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ABSTRACT
This monograph focuses on the influence of meaning

theory on elementary school mathematics programs and on mathematics
instruction. Theories of arithmetic instruction up through 1935 are
described, and the philosophy of meaning theory, contributions and
discussions by mathematics educators, and applications to actual
instruction are delineated for the period from 1935 through 1960. k
discussion of the implicit concern for meaning in the modern
mathematids movement from 1960 to the present concludes the first
section. The second section summarizes studies that establish and
affirm the importance of and need for meaning and studies that
explore the effect of teaching various procedures with meaning. the
final section of the paper briefly discusses the implementation of
mathematically meaningful instruction. An extensive bibliography is
included. (DT)
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Mathematics Education Reports

Mathematics Education Reports are being developed to disseminate

information concerning mathematics education documents analysed at

the ERIC Information Analysis Center for Science, Mathematics, and

Environmental Education. These reports fall into three broad categories.

Research reviews summarize and analyze recent research in speaific

areas of mathematics education. Resource guides identify and analyze

materials and references for use by mathematics teachers at all

levels. Special bibliographies announce the availability of documents

and review the literature in selected interest areas of mathematics

education. Reports in each of these categories may also be targeted

for specific sub-populations of the mathematics education community.

Priorities for the development of future Mathematics Education

Reports are established by the advisory board of the Center, in

cooperation with the National Council of Teachers of Mathematic's,

the Special Interest Group for Research in Mathematics Education

of the American Educational Research Association, the Conference

Board of the Mathematical Sciences, and other professional groups

in mathematics education. Individual comments on past Reports

and suggestions for future Reports are always welcomed by the

editor.
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Preface

Much of the mathematics curriculum reform of the past decade,

and the mathematics curriculum development of today is based on the

assumed superiority of meaningful instruction and learning. Few

mathematics educators question this concept, despite the fact that

no extensive overview of the development of meaningful instruction

has been presented.

This paper presents such an overview. It is important, not

only because it establishes an historical perspective for meaning-

ful instruction in mathematics, but because it suggests further

exploration and research directions for this area as well.

Jon L. Higgins
Editor

This publication was prepared pursuant to a contract Frith the Office
of Education, U.S. Department of Health, Education and Welfare.
Contractors undertaking such projects under Government sponsorship
are encouraged to express freely their judgment in professional and
technical matters. Points of view or opinions do not, therefore,
necessarily represent official Office of Education position or policy.
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Foreword

Within the past two decades we have experienced a so-called

revolution in school mathematics. Begle (1968) traces the origins of

this revolution to the pre-1850 work of the mathematicians Abel.and

Galois, although their influence was not felt until the present century.

The chain of influence began with mathematical research, moving

first to mathematics programs of study at the graduate-school level and

then to the undergraduate level. During the 1950's the revolution

spread to mathematics programs at the secondary-school level, finally

moving downward to the elementary-school level during the 1960's.

It is Begle's (1968) belief that

. . . this revolution has been successfully concluded. [And]

no new revolution is clearly in sight. Even if the first stir-
rings of a new revolution might be taking place in mathematical
research, its effects could not appear in the pre-college pro-
gram for generations [p. 45].

But there has been another revolution of import--a revolution

which influenced elementary-school mathematics programs and instruction

in particular. It is a revolution which all too often has been lost in

the shadow of the "modern mathematics" movement. We refer to "The Revo-

lution in Arithmetic" characterized by Brownell (1954) in the first

article of the first issue of The Arithmetic Teacher. This "other revo-

lution" was rooted more in educational psychology than in mathematics

per se. But it had an appreciable impact upon the goals and content of

elementary-school mathematics programs as well as upon the process of

instruction.

The focus of the present monograph is upon this "other revolu-

tion" which was associated closely with the so-called meaning, theory of



arithmetic (Brownell, 1935). Our consideraticn of this all-important

era in the development of school mathematics programs in the United

States is presented in three sections:

I. Points of View

II. Relevant Research

III. Concluding Observations

Three things should be noted at the outset:

1. This "other revolution" was associated almost exclusively

with the elementary-school level. Rarely was the dominant theme of the

meaning theory articulated at the secondary-school level. Rarely was

there related research conducted within the context of secondary-school

mathematics.

2. This "other revolution" emerged during a time when it was

commonplace to view the content of a mathematics program for grades 1-6

or 1-8 more narrowly than we do today. Hence, most position papers and

research reports referred to arithmetic, not elementary-school mathe-

matics.

3. This "other revolution" predated our current penchant for

preciseness in discourse pertaining to mathematical ideas (which at

times impedes rather than facilitates communication!). In fact, by

present standards there were many instances of outright fuzziness per-

taining to a variety of mathematical notions.

It is to be hoped that this last thing, in particular, will not

(when evident in quoted material) distract the reader from that which we

believe to be the worth of. the essence of the meaning theory--which is

as timely today as when it was formulated.

-2-



I. POINTS OF VIEW

In planning this monograph there was a great temptation to in-

clude background from the psychological literature pertaining to meaning,

and from related sources pertaining to the meaning of meaning. Although

educational psychologists' concern for meaning ranges from little or no

interest (e.g., Bugelski, 1964) to a central theoretical and applied

interest (e.g., Ausubel, 1968), there is a large body of research which

relates meaning and meaningfulness to rate of learning; to forgetting,

retention, and retroactive inhibition; and to transfer and proactive

facilitation. (See McGeoch and Irion, 1952, for an excellent earlier

consideration of these relationships.) It is not uncommon, either, to

find more than a few contemporary discussions of concept formation

linked to meaning (e.g., Jenkins, 1966; Carroll, 1964).

It soon became evident that if we were to yield to the tempta-

tion to include some psychological and other relevant background pertain-

ing to meaning, the "background" could become a complex, volumindns

monograph in its own right! (And who are we to concoct that multi-

course bill of fare?)

Hence, with few exceptions, we have considered the literature on

meaning as it pertains only--and specifically--to mathematical learning

and instruction, especially in association with the meaning theory of

arithmetic in particular (and elementary-school mathematics in its

broader sense).

Even with this delimitation, it is important for the reader to

keep in mind that discussions of meaningful mathematical learning and

instruction often have been confounded by other factors as suggested by

- 3
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Figure 1. The rote - meaningful dimension (A), the reception-discovery

dimension (B), and the concrete-symbolic dimension (C) are in a sense

distinct--yet they may interact with each other and with a product-

process dimension (D) which relates to the goals of learning and instruc-

tion.

For instance: Garry and Kingsley (1970) would classify the rote-

meaningful dimension as a task variable and the reception-discovery

dimension as a method variable. Confusion between these two things has

led many persons to the following unfounded belief identified by

Cronbach (1965):

Discovered knowledge is meaningful, knowledge presented verbally
is not.

This is true only for stupid verbal presentation. Didactic
teaching can be highly meaningful. That which is taught by dis-
covery, moreover, is at best meaningful only to the student who
discovers it, not to the many who fail to make the discovery [p.
115].

Similarly, confusion also has existed many times between the (A)

rote-meaningful and (C) concrete-symbolic dimensions of Figure 1. As

Weaver (1950) indicated some time ago:

There is no doubt that the rise of the "meaning theory" has
accelerated the use of representative materials in instructional
activity. These materials are intended to make arithmetic m6te
meaningful to children. It is unfortunate that many persons
have misinterpreted the implications of this fact. Consequently
they have harbored one or more of several misconceptions: (1)

that the mere use of any concrete or semiconcrete materials
guarantees meaningful instruction, [or] (2) that instruction
cannot be meaningful without the use of these representative
materials, . . . [p. 38].

The focus of this monograph is on the rote-meaningful dimension

of mathematical learning and instruction. Other dimensions of Figure 1

will be of no interest unless they have some direct bearing upon con-

siderations of the rote-meaningful dimension.

- 4 -
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Establishing a Base Line
\N_I

Mueller (1967) has indicated that "revolutions are essentially

transformations, movements away from things as they were toward new

ground, new objectives [p. 698]."

Away from what? Toward what?

One answer to the first of those questions, as it pertains to

"The Revolution in Arithmetic," is exemplified by Knight's (1930) Intro-

duction to the Twenty-Ninth Yearbook of the National Society for the

Study of Education (Report of the Society's Committee on Arithmetic):

The philosophy of this Yearbook . . . finds aims in the
future Is well as in the present. It suggests the desirability
of preparation for adult living and holds it to be evident that
a prediction of the demands of the future is feasible to a
reasonable and useful degree of certainty. We should teach,
then, those skills, informations, judgments, attitudes, habits,
ideals, and ambitions which the child will find adequate and
satisfying to the most important part of his whole self; that
is, to his future adulthood as well as to his present childhood
.[p. 4].

This point of view clearly rejected a "progressive education"

philosophy (popular at the time) which perm40itted children's emerging

present needs within the context of "activity" or "experience" curricula

to determine the scope and sequence of arithmetic content to be taught

and learned. At the same time the Yearbook philosophy in effect sup-

ported a then-current trend to base curricular content principally upon

surveys of arithmetic use within the everyday lives of adults.

Knight (1930) went on to assert that:

Much may be said for the following point of view: What to
teach should be decided by as wise adults as are available for
the task, lam will base their decisions as far as possible upon
the available body of objective scientific data [p. 6].

How to teach the child can be separated, in discussion, from
what to teach--and how to teach is fundamentally more a ..-t

- 6 -
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of psychology based on research and investigation than a matter
of philosophy. . . . Theoretically, the main psychological
basis [assumed in the Yearbook] is,a behavioristic one, viewing
skills and habits as fabrics of connections [pp. 4-5].

We must continue to seek . . . increased skill in the use of
such aspects of learning as are-suggested by the phrases: drill,

continued effort, ability to withstand distraction, persistence
though momentarily bored, effort sustained not by rewards at
hand but by confidence in values forthcoming in the future, and
the intent to master the matter in hand as a permanent posses-
sion rather than as a temporary accomplishment [p. 7]..

Prelude to a Revolution

Although the pointi of view identified by Knight (1930) domi-

nated the 29th NSSE Yearbook, there was evidence of demurrer within the

Yearbook itself. Consider, for instance, Buckingham's (1930) comments:

. . . the curriculum, both as to content and method, should

. . . devote more-time to the groWth of number concepts. . . .

A reduction of arithmetic to the mere units and manipulations
found to be employed in common affairs impoverishes the child's
thinking [p. 18].

This whole idea of trimming the course of study down to the
things which are going to be used directly defeats its own pur-
pose. It means the learning of facts in isoAation rather than
in rich association; and it means, as usual, that facts so
learned are less than half learned [p. 19].

Even the most narrowly utilitarian training recognizes that
you must go beyond the mere treatment of the thing to be
learned. . . . It is believed that a more rounded treatment
should be given to the various topics of arithmetic in order
that the true relations and inner connections of the subject may
be appreciated. It is further believed that a fuller treatment
of topics is actually necessary in order that the parts of the
topics which are most frequently used may be successfully
learned [pp. 19-20].

