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ESTIMATING CAUSAL EFFECTS OF TREATMENTS IN

EXPERIMENTAL AND OBSERVATIONAL STUDIES
Donald . Rubin
Abstract

A discussion of matching, randomization, random sampling, and other
methods of controlling extraneous variation is presented. The objectz'i'vcj
is to specify the benefits of randomization in estimating causal effg:ts
of treafments. The basic gonclusion is .that randomization _shou;d be emIIJl‘oyed

vhenever possible, but thé use of carefully controlled nonrz_andomized data

to estimate causal effects is a reasonable and necessary procedure in many

cases.
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~ ESTIMATING CAUSAL EFFECTS OF ‘TREATMENTS IN

EXPERIMENTAL AND OBSERVATIONAL STUDIES

Donald Rubin

Educational Testing Service
1. Introduction

Recent psychological and educational literature has included extensive

criticism of the use of observational studies to estimate causal efrects of

treatments (see, e.g., Campbell & Erlebacher, 1970). The implication in
much of this literature is that only properly randomized exper'iments can

lead to useful estimates of causal treatment effects. If talien as

" applying to all fields of study, this position is clearly untenable. Eince

the extensive use of randomized experiments is limited to the last half
century,»l and in fact ivs not used- in much 'scientific vinvestigation‘ today,
one is led to the conclusion thatibmd.st scientific "'truths" have been estab-
lished without using randomized experiments.‘ In additidn, most of us
succeésfﬁlly establish the causal effects of many of our. éveryday actions,
even interpersonal beh'avi:ors, without thé benefit of randdmization.

Even if the positién that causal effects of treatments can only be well
established from randomized experiments is taken as applying only to the
social sciences in which there are currently rew well-established causal
relationships, its implication tci ignore existing observational date may be
counter-productive. Often the only immediately available date; are observa-
tional in nature and either (a) the cost of performing the equivalent

experiment to test all treatments is prohibitive (e.g., 100 reading programs

lEssentially since Fisher (1925).

)
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under study); (b) there are ethicél reasons why the treatments cannot be
'randomly assigned (e.g., estimating phe effects of‘heroin addiction on
intellectual functioning); or.(c) estimatés based on results of experiments
would be delayed many years (e.g., effect of childhood intake of cholesferol
on longevity). In cases such as thése, it seems more reasbnable to try to
estimate‘the effects of tﬁé treatments from the obs&rvationql data than to
ignofe the observational data and dream of the ideal experimént. Concur-
réntly, using the ihdicatioﬁs in lhe observational data, one céh,fif neces-
sary, initiate randomized experiments for those treatments that require
better estimates. | |

The position here is not that randomization is overused. On the con-
trary,'if the choice is between the data from.a randomized experiment and

an equivalent observational study, one should choose the data from the

experiment, especially in disciplines like the social sciences where often

much of the variability is unassigned to particular causes. However, by
examining the assumptions tﬁat are needed in order to believe that the re-
sults of an experiment or an observationa; study yield appropriate answers
to questions about the éauéal effects of treatments, we will Qevelopithe
position thzt observational ;tudies as well as randomized experiments can
be useful in estimating cauéal treatment effects.

In order to avoid unnecessary complication, we will restrict discus-
sion to the very simple study consisting of 2N units (e.g., subjects),
half having been exposed to an experimental treatment E {e.g., a compensatory
reading program) and the other half having been exposed to a control treat-

ment C (e.g., a regular reading program). If treatments E and C were

>
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assigned to the 2N wunits randomly, that is, using some mechénism that
assured each unit was. equally likely to be exposed to E as tb C , then the

study is called a randomized experiment or more simply an e¢xperiment; other~

wise, the study is called a quasi~experiment or. an observational study. 1In

either case, the objective is to determine for some general group of units

. (e.g.,.underprivileged 6th gréde children) the "typical" causal effect of

the E vs. C treatment on a dependent variable Y , where Y could be
dichotomous (e.g., sucqéésffailure) or more continuous (e.g.,»scbre.on a
given reading‘test).

The central question conéerns the benefits of randomization in deter-

mining the causal effect of the E vs. C treatmention Y
2. Defining the Causal Effect of the E vs. C Treatment

A first step in investigating the benefits of randomization for de-~
termining the causal effect of treatments is to define éxactly what is meant

by the causal effect of a treatment. 'Inﬁuitively, the_éausal effect of one

~treatment, E , over another, C , for a particular unit and ar interval of

time from tl to t2 is the difference between what would have happened at

time t2 if the unit had been exposed to E at time tl and what would

have happened at t2 if the unit had been exposed to C at tl : "If an

hour ago I had taken two aspirins instead of just a glass of water, my

headache would now be gone,"

or "Because an hour ago I took two aspirins
instead of just a glass of water, my headache is now gone." Our definition
of the causal effect of the E vs. ( treatment will reflect this
intuitive meaning.

First define a trial to be a unit (e.g., a subject) and an associated

pair of times, t ard t, , wvhere t. denotes the time of initiation of a

1 2 1.
o
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treatment‘and t2 denotes the time of measurement of a dependent variable,

1 < t2 .

