
ED 065 335

TITLE

INSTITUTION

PUB DATE
NOTE
AVAILABLE FROM

DOCUMENT RESUME

SE 014 398

Mathematics for Elementary School Teachers: The
Rational Numbers.
National Council of Teachers of Mathematics, Inc.,
Washington, D.C.
72
453p.
NCTM, 1201 Sixteenth Street, N.W., Washington, D.C.
20036 ($6.00)

EDRS PRICE MF-$0.65 HC Not Available from EDRS.
DESCRIPTORS Arithmetic; *Elementary School Mathematics;

Elementary School Teachers; *Fractions; Mathematics
Education; *Rational Numbers; *Teacher Education;
Textbooks

IDENTIFIERS Film Supplements

ABSTRACT
This book is an extension of the 1966 film/text

series (ED 018 276) from the National Council of Teachers of
Mathematics and was written to accompany 12 new teacher-education
films. It is strong enough, however, to also serve alone as a text
for elementary school teachers for the study of rational numbers. The
12 chapters corresponsing to the films were written separately by
committee members with various methods of presentation. Aspects of
rational numbers covered include a rationale for their introduction;
the four operations with positive, decimal, and negative rational
numbers; measurement; and graphing. WO



_

o
sr

.,-
''''.?;'71rf;

1"

II 0

I II 0

0 I

O

O

-1`,---.4.77777:-

Ne.17-,r t,i',:).;..pce,

s "77.7 --77" '

.:.
.",-is., .,` '',1

,...., t;:. L, P.
. 1,:i.,:;), '''',,';:% :, 2, i El

.1. ' ''.........a.......lii



Mathematics for Elementary School Teachers

THE

RATIONAL

NUMBERS

NATIONAL COUNCIL OF TEACHERS OF MATHEMATICS

1201 Sixteenth St., NW, Washington, D.C. 20036

2



"PERMISSION TO REPROD UCE THIS COPY
RIGHTED MATERIAL IIY MICROFICHE ONLY
HAS BEEN GRANTED BY

TO ERIC AND ORGANIZATIONS OPERATING
UNDER AGREEMENTS WITH THE US. OFFICE
OF EDUCATION. FURTHER REPRODUCTION
OUTSIDE THE ERIC SYSTEM REQUIRES PER-
MISSION OF THE COPYRIGHT OWNER."

Copyright ® 1972 by

THE NATIONAL COUNCIL OF
TEACHERS OF MATHEMATICS, INC.

Ail Rights Reserved

Library of Congress Catalog Card Number: 724769

PRINTED IN THE UNITED STATES OF AMERICA

3



HISTORY AND ACKNOWLEDGMENTS

In 1966 the NCTM released for general distribution by Universal
Education and Visual Arts a series of films, produced by Davidson Films
under a National Science Foundation Grant, entitled "Mathematics
for Elementary School Teachers." The films and an accompanying text
were supervised and produced by a committee headed by Harry D.
Ruderman. The topics covered by the films and text were:

1. Beginning Number Concepts
2. Development of Our Decimal Numeration System
3. Addition and Its Properties
4. Multiplication and Its Properties
5. Subtraction
6. Division
7. Addition and Subtraction Algorithms
8. Multiplication Algorithms and the Distributive Property
9. Division Algorithms

10. The Whole-Number SystemKey Ideas

The success of the films and text was immediate. Soon the NCTM was
besieged by teachers, teachers of teachers, and school systems to carry
the series forward to include, at least, the rational numbers.

President Donovan A. Johnson named a committee consisting of Julius
H. Hlavaty, chairman; Robert B. Davis, Abraham M. Glicksman, Leon A.
Henkin, Donovan R. Lichtenberg, Joseph Moray, Harry D. Ruderman,
David W. Wells, and Lauren G. Woodby to prepare a propsal for a new
series of films.

In 1967 the NCTM, on the suggestion of this committee, signed a
precedent-setting contract with General Learning Corporation, Davidson
Films, and Harry D. Ruderman as director for the production of twelve
teacher-training films (for the elementary level) and thirty short, single-
concept films for students. These two series of films, under the title
"Elementary Mathematics for Teachers and Students," were produced
and released for distribution in 1970.

This book was written to accompany the twelve teacher-training films.
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Note to the Reader

You will find that sets of exercises appear in
every chapter, and that answers to all of them
appear in the back of the book. Before consulting
the answers you will want to do your own
figuring. For your convenience, working space
has been provided beneath most of the exercises.



BEYOND THE WHOLE

NUMBERS

David W. Wells
Stuart A. Choate

4

1. Why do w need numbers other than whole numbers?
2. What is a nonnemative mtinel number?
3. What are some physical interpretations of the number ?

6
4. What are some strategies for introduchig

the meaning of a nenneeative rationed number
to elementary school pupils?

As long as early man needed only to determine the number of objects
in a given collection, the set of numbers (0, I, 2, 3, ...1, which is the set
of whole numbers, served him well. Using only the whole numbers, he
could determine the number of animals in his possession that could be
used to provide food and clothing and the number of weapons needed
by his family or tribe to hunt food or defend their home. The whole
numbers were adequate for these and other situations that required only
counting.

THE NEED FOR NUMBERS BEYOND THE WHOLE NUMBERS

There is also little doubt that the whole. numbers were used to make
crude measurements to the nearest whole unit. But when man began to
construct permanent homes, engage in commercial trade, navigate the
waters of his world, and assess taxes on his land and other possessions,
the whole numbers were no longer adequate. When he attempted td
determine, with greater precision than he had in the past, the measure of
such properties of an object as length, area, volume, weight, capacity,
and temperature, the subdividing of vnits of measure became necessary.
To express measurcs in terms of these subunits, numbers beyond the
whole numbers were needed.

1
IL



The Rational Numbers

Thc set of numbers zero and grt liter that can be named by fractions
was invented to satisfy the need. This set of numbers is called the set of
nonnegative rational numbers. Onc-half, two-thirds, nincfifths, dem,
and zero are all examples of nonnegative rational numbers. In general,

any number that can be named by a fraction ab , where a names a whole

number and h names a whole number different from zero, is a nonnegative
rational number.

negativ redonel numbers um positive rational numbers

-T -4

nonnegative rational numbers

Although thc nonnegative rational numbers were invented to satisfy a
practical need of man, there is also a mathematical need for this set of
numbersthe need to be able to divide any and every whole number by a
whole number greater than zero.

Students beginning the study of rational numbers will know from their
previous work in mathematics that the sum of any two whole numbers is
always a whole number. Also, the product of any two whole numbers is a
whole number. Expressing thcsc facts with frames as shown below, wc
say that if you usc for the frames any pair of whole numbers, the result in
each case will always be a whole number.

0+Ae. .

This is to say that the set of whole numbers is dosed under the operations
of addition and multiplication. In general terms,

For any pair of wlwk numbers a and b, a + b and a X h
are whole numbers.

However. thc set of whole numbers is not closed under the operation
of division. That is, not every pair of whole numbers has a quotient that
is a whole number. For example, in the sentence 3 + 4 1:1 there is no
whole number for CI dust will make the sentence true. Consequently, if
wc wish to always be able to divide any whole number by a whole number
except zero, numbers beyond the whole numbers arc nectled. It will be
shown later that the set of nonnegative rational numbers satisfies this
mathematical need. 2

4 r?



Beyond the Whole Nutnbers

Man has continued to invent sets of numbers to satisfy new needs. To
solve each of the four equations shown below, the set of numbers indicated
at the right was invented.

Equation Set of Numbers Invented
n 9 5. Integers

3n r. 2. Rationals
n.n == 2. Real numbers
not 4. Complex numbers

The invention of thew sets of numbers and others has made possible
the solution of some very important mathematical and practical problems.
The scts of numbers named above arc the ones usually encountered in
elementary or secondary schools.

In this book the nonnegative and negative rational numbers, along with
the integers, will bc discussed. During the planning of the book the authors
recognized that two strategics wcrc available to them in developing the
important ideas about the rational-number systcm. The first strategy
was to extend the set of whole numbers to include thc integers and then
extend the set of intcgcrs to include thc rational numbers. The second
strategy was to extend the set of whole numbers to include the non-
negative rational numbers and thcn extend this set to include the negative
rational numbers. Each of the strategies has some advantages to recom-
mend it. However, the second strategy was chosen because it most nearly
follows the development usually presented to elementary school pupils.
Sincc the early chapters of this book focus on the nonnegative rational
numbers and that is an awkward phrase to continue to write and to read,
we use thc tern, rational number to mean nonnegatiee rational number
until the complete set of rational numbers is treated in a later chapter.

PHYSICAL MODELS FOR RATIONAL NUMBERS

When young children arc first introduced to the ideas of rational
numbers in school, they have usually had experience with the whole
numbers and some of the numerals used as names for these numbers.
For example, their past experience helps them understand that the sets
shown in the diagram here, and all other sets equivalent to them, have
only one property in commonnamely, the number idea of twonessand
that the word "two" and thc numeral "2" arc names for the number two.
It is oho likely that children recognize that the number two can also be
named by "1 + I," "2 -I- 0," "3 I," "II," "2 X I," "4 2," and so
forth. Some children may even recognize that the set of numerals for the

otawnber two is an infinite set. As teachers we can usc thcsc previous
experiences with whole numbers as a foundation for developing thc mean-

-3
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The Rational Numbers

ing of rational numbers and fractions with children in a way that is
consistent with the pattern used for developing the meaning of whole
numbers and their names.

Physical models can be drawn or constructed that are useful in develop-
ing some of the important ideas about rational numbers and a method
for naming them.

rfano-Rogion Models

If we think of the square region shown here as a one-unit region, we
can associate a number with the amount that is shadAI. Notice that what

we know about whole numbers can be used to describe the physical
situation. The unit is separated into two congruent regions, and one of
the Iwo congruent regions is shaded. The ordered number pair (1,2) can
be used to describe the situation. A numeral for the rational number
associated with the amount that is shaded includes the names of the

1numbers in the ordered number pair (1,2) and is written as , read

"one-half." The fraction - is a reminder that 1 of 2 congruent parts is
2

,41-



Beyond the Whole Numbers

1
shaded. We say that of the unit region is shaded. To answer the question

2

"How much of the unit region is shaded?" we reply, "One-half." It is
interesting to note that a whole number cannot be used to answer this
question.

It is important to notice that at the outset a basic unit or unit region
was established. Also, the example above illustrates three other important
ideas concerning rational numbers. These ideas are listed below:

1. The rational number one-half is associated with the physical situa-
tionthe amount of the unit region that is shaded.

2. The number pair (1,2) may be used to indicate that 1 of the 2
congruent regions in the unit region is shaded.

13. The fraction is a name for the number one-half and is a reminder
2

that 1 of 2 congruent regions is shaded.

The one-unit rectangular region shown next is separated into four
congruent regions, with three of the four shaded. The number associated
with the amount that is shaded is three-fourths. The ordered number
pair (3,4) indicates that 3 of the 4 congruent regions are shaded. The

3
ifraction s a name for the rational number three-fourths and is a re-

4

minder that 3 of the 4 congruent regions in the unit are shaded.

By again referring to this physical model we can see that the second
number of the ordered pair (3,4), the denominator, designates the number
of congruent regions into which the unit region is divided and the first
number of the ordered pair, the numerator, indicates the number of
congruent regions that are shaded. The ordered number pair (3,4) can
be called the numerator-denominator pair.

A plane-region model can also be constructed for rational numbers
3

such as . Think of the one-unit region shown by the heavy black lines
2

in thc next figure. The unit region is separated into two congruent regions,

and three such regions are shaded. The rational number 22. is associated

with the amount that is shaded. The numerator-denominator pair (3,2)

5
,7J.LI



The Rational Numbers

indicates that the unit region is divided into two congruent regions and
3three such regions are shaded. The fraction names the rational number
2

three-halves.

Study the plane-region models shown below and verify the correctness
for each model of (1) the rational number, (2) the numerator-denominator
pair, and (3) the fraction for the rafional number. The unit regions are
shown by the heavy black lines.

If five-halves four-fourths

(5,2) (4,4)

5 4

2

five-fourths

(5,4)

5

4

zero-thirds

(0,3)

0
3

Every rational number can be named by each fraction in an infinite
set of fractions. In the plane-iegion models shown below, each unit
region is congruent to each of the other unit regions and the same amount
is shaded. Notice that a different numerator-denominator pair describes
each model and a different fraction names the same rational number
associated with the shaded amount that is common to all the models.6



7-1
numerator-denominator

pair (1,3)

fraction 1
3

numerator-denominator
pair (3,9)

3fraction 9

Beyond the Whole Numbers

numerator-denominator
pair (2,6)

2fraction 6

numerator-denominator
pair (4,12)

fraction
12

From these models it can be seen that the numerator-denominator
pairs (1,3), (2,6), (3,9), and (4,12) all describe a model with the same

amount shaded. Also, the fractions-1 2 3 , and are all names for the4
3 ' 6 ' 9 12

number associated with the same shaded amount and therefore are

equivalent fractions. To assert that
1 3write = . This assertion means
3 9

the same rational number; it does

3
3 and are equivalent fractions we

9
only that the fractions 1 and 3 name

3 9
not mean that the fractions are the

same or identical.
If we use our imagination, additional models like these can be con-

structed in our minds to show that the rational number associated with
the shaded amount has each numerator-denominator pair in the infinite
Set

1(1,3), (2,6), (3,9), (4,12), . . .1.

Furthermore, each fraction in the infinite set of fractions

2
k3 6 ' 9 ' 12 '

is a name for the rational number one-third. This set of fractions is called

7



The Rational Numbers

an equivalence class of fractions for the rational number one-third. The
set of all fractions that name the same rational number is an equivalence
class of fractions for that rational number.

Exercise Set 1

1. Shown below are some models for rational numbers. For each unit
region name the rational number, the numerator-denominator pair that
describes the physical situation shown in the model, and the fraction that
names the rational number. Assume that each figure represents one unit.

a. b. c. d.

4V1'
2. Draw a plane-unit-region model for each of the rational numbers

4 7 , 4
, , anu .

3. Choose from the pictures below those that are good models for a
rational number. Then tell why the others are not good models.

a.



d.

Beyond the Whole Numbers

S. f.

4. Draw a plane-unit-region model for each of the rational numbers
4 6 6 0

and -4

5. Draw plane-unit-region models to show that the rational number

-3 has the numerator-denominator pairs (3,5), (6,10), and (12,20).
5

6. Draw plane-unit-region models to show that the fractions of each
pair are equivalent.

3 6 6 3 0 0 A 5 10 5 4a.
4 ' 8 b.

10 ' 5 e. 31 3 u. 3 , 3 ' a

V. In drawing the models for exercise 6, why is it necessary that the9



The Rational Numbers

same unit region or two congruent unit regions be used to show that the
fractions of each pair are equivalent?

1 2 3. Draw a set of plane-unit-region models to show that - -4 ' 8 ' 12 '
, and 5 are members of the same equivalence class of fractions.

16 20

19. If the plane region shown below is -5 of the unit region, how can the

unit region be constructed? If it is -3 of the unit region?
5

10. During a class discussion, a pupil put the following diagrams on
1 1the board in an effort to show that - is greater than -2 After completing
3

the diagram, Ile wrote -1 > I Most of the other pupils did not agree (and3 2

correctly so). What is wrong with the pupil's argument that > ?

Sets as Models

Sets of objects can also be used as physical models fo: rational numbers.
In the set of dots shown below the numerator-denominator pair (2, 3) can

10



Beyond the Whole Numbers

2be used to indicate that 2 out of 3 of the dots are black, and the fraction
3

compares the number of black dots to the total number of dots in the set.
2To express this comparison we say that of the dots are black.
3

Each of the sets in the next illustration has been separated into three
equivalent subsets. The dots in two out of the three subsets in each set
are black. Two-thirds compares the total number of black dots to the
total number of dots. Now we can think about the infinite number of
sets that might be constructed in the same pattern except that with each
construction the number of dots in the equivalent subsets would be
increased.

The following models for the rational number two-thirds are similar,
except that the dots are not grouped in subsets. The arrangement of the
dots within each set makes clear that the numerator-denominator pairs
(2,3), (4,6), (6,9), and (8,12) can be used to describe the models for the

2 4 6 8rational number two-thirds. Also, the fractions , and are all
12

names for the rational number two-thirds. If one could continue without
end to construct models for the number two-thirds in the same pattern



The Rational Numbers

and write the fraction for each model, he would have the equivalence class
of fractions for the number two-thirds, which is

A § 8 12
k3 6 9 12 15

We now illustrate how the dots in a set of twenty-four can be regrouped

into equivalent sets to show that 2 4 8 and 16 are equivalent fractions.

The fractions 6
'
10 , and 12 are also equivalent to 2 However, since the

9 15 18
denominators 9, 15, and 18 are not factors of 24, the equivalence cannot
be shown by using a set containing twenty-four dots.

II)

12

0

0

0

0

o

0

0

ii
o

24

Number-Line Models

The last model for rafional numbers to be considered in this chapter
is that of the number line. Many children in the early eiementary grades
have had experience with the number line in their work with operations on
whole numbers. Consequently, these children will recognize a number line
such as the one shown below, where the whole numbers are pltced in
correspondence with points on a line. Furthermore, they will recognize
that to construct a number line such as this, a unit segment is marked off
and the numbers 0 and I are assigned to the endpoints of the unk segment.
Then, beginning with the point corresponding to 1, segments congruent
to the unit segment are marked off to the right. The whole numbers are
then consecutively placed in correspondence with the endpoints of the
segments. The whole number that corresponds to any point is the length

12
t. 1,41Ik
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Beyond the Whole Numbers

of the segment beginning at the point for 0 and ending at the point that
corresponds to that number. For example, 2 is the length of the sqment
beginning at 0 and ending at the point that corresponds to 2.

unit segment

1 2 3

Children whose background includes experiences such as those just
described are ready to use a number line as a model for rational numbers.
In the next figure, a number line was first constructed as described above
and then the unit segment was separated into two congruent segments by
point A. The number associated with point A is one-half, and the length

of the segment from 0 to Ais unit. Notice that the unit is separated into

two congruent parts and that one of the two parts is being used. The
numerator-denominator pair (1,2) describes this physical situation, and

the names of the numbers in the pair are included in the fraction 1 , a
name for the number one-half. 2

unit segment

rjr-1
0 1 2 3LJ

1 part

3To locate the point that corresponds to , mark off a unit segment,

separate it into two congruent segments, and then add another segment
congruent to these. as shown below.

unit segment

10 1 i 2 3I.

t )v
3 parts

5The points that correspond to 2
' '

, and can be located in like
2 2 2 2

13--



The Rational Numbers

manner. The point tbat corresponds to is the same point that corresponds

wit segment

1 3 3

1 1 1 1 1
a a a a a a

0to 0. This seems reasonable because the fraction 2 is a reminder that the

unit segment is separated into two congruent segments and 0 of these
segments have been counted off. On number line (a) shown below thc
points have been located that correspond to the whole numbers 0, I, 2, 3,
and 4; on number line (b) the points have been located that correspond
to the rational numbers represented by fractions with denominator I ; on
number line (c) the points have been located that correspond to the
rational numbers represented by fraction. with denominator 2; and on
number line (d) the points have been located that correspond to the
rational numbers represented by fractions with denominator 4.

a

4
0

I a.
1 a 3 4

1 1 1

1 1 1 1 11 1/ 11 11 .11 11
4 4 4 4 4 4 4 4 4 4

14
/



Beyond the Whole Numbers

Thc next figure shows on a single number line the location of points
that correspond to the whole numbers I, 2, 3, and 4 and rational numbers
represented by fractions with denominators of I, 2, and 4.

III
1

I

I
1 Ijilt

1

I
1

1 1 1 1

1 1
a i 1 1

1 I 1 1ilifillf
1111111

I

1

1

I

I

4

1111111if #11-V.11"4"11131

Since -5 and
10-- correspond to the same point, they are fractions for the

2 4
8same rational number. They arc equivalent fractions. Also, -2

' '
-4 and -

I 2 4

correspond to the same point as the whole number 2. Since the whole
number 2 can be named by a fraction, 2 is a rational number. In general,

any number that can be named by a fraction , where a names a whole

number and b names a whole number other than zero, is a rational num-
ber. From the number line shown above it can be seen that every whole
number can be named by a fraction in which the numerator is a whole
number and the denominator is a whole number different from zero.

By referring to the same number line it can bc seen that if a rational
anumix:r - -orresponds to a point to the right of the point for the rational
b

number- , then > and < 9- Children can use this idea to determine
b d d b

that or the three statements

3 13 3 13 3 13

> 76.' 4 16 '

3 13only - < is true, because on an uppropriate number-line model the
4 16

point for ts to the right of the point for -3 Notice that if two fractions13.

i
16 4

i have the same denominator, the one that has the greater numerator
i corresponds to a point to the right of the point for the other number.
1

9 13 3
That is, - and have the same denominator, and the point for

1

is to
4 4 4

15



The Rational Numbers

9 13 9the right of the point for ; so > . Therefore, oftwo rational numbers
4 4 4

named by fractions that have the samc denominator, the one that has
thc grcatcr numerator names the greater rational number.

It is also important to notc that two rational numbers whose fractions
have the same numerator can be comparcd by comparing the denomi-

nators. For example, in the figure, the fractions 3 and 3 have the same
4 2

numerator. Since the denominator 4 is greater than the denominator 2,
3

then 4 is less than
2

As we think about the way the number-line model was constructcd,
challenging questions emerge.

I. For each rational number is there a corresponding point on the
number line?

2. For each point to the right of the point for zero is there a corre-
sponding rational number?

3. For each whole number there is a unique next whole number. For
each rational number is there a unique next rational number?

Exercise Set 2

1. For each set of objects name a rational number suggested by the
set, the numerator-denominator pair that describes the physical situation
shown in the model, and the fraction that names the rational number.

a. 0 c. 00000XX

32. Draw three different sets of dots so that of the dots in each se
4

are black. Why is it that you can draw three different sets of dots, of

which arc black, without first knowing how many dots must be in each
set?

3. Draw a set or 24 dots so that 5 of them are black,
6

4. Draw a set of 30 dots with 20 of them black. Show how the 30 dots

16--
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can be separated into subsets to illustrate that 3 of the dots are black.
3

1 2 3 6 95. Draw a set of 36 objects and use it to show that
' ' ' ' 182 4 6 12

and 18 are all names for the same rational number and therefore members
36

of the equivalence class of fractions for one-half.

6. Draw a number-line model for each of the rational numbers shown
below. Use a separate number line for each number.

4 6a. 3 d. i
5 0

7 16
e. 3 f. Ts-

7. What rational number corresponds to each of the points shown on
this number-line diagram?

.4 I S S I lib
0 1

S. Draw number-line models to show that the fractions in each set
are equivalent.

2 4 8 4 3 5 9 18a. b3'6 6'3 c.

19. Draw a set of objects to show that the same rational number 4 is

17
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represented by fractions with numerator-denominator pairs (1,4), (2,8),
(3,12), and (4,16).

10. Use the number line shown on page 15 to help you tell why each
statement is true.

3 2a.

1 1
b. <

4 2

C.
4 2

d. 1 is a rational number.

a.
0
2

4
4

=

=

0 =
4
2
2

0

g. The set of whole numbers is a subset of the set of rational numbers.

h. Some rational numbers are not whole numbers.

STRATEGIES FOR INTRODUCING RATIONAL NUMBERS

In the first section of this chapter it was Sated that here the term
rational numbers would refer to only the nonnegative rational numbers
and that the complete set of rational numbers would be treated in a later
chapter. Mso, as stated, the desire to substitute the term rational numbers
for nontwgative rational numbers was motivated by convenience. It is
awkward to continue to write and to read such sentences as "Three-
fourths is the nonnegative rational number associated with the shaded
amount." Furthermore, the continued use of such cumbersome language
can interfere with the reader's concentration on the main points in a
discussion. Authors of current textbooks have recognized that there is no
convenient name for the nonnegative rational numbers. In an effort to
help both teachers and pupils focus their attention on the important ideas
about these numbers, such names as "fractional numbers," "numbers of
arithmetic,' and "rational numbers" have been used.

Regardless of the name used for this set of numbers throughout a
textbook series, the important ideas about them are introduced in es-
sentially the same way as in the preceding sections here. The fact that
there is no uniform agreement on the language to be used, different authors

18
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Beyond the Whole Numbers

assigning different names to this set of numbers, points up the related
fact that the ideas about rational numbers are more important for children
to grasp than the names. The choice of a name for an idea such as "a
nonnegative rational number" is arbitrary; it is the idea that must be
understood by children. This attitude toward language is important in
developing strategies for teaching important ideas about rational numbers.

Showing the Need for Numbers beyond the Whole Numbers

Long before beginning formal study of rational numbers it is important
for pupils to engage in many exploratory activities to increase their
awareness of the need for numbers beyond the whole numbers. Two
examples of such activities are given below.

1. Place three candy bars of the same kind and size on a table and break
each of them into two pieces of the same size, as shown below

1

Ask these questions: (1) How many candy bars are on the table? (2) If I
pick up one piece of the first bar [actually pick up half of the first bar],
how much candy is left on the table? (3) If I pick up all of the second bar,
how much is left?

The discussion generated by the pupils' responses to these and similar
questions should focus on the need for numbers beyond the whole numbers
to answer questions beginning with "How much." It is of secondary
importance that during the activity children come up with the correct
rational-number answers to the questions.

2. If the children have had some previous experience with measurement
and the number line in their work with whole numbers, draw a number
line on the chalkboard and place a piece of string along it as shown below.
Then ask: How many units long is the piece of string? After they count to
obtain four units,

0 1 2 4

bring the ends of the string together to make a double strand and ask:
If we make this string into two pieces of the same length, how long will
each piece be?

=1

I PIP
0 1 2 3 4



The Rational Numbers

Then use a piece of string three units long and place it along the same
number line. Ask: How long is the piece of string? After the children
recognize that it is three units long, ask: If we make this string into two
pieces of the same length, how long will each piece be? Some pupils may
recognize that each

MMD

I- I I I I i
0 1 2 3 4

piece is one and one-half units long. However, most pupils should be
helped to discover that it is more than one and less than two units long
and that there is no whole number for the length of the string. If we are
going to have a number for that length, numbers beyond the whole
numbers are needed.

Using Ordered Number Pairs

After reading the section "Physical Models for Rational Numbers,"
you may have felt that the emphasis on using ordered number pairs to
describe the models was greater than necessary. This strategy was chosen
deliberately. The ordered number pairs (numerator-denominator pairs)
make a strong connection between the idea of a rational number and the
fraction names for the number and direct the attention of pupils to the
idea that a rational number involves a relation between two whole
numbers. Furthermore, for pupils who continue the study of mathematics,
recurring experiences with the use of ordered number pairs can serve as a
solid building block for thinking of a rational number as an equivalence
class of ordered pairs.

Sometime prior to using a textbook for a formal introduction of
rational numbers we can help pupils become accustomed to using pairs ..-4
whole numbers. As we talk with pupils about some of the occurrences in
the classroom or on the playground we can use ordered-number-pair
language and encourage pupils to do the same. Some examples are listed
below:

(a) 2 out of the 5 people who usually sit at this table are absent.
(b) 7 out of the 10 pencils are red.
(c) 2 out of the 7 cars are black.
(d) 1 Out of 2 of Tom's tosses scored a point.
(e) 5 out of the 5 people at this table are boys.
(f) 17 out of the 20 plants grew.

Most textbook series use the same physical models for rational numbers
as those used in this chapter. However, before a textbook is employed to

.3 0
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introduce rational numbers, children can be given some experience in
using number pairs to describe several situations of the types shown below.
To focus attention on the properties of the models, some specific questions
are suggested beneath each model.

The region is separated into four smaller regions of the same size. How
many are shaded?

What does the number pair (3,4) tell about the region? What does (1,4)
tell about the region?

A
11111111111101111111MININS11111111111.3-----1

Into how many segments of the same length is AB separated?
How many are shown in the shaded portion of the number line?
What number pair can be used to tell about the segments shown in the

shaded portion? In the unshaded portion?

0 0 0
How many dots in the set?
How many dots are black?
What does the number pair (2,5) tell about the set? The number pair

(3,5)?
At the risk of seeming to dwell too long on the idea of using ordered

pairs of numbers to describe physical models, we present one other
technique. As shown in the following illustration, models cut from poster
board have hinged flaps that can be manipulated to depict various sit-
uations to be described by ordered pairs. The flaps are shaded. Each white
region represents one unit. The figure at the left has two congruent unit
regions shown in white; the one in the middle, four; and the one at right,
six.

(1, 2)

t.)

r,4
2, 4
3, 4

21
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The Rational Numbers

Children's experiences using ordered number pairs to describe physical
situations provide a good base on which to build an understanding of the
idea of rational numbers.

Using Physical Models to Supplement the Txtbook

Successful teachers realize that children gain by drawing or constructing
for themselves some of the models shown on pages of their textbook.
Suppose a picture of a model for the rational number one-third appears in

the text as shown here. Children can use strips of adding-machine tape to
make their own models to use for the discussion suggested by the text.

Providing pupils with an opportunity to construct their own models for
rational numbers to be used along with the discussion in the textbook can
increase the level of individual involvement in classroom activities. Pupils
involved in a variety of well-thought-out activities arc more likely to
learn than those whose only individual activity is using a textbook. How-
ever, when pupils arc using plane-region models, whether constructed
models or pictures in a textbook, the following questions should be under
continual consideration.

(a) What is the unit region?
(b) Into how many congruent regions is the unit separated?
(c) How many of the congruent regions are shaded?
(d) What number tells how much is shaded?
(c) What numerator-denominator pair describes the model?
(f) What is a fraction for the number?

Although the questions listed above arc suggested for use with plane-
region models, a similar set of questions can be generated to serve the
same purpose for use with sets of objects or a number line. Questions (a),
(b), and (c) can be rephrased to stress that when a set of objects is the
model, the unit is the set, and when the number Hne is used, the unit is a
segment.

Paper folding can also be used to construct models to illustrate that a
rational number can be named by many fractions. For example, suppose
that pupils have constructed a plane-region model for the number one-
third as shown in the first of the illustrations below. Then a series of
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consecutive folds is made to obtain the other three models. Dotted lines
indicate the creases made by the folds.

=UMRR=
I 1 I Ilit I I illeItt;ill I Ilit II

1 1
$ S 12 ets

In using models such as those shown here to illustrate the meaning of
equivalent fractions, questions should be used that emphasize that the
shaded amount remains constant and that with each fold the number of
congruent regions in the unit region is doubled, or multiplied by two.
Sample questions: After the second fold, how many times as many
congruent regions are in the unit region? How many times as many
congruent regions are shaded? Why does folding seem to multiply by the
same number both the number of congruent regions in the unit and the
number of shaded congruent regions?

As pupils move through mathematics programs their use of the number-
line model for rational numbers will continue to increase. So that a number
line can always be available, some teachers have used the cork center of
the tack strip over the chalkboard to tack small congruent strips of
construction paper as shown below.

If each strip is considered a unit segment, then chalk numerals can be
placed along the line as shown.

0 1 2 3 4 I II 7

However, if a number line is needed with the unit segment separated into
five congruent segments so that fifths can be counted along the number
line, then five of the strips taken together can be considered the unit.

lit a if 1 If
SUMMARY

Rational numbers were invented to answer questions that often could
not be answered with whole numbersquestions beginning with such
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phrases a3 how much, how long, how heavy, how far, and so forth.
The idea of a rational number is developed by using physical models

plane regions, sets of objects, and number lines. These models provide the
vehicle for developing the following ideas about rational numbers.

I. When thinking of a rational number, a unit is always specified or
implied. The unit may be a segment, a set, or a plane region.

2. The physical model for a rational number can be described by an
ordered pair of whole numbers. This ordered pair of numbers can be
called a numerator-denominator pair.

3. A rational number can be named by a fraction that includes the
names of the numbers in an ordered pair that describes a model.

4. Two fractions that name the same rational number are equivalent
fractions.

5. There is an infinite set of ordered number pairs, just as there is an
infinite set of equivalent fractions, for each rational number. The infinite
set of equivalent fractions for a rational number is called an equivalence
class.

Many of the difficulties encountered by children in working with
rational numbers can be traced to a lack of good experiences with physical
models. Experiences with physical models will be frequently recalled by
children in their efforts to think through the algorithms for computing
with fractions. The time spent on a careful development of the meaning of
rational numbers and methods for naming them by using physical models
will be time well spent for both teacher and pupil.
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FRACTIONS

AND RATIONAL NUMBERS

Leon A. Henkin

1. What it the difference between a fraction and a rational number?
2. What do we mean by equivalent fractions?
3. Of what use ars equivalent fractions?
4. What are the difficulties in teaching the concept

of equivalent fractions and how do we motivate
students to overcome these difficultlas?

As we have seen, rational nwnbers are numbers that are needed to
describe certain situations and solve certain problems where the whole
numbers by themselves are inadequate. The whole numbers are among the
rational numbers, but there are many rational numbers that are not whole
numbers.

Fractions are special symbols that are used as names for rational
numbers. Each fraction is composed of the names of two whole numbers
separated by a horizontal bar. The numeral above the bar denotes a whole
number called the numerator of the fraction; the numeral below the bar
denotes a whole number called the denominator. An important task of the
teacher is to bring the students to a full understanding of the'relation
between the rational r.umber named by a given fraction, and the numerator
and denominator named by the upper and lower parts of the fraction.

Each fraction names exactly one lational numberno more and no less.
However, every rational numberwhether it is a whole number or
nothas many dtfferent fractions among its names. Whenever two fractions
name the same rational number they are called equivalent fractions. For

10example, 6 and I
5

are equivalent fractions.

In develorng the decimal system for naming the whole numbers, we
provide each whole number with just one decimal numeral as its name.

25
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Why, then, do we develop the system of fractions for naming rational
numbers in such a way that each rational number gets many different
fractions as its names? If the student gains a clear understanding of the
answer to this question, he will be able to overcome the principal
difficulties ordinarily encountered in passing from the study of whole
numbers to the study of rational numbers.

Actually, the question raised in the preceding paragraph has two dif-
ferent answers, and it is important for the student to understand each of
them.

First, each rational number arises as a solution to problems of a certain
kind. The fvmulation of any such problem, as we shall see below, involves
two whole numbers. It is natural, therefore, to describe the rational
number that solves the problem by means of a name (the fraction) made
up from the names of these two whole numbers. However, it can easily
happen that the same rational number solves two different problems of
such a kind; hence this rational number will be described by the two
different fractions corresponding to these two problems.

The second reason we have devised the system of fractional numerals so
that it provides many different names for the same rational number is
connected with the algorithms for computingsums, differences, products,
and quotients of rational numbers. We shall see that these computations
are greatly facilitated by an ability to pass back and forth among several
different fractional names for the same rational number.

PROBLEMS GIVING RISE TO RATIONAL NUMBERS

Perhaps the simplest and most vivid way to see the need for other
numbers besides the whole numbers is to work with the number line.
The whole numbers serve as "addresses" for certain points on the line, but
one glance shows that most points on the line lie between these.

0 1 2 3 4

We want new numbers to serve as the addresses for points lying be-
tween points having whole-number addresses. Actually, many of these
in-between points can be located with reference to two whole-number
points.

For example, consider the whole numbers 2 and 3. Let us take the
segment of the number line from the point for 0 to the point for 2 and
divide it, somehow, into 3 parts of equal length. We must insert two points
of division into the segment, and we shall call the first of these the point
P2.3 (read aloud as "P two three").

36
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f Pi
2
I

I

I

l
4

Similarly, given the whole numbers 5 and 4, we locate the point /18.4 on
the number line by dividing the segment from the point for 0 to the point
for 5 into 4 parts of equal length, and labeling the first of these division
points 115.4 (read aloud as "P five four").

Pk4

0 i T2 I 3 1i 4 5
1

I I I
1i
II I I I II I I

I 1 1 1 I

I

In general, if a and b are any whole numbers, the point Pa b is obtained
by dividing the segment from point 0 to point a into b equal parts and
taking Pa. b to be the first division point.

Pob

I- f 1 I of . 1 4 A
0 I 1 2 3 a-1

1

1 1
1

1
1 t
1

1 I . . . 6-

k. sel 0 0 01Mil
b segments of equal length

Observe that we cannot divide a segment into "0 parts of equal length,"
so the notations P- 2,0, PCO, and in general Pao for any whole number a are
undefined. In other words, we agree to use the notation P.. b only in case
a and b are whole numbers with b 0 0.

Another thing to observe is that in general the point P.,b is not the same
as the point Pb.a, For example, the point Ps., is obtained by dividing the

102,1
I

NI
I 1/0i

0 1
? I

2

I

1

3

t
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segment from point 0 to point 3 into 2 parts of equal length. Notice that
P3.2 is to the right of point 1, while P" is to the left of point 1 (as we see
from the first part of the diagram). Hence P3,2 0 P2.3.

In the above discussion we have spoken of dividing a segment into b
parts of equal length without looking into the question of how we can
actually carry this out. To search for a practical way to divide a given line
segment into b parts of equal length can be a valuable experience for
elementary school students. Of course the easiest case is when b = 2.
Someone is sure to have the idea of using a piece of string the same length
as the given segment, then finding the midpoint by holding the endpoints
together and finding the point at which the string folds over. After that
the case b = 4, and then b = 8, should be tried, so that the students learn
that it sometimes pays to repeat a good idea

But the cases b = 3, 5, or 6 will not be so simple. Most students will
find themselves led to experiment with various methods of approximating
points such as P1.3 and then of improving the approximation. This is,
of course, an excellent form of mathematical activityespecially if the
teacher urges the desirability of seeking a systematic way to improve any
approximation.

By using Euclidean geometry one can find the point P,,, for any value
of b (b 0 0, of course) by a uniform method involving two number lines
placed at an angle to one another. For example, 117.,, may be found on
the lower line by constructing a line connecting the point 5 on the upper
line with the point 7 on the lower line. It will then be found that the lines

1 Pt. 2 3 4 5 7

parallel to this connecting line that pass through the points 1, 2, 3, and 4
on the upper line will divide the segment from 0 to 7 on the lower line into
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5 parts of equal length. While elementary school children cannot be
expected to follow a proof of this fact, the teacher can lead them by experi-
ment to appreciate that a sequence of equally spaced parallel lines produces
segments of the same length on any line that lies across them.

By looking back at the definition of P2,3 we see that it can be described
as the point on the number line such that if the segment from point 0 to
P2,3 is laid off 3 times (starting from 0), we arrive at the point 2. Similarly,

P2,3

0 1 2

ist 2nd 3rd

for any whole numbers a, b with b 0, the point P, is such that if the
segment from point 0 to Pa, is laid off b times, we arrive at the point a.

Now we want to describe a quite different way of arriving at a point on
the number line, being given two whole numbers a, b such that b # 0.
The new point thus constructed will be called Q, to distinguish it from
Pa, bs described above.

Let us first illustrate the new process by an example. To construct the
point Q3,4 we divide the unit interval (i.e., the segment from point 0 to
point 1) into 4 parts of equal length, we count off 3 of the little intervals
produced by this division process (starting from point 0), and we take
Q3,4 to be the right endpoint of the last of the little intervals thus counted
off.

03,4
I I

0 1 2

In general, to obtain Qa,b we divide the unit interval into b parts of
equal length, we count off a of the little intervals produced by this division
process, and we take the right endpoint of the last of the little intervals
thus counted off.

Qs,
I Do'

0 1 2

Although the description of the point Qa, resembles that of Pa, b in
certain respects, the methods of finding these points are obviously different
in various details. Children will probably be surprised, therefore, if they
compare two points such as P2,3 and Q2,3, to find that these are at the
same place on the number line. A few more such tries will probably
convince them that Pa, and Qa, are always the same. But why?

