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ESTIMATING-CAUSAL EFFECTS OF TREATMENTS IN

EXPERIMENTAL AND OBSERVATIONAL STUDIES

Donald Rubin

Abstract

A discussion of matching, randomization, random sampling, and other

methods of controlling extraneous variation is presented. The objective

is to specify the benefits of randomization in estimating causal effects

of treatments. The basic conclusion is that randomization should be employed

whenever possible, but the use of carefully controlled nonrandomized data

to estimate causal effects is a reasonable and necessary procedure in many

cases.
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ESTIMATING CAUSAL EFFECTS OF TREATMENTS IN

EXPERIMENTAL AND OBSERVATIONAL STUDIES

Donald Rubin

Educational Testing Service

1. Introduction

Recent psychological and educational literature has included extensive

criticism of the use of observational studies to estimate causal effects of

treatments (see, e.g., Campbell & Erlebacher, 1970). The implication in

much of this literature is that only properly randomized experiments can

lead to useful estimates of causal treatment effects. If lichen as

applying to all fields of study, this position is clearly untenable. Since

the extensive use of randomized experiments is limited to the last half

century,
1
and in fact is not used in much scientific investigation today,

one is led to the conclusion that most scientific "truths" have been estab-

lished without using randomized experiments. In addition, most of us

successfully establish the causal effects of many of our.everyday actions,

even interpersonal behaviors, without the benefit of randomization.

Even if the position that causal effects of treatments can only be well

established from randomized experiments is taken as applying only to the

social sciences in which there are currently few well-established causal

relationships, its implication to ignore existing observational data may be

counter-productive. Often the only immediately available data are observa-

tional in nature and either (a) the cost of performing the equivalent

experiment to test all treatments is prohibitive (e.g., 100 reading programs

lEssentially since Fisher (1925).

;
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under study); (b) there are ethical reasons why the treatments cannot be

randomly assigned (e.g., estimating the effects of heroin addiction on

intellectual functioning); or (c) estimates based on results of experiments

would be delayed many years (e.g., effect of childhood intake of cholesterol

on longevity). In cases such as these, it seems more reasonable to try to

estimate the effects of the treatments from the observational data than to

ignore the observational data and dream of the ideal experiment. Concur-

rently, using the indications in the observational data, one can, if neces-

sary, initiate randomized experiments for those treatments that require

better estimates.

The position here is not that randomization is overused. On the con-

trary, if the choice is between the data from a randomized experiment and

an equivalent observational study, one should choose the data from the,

experiment, especially in disciplines like the social sciences where often

much of the variability is unassigned to particular causes. However, by

examining the assumptions that are needed in order to believe that the re-

sults of an experiment or an observational study yield appropriate answers

to questions about the causal effects of treatments, we will develop the

position that observational studies as well as randomized experiments can

be useful in estimating causal treatment effects.

In order to avoid unnecessary complication, we will restrict discus-

sion to the very simple study consisting of 2N units (e.g., subjects),

half having been exposed to an experimental treatment E (e.g., a compensatory

reading program) and the other half having been exposed to a control treat-

ment C (e.g., a regular reading program). If treatments E and C were

4
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assigned to the 2N units randomly, that is using some mechanism that

assured each unit was equally likely to be exposed to E as to C , then the

study is called a randomized experiment or more simply an experiment; other-

wise, the study is called a quasi-experiment or an observational study. In

either case, the objective is to determine for some general group of units

(e.g., underprivileged 6th grade children) the "typical" causal effect of

the E vs. C treatment on a dependent variable Y , where Y could be

dichotomous (e.g., success-failure) or more continuous (e.g., score on a

given reading test).

The central question concerns the benefits of randomization in deter-

mining the causal effect of the E vs. C treatment.on Y .

. Defining the Causal Effect of the E vs. C Treatment

A first step in investigating the benefits of randomization for de-

termining the causal effect of treatments is to define exactly what is meant

by the causal effect of a treatment. Intuitively, the causal effect of one

treatment, E , over another, C , for a particular unit and ar interval of

tirflefrallt1 to t2 is the difference between what would have happened at

time t,

2
if the unit had been exposed to E at time t

1
and what would

have happened at t2 if the unit had been exposed to C at t1 : "If an

hour ago I had taken two aspirins instead of just a glass of water, my

headache would now be gone," or "Because an hour ago I took two aspirins

instead of just a glass of water, my headache is now gone." Our definition

of the causal effect of the E vs. C treatment will reflect this

intuitive meaning.

First define a trial to be a unit (e.g., a subject) and an associated

pair of times, t1 and t2 , where tl denotes the time of initiation of a

5
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treatment and t
2

denotes the time of measurement of a dependent variable,

Y , where ti < t2 .

We restrict our attention to treatments E and C that could be ran-

domly assigned; thus, we assume (a) a time of initiation of treatment can be

ascertained for each unit exposed to E or C , and (b) E and C are

exclusive of each other in the sense that a trial cannot simultaneously be

an E trial and a C trial (i.e., if .E is defined to be C plus some

action, the initiation of both is the initiation of E ; if E and C are

alternative actions, the initiation of both E and C is the initiation of

neither but rather a third treatment E + C) .