We restrict oﬁr attention to treatments E and C that éould be ran-

Y , vhere t

domly assigned; thus,‘ﬁe assume (&) a time of initiation of treatmenﬁ can be
: asceftaiﬁed for each unit‘eXposed to E or C, and {b) E and C are
éXClusive of each other in tﬁe sense that a‘trial cénnot simultaneously'be‘
: an E frial and a C trial (i.e., if E is defined to be C plus some
- action, the initiétion ofbboth is the initiation of E ; if E and C are
alternatiye‘actions, the initiation of both E and C is the initiation of
neither but rather a third treatmen£ E+C). |

We also aésume'thét the measurcd value of Y stated with reference to
time t, is the "true" value of Y at t, . This position can be justified

2

by defining Y by a measuring instrument that always yields the measured Y

(e.g., Y is thé score on a particulsy IQ teét as recorded by the subject's

teacher). Since an "error" in the measpred Y can only be detected by a
‘"better"bmeasuring instrumént (e.g., a machine~produced score.oﬁ that same
I1Q test) the values of a "truer" scgge can be viewed as the vélues of a
different dependent vafiable; Cléarly, any study is more meaningful to the
investigator if the dependent variable better feflects.underlying‘concepts
he feels are important (e.g., is more accurate) but that does not imply we

. 2
must consider errors about some unmeasurable "true score."

2For the reader who prefers the concept of such errors of measure-
ment he may consider the following discussion to assume negligible
"technical errors" so that Y is essentially the "true" Y .
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Now def1ne the causal effect of the E vs. C treatment on Y for a

partlcular trial (i.e., a particular unit and assoc1ated t1mo t, 5

“ 2‘)'

as follows:

Let y(E) be the value of Y measured at t, on the unit given

“that the unit received the experimental treatment E initiated
at :
l 9

Let y(C) be the vaiue of Y measured at t on the unit given
that the unit received the control treatmen C initiated at - tl 3
Then y(E) - y(C) is the causal effect of the E vs. C treatment

on. ¥ for that trial--i.e., for that partlcular unit and the
~times t t

1 72° _ .
For example, assume the unit is a particular rat and that the experi-

mental treatment 1s a h1gh protein diet and the control treatment is a

initiated at time tl ,‘10 days later, at t1me t2 » he would we;gh T qz.
and suppose that if the rat instead were given the regular diet initiated at
time tlb, et time t2 he;would weigh.6 0oz. Then the caueal effect for that
trial (that rat and times tl "t2) of the high protein diet‘vs. the regular

diet on weight‘is 7T-6=1o0z..

The problem in measuring y(E) - y(C) is of course that we can never 'ff

observe both y(E) and y(C) since we cannot return to time &y to give
the other treatment. We may have the same unit measured on both treatments
in two trials (e repeated measure design), but sjnce there may exist carry-
over effects (e.g., the effect of the first treatment wears off slowly) or
general time-trends (e.g., as the rat ages, his reactions become slower) we

cannot be certain that the unit's responses will be identical at both times.

Assume now that there are M trials for which we want the "typical"

TR ST B PSP

causal effect. For simplicity of exposition we assume that each trial is
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assqciated with a different unit and expand the above notation by adding the
' th | |

subscript j to denote the J trial (j = 1,2,...,M); thus yJ(E) - yJ(C)
is the causal effect of the E vs. C treatinent for the Jth‘ trial, i.é., the
J h unit and the assoc1ated times of initiation of treatment, t , and

. 1)
measurement of Y QJ .
_An obvious definition of the "typlcal" causal effect of the Evs. C

treatment for the M trlals is the average causal effect for the M trlals.
M
=37 Iy, (®) -y (01,
M J J
=1

However, nbtice that‘if all but one of the individual causal effects are
small and that one is very large the average causal effect may be substan-
tially 1arger than all but one of the 1nd1v1dual causal effects and thus not
very "typlqal."' Other p0551ble definitions of the typlcal causal effect for
the M trials are the median causal effect (the median of the individual

- causal effects) or the midmean causal effect (the average of the middle
hgif‘of the individual causal effects). If ﬁhe individual causal'éffects,
Jj(?) -‘yj(C), are apprbxjmately symmetrically distributed about a central
valﬁe, sensible‘définitions of "typical" will yield similar values.

Even though definitions of typical other than the average may seem more
reasonable, they lead to more complications when discussing properties of
estimates under randcmization. Hence we will assume the average causal effect
to be the desired typical causal effect for the M trials and proceed to
the problem of its estimation given the obvious constraiht that we can never

actually measure both yJ(E) and yj(C) for any trial.

¢t
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3. Randomization, Matching, and Eétimeting the Typical Causal

Effect in the 2N Trial Study

Having»defined the typical causal effect of the E vs., C treatment , we
~ proceed to discuss the benefits of randomization and matching in a‘ 2ﬁ‘ tfial
.study, N ‘trials being nith units exposed to E and the other I trials
being with units eqused to C.

For now we assume that the immediate objectiveiis to estimate the
typical causal effect oniy for the _2N trials in the studyf Of,éourse, in
order for‘ the ‘results of a study to be of much interest, we must be able -
to generalize to units end assqeieted timesiothef'than thoee in the.study.

However, the issue of generalizing fesults to other trials will be discuseed
separately from the issue of estimating thebtypical eausal effect for thev
trials under study. Alse, for'now-we will consider only the simple end
standard estimete of tne typical causal effect of E vs. C : ‘the average -
Y difference between those units who received E and those'units‘who
received c.

‘We beéin by considering this estimate’when only two trials are in the
study and then when there are 2N, N > 1 , trials in the study. This in-

formal discussion will then lead to the presentation of two formal benefits

of randomization.

