1.24

4.35

1

b b
® © 0 o ® o ® ©® o © o ® o o O © o © o 0 o ©* o O 0o o 0 0o o

-t
-t
e O o e o o L] o o L] L] L] o o o L] o o o

1

1 .

00 00 00O OO0 OOO OO OO PO OO OOROOOOOOOOOOO OO OO VNOGOOOONOOLOODS

0.057 4,387 8.716 13.045 17.374 21,703

132




R
. '

' reeeion )
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VARIABLE ENTERED

MULTIPLE R
STD. ERROR OF EST. 3.2693

TABLE 6.6A

STEP NUMBER 1 FUK C4

11
0.4667

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE
154.800

10.688

REGRESSION
RESIDUAL

VARIABLES IN EQUATION:

VARIABLE

RE

1

1 154.800
52 555,793
(CONSTANT:
COEFFICIENT STD. ERROR
1.45125 0.38134

VARIABLES NOT IN EQUATION:

VARIABLE
CLAS1 1
CLAS2 2
CLAS3 3
CLAS>S 5
WORDS 6
SYMBL 7
LOGCN 8
PAREN 9
PREMS 10
cp 12
AV RE 13
AXIOM 14
THERM 15
STEPS 16
R INF 17
AV TH 18
AV AX 19
TCT R 20
PSLI 21
POSIT 22

PARTIAL COCRR. TOLERANCE
0.658%0 0.4724
0.70676 0.3532
0.81431 0.4261
0.92566 0.9296
0.07525 0.8548

-0,00137 0.9356
~0,00737 0.9503
0.00000 .1.0000
~0.19540 0.9909
0.00000 1.0000
0.08716 0.9995
0.53784 0.9579
-0.09022 0.1432
0.41054 0.9996
0.39748 0.9875
0.44595 0.9720
0.48427 0.9801
0.49136 0.9806

3.67725 )

F~RATIU

14,483

F TO REMOVE

14.4831

F TO ENT
39.1000
50.9010

100.3802

305.2680

0.2904
0.0000
2.7540
0.0028
0.0000
2.0240
0.0000
0.3904
20.7570
0.4185
10.3381
9.5693
12.6601
15.6243
0.4201
16,2321

(2)
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TABLE 6.6B

STEP NUMBER 2 FOR C4

VARIABLE ENTERED 15
MULTIPLE R 0.6664
STD. ERROR OF EST. 2,7831

ANALYSIS OF VARIANCE:
DF SUHM OF SQUARES MEAN SQUARE F-RATIO
REGRESSION 2 315.573 157.786 20,371
RESIDUAL 51 395.020 7. 745

VARIABLES IN EQUATIONGS (CONSTANT= 2.21628 )
VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
RE 1 1.76139 0.33168 28,2006 (2)
THERM 15 2.58059 0.56642 20.7570 (2)

VARIABLES NOT IN EQUATION:

VARIABLE PARTIAL CORR, TOLERANCE F TO ENTE
CLAS1 0.63086 0.4370 33.0537
CLAS2 0.66398 0.3142 39.4253
CLAS3 0.77776 0.3602 7645551
CLASS 0.89915 0.5371 211.0452
WORDS 0.25715 0.8013 3.5403
SYMBL 0.12449 0.9004 " 0.7871
LOGCN -0.08188 0.8968 0.3375
PAREN -0.04238 0.9477 0.,0899

PREMS 0.00000 1.0000 G.0000
cp -0.05213 0.9104 0.1363
AV RE 0.00000 1.0000 0.0000
AXIOM 0.35691 0.8700 7.2988
STEPS 0.06689 0.1329 0.2247
R INF 0.31214 0.9121 5.3973
AV TH 0.00579 0.4571 0.0017
av ax 0.23603 0.7180 2.9499
TOT R 0.19374 0.5311 1.9499
PSLI 0.13982 0.8515 0.9970
POSIT 0.21623 0.5554 2.4523
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TABLE 6.6C

STEP NUMBER 3 FOk (4

VARIABLE ENTERED 14
MULTIPLE R 0,717
STD. ERROR OF EST. 2.6256

ANALYSIS OF VARIANCE:

DF SUM OF SQUARES MEAN SCQUARL F=rRALLU
REGRESSION 3 365,891 121.904 17.651
RESIDUAL 50 344.702 6.594
VARIABLES IN EQUATION: (CONSTANT = 1.03759 )
VARIABLE COEFFICIENT STD. ERROR F IO REMOVE
RE 11 1.84887 0.31459 34,5392 (2)
AXIOM 14 1.51097 0.55928 7.2988 (2)
THERM 15 3.13748 0.57270 30,0069 (2)

VARIABLES NOT IN EQUATION:

VARIABLE PARTIAL CORR. TOLERANCE F TO ENTER
\ CLAS1 1 0.58273 0. 3907 2541952 (1)
CLAS2 2 0.64743 0.3016 35,3613 (1)
B CcLas3 3 0.75805 0.3345 66,1977 (1)
L CLASS 5 0.88348 0.4550 174.2755 (1)
WORDS 6 0.24514 0.7960 3.1329 (2)
SYMBL 7 0.13382 0.3004 0.8934 (2)
LOGCN 8 0.05078 0,7846 0.1267 (2)
g PAREN 9 -0,06662 0.9448 " 0.2184 (2)
- PREMS 10 0. 00GCQ 1.0000 0.0000 (2)
cP 12 0.06675 0.5218 0.2193 (2)
I' AV KT 43 0.00000 1.21000 C.0000 (2)
SEEPS 16 0.09859 C.*322 0.4810 (2)
I INF 17 0.22129 Goo a1 2002350 (2)
.. AY T4 18 -0,10233 Ded22 0.5 (2]
av ax 19 0.05844 0.5150 Celely (2)
i TOT R 20 0.02276 0.403% 0 e (2)
PSLI 21 0.26233 0.7497 300293 (2)
- POSIT 22 0.06511 0.440% 0., 036 (2)

[ | }dsmtriaw §
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TABLE 6.6D
SUMMARY TABLE FOR C4:

L STEP  VARIABLE MULTIPLE  INCREASE F VALUE LASY REG
NUM ENT REM R RSQ  IN RSQ FOR DEL COEFFICNIS
1 RE 11 0.46670 0.21781 0.21781  14.4831 1.97847
2 THERM 15 0.66640 0.44409 0.22628 20.7570  4.71216
3 AXIOM 14 0.71760 0.51495 0.07086 7.2988  1.60187
4 PSLI 21 0.74050 0.54834 0.03339 3.6213  0.40789
5 R INF 17 0.75800 0.57456 0.02622 2.9664  3.13453
6 WORDS 6 0.77420 0.59939 0.02482 2.9168  0.11472
7 AV AX 19 0.78530 0.61670 0.01731 2.0714  0.11472
8 CP 12 0.79590 0.63346 0.01676 2.0570  3.62206
9 PAREN 9 0.80290 0.64465 0.01119 1.3767  =1.47970
0O SYMBL 7 0.80860 0.65383 0.00919 1.1491 0.18363
1 LOGCN & 0.81700 0.66749 0.01366 1.7186  =-3.38508
2 POSIT 22 0.82280 0.67700 0.00951 1.2225 -0.29187

AV AX 0.82280 0.67700 0.00000 0.0005
TOT R 20 0.62720 0.68426 0.00726 0.9382  1.28037
STEPS 16 0.82800 0.68558 0.00132 0.1589 -0.14571
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FIGURE 6.5A - RESIDUALS FOR C4 ON RESTRICTED SET
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6.5B = RESIDUALS(Y-AXIS) VS COMPUTED C4 (X-AXIS)
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2,253 4.954 7.654 10.354 13.055

138

é. [ ] e o o © [ ] o o o o o e

J
}
|
i
1
i
i
i
|
I
E
i
i
1
i
I
I




' 134

TABLE 6.7A

Sememnnth

STEP NUMBER 1 FOR C5

batamsain )
. .