We also assume that the measured value of Y stated with reference to

time t2 is the "true" value of I at t2 . This position can be justified

by defining Y by a measuring instrument that always yields the measured Y

(e.g., Y is the score on a particulFr IQ test as recorded by the subject's

teacher). Since an "error" in the measured Y can only be detected by a

"better" measuring instrument (e.g., a machine-produced score on that same

IQ test) the values of a "truer" score can be viewed as the values of a

different dependent variable. Clearly, any study is more meaningful to the

investigator if the dependent variable better reflects underlying concepts

he feels are important (e.g., is more accurate) but that does not imply we

must consider errors about some unmeasurable "true score."
2

2For the reader who prefers the concept of such errors of measure-
ment he may consider the following discussion to assume negligible

"technical errors" so that Y is essentially the "true" Y .
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Now define the causal effect of the E vs. C treatment on

particular trial (i.e., a particular unit and associated times

as follows:

Y for a

ti , t2)

Let y(E) be the vall4e of Y measured at t2 on the unit given
that the unit received the experimental treatment E initiated
at t1 ;

Let y(C) be the vaiue of Y measured at t on the unit given
that the unit received the control treatment C initiated at t

'

Then y(E) - y(C) is the causal effect of the E vs. C treatment
on Y for that for that particular unit and the
times t

1 , t
2

For example, assume the unit is a particular rat and that the experi-

mental treatment is a high protein diet and the control treatment is a

regular diet. Suppose that if the rat were given the high protein diet

initiated at time t1 , 10 days later, at time t
2

, he would weigh 7 oz.

and suppose that if the rat instead were given the regular diet initiated at

time t at time t
2

he would weigh 6 oz. Then the causal effect for that
1

trial (that rat and times t1 , t ) of the high protein diet vs, the regular

diet on weight is 7

The problem in

observe both y(E)

the other treatment.

- 6 = 1 oz.

measuring y(E) - y(C) is of course that we can never

and y(C) since we cannot return to time t to give

We may have the same unit measured on both treatments

in two trials (e repeated measure

over effects (e.g., the effect of

general time-trends (e.g., as the

cannot be certain that the unit's

Assume now that there are M

causal effect. For simplicity of

design), but since there may exist carry-

the first treatment wears off slowly) or

rat ages, his reactions become slower) we

responses will be identical at both times.

trials for which we want the "typical"

exposition we assume that each trial is
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associated with a different unit and expand the above notation by adding the

subscript j to denote the j
th

trial ij = 1,2,...,M); thus y(E) - y(C)

is the causal effect of the E vs. C treatment for the j
th

trial, i.e., the

.th
j unit and the associated times of initiation of treatment, t

lj
, an d

measurement of Y , t
2j

An obvious definition of the "typical" causal effect of the E vs. C

treatment for the M trials is the average causal effect for the M trials:

M

[y (E) - y (C)].
1

M
j=1

However, notice that if all but one of the individual causal effects are

small and that one is very large, the average causal effect may be substan-

tially larger than all but one of the individual causal effects and thus not

very "typical." Other possible definitions of the typical causal effect for

the M trials are the median causal effect (the median of the individual

causal effects) or the midmean causal effect (the average of the middle

half of the individual causal effects). If the individual causal effects,

y.(E) - y (C), are approximately symmetrically distributed about a central
J

sensible definitions of "typical" will yield similar values.

Even though definitions of typical other than the average may seem more

reasonable, they lead to more complications when discussing properties of

estimates under randomization. Hence we will assume the average causal effect

to be the desired typical causal effect for the M trials and proceed to

the problem of its estimation given the obvious constraint that we can never

actually measure both y (E) and y (C) for any trial.
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3. Randomization, Matching, and Estimating the Typical Causal

Effect in the 2N Trial Study

Having defined the typical causal effect of the E vs. C treatment, we

proceed to discuss the benefits of randomization and matching in a 21`! trial

study, N trials being with units exposed to E and the other N trials

being with units exposed to C .

For now we assume that the immediate objective is to estimate the

typical causal effect only for the 2N trials in the study. Of course, in

order for the results of a study to be of much interest, we must be able
10

to generalize to units and associated times other than those in the study.

However, the issue of generalizing results to other trials will be discussed

separately from the issue of estimating the typical causal effect for the

trials under study. Also, for now we will consider only the simple and

standard estimate of the typical causal effect of E vs. C : the average

Y difference between those units who received E and those units who

received C .

We begin by considering this estimate when only two trials are in the

study and then when there are 2N, N > 1 ,.trials in the study. This in-

formal discussion will then lead to the presentation of two formal benefits

of randomization.

3.1 The Two Trial Study

Assume two trials under study, one trial with a unit exposed to E

and the other with a unit exposed to C . The typical causal effect for

the two trials is

9



y (E) - y (c) + y
2
(E) - y (c)] (1)

Note that for only two trials almost any reasonable definition of typical

leads to this expression. The estimate of this quantity from the study,

the (average), difference between the measured Y for the unit who received

E. and the measured Y for the unit who received C , is either

or

y
1
(E) - y

2
(C)

y2(E) - Y
1

( )

depending upon which unit was assigned E. Neither (2) nor (3) will neces_

sarily be close to (1) or to the causal effect for either unit

or

y
1
(E) - y1(C)

y2(E) y2(C)

(2)

(3)

(5)

even if these individual causal effects are equal. If the treatments E and

C were randomly assigned to units, we are equally likely to have observed

the difference (2) as (3) so that the average or "expected" difference in Y.

between experimental and control units is the average of (2) and (3),

1/4 [yl(E) - y2(C)] + 1/4 [y2(E) - yl(C)] which equals (1), the typical causal

effect for the two trials. For this reason, if the treatments are randomly

assigned, the difference in Y between the experimental and control units

is called an "unbiased" estimate of the desired typical causal effect.