3.1 The Two Trial Study

Assume two trials under study, one trial with a unit exposed to E

-

and the other with a nnit exposed to C . The typical causal effect for

the two trials is

G o A e sy e b g SV
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Note that for only two trials almost any reasonable definition of typical
leads to this expression. The estimate of this quantity from the study,
the (average) difference between the measuréd Y for the unit who received

E. and_fhe measured Y for the unit who received C , is either
- o . . f)
yl(E) y,(C) | , o (?) o
or . : ; g ‘ *; .
y,(E) - y,(C) = - | (3)
depending upon which unit was assigned E. Neither (2) nor (3) will neces-

sarily be close to (1) or to the causal effect for either unit

n® -y - W

‘or

e -yle) - C(5)

,even'if these individual causal effects are equal. If the treatments E and
' C were randomly assigned to units, we are eqgually likely to havé'obsegved

the difference (2) as (3) so that the average or "expected" difference in Y

beﬁWeen experimental and control units is the average of (2)land (3);
g [yl(E) - y2(C)] + [y2(E) - yl(C)] ‘which equals (1), the typical causal
effect for the.two trials. For this reason, if the treatments are randomly
assigned, the difference in Y between the experimental and control units
is called an "unbiased" estimate of the desired typical causal effect.
Now assume that the two units are very similar in the way they respond to . %

the E and C treatments at the times of their trials. By this we mean that on

the basis of "extra information" we know yl(E) is about equal to y2(E) and
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: yl(C) is aboit equal to y,(C) ; that i:, the two trials are closely "matched” -

with respect to ihe effects of the two treatments. It then follows that (2)
is about eQual to (3) and both are about equal to the desired ﬁypical causazl
effect (1). In fact, if the two units feact identically in their trials,

(5) = (4) = (3) ={2) = (1), and randomization is absolutely irrelevant.

Clearly, i.?ving closely "matched" trials increases the closeness of the

~~calculated—experiméntal minus control differénce_io the typical causal_effeét

for the two trials,'while'random assigﬁment of treatments doeslggz_imprcve
that ;stimate.

Althoughbtwp-trial'studies are almost unheard of in the behavioral
sciences they are not uncommon in the physical sciences, us the reader might
recail from higﬁ school physics or chemistry laboratories.’ For example,

when comparing the heét expansion rates (per hour) of a metal alloy in

oxygen and nitrogen an investigator might use two one-foot lengths of the alloy.

Becausevthe lengths of alloy are so closely matched berore Leing exposed tb'
thevtreatﬁent (a1m§s£ identical coﬁpositions énd dimeﬁsibﬁii the units'shoﬁld-'
respond almost identically to the treatments even when initigted at differen# :
times, and thus the calculated experimentalv(oxygen) mi;us control (nitrogén)
difference should be an excellent estimate of the typicai causal effect; (1).
Notice, however, that a ékeptical observer could always claim that the
‘experimental minus control difference is not a good estimate of the typical
causal effect of the E vs. C treatment because the two units were not
absolutely identical prior to the application of the treatments. For example,
he could claim that the length of alloy molded first would expand more rapidly.
Hence, he might argue that what was measured was really the effect of the

difference in order of manufacture, not the causal effect of the oxygen vs.

v
et
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‘

nitrogen treatment. Since units are never absolutely identical before the

application of treatments, this kind of argument, whether "sensible" or not,

can always be made. However, if the two trials are closely matched with

respect to the expected effects of the treatments, that is, if (a) the two
units are matched prior to the initiation of treatments on all variables
thcught to be important in the sense that they causally affect Y , and (b)
the possible effect of different times of initiation of treatment and
measurement of Y are controlled, then the investigator can be confident
that he is in fact measuring the causal effect of the E vs. C treatment for
ﬁhose two trials. This kind of confidence is much easier to generate in
the physical sciences where there are models that successfully assign most
variability to specific causes than in the social sciences where often we
do not know what the important causal variables are.

Another source of confidence that the experimental minus control differ-
ence is a good estimate of the causal effect of E vs. C is replication:
are similar resuits obtained under similar conditions. One type of replica-
ticn is the inclusion of more than two trials in the s*udy. Hence we now

turn to the discussion of the study with .28 +trials.

%.2 The 2N Trial Study

low assume there are 2N +trials (N > 1) in the study, half with N
units having received the E treatment and the other half with K other units
having received the C treatment. The immediate objective is to find the
typical causal effect of the E vs. C treatment on Y for the 2N trials,

say T
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Let SE denote the set of indices of the N E trials and SC denote the
set of indices of the N C trials (SE\J S, = {i = 1,2,...,20}). Then the
difference between the average observed Y in the E trials-and the average
observed Y in the C trials can be expressed as

.= - 1) o Lo

g J —
JCSE JESC

where and indicate, respectively, summation over all indices in
Jeog ,eSC

55 (i.e., all E trials) and over all indices in 50 (i.e., all C trials).

-

2 . . . .
There are ( g) di fferent possible index sets SE corresponding to the

distinct ways of choosing N different numbers from a total of 2 different
) 2
]

numbers, where the binomial cpeffiéient () = [2n]r / [N . Depending

upon which N of the 2N wunits receivei i we observe one and cnly one of
those (Ei) possible allocations. We now consider how close this estimate
id i to the typical causal effect <t .and what advantage there might be if
we knew the treatments were randomly assigned.

First assume that for each unit receiving E there is a unit receiving
C who reacts identically at the times of their trials; that is, the 2L trials
arre actually I perfectly matched pairs. It is a simple extension of the
discussion in Section 3.1 to see that the estimate &d in this case equals
T . &d can be expressed as the average experimental minus gontrol (E - C)
difference across the U matched trials. Since the E - C difference in

eacn matched pair of trials is the typical causal effect for both trials of

that pair, the average of those differences is the typical causal effect for

43
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all N pairs and thus all 2N ‘l:r:ials.3 Again this result holds whether
the treatments were randomly assigned or not. 1In fact, if one had N
identically matched pairs a "thoughtless" random assignment could be worse
than a nonrandom assignment of E <to one member of the pair and C to the

other. By "thoughtless" we mean some random assignment that does not assure

that the members of each matched pair get different treatments--picking the

N indices to receive E "from a hat" containing the numbers 1 through 2N,
rather than tossing a fair coin for each m:.iched pair to see which unit is
to receive E.