Just a few years earlier, Judd (1928) deplored the philosophy

which viewed arithmetic as a "tool subject":

The figure of speech which one ought to use, if figure of
speech is necessary, is not the figure of a tool, that 's, of
something that is now taken in the hand, now laid as4de:



figure of speech which is appropriate is one which conveys the
idea that number is an ever-guiding principle of life. . . .

The number system . . . has changed the life of men. It has
become a mode of thinking. It pervades every observation which
man makes. It can no more be laid aside than can the right
hand. It is not a tool [p. 5].

Judd (1928) also brought to the foreground another point of view

which is critical in connection with this monograph:

What I am trying to say cannot be reconciled with that false
educational psychology which is current in certain quarters
where arithmetic is described as a mastery of so and so many
different .number combinAtions and a collection of so and so many
distinct associations. Arithmetic is a general mode of thinking

[p. 6].

I venture the prophecy that we are just at the point where
we are about to leave behind the inadequate psychology which has
in recent years taught that mental life is a bundle of particu-
lar ideas. We shall hear more and more in the years to come
about general ideas [p. 7].

We are indebted to Brownell- -one of Judd's doctoral students in

educational psychology at the University of Chicago--for translating the

preceding prophecy into a definitive base for the "other rev-lution" in

school, mathematics. In connection with his Ph.D. dissertation Brownell

(1928) suggested that:

Many of.the reasons why children find arithmetic difficult
seem to be natural consequences of certain debatable theories
regarding the nature of learning and teaching arithmetic.

There is, first of all, the conception of learning in arith-
metic as the acquisition of a host of discrete isolated state-
ments of fact. Children have learned arithmetic, according to
this view, when they have committed to memory one hundred addi-
tion facts, one hundred subtraction facts, etc. . . . Learning
in the case of each of these facts is held to consist in the
immediate establishment of a specific, direct connection between
given stimuli, such as 8 + 4, and a given response, 12. Each
combination is to be learned as a separate item without relation
to the facts previously learned. No encouragement is given the
pupil to fit the facts together into a general coherent intel-
lectual system; rather, he is taught the number facts in such a
way as to prevent, if possible, his making use of facts which he
has learned to assist him in acquiring new facts. . . . one

8



criterion for the order in which facts are to be taught being
the principle that each fact must be learned by itself, inde-
pendent of all others [p. 195].

When the process of learning in arithmetic is conceived to
be the mere acquisition of isolated, independent facts, the pro-
cess of teaching becomes that of administering drill. This is

the second debatable theory which now dominates instruction in
primary arithmetic [p. 197].

Such a theory of teaching . . . fails to give adequate con-
sideration, first, to the-nature of the material which is to be
learned and, second, to the behavior of children under condi-
tions of drill [p. 198].

Brownell's dissertation, a classic in itself, was the forerunner

of another classic in the literature on mathematics education, to which

we now turn.

The "Meaning Theory"

In the opening chapter of the Tenth Yearbook of the National

Council of Teachers of Mathematics, Brownell (1935) critically examined

two then-current philosophies of arithmetic instruction--the "Drill

Theory" and the "Incidental Learning Theory"--and formulated the first

comprehensive statement of a third philosophy: the "Meaning Theory" of

arithmetic instruction.

1. The "Drill Theory." According to Brownell (1935),

The drill conception of arithmetic may be outlined as fol-

lows: Arithmetic consists of a vast host of unrelated facts and
relatively independent skills. The pupil acquires the facts by
repeating them over and over again until he is able to recall

them immediately and correctly. He develops the skills by going
through the processes in question until he can perform the
required operations automatically and accurately. The teacher
need give little time to instructing the pupil in the meaning of

what he is learning. . . . The main points in the theory are:
(1) arithmetic, for the purposes of learning and teaching, may
be analyzed into a great many units or elements of knowledge and

skill which are comparatively separate and unconnected; (2) the

- 9 -
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pupil is to master these almost innumerable elements whether he
understands them or not; (3) the pupil is to learn these ele-
ments in the form in which he will subsequently use them; and
(4) the pupil will attain these ends most economically and most
completely through formal repetition (p. 2].

Brownell (1935) then went on to say:

Three major objections may be raised to drill as the sole,
or even the principal, method of arithmetic instruction. The
first objection is that the drill theory sets for the child a
learning task the magnitude of which ,predetermines him to
failure. The second objection is that drill does not generally
produce in children the kinds of reaction it is supposed to pro-
duce. The third objection is that, even if under conditions of
drill the proposed kinds of reactions were implanted, these
reactions would constitute an inadequate basis for later arith-
metical learning (p. 6].

In connection with his third objection, Brownell (1935) empha-

sized that:

Arithmetic is best viewed as a system of quantitative think-
ing.

If one is to be successful in quantitative thinking one
needs a fund of meanings, not a myriad of "automatic responses."
. . . Drill does not develop meanings. Repetition does not
lead to understandings (p. 10].

2. The "Incidental Learning Theory." Brownell (1935) character-

ized this theory, or group of theories--arising at least in part as a

reaction against the "Drill Theory"--in the following manner:

According to these theories, which differ chiefly in detail,
children will learn as much arithmetic as they need, and will
learn it better, if they are not systematically taught arith-
metic. The assumption is that children will themselves, through
"natural" behavior in situations which are only in part arith-
metical, develop adequate number concepts, achieve respectable
skill in the fundamental operations, discover vital uses of the
arithmetic they learn, and attain real proficiency in adjusting
to quantitative situations. The learning is through incidental
experience (p. 12].

Although certain values of incidental learning were recognized,

Brownell (1935) offered cogent criticisms of the "Incidental Learning

Theory" and emphasized its impracticability. In particr2::- 2.7-Awrell

- 10 -



(1935) contended that:

However successful an occasional teacher may be in teaching
arithmetic through incidental experience, general attainment of
this success is not possible. The discriminating selection and
orderly arrangement of vital and helpful learning situations
involving number is no simple task. On the contrary, it calls
for unusual insight into the mathematical and psychological
nature of arithmetic on the one hand and into the psychology of
childhood and of the learning process on the other hand. In a

word, it calls for a degree and kind of insight which is, with-
out aspersion of teachers as individuals, quite outside the '

equipment of the average teacher. Until teachers are differ-
ently selected and differently trained, it is fruitless to

expect them adequately to teach children arithmetic through
incidental experience [p. 18].

3. The "Meaning Theory." Brownell (1935) indicated that "this

theory makes meaning, the fact that children shall see sense in what

they learn, the central issue in the arithmetic instruction [p. 19,

italics added]." At the outset of his discussion Brownell (1935) indi-

cated ways in which this theory is related to the other two theories of

arithmetic instruction:

Within the "meaning" theory the virtues of drill are frankly

recognized. There is no hesitation to recommend drill when
those virtues are the ones needed in instruction. Thus, drill
is recommended when ideas and processes, already understood, are
to be practiced to increase proficiency, to be fixed for reten-

tion, or to be rehabilitated after disuse. But within the
"meaning" theory there is absolutely no place for the view of
arithmetic as a heterogeneous mass of unrelated elements to be
trained through repetition. The "meaning' theory conceives of
arithmetic as a closely knit system of understandable ideas,
principles, and processes. According to this theory, the test

of learning is not mere mechanical facility in "figuring." The

true test is an intelligent grasp upon number relations and the

ability to deal with arithmetical situations with proper compre-
hension of their mathematical as well as their practical signi-

ficance [p. 19, italics added].

[Also] The "meaning" theory allows full recognition of the
value of children's experiences as means of enriching number
ideas, of motivating the learning of new arithmetical abilities,
and especially of extending the application of number knowledge

and skill beyond the confines of the textbook. But the efficacy
of incidental learning for developing all the types of -17111ty



whiCh should be developed in arithmetic is held to be highly
doubtful. . . [p. 20].

Brownell (1935) contended further that the "Meaning Theory"

facilitates pupils' understanding of arithmetic in at least three ways:

"First of all, it takes full account of the complexity of arithmetical

learning [p. 20]." "In the second place, understanding of arithmetic is

encouraged . . . through adapting the pace of instruction to the diffi-

culty of the learning [p. 23]." And "The third way in which-arithmetic

instruction according to the "meaning" theory helps to make number sensi-

ble is by emphasiztug relationships within the subject [p. 25]."

Brownell (1935) held strongly to the position that

. . . the ultimate purpose of arithmetic instruction is the
development of the ability to think in quantitative situations.
. . . the ability merely to perform certain operations mechan-
ically and automatically is not enough. . . . true arithmetical
learning is seen to be a matter of growth [in quantitative think-
ing].

. . . the teether is unwise who measures progress purely in
terms of the rate and accuracy with which the child secures his
answers. These are measures of efficiency alone, not of growth.
. . . The true measure of status and of development is . . . to
be found in the level of the thought processes employed [pp. 28-
29].

In concluding his discussion, Brownell (1935) stated:

The record of arithmetic in the school is an unenviable one.
The position taken in this chapter is that the fault lies in the
type of instruction generally given. Arithmetic instruction has
for a number of years inclined much too far in the direction of

'the drill theory of teaching. The trend now seems to be in the
direction of the incidental learning theory of instruction.
While this change in instructional theory represents distinct
improvement, it does not . . . promise the kind and amount of
reform reeded. An attempt has been made in this chapter to out-
line a general shift in instructional emphasis and an altered

aview of the nature and purpose of arithmetical learning which
may bring about the desired consequences. The basic tenet in
the proposed instructional reorganization is to make arithmetic
less a challenge to the pupil's, memory and more a challenge to
his intelligence [p. 31, italics added]:

- 12 -
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And so the "other revolution" was launched. In this same year

several journal articles reflecting the "Meaning Theory" point of view

emphasized explicit suggestions for the classroom teacher [e.g., Deans

(1935), DeMay (1935)]. But it was Brownell's (1935) yearbook chapter

which served as the launching pad for this "other revolution" which we

now consider in greater detail.

The Next 25 Years

During the period 1935-1960 much was done :to advance the central-

ity of meaning with respect to elementary - school' arithmetic instruction.

Serious attempts were made to base some (but not all) arithmetic text-

book series for elementary-school pupils upon underlying tenets of the

meaning theory. Professional books for teachers began to place much

greater emphasis upon meaning--with respect to both content background

[e.g., Buckingham's (1947) Elementary Arithmetic: Its Meaning and

Practice] and classroom instruction [e.g., Brueckner and Grossnickle's

(1947) How to Make Arithmetic Meaningful].

Admittedly (as we shall document in due time), some persons were

not in complete sympathy with he emphasis being given to meaning.

Other persons felt that many considerations of meaning lacked breadth and

specificity of coverage. For instance, J. Murray Lee (1951), in his

Editor's Introduction to Stokes's professional book for teachers stated

that:

The teaching of meanings of arithmetic has been one of the

most discussed subjects in the profession. It has been a lot
like the weather--much discussion but no one does much about it.
This volume on "Teaching the Meanings of Arithmetic" is dif-
ferent! It actually shows how meanings can be taught :I. v].