Now assume that the two units are very similar in the way they respond to

the E and C treatments at the times of their trials. By this we mean that on

the basis of "extra information" we know yl(E) is about equal to y2(E) and

10



y
1
(C) is abo%t P-ual to yo(C) ; that i: , the two trials are closely "matched"

with respect tc the effects of the two treatments. It then follows that (2)

is about equal to (3) and both are about equal to the desired typical causal

effect (1). In fact, if the two units Peact identically in their trials,

(5) = () = (3) (2) = (1), and randomization is absolutely irrelevant.

Clearly, L7ving closely "matched" trials increases the closeness of the

calculated-experimental minus control difference Lo the typical causal effect

for the two trials, while random assignment of treatments does not improve

that estimate.

Although two trial studies are almost unheard of in the behavioral

sciences they are not uncommon in the physical sciences, as the reader

recall from high school physics or chemistry laboratories. For example,

when comparing the heat expansion rates (per hour) of a metal alloy

oxygen and nitrogen an investigator might use two one-foot lengths of the alloy.

Because the lengths of alloy are so closely matched before being exposed to

the treatment (almost identical compositions and dime%si the units should

respond almost identically to the treatments even when initiated at different

times, and thus the calculated experimental (oxygen) minus control (nitrogen)

difference should be an excellent estimate of the typical causal effect, (1).

Notice, however, that a skeptical observer could always claim that the

experimental minus control difference is not a good estimate of the typical

causal effect of the E vs. C treatment because the two units were not

absolutely identical prior to the application of the treatments. For example,

he could claim that the length of alloy molded first would expand more rapidly.

Hence, he might argue that what was measured was really the effect of the

difference in order of manufacture, not the causal effect of the oxygen vs.
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nitrogen treatment. Since units are never absolutely identical before the

application of treatments, this kind of argument, whether "sensible" or not,

can always be made. However, if the two trials are closely matched with

respect to the expected effects of the treatments, that is, if (a) the two

units are matched prior to the initiation of treatments on all variables

thought to be important in the sense that they causally affect Y , and (b)

the possible effect of different times of initiation of treatment and

measurement of Y are controlled, then the investigator can be confident

that he is in fact measuring the causal effect of the E vs. C treatment for

those two trials. This kind of confidence is much easier to generate in

the physical sciences where there are models that successfully assign most

variability to specific causes than in the social sciences where often we

do not know what the important causal variables are.

Another source of confidence that the experimental minus control differ-

ence is a good estimate of the causal effect of E vs. C is replication:

are similar results obtained under similar conditions. One type of replica-

tion is the inclusion of more than two trials in the s'.udy. Hence we now

turn to the discussion of the study with .2N trials.

3.2 The 2N Trial Study

Now assume there are 2N trials (N > 1) in the study, half with N

units having received the E treatment and the other half with N other units

having received the C treatment. The immediate objective is to find the

typical causal effect of the E vs. C treatment on Y for the 2N trials,

say T :



T

2N
1 V)

[Y Y:(C)12N 46.3
Y

j=1

Let SE denote the set of indices of the N E trials and Sc denote the

set of indices of the N C trials (SEU Sc = (i = 1,2,...,2N}). Then the

difference between the average observed Y in the E trials'and the average

observed Y in the C trials can be expressed as

Yd
1 2:7)

Y .(c) ,

jcS
E

jES
C

where : and indicate, respectively, summation over all indices in
Jc ieS

S
E

(i.e., all E trials) and over all indices in S (i.e., all C trials).

,2N,

There are k

N
different possible index sets SE corresponding to the

distinct ways of choosing N different numbers from a total of 2N different

numbers, where the binomial coefficient = [2N]! / [N!]2 . Depending

upon which N of the 2N units receive,: E we observe one and only one of

those ( :) possible allocations. We now consider how close this estimate

y
d

is to the typical causal effect T and what advantage there might be if

we knew the treatments were randomly assigned.

First assume that for each unit receiving E there is a unit receiving

C who reacts identically at the times of their trials; that is, the 2N trials

are actually N perfectly matched pairs. It is a simple extension of the

discussion in Section 3.1 to see that the estimate Yd in this case equals

r . y
d

can be expressed as the average experimental minus control (E - C)

difference across the N matched trials. Since the E - C difference in

eacn matched pair of trials is the typical causal effect for both trials of

that pair, the average of those differences is the typical causal effect for

1.8



all N pairs and thus all 2N trials.
3 Again this result holds whether

the treatments were randomly assigned or not. In fact, if one had N

identically matched pairs a "thoughtless" random assignment could be worse

than a nonrandom assignment of E to one member of the pair and C to the

other. By "thoughtless" we mean some random assignment that does not assure

that the members of each matched pair get different treatments--picking the

N indices to receive E "from a hat" containing the numbers 1 through 2N,

rather than tossing a fair coin for each m:iched pair to see which unit is

to receive E.
4

In practice of course we never have exactly matched triali. However,

if matched pairs of trials are very similar in the sense that the investigator

has controlled those variables prior to the initiation of treatments that

might appreciably affect Y, Yd should be close to t . If in addition the

estimated causal efTect is replicable in the sense that the N individual

estimated causal effects for each matched pair are very similar, the inves-

tigator might feel even more confident that he is in fact estimating the

typical causal effect for the 2N trials. For example, given 211. rats

from the same litter matched by sex and initial weight into N pairs, assume

that we observe the same E - C difference in final weight in each matched

pair: Similarly, if the trials are not pair-matched but all are similar

(e.g., all rats are mature males from the same litter with similar weights),

3 Incidentally, notice that in this case we can calculate the typical
causal effect for any definition of typical, e.g., the median of the
observed matched pair differences is the median causal effect for the 2N

trials.