In practicé of course we never have exactly matched trials. However,
if' matched pairs of trials are very similar in the sense that the investigator
has controlled those variables prior to the initiation of treatments that
might appreciably affect Y, 3_(d should be close to T . If in addition the
estiﬁlated causal effect is replicable in the sense that the N individual
estimated causal effects for each matched pair are very similar, the inves-
tigator miéht feel even more confident that he is in fact estimating the
tyrical causal effect for the 2N +trials. For example, given 2N ' rats
from the same litter matched by sex and initial weight intq N pairs, assume
that we cobserve the same E - C difference in final weight in each matched
pair. Similarly, if the trials are not pair-matched but all are similar -

(e.g., all rats are mature males from the same litter with similar weights),

3Incidentally, notice that in this case we can calculate the typical
causayi effect for any definition of typical, e.g., the median of the
observed matched pair differences is the median causal effect for the 2N
trials.

The difference between these two methods of randomization is the
difference between the "completely randomized" experiment and the "ran-
domized blocks" experiments (see Cochran and Cox, 1957).

i.;m
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and we observe that all yJ.(E) JeSy c

about equ ., the investigator would also fecl confident that he is in facti

are about equal and 211 y.(C) jeC. are
L

/
estimating the typical causal effect fon the 2N trials.
1

\
Nevertheless, it is obvious that if}’ treatments were systematically

ey
—

assigned to units, the addition of replication evidence cannot dissuade the
critic who believes the effect being measured is due to a .variable used to
assign treatments (e.g., in the weight-gain study if the more active rat
always received the special die;t, or in the heat-expansion study if the first
molded alloy always was measured in oxygen.). If treatments were randomly
assigned, all systematic sources of bias would be made rénddn, and thus it
would be unlikely, especially if N is large, that almost all E trials
would be with the more active rat or the first molded alloy, so that any
effect of that variable would be at least partially balanced in the sense cf
systematically favoring neither the E treatment nor the C treatment over the
2R trials. In addition, using the replications there could be evidence to.
refute the skeptic's claim of the imporﬁance of that variable (e.g., in each
matched trial we get about the same estimate whether the more active rut get:
E or C). Of course, if we knew beforehard of the skeptic's claim, a srveciric
control of this additional variable would be more advisable than relving on
randomization (e.g., in a random half of the matched trials assign E to the
more active rat and in the other half assign C to the more active rat, or
include rat's activity as a matching variable).

It is important to realize, however, that whether treatments are ran-

domly assigned or not, no matter how carefully matched the trials, and no

matter how large N , a skeptical observer could always eventually find some
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variable that systerr;atically differs in the E trials and C trials (e.g.,
length of longest hair on the rat) and claim that §d estimates the effect
o_f" this variabl-e rather than T , the causal effect of the E vs: C treatment.
Within the given experiment there will be no refutation of his claim; only

a logical argument explaining that the variable cannot causally affect the
dependent variable or additional data outside the study can be used to

counter his position.
L. Two Formal Benefits of Randomization

If randomization can never assure us that we are correctly 2»stimating
the causal effect of E vs. C for the 2N trials under study, what are the
benefits of randomization besides the intuitive ones that follow from making
all systematic sources of bias into random ones? Formally, randomization
provides a mechanism to derive probabiliétic properties of estimates without
making further assumptions. We will consider two such Properties which are
important:
(1) the average E - C difference is an "unbiased" estimate of
T , the typical causal effect for the V2N trials; and

(2) precise probabilistic statements can be made indicating how
unusual the observed E - C difference, §d , would be under
speci{ic hypothesized causal effects.

ilore advanced discussion of the formal benefits of randomization may

be found in Sheffe (1959) and Kempthorne (1952).

L.1 Unbiased Estimation over the Randomization Set

We begin by defining the "randomization set" to be the set of r

allocations that wer: equally likely to be observed given the randomization

R, A e he e om0
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plan. For example, if the treatments were randomly aséigned to trials with

no restrictions (the completely randomized experiment), each one of the (di._;)
possible allocations of N trials to E and i trials to C was equally likely
to be the one observed allocation. Thus, the collection of all of these

2 . . : . .
( g) allocations is known as the randomization set for this completely

r =
randomized experiment. If the treatments were assigned at random within
matched g:airs (the randomized blocks experiment), any allocation with both
members of the pair assigned the same treatment could not be observed; the
remaining 2N allocations with each member of the rair receiving =z differeni.
treatment was equally likely to be the observed one. llence, for the experi-
ment with randomization done within matched pairs, the collection of these
r= EN equally likely allocations is known as the randomization se‘r..5

‘For each of the r allocations in the randomization set there is a
corresponding average E - C difference that we would have calculated had
that allocation been chosen. If the expectation (i.e., average) of ;hese
r average differences equals t , the average E - C difference is called
unbiased over the rahdomization set for estimating 1 . We now show that
given randomly assigned treatments, the average E - C difference is an

unbiased estimate of <t , the typical causal erfect for the 2N trisls.,

By the definition of random assignment, each trial is equally likely to

be an E trial as a C trial. Hence, the contribution of the j"h trial

(j =1,...,20) to the average E - C difference in half of the r allocations

. . 1 ‘o
in the randomization set is —ﬁ— yj(E) and in the other half is - I Y00

thus, the expected contribution of the ,jth trial to the average & - ¢

5’J.’here are of course other methods of randomly assigning two treatments f
to 2N trials but there is no need to consider them here. !