! VARIABLE ENTERED 15
MULTIPLE R 0.5588
STD. ERROR OF EST. 2.4865

ANALYSIS OF VARIANCE:

DF SUM OF SQUARES MEAN SQUARE F-RATIO
REGRESSION 1 145,939 145,939 23,605
RESIDUAL 52 321,487 6.182

VARIABLES IN EQUATION: (CONSTANT= 3.51212 )

VARIABLE COEFFICIENT STD., ERROR F TO REMOVE
THERM 15 2.40632 0.49528 23.6054 (2)

VARIABLES NOT IN EQUATION:

VARIABLE PARTIAL CORR. TOLERANCE F TO ENTER

CLAS1 1 0.68615 0.9988 45,3724 (1)

cLas2 2 0.65212 0.9992 37,7357 (1)

CLAS3 3 0. 72700 0.9909 57.1707 (1)

CLAS4 4 0.91691 0.8633 269,2067 (1)

. WORDS 6 0.37663 0.9072 8.4304 (2)
2 SYMBL 7 0.16829 0.9444 1.4864 (2)
| LOGCN 8 -0.09201 0.9006 0.4354 (2)
- PAREN 9 0.06370 1.,0000 0.2076 (2)

3- PREMS 10 0. 00000 1.0000 0.0000 (2)
3 RE 1 0.45809 0.9579 1443100 (2)
- CP 12 -0,06387 0.9117 0.2089 (2)
AV RE 13 0.00000 1.0000 0,0000 (2)

T AXIOM 14 0.29555 0.8793 4.,8812 (2)
i STEPS 16 0.39348 0.9162 9.3425 (2)
R INF 17 0.23316 0.9138 2,9320 (2)

o AV TH 18 0.14183 0.4587 1.0469 (2)
3 AV AX 19 0.18814 0.7217 1.8715 (2)
i TOT R 20 0.21967 0.5311 2.,5858 (2)
PSLI 21 0.13525 0.8525 o.9so3((§)

2

i POSIT 22 0.24041 0.5554 3.1286
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STEP NUMBER 2 FOR CS

VARIABLE ENTERED 11
MULTIPLE R 0.6804
STD. ERROR OF EST. 2.2187

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES

REGRESSION 2 216,380
RESIDUAL 51 251.046
VARIABLES IN EQUATION: (CONSTANT=
VARIABLE COEFFICIENT STD.
RE 11 1.00026 0.26442
THERM 15 2.75689

VARIABLES NOT IN EQUATION:

MEAN SQUARE

VARIABLE
CLAS1 1
CLAS2 2
CLAS3 3
CLAS4 4
WORDS 6
SYMBL 7
LOGCN 8
PAREN 9
PREMS 10
Cp 12
AV RE 13
AXIOM 14
STEPS 16
R INF 17
AV TH 18
AV AX 19
TOT R 20
PSLI 21
POSIT 22

PARTIAL CORR.,

0.57328
0.53388
0.66357
0.89915
0.26095
'0.07789
-0.13868
=-0.05040
0.00000
-0.09181
0.00000
0.39105
-0.11690
0.24086
0.12946
0.25120
0.24909
0.13477
0.27371

140

TOLERANCE

0.4370
0.3142
0.3602
0.5559
0.8013
0.9004
0.8968

0.9477

1.0000
0.9104
1.0000
0.8700
0.1329
0.9121
0.4571
0.7180
0.5311
0.8515
0.5554

F~RATIO

2.19584 )

F TO REMOVE
14,3100 (2)

37.2760 (2)

F TO ENTE
24.4764
19.9325
39.3372

211.0452

3.6534
0.3052
0.9804
0.1273
0. 0000
0.4250
0.0000
9.0265
0.6927
3.0792
0.8523
3.3676
3.3074
0.9249
4.0491
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STEP NUMBER 3 FOR C5

3
>
™
=
s
[e)]
~J
o

VARIABLE ENTERED 14
*ULTIPLE R 0.7383

- 3T, ERROR OF EST. 2.0623

PO

ANALYSIS OF VARIANCE:

rShovbaas ]

DF SUM OF SQUARES MEAN SQUARE F-RATIO
REGRESSION 3 254.770 84.923 19,967
‘. RESIDUAL 50 212.656 4,253
{ .
VARIABLES IN EQUATION: ( CONSTANT= 1.16628 )

0 VARIABLE COEFFICIENT STD. ERROR F TO REMOVE

} RE 11 1.07668 0.24710 18.9861 (2)
AXIOM 14 1.31979 0.43928 9,0265 (2)

;A THERM 15 3,24332 0.44987 51.9762 (2)

|

VARIABLES NOT IN EQUATION:

; VARIAEBELE PARTIAL CORR, TOLERANCE F TO ENTER

i CLAS1 1 0.51253 0.3907 17.4574 (1)

' CLAS?2 2 0.50526 0.3016 16,7969 (1)

N CLAS3 3 0.63034 0.3345% 32.3053 (1)

i CLAS4 4 0.88348 . 0.4851 174.2755 (1)

i VWORDS 6 0.24994 0. 7960 3.2649 (2)
SYMBL 7 0.08524 0.9004 0.3586 (2)
LOGCN 8 -0.00040 .0,7846 0.0000 (2)
PAREN 9 -0,07841 0.9448 0.3031 (2)
PREMS 10 0.00000 1.,0000 0.0000 (2)
(0] 12 0.03457 0.8218 0.0586 (2)
AV RE 13 0.00000 1.0000 0.0000 (2)
STEPS 16 -0.,09751 0.1322 0.4703 (2)
R INF 17 0.12979 0.8144 0.8396 (2)
AV TH 18 0.02529 0.4229 0.0314 (2)
AV AX 19 0.05548 0.5150 0.1513 (2)
TOT R 20 0.07122 0.4031 0.2498 (2)
PSLI 21 0.27094 0.7897 3.8821 (2)
POSIT 22 0.11727 0. 4409 0.6833 (2)

SEE SEE e i el )

e 1 41
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TABLE 6. 7D
SUMMARY TABLE FOR C5:

STEP VARIABLE MULTIPLE INCREASE F VALUE LAST REG
NUM ENT REM R RSQ IN RSQ FOR DEL COEFFICNTS
1 THERM 15 0.55880 0.31226 0.31226 23.6054 3.93706
2 RE 11 0.68040 0.46294 0.15069 14.3100 2.14152
3 AXIOM 14 0.73830 0.54509 0.08214 9.,0265 1.37732
4 PSLI 21 0.76060 0.57851 0.,03343 3.8821 0.33648
S STEPS 16 0.77310 0.59768 0.01917 2.2905 -0.52878
6 WORDS 6 0.78660 0.61874 0.02106 2.5907 0.10568
7 PAREN 9 0.79740 0.63585 0.01711 2.1760 -0.87813
8 R INF 17 0.80470 0.64754 0.01170 1.4924 1.69602
9 SYMBL 7 0.81400 0.66260 0.01505 1.9577 0.10182
10 Cp 12 0.81630 0.66635 0.00375 0.48706 1.98407
11 LOGCN 8 0.81890 0.67060 0.00425 0.5385 -1.60871
12 POSIT 22 0.82090 0.67388 0.00328 0.4165 -0.18563
13 TOT R 20 0.82540 0.68129 0.00741 0.9287 0.86059
14 AV TH 18 0.82560 0.68162 0.00033 0.0415 0.11391
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RE 6.6B ~ RESIDUALS(Y-AXIS) VS COMPUTED C> (X~AXIS)
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CHAPTER SEVEN

A subset of the set of proofs for problem 414035 was
oresented in Chapter III, to illustrate the classification
procedure. In this chapter, the full set of proofs tor
three problems will be presented, to proviide additional
insight into the nature of the differences in the sample as
a whole, The first problem discussed is drawn from the
early part of the curriculum, before the intoduction of RE,
and exibits wvery 1little wvariation for all of the five
oartitionses The second problem comes after the intoduction
of RE, but before the introduction of the first theorem.
It shows considerable variation under the first two
partitions but very little under the last three, The last
problem occurs when four theorems are available and shows
considerable variation under all five partitions.

