
DOCUMENT RESUME

ED 070 295 EM 010 588

AUTHOR Kane, Michael Timothy
TITLE Variability in the Proof Behavior of College Students

in a CAI Course in Logic as a Function of Problem
Characteristics. Psychology and Education Series.

INSTITUTION Stanford Univ., Calif. Inst. for Mathematical Studies
in Social Science.

SPONS AGENCY National Science Foundation, Washington, D.C.
REPORT NO SU-TR-192
PUB DATE 6 Oct 72
NOTE 182p.

EDRS PRICE MF-$0.65 HC-$6.58
DESCRIPTORS *Behavior Patterns; *College Mathematics; *Computer

Assisted Instruction; Computer oriented Programs;
Logic; Mathematical Concepts; *Mathematical Logic;
*Thought Processes

IDENTIFIERS Stanford Logic Instructional System

ABSTRACT
An investigation of student proof behavior in a

complex computer-assisted instruction (CAI) setting is presented.
Using 125 logic derivation problems, the responses of 23 students,
enrolled in the Stanford Logic-Instructional System, were evaluated
to determine the amount of variation occurring in the structure of
their proofs. By assigning the student proofs to equivalence classes
the investigation indicated that there was relatively little
variability in the earliest problems and considerable variability in
the latter. Regression analysis revealed that the structural
complexity of the problems were a good predictor of the amount of
variation in the proofs. In general, the author concluded, the most
significant kinds of variability depend on the number and type of
rules that are available when the proof is done. The attempt to
identify patterns of proof behavior that characterized groups of
students failed due to the non-heterogeneity of th° logic problems.
(MC)



Ui

VARIABILITY IN THE PROOF BEHAVIOR

OF COLLEGE STUDENTS IN A CAI COURSE IN LOGIC

AS A FUNCTION OF PROBLEM CHARACTERISTICS

BY

MICHAEL TIMOTHY KANE

TECHNICAL REPORT NO. 192

OCTOBER 6, 1972

PSYCHOLOGY & EDUCATION SERIES

INSTITUTE FOR MATHEMATICAL. STUDIES IN THE SOCIAL SCIENCES

STANFORD UNIVERSITY

STANFORD, CALIFORNIA



TECO !CAL RE PORTS

PSYCHOLOGY SEKIliS

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

,Plate of oubiicat Ion shown In insrenthese, d notsi.ified title is different Iron. title of Ti.chnicrl Pear!,
this R Hsi) timiwn in oarenthest.s.

Woe reports no. 1 - 44, see Technical Report on. 125 '

50 R. C. Atkinson and R, D. Calfee. Mathematical leaning theory. January 2,1963. (In 8. 8. Wets,' (Ed.), Scientific Psschology, New York.
Basic Books, Inc., 1965. Pp. 254-27tii

Si P. Suppes, E. Crothers, and R. 'Welr. Application of mathematical learning cherry and linguistic analysis to yo-ei even* matching in
Russian words. December 28,1962.

5 2 R. C. Atkinson, R. Calfee, G. Sommer, W. Jeffrey arid R. Shoemaker. A test three models for stimulus compounding with children.
January 29, 1963. (J. exp. Psychol., 1964, 67, 52-58)

53 E. Crothers. General Markey models for learning with biter-tr al forgetting. April 8,1963.
54 J. L. M,ers and R. C, Atkinson. Cloice benavior aid reward structure. May 24, 1963. (Journal math. Psychol., 1964, I, 170 -203)
55 R. E. Robinson. A set-theoretical approach :o empirical neanirgfulress of measurement statements. June 10, 1963.
56 E. Crothers, R. Weir and P. Palmer. The role of transcripirm In the learning 01 the orthographic reeresentatiois of Russian sounds. June 17,. 1963.
57 P. Suppes. Problems of optimization in learning a list of simple Items. July 22. 1963 (in Maynard W. Shelly, II and Glenn L. Bryan (Eds.),

Human Judgments and Optimality. New York: Wiley. 1964. Pp. 116-1261
58 R, C. Atkinson :Id E. J. Crothers. Theoretical note: all-or-none learning and irtertrial forgetting. July 24,1963.
59 R. C. Calfee. Long-term hehavior of rats under orobabilisic reinforcement scnedules. October 1,1963.
6 0 R. C. Atkinson and E. J. Crothers. Tests of acquisition and retention, axioms 'or paired- associate learning, October 25,1963. (A comparison

of paired-associate learning models having thilerent acquisition and retention axioms, J. math. Psychol., 1964, I, 285-315)
61 W. J. McGill and J. Gibbon. The general-gamma distribution and reaction limes. November 20,1963. (J. math. Psycho', , 1965, 2, 1-18)
62 M. F. Norman. Incremental learning on random trials. December 9, 1963. (J. math. PsychoL., 1964, 336-351)
63 P. Simms. The development of mathematical concepts In children. February 25, 1964. (On the behavioral foundations of mathematical concepts.

Monographs of the Society for Research In Child Development, 1965, 30, 60 -96)
64 P. Suppes. Mathematical concept formation In children. Apr1110,1964. (Amer. Psychologist, 1966, 21,139-150)
65 R. C. Callee, R. C. Atkinson, and T. Shelton, Jr. Mathematical models lie verbal learning. August 21,1964. (In N. Wiener and J.1 19J.P6.5S.choda

(Eds.), Cybernetics of the Nervous System: Progress in Brain Research. Amsterdam, The Netherlands: Elsevier Publishing
Pp. 333-34 9)

bb L. Keller, M. Cole, C. J. Burke, and W. K. Estes. Paired associate learning with differential rewards. August 20,1964. (Rewj id and
Information values of trial outcomes in paired associate learning. (Psycho'. Monogr., 1965, 79, 1 -21)

67 M. F. Norman. A probabilistic model for free-responding. December 14,1964.
68 W. K. Estes and H. A. Taylor. Visual detection In relation to display size and redundancy of critical elements. January 25,1965, Revised

7-1-65. (PercepAon and PsychophysIcs, 1966, I, 9-16)
69 P. Suppes and J. Oonlo. Foundations of stimulus-sampling theory for continuous-time processes. February 9,1965. U. math. Psychol., 1967,

4, 202-225)
70 R. C. Atkinson and R. A. Klnchla. A learning model for forced-choice detection experiments. February 10, 1965. (Br. J. math stet. Psychol.,

1965,18,184 -206)
7t E. J. Crothers. Presentation orders for items from different categories. March 10, 1965.
72 P. Suppes, G. Groen, and M. Schiag-Rey. Some models for response latent)! In pairednssociates learning. May 5,1965. (J. math, Psychol.,

1966, 3, 99-128)
73 M. V. Levine. The generalization function In the probability learn .g experiment. June 3, 1965.
74 0. Hansen and T. S. Rodgers. An exploration of psycholinguistic units in initial reading. July 6,1965.
75 B. C. Arnold. A correlated urn-scheme for a continuum of responses. Ju.y 20,1965.
76 C. Izawa and W. K. Estes. Reinforcement-iest sequences In paired - associate learning. August i, 1965. (Psychol. Reports, 1966, 18, 879-919)
77 S. L. Blehart. Pattern discrimination learning with Rhesus monkeys. September I, 1965. (Psycho'. Reports, 1966, 19, 311 -324)
78 J. L. Phillip, and R. C. Atkinson. The effects of display size on short-term memory. August 31,1965.
79 R. C. Atkinson and R. M. Shiffrin. Mathematical models for memory and learning. September 20,'965.
80 P. 'Suppes. The psychological foundations of mathematics. October 25,1965. (Colloques Internationaux du Centre National de la Recherche

Sclentifique. Editions du Centre National de la Recherche Sclentlfique. Paris: 1967, Pp. 213 -242)
Al P. Suppes Computer-assisted instruction in the schools: poluicialitiet, problems, prospects. Octnlier 29,1965.
82 R. A. Kinchia, J. Townsend, J. Yelioll, Jr.. and R. C. Atkinson. Influence of correlated visual cues on auditory signal detecfion,

November 2, 1965. (Perception and Psychophysics, 1966, I, 67 -73)
83 P. Suppes, M. Jarman, and G. Groen. Arithmetic drills and review on a computer-based teietme. Novernher 5,1965. (AritImejie Teacher,

April 1966, 303-309
84 P. Suppes and L. Hyman, Concept learning with non - verbal geometrical 11:ove,i,er 15 .19trr
85 P. Holland. A variation on the minimum chi-square test, 'J. math. Psychol 1967, 3i 377.4!3)
86 P. Suppes. Accelerated program in elementary - school mathematics -- the second year. November 22, 5. (Psychology in the Schools, 1966,

3, 294-307)
87 P. Lorenzen and F. Binford. Logic as a dialogical game, November 29,1965.
88 L. Keller, W. J. Thomson, J. R. Tweedy, and R. C. Atkinson. The &lett% of reinforcement interval on the acquisition o' piaci-associate

responses. December 10, 196 5. ( J. exp. Psychol., 1967, 73, 268-277)
89 J. 1. Yello :t, Jr. Some effects on nonconlIngent success in human probability learning. December 15,1965.
90 P. Suppes and G. Groen. Some counting models for first-grade performance data on simple addition facts. January 14. 1966. (In J. N. Scandura

(Ed.), Research In Mathematics Educ-tion. Washington, D. C.: NCTM, 1967. Pp. 35-43.
91 P. Suppes. Information processing and choice behavior. January 31,1966.

92 G. Groen and R. C. Atkinson. Models for optimizing the learning process. February 11,1966. (Psychol. Bulletin, 1966, 66, 30 9-3 201

93 R. C. Atkinson and D. Hansen. Computer-assisted instruction In Initial reading: Stanford project. Marsh 11, 1966. (Reading Research

Quarterly, 1966, 2, 5-25)
94 P. Suppes. Probabilistic inference and the concept of total evidence. March 23, 1966. (In J, Hintikka and P. Suppes (Eds.), Aspects of

inductive Loglu. Amsterdam: North-Holland Publishing Co., 1966. Pp. 4 9-6 5.

95 P.,Suppes. The axiomatic method In high-school mathematics. Apr11 12, 1966 (The Rule of Axlomatics and Problem Solving in Mathematics.

The Conference Board of the Mathematical Sciences, Washington, D. C. Clnr. and Co., 1966. Pp. 69 -76.

(Continued on inside back cover)



Le1

(%1O
N-
C)c
LLI

VARIABILITY IN THE PROOF BERAVIOR

OF COLLEGE STUDENTS IN A CAI COURSE IN LOGIC

AS A FUNCTION OF PROBLEM CHARACTERISTICS

by

Michael Timothy Kane

TECHNICAL REPORT NO. 192

October 6, 1972

PSYChOLOGY AND EDUCATION SERIES

Reproduction in Whole or in Part Is Permitted for

Any Purpose of the United States Government

Copyright q..D 1972, by Michael Timothy Kane
All rights reserved

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

STANFORD UNIVERSITY

STANFORD, CALIFORNIA
PERMISSION TO REPRODUCE THIS COPY

RIGHTED MATERIAL HAS BEEN GRANTED
BY

IM S S

TO ERIC ANO ORGANIZATIONS OPERATING
UNDER AGREEMENTS WITH THE US OFFICE
OF EDUCATION FURTHER REPRODUCTION
OUTSIDE THE ERIC SYSTEM REQUIRES PER
MISSION OF THE COPYRIGHT OWNER"



TABLE OF CONTENTS

Acknowledgments ii

Chapter

I. Introduction 1

II. Description of LIS 6

III. Classification Procedures 13

IV. Design of the Study 30

V. Analysis of the Full Set of DataNt 43

VI. Analysis of a Subset of the Datax 102

VII. Examples 140

VIII. Discussion 161

Bibliography 165

Appendix A. Attempts to Find Patterns of
Proof Behavior 166

Appendix B. Hiclus 174



ACKNOWLEDGMENTS

I wish to express my thanks to Dr. Patrick Supoes for

suggesting the problem and for his supervision and en-

couragement in my research. I would also like to thank

Dr. Janet Elashoff, of the School of Education, and

Dr. Richard Atkinson, of the Department of Psychology, for

their aid and suggestions.

Finally, I am grateful to Dr. James Moloney, who pro-

vided valuable assistance in all phases of this research.

This research was supported by National Science

Foundation Grant NSFGJ-443X.

5
ii



CHAPTER ONF

For centuries, teachers have been teaching and
students have been doing whatever it is that students do.
It is only in this century, however, that any systematic
and sustained attempt has been made to study the nature and
the results of the interaction between teacher and student,
and, during this period, progress has been painfully slow.

The educational psychologist is faced with serious
difficulties in doing research on human learning and
nerformance. If research is to be done in a school, the
cooperation of administrators and teachers must pe
obtained, and experiments must be tailored to fit the
organizational structure of the school. Even then, it is
very difficult to obtain detailed information on student
nerformance over a long period of instruction. It may be
possible to obtain an adequate description of social
processes from a discreet distance, but it seems almost
impossible to obtain detailed profiles of individual
student responses in this way. In order to obtain the data
necessary to investigate cognitive performance, it is
necessary to record student behavior in great detail.

Since it is impractical to maintain teams of research
workers in a classroom without completely disrupting the
process to be observed, the systematic investigation of
nroblem solving behavior has been restricted to the
laboratory. Laboratory research on these issues has been
hampered by the difficulty in obtaining adequate samples of
subjects willing to work on problem-solving tasks over a
long period of time.

The advent of computer- assisteu instruction makes it
possible to circumvent some of these difficulties. When a
student does problems at a computer terminal, it is
possible to record a complete profile of his typed
responses (as well as the time to each response). Since
the collection of these responses is automated, and
therefore invisible to the student, it is possible to
record problem solving behavior over a long period of time
without disrupting the process being observed. In a
semester of work in mathematics done at a computer
terminal, it is relatively easy to obtain complete profiles
of individual student solutions to hundreds of problems.
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This implies a further advantage of using CAI for
research on problem solving. In a laboratory experiment or
in classroom observation, the subjects (or students) are
aware that their efforts are being recorded. It has been
shown that, under such conditions, subjects tend to modify
their behavior to fit the expectations of the experimenter
(Neisser,1967). To the extent that data collection is
truly invisible, this more subtle source of possible bias
in the data is also eliminated.

The use of a CAI curriculum as a context for research
on cognitive processes still presents serious difficulties
however. In order to exploit its full potential, we must
develop techniques for analyzing and interpreting the data
collected. The principal purpose of this research was to
develop such techniques for examining the details of
student proof behavior.

The traditional tools used to analyze the results of
educational and psychological experiments are, of course,
available and have been used. Regression analysis, for
example, has been used extensively in investigating the
effects of curriculum structure on student performance.
The analysis of variance has been used to compare CAI to
more traditional types of instruction, and to examine the
effect nroduced by varying certain conditions within CAI.

It is clear that the use of such techniques can make a
valuable contribution to our understanding of student
behavior, but all of these studies deal with global
measures of performance. They tell us how well students
Perform under various conditions; they do not tell us how
students perform what they actually do. If the solution
to a problem requires a sequence of steps rather than a
single response, then this distinction is of great
importance. The total time taken to solve a problem or the
number of errors may be adequate measures of a student's
overall performance, but they tell us nothing about 'now

individual students solve problems. An analysis that makes
use only of summary measures of performance ignores the
structure of student solutions, and, so, does not exploit
the full potential of CAI as a setting for educational
research.

In this study a particular type of problem solving
behavior is investigated. In the following sections, some
techniques for analyzing the details of student proof
behavior in a complex CAI setting are developed and then
used to evaluate a specific aspect of the Stanford
LogicInstructional System (LIS).

7
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LIS is designed to allow students considerable
latitude in the construction of proots, anu students work
at their own pace And develop their own strategies for
findinq Proofs. By measuring the actual variation in a
sample of proofs collected under ordinary operatin:j
conditions, it is possible to characterize tne
effectiveness of the curriculum in encouraging diversity in
the students' approaches to proof construction. This
research was motivated by a desire to estimate how much
variation (in the types of proofs generated) actually
occurs when students work through the current LIS
curriculum.

The data collection facilities for 2.,IS store a

complete record of each student's typed responses, and it
is possible to examine the exact sequence of steps for
every proof. It is possible, therefore, to determine the
number of classes of equivalent proofs in a sample of
student proofs, but first it is necessary to specify a set
of criteria that separates proofs into classes, and so
defines what is meant by the statement that two proots are
equivalent.

The objective of the initial phase of this study is to
formulate such criteria. Five distinct procedures are
developed each of which classifies any sample of proofs
into a set of mutually exclusive and exhaustive subsets,
thus defining a partition on the sample. The procedures
are essentially definitions of what it means to say that
two proofs are equivalent or not equivalent. These
nartitions are then shown to be nested in the sense that if
two proofs are equivalent under the ith partition, they
are also equivalent under the (i+1)th partition. A
detailed develonment of these procedures is presented in
Chapter III.

The second purpose of this study was to determine the
amount of variation that actually occurs in the structure
of the proofs produced by a sample of college students for
the problems in the LIS curriculum. The proofs constructed
by 23 Stanford University students for 125 separate
derivation problems in the LIS curriculum are used for this
purpose. In order to determine how this variation is
distributed through the curriculum, each problem is
analyzed separately.

For all of the problems included in this study and
each set of criteria, the student proots are assigned to
equivalence classes. The numbers of classes for the five
partitions for a problem are taken as separate measures of

8
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the variability of the student proofs for that problem.

The results indicate that there is relatively little
variability for the earliest problems and considerable
variability for the later problems. The increase in
variability through the curriculum is not smooth. There is
a gradual increase from the first problem considered to tne
50-th problem (approximately), but even the last of these
early problems shows relatively little variation among the
proofs generated. There is then an abrupt increase in
variability and subsequently a continued gradual increase.
The rule, Replace _Equals(RE), is introduced in the
curriculum just before the abrupt increase in variability;
this initial indication of the importance of RE is
confirmed by the subsequent regression analysis.

Regression analysis is used to pinpoint variables
defining structural properties of the problems which
predict variability among the student proofs. The results
indicate that relatively simple measures of structural
complexity (for example, the number of steps in the
standard proof for a problem) are good predictors of the
amount of superficial variation in the sample of proofs,
such as dtfferences in the order of the steps, but
relatively poor predictors for the more substantial
variations such as differences in the rules used to
construct the proof. As the importance of these measures
of structural complexity systematically decreases from the
first to the fifth partition, the importance of the number
of theorems (and axioms), as predictors of variability,
increases. This analysis is described in Chapter IV, and
the results of the analyses are presented in Chapters V and
VI.

The use of a nested sequence of measures, rather than
a single measure, makes the detection of this trend
possible. The results indicate that the regression
equation which 3est predicts variability is quite sensitive
to changes in the measure of variability. If a single
measure of varability (partition) were used, there would
have been no indication of the sensitivity of the results
to the definition of equivalence, and it is likely that
erroneous conclusions would be drawn. For example, if only
the first partition had been used, it would seem that
theorems are relatively poor predictors of variability; in
fact, the other four partitions indicate that theorems are
very important predictors of variability.

In general, the most significant kinds of variability
(for example, differences in the rules used to construct a

9
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proof) depend on the number and type of rules that areavailable when the proof is done; Replace Equals and the
theorems ark especially important. Where variability instudent proof behavior is desired, the more powerful rulesshould be introduced soon as posSible.

In a third part Of this study, an attempt was made toidentify pattern s of proof behavior that character 17.edgroups of students Over the sample 'of problems. Thisattempt took 'Advantage of the fact that metric functions
for the set of stucf4hts can be easily detined in terms of
the classifi'cation 'pr'ocedures.

. .,
The -search .for patterns in student proof behavlior was

exploratory 'in nature. If definable paEterhslhad beendetected, prdperties would have been investisgated,
and further research in this direction would have beensuggested..-. In fact, no indication of the existence of

definable pitEern'gwasi detected; r I

The failure.'8f 'this part of ''the, study tcil yield the:.sired resultg' witit'not surprisingo' The problems in the
curridUriiin gate heterogeneous, and. differences

II,. proofs froirrtiroblem to problem are much more pronouncedthan the diffeiences between students;for .a given problem.Since these "efforts failed to reveal any sustantial
results, and'.the' :tiiiestions raised here are peripheral tothe main pt rpos ofth*-studyi this part of the study is
not discussedin the. Wain bodyof the text. The methods
developed for- 'this "ipart 'ofilt the study, '.ihowever, makepossible a more sySteMatic analysis of problem solvingbehavior 'and should be: useful in:future studies dealing
with problerir solving behavior, so, a, description of theanalysis is included as Appendix A.

Overall,. his-study indicates that the use of formally
defined partitions over sets of!complex behaviors (in thiscase, 'proofs). an providef,an intuitively satisfying andfruitftil Aechniiquel for 'examining- the details of complex
behavior. *. .;

J
.1

.1 i ,

10
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CHAPTER TWO

I have included this brief description of the
or)erntion of the Logic Instructional System (LIS) for those
with no previous experience of it; some discussion of the
curriculum is also included. The description is far from
complete, but I hope that it is sufficiently detailed to
enable the reader to follow the development in subsequent
sections. Further discussion of the material included in
this chapter can be found in James Moloney's dissertation
(Moloney, 1972) and in several papers by Patrick Suppes
(Suppes, 1965,1970,1 9 7 1). A new instructional system for
elementary logic, which has many features in common with
the system discussed here, is described in detail in a
recent paper by Adele Goldberg (Goldberg 1 9 71).

The first part of the curriculum is designed to give a
thorough introduction to sentential logic. Once the
student has acquired an understanding of sentential logic,
he uses this knowledge in his study of elementary algebra.
In sentential logic, the approach used is a natural
deduction treatment in which the students are taught rules
of inference, such as modus ponens, and proof procedures
(conditional proof and indirect proof). Some examples of
the rules of inference are:

(A) Affirm the antecedent - AA
From (1) Q -> R
and (2) 0
infer (3) R

(B) Form a con junction - FC
From (1) Q
and (2) R
infer (3) Q and R

Using the rules of inference, the student is asked to
construct a mathematically valid proof of some specified
sentence (formula) from a given set of premises. The proof
consists of a sequence of steps, each of which utilizes one
of the rules of inference. The computer does not interfere
with the course of the student's attempt to find a proof as
long as his steps are valid applications of the rules ofinf erence; the computer does act as a proof-checker to
determine if each new step is valid, and types an error
message whenever a rule is used incorrectly. This gives
the student the freedom to construct his own proof, subject

11



to the constraint that each step be a correct application
of some rule.

In the second part of the curriculum, the student is
first taught certain rules about the identity relation
(e.g. adding a term to both sides of the equation). Then
he is given a set of axioms for an additive group (i.e.
commutativity, associativity, and the properties of zero
and negative numbers). From these axioms and the set of
rules, he constructs proofs for a number of theorems about
addition. In his proofs, he can use any theorems that he
has already proved as well as the axioms and rules that he
has learned.

The remainder of this paper deals exclusively with
derivation problems, and I shall restrict the following
discussion of LIS to its derivation mode, ignoring its
other modes.

Each derivation problem consists of a formula to be
derived and a sequence of k (with k possibly equal to 0)
formulas called premises. The k premises are numbered
sequentially from 1 to k. The student is required to find
a sequence of valid steps that lead to the formula to be
derived; when this formula is generated, LIS types CORRECT
and continues with the curriculum.

Essentially what a student does at each step of a
proof is to give a formal justification of the step that he
wants to take. These justifications are coded as short
mnemonics. Most codes require auxilliary information or
parameters; the student types these as prefixes or
postfixes to the code name. The prefixes are line numbers
and specify the lines already in the proof that are to be
operated on in order to generate the new line. For
example, the left conjunct rule, LC, requires a single line
reference, the line number of a conjunction already in the
derivation.

Postfix numbers can be either occurrence numbers or
literal numbers. For example, an occurrence number is
required by the commute disjunction rule to specify which
disjunction of a complex formula is to be commuted. A
literal number is required by the number definition rule to
specify the number for which a definition is to be
generated.

Let us consider a very simple example problem
406.6:

12



Q is the
nremises.
sentence,
sentence,

FILMED FROM BEST AVAILABLE COPY

8

Derive:
(1) R
(2) R ->

sentence to be derived,' And ..lines (1) and (2) are
The number 1, is the I81-ine number of the

R, and the number, 2, is( the -line number of the
R-(>0. .

The student generates new Lines by meklinq use of therules available to;,..him.. It the student, now types, 2.1AA,LIS generates :, new sentence labeled, ,( 3) The proof thenlooks like this:

.-.Ikerive: Q..,
- P (1,) R .

(2) R -> Q.
2.1AA (3)

... -CORRECT . ,

il')i

-.:1;-I 'It.

fl . r:
-N n4 ; .-

A
I

AA is a mnemonic ;.for affirm - the ::antecedent f (modusponens). The .format , :for the . use of! this.rule is n.miAAwhere n x.¢; .the, of a-gonditional,. and m is theline number of the antecedent..of the :conditional in line(nl. In this case, line (2) is a conditional and line (1)is the antecedent of :that iconditional. : LIS, therefore,
accepts thisoinstruction. andAenerates) Gi . as line (.3);2.1AA is a Valid step, of. the proof. Since, C, is the
sentence to bedexived, the computer types CORRECT and theproof is copplete.

If, instead* of -2.1AA, . the. student types 1.2AA, thenLIS would not:,accept thejiwttruction, and no new line wouldbe generated... AnierroF,message is typed by the computer(in case, LINE..1.1Sr.NOT A. CONDITIONAL), and LIS then
waits for the student's next instruction. Each instruction
is checked to insure that every sentence generated is
justgiedribythecorrect-.ute'of a rule:! of inference) axiom,or theorem:It , A

07 ro-'_/no -

The woof 40r.z.his 1J4701-mple. requires only ,d singlestep, b4t.:- LX49bwou3;cluacceipt any-other valid step atiell.
If the studek4.ich0Q4es to Use the double ;negation rul@lconline 1, for example, then line 3 is generated as: ot:i: 19

(3) NOT(NOT R).
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Since this is not the formula to be derived, LIS would wait
for another instruction.

As indicated above, lines are numbered consecutively
as they are generated, and, with one exception, each valid
instruction generates a new line.. The instruction DLL,
delete last line, does not gener.ate a new line. Instead,
it erases all internal references to the last line
generated; for LIS, that line no.longer .exists (of course,
the deleted,line'is not erased fiom the student's paper
copy of thederivation). The next line gener,ated will have
the number Of the la!t line deleted. A sequence of DLL's
may be:used-to delete-a sequence of 1ineplst.4ing from the
mosteedently:gederated iirip and working, backwards through
the 'dirivatio`n :'he student, howeveF,. cannot delete
premises and he cannot delete any line in his derivation
without previously deleting all subsequent...lines..

In 6ut.'eXampie, the AudentMay decide that he does
not. ,Il&ea line (3), and type a DLL, ps his second
instrtietiodsl'If he theii types .1AA, his record of the

4

derivation w61.11d:Appeae as:

Derive: Q
P (1). R
P ,(2).FC-> 0
1DN' (3) NOr(NOT R
DLL'
2:AA (3) Q

CORRECT

r*,

i

11,

If he had typed a' second DLL inetead of the AA
instruction, he 'would be told that.line,X2),:is a. premise,
and cannot be deleted. He could, hoWever, have typed 2.1AA
directly after 1DN, and the.derivation.:woxgd pen appear
as:

, to

+ Derive: 0 --?:

-(1i:;$/)-.4-:
P (1) R

1 .i :i.t.,1.r
! t.

.::

1DN (3)NOT(N01°. 0
J -,

'4

CORRECT
hi";ICW "

UP/ .

Line (3) in this derivation does not bring the student
any closer to a solution, but it is a valid instruction and

14
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.e.

t

I
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is accepted by LIS. The four lines listed do constitute an
acceptable proof, but line (3) is not really used; a
precise definition of 'unused line' will be given in the
next chapter.

In this example, the use of DLL is a matter of
convenience, but there are two situations where it may be
necessary to eliminate some lines from a partially
completed solution. LIS will not generate more than 31
lines for any problem. None of the problems in the
curriculum require more than 31 lines, but a student can
easily generate 31 lines without completing a derivation by
producing one or more false starts. When this happens, it
is necessary to delete some unused lines before continuing
with the derivation.

The other situation that requires the deletion of
lines from a partial solution involves the working premise
rule, WP. Working premises must be used in conjunction
with either the conditional proof rule, CP, or the indirect
proof rule, IP. A brief description of these rules will be
given before continuing with the discussion.

WP allows the student to introduce any formula or
sentence as a working premise. He may then instruct LIS to
generate new lines from this working premise until he has
generated the consequent of the conditional that he wishes
to prove; CP is then used to generate the conditional
sentence. Alternately, the student may derive a
contradiction by using a working premise, and then use IP
to generate the denial of the working premise.

The use of WP begins a subsidiary derivation that must
be completed before the solution is completed. The line
generated by WP and all subsequent lines up to, but not
including, the next line generated by a CP or an IP, are
indented on the student's paper copy of the derivation to
indicate that they are part of the subsidiary proof.
Generating the formula to be derived in a problem within a
subsidiary derivation does not constitute a proof for the
problem; a different problem, with an additional premise,
has been solved. While the student has a working premise
that has not been referenced by a CP or an IP step, he is
still ina subsidiary proof and cannot complete the proof.

The student may find that he has introduced a working
premise that he does not wish to use. Any working premise
which is not used (with either CP or IP) must be deleted
before the proof is completed.

15
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If many lines must be deleted for either of these
reasons, it may be more convenient to end the session and
then begin a new session. The same problem is presented
again, and the student can then restart it.

The final point to be discussed here is the use of
substitution instances for axioms and theorems. A student
uses an axiom or a theorem by typing its
hitting the enter key. LIS then types a
axiom or theorem and a list of variables
that require substitution ,and asks that a
substituted for each of these variables.

code and then
statement of the
in the theorem
speci:ic term be

To use the additive inverse axiom, the student types
AI. LIS types the statement of the axiom, A+(-A)=0, on the
same line, and requests the single substitution required
for AI by typing A: on the following line. The student
can then reply with any term. For example, if the student
wishes to generate for line (n), 6+(-6)=0, he must type the
number, 6, after the the computer types an A: .

AI A+(-A)=0
A: 6 (n) 6+(-6)=0

Axioms are introduced in the same way that the other rules
are introduced. Theorems are presented as derivation
problems, and become available for use after they have been
provel.