4
The difference between these two methods of randomization is the

difference between the "completely randomized" experiment and the "ran-
domized blocks" experiments (see Cochran and Cox, 1957).

.14
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andweobse""hatallY.WjF-OEareaboutequalandallY.(C) .c_c are

about equ ., the investigator would also feel confident that he is in fact

estimating the typical causal effect folfthe 2N trials.

Nevertheless, it is obvious that 4treatments were systematically

assigned to units, the addition of replication evidence cannot dissuade the

critic who believes the effect being measured is due to a variable used to

assign treatments (e.g., in the weight-gain study if the more active rat

always received the special diet, or in the heat-expansion study if the first

molded alloy always was measured in oxygen). If treatments were randomly

assigned, all systematic sources of bias would be made random, and thus it

would be unlikely, especially if N is large, that almost all E trials

would be with the more active rat or the first molded alloy, so that any

effect of that variable would be at least partially balanced in the sense c.f

systematically favoring neither the E treatment nor the C treatment over the

2N trials. In addition, using the replications there could be evidence to

refute the skeptic's claim of the importance of that variable (e.g., in each

matched trial we get about the same estimate whether the more active rat get:

E or C). Of course, if we knew beforehand of the skeptic's claim, a specific

control of this additional variable would be more advisable than relying on

randomization (e.g., in a random half of the matched trials assign E to the

more active rat and in the other half assign C to the more active rat, or

include rat's activity as a matching variable).

It is important to realize, however, that whether treatments are ran-

domly assigned or not, no matter how carefully matched the trials, and no

matter how large N , a skeptical observer could always eventually find some

. 15



variable that systematically differs in the E trials and C trials (e.g.,

length of longest hair on the rat) and claim that id estimates the effect

of this variable rather than T , the causal effect of the E vs: C treatment.

Within the given experiment there will be no refutation of his claim; only

a logical argument explaining that the variable cannot causally affect the

dependent variable or additional data outside the study can be used to

counter his position.

I. Two Formal Benefits of Randomization

If randomization can never assure us that we are correctly rstimating

the causal effect of E vs. C for the 2N trials under study, what are the

benefits of randomization besides the intuitive ones that follow from making

all systematic sources of bias into random ones? Formally, randomization

provides a mechanism to derive probabilistic properties of estimates without

making further assumptions. We will consider two such properties which are

important:

(1) the average E - C difference is an "unbiased" estimate of

, the typical causal effect for the 2N trials; and

(2) precise probabilistic statements can be made indicating how

unusual the observed E - C difference, y
d

, would be under

specific hypothesized causal effects.

More advanced discussion of the formal benefits of randomization may

be found in Sheffe (1959) and Kempthorne (1952).

h.1 Unbiased Estimation over the Randomization Set

We begin by defining the "randomization set" to be the set of r

allocations that were equally likely to be observed given the randomization
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plan. For example, if the treatments were randomly assigned to trials with

no restrictions (the completely randomized experiment), each one of the (2.')
is

possible allocations of N trials to E and '; trials to C was equally likely

to be the one observed allocation. Thus, the collection of all of these

r = (
2N

N
) allocations is known as the randomization set for this completely

randomized experiment. If the treatments were assigned at random within

matched pairs (the randomized blocks experiment), any allocation with both

members of the pair assigned the same treatment could not be observed; the

remaining 2
N

allocations with each member of the pair receiving a different

treatment was equally likely to be the observed one. Hence, for the experi-

ment with randomization done within matched pairs, the collection of these

r = 2
N

equally likely allocations is known as the randomization set. 5

For each of the r allocations in the randomization set there is a

corresponding average E - C difference that we would have calculated had

that allocation been chosen. If the expectation (i.e., average) of these

r average differences equals t , the average E - C difference is called

unbiased over the randomization set for estimating t . We now show that

given randomly assigned treatments, the average E - C difference is an

unbiased estimate of t , the typical causal effect for the 2N trials.

By the definition of random assignment, each trial is equally likely to

be an E trial as a C trial. Hence, the contribution of the j
th

trial

(j = 1,...,2N) to the average E - C difference in half of the r allocations

1 1intherandomizationsetis.(E) and in the other half is - -.(C).N Yj N . ,

ththus, the expected contribution of the j trial to the average E - C

5
There are of course other methods of randomly assigning two treatments

to 2N trials but there is no need to consider them here.

t 17



(

1 1 rdifference is
1

I Ti Y3(E)1 +
1

Yi(C)] . Adding over all 2N trials

we have that the expectation of the average E - C difference over the r

allocations in the randomization set is

2N

yj[ .(E) - Y
j
(C)] 9E

j =1

which is the typical causal effect for the 2N trials, T .

Although the unbiasedness of the E - C difference is appealing in the

sense that it is an indication that we are tending to estimate T its im-

pact is not immediately overwhelming: the one E - C difference we have

observed, id , may or may not be close to T . In a vague sense we may be-

lieve yd should be close to T because the unbiasedness indicates that "on

the average" the E - C difference is T but this belief may be tempered

when other properties of the estimate are revealed; for example, without

additional assumptions about the symmetry of effects the average E - C dif-

ference is not equally likely to be above as below T .