- 13-



As is so often the case, the essential nature and intent of a

"movement" become distorted with the passage of time--and the meaning

theory was no exception. As Swain (1960) indicated at the close of the

25-year period we are cpnsidering,

Nearly all educational leaders and writers on arithmetic
have climbed upon the bandwagon labeled "Meaning," but it is
often no more than lip service that they render. Meaningful
learning becomes for them a catch -all phrase useful for justify-
ing whatever pedagogical procedure they may advocate [p. 272].

As we now consider in detail some of the points of view regard-

ing meaning and arithmetic instruction which emerged during the period

1935-1960, you may find it helpful to refer to the time line of Figure

2--even completing it on a do-it-yourself basis as you follow our pre-

sentation.

Some important distinctions. Shortly after his characterization

of the "Meaning Theory" of arithmetic, Brownell (1937) emphasized that

elementary-school arithmetic programs should be concerned with both the

significance and the meaning of number. Brownell had in mind the same

distinction which Buckingham (1938) phrased in the following way:

By the significance of number I mean its value, its impor-
tance, its necessity in the modern social order. . . . The idea
of significance is therefore functional.

On the other hand, the meaning of number, as I understand
it, is mathematical. In pursuit of it we conceive of a closely
knit, quantitative system.

By making this distinction between significance and meaning
I think we shall gain greatly. We shall perhaps begin to do two
things; namely, to teach arithmetic as a social study and to
teach it as mathematics [p. 26].

Buckingham (1938) then discussed another distinctive term:

When I speak of insight I am talking no longer about arith-
metic, no longer about the curriculum, but about the learner
himself. Insight implies a person.



A
1935 10th NCTM Yearbook (The Teaching of Arithmetic)

1937

1938 --

1941 16th NCTM Yearbook (Arithmetic in General Education)

1944

1945 2nd Report of the NCTM Commission on Post-War Plans

1946

1947

1948

'1949

1950

1951 50th NSSE Yearbook, Part II (The Teaching of Arithmetic)

1953 21st NCTM Yearbook (The Learning of Mathematics: Its Theory and Practice)

1955

1956

1957

1960 25th NCTM Yearbook (Instruction in Arithmetic)
V

Figure 2. Incomplete Time Line for the Period 1935-60
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When we confront children with a significant and meaningful
experience, and when they make this experience theirs, they
acquire insight, each to the degree that he is able [p. 27].

Confounding the distinctions. Despite these early attempts to

distinguish between significance and meaning, it did not take long for

the distinction to become muddled. As Brownell (1945) indicated:

Nowadays it is fashionable to say that arithmetic should be
taught meaningfully. . . Every new or revised course of study
gives prominence to meaningful outcotes in arithmetic. And the
publication of each new or revised textbook series is accompa-
nied by vigorous claims that here at last is a real program for
making arithmetic meaningful. There is, then, general agreement
at present that arithmetic should be taught meaningfully.

This agreement in theory is not, however, matched by agree-
ment in practice. In the first place, some advocates of what
they call meaningful arithmetic disregard or minimize arithmet-
ical meanings in favor of social applications, holding that
experience in using arithmetical skills will make them meaning-
ful. The fallacy in this thinking has been pointed out several
times [Brownell, 1937; Buckingham, 1938]: experience in using
skills may produce some awareness of the usefulness of number
(that is, of its significance), but it cannot produce meanings.
Meaning is to be Sought in the structure, the organization, the
inner relationships of the subject itself [p. 481].

In an attempt to clarify this last characterization, Brownell

(1945) went on to identify three broad classes of "essential meanings of

arithmetic":

1. Meanings associated with whole numbers, common' fractions,

etc., and with the decimal, place-value system of numeration.

2. Meanings associated with the nature of the operations of

addition, subtraction, multiplication, and division.

a
3. Meanings associated with algorithms for computing.

A very few years later, Brownell (1947) rephrased the meaning-

significance distinction by referring to the meanings of arithmetic and

the meanings for arithmetic (i.e., its significance). He also reorgan-

ized and expanded his categorization of the meanings of arithmetic:
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1. Basic number concepts (whole numbers, common fractions,

etc.). Ns.

2. The nature of the operations of addition, subtraction,

multiplication, and division.

3. Principles, relationships, and generalizations--which

included those things which today we identify as "properties."

4. Meanings associated with our numeration system and its use

in "rationalizing" computational procedures and algorithms.

Johnson (1948) preferred to identify three broad classes of mean-

ings:

1. Structural meanings.

2. Functional meanings.

3. Operational meanings.

Somewhat more parsimoniously, Rosenquist (1949) identified

scientific and functional meanings. Still other persons (e.g., Storm,

1948) were much more detailed in their classification and listing of

arithmetic meanings.

It is no wonder that the original, helpful and important distinc-

tion between meaning and significance became lost along the way. And it

is no wonder that several different persons could advocate meaningful

arithmetic instruction--and could be advocating several quite different

things.

Further considerations of meaning. It is not at all surprising

that certain discussions of the nature of meaning as applied to arith-

metic focused upon one aspect or another of language and symbolism:

dig., Riess (1944), Nickerson (1955), Morton (1955), and Hendrix (1950).

In this connection, an excellent analysis that all too ofte. has been
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overlooked in more recent times was presented in a series of two arti-

cles by Van Engen (1949), who first characterized a general theory of

meaning:

In any meaningful situation there are always three elements.
(1) There is an event, an object, or an action. In general
terms, there is a referent. (2) There is a symbol for the ref-
erent. (3) There is an individual to interpret the symbol as
somehow referring to the referent. . . It is important to
remember that the symbol refers to something outside itself.
This something may be anything whatsoever, even another symbol,
subject only to the condition that in the end it leads to a
meaningful act or a mental image [p. 323].

. . . the whole object of arithmetic instruction clearly is
to help the child devise a system of symbols which, in some
sense, is representative of a realm of events--a series of sym-
bolized operations with which the child has had direct exper-
ience. These operations, symbolized by the spoken word, the
written word, or, in the case of mathematics, the mathematical
symbol, are the primary instruments of knowledge. Awareness of
the operation or of an event itself is not knowledge. Neither
is awareness of the symbol knowledge. When, however, the two
become associated in the mind of an individual, then there is
knowledge [p. 325].

A knowledge of arithmetic implies . . . that the individual
becomes aware of a correspondence between a set of symbols and a
set of operations. These operations are predominantly con-
cerned, on elementary levels, with overt acts and images ac-
quired as the result of experiences with the manipulation of
objects. It is of utmost importance to note that the word
"operation" is not used in the sense of "the fundamental opera-
tions of arithmetic" [addition, subtraction, multiplication,
division]. "Operations," as used in this paper, designate the
referent of a symbol--a written word, a mark on the board, a
gesture, or a spoken word. This referent is an action consid-
ered with reference to the thing acted upon. Thus the term
"operations" refers to overt acts. For example, the act of
breaking a stick into halves is an operation [pp. 325-326].

After giving several illustrations of implications of this gen-

eral theory for instructional practices in arithmetic, Van Engen (1949)

discussed three particular theories of meaning in relation to arithmetic

instruction:



1. The Social - Meaning Theory, in which it is believed that "the

child will understand numbers provided he can observe and use these

numbers in social situations (p. 395]." Van Engen (1949) makes explicit

that a visit to the grocery store, for instance, may contribute to the

desirable outcome of a child's "understanding of the usefulness of

numbers. (but] Only in rare cases would it contribute to the child's

understanding of the meaning of the symbolism used in the arithmetic

class (p. 396]."

2. The Structural Theory of Meaning, in which it is believed

that "arithmetic becomes meaningful when the child sees the structure of

the subject. By 'structure' these educators mean the internal organiza-

tion, the logic, of the subject [p. 396]." In order to appreciate Van

Engen's critical reactions to this theory, we must distinguish between

semantic and syntactic meanings--or between the semantic and syntactic

dimensions of meaning (co which Van Engen (1953) alluded in a later

source].

The semantic meaning of a symbol is derived from the referent(s)

with which that symbol is associated. For Van Engen, operations involv-

ing things within the physical world are the prirwipal, most important

referents in the development of semantic meanings in arithmetic.

The syntactic meaning of a symbol, however, is derived from the

aq in which that symbol is used in association with other symbols:

e.g., 2x and x2 use the symbol "2"_in a different sense, syntactically.

It was Van Engen's (1949) contention that:

If those who espouse the structural theory have sinned, it
is a sin of omission rather than a sin of commission. They have

placed the emphasis on meanings which are of a higher order than
those primary meanings which are the foundations of Icr_wledge

(p. 398].
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The interrelationships which the structural-theory advocates
have been espousing are syntactical meanings and are not the
foundational meanings in arithmetic. "Syntactical meanings" are
those very important mearangs which are established after the
child has acquired a semantic basis for these meanings of higher
order [p. 3981.

3. The Nihilistic Theory of Meaning, in which it is believed

that "such symbols as 6 + 2 are meaningless symbols. However, such sym-

bols as% apples + 2 apples are meaningful, so the argument goes,

because they refer to apples, that is, something concrete [p. 399j."

Van Engen (1949) dismisses this theory summarily, having considered

earlier in his paper ways in which symbols such as "6 + 2" can be given

meaning.

In another source Van Engen (1953), like Hendrix (1950), makes

an important distinction between "meaning" and "understanding":

Understanding refers to something that is in the possession
of an individual. The individual who understands is aware of a
satisfying feeling, a psychological closure, which results from
having fitted everything into its proper place. Of course, this
psychological closure must be tested because a child may think
he understands when he does not understand. . . .

The pupil who understands is in possession of the cause and
effect relationships--the logical implications and the sequences
of thought that unite two or more statements by means of the
bonds of logic. The statement which is understood is seen to
follow from statements accepted previously by,the pupil [p. 75j.

Meaning is that which is "read into" a symbol by the pupil.
The pupil realizes that the symbol is a substitute for an ob-
ject. It is a triadic relationship between a pupil, a symbol,
and the referent. Understanding is Ate nearly a process of
integrating concepts--placing them in a certain sequence accord-
ing to a set of criteria. Meaning, in its semantic sense, is a
substitution process. It is a substitution of symbol for object,
or symbol for symbol or symbol for concept. Understanding is an
organizational process.

From these considerations it would seem that the phrase, "I
know what you mean but I do not understand it" is not a mere
play of words. In a particular instance the pupil may know the
referent: he may know what to do but he may not know lely it
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should be done: he cannot make the logical connection between
the "situational need" and the response [p. 76].

The teacher of mathematics will teach for both understanding
and meaning. . . . She should realize that certain methods are
appropriate for the development of understanding and still other
methods may be appropriate for the development of meaning. She

should realize that the same methods are not necessarily appro-
priate for the development of both understanding and meaning.
The teacher who makes these distinctions and adjusts her methods
accordingly must of necessity be a better teacher than the one
who blindly strives to "teach meaningfully" [pp. 76-77].