I shall conclude this discussion with an example of a
proof for a derivation problem from the algebra part of the

I

1

curriculum. A brief explanation of each step is given
after the solution. Further examples are presented in
Appendix C.

406,24:

DERIVE: A+A=3+3 -> A+A=6
P (1) A=3 -> 6=A+A
P (2) 3+3=A+A -> 3=A
WP (3) A=3+3
DLL
WP (3) A+A=3+3
3CE1 (4) 3+3=A+A
2.4AA (5) 3=A
5CE1 (6) A=3
1.6AA (7) 6=A+A

.

3.7CP (8) A+A=3+3 -> 6=A+A
8CE2 (9) A+A=3+3 -> A+A=6

16
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CORRECT

Lines (1) and (2) are premises and are typed by SLIPas part of the problem. The student's first stet) isworking premise (first line (3)). This is a valid stkp andis accepted by SLAP, but it is not the working pramis.-1 thatthe student wants. Therefore he deletes it in his nextstep and cjenerates a new working premise (second line (3)).CF is then used to commute the expressions in line (3)(prefix number is 3) around the first equal sign (postfix
number is 1) to generate line (4). Line (5) is generatedby applying AA to lines (2) and (4). Lines (6) and (7) aregenerated by using CE and AA respectively. Next,conditional proof is used to generate the conditionedformula in line (8). This step has two line references.The first line referred to is a working premise as it mustbe, and the second line referred to is the line that is tobe the consequent of the conditional formula. Since line(8) terminates the subsidiary derivation begun in line (3),the indenting that began in line (3) terminates at line(8). Line (9) is generated by another application of theCE rule. Since line (9) is the formula to be derived andsince the student is no longer in a subsidiary proof, theproof is accepted and LIS types CORRECT.
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CHAPTER THREE

In this chapter, the classification procedures which
are the basis for this study are described. In section
3.1, an informal introductory description of the criteria
is presented. In section 3.2, the procedure is developed
formally, and in the last section 3.3, an example is
described in detail.

Given any two proofs for a derivation problem, we want
to be able to decide that the proofs are equivalent (given
some set of criteria) or that they are not equivalent; in
order to do this, we must define a partition on the set of
proofs.

It would have been possible to have trained human
judges make the decisions, but I decided not to use this
technique for two reasons. First, it is an onerous task to
examine carefully 25 or 30 separate proofs each consisting
of 20 or 30 steps. It is difficult to remain consistent
for a single problem, and it is much more difficult to
maintain consistency from problem to problem. Second, if
this procedure were used, it would be impossible to specify
precisely the criteria employed.

With these difficulties in mind, I have decided to
specify in advance a precise set of criteria for
classifying proofs. This eliminates the problem of
maintaining consistency throughout the classification and
permits an unambiguous statement of the criteria used in
obtaining my results.

Five distinct sets of criteria for classifying proofs
are defined in section 3.2; each of these sets of criteria
is shown to define a partition (and thus an equivalence
relation) on any set of proofs. It is also demonstrated
that the sequence of partitions is nested in the sense
that, if two proofs are equivalent under the i-th
partition, they are also equivalent under the (i+1)-th
partition. In the following paragraphs, these results are
presented informally.

3.1 - INTRODUCTION TO THE CLASSIFICATION CRITERIA

The equivalence relations are defined in terms of
specific one-to -one mappings (correspondences) of
components of one proof onto components of another. If a
mapping of the specified form exists between two proofs,
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they are equivalent, otherwise they are not. The proof
elements that are mapped and the nature of the mappings
vary from one equivalence relation to another, but in each
case, the equivalence of two proofs depends on a mapping
(correspondence) between component parts of the proofs.

I will begin the discussion with the fifth partition,
where the criteria for equivalence are least stringent, anu
work backwards to the first partition, where the criteria
are most stringent. The nesting of the partitions is a
consequence of the fact that restrictions are added at each
level, from the fifth partition to the first. The
classification procedure is illustrated in section 3.3,
where the resulting partitions for each of the five sets of
criteria are presented for a small sample of proofs.

For the fifth equivalence relation, the set of
elements of each proof is the set of all rules that appear
at least once in the used steps of the proof. The mapping
for this partition requires that the elements mapped onto
each other be the same rule; two proofs are equivalent if
they use exactly the same rules.

The fourth partition also requires that equivalent
proofs have the same set of used rules, but imposes the
additional requirement that the rules occur the same number
of times in both proofs. Therefore, proofs that are
equivalent under the fourth partition will also be
equivalent under the fifth partition; the partitions are
nested.

The elements mapped under the remaining partitions are
the steps of the proofs. Under the third partition,
equivalent proofs must contain the same number of steps,
and the steps mapped onto each other must use the same
rule. The additional requirements added at the third
partition are more complicated than those for any of the
other partitions. The description included here is very
brief and incomplete in some details. One of the
requirements of the third partition is that corresponding
steps have identical arguments (arguments specify how the
rule is to be applied see Chapter II and section 3 of
this chapter). The third partition also places
requirements on the structure of the proof, on the
relationship between the steps in the proof. The principal
requirement, added at this level, is that the steps
referred to by corresponding steps must correspond. If D
and D' are equivalent proofs under the third partition,
d(i) in D correspOnds to d'(i') in D', d(i) refers to d(j),
and d'(i') refers to d'(j'), then d(j) corresponds to

19
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This condition implies a partial restriction onthe order of the steps since valid steps always come afterthe stens that they refer to; no additional restrictionsare Placed on the order of steps at this level. In asense, made explicit in section 3.2, proofs must have thesame structure.

The second partition imposes all of the requirementsof the third and also requires that the ordinal position ofcorresponding steps in equivalent proofs be the same.

The first partition is defined by the identityrelation. The nesting of the partitions results from thefact that, for i = 1 .4, the mapping for the i-thpartition imposes all of the conditions of the (i+1)-thpartition along with additional conditions.

3.2 DEFINITION OF THE CLASSIFICATION PROCEDURE

The development that follows will take as primitives,the smallest units of student behavior evaluated by theLogic Instructional System (LIS); these units will becalled instructions. A student constructs solutions to thederivation problems on the LIS by typing a sequence ofinstructions. A valid solution to a derivation problemwill be called a derivation or 'proof'; a formal definition
of a proof will be presented below.

An instruction is a string of characters (modifiedASCII including blank spaces) followed by a carriage returnor an enter character. The carriage return or entercharacter signals LIS that the instruction is complete.

After an instruction has been typed by the student,the system responds in one of three ways; instructions maybe classified into three mutually exclusive and exhaustivecategories on the basis of this respOnse. If the responseis an error message, the instruction will be called anE-instruction. If the response is a request for further
information, the instruction will be called anI-instruction (intermediate instruction). If LIS respondsby typing a new formula, then the instruction is called anL-insfruction. If the student types 'DLL' followed by a'carriage return or enter character, then the system givesno rmert response, but deletes all internal references tothe last formula generated. This special type ofinstruction is also classified as an L-instruction.

Def 1: A sequence of instructions is an L-step if and onlyif the last instruction in the sequence is a

20
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L-instruction and all previous instructions in the
sequence are I-instructions.

Def 13: A sequence of instructions is an E-step if and only
if the last instruction in the sequence is an
E-instruction and all previous instructions in the
sequence are I-instructions.

Def 2: The formula typed by the system after the last
instruction in an L-step is said to be generated by
the L-step.

Def 3: In a sequence of steps, all steps between any WP
step and the first IP or CP step following the WP step
are called conditional steps.

Def 4: The subsequence of L-steps in a sequence of steps
is a proof (or derivation) of the line, L, if and only
if the last L-step in the subsequence generates L and
is not a conditional step.

As defined here a student's proof for a problem
consists only of L-steps, and the subsequent analysis
treats only these L-steps; E-steps are excluded from the
definition of proof, and student errors will not be
included in the following analysis. At this point in the
discussion, the distinction between L-steps and E-steps
will be dropped, and the term 'step' will be used to
designate L-steps.

The sequence of steps that defines a proof generates a
sequence of formulas with the formula to be derived as the
last formula in the sequence. LIS associates with each of
these formulas an integer that identifies it fcr subsequent
reference. These integers are called labels. A proof,
then, consists of a sequence of labeled steps (L-steps) in
which the last step in the sequence of steps generates the
formula to be proved.

For the purposes of the following discussion, it willbe useful to decompose any step into three functional
components. A step is then viewed as an ordered triple
consisting of:

(1) a sequence, possibly null, of numerals (called
references) that are the labels of some previous steps
in the proof
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(2) a string of letters designating one of a finite set ("f
rules of derivation

(3) an argument list, possibly null, which provides
additional information on how the rule of the step is
to be applied

Further discussion of labels, rules, and argument lists can
be found in Chapter II.

Def 5: A step d(i) is said to refer to a step d(j) if the
label d(j) is equal to a reference of d(i) .

Def 6: There exists a chain of reference from d(i) to d(j)
iff there

exists a sequence of steps d'(1) d'(k), such
that:
(1) d(i) = d'(1) and d(n) = d'(k)
(2) for all i=1.,000 k-1 ed'(i+1) refers to (i)

Def 7: A step,d, in a derivation,D, is said to be used if
d is the last step in D, or if there 3xists a chain of
reference from d to last step.

Th 2: If d is a used step in D, and d refers to d', then
d' is a used step in D.

Pf: Let d" be the last step in D. Since d isnused in
D, there exists a chain of reference d...d . But d
refers to d'; so d',d,...,d is also a chain. Since
there exists a chain from d' to d d'is a used step
in D.

Let S designate a finiteuset of proofs for some
derivation problem. S = {D,D',D .}

Def 8: <1>D' iff. D and D' are derivations in S, and D is
identical to to D'.

Th 3: <1> is an equivalence relation on S.
Pf: The identity relation is an equivalence relation.

Definitions 9 and 10 are complicated by the unique
properties of Indirect Proof (IP). IP is the only rule in
the set of available rules that requires more than two
references. For steps with rules that require two
references, the interpretation of the step depends on the
order of the references. The valid use of AA, for example,
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re!uires that that the first reference be the label of an
imnlication and that the second formula referred to he the
antecedent of this conditional. For IP, the first
reference must he the label of a working premise, but the
only requirement on the z;cond and thir:3 r?O2rences ts that
they be the lahelg of two formulas, one ot which is the
neation of the other. \ change in the or'1 -r of thest! two
referencii::3 has no effect. on the validity of the step and no
effect on the formula t.ienerated by the step.

The secon.i and third sets of equivalence criteria
(Def '9 and Def 10) place restrictions on the oler of the
referencs in each step, and it is desirable that the
second and third references in IP steps be exceptions tr.;
these restrictions. In order to do this, a separate
restriction on the order of the references is speciti,(1 for
IP.

Def D<2>D' iff 1) an,'. D' are derivation:; 1 3, and there
exists a mapping of the used steps )if D onto the used
steps of D', with the following properties: let d(m)
in D map into d'(m') in D'

(1) if d(m)->dp(ms) and d(m) is the n-th step in the
subsequence of used steps of D, then d' (m') is the
n-th step in the subsequence of used steos of D'

(2) d(m) and d' (') have the same rule, and the same
argurnent list.

(3) 1.f d(m) uses a rule that requin,s eithex one or two
references and d(m) refers to d(i), d(j), (AM if
d(m) has only one refereuc-), theu d' (rn') refers to
d'(i'), d'(j') and d(i)- >d'(i'), d(j)- >d'(j').

(4) if d(m) has rule IP, then d(m) refers to d(i), d(j),
d(k) and d'(m') refers to d'(i'), d'(j'), d'(k').
d(i)->e(i'),-and either d(j)->d'(j'), d(k)->d'(k') or
d(j)->d'(k'), d(k)->d'(j').

Th 4: <2> is an equivalence relation.
Pf: The proof consists of showing that the three

properties that define an equivalence relation hold
for <2>; in this proof, numerals used as subscripts
designate the first, second, or third step referred to
by some step.

(A) Symmetry D<2>D
Define a mapping of D onto D such that d(m)->d(m).

It is clearly true that properties (1) and (2) of <2>
hold. If d refers to some sequence of steps d(i),
i = 1,2,3, then d(i)->d(i); so properties (3) and (4)
also hold.

(R) Reflexivity If D<2>D' then D'<2>D.
Assume that D <2>D'.Then there exists a mapping,
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d(m)->d' (m.), with properties (1) to (4). For D'<2>D,
define the inverse mapping e(m.)->d(m).

Since properties (1) and (2) hold for the mapping
of D onto D', they hold for the mapping of D' onto D.

Let d' be any step in D', and let d be the step in
D that maps into d' under D->D'; under D'->D
If d in D refers to d(i), i = 1,2, and d->d' in D',
then refers to d'(i), i = 1,2 where d(i)->d' (i),
i = 1,2 (by property (3) of D->D'). under the inverse
mapping d' refers to e(i.), = 1,2, and

i = 1,2 .Therefore property (3) holds for
the inverse mapping.

If d has rule, IP, then d and d' have three line
references. d refers to d(i), i = 1,2,3 and d' refers
to d'(i), i = 1,2,3. Under D->D', either d(i)->d' (i),
i = 1,2,3, or d(1)->e(1), d(2)->d'(3) and
d(3)->d'(2). If the former condition holds, then
d'(i)->d(i), i = 1,2,3 under D'->D. If the latter
condition occurs, then e(1)->d(1), d'(3)->d(2), and
d'(2)->d(3). In either case, property (4) holds for

(C) Transitivity If D <2 >D' and D' <2 >D" then 0(2>0.
Assume that D<2>D' and D.<2>D . Then there exist

mappings D->D' and D'->D , with properties (1) to (4).
Let d be any step in D; d->d' and d'->d . Define a
new manning from the used steps of D onto the used
steps of D such that d->d for all kin D.

By Property (1) of D->D:. and D'->D , if d is the
n-th step in D then d is the n-th step in D .

Property (1) holds for the new mapping.
Since d has the same rule and sequence of arguments

as d' and
d",

has the same rule and sequence of
argument as d d and d" have the same rule and the
same sequence of arguments. Property (2) holds for
the new mapping.

Let d refer to d(i), i = 1A2 d' refer to d'(i),
i = 1,2, and d refer to d 0), i = 1,2, Under the
new mapping d->d , and d(i)->d (i), i,,= 1,2.

If d has rule, IP, then dtetand d all have three
line "references, Under D->D', 4(1)->d'(1)A and under
D'->D d(1)->d (1); under D - >D d(1)->d (1). For
the second and third references there are four
possible cases, since there are two cases for D->D'
and two cases for D' - >D . Assume that 4(2)->d'(3),
d(3)->d:(2), and d'(21->d"(2), d'(3)- >d"(3). Then
d(2)->d (3) and d(3)->d (2), and property (4) holds in
this case. In a similar fashion, it can be shown that
property (4) holds in the other three cases as well.
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Def 10: D <3 >D' iff D and D' are derivations in and
there exists a mapping of the used steps of D onto the
used steps of D', with the following properties:
d(m)->e(re)

( 1 ) d(m) and d' (m') have the same rule and the same
argument list.

(2) if d(m) uses a rule that requires either one or two
references and d(n) refers to d(i), d(j) (d(i) if d
has only one reference), then d' (m') refers to d(i'),d(j') and d(i)- >d'(i'), d(j)- >d'(j').

(3) if d has rule, IP, then d refers to d(i),d(j),d(k) andd' refers to ds(i'), ds(k'). d(i)->d' (i'),
and either d(j)->d' (j'), d(k)->d' (k.) or d(j)->d' (ks),d(k)->d'(j').

Th 5: <3>is an equivalence relation on S.
Pf: The proof of theorem 5 follows the same pattern as

the proof of theorem 4.

Derivations on the logic program consist of a sequence
of steps and each step applies one of a finite set ofrules. Let R(i) be the i-th rule in the set of rules; i =1, ,t1. The order of the rules is not important.
Def 11: R(i) is said to occur in D, if some used step in D

applies R(i).

Since rules may occur more than once in a derivation,
we will designate the number of occurrences of R(i) in D by
N(i). It should be emphasized that the definition of
occurrence for a rule is restricted to used steps. The
sequence of numbers, N(i) , is a frequency distribution overthe set of rules.
Def 12° D<4>D' iff D and D' are derivations in S, and for

every rule, the frequency of occurrence in D is the
same as the frequency of occurrence in D'; fori = 1,...,M, N(i) = N'(i).

Th 6: <4> is an equivalence relation on S.
Pf:

(A) Identity D<4>D D has the same frequency distributionfor rules as itself.
(B) Reflexivity If D<4>D' then D'<4>D. If D<4>D', thenN(i) = N'(i), i = 1,..." But then 12'<4>D."tr) Transitivity If D<4>D. and D:<4>D , then D<4>D.

' Assume that D<4e)' and De<4>D Then N(i) = N'(i),
and N'(i) = N (i), i= 1,.,M Therefore
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N(i) = Nu(i), i = 1,..,!4 ant D<4>D".

Def 13: D <5 >D' iff D and D' are derivations in So and a
le rule occurs in the used steps of D iff the same r

occlirs in the used steps of D'; for i = 1,...,M
N(i) = 0 iff N.(i) = O.

Th 7: <5> is an equivalence relation on S.
Pt: Here the frequency distribution over the set of

rules is reduced to a set of 0-1 variables, 0(i). Let
0(i) = 1 if NM is not equal to 0 and let 0(i) = 0 it
N(i) is equal to 0. This theorem is then a special
case of the Previous theorem.

Th 8: Let D and D' be solutions to some derivation
problem. For i = 1,...,4, if D<i>D' then D<i+1>D'.

Pf:
(1) If DOW, then D is identical to D'; D=D'. since <2>

is an equivalence relation, D<2>D or D<2>D'.
(2) If D<2>Ds, then a napping D->D' exists with properties

(2) to (4) of definition 9. The weaker mapping of
definition 10 is defined by these three properties.
So D<3>Ds.

(3) If D<3>D', then there exists a mapping, D-W, with
property (1) of definition 11. For every occurrence
of R(i) in D, here is a corresponding occurrence ot
in D'. So N(i) = N'(i) for i = 1,..,M , and D<4>D'.

(4) IF D<4>D', then N(i) = N' (i) for i = 1 ,..,M. So
0(i) = 0.(i) for i = 1,..M and D<5>D'.

3.3 EXAMPLE OF CLASSIFICATION OF PROOFS

Eight proofs for problem 414035 are included in this
section to illustrate how the nested classification
procedures work. Although these proofs were selected from
the data tv3ed in this study, they are not meant to be
renresentative of the general data base or even the data
for this problem. The proofs in this subsample were
selected so that the number of classes would decrease try

one or two from each partition to the next. Problem 414035
was selected for two reasons. First, the proofs generated
for it show enough differences at each level of equivalence
to illustrate the procedure. Second, the proots are short
enough to permit a relatively clear presentation ot the
differences without the distraction of too much detail.
The statement of problem 414035 is:

414035:
'AI' STANDS FOR THE ADDITIVE INVERSE AXIOM.
DERIVE: 3+(A+(-A))=3
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The eight nroofs are found in Table 1, and aren
from A to H for ease of reference. Under the first
rartition, each proof in the subsample defines a separate
equivalence class; the eight proofs were chosen so that
this would be the case.

None of the proofs in Table 1 are identical, but they
all have certain things in common. Each uses the two
axioms, AI (additive inverse axiom) and h (zero axiom), and
some subset of the following rules:

add eaual terms to both sides of an equation
CA commute addition
CF commute around an equal sign
LT logical truth
RE replace equals

The similarity in the proofs is not surprising since they
are all proofs for the same formula.

The equivalence classes under the second partition are
also defined by paradigm proofs for each class; the
paradigm proofs for the second partition are listed in
Table 2.

Proofs C and F are now equivalent. In proof i (see
Table 1 for the original form of proof F), the first step
is not referred to by any susequent step; the first step is
an unused step and is eliminated from the proof before the
comparisons for the second classification are done. The
line reference numbers in proof F are also changed to
reflect the elimination of the first step. When this is
done proofs C and F are identical.

The paradigm proof for proof H is also changed. The
DLL step and the CE step, that was deleted by the DLL, are
removed. In this case, no changes in line reference
numbers are required. In proof B, an unused LT step is
removed and subsequent line reference numbers are changed.

The paradigm proofs for the third partition are listed
in Table 3. Under this partition, proofs A and H are
equivalent, and proofs C, D and F are equivalent.

If we examine proofs C and D in Table 2, we see that
each has four steps. The first two steps in D are
identical to the first two steps in C but the order is
reversed; this change in order has no effect on the form of
the lines generated. The rules for the last two steps are
the same in the two proofs, but the line reference numbers
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are different. This difference is due to the fact that the
order of the first two steps is different in the two
proofs. The third step (CE1) in each proof refers to the
Previous AI step. The fourth step in each proof refers to
the Z step and the CE step in that order. The structure of
the two proofs is the same, and the apparent differences
all result from the arbitrary reversal of the first two
lines.

The equivalencP classes for the fourth partition are
defined by frequency distributions over the available rules
(see Table 4). For convenience, the distributions in
Table 4 and Table 5 are taken over the limited set of rules
that actually appear in the subsample.

In going from the third partition t,.) the fourth
partition, three classes are combined into one class
(A,H,B,E). The proofs in this class have the same number
of steps and the same frequency distribution over the
rules. The differences that exist between these proofs
(see Table 3) are in the order in which the operations are
performed, and the lines in the proof that the operations
are performed on.

In order to clarify the distinction between the third
and fourth partitions, I will compare two proofs (A,n and
B) that are equivalent under the fourth partition but not
under the third. The first three steps in the two proofs
are the same. The rules for the remaining steps are also
the same, but they are used somewhat differently in the two
proofs.

In both cases, the objective of the third and fourth
at2ps is to replace the term, 0 +3 , in line 3 by the term,
3 If some line in a proof is of the form A=B, where A

and B are terms, the replace equals rule, RE, allows the
substitution of B for any occurance of A in .the. proof.
Using line .2. and RE, any occurance of, 3+0 can be
replaced by 3 . The term that appears in line 3 is,
0+3 , and. RE cannot be used with line 2 to replace this

term by, 3 .

The A,H proof resolves this difficulty by usin the CA1
step (commute addition around the.first.plus siva in the
equation) on line 2 to form line 4, 0+3=3 . In step SI RI;
is used in ,,conjunction with line 4 to replace, 0+3 , in
line by, 3

The B proof uses CA3 (commute addition arounq the
third plus sign) on line 3, changing, 0+3 , to, 3+0 RE
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is then used with line 2 to generate line 5.

The sixth step is the same for both proofs. This is a
relatively minor variation but it does indicate a
difference of approach in producing proof's.

The only change in going from the fourth partition to
the fifth partition is the inclusion of proof G in the
A,H,B,E class. Proof G has a useless transformation in the
third step that is corrected in the fifth step. Thus there
are two unnecessary uses of the CA rule in proof G.
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e

.AI. , A

.Z. , 3

TABLE 3.1 - FIRST PARTITION

PROOF A
(1)
(2)

A+(-A)=0
3+0=3

1. . .AE. , 3 (3) (A+(-A ) ) +3=0+3
2. . .CA1.* (4) 0+3=3
3. 4. .RE1.* (5) (A+(-A) )+3=3
5. . .CA ?.* (6) 3+(A+(-A) )=3

. . LT. 9 3 (1) 3=3 B.AI.,A (2) A +( -A).0
.Z , 3 ( 3) 3+0=3

2. .AF. 9 3 (4) (A+(-A))+3=0+3
4. CA3.* (5) (A+(-A) ) +3=3+0
5. 3. RE1 * (6) (A+(-A))+3=3
6. . CA2.* (7) 3+(A+(-A))=3

780 9 3 (1) 3+0=3 C
. . (2) A+(-A)=0

2. CE1.* ( 3) 0=A+(-A)
1. 3. .RE1.* (4) 3+(A+(-A))=3

,A (1) A +( A) =0 D
.Z. , 3 (2) 3+0=3

1. .CE1.* (3) 0=A+(-A)
2. 3. RE1 .* (4) 3+(A+(-A))=3

.AI.,A (1) A+(-A)=0 E
1. . AE. , 3 (2) (A+(-A))+3=0+3
2. . .CA2.* (3) 3+(A+(-A))=0+3

Z , 3 (4) 3+0=3
4. .CA1.* (5) 0+3=3
3. 5. RE1.* (6) 3+(A+(-A))=3

. .LT.,3 (1) 3=3

. .Z.,3 (2) 3+0=3
.AI.,A (3) A+(-A)=0

3. CE1.41 (4) 0=A+(-A)
2. 4. .RE1.* (5) 3+(A+(-A) )=3
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TABLE 3.1 CONTINUED

.AI.,A (1) A+(-A)=0
1. . AE., 3 (2) (A+(-A))+3=0+3
2. ,CA1.* (3) ((-A)+A)+3=0+3
3. . .CA3* (4) ((-A)+A)+3=3+0
4. . CA1.* (5) (A+(-A))+3=3+0
5. . .CA2.* (6) 3+(A+(-A))=3+0

. Z 3_.,_ (7) 3+0=3
6. 7. RE1.* (8) 3+(A+(-A))=3

. .AI.,A (1) A+(-A)=0
1. . .AE.,3 (2) (A+(-A))+3=0+3

Z.,3 (3) 3+0=3
3. . CE1.*

DLL.*
(4) 3=3+0

3. . CA1.* (4) 0+3=3
2. 4. .RE1.* (5) (A +( A)) +3 =3
5. . .CA2.* (6) 3+(A+(-A))=3
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.

.AI.,A
Z_,_ 3

TABLE 3.2 SECOND PARTITION

A(1)

(2)
A +( -A) =0

3+0=3
1. .AE.,3 (3) (A+(A))+3=0+3
2. . .CA1.* (4) 0+3=3
3. 4. .RE1.* (5) (A +(- A)) +3 =3
5. CA2.* (6) 3 +(A +( -A)) =3

. .AI.,A (1) A +( -A) =0
Z.._.9_ 3 (2) 3+0=3

1. .AE.,3 (3) (A+(A))+3=0+3
3. . .CA3.* (4) (A+(A))+3=3+0
4. 2. .RE1.* (5) (A +(- A)) +3 =3
5. . .CA2.* (6) 3+(A+(-A))=3

41_Z 419- 3 (1) 3+0=3 C9F
. . .AI.,A (2) A +( -A) =0

2. . CE1.* (3) 0= A +( -A)
1. 3. .RE1.* (4) 3 +(A +( -A)) =3

. .AI.,A (1) A +( -A) =0 D
. . Z.-..9-1 (2) 3+0=3

1. .CS1.* (3) 0=A+(-A)
2. 3. .RE1.* (4) 3 +(A +( -A)) =3

.AI.,A (1) A+(A)=0
1. AE.93 (2) (A+(A))+3=0+3
2. CA2.* (3) 3 +(A +(- A)) =O +3

.Z.,3 (4) 3+0=3
4. .CA1.* (5) 0+3=3
3. 5. .RE1.* (6) 3+(A+(A))=3

. AI___,__ A (1) A+(-A)=0 G
1. .AE.,3 (2) (A+(A))+3=0+3
2. CA1.* (3) ((A)+A)+3=0+3
3. . CA3,* (4) ((A)+A)+3=3+0
4. . .CA1.* (5) (A+(A))+3=3+0
5. CA2.* (6) 3 +(A +( A)) =3 +0

1 Z93 (7) 3+0=3
6. 7. RE1.* (8) 3 +(A +( -A)) =3

.AI.,A (1) A4( A)=0
1. .AE.,3 (2) (A+(A))+3=0+3

.Z.93 (3) 3+0=3
3. .CA1.* (4) 0+3=3
2. 4. .RE1.* (5) (A +(- A)) +3 =3
5. . .CA2.* (6) 3 +(A +( -A)) =3

32



28

.

.

1. .

.AI.,A

.Z.93

.AE.,3

TABLE 3.3 = THIRD PARTITION

A,H(1) A+(A)=0
(2) 3+0=3
(3) (A+(A))+3=0+3

2. . .CA1.* (4) 0+3=3
3. 4. .RE1.* (5) (A+(A))+3=3
5. . .CA2.* (6) 3 +(A +( -A)) =3

. . .AI.,A (1) A+(.4) =0
.Z.,3 (2) 3+0=3

1. . .AE.,3 (3) (A+(.-.A))+3=0+3
3. . .CA3.* (4) (A+HO)+3=3+0
4. 2. .RE1.* (5) (A+(A))+3=3
5. . .CA2.* (6) 3+(A+(A))=3

.Z.93 (1) 3+0=3 C,F,D

.AI.,A (2) A+(A)=0
2. . .CE1.* (3) o =A +( -A)

1. 3. .RE1.* (4) 3 +(A +( -A)) =3

.AI.,A (1) A+(A)=0 E
1. . .AE.,3 (2) (A+(A))+3=0+3
2. . .CA2.* (3) 3 +(A +(- A)) =0 +3

.Z.93 (4) 3+0=3
4. 0 .CAI.* (5) 0+3=3
3. 5. Jai.* (6) 3+(A+(..4))=3

. . .AI.,A (1) A+( -A)=0 G
1. 0 .AE.,3 (2) (A +(- A)) +3 =0 +3
2. . .CA1.* (3) ((A)+A)+3=04.3
3. . .CA3.* (4) ((A)+A)+3=3+0
4. 0 .CA1.* (5) (A+(A))+3=3+0
5. . .CA2.* (6) 3+(A+('"-A))=3+0

. . Z 3._.9_ (7) 3+0=3
6. 7. .RE1.* (8) 3+(A+(A))=3
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AE AI

TABLE 3.4 THE FOURTH PARTITION

CA CE RE Z

1 1 2 1 1 A.,11,11,E

1 1 1 1 C,F,D

1 1 4 1 1

TABLE 3.5 THE FIFTH PARTITION

AE AI CA CE RE Z

X X X X X A,H,B,E,G

X X X X C,F,D
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CHAPTER FOUR

Since one objective of the logic program is to develop
flexibility in the student's approach to the construction
of proofs, it is desirable to avoid the inclusion of
derivation problems which encourage stereotyped proof
behavior. For the future development of this curriculum
(and similar curricula), it would be useful to know how the
attributes of derivation problems affect the degree of
diversity found in proof behavior. The analysis described
below is designed to identify those characteristics of
derivation problems which best predict the amount of
variation found in a sample of proofs for the problems.
For each problem in the curriculum and for each set of
criteria, student proofs were classified into equivalence
classes. The number of different classes occurring for a
particular problem was used as a measure of variability of
student proofs for the problem.