As in Chapter III, paradigm proofs identify the
different classes under each of the first three partitions.
All of the proofs in a class are equivalent to the paradigm
proof, up to the differences allowed under the partition
being discussed. For the last two partitions, individual
classes are identified by the distribution which defines
the class, All of the classes under a partition are
referred to by letters of the alphabet; the numbers that
apnear after these letters are the number of student proofs
included in the class.

7.1 = PROBLEM 407010

Problem 407010 is fairly typical of those occurring
before the introduction of RE. The statement of this
problem is:

407010:
DERIVE 6+A = (5+1)+A

There are three classes under the <first partition (Table
7.1) and only one class urider each subsequent partition.

The £first partition is defined by the identity
relation; even under this strict definition of equivalence,
there are only three classes of proofs in the sample of
twenty three. For the second partition, there is just one
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class. All twenty three proofs are equivalent up to
defferences in unused steps. There is little variation in

the set of proofs for this problem, and the variations
which do occur are relatively superficial,

7.2 PROBLEM 411051

The statement of this problem is:

411051
DERIVE 10 = A => A-7 = 10-(6+1)

Problem 411051 occurs when RE is available., The tirst
vartition for this problem contains eleven classes of
oroofss The paradigm proofs for these eleven classes are
listed in Table 7.2A.

All of the proofs in Table 7.2A use the same six
rules: WP, SE, ND, CE, RE, and CP; these rules are used in
a consistent way from proof to proof. In each case, WP 1is
used to generate the formula, A = 10, and ND is used to
generate 7 = 6+1. CE and SE are used to modify A = 10, and
RE 1s wused to combine the formula derived from A = 10 and
the formula, 7 = 6+1. Finally, CP is used to generate the
r equired conditional, 10 = A -> A-7 = 10~-(6+1). The proofs
differ in the order in which these rules are used and in
the presence, 1in some proofs, of unused steps. For

example, the only difference between proofs A and D is
the postion of the step employing ND. Proofs B and D are
the same, except for the two unused steps, (5) and (6), in
oroof B,

Under the second partition, there are seven classes or
nroofs. The paradigm proofs are found in Table 7.28. The
criteria which define the second partition ignore unusea
steps, therefore no wunused steps appear in the paradigm
proofs for this partition. All of these proofs contain six
steps, using the same six rules. The order in which these
rules are used, however, changes from one proof to another,

The three paradigm proofs for the third partition are
contained in Table 7.2C, Again, the only diifferences
between these proofs are in the order of rule use. Under
the second partition any difference in order results in a
separate classification; the third partition is sensitive
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to some differences in order but not to all. 1In this
oproblem, 411051, the third partition ignores the position
of the step using ND, but does not ignore changes in the
order in which CE, SE, and RE are introduced. These three
rules are used, in some order, to successively modify 10 =
Aj; various sequences of these three steps constitute the
core of the proofs. The ND-step is introduced only to be
used with RE and can occur anywhere before RE. Most of the
variation observed for the first two partitions is likewise
due to the differences in the position of the ND-step.

All of the proofs in the sample for this problem are
e in the same class under the tnird and fourth partitions,
. since they all use the same six rules and use each of them
i only once.

7.3 PROBLEM 415044

! The final example to be discussed is problem 415044,
' The statement for this problem is:

415044: HERE IS THEORM 5
DERIVE: 0 =0

i Under the first partition there are sixteen classes in the
sample of twenty three proofs; a 1list of the paradigm
oroofs for each of these classes is presented in Table
7.3A.

PR

The proof labeled D, in Table 7.3A, is the standard
i proof for this problem; it uses two theorems, TH3 and 1hH4.
3 Six students constructed the standard proof; this 1is the
largest number of proofs in any of the sixteen classes. C
is the class with the second largest number of student
proof s.

conisn 4
. ‘

The differences between C and D are worth discussing
in detail. The first step in C is identical to the first
step in D. The second step in proof D uses TH3 to generate
the formula, 0-0 = 0. Proof C uses three steps to generate
the same formula; these three steps are a special case of
the proof of TH3. Both C and D then use RE to complete the
proof.

e

The students who constructed proof C recognized that
they needed the formula, 0-0 = 0, but did not realize that
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this formula could be generated in one step by using Ti3.
So they oroved this instance of TH3, using the axioms Al
and N and the rule, RE, which form the standard proof of
TH3. A slightly different version of this proof for the
necessary instance of TH3 is found in proof J, while prooi
E uses TH3 and includes a derivation of the needed instance
of TH4. Since every theorem in the curriculum may be
oroved using the axioms and rules of inference, it is never
necessary to use a theorem; any instance of a theorem can
be proved using the axioms and rules of inference,

Proofs F, O, and P use no theorems (The single
occurrence of TH4 in oroof P is in an unused step.). Proof
K, on the other hand, uses TH1 and THZ2 with CA and RE.

In addition to this basic variation in the rules used,
there are differences in the order in which the rules are
used and in the presence of unused steps. Proof H, for

example, 1is the same as proof D except for its unused
second step.

The paradigm proofs for the second partition are
listed in Table 7.3B. Unused lines are ignored under the
second partition, so the number of classes decreases from
sixteen to fourteen. The paradigm proofs for the third
partition form Table 7.3C. Here some variation in the
order of steos is allowed, and the number of classes is
reduced to twelve.

Moving from the third partition to the fourth, two of
these twelve classes are combined, leaving a total of
eleven classes (Table 7.3D). None of these merge under the
fifth partition, which also contains eleven classes. For
this last problem, then, the decrease in the number of
classes from one partition to the next is very gradual.
The reason for this was indicated in the discussion of the
first are combined, 1leaving a total of eleven classes
(Table 7.3D). None of these merge under the fifth
partition, which also contains eleven classes (Table 7.3E).
For this last problem, then, the decrease in the number of
classes from one partition to the next is very gradual.
The reason for this was indicated in the discussion of the
first partition. The proofs differ principally in the set
of rules employed. Since all five partitions are sensitive
to such differences, this component of variation does not
disappear for the later partitions.