Goals of arithmetic instruction. The preceding considerations

stemmed from a distinction between meaning and significance which is

related to points of view regarding the principal goal(s) of arithmetic

instruction. As might be expected, different emphases were in evidence

during the period 1935-1960.

McSwain (1950), for instance, suggested that "The major purpose

in teaching arithmetic is to help pupils to discover arithmetical mean-

ings and to develop ability to do quantitative thinking [p. 267]." On

the other hand, Wilson (1951)--a long-time proponent of a "social utility

theory" of arithmetic--believed that "The basic and dominating aim of

arithmetic in the schools is to equip the child with the useful skills

for business [p. 12]."

The most common viewpoint held during this period, however, was

expressed in the following way in the Second Report of the NCTM Commis-

sion on Post-War Plans (1945):

We must conceive of arithmetic as having both a mathematical
and a social aim.

The fundamental reason for teaching arithmetic is repre-
sented in the social aim. No one can argue convincingly for an
arithmetic which is sterile and functionless. If arithmetic
does not contribute to more effective living, it has no place in
the elementary curriculum. To achieve the social aim of arith-
metic children must be led to see its worth and usefulness. . . .
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We may grant the paramount importance of the social aim, and
yet insist that it can be achieved only to a ,limited extent if
the mathematical aim is neglected. The latter aim relates to
the acquisition of the content of arithmetic, to the learning of
arithmetical skills and ideas (concepts, principles, generaliza-
tions, and the like). Both skills and ideas should be made sen-
sible to children through their mathematical relationships [p.
200].

The purposes of arithmetic cannot be fully attained unless
children understand what they learn and know when and how to use
it. We face here the problem of developing meanings, both
mathematical and social meanings; and meanings have not custom-
arily received their share of attention in classroom instruc-
tion [pp. 200-201].

It became commonplace to assert that "Arithmetic should be both

mathematically meaningful and socially significant [Brueckner (1941),

italics added]."

An interesting demurrer from this dual-aim point of view came

from Wheat (1946) who objected to what he termed a "bifurcated design"

in which "At least half of our arithmetic is mathematical (!), it is con-

ceded, and the other half is social [13. 141]."

In an earlier source Wheat (1941) expressed this viewpoint quite

strongly:

Arithmetic is a system of ideas. It is not a collection of
objects. It is not a set of signs. It is not a series of phys-
ical activities. Arithmetic is a system of ideas. Being ideas,
arithmetic exists and grows only in the mind. It does not
flourish in the world of things. It does not arise out of sen-
sory perceptions. It has nothing to do with the amount of chalk
dust forty pupils can raise in a schoolroom in thirty minutes.
Arithmetic exists and grows only in the mind. Being a system,
arithmetic must be taught as a system. It is not an outgrowth
of the individual's everyday experiences. It is not learned
according as the interests or the whims of pupils may suggest.
It is not anyone's personal discovery or invention. Arithmetic
must be taught as a system [p. 80].

At a later time Wheat (1951) contended that:

We encounter no more arithmetic in the affairs of our lives
than our knowledge of arithmetic permits us and leads us to meet
[p. 22].
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The way to think that is arithmetic creates its own need.
In a very real sense, we do not need it until we have it. This

is the reason why our attempts to provide a need for arithmetic
in advance of learniig it are largely futile. We do not put in
front what follows in rear. We do not make the trailer pull the
car [p. 23].

The prece ng comments illustrate well the treachery of quoting

out of c ex . Without reading completely Wheat's (1941, 1951) two

papers, one might grossly misjudge the point he was making and feel that

he was depreciating the role of objects and actions. But as Van Engen

(1949) emphasized when referring to one of Wheat's earlier works:

Many of the modern practices in arithmetic must be classed
as meaningful ways of teaching arithmetic from the point of view
of an operational arithmetic. Many of the excellent suggestions
found in Wheat's [1937] book on The Psychology and Teaching of
Arithmetic fit into the operational theory of meaning. In par-

ticular, Wheat's "steps of progress in the study of group*.
through analysis and synthesis" constitute a beautiful example
of-de operational approach to foundational meanings in arith-
J
metic [p. 400].

Other demurrers. Although proponents of .a meaning theory of

arithmetic instruction anticipated a number of objections that were

bound to arise relative to an emphasis upon meanings [e.g., see Brownell

(1935, 1945, 1947)], an interesting set of three journal articles cen-

tered upon certain of these objections.

Buell (1944) fired the opening salvo:

"The keynote of the new arithmetic is that it should be
meaningful rather than mechanical." I say lets [sic] make it
increasingly mechanical and then go on to something more ab-
stract. Let us continually make the difficult into the mechan-
ical, and go on to the more difficult.

Let us not look for "meanings" that are not there. Let us

not become too mystical about this whole business. And please,

let us not load up our own minds and the children's minds with
round-about philosophies, methods, procedure, "meanings," et
cetera, et cetera. Let us teach him that 8 and 6 are fourteen;
that is all there is to it. He'll learn that as a definite fact
without a lot of lacework built around it; and it has all the
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meaning it needs to have, the right kind of meaning, the speedy,
definite meaning [p. 307].

. . . mathematical "reasons" are the things we have less use
for and forget most easily. Applications are remembered because
used [p. 307].

Wheat (1945) was quick to respond with a variety of counter

arguments, including the point of view that mathematical meaning is cru-

cial in connection with applications:

Meaning makes clear the practical application. The essence
of the "social" situation to which number is "applied" is the
number relation that is involved. . . . The practicality of the
situation is in proportion to the meaning the pupil brings to
it. Meaning makes the practical application practical [p. 102].

Bernard (1945) attempted to serve in the role of peacemaker

regarding the Buell-Wheat controversy over meaning and application, but

did seem to side more with Wheat than with Buell on at least one point:

. . . one is limited in his application of mathematics if he
is not fully appreciative of the meaning of numbers, their prop-
erties, and the principles of their combination [p. 260].

Mathematics teachers can best serve those who will use
mathematics in other fields by teaching them the theorems of
mathematics and by making as clear to them as possible the log-
ical structure of mathematics [p. 263].

Is this grossly different from Fehr 's (1955) more recent posi-

tion?

. . . in his experience alone a child will never meet all
number situations called for in later life. Nor can he, from a
large number of isolated arithmetic situations, ever come to
have a basic knowledge for use in later life. Accordingly, we
must teach the pupils a structure of arithmetic and sufficient
applications of the structure, so that in new situations, in
life problems, he can use the structure for the necessary solu-
tion of problems [p. 27].

In a somewhat different vein Johnson (1948) argued for a how-why

sequence of instruction pertaining to computapional procedures and their

rationalizations, contending that
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The why cannot be given before the "how-a-thing-is-done" is
known because the step which we are trying to tell the reason
for in a process must be known before the reason for it can be
given [p. 364, hyphens and quotation marks added].

Weaver (1951) countered with a case for a why-how instructional

sequence, emphasizing its advantages and suggesting disadvantages and

dangers of an exclusive adherence to a how-why temporal sequence. In

particular, Weaver indicated that relevant meanings can be used by

pupils to develop algorithms--to develop the how of a variety of compu-

tational procedures. He pointed out that any advantage for such an

approach akin to "guided discovery" is lost if how precedes why.

Meaning and skill. During the period 1935-1960 there were

recurring discussions [Dickey (1938), McConnell (1941), Brownell (1944a,

1944b), Buswell (1951), Fehr (1953), Van Engen (1955)] which stressed:

(1) rejection of a connectionistic or association psychology, in

which learning was viewed as a mechanical process, with principal con-

cern for the products of learning, such as skill mastery; and

(2) the acceptance of a field or Gestalt psychology, in which

learning was viewed as a growth process involving the reorganization of

experience, moving from less mature to more mature patterns of thought

and performance, with as much (or more) concern for the learning process

itself as for the products of learning.

Meanings became highly important for arithmetic instruction

within this latter psychological context, but the attainment of skill in

computing was in no way ruled out as a desirable instructional objective.

It was generally conceded, however, that the development of skill should

follow the development of meaning and understanding.



But activities that are appropriate for the development of mean-

ing, or the development of understanding, or the development of signifi-

cance, are not the ones which develop skill. For that Turpose, varied

repetition is much more appropriate--but repetition does little or

nothing in itself to contribute to the development of meaning, under-

standing, and significance.

Several writers such as Stretch (1935), Buckingham (1941),

Sueltz (1953), and Brownell (1956) emphasized the unfortunate use of

"drill" as the method of instruction under connectionistic approaches to

arithmetic and the appropriate place of "drill" as an instructional

technique for the attainment of skill following the development of mean-

ing and understand/g.

In retrospect. Much has been made at times of Bruner's (1960)

four general claims which he feels can be made for teaching the "funda-

mental structure" of a subject. We cite the three that are especially

relevant here:`

1. . . . understanding fundamentals makes a subject more
comprehensible.

2. Perhaps the most basic thing that can be said about
human memory . . . is that unless detail is placed in a struc-
tured pattern, it is rapidly forgotten. . . What learning
general or fundamental principles does is to ensure that memory
loss will not mean total loss, that what remains will permit us
to reconstruct the details when needed.

3. . . . an understanding of fundamental principles and
ideas . . . appears to be the. main road to adequate "transfer of
training" 1pp. 23-26].

It is not without interest.to observe that fifteen years earlier

Brownell (1945) suggested that

There are at least four gbod reasons why meanings should be
taught in arithmetic:
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(1) Arithmetic can function in intelligent living only when
it is understood.

(2) Meanings facilitate learning.

(3) Meanings increase the chances of transfer.

(4) Meaningful arithmetic is better retained and is more
easily rehabilitated than is mechanically learned arithmetic
494].

ways:

[p.

In a later source Brownell (1947) expanded his listing in these

From the standpoint of the teacher, meaningful arithmetic is
interesting to teach. The need to develop understandings is
much more stimulating than the task of listening to memorized
facts and of administering mechanical drill.

From the standpoint of the pupil meaningful arithMetic--

1. Gives assurance of retention.

2. Equips him with the means to rehabilitate quickly skills
that are temporarily weak.

3. Increases the likelihood that arithmetical ideas and
skills will be used.

4. Contributes to ease of learning by providing a sound
foundation and transferable understandings.

5. Reduces the amount of repetitive practice necessary to
complete learning.

6. Safeguards him from answers that are mathematically
absurd.

7. Encourages learning by problem-solving in place of un-
intelligent memorization and practice.

8. Provides him with a versatility of attack which enables
him-to substitute equally effective procedures for procedures
normally used but not available at the time.

9. Makes him relatively independent so that he faces new
quantitative situations with confidence.

10. Presents the subject in a way which makes it worthy of
respect.
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Some of these claims find support in the research to be summar-

ized in Section II bf thid monograph. Other claims find support from

less formal and less systematic evidence. In any event, these claims

prompted no particular dispute in the literature on mathematics educa-

tion during either the remainder of the 1935-1960 period or the subse-
t

quent.period to which we now turn our attention.