After the sample of proofs had been partitioned, the
relationship between the number of classes per problem and
the structural attributes of the problems was investigated
using multiple linear regression.

Since linear regression is a commonly used technique,
the details of this method will not be included here. A
discussion of the way in which regression analysis was used
in this study and of the assumptions involved in using
regression is found in section 4.5. The model assumed in
all of the analyses is linear:

Y= a * X + ... + a * X + e
j 1 1,j n n,j j

where Y(j) is the value of the dependent variable for the
j-th problem, X(i,j) is the value of the i-th independent
variable for the j-th partition, the a(i) are constants,
and e(j) is the error term for the j-th problem.

For each of the five measures of variation, a separate
regression analysis was run, with the number of classes per
problem as the dependent variable. The independent
variables used are similar to those used in a previous
study of the Stanford Logic- algebra curriculum (Moloney,
1971), and these variables are discussed in section 4.4.
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4.2 THE SAMPLE OF DATA

During the summer quarter of 1970, the
Logic-Instructional system was used as an integral part of
the introductory logic course (Philosophy 157) at .Stanford
University. The students were proctored during their
sessions at the computer terminals by the philosophy
graduate students who gave the lectures in the course. The
course consisted of two hours of traditional classroom
instruction each week in addition to the time spent working
at the computer terminals.

The LIS curriculum emphasizes the construction of
formal proofs, and it is the behavior of students in
constructing such proofs that is examined in this
dissertation. Four of the 27 students who enrolled in this
course failed to complete some parts of the curriculum
included in this study, and these students have been
dropped from the analysis.

The fact that approximately fifteen percent of the
original sample were dropped because they failed to
complete a substantial part of the curriculum raises the
possibility that the results of this study are biased by
the selection of the more successful students. If we
assume that there is no interaction effect
(student-problem), the elimination of the data for these
students would tend to affect the results for all problems
in the same way, but would not bias a comparison between
problems. Moreover, the inclusion of proofs by students
who did only part of the curriculum would introduce bias
into a comparison between problems, because the results for
some problems would be affectd by these students while
others would not. So, it is necessary to drop these
students and accept the possibility of bias arising from
selection.

A similar problem of non-random selection arises when
the full set of 27 students is considered, since these
students selected themselves for this study by deciding to
enroll fo Philosophy 157 in the Summer of 1970. The extent
to which the findings of this study can be generalized to
other curricula and other student populations will depend
on the extent to which the tasks and the population in this
study are representative of the target tasks and
population.

Even for the 23 students who completed the part of the
curriculum included in this study, some data were lost
because of machine failure; this problem will be discussed
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in the next section. A relatively complete set of data is
available from these students for the problems in lessons
405 to 415, and it is the 127 proof problems in these
lessons that are considered in the analysis.

4.3 DEPENDENT VARIABLES (MEASURES OF VARIABILITY)

In the analysis reported in Chapters V and VI,
stepwise regression was used to relate five measures of
variation in the sample of proofs to 17 variables that
characterize the nature of the problem. A separate
regression analysis is presented for each of the five
measures of variation. In this section, the dependent
variables (measures of variation) are discussed, and in the
next section the independent variables are discussed.

For each of the problems under consideration there are
approximately 23 proofs in the sample, and the same 23
students are used for all problems. The five sets of
equivalence criteria defined in Chapter III generate a
nested sequence of five partitions on the sample of proofs
for each problem. The first dependent variable, Cl, is
defined to be the number of classes under the first
partition. The variables, C2 to C5, are defined to be the
number of classes under the second to the fifth partitions
respectively. The full set of proofs for any problem
generates a single value for each of the five dependent
variables, the number of classes of proofs for the five
partitions.

Even for those students who completed the lessons of
the curriculum included in this study, there was some loss
of data due to machine failure, and the data lost in this
way cannot be recovered. Since the machine failures that
cause this type of data loss are independent of the
students' behavior, the loss is assumed to be random.

If no data had been lost, the sample of proofs for the
23 students and 127 problems in this study would consist of
2,921 proofs. Out of this number, 51 proofs were lost
because of machine failure. Although the percentage of
missing proofs is quite small (1.7 percent), this loss of
data could be a serious problem.

The definitions of the dependent variables make it
difficult to deal with the poblem of missing data. Failure
to include the proofs of one or more students cannot
increase the number of classes found, and can decrease this
number. Missing data, therefore, introduces a bias toward
lower values for all five dependent variables on the
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problems with an incomplete sample of proofs. It should be
emphasized that this bias results from the nature of the
dependent variables, and exists even though the loss of
data is random.

There are 89 problems with no missing proofs, 28
problems with one proof missing, eight problems with two
missing proofs, one problem with three missing proofs, and
one problem with four missing proofs. The two problems
with more than two missing proofs were not used in the
analysis that follows, and the results for the other 125
problems were modified to correct for the missing proofs.

In order to correct for the missing data, some
assumptions must be made about the functional relationship
between the number of classes in the sample of proofs and
the total number of proofs in the sample. Using the
relationship assumed, the number of classes in a sample of
21 or 22 proofs can then be extrapolated to a hypothetical
sample cf 23 proofs.

The nature of the dependent measures being used in
this research implies that they are monotonically
nondecreasing functions of the number of problems in the
sample because the inclusion of another proof in the set
being partitioned cannot decrease the number of subsets
del:ined by the partition but can increase this number by
one. Therefore, the desired functional relationship must
have a positive slope.

As the number of proofs that have been partitioned
increases, the probability that an additional proof would
specify a new class (not fall into a class already
specified) decreases. So, an accepable candidate for the
functional relationship between thp number of classes and
the number of proofs should have a negative second
derivative.

Examination of the set of student proofs for a
representative sample of problems indicated that the
relationship between the number of classes in a random
subset of proofs and the number of proofs in the subset is
approximated by the following formula:

B
CL = A*(SL) (1)

Where SL is the number of problems in the subset, CL is the
number of classes, and A and B are constants that depend on
the problem. For A positive and B between zero and one,
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this function meets both of the criteria specified above.
Since a sample of one proof will always have one class, A
is equal to 16 and (1) formula reduces to:

B
CL = (SL) (2)

The value of B for any problem can be estimated from the
number of classes in the available set of proofs for the
problem. Taking the logarithm of both sides of (2) gives:

ln(CL) = B * ln(SL) (3)

and B is then given by:

ln(CL)
B= ------

ln(SL)
(4)

Since the actual values of CL and SL are available for each
problem, an estimate of B for each problem can be obtained
using (4). The predicted value for a full set of 23 proofs
can then be calculated from formula (2).

Using this technique, tables of the predicted values
of CL for the possible range of the observed values of CL
have been computed, and are included in Tables 1 and 2.
Since the observed values of the dependent variables
(number of classes of proofs) are integers, the corrected
values for these variables are rounded to integers. The
final correction criteria are listed in Table 3.

As a partial check on the impact of this correction
procedure on the final results, the analyses to be
discussed in Chapter V were also run without the eight
problems that are missing two proofs. There were no major
changes in the results when this was done. The corrected
values for the dependent variables are used in all of the
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analyses reported in this paper

4.4 1- INDEPENDENT VARIABLES

The set of independent variables used in this study is
very similar to the set of variables used by James Moloney
in a previous study of the same curriculum (Moloney, 1971).
A list of the variables used in the present study is
included as Table 4.4.

The first five variables listed in Table 4.4 quantify
various types of structural complexity that can appear in
the problem statements. Since these variables do not play
a very prominent role in the analysis that follows and
since the definitions for these variables are clear, they
will not be discussed further here. In the remainder of
this work, these variables will be called the
problem-structure variables'.

S13(AV RE), S17(R INF), S18(AV TH), S19(AV AX),
S20(TOT R), S21 (PSLI) AND S22(POSIT) are all defined in
terms of the problem's position in the curriculum. S13(AV
RL1) is a 0-1 variable and indicates whether the problem
appears before (S13=0) or after (S13=1), the introduction
of Replace Equals. S17, S18, and S19 are counts of the
numbers of rules of inference, theorems, and axioms that
are available when the problem is reached in the
curriculum. S20(TOT R) measures the total number of rules
available when the problem is encountered, and is equal to
the sum of S17, S18, and S19. S22(POSIT) is defined as the
ordinal position of the particular problem in the sequence
of problems considered in this study; this variable is
included to check for any general order effect in the
curriculum. These variables are referred to as the
'rule-position variables'.

The last group of variables to be considered are those
that Moloney calls the 'standard proof variables'; the
variables in this group are S11(RE), S12(CP), S14(AXIOM),
S15(THERM), and S16(STEPS). The values of the standard
proof variables for a problem are defined in terms of a
standard' proof for the problem. The standard proofs used
in this study are those constructed by Moloney; the same
set of problems were done independently by the present
author and no changes were found to be necessary. The
criteria used in constructing these proofs are given by
Moloney:
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Several criteria were used by the author in
generating the standard proofs. First, the
author worked through the entire set of problems
included in this study two times. The proofs
generated the second time through are used as
standard. An attempt was made to construct
proofs with a minimal number of lines. Also,
within the constraint of producing a minimal
proof, an attempt was made to use rules and
theorems most recently introduced, wherever
possible. It is the judgement of the author that
the great majority of the proofs produced are
minimal in the sense of containing the least
possible number of lines.

Since it is the standard proof variables that dominate the
discussion in Chapters V and VI, some further discussion of
these variables is appropriate.

S16(STEPS) is just the number of steps in the standard
proof, and functions as a simple measure of the length of
the problem. The types of steps that appear in the standard
proof has no effect on this variable.

S11(RE) is the number of occurrences of the rule,
Replace Equals, in the standard proof. Replace Equals is an
important rule in the algebra part of the curriculum because
it permits the student to replace any expression(A) in a
formula by an expression(B) that has been shown to be equal
to expression(A). This allows the student to develop parts
of an equation independently and then to combine these
partial results into a single formula, thus it provides a
mechanism for the use of subsidiary derivations. The
problems included in this study are all drawn from the part
of the curriculum dealing with algebra.

S14(AXIOM) and S15(THERM) count the number of
occurrences in the standard proof of axioms and theorems
respectively. The use of any of the five axioms or six
theorems is counted as an occurrence; the axioms (or
theorems) have equal weight and no distinction is made
between them. If an axiom (or theorem) is used more than
once, each application is counted as an occurrence. If the
standard proof for a problem uses a particular axiom as the
rule in two separate steps, another axiom in a third step,
and none of the remaining steps use axioms, then the value
of S14 for the problem would be three.
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4.5 REGRESSION ANALYSIS

Since regression analysis is a standard technique in
educational research, the statistical theory will not be
developed here; the way in which regression is to be used in
this study and the assumptions made in interpreting Fratios
in regression analysis will be discussed.

The research reported here is exploratory. Its primary
aim is to determine those quantifiable characteristics of
proof problems in algebra that account for the amount of
variation found in a sample of proofs for these problems.
No attempt is made to test a preconceived hypbthesis, and
little attention is given to the coefficients of the linear
equations that result from the regression analyses.

The analyses reported in Chapters V and VI examine in
great detail the relationships found in the data. The
emphasis is on determining how the variation in the sample
of proofs is related to the features of the proof problems
defined by the independent variables. The use of five
different measures of variability makes it possible to
examine how the relationship between variability and problem
type changes as a function of the kind of variability
measured.

If the Fratios that appear in the results of the
regression analyses are to be considered, the validity of
the assumptions that underlie the usual interpretation of
these Fratios should be examined. The model being used
here is a simple linear model and the assumptions are that
the errors are independently and normally distributed with
zero mean and constant variance. For the analyses discussed
in Chapter V (using the full set of problems), there is
clear indication that the assumption of homogeneity of
variance is violated. The variance seems to be an
increasing function of the predicted value of Cl. Attempts
to eliminate this nonhomogeneity by transforming the
observed values of Cl failed.

Among the plots of residuals against the independent
variables, the strongest indication of this lack of
homogeneity of variance is found for S22(POSIT); there is an
abrupt increase in variance just after the introduction of
the rule, Replace Equals. This discontinuity seems to be a
property of the curriculum and not a function of the scale
chosen for the dependent variable. It is unlikely that any
continuous transformation (change of scale) for the
dependent variable will eliminate the nonhomogeneity of
variance.

42.



a.

ti

38

However, there is no serious violation of homogeneity
of variance if only the problems that appear after the
introduction of RE are considered. In Chapter VI, the
analysis described in this chapter will be repeated, using
only the problems that appear after the introduction of RE
and that do not have any axioms.
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TABLE 4.1

PROJECTED NUMBER OF CLASSES FOR 23 STUDENTS
WHEN 21 SOLUTIONS ARE ACTUALLY CLASSIFIED

THE MODEL USED IS GIVEN_BY:

CL = A #(SL)

WHERE CL IS THE NUMBER OF CLASSES
SL IS THE NUMBER OF SOLUTIONS

OBSERVED CORRECTEDAlm.
1.00000
2.00000
3.00000
4.00000.,
5.00000
6.00000,
7.00000'
8.00000
9.0000(Y

1.00000
2.04186
3.10012
4.16917
5.24633
6.32999
7.41908':
8.51285'.
9.61072

10.00000 .:.' 10.71225.:
11.00000';'' 11.81706
12.00000 12.92492
13.00000 14,03552
14.00000 15.14868. '

15.00000' 16.26423'Y'\'
16.00000'Z' 17.38200-Y.
17.00000 18.501#C
18.00000 19.62309'
19.00000 20.74739
20.00000 21.8728
21.00000 23.00000=-"

ti

EST-B IS THE

EST -B#
-

.00000

.22767

.36085

.45534'

.52863

.58852

.63915

.68301

.72170

.75630

.78761

.81619

.84248' "'I'

. 86682

. 88946"-C.0

.9106ef-W -

.93050 "I'

.94937

.96713

.98397
1.00000

ESTIMATED VALUE EOF B

44
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TABLE 4.2

PROJECTED NUMBER OF CLASSES FOR 23 STUDENTS
WHEN 22 SOLUTIONS ARE ACTUALLY CLASSIFIED

THE MODEL USED IS GIVEN BY:

B
CL = A*(SL)

WHERE CL IS THE NUMBER OF CLASSES
SL IS THE NUMBER OF SOLUTIONS

OBSERVED CORRECTED EST B*

1.00000 1.00000 .00000

2.00000 2.02004 .22424
3.00000 3.04777 .35542
4.00000 4.08054 .44849

5.00000 5.11707 .52068
6.00000 6.15661 .57966
7.00000 7.19865 .62953
8.00000 8.24285 .67273

9.00000 9.28892 .71084
10.00000 10.33667 .74492

11.00000 11.38594 .77576
12.00000 12.43657 .80391

13.00000 13.48847 *82980
14.00000 14.54154 .85378
15.00000 15.59568 .37610
16.00000 16.65084 .89698
17.00000 17.70695 .91659
18.00000 18.76395 .93508
19.00000 19.82180 .95257
20.00000 20.88045 .96917
21.00000 21.93986 .98495
22.00000 23.00000 1.00000

* EST -B IS THE ESTIMATED VALUE OF B



41

TABLE 4.3

FINAL CORRECTION CRITERIA FOR THE DEPENDENT VARIABLE

ONE MISSING PROOF

NUMBER OF CLASSES FOUND CHANGE

0 - 13 0
14 - 22 +1

TWO MISSING PROOFS

NUMBER OF CLASSES FOUND CHANGE

0 - 7 0
8 - 16 +1
17 - 21 +2
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TABLE 4.4

LIST OF INDEPENDENT VARIABLES

S6 (WORDS) NUMBER OF WORDS PER PROBLEM
S7 (SYMBL) NUMBER OF SYMBOLS IN THE FORMULA TO BE

DERIVED
S8 (LOGCN) NUMBER OF LOGICAL CONNECTIVES IN THE

FORMULA TO BE DERIVED
S9 (PAREN) DEPTH OF NESTING OF THE MOST DEEPLY

NESTED NESTED EXPRESSION IN THE FORMULA TO

S10
S11
S12

S13

S14
S15

(PREMS)
(RE)
(CP)

(AV RE)

(AXIOM)
(THERM)

BE PROVED
NUMBER OF PREMISES
THE NUMBER OF OCCURRENCES OF REPLACE EQUALS
THE NUMBER OF OCCURRENCES OF CONDITIONAL
PROOF (CP)
A 0-1 VARIABLE INDICATING THE
AVAILABILITY OF REPLACE EQUALS
THE NUMBER OF OCCURRENCE OF ANY AXIOM
THE NUMBER OF OCCURRENCES OF ANY THEOREM

S16 (STEPS) THE NUMBER OF STEPS IN THE STANDARD PROOF
S17 (R INF) THE NUMBER OF RULES OF INFERENCE AVAILABLE
S18 (AV TH) THE NUMBER OF THEOREMS AVAILABLE
S19 (AV AX) THE NUMBER OF AXIOMS AVAILABLE
S20 (TOT R) THE TOTAL NUMBER OF RULES AVAILABLE WHEN

THE PROBLEM IS DONE
S21 (PSLI) THE NUMBER OF PROBLEMS SINCE THE LAST

INTRODUCTION OF A RULE
S22 (POSIT) THE ORDINAL POSITION OF THE PROBLEM IN THE

PORTION OF THE CURRICULUM BEING STUDIED
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CHAPTER FIVE

In this chapter, the results of the regression
analyses for the full set of problems will be examined. A
separate regression analysis was run for each of the five
partitions discussed in chapter 3. For the first analysis,
the number of classes in the first partition of the proofs
for a problem is taken as the value of the dependent

7 variable, C1, for that problem. Separate dependent
variables (C2 - C5) are defined analogously for each of the
other four partitions, and the regression analyses using
these dependent variables are discussed in order. In each
case, the set of 17 independent variables described in
chapter 4 is used.

Since the nonhomogeneity of variance discussed in
chapter IV occurs for all five of the regression analyses
discussed in this chapter, the F-ratios computed in these
analyses will not be interpreted. The discussion here
emphasizes a detailed examination of the results and
ignores hypothesis testing considerations.

The means and standard deviations for the full set or
22 variables (5 dependent and 17 independent) are listed in
Table 5.1, and the correlation matrix is found in Table
5.2. Variables numbered from 1 to 5 are the dependent
variables, and variables numbered from 6 to 22 are the
independent variables.

Examination of Table 5.2 indicates a number of
interesting trends. The first five columns contain the
correlations of the five dependent variables with each
other. All of these correlations are high (greater than
(0.69), and the partitions closest in the sequence from one
to five have the highest correlations.

The remaining entries in the first five rows are the
correlations between the five dependent variables and the
17 independent varibles. Many of the correlations are
quite high; the largest is 0.85 between C2 and S11(RE).
Variable, S11, also has large correlations with the other
four dependent variables, and the magnitudes of these
correlations decrease monotonically as we go from C2 to C5.

Another independent variable, S16(STEPS), also has
high correlations with the dependent variables, and these
correlations also decrease monotonically from C2 to C5.
S11 and S16 are both relatively simple measures of the



structural complexity of the standard proof for a problem.
S16 is the number of steps in the standard proof, while S11
is the number of occurrences of the rule, RE, in the
standard proof. The correlation' between these two
variables is 0.79.

S15(THERM) which is also a standard proof: variable,
displays the opposite pattern; its correlation with the
first dependent variable is relatively small (0.33) but
increases rapidly from C2 to C5. The correlation of S15
with C5 is 0.68, and is larger than that for any of the
other independent variables.

In Figure 5.1, the correlations .of S11(RE),
S16(STEPS), and S15(THERM) with the five dependent
variables are plotted against the ordinal number of the
dependent variable (or equivalently, against the ordinal
number of the partitions that define the dependent
variables). The correlations of S11 and S16 decrease most
rapidly as the definition of the dependent variable changes
from the third to the fifth partition, while the
correlation of S15 with the dependent variable increases
most rapidly from the third to the fifth partition. It
should be noted that the fourth and fifth partitions are
the only partitions that do not depend, at all, on the
order of the steps in a proof; they depend only on the
rules that are used in the proof.

Variables S13(AV RE), S17(R INF), S18(AV TH),
S19(AV AX), S20(TOT R), and S22(POSIT) also have
substantial correlations with the dependent variables. The
pairwise correlations between these variables are generally
high, and all are highly correlated (> 0.85) with S22. In
the discussion that follows, these variables will be
referred to as the 'rule-position' variables.

The value of the position variable, S22, for a given
problem, is the ordinal position of the problem within the
total set being examined. All of the rule-position
variables are confounded with the position variable, hence
any contribution that they make to the variance accounted
for by the regression equation may be due to the ordering
of the problems within the curriculum.

The correlations for the remaining variables, called
'problem-structure variables', are relatively small, and
they will not be discussed in any detail. These variables
show the same trend as S11 and S16, but the correlations
are much smaller and the pattern is less regular.
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5.2 ANALYSIS BASED ON THE FIRST PARTITION

The first dependent variable to be considered is C1,the number of classes found in the sample when the first
partition is used to define the dependent variable. Theoutput from the steOwise regression program(BMDO2R) is
presented for the first four steps of the analysis in
Tables 5.3A,B,C,D.

In Table 5.3A, we see that S11(RE) is the first
variable to enter the equation. Sli accounts for 55
percent of the variance in C1. The table of partial
correlations that results after Sll has been partialed out
is worth examining carefully.

With S11(RE) partialled out, the correlation of
S16(STEPS) with C1 is only 0.31, having dropped from 0.72;
Sll accounts for most of the variance that could otherwisebe accounted for by S16. The correlation of S15(THERM)
with the dependent variable increases from 0.33 to 0.40.
This increase is partially explained by the low correlation
of S15 with Sll (0.06); Sll accounts for very little of the
variance that S15 is capable of predicting, while
eliminating much of the variance not accounted for by S15.S16(AV TH) also shows a slight increase, but the
correlations of the other ruleposition variables with C1
all decrease; Sll has a correlation of. 0.42 with
S22(POSIT), and is taking out some of the 'ruleposition'
variance. The correlations of the problemstructure
variables with the dependent variable increase slightly but
remain relatively small.

The second variable to enter the equation is
S22(POSIT), and the output for this step is found in Table
5.3B. The coefficient for S22 is positive, and the
coefficient for S11(RE) decreases slightly when S22 enters
the equation. The small magnitude of the coefficient for
S22 is due to the fact that the position variable has a
very wide range compared to the dependent variable.

S22(POSIT) is strongly correlated with the measures of
the complexity of the set of rules available for any of the
proof problems. It is not clear how much of the importance
of this variable is due to the availability of rules and
how much is due to the fact that curriculum writers tend to
introduce problems of increasing complexity as the
curriculum progresses(the position effect).

After the variance accounted for by S22(POSIT) has
been .partialed out, the correlations between C1 and all of
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the rule - position variables drop sharply. The correlations
of S15(THERM) and S14(AXIOM) with the dependent variable
decrease slightly and the correlation of S16(STEPS) with C1
increases.

S16(STEPS) is the third variable to enter the equation
(Table 5.3C). The addition of S16 to the regression
equation causes the coefficient of S11(RE) to drop to about
one-third of its value at the previous step. S16 is now
accounting for a substantial part of the variance that had
previously been accounted for by S11.

At this point, the variance accounted for by S11(RE),
S16(STEPS), and most of the variance accounted for by the
rule-position variables has been partialed out. The
largest partial correlations are now found for the
variables, S6 to S10, which measure the complexity of the
problem statement. The next independent variable to enter
the equation is S7(SYMBL).

Rather than continue this step-by-step examination or
the results of regression analysis, the nature of the
relationship between the dependent variable and the first
three independent variables to enter the equation will be
examined more closely. The summary table for the analysis
is found in Figure 5.4.

A scatterplot of C1 against S11(RE) is presented in
Figure 5.2A. The relationship seems linear, but the
variance of C1 for any value of S11 is large, and there is
some indication that the variance is not independent of
S11. The plot of residuals (calculated after all the
variables have entered the equation) against S11 (Figure
5.2B) confirms these observations.

Examination of the plot of C1 against S22(POSIT) in
Figure 5.3A indicates a very different situation. For
values of S22 less than 50, both the mean and variance of
the distribution of C1 given S22 have relatively low values
and seem to be independent of S22. For values of S22 above
55, the mean and variance of the conditional distribution
of Cl, given S22, again appear to be independent of S22,
but both have much higher values than they did for the
problems with S22 less than 50. The plot of the
residuals(computed after all of the variables have entered
the equation) against S22 in Figure 5.3B does not contain
any evidence for a deoarture from linearity but does show
clearly the abrupt change in variance.
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A possible explanation of this phenomenon becomes
apparent when the curriculum is examined. Between the
problem :,22(POSIT) equal to 53 and the problem with
S22 equal to 54, Replace Equals (RE) is introduced. RE
permits the student to substitute for any expression(A), in
a formula, any other expression(B) that has been shown to
be equal to the expression(A). After the formula, A=B, has
been proved, A can be relaced by B in any formula within
the student's partial proof. This rule greatly increases
the student's flexibility in the in the order in which he
uses the available rules to construct a proof; the
partition that defines Cl is sensitive to these differences
in order (see Chapter II for a more detailed discussion of
RE).

Figures 5.4A,B contain the corresponding plots for
S16(STEPS). Again there is evidence for a basically linear
relationship and nonhomogeneity of variance. The
indication in Figure 5.4A of a possible departure from
linearity is not confirmed by Figure 5.4B. This impression
of nonlinearity is due to the six points in the upper
right corner of Figure 5,4A. All six of these problems are
long but straightforward; they do not use any of the more
difficult rules, and they do not involve the recognition of
any complicated sequence of the simpler rules; in spite of
their length, these problems are unusually simple.

Figure 5.5 is a frequency histogram for the residuals.
There is no evidence in this figure of any serious
departure from normality. Figure 5.6 is a scatterplot of
the residuals (after all of the independent variables have
entered the equation) against the predicted value of Cl; in
this figure, there is clear indication that the assumption
of homogeneity of variance has been violated. The variance
seems to be an increasing function of the predicted value
of Cl. Attempts to eliminate this nonhomogeneity
transforming the observed values of Cl failed; a
logarithmic transformation and a squareroot transformation
were both used without success.

Among the plots of residuals against the independent
variables, the strongest indication of this nonhomogeneity
of variance is found for S22 (see Figure 5.3B). The
variance in the residuals is not a smoothly varying
function as Figure 5.6 indicates, instead there is an
abrupt increase in variance just after the introduction of
the rule, Replace Equals. This discontinuity seems to be a
property of the curriculum and not a function of the scale
chosen for the dependent variable. It is unlikely that any
continuous transformation(change of scale) for the
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dependent variable would eliminate the nonhomogeneity of

variance.

If the analysis is restricted to the problems that
occur after the introduction of RE, the nonhomogeneity of
variance is eliminated. Analyses using this restricted set
of problems are reported in Chapter VI.

A full interpretation of these results must await the
discussion of the analyses for the other' four partitions,
but some preliminary observations. are appropriate here.

r:

The first six variables to enter! the regression
equation account for 80 percent of the total variance in
the dependent variable, and the first three; variablt:ts
account . for over 74 percent of, the variande. The simple
linear model that has been assumed fits the' data very well.

.c,::

S11(RE.). ;is the first variable to enters, the r equation,
and accourits;...for 55 percent. of the total, variance in the

dependent 'Yar table.. The correlation ( 0.72) of
S16(STEPS) with the dependent variable is almost as high as
that (0.75.):for :S:11,(RE), and the correlation; between these
two variables j:is 0.79. ,t seems that these two variables
are measuring similar:.-.propepties of the problems. Both can
be interpreted. as:. relatively ,,simple measures of the
complexity of the standard. proof for,.aproblem.

Together, S11 (RE) and S1E(-.6TEPS) account for almost 73
percent of the variance in the;-dependent variable. Since
the first partition is sensitiye to:Ininor variations in the
proofs, including changes in the order of the steps, it in
not surprising that simple..mea:Rures of k..comlexiy account
for most of the variance., in. (nutnberifof classes under the
first partition). When thetdppendent,;:variable is defined
in terms of the fourth and :tifth..partitions, which are not
senstive to minor variations An..itAheiproofero the predictive
power of S11(RE) and S16(STEPS) is greatly.diminished.

1

1

1

53 1
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5.3 - ANALYSIS BASED ON THE SECOND PARTITION

The pattern of results for the second partition (with
C2, the number of classes of proofs under the second
partition, as the dependent variable) parallels the first.
The initial correlations are roughly the same. The first
variable to enter is S11(RE). The pattern of partial
correlations that appears after S11 has been included in
the equation (see Table 5.5A) is very similar to that for
the first partition (see Table 5.3A). There is one notable
exception to this generalization. The correlation of
S22(POSIT) with the dependent variable drops more sharply
when S11 is partialled out than it did for the first
partition. As a result, S15(THERM) has the highest partial
correlation in Table 5.5A. The apparent importance of S15
is especially notable, because the first theorem is
introduced only after eighty percent of the problems
included in this study have been completed, and S15 has a
very small range with only three possible values, 0, 1, and
2. The inclusion of S15 at the second step is due in part
to the fact that its correlation with S11 is only 0.06.

The partial correlations after the introduction of $15
are shown in Table 5.58. The pattern that appears is very
similar to the pattern found after the introduction of S22
in the previous analysis. Since the correlation between
S15(THERM) and S22(POSIT) is 0.54, it is not surprising
that they have a similar effect on the partial correlations
in the two analyses. The third variable to enter (Table
5.5C) is S16(STEPS) and the fourth is S12(CP). The summary
table for this analysis is found in Table 5.6.

Figure 5.7 is a plst of the residuals against the the
predicted value of C2, and Figure 5.8 is a plot of the
observed values of C2 against S22(POSIT). The evidence for
nonhomogeneity of variance is even more pronounced than it
was in the previous analysis; the explanation is the same
as it was there.

The only diference between the first partition and
the second partition is that the unused steps in proofs are
not relevant under the second partition. Since the
correlation between C1(first partition) and C2 (second
partition) is 0.94 it is not surprising that the results
for this analysis are vary similar to the results for the
first partition.

The substitution of S15(THERM) for S22(POSIT) is worth
noting. The importance of S15 as a predictor of the
dependent variable increases consistently as the dependent
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variabl changes from the second to the fifth partition.