In addition, after observing the values of some important unmatched

variable we may no longer believe id tends to estimate T . For example,

suppose in the study of the effect of diet on rats' weight, initial weight is

not a matching variable, and after the experiment is complete we observe that

the average initial weight of the rats exposed to E was higher than the

average initial weight of the rats exposed to C . Clearly we would now believe

that id probably overestimates T even if treatments were randomly assigned.

In sum, then, the unbiasedness of the E - C difference for T follows

from the random assignment of treatments; it is a desirable property in that

it indicates "on the average" we tend to estimate the correct quantity but

it hardly solves the problem of estimating the typical causal effect. We as

18`
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yet have no indication whether to believe y
d

is close to T nor any ability

to adjust for important information we may possess.

1.2 Probabilistic Statements from the Randomization set.

A second formal advantage of randomization is that it provides a

mechanism for making precise probabilistic statements indicating how unusual

the observed E - C difference, yd , would be under specific hypotheses.

The following discussion of "significance levels" derived from the randomiza-

tion set will tend to be more technical than the other discussion in this

paper but is still basically straightforward.

Assume that the investigator hypothesizes exactly what the individwa

causal effects are for each of the 2N trials and these hypothesized wilues

areT.,j = 1,...,2N . The hypothesized typical causal effect for the 2::

trials is thus

2N

2N
tr.

h-d i
j=1

AssumingtheT.are correct and having the observed y.(E), ESE and
J J

say
) ,

J

for all of the 2N trials.' For jeSE , yi(E) is observed and y.(C) 71E,

unobserved;hemeforthesetrials.(E) and 7,(C) = y.(E) - ; .7,1JE) = y
J 0 ...;

ForjeEc,Yi(Oisobservedand.yo (E) is unobserved; hence for these

....

J 0

trials
3,.

(C) = y.(C) and 7.(E) = y.(C) + .7 . Thus, assuming the hypc sth-
i

.... .... .... ,

esizedlarecorrect,wecancalculatehypothesizedy0E)f and y.(C)
i o J

for all 2N trials. Then using these, we can calculate an hypothesized

average E - C difference for each of the r allocations of the 2N trials

in the randomization set.

19



Assume that we calculate all r hypothesized average E - C differ-

ences and list them from high to low noting which E - C difference cor-

responds to the SE , Sc allocation we have actually observed. This

difference, yd , is the only one which does not use the hypothesized

If treatments were assigned completely at random to the trials and the

N%
hypothesized 3

j

are correct, any one of the r = (2N) differences was

equally likely to be the observed one; similarly, if treatments were ran-

domly assigned within matched pairs, each of the r = 2
N

differences with

each member of a matched pair getting a different treatment was equally

likely to be the observed one. Intuitively, if the hypothesized Tj are

essentially correct, we would expect the observed difference yd to be

rather typical of the (r - 1) other differences that were equally likely to

be observed; that is, yd should be near the center of the distribution of

the r E - C differences. If, in fact, the observed difference is in the

tail of the distribution and so not typical of the r differences we might

doubt the correctness of the hypothesized lr. .

:ore formally we proceed as follows. The average of the r E - C

1
ferences is in fact the hypothesized typical causal effect, T =

2N

This result follows immediately from the unbiasedness of the E - C dif-

ference for the actual typical causal effect t . Now, using the equal

likeliness of the r allocations we can make the following kind of proba-

bilistic statement: "Under the hypothesis that the causal effects are given

by the 1r,, j = , the probability that we would observe an average

E - C difference as far or farther from i than the one we have observed is

m/r where m is the number of allocations in the randomization set that

yield E - C differences as far or farther from i than Trd ." If this
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probability, called the "significance level" for the hypothesized ,,

is very small, that is, if the observed yd is farther from 3-* than most

of the other differences in the randomization set, we either must admit that

the observed value was unusual in the sense of being in the tail of the

distribution of the equally likely differences, or we must reject the plau-

sibility of the hypothesized 'rj .

The most common hypothesis for which a significance level is calculated

is that the E vs. C treatment has no effect on Y whatsoever (i.e., i, 0) .

Other common hypotheses assume that the effect of the E vs. C treatment on

Y is a nonzero constant (i.e., 7 7
.(7)

) for all trials.
6

The ability to make precise probabilistic statements about the observed

y
d under various hypotheses without additional assumptions is a tremendous

benefit of randomization especially since yd tends to estimate t . How-

ever, one must realize that these simple probabilistic statements refc." ,nly

to the 2N trials used in the study and do not reflect additional information

(i.e., other variables) that we may have measured.

5. Additional Assumptions Often Needed to Present the Results

of a Study as Being of General Interest

There are two kinds of issues that have been mentioned that often arise

when presenting the results of an experiment as being relevant and which so

far have not been handled in our discussion of randomization and matching.

6
These hypotheses for a constant effect can be used to form "confidence

limits" for t . Given that the t3 are constant, the set of all hypothesized

T
o

such that the associated significance level is greater than or equal to

a = m/r form a (1 - a) confidence interval for T: of the r such (1 - a)
confidence intervals one could have constructed (one for each of the r alloca-
tions in the randomization set), r(J. - a) = r - m of them include the true
value of t assuming all t3 = t . See Lehman (1959, P. 59) for the proof.
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The first concerns additional variables not explicitly controlled in the

experiment: the thoughtful investigator must be prepared to consider the

effect of variables that may systematically differ in E trials and C trials.