If children can be led to experiment and to ttek an explanation or why
Pa, b Qa in general, they will gain a valuable mathematical experience.

29
-



The Rational Numbers

Of course for the case where a = 1 it is easy enough to see that the defini-
tion of Q,,b reduces to that of P1 . b, for in both cases we must divide the
interval from point 0 to point 1 into b parts of equal length, and then take
the right endpoint of the first of the little intervals thus produced. The
next case to consider is the case a = 2.

In order to understand why P25 = Q2,5, for example, we have to
consider the following ways of subdividing intervals. It is pretty clear that

Pt'
I I Ob.

0 1 2 0 1 2

5 Intervale 5 Intrvals

in order to understand the connection between the two processes it will be
desirable to divide the interval from I to 2 into 5 segments of equal length
in the second diagram, even though this is not needed for the construction
of either P25 or Q2,5. It will then become apparent that each of the five
intervals into which the interval from 0 to 2 is divided in finding P25
(first diagram) coincides with two of the intervals of the length used in
finding Q2,5 (second diagram). Appreciation of this fact will provide a
useful background of experience for later introduction of the concepts
of ratio of lengths and scale factors in drawings, maps, or geometric
figures.

Traditionally, it will be recognized, the description of the point Q2,5 is

the one that is most often used to define the number 2 at the elementary
5

school level. That is, we take 2 to be the address of the point we have
5

called Q2.8. Since we have seen that actually P2.5 and Q2,5 are the same
point, it is clear that we can equally well use the description of the point

P2.8 as a way of introducing the fraction to school children. Mathemati-

cally, the two descriptions are equivalent. From the pedagogical view-
point, however, each method has advantages and disadvantages when
compared with the other. It will be instructive to look at some of these.

In describing the point (25,5 the instructions were to divide the interval
from 0 to I into b parts of equal length and then, by counting from the
left, to locate the division point numbered a. Obviously, however, this
is possible only in case we have a < b. For example, G., makes sense but
Q2,5 does not. On the other hand, the description of Pa.b is equally
applicable whether a < b, a = b, or a > b. For example, we have con-
sidered both of the points P2.3 and P3,2. From this point of view, the use

30
40



Fractions and Rational Numbers

of would appear to be advantageous relative to the use of Q, b, for it

is certainly desirable for students to realize that 7 and 5 are equally good
5 7

rational numbers, susceptible of definition by a common method.
Of course the definition of (20.b can easily be modified to deal with

a = b or a > b. We simply provide that, instead of dividing just the
interval from 0 to 1 into b parts of equal length, we divide each of the
intervals from 0 to 1, from 1 to 2, from 2 to 3, and so forth, into b parts of
equal length. Then we can count off these smaller intervals, starting from
the point 0, and we can arrive at the one whose number is a, whether
a < b, a = 6, or a > b; the right endpoint of the last small interval thus
counted is our point Q.

Qs,: Chi Qs,: Qs,* 124,8 Chi Go,:
I

0 1 2 3

Each original interval divided into 2 parts of equal length; 3 small
intervals counted off to get Q3.2

1.41

0 1 2 3

1

The whole interval from point 0 to point 3 divided into 2 parts of
equal length

In particular we note that P3.1 and G,, are the same point, correspond-

ing to the point for 3. It follows that = 3. In general, for every whole

number a, we have

a = a.
1

Another special case occurs when a = b and neither is 0. Thus, P3.3
and 123,, arc the same point, corresponding to the point for 1. It follows

that 3 = 1. In general, for every whole number a that is not 0, we have
3

a
1

a

What can we say for the point P0,4 = Q0,6? It isn't too hard to see that
it makes sense to take this point for thc 0 point. Thc interval from 0 to 0
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divided into b equal parts will simply give the point for 0. It follows then
that for every b 0,

We could now ask, "Under what circumstances is

In other words, when will P, I. be the point for 0? The only interval from
the 0 point to the point for a that gives 0 as the right endpoint for the first
interval, when clivkled into b equal parts, is the interval when a = 0.
It follows then that if 2 = 0 we must have a = 0.

When the original description of Qd.b is modified in the manner just
described, it has the advantage of suggesting that the original number
line is simply being refined by using a smaller unit of length. Obviously,
this enables the teacher to bring in the whole idea of measurement and the
need for continually using smaller units of length in order to obtain more
accurate estimates. Since this is one of the important uses of rational
numbers, we may consider the use of Q. as having an advantage over

using P. b as a means of introducing the fraction 2 .

In another direction we can see an advantage to using the description of
the point &bp rather than that of Q.,6, to introduce the rational number
a

to an elementary school pupil. This has to do with the arithmetical

relation connecting the rational number 2i; with the whole numbers a and

b. This relation is simply the fact that

ab. = a.

From the definition of P.. b it is immediately clear that when the segment
from 0 to P. is added to itself b times we arrive at the point a. Hence

if we define as the number representing the length of the segment from

0 to P..,, we shall have the desired equation 14/ = a. The corresponding

fact is not as clear if we take the more traditional definition of as the
address of the point Q..b.

The equation 1/.2 = a is so basic to the significance of the rational
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anumber b in all of its applications that some teachers prefer simply to

a
define as the missing factor in the equation b 0 = a. While this has

some advantages, it sometimes leaves a pupil in doubt about whether
there is such a number Definitions on the number line make existence
intuitively evident.

These few comparisons among several possible ways of introducing
rational numbers suggest that there is no one method that can be con-
sidered superior in all ways to all other methods. Some teachers may
prefer to use one method all the time; others prefer to try different ap-
proaches with different classes. Ways to develop these and other
approaches in the classroom are described in chapter 3.

If time permits, a teacher might even consider mentioning more than one
approach to the same class, for certainly the deepest understanding of a
mathematical concept is brought about by considering it from different
viewpoints. As we have indicated above, the student who discovers that
the points P4.1) and Q4.b are always the same, and who is led to wonder
why, will find much that will help deepen his understanding of rational
numbers and their uses.

Exercin Sit 1

1. One basic application of rational numbers is their use to measure
portions of a given pie, say, or to indicate the relative size of some subset
of a given set. (Indeed, rational numbers are sometimes defined for pupils
in this way.) From the point of view of relating to these applications,

which is better : a definition of by means of the description of Pa,b or

of Q.b? Why?

2. For certain whole numbers a and b the rational number 2 may

turn out to be a whole number. From the point of view of explaining this

phenomenon to pupils, which seems better: a definition of (i in terms
of the point 110.b or of Q., b? Why?

3. Suppose we have a paper rectangle that we wish to divide into three
vertical strips of equal width without using any instruments. We estimate
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(guess) where a line should be constructed if it is to be about one-third of
the way from the right edge to the left, we fold the right edge over and
make a crease at the estimated place, and then we open out the paper
again. We label the crease m. Now we divide the space to the left of in in

half by folding the left edge over so it lies just along m and making another
crease. We open the paper again and label the new crease g.

a. How can we tell now, without measuring, whether the area to the
right of m is exactly one-third of the area of the rectangle or a
little less than one-third or a little more than one-third?

b. Suppose we find that the area to the right of m is less than one-
third the area of the rectangle. How can we make another crease
to get a line ri that is closer to the one-third position than the line m?
Describe exactly how to fold the paper so as to obtain the new
line n. Will the area to the right of is be exactly one-third the area
of the rectangle or a little more or a little less?

c. Can you describe a similar process for improving an estimate if the
object is to divide a given rectangle intofive strips of equal width?

FRACTIONS AS NUMERALS; EQUIVALENT NUMERALS

By a nwneral we mean a symbol or a sequence of symbols that names or
describes some particular number. Schookhildren are often left confused
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by a discussion about numerals and their relation to numbers, and one of
the chief reasons is that at a given point in the discussion they may be
unsure whether we are talking of the number 3, say, or of the correspond-
ing numeral "3."

Of course we use the numeral "3" when we talk about the number 3,
since the numeral "3" is a name for the number 3. This is just like using
the name "John" to talk about our friend John. But what do we use when
we talk about the numeral "3" or about the name "John"? Obviously wc
need names for these symbols. And since the symbol "3" is different from
the number 3, just as the name "John" is different from our friend Johns
we need a name for the symbol "3" or for the symbol "John" that is
different from our name for the number 3 or for our friend John. In other
words, the name for the symbol "3" should be different from the symbol
"3" itself.

As the reader will see by going over the preceding paragraphs, we form
a name for the symbol "3," that is, for the Arabic numeral denoting the
number 3, by placing that symbol within quotation marks. Similarly, we
use quotation marks around the name of our friend John to form a name
for the symbol "John." In short, the symbol "3" is a name for the number
3, and the symbol "John" is a name for our friend John.

We shall follow the above convention carefully in the present section,
although we do not advocate introducing this distinction systematically
in a classroom; it is too subtle for most beginning students. Besides, most
verbal communication in a classroom is oral rather than written, and it
would be unbearably awkward for the teacher or student to say "The
symbol quotation mark three quotation mark is a name for the number
three, whereas a name for the symbol quotation mark three quotation
mark is obtained by putting quotation marks around that symbor
Instead, in oral communication about symbols and their use as names
or descriptions of numbers, we may use the words "the numeral" or "the
number" consistently before a name of one or another of these objects in
order to signify whether we are talking about the concrete symbol or the
abstract number. In this section we shall use these words systematically hi
addition to our use of quotation marks, even though in other parts of the
book there will be no need for such extreme care.

Now then, what in fact are the numerals we use for denoting numbers?
Let us first consider the whole numbers: 0, I, 2, 3, .

Most commonly we use the decimal numeration system, which is a
systematic method of forming a standard name for each whole number
out of ten basic symbols called digits. Under this system each whole
number is denoted by one, and only one, standard decimal munered.

However, any given whole number possesses many names, or de-
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scriptions, other than its standard decimal numeral. For example, the
numeral "I It." (read aloud as "one one base two") is a name for the
number 3 in the binary, or base-two, numeration system.

Even if we stick to the decimal numeration system, however, a given
whole number such as 3 will have many names because we can form such
names by the use of operation symbols. So, for example, the symbolic
expression "2 1" denotes the number obtained when the numbers 2
and I are added; but since the number thus obtained is, in fact, 3, we see
that the symbolic expression "2 1" denotes, or names, the number 3.
Still another name for the number 3 is the symbolic expression "3 X I."

When we have several names for the same number we call them equiv-
alent numerals. Thus, the numerals "3," "1 1 two," "2 + 1," and "3 X 1"
are all equivalent.

One cannot always tell at a glance whether two given numerals are
equivalent. For example, the question whether the numeral

"((4 + 2) ÷ 6) X (11 5)"
is equivalent to

"((6 2) 4) ((11 5) 15)"

would require a good bit of work from some of our students before they
could answer it.

When a teacher gives a problem such as "Compute

((4 + 2) 6) X (11 5),"

the student is expected to find t4 standard decimal name for the number
denoted by the given numeral.

Now let us look at the numeration system by which we provide a name
for every rational number. As we have seen, each rational number is first
introduced as the number that solves a certain problem formulated in
terms of two whole numbers. We use the standard decimal numerals for
these two whole numbers and combine them, by means of a third symbol
called a "fraction bar," to form a name for the rational number that solves
the problem.

For example, the problem may be to divide the interval from the point 0
to the point 7 on the number line into 5 intervals of equal length. We have
called the first of these division points P7,5. The number that is the address
of this point (represents the length of the interval from the point 0 to the

7point P7.5) is a rational number. We take the symbol , -5- 99 as a numeral

denoting this number. The symbol ,4 799 itself is called a fraction. The
5

number 7 is called the numerator of the fraction; the number 5 is called the
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denominator of the fraction; the fraction itself is not a number, but it is a

numeral denoting the rational number 7 that is the address of the point
5P7.5 on the number line.

While everyfraction has a unique numerator and a unique denominator,
a rational number does not. To understand why, let us consider the
number-line problem of dividing the interval from the point 0 to the
point 14 into 10 intervals of equal length. The first of these division points
we have agreed to call P14.109 and the rational number that is its address we

,14 99denote by the fraction
10

0 1 2 3 4 5II I I 1

1 I I I 1 I
I 1 I I I I
1

1 1 1
1

1
1

1 1
1 11

1
1

I I I I , 1

P41 7

1111.11 7 14

0

I
i I I
I

i
I I I I

I I

I I
I
1

I I
i
i I I I 1 I

I

I

I

I I

1
I

1

I
I
I

I

I
I
I

I

1

I

I

2 3 4 5 6 7 6 0 10

Now it happens that the point P14.ta is the vay same point on the
number line as the point P7.6, as shown above. Thus these points P- 14.10

and 137 , have the same address, that is, the rational number 7 is the same
5

7 14
as the rational number 14 We express this fact by writing =

10
, "

S 10
7The fractions (i.e., symbolic expressions) 99 and To are equivalent

but different; the former has the numerator 7, while the latter has the
14numerator 14. But the numbers 7 and are one and the same; hence if we

5 10

allowed ourselves to say that the number ; has a numerator 7, we could
14conclude by the logic of identity that the number has the numerator 7.
10

Of course this would be absurd. Thus, nwnbers have no numerators; only
fractions do.

14We have seen that the fractions ,
'

, ,799and are equivalent numerals.
10

There are many other numerals equivalent to these, some of which are not
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,7 6fractions. For example, the symbolic expressions `,2 2,,
and X

5 15 3 10

atv also numerals that denote the rational number '15- ; hence they are
667, 66 1 4equivalent to the numerals -5 and

1 0

7Some fractions (but not ,6 -5. , ) are names for whole numbers; hence

such a fraction is equivalent to the standard decimal numeral denoting the

whole number. For example, the fraction "i" is equivalent to the numeral

"2," since the *ational number -6 is the same as the whole number 2. This
3

last fact, namely, that = 2, can be seen by locating the first division

point P0.3 on the number line when the interval from the point 0 to the
point 6 is divided into 3 equal intervals. That first division point is the
point 2, so that the address of P6,3 is 2. Similarly, we can see that the
address of Q6,3 must be 2.

14,1
1

0 1 2 3 4 5 6

Three segments of equal length

1

0 1 2 3 4 5 0

Each interval divided into 3 segments of equal length. Count off
6 small segments.

Just as we singled out the standard decimal numeral among all the many
names of a whole number, so we may single out as standard numerals for
rational numbers the fractions whose numerators and denominators are
standard numerals for whole numbers. The difference is that while each
whole number has only one standard decimal numeral, each rational
number has many.

Among all the fractions for a given rational number, is there not some
systematic way to select just one of them so that we could have a unique
"selected numeral" corresponding to each rational number? Indeed there
isin fact, there are various systematic ways in whkh one can select a
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single fraction from each set of equivalent fractions. The most common
way is to select the fraction that is in "lowest terms."

xIt turns out that among all the fractions "99 that are equivalent to

a given fraction 1" there is always exactly one of them in which the

whole number x, which is the numerator, and the whole number y, which
is the denominator, have no common factor other than 1 (which, of
course, is a factor of every whole number). This unique one of the equiv-

alent fractions is said to be in lowest terms. For example,
3

is the unique
l 4fraction in lowest terms equivalent to "
21

Many traditional texts in elementary mathematics put a great deal
of stress on getting pupils to represent a rational number by its unique
standard fraction in lowest terms. However, nowadays we recognize that
this is a somewhat misplaced effort, for the important things we do with
rational numberssuch as computing with them or finding which ones
solve certain kinds of problemsrequire us constantly to deal with
fractions that are not in lowest terms. Thus, any two equivalent fractions
are often regarded as equally acceptable names for the rational number
they denote.

In the next section we shall examine some of the reasons why we replace
one equivalent fraction by another, in the course of computations, and
hence why a great emphasis on fractions in lowest terms is misplaced. Only
the basic theoretical ideas will be presented; a fuller development of
computation with fractions will be found in later chapters.

Exercise Set 2

1. Just as two numerals that denote the same number are called equiv-
alent, so any two names or descriptions of the same object or person are
called equivalent. Find equivalent expressions for each of the following:

a. "The President of the United States"

b. "The Pacific Ocean"

c. "The set { 2,3 } "

d. "The maternal grandfather of Abraham Lincoln"

"The National Council of Teachers of Mathematics"

2. Formulate a problem, using the numbers 3 and 5, whose solution
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. 5
Is . Formulate another problem, using the numbers 6 and 10, whose

3
10solution is . Show directly from these problems, without computing
6

their solutions, that the same number solves both problems.

WHY WE USE EQUIVALENT FRACTIONS IN COMPUTATION

Perhaps the simplest problem involving two given rational numbers is
that of comparing them. Which of them is larger? Or are they the same?

Of any two distinct points on a number line, one will be to the left of
the other. If p is the rational-number address of the point to the left
and q is the rational-number address of the point to the right, we say that
p is less than (or smaller than) q, and we write p < q. Or we may express
the same situation by saying that q is greater than (or larger than) p and
writing q > p.

But suppose we are given fractions "gi" denoting the number p and

denoting the number q. If we have not located the points p and g

on the number line, can we use the fractions "ii." and "2" to determine
whether p < q, p = q, or p > q?

Under a certain special conditionnamely, if the given fractions have
the same denominatorthere is a very simple answer to this question.
Suppose, for example, that we wish to compare the rational numbers
8

and -5 clearly the former is larger than the latter (-8 > 5) , and, equiv-
7 7' 7 7

5 8alently, the latter is smaller than the former ( < . In general, if we
7 7

are asked to compare two rational numbers given by fractions with the
"

L.

a ..csame whole-number denominator, say , and b , the rule is:

a c
If a < c, then -L <

a cIf a = c, then =
b b

a c
If a > c, then >

b b

Of course these facts are intuitively obvious for those who have some
familiarity in dealing with fractions, but they can easily be explained to
those who have just been introduced to fractions. We have only to think of
the points P., b and 13,1, on the number line. P., b is the first division point
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when the interval from 0 to a is divided into b equal portions. P c.b is the
first division point when the interval from 0 to c is divided into b equal
portions. Clearly if the point a is to the left of the point c, so that the
interval from 0 to a is smaller than the interval from 0 to b, then the
division point Pad, will be to the left of the division point Pc.b, that is,

we shall have -a < 2 If the point a is to the right of the point c, then Pa. b
b b

will be to the right of Pad,, that is, we shall have 2- > If the point a
b b

coincides with the point c, then Pa.b will coincide with Pa, 1,, that is, we

shall have -a = -c
b b

P.,4 Pc, 4

t t
0 1 i a c

1 1

I I

1 I
1

1
i I I

1

I I

The intervals from 0 to a, and from 0 to c, each divided into 4 parts

of equal length. Since a < c, we obtain a < c
4 4.

Suppose, however, we are asked to compare two rational numbers and
these are named by fractions whose denominators do not happen to be the
same. What then? We have no good method for dealing with this problem
directly, so we reduce it to the case we have seen how to solve so easily.

That is, we take one of the given fractions, say "LI", and find an equivalent

fraction "12"; similarly, we take the other given fraction, say "2", and

find an equivalent fraction "-si" having the same denominator as the fraction

".1:". Because theie fractions have the same denominator, we can apply the

previous method to tell whether the rational number ri is greater than,

equal to, or less than the rational number . But because the fractions

"12" and "-a-" are equivalent, they name the saine rational number, that is,
rt a s c

= -. Similarly we shall know that - Hence when we have determined
t b t d
which of the relations > , = , or < holds between and , we shall know
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athat the same relation holds between and c In this way the original
dquestion wilt be answered.

Most elementary students will have no difficulty in comparing two
rational numbers given by fractions having the same denominator. They
will perceive the difficulty when the given fractions have unlike denom-
inators; and they will be able to follow the idea sketched above, of carrying
out the comparison by replacing each of the given fractions by an equiv-
alent one in such a way that the two new fractions have the same denom-
inator. "But," they will want to know, "how do we find such equivalent
fractions having the same denominator?" When they have asked this
question, they have been motivated to study the algorithm for "finding a
common denominator."

Not only comparing, but also computing sums of rational numbers, is
very easy when the numbers are named by fractions haying the same denom-
inator. If rational numbers have been introduced as addresses of points
on a number line, the operation of adding them can be introduced by
simply extending procedures developed earlier for interpreting the addition
of whole numbers on the number line. That is, being given any rational
numbers p and r, we first find the point p on the number line; we lay off
to the right of it an interval having length r (i.e., having the same length
as the distance between point 0 and point r); and the address of the new
point at which we arrive, at the right end of the laid-off interval, is the
rational number that we call p

0

r.

r
1-

I
I

I

t
I
I

Ii-
0
I

I

P r
I
1

i

p+r

0 r
To obtain the point p + r, lay off an interval of length r to the right of
the point p.

Now suppose that the given rational numbers p and r are named by

fractions that happen to have the same denominator, say p = .ab and

r = c . How do we obtain a fraction representing the sum p r?

We know that these numbers and -2 will be the respective addresses
b b

of certain points Q,t. and Qe, obtained as follows: We divide each
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interval of the number line lying between two successive whole numbers
into b parts of equal length; we then count off these smaller intervals,
starting from point 0 and proceeding to the right; the point Q,b will be
the right endpoint of small interval number a, and the point Q,,t, will be
the right endpoint of small interval number c. Hence if we lay off an
interval of the same length as the one from point 0 to point Q,,p, starting
from the point Q,b and proceeding to the right, we shall arrive at the
right endpoint of small interval number a c, which is simply the point

Qa+c,b But the address of this point is a -Fc
. Thns we find that

(2. c a + c
b b b

4 6
04,7 00,7

I
7+Y

I
4 I 10
7 7 7

To compute I obtain small intervals by dividing each unit
7 7

interval into 7 parts of equal length.

Now if we are asked to compute (i.e., find a standard name, or fraction,
for) the sum p q, where this time the rational numbers p and q are

given by fractions "2" and "2" having different denominators, we again

have no direct procedure for solving the problem. We can, however,
proceed as we did with the problem of comparing two given rational

numbers. That is, we pass from the fraction "2" to an equivalent fraction

"c" and from "2" to an equivalent ".s-" having the same denominator as "r" .

Because of the equivalences, the fraction "r" is a name for the same

rational number p, as the fraction "a" denotes; and, similarly, "" denotes

q, just as "2." does. Hence p q can be computed by adding with the

fractions "r" and `q. ," which have the same denominator. This is a

problem we have already seen how to solve.
As we have observed above, both the problems of comparing and of
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adding two rational numbers can be handled for arbitrary pairs of rational

numbersas long as we can pass from any given fractions "2" and "S" to

equivalent fractions "rt" and "-s-i" having the same denominator. There are,

in fact, several algorithms for doing this, and we shall discuss sonic of
these in the next section.

It is worthwhile observing that the question whether either or both of the
fractions naming the given rational numbers are in lowest terms plays no
role when it comes to applying our methods for comparing or adding the
given numbers. Only the question whether the two fractions have the
same denominator is important. This is one of the reasons we no longer
stress the reduction of fractions to lowest terms.

NOTE.In mathematics there is almost always more than one way to
solve any given problem. Here we mention two other methods for com-
paring rational numbers to see which, if either, is the greater one.

Instead of considering the special case where the two given fractions
have the same denominator, suppose they have the same numerator. How

can we tell whether the rational number 2 is less than, equal to, or greater

than the rational number 2 ? The rule is very simple:

a a a aIf b > c, then - < - ; if b = c, then - = ;
b c b c

if b < c, then 9- > .
b c

We leave the reader to verify this rule by going back to the definition of the
points Pa.b and Pa., and finding when Pa,b is to the left of, coincides with,
or is to the right of the point

The general case of comparing two given rational numbers can be
reduced to this special case because we can always take two given fractions
and convert each to an equivalent fraction so that the two new fractions
have the same numerator. The reader can see for himself how much easier

2 4this is in an example such as comparing with than the method of
39 77

finding fractions with a common denominator.
A second method for comparing rational numbers, of more limited

applicability, consists in reducing each of the given fractions to an equiv-
alent one in lowest terms. The two given rational numbers are equal if the
same fraction is obtained when each of the given fractions is reduced to
lowest terms. The two given fractions are unequal if the given fractions
reduce to two different fractions in lowest terms. In the latter case, how-

-44
tt



Fractions and Rational Numbers

ever, we must return to one of the earlier methods to find which of the
given numbers is the greater one.

Exercise Set 3

1. The rule for comparing two rational numbers represented by fractions

with the same denominator is as follows: If a > c, then 1.1 > In the text,

this rule was explained using the fact that a rational number such as 9- is

the address of the point Pa.b. Use the fact that each rational number 1211 is

the address of the point Qa.b to give an explanation of the same rule,

dealing with the following particular case: Since 6 > 4, we have 6 >
5 5

2. Suppose that a certain teacher has introduced rational numbers by

the missing-factor approach, defining g- to be the number satisfying the

open sentence b. 0 = a, where a and b are any whole numbers with b 0 0.
Indicate how this teacher could illustrate the rule for adding with fractions
with the same denominator by using her definition to show that

7 10 17

3 + T I'

3. Illustrate the rule for comparing the values of fractions having the

same numerator in the case of the relation 7 < 7 by showing that the point
4 3

is to the left of the point P7,3 on the number line.

COMPUTING EQUIVALENT FRACTIONS

We have seen above how the problems of comparing or adding two given
rational numbers lead us to the problem of passing from given fractions to
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equivalent fractions with different denominators. All problems of the
latter type reduce to the following:

Fundamental Principle for Fractions: If 11 is a rational

number and c is a whole number other than 0, then!! = (pc
b bc

One of the easiest ways to see the correctness of this principle is to
compare the points Q.,b and 0,,ae.bee on the number line. We know that

the rational number a is the address of the point Qa.b, while is the
(Pc
b.c

address of 0..n.e,be Hence if we can show that the point Qa.b is the same
point of the number line as 0 we shall know that these pointi

have the same address, that is, that q = a.c as claimed in thc Fundamental
Principle just given. b bc

Below we shall give the argument showing that, in general, Qad, and
Qaer,be are the same point of the number line; the reader can follow this
argument more easily by studying the following diagram, which illustrates

the case a = 4, b = 3, c = 2, in which Q40 = Qs, n (showing that 4 =
3 6

numbered subintervals, each unit divided in 3

1 2 3 40

original I

number
I

0 2

1
Q .3

Q

4 5 7 9

5

4

1

1

1

1 10 11

2

12

numbered subsubintervals, each subinterval divided in 2-}
Case for a 4, b = 3, c 2

Recall that to construct Q. we begin by dividing each unit interval
into b equal parts, which we shall call subintervals. Then count off these
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small subintervals, starting from 0 and proceeding to the right. When we
reach the subinterval whose number is a, its right endpoint is the point
Qa,b

Now take each of the subintervals obtained above, and divide each one
into c equal parts; let us call these new, very small intervals subsubintervals.
Since each unit interval on the number line was divided into b subintervals
and each subinterval is now divided into c subsubintervals, we clearly
have b. c subsubintervals in each of the original unit intervals. Since all of
the subsubintervals have the same length, we can therefore use them to
locate the points QI.be, Q2.b.c, Qa.b.e, by counting off the subsub-
intervals, starting from 0 and proceeding to the right.

Now then, let us return to our point Qa.b. We know that it is the right
endpoint of one of the subintervals and that there are exactly a of these
subintervals between the point 0 and the point Q..b. Since each of those
a subintervals has now been divided into c subsubintervals, there will be

c of these subsubintervals between the point 0 and the point Q., b. Hence
when we start counting off the subsubintervals from the point 0 to get
the points Qi.b.e, Q2.b.ef Q3,b.c9 9 we see that the point Qa.c.b., will
be the point Q, b. In short, the points Q., b and Q..., b., coincide. Hence the

rational number 2
'
which serves as the address for the point Q.,b, is the

b

same as the rational number 12' which serves as the address for thebc
point Qa.c,b.c. In other words 2 = as claimed in the Fundamental

Principle for Fractions, and so "2" and "2:2." are equivalent fractions.
b.c

Let us now take up the problem whether, being given two fractions

and
'

"2 " we can find equivalent fractions for each of them so that these
d

new fractions have the same denominator. It is easy to see that in the special
case where one of the given denominators is a factor of the other, the Funda-
mental Principle for Fractions leads directly to a solution in which the
given fraction with greater denominator does not have to be changed at all.

For example, if we are given the fractions "?-7-" and I 9" and if we

notice that 17 is a factor of 51 (because 17 X 3 = 51), then we apply
2 2 X 3the Fundamental Principle to obtain

17 X 3
thus passing from

17

2 05the given fraction 9 to the equivalent fraction 9 having the same
,13denominator as the second given fraction,

51
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In the general case, suppose we are given fractions "a" and "2-" such

that b is a factor of d. This means that we can find some whole number
e such that be = d. (Of course e 0, for otherwise we would have
be = 0 and hence d = 0, contrary to the fact that d is the denominator of a
fraction.)

By the Fundamental Principle we know that a = a.e ; since be = d,
b bea aewe get = . Hence the fraction is equivalent to the given

fraction "a" and has the same denominator as the other given

fraction, "f- "
d

Now suppose, however, that we study the given fractions "a" and

and find that neither of the denominators is a factor of the other. What
then? We see that we can always replace one of the given fractions, say

by an equivalent fraction whose denominator has the other given

denominator, "b ," as a factor. In fact we have = cb by the Funda-
d db

mental Principle, so that the fraction "-c-2!" is equivalent to "S- " anddb
obviously its denominator db has b as a factor.

We can, therefore, find a fraction equivalent to "a" having the same

denominator as the fraction "L-11-" ; indeed, applying our previous methoddb
we obtain the fraction which is equivalent to "a" and has thebd'

6c.bsame denominator as ,
'db "a.dThus we have obtained the fraction

'
, ' equivalent to the givenbd

fraction "a " and "-L-.) ," equivalent to the given fraction "2 ". and,
b db d

comparing the denominators of the new fractions, we see that b d = db.

For example, suppose the even fractions are t
'

and ' so that
6

,65

neither denominator is a factor of the other. We first compute
5 5 X 4 20
6 6 X 4 24

getting the fraction 49- " equivalent to the given fraction The5
24 6

denominator of the other given fraction, "1 " is a factor of the denom-
4

5-6
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"20 , 2 2 X 6 12inator of 24
'

since 4. 6 = 24. Hence we compute
4 4 X 6 24 '

12getting the fraction " 24 '
,

equivalent to the given fraction 71 and having

20the same denominator as " 24 '
,

Finally, then, we have found the fractions
20-F4 and with the same denominator, equivalent respectively to the
24 agiven fractions ,4 ' and -5 " And the fractions thus formed were obtained

6
by two applications of the Fundamental Principle.

The teacher whose ideas about fractions have been dominated by an
urge always to reduce them to lowest terms may find this example disturb-
ing, since neither of the two new fractionsnor one of the given
fractionsis in lowest terms. The important thing to remember is that for
the purposes of comparing or of adding given rational numbers we must
express the given numbers by fractions having the same denominator, and
this we have done by a process that will work in the most general case.
Whether fractions are in lowest terms or not is unimportant as far as most
problems involving rational numbers are concerned.

Nevertheless, as a matter of convenience, we are sometimes interested in
finding a pair of fractions with a common denominator that is fairly sinall,
simply to reduce the fatigue involved in employing the multiplication
algorithm. Consider, for example, the problem of adding the rational

numbers 3 and 2
26 39

3If we seek to convert each of the given fractions ,26 ' and "2- ,' to an
39

equivalent fraction in such a way that the two new fractions have the same
denominator, the method developed above (involving two applications of

,, 3 X 39,,the Fundamental Principle) will lead to the fractions and
26 X 39

'
respectively. To express these, in turn, as standard fractions39 X 26

whose numerator and denominator are represented by whole-number
decimal numerals, we must employ the multiplication algorithm to
compute the products 3 X 39, 2 X 26, and 26 X 39a matter not in-
trinsically difficult, but rather tiresome.

We may, therefore, seek a second way of expressing two given rational
numbers by fractions having the same denominator, just as correct as our
earlier method and less tiresome when it comes to applying algorithms. To
arrive at such a method, let us look more closely at the results of applying
the first method.
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Being given the fractions "2." and "2
'
" we convert the former to the

d"a.d" cbequivalent fraction and the latter to the equivalent fractionbd
Thus the two new fractions have, as their common denominator, the
product of the two given denominators. Each of the given denominators is
thns a factor of the new denominator. This is what enables us to use our
Fundamental Principle for Fractions.

Any whole number, say in, that has each of the given denominators b
and d among its factors is called a common multiple of b and d. Whenever
we find such a comnon multiple m, we can use the Fundamental Principle to
express each of the given fractions as an equivalent fraction having m as
denominator.

For example, we may happen to notice that 156 is a common multiple of
26 and 39, because 26 X 6 = 156 and 39 X 4 = 156. Hence, in the example
considered above, we can apply the Fundamental Principle to obtain

3 3 X 6 2 2 X 4
26 26 X 6

and
39 39 X 4

to obtain new fractions , -18,9 and '156
156

having a common denominator, equivalent respectively to the given
3 2fractions 26' and " Clearly the multiplication algorithms employed

39
here were less tiresome than those needed to find a pair of fractions having
the common denominator 26 X 39.

In general, suppose the given fractions "a" and "2" have denominators

with a common multiple in, so that both b and d are factors of in.
To say that b is a factor of in means that we can find a whole number e

such that b e = tn. Hence the fraction "-9-
'
" which is equivalent to

b be'a .e.will be equivalent to Similarly, since d is a factor of in, we can

find a whole number f such that d f = m, and then "2" will be equivalent

tO

The product of the given denominators is the easiest of their common
multiples to find. However, if we happen to come upon a smaller common
multiple, then we can use it to find the equivalent fractions we are seeking,
and we shall expend less effort when it comes to applying the multiplication
algorithm. How, then, can we look for smaller common multiples of the
given denominators? Is there a systematic way in which we can find the
least common multiple?

If we take either of our given denominators, say b, we can begin to form
a list of all numbers having b as a factor by computing the products 1 .b,

4.10tt .1
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2. b, 3. bp . As we form each of these multiples of bp we can test it
to see whether it has the other given denominator, dp as a factor. (We do
this by the division algorithm, dividing our multiple of b by d and seeing
whether the remainder is 0.) The first multiple of b that we find to have d as
a factor will be the least common multiple (LCM) of b and d.

For example, let us return to our problem of adding 2 to 3 The
39 26

first few multiples of 26 are 26, 52, 78, and 104, and if we test these for
divisibility by 39, we find that 78 is the first in the list having 39 as a factor.
Thus, 78 is the least common multiple of 26 and 39. Since 78 = 3 X 26,

id 3 id 3 X 3 9we replace the given fraction 9 by
26 X 3 '" so that =

26 26 78

Similarly, since 78 = 2
2

1-X 39, we replace "99 by 329 Xx 22 pp, so that
39

2 4 3 9= . Hence = 4 . If we had used the greater denom-
39 78 26 39 78 78
inator, 39, we would have arrived at the LCM sooner.

Although using the LCM of the given denominators generally requires a
less tedious application of the multiplication algorithm than using the
product of the given denominators, the saving in time and trouble may be
offset by the extra computation needed to determine the LCM. There are
various ways in which this labor can be reduced. For example, suppose
we notice that the given denominators, b and d, have a common factor,
say g. This means we have b = ig and d = jg for certain whole numbers i
and j. These numbers land j are smaller, respectively, than b and d, so it is
easier to find their LCM. If we find that the LCM of i and j is some
number n, say, then the LCM of b and d will be n g.

Thus, in the example above, the given denominators 26 and 39 are seen
to have 13 as a common factor. Indeed, 26 = 2 X 13, and 39 = 3 X 13.
Since the LCM of 2 and 3 is their product, 6, the LCM of 26 and 39 must
be 6 X 13, or 78.

Given a fraction "2 " we have seen how to obtain equivalent fractions
b

bearing a special relation to a second given fraction, " " But suppose we

are interested in all the fractions equivalent to "2"is there some
systematic way to find them?

Of course by using our Fundamental Principle for Fractions we can
generate an infinite string of equivalent fractions:

{gap, gga.2
b b2 ' b3 '

Are these all? We shall see that in certain special cases, the answer is
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yesfor instance, if a = 3 and b = 4. But in other cases, say if a = 6 and
b = 9, the answer is no.

The point is that the fractions

.a.3"
b2 b.3 b.41

all have numerators and denominators greater than the numerator and

denominator, respectively, of the given fraction "9- " And we know that
b

sometimes a given fraction may be equivalent to another having a smaller

numerator and denominator. For example, for the fraction -21 we
14

have the equivalent fraction "1."

In general, suppose that we are given a fraction "2" and that the given

numerator a and the denominator b have some common factor, I. Say

a = c.f and b = d. f. Then we know that the fraction "2" will be equiv-

alent to the fraction
'

"2- " since the Fundamental Principle assures us
d

that the fractions "1" and "..-1" are equivalent. Of course the numeratord.f
and denominator of the fraction "1" will be smaller than those of the

given fraction "2" in this case.

If the numerator and denominator of the new fraction "1" again have

a common factor, we can, as before, determine still another equivalent
fraction by removing this common factor from both numerator and
denominator. Continuing in this way to remove common factors as far as

possible, we eventually arriveas is well knownat a fraction "g "
h'

equivalent to the original fraction 1," where the numerator g and

denominator h have no common factor (other than 1). This fraction "1" is
in lowest terms.

Once we have obtained this unique fraction in lowest terms, 4- "h'
which is equivalent to the given fraction

'
"9- " we get a complete list of all

b
fractions equivalent to "2" by applying the Fundamental Principle to

getting the list "-.1" " g. 2" "g.3"
h 1 h 2 h3
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Thus, for example, to obtain all fractions equivalent to "75-17-1" we first

reduce by a common factor 11 to get "-%"; then reduce again by the

common factor 13 to get "1 ", which is in lowest terms; and finally we get
4

,5 O "15the list of fractions J ,9 "
, which consists of all fractions

4 ' 8 ' 12'
715 7159,equivalent to ' The fraction 572 will be the 143d term in the list.
5

Exercise Set 4

1. Find two fractions having the same numerator, equivalent respec-

13
6tively to

7

99

29
and . ,9 Use the result to decide which of the rational

numbers 3 and T4 is the greater.
1 7

6

2. Find three fractions having the same denominator, equivalent
3 5 arespectively to "

'
99 ,

, ' and 5 '9 Use the result to arrange the rational
2 3

3 5 7numbers
'

and in order of magnitude (least number first).
2 3 5

3. A beginning pupil, when asked to compute a sum 2 + 2- used a
b d

"simple-minded" rule and gave the answer a c Of course we know
b d

that this does not, in general, lead to the correct answer.
aa. Can you describe all those rational numbers and for which

this pupil's rule does give the right answer?

b. In those cases where the pupil's rule gives the wrong answer, is the
answer always too large or always too small, or does it depend on
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the particular fractions a and c that are being added? Justify
your answer.

4. What are all the fractions equivalent to "j"? How would you
255

convince someone that no fractions other than those you have listed can be
408,equivaknt to '?

255

5. How many rational numbers can be expressed by fractions whose
numerators and denominators are selected from the numbers 1, 2, 3, 4?
List all of these numbers in order of magnitude, least one first.

SUMMARY

1. There are many problems involving two whole numbers whose
solution is not a whole number. Rational numbers provide solutions to
many of these. Fractions are names for rational numbers, made up from
the names of two whole numbers.

Among problems leading to rational numbers is the location of points,
on a number line, lying between the whole-number points. Given whole
numbers a and b with b p 0, we saw two different ways to use them to
locate points on the number line that are called "P., b" and "Qa,b." These
turn out always to be at the same place, and the number giving their
"address"that is, their distance from the 0 pointis the rational

a
number b.

2. A given rational number may be represented by many different
fractions. Two fractions representing the same number are called "equiv-
aknt fractions." It is useful to be able to replace one fraction by an
equivalent one for various computational purposes, especially for com-
paring two given rational numbers (to determine whether they differ and,
if so, which is the larger) and for adding two given rational numbers.