Two additional types of variation appear under the

first partition, the presence o©of wunused steps in some
proofs and the variations in the order of steps. These
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tyoes of variation become irrelevant for the later
partitions and disappear. In the previous examples
discussed here, differences in the order of steps accounted
for most of the differences observed, so the number of

classes decreased rapidly from the first partition to the
fifth.
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FIRST PARTITION FOR PROBLEM 407010

e « WND6 (1) 6 = 5+1 A (1)*
(] (] .AE[A] (2) 6+A = (5+1)+A

e o oND6 (1) 6 = 541 B (20)
1. [} .AE[A] (2) 6+A =(5+1)+A

.« o+ oNDS (1) 5 = 441 c (1)
e o oDLL -

. ° .ND6 (1) 6 = 5+1

1« .« +AE[A] (2) 64A =(5+1)+A

# The numbers in parentheses to the right of
each proof are the number of proofs in the
class.
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{
j TABLE 7e7-
7 '
{ FIRSL PART:wION FOR PROBLEM 411051
i e o <WP[10=2] (1) 10 = = a (4)
. [ . oND? (2) 7 = 6+1
" 1. ] .CE1 (3) A = 1C
L 3. ] .SE[’/] (4) A“'? = 1C=7
} 1« 5. «CP () 10 = A => A=T7 = 10=(5+1)
. e o oWP[10=n] (1) 10 = A 2 (1)
] 1. . .CE (2) A =10
! 2 . «SE[7] (3) a=-7 = 10-=7
(] (] oND? (4) 7 = 6+1
} 4. ] .CE1 (5) 6+1 = 7
3. 4. .RE1 (3) A—(6+1) = 17
2 1. 7. CP (8) 13 = A =) A-7 =10-(6+1)
. . .‘MP[‘.O:A] (1) 10 = A < (1)
$ .« WND7 (2) 7 = 641
1« « «SE(7] (3) 10-7 = A-17
[ e o oDLL
!, 3. . .CE1 (4) A‘-? = 10-7
? 1« 5. CP (6) 10 = A => a-7 =10-(6+1)
A e o oWP[10=17] (1) 10 = & D (2)
} 1. .« JCE1 (2) & =10
3 2. .« +SE[7] (3) A-7 = 10-7
[ [ oND? (4) 7 = 6+1
| 1. 5. CP (6) 10 = A - A=7 =10-(6+1)
} e o <WP[10=A] (1) 10 = 2 £ (1)
e o «CEY (2) A = 410
e o ND7 (3) 7 = 6+1
‘ 2. . oSE[?] (4) A=T7 :: 16-7
. 4. 3. LRE2 (5) A~7 = 10-(6+1)




1.

3.
2.
Se
1.

1.

2,
4.
1.

20

3.
1.

1.
3.
4.
1.

1.

2.
1.

2.
4.
1.

6.

WP [10=A]
«CE1

«ND7

.CE1
.SE[7]
+RE2

.CP

Wp[10=2]
.SE[7]

+RE1
«CE1
CP

.wp [10=2)
+CE1
+SE[7]
ND7

+RE2

.CP

WP [10=A]
ND7
.SE[7]
+RF1

+CE1

.CP

WP {10=A]
.SE{7]
.ND7
+RE2
.CP

«DLL
+DLL
+CE1
«RE2
.CP

.Wp[10=A)
+CF1

«ND7

.DLL
.SE[7]

P P P P P P P
NSO b W=

PN S P P P P

ounbwN =
s s N St Nt ot

aOUVbd W=
— S S S S o

o bH whN =
e S St s S ”

P P PN P N
nbHwN =
N S o S S

o~ o~
owuv S
~— S
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10 = A F (1)
A =10
7 = 641
6+1 = 7
A-=7 = 10-7
A-7 = 10-(6+1)
10 = A => A-7 =10-(6+1)
10 = A G (2)
10-7 = A-7
7 = 6+1

10-(6'0-1 ) =A-7
A=7 = 10=(6+1)
10 = A => A=7 =10-(6+1)

10 = A H (1)
A =10

A-7 = 10=7

7 = 641

A-7 = 10"(6'0-1)
10 = A => A=7 =10~(6+1)

10 = A I (1)
7 = 641
10-7 = A-7
10~(6+1) = A=7
A=7 = 10-(6+1)
10 = A =) A-7 =10-(6+1)
10 = A J (1)
10-7 = A-7
7 = 641
10=7 = A—=(6+1)
10 = A => A=7 = A=~(6+1)
A=7 = 10~-7
A-7 = 10-(6+1)
10 = A =) A~7 =10-(6+1)
10 = A K (1)
A =10
7 = 6+1
aA=7 = 10-7

S eon onE U SN SN MR MR MR W IR0 S




(4) 7 = 6+1
(s) A=7 = 10-(6+1)
(6) 10 = A => A-7 =10-(6+1)




1.
3.
4.
1.

1.
2,

3.
1.

1.
3.
4.
1.

2.
4.
1.
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SECOND PARTITION FOR PROBLEM 411051

+WP[10=A]

«ND7
.CE1
.SE[7]
+RE2
+.CP

WP [10=A]

«CE1

.SE[7]
«ND7

.RE2

.CP

«WP[10=A]
ND7
.SE[7]
.CE1

+RE2

.CP

«WP[10=A]
.CE1

«ND7
.SE[7]
+RE2

.CP

+WP [10=A]
.SE[7]
.ND7

«RE1

.CE1

.CP

WP ([10=2]
ND7

10 = A a (4)

6+1

10

A=7 = 10-7
A-7 = 10-(6+1)

10 = A => A~=7 = 10~(6+1)

H

10 =

-
(@
"

B,D,H,K (12)

o

"
-
ow»

b i

10-7

6+1

10-(6+1)

A => A=7 =10-(6+1)

NN

>
i

10 = A - c (1)
7 = 641
10-7 = A-7
A=-7 = 10-7
A-7 = 10-(6+1)
-> A=~7 =10-(6+1)

E,F (2)
10-(6+1)

10 = A G (2)
10-7 = A-7

7 = 641

10-(6+1) =A-7

A-7 = 10-(6+1)

10 = A =) A=7 =10-(6+1)

0=2A I (1)
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Z
4. . JCE1 (5) A=7 = 10-(6+1)
i‘ 1. 5. oCP (6) 10 = A -'> A=-7 =10"(6+1)
i . .
. e o <WP[10=A] (1) 10 = A J (1)
! ° . oND? (3) 7 = 6+1
{ 1. 5. QCP (6) 10 = A -> A-7 =10"'(6+1)

[T |
3 t

S mtiamard PIRE 5MY §
1] € » A\
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1.

4. 2.
1. Se

1. L]
2. 3.
4. L]

1. S.

WP [

«ND7 (2) 7 = 6+1

+SE[7] (4) a-7 = 10-7

+RE2 (5) A=7 = 10-(6+1)

+CP (6) 10 = A => A=7 = 10~(6+1)

.WP[10=A] (1) 10 = A C,J (2)
JND7 (2) 7 = 641

+SE[7] (3) 10-7 = A=-7

+CE1 (4) A=7 = 10-7

+RE2 (5) A-7 = 10=-(6+1)

.CP (6) 10 = A => A-7 =10-(6+1)

Wp[10=A] (1) 10 = A G,I (3)
.SE(7] (2) 10-7 = A-7
«ND7 (3) 7 = 641
+RE1 (4) 10-(6+1) =A-7
.CE1 (s) A=7 = 10-(6+1)
.CP (6) 10 = A => A=7 =10-(6+1)

TABLE 7.2C

THIRD PARTITION FOR PROBLEM 411051

10=A) (1) 10 = A A,B,D,H,K,E,F (18)
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TABLE 7.3A