The second issue concerns the ability to generalize the results: the inves-

tigator must be able to indicate the applicability of his results to a

population of trials other than the 2N in the study.

5.1 Considering Additional Variables

As has been indicated in our previous discussion, in most studies

whether observational or experimental, the investigator should be prepared

to consider the possible effect of other variables besides those explicit

in the experiment. Often additional variables will be ones that the inves-

tigator considers relevant in the sense that he feels they may causally

affect Y ; therefore, he may want to adjust the estimate Yd and signifi-

cance levels of hypotheses to reflect the values of these variables in his

study. At times the variables will be ones which he feels cannot causally

affect Y even though in his study they may be correlated with the observed

values of Y . An investigator who refuses to consider any additional

variables brought to his attention is in fact saying that he does not care

if 3d is a bad estimate of the typical causal effect of the E vs. C

treatment and instead is satisfied with mathematical properties (i.e.,

unbiasedness) of the process by which he calculated it.

Consider first the case of an obviously important variable. As an ex-

ample assume in the rat weight gain study, with diets randomly assigned we

found that the average E - C difference in final weight was 1 oz. and that

under the hypbthesis of no effects the significance level was .01; also assume

that initial weight was riot a matching variable and in fact the difference in
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initial weight was also 1 oz. Admittedly, this is probably a rare event

given the randomization but rare events do happen rarely. Given that it did

happen we would indeed be foolish to believe yd = 1 oz. is a good estimate of

T and/or the implausibility of the hypothesis of no treatment effects in-

dicated by the .01 significance level. Rather, it would seem more sensible

to believe that Yd overestimates t , and significance levels underestimate

the plausibility of hypotheses that suggest no or negative effects for the

treatments.

A commonly used and obvious correction is to calculate the average

E - C difference in gain score rather than final score. That is, for each

trial there is a "pretest" score (e.g., initial weight) which was measured

before the initiation of treatments, and the gain score for each trial is

the final score minus the pretest score. More generally we will speak of a

"prior" score or "prier" variable which would have the same value, x. ,

whether the j
th

unit received E or C .

7 It then follows given random

assignment of treatments that the adjusted estimate (e.g., gain score)

1 1 N7'
[Y.(E)-x

j ii
- 1 [y

j
(C)-x.]

jcS
E

jcS

remains an unbiased estimate of T (3,-er the randomization set: each prior

score appears in half of the equally likely allocations as 1-jx and the
N

other half as -
1
Fxj ; hence, averaged over all allocations the j

th
trier

7Even though "prior" indicates that the variable attained its value for
all trials prior to the initiation of the treatments, a prior variable can be
any variable that cannot be causally affected by the treatments and thus
would have the same value whether the unit received E or C .

23
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score has no effect.
8

But this result holds for any set of prior scores

x;, j = 1,...,2N , whether sensible or not. For example, in an experiment

evaluating a compensatory reading program, with Y being the final score

on a reading test, the prior score "pretest reading score" or Perhaps "IQ"

properly scaled makes sense but "height in millimeters" does not. Also why

not use the prior score "one-half pretest score"?

Clearly, in order to make an intelligent adjustment for extra informa-

tion we cannot be guided solely by the concept of unbiasedness over the

randomization set. We need some model for the effect of the prior variables

in order to use their values in an intelligent manner. The gain score, for

example, assumes that the final score typically would equal the initial

score if there were no E - C treatment effect and is perfectly reasonable

for the length of the alloys in the heat expansion experiment or the weight

of mature rats in the diet experiment. In the physical sciences, more com-

plex models which represent generally accepted functional relationships are

often used; however, in the social sciences there are rarely such accepted

relationships to rely upon. What then does the investigator do who wants to

a<ust intelligently the final reading scores for the subjects' varying IQ's,

grade levels, SES, and so on? Clearly, he must be willing to make some

assumptions about the functional form of the causal effect of these other

variables on Y . If he assumes, perhaps based on indications in previous

data,some"knowefunctionforx.(e.g., in the compensatory reading

,

program example, suppose x. equals [.01 x IQ]2 x pretest x [percentile

of family income]), so that xj is the same whether the j
th

unit received

8
If the prior score could vary depending on whether the unit received E

or C (i.e., it is a variable measured after the initiation of the treatments
that may be causally affected by the treatment) we would have no assurance
that the ad.usted E - C difference is an unbiased estimate over the ran-
domization set.

t , :

,

24
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E or C , from the previous discussion the average E - C difference in

adjusted scores remains an unbiased estimate of T . If the investigator

assumes a model whose parameters are unknown and estimates these parameters

by some method from the data, in general, the average E - C difference in

adjusted scores is no longer unbiased over the randomization set because the

adjustment for the j
th

trial depends on which trials received E and which

received C (e.g., in the analysis of covariance, the estimated regression

coefficients in general vary over the r allocations in the randomization

set).

Clearly, forming an intelligent adjusted estimate may not be simple

even in a randomized experiment. However, significance levels for any

adjusted estimate can be found by calculating the adjusted estimate rather

than the simple E - C difference for each of the r ecually likely

allocations in the randomization set. Nonetheless, if the adjusted estimate

does not tend to estimate T in a sensible manner, the resulting signifi-

cance level may not be of much interest.