3. Both comparing and adding are very simple in case the given rational
numbers are represented by frictions having the same denominator. This
motivates the search for methods of replacing any two given fractions by
a new pair of fractions having a common denominator, equivalent
respectively to the given fractions. Several methods to accomplish this are
discussed.
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ADDITION OF

RATIONAL NUMBERS

Joseph Moray

1. How can addition of rational numbers be related to
addition of whole numbers?

2. What are some effective methods for finding a common
denominator when computing sums of rational numbers?

3. Which properties of addition of whole numbers hold for
addition of rational numbers?

4. What are the key ideas for understanding algorithms for
computing sums of rational numbers?

The number line offers an easy way of making a transition from addition
of whole numbers to addition of rational numbers. When working with
whole numbers students learned, for example, that 1 + 2 can be associated
with a move on the number line from 0 of 1 unit to the right, followed by a
move of 2 units to the right. This combination of moves was seen to be
equivalent to a single move from 0 of 3 units to the right, resulting in the
statement 1 + 2 = 3. An arrow (or vector) diagram illustrates the result.

1

3

2
>1

0 1 2 3 4

A similar procedure can be followed to compute the sum of two rational

0 1 2numbers, For example, a move from to followed by a move of to the
4 4 4
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right is seen to be equivalent to a single move from 0 to 3 , resulting in the
4 4

2 3statement 4 + 4 =

3
4

2
4 4

104

1 2 3 4 5 6 7
4 4 4 4 4 4 4 4 4

Strips of cardboard or rods made of wood or plastic (such as Cuisenaire
Rods or Unifix Blocks) can be used in a similar manner to build meaning
for addition of rational numbers.

on unit

3 1 4
5 5 5

Exercise Set 1

I. Write an addition sentence (using fractions onlyno mixed
numeralsto name rational numbers) to go with each diagram:

a.

sbi

I

0 1 2 3 4 5 6 7
si

3 3 3 3 3 3 3 3 356



b.

0 1

Addition of Rational Numbers

-1-1".
2

2. Draw a vector diagram (similar to la above) for each of these
sentences:

2 4 6

REGIONS AND ADDITION

b. + = 2 .
8 8 8

Another approach to addition of rational numbers is through the
joining of parts of regions. Given a unit region partitioned into 5 parts of

the same size, the student might be asked to shade in 2 of the unit region
5

and to write the fraction "2 over 5" to represent the amount shaded in.
1

He is then directed to shade in 5 more of the unit region. The amount now

shaded in is 2 + 1 of the unit region.
5 5

2
5 5 I

The size of each of the five parts into which the unit is partitioned is
designated by the term fifth. The portion of the unit that is shaded in may

therefore be considered as 2 + 1 fifths, or 2 + 1 It is apparent then that
5

2 1 .42 1,the expressions " ,9 and --+ 9 are equivalent. Since 2 + 1 = 3,
5 5 5we have

2 1 2 + 1 3+
5 5

_
5

Several similar examples, such as the following, can be worked out
with the aid of partitioned unit regions, so that students can arrive at
a generalization.
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5 1

8
+

8

4 3

10 -I- 10

3 3

5
+

5

28

5 + 1 _

_

?

6
.

8

7

10

6
.

5

8

4 + 3
10

3 + 3
5

77
100

=
100

Students will recognize a pattern that can be applied to addition of any
two rational numbers represented by fractions that have a common
denominator: the sum of the numerators is the numerator of a fraction for
the computed sum, and the common denominator is its denominator.
Students are likely to put it more succinctly: "Add the numerators, and
keep the same denominator." This generalization conforms to a definition
of the sum of two rational numbers:

If .`1. and -C are any two rational numbers, then 2 + S- or
b b

a+c
b

is their sum, and yve have

s_ c
b b b

The operation of addition assigns a number called a "sum" to a pair of
numbers called "addends." This statement holds for rational numbers as
well as for whole numbers. For practical applications, however, it is often
'necessary to compute a sum, that is, to rename the sum with a standard
numeral.

Renaming the sum of two whole numbers in "simplest form" offers no
choice. For example, the sum of the pair of whole numbers 5 and 7 is
5 + 7, which is renamed in simplest form as "12." But how should the

5 7sum 8 + 8 be renamed in simplest form? Before deciding, let us use

regions to picture this sum.

58--
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Two unit regions are shown. Each unit is partitioned into 8 congruent

parts. The shaded parts of the two units picture the sum -5 + -7 as 5 + 7
12

or . The shaded parts can be rearranged. as shown:
8

Here, too, we sec that -5 + -7 =
8

. But in this case it might be desirable
8 8

to go further with the computation and express the result with a mixed
numeral:

5 7 12 8 + 4 8 4 4 1 1

8
=

8 8
=

8 8 8
= 1

8
= 1 + = 1 i

Of course, it is not necessary that all the steps shown above be stated
explicitly. Each step, however, should be understood by the student in the
process of learning an abbreviated algorithm, such as:

, 2 12 4 1

8 1- 8-T=
12" 4But which is the simplest form, " or "1 -" 1,or "1 '? It depends on
8 8

the application. While "I I" may be the easiest expression to use for
2

some purposes, "IZ" or "0" is appropriate when it is necessary to show
8 8

the greater precision. A teacher who assigns computation with fractions
should make clear to students which forms will be considered acceptable
for their answers.

Exercise Set 2

1. Fill in the blanks to complete the steps for computing each sum.

7 9 16 10

41. + -115 To. + + + 3 I 3.

2. Use the steps shown in the procedure above to compute the fol-
lowing sums:
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5 4
a.

FINDING A COMMON DENOMINATOR

57 88
M.

100 + 100

Adding with fractions that already have a common denominator is
relatively simple for intermediate grade students. Computing sums with
fractions that have different denominators, however, will involve some
new addition computation skills.

Computing a sum like -174 may offer little difficulty, since many

students can think of -1 as -2 and then compute the sum of -2 and -4 but2 4 4

1

computing a sum like + car, present a real problem. How might

students (with minimum help from the teacher) figure out a solution to
such a problem?

1 1First, the students might be encouraged to estimate. Is i greater

than 1 or less than 1? How could the estimates be checked? The problem
could be assigned to small groups in the classroom, with scissors, paper,
number blocks, fraction kits, and so forth, as aids. Here are several

ways in which students might arrive at a solution to + = 0
I. Number blocks. To compute + , the student first selects a unit

length that can be "split" into halves and into thirds. Cuisenaire Rods,
Stern Blocks, or similar materials will serve this purpose.

1 1Next, - -
3

is shown with the blocks:
2
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By comparison with the unit, 1 + I is seen to be less than 1.
2 3

I 1 9Can the unit be "split" into smaller pieces to aid in computing .

1 + 1 + 1 + 1 + 1 + 1 = 1
6 6 6 S 6 6

1 3 2 1By matching, it can be seen that = , that 1 = , and that 1 =
3 2 5

26
-6 + -6

2. Regions. To compute I + I a unit region may be partitioned into
2 3

halves, and also into thirds:
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It might occur to a student that splitting the unit in half also splits the
middle third in half and that by splitting each third in half he would

have a way of computing + 13..

1 1

32

+
6

The unit is now split into 6 congruent parts. Each of these parts is of the

1 1unit. It can be seen that of the unit is also 2. of the unit and that 5 of the
6

unit is also 2 of the unit. It follows that 1 + = 3 + 2 =6 2 3 6 6 6

Another way to use regions to compute + is to partition two unit

regions, one into halves and the other into thirds, with one region split
horizontally and the other vertically:

By superimposing the vertical and horizontal splits, the unit regions now
appear as shown:
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Each unit region is now partitioned into 6 congruant parts, and again it
1 2 i 1 3 2 5can be seen that 1 = that = and that = =

2 6 3 6 2 3 6 6 6

3. Nwnber line. Since practical applications of addition of rational
numbers often involve linear measurement, students may benefit from
construction of number-line models for computing sums. To compute

1 + , for example, a line can be marked off in units, halves, and thirds.
2 3

If units are marked off first, students may have difficulty in splitting the
units into thirds with sufficient accuracy. One way to avoid this difficulty is
to begin with an unlabeled scale.

I I I 111111 It I I I I lo

In order to show thirds, as well as halves of each unit, alternate marks are
used for thirds. There are now six congruent segments marked off in each

1unit. Each two such segments make a length of 3 unit, each three such
1segments make a length of 2 unit.

b.i .
o 1

3

1----411--

2
3

1 4
3

5 2 7
3

8
3

Ix.

3
1

2
2
3

1 3233 5 2 7
3

5
2 3

Now 1 + 1 is pictured on the number line as a move of I unit followed
2 3 2

by a move of 1 unit.
3

1

2
+ 1

3
1

0 1 1 2
1

1 4 I 5
I.
2 7 5 II

3 2 3 3 2 3 323
Which rational number will be associated with the point for ?

Students can see that since each unit is split into six congruent segments,
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1 1 3 2one such segment is unit. Then they can see that = + and

that + 2 =
6 6 6

I -6 I

1 2 3 4 5 2
6 6 6 6 6

4. Slide rule. Two number-line strips can be used as a "slide rule" to
compute a sum. If the denominators of the addends are 2, 4, 8, or 16, as
occurs frequently in linear measurement, a slide rule for computing a
sum can be made from two ordinary foot rulers. For example, to compute

3 11 4 + 1
2

1

3 111 2
).1

4

1 ' 11 ' 1 21

Ii
I I 1

21

31 41

3

13
4

I. Slide the lower ruler to the left until the point for the first addend

(1 is directly below 0 on the upper ruler.
4

2. On the upper ruler, find the point for the second addend (1 D.

Directly below this point, the sum (3 1.) is automatically registered
4

on the lower ruler. (Of course, the roles of upper ruler and lower
ruler may be interchanged.)

Rulers marked in sixteenths of an inch can be used in the same way
when students are capable of working with more precise measurements.
Slide rules can be constructed with other scales to compute sums with
fractions whose denominators are not powers of 2: 2, 4, 8, 16, 32, 64.

The reason for the use of aids such as rods, regions (diagrams, folded
paper, cutouts, etc.), and the number line in introducing addition of

e '

64
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rational numbers is to give meaning to the abstract symbols and to the

addition computation process. Otherwise, a student might add 1 and 1
2 3

get 2 , and not see that such an answer is inconsistent with the way rational
5

numbers are usually applied in the real world.

Exorcise Set 3

1. To compute each sum, refer to the illustration and supply the missing
numerators and denominators.

a.

b.

one unit

+ Er=
1+2=2+2=-

65
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e.
1+1=1+1=i.

13+1=11+1=1-
2. Starting at 0, draw two successive arrows to compute each sum.

Express each computed sum in mixed numeral form.

a. 2 1

0 1 2

b.
3 1

+
1-0-1141-1h4.-11.4411-41-1-10-.-111-111-.4--11-41--111-111-11-411-11--1111.

0 1 2

66
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0 1 2

3. Read the slide rule illustrated below to supply the missing numerators
and denominators for each addition sentence.

0

1 -a. 1 1 = 2 .

1

c. 1 -1 -1- -7 = 2 -8.

d. 1 -2 1 = 3.

FINDING COMMON DENOMINATORS TO COMPUTE SUMS

Two important prerequisites for learning efficient algorithms for
computing sums with fractions that have different denominators are (1)
the ability to rename rational numbers with equivalent fractions and (2)
the ability to add with fractions that have the sann denominator.

Exercises such as the following may be helpful in determining whether
students are ready to learn efficient algorithms to compute sums of
rational numbers.

Exercis Set 4

1. Supply the missing numerators and denominators.

a.

b.

1 3

3 6 12.

7 14
8 24 32

67
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2. Write T for True or F for False. If False, change the numerator or
the denominator of the second fraction to make it an equivalent fraction.

1 4 9 54
a. e. =

8 40

3 60 3 11
b. = d. 2 = 2

5 100 4 12

3. Supply the missing numerators to compute the sums.

a.

1b. 1
4

= 1
8

7 7+ 1 - = 1
8 8

2-8 = 3-8

3
e. 4 = 4

10 100

70

100 100

Let us assume that a student is now ready to "manipulate symbols"
a cto compute sums like -2 + 3 , -2 + -I, or any sums of the type -b -d

5 10 3 4
where b and d are different denominators. Is there a particular sequence
that is most effective? Probably not; the choice will depend on the teacher,
the children, and the available materials. Some suggestions are given
here.

Students who know how to compute -1 + -1 usually can figure out for
4 4

1 1 3 1 2themselves how to computc : "It's -4 because .2- is the same as -4 ,

and -2 + -1 is -3 Following such a response, students may be asked to
4 4 4

compute other sums of the same type, such as , or + , where

it is necessary to rename only one of the addends. To compute the sum

-2 + 1
10' for example, the student may notice that one denominator is a

5

multiple of the other; that is, 10 is a multiple of 5. This suggests that can

be renamed with a fraction with 10 as its denominator, and using the
generalization that multiplying the numerator and denominator by the

68
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same counting number produces an equivalent fraction, we have

2 X n ?

5 X n 10

Since 5 X 2 = 10, n = 2 and 2 = 4 . The student may then compute as
5 10

follows:
2_ 4..
5 '

3_ =
10

4_ 4_
10 '

3_ =
10

7 .

10

Some teachers may prefer to begin with an example like 2 + 1 , where
3 4

neither denominator is a multiple of the other. One way to get students to
focus on a pattern in the algorithm to be developed is described in this
nonverbal sequence.'

2 1. Teacher writes example on board.
i
1

+ 74

2
3

1+ 4 X 3

2. Points to "3" (denominator of 33-), writes

" X 3" to right of "4" (denominator of 14).

2 3. Points to "X 3." Holds up chalk, points

to the right of "1" (numerator of i). If no3

1 X 3+ 4 X 3 student responds, teacher writes "X 3"
to right of "1."

2 4. Points to "4" (denominator of 14), writes

"X 4" to right of "3" (denominator of3 X 4
1 X 3+ 4 X 3

2 X 4 5. Holds up chalk, nods to student to come
3 X 4 up and write "X 4" to right of "2".

, 1 X 3-r 4 X 3
I. In a nonverbal lesson, the teacher may work out a development on the chalkboard,

leaving blanks at key spots. After setting the pattern, the teacher holds up the chalk
and motions for someone to come to the board to fill in each blank. An incorrect
response is erased. Occasionally the teacher may have to fill in a blank. As students
"catch on," the number of blanks is increased until students can work out a complete
example independently.
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2 X 4
3 X 4

+ 41 XX

33

12

2 X 4 8

3 X 4 12

1 X 3 3+
4 X 3 12

11

12

6. Writes "=" and "". Points to "4 X 3",
points to space below "", holds up
chalk. If no response, writes "12".

7. Motions to students who are ready to fill
in missing numerators and denominators
of equivalent fractions for addends and for
the computed sum.

Several other sums of the same type, such as 1 + -2 and -2 + 3 are
2 5 3 10'

computed in the same manner, but with students contributing more of the
algorithm with each example. As soon as students "catch on" to the
pattern, the multiplication notation may be omitted. For example, to

compute thi:. sum -2 + 3 , the teacher may begin with
3 10

2

3

3

10

and the next step would be to write "30" as the common denominator.
A mathematical description of the algorithm (which might appropriately

be worked out by students in some classes) may be stated as follows:

a a X d
b
-

b X d
c c X b-
d d X b

(a )< d) (C X b)
b X d

Note that since multiplication is commutative, dXb=bX d, and the
denominator of the sum appears as "b X d". We can also change "c X b"
to "b X c", and we have the following elegant generalization about
addition of rational numbers:

For all rational numbers and -c-
b d

C (a X d) (b X c)
b d b X d

70--
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Addition of Rational Numbers

To reinforce an understanding of this generalization for computing
sums, a diagram similar to one shown previously can be uscd to illustrate

the algorithm. For + , for example, one unit region is split vertically,

another horizontally, to show 2 and respectively. By superimposing the
3 4

"splits" of each unit region on the other, each of the two unit regions
becomes partitioned into the same number of congruent parts.

3 4
2 x 4
3 x 4

1 x 3
4 x 3.

Splitting the region showing thirds into fourths, horizontally, creates
4 X 3, or 12, congruent parts. Splitting the region showing fourths into
thirds, vertically, creates 4 X 3, or 12, congruent parts.

The unit region with 2 thirds shaded now has 4 times as many parts,
and 4 times as many of these parts are shaded; that is, 2 X 4 of the 3 X 4,

or 2 X 4
'

parts are shaded. The unit region with 1 fourth shaded now
3 X 4

has 3 times as many parts, and 3 times as many of these parts are shaded;

that is, 1 X 3 of the unit region is shaded.
4 X 3

We now have 8 of 12 congruent parts shaded in one unit region and 3 of
12 congruent parts shaded in the other. Combining the shaded parts would
show 11 of 12 congruent parts of a unit shaded.

7 1



The Rational Numbers

2 1The steps in developing the diagram for computing 3+ -4 may be re-

corded in the following algorithm:

2 1 2 X 4 1 X 3
3 4 3 X 4 4 X 3

2 I (2 X 4) + (1 X 3)
3 4 3 X 4

2 1 8 + 3
34-4 12

2 1 11

5 + i 12

f

The algorithm may be abbreviated in the form that appears in many
textbooks.

2 8

+ - ...

12

4 12

5
1 3

11

12

Exercise Set S

1. Draw diagrams of partitioned rectangular regions to illustrate how
the product of the given denominators is used in computing these sums:

2 I

2. Use the abbreviated algorithm for the product-of-denominators
method to compute these sums:

3 , 5 13 7
8 12

LEAST COMMON MULTIPLE

While it is always possibk to use the product of two different denom-
inators as a common denominator, other methods for determining a
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common denominator may be morc convenknt in somc cases. Wc have
already noted, for example, thc case where one denominator is a multiple

2 3of the other, as in Here 10 is an easier common dcnominator to
3 10

work with than 50.
To compute example 2. in exercise set 5 thc product 8 X 12, or 96,

was used as a common dcnominator. Is thcrc a common denominator
3 3for that is less than 96? To find out, wc may considcr thc set of
8 12

multiples kr cach of thc dcnominators.

Multiples of 8: 8, 16, 32, 40,
Multiples of 12: 12

Thc common multiples (which may serve as common denominators)
arc 24, 48, 72, and so on. Thc least common multiple (LCM) is 24. A
simple technique for finding the least common multiple is to test each
successive multiple of the larger dcnominator to see whether it is also a
multiple of the smaller denominator. In the example above 12 is not
a mtdtiple of 8, but 24, the next multiple of 12 in the sequence, is also a
multiple of 8; therefore, 24 is the least common multiple (LCM) of 8
and 12.

PRIMI FACTORIZATION

13 7To compute --
8

(exercise set 5, example 2b) onc may be tempted
30 1

to use the product-of-denominators method to find a common denom-
inator, rather than search for a multiple of 30 that is also a multiple of 18.
There is another mcthod, however, that is particularly appropriate in
this case, a method that can be taught to upper-grade studcnts who arc
familiar with prime numbers and primc factorizations.'

2. A prime number has exactly Iwo divisors or factors. The number I is not prime,
since It has only one factor, I. The number 't is prime; Its factors are I and 7. The
number 30 is not prime; it has more than two factors: I, 2, 3, 3, 6, 10, IS, 30. Numbers
that have mot, than two factors are composite numbers. Every composite number is a
product of plat numbers, and as such, It has a unique prime factorization. For example,
the prime factorization of 30 is 2 x 3 x 3, and it may be obtained in any one of the
following ways (order doesn't matter, since multiplication Is commutative and associa
the):

30=2 x 13u2 x 3 x3.
30=3 xl0e3 x 2 x 3.
30=3 x6 ot3 x 2X 3.
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13 13

30 2 X 3 X 5
7 7

18 2 X 3 X 3

I. Each denominator is
expressed as a product
of prime factors.

13 13 2. In order to obtain the
30-92 X 3 X 5-4 2 X 3 X 5 X 3 least common denominator,
7 7 all the prime factors that

-92 X 3 X 3-418 2 X 3 X 3 X 5 appear for either denomi-
nator will also have to appear
'in the common denominator.
Why is

13_4 13 13 X 3
30 2X3X5 2X3X5X3
7 7 7 X S
18 2X3X3 2X3X3 XS

13 13 X 3 39
30 2 X 3 X $ X 3 90
7 7 X $ 3$

-a- 2 X 3 X 3 X $ ir)
74
90

2 X 3 X 5
multiplied by 3? Why is

2 X 3 X 3
multiplied by 5? (Note
that if 3 appears as a
factor twke for one
given denominator it
must also appear as a
factor at least twice
for the common denomi-
nator.).The common
denominator must have
all the prime factors of
both original denominators.

3. In each case, in order
to obtain an equivalent
fraction, the number
multiplied by the denom-
inator must also be
multiplied by the
numerator.

4. The stcps for finding
a common denominator by
thc prime-factorization
method arc incorporated
in thc algorithm shown here.
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Exercise Set 6

1. Write a prime factorization for each number:

a. 12 c. 70
b. 28 d. 100

2. Use the prime-factorization method to find the least common
multiple of each pair of numbers:

a. 6, 15

b. 15, 35

c. 16, 24

d. 28, 42

3. Use the product-of-denominators method to compute these sums:

5 7

41. +
37

b11
1 , 3 , 3

To

4. Use the successive-multiples method to compute the sums in exercise
3 above.

5. Use the prime-factorization method to compute the sums in exer-
cise 3.

6. Which of the above three methods would you use to compute
5 7 9

? Use your choice to compute the sum.
28 30 35

PROPERTIES OF ADDITION OF RATIONAL NUMBERS

If studcnts are aware of propertics of addition of whole numbers, it
would be reasonable for them to assume that these same properties
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should also apply to addition of rational numbers, since the set of whole
numbers is included in the set of rational numbers. Familiar properties of
addition extended to apply to rational numbers are listed below:

WHOLE NUMBERS RATIONAL NUMBERS

Closure

If a and b are whole numbers, there
is a unique whole number a + b
which is their sum.

If 11- and 2- are rational numbers,

there is a unique rational number
a + c

which is their sum.3

Commutativity

a cIf a and b are whole numbers,.then If -b and -I; are rational numbers,

a + b= b+ a. then

Associativity

If a, b, and c are whole numbers,
then

(a+ 0-Fc= a+(b+c).

(1)

If"), and lare rational numbers,

then

(a d a ( d--F-bb bb bb
Additive Identity Element

If a is a whole number, then

a + = 04-a= a.
If -a is a rational number, then

+ o = o + =

Experiences can be provided that Will tend to confirm the assumption
that properties of addition of whole numbers will hold for addition of
rational numbers.

3. Since it is always possible to represent two or more rational numbers with fractions
that have a common denominator, we shall assume this has been done.
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CLOSURE PROPERTY FOR ADDITION

The sum of any pair of whole numbers is always a whole number. (In
contrast, the difference of any pair of whole numbers is not always a
whole number; e.g., 2 3 is not a whole number.) The sum of two whole
numbers can always be associated with two successive moves to the right,
starting from 0, on the number line. The result is a whole number cor-
responding to a particular point on the number line. Students will find
that the sum of any two nonnegative rational numbers can be represented
on the number line in the same manner.

We can also draw on two basic generalizations about rational numbers
to show that the set of rational numbers is closed under addition:

1. Any number that can be represented by a fraction 21 where a

and b are whole nwnbers, b # 0, is a rational number.

2. For any rational numbers and 2
b

g+c _a-Fc.
b b b

Since a and c are whole numbers, then a -I- c is a whole number, by the
closure property of addition for whole numbers. Since b is also a whole

number (not 0), it follows that
a + is a rational number, by statement 1

above, and the set of nonnegative rational numbers is closed under
addition.

ADDITION IS COMMUTATIVE

Manipulative aids can be used to show that changing the order of two
addends does not affect the sum. For example, number blocks make it

3
10

4
10

10

3
10

one unit

3 4 4 3clear that =
10

. After working several examples, students
10 10 10
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may conclude that changing the order of any two number blocks will
not change their combined length, even when the number blocks re-
present rational numbers instead of whole numbers. Experience with
partitioned regions, parts of sets, and number-line diagrams will serve to
reinforce the principle that addition of rational numbers is commutative.

1 With more advanced students, a formal proof that + = + 2 can
be developed as follows:

bbbb
a c a+c by addition ofbb rational numbers;

c+ a

c a
=b+b

ADDITION IS ASSOCIATIVE

because addition
of whole numbers
is commutative;

by addition of
rational numbers.

The number-block illustration below shows that

(2 1) 3 2 1 3

8 8

the way of grouping the addends does not affect the sum. Other concrete
materials arid diagrams can .be used with a variety of examples to help
develop the generalization that the grouping of addends does not affect
the sum.

Li 11
3

on unit

3
8

3

2

2

3

4
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At a later stage, the generalization can be established deductively as
follows:

(114-b f)+1=a+c _Ld
b b

(a c) d

a + (c
b

a c d
b

by addition of
rational numbers;

by addition of
rational numbers;

because addition
of whole numbers
is associative;

by addition of
rational numbers;

by addition of
rational numbers.

The commutative and associative properties used together make possible
the rearrangement of addends in any combination without affecting the
sum. Because of this "rearrangement principle" the grouping symbols
(parentheses and brackets) may be omitted in an expression of a sum of
more than two addends without creating any ambiguity. For example,

may be expressed as

3

16

[ 1 ( 4 7 )]
16 16 16

which in turn may be rearranged as

( 3 7 ) ( 4 1

-16).

No matter which way the addends are regrouped or reordered, the
1 5correctly computed sum will be .

The rearrangement principle can be illustrated convincingly with
materials such as Unifix or Stern Blocks or Cuisenaire Rods. Elementary
students (and teachers) who sometimes find it difficult to make a distinction
between associativity and commutativity will find it easier to deal with
the more general rearrangement principle instead.
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ADDITION PROPERTY OF 0

The number line (where a move of 0 is equivalent to "jumping in place"),
as well as number blocks and diagrams, can be used to develop the
generalization:

If 0 is one of two addends, the sum is equal to the other addend.

Because it has this "neutral" effect, 0 is called the identity element for
addition, or the additive identity.

A diagram will illustrate an example of the addition property of 0 as
applied to addition of rational numbers. How many fourths are shaded in
both unit regions?

-1-

4 4 4 .

Since 0 is a rational number, it can be represented by a fraction. The

'
0set of fractions for 0 is {-2 2 , so we have 0 = , where b is

2 3

any whole number except 0. To establish that 0 is the identity element for
addition of rational numbers, we draw upon the addition property of 0
for whole numbers, as follows:

a 0 a + 0 by addition of
7, 4- b 6 rational numbers;

a because a + 0 = a,
.--- i by the addition property

of 0 for whole numbers.

0 a 0 + a
b b

by addition of
rational numbers;

a because 0 + a = a, by
the addition property
of 0 for whole numbers.a00a 0Since b b = b b (because addition is commutative) and since = 0,
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we have the general statement of the addition property of 0:

+0.0+1)."

OTHER PROPERTIES OF ADDITION

Two other properties of addition are noted briefly here.

1. The well-defined, or uniqueness, property of addition of rational
numbers:

If, g E and ',are rational numbers, = , and E=E,
b d f f h

then 2-1-E= -c- F.? that is, sums do not depend on the
b d h

particular fractions used to name the numbersonly on the
numbers themselves.

The uniqueness property of addition of rational numbers is often
useful in solving equations, especially when negative numbers are involved.

2. The cancellation property of addition of rational numbers:

If g -E and E are rational twmbers and if = -I- E
b d db f f

then g =
b d

This property is also useful in solving equations. For example: If
a 2 7 2 a 7

b 8

At the elementary school level, an awareness of the uniqueness and
cancellation properties can be developed informally through experiences
with a balance scale.

Exercise Sat 7

1. Which addition property applies in each of the following?

15 7) 3 15 ( 73
a.

b.

C.

3

+ 1) 310 4 10 +
7 + I +i 8 8/ 8 \

+
8 8/

81
Di
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2 3 1 1 2 1 3 1

2. Rearrange the addends to compute each sum quickly.

2 , 93 ) , 7

-r 115 "r

5 (247 95)
." 100 -r 100 r 100

c. 0 + + +1 8 10 8

13 13 11 12

3. Which addition property is used in each step?

a. + +16)] [-h+ (-1-74-

C.

d.

MIXED NUMERALS AND SUMS

16 16 16 16

In a mixed numeral (sometimes referred to less precisely as a "mixed
number") one part of the numeral names a whole number and the other

CfrZ-8,
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part is a fraction for a rational number, as in the mixed numeral "2 "
3,,The symbol "2 8 is by agreement an abbreviation of an expression for

the sum 2 + 3 Since the two expressions are equivalent, we have
8

3 3 3 3
2 = 2 + , and 2 + = 2

An application in addition of rational numbers occurs as follows:

3 6 3 6
2 + 1 = 2 + + 1 + i

8 8 8

= (2 + )) + (2 + -*)
8 8

by agreement;

because addition is associative
and commutative (rearrangement
prihciple);

by addition;

by agreement.

9If desired, 3 8 may be renamed as follows:

3 9
8

=

=

=

3

3

3

+ 9
8

+ (

+ (1

by agreement;

+18.)
renaming 2 as the sum of

8
8 and 1
8 8 '

+ -10
abecause 71 = 1 for a 0 0;

=

=

.(3

4

4

1+ 1) + i

+ 1
8

1
8

,

because addition is associative;

by addition;

by agreement.

Awareness of a mixed numeral as an abbreviation of an expression for a
sum will be especially useful when computing differences with mixed

TP3-.
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ntimrals, as will be shown in the chapter "Subtraction of Rational
Numbers."

Exercise SW

1. Fill in thc blanks in each renaming sequence:

7tv.ii=i-r=i-r=
49 +b. -- = - = -

4 4
+

4
= 12 + = 124

2. Fill in the blanks, and justify each step in computing the sur

2 2a. 4 + 5 = 4 +
3

5
3 3 3

b.

C. = 9 +

1d.
3

S. = 9 + 1 + 1-
1f. = 10 +

g. = 101.

SUMMARY

1. Important prerequisites for an understanding of addition of rational
numbers are an understanding of addition and its properties for the
system of whole numbers, an understanding of the association of a
rational number with a set of equivalent fractions, and the ability to find
equivalent fractions for given fractions. With this prerequisite knowledge
and with the guided use of various manipulative and pictorial aids,
students can participate in developing basic generalizations about addition
of rational numbers.

2. Most of the difficulties that students have with addition of rational
numbers arise when computing sums with fractions that have different
denominators. lr. such cases it is always possible to rename the rational
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numbers with fractions that have a common denominator, in order to
follow a generalization that provides a basic pattern for computing a sum:

For any rational numbers and E
b

a c a 4- c--1--='b b

A common denominator is a common multiple of two or more denom-
inators. A simple method for finding a common denominator is to multiply
the given denominators. This leads to anothcr basic generalization about
addition of rational numbers:

S (a X d) (b X c)
b d bXd

When different denominators have a common factor, it may be more
efficient to use the least common multiple (LCM) as a common denom-
inator. Two ways to find the LCM are (1) comparing successive multiples
of the different denominators and (2) using the prime-factorization
method.

3. Addition of rational numbers has the same properties as does
addition of whole numbers: It has closure; it is commutative and as-
sociative; it has the same identity element, 0; it has the uniqueness and
cancellation properties. Students can develop an understanding of these
properties and of the algorithms for computing sums of rational numbers
by working with concrete aids, and diagrams, to help them interpret the
mathematical symbols they use in working with addition of rational
numbers.

85--
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SUBTRACTION OF

RATIONAL NUMBERS

Joseph Moray

1. How is subtraction of rational numbers related to
addition of rational numbers?

2. How does an understanding of subtraction of whole numbers
help students to understand subtraction of rational numbers?

3. What are some difficulties students may encounter when
computing differences of rational numbers?

4. What are some efficient algorithms for computing the
difference of two rational numbers?

A child who has learned to add rational numbers isn't likely to need
any formal introduction to subtraction of rational numbers. If he knows

3 1 4 4 1 3that - - = , for example, he will probably assume that - = -
5 5 5 5 5 5

Such an assumption makes sense, since it draws on the relationship of
subtraction to addition in the whole-number system. If we draw on this
relationship, we can see how meaning can be developed for the difference
of two rational numbers.

In the system of whole numbers, addition assigns to the pair of numbers
a and b the sum a -I- b. In the sentence a -I- b = c, a and b are called
"addends" of the sum a + b. To take a specific example, addition assigns
the sum 4 + 5, or 9, to the pair of numbers 4 and 5. The numbers 4 and 5
are addends of the sum.

adtrt addend

4 5 9.

sum
sum (computed)

86 4.;
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Subtraction assigns to the pair of whole numbers c and b the missing
addend in the sentence 0 + b = c. The unknown, 'or missing, addend is
the difference of the sum, c, and the given addend, b.

0E1

missing addend addend

e.

sum

The difference of c and b is expressed as c b, and we have

e b.

(Until negative numbers are introduced, the expression "c b" has no
meaning if c < b. For example, in the sentence 0 = 3 7, the missing
addend is the difference of the sum, 3, and the given addend, 7. Since the
missing addend plus the given addend equals the sum, we have 0 + 7 = 3,
but there is no whole-number solution for this sentence.)

Two subtraction sentences can be formed from the addition sentence
a -I- b = c:

c = a, and c a = b.

Thus, if 4 + 5 = 9, then

9 5 = 4, and 9 4 = 5.

These sentences illustrate the relationship of subtraction to addition: the
sum minus one addend is equal to the other addend. Further, subtracting
a number is the inverse of adding that number. If we start with 4 and
add 5, and then subtract 5 from that sum, we eet back to 4:

(4 + 5) 5 = 4.

EXTENSION OF SUBTRACTION TO RATIONAL NUMBERS

Working some problems on the number line will show that basic ideas
about subtraction of whole numbers can be extended to the system of
rational numbers. Two examples follow, each picturing a different inter-
pretation of subtraction.

I. Along a highway, traveling in the same direction, the distance from A
6

i
9

to B is 5. of a mile, and the distance from A to C s
I

of a mile. What is
0

the distance from B to C?
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10

10

A

1 2 3 4 5 7 8 0
10 10 10 10 10 10 10 10 10

The above diagram shows one of the most useful interpretations of a
difference of two numbers. The "arrows," or vectors, describe motions
which in this case represent a given addend and a sum. The vector from
the point for the given addend to the point for the sum (also given)
determines the missing addend. The missing addend in this problem can be

found by counting the number of tenths from -f-o- , the address for point B,
9to

'
the address for point C.

10
Some students may count points instead of segments and begin counting

at the wrong place. For example, a student may say "1, 2, 3, 4 tenths,"
6 7 8as he points to the marks for To

'
To' and 9 and conclude, "that's

4 , so 6 + 4 = " If this occurs, it may help to have the student
10 10 10 10
move a finger along the path from the point for 6 toward the point for

10 10

and say
" ' as he arrives at the point for 107 . In this manner, the move1 ,

10

from to will be shown as a move of6 9
10 10 10

A move on the number line from a point for the given addend to a
point for the sum, to determine the missing addend, can be associated
with the difference of any two rational numbers. This technique will be
especially helpful when students learn to subtract negative numbers, as
will be pointed out later.

2. Ferdinand the Frog made two jumps. He first made a jump of of a

meter, then he jumped back along the same path6 of a meter. How far is
10

he from where he started? We can look at this problem as starting with the

interval from 0 to 9 and then retracing, or "taking away," the interval
10

from 3 to 9 (an interval of A). This ties in with the take-away approach
10 10 10

to subtraction of whole numbers, where the difference is associated with
what is left after some objects are removed from a set.
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1 2 j j 11

10 10 10 10 10 10 10 10 10 1

In this problem the given numbers are a sum and one of two addends.
The other addend is missing. If we let r represent the missing addend, then

6 The number-line illustration shows that the point for the
10 10

difference of 9 and is also the point for 3 so r = 3
10 10 10 ' 10

The technique of moving to the right when adding and to the left when
subtracting will work with positive numbers, but, as you will see later, it
will not work with negative numbers. For this reason, generalizations like
"Always move to the left when subtracting a number on the number line"

should be avoided. It is better to be specific: "To subtract -6 move to
10 ' 10

the left." (Students will learn later that subtracting will mean a

move of6 to the right.)
10

Exerdn Set 1

1. Rewrite each sentence in the following form: missing addend equals
sum minus given addend.

2 , 10a. 5 n = T.

7 12b. n = T.

4 1C. 3 = +.n.

9 4

2. Make a veCtor diagram, with one vector for the given addend and
another vector for the sum and then a vector for the missing addend, to
compute each difference.

7 3

a' i
89
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1 3
b. 1 4

3. Make a diagram showing two successive jumps on the number line to
compute each difference.

7 3i
9 2

b.
5 5

4. For each sentence, determine whether n is a sum or an addend.

1 3.
a. n =

2

3 1.b. n =
4 4

e. n - 3 5.
8

7 3
d. = n -

8 8

The use of a vector diagram to compute a difference has one slight
disadvantage: the length of the move from the point for the given addend
to the point for the sum is not revealed automatically. If an automatic
reading is desired, it can be obtained by the use of parallel number lines,
using a slide-rule technique. A slide rule for computing sums and dif-
ferences can be constructed by marking two strips with the same scale. The
slide rule works on the principle of the missing-addend approach to
subtraction.

9For example, to compute the difference To- 2 , we can use two

number lines, marked off in tenths. The missing-addend approach to

TI II I I 1 I Ij I I I± 4 s e 11 iP. it
10 II 10 II 10 10 10 II II 10 10 10 10 II

90--
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subtraction tells us that the given addend plus the missing addend is equal

to the sum. That is, 2 -I- 0 = 1-9- . Actually the difference (-9 is
10 0 10 10

the missing addend, since I -I-
10

- = 1
10

What we are really
10 10

trying to obtain, then, is a simpler name for the number 1 - 2
10 10

The slide rule provides a model for the missing-addend approach; at
the same time, it automatically produces a simpler name for the difference.

0Picture an "arrow," or vector, from the point for 10 to the point for 9
10

the sum. The difference, or missing addend, would then be associated With a
2 9vector from the point for to the point for To . We could count the

2 9number of tenths from To to to but by sliding the lower number line

until the point for t is directly under the point for on the upper

number line, the computed difference, 7 is indicated directly below the
10 '

9
given sum, To . (Of course the roles of the upper 'number line and the

lower number line may be interchanged.)

_L
lo

154

I I I I I I I I I I I I

1 2 3 4 5 4 7 5 0 ig 11 ia
io io io is io io io io io10 10 10 10

I I I I I 1 I I I I

10 10 10 10 10 10 10 10 10 10io
I I I i I I i 1 1 1

Nothing we have done so far is different in procedure or in principle
from what would be done if the number lines were marked off with points
for whole numbers instead of with points for rational numbers between the
whole numbers. Essentially, what we have done is to develop or reinforce
the notion that the basic ideas about the subtraction of whole numbers
apply to the subtraction of rational numbers as well. In particular, we have
extended the missing-addend interpretation of subtraction to include the
subtraction of nonnegative rational numbers; that is, subtraction assigns

to the pair of rational numbers 7) and the missing addend in the sentence

91
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aIn the above sentence is the sum and is the given addend. The missing

addend is the difference of Ls and or 9- E The missing addend, or
b b b b.

difference, is a nonnegative rational number only if is not less than E
b

For example, 13- is a nonnegative rational number because -; is not less

than 3 ; and, as students will learn later, 2 4 is a negative rational
3 3

number because the sum, , is less than the given addend, 1.

Exercise Sot 2

1. Make a slide rule out of two strips of paper or cardboard. Mark off
in eighths, as shown:

2
a

< Illii111111
1
aIIIIIIIIIII211111111111111111134 1 1 Z 1 1 II it<IIIIIIIIIII91111111111116J. 1 1 1 1 1 Z 1 1Sell.11 il.MI1111111

Use your slide rule to compute the following differences.