5.4 - ANALYSIS BASED ON THE THIRD PARTITION

Since the analysis for the third partition is very
similar to the two analyses already examined, the results
are only sketched. The correlation of S15(THERM) with the
dependent variable increases from 0.30 to 0.36 in changing
from the second to the third dependent variable. The
initial correlations for the rule-position variables are
larger than they were for the second partition. The
initial correlations of S11(RE) and S16(STEPS) with C3 are
smaller than they were for the second partition, but they
are still quite large.

S11 enters the equation first and has roughly the same
effect on the partial correlations as it did for the second
partition. S15(THERM) and S16(STEPS) are the second and
third variables to enter the equation. The fourth variable
included is S14(AXIOM). The first problem structure
variable is not introduced until step five, and contributes
only two percent to the total variance accounted for by the
regression equation. For reference, the results of this
analysis are included in Tables 5 7A,B,C and 5.8.

The problem of the nonhomogeneity' of variance is still
present and will not be discussed here. The interpretation
of this analysis will be postponed until the end of this
chapter where the overall pattern of the results will be
discussed.

5.5 - ANALYSIS BASED ON THE FOURTH PARTITION

For two proofs to be equivalent under the fourth
partition, they must have identical frequency distributions
over the set of available rules. In the regression
analysis with C4 as the dependent variable the general
pattern of the results changes. S20 (TOT R) is the first
independent variable to enter the equation. The value of
S20 for a problem is just the total number of rules,
including axioms and theorems, that are available when the
poblem appears in the curriculum. After the second
partition, the size of the initial correlation of the
dependent variable with S11(RE) and S16(STEPS) declines,
while the correlations of the dependent variable with
S15(THERM), S14(AXIOM), and the rule-position variables
increases. The rate of increase is highest for S15 (THERM)
but several of the rule-position variables had much larger
correlations with C1 and C2 than S15 , and some of these
still have larger correlations with the dependent variable,



After S20(TOT R) has entered the regression equation,
the partial correlations for all of the other rule-position
variables drop sharply (see Table 5.9A). The partial
correlation for S15 also decreases, but the decrease for
this variable is smaller than that for the other
rule-position variables.

The second variable included in the equation is
S11(RE). With the introduction of S11, the partial
correlation of S16(STEPS) drops dramatically, and the
partial correlation of S15 increases by over 50 percent
(see Table 5.9B).

The third variable to enter is S15 (Table 5.90, and
S14(AXIOM) is the fourth. A summary table for this
analysis is found in Table 5.10. The homogeneity of
variance assumption is again violated.

The fourth partition is the first of the five
partitions for which the order of the steps in a proof is
irrelevant, and it is the first partition for which S11(RE)
is not the first variable to enter the regression equation.
In changing from the third partition to the fourth, the
correlation of S11 withe the dependent variable drops from
0.78 to 0.59. Although S11 still has a prominent position
in the analysis, it does not dominate the results as it did
in the previous analyses.
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5.6 ANALYSIS BASED ON THE FIFTH PARTITION

In the analysis for the fifth partition, S15(THERM)
enters first. Its initial correlation with the dependent
variable is not much larger than the correlation for some
of the rule-position variables (S20, S22). The
correlations of S11 and S16 with the dependent variable are
almost as large as that for S15.

After S15 has been taken into account, the
correlations of S11 and S16 increase. The
correlations of the other rule- position variables
but remain relatively large.

partial
partial
decrease

The second and third variables added are S11 and
S14(AXIOM). The results for this analysis are found in
Tables 5.11A,B,C and Table 5.12.

Figure 5.9 contains the plot of C5 against S22(POSIT).
The variance in C5 for the first 50 problems is practically
zero; there are only four problems in this group with more
than one class in the sample of student proofs. After the
point in the curriculum where RE is introduced, there is
evidence for a systematic dependence of variance on problem
position Figure 5.10 contains a plot of residuals against
the predicted value of C5; there is again a strong
indication of nonhomogeneity of variance. It would seem
here that the nonhomogeneity has two components: the
complete lack of variance for the problems with values of
S22(POSIT) less than 50, and a gradual increase in variance
with increasing values of S22 for the remaining problems.

The initial correlation matrix (Table 5.2) and the
analyses display a clear pattern. As we proceed from C1 to
C5, the importance of S11(RE) and S16(STEPS) diminishes and
the importance of S15(THERM), S14(AXIOM), and the
rule-position variables increase. The remainder of the
discussion in this chapter will investigate these trends.

Figures 5.11A,B,C,D,E contain respectively the plots
of the dependent variables, C1 to C5, against S15(THERM).
In Figure 5.11A, there is relatively little indication of
any functional relationship between C1 and S15. The
impression that there is a relationship between the two
variables grows from one partition to the next.

Only three values (0,1, and 2) for S15 appear in the
data. There are 107 problems with S15 equal to zero, 11
problems with S15 equal to one, and 7 problems with S15
equal to two. In Figure 5.25A, the range of the
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conditional distribution of C1 given that S15 is equal to
zero is 22 (from 1 to 23), covering the entire possible
range for the dependent variables. The ranges for the
conditional distributions of C1 given that S15 equals one
or two are also large, but not as large as the range for
the problems that do not use theorems.

One implication of the nested character of the
partitions is that the number of classes for any problem is
a non-increasing function of the ordinal number of the
partition. The value of the dependent variable cannot
increase from any partition to the next, and can decrease
(unless it is already equal to one). This property of the
sets of classification criteria is reflected in the data;
the means of all three of the conditional distributions of
the dependent variable decrease as the dependent variable
changes from one partition to the next (Note that in
Figures 5.11A,B,C,D,E, the scale of the dependent variable
changes).

The relationship between the means of the three
conditional distributions does not change much from one
partition to the next. In all five plots, the mean of the
conditional distribution of the dependent variable, given
S15(THERM), increases as S15 increases. The relationship
seems to be nonlinear with a positive, increasing slope,
but the small number of problems with two theorems in their
standard proof makes this hypothesis quite unreliable. A
single additional problem with S15 equal to two, and with
lbw values for the dependent variables, would eliminate
this impression of nonlinearity.

The most significant change that occurs from one
partition to the next is the decrease in the variance of
the dependent variable when S15 equals zero. By the fifth
partition .(C5), the ranges of the three conditional
distributions are almost equal. For problems using
theorems, the number of classes is less sensitive to the
strictness of the definition of equivalence than for
problems not using theorems. The large amount of variation
that appears for some of the problems that do not use
theorems in their standard proofs rapidly disappears for
the progressively less strict sets of equivalence criteria.

Figures 5.12A,B,C,D,E, containing the plots of the
five dependent variables against S11(RE), indicate the
nature of these problems. A strong linear relationship
between C1 and Sll in evident in Figure 5.26A; in general,
problems with high values for Cl also have high values for
S11. In the progression to the least strict set of
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equivalence criteria (the fifth partition - C5), the value
of the dependent variable decreases for all of the
problems, but the decrease is greater for the problems with
high values for S11. In Figure 5.12B, with C2 as the
dependent variable, a strong linear relationship is still
apparent, but in Figure 5.12C this relationship has become
obscure. By the fifth partition, Figure 5.12E, the
existence of any linear relationship is not obvious.

An examination of the sample of proofs constructed for
the problems in the curriculum tends to confirm the
conclusions implicit in these results (specific examples
will be discussed in Chapter VII). Problems that require a
large number of steps (high values for S16) and involve
extensive use of RE (high values for S11) tend to have a
substantial number of superficial differences in the proofs
generated. Variation in the order in which the rules are
used is very common for these problems. The first two
partitions (C1 and C2) and to a lesser extent the third
partition, are sensitive to this type of variation, while
the fourth and fifth partitions are not.

Problems that require the use of theorems (S15) tend
to produce more basic variations in the proofs generated.
The theorems chosen and the rules used in conjunction with
the theorems differ from one student to another. All five
sets of classification criteria are sensitive to this type
of variation.
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TABLE 5.1

VARIABLE

MEANS AND STANDARD DEVIATIONS FOR FULL SET

MEAN STANDARD DEVIATION

CLAS1 1 8.80800 6.76053
CLAS2 2 5.84800 5.99201
CLAS3 3 5.00000 5.06092

I CLAS4 4 3.36000 3.39449
CLASS 5 2.89600 2.86757
WORDS 6 14.43200 7.30260
SYMBL 7 12.20000 6.72501
LOGCN 8 0.26400 0.46043
PAREN 9 0.84000 0.82696
PREMS 10 0.52000 0.84815
RE 11 0.74400 1.09915
CP 12 0.23200 0.42381
AV RE 13 0.58400 0.49488
AXIOM 14 0.27200 0.55903
THERM 15 0.20000 0.52363
STEPS 16 3.76800 2.56256
R INF 17 16.93600 2.15056
AV TH 18 0.68000 1.50054
AV AX 19 1.80000 2.18130
TOT R 20 19.41600 5.11352
PSLI 21 6.74400 5.20995
POSIT 22 64.24000 37.09847

1_
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CORRELATION

TABLE 5.2

4
0.806
0.820

5

0.709
0.694

MATRIX FOR FULL SET

VARIABLE
NUMBER 1

1 1.000
2

2

0.940
1.000

3

0.919
0.973

3 1.000 0.882 0.774
4 1.000 0.947
5 1.000

MATRIX CONTINUED

VARIABLE
NUMBER 6 7 8 9 10
1 0.256 0.189 -0.066 0.266 -0.171
2 0.157 0.097 -0.058 0.190 -0.091
3 0.189 0.131 -0.093 0.214 -0.128

4 0.122 0.030 -0.159 0.118 -0.180
5 0.090 -0.004 -0.211 0.105 -0.230
6 1.000 0.800 0.115 0.591 -0.344
7 1.000 0.215 0.776 -0.325
8 1.000 -0.164 0.059
9 1.000 -0.398
10 1.000

MATRIX CONTINUED

VARIABLE
NUMBER 11 12 13 14 15
1 0.745 -0.060 0.648 0.385 0.325
2 0.825 -0.069 0.577 0.299 0.305
3 0.776 -0.094 0.560 0.305 0.362
4 0.593 -0.137 0.546 0.335 0.558
5 0.447 -0.186 0.515 0.325 0.680
6 0.055 0.134 -0.026 0.030 -0.164
7 -0.034 0.230 -0.118 -0.032 -0.147
8 0.007 0.923 -0.116 -0.187 -0.221
9 0.043 -0.123 0.013 0.060 0.056

10 0.118 0.021 -0.115 -0.233 -0.200
11 1.000 0.025 0.574 0.219 0.076
12 1.000 -0.074 -0.166 -0.211
13 1.000 0.412 0.324
14 1.000 -0.022
15 1.000
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TABLE 5 . 2 CONTINUED

MATRIX CONTINUED

VARIABLE
NUMBER 16 17 18
1 0.717 0.609 0.315
2 0.791 0.525 0.254
3 0.731 0.537 0.295
4 0.495 0.560 0.487
5 0.333 0.547 0.603
6 0.199 0.093 -0.080
7 0.151 -0.003 - 0.245
8 0.285 -0.178 -0.227
9 0.146 0.126 -0.120

10 0.004 -0.357 -0.223
11 0.789 0.447 0.131
12 0.258 -0.187 -0.212
13 0.343 0.861 0.384
14 0.168 0.444 0.153
15 -0.013 0.370 0.760
16 1.000 0.252 0.016
17 1.000 0.438
18 1.000
19
20

MATRIX CONTINUED

VARIABLE
NUMBER 21 22
1 -0.045 0.616
2 -0.041 0.525
3 -0.060 0.548

1-
)

4
5

-0.152
-0.199

0.621
0.648

6 0.196 0.051
7 0.263 -0.094
8 0.361 -0.203
9 0.041 0.055

10 0.107 -0.338
11 0.035 0.417
12 0.312 -0.197
13 -0.170 0.852
14 -0.197 0.451
15 -0.291 0.542
16 0.116 0.232
17 -.0.096 0.942
18 -0.300 0.666
19 -0.385 0.896
20 -0.293 0.974
21 1.000 -0. 126
22 1.000

19 20
0.511 0.567
0.428 0.478
0.468 0.512
0.579 0.625
0.630 0.676
0.017 0.023

-0.170 -0.145
-0.308 -0.273
0.045 0.037

-0.366 -0.372
0.264 0.339
-0.290 -0.264
0.699 0.773
0.534 0.459
0.565 0.619
0.136 0.169
0.778 0.881
0.670 0.764
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FIGURE 5.1

CORRELATIONS BETWEEN DEPENDENT AND INDEPENDENT VARIABLES

AGAINST THE ORDINAL NUMBER OF THE DEPENDENT VARIABLE
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VARIABLE ENTERED
MULTIPLE R
STD. ERROR OF EST.
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TABLE 5.3A

STEP NUMBER 1 FOR C1

11

0.7454
4.5247

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE F-RA110

REGRESSION 1 3149.172 3149.172 153.818
RESIDUAL 123 2518.220 20.473

VARIABLES IN EQUATION: (CONSTANT= 5.39683 )

VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
RE 11 4.58491 0.36968 153.8182 (2)

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR. TOLERANCE F TO ENTER
CLAS2 2 0.86164 0.3186 351.6484 (1)
CLAS3 3 0.81121 0.3984 234.7856 (1)
CLAS4 4 0.67721 0.6479 103.3474 (1)
CLASS 5 0.63109 0.8003 80.7507 (1)
WORDS 6 0.32348 0.9970 14.2575 (2)
SYMBL 7 0.32289 0.9988 14.1999 (2)
LOGCN 8 -0.10773 0.9999 1.4326 (2)
PAREN 9 0.35043 0.9981 17.0792 (2)
PREMS 10 -0.39108 0.9861 22.0288 (2)
CP 12 -0.11810 0.9994 1.7257,(2)
AV RE 13 0.40453 0.6710 23.8705 (2)
AXIOM 14 0.34103 0.9519 16.0561 (2)
THERM 15 0.40457 0.9943 23.8768 (2)
STEPS 16 0.31366 0.3774 13.3124 (2)
R INF 17 0.46326 0.8004 33.3360 (2)
AV TH 18 0.32916 0.9829 14.8243 (2)
AV AX 19 0.48899 0.9301 38.3384 (2)
TOT R 20 0.50090 0.8850 40.8629 (2)
PSLI 21 -0.10685 0.9988 1.4090 (2)
POSIT 22 0.50386 0.8261 41.5112 (2)
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TABLE 5.3B

STEP NUMBER 2 FOR C1

VARIABLE ENTERED 22
MULTIPLE R 0.8176
STD. ERROR OF EST. 3.9244

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES

REGRESSION 2 3788.482
RESIDUAL 122 1878.910

VARIABLES IN
VARIABLE

EQUATION:
COEFFICIENT

MEAN SQUARE
1894.241

15.401

F -RATIO
122.995

(CONSTANT= 1.77608 )
STD. ERROR F TO REMOVE

RE 11

POSIT 22

VARIABLES NOT IN
VARIABLE

3.63703
0.06734

EQUATION:
PARTIAL CORR.

0.35277
0.01045

TOLERANCE

106.2927 (2)
41.5112 (2)

F TO ENTER
CLAS2 2 0.84628 0.2791 305.3467 (1)
CLAS3 3 0.77260 0.3376 179.1791 (1)
CLAS4 4 0.56538 0.4789 56.8495 (1)
CLASS 5 0.48513 0.5420 37.2435 (1)
WORDS 6 0.35670 0.9960 17.6399 (2)
SYMBL 7 0.42634 0.9912 26.8789 (2)
LOGCN 8 0.00735 0.9488 0.0065 (2)

PAREN 9 0.38235 0.9965 20.7176 (2)
PREMS 10 -0.22391 0.8041 6.3863 (2)
CP 12 -0.00345 0.9472 0.0014 (2)
AV RE 13 -0.02069 0.2165 0.0518 (2)
AXIOM 14 0.17291 0.7951 3.7292 (2)
THERM 15 0.16912 0.6787 3.5626 (2)
STEPS 16 0.47127 0.3661 34.5456 (2)
R INF 17 -0.01520 0.1095 0.0279 (2)
AV TH 18 -0.01999 0.5305 0.0484 (2)
AV AX 19 0.09758 0.1829 1.1632 (2)
TOT R 20 0.05289 0.0466 0.3394 (2)
PSLI 21 -0.03409 0.9750 0.1408 (2)
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TABLE 5.3C

STEP NUMBER 3 FOR C1

VARIABLE ENTERED
MULTIPLE R
STD. ERROR OF EST.

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE
3 4205.775 1401.925

121 1461.617 12.079

REGRESSION
RESIDUAL

VARIABLES IN
VARIABLE

16
0 8 615
3.47 56

EQUATION:
COEFFICIENT

F -RATIO
116.058

(CONSTANT= -1.57704 )
STD. ERROR F TO REnOVE

RE 11 1.32601
STEPS 16 1.18310
POSIT 22 0.07691

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR.

0.50221
0.20129
0.00940

TOLERANCE

6.9716 (2)
34.5456 (2)
66.9611 (2)

F TO ENTER
CLAS2 2 0.79913 0.2082 212.0490 (1)
CLASS 3 0.71970 0.2802 128.9437 (1)
CLAS4 4 0.55845 0.4651 54.3861 (1)
CLASS 5 0.51 081 0.5389 42.3653 (1)
WORDS 6 0.27328 0.9269 9.6852 (2)
SYMBL 7 0.34745 0.9132 16.4753 (2)
LOGCN 8 -0.24721 0.7712 7.8108 (2)
PAREN 9 0.33706 0.9596 15.3808 (2)
PREMS 10 -0.12535 0.7547 1.9155 (2)
CP 12 -0.21 27 5 0.8219 5.6890 (2)
AV RE 13 0.04882 0.2126 0.2867 (2)
AXIOM 14 0.15938 0.791 3 3.1275 (2)
THERM 15 0.20591 0.6782 5.3130 (2)
R INF 17 0.0152 5 0.1091 0.0279 (2)
AV TH 18 -0.00 39 0 0.5298 0.0018 (2)
AV AX 19 0.07102 0.1819 0.6083 (2)
TOT R 20 0.06583 0.0466 0.5223 (2)
PSLI 21 -0.10357 0.9609 1.3011 (2)
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VARIABLE ENTERED
MULTIPLE R
STD. ERROR OF EST.,
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TABLE 5,3D

STEP NUMBER 4 FOR C1

7

0.8793
3.2726

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE

REGRESSION 4 4382.222 1095.556
RESIDUAL 120 1285.170 10.710

F-RATIO
102.295

VARIABLES IN
VARIABLE

EQUATION:
COEFFICIENT

(CONSTANT= -3.40709 )

STD. ERROR F TO REMOVE
SYMBL 7 0.18562 0.04573 16.4753 (2)
RE 1.75889 0.48475 13.1654 (2)
STEPS 16 0.95828 0.19746 23.5509 (2)
POSIT 22 0.07832 0.00886 78.2004 (2)

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR. TOLERANCE F TO ENTER
CLAS2 2 0.80379 0.2030 217.2378 (1)
CLAS3 3 0.70265 0.2663 116.0447 (1)
CLAS4 4 0.56703 0.4620 56.3933 (1)
CLASS 5 0.52462 0.5372 45.1883 (1)
WORDS 6 -0.00504 0.3414 0.0030 (2)
LOGCN 8 -0.29910 0.7646 11.6915 (2)
PAREN 9 0.11373 0.3805 1.5593 (2)
PREMS 10 -0.00155 0.6586 0.0003 (2)
CP 12 -0.27704 0.8082 9.8928 (2)
AV RE 13 0.07042 0.2121 0.5930 (2)
AXIOM 14 0.17299 0.7912 3.6708 (2)
THERM 15 0.26313 0.6695 8.8519 (2)
R INF 17 -0.09389 0.1002 1.0583 (2)
AV TH 18 0.09157 0.4966 1.0064 (2)
AV AX 19 0.16595 0.1721 3.3700 (2)
TOT R 20 0.17178 0.0435 3.6184 (2)
PSLI 21 -0.20193 0.9092 5.0587 (2)
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TABLE 5.4

SUMMARY TABLE FOR C1 ON THE FULL SET OF PROBLEMS

STEP VARIABLE MULTIPLE INCREASE F VALUENUM ENT REM R RSQ IN RSQ FOR DEL
LAST REG
COEFFICN TS

1 RE 11 0.74540 0.55562 0.55562 153.8182 1.187112 POSIT 22 0.81760 0.66847 0.11285 41.5112 -0.089123 STEPS 16 0.86150 0.74218 0.07371 34.5456 1.222774 SYMBL 7 0.87930 0.77317 0.03099 16.4753 0.243905 LOGCN 8 0.89080 0.79352 0.02036 11.6915 -1.300556 THERM 15 0.89760 0.80569 0.01216 7.4174 3.951437 AXIOM 14 0.90450 0.81812 0.01243 7.9252 1.951108 AV RE 13 0.90890 0.82610 0.00798 5.3051 4.619109 PAREN 9 0.91100 0.82992 0.00382 2.6769 -0.9965310 WORDS 6 0.91180 0.83138 0.00146 0.9327 0.0835911 CP 12 0.91260 0.83284 0.00146 0.9691 -1.5666112 PSLI 21 0.91300 0.83357 0.00073 0.5098 0.1195213 R INF 17 0.91330 0.83412 0.00055 0.4201 0.3358914 TOT R 20 0.91350 0.83448 0.00037 0.1295 0.4077415 PREMS 10 0.91350 0.83448 0.00000 0.1035 -0.1426616 AV TH 18 0.91360 0.83466 0.00018 0.0532 -0.11983
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FIGURE 5.2A C1 VS S11(RE)
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FIGURE 5.2B C1 RESIDUALS(Y -AXIS) VS S11 (X- AXIS),

-6.85 .1

1.

-5.54

6.1

2

1

1.
-4.23 .2

.1 1

1

.3 1 1.
-2.92 .1 3 1

.1 1 .

.2 2

.3

.2 1 1

-1.61 .6
.2 1

.1

.4 1

.5 1

-0.30 .3
.2
.3 1 1 1
.3 1.
.4 2 1 1

1.01 .2
.5 1 1

.3 1.
1

.1 2
2.32 .1 1 1

.3 1 1 1

1

el 1

.1
3.63 2 1 .

.1 1

1

1 1 ..2 2
4.94 .2

1

1

0.000 0.816 1.633 2.449 3.265 4.062



66

FIGURE 5.3A C1 VS S22(POSIT)
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FIGURE 5.3B C1 RESIDUALS(Y-AXIS) VS S22 (X-AXIS)
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FIGURE 5.4A C1 VS S16( STEPS )
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FIGURE 5.4B C1 RESIDUALS(Y-AXIS) VS S16 (X-AXIS)
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FIGURE 5.5 RESIDUALS FOR C1 ON FULL SET
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FIGURE 5.6 RESIDUALS(Y -AXIS) VS COMPUTED C1 (k--AXIS)

-0.530 5.316 11.163 17.010 22.856 28.703

-6.85 1

1.

554
1 1

1

1

1

..-4.23 2
1 1

. 1 .

. 2 11 1 .

....2.92 . 2 1 1 1 .

. 1 1 .

12 1 .

1 1 1 .
2 1 1 .

-1.61 1 2 1 11 .

. 1 1 1 .
1 .

. 2 11 1 .
2 1 2 1 .

-0.30. 1 1 1 .

. 1 1
.

11 1 1 1 1 .
. 1 1 1 1 .
. 11 1 1 1 1 1 1 .

1.01 . 1 1

.1 111 1 1 1

.1 11 1

1 .
1 1 1

2.32 . 1 1 1 6

. 1 1 1 1 1 1 .

. 1

1 1 .

1

3.63. 1 1 1

1 1 .

. 1 .

. 1 1 .

. 1 1 11
4.94. 1 1

.
.

. 1 .

.
.

. 1 .

-0.530 5.316 11.163 17.010 22.856 28.703

76



VARIABLE ENTERED
MULTIPLE R
STD. ERROR OF EST.
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TABLE 5.5A

STEP NUMBER 1 FOR C2

11

0.8255
3.3960

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES

REGRESSION 1 3033.612
RESIDUAL 123 1418.500

MEAN SQUARE F -RATIO
3033.612 263.048

11.533

VARIABLES IN EQUATION: (CONSTANT= 2.50000 )

VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
RE 11 4.50000

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR.

0.27746

TOLERANCE

263.0485 (2)

F TO ENTER
CLAS1 1 0.86164 0.4443 351.6484 (1)
CLAS3 3 0.93263 0.3984 815.0219 (1)
CLAS4 4 0.72735 0.6479 137.0459 (1)
CLASS 5 0.64321 0.8003 86.0897 (1)
WORDS 6 0.19866 0.9970 5.0125 (2)
SYMBL 7 0.22315 0.9988 6.3933 (2)
LOGCN 8 -0.11393 0.9999 1.6044 (2)
PAREN 9 0.27417 0.9981 9.9159 (2)
PREMS 10 -0.33548 0.9861 15.4720 (2)
CP 12 -0.15758 0.9994 3.1065 (2)
AV RE 13 0.22351 0.6710 6.4153 (2)
AXIOM 14 0.21421 0.9519 5.8670 (2)
THERM 15 0.43154 0.9943 27.9194 (2)
STEPS 16 0.40362 0.3774 23.7427 (2)
R INF 17 0.30920 0.8004 12.8968 (2)
AV TH 18 0.26045 0.9829 8.8783 (2)
AV AX 19 0.38593 0.9301 21.3512 (2)
TOT R 20 0.37298 0.8850 19.7140 (2)
PSLI 21 -0.12433 0.9988 1.9155 (2)
POSIT 22 0.35226 0.8261 17.2837 (2)
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VARIABLE ENTERED
MULTIPLE R
STD. ERROR OF EST.
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TABLE 5.5B

STEP NUMBER 2 FOR C2

15
0.8607
3.0760

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES

REGRESSION 2 3297.779
RESIDUAL 122 1154.333

VARIABLES IN EQUATION:
VARIABLE COEFFICIENT
RE 11 4.39924
THERM 15 2.79542

VARIABLES NOT
VARIABLE

MEAN SQUARE F-RATIO
1648.889 174.269

9.462

(CONSTANT= 2.01589 )
STD. ERROR F TO REMOVE
0.25204 304.6665 (2)
0.52905 27.9194 (2)

IN EQUATION:
PARTIAL'CORR, TOLERANCE F TO ENTER

CLAS1 1 0.83282 0.3716 273.8946 (1)

CLAS3 3 0.91680 0.3058 637.7576 (1)

CLAS4 4 0.65084 0.3831 88.9216 (1)

CLASS 5 0.53160 0.3804 47.6637 (1)

WORDS 6 0.30545 0.9685 12.4510 (2)
SYMBL 7 0.31983 0.9780 13.7872 (2)

LOGCN 8 -0.02064 0.9507 0.0516 (2)

PAREN 9 0.27906 0.9953 10.2185 (2)
PREMS 10 -0.27730 0.9423 10.0796 (2)

CP 12 -0.07435 0.9539 0.6726 (2)

AV RE 13 0.08903 0.5920 0.9668 (2)
AXIOM 14 0.25665 0.9504 8.5322 (2)

STEPS 16 0.50798 0.3721 42.0828 (2)

R INF 17 0.17564 0.6870 -3.8516 (2)
AV TH 18 -0.11355 0.4177 1.5806 (2)

AV AX 19 0.19027 0.6315 4.5451 (2)

TOT R 20 0.14303 0.5307 2.5270 (2)

PSLI 21 0.00352 0.9118 0.0015 (2)

POSIT 22 0.14642 0.5638 2.6509 (2)



VARIABLE ENTERED
MULTIPLE R
STD. ERROR OF EST.
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TABLE 5.5C

STEP NUMBER 3 FOR C2

16
0.8987
2.6605

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES

REGRESSION 3 3595.649
RESIDUAL 121 856.463

VARIABLES IN
VARIABLE

EQUATION:
COEFFICIENT

MEAN SQUARE F-RATIO
1198.550 169.330

7.078

(CONSTANT= -0.42479 )
STD. ERROR F TO REMOVERE 11 2.56248

THERM 15 3.15129
STEPS 16 0.99152

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR.

0.35733
0.46086
0.15284

TOLERANCE

51.4245 (2)
46.7565 (2)
42.0828 (2)

F TO ENTER
CLAS1 1 0.79795 0.3126 210(3244 (1)CLAS3 3 0.90031 0.2524 513.4358 (1)CLAS4 4 0.66405 0.3717 94.6522 (1)CLASS 5 0.57592 0.3784 59.5561 (1)WORDS 6 0.21999 0.9131 6.1030 (2)SYMBL 7 0.21586 0.9024 5.8648 (2)
LOGCN 8 -0.31725 0.7650 13.4296 (2)PAREN 9 0.21581 0.9594 5.8619 (2)PREMS 10 -0.22143 0.9130 6.1869 (2)CP 12 -0.33090 0.8205 14.7554 (2)AV RE 13 0.21921 0.5707 6.0573 (2)AXIOM 14 0.30548 0.9503 12.3505 (2)R INF 17 0.29589 0.6715 11.5139 (2)AV TH 18 -0.08413 0.4150 0.8555 (2)AV AX 19 0.26132 0.6287 8.7949 (2)TOT R 20 0.24136 0.5224 7.4228 (2)PSLI 21 -0.06375 0.8999 0.4896 (2)
POSIT 22 0.24837 0.5544 7.8890 (2)

19
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TABLE 5.6

SUMMARY TABLE FOR C2 ON THE FULL SET OF PROBLEMS

STEP
NUM

VARIABLE
ENT REM

MULTIPLE
R RSQ

INCREASE
IN RSQ

F VALUE
FOR DEL

LAST REG
COEFFICNTS

1 RE 11 0.82550 0.68145 0.68145 263.0485 1.96598
2 THERM 15 0.86070 0.74080 0.05935 27.9194 4.09484
3 STEPS 16 0.89870 0.80766 0.06686 42.0828 1.18386
4 CP 12 0.91030 0.82865 0.02098 14.7554 -2.31862
5 R INF 17 0.91750 0.84181 0.01316 9.8915 0.13185
6 SYMBL 7 0.92270 0.85138 0.00957 7.5359 0.18167
7 AXIOM 14 0.92540 0.85637 0.00499 4.0936 0.91066
8 AV TH 18 0.92760 0.86044 0.00408 3.3821 -0.68172
9 PAREN 9 0.93020 0.86527 0.00483 4.1235 -1.20807
10 AV RE 13 0.93080 0.86639 0.00112 0.9606 2.02866
11 PREMS 10 0.93160 0.86788 0.00149 1.3115 -0.32617
12 R HIE 17 0.93160 0.86788 0.00000 0.0000
13 WORDS 6 0.93180 0.86825 0.00037 0.3128 0.02218
14 LOGCN 8 0.93200 0.86862 0.00037 0.2403 -0.67460
15 TOT R 20 0.93200 0.86862 0.00000 0.0443 0.43478
16 PSLI 21 0.93200 0.86862 0.00000 0.0161 0.07729
17 POSIT 22 0.93210 0.86881 0.00019 0.2098 -0.07002
18 R INF 17 0.93220 0.86900 0.00019 0.0541 0.13185

so
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FIGURE 5.7 RESIDUALS(Y -AXIS) VS COMPUTED C2 (X-AXIS)
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FIGURE 5.8 C2 VS S22(POSIT)
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VARIABLE ENTERED
MULTIPLE R
STD. ERROR OF EST.
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TABLE 5.7A

STEP NUMBER 1 FOR C3

11

0.7756
3.2074

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE F-RATIO

REGRESSION 1 1910.612 1910.612 165.718
RESIDUAL 123 1265.388 '10.288

VARIABLES IN EQUATION: (CONSTANT= 2.34300 )

VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
RE 11 3.57124

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR.