The Recent Past: Since 1960

In our consideration of points of view expressed during the pre-

ceding period (1935-1960), we were concerned principally with discus-

sions (pro and con) pertaining to the case for emphasizing mathematical

meaning (as distinguished from social significance) in programs of arith-

metic instruction. This included the position that an association-like

psychology of learning--with its focus on connections established and

reinforced through rote drill as the instructional method--was an in-

appropriate approach to the development of meaning. A different, field-

or Gestalt-like psychology of learning--with an emphasis upon "structure"

and "relationship"--was suggested as a more suitable guide for instruc-

tion.

In terms of position papers and the like which were aimed at

"building a case for meaning" in connection with elementary-school mathe-

matics instruction, the period of-The Recent Past is a barren one. And

for understandable reasons: the case had been built during the preced-

ing 25 years.

Shulman (1971) has indicated that

By the end of the 1960's, it appears that the rote-meaning-
ful argument has been mercifully put to rest. In contrast to
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the 1920's and 1930's, general advocates of drill without under-
standing either have retired or are in hiding. This is not to
imply that rote learning has ceased to occur in our classrooms.
Far from it. It now occurs, however, through inadvertence
rather than through careful planning.

Shulman's statement would be equally true if the first sentence were

changed to read, "By the end of the 1950's, it appeared that the rote-

meaningful argument had been mercifully put to rest."

Furthermore, with respect to program philosophy and serious

attempts on the part of leaders in mathematics education toimplement

that philosophy,.the Cambridge Conference on School Mathematics (1963)

misrepresented the state of affairs by overly generalized assertions

such as, "The traditional curriculum has stressed arithmetic drill

throughout the elementary school [p. 16]."

In other instances the Cambridge Conference (1963) report simply

reaffirmed points of view which had been stressed recurringly since

about 1935; e.g., "The conference felt strongly that the understanding

of the algorithns justifying the manipulations will in the end lead to

better skills. . . [p. 16]."

As the "modern mathematics movement" progressed downward to the

elementary-school level during this period of The Recent Past, it in-

directly sharpened and extended a focus on mathematical meaning; but it

did not generate that focus which, in fact, emerged and brightened dur-

ing the 25 years prior to 1960. Throughout the present period since

1960 there have been many position papers, etc. related to the philoso-

phy and content of "modern" mathematics programs for the elementary

school, but any concern for "meaning" generally has been implicit rather

than explicit.



It is not inconceivable that in this present period, with its

emphasis upon "activity learning," "real-life situations," etc., etc.,

there may be arising a "newA:confusion" regarding the meaning of meaning-

ful (Olson, 1969). We may be coming about full circle, once again fail-

ing to distinguish clearly between content, activities, and experiences

which contribute to mathematical meaning and those which contribute to

social significance. Hopefully, however, we may profit from the past

rather than disregard it.
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II. RELEVANT RESEARCH

It is evident from the preceding section that meaning has been

recognized as a vital component in the teaching/learning process. Both

psychologists and mathematics educators have espoused it, and presented

arguments to indicate and support its role. What does the research from

mathematics education contribute to our understanding of the role of

meaning and its importance?

Somewhat surprisingly, the evidence is sparse:. there have been

a relatively limited number-of studies in which meaning is identified or

isolated as a factor. These studies are of two types. There are some

reports on research which attempted to ascertain the importance of mean-

ing in learning mathematics, and others which, taking the need for mean-

ing as a fact, explored the effect of teaching various procedures with

meaning. With the evidence that meaningful instruction facilitates

learning, the task shifted quickly from one of expounding it, to one of

explaining it and elaborating on it.

As we searched for a logical model

to aid in summarizing and describing the

findings, it became evident that three fac-

tors are involved in all studies of both

types. These factors are (A) the mathe-

matical context, (B) the instructional con-

text, and (C) the degree or extent of mean-

ingfulness. A Venn diagram provides a way

of viewing them:



These factors assume varying degrees of importance: in some studies,

one or another is of most concern; in a few studies, there is a balance

or overlapping of emphasis.

The mathematical context (A) includes the specific content which

is to be learned, how the content was organized, and the nature of the

meanings which are inherent in that content. Both methods and materials

are aspects of the instructional context (B): how the teacher struc-

tures the learning environment, what he does as he interacts with the

children, how materials were used, and how the outcomes were measured

provide the way of inserting and inferring meaning. And the degree or

extent of meaningfulness (C) must be considered as a factor beyond its

involvement in the mathematical and instructional contexts.

Studies to Establish and Affirm the Importance of and Need for Meaning

Before the publication of Brownell's statement on the meaning

theory in 1935, some research in mathematics education had already been

published which provided support for it. In two studies of transfer,

Overman (1930) and Olander41931) reported that methods which emphasized

generalization resulted in a greater amount of transfer from taught to

untaught addition and subtraction combinations. McConnell (1934) pre-

sented evidence that teaching with meaning might not result in greater

achievement when the criterion is prompt and automatic recall of content

similar to that learned, but was better when the, response required

transfer.

Judd (1927) concluded that learning to work effectively with

number is a developmental process, and that understanding of one aspect
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must be gained before the child can learn higher-level material. A sim-

ilar conclusion was reached by Brownell (1928), from an investigation of

the ability of children at each grade level to work with concrete materi-

als and abstract ideas. He stated the need for developing understanding

and meaning as the child moved through several stages to attain mature

methods.

Brownell and Chazel (1935) demonstrated the ineffectiveness of

premature drill. They summarized their study with third graders by stat-

ing that drill must be preceded by meaningful instruction. The type of

thinking which is developed and the child's facility with the process of

thinking is of greater importance than mere recall. Drill in itself

makes little contribution to growth in quantitative thinking, since it

fails to supply more mature ways of dealing with numbers.

Findings from a comprehensive investigation with children in

grades 3 to 5 by Brownell and Carper (1943) suggested that activities

and experiences which contribute to pupils' understanding of the mathe-

matical nature of multiplication should precede work which focuses on

memorization of facts.

Brownell, Kuehner and Rein (1939) studied 16 third-grade classes

to determine the usefulness of a "crutch," as a meaningful procedure, in

learning subtraction with the decomposition procedure. The crutch was

found to facilitate accuracy at the early stages of learning for both

bright and slow children and to aid understanding. They inferred an

advantage for a method that makes a process meaningful rather than rote.

In MacLatchy and Hummel's (1942) study, a socially meaningful

orientation was combined with mathematically meaningful teaching:
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Number experiences are isolated; the scheme of organization used
in number is explained at first by markers and later theoreti-
cally; the social uses of number are given a second place. The
purpose is to give children a meaningful skill which they can
manipulate correctly and which they will recognize when they see
it used in social situations or will themselves be able to use
effectively in social situations in which it is pertinent. This
scheme does not exclude functional arithmetic, but might most
advantageously be used in conjunction with it [p. 227].

The teacher in the study began by assessing what the third and

fourth graders knew about counting and adding. She asked simple ques-

tions which would show a child's understanding of.the meaning of and his

working familiarity with number. She then planned many varied exper-

iendes, grouping pupils to meet their indiCated needs. Markers, social

situations having number implications, encouraging various ways of solv-

ing problems, emphasis on accuracy, checking, and searching for uses of

number in everyday living were all used, with careful preparation of all

materials and logical analysis of steps involved in a process. High

scores on a computation test were realized, and retention was good.

Thiele (1939), in his study of second grade arithmetic, reported

highly significant superiority for the generalization method. Both he

and McConnell (1934) found that programs stressing relationships and

generalizations were preferable for developing understanding'and the

ability to transfer. But, as in many other studies, the teacher factor

was not controlled by Thiele--rather, groups who had merely been exposed

to a procedure were given tests designed to bring out' differences in

learning, and such differences were then ascribed to differences in

teaching.

The study by Brownell and Moser (1949) was one in which the

teaching method was specified and controlled. In this monumental study,

the mathematical context was subtraction--or, more specific:*ty, two
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subtraction algorithms--and the instructional context provided for a

comparison of meaningful versus mechanical procedures. This was one of

the few definitive experimental tests of the value of meaningfulness.

The extent of meaningfulness can be rather well identified by the pro-

cedures which are described in detail in the study; meaningas it was

involved in both mathematical and instructional contexts is evident.

In the study, the relative merits of teaching subtraction by the

equal additions (EA) algorithm or by the decomposition (D) algorithm

were investigated. Half of the classes were taught to borrow using

decomposition; the other half, by equal additions. Each half was divided

again, so that one part learned the subtraction procedure meaningfully,

or rationally (R); the other part, mechanically (M). The investigation

was conducted with approximately 1400 third-grade children who were hav-

ing their first experience with "borrowing" in subtraction. Since the

41 schools involved varied in the extent to which arithmetic had been

taught meaningfully in the first two grades, it was possible to note the

effect of different backgrounds on the teaching of "borrowing" meaning-

fully and mechanically.

The classes were subjectively assigned to treatment so as to be

as nearly as possible equil in ability. Teachers volunteered to partici-

pate and indicated which of the four experimental types of class they

preferred to teacifT--Eae. day's work was prescribed for the fifteen days

of the experimental period; teachers were told both what to do and what

not to do each day. In both meaningfully-taught groups, the teachers

led pupils to understand the procedures by:

(1) using actual objects (e.g., bundles of sticks) and drawings,

as necessary
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(2) writing the example in an expanded notation

(3) writing the "crutch" digit

(4) delaying the learning of the verbal pattern until they under-

stood what it means.

The rationale to be developed for DR was the idea that 65 6

tens + 5 ones, or .5 tens + 15 ones. The rationale for EAR was that the

difference between two numbers is not changed if the same amount is

added to both numbers; thus one ten is added to both minuend and subtra-

hend.

In both mechanically-taught groups, pupils were taught to borrow

in a purely mechanical, rote fashion; they were "directly" given the

verbal pattern at the outset of learning, without explanation but with

much drill to establish mastery. No hints were offered concerning the

rationale of the procedure.

The verbal patterns or thought processes to be developed ini-

tially are indicated in Figure 3.

At the end of the experimental period, all pupils were given com-

putation tests in subtraction, and all were interviewed individually.

Six weeks later, during which no' additional instruction was given on bor-

rowing, a test to measure retention of skills was administered, and chil-

dren in two centers were interviewed a second time. Evaluative criteria

included measures of (1) rate, (2) accuracy, (3) smoothness of thought

processes or work habits (included to avoid confuSion of this factor

with understanding), (4) understanding of procedures, (5) transfer to un-

taught types of subtraction, and (6) retention of efficiency and-under-

standing.
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65

-28

DR

I can't take 8 from 5,

EAR

I.can't take 8 from 5,

so I borrow a ten from the 6 tens, so I add a ten to 5 and get 15.

I cross out the 6 and write Now I subtract the ones and write 7.

'a little '5,' to show that I Since I added ten to the ones in

borrowed a ten. the top number, I must add a ten

I write a little '1' in front of

the 5 to show that I now have

to the tens in the bottom number,

and 2 becomes 3.