Now consider a variable that is brought to the investigator's attention

but he feels cannot causally affect Y (e.g., in the compensatory reading

example, age of oldest living relative). Eventually a skeptic can find such

a variable that systematically differs in the E trials and the C trials even

in the best of experiments. Considering only that variable it is indeed

unlikely given randomization that there would be such a discrepancy between

its values in E trials and C trials, but its occurrence cannot be denied.

If the skeptic adjusts yd by using a standard model (e.g., covariance),

the adjusted estimate and related significance levels may then give misleadin4.

results (e.g., zero estimate of T , hypothesis that all causal effects are

zero, ij E 0 , is very plausible). In fact, using such models one can obtain

25



any estimated causal effect desired by searching for and finding a prior

variable or combination of prior variables that yield the desired result.
9

Such a search will in a sense be more difficult if randomization was per-

formed, but clearly, even with randomized data, the investigatOr must be

prepared to ignore variables that he feels cannot causally affect Y . On

the other hand, he may want to adjust for such a variable if he feels it is

a surrogate for an unmeasured variable that can causally affect Y (e.g.,

age of oldest living relative as a surrogate for mental stability of the

family in the compensatory reading example).

The point of this discussion is that when trying to estimate the typical

causal effect in the 2N trial experiment, handling outside information may

not be trivial without a well-developed causal model that will properly

adjust' for those prior variables that causally affect Y and ignore other

variables even if they are highly correlated with the observed values of

Y . Without such a model, the investigator must be prepared to ignore some

variables he feels cannot calttally affect Y and use a possibly arbitrary

model to adjust for those variables he feels are important.

5.2 Generalizing Results to Other Trials

In order to believe that the results of an experiment are of interest we

generally must believe that the 2N trials in the study are representative of

a population of other future trials. For example, if the experimental treat-

ment is a compensatory reading program and the trials are composed of 6th

grade school children with treatments initiated in fall 1970 and Y measured

in Spring 1971, the results are of little interest unless we believe they

9Consider for example adjusting for 2N covariates in a 2N trial

study.

26
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tell us something about future 6th graders who might be exposed to the

compensatory reading program.

For simplicity assume the 2N trials in the study are a simple random

sample from a "target population" of M trials to which we want to generalize

the results; by simple random sample we mean that each of the M trials is

equally likely to be used in the study, or equivalently, each of the

ways of choosing the 2N trials is equally likely. If T

(M
2N )

is the typical

(average) causal effect for all M trials, it then follows given random

assignment of treatments that the average E - C. difference for the 2I

trials used is an unbiased estimate of T over the random sampling plan and

over the randomization set. In other words, in each of the r x (N) ways

('of choosing 2N trials from M trials and then randomly assigning N trials to

E and N trials to C there is a calculated average E - C difference, and

,Mthe average of these r x k
2N differences is T : because of the randomiza-

tion and random sampling each trial is equally likely to be an E trial as a

C trial and thus contributes 1
yi(E) to the E - C difference as often

1as it contributes -
N

y (C) . It also follows that under a hypothesizedj

set of causal effects, I" , j = 1,...,M , the significance level (the

probability that we would observe a difference as large as or larger than

yd ) given that we have sampled the 2N trials in the study is m/r where m

is the number of allocations in the randomization set that yield estimates

as far or farther from T than . 10

If we let M grow to infinity (a reasonable assumption in many experi-

ments when the population to which we want to generalize results is

10
Even though we have hypothesized "i" for all trials we cannot cal-

.)

culate hypothesized (E) and 7 (C) for the unsampled trials, and

thus the probabilisitc statement is conditional on the observed trials.
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essentially unlimited, e.g., all future 6th grade students), the stating of

probabilistic results is facilitated. For example, the usual covariance

adjusted estimate is an unbiased estimate of T (not necessarily t) over

the random sampling plan and the randomization set, even though whether the

adjustment actually adjusts for the additional variable(s) still depends on

the appropriateness of the underlying linear model.

Hence, given random sampling of trials the ability to generalize results

to other trials seems relatively straightforward probabilistically. However,

most experiments are designed to be generalized to future trials and we never

have a random sample of trials from the future but at best a random sample

from the present. Generally, in fact, observational studies probably have

more representative trials than experiments many of which are conducted in

constrained, atypical environments and within a restricted period of time.

Thus, in order to generalize the results of any experiment to future trials

of interest, we minimally must believe that there is a similarity of effects

across time and more often must believe that the trials in the study are

"representative" of the population of trials. This step of faith may be

called making an assumption of "subjective random sampling" in order to

assert such properties as (a) yd (or i
d adjusted) tends to estimate the

typical causal effect T and (b) the plausibility of hypothesized Tj ,

j = 1,...,M is given by the usual conditional significance level.

As indicated above, this subjective random sampling is quite possibly

easier to believe in an observational study with data drawn from many sources

than in an experiment performed under controlled conditions. Even so,

investigators do make and must be willing to make this step in experiments

in order to believe their results are useful; when investigators carefully

indicate their sample of trials and the ways in which they may differ from
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those in the target population this tacit assumption of subjective random

sampling seems perfectly reasonable. If there is an important variable that

differs between the sample of trials and the population of trials, an attempt

to adjust the estimate based on the same kinds of models discussed previously

is quite appropriate even if the sample is actually a random sample.
11

If

the sample is not actually a random sample, and the model for this adjustment

is reasonable, such an adjustment should make the assumption of subjective

random sampling even more plausible.