7 2
ae

5 1
C.

3 0 9 5b. d.

2. In which of the following is the number for the frame a nonnegative
number?

2 3
C. = + 0

1 3 1 1

I/. +
3. Rewrite each sentence to conform to the following pattern:

missing addend = sum given addend.

1
92--



Subtraction of Rational Numbers

1 5 5 3=

2 11

b' + 115
14 100

d. = 0
100 100

4. Rewrite each sentence to conform to the following pattern:

given addend + missing addend = sum.

8 5a. 3 - 3 = a. 8 5

10

11 5 67 99b. 160_16 100 100

Folded paper, sets of rods or blocks, units cut up into parts of the same
size, and drawings of partitioned regions are among the materials that can
provide experiences related to the subtraction of rational numbers.

Just as we did for addition, we can use drawings of regions to develop
generalizations that will be useful in subtraction computation. Consider
the shaded parts of the two unit regions pictured below. How much

A

II
more of B would have to be shaded in order to match the shaded part of A?
This question can be expressed by either of these equivalent mathematical
sentences:

Or

Experience with subtraction so far tells students that the missing addend
is the difference of the sum and the given addend:

93
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missing addend given addend sum

s

missing addend

OEM

sum given addend

Some students will compute the missing addend by recalling an addition,
rather than a subtraction, combination: "One-fifth plus how many fifths
equals three-fifths?" rather than "Three-fifths minus one-fifth equals how
many fifths?"

Regions can also oe used to illustrate the take eway interpretation of
subtraction. "How much more of A is shaded than B?" can be answered
by removing or covering the amount of shading in A that is in B. That is,

the difference 3 1 can be computed by folding back or covering a shaded
5 5

fifth. Then 3 1, or 2, fifths of the unit appear shaded, and the student
finds that

3 1 3 1 2
5 5 5 5

Exerds Set 3

1. Match the shaded parts in each pair of unit regions, and write a
a c drelated subtraction sentence (in the form
b

b = b).

a.

94



b.

C.

d.

Subtraction of Rational Numbers

11111111

2. Fill in the blanks to complete the steps in computing each difference:

13 7a.
10 10

b. L5 =
16 16

74

13

10

59

4

10

4

16

74
e.

100 100

1 2

d'

100

2

100

2

4
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So far, we have been computing differences with pairs of fractions that
have the same denominator. It is suggested that this practice be followed
with students until basic ideas about subtraction of rational numbers have
been established. Then computing with fractions with different denom-
inators should be no more difficult for subtraction than for addition
(except for a special case, which we shall deal with later in this chapter).

Recall that in order to compute the sum of the rational numbers Eand
b d'

ifb0d,it is necessary to represent the numbers by fractions that have a
common denominator. A sequence of steps for computing the difference of
two such rational numbers is shown in the example below:

2 2 2 X 4 8
3 3 X 4 3 X 4 12
1 1 1 X 3 3

4 4 X 3 4 X 3 12

5

In the first step the product of the two given denominators (3 X 4, or
4 X 3) is the common denominator. In the next step the procedure for

finding equivalent fractions is followee, since the denominator of is

multiplied by 4, then the numerator must also be multiplied by 4 to get the

equivalent fraction 8 . An equivalent fraction, also with the denominator
12

12, is obtained from -1 by multiplying numerator and denominator by 3.
4

A general statement of this algorithm follows:

a_c.aXd bXc (a X d) - (b X c)
b d bXd bXd- bXd

Exercise Set 4

1. Use the algorithm form shown above to compute each difference.
(The first example has been partially completed.)

2 1 2 X 3 X 1 (2 X ) - (3 X ) 4
3 X 2 X 2 3 X 2 6 7o"

3 3b. -4 - 3 =-

9 2
C'

96---
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5
2. Compute the difference 7 using two different methods for

30 24
finding the common denominator (see chap. 3). Express result in lowest
terms.

a. The product-of-denominators method

b. The least-common-multiple method

3. Compute the following differences. (Choose any method.)

17 17b. yo

15 7
e

24 18

15 7
d. -

Students who are proficient in adding with fractions also tend to do well
when subtracting with fractions. The processes for computing sums and
computing differences are enough alike that some of the skills for both
can be developed simultaneously. Certain prerequisites are necessary:
facility in adding and subtracting whole numbers, an understanding of
how rational numbers can be associated with partitioned units, the ability
to obtain and to identify equivalent fractions, facility in renaming mixed
numerals. Any computation process, or algorithm, that demands so many
different skills can easily break down if there is weakness in just one of the
component skills.

Complex algorithms such as those for subtracting or dividing with
mixed numerals can cause frustration and produce fear of mathematics, a
failure complex, and even trauma in some students. For this reason. we
suggest that some evaluation be made of a student's skills and attitudes

97

17



The Rational Numbers

before he is required to cope with problems that deal with computing

differences such as 27 2-
3 9 1-7 .

l 6 20
For our purposes at the moment, however, let us assume that we are

working with students who are ready for an introduction to more difficult
subtraction computation. We might begin by setting up a problem in-
volving a familiar or interesting life experience, rather than by manipu-

lating abstract symbols. For example, we place 3 oranges on one plate

and 1 3 oranges on another plate, and we address the group we are working
4

with: "Dennis, this plate is for you, and, Mary, this is yours. Who has
more oranges? How much more?"

And we wait for answersfor discussion, estimates, arguments. We
say, "How do you know?" or "You have to convince us," and we wait
for explanations. We try to lead a little, and listen a lot.

And the explanations come. "If you cut 1 of the 3 oranges into quarters
then you can take 3 of the quarters and 1 whole orange and match them

with the 1 3 oranges on Mary's plate, and then Dennis would still have 1 2
4 4

oranges left."

Dennis's plate

Mary's plate

But there are times when we may need to figure out problems without
"cutting up the oranges." So we work with the students to develop a

--98--
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computation procedure, or algorithm, that we can use whenever we need
to solve similar problems. Perhaps it will look like this,

4 4 4 4 4

3 3 3
1 74 =

where the matching interpretation of subtraction is used to compute the
difference, or like this:

1 1 4 1 5
3 4 2 + 1 + 2 + - 2 7t

3
1 -4

31 -4

2
1 -4

Here, students will envision the problem as a take-away rather than as a
matching process. Others might think of the problem this way,

3 10

and reason, "How much do I have to add to 1 to get 3 14 ? 1 ! + 14makes

2, and 1
4-

more is 3 -4 ' so the missing addend is + 1 , or 1 -2 and
4 4 4

1 3 + 1 2 = 31-
4 4 4

3
1 4 +

3
1 4 + 1

2

4

3
1.
4

3
1-.
4

SUBTRACTION ALGORITHMS

Which subtraction algorithm should we teach? At first, the algorithM
to use may be one that the students "make up." At least it should be one
'that they can easily followone that makes sense. Then a transition can
be made to the algorithm that appears in the textbook they are using.

Actually, there is nothing sacred about a particular algorithm. There
are many to choose from and others to invent. Some should be avoided.
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Some students try to cut down on the amount of writing, and they may use
one of these forms:

2 8 2

3 12
4 3

1 1

1 1

4 12 4

5
3

12

8 2

12
4

3

3

12
1

53 u

The notation on the left violates the meaning of the symbol for equality,
and it should be avoided on that count alone. There is another reason for
discouraging its use; students may write the fraction and forget about the

5
rest of the mixed numeral. In this case they might easily write and not

12
remember to compute 4 1.

The form in the middle is compact, and some students use it successfully.
But here, too, the whole numbers may be neglected, and the feeling of
equality may be lost.

The form that appears on the right is one preferred by many of the
faster students. They write the problem, work out all the steps mentally,
and then, if they are permitted to, simply write the result. If a student is
consistently accurate with this method, why not encourage him to use it?
However, if he makes mistakes, he should be required to "spell things
out" so his work can be checked to find out what causes the errors.

Some of the forms commonly found in textbooks are shown below:

1 5 20
3 = 3 j-5- = 2A.

B.

1
3 =

3

4
1 =

5

5
3

12
1

20
= 2 -1-5-

12= 1 B

C.

D.
1

3

4

5

5

15

2

15

8
115

20
15

12

15

8
1

15

4 12 12
1 = 1 = 1

5 15 15

8
1 B.

20
2 B.

3
3

=1 15.3B,

12
1 B.

100-
.... 1 : 0

8
1 -a
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Some textbook authors object to notation that seems to imply that
equations are being subtracted, so they use arrows, as shown in B, or
repeat the symbol for minus each time the difference is renamed, as shown
in C. The crossing out that appears in D is reminiscent of a common
practice when subtracting whole numbers. It helps some students, and it
confuses others.

The most difficult procedure in computing differences occurs when the
1sum is renamed twice, as shown in the above examples. 3 3 is renamed

first as 3 -5 to obtain a common denominator, and again as 2 20
'

to
15 ' 15

obtain a greater numerator. The second renaming step is the nemesis of
many students. This is what often happens:

2
1 15 153 3 = = 2 ri

4 12 12
1 = 1 = 1

5 15 15

3
1

5

(This, of course, is not
the correct answer.)

The error results from learning a mechanical procedure when subtracting
whole numbers, and transferring that procedure blindly to subtracting
with mixed numerals. Students who make such an error need to work
through a more expanded algorithm, the key part of which is shown here:

5 53 Ti (2 + 1) +

(2
(fsi

115.) N.

There is another algorithm, not frequently used but sometimes useful,
which eliminates the source of the error shown above:

1 10 50
3 -. -.

3 3 15

4 9 271 1.i
5 5 15

23

15

In this algorithm, mixed numerals arc replaced by fractions, thus dim-

-101
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Mating the need for borrowing or regrouping. (Can you think of a dis-
advantage of this method?)

Exude* Set 3

1. Replace the mixed numerals by fractions to compute the differences.

1 2a. 3 i 1 3

3 3b. 27 -ii 19 3

2. Compute each of the differences in exercise 1, using the form shown
as A in the preceding section.

3. Explain the computation error in each example.

a. 8

1

10
7

10

C.
77 775 -

100 100

7 70
10 100

7

100

102
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9
f. 3 19

6 16
10 1= p

2 1
8

= 2
5

14
7

EQUAL ADDITIONS

Subtraction of Rational Numbers

Another algorithm worth learning uses the equal-additions, or equal-
increment, principle. This algorithm eliminates "borrowing" by making
use of the principle that adding the same number to both the sum and the
given addend does not affect the difference. For example, the difference of
162 and 98 is easier to compute if each number is increased by 2:

162 98 = (162 + 2) (98 + 2)

= 164 100

= 64.

How can the principle of equal additions be applied to compute the
3 7 3difference 7 4 ? What number could you add to both the sum, 7
8 8 8

and the given addend, 4 , to make computation easier?
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3 3 1 4 47 - -4 7i-l-i -4 7. -) 7i8

7 7 1 84- -o 4-4-- -o 4- -o 5
8 8 8 8

42 i

After students understand the steps shown above, the notation can be
condensed. Two shorter algorithms are shown:

3 4
7 2

1+
8

= 7 '.1 7 -8 -0 7 i
8 8

7 1 74 +
8
- = 5

8

4 42 i 2 -1-3-

Shifting a vector for the difference on the number line gives a clear
picture of how the vector length remains constant when the principle of
equal additions is applied.

71-5=21.

71- 41.21.

1
l llll , , i 1

4 $ 6 7

bards. Sat 6

1. Use the principle of equal additions to rename each difference so
that the given addend is changed to the nearest whole number, then
complete the computation.

1 2a. 4 1
3 3

3 6b. 9 m - 5 m

1 3e. 6 - - 2
4 4

16 97d. 88 - 27
100 100
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2. The principle of equal additions is applied in a different way in the
following example. Explain how.

7

4

17

7

5

117

84

100

84
100

2
33

100

3. A method for computing the difference of two whole numbers is
shown in the following example:

1

72 60 + 10 + 2 60 + 3 63
--)

49 40 - 40 40
23

In this example, use is made of what might be called an equal-subtractions
principle: 9 is subtracted from 49 to get 40, and 9 is subtracted from one of
the 7 tens in 72 to get (60 + 1) 4- 2, or 63. The difference 72 49 is
changed to 63 40, for easier computation.

A similar algorithm is shown for computing the difference of two
rational numbers in this example:

2
5

2 2 1 2 4 4
4 3 -1- 1 + 3 3 + x + 3 3 -1- 3 3

5 5
---) , , ---)

3 3
1 3 - 1 - 3 1 - 1 1 - 0 - 1

4
2 5

The above algorithm may be abbreviated as follows:
3 44

'c5

[Note: 3 is subtracted from 4, leaving 3 2 ; the
5 51 2 2 4is then added to the original to get .]

5 5 5
4

2 3

Use this abbreviated form to compute each of the following differences:

1 2a. 6 1
4 4
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3 7b. 7 4
8 8

4 15
C. 1

5d. 9 2 1-2-

We have seen that there are many algorithms for computing the dif-
ference of two rational numbers. The traditional borrowing, or regrouping,
method is featured in most textbooks published in the United States, and
it is an effective algorithm for general use. However, there are good
reasons for teaching one or more other algorithms. Some children may
find the regrouping method confusing or difficult, while some other
method might make sense to them. Another reason for learning other
algorithms is that it often involves exploring and learning more
mathematics.

PROPERTIES OF SUBTRACTION

After students learn that addition of rational numbers, just as of whole
numbers, is both commutative and associative, they might investigate
whether subtraction of rational numbers has these properties:

Is subtraction of rational numbers commutative? A student who has a
good understanding of the missing-addend approach to subtraction can
easily answer this question by applying it to a specific case. For example:
Is it true that

3 1 1 3- - - - ?
4 4 4 4

2 .The student will see that -3 -1 = -2
'

because -41s the missing addend in
4 4 4

1 3 1 3 2 1 3
the sentence -I-71 0 = -4. He will also see that -4 71 0 71 ( i-4 -4 s not

equal to ..1), because 1 is not the answer to the question i + 0 = 1 In

fact, there is no positive-rational-number answer, and 14- i is undefined
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until negative rational numbers are introduced. At any rate, the student
finds that

3 1 1 3

4 4 4

One exception, or counterexample, is sufficient to show that subtraction
of rational numbers is not commutative.

Is subtraction of rational numbers associative? Once again, a single
example can serve to provide the answer. Is it true that

9
8 8 8 8 8 8

Computing the differences as indicated by the grouping symbols reveals
that

(7_ _ _ _ _ I _
8 8 8 8 8 8

and

2 _ _ _ _ 2 _
8 8 8 8 8

3 5
Since 8 0 8 , then

5.
8

(7. 7
-1-

: (?.
8 8 8 13)

This counterexample shows that subtraction of rational numbers is not
associative.

THE ROLE OF 0 IN SUBTRACTION

Recall that the sum of zero and any rational number is equal to that
rational number, that is,

a a
and 0 + =b'

Zero is the identity element or additive identity for addition of rational
numbers. Does zero play the same rule in subtraction?

From each addition sentence, two subtraction sentences can be formed.
For example, from the sentence

2 2

3 '

107
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the student should be able to obtain these two sentences:

2 2 2 2
and o = ;

and from the sentence

7 70 + = ,

these two sentences:

7 7 = ,
7 71-0 1 0 and

0
0 To-

After working a set of similar examples, students might be prompted to
propose these generalizations about the role of zero in subtraction of
rational numbers:

1. Any rational number minus itself is equal to zero.

a a
b b

2. Any rational number minus zero is equal to that number.

a n a

These two generalizations are derived from the fact that 0 is the identity
element for addition of rational numbers. We may not conclude from
this, however, that 0 is the identity element for subtraction of rational

numbers. While it is true that 2 0 = 2
'

it is not true that 0 =

Both conditions would have to be met for 0 to be called the identity
element for subtraction.

"SHIFTING OF TERMS" IN SUBTRACTION

To compute the difference 5 8 1 3 , a student might proceed as2
8

follows:

2 8 2 10
5 4+

8 8 8

3 3 31 8 =

108
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He may then be deceived by the addition symbols and complete the
computation incorrectly:

10
4 -I-

3
1 -I-

133 -I- -8- = 3 18 3

This error could be prevented by an understanding of a special property of
subtraction of rational numbers:

For all ration nwnbers r,s, t, u,

+ s) - (1 + u) = (r - t) + (s - u).

Notice how the shifting of terms in this equality changes a difference of
two sums into a sum of two differences. Applied to the example above,
we have:

10 3(4 + 10
(1 + = (4 -1)-F 6-0,

7and the correct result is 3 + - or 3 -7
8 8

The shifting-of-terms principle can be confirmed by students by working
out a subtraction problem with the help of concrete materials. A formal
proof of the generalization

+ s) - (t + u) = (r - 0 + (s - u)

is presented here. Keep in mind the relationship of addition to subtraction
and the fact that addition is commutative and associative.

1. Let (r - t) = x and (s - u) = y. If r - t = x, then r = (t x), and
if s - u = y, then s = (u y).

2. (r + s) = (t + x) + (u + y)

= (I u)

3. (r + s) (t + u) = (x + y).

4. Recall that x = r - t and y = s - u. (See step 1.)

Then (r s) - u) = (r - 1) (s - u), which is the statement we
set out to prove.
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If we take a special cast, where s = u, we arrive at another generalization
that is useful in computing with mixed numerals.

(r s) (t + s) = (r 0 + (s s)

= (r 1) + 0

= (r I).

And we have

(r + s) (t + s) = (r t) .

This was the generalization applied in an algorithm developed earlier,
where adding the same number to both sum and given addend did not

affect the missing addend. For example, if r= 3 -2 and t = 1 -4
'

then we
5 5

may let s = -1 to make it easier to compute the difference 3 -2 1 -4
5 5 5

3 2 3
5 5 5

4 (
5

2 1) (I4_
5 5

3

SUMMARY

The principles of subtraction of whole numbers apply to subtraction
of rational numbers as well. Subtraction is related to addition; subtracting

d aa number is the inverse of adding that number. If -c =

c a d d a c
then -b and -b =-b--b' Subtraction assigns to the sum, 9- , and an

addend, , the missing addend in the sentence 0 + = 9-
'
and since the

b b
missing addend is the difference of the sum and the given addend, we have

a_c.
b b

The difference of two nonnegative rational numbers is a nonnegative
rational number only if the sum is greater than or equal to the given
addend. Subtraction of rational numbers is neither commutative nor
associative. Zero plays a special role in subtraction: for any rational

-110-
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number b b 0 = a and = 0. Adding the same rational number
b b b

a a a a

to both the sum and the given addend does not affect the difference of
two rational numbers.

There are many algorithms for computing the difference of two rational
numbers. Learning several different algorithms can increase a student's
efficiency in computing; it can also help to increase his understanding of
arithmetic by providing him with more opportunities for applying the
basic principles of subtraction of rational numbers.



MULTIPLICATION

OF RATIONAL NUMBERS

Harry D. Ruderman

1. What meaning shall we give children for an "indicated" product
of a pair of positive rational numbers?

2. What preparation will help children understand the traditional
multiplication algorithm for fractions?

3. How can we explain to children the traditional multiplication
algorithm for fractions?

4. What properties does the multiplication of rational numbers
have? How are they different from those for the multiplication
of whole numbers?

PREPARING THE STUDENT TO FIGURE OUT FOR HIMSELF:
ASSOCIATING A RECTANGULAR REGION WITH AN
INDICATED PRODUCT

The ability to figure things out for oneself is evidence of understanding.
How can we develop this ability in a student when introducing him to
the multiplication of rational numbers? One way is to extend an inter-
pretation of the multiplication of whole numbers to an interpretation of
the multiplication of rational numbersand to do so in a manner that will
enable the student to reconstruct this extension himself.

We may begin to make this extension by recalling a meaning of the
product of two whole numbers:

The product of whole numbers a and b is the number of
elements in an array having a rows and b columns.

For example,
4 X 3 is the number of boxes in a rectangular array having
4 rows and 3 columns.

112
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I H
3 columns

4 x 3 boxes

Counting tells us that there are 12 boxes in this array. Hence 4 X 3 = 12.
1To consider products such as 4 X 3 2 we can extend the rectangular

1
array to 4 rows and 3 2 columns. The number of boxes in this new array is

4 X 3 1 . The picture shows that 4 X 3 1 is between 4 X 3 and 4 X 4. If we
2 2

4 rows

1 box

4 x 31 boxes

31 columns

view the rectangular region 4 X 3 12- as a rug (measured, say, in feet), we

see that it would cover a rug measuring 4 X 3 and fail to cover a rug
measuring 4 X 4.

In mathematical symbols,

14 X 3 < 4 X 3-i < 4X 4,

1Hence 4 X 3 7., is between 4 X 3 = 12 and 4 X 4 = 16. So we have

112 < 4 X 3 < 16.

In many practical situations this information is all that is needed. We may

113
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1refer to 12 as a lower estimate for 4 X 3 2 and to 16 as an upper estimate

for 4 X 3
2

There is much merit in postponing computation with rational numbers
until after the student can draw on squared paper a picture that will go
with indicated products such as

1

4 X 3 2

and can write the product expression for a given picture such as the one
shown here.

Another important step before moving into computation is to obtain
lower and upper estimates for products by replacing factors with lesser
or greater whole numbers. Thus,

41 units

3 rows

or

5 columns

23 X 4 < 3 X 4 < 3 X 5
3

1 unit
region

212 < 3 X 4 3 < 15.
If neither factor is a whole number, we can still proceed as before.

Consider the product 3 X 4 .

I4------ 5 units

31 rows

unit
region

4 units

--
41 columns

114
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The product for this rectangular region is

1 23 2 X 4 3.

A lower estimate is 3 X 4, and an upper estimate is 4 X 5. So we may
write

Or

1 23 X 4 < 3 2 X 4 3 < 4 X 5

12 < 3 1 X 4 2 < 20.
2 3

If time is given to
(1) obtaining rectangles for indicated products,
(2) obtaining product expressions for given rectangles, and
(3) obtaining lower and upper estimates for products,

students will be in a better position to figure out computed products that
are likely to be within reason, even if not correct.

Exercise Set 1

1. What product expression goes with each of the following rectangles?
(Do not compute.) When asked to do so, show the lower and upper
estimates for the product. (Do not compute.)

TCr

b.

31 rows

columns

1 unit
region

Product = X

1 unit
region

.1 1Product = v

Lower estimate = X
Upper estimate = X _

columns
Fill in: _ X -- < -- X < -- X --
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C.

rows

d.

WWI

columns

1 unit
region

Product = _ X
Lower estimate = _ X

Upper estimate = _ X _
Fill in: _ X _ < _ X _ < _ X .._

columns

1 unit
region

Product = X

Lower estimate = X

Upper estimate = X _
Fill itr _ X _ < _. X _ < _ X

fr. 14 1 unit --Ng

f.

row

- column2

14- 1 unit

1 unit

1 unit
region

Product = X

unit
region

Product = X

column



rOW

1 unit _14

column

1 unit

Multiplication of Rational Numbers

unit
region

Product = _ X ..._:_.

2. Shade a rectangular region that goes with each of the following
products. When asked to so so, show the upper and lower estimates for
each product. (Do not compute.)

a.

b.

3 X 4

23 X 4 3

Lower estimate = _ X _
Upper estimate = _ X _

Fill in. _ X _. < 3 X 4 2 < X ____
3
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C.

d.

e.

2 1
3 X 4

3 2

Lower estimate = X

Upper estimate = _ X _
Fill in: _ X _ X 4 1 < X

3 2

14-- 1 unit

1 unit

14-- 1 unit -PO

1 unit
2 3

2 1
1 1

3 2

f. Assign your own width and length for a unit region to obtain a
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1rectangle for 1 -1 X 2 - . You may want to make the unit for
5 2

width different from the unit for length.

3. Sketch a rectangular region that goes with each of the following
products. Do not compute the products.

1 3 4
u. 3 X 5 -2 e. Ts X -3.

3 1
i. 1 X 2

4 2

2 3 3 1 3b. 3 X 5 -3 f. 3 x 1. x

c. 3 -I X 5 -2
2 3

1 3

2 3 1 1h. 1 3 x 1
3 2

119
1rN.7.11



The Rational Numbers

COMPUTING PRODUCTS OF RATIONAL NUMBERS
WITHOUT A TRADITIONAL ALGORITHM

After a student has acquired the ability to obtain a rectangular region
for an indicated product and to obtain an indicated product for a rec-
tangular region, he is ready to compute products from their pictures.
Just as a picture for 3 X 4 can be used to compute 3 X 4 by counting, a

1 unit
region

1 unit
region

picture can be used to compute 3 X 4 . We count 3 X 4 full squares,

1
giving 12. The remaining three 1 squares give 1 1 squares. Adding, 12 + 1

2 2 2

gives 13 1 as the product for 3 X 4 -1 We could say that we "counted
2 2

boxes" to obtain the computed product:

1 13 X 4 2 = 13

This method of "counting boxes" can be used for all such problems.
Let's try a slightly harder problem, say,

2 1
3 X 4

23

First we see that there are 3 X 4, or 12, unit regions. The boxes marked
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+
44

1 unit
region

1with three dots are each 2 of a unit region. There are 3 of these boxes,

1giving 1 2 additional unit regions. The boxes marked with a single dot

1are each
6

of a unit region because 6 of them make up a full unit region.

2 1
Two of them make

' '
or of a full unit region. Finally, we see that there

6 3

are 8 boxes marked by two dots; each of these is or 1 of a unit1 1

6 6 3

region. These 8 boxes give a total of 8 , or 2 2 , unit regions. We need only
3 3

add:

Unit regions

One-half unit regions

One-sixth unit regions

3 X 4 = 12

1 13 Xi= 1i

1 1
2 X =

3

One-third unit regions 8 X = 2

1 1
15 + 1 = 16 2 unit regions.

2

Hence the computed product for 3 X 4 obtained by counting boxes
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. 1
is 16 -2

'
so that

3 -3 X 4 -2 = 16 12 1

2

Another approach by counting is to split all the boxes horizontally into
thirds and vertically into halves. The shaded unit region contains 6

1 .)
41

LIA
i unit
region

1
smaller boxes of the same size, so each small box is - of a unit region. The

6

rectangular region for
2 1

3 -3 X 4 -2

contains 11 X 9, or 99, such small boxes, each 16. of a unit region. The

99number of unit regions for all 99 boxes is then i , so that

2 1 993iX 4i=-6-
96 3

1= 16 + i

1= 16 2 '
the same answer as before.

Students should be encouraged to find other ways of counting to obtain
a computed product. The consistency of mathematics is revealed to
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Multiplication of Rational Numbers

students when they recognize that no matter which correct way is used, the
same result is obtained.

Exercise Set 2

NOTE.Exercises below marked "*" take us into the realm of algebra.
They are not being suggested for use in elementary school except possibly
for special work with advanced groups. They are offered as exercises in
deductive reasoning for teachers who wish to explore, in greater depth,
proofs for steps in algorithms.

1. For each of the following six exercises, find the computed product
by counting boxes. If possible, try to find a second counting method for
obtaining a computed product as a check. Where feasible, show a lower
and upper estimate for your result as an additional check.

1 1a. 2 X 3 -2 c. 2
3

X 3 -1 e. 2 X 3 -2
2 2 3

1 1b.2-
2

X3 d.2iX 1 f. 2-2 X3-1
3 2

* 2. Exercises la-lf suggest a property of computed products. Try to
formulate a conjecture from your observations and test it. Try to show
that your conjecture is correct.

3. Find the computed product by counting boxes. Try to formulate a
conjecture from your observations on a, b, c, d. Try to show that your
conjecture is correct.

4 3 3 4 1 1

a.
6 2

X d. 1 -4 X 77 f. 3 X 3
2 2

9 2 1 1 1 1e. 2 X 2 g. 4 i X 4

3 10
c. x

. .
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* 4. Exercises 3e-3g could suggest a generalization. Try to find one and

then test it on 5 I X 5 1 and 6 1 X 6 I Try to show that your general-
2 2 2 2

ization is correct.

5. Compute each product by counting boxes. Try to generalize from
your observations of a and b.

1 3 1 2a. 2 2 X 3 b. 3 2 X 2

ARRIVING AT THE TRADITIONAL ALGORITHM
FOR MULTIPLYING WITH FRACTIONS

Up to this point we have presented approaches that provide valuable
pupil experiences preliminary to computing products by traditional
algorithms. These experiences are-

1. obtaining a rectangular region to go with an indicated product;
2. obtaining an indicated product to go with a given rectangular region;
3. obtaining upper and lower estimates for indicated products;
4. obtaining computed products by counting boxes.

Students are now ready to discover for themselves the algorithm of
multiplying numerators and multiplying denominators. One way of
helping the discovery is to start with products where each factor is less than

1, for example, 2 X 4
3 5

1 unit

4
5
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The first step is to assign a value to each of the small boxes. A count of
the number of boxes making up the full unit region is 3 X 5, or 15. As 15
identical boxes make up a unit region, each of the 15 boxes is assigned a

1 2 4value of 15 . The shaded region for the product X - has, by counting,
3 5

2 42 X 4, or 8, boxes, each r
5

of a unit region. It now follows that -3 X -5

8and both give the value for the same rectangular region and so must
15

be equivalent. We now have

2 4 8
X =

3 5 15

It is not very hard for students to see that "15" tells into how many boxes
of the same size the unit region is split. The unit region is split into 3 rows
and 5 columns of boxes. The total number is therefore 3 X 5, or 15, which
is the product of the denominators of the two fractions. The "8" tells

2 4how many boxes are in the rectangular region that goes with X -5.. The

shaded array of small regions has 2 rows and 4 columns. The number of
boxes for the shaded region is 2 X 4, or 8, which is the product of the

2 4numerators. We may now say that for the product -3 X the product of the

denominators, 3 X 5, tells into how many boxes of the same size the unit
region is split, while the product of the numerators, 2 X 4, tells the number
of these boxes in the shaded region for .the indicated product. We have
shown that

2 4 2 X 4
5 3 X 5

8

15.

The last discussion strongly suggests that in multiplying with two
fractions the product of the denominators gives the number of boxes of the
same size into which a unit region is split, while the product of the numer-
ators tells how many of these boxes fill up the rectangular region for the
indicated product. The fraction obtained in this way gives the area of the
corresponding region for the product. We now have two ways of expressing
the value for the rectangular region-

1. as a product,
2 43 x ;
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2. as the quotient of a product of numerators and a product of denom-
inators,

2 X 4
3 X 5

As both must have the same valuethe area of the same rectangular
regionthe traditional algorithm is justified. This algorithm is exemplified
by

2
X

3

4
5

2 X 4
Or

8

153 X 5

Let us consider one more product before stating a generalizationsay,

2

2 1
Or

1111111111111111111
11111111111111B1111111111
1111111111111011111111

1 2

is unit
region

Notice that our unit region is a rectangle that is not a square. For our
purposes the unit region need not be a square.

The heavily outlined large rectangular region is for the indicated
product

2 1 5 11
or

The shaded region is our unit region and has 3 X 5, or 15, boxes, all
1

of the same size. Each box, therefore, is worth of a unit region. The
1 5

region for the product has 5 X 11, or 55, boxes, each worth 1 so 55
15 15

units is the area of the region for our product. Hence

5 11 553 x ,
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5 X 11

The two examples we worked,

and

3 X 5

2 4 2 X 4
3 X 5 or

8

15 '

5 11 5 X 11 55
or 15 '

strongly suggest the generalization, which is correct, that

X-C-=aXc
b d b X d

This generalization is the traditional algorithm for multiplying with
fractions. It was arrived at through many intermediate stages geared
toward enabling the student to compute an indicated product by himself,
even if he should forget the final algorithm.

Exercise Set 3

For each of the following indicated products, compute the product
by a diagram and counting boxes. Check your result by the traditional
algorithm.

3 1 3 5 2 !. 2 3
1.3>< 4.iXi 7. 2 X 3

5 2
10. 2 3 X -5

3 2 1 1 2 1 5S. 3X43 8.2X3 11.3.iX3

1 3 1 1 4
6. 3 X 4 -4-

4 3

1 2 7
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AN IMPORTANT CONSEQUENCE OF THE ALGORITHM

As might be expected, multiplying by a whole number a (say, 3) is the

same as multiplying by (by 1.). (See chap. 2.) For example,

2
3 X -5

may be computed by counting boxes.

3

,-3

2

1

2
5

1

1 unit
region

As a unit region contains 5 boxes, all of the same size, each box is
2 2 6worth 3 . The region for 3 X -5. contains 6 of these boxes, so 3 X 3 =

Our algorithm for multiplying yields

3 2 3 X 2
" 5 I X 5

6.
5

It seems that whenever a whole-number factor a appears, we may use

fl in its place. Another way of saying this is that a = .E for all whole

numbers a, and "i" may alway be used for "a" in computations. In

particular, 1 = . (See chap. 2.)
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Our special problem may be expressed by

b a ba X = X
c 1 c

a Xb
1 X c

a X b

In other words, to multiply by a whole number, merely multiply the
numerator of the given fraction by this whole number.

Exercise Set 4

Compute each indicated product by counting squares and by the use of
the traditional algorithm.

1.

2.

2
3 X 3

3
2 X 5

3.

4.

1
3 X -4

3
2 X 4

2
5. 3 X 3

3
6. 3 X 5

PROPERTIES OF THE MULTIPLICATION OF RATIONAL NUMBERS

Multiplication of rational numbers is always possible. In fact, our
traditional algorithm tells us that

a vc.aXc.
d bXd

The product of a pair of whole numbers is always a whole number.
Moreover, if neither factor is 0, the product cannot be 0. Hence the
expression

a X c
b X d

always names a rational number, the product of the rational numbers

a c
X

b d

We say that
the set of rational numbers is closed under multiplication.

Strictly speaking, we have considered only the nonnegative rational
numbers.
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Because the multiplication of whole numbers is commutative, we can
infer from our algorithm that

the multiplication of rational numbers is also commutative.

As a special. case, note:

2 4 2 X 4 4 X 2 4 2i
a 3X 5 5X 3 5x."3-;

thus
2 43 x

In general:

c9EX

4 2.
5 ' 3

a X c
bXd'
c X a
dXb

(as multiplication of whole numbers is commutative);

and

2XE=c X9-bddb
This proves that multiplication of rational numbers is commutative.

Because the multiplication of whole numbers is associative, we can infer
from our algorithm that

the multiplication of rational numbers is associative.

As a special case, note:

(2 X 1)
3 5

6 (2 X 4) , 6
irc(.7

(2 X 4) X 6_
(3 X 5) X 7

2 X (4 ?S)
3 X (5 X 7)

(as multiplication of whole numbers is associative)

2 4 X 6

X (15 X 1.)
The general case is handled in exactly the same way, giving
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(a e a (c eX X- =X
b d 1 b (I

Because the multiplication of whole numbers distributes over addition,

multiplication of rational numbers also distributes over addition.

Again we show this for a special case in a way that suggests how the
general proof can be given.

2 4 7) 2 (4 X 8 5 X '7)
=-3.X T573-4.--3-5-48

2
=

(4 X 8 + 5 X.7)
3 X 5 X 8

2 X (4 X 8 + 5 X 7)
3 X (5 X 8)

=I
2 X (4 X 8) + 2 X (5 X 7)

3 X (5 X 8)

(2 X 4) X 8 2 X (7 X 5)
(3 X 5) X 8

+
3 X (8 X 5)

23

XX

45 (
(23

XX 75)) XX 55

2 X 4 2 X 7=
3 X 5 3 X 8

So
2 (4 7) (2 4) (2 7
3X1-5.-bi- 3X3 34.

In general, if r, s, t, are any rational numbers,

r(s t) rs rt,

just as for whole numbers. The distributive property is especially useful in
shortening computation and in solving equations.

Because 1 serves as an identity clement for the multiplication of whole
numbers,

I also serres an an identity ekment for the multiplication of
rational munbers.

This may be shown very easily from the fact that I. It follows that

a 1 a
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Similarly,

I X a
1 X b

a=

(i X 1 = a I
-6 X

a X I
bX 1

a.
b

We have previously noted that 5c. = 1 whenever c 0. It follows then

that
a a a c a X c.EX1 = Xb c bXe.

that is,
a aXc
b b X c

a result that we had previously obtained:

Multiplying both numerator and denominator by the same non-
zero number does not change the value of a fraction, yielding
an equivalent fraction.

What conclusion can be drawn from the information that a and b are
whole numbers and a X b = 1? The only way this could happen is for
both a and b to be 1. However, this need not be the case for rational
numbers. Examples are

and

2 3 6iXi=i= 1

4
X

7

7 =
4

28
=

28
1.

There are infinitely many different pairs of rational numbers
with each pair having a product of 1.

Whenever we have two rational numbers r and s for which

r X s = 1,

we say that r is the reciprocal of s (or the multiplicative inverse of s) and
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that s is the reciprocal of r (or the multiplicative inverse of r). Thus, as

2 33 x -2- = 1,

2
i i

3 3
3 s the reciprocal (or multiplicative inverse) of -2. , and s the reciprocal

(or multiplicative inverse) of33.. It follows that the product of any number

(not 0) and its reciprocal (or multiplicative inverse) is 1. In general, if -7-1 is a

rational number with a 0, then 12 is its reciprocal (or multiplicative
a

inverse), as

a b aXb
bXa

= 1.
aIf a = 0, -b has no reciprocal. We shall have other opportunities to use

reciprocals.

For whole numbers, the product of any number and 0 is 0. But since
0 0

0 = -1 , and in fact 0 = - for any whole number n other than 0, we have:

a 0 a
OX-1.1=TXT)

0 X a
1 X b

o
b

= 0.

This proves that

the product of 0 and any rational munber is 0.

Suppose we try to find a rectangular region for an indicated product
having one factor 0. We find that we cannot draw one, as it must have
either length or width of size 0. This is another way of showing that
when 0 is a factor of any indicated product, the product must be 0.

When a pair of whole numbers, each different from both 0 and 1, are
multiplied, the product is always greater than either factor. This does not

133
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hold for rational numbers. The product may be greater or less than one
or both factors. Thus

1 1 1
and--- X

1 4 4
X

3 6
and

3 4 12
and-z X

1 I I 1

g<i,
4 1 4 4

> < 3;
12 3 12 4T>i1 6>3

More generally, let r > 0, s > th If r < 1, then rs < s; if r > 1, then
rs > S.

A very important property, especially useful in solving equations, is the
following:

If r, s, t, are rational numbers, s 0, and rs = ts, then r = t.

We may call this the restricted cancellation law for multiplication, the
restriction being that the canceled factor must not be 0.

This law may be shown as follows: Suppose s = . Then we have

then

and

a ar X b = t X b

(t

because the multiplication of rational numbei s is associative;

rX1=IX1
a b

because X = 1
'

and
b a

r = t
because 1 is a multiplicative identity.

In a similar way, we can show that if sr = st and s 0, then r = t.
The usefulness of these properties will be revealed in the exercises and

in later work. But let us now do a problem where these properties help.
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Consider the following computation problem:

(# X 48) X 12- = 48) - Multiplication is commutative.

7 22) X 48 u t= M I iplication is associative.

= 1 X 48 The product of a number and
its reciprocal is 1.

= 48. 1 is the multiplicative identity.

The product, 48, was obtained with very little computation and effort.

Exercise Set 5

1. Using the properties of multiplication, find easier ways of computing
each of the following and state the properties used:

2 3
a. (7 X

)3 X 2 c X (4 +
5

b.
(-22 X 63) X 7 d. (6 + X I

7 63 22 5 2

2. Show that if 3a = 3b, then a = b.

a b
3. Show that if =

5
then a = b.

5 '

4. Show that if 9- = , then a = b.
c c

3 3
5. Show that if - = -7 , then a = b.

a

135
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c c
6. Show that if then a = b.