) FIRST PARTITION FOR PROBLEM 415044

I e o JN[a,a) (1) A+(-A) = A-A a (1)
1. 2. .REf (3) 0 = A-a
0 e « WTH1[O] (4) 040 = 0
- S5 . «CE1 (6) 0 = 0+(-0)
! 7. +SE[0] (8) (0+40)-0 = (0+(=0))-0
[ ] QTH3[0] (9) 0- = 0
8. 4. .RE1 (10) 0-0 = (0+(-0))-0
i 11. «+ oCAl (12) 0 = ((-0)+0)=0
[ [ QTH4[0] (13) 0"0 = —0
{' 9, . +«CE1 (14) 0 = 0-0
.TH3[0] (1) 0-0 = O 5 (1)
] [ .TH4 [0] (2) 0-0 = -0
10 2. .RE1 (3) "'0 = 0
3. 3. L] .CE1 (4) 0 = -0
« .« N[0,0] (3) 0+(-0) = 0-0
- 2. 3. QP.E1 (4) 0-0 =0
1 1. 4. .RE1 (5) 0 = -0
T « o «TH4[O] (1) 0-0 = -0 D (&)
! . . .TH3([0) (2) 0-0 = 0
1. 2. .RE1 (3) 0 = -O
! Z (-0} (1) (-0)+0 = -0 E (1)
« CA1 (2) 04(-0) = -0
1 « .« oN[0,0] (3) 0+(-0) = 0~0
- 2. 3. RE1 (4) 0-0 = -0
I 4. 5. .RE1 (6) 0 = -0
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. LT (0] (1) 0 = F (1)
2. . .CE1 (3) 0 = 0+(-~0)
1. 3. QRE2 (4) 0 = 0+(-0)
. .2 [-0] (5) (-0)+0 = -0
Se «CA1 (6) 0+(-0) = -0
4. 6 .RE1 (7) 0 = -0
. .TH1({0] (1) o+0 =0 G (1)
. «TH2[ 0] (2) (-0)+0 =0
. +»TH3[0] (3) o-0 =0
1. 5 .RE3 (6) 0+0 = 0-0
6. 4 «RE1 (7) 0+0 = -0
.TH4 [0] (1) 0-0 = -0 H (1)
« «TH1[O] (2) o+0 =0
« =« TH3[O] (3) c-0 =0
1. 3. .RE1 (4) 0 = -0
« «TH3[O] (1) o-0 =0 I (1)
e <DLL '
. «Tz4(0] (1) 0-0 = =0
1. 2. .RE1 (3) 0 = -o
.  .TH4[0] (1) 0-0 = =0 J (1)
. N[0,0] (2) 0+(-0) = 0-0
] . .AI [03 (3) 0+(—0) = 0
3. 2. .RE1 (4) 0"0 = 0
1. 4. .RE1 (5) 0 = —0
1. ] .CA1 (2) (-0)+0 = -0
2. 3. .RE1 (4) 0 = -0
« « WN[0,0] (1) 0+(-0) = 0-0 L (1)
] ° oZ[Oj (2) 0+0 = 0
. [ YA [-O] (3) (-0)"'0 =0
3. ] .CA1 (4) 0+(—0) = 0
1. 4. .RE1 (5) ‘-0 = 0-0

v [C

Full Tt Provided by ERIC.
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TABLE 7.338

SECOND PARTITION FOR PROBLEM 415044

+TH3[O0]
. TH4 [0]
[ ] RE1

.TH3[0]
.TH4 [0]
[ ] RE1
«CE1

. TH4 [0]
.A1[0]
3. «RE1
.RE1

.TH4[0]
.TH3[0]
+RE1

.Z [-O]

¥ 1 +
~Oonn—~I

(o N o]
| +
(o R e

.TH4[0]

o
!
(o]
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- 0N
e e 2 o

(e )00 -3
e o o

Vb -
o o o o
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e © o o 0 o o o

.CE1
+RE3
+RE1
+RE1,#

«TH4 [0]
.N[0,0]
.AI[0]
+RE1
+RE1

.TH1[-0]
+CAf
.TH2[0]
+RE1

.N[0,0]
.CA1
+RE1
.TH3[0]
+RE1
.CE1

LT[0]
.TH4[0]
«.TH3[0]
.SE[0]
+RE1
+RE1

LT[0]
«AE[-0]
.TH2 [0]
«CA1
+RE1
.Z[-0]
« "M

+RE1

«CE1
+«RE1

P P P P
N bh
Nt N Nt s

P P~ P P~~~
NH W =
e e s s

LY e Y e Y Y
D W =
S e S

P P P~ P~ P~ P P
NoOUd W =
e e s i N N

AU H W =
— e e e P

PN PN P P P P P
DO UIH WN =
P s

P I P P
HWN =
s St sV s
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0 = 0-0
0+0 = 0-0
040 = =0

0 =-0

0-0 = -0
0+(-0) = 0-0
0+(-0) =0
0-0 =0

0 =-0
0+(-0) = =0
(-0)+0 = =0
(=0)+0 = ©
0 =-0
0+(-0) = 0-0
(-0)+0 = O
0+(-0) =0
-0 = 0-0
0-0 =0
-0=0

0 = -0
0=20

0-0 = -0
0-0 =0

0-0 = 0-0

0 = 0-0

0 =-0

0 =

0+(-0) =
(-0)+0 =0
0+(=-0) =0
0 = 0+(—0)
(-0)+0 = -0
0+(=-0) = -0
0 = =0

-0 = -0
(=0)+0 = -0
-0 = (-0)+0
(=0)+0 = -0

J (1)

(1)

(1)

(1)

(1)
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i TABLE 7.3C

! - THIRD PARTITION FOR PROBLEM 415044

| « o« oTH3[O] (1) 0-0 =0 A,D,H,I (9)
' [ [ .TH4 [O] (2) 0-0 = =0
2. 10 .RE1 (3) 0 = -0
{
1 .
. . .TH4[0] (2) 0-0 = -0
1. 2. .RE1 (3) -0 = 0
30 [ .CE1 (4) 0 = -0
? . . .TH4 [O] (1) 0-0 = -0 C’J (3)
. . .AI[O] (2) 0+(-0) =0
. . QN[O’O] (3) 0+(-0) = 0-0
2, 3. JRE1 (4) 0-0 = O
- ‘ 1. 4. +RE1 (5) 0 =-0
. . .CA1 (2) 0+(-0) = =0 *
[ . QN[O’O] (3) 0+(-0) = 0-0
2, 33 +RE1 (4) 0-0 = -0
« o oTH3[O] (5) -0 = O
4. 50 .RE1 (6) 0 =-0
- . . .LT[O] (1) 0=0 F (1)
} [ [ .AI [O] (2) 0+("'0) = 0
20 . .CE1 (3) 0 = 0"’("‘"0)
1. 3. .RE2 (4) 0 = 0+(-0)
H « o W2[-0] (5) (-0)+0 = =0
? 50 . .CA1 (6) 0+(-0) = -0
4. 6. .RE1 (7) 0= -0
' i « « JTH1[O] (1) 040 = O G (1)
. ] .TH3[0] (2) 0-0 - O
{ . . .TH4 [0] (3) 0-0 = -0
} 2 . JCE1 (4) 0 = 0-0
1. 4. .RE3 (5) 0+0 = O-O
- . 50 30 .RE1 (6) 040 = -0
{ 6. 1. «RE1 (7) 0 = -0

ERiC | 163
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(8) 0 = -0
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TABLE 7.32

! FOURTH PARTITION FOR PROBLEM 415044

Z N LT AE SE CE RE CA AI TH1 TH2 TH3 Tii4
0O 0 O O 0 0 1 0 0 0 0 1 1 A DH,I (Y}
| ©o 0 o 0 0 1 1 0 0 0 0 1 1 B(1)
, o 1. o 0o 0 0 2 0 1 0 O 0 1 C,J (4)
', 1 1 o 0 0 0 2 1 ©O0 0 0 1 0 L (1)
} 1 0o 1 o 0 1 2 1 1 0 0 0 0 r,0 (2)
; ©o 0 0 o o0 1 3 0 0 1 0 1 1 G (1)
©o o0 0 0 o0 0 1 1 0 1 1 0 o0 X (1)
§ 1 14 o 0 0 1 2 1 0 0 © 1 0 L {1)
\ ( o o 1 0 1 0 2 ©O0 0 0 O 1 1 i (1)
t o 1 1 0 0 .2 2 0 0 1 0 0 & (1)
1 o o0 o 0 O 1 1 1 ©0-0 0 O F (1)
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CHAPTER EIGHT

8.1 = INTKODUCTIOS

The study discussed in this dissertation was
essentially exploratory. The initial purpose was to
evaluate the LIS curriculum along one of its dimensions,
variability in student proofs. In order to do this, a
classification procedure was developed and used to rneasure
variability in a set of student proofs.