6. Subjective Randomization and Observational Studies

Now consider a carefully controlled observational study--a study in

which there are no obviously important prior variables that systematically

differ in the E trials and the C trials. In such a study there is a real

sense in which a claim of "subjective randomization" can be made. For example,

if the study were composed of carefully matched pairs of trials, there might

be a very defensible belief that within each matched pair each unit was

equally likely to receive E as C in the sense that if I showed the units

to you without telling you which received E, only half the time would you

guess correctly which received E .

12
Under this assumption of subjective

randomization the usual estimates and significance levels can be used as if

the study had been randomized; this step is analogous to the step of

assuming subjective random sampling in order to make inferences about a

target population.

11
See Cochran (1963) on regression and ratio adjustments.

12
Perhaps this is all that is meant by "randomization" to some Bayesians

under any circumstances (see Savage, 1954, p. 66).
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If an obviously important prior variable were found to differ systemat-

ically in the E and C trials, we would of course have to adjust the estimate

and the associated significance levels; but until such a variable is found

a belief in subjective randomization in some cases might seem well founded.

In addition, from the discussion in Section 4 it should be clear that given

such a variable these adjustments would have to be made even if the study

were properly randomized, and any adjustment based on a model is somewhat

dependent upon the appropriateness of the assumptions of the model whether

the data are randomized or not. If the model for adjustment is appropriate,

one can no longer object to the belief in subjective randomization because

of the adjusted variable.

No doubt, given a fixed set of 2N trials one would rather be able to

randomly assign the treatments and not rely on the concept of subjective

randomization. However, if the choice were between an observational study

whose 2N trials consisted of N representative E trials closely matched

with N representative C trials and an experiment whose 2N trials were

highly atypical, it is not clear which we should prefer; in practice there

may be a trade-off between the reasonableness of the assumptions of subjec-

tive random sampling and subjective randomization ( .g., consider a care-

fully matched observational evaluation of existing compensatory reading

programs and an experiment having these compensatory reading programs

randomly assigned to inmates at a penitentiary).

The basic position of this paper can be summarized as follows: estimating

the typical causal effect of one treatment vs. another is a difficult task

unless we understand the actual process well enough (a) to assign most of

the variability in Y to specific causes and (b.) to ignore associated but
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causally irrelevant variables. Short of such understanding, random sampling

and randomization help in that all sensible estimates tend to estimate the

correct quantity, but these procedures can never completely assure us that

we are obtaining a good estimate of the treatment effect. Even assuming

a good estimate there remains the problem of determining which aspects of

the treatments are responsible for the effect.
13

In addition, almost never do we have a random sample from the target

population of trials and thus we must generally rely on the belief in sub-

jective random sampling, i.e., there is no important variable that differs

in the sample and the target population. Similarly, often the only data

available are observational and we must rely on belief in subjective ran-

daMization, ., there is no important variable that differs in the E trials

and C trials. If an important prior variable is found that systematically

differs in E and C trials or the sample and target population, we are faced

with either adjusting for it or not putting much faith in our estimate.

However, we cannot adjust for any variable presented or any desired result

can eventually be obtained.

In both experimental and observational studies, the investigator should

think hard about variables besides the treatment that may causally affect Y

and plan in advance how to control for the important prior variables--either

by matching or adjustment or both. When presenting the results to the reader

it is clearly important to indicate the extent to which the assumptions of

subjective randomization and subjective random sampling can be believed and

13
Consider for example "expectancy" effects in education (Rosenthal,

1971) and the associated problenis of deciding the relative causal effects
of the content of programs and the implementation of programs.
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what methods of control have been employed.
ill

If an observational study is

carefully controlled, the investigator can often reach conclusions similar

to those he would reach in the corresponding experiment. In fact, if the

effect of the E vs. C treatment is large enough, he will be able to detect

it in small, nonrepresentative samples and poorly controlled studies.

Basic problems in educational research are that causal models are not

yet well formulated, and in many cases the effect of the E vs. C treatment

under study appears to be quite small. Given this situation, it seems

reasonable to search for treatments with large effects by the use of observa-

tional studies and rely on further study for more refined estimates'of the

effects of those treatments that appear to be important.

14
Recent advice on the design and analysis of observational studies

is given by W. G. Cochran in Bancroft (1972).



-31-

References

Bancroft, T. A. Statistical papers in honor of George W. Snedecor.
Ames, Iowa: The Iowa State University Press, 1972.

Campbell, D. T., & Erlebacher, A. How regression artifacts in quasi-
experimental evaluations can mistakenly make compensatory education
look harmful. In J. Hellmuth, (Ed.), Compensatory education: A national
debate. Vol. III of The disadvantaged child. New York: Brunner/
Mazel, 1970.

Cochran, W. G. Sampling techniques. New York: John Wiley, 1963.

Cochran, W. G., & Cox, G. M. Experimental designs, 6th edition. New York:
Wiley, 1957.

Fisher, R. A. The design of experiments, 6th edition. New York:
Hafner, 1925.

Kempthorne, 0. The design and analysis of experiments. New York:. Wiley,
1952.

Lehman, E. L. Testing statistical hypotheses. New York: Wiley, 1959.

Rosenthal, R. Teacher expectation and pupil learning. In R. D. Strom (Ed.
Teachers and the learning process. Englewood Cliffs, New Jersey:
Prentice-Hall, 1971. Pp. 33-60.

Savage, L. J. The foundations of statistics. New York: Wiley, 1954.

Scheffg, H. The analysis of variance. New York: Wiley, 1959.