15 instead of 5. Now I subtract the tens, and write

Then I subtract. 3 in the tens' place.

DM EAM

I can't take 8 from 5,

so I think of S as 15.

"can't take 8 from 5,

so I think of 5 as 15.

8 from 15 is 7, and I write 7. 8 from 15 is 7, and I write 7.

Since I thought of S as 15, Since I thought of S as 15,

I must think of 6 as 5. I must think of 2 as 3.

2 from S is 3,

and write 3.

3 from 6 is 3,

and I write 3.

Figure 3. Verbal Patterns To Be Developed



In summarizing the data from the three centers, the authors

noted:

Advocates of meaningful arithmetic (the writers included) argue
that learning is more economical, that ideas and skill are bet-
ter retained, and that these products of learning are more
available for useful transfer when children see sense in the
arithmetic they study jp. 1471.

As a whole, the findings show that meaningful instruction,
especially in the case of decomposition, produced results supe-
rior to those produced by mechanical instruction [p. 149].

[But], . . . the findings do not in themselves make a com-
plete case against mechanical and for meaningful instruction in
arithmetic (footnote, p. 149].

Among the conclu§lons are:

(1) The equal additions algorithm appears satisfactory for chil-

dren who have a background of meaningful arithmetic, but for children

with limited background the decomposition algorithm, taught with meaning,

is better regardless of the criteria employed.

(2) The equal additions algorithm is difficult to rationalize.

(3) Some proficiency can be produced by mechanical instruction

with either the decomposition or equal additions algorithm.

(4) Crutches were needed, but were more helpful for the decompo-

sition algorithm than for the equal additions algorithm.

(5) Understanding appears to be cumulative.

(6) It is not simple to build meaningful learning upon a founda-

tion of mechanical learning.

(7) "Readiness" is determined, not by the children's age or

grade, but by the kind of arithmetic they have had.

The findings may be summarized in another way:

Meaningful instruction, especially for decomposition, produced

results superior to those produced by mechanical instruction.
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On tests immediately following instruction, mechanical instruc-

tion produced higher achievement than meaningful instruction.

On measures of retention and transfer, the meaningfully taught

groups scored significantly higher.

Swenson (1949) stated that the purpose of her investigation was:

. . . to study learning, transfer of training, and retroactive
Inhibition as they appear in the learning of the one hundred
addition facts by second grade children taught by three differ-
ent methods of instruction, the chief variable among methods
being the degree of emphasis upon organization and generaliza-
tion in the learning process [p. 9].

Involved were 332 pupils from 14 second grades, who were stratified by

MA and randomly assigned to treatment. The 100 facts were divided into

three sets, each taught during a prescribed period of the study.

Teaching methods were of particular importance. The "generaliza-

tion method" was based on the meaning theory of teaching and learning

arithmetic. Teachers encouraged children to build up interrelationships

among addition facts. Swenson noted:

Because the meaning theory assumes that children are able to
grasp number relationships, and that it is worthwhile to allow
them to "figure out" these relationships, the generalizations
were not dictated to the children as rules to be learned.
Rather, the facts which centered around a generalization were
presented together, in such a way that the teacher could, by
skillful instruction, lead the pupils to their own formulation
of the generalization. . . . The meaning theory holds that chil-
dren should be allowed to continue relatively immature methods
of arriving at answers so long as they need them as aids to
understanding [pp. 12-13].

Therefore, counting, partial counting, dependence upon easier, known com-

binations, and concrete objects were allowed. The time spent on drill
1

was necessarily limited by the large amount of time allolved for "figur-
:

ing out" answers and for developing generalizations. Practice exercises

were shorter, and were introduced after generalizations bad been



developed, and during rather than before the development of understand-

ing. It was also pointed out that

The emphasis placed by meaning theorists upon the organiza-
tion of the number system was represented in the generalization
method by grouping facts around generalizations, by encouraging
children to derive one fact from another related one, by build-
ing up the decimal idea in teaching the adding of 10, and by
allowing much original manipulation of number relations in con-
nection with a miscellaneous set of facts in the last period of
instruction [p. 13].

The "drill method" was based on the assumption that the learning

of each addition fact is a discrete bond or connection to be formed;

thus the facts were presented as abstract "facts to be learned" in mis-

cellaneous order, with no organizational pattern. "According to the

repeated warnings of drill theorists that children should not be allowed

to reason out the answers [p. 14]," counting and other devious ways of

deriving answers were discouraged. If a pupil hesitated. or gave a wrong

answer, the teacher

emphasized. Little time was spent on the developmental part of the les-
s

son; most of the time was spent in drill, with much repetition--interest-

ing, varied, avoiding practice in error, with the most difficult facts

repeated most.

In the "drill-plus method" each fact was introduced concretely

or semi-concretely, and children verified each new fact by counting and

manipulating concrete objects. From then on, drill procedures were fol-

lowed. The facts were presented in groups which depended on,organiza-

told him the correct answer. Speed of response was

tion by size of sum, though no attention was directed'toward generaliza-

tions.

Possible intervening variables as well as both teaching and test-

ing organization and procedures were carefully controlled; teachers
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attended seven pre-experiment sessions, were given explicit manuals, and
.m

were visited during the 20 -week experimental period. The placement of

facts was carefully planned.

Five addition tests, a test on the 100 untaught subtraction

facts, tests of the 100 addition "decade facts," and one test with more

difficult, complex addition examples were administered.

The generalization group made the highesttet achievement record

(on all tests) for original facts, interpolated facts, and final facts

(but the differences between groups were not significant). The advan-

tage of the generalization group on the test of original facts was highly

significant in comparison with the drill-plus group and significant in

comparison with the drill group. The differences in terms of interpo-

lated facts (for retention) were nonsignj.ficant. The advantage in terms

111 of final facts (for transfer) was highly significant over the drill

group and nearly significant over the drill-plus group, while the drill-

plus group had a highly significant advantage over the drill group.

Thus, the generalization method resulted in greater initial

learning, more transfer, more retention and less loss than drill-plus or

drill methods, with the drill group appearing to be better than the

drill-plus group.

Anderson (1949) viewed learning, under the meaning theory, as a

process of reorganization of behavior that results from meaningful exper-

ience. He ,stated that the meaning theory has the following characteris-

tics:

(a) Arithmetic is a closely-knit system of ideas, principles,
and processes. (b) This system has an organized, logical struc-
ture which can be understood by the pupil. (c) Learning in
arithmetic consists of understanding number relations and the
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mathematical significance of quantitative situations. Under-
standings of the number system may be called generalizations.
(d) Drill or repetition is recognized as valuable for increas-
ing proficiency in arithmetical situations after understanding
has been developed or generalizations have been made [p. 41].

His experiment, less well-controlled than Swenson's, was con-
.

ducted in 18 fourth-grade classes in 18 schools; data were obtained for

208 pupils in the drill group and 181 pupils in the meaning group. The

experiment lasted from November until May, including all phases of arith-

metic instruction during this time.

Teachers (with their classes) were selected because they seemed

to have followed one of the two methods most closely in their previous

teaching, and held an educational point of view consistent with the

method. Day-by-day procedures were not prescribed, nor were teachers

held to parallel courses concerning objectives, content, time, repeti-

tions, or materials; instead, broad objectives were set and th(teachers

were given relatively free rein. Visits to the classrooms ascertained

that instruction confOrmed to the theories. Teachers met for four ses-

sions with the experimenter before the experiment, and twice during the

experiment, at which manuals on the teaching method were studied. Logs

kept by teachers indicated that in drill classes, about 11 minutes per

day were spent on instruction and 24 minutes on drill; in the meaning

classes, about 27 minutes a day were spent on instruction and 18 minutes

on drill.

On tests measuring direct learning, the differences between

groups taught arithmetic by drill or by meaning methods could, for the

most part, have been accounted for by chance. (There was no significant

46

difference in achievement of the two groups.) On tests of the ability

"to think mathematically in quantitative situations," rect., i.tng ability
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"to adapt learning to new situations," a significant difference favoring

the meaning method was obtained on the test for transfer. Those instruc-

tional procedures

. . . which emphasized relational learning, discovery, and gen-
eralization were more productive, especially for children of
high alAlity but of inferior achievement. There was evidence
that drill procedures might be better for children of low abil-
ity and high achievement [p. 69].

Support for the meaning theory is thus implied, and there is

also the implication that instruction must be individualized. What is '

best for pupils of one pattern of ability and achievement may not be

best for pupils of other patterns. Also, Anderson noted,

. . . it may be that attention to meanings, relations, or under-
standing of materials being learned is more important during
early stages of learning, and that practice procedures are more
important in late stages [p. 71].

This supports Brownell's conclusion that practice follows after under-

standing had been established.

Howard (1950) attempted to measure whether the development of

meaning, through the extensive use of audio-visual aids, was worth the

time in the teaching of the addition of common fractions. Fifteen clas-

ses in grades 5 and 6 were assigned to one of three 16-week treatments:

e--N
(1) the pupils were shown how to do the computation or solve the problem,

and then given practice in computation; (2) pupils used many manipula-

tive objects and charts designed to bring out the meaning of each new

step, after which they practiced by solving verbal problems; (3) pupils

used objects and charts, and then were given practice on both computa-

tion and verbal problems. No significant differences in achievement

were obtained, but the third group was, found to be significantly better

on a retention test.
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Miller (1957) studied 360 seventh graders; he observed normal

classroom techniques and classified the teachers as using a rule or mean-

ing method. The meaning method was found to bd more effective for compu-

tation of fractions and for decimals and percentage during the semester,

while the rule method was superior for measurement. The meaning method

was better for retention in computation and understanding, and for com-

prehension of complex analysis. It was more effective for average and

high IQ groups, while the rule method seemed to be more effective for

low IQ groups.

In a later study which compared the effects of using a meaning-

ful and a mechanical or rote method, Krich (1964) worked with the mathe-

matical content of division of fractions by fractions. He noted,

While considerable evidence is available to show the value of
teaching arithmetic with understanding, there is still the need
to clarify the place of meaning and drill in learning specific
processes in arithmetic [p. 697].

Eight sixth grades in eight schools were selected, with experi-

mental and control groups matched for socioeconomic area, IQ, and arith-

metic ability. In the meaningfully-taught group, the method was based

on explaining rationally the meanings of the number symbols and arith-

metic processes involved in)multiplication and division of fractions,

with the relationship of the two operations stressed. Children "were

permitted to discover the inversion technique, but were not told to

invert as a rule of procedure [p. 699]." In the mechanically-taught

group, the rules were explained and children were told how to apply the

rule. Drill on the material presented concluded each lesson.

Each group was taught through a series of five programmed les-

sons, to assure control of the teacher variable. A two-part test,
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measuring both understanding and computational skills, was used as pre-,

post-, and retention test (administered two months after the posttest).