The classification procedures described in Chapter II1
allow us to comnare student proofs at five levels of
detail., Thes2 techninques have proven adequatzs for nis
study, and should be wuseful in a wide ranye Of related
studies

The classification procedure was also used to
investigate the relationship between the variability
(number of classes of equivalent proofs) in a sample of
proofs for a problem and the characteristics of the
problem. The results for this part of the study provided
increased understanding of both the sources of variation
within the curriculum and the properties of the
classification procedure

8.2 VARIABILITY OF PROOF BEHAVIOK IN THE CURRICULUM

The derivation problems in the algebra part of the
Stanford Logic-Instructional System (LIS) curriculum have
been used in this study. The measured variability within
this set of problems is high for all five partitions, and
increases from one lesson to the next.

Even for the fifth partition, which requires that two
proofs use different sets of rules if they are to be put
into distinct classes, there is a substantial amount of
variation in the final lessons considered. Under the first
partition , identity of the proofs (except for error steps)
is required; using these criteria there are a large number
of proof classes for almost all of the problems studied.

LIS will accept any valid proof for a problem. It
checks the validity of each step rather than comparing the
student’s proof against a preset standard. In
investigating the extent to which the curriculum makes use
of the system’s ability to recognize any valid proof, all
variations in student proofs are relevant, including the
existence of unused steps and differences in the order of

(S




steos, The first partition 1is sensitive to these
variations and under it there were a large number of
classes for most problems. The current LIS curriculum
certainly encourages a large amount of wvariation at this
level; it continues to encourage a reasonable amount of
variation even as the criteria for equivalence are relaxed
from the second to the fifth partitions.

8.3 REMARKS ON THE CLASSIFICATION PROCEDURE

The ambiguity in the notion of "different proofs" nad
to be resolved to conduct this study. The differences
relevant to the evaluation of the curriculum are defined by
the differences allowed by LIS, but there is no unique
definition of different for a general investigation of
variation in proof behavior.

To some extent, any instrument (the classification
criteria), that is wused toO measure variability in proof
behavior, will determine in advance the character and
extent of variation found in a given set of data. A
formalized classification has been employed in this study
to insure consistency, but automation of the decision
criteria, however, does not eliminate any bias resulting
from selective sensitivity to certain differences ketween
proofs and insensitivity to all other dififerences. In
fact, the results of this study show that both the amount
of variation found for the curriculum as a whole and the
relationship between variation and problem characteristics
are quite sensitive to the criteria chosenj; there are
marked changes 1in the results of the regression analyses
from the first partition to the fifth.

The use of a nested sequence of partitions rather than
a single partition 1limits the possibility that the
variation observed was the result of an unpropitious choice
of critera. The first partition requires that proofs be
identical, except for errors. The only requirement for
equivalence under the fifth partition is that proofs use
the same set of rules. These five partitions use a wide
range of criteria; it is very unlikely that the results are
due to a peculiarity of the classification procedures.

However, it 1is possible that equivalence criteria
defined along some other dimension would show a different
pattern of results; for example, the latencies to various
steps of the occurrence of certain types of errors might be
used to study additioiial aspects of proof behavior. Since
these dimensions of variability are not relevant to the
present evaluation of the LiS curriculum, they are not
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considered here.

The criteria defined for this study depend on thc rorm
of the completed student proofs. Examination of the data
indicates that the assignments of individual proofs to
equivalence classes are reasonable, The pattern or change
in the results from one partition to the next is clear, and
it is unlikely that any small change in the definition of
equivalence would significantly modify this pattern.

The definitions of eguivalence developed here have
turned out to be highly satisfactory for two reasons,
First, examination of the partitions (over sets of student
proofs) generated for a sample of problems indicates that
the formal definitions o0f equivalence match intuitive
notions of equivalence quite well, Second, the analysis
that used the formal definitions confirmed the general
ex¥pnectations about the curriculum, but led to a much deeper
and more detailed understanding of the nature of the
variability found in student proofs, and,in addition
several unexpected properties Of the relationsnip between
curriculum structure and variability in student proofs were
discovered using these techniques, Although the
equivalence criteria used in this study are defined
explicitly for the Stanford Logic-Instructional System, the
general technique would be applicable to most formal
problem—solving tasks. The development of this new
technigue for analyzing student behavior is orobably the
most important contribution of this research.

The results discussed in Chapters V and VI indicate
that variability in proof behavior can be predicted quite
well from the known characteristics of a derivation
problem, The first four variables to enter the equations
generally account for about seventy-five percent of the
variance in the dependent variable. These results must be
interpreted with caution, since the study described here is
exploratory and non-experimental. There is no control
group and neither the subjects nor the problems were
selected at random from a specified population. Thus,
statistical inference to a 1larger population is not
aporopriate. Strictly speaking, the results apply to the
population of students included in the analysis.

However, the results may tentatively be extrapolated
to other student populations and other curricula. ‘+the
criteria for reasonable extrapolation should be the extent
to which the tasks and the population in this study are
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representative of the target tasks and sooulation.
Decisions about the reasonableness of such extrapolations
will depend on the characteristics of the particular target
population and curriculum.

There seem to be two distinct types of variation in
the sample of proofs. The first type of variation
involoves diff ~rences in the order in which rules are used.
The number of .:teps in the standard proof for a problem and
the extent to which these steps are interdependent are goocd
oredictors of the extent of this kind of variation for a
given problem.

The second tyne of variation involves the rules used
to prove a formula. The magnitude of this type of
variations for a paticular problem is best predicted by the
nunber of theorems in its standard proof. Tne number of
axioms in the standard proof and the number of rules
available when the proof is reacned in the curriculum are
also good predictors for this second kind of variation.

The importance of both the number of theorems and
axioms used in the standard proof and the number of rules
available increases systematically from the first set of
equivalence criteria, which is the most stringent, to the
fifth set of criteria, which is least stringent; in this
nrogression the partitions become more and more sensitive
to the second tyve of variation, involving the rules used
to nrove a formula.

8.5 CONCLUDING REMARKS

The most generally useful aspect of this study is
probably the development of the classification procedures.
The use of a nested sequence of measures provides a much
more complete description of the variability found in the
data than any single measure could provide, The
classification criteria described in this study are
specific to LIS, but the general properties of the
technique depend only on the existence of behavior (proofs
in this case) that can be segmented into discrete
components3(steps) chosen from some finite set. Hence,
similar procedures could be developed for tasks requiring
such behavior.
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APPEKDIX A

The material presented here describes the attempts
that were made to identify patterns of proot behavior that
characterize groups of students within the total sample.
Two general types of analysis were used to answer two
cuestions. First, do students exhibit definite patterns o:
behavior in the construction of proofs; and second, irf they
do, what are the defining characteristics of these
patterns? The first analysis was based on the
classification criteria, and required the development or a
metric function over the set of students; the second
analysis was based on new variables.