7. Show that if r, s, t, are rational numbers; the following statements are
true:

a. (rs)t = r(st).

b. r(s t) = rs + rt.

c. (s + t)r = sr + tr.

d. If sr = st and s 0, then r = t.

8. What is the reciprocal of ? Show that your answer is correct.

9. What is the reciprocal of-1 ? Show that your answer is correct.

10. Show that the only multiplicative identity is 1.

11. Show that a rational number other than 0 has exactly one reciprocal.
Hint: Use the property that ifrXs= t X s with s 0, then r = t.

SOME SHORTCUTS BASED ON PROPERTIES OF MULTIPLICATION

By using the properties of multiplication, computation can often be
greatly shortened. This is especially true for the distributive property of
multiplication over addition. Let us return to our rectangular region for
the problem

1' 6

136



13

Multiplication of Rational Numbers

2 4 5 7

1 unit
3

region

. 1Each box marked with a dash is 3 of a unit region, as 3 of these boxes fill

up one unit region. Twelve of such boAes have an area of 4 unit regions.
1Each box marked with a dot is 12 of a unit region, as 12 of them fill up

one unit region. The rectangular region for our product contains 6 of such
6 1boxes, giving us 12 or 2 , more. Hence the product 2 X 6 3 has the value

3 4

4 + 1 , or 4 1 . Note that the portion of the region made up of boxes with
2 2

2 12
dashes has the value -3 X 6, or 3 , or 4. The portion of the region marked

2 3 6
with dots is X

'
or or 1 . We summarize as follows:

3 4 12 ' 2

2 3 2
X -4. = -3- X (6 -1- i)

= (33- x 6) + (x -34)

12 6
T

= 4 + I
2

= 4 1.
2

Computation can frequently be considerably shortened if reductions are
introduced before completing computations. This reduction is based on
the following property:

To divide a product by a munber, we may divide any one of us
factors by this timber.
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Thus, instead of the computation

6 X 8 48
24,

2

we may compute

6 X 8 6() X 8 = 3 X 8 = 24
2 2

or, alternativcly,

6 X 8
6 X (!-) = 6 X 4 = 24.

2 2

Moreover, from the equality

aXc _a
bXc

we may say that

the value of a fraction is unchanged if both the numerator and
the denominator are divided by the same number.

This property enables us to "reduce" fractions to obtain equivalent ones
with smaller numerators and denominators.

The last two properties mentioned are most useful in simplifying
computations. In the following example, both the numerator and the
denominator are divided by 9 and by 7:

3 4
27 28 X X 211ig X

45 )01,1
5 5

3 X 4
5 X 5
12

25.

Some of the steps could be eliminated to obtain the shorter form:

4g 12X=
25

5 5

Exercise Set 6

NOTE.Exercise 2, marked *, is suggested for use by teachers, not
pupils.
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1. Using whatever shortcuts you can, compute in two different ways:

48 35 3 4
a. X -a b. X 8 3 c. 3 3 X 8 4

4 5

2. For the numbers we have studied so far, if r = s p and p > 0, then
r > s. Moreover, if r > s, then for some p > 0 we have r s p. Using
these ideas, prove that

a. if r > s and I > 0, then rt > st;

b. if > 2andc > 0, then <
b d a c'

3. The following are common mistakes made by students. What would
you do when they occur? What would you do to minimize their occur-
rence?

a. 5 X (4 X 6) = (5 X 4) X (5 X 6).
Student's reason: distributivity

b. 5 X (4 + 6) = 5 X 4 + 6.
Student's reason: distributivity

2

6 2 + 6, or 8.

Student's reason: dividing numerator and denominator by 2

d. = , or 4.

(Correct answer, but what about the work? What is wrong with
canceling 6s?)
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"OF" AND "TIMES"

In most quantitative sentences involving "of," the mathematical
meaning is multiplication. However, there are occasions when that is not
the case. For example:

"Two of the three oranges were bad."

We do not mean here that 2 X 3, or 6, oranges were bad. We mean that
two oranges were bad and one was good. The context should be sufficiently
clear to tell whether or not multiplication is intended. Here is an example
where multiplication is intended for "or':

Three of the ten-dollar bills were counterfeit. How much col-
lected money was counterfeit?

Students could profit from pointing out the meaning for "or' in a variety
of quantitative statements.

Exrcis Set 7
Decide on the meaning intended for "or' in each of the following

quantitative sentences:

1. One-half of $5 was spent on food.

2. The rectangle has a width of 3 feet.

3. Two of the triplets were girls.

4. He ran 2 of a mile.
3

5. He collected 2 of the $10 owed.
5

6. Two of the six apples were rotten. How many rotten apples were
there?

7. One-half of the six apples were rotten. How many rotten apples were
there?
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ALTERNATE APPROACHES TO MULTIPLICATION WITH FRACTIONS

Using the Number Line

In this approach one begins with two parallel lines having equally
spaced division marks to be assigncd numbers. Select two marks, onc
directly above the other, and assign the value 0 to each.

4

0

0

The next assignment depends on thc numbers to bc multiplied. For
computing 2 X 4, we assign the number 1 to the mark that is onc division
to the right of the 0 mark of the lower scale. The assignment of 0 and 1
determines the values to be assigned to all the other scale marks. Above
the scale mark for 2 (our multiplier) on the lower scale, assign 1 to thc
upper scale. Values for all the other division marks of the upper scale are
now determined.

2 x n
0 1 2 3 4 5 6 7 II

multiplier product

For the upper scale every two divisions count for 1, while for the lower
scale single divisions count for 1. If we look carefully at the two scales, wc
notice that for each number of an upperscale mark, thc scale mark
directly below is given a number that is its double. In particular, the mark
directly under the mark for 4 has the value 8. (Of course, the roles of the
upper scale and the lower scale may bc interchangcd.)

1 5
The same idea will now be used to computc - X - . As before, we assign

3 2
0 to two division marks that are directly opposite each othcr. The product
of the denominators-2 X 3, or 6suggests that wc use 6 divisions for 1
on the lower scale, so 1 is assigned to the mark 6 units to thc right of "0"
on the lower scale. The assignment of 0 and 1 determines what the assign-

!
ments must be for the other scale marks. Label thc scale mark for - on the

3

lower scale. Directly above 13 on the lower scale (our multiplier), find the

141
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mark of the upper scale and label it "I". Now that 0 and I arc assigned on
the upper scale, all the other scale marks have their values determined. We
can now read on the lower scale the product of any number shown on the

upper scale and the multiplier, 1. For example, we show here that

I 5 5.
X326

meNlpliet

We shall see in a later chapter that this method applies equally well to
computing products involving negative factors. With very little change
this method can also be used to compute quotients.

*fedora 4nd Slorlakars

The University of Illinois Committee on School Mathematics (UICSM)
has been experimenting with the method of "stretchers and shrinkers" for
use by slow learners and reports much success. Very briefly, one inter-

prets a fraction such as to mean that when it is applied to something it

stretches it by a factor of 2 and shrinks the result by a factor of 3. More-
over, the order of stretching and shrinking does not matter. Thus, in the

indicated product I X we have stretchers 4 and 2 giving a total stretch of

4 X 2, or 8. The shrinkers 3 and 5 produce a total shrink of 3 X 5, or IS.
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The net result is a stretch of 8 followed by a shrink of 15, which may be
8 4 2 8expressed by 5. Hence, X

Exerck Sit I
1. Use a number-line approach to compute each of the following in-

dicated products:

2 3 3 5
3 X 2 -2- e. x x

2 7 3 I 2 4

3 5

2. Try to show that the number-line approach for computing products
will always work. One way of doing this is to work with the general

product X . Count bd division marks to the right of "0" on the lower

scale and label the final division mark "I." Find the division mark for LI

on the lower scale and assign to the mark directly above it the value I.

Read the value for the product X directly under the scale mark

efor
d

SUMMARY OF KEY IDEAS

I. Have students find rectangular regions to go with indicated products.
Have them obtain upper and lower estimates for the products but postpone
computing them.

2. Have students find indicated products to go with given rectangular
regions. Obtain upper and lower estimates for the products but postpone
computing them.

3. Have students find rectangular regions to go with indicated products
and compute the products by "counting boxes." Obtain upper and lower
estimates for the products.

143--
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4. Have students find rectangular regions to go with indicated products
and observe a pattern for the computed products. Try to help them observe
that in each case the product of the numerators is the numerator of the
computed product and the product of the denominators is the denominator
of the computed product. Try to have them notice that the product of the
denominators tells into how many equal parts the unit region is split and
that the product of the numerators tells how many of these parts constitute
the region that goes with the product.

5. Except for 0, all rational numbers have multiplicative inverses.
"Inverting the fraction" is an easy way to obtain a fraction for the
reciprocal.

6. Multiplication of rational numbers has the same properties a-
multiplication of whole numbers, with some minor exceptions. Multit
plication of rational numbers is closed, commutative, and associative; is
distributes over addition; and it has an identity element.

bvlsw Exerciess

1. Find a rectangular region for each of the following indicated
products. Obtain lower and upper estimates for each product. Compute
each product by counting boxes. Check your result by using the traditional
algorithm.

2 3 2 3 4 3
e. 1 x 2

6 3 3 2 3 3d. 1 -4 X 23 f. X 2

2. Try to explain each of the following errors frequently made by
students. How can we make their occurrence less frequent?

2 3 5

2 3 6

7 7 7

e. 2 -1 X 3 = 6-1.
2 2 4

2d. 3 X 3 = 6



Multiplication of Rational Numbers

3. List as many properties of multiplication of rational numbers as you
can. Give one example to illustrate each pfoperty.

4. List as many properties as you can for multiplication of rational
numbers that do not hold for multiplication of whole numbers. Illustrate
each by an example:

5. Compute each of the following products. Conjecture a generalization
these illustrate and try to prove it.

1 1 1 1 1
a. 1 X 1

1
e. 5 X 5

2 2 2 2

1 1 1 1 1 1b.2i X f. 6-i X 6i

6. Compute each of the following products. Conjecture a generalization
these illustrate and try to prove it.

1 2 1 2 2 3
a. 1 X 1 e. 3 X 3 2 X 2

3 3 3 3 5 5

2 3b.2-1 X2-2 d. 1X 1 f. 3-2 X 3-3
3 3 5 5 5 5

7. Conjecture a generalization that includes both of the ones given in
exercises 5 and 6 above.
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S. What must be true about rational numbers r and s if the following
conditions are true?

a. rs = O. b. rs = 1.

9. Play the following game with someone. .

Ten cards (library cards will do) are labeled with the ten numerals

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

one numeral on each card. The cards are shuffled face down, and one card
is drawn. The number for this card is then assigned by each player in turn
to one of the letters A, B, C, or D in the following expression:

A B + C
B + 1 X D + 1

Each player has his own copy of this expression for making assignments,
After each assignment the card is replaced in the deck, the deck is again
shuffled, a card is drawn, and both players make their individual assign-
ments to their own identical expressions. The assignments are made until
all the letters have been assigned numbers. Remember that an assignment
for B must be made in two places. The player with the greater number
wins. Here are assignments made by a player:

7-- A
6.--13

2.--C
9.--13

7 6 + 2
6+1 x 9+1

What assignments would have given a greater value?

What assignment would have given the greatest value? Assume that the
numbers are still 2, 6, 7, 9.



DIVISION OF RATIONAL

Harry D. Ruderman

a
NUMBERS 1.

1. What meanings shall w give to a quotient
of two rational numbers?

2. What is the missing-factor approach to computing quotients?
3. What is the reciprocal approach to computing quotients?
4. Why do w "invert and multiply" to compute quotients?

A basic pedagogic strategy for enabling a student to figure something
out for himself is to extend in a natural manner ideas already known to
him to the new ideas being developed. This strategy was employed in
moving from the multiplication of whole numbers to the multiplication of
rational numbers. This strategy will also be used in moving from the
division of whole numbers to the division of rational numbers.

A STRATEGY FOR ENABLING A STUDENT TO FIGURE OUT FOR
HIMSELF HOW TO COMPUTE QUOTIENTS

Most students would have little difficulty obtaining the number 4 for
the frame in the open sentence

8 + 2 = .

If a student is asked to check, he might say that 2 X 4 = 8. If he does,
then he has learned the fundamental idea of division. In other words, the
above division sentence asks that we find a number for the frame which,
when multiplied by 2, gives 8. We may diagram this as shown below:

8 2 = 0 . What number multiplied
L'xi by 2 gives 8?

In this sentence 8 is the product, 2 is the given factor, and the number
for the frame is the missing factor. This method for computing quotients
will be referred to as the missing-factor method. It is the one we shall
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The Rational Numbers

now use to compute indicated quotients of rational numbers. Notice how
natural the extension is to rational numbers.

We begin by considering the problem of computing the indicated
quotient

8 24 4. 3.

First we write an open sentence that goes with this problem and assume
that the number for the frame may be represented by a fraction.

8 2
9 3

Just as with the whole numbers, this sentence asks for a number which

when multiplied by 2 , gives the product 8 . We may diagram this problem
3 9

just as before to emphasize its meaning:

8 2 =
9 3

We are assuming that at this stage of his development, as is generally the
case, the student knows the traditional algorithm for multiplying with
fractions: multiply numerators to obtain the numerator of the product,
and multiply denominators to obtain the denominator of the product. The
missing factor for this problem is readily obtained as follows:

Its numerator is 4 because 2 X 4 = 8.
Its denominator is 3 because 3 X 3 = 9.

The missing factor for the frame is thus 4
3

"4After , is entered into the
3

frame, the diagram has this appearance:

8 2
9 3

x
L.

4
3

4
iA check of the result i3 s mmediate, for

8 2 4x 5.
8 2Not only have we obtained a computed quotient for ; we have also
9 3

checked the result.
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Brighter students might question this as a general method for computing
quotients. They might remark that it is not very likely that the fraction
for the product (or dividend) will have a numerator and a denominator
that will be multiples of the numerator and the denominator of the fraction
for the given factor (or divisor). This is a weakness that can now be

7 2corrected. We consider the problem of computing . An open
9 3

sentence for this problem is:

9 3

We observe that 9 is a multiple of 3 but that is not a multiple of 2. In
order to use the missing-factor method of computing quotients, the
numerator of the product fraction must be a multiple of the numerator of
the given factor fraction. We now have an opportunity to return to an
earlier principle used when we added with fractions: "Multiplying both
numerator and denominator by the same nonzero number gives an

equivalent fraction." If we multiply both numerator and denominator of 7
9

by 2, the numerator and the denominator of the resulting fraction, 14
18

will have the desired property. We may now write the equivalent sentence

7 X 2 2
9 X 2 3

or

_
18 3

The missing factor for the frame is easily obtained as follows:
Its numerator is 14 2, or 7.
Its denominator is 18 3, or 6.

So the missing factor is 7 . Filling in the frame, we get
6

7
6
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We check by multiplying the given factor, 2
'

and the missing factor, 7 *
3 6

2 7 14
X =

3 6 18

7 X 2
9 X 2

7

9

which is the given product.
It may happen that neither the numerator nor the denominator of the

product fraction is an appropriate multiple. The following problem
illustrates how this situation may be handled:

÷
3 is not a multiple of 2.
4 is not a multiple of 5.

3To use the missing-factor method, we must replace .9 4 ' by an equivalent

fraction whose numerator and denominator are the right multiples. If we
multiply both numerator and denominator by 2, giving

3 X 2 6
4 X 2 8 '

the new fraction, , while "better," is still not suitable because 8 is not

a multiple of 5. To remedy this defect, all that remains is to multiply both

the numerator and the denominator of 6 by 5 to obtain a fraction with the
8

desired property:

The original open sentence

6 6 X 5 30i 8 X 5 40.

3 2

4 5

1
may now be replaced by the equivalent open sentence

30 2

LJ
4-5÷3=E1.

-.1 50
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30 2 = 15.

40 5 = 8.

15 .
iSo the number for the frame is Filling n the frame, we get

8

30 2 15

40 5 8

I_ _j(
Of course at the very beginning we could have multiplied both numerator

and denominator of 3 by 10, which is 2 X 5, to obtain a fraction with the
4

30
desired property, namely, 40 . Once again we see that our result checks by

multiplying given factor and missing factor:

2 15 303x-i=iii

0

3 X 10_
4 X 10

3.
4

If we do not compute the products 30 and 40 but use instead indicated
products, the traditional algorithm emerges:

3 2

4.1-5
-

3 X 2 X 5 2 3 X 5
4 X 2 X 5 5 4 X 2

= 3 fi X i

The original indicated quotient of the first line is equivalent to the in-
dicated quotient just below it, so we obtain

3 2 3 5

a '3 mixi
This is recognized as the traditional invert-and-multiply method of
computing quotients. We observe that the net effect of our procedure is to

lin
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replace the given factor (the divisor) by its reciprocal and simultaneously
to replace the division by multiplication. Another way of saying this is:

Dividing by a nonzero number gives the same result as
multiplying by its reciprocal.

The missing-factor method helps the student discover the traditional
invert-and-multiply approach by himself. However, it is probably wiser
to have him work many problems in division without using the traditional
algorithm and then reveal it to him only if he doesn't discover it himself.
Clearly, the missing-factor approach stresses important basic principles
and provides a rationale that permits the student to figure out a computed
quotient should he forget the traditional algorithm. Moreover, the
traditional algorithm may be derived in all generality by the missing-factor
approach. Before doing this, let us see one more division problem worked
out, somewhat streamlined:

Hence

Check:

7 2
5 3

7 X 2 X 3 2 7 X 3
5 X 2 X 3 3 5 X 2

21

10*

2 21

5 3 10

2 21 42
3 ' 10 3 0

7 X 6
5 6

5

The proof for the traditional algorithm proce .ds in exactly the same
way. We assume c 0.

a
b d

acd c ad
bcd

E XLIb

152n,
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Division of Rational Numbers

We have now justified the traditional algorithm in all generality and have
shown that dividing by a nonzero rational number gives the same result as
multiplying by its reciprocal.

Exorcise Sot 1

1. Use the missing-factor method to compute each of the following
indicated quotients, and check your answers.

4 1
a.

9 3
b.

9 3
e. . 3

4 2d. 5 ÷ h. 1 -1 1 -I
2 3

2. Use the missing-factor method to compute each of the following
indicated quotients, and check your answers.

8 2

S. + 3

9. 9 9

153
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3. What generalization is suggested by the problems in exercise 2?
Try to prove your generalization.

4. Use the missirg-factor method to compute each of the following
pairs of indicated quotients, and check your answers.

8 4 4 8
S.

2 4 4 2h. -i+3,

6 2 2 6
C. 3+3, 3+i

3 2 2 3

d'

2 23+ 3, + 3

h. 7 + 3, 3 + 7

2 2I. 8 + , 3+ 8

2 4 4 2i 7 ;3 6 v J

4 4 I k. 1 + 1 - 1 - + I
2 2

2 2I. + I 3, 1-+ 2 - I. 6 + I- I - + 6
3 2 2 2

S. What generalization is suggested by the problems in exercise 4? Try
to prov.) your generalization.
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6. Use thc missing-factor approach to compute each of the following
indicated quotients, and check your result.

4 36.23+2 d. 12 3 + 3

6 5s. 6 + 3 f. 10i+ 57

7. What generalization is suggested by the problems in exercise 6? Try
to prove your generalization.

INTERPRETING A MACTION AS A QUOTIENT

Recall that many fractions name whole numbers. For example:

6 6 66, 3 i= 3, 3 2,
6 I.

Corrcsponding to cach of the above fractions we have the following
quotients:

6 + 1 .2 6, 6 + 2 .2. 3, 6 + 3 =2 2, 6 + 6 .2 1.
lt follows, then, that

6 6 6 66 + 1, 3 .2 6 + 2, 2. 6 + 3, and , 6 + 6.3 6

It would seem, therefore, that for any whole numbers a and b with b 0,
wc have

and, in particular,

2
2 3

C 5



The Rational Numbers

To show that this is so, we may argue as follows:

2 32 + 3 = +

2 1=i-x3
21 XX

31

2

3.

The general argument is an identical one. For b 0,

a b

a 1=ixi
a X 1
1 X b

a= b

In more advanced mathematics the symbol for division, "+," isseldom seen. In its place the fraction bar is used almost exclusively.
Frequently, instead of

one sees the "complex" fraction

2 4
3+3

2
3

4
5

For typographical reasons this may sometimes be written as shown below:

a/±
3 5

or
4/5

A complex fraction is a fraction with either the numerator, the denom-
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inator, or both named by a fraction or a mixed numeral. When complex
fractions are used, we should remember their basic meaning.

2

3 2 4
4 ÷

2

3 '` 4

lo=
2.

The lengths of the horizontal fraction bars eliminate possible ambiguities
by showing which number is the divisor. For example,

while

1

2 1 1
means 2 3 = 6

3

1 2 3means 1 = i
2

Exorcise Set 2

1. Express each of the following quotients as a complex fraction:

a. ÷ e. + 4 go. ÷2 3 2 1 1

4 1 4 1 1b. 5 + d. f. 1 ÷ 1 3
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2. Compute the value of each of the following complex fractions:

5 4 5

2 5 ia. d.
3 2 111. 5

2 4

b.

5 4
4 4 3.. h. --i-
3 5

2 2 4

5
1 I 1

3 2e. f.
5

3
5 3

INTERPRETING THE REMAINDER WHEN DIVIDING WHOLE NUMBERS

We are now in a position to give a meaning in terms of rational numbers
to the remainder when dividing whole numbers. Consider the problem of
dividing 43 by 8:

5

854-3

40
3

(NoTE.In the system of whole numbers, "43 8" is actually a
meaningless expression, as it names no whole number. However,
the need for such quotients in practical problems requires that
some meaning be given, even for whole numbers. Introducing
remainders helps to fill the need.)

In this problem we obtain a quotient of 5 with a remainder of 3. But

15Sr--
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what meaning does 3 have other than just how many "left over"? The
following steps suggest a meaning.

43 + 8 = 43
8

40 + 3
8

0 + 2
8 8

35

3 +r emainder= 5 i

It would appear that the remainder can be regarded as the numerator of
the fraction in the mixed numeral for the computed quotient. With this
problem as a background it is now appropriate to carry out the compu-
tation for 43 ± 8 as follows:

3
5 1-3

40

3

We show the computed quotient as 5 rather than 5 with a remainder

of 3. Notice that the remainder is divided by the divisor to obtain the

fraction of the mixed-numeral quotient. To check the result, 5 2 we
8

compute the product:

8 X 5 = 8 X (5 +

= (8 X 8) + (8 X

= 40 + 3

= 43.

In practical problems the remainder may have other significances:

I. A limousine can take 8 passengers. How many limousines are needed

8
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to take 43 passengers? Computing 43 4. 8 gives, as we have seen, 5 li .

Clearly we cannot use 3 of a limousine, so we must have 6 limousines.
8

2. A certain dress requires 8 yards of cloth. How many such dresses

can be made from 43 yards? Dividing 43 by 8 gives the value 5 28- . The

question calls for the number of dresses that can be made. Interpreting
this to mean complete dresses, the answer now is 5. Only 5 dresses can be
made.

In the first problem we needed the smallest whole number greater

than 5 1 , which is 6. In the second problem we needed the greatest whole
8

3 .number less than 5 3
' which is 5. In either case 5 8 Is not the correct

8

answer to the problem. However, if a cord 43 yards long is to be split

into 8 pieces of equal length, each piece must be 5 -: yards long. The

correct answer to a division problem depends, as we have just seen, on the
nature of the problem as well as the computed quotient.

Ennio Set 3
1. Compute each of the following quotients, expressing each as a mixed

numeral:

a. 37 + 5 d. 100 + 36 g. 1,728 ÷ 231

b. 49 6 .. 1,000 + 12 h. 1,728 + 1,000

e. 100 + 12 f. 1,000 + 231 I. 1,000 + 9

2. Find two practical situations for computing 37 + 5, one requiring
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the next greater whole number, the other the next lesser whole number.
2Find a situation where 7 5 is the correct answer.

3. Show in two different ways that 100 4- 8 = 12 .

PROPERTIES OF 0 AND 1 IN DIVISION

We shall now investigate expressions such as

2 2
0 , 3 +0, 0+ 0,

2 21 + 3 , 3+ l.

You might rightfully ask, What for? Rarely is there the need to compute
such quotients. We could try to answer by saying that a bright student
in your class might ask you to work such a problem. What kind of answer
would you then give? An unsatisfactory answer could bother him con-
siderably. Besides, having a correct answer to such questions rounds out
the entire story of dividing with fractions, and it can be found with very
little effort.

Let us consider each of the above quotient expressions, one at a time.

2 0 3
0 = X

3 1 2

0 X 3
1 X 2

0
2

= 0.

This result suggests that perhaps whenever 2 pi 0 we have

a
0 = 0.
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Let us try to show this, using the very same method as for 1. If 0 0,

0 X b
1 X a

0
= a

= 0.

(Note that if ti 0 0, then it follows that a 0 0. If a 0 0, then 2 = 0. See
a

chap. 2.)
It follows then that for every rational number r different from 0,

0
0 r = 0 and = 0.

Summarizing:

Whenever 0 is divided by a nonzero number, the result is 0.

For every menber r 0, 0 r = 0 and 2r = 0.

Our next expression, 1 ÷ 0," suggests the question: What can we say

about expressions indicating division by 0? We use a division sentence and
its equivalent multiplication sentence.

23 o

is equivalent to the multiplication sentence

2 = x o.

This sentence asks for a number whose product with 0 gives . But the

product of every number and 0 is 0, so there is no number for the frame
that makes the sentence true. The only conclusion we can come to is that
4,2 20" names no number. In place of we could just as well have used

3 3

any nonzero number and have used the same reasoning to obtain a



Division of Rational Numbers

similar conclusion. In other words, if number r 0, the expressions

"r 0" and therefore also "1:0 " name no number.

But what if r = 0? In other words, what number fits the frame here:

0 4- 0 =
or, equivalently,

0 = 0 X
(the corresponding multiplication sentence)? Suprisingly, every number
fits1 For example:

0 =MX O.

0 = 9 X O.

But in mathematics we like to have expressions assigned one and only
one meaning. Since the above argument shows that "0 4. 0" could name
any number with equal justification, the expression "0 0" is ambiguous
and we agree not to use it in meaningful mathematical sentences. In other
words, we regard "0 0" as naming no number.

Summarizing:

If an expression indicates division by 0, then the expression
names no number. That is, for every nwnber r the expressions

"r 0" and "!" name no number.
0

Let us now investigate indicated quotients involving I. Let's begin with

21-ry
2 1 3

1 X 3
1 X 2

3

2 '

the reciprocal of the number with which we started. We could just as

well have used 2 in place of and obtained the generalization
3

a b+ = ,
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a athe reciprocal of b (provided 0 0), or, equivalently,
b

1 b
a a
b

The next expression involves dividing by 1. From our information with
whole numbers we might expect that dividing by 1 has no effect on the

number being divided. Let us try this with 2 --. 1.
3

3 .7. 3 1
1 = -1- 1

l
2

1

2 1

3 ' 1 (

(from the division algorithm)
1

2 X 1
3 X 1

2
3 '

the very same as the number being divided. In exactly the same way we
could have shown that

a a
7)

b

Summarizing:

If 1 is divided by a nonzero number, the reciprocal of the
number is obtained. In general terms,

a b a1 + = provided 0 0.
b a b

If a number is divided by 1, the result is that number. In
genera' terms, for every number r,

rr + 1 = r and = r.
1

Exorcise SO 4

1. Which of the following expressions name no number? Why?

i



a. 0 ÷ 5 f. 0 + 1 i.

b. 5 + 0 g. 1 0 k.

c. 5 + 5

d. 5 + 1

0. 1 + 5

Division of Rational Numbers

n.

co.

2. Compute each of the following indicated quotients when possible.

3a. 1 + h. (1 4. + 1

3
I. (1 + 0 + 0

3
a4 g. 1 + (1 + 0

d. 0 0 k. ; + (E. + 0)

0. 0 + 1 I. 0 + (14 + F87)

f. 0 + 2 m. gi + (77 4. F87) t. ;4.21

(1/63 .10 0 1g. 2 + 0 u.
5
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a.

s.

4
4

5

5

3

4

2

5

5

7

3+
4

5+
5

3

1+ 1
2
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3. What can be said about numbers r and s if r s = 0?

4. What can be said about numbers r and s if r s = 1?

3. What can be said about numbers r and s if r X s = 0?

6. What can be said about numbers r and s if r X s = 1?

7. What can be said about numbers r and s if r s = r?

S. What can be said about numbers r and s if r s = s?

9. What can be said about numbers r and s if r X s = r?

PROPERTIES OF DIVISION OF RATIONAL NUMBERS

One may question the usefulness or desirability of considering properties
of division in the classroom. We may try to justify considering properties
by appealing to the time that can be saved in computation if the
properties yield shortcuts. For example, knowing that division of rational
numbers has a restricted distributivity, one can compute the following
almost at sight:

3 3 = 4 1

8 8

( 3 3
6 74 9 -5-) 3 = 2 74 3 -5,

We can also argue that studying properties enables one to compare
different operations with a view to recognizing differences and similarities.
Also, a deeper insight into the nature of mathematics is obtained from
such a study.

For whole numbers a and b the expression "a b" rarely names a
whole number. However, in the realm of rational numbers, the expression
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"a b" always names a rational number except when b = 0. In fact, for
all rational numbers r and s with s 0 0, the expression "r s" always
names a rational number. However, in view of the fact that a divisor
cannot be 0, we conclude that the set of rational numbers is not closed with
respect to division.

Division is neither commutative nor associative for rational nwnbers
because it is neither commutative nor associative for whole numbers,
which are among the rational numbers. For example:

8 + 4 4 + 8.

(8 + 4) + 2 0 8 + (4 + 2).

We have already shown that r 1 = r for every rational number r.
However, it is not true that for every r, 1 r = r. In particular, 1 + 2 0 2.
It follows that 1 is not an identity element for division of rational numbers.
In fact, division has no identity element for rational nwnbers. We may
show this as follows. Suppose t were an identity element for division. Then
for every number r

r t = r and t r = r

from the definition of identity element, which is really a "do nothing"
element for the operation. In particular, the two equations must hold for,
say, r = 4 so that

4 + t = 4 and t ÷ 4 = 4.

The only number that fits the left equation is t = 1, while the only number
that fits the right equation is t = 16. But the value of t must be the same
for both equations if t is an identity element. It follows then that division
has no identity element.

We know that multiplication distributes over addition; that is, for all
rational numbers r, s, and t

r(s t) = rs rt .

Is there an analogous property for division? Let's try some examples.
For example, is 8 + (2 + 2) = (8 + 2) + (8 2)? We have:

So

8 + (2 + 2) = 8 + 4 = 2.
(8 2) + (8 2) = 4 + 4 = 8.

8 + (2 + 2) 0 (8 + 2) + (8 4- 2)
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because 2 0 8. However,

1(2 + 2) 8 = 4 8 = ,

and
1 1 1(2 + 8) + (2 + 8) = -4 + -4 =

so that
(2 + 2) 4. 8 = (2 + 8) + (2 + 8).

This last example suggests that perhaps there is a partial distributivity:

for all rational numbers r, s, and t 0

(r s) t = (r t) + (s

Let us try to show that this is so by means of rectangles. The figure
shows that

width t area r

-4

area

, length

tx = r, ty = s, and t(x y) = r + s.
it follows then that

x = r 1, y = s t, and x + y = (r + s) + t,
Or

(r + s) t = x + y.
Hence

(r+s)t=x+ Y
= (r + t) + (s t).

Another way of expressing this result is to write

r + s r s
t t

We shall refer to this property by saying:

Division distributes over addition from the right.

168 ,

,



Division of Rational Numbers

Another very valuable property of division of rational numbers is
revealed by the following example:

6 4 1 = (6 X 2) 4- (4 X 2)
2 2

= 12 9

Let us check the property of multiplying both terms of a quotient by the
same nonzero number. Computing the above quotient, we obtain

÷ 4 1 = 26
2 1 2

6 2
= x

12

9 '

the same result.
It might appear from these two exercises that in general the following

is true:

If both terms of a quotient are multiplied by the same nonzero
number, the new quotient has the same value as the original
one.

To show that this is actually so, we may argue as follows:

a cLet b 'd and be any rational numbers with c 0, e 0. Then

Common multiplier is

169
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We shall refer to this property of quotients as the equal-multiplication
property. Here is a division example using this property:

= x ÷ x4 ÷
5 4 2 5 2

(multiply both terms by 1.)

15 10
8 10

15 1
8

15.
8

Exercke Set 5

1. Find a shortcut for computing each of the following and state the
division property or properties used.

a. 15 -3 + 3
8

e. 55+ 151 1

b. 15 -3 + 5
8

(6
-2 + + 2
5 5

c. 15 + 2
4 8 2

1

d. 15 -2 + 3 h.
(

8 74- + 1
) 15 + 2 -23 11

2. Compute each of the following, using two different methods.
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3 1
a. 7 2

4 4

1 3
b. 7 2

4 4

1 3
e. 8 2

2 4

3 1
d. 8 2

4 4

Division of Rational Numbers

1 3
e. 2 7

4 4

3 1f. 2 7
4 4

3 1g. 2 4 8 2

1 3b. 2
4

8
4

3. Show that division of rational numbers has no identity element. Does
it have a "partial" identity?

4. For what numbers r and s is r $ $ r? We might call such
number pairs commutative pairs for division. Why?

S. For what numbers r, s, and t is r + (s + t) (r + s + t? We may
call such number triples associative triples for division. Why?

6. For what numbers r, s, and t is r + (s (r + s) (r + t)?

7. Give example to show that dividing by a rational number might
result in a number greater than the original number. What can you say
about all those rational numbers for which this is the case?
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S. Suppose that the rational numbers r, s, and I arc all greater than 0,
and that r < s. Show that the following statements arc true.

a. rt < st. b. r t < s t.

ALTERNATE APPROACHES TO DIVIDING WITH FRACTIONS

We have already considered in some detail the missing-factor and
equal-multiplication methods for dividing with fractions. There are many
other methods, some of which will now be given.

The Reciprocal Method

Many textbooks advocate this method in preference to the others. It
will bc illustrated by a particular example of computing

4 2
3 +

which we use to obtain the division sentence

An equivalent multiplication sentence is

4
5

2x 3.

If, as a preliminary gucss, we use for thc frame (the reciprocal of 1), we

obtain
4
5

3

2

2

which is a false statement. Thc right member has the value I and notl ,

as we require. To meet this requirement and make thc sentence true, all we

need do is introduce thc additional factor into thc frame to give
5

4
5

4 3

5
X

2
2

A 3

which is a truc statcmcnt. This shows that thc number for the frame is
4 3

X . Returning to the first open sentence, it now follows that
5 2
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4 2 4 3

5 3 5 2

The very same method can be used to obtain the general traditional
algorithm.

The Same-Denominotor Method

Many teachers prefer the same-denominator method because the
initial steps closely resemble the algorithm for adding with fractions. We

3 1
illustrate this method with the particular example We begin by

4 2
replacing, where necessary, the given fractions with equivalent fractions
having the same denominatur.

3 1 3 2

4 2 4 4.

The original problem is now regarded as equiv alent to simply dividing the
new numerators.

3 1 3 2

4 + i 4 -- 4

= 3 + 2
3

=
2

In other words, a quotient of rational numbers having the same denom-
inator is equivalent to the quotient or their numerators. That this method
will always give the correct result can be shown by either of the first two
methods already considered. Let us show how the missing-factor method
justifies this method.

a c+=
b b

aXc c+=bXc b

D
E

Using the Number Line for Computing Quotients

The number-line method used for computing quotients strongly
resembles the number-line method for computing products, discussed in
chapter 5. We illustrate this method by the problem to compute

5 3

-i + 4.
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First a common denominator for the two fractions is obtained, 12 in this
case. We begin with two parallel scales marked uniformly with the marks
for 0 on the two scales directly opposite each other. On the lower of the
two scales, 12 divisions from the mark for 0, label the mark "1." This
determines the values for all the other scale marks on the lower scale.

0 1 1
12 la it

We show only 5 values for scale marks. Directly above the mark for the

given factor, -34 , which is the same us , goes the label "1." The assign-

ments of 0 and 1 determine the assignments for all the other scale marks.

Directly above the scale mark for the product which has the same
6

value as 12 , will be found the scale mark for -5 -3 , whose value is seen to
10 .

6 4

8111111/11,

1

-.,

0 I 1 s
1 .4)

Let's see if it checks.

1 53XlijXl
2 3

-6.
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Using Redangles to Compute Quotients

With this method a rectangle is constructed so that the given product is
its area, while its length and width are the given factor and the missing
factor. A segment for the given factor is marked off on a number line. On
this segment we build a rectangle until its area has the value of the given
product. The crux of this method is to obtain the right building blocks to
build with. We illustrate this method by computing

5 2
2 3

If the product fraction has the "multiple" property needed in the missing-
factor method, then its denominator gives the value of the building block
to use. For our problem we have

5 5 X 2 X 3 30

2 2 X 2 X 3 12

A building block that will work is
12

Using these blocks, we build a

rectangle on the segment for until the area has the value N. Its length

5 2
i jwill then be the value of the quotient , or of , which s ust

2 3

41

-1- unit12
area

3

2

1
4

0 1 1

1 1 1

what we want. The block has a base of 5, so its height must be ,
12

175



The Rational Numbers

giving the scale value for the vertical scale. At a height of 3 3 we have
4

obtained the required area of 30 . Hence, our answer is the number for
12

the height, 3 3
4

Check:

Exercise Set 6

1. Compute each of the following, using all six methods:
Missing-factor Same-denominator
Reciprocal Number-line
Equal-multiplication Rectangle

3a.

1 3
1121 -r

2. Justify the same-denominator method by a method other than the
missing-factor one.

3. Use the rectangle method to compute the following:

1a. 24 ÷ 4 b. 24 ÷ 6 c. 2 ÷ 1
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SUMMARY OF KEY IDEAS

I. The missing-factor method of computing quotients makes for an
easy transition from division of whole numbers to division of rational
numbers expressed as fractions. This method rests strongly on the basic
idea of interpreting a quotient as a missing factor.

2. Dividing by a number gives the same result as multiplying by its
reciprocal (or multiplicative inverse).

3. When dividing whole numbers, the remainder is the numerator
of the fraction (unreduced) in the computed mixed-numeral expression for
the quotient.

5 3 = j 2:41remainder
3

14 4 = 3 2:41remainder
4

4. Multiplying both terms of a quotient by the same nonzero number
does not change its value. That is, r s and (H) (st) are the same
number for all rational numbers r, s, t, with s 0 0, 1 0 0.

5. The properties of division of rational numbers are almost the same as
for division of whole numbers. However, for rational numbers division is
always possible except for division by zero.

Review Exercises

1. Compute each of the following, using all six methods:
Missing-factor Same-denominator
Reciprocal Number-line
Equal-multiplication Rectangle

a a. 5 I2 1

3 2 6 2 3 2

1 2 3 5 1 5

5 1 5 3
c. -g f. + -4
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2. How does a b compare with b a?

3. Which of all the methods for computing quotients can be justified
with the least number of principles? Which method do you prefer to
teach? Why?

4. In working the division problem -3 ± -1 a student computes
4 2

4 2x

and argues "If I invert both fractions, then I surely will invert the right
one." How would you respond to his remark?

5. Multiplying both terms of an indkated quotient by the same non-
zero number does not change its value. What happens to its value if both
terms are increased by the same number?

6. Prove that the following hold where r, s, t,u, are any rational numbers
with the provisos indicated:

r rta. = pro:Ided s and 1 are not zero,
s st

r
b.

t r + t-
s s

provided s is not zero.