117
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difference is %- [ % yJ(E)] + %- (- %- yj(C)] . Adding over all 2N trials
we have that the expectation of the average E - C difference over the r
allocations in the randomization set is
2N
S [y, (E) -y (©)]
2N J J
J=1
which is the typical causal effect for the 2N trials, <t .

Although the unbiasedness of the E - C difference is appealing in the
sense that.it is an indication that we are tending to estimate 1 , its im-
pact is not immediately overwhelming: the one E - C difference we have
observed, id » may or may not be close to T . In a vague sense we may be-
lieve §d should be close to 1 because the unbiasedness indicates that "on
the average" the E - C difference is 1 , but this belief may be tempered
when other properties of the estimate are revealed; for example, without
additional assumptions about the symmetry of effects the average E - C dif-
ference is not equally likely to be above as below T .

In addition, after observing the values of some important unmatched
variable we may no longer believe §d tends to estimate 1T . For example,
surpose in the study of the effect of diet on rats' weight, initial weight is
not a matching variable, and after the experiment is complete we observe that
the z2verage initial weight of the rats exposed to E was higher than the
average initial weight of the rats exposed to C . Clearly we would now believe
that id probably overestimates 1t even if treatments were randomly assigned.

In sum, then, the unbiasedness of the E — C difference for Tt follows
from the random assignment of treatments; it is a desirable property in that
it indicates "on the average" we tend to estimate the correct quantity but

it hardly solves the problem of estimating the typical causal effect. We as

1, 18
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yet have no indication whether to believe §d is close to 7 nor any ability

to adjust for important information we may possess.

4,2 Probabilistic Statements from the Randomization llet .

v - A second formal advantage of randomization is that it provides a
mechanism for making precise probabilistic statements indicating how unusuzl
the observed E - C difference, id » would be under specific hyrotheses.
The following discussion of "significance levels" derived from the randomiza-
tion set will tend to be more technical than the other discussicn in this
paper but is still basically straightforward.

Assume that the investigator hypothesizes exactly what the individu-l
causal effects are for each of the 2N trials and these hyrothesized values

T

are .» J = 1,...,20 . The hypothesized typical causal effect for the 2

J
trials is thus

Il—'

~oo
T—

N

2N
DL

Assuming the ?} are correct and having the observed yj(E), jeSE and
yj(C), jsSC » we can calculate hypothesized values , say yJ(C) and ¥,
for all of the 2N +trials. For JeSg » yJ(E) is observed ard y,(C) is

¢

unobserved; hence for these trials yj(E) = yJ(E) and yj(C) =5.(E) -7, .

J o

For jsSC s yj(C) is observed and yj(E) is unobserved; hence for these

trials }5(0) = yj(C) and ?}(E) = yi(C) +'?ﬁ . Thus, assuming the hypeoth-
esized ?& are correct, we can calculate hypothesized ¥,{E) and ?}(C)
o .

for all 2N +trials. Then using these, we can calculate an hyrothesized
average E - C difference for each of the r allocations of the 2 trials

in the randomization set.

o _ N . 19
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Assume that we calculate all r hypothesized average E - C differ-
ences and list them from high to low noting which E - C difference cor-
responds to the SE . SC allocation we have actually observed. This

difference, §d , is the only one which does not use the hypothesized 7

J

If treatments were assigned completely at random to the trials and the
.

hypothesized ?5 are correct, any one of the r = (23) differences was
equally likely to be the observed one; similarly, if treatments were ran-
domly assigned within matched pairs, each of the r = 2N differences with
each member of a matched pair getting a different treatment was equally
likely to be the observed one. Intuitively, if the hypothesized ?3 are
essentially correct, we would expect the observed difference id to be
rather typical of the (r - 1) other differences that were equally likely to
be observed; that is, id should be near the center of the distribution of
the r E - C differences. If, in fact, the cbserved difference is in the
tail of the distribution and so not typical of the r differences we might
doubt the correctness of the hypothesized ?5 .

{lore formally we proceed as follows. The average of the r E - C dif-
ferenzes is in fact the hypothesized typical causal effect, 7T = %ﬁ;:z:?. .

J

This result follows immediately {rom the unbiasedness of the E - C dif-
ference for the actual typical causal effect 1 . Now, using the equal
likeliness of the r allocations we can make the following kind of proba-
bilistic statement: "Under the hypothesis that the causal effects are given
by the ?5’ J=1,...,2 , the probability that we would observe an average
E - C difference as far or farther from T than the one we have observed is

m/r where m is the number of allocations in the randomization set that

yield E - C differences as far or farther from T than id " If this
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probability, called the 'significance level" for the hypothesized ?ﬁ s
is very small, that is, if the observed id is farther from T <than most
of the other differences in the randomization set, we either musi admit that
the observed value was unusual in the sense of being in the tail of the
distribution of the equally likely differences, or we must reject the plau-
sibility of the hypothesized ‘r‘j .

| The most common hypothesis for which a significance level is calculated
is that the E vs. C treatment has no effect on Y whatsoever (i.e., ?, -0}

Other common hypotheses assume that the effect of the E vs. C treatment on

Y is a nonzero constant (i.e., ?5 2 ?O) for all trials..6

The ability to make precise probabilistic statements about the observed
id under various hypotheses without additional assumptions is a tremendous
benefit of randomization especially since §d tends to estimate 1 How-
ever, one must realize that these simple probabilistic statements refe:r _nly

to the 2N trials uséd in the study and do not reflect additional information

(i.e., other variables) that we may have measured.