No significant differences were found between low IQ groups

taught meaningfully or mechanically. The normal IQ group taught meaning-

fully scored significantly higher than the comparable mechanically-

taught group on the retention test for understanding. Normal and high

IQ groups achieved from both methods, but the meaningfully-taught group

scored higher on retention while the mechanically-taught group scored

significantly lower.

Tredway and Hollister (1963) were also interested in comparing

meaningful and mechanical methods.' They attempted to ascertain if teach-

ing the basic concepts of percentage might be improved if taught meaning-

fully rather than by "rule, rote, and repetition." The meaningful pro-

cedure involved introducing the three cases of percentage at one time,

and developing the interrelationships among them. They reported that

such meaningful teaching of percentage provided significantly better

results at all lees of intelligence than rote, textbook-oriented pro-

cedures. It also provided for better retention for those pupils of

average intelligence.

Dawson and Ruddell (1955) reviewed five of these studies which

supported the meaning theory approach. They concluded that "meaningful

teaching leads to (1) greater retention over periods of time, (2)

greater transfer potential, and (3) increased ability to solve new pro-

cesses independently [p. 399)." The implications for teachers are clear:

increased use of representative materials; more class time devoted to

discussion and explanations; and short, specific practice periods follow-

ing thorough development of topics.
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Howard (1950), Shuster and Pigge (1965), Sebold (1946), and

Feinstein (1952) also support the importance of using meaningful methods

for work with fractions.

Studies Exploring the Effect of Teaching

Various Procedures with Meaning

There are many more studies of this second type than of the

first type. Those of this second type are ones in which the need for

meaning is taken as a fact, so two or more procedures, each taught mean-

ingfully, are compared.

Probably a majority of the studies of teaching techniques con-

ducted during the past 15 years have involved the use of meaningful

methods to teach the techniques. Some studies in actuality deal with

meaning, even though the word is never used. We have included a samp-

ling of studies in which the incorporation of meaningful methods was

indicated by the researchers, and a few of those in which the method is

clear by the use of associated words, or by the procedures which are des-

cribed.

Pincus (1956) began with the premise that drill should follow

the development of understanding. But he noted that there is disagree-

ment on whether drill should consist of practice through number relation-

ships, or merely repetitive "procedures and devices common before, as

well as since, the development of teaching arithmetic meaningfully [p.

1415]." So four classes of third graders were taught second-decade addi-

tion and subtraction facts, and then divided into two matched groups,

each of which used one of the two drill procedures. The adiRtion and
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subtraction drill periods were each six weeks in length, followed by a

seven-week period in which there were no addition or subtraction activi-

ties. At the end of each six-week period, both groups were tested for

automatic recall of second decade addition or subtraction facts as well

as for ability to transfer this recall to higher decades. After the

seven-week lapse of instruction, both groups were tested for retention.

Considerable gains were made by both groups, regardless of the

type of drill used. There was no significant difference (analyzed by t-

ratios on the difference between means) in effectiveness between the two

types of drill either in immediate learning, transfer, or retention,

though there appears to be a "trend in favor of the drill-through-

relationships method [p. 1415]."

Pincus added, "The considerable gains made by children taught by

either method of instruction [for drill] may be taken as an indication

of the value of teaching arithmetic meaningfully when followed by drill

[p. 1415]."

Stokes (1958) experimented with a "cone of experience" meaning-

ful method which had been developed and sequenced on the basis of sur-

veys of the social problems met and arithmetic needed by 72,000 children.

Children achieved successfully when allaw04,44operate at their own

levels of meaning.

A status study, with no control of teaching method, was conduc-

ted by Rappaport (1958) to determine the relationship between computa-

tional skill and the understanding of the meanings in arithmetic. He

tested students in grades 7 and 8 on the four operations and three to

four weeks later, on their understanding. Scores on the two tests were

analyzed and correlated. Among the conclusions were:
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(1) The pupils did not have an adequate understanding of mean-

ings in arithmetic, assuming a score below 50 per cent is inadequate.

(2) Computational skill was not an indication of the understand-

ing of meanings of processes used in computation.

(3) Correlations between computation and meanings tests were .63

for each-total grade, lower for sub-groups.

Miller (1965) investigated the degree of relationship between

"meaningful understanding" and computational skill of the arithmetic

operations. He tested fifth and sixth graders, using (1) the computa-

tion section of a standardized test, (2) an experimenter-developed compu-

tation test, (3) an experimenter-developed instrument to diagnose under-

standing, and (4) standardized reading and intelligence tests. He found

that children who demonstrated proficiency of computation of arithmetic

operations did not necessarily also demonstrate understanding of computa-

tion. However, children who demonstrated understanding of operation

revealed high computational skill of operation.

To determine how the use of class time affects achievement,

Shipp and Deer (1960) compared four groups, in which 75 per cent, 60

per cent, 40 per cent or 25 per cent of class time was spent on group

developmental work while the remainder was spent on individual practice.

The developmental activities

. . . were intended to increase understanding of the number sys-
tem, the fundamental processes, and the general usefulness of
number and quantity in everyday experience . . . [and included]
explanations, discussions, .and demonstrations by teacher and
class; handling, inspecting, and arranging visual and manipula-
tive materials; and group reading, drawing, construction work,
and committee projects [pp. 117-118].

Higher achievement in computation, problem solving, and mathematical

-48-



concepts Was obtained when more than half of the time was spent on

;;_dvelopmental activities.
$07

In replications of this experiment, Shuster and Pigge (1965) and

Zahn (1966) used other time allocations. They confirmed the finding

that when the greater proportion of time is spent on developmental activ-

ities, achievement is higher.

In Hopkins' (1965) study with fifth graders, the control group

continued the regular program that included about 50 per, zent of the

arithmetic time to be spent on meaningful activities and about 50

per cent on drill. The experimental group continued to use 50 per cent

of their time for meaningful activities, but replaced the drill time

with informal investigation of problems involving mathematical concepts

usually met in the secondary school or college.

There was no significant difference between class means deter-

mined by a test for proficiency in computation; while there was signifi-

cant difference between ability group means, there was no significance.

of treatment effects of different ability levels.- There were signiffallt

differences for both class and ability group means on a test of under-

standing of arithmetic principles, but interaction showed no signifi-

cance of treatment effects for different ability levels.

Hopkins concluded that the amount of time spent on.drill can be

reduced substantially and still retain equivalent computational profi-

,---"

ciency. Utilizing time once spent for drill as a time to explore large

mathematical concepti results in a better understanding of basic princi-

ples than is derived from using drill as a cognitive process.

When Tilton (1947) provided..only 20 minutes per day'for one day

in each of four weeks (80 minutes in all) of individual remJial
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instruction in addition, subtraction and multiplication for two small

groups of fourth graders, he found that emphasis on meanings resulted in

significant achievement gain.

Binter (1962) compared the effe.:tiveness of "the conventional

method utilizing teacher telling, demonstrating explaining, and the

textbook as the means of presenting arithmetical understandings and com-

putational skills" with

. . . a prescribed curriculum which stressed_pupil self-
discovery in which pupils were encouraged to explore, experi-
ment, and discover arithmetic facts and generalizations and
various computational techniques to solve problems [p. 3942].

Teachers of fourteen sixth-grade classes were randomly assigned

to teach the first case of per cent using one of the two methods. After

a seven-day teaching period, a posttest was administered; a retention

test was given five weeks later, with no teaching of per cent during the

interim.

There was no significant difference in mean performance on the

posttest, but results of the retention test showed a significant dif-

ference favoring the group taught by "self-discovery." However, on a

transfer test, there was a significant difference favoring "teacher-

telling."

The short length of time was noted to be a limitation, espe-

cially for the "self-discovery" group, and the fact that the textbook

1sed by the "teacher-telling" group illustrated the second case of

per cent as well as the first gave them an advantage on the transfer

test. Binter's conclusion that

. . . a teaching procedure which encouraged pupil self-discovery
would be more defensible in terms of classroom procedure than
one in which the mode of pupil intellectual operation was
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limited by teacher or textbook explaining, telling, and demon-
strating [p. 3943]

does cot appear to be supported by his data.

Lyda and Morse (1963) concluded that "When meaningful methods of

teaching arithmetic are used, chang6Cin attitudes toward arithmetic

take place [p. 138]." Negative attitudes became positive, and the inten-

sity of positive attitudes was increased when the experimenter stressed

mathematical meanings in teaching fourth graders. These meanings were

incorporated into lessons on the decimal numeration system, the process

of counting, and each of the operations. Significant gains in computa-

tion and reasoning achievement also resulted. However, a halo effect

emanating from the experimenter might have affected results in this

study with only one class.

Greathouse (1966) investigated three methods of teaching in

grades 5 and 6: group-oriented meaningful, individual-oriented meaning-

ful, and drill-computation; analysis of results was on the basis of com-
#

putational ability, quantitative reasoning, and mathematical understand-

ing. Possible predictor variables were measured (reading comprehension,

leading vocabulary, intelligende quotient, and pupil perception), and

strongly biasing 'variables were controlled in the subsequent analysis of

covariance. Both reading comprehension and intelligence quotient were

found to be significant predictors of criterion achievement gain, but

since the two were highly correlated, only IQ was used directly as a co-

variate.

There were no significant differences between methods. Yet, in
. 07

most cases, the samples taught by the individual-oriented meaningful

method achieved more than those taught by either other method.
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Greathouse concluded that

. . . a meaningful approach to arithmetic instruction with its
emphasis on mathematical understanding as well as computational
skills is recommended strongly as a supplant of a teaching ap-
proach which has the sole objective of developing computational
competency (p. 5913].

In a study with fifth and sixth graders, Worthen (1968) compared

two methods that differed only in terms of sequence characteristics. In

the expository method, the verbalization of the required concept or

generalization was the initial step in the sequence. Mathematical prin-

ciples were explained verbally and symbolically to the pupil, who then

worked with examples. In the discovery method, the pupil was presented

with an ordered, structured series of examples of a generalization. No

explanation was given, nor any hint that there was an underlying prin-

ciple to be discovered. The pupil was expected to acquire the mathe-

matical concept or generalization through an inference of his own. In

both methods, the meaning inherent in the mathematics was an underlying

basis for the lessons.

The conttnt selected for the study included: (a) notation, addi-

tion, and multiplication of integers; (b) the distributive principle of

multiplication over addition; and (c) exponential notation and multipli-

cation and division of numbers expressed in exponential notation.

When the data were first analyzed, using the number of pupils in

the statistical tests, the two sequences of presentation (with carefully

described teaching behaviors) resulted in significantly different pupil

performance on several types of tests. The expository method was found

to be better than the discovery method on the initial test of 1parning,

but discovery was better on retention tests administered after five and

eleven weeks. The discovery group also transferred concept:. :pore readily
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di/

and used discovery problem solving approaches to new situations better.

No differences were found in pupil attitude toward the two approaches.

However, when the data were reanalyzed with the unit of analysis' changed

from pupil scores to class means, no significant differences were found

(Worthen and Collins, 1971).

Christ (1969) reported that third graders learned time-telling

concepts equally well in an active game situation as in a "traditional

classroom" developmental-meaningful approach.