C.Ext=rt_ provided s and u are not zero.s su

r rud. - = X - provided the following are not zero: s, I, it,s ri s t
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DECIMALS:

ADDITION AND SUBTRACTION

1. How is decimal numeration xtended so that som rational
numbers can be named by decimal numerals?

7 7 25 33
2. How are rational numbers such as

1 1 1 and 110' 00 00 100
named by decimals?

3. What rational numbers can be named by decimals?
4. What is the rationale for the traditional algorithms for

computing sums and differences using decimals?

It is not easy to determine when and where decimal numeration was
first extended (in any systematic way) to numbers other than whole
numbers. Although "decimal fractions" were used by the Chinese many
centuries earlier, common fractions were used universally in Europe to
express numerically parts of a whole until about 350 years ago.

Although not all historians agree, the invention of "decimal fractions"
is most often credited to the Dutch mathematician Simon Stevin. His
book of 1585, La Mote or De Thiende [The Tenth], was written to pop-
ularize the "decimal fraction" and its usage. It is interesting to note that
Stevin also advocated use of the decimal system in all areas of weights
and measures. Although the struggle is still on, this dream of Stevin's is as
yet unfulfilled in the United States almost four hundred years later. In
Stevin's decimal notation 15.912 would be written as

0123
150 901Q20 or 15912.

The "0" served as his "decimal point," indicating the location of the
oncs place. To date, the only significant improvement in Stevin's numer-
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afion has been in notation. The invention of logarithms gave impetus to
the use of decimal fractions, and in a book published in 1619 Napier
proposed the use of a decimal point as we in the United States use it
today.

History records a wide variety of symbolistr nroposed for decimal
numeration. Some of these suggestions are listed below. In each case, the
symbolism is intended to represent the number that would presently be
named in the United States by the decimal numeral 15.912.

15 9' 1" 2" 15/912 15912"

15/912 15/912 15.912

15, 9 1 2 159120 150.
15,912 15 9' 1" 2111

Even today, despite the wide use of decimal notation, there is no
universally accepted form for writing the "decimal point." For 3.14 in the
notation of the United States, the English write 3.14, and the Germans
and the French write 3,14. At times, we also resort to other forms of the
"decimal point," as when we enter dollar amounts on balance sheets or
write a dollar amount such as S3" on a personal check.

Regardless of the symbolism used, the development of decimal numera-
tion for numbers other than whoie numbers has to be regarded as one of
man's greatest inventions. Those men who contributed to its development
were responsible for making a very great contribution to our present
civilization. Where would we be without it?

INTRODUCING THE EXTENSION OF DECIMAL NUMERATION

Prior to classroom study, students are usually aware of some decimal
names for rational numbers (times in sports events, dollar amounts, . ..),
and some students can read some of the names. This awareness is a factor
to be considered when planning for classroom instruction. Successful
classroom teachers often use this awareness to motivate the study of
decimals, the previous experiences of their students becoming the starting
point for instruction. However, these previous experiences cannot be
taken to mean that students understand the relationship of the names
they have learned to the decimal system for representing numbers. More
intensive study is needed before they will be able to use decimal notation
effectively.

Exploratory activities can be planned to use the students' experiences
with decimals and to make the extension of decimal numeration a natural
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one. Prior to beginning their formal study of decimal names for rational
numbers, students could be asked to collect newspaper articles, advertise-
ments, dials, gauges, and other objects that contain what they think are
decimal names for rational numbers. This might include information
such as amounts of precipitation in weather reports, dollar amounts, and
times of winning racers, also objects such as odometers or FM radio dials.
The material collected can be used as material for a student-constructed
bulletin-board display.

Students' ideas are used by successful teachers as a guide to meeting
the instructional needs of their students. When discussing the numerals
and objects collected, student reactions and descriptions telling why they
think these numerals name rational numbers may help form some initial
judgments concerning the students' knowledge of decimal notation. In
one sense, these reactions and your evaluation of them can be thought of
as an informal pretest. (As the study of decimals progresses, these initial
judgnIents may be refined through careful observation and evaluation of
classroom performance.) You can use the outcomes of exploratory
activities such as those described above as one basis for developing a
successful unit of instructionone that is closely geared to the instructional
needs of your students.

One major concept to which the student was exposed in his study of
whole numbers is the relationship between adjacent place values. The
place values for each "4" in the numeral "4,444" are shown below.

0
.0
e
in5
o
g

a
so
2sie=x

aeoi-

0:0

10 X 100 10 X 10 10 x 1 1

4 4 4 4

Moving to the left, the place value of each "4" is ten times the place
value of the "4" at its right. For expressing large numbers, this place-value
pattern can be continued to the left as far as we wish to go. In the fol-
lowing, place values are shown in italic:

4,444 = (4 X 1,000) + (4 X 100) + (4 X 10) -I- (4 X 1)
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10 = 10 X / .

100 = 10 X 10.

1,000 = 10 X 100.

Students who have mastered this concept in dealing with whole numbers
are ready to consider extending the decimal numeration system to include
names of other rational numbers. Their previous experiences are the
foundation block for building the ideas and skills necessary for introducing
decimal place value to the right of the ones place.

As shown in the chart below, moving to the right in the numeral "4,444,"
1each "4" has a place value that of the place value of the "4" to its left.
10

Since students were able to extend the pattern of place values to the left
as far as they wished, we can now add another 4 to the right of the ones
place and ask what the value of the new place should be if the same
left-to-right pattern between adjacent place values is preserved.

13a
a
=a a
=

a
weaa
=

av
E
.0e0

a -aa
tm.

aae0 C

:Flo X

10,000
0-1. X

1

1,000

-1- X10

100

j- X10

10

.1- X10

?

4 4 4 4 4

1,000 =

100 =

10 =

1 =
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By examining this pattern, the student can be helped to see that the

new place value would be X 1 or , indicating tenths.

An automobile or bicycle odometer can be used as a classroom aid in
reading decimal numerals after decimal numeration has been extended to
include a tenths place. Some odometers have the tenths place indicated
by a different color.

0 1

1 3

(3 ones,litenths)

3 and 11 tenths

By turning the stem of an odometer, the number of tenths is recorded
in sequence. Each group of ten tenths is recorded as one mile, illustrating
the relationship between tenths and the ones place.

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0

0 0 0

0

0

0

0

II
II

tenths

7 tenths

tenths

9 tenths

10 tenths, or 1 and 0 tenths

11 tenths, or 1 and 1 tenth

12 tenths, or 1 and 2 tenths

Suppose we wished tO record this mileage on paper without drawing a
picture of the odometer. If we wrote "23", this would be twenty-three
miles, not two and three-tenths miles. When decimal numeration is
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extended to the right of the ones place, some method for indicating its
location is needed.

It is at this time the decimal point can be introduced as a device for
indicating the location of the ones place. By writing 2.3, the decimal point
indicates that 2 is in the ones place, and the numeral 2.3 is read as "2 and
3 tenths." Notice that the decimal point is read as "and."

Rational numbers named by the numerals --117-6 and 1 .k) can now be

named by decimals. Although the visual symbols for indicating tenths
differ, the decimal names are the same.

0
= 0.7 = "seven tenths."

1 -IL
0

= 1.3 = "one and three tenths."

After the student has explored the extension of decimal numeration
to the tenths place, we extend the place-value system to include hundredths
and then thousandths by helping him to see how the left-to-right pattern
of place values continues. Adding places to the right of the tenths place
as shown in the chart below, we can similarly ask, "If the place-value
pattern continues, what is the place value of the place to the right of the
tenths place?" After that question has been answered satisfactorily:
"What is the place value of the place to the right of the hundredths place?"

on

ca
on

c o
P- 1.

on

ca
en

0
I-

13

P.

cI
inc
1.

0
ec
0

c
.E.c

,

10,000 1,000 100 10 1
1

10
? ?

At the same time, the decimal notation is developed so that students can
write decimal names for rational numbers involving hundredths and
thousandths.

7 23= 0.07. 0.23.
100 Tioel
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9 3
0.009. 2

100
= 2.03.

1,000

When the place value of hundredths is introduced, square regions can
be subdivided into 100 congruent regions and used to show the relationship
between hundredths, tenths, and ones.

10

10
100

The shaded strip is ilo of the

square region.

When the region is subdivided
into 100 congruent regions, the

10shaded strip is of the square
100

region.
Since the area of the shaded

strip remains the same, we have
shown that

1. 10

10 100 '

185

or 0.1 = 0.10.



The Rational Numbers

23 20 , 3 2 , 3

00-5 i
0.23

100 100 100 1

Having understood the extension of decimal numeration to tenths and
hundredths, many students will not need to use visual materials in ex-
tending the pattern to include thousandths. If needed, the scale on a
meterstick could be adapted as a model for visualizing the relationship
between thousandths, hundredths, tenths, and ones.

Another model that is often used to reinforce understandings of place
value (hundredths, tenths, and ones) is the analogy between the Unitcd

1
States decimal and monetary notation. Since a dime is of a dollar and a

10
1penny is of a dollar, an amount such as $0.83 could be interpreted in

100
several ways.

$0.83 = 8 dimes, 3 pennies.
$0.83 = 8 tenths of a dollar, 3 hundredths of a dollar.
$0.83 = 83 hundredths of a dollar.

Since 10 dimes (tenths of a dollar) or 100 pennies (hundredths of a dollar)
are equivalent to a dollar, the analogy between money and decimal

I 0 100
notation could also be used to further illustrate that = 1 and = 1.

t 0 100
During all of the types of activities suggested above it should be stressed

that one important function of the decimal point is to locate the ones
place in the numeral for the reader. Using the ones place as a point of
reference, there is a symmetry between corresponding place value on either
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side of the ones place. For example, one place to the right is the tenths
place and one place to the left is the tens place. The left-hand portion of
the illustration exhibits the symmetry for the numeral 4,444,444. However,
if the decimal point rather than the ones place is considered the center of
the numeration system, the symmetry between corresponding place values
no longer exists (see the right-hand portion of the illustration).

4 4 4

1,000 -4 1
1.000

4 4 4 4 4 4

1 00

100 1two

1,000 --

A secondary function of the decimal point is to separate the numeral
into two component partsone part representing a whole number and the
other a number less than one.

This secondary function is reflected by the methods we use for reading
decimal numerals. Two accepted methods for reading the decimal numeral
262.34 are "two, six, two, point, three, four" and "two hundred sixty-two
and thirty-four hundredths."

The italicized words (point and and) indicate the location of the decimal
point and separate the whole-number part of the numeral from the part
representing a number less than one. The fact that both methods for
reading decimal numerals (the student should be able to use either one)
stress the location of the decimal point should not be allowed to over-
shadow the fact that the ones place, not the decimal point, is in the center
of the decimal numeration system and that the primary function of the
decimal point is to locate the ones place.

When reading decimal numerals, the word "and" should be reserved
solely for indicating the location of the decimal point. For example, "420"
should not be read as "four hundred and twenty"; this creates confusion.
For a careful interpretation, compare the two statements shown below.

"Four hundred and twenty thousandths" = 400.020.
"Four hundred twenty thousandths" = 0.420.

187--
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Exercise Set

1. Write a decimal for each number.

3
a. d. 1

100
56

g. I ra

6 42 8b. 1 e.
100

h.
1,000

0 9 32f. 3-- s.e. 2 To
100 1,000

2. Write a fraction or a mixed numeral for each number.
a. 0.1 d. 0.18 g. 0.004

b. 3.4 3.47 h. 0.037

e. 0.07 f. 2.06

3. Write a decimal and a fraction (or mixed numeral) for:
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a. six tenths;

b. two and three tenths;

c. six, point, seven;

d. four hundredths;

e. twelve hundredths;

Decimals: Addition and Subtraction

f. twenty-three hundredths;

six and three hundredths;

h. seven thousandths;

i. fifty-four thousandths.

g.

I I 1 I I I I I

2

4. Using the ruler above, write a decimal for the number that is

a. 0.3 greater than 0.5; d. 1.3 greater than 0.9;

b. 0.4 less than 0.9; e. 1.6 less than 3.0.

c. 0.7 greater than 2.2;

5. Complete each pattern below, and describe the pattern you used.

a. 0.06,

b. 0.05,

c. 0.18,

0.07,

0.10,

0.10, 0.12,
0.20,

_,
_,

0.15, 0.12,

,
d. 0.004,, 0.006,, , 0 009

e. 6.23, _, 6.31, 6.35,,
6. Arrange in order beginning with the name for the smallest number

(you may use the ruler above exercise 4).

a. 3.4, 2.1, 0.4, 2.0, 1.8

b. 1.4, 3.2, 0.9, 1.0, 4.7

189
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7. Answer the following questions. You may use the ruler again.
Write your answer in decimal notation.

a. 0.8 is how much greater than 0.2?

b. 3.8 is how much greater than 2.5?

c. 0.9 is how much less than 1.0?

d. 1.3 is how much less than 4.7?

e. 3.3 is how much greater than 1.8?

For exercises S and 9 , refer to the square regions pictured above. Draw
additional diagrams if needed.

al. Insert

> , < , or =

in the blank space to make each statement true:

0.9.

0.2.

0.50.

9. Arrange in order, beginning with the name for the smallest number.

0.3 e. 0.09, 0.8, 0.25, 0.50, 0.4

a. 0.3 0.25. d. 0.8

b. 0.10 0.1. 0.15

c. 0.40 0.04. f. 0.5

a. 0.25, 0.1, 0.01, 0.15,

b. 0.4, 0.33, 0.10, 0.2, 0.42
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10. Place the decimal point in the numerals so that each statement is
sensible.

a. The classroom is 1 2 5 feet high.
b. The length of my math book is 9 0 inches.
c. A ticket to the baseball game costs $3 5 O.

11. Write a decimal for each number.

a. 6 ones, 5 tenths
b. 4 tenths, 2 hundredths
c. 8 tens, 3 ones, 7 tenths, 9 hundredths
d. 3 ones, 8 hundredths
a. 9 thousandths
f. 7 tenths, 2 hundredths, 3 thousandths

g. (3 X 10) + (2 X 1) + 4 X + (6 X a
h. 11 + 2

10
I. (8 X 1) + (8 X a

19
le :7

1 U

k. Three hundred twenty-five hundredths
I. (9 X 100) + (7 x 10) + (9 X 1)

m. (8 X 100) + (3 X 10) + (7 X 1) + (9 X .43-) + (6 X
1100)

12. Which distance in each pair is closer to 4 miles?

a. 3.8 miles, 4.3 miles c. 3.8 miles, 3.6 miles
b. 4.4 miles, 4.2 miles d. 3.9 miles, 3.89 miles

13. a. Draw number-line diagrams that could be used to illustrate the
correctness of your responses in exercise 12.

b. Draw pictures of square regions such as those used in exercises
8 and 9 to show that you ace correct.

14. Which of the following is another name for-

18 n
CI. 1.08, 1.8, 0.18
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7

Numbers

0.27,

? 32.8,

2.7,

3.28,

2.07

0.328

b.
100

c. 32--8
1 0

15. The manner in which we read decimal names for rational numbers
sometimes creates confusion in translating the written or oral statements
to numerical form. How would you interpret each of the following state-
ments? What could be done to minimize confusion in translating each one?

a. Seven hundred thousandths (0.700 or 0.00007?)

b. Four hundred one thousandths (0.400 or 0.401?)

c. Six hundred and twenty-two thousandths (0.622 or 600.022?)

16. When introducing the naming of rational numbers by decimals
in the classroom, what kinds of questions, exercises, and/or activities
could be used that would help prepare students for computing sums and
differences at a later date?

17. Draw a diagram (or diagrams) that could be used to visualize
pictorically the truth of each of the following statements.

13 10 3 1 3
a. = 0.13.

100 100 100 10 100

234 200 , 30 , 4 , 3 , 4
2.34.° 100

18. Place values for each "2" in the base-three numeral "222,h," are
listed below under each "2".

2 2 2

threes three one

Suppose the place-value system for the base-three numeration system is

192
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extended to the right of the ones place so that the pattern existing between
adjacent place values is preserved. Write base-three names for the fol-
lowing:

1
a. c. 2 2

3

b. I + (2 X 1.) d. (2 X 1) + (0 X 1.) -I- (2 X (In
3 3 3

19. Write a base-ten fraction or mixed numeral equivalent to each of
the following base-three numerals.

a. 0.2three C 21.2three

b. 21,hree 211.02thre.

NAMING RATIONAL NUMBERS BY DECIMALS

Rational Numbers with Denominators That Are Powers of Ten

7Writing and reading decimals for rational numbers such as 3 , 6
10 10 '

9 Q
i

7

1

5and s a direct by-product of the extension of the
100 ' '100 ,000
decimal numeration system and the introduction of decimal-point nota-

tion. This was partially discussed in the previous section. When writing 11
1010 5 5 5

as = 1 + = 1 , or 1.5, the student also relies on previous
10 10 10

work in naming fractions by mixed numerals.
The students' previous work with equivalent fractions in conjunction

with the square regions or number lines mentioned in the previous section
can also be used to help justify statements such as the following:

1 10 100 4 40 400 4 0004
15 ITO toii = = =

1 10 loo 1,000

3 30 300

TIT) 1701
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The equivalence of such fractions also can be used to justify in the
35following manner that and 0.35 are equivalent:
100

35 30 5

100 100 100

3 5+
100

(since 30 =
100 10

= 0.35 (3 tenths, 5 hundredths).

The ability to generate equivalent decimals by using equivalent fractions
is helpful in computing certain sums and differences (to be discussed in a
later section) and in determining relative sizes of rational numbers named
by decimals. Consider the following problem (see exercises 8 and 9 in
exercise set 1 for an earlier informal approach to this kind of problem):
Arrange in order beginning with the name of the smallest number.

0.23, 0.5, 0.067, 0.1

If each decimal is replaced by an equivalent decimal in thousandths,
we have the following:

0.23 = 0.230. 0.067 = 0.067.

0.5 = 0.500. 0.1 = 0.100.

When each is written as a decimal numeral with the same number of
decimal places to the right of the ones place, as above, the correct response
is easier to see. What we might have actually done is to think of the

230 500 67 100decimals as
1

and When this is done, all we
,000 1,000 1,000 1,000

must do is to compare the numerators (230, 500, 67, and 100) to determine
the relative sizes of the numbers.

Rational Numbers with Denominators That Are Not Powers of Ton

3 27 18 .Rational numbers such as 1 and -1 (with denominators that
0 100 ' 00

are powers of ten) can easily be named by decimals. What about rational
1 3 3numbers such as and ? Do these rational numbers have decimal
2 4 ' 8

names?
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Finding decimal names for these rationals can be reduced to a problem

the students learned to solve earlier. Given any fraction such as -1 several2'
fractions equivalent to it can be generated by multiplying both numerator
and denominator by the same number.

1 1 X 2 2 1 1 X 4 4

2 2 X 2 4 2 2 X 4 8.

1 1 X 3 3 1 1 X 5 5

2 2 X 3 6 2 2 X 5 10

1 2 3 4 5

2 4 6 8 To
125

or
Given a fraction such as 1 25 a decimal name for the

10 ' 100' 1,000 '
number can be written.

3 25ii = 0.3. = 0.25. 125
0.125.

100 1,000

Therefore, a rational number such as I can be named by a decimal if an
2

appropriate equivalent fraction with a denominator that is a power of
10 can be found.

1 ? 1 ? 1 ?_
2 10 2 100 2 1,000

Since

12 can be named by 0.5

1 1 X 5 5
,

2
.

2 X 5 10

(1 5i = To = 0.5).

When one decimal equivalent to 1 is found, others can be generated by
2

annexing zeros to the right. Since

1 5 50 500= = _
2 10 100 1,000 '

then
1i = 0.5 = 0.50 = 0.500.

Can 3 be named by a decimal?
4

195



The Rational Numbers

3 ? 3 ? 3

4 10 4 100 4 1,000

Since there is no whole number that 4 can be multiplied by to get 10

as a product (4 is not a factor of 10), does not have a decimal name in

tenths. Is 4 a factor of 100? Yes, because 4 X 25 = 100. Therefore,

3 3 X 25 75
4 4 X 25 100

075

1
As was the case with 2 , other decimal equivalents can now be generated.

Since

then

3 75 750
4 100 1,000 '

3
4 = 0.75 = 0.750.

Since 8 is not a factor of either 10 or 100 3 has no decimal name in
8

tenths or hundredths. However, 8 is a factor of 1,000, since 8 X 125 =
1,000. Therefore,

3 3 X 125 375
0.375.

8 8 X 125 1,000

This procedure of obtaining decimal names for rational numbers such as
1 3 3

and can be summarized as follows:

1. Name the rational number by a fraction that shows a denominator
that is a power of 10.

2. Write the decimal numeral for the numerator of the fraction and
place the decimal point in the correct place in the decimal numeral, as
indicated by the denominator.

It should be emphasized that this procedure involves no new mathe-
matics for the student. We are merely again exposing the student to a
potent technique f(Jr solving problems in mathematics and other areas:
To solve a new problem, reduce it to a problem that has already been solved.
The student is now able to find decimal names for many rational numbers.
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Exercise Set 2

1. Complete the following chart:

Fraction Equivalent Fraction Equivalent Decimal

1 1 X 25 25

4
= 0.254 X 25

.
100

1 1 X 5 = 5

2 X 52 10

3 3 X 5
20 20 X 5

=

9 9 X
25 25 X

.

2. For each fraction, find an equivalent decimal.

3 5 9a. 3 c.

3b.-4

3. Find a decimal name equivalent to each mixed numeral.

1 3 1b. 3 c. 1
2 4 5

4. Complete the ibllowing:

1 100
= = c.

2 10 100 1,000 1,000 100 10

2
b. 3 = =

100 1,000
750

d. - =
1,000 100 4

5. Insert >, <, or = in the blank spaces to make each statement true.
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2a. 3 3 3.4.

1
b. 0.4.

c. 0 .4 0.40.

d. 1.0 0.10.

f. 2.42

4g.
25

0.25.

1
2

0.04.

6. Complete the following:

a. If -1 = 0.2, then -2 = .
5 5

1b. If -8 = 0.125, then 3 -8 =

7. Write three decimals for each number given.

a.

b. 0.10

1c. 3 -

S. Discuss the meaning of the following statement: To name certain
rational numbers by decimals we reduced the problem to a problem that
had already been solved.

9. What skills and understandings of rational numbers named by
fractions are needed by a student so that he can use the procedures
outlined in this section for naming rational numbers by decimals?

CAN ALL RATIONAL NUMBERS BE NAMED AS DECIMALS?

In the previous section, you discove;ed that a decimal name for a
rational number could be found if the number could be named by an
appropriate fraction. Will this procedure result in a decimal name for all
rational numbers?
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1Consider the rational number Can it be named by a decimal?

IXO ? 1 1 X0 ? I IXO ?
3 3X0 10 3 3X0 100 3 3XD 1,000

1. Is 3 a factor of 10? (Does there exist a whole number a such that
3 X a = 10?) Since 10 = (3 X 3) + 1, the remainder indkates that 3 is
not a factor of 10.

2. Is 3 a factor of 100? Since 100 = (3 X 33) + 1, 3 is not a factor of 100.

3. Is 3 a factor of 1,000? Since 1,000 = (3 X 333) + 1, 3 is not a factor
of 1,000.

4. The pattern thus far indicates that if we go on to any other power of
10, such as 10,000 or 100,000, we shall get a remainder of 1 when we
divide the power of 10 by 3.

1Therefore, there is no appropriate fraction equivalent to 3 As a
1roult, we cannot find a decimal name for 3

Such a series of questions used in the classroom wilt indicate the
1existence of at least one number, 3 , for which no decimal can be found.

Are there others that have no decimal names? What technique can be
used to determine whether or not a decimal exists for a given rational
number?

To analyze these two questions we again use our procedure for finding
decimals equivalent to given fractions. Our results thus far indicate that
a decimal for a rational number can be found if it can be named by a
fraction that shows a denominator that is a power of 10.

1 5= To. = 0.5.

3 75

100 0'75'

3 375

TWO. 0375.

?

2 is a factor of 10.

4 is a factor of 100.

8 is a factor of 1,000.

3 is not a factor of 10, 100, 1,000, .

Therefore, we cannot find a decimal for .

A procedure similar to that followed in exereiste set 3, below, could be
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used to indicate to the student a method for determining when a given
rational number named by a fraction in lowest terms has a decimal name.

Exercise Set 3

1. Consider the following rational numbers named by fractions in
lowest terms. Find, if possible, an equivalent decimal for each number.
Indicate any numeral that cannot be replaced by a decimal.

2 , ,7 13 2
a. a. 50 g.

5 20 11

1 2 5 1

b. e. 5 h. k. -2-

1 1 5 9
C. -4 f.

2. a. List the denominators of those fractions that can be replaced by
decimals.

b. Write the prime factorization for each of these denominators.

3. a. List the denominators of those fractions that could not be re-
placed by decimals.

b. Write the prime factors for each of these denominators.

4. Compare the prime factorization of the denominators in exercise 2b
with those in exercise 3b. How do you think you could determine whether
or not a rational number named by a fraction in lowest terms has a
decimal name?

Although many students are not able to fully verbalize a conclusion
after working problems in a sequence such as that shown in this exercise
set, the pattern it exhibits does seem to indicate that rational numbers
with decimal names have completely reduced fractions with denominators
whose prime factorizations contain only 2s and 5s. The prime factorizations
of the denominators of rational numbers that did not have decimal names
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may include 2s and/or 5s as 7actors but include other factors as well
(not counting 1, of course).

The basis of this pattern is that all powers of 10 have prime factoriza-
tions consisting entirely of 2s and 5s (10 = 2 X 5, 100 = 2 X 2 X 5 V. 5,
1,000 =2X2X 2X5X 5X 5). Therefore, for a denominator to be a
factor of some power of 10, its prime factorization must also consist
entirely of 2s and/or 5s.

In summary:

1. A rational number named by a fraction in lowest terms has a decimal
name if the prime factorization of the denominator consists entirely of 2s
and/or 5s.

2. A rational number named by a fraction in lowest terms does not
have a decimal name if the prime factorization of the denominator
includes factors other than 2s and/or 5s.

Despite this, students should not be given the impression that decimal
1 1 1names are never used for rational numbers such as -5- 6 and 7 It is true

that decimal approximations for these rationals exist. For example, 5. is

often approximated by 0.3, 0.33, or 0.333. (-13- 0.3 0.33 0.333.)

However, these decimals are approximationsnot names of the number 13..

To obtain decimals for all rational numbers the concept of decimals must
be extended to include infinite decimals, to be discussed in chapter 8, or

1mixed decimals. Some mathematicians regard expressions such as 0.33

1.2 4 and so on, as mixed decimals:
7

1
33

1 3 100 1
0.33 =

3 100 300 3

4
12

7 88 91.2 1 = = r....- 1

7 10 70 35

COMPUTING SUMS OF RATIONAL NUMBERS WITH DECIMALS

Competence in computing sums of whole numbers is a prerequisite for
competence in using the addition algorithm with decimals. Except for the
extension of the decimal numeration system to the right of the ones place,
the addition algorithm is identical. As in computing sums of whole
numbers, numbers named by digits in like place-value positions are
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added. Since our extension preserved the relationship between adjacent
place values, similar procedures for regrouping in addition are used.
Furthermore, since we did not introduce any new numbers, only a new
method for naming certain rational numbers, the properties associated
with rational and whole numbers (associative, commutative, dis-
tributive, ) are also preserved and may be used as a basis for justifying
the algorithm for computing sums with decimals.

Students have had prior experience in computing sums of numbers
named by fractions. Before computing sums with decimals, a review of
computation with rational numbers such as those below is helpful.

3 5 84_
I() 10 10

1 5 6
100 +

3
2

10
+

2 -2 + 1
100

100
=

2
1 =

10

5

100

3

3

--5
10

7=
100 100

Ask questions such as these: In the first of the equations, what is the
number of tenths in the first addend? The second addend? The sum?

2What is the decimal equivalent of
10

? In 2 3 + 1 what is the number

of ones and tens in each addend? In the computed sum? What is the

decimal equivalent of 3 5 ?
10

Also prior to developing the algorithm for computing with decimals it
is desirable to discuss several questions such as the following: One of the
equations shown below is true..Which one? How do you know?

0.3 + 0.2 = 50. 0.3 + 0.2 = 5. 0.3 + 0.2 = 0.5.

The discussion of questions such as these can help lay a good foundation
for estimating sums of rational numbers named by decimals. This foun-
dation can be useful in helping pupils develop the skills necessary to
estimate sums and consequently make fewer errors in placing the decimal
point in a numeral for a sum. As will be shown later, estimating sums is a
powerful tool that can be used to place the decimal point correctly when
computing with decimals.

To introduce the topic of computing sums with decimals we can again
use the technique of translating a new problem into one we already know
how, to solve,
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Consider this problem:

0.3 + 0.2 = ?
What are the fractions for 0.3 and 0.2?

3 2
and

10 10

Rewrite the above problem using these equivalent fractions, and compute
the sum.

3 2 5

10 + -1T) To

3
Since

2 = 5

10 10 10' 10

0.3 + 0.2 = 0.5.

On the basis of this and similar examples, it seems that sums with
decimals can be computed in a similar manner to sums of whole numbers.

Sums such as 0.3 + 0.2 can also be visualized by using a number line or
ruler graduated in tenths and interpreting the decimals as distances on the
number line or ruler.

10.201 0.3 1

11111111111111111111111111111111111111111

0 1 2 3 4

A similar procedure can be used to introduce the computation of sums
such as those shown below.

(a) 0.03 + 0.04 = ?
3 4 7

100 + 1-00 10-0
= 0.07.

0.03 + 0.04 = 0.07.

(b) 0.6 + 0.7 = ? 1.3 + 2.5 =

-126. + 2 i5-6 1
10 1- 10 10 13'

(0 0.12 dh 0.37

12 37

= ?
49 0.49.

100

0.12

100

+ 0.37

=
100

= 0.49.

0.6 + 0.7 = 1.3.

(d)

1.3 -I- 2.5 = 3.8.

3.8.

Again, most of these sums can be pictured by using a number line or
ruler. Further analysis of examples such as 1.3 + 2.5 may be done by
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using the commutative and associative properties of addition to justify
regrouping similar to that shown below.

3 5
1.3 + 2.5 = 1 -1,76 + 2 ro

= (1 + 2) + +

or

8
Since 3 =

10
3.8

1.3

1 3

+ 2.5

+ 2.5

=

=

=

=

=

8

3 + TO-

(1 + 0.3) + (2
(1 + 2) + (0.3

3 + 0.8

3.8.

3.8.

+ 0.5)
+ 0.5)

Although the technique of restating each problem in fraction form,
computing the sum, and converting back to decimal notation will always
work, it can become quite laborious.

When adding two whole numbers such as 34 and 15 the digits are
aligned vertically according to their respective place values ("like place
values are added to each other").

34 = 3 tens 4 ones
+ 15 = 1 ten 5 ones

4 tens 9 ones = 49

Suppose we follow a similar pattern in findings the sum of 0.12 and 0.34.

0.12 = 1 tenth 2 hundredths
+ 0.34 = 3 tenths 4 hundredths

4 tenths 6 hundredths = 0.46

The above procedure can be justified by using the commutative and
associative properties of addition.

0.12 + 0.34 = (0.1 + 0.02) + (0.3 + 0.04)

= (0.1 + 0.3) + (0.02 + 0.04)

= 0.4 + 0.06

0.46.
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Notice that when using either format, sums of numbers named by digits
of the same place value are computed (tenths and tenths, hundredths and
hundredths). The vertical format similar to the whole-number algorithm is
more compact. The decimal point serves as a guide in aligning place values
just as the ones place does when using the similar algorithm for computing
sums of whole numbers.

For numbers greater than 1 the same algorithm can be used. Consider
3.5 + 1.2.

7
4

10

3.5

+ 1.2

4.7

By aligning like place values, using the decimal point as our guide,
we obtain the same result as when the computation is done with the
equivalent mixed numerals.

By considering several problems using the algorithm and comparing the
results with results obtained by other established methods, the student
should be able to conclude-

1. that sums with decimals are computed as sums of whole numbers
are computed;

2. that the decimal point can be used as a guide in vertically aligning
place values so that sums of numbers named by digits in the same place
value are computed.

This algorithm is also related to previous work in computing sums of
rational numbers named by fractions. When we vertically align like place
values on the right of the ones place we are computing the sum of numera-
tors of like fractions.

Example:
1 30.13 =

+ 10-15

3 2+ 0.32 =
10 100

4 5
0.45.

10 100

Once the vertical format has been established, examples that require
regrouping can be introduced. Again, the procedure is analogous to
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regrouping when computing sums of whole numbers, since the relationship
between adjacent place values is preserved.

Consider several examples such as the ones below.

0.78 = 7 tenths 8 hundredths
+ 0.47 = 4 tenths 7 hundredths

= 11 tenths 15 hundredths
(15 hundredths = 1 tenth, 5 hundredths)

= 12 tenths 5 hundredths
= 1 one 2 tenths 5 hundredths

(12 tenths = 1 one, 2 tenths)
= 1.25.

3.23 = 3 ones 2 tenths 3 hundredths
+ 8.39 = 8 ones 3 tenths 9 hundredths

= 11 ones 5 tenths 12 hundredths
= 11 ones 6 tenths 2 hundredths
= 1 ten 1 one 6 tenths 2 hundredths
= 11.62.

Once it is established that regrouping in addition with decimals is
analogous to regrouping in addition of whole numbers, the student should
be encouraged to regroup whenever it helps in computations. In this
addition example, we show the regrouping.

1 1

.78

.47
1.25

COMPUTING DIFFERENCES WITH DECIMALS

Subtraction can be thought of as finding a missing addend when one
addend and the sum are known. Therefore

6.8 2.3 = 0
means

6.8 = 0 + 2.3.
Since the addition algorithm for dedmals is analogous to the algorithm

for computing sums of whole numbers, it is natural to assume that
differences with decimals can be computed as are differences of whole
numbers.

Suppose they are, Then like place values are aligned vertically and
6.8 2.3 = o is computed as follows.
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6.8

2.3
4.5

If 4.5 is correct, it will make the statement 6.8 = El + 2.3 true

4.5

+ 2.3
6.8

It does. Therefore (in this case) the algorithm for computing differences
with decimals is analogous to the whole-number algorithm for computing
differences.

The above procedure can be justified (as was the procedure for com-
puting sums with decimals) by replacing each decimal by an equivalent
fraction, computing the difference, and then replacing the result by the
equivalent decimal.

6.8 2.3 = 0.
86.8 = 6
10

32.3 = 2
10

6 1
10

3

10
54 r
o

Since 4 = 4.5, 6.8 2.3 = 4.5.
10

Computing differences with decimals can be introduced in the classroom
in a manner exactly parallel to that for computing sums. As with addition,
once vertical alignment is done correctly all goes exactly as with whole
numbers.

"RAGGED DECIMALS"PRO AND CON

Problems such as 1.3 + 5 + 2.02 that have "ragged decimals"decimals
with varying numbers of digits to the right of the ones placemay not
create problems for the student, but their value is debated by those who

2077
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write textbooks. Some writers claim that such problems are obsolete and
should not be included. They argue that rational numbers whose sums
are to be computed (including those named by decimals) represent
measurements and that it is not possible to have measurements to differing
degrees of precision (like those above) in the same situation. Therefore,
the argument goes, a problem such as 1.3 + 5 + 2.02 will not occur in
real lifeonly in some textbooks and on some exams!

We agree that in some situations the computation of such numbers is
meaningless. However, such problems do have numerical results and will
be considered in this section. What is open to question is not whether
sums of such numbers can be computed but whether the sum has any
meaning in a given problem situation.

How do we compute the sum of 1.3 + 5 + 2.02?
Consider the same algorithm established earlier. If we align place

values vertically, our problem and the result look like this:

1.3
5

2.02
8.32

Is this answer reasonable? We know that 1 < 1.3 < 2 and 2 < 2.02 < 3.
Therefore, the sum of 1.3 + 5 + 2.02 should be between 8 and 10. It is,
so our answer is reasonable.

Suppose we check the problem by rewriting the numbers in fraction
form.

3 301 To- =
100

5 = 5

2 2
`1-66 too

32
8

100

32Since 8 = 8.32, the result obtained earlier must be correct. Thus
100

we have established that the same algorithm can be used even when the
decimal names have varying numbers of digits to the right of ones place.

Recall that for any decimal an equivalent decimal can be generated
by annexing zeros to the right of ones place. The equivalence of such names
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was discussed earlier and can be verified by using equivalent fractions or
a manipulative aid such as a number line. For example,

0.3 = 0.30 = 0.300 = 0.3000 = . . . .

1.7 = 1.70 = 1.700 = 1.7000 = . . .

3 = 3.0 = 3.00 = 3.000 = . . . .

Using equivalent decimals, our original example can be rewritten as
shown below:

Original Problem Rewritten Problem

1.3 1.30
5 5.00
2.02 2.02
8.32 8.32

Since 1.3 = 1.30 and 5 = 5.00, each addend remains unchanged, and
thus our result is the same. What we actually accomplished by rewriting
the problem is equivalent to obtaining a common denominator as we did
when working the same problem in fraction notation

(1.30 =
1

30 0

100 100

22.02 = 2
100)

In the case of subtraction with ragged decimals, the annexing of zeros
recommended for addition becomes essential for computing some dif-
ferences.

Original Problem Rewritten Problem

2.6 2.600
.431 .431

2.169 2.169

Exercise Set 4

1. Compare the three addition problems below. In what ways are they
alike? In what ways are they different?

53 5.3 0.53
-I- 24 + 2.4 -I- 0.24

77 7.7 0.77
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2. Compare the two methods of solution. In what ways are they alike?
In what ways are they different?

2
3 To

3
2 To

3.2

2.3

+ 1.4
6.9

3. Complete the following.

a. 12 hundredths = 1 tenth, _ hundredths.
b. 17 tenths = 1 one, _ tenths.

e. 6 tenths, 3 hundredths = 5 tenths, _ hundredths.
d. 8 tenths, 5 hundredths = 7 tenths, _ hundredths.

4. Write a decimal for the computed sum.

a. 5.8 + 3.2 + 0.7
b. 0.23 + 0.45
C. 0.69 + 0.52

d. 1.82 + 3.17

a. 1 -3 + 3 -8
10 10

f. 0.23 + 4.2

g. 0.249 + 0.843

h. 14.21 + 23.83 + 8.05
1 1

2 4
1. 20 + 4.5 + 0.67

S. Write a decimal for the computed difference.

a. 8.5 - 2.3
b. 5.79 - 4.3
e. 0.94 - 0.48

d. 6.0 - 1.7

a. 3.850 - 1.647
f. 0.48 - 0.3
g. 0.400 - 0.278
h. 9.3 - 6.59

6. In each pair subtract the smaller from the larger and write a decimal
for the computed difference.

a. 0.24, 0.2 b. 0.9, 1.7
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7. In what ways does the computation of sums and differences with
decimals differ from the computation of sums and differences of whole
numbers? In what ways is it similar?

B. Discuss similarities between computing sums and differences with
decimals and computing sums and differences of rational numbers named
by fractions.

9. Consider each of the following statements. Do you agree with them?
Why or why not?

a. Students should not learn decimals as some new topic in the
curriculum. The only phase of the work that is new is the notation.

b. The distinguishing feature of decimals is the denominator and not
the decimal point.

O. The following statements were made in the section on computing
differences with decimals. What implications does each statement have
for classroom instruction?

a. Subtraction can be thought of as finding a missing addend when
onc addend and the sum are known.

b. Computing differences with decimals can be introduced in the
classroom in a manner parallel to that for computing sums with
decimals.

SUMMARY

I. Having extended the decimal numeration system to the right of the
ones place and learned to name rational numbers by decimals, the student
can use previously learned algorithms for whole numbers to compute
sums and differences of rational numbers.