0.26205

TOLERANCE

185.7180 (2)

F TO ENTER
CLAS1 1 0.81121 0.4443 234.7856 (1)
CLAS2 2 0.93263 0.3186 815.0219 (1)
CLAS4 4 0.83027 0.6479 270.7244 (1)
CLASS 5 0.75699 0.8003 163.7349 (1)
WORDS 6 0.23239 0.9970 6.9648 (2)
SYMBL 7 0.25048 0.9988 8.1666 (2)
LOGCN 8 -0.15681 0.9999 3.0757 (2)
PAREN 9 0.28592 0.9981 10.8615 (2)
PREMS 10 -0.34984 0.9861 17.0132 (2)
CP 12 -0.17927 0.9994 4.0508 (2)
AV RE 13 0.22317 0.6710 6.3948 (2)
AXIOM 14 0.21914 0.9519 6.1542 (2)
THERM 15 0.48212 0.9943 36.9456 (2)
STEPS 16 0.30604 0.3774 12.6072 (2)
R INF 17 0.33766 0.8004 15.6997 (2)
AV TH 18 0.30959 0.9829 12.9327 (2)

. AV AX 19 0.43118 0.9301 27.8611 (2)
TOT R 20 0.41934 0.8850 26.0303 (2)
PSLI 21 -0.13847 0.9988 2.3850 (2)
POSIT 22 0.39085 0.8261 21.9981 (2)



VARIABLE ENTERED
MULTIPLE R
STD. ERROR OF EST.
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TABLE 5.7B

STEP NUMBER 2 FOR C3

15
0.8332
2.8215

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES

REGRESSION 2 2204.741
RESIDUAL 122 971.259

VARIABLES IN
VARIABLE

EQUATION:
COEFFICIENT

MEAN SQUARE F-RATIO
1102.371 138.469

7.961

(CONSTANT= 1.83217 )

STD. ERROR F TO REMOVE
RE 11 3.46491
THERM 15 2.94969

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR.
CLAS1 1 0.76904

0.23119
0.48528

TOLERANCE
0.3716

224.6214 (2)
36.9456 (2)

TO ENTER
175.1466 (1)

CLAS2 2 0.91680 0.2593 637.7576 (1)
CLAS4 4 0.77492 0.3831 181.8814 (1)
CLASS 5 0.67509 0.3804 101.3209 (1)
WORDS 6 0.36348 0.9685 18.4193 (2)
SYMBL 7 0.36927 0.9780 19.1047 (2)
LOGCN 8 -0.05831 0.9507 0.4128 (2)
PAREN 9 0.29772 0.9953 11.7679 (2)
PREMS 10 -0.28985 0.9423 11.0976 (2)
CP 12 -0.08929 0.9539 0.9724 (2)
AV RE 13 0.07017 0.5920 0.5988 (2)
AXIOM 14 0.27219 0.9504 9.6822 (2)
STEPS 16 0.41779 0.3721 25.5870 (2)
R INF 17 0.19246 0.6870 4.6544 (2)
AV TH 18 -0.09804 0.4177 1.1744 (2)
AV AX 19 0.21889 0.6315 6.0894 (2)
TOT R 20 0.16844 0.5307 3.5331 (2)
PSLI 21 0.00457 0.9118 0.0025 (2)
POSIT 22 0.16471 0.5638 3.3741 (2)
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VARIABLE ENTERED
MULTIPLE R
STD. ERROR OF EST.
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TABLE 5.7C

STEP NUMBER 3 FOR C3

16
0.8646
2.5741

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES

REGRESSION 3 2374.276
RESIDUAL 121 801.724

MEAN SQUARE
791.425

6.626

F-RATIO
119.446

VARIABLES IN EQUATION: (CONSTANT= -0.00914')
VARIABLE COEFFICIENT STD. ERROR Y TO REMOVE

RE 11 2.07922 0.34573 36.1688 (2)
THERM 15 3.21817 0.44589 52.0915 (2)
STEPS 16 0.74803 0.14788 25.5870 (2)

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR. TOLERANCE F TO ENTLR

CLAS1 1 0.72310 0.3126 131.5064 (1)
CLAS2 2 0.90031 0.1924 513.4358 (1)
CLAS4 4 0.78554 0.3717 193.3721 (1)
CLASS 5 0.71158 0.3784 123.0865 (1)
WORDS 6 0.29879 0.9131 11.7629 (2)
SYMBL 7 0.29004 0.9024 11.0216 (2)
LOGCN 8 -0.29810 0.7650 11.7034 (2)
PAREN 9 0.24474 0.9594 7.6457 (2)
PREMS 10 -0.24173 0.9130 7.4475 (2)
CP 12 -0.29142 0.8205 11.1367 (2)
AV RE 13 0.16750 0.5707 3.4641 (2)
AXIOM 14 0.30546 0.9503 12.3493 (2)
R INF 17 0.28416 0.6715 10.5409 (2)
AV TH 18 -0.07074 0.4150 0.6035 (2)
AV AX 19 0.27260 0.6287 9.6334 (2)
TOT R 20 0.24455 0.5224 7.6331 (2)
PSLI 21 -0.04786 0.8999 0.2755 (2)
POSIT 22 0.24282 0.5544 7.5186 (2)
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TABLE 5.8

SUMMARY TABLE FOR C3 ON THE FULL SET OF PROBLEMS

STEP
NUM

VARIABLE
ENT REM

MULTIPLE
R RSQ

INCREASE
IN RSQ

F VALUE
FOR DEL

LAST REG
COEFFICNTS

1 RE 11 0.77560 0.60156 0.60156 185.7180 1.72670
2 THERM 15 0.83320 0.69422 0.09267 36.9456 4.12214
3 STEPS 16 0.86460 0.74753 0.05331 25.5870 0.68129
4 AXIOM 14 0.87810 0.77106 0.02353 12.3493 0.82494
5 SYMBL 7 0.89090 0.79370 0.02264 13.0033 0.22774
6 CP 12 0.90120 0.81216 0.01346 11.6125 -1.17221
7 PAREN 9 0.90480 0.81866 0.00650 4.2352 -1.41610
8 AV TH 18 0.90720 0.82301 0.00435 2.8131 -0.246S6
9 AV AX 19 0.91090 0.82974 0.00673 4.5963 0.58943

10 LOGCN 8 0.91210 0.83193 0.00219 1.4453 -1.4248
11 PREMS 10 0.91270 0.83302 0.00109 0.7322 - 0.199b0
12 R INF 17 0.91290 0.83339 0.00037 0.2761 0.64315
13 WORDS 6 0.91310 0.83375 0.00037 0.2529 0.02520
14 PSLI 21 0.91310 0.83375 0.00000 0.0155 0.07453
15 POSIT 22 0.91320 0.83393 0.00018 0.0595 -0.06885
16 AV RE 13 0.91340 0.83430 0.00037 0.2126 0.89661



VARIABLE ENTERED
MULTIPLE R
STD. ERROR OF EST.
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TABLE 5.9A

STEP NUMBER 1 FOR C4

20
0.6255
2.6592

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES

REGRESSION 1 558.996
RESIDUAL 123 869.804

MEAN SQUARE F -RATIO
558.996 79.048

7.072

VARIABLES IN EQUATION: (CONSTANT= -4.70182 )
VARIABLE COEFFICIENT STD. ERROR F TO REMOVE

TOT R 20 0.41522 0.04670 79.0482 (2)

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR. TOLERANCE F TO ENTER
CLAS1 1 0.70182 0.6787 118.4180 (1)
CLAS2 2 0.76067 0.7716 167.5221 (1)
CLAS3 3 0.83827 0.7379 288.3557 (1)
CLASS 5 0.91114 0.5436 596.3591 (1)
WORDS 6 0.13812 0.9995 2.3725 (2)
SYMBL 7 0.15679 0.9788 3.0747 (2)
LOGCN 8 0.01529 0.9254 0.0285 (2)
PAREN 9 0.12225 0.9986 1.8509 (2)
PREMS 10 0.07217 0.8616 0.6387 (2)
RE 11 0.51945 0.8850 45.0829 (2)
CP 12 0.03775 0.9301 0.1741 (2)
AV RE 13 0.12590 0.4021 1.9650 (2)
AXIOM 14 0.06831 0.7889 0.5720 (2)
THERM 15 0.27869 0.6166 10.2733 (2)
STEPS 16 0.50709 0.9716 42.2307 (2)
R INF 17 0.02415 0.2239 0.0712 (2)
AV TH 18 0.01788 0.4167 0.0390 (2)
AV AX 19 -0.06170 0.0969 0.4663 (2)
PSLI 21 0.04150 0.9144 0.2105 (2)
POSIT 22 0.06814 0.0520 0.5691 (2)
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VARIABLE ENTERED
MULTIPLE R
STD. ERROR OF EST.
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TABLE 5.9B

STEP NUMBER 2 FOR C4

11

0.7453
2.2816

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE F-RATIO

76.231REGRESSION 2 793.689 396.845
RESIDUAL 122 635.111 5.206

VARIABLES IN
VARIABLE

RE 11

TOT R 20

VARIABLES NOT

EQUATION:
COEFFICIENT

1.33047
0.31825

IN EQUATION:
VARIABLE
CLAS1 1

PARTIAL C0i.
0.55316

CLAS2 2 0.67451
CLAS3 3 0.79170
CLASS 5 0.92200
WORDS 6 0.13115
SYMBL 7 0.17381
LOGCN 8 -0.04940
PAREN 9 0.12321
PREMS 10 -0.08903
CP 12 -0.03268
AV RE 13 -0.19930
AXIOM 14 0.03388
THERM 15 0.44406
STEPS 16 0.18510
R INF 17 -0.18443
AV TH 18 0.15258
AV AX 19 0.04883
PSLI 21 -0.04256
POSIT 22 -0.18213

I

1

(CONSTANT= -3.80896 )

STD. ERROR F TO REMOVE
0.19815 45.0829 (2)
0.04259 55.8293

88

TCLERANCE e TO ENTzR
0.3328 53.3476 (1)

0.2743 101.0027 (1)
0.3284 203.2142 (1)
0.4899 686.1566 (1)
0.9969 2.1175 (2)
0.9786 3.7691 (2)
0.9142 0.2960 (2)
0.9976 1.8652 (2)
0.7943 0.9667 (2)
0.9153 0.1294 (2)
0.2925 5.0047 (2)
0.7844 0.1391 (2)
0.5962 29.7202 (2)
003664 4.2930 (2)
0.1991 4.2609 (2)
0.3982 2.8843 (2)
0.0931 0.2892 (2)
0.8940 0.2196 (2)
C.0435 4.1512 (2)
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TABLE 5.9C

STEP NUMBER 3 FOR C4

VARIABLE ENTERED
MULTIPLE R
STD. ERROR OF EST.

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES
3 918.926

121 509.874
REGRESSION
RESIDUAL

VARIABLES IN
VARIABLE

15
0.8020
2.0528

EQUATION:
COEFFICIENT

MEAN SQUARE
306.309

4.214

(CONSTANT= -1.1
STD. ERROR

F-RATIO
72.641

2523 )

F TO REMOVE
RE 11 1.51015 0.18130 69.3844 (2)
THERM 15 2.48564 0.45595 29.7202 (2)
TOT R 20 0.14754 0.04949 8.8880 (2)

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR. TOLERANCE F TO ENTER

CLAS1 1 0.55736 0.3272 54.0763 (1)
CLAS2 2 0.64216 0.2540 84.2096 (1)
CLAS3 3 0.76820 0.2971 172.7806 (1)
CLASS 5 0.90518 0.3443 544.2899 (1)
WORDS 6 0.26274 0.9480 8.8981 (2)
SYMBL 7 0.22974 0.9737 6.6866 (2)
LOGCN 8 -0.03065 0.9119 0.1128 (2)
PAREN 9 0.11340 0.9952 1.5633 (2)
PREMS 10 -0.14879 0.7866 2.7168 (2)
CP 12 -0.01658 0.9138 0.0330 (2)
AV RE 13 -0.09770 0.2730 1.1565 (2)
AXIOM 14 0.28085 0.6365 10.2758 (2)
STEPS 16 0.21363 0.3663 5.7383 (2)
R INF 17 0.01678 0.1596 0.0338 (2)
AV TH 18 -0.12131 0.2785 1.7924 (2)
AV AX 19 0.12385 0.0913 1.8692 (2)
PSLI 21 0.01364 0.8805 0.0223 (2)
POSIT 22 -0.05951 0.0397 0.4264 (2)
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TABLE 5.10

SUMMARY TABLE FOR C4 ON THE FULL SET OF PROBLEMS

STEP VARIABLE
NUM ENT REM

1 TOT R 20
2 RE 11

3 THERM 15

MULTIPLE
R RSQ

0.62550 0.39125
0.74530 0.55547
0.80200 0.64320

4 AXIOM 14 0.81930 0.67125
5 WORDS 6 0.83730 0.70107
6 STEPS 16 0.84040 0.70627
7 PAREN 9 0.84320 0.71099
8 LOGCN 8 0.84710 0.71758
9 TOT R 20 0.84710 0.71758
10 SYMBL 7 0.85110 0.72437
11 AV TH 18 0.85320 0.72795
12 R INF 17 0.85490 0.73085
13 POSIT 22 0.85540 0.73171
14 AV AX 19 0.85600 0.73274
15 PSLI 21 0.85790 0.73599
16 AV RE 13 0.86010 0.73977
17 CP 12 0.86050 0.74046
18 PREMS 10 0.86060 0.74063

INCREASE
IN RSQ

F VALUE
FOR DEL

LAST REG
COEFFICNTS

0.39125 79.0482 0.89661
0.16422 45.0829 1.01207
0.08773 29.7202 4.28564
0.02805 10.2758 1.25623
0.02982 11.8369 0.06957
0.00520 2.0728 0.29581
0.00471 1.9620 -1.19005
0.00659 2.6536 -1.63819
0.00000 0.0023
0.00679 2.8960 0.10362
0.00358 1.5032 0.78169
0.00290 1.2176 1.80194
0.00086 0.3643 -0.20106
0.00103 0.4798 1.14620
0.00326 1.2987 0.19715
0.00378 1.6328 1.94633
0.00069 0.2912 0.53331
0.00017 0.0415 -0.05619
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MULTIPLE R
STD. ERROR OF EST.
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TABLE 5.11A

STEP NUMBER 1 FOR C5

15
0.6799
2.1112

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES

REGRESSION 1 471.399
RESIDUAL 123 548.249

MEAN SQUARE F-RATIO
471.399 105.759

4.457

VARIABLES IN EQUATION: (CONSTANT= 2.15129 )

VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
THERM 15 3.72353

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR.

0.36207

TOLERANCE

105.7586 (2)

F TO ENTER
CLAS1 1 0.70420 0.8942 120.0150 (1)
CLAS2 2 0.69615 0.9068 114.7198 (1)
CLAS3 3 0.77228 0.8689 180.2896 (1)
CLAS4 4 0.93227 0.6886 810.2264 (1)
WORDS 6 0.27808 0.9731 10.2250 (2)
SYMBL 7 0.13139 0.9785 2.1433 (2)
LOGCN 8 -0.08534 0.9513 0.8951 (2)
PAREN 9 0.09174 0.9969 1.0354 (2)
PREMS 10 -0.13052 0.9601 2.1142 (2)
RE 11 0.54088 0.9943 50.4507 (2)
CP 12 -0.05913 0.956 0.4281 (2)
AV RE 13 0.42484 0.8952 26.8693 (2)
AXIOM 14 0.46331 0.9995 33.3454 (2)
STEPS 16 0.46577 0.9998 33.7991 (2)
R INF 17 0.43381 0.8634 28.2824 (2)
AV TH 18 0.18192 0.4231 4.1758 (2)
AV AX 19 0.40594 0.6810 24.0704 (2)
TOT R 20 0.44211 0.6166 29.6405 (2)
PSLI 21 -0.00168 0.9150 0.0003 (2)
POSIT 22 0.45377 0.7060 31.6352 (2)
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TABLE 5.11B

STEP NUMBER 2 FOR C5

VARIABLE ENTERED 11

MULTIPLE R 0.7872
STD. ERROR OF EST. 1.7830

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES

--41111,

MEAN SQUARE F-RATIO
99.364REGRESSION 2 631.790 315.895

RESIDUAL 122 387.858 3.179

VARIABLES IN
VARIABLE

EQUATION:
COEFFICIENT

(CONSTANT= 1.41221 )

STD. ERROR F TO REMOVE
RE 11 1.03769
THERM 15 3.55872

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR.

0.14610
0.30666

TOLERANCE

50.4507 (2)
134.6666 (2)

F TO ENTER
CLAS1 1 0.53615 0.3716 48.8150 (1)
CLAS2 2 0.53160 0.2593 47.6637 (1)
CLAS3 3 0.67509 0.3058 101.3209 (1)
CLAS4 4 0.91176 0.3831 596.3046 (1)
WORDS 6 0.28717 0.9685 10.8751 (2)
SYMBL 7 0.17151 0.9780 3.6673 (2)
LOGCN 8 - 0.11727 0.9507 1.6871 (2)
PAREN 9 0.08390 0.9953 0.8577 (2)
PREMS 10 -0.24507 0.9423 7.7314 (2)
CP 12 -4:409717 0.9539 1.1535 (2)
AV RE 13 0.16089 0.5920 3.2154 (2)
AXIOM 14 0.41875 0.9504 25.7290 (2)
STEPS 16 0.07249 0.3721 0.6392 (2)
R MNF 17 0.25235 0.6870 8.2296 (2)
AV TH 18 0.14447 0.4177 2.5792 (2)
AV AX 19 0.32129 0.6315 13.9278 (2)
TOT R 20 0.30788 0.5307 12.6709 (2)
PSLI 21 - 0.04050 0.9118 0.1988 (2)
POSIT 22 0.28077 0.5638 10.3548 (2)

C2
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STD. ERROR OF EST.

88

TABLE 5.11C

STEP NUMBER 3 FOR C5

14
0.8284
1.6258

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES

REGRESSION 3 699.801
RESIDUAL 121 319.847

VARIABLES IN
VARIABLE

EQUATION:
COEFFICIENT

MEAN SQUARE
233.267

2.643

(CONSTANT= 1.1
STD. ERROR

F-RATIO
88.246

4557 )

F TO REMOVE
RE 11 0.88414
AXIOM 14 1.35888
THERM 15 3.61508

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR.

0.13661
0.26790
0.27985

TOLERANCE

41.8856 (2)
25.7290 (2)

166.8704 (2)

F TO ENTER
CLAS1 1 0.44565 0.3149 29.7381 (1)

CLAS2 2 0.48323 0.2422 36.5586 (1)

CLAS3 3 0.64213 0.2832 84.1981 (1)

CLAS4 4 0.89684 0.3300 493.2515 (1)

WORDS 6 0.31066 0.9684 12.8181 (2)

SYMBL 7 0.20321 0.9770 5.1688 (2)

LOGCN 8 -0.03412 0.9097 0.1398 (2)

PAREN 9 0.06757 0.9924 0.5504 (2)

PREMS 10 -0.14585 0.8675 2.6080 (2)

CP 12 -0.02018 0.9198 0.0489 (2)

AV RE 13 -0.00619 0.4989 0.0046 (2)

STEPS 16 0.08569 0.3720 0.1 `i77 (2)

R INF 17 0.08151 0.5514 0.8027 (2)

AV TH 18 0.04849 0.3931 0.2829 (2)

AV AX 19 0.07521 0.3711 0.6827 (2)

TOT R 20 0.09045 0.3554 0.9899 (2)

PSLI 21 0.06441 0.8625 0.5000 (2)

POSIT 22 0.08181 0.4121 0.8086 (2)



TABLE 5.12

SUMMARY TABLE FOR C5 ON THE FULL SET OF PROBLEMS

STEP VARIABLE
NUM ENT REM

1 THERM 15

MULTIPLE
R RSQ

0.67990 0.46226

INCREASE
IN RSQ

0.46226

F VALUE
FOR DEL

105. 7586
2 RE 11 0.78720 0.61968 0.15742 50. 45 07
3 AXIOM 14 0.82840 0.68625 0.06656 25. 729 0
4 WORDS 6 0.84650 0.71656 0.03032 12.8181
5 PAREN 9 0.85090 0.72403 0.00747 3. 1787
6 LOGCN 8 0.85280 0 72727 0.00324 1 4 29 4
7 SYMBL 7 0.85450 0.73017 0.00290 1 .2940
8 STEPS 16 0.85610 0.73291 0.00274 1 .1 37 5
9 PREMS 10 0.85680 0.73411 0.00120 0.5597

10 AV TH 18 0.85720 0 73479 0.00069 0.2695
11 R INF 17 0.85740 0.73513 0.00034 O. 1 253
12 PSLI 21 0.85750 0.73531 0.00017 0.091 0
13 POSIT 22 0.85770 0.73565 0.00034 0.1139
14 TOT R 20 0.85810 0 . 73634 0.00069 O. 3 23 0
15 AV RE 13 0.85930 0.73840 0.00206 0 8699
16 CP 12 0.85940 0.73857 0.00017 0.0841

c4

Is

LAST REG
COEFFICNTS

4.05968
0.67997
1.25372
0.07214

- 0.87724
- 1.10059
0.06476
0.11336
-).11963

-0.10586
0.32683
0.11460

-0.10662
0.58693
1.19229
0.27553
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FIGURE 5.9 C5 VS S22 ( POSIT)
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FIGURE 5.10 RESIDUALS (Y...AXIS ) VS COMPUTED C5 (X AXIS)
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FIGURE 5.11A Ci VS S15 (THERM)
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FIGURE 5.21,11 C2 VS S15 (THERM)
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FIGURE 5.11C C3 VS S15(THERM)
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FIGURE 5.11D C4 VS §15(THERIO
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FIGURE 5.11E C5 VS S15 (THERM)
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FIGURE 5.12A C1 VS S11(RE)
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FIGURE 5.12B C2 VS S11 (RE)

I - - --I
23.00 I 1I

I I
I 1

I I
I 1 1I
I I
I 1 21
I I
I I
I 1I

18.60 I
I 1

I I
I 2 1

I I
I 1 1

I
I
I
I

14.20 I
I

I

I

I
I
I
I
I
12

9.80 I
I1
I
I
I
I
I
I
12
I

5.40- I1
I
I
14
I

19
I

I*
I

I*

1

4

3

2

3

3

5

3

1

1

I
I
I
I

2 1I
I

I

I

1 1

I
I
I
I
I

I
1

I
I
I
I
I
I

2

I
I
I
I
I

I

I

I

I

I

I

1

1

1.00 I - I
.000 .800 1.600 2.400 3.200 4.000

1

1

1

1



4

7

99

FIGURE 5.12C C3 VS 811 (RE )
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FIGURE 5.12D C4 VS S11 (RE)
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FIGURE 5.12E C5 VS S11 (RE)
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CHAPTEk .51;%

6.1 - INTRODUCTION

In this chapter, the results of regression analyses
over the restricted set of problems, wnich was discussed in
Chapter IV, is be examined. This restricted set consists
of the 54 problems that appear after the introduction of
Replace Equals and do not have any ?remises. As in the
previous chapter, a separate analysis was run for each of
the five partitions. The results of these analyses do not
differ sharply from those discussed in chapter five, and
the discussion here will be brief. For the sake of
completeness, however, a full set of tables of results is
included.

Table 6.1 lists the means and standard deviations for
all 22 variables, using the restricted set of problems, and
Table 6.2 is the correlation matrix for these variables. A
plot of the correlations of S11(RE), S16(STEPS), and
S15(THERM) with the dependent variable against the ordinal
number of the dependent variable for the restricted set of
problems is found in Figure 6.1. The pattern in Figure 6.1
is very similar to that in Figure 5.1.

6.2 - REGRESSION WITH C1 AS THE DEPENDENT VARIABLE

For the first regression analysis, C1 is again the
dependent variable. The results for the first three
variables to enter the regression equation and a summary
for the complete analysis are found in Tables 6.3A,B,C,D.

Together, the first four variables to enter the
equation account for over 70 percent of the total variance
in the dependent variable. This is somewhat less than the
77 percent that was accounted for by the first four
variables when the full set of problems was used, but the
fit is still quite good. Since the predictive power ot
several of the independent variables (S11 (RE) and
S22(POSIT) for example) was enhanced by the inclusion of
the first fifty problems, the slight decrease in the
variance accounted for by the regression equation is not
surprising.

The first variable to enter the equation is
S16(STEPS). Using the full set of problems and C1 as the
dependent variable, S11(RE) was the first variable to
enter. It has already been observed that S11 and S16 serve
very similar function as measures of relatively
superficial structural complexity. In the analysis of the
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first set of problems, the predictive power of S11 was
enhanced by the fact that the first 53 problems had
uniformly low values for the dependent variable and had
value zero for S11. It is not surprising then that
S16(STEPS) replaces S11(RE) as the first variable to enter
the equation.

The second variable entering the equation, using the
restricted set, is S15(THERM). Using the full set,
S22(POSIT) was the second variable to enter the equation.
The overall predictive power of S22 was also enhanced by
the inclusion of the first 53 problems in the analysis.
With this effect eliminated, S15 is prominent even for the
first partition. The relative predictive power of S15 is
greater for the restricted set of problems, because the
percentage of problems with values of S15 greater than zero
is much larger than it was for the full set.

The third and fourth variables to enter are S14(AXIOM)
and S7(SYMBL). These are the same variables that entered
as the third and fourth variables for the full set of
problems.

At this point it is appropriate to discuss the
assumptions in the model for regression, specifically
normality of the distibution of errors and homogeneity of
their variance.

Figure 6.2A contains a histogram for the residuals
after all of the variables have entered the equation. The
distribution does not indicate any serious violations of
the normality asumption. A plot of the residuals against
the computed value of C1 is found in Figure 6.2B. From
this plot, it appears that the homogeniety-of- variance
assumption is not seriously violated for the restricted set
of problems. The highly significant values for the
F-ratios in this analysis and in the other four analyses
presented in this chapter provide reassurance that the
results obtained are not due to chance.

The equation as a whole is significant at the .01
level for all fourteen steps in the stepwise regression
analysis presented. The F-ratios for adding each of the
first four variables in the equation are also significant
at the .01 level. Lastly, in Table 6.3D, it can be seen
that the F-ratios for deleting any of the first four
variables are also significant.

The question of statistical significance has been
discussed only very briefly here, and will not be discussed
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for the other analyses in this chapter. The reason for
this omission has already been explained.

6.3 - REGRESSION WITH C2 AS THE DEPENDENT VARIABLE

In the regression analysis for the second dependent
variable, S16(STEPS) and S15(THERM) are the first two
variables to enter; again the patterns found in the tables
of partial correlations (Table 6.4A,B), for this analysis,
are generally similar to those for corresponding analysis
of the full set of problems (Tables 5.5A,B). The
differences that do appear in these tables are principally
due to the diminished predictive value of S11(RE) and the
rule-position variables.

The third variable to enter the equation is S12(CP),
one of the problem-structure variables (Table 6.4C). A
summary of the results for all variables in this analysis
is included as Table 6.4D. Using the full set of problems
and the second partition, the regression equation accounted
for 82 percent of the variance in the dependent variable;
with the rests acted set used here, the regression equation
accounts for 79 percent of the variance.

Figure 6.3A contains a histogram of the residuals for
this analysis and Figure 6.3B contains a plot of the
residuals against the predicted value of C2. Neither of
these figures indicates a serious violation of the
assumptions.

6.4 - DISCUSSION

The results for the regression analyses using C3, C4,
and C5 as dependent variables follow the pattern
established in the last chapter and will not be discussed
in detail here. For completeness, the results are included
in Tables 6.5, 6.6 and 6.7, and Figures 6.4, 6.5, and 6.6.
There are no serious violations of the assumptions in any
of these analyses.

The evidence for the restricted set of problems tends
to confirm the general conclusions indicated by the
analysis of the full set. There are two types of variation
that appear in the sample of proofs. The first type of
variation consists of the relatively superficial
differences that appear in the proofs. Variation in the
order in which rules are used in proofs is one example of
this type of difference. The definitions of equivalence
for the first two partitions are very sensitive to changes
in order. The definition for the third partition is

1)9
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sensitive to some differences in order but not to all; the
last two partitions completely ignore difference in order.

Both S11(RE) and S16(STEPS) are good pr-:Lctors of the
dependent variables, C1 and C2, for the first two
partitions; their importance systemati,:.Ally declines for
the last three partitions C3, C4, and C5. It appears that
both of these variables are good predictorsof sources of
variation such as changes in the order in which rules are
used, but are relatively ineffective in predicting more
significant sources of variation such as differences in the
rules used in a proof.