»

5. Additional Assumptions Often Needed to Present the Kesults

of a Study as Being of General Interest

There are two kinds of issues that have been mentioned that often arise
when presenting the results of an experiment as being relevant and which so

far have not been handled in our discussion of randomization and matching.

These hypotheses for a constant effect can be used to form "confidence
limits" for 1 . Given that the 1 are constant, the set of all hypothesiced

J

?; such that the associated significance level is greater than or equal to

a =m/r form a (1 - a) confidence interval for t: of the r such (1 - a)

confidence intervals one could have constructed (one for each of the r alloca-

tions in the randomization set), r(l - «) =r - m of them include the true

value of 1 assuming all Ty =1 . See Lehman (1959, p. 59) for the proof.

1
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The first concerns additional variables not explicitly controlled in the
experiment: the thoughtful investigator must be prepared to considir the
effect of variables that may systematically differ in E trials and C trials.
The second issue concerns the ability to generalize the results: the inves-
tigator must be able to indicate the applicability of hié results to a

population of trials other than the 2N in the study.

5.1 Considering Additional Variables

As has been indicated in our previoﬁs discussion, in most studies
whether observational or experimental, the investigator should be prepared
to consider the possible effect of other variables besides thpse explicit
in the experiment. Often additional variables will be ones that the inves-
tigator considers relevant in the sense that he feels they may causally
affect Y ; therefore, he may want to adjust the estimate §d and signif;-
cance levels of hypotheses to reflect the values of these variables in his
study. At times the variables will be ones which he feels cannot causally
affect Y even though in his study they may be correlated with the observed
values of Y . An investigator who refuses to consider any additional
variables brought to his attention is in fact saying that he does not care
if §d is a bad estimate of the typical causal effect of the E vs. C
treatment and instead is satisfied with mathematical properties (i.e.,
unbiasedness) of the process by which he calculated it.

Coﬁsider first the case of an obviously important variable. As an ex-
ample assume in the rat weight gain study, with diets randomly assigned we

found that the average E - C difference in final weight was 1 oz. and that

under %he hypothesis of no effects the significance level was .01l; also assume

that initial weight was not a matching variable and in fact the difference in

CiRR
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initial weight was also 1 oz. Admittedly, this is prohably a rare event

given the randomization but rare events do happen rarely. Given that it did
happen we would indeed be foolish to believe id = ) oz. is a good estimate of
1 and/or the implausibility of the hypothesis of no treatment effects in-
dicated by the .0l significance level. Rather, it would seem more sensible

to believe that §d overestimates 1 , and significance levels underestimate

the plausibility of hypotheses that suggest no or negative effects for the

treatments.

-

A commonly used and obvious correction is to calculate the average
]

E - C difference in gain score ratﬁer than final score. That is, for each
trial there is a "pretest" score (e.g., initial weight) which was measured
before the initiation of.treatments, and the gain score for each trial is
the final score minus the pretest score. More generally we will speak of =
1

"prior" score or "prics'

variable which would have the same value, xJ ,

whether the jth unit received E or C .7 It then follows given random

assignment of treatments that the adjusted.estimate (e.g., gain score)

[y (E)~x,] - & [y (C)-x.]
Jest yJ xJ N JZC;C yJ ;J

remains an unbiased estimate of Tt over the randomization set: each prior

score appears in half of the equally likely allocations as %-xj and the

other helf as - %-xj ; hence, averaged over all allocations the jth prior

7Even though "prior" indicates that the variable attained its value for
all trials prior to the initiation of the treatments, a prior variable can be
any variable that cannot be causally affected by the treatments and thus
would have the same value whether the unit received E or C .

.'éb“‘é,;; s e T R :
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score has no effect.8 But this result holds for any set of prior scores
Xy j=1,...,2N , whether sensible or not. For example, in an experiment
evaluating a compensatory reading program, with Y ©being the final score
on a reading test, the prior score "pretest reading score" or perhaps "IQ"
properly scaled makes sense but "height in millimeters" does not. Also why
not use the prior score "one-half pretes: score"?

Clearly, in order to make an intelligent adjustment for extra informa-
tion we cannot be guided solely by the concept of unbiasedness over the
randomization set. We need some model for the effect of the prior variables
in order to use their values in sn intelligent manner. The gain score, for
example, assumes that the final score typically would equal the initial
score if there were no E - C treatment effect and is perfectly reasonable
for the length of the alioys in the heat expansion experiment or the weight
of mature rats in the diet experiment. In the physical sciences, more com-
rlex models which represent generally accepted functional relationships are
often used; however, in the social sciences there are rarely such accepted
relationships to rely upon. What then does the investigator do who wants to
zdjust intelligently the final reading scores for the subjects' varying IQ's,
grade levels, SES, and so on? C(learly, he must be willing to make some
assumptions aboﬁt the functional form of the causal effect of these other
variablgs on Y . If he assumes, perhaps based on indications in previous

data, some "known" function for x'j (e.g., in the compensatory reading

rrogram example, suppose X5 equals [.01l x IC),]2 x pretest x [percentile

R t .
of family jncome]), so that x, is the same whether the h unit received

J

8

If the prior score could vary depending on whether the unit received E
or C (i.e., it is a variable measured after the initiation of the treatments
that may be causally affected by the treatment) we would have no assurance
that the adjusted E - C difference:is an unbiased estimate over the ran-
domization set. e

ol 24
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E or C , from the previous discussion the average E - C difference in
adjusted scores remains an unbiased estimate of 1 . If the investigator
assumes a model whose parameters are unknown and estimates these narameters
by some method from the data, in general, the average £ - C difference in
adjusted scores is no longer unbiased over the randomization set because the

adjustment for the jth trial depends on which trials received E and which

~

received C (e.g., in the analysis of covariance, the estimated regression
coefficienls in general vary over the r allocaticns in the randomization
sev).