2. Rational numbers with finite decimal names arc those that have
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fractional names with denominators whose prime factorizations contain
only 2s and/or 5s.

3. It is not sufficient that the student gain only computational proficiency
with these algorithms. It is hoped that students see the study of decimals
for what it isan "old" topic with new names for the numbers. This
goal can be at least partially realized if instructional procedures such as
those suggested in this chapter are used to integrate the study of decimals
with previously learned concepts, operations, and properties of both
rational and whole numbers.
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DECIMALS:

MULTIPLICATION

AND DIVISION

Donovan R. Lichtenberg

+:8

1. Why are the multiplication and division algorithms
used with decimals ssentially the same
es the ones used for whole numbers?

2. How can we help children learn to place the decimal point
correctly in multiplication and division computation?

3. How can we extend the concept of decimal representation
to include all rational numbers?

4. Are there any numbers that are not rational numbers?

There arc several reasons for the popularity of decimal notation, but
the main one is probably the casc of computation which decimals afford.
It seems that most people would rather compute with decimals than with
fractions because thc algorithms for decimals arc essentially the same as
for whole numbers, with the extra stcp of placing the decimal point. Simon
Stevin, who first popularized decimal notation with his La Disme in 1585,
wrote: "To speak briefly, La Disme teaches how all computations of thc
type or the four principles of arithmeticaddition, subtraction, multipli-
cation and division (with decimals)may be performed by whole numbers
with as much case as in counter-reckoning."
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MULTIPLYING WITH DECIMALS

If a child can compute products of whole numbers, it should not be

difficult for him to learn to compute products of rational numbers ex-

pressed in decimal form. But rather than simply learning rote rules for

placing the decimal point, a child should learn the basis for these rules.
Consider the product 2.7 X 3.2. One of the first things that children

should recognize is that this product is greater than 6 because 2.7 > 2

and 3.2 > 3. Similarly, they should see that it is less than 12 because

2.7 < 3 and 3.2 < 4. If children have learned to associate multiplication

with areas of rectangular regions, the fact that 2.7 X 3.2 is between 6 and

12 can be illustrated vividly by means of a diagram. Suppose that in the
figure below rectangle ABCD is 2.7 fect wide and 3.2 feet long. Then the

area in square feet is 2.7 X 3.2. Since the squares in the figure represent

square feet, it is clear that the area of the rectangular region is greater

than 6 square feet and less than 12 square feet.

3.2 ft.

1 ft.

2.7 ft.

By refining this diagram, we can learn even more about the product

2.7 X 3.2. The figure below shows the same rectangular region with the

edges marked off into tenths of a foot. Note that since the width is 2.7

feet, we can say that the width in feet is 27 tenths; the length is 32 tenths.
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A

Now we can express the area in terms of some smaller square units. It
can be seen in the next figure that each small square is one tenth of a
foot on a side. Since it takes 100 small square regions to fill one unit
square, each small square region has an area of one hundredth of a
square foot. And it can be seen that rectangle ABCD encloses 27 X 32, or

32 tenths
MMOOMMMMMOMOMIBMMEMEMOSIMO
MOIMMEMEMMOMOMMOMMMORMEMMEMEMMOMMMMMEMMEOMMOMOMOMMOEMM
MEMMIMSOMMEMNOMMOAMMEMMOOMM
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MINAMMMEMMILMMENUMMOMMEMOMMOMMILMM
MOMMIIMMEMMOMMOMMOMOVVMOMMOOMMOMM
MMEMMEMMENIMMEMEMEMISCIMMEMMEMEDUM
MEMMEMOMMIIMEMEMMOMOMMOMMMEMMOMMMOOMMnopMEMMOMMWOMMMOMOMMUM
MMIIMONIIMOMMOMRIMOMMOMMOMU
IIIMMOMMEMMIMMEMMIOMMEMOMMEMOMMORUMMOMMEMMENEMOMMER1MMOMMMORNM

MOMMOMOOMOMMEMOMMINMEMEMMOMMOMMMOMINOMOOMOOMMOMMEMENUM
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emilmomMomMunilMommomumensomMEMmomm
MMOMMEMMONVOMMEMIMMOSEMOMMEMERSM
IIMMEMMOMMIUMEMSEMEMEMMEMMEMEMREM

864, of these smaller square regions. Hence the area is 864 hundredths, or
8.64, square feet. This illustrates why the digits in the computed product of
2.7 and 3.2 are the same as in the product of 27 and 32. This, therefore, is a
way of providing the rationale for multiplying with decimals in the same
way as with whole numbers.

11011b
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The Rational Numbers

It should be observed that once we have convinced a child that the
digits in the product of 2.7 and 3.2 are the same as in the product of
27 and 32, we can teach him to place the decimal point by estimation. We
know that 27 X 32 = 864, and we know that 6 < 2.7 X 3.2 < 12. Where
can we place a point in "864" so that a number between 6 and 12 is named?
Clearly, the point must be between the "8" and the "6."

The computation can also be explained by converting from decimals to
fractions, as follows:

7 22.7 X 3.2 = 2 RI. X 3

27 32
= --145 X

27 X 32
10 X 10

864
100

g 64
100

= 8.64.

We see again why we compute the product of 27 and 32 to obtain the
product of 2.7 and 3.2.

Let's consider another example: 1.4 X 3.57.

571.4 X 3.57 = 1 4 X 3
10 100

14 357
= TO x 100

14 X 357
10 X 100

4,998
1,000

998= 4
1,000

= 4.998.

Here it was necessary to compute 14 X 357. By working through several

216--
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examples in this manner, children begin to see a shortcut. They might
think:

X (hundredthr) =

3.17 =1.4 X 4.998.

2 They will eventually discover the counting-off rule for placing the decimal
1

t point:
i'

Count the total number of digits to the right of the decimal
points in the numerals for the two factors, and place a point
in the numeral for the product so that the number of digits to
the right is equal to that total.

Exercise Sot 1

1. Draw rectangle diagrams that will show

a. that 1.2 X 2.1 = 2.52;

b. that .7 X 3.5 = 2.45.

2. Compute each of the following products by first converting to
fractions.

a. 3.7 X 6.2

b. 4.1 X .83
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e. .8 X 17.5

d. .67 X 3.29

Many elementary textbook series introduce exponents. It is easy to see
that the cuunting-off rule for placing the decimal point when multiplying
is related to a property of exponents.

Children learn, for example, that 103 = 10 X 10. The exponent 2
indicates that 10 is used as a factor twice. Sin.flarly, 103 = 10 X 10 X 10.
So 102 X 103 = (10 X 10) X (10 X 10 X 10) = 103.

In general,

n factors

10n = 10 X 10 X . . . X 10

(10 is used as a factor n times)

with the understanding that 101 = 10. Therefore,

rn factors n factors

10" X 10" = (10 X 10 ... X 10) X (10 X 10 X ... X 10)

m n factors

= 10 X 10 X 10 X . .. X 10.
Hence

10" X 10" = 10"+".

Numbers such as 10, 100, 1,000, and so forth, which can be expressed in
the form 10% are called "powers of 10". Any decimal is equivalent to a
fraction in which the denominator is a power of 10. Now consider the
product 1.23 X 4.785. We know that

23 785
1.23 X 4.785 = 1 X 4

100 1,000

123 4,785
100

x
11000

123 4,785
102 A 103
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We see that for each factor the number of places to the right of the decimal
point is the same as the exponent in the denominator of the corresponding
fraction. The product is

123 X 4,785
102 x

and since 102 X 103 = 105, we have

588,555
106

Since the denominator is 105, we must count off 5 places from the right. So

1.23 X 4.785 =-- 5.88555.

It should be noted again in this example that the position of the decimal
point can easily be determined by observing that 1.23 is between 1 and 2
and 4.785 is between 4 and 5. The product, therefore, is between 4 and 10.
It is clear that the decimal point must be placed after the "5" on the left,
showing a product of 5.88555.

This method of placing the point by estimatinl should be stressed in the
elementary school much more than it usually is. It forces the child to
think about the reasonableness of his results, and it is less apt to become
merely a mechanical process.

As a matter of fact, this is the method for placing the decimal point
that people have necessarily used when computing with a slide rule. It is
necessary because a slide rule usually does not give the exact digits of the
numeral for a product. If one attempts to compute 1.23 X 4.785 on a
slide rule, he will be able to read off approximately "589" as the product.
He places the decimal point by reasoning as above. The slide-rule user
knows that the product must be between 4 and 10, so it is approximately
5.89.

As another illustration, suppose one wishes to compute 2.4 X 35.7 on
a slide rule. From the rule he will be able to read approximately "857".
Now, where should the decimal point be placed? Since 2 X 35 = 70 and
3 X 36 = 108, the product of 2.4 and 35.7 must be approximately 85.7. ,34

Enrcis Set 2

In each of the following a product is given, along with a slide-rule
reading. Place the decimal point in the slide-rule reading by estimating
the product.



The Rational Numbers

1. 4.3 X 7.8 335 5. 12.3 X 13.5 166

2. 1.75 X 5.5 962 6. 8.7 X 9.7 844

3. 11.5 X 4.33 498 7. 0.51 X 8.07 4 1 2

4. 6.7 X .83 556 IL 0.23 X 20.5 472

The above exercises illustnte that the slide rule usually gives a result
that is "rounded off." This perhaps would be a good place to discuss the
importance of rounding in applications of mathematics.

At the beginning of this chapter we assumed we were working with a
rectangle whose width is 2.7 feet and whose length is 3.2 feet. From a
pure-mathematics standpoint, the area of such a rectangle is exactly 8.64
square feet. But in the physical world, is it possible to find a rectangle
that measures exactly 2.7 feet by exactly 3.2 feet?

All measurement is subject to error. This is a fact that surveyors,
engineers, and others who apply mathematics learn to accept. If a surveyor
measures a rectangle and says that it is 15.7 feet by 27.3 feet, he is indicating
that he has measured to the nearest tenth of a foot. This means that the
width is closer to 15.7 feet than it is to 15.6 feet or 15.8 feet. But this
means that all that is known is that the width is between 15.65 and 15.75, as
indicated on this number line:

width

15.6 15.65 15.7 15.75 15.8

Likewise, if the length is indicated as 27.3, it is between 27.25 and 27.35:

length A.

p.
27.2 27.25 27.3 27.35 27.4

New 15.7 X 27.3 = 428.61, but does it make sense to say that the area
of the rectangle is 428.61? Do we really know what the area is, to the
nearest hundredth? If we let w represent the exact width of the rectangle
and / the length, we know that

15.65 < w < 15.75 and 27.25 < / < 27.35.

So all we really know about the area is that it is between 15.65 X 27.25
and 15.75 X 27.35. Carrying out the computations, we find that the area
in square feet is between 426.4625 and 430.7625. You can see that it

r7:
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hardly makes sense to say that the area is 428.61 square feet. A surveyor
would probably round this result to 429 square feet. That is, he would
round off so that there are no more digits in the product than there are in
either factor. It can be seen from the explanation above that we have no
assurance even that 429 is correct to the nearest whole number!

Exorcise Set 3

In the example above 426.4625 can be called a "lower bound" for the
area of the rectangle, and 430.7625 can be called an "upper bound." Find
upper and lower bounds for the area of each of the following rectangles,
assuming that measurements have been made to the nearest tenth of a
unit.

1. w = 4.2, / = 7.3

2. w = 9.7, / = 14.1

3. w = 6.0, / = 9.1

By the time children begin working with decimals, they have usually
learned that it is easy to compute a product of whole numbers when one
factor is a power of 10. They learn that if one factor is ten they can simply
annex a zero to the numeral for the other factor. They learn to annex two
zeros if the factor is 100, and so on. When exponents are introduced, they
should see that the number of zeros annexed is the same as the exponent in
the power of ten:

27 X 10 = 270, 27 X 103 = 2,700, 27 X 103 = 27,000, etc.

Most people think in terms of annexing zeros, but it would be more
correct to talk about digits moving to the left. That is, if a number is
multiplied by 10, the original ones digit becomes the tens digit, the tens
digit becomes the hundreds digit, and so forth. Children can construct a
table such as the following:

... 221
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2

2

7

2

7

0

2

7

0

0

7

0

0

0

27

27 x 10

27 x 100

27 x 1,000

Each digit moves two places to the left when multiplying by 100, three
for 1,000, and so forth. Assuming that the same thing would happen if one
factor is, for example, 2.784, children can build the following table:

2 7 8 4

2 7 8 4

2 7 8 4

2 7 8 4

44--- 2.784

2.784 x 10

2.784 x 102

2.784 x 103

This illustrates why it is possible to think of moving the decimal point
to the right when multiplying by a power of 10. In reality the dee:anal
point occupies a fixed position, namely, a position immediately to the
right of the units place. But the digits move into new places when a
number is multiplied by a power of ten.

By using the above idea, children can learn to express numbers in
scientific notation. In this notation a number is expressed as a product'
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in which one factor is a number between I and 10 and the other factor is
a power of 10. Here are some examples:

43 = 4.3 X 10

640 = 6.4 X 102

5,837 = 5.837 X 103

6,000,000 = 6 X le

52.3 = 5.23 X 10

463.7 = 4.637 X 10'

It can be seen that to express a given number in scientific notation one
can proceed as follows: (I) Write down the digits representing the number,
omitting agy decimal point. (2) Insert a deckmal point in this numeral
so that a number between 1 and 10 is named. (3) Write as the second
factor whatever power of 10 is necessary to make the product equal to the
given number.

Exorcise Set 4

1. Express each of the following in standard decimal form.

a. 28.4 X 100

b. 6.7 X 1,000

e. 2.837 X 10'

d. 6.1 X 105

2. Express each of the following in scientific notation.

a. 475 d. 3,287

b. 28.9 43.689

e. 57,000 f. 35,000,000,000

DIVISION WITH DECIMALS

Once children have learned that multiplication with decimals is much
like multiplication with whole numbers, they probably suspect that the
same holds true for division. In view of the relationship between the two
operations, it could hardly be otherwise. This can be brought out by
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asking childrev to complete a sequence of sentences such as the following:

Since 15 X 23 = 345, then 345 + 23 = 0.
Since 1.5 X 23 = 34.5, then 34.5 + 23 = 0.
Since 15 X 2.3 = 34.5, then 34.5 + 2.3 = O.
Sincc 1.5 X 2.3 = 3.45, thcn 3.45 + 2.3 = 0.

If a child completes the sentences correctly, he sees that all of the numerals
for the quotients have thc samc digits. It looks as if one should be able
to use the algorithm for computing 345 + 23 to compute each of the
other quotients also. Thc only new thing to learn is how to place the
decimal point.

It can be seen from the above examples that if the division process
terminates, or "comes out even," the decimal point can be placed by
using what wc know about placing it in multiplication. To illustrate
further, considcr 3.75 + 2.5. If we ignore the decimal points and compute
as if we were computing 375 + 25, the work would look like this:

15

2.5537-7i

2 5
1 25

1 25

Now since the quotient times the divisor equals the dividend, and since
there is one place to the right of the point in the divisor and two in the
dividend, we know that the point must be placed between the "1" and "5"
in the quotient. That is 3.75 + 2.5 1.5 because 1.5 X 2.5 = 3.75. If
one wished to state a counting-off rule for division, it would be this:

The number of decimal places in the numeral for the quotient
is the number of places in the nwneral for the dividend minus
the number of places in the numeral for the divisor.

herds. Sit 5

Each of the following sentences can be made truc by placing a decimal
point in the numeral on thc right-hand side. Place the decimal point by
using thc rcasoning discussed above.

1.

2.

3.

4.06 + 2.9 = 1

22.41 + 2.7 =

2.646 + 4.2

4.

8 3.

6 3.

4.

3.

6.

7.955 + 1.85

.52416 + 1.12

62.37 + 231 =

4 3.

4 6

2 7.

8.

224-
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The last exercise above illustrates an important special case: If the
divisor is a whole number, the numbcr of decimal places in the numeral
for the quotient is the same as in the numeral for the dividend. This leads
to the well-known procedure of "placing the decimal point in the quotient
immediately above that in the dividend," as in these examples:

7.8 .57

957.i 41513.37
63 20 5

7

7

2
2

2
2

87

87

Although this procedure works only in the case where the divisor is a
whole number, it turns out to be a useful idea because every division
problem can bc transformed into one in which the divisor is a whole
number. The general principle that allows us to make the transformation
was discussed in chapter 6. The principle referred to is that if the divisor
and dividend are both multiplied by the same nonzero number, the
quotient is unchanged. That is,

a b = (a X c) + (b X c) if c O.

We combine this principle with the fact that any rational number
that can be expressed as a decimal can be multiplied by an appropriate
power of ten to produce a whole number. To compute 43.4 1.24, for
example, we multiply both 43.4 and 1.24 by 100 and then divide the
resulting numbers, that is, 4,340 by 124. This is the explanation for what
most adults know as "moving the decimal points":

1a577-42

After we have transformed the problem so that the divisor is a whole
number, we can place the decimal point in the quotient above that in the
dividend:

35.

124. )4340.
37 2
6 20
6 20

We have found that 43.4 -I- 1.24 =. 4,340 + 124 == 35.
It is worth noting that it isn't always necessarily most convenient to

multiply by a power of ten. If dividing 6.75 by .25, for example, we can

225
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take advantage of the fact that .25 X 4 = I. When we multiply both 6.75
and .25 by 4, we have

6.75 .25 = (6.75 X 4) (.25 )< 4)

= (6.75 X 4)

= 6.75 X 4.

We see that we have eliminated any division computation; we need only
compute 6.75 X 4. Most children would find this easier than computing
675 25, which is what they would have to do if 6.75 and .25 were both
multiplied by 100.

The good student will recognize that the above explanation agrees with
what he has already learned about division of rational numbers. After all,
decimals are simply names for rational numbers, and the student has
learned that dividing by a rational number (other than zero) is the same as
multiplying by its reciprocal, that is, by its multiplicative inverse. Since
.25 X 4 = 1, the numbers .25 and 4 are multiplicative inverses of one
another. So 6.75 4- .25 = 6.75 X 4.

Smirch. Set 6

Tell whether each of the following statements is true or false. If a
statement is false, form a true statement by changing the position of a
decimal point on the right-hand side or by inserting one.

I, 67.4 1.3 = 674 4- 13. 5. .00064 .004 = 6.4 4- 4.

2. 6.53 .7 = 653 7. 6. 3.9 .003 = 390 3.

3. 32 .16 = 3,200 4- 16. 7. 8.49 .236 = 8,490 236.

4. .038 .02 = 3.8 + 2. S. 454 4- 20 = 45.4 2.

The explanation of division given thus far has ignored some trouble-
some complications, and it is now necessary to come to grips with them.
One complication is illustrated by 48 7.5. If we multiply both 48 and
7.5 by 10 and proceed with the computation, our work looks like this:

6.

45 0
3 0

Now, certainly we cannot say that 48 7.5 = 6, because the division

rd 1.4 11.
Ago qa A
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did not "come out even." However, if we recall that 480 = 480.0, we can
take care of the problem:

6.4
7t5, 41700

45 0
300
300

So 48 7.5 = 6.4. (It can be seen that for the counting-off rule mcn-
tioned earlier to be valid it is necessary to think of 48 as 48.00.)

Some students might conclude from examples such as the preceding
that if division computation does not "come out even" we can always
annex one or more zeros so that it will. But experience will convince
them that it is really a rare case where this is so. In other words, the
quotient of two numbers usually cannot be expressed exactly as a decimal.
So what can we do? One answer is that we can round off to whatever
degree of precision is desired. We may wish, for example, to compute
23.6 7 to the nearest tenth. Our computation would be as follows:

3.37
75-2T.T0-

21

26
21

50

49
1

We know there are more digits to the right of the "7", which we have
not yet computed, so the quotient is between 3.37 and 3.38. This tells us
that 23.6 7 is closer to 3.4 than to 33, so we write

23.6 7 re:, 3.4.

EXTENSION OF THE DECIMAL CONCEPT INFINITE DECIMALS

Children should be taught how to round off, but they should also be
encouraged to extend a computation such as the example in the preceding
paragraph to see what happens. That is, they should annex some more
zeros and continue the work with an alert eye for some sort of pattern.
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This is what they will find if six more zeros are annexed:

3.37142857
7)23.60000000

21

26
21

50
49

7

30
28

20
14

60
56
40
35

-4 50

When the alert student gets to the line indicated by the second arrow,
he will realize that he is again at the stage indicated by the first arrow.
He will see that the work from that point on is going to be repeated over
and over. The block of digits "714285" will repeat in the quotient in-
finittly many times.

Now how should this quotient be interpreted? Can the infinite repeating
decimal that results from applying the division process be thought of as
representing a number? These are not trival questions. Complete answers
lie beyond the scope of this book. You should see that if we are to think
of the infinite decimal as representing a number, an extension of the
decimal concept is required, because a decimal represents a sum. For
example,

4 3 8
2.438 = 2 -I- To

100 1,000

An infinite decimal would, then, seem to indicate an infinite sum. Using
techniques of higher mathematics, it can be shown that certain types of
infinite sums can make sense and that it is reasonable to talk about an
infinite decimal as ropresenting a number. There is a definite point on the
number line that corresponds to any inanite decimal.

The result of the computation above can be shown like this:

23.6 7 = 3.3714285

228
6



Decimals: Multiplication and Division

The bar over the block of six digits means that this block repeats in-
finitely many times. Notice that in this statement "=" is used rather than
"pee. This means that the infinite decimal on the right is considered a
name for the quotient. Of course, the quotient is a rational number,
because we could write:

236 11823.6 + 7 = 236 + 70 = =
70 35

Now that we have extended the notion of decimals to include infinite
ones, we shall call the type of decimals discussed originally either "finite
decimals" or "terminating decimals." Some rational numbers can be
expressed as terminating decimals. (If you do not remember which rational
numbers can be so expressed, refer back to chapter 7.) Is it perhaps true
that any rational number that is not representable as a terminating decimal
will have a repeating decimal representation? Let's once again look at the
computation for 23.6 7. Note the circled remainders:

3.3714285
723.6000000

21

21

50
49

10
7

28

1°
14

60
56

35

Each of the numbers 1, 2, 3, 4, 5, and 6 occurs as a remainder after the
point where the annexed zeros are used. You should see that no other
nonzero remainders are possible when dividing by 7. Consequently, the
next remainder must be 0 or a remainder that has occurred previously. In
the latter case a repeating decimal results.

The decimal representation for any rational number can be determined
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by dividing a by b. Suppose the division process does not terminate. Then
0 does not occur as a remainder, and there are only so many nonzero
numbers that can occur. If all of these numbers have occurred as re-
mainders after the point where the annexed zeros are used, the next
remainder will have to duplicate a previous one. It can happen that a
duplicate will occur before all of the possible remainders have been used.
(Exercise 2 below will illustrate this.) In either case a repeating decimal
results. Hence, any rational number can be expressed as either a termi-
nating or a repeating decimal.

Exercise Set 7

1. Compute each of the following quotients and round to the nearest
tenth.

a. 45 ÷ 2.3

b. 321 17

e. 5.7 .13

d. 13 7

2. Express each of the following rational numbers as a repeating
decimal. Use the bar notation.

2 3

4 7

7
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a3. Suppose that a rational number - cannot be expressed as a termi-
b

nating decimal. What is the maximum number of digits that could be in the
repeating block in the infinite-decimal representation?

If a number is rational, then it can be expressed as either a terminating
or an infinite repeating decimal. Is the converse of this statement true?
Is it true that if a number can be expressed as a terminating or repeating
decimal, then it is a rational number? For terminating decimals, the
answer to this question becomes apparent when one thinks of converting
from decimals to fractions. Examples are

7 53 253 371
and 0. =

0'7 01 2.
53

2 -1-(TO 00 ' 371
1,000.

Any terminating decimal corresponds to a fraction whose denominator is a
power of ten. So any number that can be expressed as a terminating

decimal can also be expressed in the form .q where a and b are whole

numbers, and hence any such number is a rational number.
It is not so easy to see whether or not a given repeating decimal repre-

sents a rational number. Consider, for example, the repeating decimal
3.247. If this represents a rational number, we should be able to find

whole numbers a and b such that = 3 247 This can be done. To see
b

how to find a and b, let's begin by letting w represent the number under
consideration. That is, if w = 3.247777 ,

100 X w = 324.7777 . . . and 1,000 X w = 3,247.7777 . . . .

(We are assuming that the rules for arithmetic with infinite decimals are
the same as for finite decimals. It can be shown that these rules are still
valid.)

Now if you have never seen this technique before, you are probably
wondering why we multiplied w by 100 and then by 1,000. The reason
should become clear in the next step. Notice that in the decimal expressions
for 100 X w and 1,000 X w the part to the right of the decimal point is the
same for each (the digit "7" repeats forever). Now notice what happens
when we subtract 100 X w from 1,000 X w:

1,000 X w = 3,247.7777 . . .

100 X w = 324.7777 . . .

900 X w = 2,923

231
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The difference is a whole number. Since 900 X w = 2,923, w = 2,923
900

This shows that w is a rational number. The reader should divide 2,923
by 900 to verify that the repeating decimal 3.247 is obtained.

A little thought will convince you that the procedure used above will
work for any repeating decimal. Consequently, any repeating decimal
represents a rational number. Let's look at one more example. We shall
show that .4239 represents a rational number by finding a fraction for it.
Let's call the number y.

Y= .4239239239 . . .

Then 10 X y = 4.239239239 . .. (Why do we multiply by 10?)

and 10,000 X y = 4,239.239239 . . . (Why do we multiply by 10,000?)

Now we subtract 10 X y from 10,000 X y:

10,000 X y = 4,239.239239 . . .

10 X y = 4.239239 . . .

9,990 X y = 4,235
4,235

So y This fraction is not in lowest terms, but that is irrelevant
9,990

here. We have shown that .4239 represents a rational number.
With a slight adjustment in our thinking, our findings about decimal

representations of rational numbers can be summarized in a very concise
manner. Any terminating decimal can be thought of as a repeating decimal
in which the digit zero repeats forever after a certain point. For instance,
0.5 = 0.50000 . . . . With this in mind, we can say that a number is rational
if and only if it can be expressed as an infinite repeating decimal.

Exorcise Sot II

Show, by finding fractions for the following repeating decimals, that
each of them represents a rational number.

1. .313 3. 2.7

2. 4. .4-9-

Were you perhaps surprised by the result in the last
The result indicates that the repeating decimal .49999. .

1rational number . But we also know that .50000 . =
2

exercise above?
. represents the

1
This seems to

2
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1mean that 2 has two repeating-decimal representations. It happens that
1this is an inescapable fact. Not only is it true of , it is true of every non-
2

zero rational number that can be expressed as a terminating decimal.
Every such rational number has two repeating-decimal representations,
one in which 0 repeats and one in which 9 repeats. Here are some more
examples:

1

4

3

8

2

5

.250000 . . . = .249999 . . . .

.3750000 . . . = .3749999 . . . .

.40000 . . . = .39999 . . . .

We have been talking about infinite repeating decimals. Are there
other kinds of infinite decimals? You should see that it is at least possible
to think of an infinite decimal that does not repeat. Suppose we have a
hat in which we have placed ten cards, each of which has one of the digits 0
through 9 on it. Now suppose we reach into the hat and, without looking,

pick a card. Perhaps we draw the 4. We then write "4" with a decimal
point to its left. After replacing the card in the hat, we draw again. We
write whatever digit is drawn to the right of the first one. If we continue
like this, we shall generate a decimal numeral. After ten drawings we
might have

.4018873971

Now think of continuing this forever. There is certainly no reason
to suspect that this technique would generate a repeating decimal, although
of course it might occasionally. It cannot represent a rational number if
it does not repeat. Does the resulting infinite decimal, then, represent a
number at all? It can be shown that there is a precise point on the number
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line for any infinite decimal. So it is reasonable to think of an infinite
nonrepeating decimal as representing a number. We simply say that each
such decimal represents an irrational number.

An example of an irrational number is the number whose square is 2,
that is, We sometimes read that Vi = 1.414, but 1.414 is only an
approximation for Vi because

(1 .414)2 = 1.999396.

It is because Vi is an irrational number and consequently cannot be
expressed as a fraction or terminating decimal or repeating decimal that
we must denote it by using the radical sign (or doing something equivalent).
It can be shown that the square root of any whole number is either a whole
number itself ( vI4 = 3) or else it is an irrational number. Another well-
known example of an irrational number is 7r, which is often approximated
by 3.14. Again we can say that it is because of the fact that this is an
irrational number that a special 'symbol must be used for it.

Most of the day-to-day affairs of the world are conducted using only
rational numbers. But one should not conclude from this that irrational
numbcrs are scarce. In an important sense there are more irrational
numbers than there are rational numbers. However, a discussion of this
matter is beyond the scope of this book.

The rational and irrational numbers should be thought of as inter-
mingled on the number line. It was pointed out in chapter 2 that between
any two rational numbers there is always another rational. It is also true
that between any two rationals there is an irrational. Similarly, between
any two irrationals there is always another irrational and also a rational.

Exercise Set 9

1. Give two different repeating decimal representations for each of the
following rational numbers.

3
a. 74

5
b.

7
C.
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2. Think of the infinite decimal expression

.101001000100001000001 .

where the ones are separated by zeros and in each block el' zera..3 there
is one more zero than in the preceding block. Does this expression re-
present a rational number or an irrational number?

3. Write a decimal expression for an irrational number between the
rational numbers .342 and .3425.

Some students are fascinated by discoveries they can make about

repeating decimals. If asked to find the decimal representations of and 3,
7 7

their work would look as follow:3:

.142857 .285714
751.000000 752.000000

1 4
30 60
28 56

20 40
14 35

60 50

56 49

40 10

35 7

30
49 28

1 2

2So -I = .142857 and -7 = .285714. We note that the repetend (the
7

repeating block of 2for - consists of the same digits as the repetend
7

1

for -7 Moreover, the digits are in the same cyclical order. An examination

of the computation shows why this is so. The beginning stage of the

computation for -2 matches the stage indicated by the arrow in the coin-
7

1putation for - . Thereafter, the steps are identical, so the same digits have
7

to appear in the quotient. As a matter of fact, by just looking at the
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243



The Rational Numbers

1computation for 77 , we can also conclude the following:

3

7
= .428571

4 = .571428
7

5 = .714285
7

6

7
= .857142

If the denominator is 7 and the numerator is other than a multiple of
7, the repetend will consist of the same six digits. There arc other denom-
inators that exhibit a similar property. Examples are 17, 19, and 23.

There is another aspect of repeating decimals that will be of interest

to some students. From the argument showing why the decimal for -7)

repeats if it does not terminate, it can be seen that the maximum number of
digits in the repetend is b 1 (see exercise 3 in set 7). But this maximum

number will not always occur. If, for example, we wish to rename -h as a
decimal we would get the following:

.230769

2 6
40

39

10

0

100
91

90
78

120

117

3

When the remainder 3 is reached we realize that we are back to the

starting point. We see that 133 = .230769, and the repetend contains

oilly 6 digits rather than the maximum of 13 1, or 12. Upon examining
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the work, we see that the numbcrs 4, 1, 10, 9, 12, and 3 occur as rcmainders.
The numbcrs 2, 5, 6, 7, 8, and 11 do not and of course will not, even
though the process goes on forever. Is there a relationship between the
denominator and thc number of digits in the repetend? There is a very
simple relationship in the case where the denominator is a prime number.
Perhaps you have already guessed it. The exercises below will give you
some more clues.

1. Complete this table.

Exorcise Sot 10

REPEATING DECIMALS

a
b

Repeating Decimal
afor
b

Number of Digits
in Repetend

b 1

1

0.142857
7

6 6

3

13
6 120.230769

1

3

6

11

4

37

7

41

15

73

11

101

30

271

237
2 4.5
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2. How are the numbers in the third column in the above tabie related
to the numbers in the fourth column?

3. We saw that in computing the decimal for A. the number 2 did not

occur as a remainder. Compute the decimal for -h and compare the

remainders with the ones obtained in the computation for 3
13

SUMMARY

1. If a student knows the multiplication and division algorithms for
whole numbers, he needs to learn only how to place the decimal point in
order to be able to compute with decimals. Procedures for placing the
decimal point can and should be taught in meaningful ways.

2. The division process does not always terminate. If it doesn't, the
quotient can be approximated as closely as we please by a finite decimal.

The decimal concept can be extended to include infinite decimal ex-
pressions. It can be shown that any infinite decimal corresponds to a point
on the number line and hence represents a number.

3. A number is rational if and only if it can be expressed as an infinite
repeating decimal.

An infinite nonrepeating decimal represents an irrational number.



MEASUREMENT

(
Lauren G. Woodby

1. How am rational numbers related to measurement?
2. What is th role of arbitrary units?
3. What am some strategies for measuremnt of area?

A laboratory approach was chosen for this chapter because of the nature
of measurement. Manipulation and observation are involved in the
measurement process, and the best way for anyone to learn about measure-
ment is to measure things. You should do the selected measurement
activities, just as children do them, in order to see more clearly how
rational numbers and the fractions that name these numbers arise naturally
from a concrete setting. Your experience with these measurement activities
will suggest others that are appropriate for children in your classes.

Arbitrary units are emphasized because the author believes that an
emphasis on standard units tends to obscure the basic notions children
should learn about measurement. In the suggested measurement activities
for length, area, and weight, a unit object is to be chosen arbitrarily.

Similar triangles are used to find length by indirect measurement. Two
simple homemade instruments are described in this section.

The approximate nature of a measurement is made clear by the experi-
ment with successive refinements in finding the inner and outer areas of a
region having a curved boundary. This activity leads to an intuitive
notion of the limit process.

DISCRETE AND CONTINUOUS QUANTITIES

The size of a crowd and the capacity of a parking lot are quantities that
can be found by counting discrete objects. The numbers are whole numbers

--239
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and are exact (i.e., without error) if the counting is done correctly. How-
ever, the height of a person, the amount of paint in a can, and the size of a
playground are continuous quantities. The measures are usually not
whole numbers, and there always exists some uncertainty in determining
these numbers. Our main concern is with measurement of continuous
quantities.

THE MEASUREMENT PROCESS

Measurement is a process of assigning a number to a physical object in
order to tell how much of some particular property that object possesses.
When we measure an object to find how much of some property it pos-
sesses, we usually compare that object with a unit object and assign a
number. But how is this comparison done? If the property we are con-
sidering is weight, we really answer the question "How many unit objects
are needed to balance the given object?" We compare objects with respect
to some property. Our first step is to choose some object as the unit
object for that property.

The choice of a unit object is arbitrary. The concern about standard
units comes long after children learn to measure with arbitrary units.
For example, our arbitrary unit of length might be the length of a pencil.
We often use the term "unit of length" to mean the unit object itself as
well as its length. The number assigned to the unit object is "I."

It is common practice to use the same term, for example, "weight," to
denote the property and also the measure of that property. An object has
weight (property), and for a particular unit the weight (measure) is a
unique number, but we can never hope to find this number exactly;
we can only get close to the number that we assume exists. In the process of
getting close, we need rational numbers to obtain increasingly better
approximations of the measure. For example, we might be satisfied to
know the weight of an object to the nearest pound. For a finer measure we

could use -1--pound weights. For still finer measures we could use I-pound
2 4

weights or fpound weights. If a piece of brass labeled "I gram" is the

unit object and a decision to the nearest gram is not precise enough to
1suit us, we could use fractional parts of the unit, such as gram or
101 gram or evenI gram. We can get closer and closer approximations,

100 1,000
but there is always an error involved in the measurement of continuous
quantities.
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ORDER

Before measurement tasks make much sense to a child, he must be able
to compare two objects with respect to the property being measured. At
this premeasurement stage, numbers are not involved. The child needs
only some physical means of comparing to decide which object has more of
an attribute (property). One way to provide this experience and at the
same time focus attention on the property to bc measured is to have
children work individually at four tables identified by signs "Length,"
"Area," "Weight," and "Volume." Suggested activities, and comments on
them, follow.

Activity 1. Ordoring according to longth

1. Select three objects. Arrange in order from shortest to longest.

2. Select another object and decide where it belongs in the ordered
arrangement. Put it there.

3. Repeat with another object.

4. Continue until you have at least seven objects arranged in order of
length.

3. Arrange three of your classmates in order of height.

6.

Mr&

Working Line

Transfer each line segment to the working line with one end at the
point marked "Begin." Decide the order of the segments from shortest to
longest.

Activity 2. Ordoring according to Aria

1. Select six cardboard shapes. Arrange in order from least to most
area. You may want to cut and fit pieces.
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2. Which region covers more space, A or B?

3, Select a banana and a tangerine. Which do you think has more skin
arca? Test your guess.

Children develop interesting ways to compare the areas of two objects.
When a child peels a tangerine and pushes thc flattened pieces close to-
gether he achieves considerable insight into the problem. Some children
will try to cover two objects with foil or paper and then compare the two
covers in some way. The general problem of comparing surface areas of
three-dimensional objects helps to clarify the question "What is arca?"
When comparing the areas of two plane regions, children can cut one
region into pieces and rearrange to try to cover the other. Numbers arc
not needed, since the comparison is made directly.

Activity 3. Ordering according to Weight

Several balances should be available at this table. Children should first
estimate which of a pair of objects is heavier by holding one in each hand
and judging by feel. Then they should check their estimate with a balance.

I. Select six objccts and arrange them in order from lightest to heaviest.

2. Where does your pencil belong in this ordering?

3. Where does a quart of water belong in this ordering?

Activity 4. Ordering according to Volum.

A supply of rice or water will be needed at this table. A variety of
containers of assorted shapes should bc available for selection.

1, Sekct six containers and order them from least to most capacity.
Make an estimate first and then check your estimate.
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ARBITRARY UNITS

One source of confusion about measurement is premature emphasis on
standard units. Arbitrary units arc natural for children to use in their
introductory work in measurement, and teachcrs find that children learn
basic notions of measurement best if they arc allowed to choose thcir own
units. In particular, children focus their attention on the notion of an
interval when they measure length using a soda straw or a popsicle stick
(or any other object they select) for their unit object.

Activity 5. Masurment of Length (Arbitrary Units)

Choose any unit object having length and use it to measure the lengths
of at least five other objects. Record your data in a table like this:

Length Measure

To Measure Use This Greater Less Closer
This Object Unit Object than than to

Red Paper Strip Soda Straw 3 4 3

Dowel Rod
Etc.

Children see the connection between their unit and distance on a
number line if thcy tape several unit objects (e.g., soda straws) end to end
on the chalkboard. The counting numbers assigned to points on their
crude number line arc measures of the distance from the starting point.
Attention is focused on the intervals between the points.

1 unit 1 unit 1 unit 1 unit 1 unn

0 1 2 3 4 5

Children see that the intervals between the marked points are each one
unit long. The length of the object pictured below can be given as "between
3 and 4." Notice that two numbers are used to designate this interval.

g:11=11111=MIE111311
I t

5
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The next stage is to use one number for an lengths that lie within an
interval. For example, the length of the object above can also be expressed
as "3 units," meaning that the length is closer to 3 than to either 2 or 4.
In turn, this means that when an object is placed with one endpoint at 0 on
the number-line scale, the other endpoint lies in the one-unit interval
whose center is at the mark for 3. The observer must make a judgment
about the location of the halfway points (which are shown on this scale)
between marks on the scale. This is an important skill, and plenty of
practice should be given in reading to the nearest mark.

NEED FOR RATIONAL NUMBERS

At this stage a child naturally wants to use halves. He will not be
satisfied with the precision of the measure "5 soda straws" for his height.
He can fold the soda straw to get a half-unit, and he can fold it again to
get a quarter-unit. He needs rational numbers, and he has a way to get
them that he understands. It makes sense to divide the unit length into 2

same-size pieces and name the length of one of them by the symbol "1 ."

He can also get the lengths 1
'
2 , and 3 of his unit.4 4 4

1 1Now that
2
unit and Tunit lengths are available, the child can measure

lengths of objects to the nearest -} unit or the nearest unit.