The seccnd principal source of variation found in this
study is in the rules used to form the proofs. This type
of variation is much more fundamental and important. It is
predicted best by S15(THERM) and to a lesser degree by
S14(AXIOM). All five of the partitions are sensitive to
differences in the rules used in a proof. The relative
importance of the set of rules used increases as we move
from the first partition to the fifth, because other types
of difference are successively being eliminated from
consideration as we move from one partition to the next.
The fifth partition is defined only by the particular rules
used in the proofs. So, it is not surprising that the
importance of rule-position variables increases from
parition to partition. These observations will be
developed in Chapters VII and VIII.

110
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TABLE 6.1

MEANS AND STANDARD DEVIATIONS FOR RESTRICTED SET

VARIABLE MEAN STANDARD DEVIATION

CLAS1 1 13.42593 6.40048
CLAS2 2 9.31481 6.51797
CLAS3 3 7.92593 5.63966
CLAS4 4 5.37037 3.66161
CLASS 5 4.53704 2.96974
WORDS 6 15.12963 6.55325
SYMBL 7 12.38889 6.02954
LOGCN 8 0.20370 0.40653
PAREN 9 1.03704 0.91038
PREMS 10 0.00000 0.00000
RE 11 1.16667 1.17762
CP 12 0.18519 0.39210
AV RE 13 1.00000 0.00000
AXIOM 14 0.55556 0.69137
THERM 15 0.42593 0.68960
STEPS 16 4.66667 3.15032
R INF 17 18.74074 0.55577
AV TH 18 1.40741 1.95727
AV AX 19 3.55556 1.72295
TOT R 20 23.70370 3.66848
PSLI 21 5.00000 3.49123
POSIT 22 95.92593 19.84834

111
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TABLE 6.2

CORRELATION MATRIX FOR RESTRICTED SET

VARIABLE
NUMBER 1 2 3 4 5
1 1.000 0.934 0.914 0.739 0.588
2 1.000 0.972 0.747 0.556
3 1.000 0.824 0.654
4 1.000 0.913
5 1.000

MATRIX CONTINUED

VARIABLE
NUMBER 6 7 8 9 10
1 0.462 0.387 -0.019 0.324 0.000
2 0.402 0.322 -0.018 0.275 0.000
3 0.413 0.347 -0.100 0.284 0.000
4 0.239 0.117 -0.140 0.098 0.000
5 0.127 0.004 -0.249 0.055 0.000
6 1.000 0.626 0.025 0.429 0.000
7 1.000 0.190 0.747 0.000
8 1.000 -0.174 0.000
9 1.000 0.000
10 0.000

MATRIX CONTINUED

VARIABLE
NUMBER 11 12 13 14 15
1 0.726 -0.077 0.000 0.116 0.035
2 0.804 -0.097 0.000 0.015 0.028
3 0.758 -0.147 0.000 0.040 0.096
4 0.467 -0.128 0.000 0.066 0.370
5 0.265 -0.217 0.000 0.036 0.559
6 0.381 0.049 0.000 0.142 -0.305
7 0.254 0.208 0.000 0.060 -0.236
8 0.125 0.943 0.000 -0.209 -0.315
9 0.223 -0.125 0.000 0.027 0.004

10 0.000 0.000 0.000 0.000 0.000
11 1.000 0.095 0.000 -0.023 -0.205
12 1.000 0.000 -0.178 -0.297
13 0.000 0.000 0.000
14 1.000 -0.347
15 1.000
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MATRIX CONTINUED

VARIABLE

TABLE 6.2 CONTINUED

NUMBER 16 17 18 19 to
1 0.736 0.122 0.016 0.048 0.050
2 0.808 0.148 -0.027 -0.006 0.006
3 0.727 0.210 0.023 0.084 0.084
4 0.402 0.354 0.297 0.311 0.358
5 0.151 0.349 0.491 0.427 0.515
6 0.444 -0.198 -0.285 -0.112 -0.235
7 0.311 -0.330 -0.423 -0,339 -0.435
8 0.275 -0.430 -0.296 -0.488 -0.452
9 0.221 -0.130 -0.273 -0.098 -0.211

10 0.000 0.000 0.000 0.000 0.000
11 0.926 -0.019 -0.112 -0.167 -0.141
12 0.204 -0.468 -0.272 -0.462 -0.433
13 0.000 0.000 0.000 0.000 0.000
14 -0.009 0.186 -0.087 0.243 0.096
15 -0.290 0.294 0.736 0.528 0.685
16 1.000 -0.061 -0.201 -0.229 -0.224
17
18

1.000 0.342
1.000

0.764
0.614

0.693
0.874

19 1.000 0.913
20 1.000

MATRIX CONTINUED

VARIABLE
NUMBER 21 22
1 0.192 0.073
2 0.159 0.025
3 0.106 0.101
4 -0.028 0,365
5 -0.111 0.521
6 0.319 -0.193
7 0.187 -0.418
8 0.306 -0.447
9 0.059 -0.201

10 0.000 0.000
11 0.110 -0.139
12 0.221 -0.439
13 0.000 0.000
14 -0.102 0.084
15 -0.384 0.667
16 0.259 -0.211
17 -0.224 0.710
18 -0.353 0.853
19 -0.420 0.910
20 -0.420 0.990
21 1.000 -0.310
22 1.000 113
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FIGURE 6.1

CORRELATIONS BETWEEN DEPENDENT AND INDEPENDENT VARIABLES

AGAINST THE ORDINAL NUMBER OF THE DEPENDENT VARIABLE
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TABLE 6.3A

STEP NUMBER 1 FOR C1

16
0.7361
4.3736

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE F-RATIO

REGRESSION 1 1176.510 1176.510 61.505
RESIDUAL 52 994.693 19.129

VARIABLES IN EQUATION: (CONSTANT= 6.44663 )

VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
STEPS 16 1.49556

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR.

0.19070

TOLERANCE

61.5049 (2)

F TO ENTER
CLAS2 2 0.85137 0.3466 134.3401 (1)

CLAS3 3 0.81412 0.4713 100.2426 (1)

CLAS4 4 0.71580 0.8385 53.5881 (1)

CLASS 5 0.71352 0.9773 52.8930 (1)

WORDS 6 0.22308 0.8024 2.b;08 (2)

SYMBL 7 0.24619 0.9033 3.290b (2)

LOGCN 8 -0.34100 0.9244 6.7106 (2)

PAREN 9 0.24430 0.9509 3.2370 (2)

PREMS 10 0.00000 1.0000 0.0000 (2)

RE 11 0.17565 0.1432 1.6237 (2)

CP 12 -0.34264 0.9585 6.7838 (2)

AV RE 13 0.00000 1.0000 0.0000 (2)

AXIOM 14 0.18092 0.9999 1.7257 (2)
THERM 15 0.38307 0.9162 8.7709 (2)

R INF 17 0.24683 0.9963 3.3086 (2)

AV TH 18 0.24723 0.9596 3.3202 (2)

AV AX 19 0.32965 0.9474 6.2177 (2)

TOT R 20 0.32552 0.9497 6.0446 (2)

PSLI 21 0.00151 0.9329 0.0001 (2)

POSIT 22 0.34553 0.9553 6.9142 (2)

1.15
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TABLE 6.38

STEP NUMBER 2 FOR C1

15
0.7804
4.0794

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES

REGRESSION 2 1322.473
RESIDUAL 51 848.730

VARIABLES IN
VARIABLE

EQUATION:
COEFFICIENT

MEAN SQUARE F-RATIO
661.237 39.734

16.642

(CONSTANT= 4.63224 )

STD. ERROR F TO REMOVE
THERM 15 2.51418
STEPS 16 1.65489

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR.

CLAS2 2 0.82327
CLAS3 3 0.77770
CLAS4 4 0.65486

0.84894
0.18583

TOLERANCE
0.2715
0.3691
0.5807

8.7709 (2)
79.3066 (2)

F TO ENTER
105.1697 (1)
76.5257 (1)
37.5408 (1)

CLASS 5 0.65929 0.5813 38.4422 (1)
WORDS 6 0.33375 0.7686 6.2674 (2)
SYMBL 7 0.33730 0.8802 6.4188 (2)
LOGCN 8 -0.27201 0.8637 3.9952 (2)
PAREN 9 0.23464 0.9458 2.9133 (2)
PREMS 10 0.00000 1.0000 0.0000 (2)
RE 11 0.12015 0.1389 0.7324 (2)
CP 12 -0.27452 0.8966 4.0751 (2)
AV RE 13 0.00000 1.0000 0.0000 (2)
AXIOM 14 0.37329 0.8663 8.0952 (2)
R INF 17 0.15402 0.9132 1.2149 (2)
AV TH 18 -0.04632 0.4586 0.1075 (2)
AV AX 19 0.17447 0.7152 1.5697 (2)
TOT R 20 0.10280 0.5303 0.5340 (2)
PSLI 21 0.14881 0.8287 1.1323 (2)
POSIT 22 0.13856 0.5550 0.9788 (2)
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TABLE 6.3C

STEP NUMBER 3 FOR C1

14
0.8146
3.8222

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE

REGRESSION 3 1440.739 480.246
RESIDUAL 50 730.465 14.609

VARIABLES IN
VARIABLE

EQUATION:
COEFFICIENT

F -RATIO
32.873

(CONSTANT= 2.68057 )
STD. ERROR F TO REMOVE

AXIOM 14 2.32139
THERM 15 3.40299
STEPS 16 1.71563

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR.

0.81589
0.85455
0.17542

TOLERANCE

8.0952 (2)
15.8578 (2)
95.6551 (2)

F TO ENTER
CLAS2 2 0.81228 0.2543 95.0327.(1)
CLASS 3 0.75434 0.3384 64.6947 (1)
CLAS4 4 0.60134 0.5054 27.7551 (1)
CLASS 5 0.60360 0.4990 28.0841 (1)
WORDS 6 0.22246 0.7615 5.6861 (2)
SYMBL 7 0.36018 0.8801 7.3045 (2)
LOGCN 8 -0.16531 0.7623 1.3766 (2)
PAREN 9 0.22901 0.9424 2.7120 (2)
PREMS 10 0.00000 1.0000 0.0000 (2)
RE 11 0.11934 0.1388 0.70i9 (2)
CP 12 -0.18254 0.8142 1.6891 (2)
AV RE 13 0.00000 1.0000 0.0000 (2)
R INF 17 0.03668 0.8159 0.0660 (2)
AV TH 18 -0.16474 0.4251 1.3669 (2)
AV AX 19 -0.02959 0.5145 0.0429 (2)
TOT R 20 -0.09793 0.4041 0.4745 (2)
PSLI 21 0.27278 0.7741 3.9391 (2)
POSIT 22 -0.03659 0.4415 0.0657 (2)
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TABLE 6.3D

SUMMARY TABLE FOR C1:

STEP VARIABLE
NUM ENT REM

MULTIPLE
R RSQ

INCREASE
IN RSQ

F VALUE
FOR DEL

LAST REG
COEFFICNTS

1 STEPS 16 0.73610 0.54184 0.54184 61.5049 0.75218
2 THERM 15 0.78040 0.60902 0.06718 8.7709 4.44347
3 AXIOM 14 0.81460 0.66357 0.05455 8.0952 2.15535
4 SYMBL 7 0.84100 0.70728 0.04371 7.3045 0.41046
5 PSLI 21 0.85310 0.72778 0.02050 3.6330 0.56270
6 RE 11 0.86410 0.74667 0.01889 3.4873 2.20050
7 CP 12 0.87090 0.75847 0.01180 2.2580 -2.99584
8 PAREN 9 0.87700 0.76913 0.01066 2.0799 -1.37648
9 R INF 17 0.87890 0.77247 0.00334 0.6434 1.90201
10 AV TH 18 0.87960 0.77370 0.00123 0.2448 0.92563
11 AV AX 19 0.88010 0.77458 0.00088 0.1563 1.51330
12 POSIT 22 0.88140 0.77687 0.00229 0.4215 -0.22560
13 WORDS 6 0.88160 0.77722 0.00035 0.0474 0.03198
14 LOGCN 8 0.88160 0.77722 0.00000 0.0183 0.61787
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FIGURE 6 . 2A - RESIDUALS FOR C1 ON RESTRICTED SET
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FIGURE 6.2B RESIDUALS(Y-AXIS) VS COMPUTED Cl
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TABLE 6.4A

STEP NUMBER 1 FOR C2

16
0.8083
3.8743

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE F-RArio

REGRESSION 1 1471,128 1471.128 98.010
RESIDUAL 52 780.520 15.010

VARIABLES IN EQUATION: (CONSTANT= 1.51042 )

VARIABLE COEFFICIENT STD, ERROR E TO REMOVE
STEPS 16 1.67237

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR.

0.16893

TOLERANCE

98.0099 (2)

L TO ENTER
CLAS1 1 0.85137 0.4581 134.3401 (1)

CLAS3 3 0.95144 0.4713 487.1914 (1)

CLAS4 4 0.78282 0.8385 80.7189 (1)

CLASS 5 0.74691 0.9773 64.3511 (1)

WORDS 6 0.08080 0.8024 0.3351 (1)

SYMBL 7 0.12606 0.9033 0.8236 (2)

LOGCN 8 -0.42367 0.9244 11.1571 (2)

PAREN 9 0.16652 0.9509 1.4545 (2)

PREMS 10 0.00000 1.0000 0.0000 (2)

RE 11 0.25148 0.1432 3.4432 (2)

CP 12 - 0.45399 0.9585 13.2407 (2)

AV RE 13 0.00000 1.0000 0.0000 (2)

AXIOM 14 0.03718 0.9999 0.0706 (2)

THERM 15 0.46558 0.9162 14.1148 (2)

R INF 17 0.33577 0.9963 6.4806 (2)

AV TH 18 0.23564 0.9596 2.9984 (2)

AV AX 19 0.31351 0.9474 5.5590 (2)

TOT R 20 0.32554 0.9497 6.0453 (2)

PSLI 21 -0.08825 0.9329 0.4003 (2)

POSIT 22 0.33972 0.9553 6.6540 (2)
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TABLE 6.4B

STEP NUMMBER 2 FOR C2

15
0.8535
3.4622

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES

REGRESSION 2 1640.320
RESIDUAL 51 611.328

VARIABLES IN
VARIABLE

EQUATION:
COEFFICIENT

MEAN SQUARE F-RATIO
820.160 68.422
11.987

(CONSTANT= -0.44301 )

STD. ERROR F TO REMOVE
THERM 15 2.70686
STEPS 16 1.84391

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR.

0.72049
0.15771

TOLERANCE

14.1148 (2)
136.6924 (2)

F TO ENTER
CLAS1 1 0.82327 0.3909 105.1697 (1)

CLAS3 3 0.93799 0.3691 366.0775 (1)

CLAS4 4 0.71237 0.5807 51.5183 (1)

CLASS 5 0.66009 0.5813 38.6080 (1)

WORDS 6 0.20364 0.7686 2.1631 (2)

SYMBL 7 0.22967 0.3802 2.7842 (2)

LOGCN 8 -0.35585 0.8637 7.2493 (2)

PAREN 9 0.14991 0.9458 1.1495 (2)
PREMS 10 0.00000 1.0000 0.0000 (2)

RE 11 0.19601 0.1389 1.9977 (2)

CP 12 -0.39212 0.8966 9.0847 (2)

AV RE 13 0.00000 1.0000 0.0000 (2)

AXIOM 14 0.25175 0.8663 3.3832 (2)

R INF 17 0.23761 0.9132 2.9919 (2)

AV TS 18 -0.16474 0.4586 1.3949 (2)

AV AX 19 0.10800 0.7152 0.5900 (2)

TOT R 20 0.02441 0.5303 0.0298 (2)

PSLI 21 0.08077 0.8287 0.3283 (2)

POSIT 22 0.05684 0.5550 0.1621 (2)
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TABLE 6.4C

STEP NUMBER 3 FOR C2

12
0.8776
3.2166

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE

REGRESSION 3 1734.316 578.105
RESIDUAL 50 517.332 10.347

VARIABLES IN
VARIABLE

EQUATION:
COEFFICIENT

(CONSTANT= 0.1
STD. ERROR

F-RATIO
55.874

7969 )

F TO REMOVE
CP 12 -3.58702
THERM 15 2.17648
STEPS 16 1.90122

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR.

1.19009
0.69213
0.14775

TOLERANCE

9.0847 (2)
9.8886 (2)

165.5704 (2)

F TO ENTER
CLAS1 1 0.80901 0.3614 92.8201 (1)
CLAS3 3 0.92749 0.3171 301.5748 (1)
CLAS4 4 0.73022 0.5730 55.9761 (1)
CLAS5 5 0.66932 0.5721 39.7655 (1)
WORDS 6 0.17763 0.7602 1.5965 (2).
SYMBL 7 0.30331 0.8674 4.9644 (2)
LOGCN 8 0.03721 0.1041 0.0679 (2)
PAREN 9 0.09363 0.9198 0.4334 (2)
PREMS 10 0.00000 1.0000 0.0000 (2)
RE 11 0.12320 0.1323 0.7552 (2)
AV RE 13 0.00000 1.0000 0.0000 (2)
AXIOM 14 0.15161 0.7867 1.1528 (2)
R INF 17 0.08547 0.7487 0.3606 (2)
AV TH 18 -0.21655 0.4552 2.4108 (2)
AV AX 19 -0.04307 0.6177 0.0910 (2)
TOT R 20 -0.12015 0.4731 0.7177 (2)
PSLI 21 0.13171 0.8201 0.8650 (2)
POSIT 22 -0.08777 0.4914 0.3804 (2)

1 "3
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TABLE 6.4D

SUMMARY TABLE FOR C2:

STEP VARIABLE MULTIPLE INCREASE F VALUE

NUM ENT REM R RSQ IN RSQ FOR DEL

0.80830 0.65335 0.65335 98.0099
0.85350 0.72846 0.07511 14.1148
0.87760 0.77018 0.04172 9.0847

4.9644
3.2381
1.6413
2.0218
1.9887
2.8831
1.5033
0.4185
0.0423
0.0444
0.0001
0.0146

1 STEPS 16
2 THERM 15
3 CP 12
4 SYMBL 7

5 PAREN 9

6 AV TH 18
7 AXIOM 14
8 RE 11

9 PSLI 21
10 R INF 17
11 POSIT 22
12 LOGCN 8
13 AV AX 19
14 AV TH 18
15 WORDS 6

0.88960 0.79139 0.02121
0.89700 0.80461 0.01322
0.90060 0.81108 0.00647
0.90500 0.81903 0.00794
0.90930 0.82683 0.00780
0.91510 0.83741 0.01058
0.91810 0.84291 0.00550
0.91890 0.84438 0.00147
0.91900 0.84456 0.00018
0.91910 0.84474 0.00018
0.91910 0.84474 0.00000
0.91920 0.84493 0.00018

LAST REG
COEFFICNTS

1.07026
4.74007

-4.37355
0.33321

-1.65153
- 1.65153
1.31265
2.06043
0.30025
2.27328

- 0.11116
0.94639
0.35906

0.01311
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FIGURE 6.3A RESIDUALS FOR C2 ON RESTRICTED SET
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FIGURE 6.38 - RESIDUALS(Y-AXIS) VS COMPUTED C2 1X -AXIS1
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TABLE 6.5A

STEP NUMBER 1 FOR C3

11

0.7576
3.7164

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES

REGRESSION 1 967.498
RESIDUAL 52 718.206

MEAN SQUARE F -RATIO
967.498 70.049
13.812

VARIABLES IN EQUATION: (CONSTANT= 3.69312 )

VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
RE 11 3.62812 0.43349 70.0494 (2)

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR. TOLERANCE F TO ENTER
CLAS1 1 0.80970 0.4724 97.0869 (1)

CLAS2 2 0.93578 0.3532 359.2754 (1)

CLAS4 4 0.81431 0.7822 100.3802 (1)
CLASS 5 0.71918 0.9296 54.6369 (1)
WORDS 6 0.20568 0.8548 2.2528 (2)

SYMBL 7 0.24438 0.9356 3.2392 (2)

LOGCN 8 -0.30083 0.9844 5.0748 (2)
PAREN 9 0.18015 0.9503 1.7106 (2)

PREMS 10 0.00000 t.0000 0.0000 (2)
CP 12 -0.33782 0.9909 6.5699 (2)

AV RE 13 0.00000 1.0000 0.0000 (2)

AXIOM 14 0.08788 0.9995 0.3969 (2)
THERM 15 0.39302 0.9579 9.3169 (2)
STEPS 16 0.10468 0.1432 0.5651 (2)
R INF 17 0.34481 0.9996 6.8820 (2)

AV TH 18 0.16658 0.9875 1.4557 (2)
AV AX 19 0.32748 0.9720 6.1262 (2)
TOT R 20 0.29514 0.9801 4.8664 (2)
PSLI 21 0.03534 0.9879 0.0638 (2)

POSIT 22 0.31943 0.9806 5.7951 (2)

x. 2 7
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TABLE 6.5B

STEP NUMBER 2 FOR C3

15
0.7998
3.4507

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE i-RArio

REGRESSION 2 1076.436 539.218 45.285
RESIDUAL 51 607.268 11.907

VARIABLES IN EQUATION: (CONSTANT= 2.47952 )

VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
RE 11

THERM 15

VARIABLES NOT IN
VARIABLE

3.88574
2.14364

EQUATION:
PARTIAL CORR.

0,41125
0.70229

TOLERANCE.

89,2764 (2)
9.3169 (2)

F TO ENTER
CLAS1 1 0.79388 0.4370 85.2225 (1)

CLAS2 2 P.92838 0.3142 312.0335 (1)

CLAS4 4 0,77776 0.5559 76.5551 (1)

CLASS 5 0.66357 0.5371 39.3372 (1)

WORDS 6 0.34154 0.8013 6.6028 (2)

SYMBL 7 0.35542 0.9004 7.2290 (2)

LOGCN 8 -0.20917 0.8968 2.2877 (2)

PAREN 9 0.17366 0.9477 1.5548 (2)

PREMS 10 0.00000 1.0000 0.0000 (2)

CP 12 -0.25620 0.9104 3.5124 (2)

AV RE 13 0.00000 1.0000 0.0000 (2)

AXIOM 14 0.26730 0.8700 3.8474 (2)

STEPS 16 0.23743 0.1329 2.9872 (2)

R INF 17 0.26014 0.9121 3.6293 (2)

AV TH 18 -0.19412 0.4571 1.9578 (2)

AV AX 13 0.16016 0.7180 1.3163 (2)

TOT P. 20 0.04303 0.5311 0.0927 (2)

PSLI 21 0.21244 0.8515 2.3631 (2)

POSIT 22 0.08760 0.5554 0.386b (2)
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TABLE 6.5C

STEP NUMBER 3 FOi. C3

VARIABLE ENTExED 7

MULTIPLE R 0.8278
STD. ERROR OF 6ST. 3.2575

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE k-EA2I0

REGRESSION 3 1155.150 385.0'W J0,286

RESIDUAL 50 530.554 10.611

VARIABLES IN EQUATION: (CONSTANT= -0.00639 )
VARIABLE COEFFICIENT STD. ERROR F TO REMOVE

SYMBL 7 0.21028 0.07821 7.229b (2)

RE 11 3.65488 0.39760 84.4960 (2)

THERM 15 2.49612 0.67580 13.6423 (2)

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR. TOLERANCh F TO ENfr.R

CLAS1 1 0.76201 0.3740 67.6519 (1)

CLAS2 2 0.92249 0.2675 279.8286 (1)

CLAS4 4 0.79091 0.5473 81.8544 (1)

CLASS 5 0.68238 0.5338 42.6985 (1)

WORDS 6 0.18041 0.5394 1.6486 (2)

LOGCN 8 -0.26918 0.6850 3.8278 (2)

PAREN 9 -0.15661 0.4039 1.2319 (2)

PREMS 10 0.00000 1.0000 0.0000 (2)

CP 12 -0.33260 0.8914 6.0946 (2)

AV RE 13 0.00000 1.0000 0.0000 (2)

AXIOM 14 0.28652 0.8700 4.3825 (2)

STEPS 16 0.19408 0.1293 1.9180 (2)

R INF 17 0.40983 0.8315 9.8914 (2)

AV TH 18 -0.05984 0.3832 0.1761 (2)

AV AX 19 0.27572 0.6727 4.0315 (2)

TOT R 20 0.21371 0.4481 2.3450 (2)

PSLI 21 0.18915 0.8425 1.8183 (2)

POSIT 22 0.25172 0.4798 3.3149 (2)

1.29
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TABLE 6.50

SUMMARY TABLE FOR C3:

STEP VARIABLE MULTIPLE INCREASE r 4ALUE Li a z%E6

NUM ENT REM k RSQ IN RSQ FOR DEL CuEleiCNis

i RE 11 0.75760 0.57396 0.57396 70.0494 2.63-1:se

2 THERM 15 0.79980 0.63966 0.06571 9.3169 4.62393

3 SYMBL 7 0.82780 0.68525 0.04557 7.2296 0.47907

4 R INF 17 0.85910 0.73805 0.05280 9.8914 3.040i3

5 PSLI 21 0.86900 0.75516 0.01711 3.3242 0.43077

6 AXIOM 14 0.3778E 0.77053 0.01537 3.1591 1.00346

7 PAREN 9 0.8859C 0.78482 0.01429 3.0652 -2.347u6

8 CP 12 0.89790 0.60622 0.02141 4.9519 -0.66024

9 AV TH 18 0.90590 0.82065 0.01443 3.5415 0.56327

10 STEPS 16 0.90970 0.62755 0.00b90 1.7355 0.51950

11 LOGCN 8 0.91180 0.83138 0.00383 0.9394 -2.93745

12 POSIT 22 0.9120C 0.83174 0.00036 0.0761 -0.23139

13 AV AX 19 0.91360 0.83466 0.00292 0.7454 1.3856

130
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FIGURE 6.4A - RESIDUALS FOR C3 ON RESTRICTED SET
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FIGURE - RESIDUALS(Y-AXIS) VS COMPUTED C3 (X-AXIS)
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TABLE 6.6A

STEP NUMBER*1 FOR C4

11

0.4667
3.2693

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE F-RATIO

REGRESSION 1 154.800 154.800 14.483
RESIDUAL 52 555.793 10.688

VARIABLES IN EQUATION: (CONSTANT= 3.67725 )
VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
RE 11 1.45125

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL Cc R.

0.38134

TOLERANCE

14.4831 (2)

F TO ENTER
CLAS1 1 0.65870 0.4724 39.1000 (1)
CLAS2 2 0.70676 0.3532 50.9010 (1)
CLAS3 3 0.81431 0.4261 100.3802 (1)
CLASS 5 0.92566 0.9296 305.2680 (1)
WORDS 6 0.07525 0.8548 0.2904 (2)
SYMBL 7 -0.00137 0.9356 0.0000 (2)
LOGCN 8 -0.22635 0.9844 2.7540 (2)
PAREN 9 -0.00737 0.9503 0.0028 (2)
PREMS 10 0.00000 .1.0000 0.0000 (2)
CP 12 -0.19540 0.9909 2.0246 (2)
AV RE 13 0.00000 1.0000 0.000U (2)
AXIOM 14 0.08716 0.9995 0.3904 (2)
THERM 15 0.53784 0.9579 20.7570 (2)
STEPS 16 -0.09022 0.1432 0.4165 (2)
R INF 17 0.41054 0.9996 10.3381 (2)
AV TH 18 0.39748 0.9875 9.5693 (2)
AV AX 19 0.44595 0.9720 12.6601 (2)
TOT R 20 0.48427 0.9801 15.6243 (2)
PSLI 21 -0.09039 0.9879 0.4201 (2)
POSIT 22 0.49136 0.9806 16.2321 (2)

1.33
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TABLE 6.6B

STEP NUMBER 2 FOR C4

15
0.6664
2.7831

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE F -RATIO

REGRESSION 2 315.573 157.786 20.371
RESIDUAL 51 395.020 7.745

VARIABLES IN EQUATION: (CONSTANT= 2.21628 )

VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
RE 11 1.76139
THERM 15 2.58059

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR.