The identification of a clustering of students into
sub-grouns would be of general interest in the study of
human problem solving, and would also have important
practical implications. Attempts are now being made to
tailor instruction on LIS to fit the needs of individual
students. The task of individualizing instruction might we
greatly simplified if sequences of instruction were
tailored for groupns oOf students rather than for each

individual,
SECTION 1 - INTRODUCTION

In the first analysis to be discussea, a distance
matrix was defined for each of the five partitions. ror
each partition and each pair of students (Si and 5j), the
distance was defined as:

D(i,j)
M(ioj) = TEmemesss
N

where D(i,j) is the number of problems for which Si and §j
constructed proofs that were not equivalent, and N is tne
number of problems for which both Si and Sj constructed
proofs. Hierarchical clustering (HICLUS) was then used to
group students on the basis of this metric, and the proois
for each student in each cluster were examined to determine
the characteristics of individual proof Dbehavior that
exnlain the clusterings., Using these techniques, no clear
indication of the existence of proof styles was detecteaq,

For the second analysis, pattern variables (such as
the frequency of theorem use) and efficiency variables
(such as the number of lines per proof) were defined and
computed for each student by averaging over the problens,
For both sets of variables, attempts were made to cluster
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students on each variable and then on all of these
variables together. These analyses indicated that strong
individual differences .lo exist between students but there
was no clear pattern in the differences observed.

These results were not unexpected. The problems in’
the logic earriculun are too heterogeneous for this type of
analysis, and differences in proofs from problem to problem
were much more pronounced than the differences between
students for a given problems The methods developed for
this part of the study, however, make possible a more
systematic analysis of problem solving behavior and should
be useful in future studies dealing with problem solving
behavior. The results indicate that a more homogeneous set
of boproblems must be used if interpretable patterns of
behavior are to be identified.

For the benefit of those who mignt wish to undertake a
similar analysis, a description of the techniques tnat were
used is included here.

SECTION 2 — METRIC ANALYSIS

A natural extension of the procedures which partition
the set of proofs for derivation problems allowed a
systematic examination of the data for indications that
students could be characterized by the patterns of their
proof behavior. The criteria(partitions) developed in
Chapter III specify whether or not the proofs produced by
any two students, for a particular problem, are equivalent.
These technigues have been developed further in an attempt
to determine whether the methods employed by any two
students 1in constructing proofs to a sequence of problems
are, in part, the same.

It was possible, of course, to examine the student
proofs looking for evidence that indicates the existence of
such patterns and this was, in fact, done. Unfortunately,
the fact that a large number of rules were available to the
students provided the opportunity for many minor variations
and tended to obscure any general patterns in the proofs
constructed by the students. It _was hoped that an
automatic bprocedure that focused attention on the possible
existence of such patterns woculd facilitate the search.
The procedure which was used for this purpose is described

below.

Assume that we have a set of n problems,
{p(1)yeee,pp(n)}, and a set of t students,
{s(1)yeeeys(t)}; for every p(i) in P and every s(j) in
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: S, s(j) constructs a vroof for p(i). we also assume that
: there exists a partition on the set of t proofs for each
of the n problems, The metric matrix defined below was
computed separately for each of the five sets of
classification criteria.

Let s(i) and s(j) be any two students in S. Let
D(i,j) be the number of problems in P for which the Proots
of s(i) and s(j) are not equivalent, and let
M(i,j) = D(i,j)/n. It is clear that for all s(i),s(j) in
S, M(i,j) is greater than or equal to 0, and M(i,i) = O.

If the proofs for s(i) and s(j) are not equivalent in
D(i,j) cases, and the proofs of s(j) and s(k) are not
equivalent in D(j,k) cases, then the maximum number of
nroblems where the proofs of s(i) and s(k) are not
equivalent is D(i,j) + D(j,Kk):

D(i,k) leq D(i,]j) + D(j,k)
or

M(i,k) leq M(i,j) + M(j,k)

The five matrices defined here (one for each set of
classification criteria) are metrics defined on the set orf
students, M(i,j) is a measure of the distance between the
student, s(i), and the student, s(j). It has its minimum
value when s(i) and s(j) fall into the same equivalence
i class for all problems; then M(i,J) = O. It nas its
maximum value when when s(i) and s(j) are in different
classes for all n problems, and in that case
M(i,j) = n/n = 1. M(i,J) is a metric on the set S.

A measure of distance which takes into account the
number of different proofs for each problem 1s:

w(p)*e(p, 1, j)
M(i,j) = b

j' Wiis)

where e(p,i,]j) is equal to O if S1 and Sj gave the same
proof for problem P , and otherwise is equal to 1, and
w(p) is the number of different proofs constructed for
oroblem P . To corrrect for missing data, w(p) is set
1 equal to O if either Si‘s or Sj’s proof for problem p _ is
missing. This improved definition orf the distance matrix

s PRy )
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was suggested by Stanley Sclove.

The HICLUS program, developed by S, C. Jonnson
(Johnson,1967) was used to analyze the metric matrices for
the full set of problems and for the subsample of problems
that appear after the introduction of KE and tnat do not
contain nremises. The input data for this program consist
of a metric matrix, M(i,j). The output is a sequence oi
stages or levels of clustering. At the first 1level, each
student constitutes a distinct cluster. At each subsequent
stage the two clusters with the shortest distance between
them are combined into a single cluster until all or the
students are in a single cluster.

After each stage of clustering, it 1is necessary to
redefine the distance matrix unambiguously, since the
number o0 clusters decreases by one at each stage. The
nronerties of the clustering algorithm are determined by
the way in which this new matrix is formed.

For the analysis described . here, Johnson’s "maximum
Method was used to form the new matrix at each stage.
This method insures that the largest of the distances
(defined in terms of the original metric matrix) between
any two points in any cluster is a minimum. If we restrict
ourselves to three dimensions and think of each cluster of
points as being enclosed in a sphere with the smallest
possible radius, we have n-k spheres after the k-th stage
of clustering. The diameter of the largest of these
spheres is less than the diameter of the largest sphere for
any other set of n-k spheres that enclose all the points of
the sample. A more detailed discussion of HICLUS is found
in Apvendix B.

This method generates n stages of clustering £for any
distance matrix and it was necessary to decide which, it
any, of these clusterings should be the basis for
subsequent analysis. There are two conflicting criteria
that must be resolved in choosing the appropriate
Cclustering. First, the intracluster distances should be
small compared to the intercluster distances; the clusters
are then geometrically well-defined. Second, the number or
clusters should be small compared to the number or
students; if the number o0f clusters is not much smaller
than the number of points, clustering does not contribute
to the analysis,

HICLUS provides information on both of these criteria

at each stage of clustering; it gives us the membership or
each cluster and the diameter of the largest cluster. Tne
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value, a(k), is the diameter of the largest sphere at tre
k-th stage of clustering, and is a monotone increasinn
function of k. A sharp increase in a(k) between the i-tn
stage and the (i+1)-th stage indicates that the i-th stzge
of clustering is a promising candidate for furtner analysis
since we must accept much less compact clusters in order to
decrease the number of clusters beyond the i-th stage.

The results of this analysis were not encouraaginge
Since HICLUS would have generated clusters even if the
distance matrix had been randomly generated, the clusters
that it did generate for the data in this study could not
be accepted without further justification. swone o0f the
clusterings generated met the two criteria mentionadé above,
and none of these clusterings were readily internretable in
terms of the actual proofs in the data.

To facilitate the interpretation oOf the output oz
EICLUS, a complementary technique, rmultidimensional
scaling, was also used. The objective of multidimensional
scaling is to find a distribution of n points in
k-dimensional Euclidean space that gives the Lest
anpnroximation to the n by n distance matrix. i HuJSCAL { i
multidimensional scaling program) accepts as input an
n by n distance matrix and a specification of the number
of dimensions to be used.