Fullerton (1955) compared two methods of teaching the "easy"

multiplication facts to third-graders: (1) an inductive method by which

pupils developed multiplication facts from word problems, using a vari-

ety of procedures; and (2) a "conventional" method which presented multi-

plication facts to pupils without involving them in the development of

such facts. In this instance a significant difference in favoi of the

inductive method was found on a measure of immediate recall of taught

facts as well as on measures of transfer and retention.

On the basis of multiple criteria, Schrankler (1967) evaluated

the relative effectiveness of two algorithms for teaching multiplication

with whole numbers to fourth grade pupils. As interacting factors, he

considered (1) three intelligence levels and (2) two readiness back-

grounds. From a variety of findings Schrankler concluded that methods

using general ideas based on the structure of the number system are more

successful than other methods investigated in achieving the objectives

of increased computational skills, understanding of processes, and prob-

lem solving abilities associated with the multiplication of,whole num-

bers between 9 and 100.
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From a rather comprehensive investigation with third-grade

pupils'and their beginning work with multiplication, Gray (1965) found

that an emphasis upon distributivity led to "superior" results when com-

pared with an approach that did not include work with this property.

The superiority was statistically significant on three of four measures:

posttest of transfer.. ability, retention test of multiplication achieve-

ment, and retention test of,transfer. On the-remaining measure--post-

test of multiplication achievement--children who had worked with distrib-

utivity scored igher than those who had not,, but the difference was not

statistically significant.

Van Engen and Gibb (1956) compared the effectiveness of the sub-

tractive algorithm and the conventional distributive algorithm for divi-

sion of whole numbers. The distributive algorithm was taught almost

exclusively during the 1940's and 1950's:

2

23)552
46

J 92

etc.

First think, '2's in 5?'

The subtractive approach has come back into use in recent years:

23)552
230 10 x 23
322

230 10 x23
92
etc.

Achievement, understanding, transfer, and retention were

assessed. In defining the treatments, Van Engen and Gibb stated:

All [eleven] teachers, regardless of the method taught,. were
urged to focus attention on arithmetic principles and generali-
zations, and all teachers were encouraged to use objects and
socially-significant quantitative situations for problem- solving
experiences. Thus, the primary difference between the two
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methods was in the conceptual orientation of the process. The
conventional method continued to place emphasis on the relation
of division to the multiplication process. The subtractive
method emphasized the concept of division as repeated subtrac-
tion of multiples of the divisor. The problem experiences for
the subtractive involved one -digit hand two-digit divisors but
controlled the iLize of the divide& so that quotients would not
exceed a two - digit number [p. 82].

.r

Following analysis of both experimenter-developed tests and

interviews, Van Engen and Gibb concluded:

(1) Children taught the conventional algorithm for division

achieved more in solving the kinds of problems taught than did children

taught the subtractive algorithm. However, the subtractive group worked

with problems where both the number of digits in the, divisor and divi-

5'
dend increased; only the dividend increased in number of digits in prob-

lems for the conventional group.

(2) The subtraCtive algorithm for division was more effective in

enabling children to transfer to unfdmiliar' situations where the general

context remains the same.

(3) Children taught the subtractive algorithm had a better under-

standing of the idea of division. For them the processing does not

appear to be a matter of using a series of steps (such as "divide,

multiply, subtract, compare, etc."), as was true of:the children using

the conventional algorithm.

(4) Retention appeared to be more a function of teaching proce-

dure than, of the algorithmic form used.)

(5) Division for a measurement situation was easier for those

taught the subtractive algorithm, whil4:4ivision fota partition situa-uN
tion was easier for those using the conventional algorithm.

(6) Children with low intelledtaal ability had, less difficulty
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undersanding the processN of division when they used the subtractive

method.

In a study of the division algorithm with twelve fourth grade

classes, Dawson and Ruddell (1955) compared the effectiveness of (1)

"common textbook practices "' and (2) a procedure in which division was

presented as "a special case of subtraction." The'second procedure also

stressed "meaningful" instruction through much use of discussion and

manipulative materials. The investigators concluded that this latter

approach resulted in significantly higher achievement (immediately fol-

lowing instruction as well as after a retention period of seven weeks),

and increased ability to solve examples in a new situation. It also

helped pupils to develop greater understanding of division and its inter-

relationships with subtraction, multiplication and addition than did the

"common textbook practices" approach. Whether these'findings were

related primarily to the emphasis on (1) subtractive concepts or (2)

method of instruction or (3) use of materials cannot, however, be ascer-

tained from the design of the study.

Bidwell (1971) compared three methods for teaching division of

fractional numbers meaningfully: the common denominator method, the com-

plex fraction method, and the inverse operation method. He found that

the inverse operation method was most effective in terms of both learn-

ing structure, immediate computational skill, and retention.

O'Brien (1968) reported that pupils taught decimals with an

emphasis on the principles of numeration, with no mention of fractions,

scored lower on tests of computation with decimals than those taught

either (a) the relation between decimals and fractions, with secondary

emphasis on principles of, numeration, or (b) rules, with no mtion of
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fractions or principles of numeration. On later retention measures, the

numeration approach was significantly lower than use of the rules

approach, but not significantly different from the fraction-numeration

approach.

In a study involving eleventh graders, Kepner (1971) examined

th'e effect of "interpolated meaningful mathematical material" on the

retention of previously learned similar material. A six-day unit on vec-

tors was used as the original learning material, and a six-day unit on

complex numbers was used as the related interpolated material. He found

no significant differences in the retention of either vector addition or

multiplication between classes in which the related material was inter-

polated and those in which a unit on probability was interpolated. He

concluded that this suggested that an interference theory is inappropri-

ate in describing "retroactive effects on the retention of meaningful

learning by similar but conflicting material [p. 45511."

The relative effects of two forms of spiral organization (area

or topical) and two instructional modes (inductive or deductive). were

studied by Armstrong (1968). Sixth graders were assessed at each of six

cognitive levels, within three areas (set theory, number theory, and

geometry) and on four topics (terminology, relations, operations and

properties). She reported that the form of spiral organization of the

curriculum did not affect the mathematical learning of the four topics.

The inductive mode of presentation fcdtered the learning of operations,

while the deductive mode resulted in greater learning of mathematical

properties. The interaction of curriculum organization and instructional

presentation variables was not found to significantly affect mathematical

learning.

- 57 -

61



Ekman (1967) concluded that use of manipulative materials with

third grade pupils learning addition and subtraction ideas resulted in

increased understanding and transfer ability over the use of pictures or

algorithms only.

No significant differences in overall learning of a mathematical

principle between second grade groups who used a meaningful symbolic

model and those who used a meaningful concrete model were.reported by

Fennema (1970). They were able to learn a principle by using either

model when the model was related to knowledge the children had, provid-

ing evidence that "making the teaching of'mathematical principles mean-

ingful is as important as are the materials used to demonstrate that

principle (p. 53391." Children who had learned with a symbolic model

could transfer this learning to solving untaught symbolic instances sig-

nificantly better than could children who had learned with a concrete

model. Thus learning facilitated by a symbolic model was more easily

generalized than learning facilitated by a concrete model.

Some recent research has been related to that of Ausubel and the

use of advance organizers; e.g., Gubrud, 1971; Ratzlaff, 1971. However,

support for the use of such organizers appears tenuous; it may be that,

for mathematical material, they, are of more use to those with relatively

high abstract thinking ability.

All in all, from research conducted during the past several

decades we have come to be reasonably certain that particular advantages

will accrue from meaningful mathematics instruction as opposed to rote

instruction; but we are much less certain about advantages that may

accrue from one meaningful approach, method, etc. vis=a-vls another.mean-

ingful one.

-58-

62



III. CONCLUDING OBSERVATIONS

Although a case for "meaning" in connection with mathematics

instruction has been established through position papers and supporting

"")research findings which have been summarized; 'in this monograph, it would

be in error to suggest that all mathematics instruction now is meaning-

ful. We still need to be vitally concerned about implementation of

mathematically meaningful instruction within the context of the school

and the classroom. Specific suggestions for such implementation are

beyond the bounds of this monograph, but there is at least one broad

point we wish to make in relation to the contemporary scene.

Shulman (1970) has indicated that "mathematics educators have

shown themselves especially adept at taking hold of conveniently avail-

able psychological theories to buttress previously held instructional

proclivities (p. 23]." Some of this kind of thing is being done today

in various attempts that are made to invoke Piaget or Bruner or Gagne or

whomever in support of sundry suggested practices pertaining to mathe-

matics instruction. And if we were looking for contemporary psychologi-

cal support for meaningful instruction, it would not be at all unexpected

if we turned to Ausubel.

In fact, we shall turn to Ausubel--but for a different reason.

We are not contending that all facets of Ausubel's theory of meaningful

verbal learning are exemplified by the original "Meaning Theory" of

arithmetic instruction and its subsequent refinements and extensions.

But we do wish to emphasize the relevance of certain distinctions which

Ausubel (1968) has made:

Meaningful learning involves the acquisition of new rean-
ings, and new meanings, conversely, are the products of
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meaningful learning. That is,'the emergence of new meanings in
the learner reflects the completion of a meaningful learning
process [p. 37).

The essence of the meaningful learning process . . . is that
symbolically expressed ideas are related in a nonarbitrary and
substantive (nonverbatim) fashion to what the learner already
knows, namely, to some existing relevant aspect of his structure
of knowledge (for example, an image, an already meaningful sym-
bol, a concept, or a proposition). 'Meaningful learning presup-
poses both [1) that the learner manifest a meaningful learning
set, that is, a disposition to relate the new material nonarbi-
trarily and substantively to his cognitive structure, and [2)
that the material he learns be potentially meaningful to him,
namely, relatable to'his structure of knowledge on a nonarbi-
trary and nonverbatim basis [pp. 37-38).

TurtherMtre, according to Ausubel (1935):

Logical meaning . . . refers to the meaning that is inherent
in certain kinds of symbolic material by virtue of its very
nature. In short, logical meaning depends only on the
material [pp. 44-45).

Psychological (actual or phenomenological) meaning, on the
other hand, is a wholly idiosyncratic cognitive experience. . .

Subject-matter can, at best, have logical meaning. It is the
nonarbitrary and substantive relatability of logically meaning-
ful propositions to a particular learner's cognitive structure
that makes them potentially meaningful to him, and thereby cre-
ates the possibility of transforming logical into psychological
meaning in the course of meaningful learning. Thus the emer-
gence of psychological meaning depends not only on presenting
the learner with material manifesting logical meaning, but also
on the latter's actual possession of the necessary ideational
background [p. 45).

Past and present emphases upon aspects of mathematical structure

contribute to confronting children with material which has logical mean-

ing. This is a necessary but insufficient condition for that material

to have psychological meaning for a pupil. Meaningful mathematics

instruction. facilitates meaningful mathematical learning, and each of

these demands that we look beyond the logical meaning inherent in mathe-

matical content per se.
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