Clearly, forming an intelligent adjusted estimate may not be simple
even in a randomized experiment. However, significance levels for any
adjusted estimate can be found by calculating the adjusted estimate rather
than the simple E - C difference for each of the r egually likely
allocations in the randomization set. Nonetheless, if the adjusted estimate
does not tend to estimate t in a sensible manner, the resulting signifi-
cance level may not be of much inférest.

Now‘consider a variable that is brought to the investigator's attention
but he feels cannot causally affect Y (e.g., in the compensztory reading
example, age of oldest living relative). Eventually a skeptic can find such
a variable tﬁat systematically differs in the E trials and the C trials even
in the best of experiments. Considering only that variable it is indeed
unlikely given randomization that there would be such a discrepancy between
jts values in E triels and C trials, but its occurrence cannot be denied.

If the skeptic a&justs §d by using a standard model (e.g., covariance],
the adjusted estimate and related significance levels may then give misleading
results (e.g., zero estimate of 1t , hypothesis that all causal effects are

zero, T, £ 0 , is very plausible). In fact, using such mecdels one can obtain

J
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any estimated causal effect desired by searching for and finding a prior
Variéble or combination of prior variables that yield the desired reéult.g
Such a search will in a sense be more difficult if randomization was per-~
formed, but clearly, even with randomized data, the investigator must be )
rrepared to ignore variables that he feels cannot causally affect Y . On
the other hand, he may want to adjust for suéh a variable if he feels it is
a surfogate.fbr an unmeasured variable that can causally éffect Y (e.g.,
age of oldest living relative as a surrogate for mental stability of the
family in the compensatory reading'example).
The point of this discussion is that when trying to estimate the typical
causal effect in the 2N trial experimenﬁ, handling outside information may
not be trivial without a weli—developed causal médel that willbproperly
adjust for those prior variables that causally affect Y and ignore other
variables even if they are highly correlaﬁéd with the observed values of ;
Y . Without>such a model, the investigator must be prepared to ignore éome
variables he féels cannot cancally affect Y and use a possibly arbitrary 5

model to adjust for those variables he feels are important.

5.2 Generalizing Results to Other Trials
In order to believe that the results of an experiment are of interest we

generally must believe that the 2N trials in ﬁhe study are representative of

a pbpulation of other future trials. For example, if the expgrimental treat-
ment is a compensatory reading program and the trials are compoéed of 6th

grade school children with treatments initiated in fall 1970 and Y measured

K
8
#

I
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4
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in Spring 1971, the results are of little interest unless we. believe the&

AN R

9Consider for example adjustihg for 2N covariates in a 2N trial }
study. ‘ : ' ' ;




tell”us something about future 6th graders who might. be exposed to the

compensatory reading program.

For simplicity assume the 2N trials in the study are a simple random

sample from a "target population" of M trials to which we want to generalize

the results; by simple randomISample we mean that each of the M trials is

. A/ )
equally likely to be used in the study, or equivalently, each of the (gw)

ways of choosing the 2N trials is equally likely. If T is the typical
(average) causal effect for all M trials, it then follows given random

assignment of treatments that the average E - C difference for the 2K

trials used is an unbiased estimate of T over the random sampling plan and

over the randonization set. 1In other words, in each of the r X (ZN) ways

of choosing 2N trials from M trials and then'randomly assigning N trials to

E and N trials to C there is a calcuiated average E - € difference, and

the average of these r x (M ) differences is T : because of the randomiza-

tion and random sampling each trial is equally likely to be an E trial as a

C trial and thus contributes L yJ(E)'

N to the VE -C diffefence as often

N It also follows that under a hypothesized

set of causal effects, T

as it contributes - = yJ(C)

5 J =1,...,M , the significance level (the

- probability that we would observe a difference as large as or larger than

Ya ) given that we have sampled the 2N trials in the study is m/r where m

is the number of allocations in the randomization set that yield estimates

as far or farther from 7 than id 1o

If we let M grow to infinity (a reasonable assumption in many experi-

ments when the population to which we want to generalize results is

OEven though we have hypothesized 7T, for all trials we cannot cal-

culate hypothesized . y (E) anad yJ(C) for the unssmpled trials;, and

"thus the probabilisitc statement is conditional on the observed trials.

<
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essentially unlimited, e.g., all future 6th grade students), the stating of

probabilistic results is facilitated. For example, the usual covariance

adjusted estimate is an unbiased estimate of T (not necessarily 1) over
the random sampling plan and the randomization set, even though whether the
adjustment actually adjusts for the additional variable(s) still depends on

the appropriateness of the underlying linear model.

Hence, given random sampling of trials the ‘ability to generalize results
to other trials seems relatively straightforward probabilistically. However,
most experiments are designed to be generalized to future trials and we never

have a random sample of trials from the future but at best a random sample

from the présent. Generally, in fact, observational studies probably have

more representative trials thén experiments many of which are conducted in
constrained,‘ atypical environments and wi.thin ‘a restricted period of time.
Thus, in order to generalize the results of any experiment to fui:ure trials
of interest, we minimally must believe that there is a similarify of effects
across time and more often must believe thét the trials in theistudy are
"representative" of the population of trials. This step of faith may be
called making an assumption of "subjective random sampling" i.n order to
assert such properties as (a) ;d (or id adjusted) tends to estimate the
typical causal effect T and (b) the plau;ibility of hypothesized "r':j ,
j=1,. ++sM , 1s given by the usual ,con&itionalvsignificance level.