0.33168
0.56642

TOLERANCE

28.2006 (2)
20.7570 (2)

F TO ENTER
CLAS1 1 0.63086 0.4370 33.0537 (1)
CLAS2 2 0.66398 0.3142 39.4253 (1)
CLAS3 3 0.77776 0.3602 76.5551 (1)
CLASS 5 0.89915 0.5371 211.0452 (1)
WORDS 6 0.25715 0.8013 3.5403 (2)
SYMBL 7 0.12449 0.9004 0.7871 (2)
LOGCN 8 -0.08188 0.8968 0.3375 (2)
PAR EN 9 -0.04238 0.9477 0.0899 (2)
PREMS 10 0.00000 1.0000 0.0000 (2)
CP 12 -0.05213 0.9104 0.1363 (2)
AV RE 13 0.00000 1.0000 0.0000 (2)
AXIOM 14 0.35691 0.8700 7.2988 (2)
STEPS 16 0.06689 0.1329 0.2247 (2)
R INF 17 0.31214 0.9121 5.3973 (2)
AV TH 18 0.00579 0.4571 0.0017 (2)
AV AX 19 0.23603 0.7180 2.9499 (2)
TOT R 20 0.19374 0.5311 1.9499 (2)
PSLI 21 0.13982 0.8515 0.9970 (2)
POSIT 22 0.21623 0.5554 2.4523 (2)

1 9 4
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TABLE 6.6C

STEP NUMBER 3 FOk C4

14
0 . 7176

2.6256

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE k' -RA ; 1u

REGRESSION 3 365.891 121.984 17.691
RESIDUAL 50 344.702 6.894

VARIABLES IN EQUATION: ( CONSTANT= 1.03759 )

VARIABLE COEFF:CIENT STD. ERROR F TO REMOVE
RE 11 1, 84887 0. 31 4 59 34.5392 ( 2)

AXIOM 14 1 .51097 0. 55 9 28 7.2988 ( 2)
THERM 15 3. 13748 O. 5 7 2 76 30.0069 ( 2)

VARIABLES NOT IN
VARIABLE

EQUATION :
PARTIAL CORR . TOLERANCE F TO ENTiii,

CLAS1 1 0 . 58273 0.39 07 25.1952 ( 1 )

CLAS2 2 0.64743 O. :$016 35, 3613 ( 1 )

CLAS 3 3 0 . 75805 O. 3345 66,1977 ( 1 )

CLASS 5 0 . 88348 0. 4 55 0 174.2755 (1)
WORDS 6 0 24514 0.796 0 3.1329 ( 2)

SYMBL 7 0.13382 0 . 9 004 0.8934 ( 2 )

LOGCN 8 0.05078 0. 7846 0.1267 ( 2)

PAREN 9 - 0.06662 0 . 9 44 9 0.2184 ( 2)

PREMS 10 O. 00000 1 . 0 00 0 0.0000 ( 2 )
CP 12 0.06675 0.S218 0.2193 ( 2)
.'-',V :0-, 13 0.00000 1. :.1000 0.0000 ( 2 )

c,rr'PS 16 0.09859 C.' 322 0.4b10 ( 2)

71 INF 17 O. 22129 0, .3 41 2, ,I:.i (2)
All TH 18 - 0.10233 0.4229 0.51.5 ( 2)

AV AX 19 0 05844 0. 51 5 0 0.1t:.19 ( 2)

TOT R 20 0.02276 0.4031 0 1?-.".( 2 )

PSLI 21 0.26233 O. 7 89 7 3.;.213 ( 2)

POSIT 22 0. 06511 0 . 4 4 0 9 O. 4086 ( 2 )
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TABLE 6.6D

SUMMARY TABLE FOR C4:

STEP VARIABLE
NUM ENT REM

MULTIPLE
R RSQ

INCREASE
IN RSQ

F VALUE
FOR DEL

LAST REG
COEFFICNIS

1 RE 11 0.46670 0.21781 0.21781 14.4831 1.97847
2 THERM 15 0.66640 0.44409 0.22628 20.7570 4.71216
3 AXIOM 14 0.71760 0.51495 0.07086 7.2988 1.60187
4 PSLI 21 0.74050 0.54834 0.03339 3.6213 0.40789
5 R INF 17 0.75800 0.57456 0.02622 2.9664 3.13453
6 WORDS 6 0.77420 0.59939 0.02482 2.9168 0.11472
7 AV AX 19 0.78530 0.61670 0.01731 2.0714 0.11472
8 CP 12 0.79590 0.63346 0.01676 2.0570 3.62206
9 PAREN 9 0.80290 0.64465 0.01119 1.3767 -1.47970

10 SYMBL 7 0.80860 0.65383 0.00919 1.1491 0.18363
11 LOGCN 8 0.81700 0.66749 0.013b6 1.7186 -3.38608
12 POSIT 22 0.82280 0.67700 0.00951 1.2225 -0.29187
13 AV AX 19 0.82280 0.67700 0.00000 0.0005
14 TOT R 20 0.82720 0.68426 0.00726 0.9382 1.28037
15 STEPS 16 0.82800 0.68558 0.00132 0.1589 -0.14571
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FIGURE 6.5A - RESIDUALS FOR C4 ON RESTRICTED SET
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FIGURE 6.5B - RESIDUALS (Y-AXIS) VS COMPUTED C4 (X -AXIS)
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TABLE 6.7A

STEP NUMBER 1 FOR C5

VARIABLE ENTERED
MULTIPLE R
STD. ERROR OF EST.

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES

1 145.939
52 321.487

REGRESSION
RESIDUAL

15
0.5588
2.4865

MEAN SQUARE F-RATIO
145.939 23.605

6.182

VARIABLES IN EQUATION: (CONSTANT= 3.51212 )

VARIABLE COEFFICIENT STD. ERROR E TO REMOVE
THERM 15

VARIABLES NOT IN
VARIABLE

2.40632

EQUATION:
PARTIAL CORR.

0.49528

TOLERANCE

23.6054 (2)

F TO ENTER
CLAS1 1 0.68615 0.9988 45.3724 (1)
CLAS2 2 0.65212 0.9992 37.7357 (1)
CLAS3 3 0.72700 0.9909 57.1707 (1)
CLAS4 4 0.91691 0.8633 269.2067 (1)
WORDS 6 0.37663 0.9072 8.4304 (2)
SYMBL 7 0.16829 0.9444 1.4864 (2)
LOGCN 8 -0.09201 0.9006 0.4354 (2)
PAREN 9 0.06370 1.0000 0.2076 (2)
PREMS 10 0.00000 1.0000 0.0000 (2)
RE 11 0.45809 0.9579 14.3100 (2)
CP 12 -0.06387 0.9117 0.2089 (2)
AV RE 13 0.00000 1.0000 0.0000 (2)
AXIOM 14 0.29555 0.8793 4.8812 (2)
STEPS 16 0.39348 0.9162 9.3425 (2)
R INF 17 0.23316 0.9138 2.9320 (2)
AV TH 18 0.14183 0.4587 1.0469 (2)
AV AX 19 0.18814 0.7217 1.8715 (2)
TOT R 20 0.21967 0.5311 2.5858 (2)
PSLI 21 0.13525 0,8525 0.9503 (2)

POSIT 22 0.24041 0.5554 3.1286 (2)
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TABLE 6.7B

STEP NUMBER 2 FOR C5

11

0.6804
2.2187

ANALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE

REGRESSION 2 216.380 108.190
RESIDUAL 51 251.046 4.922

VARIABLES IN
VARIABLE

EQUATION:
COEFFICIENT

F-RATIO
21.979

(CONSTANT= 2.19584 )

STD. ERROR F TO REMOVE
RE 11 1.00026
THERM 15 2.75689

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR,

0.26442
0.45155

TOLERANCE

14.3100 (2)
37.2760 (2)

F TO ENTER
CLAS1 1 0.57328 0.4370 24.4764 (1)
CLAS2 2 0.53388 0.3142 19.9325 (1)
CLAS3 3 0.66357 0.3602 39.3372 (1)
CLAS4 4 0.89915 . 0.5559 211.0452 (1)
WORDS 6 0.26095 0.8013 3.6534 (2)
SYMBL 7 '0.07789 0.9004 0.3052 (2)
LOGCN 8 -0.13868 0.8968 0.9804 (2)
PAREN 9 -0.05040 .0.9477 0.1273 (2)
PREMS 10 0.00000 1.0000 0.0000 (2)
CP 12 -0.09181 0.9104 0.4250 (2)
AV RE 13 0.00000 1.0000 0.0000 (2)
AXIOM 14 0.39105 0.8700 9.0265 (2)
STEPS 16 -0.11690 0.1329 0.6927 (2)
R INF 17 0.24086 0.9121 3.0792 (2)
AV TH 18 0.12946 0.4571 0.8523 (2)
AV AX 19 0.25120 0.7180 3.3676 (2)
TOT R 20 0.24909 0.5311 3.3074 (2)
PSLI 21 0.13477 0.8515 0.9249 (2)
POSIT 22 0.27371 0.5554 4.0491 (2)
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TABLE 6.7C

STEP NUMBER 3 FOR C5

14
0.7383
2.0623

?.,:ALYSIS OF VARIANCE:
DF SUM OF SQUARES MEAN SQUARE F-RATIO

REGRESSION 3 254.770 84.923 19.967
RESIDUAL 50 212.656 4.253

VARIABLES IN EQUATION: (CONSTANT= 1.16628 )

VARIABLE COEFFICIENT STD. ERROR F TO REMOVE
RE 11 1.07668 0.24710 18.9861 (2)
AXIOM 14 1.31979 0.43928 9.0265 (2)
THERM 15 3.24332 0.44987 51.9762 (2)

VARIABLES NOT IN EQUATION:
VARIABLE PARTIAL CORR. TOLERANCE F TO ENTER

3

CLAS1
CLAS2
CLAS3
CLAS4
WORDS
SYMBL
LOGCN
PAREN
PREMS
CP
AV RE
STEPS
R INF
AV TH
AV AX
TOT R
PSLI
POSIT

1

2

3

4
6
7

8
9
10
12
13
16
17
18
19
20
21
22

0.51253
0.50526
0.63034
0.88348
0.24994
0.08524
-0.00040
-0.07841
0.00000
0.03457
0.00000

-0.09751
0.12979
0.02529
0.05548
0.07122
0.27094
0.11727

0.3907
0.3016
0.3345
0.4851
0.7960
0.9004
.0.7846
0.9448
1.0000
0.8218
1.0000
0.1322
0.8144
0.4229
0.5150
0.4031
0.7897
0.4409

17.4574
16.7969
32.3053

174.2755
3.2649
0.3586
0.0000
0.3031
0.0000
0.0586
0.0000
0.4703
0.8396
0.0314
0.1513
0.2498
3.8821
0.6833

(1)
(1)

(1)
(1)
(2)

(2)
(2)

(2)

(2)

(2)
(2)
(2)

(2)
(2)

(2)

(2)
(2)

(2)

1
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TABLE 6.7D

SUMMARY TABLE FOR C5:

STEP VARIABLE
NUM ENT REM

MULTIPLE
R RSQ

INCREASE
IN RSO

F VALUE
FOR DEL

LAST REG
COEFFICNTo

1 THERM 15 0.55880 0.31226 0.31226 23.6054 3.93706
2 RE 11 0.68040 0.46294 0.15069 14.3100 2.14152
3 AXIOM 14 0.73830 0.54509 0.08214 9.0265 1.37732
4 PSLI 21 0.76060 0.57851 0.03343 3.8821 0.33648
5 STEPS 16 0.77310 0.59768 0.01917 2.2905 .0.52878
6 WORDS 6 0.78660 0.61874 0.02106 2.5907 0.10568
7 PAR1N 9 0,79740 0.63585 0.01711 2.1760 .).87813
8 R INF 17 0.80470 0.64754 0.01170 1.4924 1.69602
9 SYMBL 7 0.81400 0.66260 0.01505 1.9577 0.10182

10 CP 12 0.81630 0.66635 0.00375 0.4876 1.98407
11 LOGCN 8 0.81890 0.67060 0.00425 0.5385 - 1.60871
12 POSIT 22 0.82090 0.67388 0.00328 0.4165 - 0.18563
13 TOT R 20 0.82540 0.68129 0.00741 0.9287 0.86059
14 AV TH 18 0.82560 0.68162 0.00033 0.0415 0.11391
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FIGURE 6.6A - RESIDUALS FOR C5 OD RESTRICTED SET
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FIGURE 6.6B - RESIDUALS (Y -AXIS VS COMPUTED CD (X -AXIS
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CHAPTER SEVEN

A subset of the set of proofs for problem 414035 was
presented in Chapter III, to illustrate the classification
procedure. In this chapter, the full set of proofs for
three problems will be presented, to provide additional
insight into the nature of the differences in the sample as
a whole. The first problem discussed is drawn from the
early part of the curriculum, before the intoduction of RE,
and exibits very little variation for all of the five
partitions. The second problem comes after the intoduction
of RE, but before the introduction of the first theorem.
It shows considerable variation under the first two
partitions but very little under the last three. The last
problem occurs when four theorems are available and shows
considerable variation under all five partitions.

As in Chapter III, paradigm proofs identify the
different classes under each of the first three partitions.
All of the proofs in a class are equivalent to the paradigm
proof, up to the differences allowed under the partition
being discussed. For the last two partitions, individual
classes are identified by the distribution which defines
the class. All of the classes under a partition are
referred to by letters of the alphabet; the numbers that
appear after these letters are the number of student proofs
included in the class.

7.1 PROBLEM 407010

Problem 407010 is fairly typical of those occurring
before the introduction of RE. The statement of this
problem is:

407010:
DERIVE 6+A = (5+1)+A

There are three classes under the first partition (Table
7.1) and only one class under each subsequent partition.

The first partition is defined by the identity
relation; even under this strict definition of equivalence,
there. are only three classes of proofs in the sample of
twenty three. For the second partition, there is just one

1.45
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class. All twenty three proofs are equivalent up to
defferences in unused steps. There is little variation in
the set of proofs for this problem, and the variations
which do occur are relatively superficial.

7.2 PROBLEM 411051

The statement of this problem is:

411051:
DERIVE 10 = A -> A-7 = 10-(6+1)

Problem 411051 occurs when RE is available. The tirst
partition for this problem contains eleven classes of
proofs. The paradigm proofs for these eleven classes are
listed in Table 7,2A.

All of the proofs in Table 7.2A use the same six
rules: WP, SE, ND, CE, RE, and CP; these rules are used in
a consistent way from proof to proof. In each case, WP is
used to generate the formula, A = 10, and ND is used to
generate 7 = 6+1. CE and SE are used to modify A = 10, and
RE is used to combine the formula derived from A = 10 and
the formula, 7 = 6+1. Finally, CP is used to generate the
required conditional, 10 = A -> A-7 = 10-(6+1). The proofs
differ in the order in which these rules are used and in
the presence, in some proofs, of unused steps. For

example, the only difference between proofs A and D is in
the postion of the step employing ND. Proofs B and D are
the same, except for the two unused steps, (5) and (6), in
proof B.

Under the second partition, there are seven classes or
proofs. The paradigm proofs are found in Table 7.2B. The
criteria which define the second partition ignore unusea
steps, therefore no unused steps appear in the paradigm
proofs for this partition. All of these proofs contain six
steps, using the same six rules. The order in which these
rules are used, however, changes from one proof to another.

The three paradigm proofs for the third partition are
contained in Table 7.2C. Again, the only differences
between these proofs are in the order of rule use. Under
the second partition any difference in order results in a
separate classification; the third partition is sensitive
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to some differences in order but not to all. In this
problem, 411051, the third partition ignores the position
of the step using ND, but does not ignore changes in the
order in which CE, SE, and RE are introduced. These three

rules are used, in some order, to successively modify 10
A; various sequences of these three steps constitute the

core of the proofs. The ND-step is introduced only to be
used with RE and can occur anywhere before RE. Most of the
variation observed for the first two partitions is likewise
due to the differences in the position of the ND-step.

All of the proofs in the sample for this problem are

in the same class under the third and fourth partitions,
since they all use the same six rules and use each of them

only once.

7.3 PROBLEM 415044

The final example to be discussed is problem 415044.
The statement for this problem is:

415044: HERE IS THEORM 5
DERIVE: 0 = 0

Under the first partition there are sixteen classes in the

sample of twenty three proofs; a list of the paradigm
proofs for each of these classes is presented in Table
7.3A.

The proof labeled D, in Table 7.3A, is the standard

proof for this problem; it uses two theorems, TH3 and TH4.
Six students constructed the standard proof; this is the

largest number of proofs in any of the sixteen classes. C

is the class with the second largest number of student
proof s.

The differences between C and D are worth discussing
in detail. The first step in C is identical to the first

step in D. The second step in proof D uses TH3 to generate
the formula, 0-0 = 0. Proof C uses three steps to generate
the same formula; these three steps are a special case of
the proof of TH3. Both C and D then use RE to complete the
proof.

The students who constructed proof C recognized that
they needed the formula, 0-0 = 0, but did not realize that

1 47
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this formula could be generated in one step by using T1i3.

So they proved this instance of TH3, using the axioms AI
and N and the rule, RE, which form the standard proof of
TH3. A slightly different version of this proof for the
necessary instance of TH3 is found in proof J, while proof
E uses TH3 and includes a derivation of the needed instance
of TH4. Since every theorem in the curriculum may be
proved using the axioms and rules of inference, it is never
necessary to use a theorem; any instance of a theorem can
be proved using the axioms and rules of inference.

Proofs F, 0, and P use no theorems (The single
occurrence of TH4 in proof P is in an unused step.). Proof
K, on the other hand, uses TH1 and TH2 with CA and RE.

In addition to this basic variation in the rules used,
there are differences in the order in which the rules are
used and in the presence of unused steps. Proof H, for
example, is the same as proof D except for its unused

second step.

The paradigm proofs for the second partition are
listed in Table 7.3B. Unused lines are ignored under the
second partition, so the number of classes decreases from
sixteen to fourteen. The paradigm proofs for the third
partition form Table 7.3C. Here some variation in the
order of steps is allowed, and the number of classes is
reduced to twelve.

Moving from the third partition to the fourth, two of
these twelve classes are combined, leaving a total of
eleven classes (Table 7.3D). None of these merge under the
fifth partition, which also contains eleven classes. For
this last problem, then, the decrease in the number of
classes from one partition to the next is very gradual.
The reason for this was indicated in the discussion of the
first are combined, leaving a total of eleven classes
(Table 7.3D). None of these merge under the fifth
partition, which also contains eleven classes (Table 7.3E).
For this last problem, then, the decrease in the number of
classes from one partition to the next is very gradual.
The reason for this was indicated in the discussion of the
first partition. The proofs differ principally in the set
of rules employed. Since all five partitions are sensitive
to such differences, this component of variation does not
disappear for the later partitions.

Two additional types of variation appear under the
first partition, the presence of unused steps in some
proofs and the variations in the order of steps. These
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types of variation become irrelevant for the later
partitions and disappear. In the previous examples
discussed here, differences in the order of steps accounted

for most of the differences observed, so the number of
classes decreased rapidly from the first partition to the
fifth.
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TABLE 7.1

FIRST PARTITION FOR PROBLEM 407010

.ND6 (1) 6 = 5+1 A (1)*

.AE[A] (2) 6+A = (5+1)+A

.ND6 (1) 6 = 5+1 B (20)

1. .AE[A] (2) 6+A =(5+1)+A

. . .ND5 (1) 5 = 4+1 C (1)

. . .DLL

. . .ND6 (1) 6 = 5+1
1. . .AE [A]

* The numbers
each proof
class.

(2) 6+A =(5+1)+A

in parentheses to the right of
are the number of proofs in the



.

1.

3.

4.

1.

.

.

2.
5.

FIRST

.WP(.10=A1

.ND7
CE1
.SEP)
.RE2
.CP

PARTITION FOR PROBLEM 411051

(1) 10 = A (4)

(2) 7 = 6+1
(3) A = 10
(4) A-7 = 10-7
(5) A-7 = 10-(6+1)
(6) 10 = A -> A-7 = 10-(6+1)

. oap [ 1 o=rd (1) 10 = A LI (1)
1. . .CE1 (2) A = 10
2. . .SE[7) (3) A-7 = 10-7

. . .ND7 (4) 7 = 6+1
4. . .CEI (5) 6+1 = 7
3. 4. .RE1 (6) A-(6+1) = 7
3. 4. .RE2 (7) A-7 = 10-(6+1)
1. 7. .CP (8) 13 = A -> A-7 =10-(6+1)

.WP[10=Aj (1) 10 = A C (1)

.ND7 (2) 7 = 6+1
1. .SE[7] (3) 10-7 = A-7
3. 2. RE2 (4) 10-7 = A-(6+1)

.DLL
3. CE1 (4) A-7 = 10-7
4. 2. .RE2 (5) A-7 = 10-(6+1)
1. 5. .CP (6) 10 = A -> A-7 =10-(6+1)

.

1.

2.

3.

1.

.

2.
4.
1.

.

.

4.
5.

.

3.

5.

.WP [10 =A]

.CE1

.SE[7]

.ND7

.RE2

.CP

.WP [10 =A3

.CE1

.ND7

.SE[7]

.RE2

.CP

(1)
(2)
(3)
(4)
(5)
(6)

(11
(2)
(3)
(4)
(5)
(6)

10 = A D

A = 10
A-7 = 10-7
7 = 6+1
A-7 = 10-(6+1)

10 = A -> A-7 =10-(6+1)

10 = A
A 10
7 =
A-7 10-7
A-7 = 10-(6+1)

10 = A -> A-7 =10-(5+1)

(i))

(1)
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1.

3.

2.

5.

1.

.

3.

6.

.WP [10 =A]
CE1
.ND7
.CE1
.SE[7]
.RE2
.CP

(1)

(2)

(3)
(4)
(5)

(6)
(7)

10 = A F

A = 10
7 = 6+1
6+1 =

= 10 -7
A -7 = 10...(6+1)

10 = A -> A -7 = 10 -(6 +1)

(1)

.WP[10=A] (1) 10 = A G (2)

1. 'SE[7] (2) 10 -7 =

..ND7 (3) 7 = 6+1
2. 3. .RE1 (4) 10 -(6 +1) =A -7

4. .CE1 (5) A -7 = 10 -(6 +1)

1. 5. .CP (6) 10 = A -> A -7 =10(6+1)

.WP [10=A] (1) 10 = A H (1 )

. .CE1 (2) A = 10
2. .SE[7] (3) A -7 = 10 -7

.ND7 (4) 7 = 6+1
3. 4. .RE2 (5) A -7 = 10 -(6 +1)

1. 5. .CP (6) 10 = A -> A -7 =10...(5+1)

. .WP[10=A] (1) 10 = A I (1)
. .ND7 (2) 7 = 6+1

1. . .SE[7] (3) 10 -7 = A7
3. 2. .RF1 (4) 10...(6+1) = A7
4. . .CE1 (5) A -7 = 10(6+1)
1. 5. .CP (6) 10 = A -> A7 =10(6+1)

.WP [10=A] (1) 10 = A J (1)

1. .SE[7] (2) = A -7

.ND7 (3) 7 = 6+1
2. 3. .RE2 (4) 10 -7 = A(6+1)
1. 4. .CP (5) 10 = A -> A -7 = A -(6 +1)

DLL
.DLL

2. .CE1 (4) A -7 = 10-7
4. 3. .RE2 (5) A -7 = 10(6+1)
1. 5. .CP (6) 10 = A -> A -7 =10(6+1)

.WP[10=A] (1) 10 = A K (1)

1. . .CE1 (2) A = 10
. . .ND7 (3) 7 = 6+1
. .DLL
. . .SE[7] (3) A-7 = 10-7
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3.

1.

4.
5.

.N07

.RE2

.CP

(4)

(5)
(6)

148

7 = 6+1
A-7 = 10-(6+1)

10 = A -> A-7 =10-(6+1)

1.53
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TABLE 7.2B

SECOND PARTITION FOR PROBLEM 411051

.

.WP [10=A]

.ND7

(1)

(2)

10 = A A

7 = 6+1

(4)

1. . .CE1 (3) A = 10
3. . .SE[7] (4) A-7 = 10-7
4. 2. .RE2 (5) A-7 = 10-(6+1)
1. 5. .CP (6) 10 = A -> A-7 = 10-(6+1)

. .WP[10=A] (1) 10 = A B,D,H,K (12)
1. .CE1 (2). A = 10
2. . .SE[7] (3) A-7 = 10-7

. .ND7 (4) 7 = 6+1
3. 4. .RE2 (5) A-7 = 10-(60)
1. 5. .CP (6) 10 = A -> A-7 =10-(6+1)

.WP[10=A] (1) 10 = A C (1)

.ND7 (2) 7 = 6+1
1. . .SE[7] (3) 10-7 = A-7
3. . .CE1 (4) A-7 = 10-7
4. 2. .RE2 (5) A-7 = 10-(6+1)
1. 5. .CP (6) 10 = A -> A-7 =10-(6+1)

. .WP[10=A] (1) 10 = A E,F (2)

. .CE1 (2) A = 10
. . .ND7 (3) 7 = 6+1

2. .SE[7] (4) A-7 =10-7
4. 3. .RE2 (5) A-7 = 10-(6+1)
1. 5. .CP (6) 10 = A -> A-7 =10 -(6 +1)

.WP[ 10=A] (1) 10 = A G (2)

1. . SE[7] (2) 10-7 = A-7
. .ND7 (3) 7 = 6+1

2. 3. RE1 (4) 10-(6+1) =A-7
4. . .CE1 (5) A-7 = 10-(6+1)
1. 5. .CP (6) 10 = A -> A-7 =10-(6+1)

.WP[10=A] (1) 10 = A I (1)

.ND7 (2) 7 = 6+1

154



150

1.

3.

4.

1.

1.

2.

4.

1.

2.

5.

.

3.

5.

.SE[7]

.11E1

CE1
.CP

.WP[10=A]

.SE[7]
ND7
CE1
.11E2

.CP

(3)
(4)
(5)
(6)

(1)
(2)
(3)
(4)
(5)

(6)

10-7 = A-7
10-(6+1) = A-7
A-7 = 10-(6+1)

10 = A -> A-7 =10-(6+1)

10 = A
10-7 = A-7
7 = 6+1
A-7 = 10-7
A-7 = 10-(6+1)

10 = A -> A-7 =10-(6+1)

J (1)
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TABLE 7.2C

THIRD PARTITION FOR PROBLEM 411051

. .WP(10=Aj (1) 10 = A A,B,D,H,K,E,F (18)

.ND7 (2) 7 = 6+1
1. . CE1 (3) A = 10
3. .SE[7] (4) A-7 = 10-7
4. 2. .RE2 (5) A-7 = 10(6+1)
1. 5. .CP (6) 10 = A > A-7 = 10(6+1)

.WP[10=A] (1) 10 = A CoJ (2)

.ND7. (2) 7 = 6+1
1. .SE[7] (3) 10-7 = A-7
3. CE1 (4) A-7 = 10-7
4. 2. .RE2 (5) A-7 = 10(6+1)
1. 5. CP (6) 10 = A > A-7 =10(6+1)

. .WP[10=A] (1) 10 = A G,I (3)

1. .SE[7] (2) 10-7 = A-7
.ND7 (3) 7 = 6+1

2. 3. RE1 (4) 10(6+1) =A-7
4. .CE1 (5) A-7 = 10 (6 +1)
1. 5. .CP (6) 10 = A > A-7 =10(6+1)

.56
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TABLE 7.3A

.

FIRST PARTITION FOR PROBLEM 415044

N [A ,A] (1) A+(-A ) = A-A
.AI [A] (2) A+(-A) = 0

A (1)

1. 2. .RE1 ( 3) 0 = A-A
TH1 [0] (4) 0+0 = 0
. AI [0] (5) 0+(-0) = 0

5. CE1 ( 6) 0 = 0+(-0)
4. 6. .RE3 ( 7) 0+0 = 0+ (-0)
7. . . SE [0] (8) (0+0)-0 = (0+ (-0) ) -0

TH3 [0] (9) 0-0 = 0
8. 4. .RE1 (10) 0-0 = (0+ (-0) ) -0

10. 9. RE1 (11) 0 = (0+(-0) )-0
11. .CA1 (12) 0 = ( (-0)+0)-0

. .TII4 [0] (13) 0-0 = -0
9. .CE1 (14) 0 = 0-0

13. 9. .12E1 ( 15) 0 = -0

TH3 [0] (1) 0-0 = 0 (1)
.TH4 [0] (2) 0-0 = -0

1. 2. .RE1 (3) -0 = 0
3. . .CE1 (4) 0 = -0

.TH4 [0] (1 ) 0-0 = -0 C (3)

.AI [0] (2) 0+(-0) = 0
. .N [0,0] ( 3) 0+(-0) = 0-0

2. 3. RE1 ( 4) 0-0 =
1. 4. .12E1 ( 5) 0 = -0

. .TH4 [0j ( 1) 0-0 = -0 D (6)
.TH3[0] ( 2) 0-0 = 0

1. 2. RE1 ( 3) 0 =

. . .24 [-O.; (1) (-0)+0 = -0 E (1)
.CA1 (2) 0+(-0) = -0
N [0,0] ( 3) 0+(-0) = 0-0

2. 3. RE1 ( 4) 0-0 = -0
TH3[0] ( 5) 0-0 = 0

4. 5. .RE1 (6) 0 = -0

1.57



.LT [0]

.AI [O]
2. CE1
1. 3. .RE2

. z [ -0
5. CA1
4. 6. RE1

.TH1 (0]
TH2L01
.TH3(0)
TH4 [O)

3. . CE1
1. 5. .RE3
6. 4. RE1
7. 1 RE1

153

(1) 0 =0
(2) 0+(-0) = 0
(3) 0 = 0+(-0)
(4) 0 = 0+(-0)
(5) (-0)+0 = -0
(6) 0+(-0) = -0
(7) 0 = -0

(1) 0+0 = 0
(2) (-0)+0 = 0
(3) 0-0 = 0
(4) 0-0 = -0
(5) 0 r 0-0
(6) 0+0 = 0-0
(7) 0+0 = -0
(8) 0 = -0

.TH4 [O] ( 1 ) 0 -0 = 0
TH1 [O] (2) 0+0 = 0
TH3(0) ( 3 ) = 01 3. RE1 ( 4 ) 0 =

. .TH3(0) ( 1 ) 0 -0 = 0
. . .DLL
. . TH4 [O] ( 1 ) 0 -0 = -0
. TH3 [O] (2) 0 -0 = 0

1. 2. oRE1 ( 3) 0 = -0

.TH4[0] (1) 0-0 =
N [OO] ( 2 ) 0+ ( = 0 -0
.AI [0] (3) 0 +( -0) =, 0

3. 2. RE1 ( 4 ) 0 -0 = 0
1. 4. .12E1 ( 5 ) 0 =

.TH1[ 0] ( 1 ) 0+ ( =
1 CA1 (2) (.-.0)+0 =

TH2 (0) ( 3) (.0)+0 = 0
2. 3. oRE1 ( 4) 0 =

obi [010]
a CO]

(.0)
3. .CAI
1. 4. .12E1

(1) 0+(-0) = 0-0
(2) 0+0 = 0
(3) (-0)+0 = 0
(4) 0+(-0) = 0
(5) -0 = 0-0

158

F (1 )

G (1 )

H ( 1 )

J (1 )

K (1)

L ( 1 )
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TH 3 [0] ( 6) 0-0 = 0
5. 6. .RE1 ( 7) -0 = 0
7. CE1 (8) 0 = -0

.LT [0] (1) 0 = 0 ( 1 )
TH4 [0] (2) 0 -0 = -0
.TH3 [0] ( 3) 0-0 = 0

1. SE [0] ( 4) 0-0 = 0-0
4. 3. .RE1 ( 5) 0 = 0-0
5. 2. .RE1 ( 6) 0 = -0

.LT [0] ( 1) 0 = 0 N ( 1 )

.AE [0] ( 2 ) 0+0 - 0+0

.DLL
AE (-0) (2) 0+(-0 ) = U+(-o)
. TH4 [0] ( 3) 0-0 = -0
.'i'H 2 [ 0] ( 4) (-0)+0 = o

4. . CA1 (5) 0+(-0) = 0
2. 5. .RE1 ( 6) 0 = 0+(-0)

Z [0] ( 7) 0+0 = 0
.DLL
.z[-o] ( 7) (-0 ) + 0 = -o

7. .CA1 (e) o+(-o) = -0
6. 8. .RE1 (9) 0 = -0

.LT [ -0] ( 1 ) -0 = -0 0 ( 1 )
N [0 0] ( 2 ) 0+( -0) = 0-0
a [ -0] ( 3) (-0 ) +0 = -0

3. CE1 ( 4) -0 = (-0)+0
1. 4. .12E1 ( 5) (-0)+0 = -0

.AI [0] (6) 0+( -0 ) = 0
6. . .CA1 ( 7) (-0)+0 = 0

5. 7. .RE1 ( 8 ) 0 = -0

TH4 [0] (1) 0 -0 = -0 P ( 1 )
Z [-O] (2) (-0)+0 = -o

2. CA1 (3) o+(-o) = -0
.AI [0] ( 4) 0+(-0 ) = 0

3. 4. .RE1 (5) 0 = -0

'MO
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TABLE 7.33

SECOND PARTITION FOR PROBLEM 415044

TH3[0] (1) 0-0 = 0 A (1)
TH4 [0] ( 2) 0-0 = -0

2. 1. RE1 ( 3) 0 = -0

TH3 [0] (1) 0-0 = 0 B (1)
.TH4 [0] ( 2) 0-0 = -0

1 2. RE1 (3) -0 = 0
3. oCE1 ( 4) 0 = -0

. TH4 [0] ( 1) = -0 C (3)
*AI [0] (2) 0+(-.0) = 0

[0,0] ( 3) 0+(-.0) =
2. 3. oRE1 ( 4) 0 -0 = 0

1. 4. RE1 ( 5) 0 =

TR4 [0] (1) 0 -0 = -0 D,H,I (8)
. TH3 [0] (2) 0 -0 = 0

1. 2. oRE1 ( 3) 0 = -0

Z (.0] (1) (.-0)+0 = -0 E (1 )
CA1 (2) 0+(.-.0) = -..0

. N [010] ( 3 ) 0+ (...-0) = 0 -0
2. 3. RE1 ( 4 ) .0-0 = ..0

. TH3 [0] ( 5 ) 0-0 = 0 _

4. 5. RE1 ( 6) 0 = -0

.LT [0] (1) 0 =0 F' (1)
AI [0] ( 2) 0+(.0) = 0

2. CE1 ( 3) 0 = 0+(a'.0)
1. 3. .RE2 ( 4) 0 = 0+(.-0)

Z (-)] ( 5) ( .0)+0 = -0
5. CA1 (6) 0+(..0) = -0
4. 6. RE1 ( 7) 0 = -0

. TH1 [0] ( 1 ) 0+0 = 0 G (1).
.TH3[0] (2) 0 -0 = 0
TH4 [0] ( 3 ) 0 -0 = 0

1CO
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2 . CE1 (4) 0 = 0-0
1. 4. .RE3 ( 5 ) 0+0 = 0-0
5. 3. .12E1 ( 6) 0+0 = -0
6. 1. RE1.* (7) 0 = -0

.TH4 [0] ( 1 ) 0-0 = -0 J (1)
. .N [090] (2) 0+(-0) = 0-0

. AI [0] ( 3) 0+( -0 ) = 0
3. 2. .12E1 (4) 0-0 = 0
1. 4. RE1 ( 5 ) 0 = -0

1. .
TH1 [-O]
CA1

( 1 )
( 2 )

0+(-0) = -0
(-0)+0 = -0

K (1)

TH2 [0] ( 3) (-0)+0 =
2. 3. .12E1 ( 4) 0 = -0

N [090] ( 1 ) 0+(-0) = 0-0 L (1)
Z [ -0] (2) (-0)+0 = 0

2. CA1 ( 3) 0+( -0) = 0
1. 3. .12E1 (4) -0 = 0-0

TH3 [0] ( 5) 0-0 = 0
4. 5. RE1 (6) -0 = 0
6. CE1 ( 7 ) 0 = -0

.LT [0] ( 1 ) 0 = 0 M (1 )
.TH4[0] (2) 0-0 = -0
TH3 [0] ( 3) 0-0 = 0

1. .SE [0] ( 4) 0-0 = 0-0
4. 3. RE1 ( 5 ) 0 = 0-0
5. 2. RE1 (6) 0 = -0

LT [0]
AE [-O]

(1)
( 2)

0 = 0
0+(-0) = 0+(-0)

N (1)

TH2 [0] ( 3) (-0)+0 = 0
3. CA1 (4) 0+(-0) = 0
2. 4. RE1 ( 5) 0 = 0+(-0)

(6) (-0)+0 = -0
5. '"%1 (7) o+(-o) = -0
4. 6. RE1 (8) 0 = -0

LT [-O]
a [ -0]

( 1 )
( 2 )

-0 = -0
(-0) +0 = -0

0 (1)

2. CE1 ( 3) -0 = (-0)+0
1. 3. RE1 ( 4) (-0)+0 = -0

161
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.
5.
4.