Therefore M¥DSCAL can be used to genzrate a two
dimensional representation (XK=2) o0f a Jdistribution oif
voints that yields the best approximation to our daistance
matrixe. This approximation, however, may be a poor one
because, in general, it requires an n-1 dimensionzl
distribution of points to reproduce exactly an n by n
distance matrix. If the distance matrix can be reproduced
from a distribution of 26 points on a two dimensional
hvnerplane, then a graphic representation of the <clusters
can be prenared from the results and the data can wue
examined visually for evidence of clustering. Wnile
determining the hyperplane that gives the best fit, MDSCal
also calculates how good the approximation 1is, and this
measure, the stress, can Le used to decide whether tne two
dimensional aponroximation is good enough to be taken
seriously.

The two dimensional representation of the data
obtained in this way did not indicate the existence of an:
clusters. If geometrically well-defined clusters hac
existed, then I would have attempted to determine tn-:
characteristics of individual behavior that accounted :o:
*ne existence of these clusters. This would have been donz
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by examining the proofs for the students in eacn group for
similarities of structure. The important consideration
here was not just the existence of clusters, but the
interpretability of the clusters in terms of student
behavior.

In this part of the analysis, an attempt was made to
cluster students without using any predetermined
characteristics of their proofs. Instead, the metric
analysis was based on a distance matrix where the distance
between any two students is defined in terms of the number
of nroblems for which they generated equivalent proofs. It
was anticipated that the interpretation of any clustering
found in this way would be difficult because the clustering
was not explicitly grounded in the characteristics or
student proofs. In order to facilitate the identification
of the defining characteristics of the clusters, a second
analysis was used that clustered students in terms orf
explicitly defined pattern variables. The results of this
analysis were to serve as a guide to the metric analysis
and as a check on that analysis.

The second analysis of the pattern of student
nerformance concentrated on specific aspects of the proofs,
defined by the pattern variables., For each of these
variables averages were taken over the two sets of problems
described earlier. The pattern variables are listed
below:

P1 - the number of theorem steps per proof

P2 the ratio of the number of theorem
steps to the total number of steps

P3 the number of axiom steps per proof
P4 the ratio of the number of axiom

PS the number of Logical Truth steps
per proof

P6 the ratio of the number of Logical
Truth steps to the total number of
steps

the ratio of the latency to the first
step to the average latency of all
stens in the proof
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The data for these variables were £first examined
individually for indications of clustering. Their
correlation matrix was computed and frequency histograms
were prepared for each. This initial examination of the
data did not indicate the existence of any distinct groups
of students, where the differences between the students in
a group were small compared to the differences between
gqroups.

The analysis was then extended to the multivariate
case by using principle components analysis. The values,
for each student, of the first two principal components
were used to plot the distribution of students in two
dimensions. Again, there was no indication of clustering.

The same analyses were also applied to a second set oL

variables called efficiency variables. These variavles
; were also averages over problems for each student. The
’ efficiency variables are listed below:

E1 - the number oOf unused lines per proof

E2 - the ratio of the number of unused lines to
the total number of lines

E3 - the number of lines per proorf
E4 - the total latency (time) per proof

Using the efficiency wvariables, ther2 was again no reliable
basis for clustering the students.

SECTION 4 — DISCUSSION

Although all of the attempts to cluster students
failed, the analysis discussed here did highlight one
interesting artifact in the data. There were three
i students who had unusually poor performances as measurcd by
i all of the efficiency variables. Txamination of the proofs
| constructed by these students revealed a consistently poor
performance starting wvery early in the curriculum.

These same students also tend to have extreme values

for the pattern var iables, on PS5(LT/problem) and
1 P6(LT/step), these three students have very high values.
: Oon P2(theorems/step), they have very low wvalues.

The students who did most poorly in the curriculum
show a marked tendency to use Logical Truth even when an
appropriate theorem is available, Logical Truth {is a

1
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concaptually simnle rule that is iatroducad early in tue
curriculum. &4s the more poweriul rules, especially tae
theorems, become available, most of tihe students leacn to
use them where they are appronriate, The three students
being considered here did not nake this traasition,

Since their performance was poor relative to the
average oOf the other stulents even hafore the introduction
of any theorems, it cannot be concluded that the failure to
incorporate theorems into their working set of rules caused
the poor verformance. This failure, however, did widen the
gap between the poorest students anl the average and
superior students.

It would seem then that the pace of LIS is too fast
for some of the students who are using the system. A more
thorough investigation of the characteristics of these
students should be conducted in order tc determine the
causes of their failure.

!
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APPENDIX B

HICLUS

The HICLUS program, developed by S. c. Johnson
(Johnson,1967) was used to anslyze the metric matrices for
the third stage of the analysis. The input data <for this
orogram consists of a metric matrix, M(i, j). The output is
a sequence of stages or levels of clustering. At the first
level, each student constitutes a distinct cluster. At
each subsequent stage the two clusters with the smallest
distance between them are combined into a single cluster
until all of the students are in a single cluster.

HICLUS begins its analysis with the weak clustering,
C(0), in which each student defines a separate cluster. If
a(1) is the smallest non-zero entry in the distance matrix,
then the two clusters that are separated by the distance,
a(1), in c(0) are combined to form a single cCluster in
C(1)e The value of C(1) is defined to be a(1).

If the distance between any two clusters in C(1) is
defined unambiguously, a new (n-1)X(n-1) distance matrix is
defined for the n-1 clusters in C(1). The clustering
nrocess can then be continued Ly combining the closest
clusters in C(1) to form C(2), with value, a(2). After n
steps, all of the students have been combined into a single
cluster, C(n), with value a(n).

The problem is to define the new (n-k)X(n-k) distance
matrix that results after the k—th stage in clustering. If
X and Y are the two clusters in C(k) that are combined into
a single cluster, [X,Y], in C(k), what is the distance
between [X,Y] and any other cluster, 2, in C(k)? Johnson
offers two possible answers to this question.

For the, minimum method , the distance, in C(k), from
[X,Y] to 2 1is defined to be the minimum of the distances
from [X,¥Y] to 2 and from [X,Y] to 2 in C(k-1):

a( [X,Y] 12) = min[d(X,Z),d(Y,Z)].

For the, " maximum method", the distance is defined as:

a( [X,Y] y2) = max[d(X,2) ,d(Y,Z)].




Each of these definitions has a Clear geometric
interoretation, Johnson (ob.cit. p249) outlines this
interpretation in the following way:

If we are given a clustering obtained by the
Maximum Method, we may present the value of tne
clustering as follows: for each cluster in the
clustering, compute the diameter of the Cluster
(the largest intra-cluster distance). For a
given Maximum Method clustering, the value of the
Cclustering is the maximum diameter of the
clusters in the clustering, At any stage, the
distance from the object/cluster x to the
object/clustr y 1is exactly the diameter of the
set x union y. This gives us a simple means oOf
visualizing the clusterings-the Maximum Method
attempts at each stage to minimize the diameter
of the clusters.

The geometric properties of the "Minimum Method" are
slightly more complicated, and are discussed in some detail
by Johnson. Since I did not use this method, and since
Johnson discusses it in detail, I will not describe it here.

HICLUS has two additional advantages that shoula be
mentioned. First, the input consists of the n(n-1)/2
distances between the n objects; the algorithm does not
require that the n points ke represented in Euclidean space, !

and will accept the metric matrices defined in Chiapter iv’
without further  processing. Second, the results are
invariant under monotone transformations of the metric data.
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