A3 indiceted abbvé, this subjective rar;dom sampling is quite possibly
easier to believe in an observational study with data draﬁ: from many sources

than in an experiment performed under controlled conditions. Even so, )

investigators do make and must be willing to make this step in experiments

in order to believe their results are useful; when investigators carefully

indicate their sa.mplé of trials and the ways in which they niay differ from
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those in the target population this tacit assumption of subjective random
sampling seems perfectly reasonable. If thére is an important variable that
differs between the sample of trials and the population of trials, an attempt
to adjust the estimate based on the same kinds of models discussed previously
is quite appropriate eveﬁ if the sample is 'actually a random sample.ll If
the sample is not actually a random sample, and the model for this adjustment

is reasonable, such an adjustment should make the assumption of subjective

random sampling even more plausible.
6. Subjective Randomization and Observational Studies

Now co‘nsider a carefully controlled observational study--a study in
which there are no obviously important prior variables that systematically
differ in the E trials and the C tfigls. lIx"i such a study' there is a real
sense in which a claim of "subjective randc_:rhization" can be made. For example,
if the study .w<.-:-rev composed of carefully matcﬁed pairs of trials, there might
be a very defensidble belief that within each -matched pair each unit was
equally likely to receive E aé C' "'.in ‘the sens.e that if I showed the units
to you without telling you which received. E, only half the time would you

12 .Under this assumption of subjective

guess correctly which ,received E .
randomization the usual estimates and significance levels can be used as if
the study had been randomized; this step is analogous to the stép of

assuming subjective random sampling in order to make inferences about a

target population.

Msee Cochran (1963) on regression and ratio adjustments.

12Perhaps this is all that is meant by "randomization" to some Bayesians
under any circumstances (see Savage, 1954, p. 66).
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_If an obviously important prior variable were found to differ systemat-

ically in the E and C trials, ::"we would of course have to adjust the estimate
and the associated significance levels; but until such a variable is found
a belief in subjective randomization in svome cases might seem well founded.
In addition, from the di‘scussion in Section U it should be clear that given
such a variable these adjustments would heVe to be made even if the study..
Wwere properly randomized, and any adjustment based on a model is somewhat
dependent upon the appropriateness of the assumptions of the. model whether
the data are randomized or not. If the model for adjustment is appropi‘iate,
one can no longer object to the belief in subjective randomization because
of the adjusted variable.

No doubt, given a fixed set of 2N trials one would rather be able to
randomly assign the treatments and not rely on the concept of subjective
randomization. However, if the choice ;ere between an observational stutiy
vhose 2N triais ccnsisted of N representative E trials closely .matched
with N representative C trials and an experiment whose 2N trials were
highiy atypical, it is not clear which we should prefer; in practice there
may be a trade-off between the reasonableness of the assumptions of subjec-
tive random sampling and subjective rantiomization (e.g., consider a care-
fully matched obserw}ational evaluation of existing compensatory reading
programs and an experiment having these compensatory reading programs
randomly assigned to inmates at a penitentiary).

The basic position of this paper cen be summarized as tollows: estimating
the typical causal efi‘ect of one treatment vs. another is a difficult task

unless we understand the actual process well enough (a) to assign most of

the variability in Y to specific causes and (b) to ignore associated but
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causally irrelevant variables. Short of such understanding, random sampling
and randomization help in that all sensible estimates tend to estimate the
correct Aqua.ntity, but these procedures can never completely assure us that
we are obtaining a good estimate of the treatment effect.  Even assuming

a good estimate there remains the problem of determining which aspects of
the treatments are responsible for the ef‘fec‘l:.l3

In addition, almost never do we have a random sample from the target
popuiation of trials and thus wé must generall& rely on the belief in sub-
jective random sampling, i.e., there is no imi)ortant variable that differs
in the sample a;'nd the target population. Similarly, often the only data
available are observational and we must rely on belief in subjective ran-
d_onii‘zation, i.e., there is no important variable that differs in the E trials
and C trials. If an important prior variable is found that systematically
differs in E and C trials or the sample and target population, ‘we are faced
with either adjusting for it or not putting much faith in-our estimate.
However, we cannot adjust for any variafble presented or any desired result
can eventually be obtained.

In both experimental and observational studies, the ‘invéstigator should
think hard about variables besides the treatment that may causally afrfect VY
and plan in advance how to control for the important prior variables--either
by matching or adjustment or both. When presenting the results to the reader

it is clearly important to indicate the extent to which the assumptions of

subjective randomization and subjective random sampling can be belie\(ed and

13Cons:ider for example "expectancy" effects in education (Rosenthal,
1971) and the associated problenis of deciding the relative causal effects

of the content of programs and the implementation of programs.
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vhat methods of control have been employed.lh If an observational study is
carefully controlled, the investigator can often reach conciusions similar
to those he would reach in the corresponding experiment. 1In fact, if the
effect of the E vs., C treatment is large enough, he will be able to detect
it in sméll, nonrepresentative samples and poorly controlled studies.

Basic problems in educational research are that causal models are not
yet well formulated, and in many cases the effect of the E vs .. 'C treatment

under study appears to be quite small. Given this situation, it seems

reasonable to search for treatments with large effects by the use of observa-
tional studies and rely on further study for more refined estimates of the

effects of those treatments that appear to be important.

Recent advice on the design and analysis of observational studies
is given by W. G. Cochran in Bancroft (1972).
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