1.

2.

6.

3.

.AI [0]

.CA1
RE1

[-O]
.CA1
.AI CO)
.RE1

(5)
(6)
(7)

(1)
(2)
(3)
(4)

o+(o)
(-0)+0
0 = -0

(-0)+0
0+(-0)
0+( -0 )
0 = -0

=
=

=
=
=

0
0

-0
-0
0

P (1)

162
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TABLE 7.3C

THIRD PARTITION FOR PROBLEM 415044

TH3 [0]
.TH4 [0]

( 1) 0-0 = 0
( 2) 0-0 = -O

A,D,H,I (9)

2. 1. RE1 ( 3) 0 = -0

TH3 [0] (1) 0-0 = 0 B ( 1 )
.TH4 [0] (2) 0-0 = -0

1. 2. 02E1 ( 3) -0 = 0
3. CE1 (4) 0 = -0

.TH4 [0] (1) 0-0 = -0 C,J (

. AI [0] (2) 0+(-0) = 0
. .N[0,0] (3) 0+(-0) = 0-0

2. 3. .12E1 (4) 0-0 = 0
1. 4. .RE1 ( 5) 0 = -0

. .Z [ -O] (1) (-0)+0 = -0 E (1)
CA1 ( 2) 0+(-0) = -0

. N[0,0] (3) 0+(-0) = 0-0
2. 3. 02E1 (4) 0-0 = -0

TH3 [0] ( 5) 0-0 = 0
4. 5. RE1 (6) 0 = -0

.LT [0] (1) 0 =0 F (1)

.AI [0] ( 2) 0+(-0) = 0
2. CE1 (3) 0 = 0+(-,0)
1. 3. RE2 (4) 0 = 0+( -0 )

.Z [-O] ( 5) (-0)+0 = -0
5. CA1 ( 6) 0+(-0) = -0
4. 6. RE1 ( 7) 0 = -0

.TH1 [0] ( 1) 0+0 = G ( 1 )
TH 3 [0] (2) 0-0 = 0

.TH4 [0] ( 3) 0-0 = -0
2 CE1 (4) 0 = 0-0
1 4. 02E3 ( 5) 0+0 = 0-0
5. 3. RE1 (6) 0+0 = -0
6. 1. 02E1 (7) 0 = -0

1f

3)
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.TH1 [...0] (1) 0+( = -) K (1)
1. .CM (2) (...0)+0 =

TH2 [0] (3) (0)+0 = 0
2. 3. .RE1 (4) 0 = 0

N [0,0] (1) 0+(-0) = 0-0 L (1)
Z (2) (-0)+0 = 0

2. .CA1 (3) 0+(-0) = 0
1. 3. .RE1 (4) -0 = 0-0

TH3 [0] (5) 0-0 = 0
4 5. .RE1 (6) -0 = 0
6. CE1 (7) 0 = -0

.LT [0] (1) 0 = 0 M (1)

.TH4 [0] (2) 0-0 = -0
TH3 [0] (3) 0-0 = 0

1. . *SELO] (4) 0-0 = 0-0
4. 3. .RE1 (5) 0 = 0-0
5. 2. .RE1 (6) 0 = -0

LT [0] (1) 0 = 0 N (1)
AE [-'0] (2) 0+(-0) = 0+(-0)

. TH2 [0] (3) (-0)+0 = 0

3. CA1 (4) c+(-0) = 0
. 2. 4. .RE1 (5) 0 = 0+(-0)

Z [-0] (6) (-0)+0 = -0
5. . .C41 (7) 0+ (-0) = -0

4. 6. 01E1 (8) 0 = -0

JC1



160

TABLE 7.30

FOURTH PARTITION FOR PROBLEM 415044

Z N LT AE SE CE RE CA AI TH1 TH2 TH3 TH4

0 0 0 0 0 0 1 0 0 0 0 1 1 A,D,H9I

0 0 0 0 0 1 1 0 0 0 0 1 1 13 ( 1 )

0 1 0 0 0 0 2 0 1 0 0 0 1 CoJ (4)

1 1 0 0 0 0 2 1 0 0 0 1 0 E ( 1 )

1 0 1 0 0 1 2 1 1 0 0 0 0 r',0 (2)

0 0 0 0 0 1 3 0 0 1 0 1 1 G ( 1 )

0 0 0 0 0 0 1 1 0 1 1 U 0 K (1)

1 1 0 0 0 1 2 1 0 0 0 1 0 L ( 1 )

0 0 1 0 1 0 2 0 0 0 0 1 1 ( 1 )

1 0 1 1 0 0 2 2 0 0 1 0 0 ( 1 )

1 0 0 0 0 0 1 1 1 0 0 0 0 P ( 1 )

1F5

(9)
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CHAPTER EIGHT

8.1 - INTRODUCTION

The study discussed in this dissertation was
essentially exploratory. The initial purpose was to
evaluate the LIS curriculum along one of its dimensions,
variability in student proofs. In order to do this, a
classification procedure was developed and uses to nt!ssure
variability in a set of student proofs.

The classification procedures described in Chapter III
allow us to compare student proofs at five levels of
detail. These techniques have proven adequate for this
study, and should be useful in a wide range of related
studies

The classification procedure was also used to
investigate the relationship between the variability
(number of classes of equivalent proofs) in a sample of
proofs for a problem and the characteristics of the
problem. The results for this part of the study provided
increased understanding of both the sources of variation
within the curriculum and the properties of the
classification procedure

8.2 VARIABILITY OF PROOF BEHAVIOR IN THE CURRICULUM

The derivation problems in the algebra part of the
Stanford Logic-Instructional System (LIS) curriculum have
been used in this study. The measured variability within
this set of problems is high for all five partitions, and
increases from one lesson to the next.

Even for the fifth partition, which requires that two
proofs use different sets of rules if they are to be put
into distinct classes, there is a substantial amount of
variation in the final lessons considered. Under the first
partition , identity of the proofs (except for error steps)
is required; using these criteria there are a large number
of proof classes for almost all of the problems studied.

LIS will accept any valid proof for a problem. It
checks the validity of each step rather than comparing the
student's proof against a preset standard. In
investigating the extent to which the curriculum makes use
of the system's ability. to recognize any valid proof, all
variations in student proofs are relevant, including the
existence of unused steps and differences in the order of
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steps. The first partition is sensitive to these
variations and under it there were a large number of
c3asses for most problems. The current LIS curriculum
certainly encourages a large amount of variation at this
level; it continues to encourage a reasonable amount of
variation even as the criteria for equivalence are relaxed
from the second to the fifth partitions.

8.3 REMARKS ON THE CLASSIFICATION PROCEDURE

The ambiguity in the notion of "different proofs" had
to be resolved to conduct this study. The differences
relevant to the evaluation of the curriculum are defined by
the differences allowed by LIS, but there is no unique
definition of different for a general investigation of
variation in proof behavior.

To some extent, any instrument (the classification
criteria), that is used to measure variability in proof
behavior, will determine in advance the character and
extent of variation found in a given set of data. A
formalized classification has been employed in this study
to insure consistency, but automation of the decision
criteria, however, does not eliminate any bias resulting
from selective sensitivity to certain differences between
proofs and insensitivity to all other differences. In
fact, the results of this study show that both the amount
of variation found for the curriculum as a whole and the
relationship between variation and problem characteristics
are quite sensitive to the criteria chosen; there are
marked changes in the results of the regression analyses
from the first partition to the fifth.

The use of a nested sequence of partitions rather than
a single partition limits the possibility that the
variation observed was the result of an unpropitious choice
of critera. The first partition requires that proofs be
identical, except for errors. The only requirement for
equivalence under the fifth partition is that proofs use
the same set of rules. These five partitions use a wide
range of criteria; it is very unlikely that the results are
due to a peculiarity of the classification procedures.

However, it is possible that equivalence criteria
defined along some other dimension would show a different
pattern of results; for example, the latencies to various
steps of the occurrence of certain types of errors might be
used to study additioLial aspects of proof behavior. Since
these dimensions of variability are not relevant to the
present evaluation of the LIS curriculum, they are not
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considered here.

The criteria defined for this study depend on the rorm
of the completed student proofs. Examination of the data
indicates that the assignments or individual proofs to
equivalence classes are reasonable. The pattern of change
in the results from one partition to the next is clear, and
it is unlikely that any small change in the definition of
equivalence would significantly modify this pattern.

The definitions of equivalence developed here have
turned out to be highly satisfactory for two reasons.
First, examination of the partitions (over sets of student
proofs) generated for a sample of problems indicates that
the formal definitions of equivalence match intuitive
notions of equivalence quite well. Second, the analysis
that used the formal definitions confirmed the general
exoectations about the curriculum, but led to a much deeper
and more detailed understanding of the nature of the
variability found in student proofs, andlin addition
several unexpected properties of the relationship between
curriculum structure and variability in student proofs were
discovered using these techniques. Although the
equivalence criteria used in this study are defined
explicitly for the Stanford Logic-Instructional System, the
general technique would be applicable to most formal
problem-solving tasks. The development of this new
technique for analyzing student behavior is probably the
most important contribution of this research.

8.4 VARIATION IN THE SAMPLE OF PROOFS

The results discussed in Chapters V and VI indicate
that variability in proof behavior can be predicted quite
well from the known characteristics of a derivation
Problem, The first four variables to enter the equations
generally account for about seventy-five percent of the
variance in the dependent variable. These results must be
interpreted with caution, since the study described here is
exploratory and non-experimental. There is no control
group and neither the subjects nor the problems were
selected at random from a specified population. Thus,
statistical inference to a larger population is not
appropriate. Strictly speaking, the results apply to the
population of students included in the analysis.

However, the results may tentatively be extrapolated
to other student populations and other curricula. The
criteria for reasonable extrapolation should be the extent
to which the tasks and the population in this study are
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representative of the target tasks and population.
Decisions about the reasonableness of such extrapolations
will depend on the characteristics of the particular target
population and curriculum.

There seem to be two distinct types of variation in

the sample of proofs. The first type of variation
involoves diff,rences in the order in which rules are used.
The number of .=peps in the standard proof for a problem and
the extent to which these steps are interdependent are good
predictors of the extent of this kind of variation for a
given problem.

The second type of variation involves the rules used
to prove a formula. The magnitude of this type of
variations for a paticular problem is best predicted by the
number of theorems in its standard proof. The number of
axioms in the standard proof and the number of rules
available when the proof is reached in the curriculum are
also good predictors for this second kind of variation.

The importance of both the number of theorems and
axioms used in the standard proof and the number of rules
available increases systematically from the first set of

equivalence criteria, which is the most stringent, to the
fifth set of criteria, which is least stringent; in this
nrogression the partitions become more and more sensitive
to the second type of variation, involving the rules used
to nrove a formula.

8.5 CONCLUDING REMARKS

The most generally useful aspect of this study is

probably the development of the classification procedures.
The use of a nested seauence of measures provides a much
more complete description of the variability found in the
data than any single measure could provide. The
classification criteria described in this study are
specific to LIS, but the general properties of the
technique depend only on the existence of behavior (proofs
in this case) that can be segmented into discrete
components(steps) chosen from some finite set. Hence,
similar procedures could be developed for tasks requiring
such behavior.
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APPENDIX A

The material presented here describes the attempts
that were made to identify patterns of proof behavior that
characterize groups of students within the total sample.
Two general types of analysis were used to answer two
cuestions. First, do students exhibit definite patterns of
behavior in the construction of proofs; and second, if they
do, what are the defining characteristics of these
patterns? The first analysis was based on the
classification criteria, and required the development of a

metric function over the set of students; the second
analysis was based on new variables.

The identification of a clustering of students into
sub-groups would be of general interest in the study of
human problem solving, and would also have important
practical implications. Attempts are now being made to
tailor instruction on LIS to fit the needs of individual
students. The task of indivldualizing instruction might be
greatly simplified if sequences of instruction were
tailored for groups of students rather than for each
individual.

SECTION 1 - INTRODUCTION

In the first analysis to be discussed, a distance
matrix was defined for each of the five partitions. For
each partition and each pair of students (Si and Sj), the
distance was defined as:

D(i,j)
Witi) -

N

where D(i,j) is the number of problems for which Si and Si
constructed proofs that were not equivalent, and N is tne
number of problems for which both Si and Sj constructed
proofs. Hierarchical clustering (HICLUS) was then uaed to
group students on the basis of this metric, and the proofs
for each student in each cluster were examined to determine
the characteristics of individual proof behavior that
explain the clusterings. Using these techniques, no clear
indication of the existence of proof styles was detected.

For the second analysis, pattern variables (such as
the frequency of theorem use) and efficiency variables
(such as the number of lines per proof) were defined and
computed for each student by averaging over the problems.
For both sets of variables, attempts were made to cluster
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students on each variable and then on all of these
variables together. These analyses indicates; that stronu
individual differences Jo exist between students but there
was no clear pattern in the differences observed.

These results were not unexpected. The problems in
the logic curricullin r.re too heterogeneous for this type of
analysis, and differences in proofs from problem to problem
were much more pronounced than the differences between
students for a given problem. The methods developed for
this part of the study, however, make possible a more
systematic analysis of problem solving behavior and should
be useful in future studies dealing with problem solving
behavior. The results indicate that a more homogeneous set
of problems must be used if interpretable patterns of
behavior are to be identified.

For the benefit of those who might wish to undertake a
similar analysis, a description of the techniques that were
used is included here.

SECTION 2 METRIC ANALYSIS

A natural extension of the procedures which partition
the set of proofs for derivation problems allowed a

systematic examination of the data for indications that
students could be characterized by the patterns of their
proof behavior. The criteria(partitions) developed in

Chapter III specify whether or not the proofs produced by
any two students, for a particular problem, are equivalent.
These techniques have been developed further in an attempt
to determine whether the methods employed by any two
students in constructing proofs to a sequence of problems
are, in part, the same.

It was possible, of course, to examine the student
proofs looking for evidence that indicates the existence of
such patterns and this was, in fact, done. Unfortunately,
the fact that a large number of rules were available to the
students provided the opportunity for many minor variations
and tended to obscure any general patterns in the proofs
constructed by the students. It was hoped that an

automatic procedure that focused attention on the possible
existence of such patterns would facilitate the search.
The procedure which was used for this purpose is described
below.

Assume that we have a set of n problems,
P = {p(1),...,p(n)}, and a set of t students,
S = {s(1),...,s(t)}; for every p(i) in P and every s(j) in
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S, s(j) constructs a proof for p(i). we also assume that
there exists a partition on the set of t proofs for each

of the n problems. The metric matrix defined below was
computed separately for each of the five sets of
classification criteria.

Let s(i) and s(j) be any two students in S. Let
D(i,j) be the number of problems in P for which the proofs
of s(i) and s(j) are not equivalent, and let
M(i,j) = D(i,j)/n. It is clear that for all s(i),s(j) in
S, M(i,j) is greater than or equal to 0, and m(i,i) = 0.

If the proofs for s(i) and s(j) are not equivalent in
D(i,j) cases, and the proofs of s(j) and s(k) are not
equivalent in D(j,k) cases, then the maximum number of
problems where the proofs of s(i) and s(k) are not
equivalent is D(i,j) + D(j,k);

or

D(i,k) leq D(i,j) + D(j,k)

M(i,k) leq M(i,j) + M(j,k)

The five matrices defined here (one for each set of
classification criteria) are metrics defined on the set of
students. M(i,j) is a measure of the distance between the
student, s(i), and the student, s(j). It has its minimum
value when s(i) and s(j) fall into the same equivalence
class for all problems; then M(i,j) = 0. It nas its
maximum value when when s(i) and s(j) are in different
classes for all n problems, and in that case
M(i,j) = n/n = 1. M(i,j) is a metric on the set S.

A measure of distance which takes into account the
number of different proofs for each problem 1s;

M(i,j) -
w(P)*e(P.i.j)

where e(p,i,j) is equal to 0 if Si and Sj gave the same
proof for problem p , and otherwise is equal to 1, and
w(p) is the number of different proofs constructed for
problem p To corrrect for missing data, w(p) is set
equal to 0 if either Si's or Sj's proof for problem p is
missing. This improved definition of the distance matrix
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was suggested by Stanley Sclove.

The HICLUS program, developed by S. C. Johnson
(Johnson,1967) was used to analyze the metric matrices for
the full set of problems and for the subsample of problems
that appear after the introduction of RE and that do not
contain nremises. The input data for this program consist
of a metric matrix, M(i,j). The output is a sequence of
stages or levels of clustering. At the first level, each
student constitutes a distinct cluster. At each subsequent
stage the two clusters with the shortest distance between
them are combined into a single cluster until all of the
students are in a single cluster.

After each stage of clustering, it is necessary to
redefine the distance matrix unambiguously, since the
number of clusters decreases by one at each stage. The
nroperties of the clustering algorithm are determined by
the way in which this new matrix is formed.

For the analysis described. here, Johnson's "haximum
Method was used to form the new matrix at each stage.
This method insures that the largest of the distances
(defined in terms of the original metric matrix) between
any two points in any cluster is a minimum. If we restrict
ourselves to three dimensions and think of each cluster of
points as being enclosed in a sphere with the smallest
possible radius, we have n-k spheres after the k-th stage
of clustering. The diameter of the largest of these
spheres is less than the diameter of the largest sphere for
an" other set of n-k spheres that enclose all the points of
the sample. A more detailed discussion of HICLUS is found
in Appendix B.

This method generates n stages of clustering for any
distance matrix and it was necessary to decide which, it
any, of these clusterings should be the basis for
subsequent analysis. There are two conflicting criteria
that must be resolved in choosing the appropriate
clustering. First, the intracluster distances should be
small compared to the intercluster distances; the clusters
are then geometrically well-defined. Second, the number of
clusters should be small compared to the number or
students; if the number of clusters is not much smaller
than the number of points, clustering does not contribute
to the analysis.

HICLUS provides information on both of these criteria
at each stage of clustering; it gives us the membership of
each cluster and the diameter of the largest cluster. Me
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value, a(k), is the diameter of the largest sphere at the
k-th stage of clustering, and is a monotone increasin
function of k. A sharp increase in a(k) between the i-th
stage and the (i+1)-th stage indicates that the i-th stage
of clustering is a promising candidate for further analysis
since we must accept much less compact clusters in order to
decrease the number of clusters beyond the i-th stage.

The results of this analysis were not encouraging.
Since HICLUS would have generated clusters even if the
distance matrix had been randomly generated, the clusters
that it did generate for the data in this study could not
be accepted without further justification. done of the
clusterings generated met the two criteria mentioned above,
and none of these clusterings were readily interpretable in
terms of the actual proofs in the data.

To facilitate the interpretation of the output oL
HICLUS, a complementary technique, multidimensional
scaling, was also used. The objective of multidimensional
scaling is to find a distribution of n points in
k-dimensional Euclidean space that gives the LU31-

approximation to the n by n distance matrix. i:,JSCAL
multidimensional scaling program) accepts as input an
n by n distance matrix and a specification of the number

of dimensions to be used.

Therefore NDSCAL can be used to generate a two
dimensional representation (K=2) of a distribution of
points that yields the best approximation to our distance
matrix. This approximation, however, may be a poor one
because, in general, it requires an n-1 dimensional
distribution of points to reproduce exactly an n by n
distance matrix. If the distance matrix can be reproduced
from a distribution of 26 points on a two dimensional
hyperplane, then a graphic representation of the clusters
can be prepared from the results and the data can be
examined visually for evidence of clustering. While
determining the hyperplane that gives the best fit, MDSChL
also calculates how good the approximation is, and this
measure, the stress, can to used to decide whether tne two
dimensional approximation is good enough to be taken
seriously.

The two dimensional representation of the data
obtained in this way did not indicate the existence of an
clusters. If geometrically well-defined clusters
existed, then I would have attempted to determine th%
characteristics of individual behavior that accounted emu:

1..rel existence of these clusters. This would have been don4
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by examining the proofs for the students in each group for
similarities of structure. The important consideration
here was not just the existence of clusters, but the
interpretabilitv of the clusters in terms of student
behavior.

In this part of the analysis, an attempt was made to
cluster students without using any predetermined
characteristics of their proofs. Instead, the metric
analysis was based on a distance matrix where the distance
between any two students is defined in terms of the number
of nroblems for which they generated equivalent proofs. It
was anticipated that the interpretation of any clustering
found in this way would be difficult because the clustering
was not explicitly grounded in the characteristics or
student proofs. In order to facilitate the identification
of the defining characteristics of the clusters, a second
analysis was used that clustered students in terms of
explicitly defined pattern variables. The results of this
analysis were to serve as a guide to the metric analysis
and as a check on that analysis.

SECTION 3 - PATTERN ANALYSIS

The second analysis of the pattern of student
performance concentrated on specific aspects of the proofs,
defined by the pattern variables. For each of these
variables averages were taken over the two sets of problems
described earlier. The pattern variables are listed
below:

P1 - the number of theorem steps per proof

P2 - the ratio of the number of theorem
steps to the total number of steps

P3 - the number of axiom steps per proof

P4 - the ratio of the number of axiom

P5 - the number of Logical Truth steps
per proof

P6 - the ratio of the number of Logical
Truth steps to the total number of
steps

P7 - the ratio of the latency to the first
step to the average latency of all
steps in the proof

Pup
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The data for these variables were first examined
individually for indications of clustering. Their
correlation matrix was computed and frequency histograms
were prepared for each. This initial examination of the
data did not indicate the existence of any distinct groups
of students, where the differences between the students in
a group were small compared to the differences between
groups.

The analysis was then extended to the multivariate
case by using principle components analysis. The values,
for each student, of the first two principal components
were used to plot the distribution of students in two
dimensions. Again, there was no indication of clustering.

The same analyses were also applied to a second set of
variables called efficiency variables. These variables
were also averages over problems for each student. The

efficiency variables are listed below:

El - the number of unused lines per proof

E2 - the ratio of the number of unused lines to
the total number of lines

E3 - the number of lines per proof

E4 - the total latency (time) per proof

Using the efficiency variables, there was again no reliable
basis for clustering the students.

SECTION 4 - DISCUSSION

Although all of the attempts to cluster students
f ailed, the analysis discussed here did highlight one
interesting artifact in the data. There were three
students who had unusually poor performances as measured by
all of the efficiency variables. Examination of the proofs
constructed by these students revealed a consistently poor
performance starting very early in the curriculum.

These same students also tend to have extreme values
f or the pattern variables. On P5 (LT/problem) and
P6(LT/step), these three students have very high values.

4, On P2(theorems/step), they have very low values.

The students who did most poorly in the curriculum
show a marked tendency to use Logical Truth even when an
appropriate theorem is available. Logical Truth is a
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conceptually simple rule that is introduced early in the
curriculum. As the more powerful rules, especially tne

theorems, become available, most of the students learn to
use them where they are appropriate. The three students
being considered here did not make this transition.

Since their performance was poor relative to the

average of the other students even before tho introduction
of any theorems, it cannot be concluded that the failure to
incorporate theorems into their working set of rules caused
the poor performance. This failure, however, did widen the
gap between the poorest students and the average and
superior students.

It would seem then that the pace of LIS is too fast
for some of the students who are using the system. A more
thorough investigation of the characteristics of these

students should be conducted in order to determine the
causes of their failure.
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APPENDIX B

HICLUS

The HICLUS program, developed by S. C. Johnson
(Johnson,1967) was used to anslyze the metric matrices for
the third stage of the analysis. The input data for this
program consists of a metric matrix, M(i,j). The output is
a sequence of stages or levels of clustering. At the first
level, each student constitutes a distinct cluster. At
each subsequent stage the two clusters with the smallest
distance between them are combined into a single cluster
until all of the students are in a single cluster.

HICLUS begins its analysis with the weak clustering,
C(0), in which each student defines a separate cluster. If
a(1) is the smallest non-zero entry in the distance matrix,
then the two clusters that are separated by the distance,
a(1), in C(0) are combined to form a single cluster in
C(1). The value of C(1) is defined to be a(1).

If the distance between any two clusters in C(1) is
defined unambiguously, a new (n-1)X(n-1) distance matrix is
defined for the n-1 clusters in C(1). The clustering
nrocess can then be continued by combining the closest
clusters in C(1) to form C(2), with value, a(2). Atter n
steps, all of the students have been combined into a single
cluster, C(n), with value a(n).

The problem is to define the new (n-k)X(n-k) distance
matrix that results after the k-th stage in clustering. If
X and Y are the two clusters in C(k) that are combined into
a single cluster, [X,Y], in C(k), what is the distance
between [X,Y] and any other cluster, Z, in C(k) ? Johnson
offers two possible answers to this question.

For the, "minimum method", the distance, in C(k), from
[X,Y] to Z is defined to be the minimum of the distances
from1X,Y] to Z and from [X,Y] to Z in C(k-1):

d([X,Y],Z) = min[d(X,Z),d(Y,Z)].

For the, "maximum method", the distance is defined as:

d([X,Y],Z) = max[d(X,Z),d(Y,Z)].
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Each of these definitions has a clear geometric
interpretation. Johnson (oo.cit. p249) outlines this
interpretation in the following way:

If we are given a clustering obtained by the
Maximum Method, we may present the value of the
clustering as follows: for each cluster in the
clustering, compute the diameter of the cluster
(the largest intra-cluster distance). For a

given Maximum Method clustering, the value of the
clustering is the maximum diameter of the
clusters in the clustering. At any stage, the
distance from the object/cluster x to the
object/clustr y is exactly the diameter of the
set x union y. This gives us a simple means of
visualizing the clusterings-the Maximum Method
attempts at each stage to minimize the diameter
of the clusters.

The geometric properties of the "Minimum Method" are
slightly more complicated, and are discussed in some detail
by Johnson. Since I did not use this method, and since
Johnson discusses it in detail, I will not describe it here.

HICLUS has two additional advantages that shoula be

mentioned. First, the input consists of the n(n-1)/2
distances between the n objects; the algorithm does not
require that the n points be represented in Euclidean space,'
and will accept the metric matrices defined in Chiapter iv'

without further processing. Second, the results are
invariant under monotone transformations of the metric data.
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