Obint

i I C_) I

1 11 2 21 3 31

In the picture, we judge that the endpoint lies in the I-unit interval
2

Icentered at the 2 1 mark. Thus, the length of the object (to the nearest
2 2

unit) is 2 1 units. Any other object placed with the left endpoint at 0 and its
2

right endpoint anywhere in the same interval also has' a length (to the
1nearest I unit) of 2 I units. In order to measure lengths to the nearest

2 2 4
1

iunit, we need marks at
4
unit ntervals. It is natural to name these points

with the fractions shown along the number line pictured below. Through
measurement, rational numbers become associated with points on the
number line.

244 1
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o 1 1 3
1 11 11 1! 24 2 4

4
4 4 4

Another outcome of this activity is that children observe that ,1,,

,2,,and 4 name the same point on the scale. They also see that 4 is

another name for "1." They are discovering equivalent fractions in a
meaningful physical setting.

AREA MEASUREMENTARBITRARY UNITS

To measure the area of a leaf a child might count the kernels of corn
that cover it.

A regular polygon of arbitrary size can be chosen as the unit object
to define a unit of area. Triangular shapes are very simple to use and
can be arranged conveniently into natural groupings of 2, 3, 4, and 6 that
have interesting shapes.

For example, if the unit region is as shown below,

then the measure of

0:
245
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is 2, and

has measure 3. Groupings of 4 and 6 units are shown next.

Moreover, again using a triangle for the unit region, certain fractionsappear quite naturally. For examples, see below.

1 unit

Hexagonal shapes offer rich opportunities for obtaining certain fractions.For example, if the unit region now is a hexagon, then the shaded regionshave the measures indicated.
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24

Specially ruled paper (called "isometric ruled") is convenient for
drawing triangular shapes and hexavnal shapes. Here is a sample.

Such paper can be easily prepared and duplicated for use by children.
Begin by constructing a (comparatively) large equilateral triangle. Make
same copks, find midpoints of svnents, and extend lines as indicated
below.

midpoint

midpoint

247
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WEIGHT MEASUREMENTARBITRARY UNITS

Arbitrary units of weight provide another concrete approach to fractions
and rational numbers.

Activity 6. Weighing with Arbitrary Units

bolts nails paper clips washers

balance

t,X

beans

3(ZIO

1---4

modeling cubical
clay blocks

El) n
1. Choose any object you wish for your unit object and use it to weigh

several objects of your choice, recording results in a table like this:

To Weigh
This Object

Use This
Unit Object

Weight Measure

Eraser
Block of Wood
Etc.

Washer

More
tha n

6

Less
than

7

Closer
to

7

2. Put a washer (or whatever other object you chose for your unit
object) on one pan. On the other pan put just the right amount of modeling
clay to balance the washer. Now remove the washer and separate the clay
into 2 parts so that the 2 pieces of clay have the same weight. Divide one
of these pieces again into 2 equal-weight parts.

3. Use your clay weights (and washers) to weigh the same objects you
weighed before and record your results.

4. How could you improve your results even more? 1

After much experience with an arbitrary unit of weight, such as the
weight of a steel washer, the children usually want to get "closer" or
"better" results, but the washers can't conveniently be cut into parts.
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Give them a supply of beans or buttons or paper clips that are fairly
uniform and ask them to figure out a way to get a finer result. Some child
may find that 12 beans weigh the same as 1 washer, so he will have the

1 ft 2 3fractions ' 9,

12
etc. Another child may find and use fifths.

121 121 1

This activity illustrates clearly the use of fractions with larger denom-
inators for finer measurement. If 5 buttons weigh the same as 1 washer,

each button weighs-1 as much as a washer; if 12 paper clips weigh as much
5

1as 1 washer, a paper clip weighs as much as a washer. It is clear that
12

weighing to the nearest 112 unit is more precise than weighing to the
1nearest unit.
5

RATIO

There is a natural approach to the concept of ratio, again using
arbitrary units. Begin with this problem:

How can you compare the lengths of two objects, A and B, without
measuring the objects? (A and B could be strips of paper).

A

1. Use A and B as arbitrary units to measure the lengths of several
other objects. Record results in a table like this:

Object
Length in
A Units

Length in
B Units

Red Stick

Shoe Length

Etc.

4
4

3
2

6
2

2

2. Now graph the number pairs for the length of each object. Try to
draw a straight line that seems to fit the pattern best. What can you say
about this line?
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Length In A Units

4 5

In the sample graph shown, the steepness of the line is about "3 up for 2
over." One statement of this result is "The length of 3 of the B strips is
about the same length as 2 of the A strips." Another statement is "The

length of A is about 3 the length of B." Can you interpret the results in
2

some other way? Suppose you measured an object with an A strip and

rs?/
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found its length to be about 6 A strips. What would be its length in B

strips? The fraction 3 can be used to compare the length of A to the
2

length of B. When used in this way, "" is called a "ratio."

STANDARD UNITS

So far no standard units have been mentioned, and this is as it should be.
Standard units are often introduced too soon and overemphasized in
textbooks. Moreover, most standard units are really arbitrary. After
children learn how to measure with units of their choice, it is easy for
them to use standard units. The basic notions are the same. Children
readily see that standard units are necessary for communication.

A foot rul, r with one-inch units subdivided into sixteenths is commonly
used in school. This instrument is too complicatedcluttered up with too
many marksfor young children. Instead, a simple six-inch ruler marked
only in one-inch intervals is suggested for young children. If simple rulers
without any marks between the one-inch marks are not available, children
can make them of cardboard. Another technique is to cover the markings
on the complicated ruler so that only the one-inch marks are seen.

The nail in the illustration (which is not shown actual size) is 3 inches
long to the nearest inch because its endpoint is closer to 3 than to 2 or to 4.
The observer should imagine a 1-inch interval centered at the "3" mark.
Any nail whose endpoint lies in that interval is 3 inches long, to the

II
I I I I I I I

0 1 2 3 4 5 5

Scale of Inches

nearest inch. Nail B, though longer than nail A, is also 3 inches long to the
nearest inch. The precision, or fineness, of measures obtained with this
scale is 1 inch because the length of the interval is 1 inch. In order to
measure more precisely we need a smaller interval, just as with the scale
of arbitrary units.

il

I.

A

CIMI
1 2 3 4
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THE GEOBOARD

One of the most versatile teaching devices is a geoboard, or nailboard.
Homemade geoboards are in some ways better than commercially made
ones, and the cost of materials is less than 50 cents a board. You should
actually make a geoboard to experience firsthand the simplicity and ease of
construction; then have every child in your room make one.

Activity 7. Making a Gooboard
The materials for making the geoboard to be described here are a

110-by-10-inch piece of plywood, 2 inch thick; sandpaper; a paper grid
3with 2-inch squares; 25 no. 15 brass nails (escutcheon pins) about 4 inch

long; and a hammer.
Sand the piece of plywood to remove sharp edges. Allowing a I-inch

border, use the paper grid as a template and pound in a pin at each lattice
point so that there are 25 pins in a 5 X 5 array, as shown in the figure.

Having a 1-inch border makes it possible to use two or more of the
boards, placed together, to give more lattice points.

10 in.

Geoboard

252
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Activity 8. Using the Geoboard far Area

On the geoboard, rubber bands are stretched around pins to indicate
idealized geometric figures. Some basic shapes are shown on the geoboard
pictured above. Usually a square shape, A, is used for the unit of area.
Shape B has half as much area as A. Children see this intuitively, but they
really believe it when they tear a square piece of paper that just covers A
and fold it along a diagonal to form two triangular pieces of paper that
fit one on top of the other over B. In this figure if A is the unit region,

I
then B is 2 and C is 2. The area of D is seen intuitively to be half the area

of C. Children should prove it by cutting or tearing a piece of paper that
fits on C to get two same-size pieces that fit on D.

Now use rubber bands to make shapes like those pictured below and to
create some original shapes. Find the area of each.

0 0 0 0

0 0 0 0

0 0 0 0

O 0 0 0 0

0 0 00
0

0

00

O 0 0

O 0

0 0 0 0 0 0 0 0 0 0 0 0

o 0 0 0 0 0 00e0 co
0 ) 0 0 0 0 0 0 0

) 0 0 0 0 rt

0 fl C 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0

0 0 0 0 0 0

0 0 0 0 0 0

0

0

0

0 0 0 0

0 0 0 0 C

0 0 0

A a I%

0 0 0 0 0
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0 0 0 0 0
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Activity 9. Additional Osoboard Activities

1. What other ways can you use the geoboard in working with fractions?

2. What could you choose for the unit region in order to show sixteenths
conveniently?

3. Make a geoboard with triangles, rather than squares, as the basic
shapes. Isometric paper can be used as a template. What might this
geoboard be used for? (See the figure below.)

AAAAAA.
AVAVAVAVAWA
YAVAVAWAW
AVAVAVAVAWA
V ITAWAV
AVAWAWAVA
WAVAWAW

INDIRECT MEASUREMENT OF LENGTH

Many measurements are made indirectly. For example, to find how far
it is between two houses in your town you could measure the distance on A
map and then use the scale. The figure below shows a way to use triangles
to find a distance, BC, that cannot be measured directly because of an
obstacle.

254-4
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IV

Choose any convenient point A and stretch a string from B to B'
through A so that AB' is just as long as AB; stretch a string from C to C'
through A so that AC' is just as long as AC. Now measure the distance
from B' to C'. This length will also be the length of BC because the new
triangle AB'C' is the same size and shape as triangle ABC.

An alternative solution to the problem above is to find P, the midpoint
of AB, and Q, the midpoint of AC. Now measure the distance PQ. The
desired distance, BC, is twice PQ.

This alternative solution is based on the notion of similar trianglestrii-
angles that have the same shape. Each side of triangle ABC is twice as
long as the corresponding side of triangle APQ. Or, to put it the other
way, since AP is half as long as AB and AQ is half as long as AC, PQ is
half as long as BC.

Similar figures have the same shape but not necessarily the same size.
A good example is a photograph and its enlargement. Triangles ABC and
DEF, below, have the same shape; that is, they look alike. More speci-
fically, the pairs of corresponding angles A and D, B and E, and C and F
are the same size. We call the triangles similar.

--7-255--
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The interesting and useful thing about similar figures is that correspond-
ing sides are proportional; that is,

and also

a c a b

d d e

a a d
c b e

Activity 10. Height Measurement Using Shadows

Shadow of Shadow of b Shadow of c

One of the simplest ways to find the height of an object is to measure its
shadow. A special situation that interests children occurs when the length
of the shadow of an object is the same as the height of the object. The
first question to be answered is whether or not this situation ever occurs
for the particular location on the earth where they are. Children can
answer this question by observing shadows to see how shadows change.
They like to do this by observing their own shadows, and they can decide
what time of day this special situation occurs. At that instant a person 5
feet tall has a shadow 5 feet long; a flag pole 70 feet tall casts a shadow 70
feet long. So, at that instant, the height of a building can be found by
measuring the length of its shadow. To illustrate with equations:

height of a height of b

1,

length of shadow of a length of shadow of b
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height of c
= 1

Measurement

length of shadow of c

A variation of this technique is to find another special situationfor
example, when the kngth of a person's shadow is twice the person's
height.

Shadow of ft Shadow of k

In that special situation,

height of k 1

length of shadow of k 2

A building 52 feet tall would cast a 104-foot shadow.
Another way to use similar triangles in finding heights is to measure

the length of the shadow of an object of known height and, at about the
same time, measure the length of the shadow of an object whose height is
to be determined. For example, if the length of shadow of a meterstick is
1.2 meters, the length of the shadow of any object (at that same time) is 1.2

1.0times as long as its height. We know that h = . If s (the length of the
s 1.2

shadow of h) is found to be 60 feet, we know that h is a little less than 60.
h 1.0If

6-0
= 1.2

'
h = 50, as shown below.

SO

1060 X a = 60 X 12 '

600

= 50

dJ



The Rational Numbers

TWO INDIRECT-MEASUREMENT INSTRUMENTS

= SO ft.

The two distance-measuring devices described here are selected because
of their simplicity. They are inexpensive and very easy to make. Both are
easy to use, and children can get surprisingly accurate results with both.
By using these devices children learn about similar triangles and ratio.

Activity 11. Making and Using a Stadia Device

The materials needed are a meterstick, a piece of no. 27 copper wire
about 8 inches long, and a 1-foot rule.

To make the instrument form a loop in the wire and twist to make a
ring 1 centimeter in diameter, then wrap the ends around the meterstick
to hold the loop in the upright position shown in the diagram below,
which illustrates its use.

1 cm (in diameter)

To use the instrument, follow these steps: Place the 1-foot rule in a
vertical position. Sight along the meterstick through the ring. Slide the
ring until the ends of the rule appear to be just inside the ring. Read the
distance in, on the meterstick, in centimeters. The distance dto the rule is m
feet.

To see why this is true, examine the diagram of the two triangles formed
by the lines of sight.
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m ft.

The small triangle is similar to the large one. The ratio we are interested

in is
1

i
cm 1 ft.

in the small triangle and n the large triangle.
in cm in ft.

Activity 12. Making and Using a Hypsemstor

The hypsometer is an ingenious arrangement of a plumb bob, a sighting
device, and squared paper to get similar triangles and thus measure
heights indirectly. Materials needed are a sheet of squared paper, stiff
cardboard, a soda straw, string, a fishline sinker (or something similar),
and masking tape or glue.

To make the instrument mount the squared paper on the cardboard
and fasten the straw along the top of the paper, as shown in the sketch.
Attach the weight on the piece of string from A, the corner of the ruled
lines.

Sods straw

Line ot sight

The first use that is suggested is to determine a level line. The string AW
is vertical because of gravity. If the hypsometer is held so that AW falls
along a ruled line on the paper, the soda straw will be level. The line of
sight through the soda straw will be a level line, and you can locate a
point P on an object level with your eye. Assume that this object is a
building whose height you want to determine.

To find the height from P to the top of the building, sight through the
straw to the top of the building. Thc string AW is vertical, so AC is

259



The Rational Numbers

perpendicular to EP. The two right triangles ABC and EPQ are similar,
and the correspondence is

A <- E B4-31, C4-3 Q.

Measure the horizontal distance EP. Choose a suitable scale and locate
B" so that AB" represents EP. The line segment B"C" represents the
desired distance PQ. Simply use the scale and read the distance directly
from the squared paper.

Activity 13. Indirect Measurement

1. Estimate the height of the ceiling in a room. Use the hypsometer to
measure the height of the ceiling. Check by direct measurement.

2. Estimate the height of a flagpole or a tall building and then measure
its height by using the hypsometer.

3. Find out, by observing shadows and measuring their length, about
what time of day your shadow is just as long as you are tall. Use this
information to find the height of a building. Find the time when your
shadow is twice your height.

UNITS OF AREA

What is meant by a unit of area? In simple terms, it is any identifiable
plane region whose area we agree to call "1." As with length, we are free to
choose any region we wish for our unit region. Some units of area that
people use are an acre, a square inch, a square mile, a hectare, a square
kilometer.
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There is no need for the unit region to have a square shape. In fact,
an acre was originally described as the land inside a rectangle 40 rods
long and 4 rods wide. The space inside a circle of any given radius could
be our unit of area; so could the space inside an equilateral triangle of
specified length of sides.

Activity 14. Area Measurement

1. Consider the triangular shape pic-
tured at the right as the unit region,

and show 74 of the unit. Show T16 of the

unit.

2. Consider A as the unit region, and estimate the area of B.

3. Consider C as the unit region, and estimate the area of B.

DIRECT MEASUREMENT OF AREA

Children should have experience in comparing regions, ordering
according to area before attempting to measure area.

Direct measurement of area of a region by covering with unit regions
gives children considerable insight into the nature of area as well as an
insight into the concept of a limit. Given a certain region, a child is asked to
estimate the area in square inAes. A natural approach would be for
him to find how many square pieces, one inch on a side, can be put inside
the boundary without any overlapping. He should have a supply of these
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unit squares and fit them inthen count to find how many. The result
might look like this:

(Not shown actual size)

He knows his result is too smallthat is, he knows 7 is less than the
areabecause there is some space not covered. Thus the question "What
is the area?" has only a partial answer, and the child is not usually satisfied
with the result.

How can he improve the reult? One way is to cut some unit squares
into fractional pieces and fit the pieces inside the region. He might work

with eighths and find 73 < A. This is a little more satisfying; he is closer,
8

but he doesn't know how much he is still "off." Although this approach is
informative, a slightly different approach can give more information.

Suppose he covered the region completely, with some of the square
pieces extending outside the boundary. His result might look something
like this:

±-
(Not shown actual size)
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He knows that the area is less than 16 square inches. Notice that now
the area is known to be between two numbers, 7 and 16. This result is
considerably more satisfying because the child knows something about the
uncertainty: He knows that the area measure is some number in the
interval between 7 and 16.

Children will want to improve the precision by fitting in half-units and
quarter-units. They should be encouraged and allowed to try to narrow
down the interval by fitting in smaller pieces. Eventually they will want to
use a more systematic procedure because the physical handling of the
many small pieces is difficult.

One procedure that simplifies the work is to have the children trace
the boundary of the region on graph paper. Another procedure is to place
a transparent grid over the region. With either procedure the result might
look like this for the one-inch paper. Children will get different results,
depending on how the grid is located with respect to the boundary.
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(Not shown actual size)

Here the number of squares entirely inside the boundary is 2. The
number of squares that are inside or partly inside and partly outside the
boundary is 18. In other words, the outlined inner area is 2 square inches,
and the outer area (also outlined) is 18 square inches.

This result can be stated as follows:

2 sq. in. < Area < 18 sq. in.

1The next step is to use smaller squares. Here is the result for -- inch
1squares. Each square has an area of square inch.
4
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(Not shown actual size)

In this case, the number of squares entirely inside the boundary (arrived
at by counting) is 28, and the number of squares that are inside or partly

inside and partly outside the boundary is 59. So the inner area is 28
4

square inches, and the outer area is 59 square inches. This result can be
4

stated as follows:

28 59sq. in. < Area < sq in
4

In the next refinement, Linch squares are counted. Each of these
4

squares has an area of 116 square inch. The result is shown below with the

inner and outer areas outlined.

It lii ..ntrffrut 6

..

'711

11k1

(Not shown actual size)
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In this case the number of squares completely inside the boundary of
the region is 153. The number of squares inside or partly inside and partly

outside the boundary is 222. Thus the inner area is L-53 square inches, and
16

222the outer area is 16 square inches.

This result can be stated as follows:

153 . 222 .

16
sq. in. < Area < sq. in.,

Or

9 14 .
9 sq. in. < Area < 13 -1-6- sq. in.

Successive refinements could be made, each time reducing the size of
the interval. But no matter how carefully the work is done, there will
always be an interval in which the measure lies. We can never hope to
find the "true" measure.

Activity 15. Measuring Area by Weighing

1111,===0111MENNEN
ENNIIMIIMEE
IMMINIMMEE1NNEN=MIII 1
IIMMINMENFAI
IIMEINIERNE
MEMEIMIPMEN

1 unit of area

-1

- unit of area

Use a compass and on graph paper draw a circle like the one shown
above. Now mount it on cardboard and cut it out. Mount other graph
paper on cardboard of the same weight and cut out several square pieces
of paper with the side of the square just as long as the radius of your
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circle. The weight of one of these square pieces is to be your unit of

weight. Also cut out some fractional units; you will want some 1 units and
5

possibly some smaller ones.
Weigh the disk with these squares and fractional parts of squares.

You will need a pan balance that is sensitive enough for your needs.
How much does your disk weigh? Is there anything special about

this result?
Are you really measuring area? What assumption are you making?

Miscellaneous Problems

11. Suppose a yardstick is defective in that its length is really 2 inch too

short. By this yardstick, a room is found to be 43 1 feet long. What is
2

your estimate of the length of the room?

2. A stopwatch is used to record the time of an event at 15 minutes 23.7
seconds. If the watch is known to lose time at the rate of 4 minutes a day,
how will this error affect the time for the event? What should the time be?

3. Use a scale model of a car, a boat, an airplane, or any other object.
Find the overall length of the real object by making a measurement on the
model and adjusting for the scale.

4. If a globe that is a model of the earth is 1 foot in diameter, what
(approximately) is the scale? With this same scale, what size is a model of
the moon?

5. Make two balls from modeling clay, one with diameter twice the
other. Estimate the ratio of their weights. Check by weighing.



NEGATIVE RATIONALS

Robert B. Davis

1. Having started with the numbers 0, 1, 2, .. . and
1 3found some more numbers such as
2-

-7 . . . (which are

also quite important), can we carry such explorations
further? Are there still more numbers that we can
easily find? Would they be useful?

2. How can we help children to explore these new numbers
informally and intuitively?

3. How do we compute the sum -2 -I- +3?

In the present chapter we shall explore a new mathematical terrain, the
world of negative numbers.

Before we begin our explorations it may be well to get our bearings.
What new numbers are we to explore? How is this exploration to he
carried out?

We began our story in chapter 1 knowing the whole numbers,

0, 1, 2, 3, . .

We know that these whole numbers can be pictured on a number line, as
shown:

0 1 2 3 4 5

Just looking at this geometrical representation of thc whole numbers
suggests that, quite likely, there ought to be some other useful numbers if
we go about finding them correctly. There seem to be two obvious guesses
as to where to look.
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Guess I. Let's look between the whole numbers:

In here
(between 1 and 2),

0 1 2 3 4 5

In here In here
(between 0 and 1), (between 2 and 3),

and so on.

Guess 2. Since the whole numbers lie to the right of zero,' let's ask if
the line might not show some symmetry and offer us numbers to the left of
zero that are, in effect, the "reflections" of the whole numbers, as seen in a
mirror held at zero. This would mean looking for numbers as shown below.

I
I Here,

and here,

and here,

and so on.

The fact, as the reader quite likely knows already, is that both guesses
will lead us successfully to finding some additional numbers. Perhaps
the main decision is this: Which exploration shall we undertake first? We
answered this, in chapter 1, by first exploring 'between the whole
numbers"--that is, following guess 1. It doubtless came as no surprise to
the reader that there were some important numbers between 0 and 1

(such as .1 2 0.07 etc.), between 1 and 2 (such as 2-
' ' ' '

1.37 etc.),
2 3 3 5 2

and indeed between any two whole numbers.
By looking first for the nonnegative rational numbers, we followed

the sequence most commonly used in elementary schools: that is to say, we

considered numbers like and 3 7 before we considered numbers like
2 8

1. The statement that "the whole numbers lie to the right of zero" is an informal
way of saying that "the points corresponding lc) the whole numbers lie to the right of
the point corresponding to zero." It often saves words if we refer to "numbers" on the
number line, although of course we always really mean "the points corresponding to"
these numbers, since (when we are being very precise about our language), a "line"
consists not of "numbers" but rather of "points."
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-3 or -1 . One should not, however, consider this order to be the only
2

possible one. From the point of view of the professional mathematician,
either exploration can be undertaken first. It's entkely a matter of choice.

We stress this fact because there is reason to believe that the new
problems we shall meet in chapters 10 and 11, such as

+5 + -3 and +2 X -7,

are actually easier for children than problems such as

1 3

÷ 3

even though the latter problem usually appears earlier in the school
curriculum. We are likely to witness the emergence soon of new curricula
and new textbooks that attempt to follow more closely this "path of
gradually increasing complexity" by allowing an earlier introduction of
negative numbers and, possibly, deferring some work with fractions until
later. Such a change, although a departure from tradition, would be
consistent with our increasing knowledge of the intellectual growth of
children and would not violate any principles of sound mathematics.

But the question of which area to explore first is not the only one that
needs to be answered. In this chapter we shall be guided by two other
principles: (I) Mathematical activity involves sensible responses to sensible
problems; we want to present mathematics to children so that this fact
will emerge clearly. (2) In most cases, informal intuitive ideas develop first,
and their more precise and abstract formalization comes later.

THE GAME "GUESS MY RULE"

We are seeking some interesting mathematics that children can enjoy
doing and that will set the stage for the natural emerktence of negative
numbers. One excellent choice is the game "Guess My Rule," which we
now explain here.'

The point of the game is that someone, whom we shall call "the leader,"
has made up a "rule." He may, for example, have decided that whatever
number we tell him, he will double it and tell us the answer. The other
players' task is to guess what the leader's rule is. They tell him whatever
number they likesay, perhaps, "2." He applies his rule to 2, and tells

2. The use of this mathematical game with elementary school children was suggested
by Professor W. Warwick Sawyer.
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them that the answer is "4." They can record their progress thus far by
means of a table:

The number the other players tell the leader 2

The number the leader gives in response 4

If they tell him "10," then (using his rule) he responds "20"; if they tell
him "7," he responds "14." This extends the table to look like this:

The number the other players tell the leader 2 10 7

The number the leader gives in response 4 20 14

Probably by now the other players can guess that what the leader is
doing is taking their number and doubling it. They have "guessed his
rule." Now it will be someone else's turn to make up a rule, and the rest
of the class will try to guess this new rule.

Exercise Set 1

1. John made up a rule, which the class is trying to guess. When the
class said "5," John answered "7." When the class said "12," John
answered "14." When the class said "100," John answered "102." Here is a
table of the game thus far:

The class asked John to use his rule on this number 5 12 100

John responded by answering 7 14 102

Can you guess John's rule?

2. In one classroom there is a wise old owl. When the children whisper
"15" to the owl, he responds by hooting "10." When the children whisper
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"50," the owl hoots "45." When the children whisper "5," the owl hoots
"0." Here is a table of the results thus far

The numbers we whisper to the owl 15 50 5

The numbers the owl hoots back 10 45 0

Suppose you whispered "7" to the owl; what number would he hoot in
response? Can you add to the preceding table to show. this? Do you know
the rule that the owl is using?

3. Children playing Guess My Rule have recorded this table on the
chalkboard:

We tell Billy to use his rule on this number 12 25 , 100 0

This is what Billy answers 19 32 107 7

Who made up the rule? What was the first number that the children told
Billy? What did Billy reply? What was Billy's response when the children
said "100"? If the children told Billy "40," what would Billy say in
response? Do you know Billy's rule?

(Obviously, the game Guess My Rule can be used for many different
purposes in the classroom; it is not at all limited to negative numbers. We
present it here because it provides an excellent way to get children in-
terested in number patterns, and such patterns, in turn, can naturally
lead to negative numbers.)

A FIRST EXPERIENCE WITH NEGATIVE NUMBERS

The Elementary Mathematics for Teachers and Students film TIO,
Negative Rationals, begins with a classroom scene of children playing

3. The "Guess My Rule" game is illustrated by an actual classroom lesson shown on
a 16-mm sound motion picture film entitled Euessing Functions, available from the
Madison Project, 918 Irving Ave., Syracuse, N.Y. 13210. The game is also discussed
at some length in chapter 25 of Explorations in Mathematics, Teacher's Edition, by
Robert B. Davis (Reading, Mass.: Addison-Wesley Publishing Co., 1966).
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Guess My Rule.' (In fact, the teacher uses a "wise old owl" as a prop, as in
exercise 2 of set I, above.) The children tell the owl "7," the owl uses his
rule on 7, and answers "4," Then the children tell the owl "5," and using
his rule on 5, the owl answers "2."

Can we guess the owl's rule? You might want to try a few more numbers
to be sure, but in fact the owl's rule is "Whatever number you tell me,
I'll subtract 3 from it, and tell you the answer."

Thus, if we were to tell the owl "15," he would answer "12," and if
we told him "I 1," he would answer "8."

We can show this by a table:

We tell him this 7 5 15 11

He answers this 4 2 12 8

However, for our present purposes it will be even more useful to show
Owl's rule on a number line:

If we tell him "7," he answers "4":

1 2 3 4 5 6 7 I 9 10 11

If we tell hint "5," he answers "2":

.4111111 1141411)s-
O. 1 2 3 4 5 6 7 9

If we tell him "15," he answers "12":

10 11 12 13 14 15

4. The film series referred to was developed by the National Council of Teachers of
Mathematics in cooperation with General Learning Corp. and is available from Silver
Burdett Co., 250 James St., Morristown, N.J. 07960.
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And, finally, if we tell him "11," he answers "8":

10 11 12 13 14

The advantage of the number line becomes apparent when we suppose
we tell the owl "1." What will he answer?

Assuming that the pattern of "subtracting 3" or "jumping three giant
steps to the left" still holds,

115-

105-

then when we start at 1 we end our jump by coming down at the point 95-
marked "?" in the illustration. But what number corresponds to this
point? 85-

0 1 2 3 4 5 6

75-

65-

55-

(The question might well be asked: What experiences may the children 45-
have had that can help them decide which number corresponds to this
point? One answer that is likely to hold true is that they will have had 35-
experience with an outdoor thermometer, which shows both positive and
negative numbers. It is often helpful to use a diagram or picture of an 25-
outdoor thermometer in the classroom. What other places do you know
where children might encounter a "number line" that includes negative 15-
numbers?)

Let's summarize where we stand now in the Guess My Rule game played 5-
with Owl:

-5 -
I. We have recognized the common pattern of "take three steps to the

left on the number line": -15-
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2. We have askcd Owl to use this same rule, starting at the point
labeled "I":

r,---_____,,_ , ,,. .

0 1 2 3 4 5 6

3. Consequently, we know the point on the number line where our
jump has cnded; it is thc point that we now label "A" for convenience:

4

4. But, of course, we suspect (or at least we hope) that point A may also
have a nwnber name, and it is this number name that we'd like to find.

5. Technically, mathematics is nowadays commonly thought of as a
rather elaborate structure that man has created. Thus far, in this book, wc
have not created any number names for points to the left of zero. Thus,
technically, there is no number name yet created that applies to point A.

MATHEMATICS AND LEGISLATION

The creation of formal mathematics is in many ways similar to the
creation of formal legislation in legal work. Our ancestors were unaware of
most modcrn dangers of environmental pollution and hence made no
laws to deal with them.

But we try to draw our formal laws from underlying notions of social
needs, social justice, and so on. As we recognize environmental problems,
we try to pass legislation to deal with them. Hence pollution legislation
does not start in legislative chambers but rather with bi Aogical, chemical,
and economic knowledge about our environment. From this knowledge,
we move on to create legislation.

What is the parallel for our present mathematical problem? Well, we
know that we have not yet created an "official" number name for point A.
(We have not yet passed appropriate legislation.) But we do have some
commonsense knowledge that suggests a possibility (just as we can have
scientific knowledge that indicates an ecological need). This commonsense
knowledge comes, for example, from our experience with thermometers
(or perhaps, if we're lucky, from ammeters, etc.). What does the com-
monsense knowledge suggest? Specifically, a number line with positive
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numbers to the right of zero, and negative nwnbers to the left of zero. Using
a common modern notation, we would label points like this:

'3

Remark on status. We have not yet passed our formal legislation, so the
picture above is a plausible guess, a reasonable conjecturebut perhaps
not yet a fact.

Remark on notation. Some years ago the symbol "" was commonly
used for three different ideas:

I. The idea of subtraction, as in 8 2 = 6.

2. The idea of additive inverse, as in x to denote a number that, when
added to x, produced the answer 0, as in x (x) = 0.

3. As part of the symbol for a negative number, as in 5, which might
(for example) mean "5 degrees below zero."

Not only was the same written symbol used for these three different
ideas, but it was often read as "minus" in all three cases. This led to
considerable confusion.

Consequently, an increasing number of modern books use three different
symbols for these three different ideas:

1. For subtraction the traditional symbol is used, and it is read "minus"
(or perhaps, with younger children, "take away").

Written Read
10 3 = 7. "Ten minus three equals seven."

2. For additive inverse a small circle (or letter o in roman type) is used,
written as a raised prefix.

Written Read

0(5) "The additive inverse of five" or, sometimes,
"The opposite of five."

Hence we have

5 + 0(5) = 0,

which we would read "Five plus the additive inverse of five equals zero."

3. For the names of negative numbers we use a symbol that is like
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the "minus" sign but is a raised prefix. Sometimes, not always, it is
shorter than the "minus" sign.

Written Read
-8 "Negative eight"

"Negative one"

We can now summarize our guess as to a suitable name for point A
in the owl's game: If we tell Owl to start at "one," his jump will end at
"negative two."

4 3 2 1 0 1 2 3 4

(Sometimes, largely for pedagogical emphasis, our positive numbers are
also written with a raised prefix, as was done in an earlier number-line
representation, and are read "positive one," etc. If we follow this con-
vention, as below, we would say: "When we tell Owl to start his jump at
positive one, he ends at negative two.")

2 1 +1 +2

Exercis Set 2

Remembering that we have not yet made these ideas "official," we can
nonetheless try to recognize what seem to be sensible patterns, and we
can use them as the basis for trying to answer these questions:

1. What number name would you assign to points B, C, D, and E,
shown below?

I

B C E

4 4
t t I I I tI I I I*

0 +1 +2 +3 +4

2. Suppose you start at the point labeled "+2" and take a jump of 5
units to the left. Where will you land?
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3. Suppose you start at the point for 42 and then take a jump of

5 units to the left. Where will you land?

4. Suppose that, at 8:00 P.M. Friday, the temperature is 3° Fahrenheit.
During the night the temperature drops 10 degrees, reaching its coldest
point at 5 A.M. Saturday morning. What was the temperature at 5 A.M.
Saturday morning?

5. A man had a checking account that gave him automatic credit.
Suppose he had a balance of $25. Then he wrote a check for $100. What
was his new balance?

A CONCRETE MODEL FOR NEGATIVE INTEGERS

Experience appears to indicate that the most effective way to introduce
young children to negative numbers is to use concrete examples.

First, let's be clear in our own minds as to why we need numbers
beyond the original "natural" numbers. We need positive rational numbers

such as 1 or 2 or 3.71 for processes of sharing things ("om-half for each
2 5

1of us"), for use in measurement problems (Next Exit 4 Mile), and to

allow us to solve various abstract mathematical problems such as finding a
nonempty solution set for the equation 2 X 0 = 3 or extending the
natural numbers so that the new system will be closed under division
by a nonzero number.

Why do we need negative numbers? In a practical situation, we need
them when we must start counting or mcasuring from an arbitrary
starting point. When does this happen? Primarily when there is no
absolute starting point availableor none that is convenient. Thus,
temperature is ordinarily measured from an arbitrary "zero" (on either
the Fahrenheit or centigrade scale) and may be "above zero" (positive)
or "below zero" (negative). An absolute starting point ("absolute zero") is
available, but most everyday scales were firmly established before this
absolute zero was known.

We cannot measure years from the year of the creation of the earth
because we do not know when that occurred. Therefore we measure the
year from the birth of Christ, with the result that the date can be either
"A.D." (positive) or "Lc." (negative)or from some other designated
starting point.
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We also use relative change from an arbitrary reference point in mea-
suring altitude ("300 ft. above sea level" vs. "100 feet below sea level"), in
computing common economic indices ("the Dow-Jones Industrial
Average fell 9 points"), and in any other case where there is no convenient,
absolute beginning point.

Thus, in using tne number line in the Guess My Rule game played with
Owl, the filmed lesson Negative Rationals gave the children a natural
(and rather typical) reason for turning to negative numbers: If we want
number names for points on a line, we cannot "start with the first point"
(for there is no "first" point on a line), and when we have one point, we
cannot "count the next point" (for there is no "next" point on a line).

Can we offer children a model of positive and negative numbers that will
be even more concrete than the number line? The answer is yes. Extensive
trials show a model called "Pebbles in the Bag" will work well, even with
young children. It covers positive and negative integers and zero. Here is
how it goes:

We have a bag, partly filled with pebbles. We also have a pile of extra
pebbles on a table. Thus we can put pebbles into the bag, or we can
remove pebbles from the bag. This will allow us to manipulate the pebbles
so as to create concrete situations that will correspond to problems such
as those shown below:

3 + 4 = ? 3 2 = ? 5 8 = ?
Obviously, if we ask, in the usual sense, how maby pebbles are in the

bag, we will get an ordinary "counting" answer, such as "Fifty-seven." We
will never encounter negative numbers. Therefore, this is not the question
we shall use. We assume there are enough pebbles in the bag so that we
don't want to go back and count "from the beginning" (just as we don't
usually measure altitude "from the center of the earth"). Instead, we
establish a referencepoint. Remembering that we are dealing with children,
we establish the reference point dramatically: We have some child (Anne,
say) clap her hands loudly and say "Go!"

Now we have our reference point. We now, for example, put three
pebbles into the bag and remove five, to dramatize

3 5,

and we then ask: "Are there more pebbles in the bag than there were when
Anne said 'Go,' or are there fewer?" If children are ready for this topic,
they will he able to say, with confidence, that there are fewer. Our next
question is: "How many fewer?" The children should be able to answer
"Two fewer," and we write this as shown:

3 5 = -2
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(read as "Three minus five is negative two" or "Three minus five equals
negative two").5 Notice that the "negative two" does not mean that the
bag is "more empty than empty." It means: "There are now two pebbles
fewer in the bag than there were when Anne said 'Go "

Similarly,

5 1 = +4

would mean that after someone (Toby, say) said "Go!" we put five
pebbles into the bag, then we removed one pebble from the bag, and now
there are four more pebbles in the bag than there were when Toby said
"Go!" We would read

5 1 = +4

as "Five minus one equals positive four."

Exercise Set 3

Make up a Pebbles in the Bag story to match each of these problems:

1. 8 2

2. 3 4

3. 5 5

THE ADDITION OF NEGATIVE RATIONALS

Operating "intuitively" or "informally," we have learned to add or
subtract nonnegative integers, as in

x y = 7 and x y = ?

and to express the answer as an integer that will be nonnegative in the
case of x + y and will also be nonnegative in the case of x y if it happens

5. An actual classroom lesson, with second-grade children working with this "Pebbles
in the 'lag" model, can be seen in the film A Lesson with Second Graders, available
from the Madison Project. The game is discussed further in chapter 4 of Explorations
in Mathematics.
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that x is larger than y or equal to y. For x y, the answer will be a
negative integer if y is larger than x.

Examples:

3 + 4 = +7, 8 2 = +6, 5 5 = 0, 3 9 = -6

(the fourth example being the case of x y where y is larger than x, since
3 < 9). This leaves a glaring omission. We can cope nicely with

x y = z and x y = z,

provided that x and y are nonnegative. Whether z is negative or not raises
no difficulties.

Butsuppose x or y were allowed to be negative?
To put it another way: We have introduced negative integers (at least

intuitively), but we don't yet know how to add negative integers, or to
subtract them, or to multiply them, or to divide them.

We now develop an informal method for adding negative integers by
considering the important mathematical notion of a vector, as follows:

Imagine thirty children standing in a gymnasium, all facing the east
end of the room. Suppose you ask them to "take two giant steps forward."
We could represent this movement by an arrow two units long, pointing
eastward:

North

West 1---1a4 East

South

We shall call this arrow a "vector." Unlike coordinates, vectors are not
being used here to indicate position, but rather motion. Where each child
ends depends on where he started. It will be different for different children.
But each child took two giant steps to the east, so (assuming, for simplicity,
that their steps are all the same length) each child carried out the same
movement. Suppose we now ask the children to "take three (more) giant
steps to the east." Assuming that no one has been so unfortunate as to
collide with the gymnasium wall, each child will now have moved a total of
five giant steps to the east:

I

The first
2 steps, followed by the next

3 steps
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We can use these "arrow" pictures of vectors even more easily if we
draw them on a number line:

"1111-.1-4-1-11411111141114-1-4-4-1----111

The question now is: Can we relate these arrows (or vectors) to integers?

Exercise Set 4

1. What integer would you match up with the vector shown below?

2. What integer would you match up with this vector?

411--1--1110*--1--ar
3. What vector would you match up with the integer +2?

4. What vector would you match up with the integer +6?

5. Use vectors to compute the sum +2 + +6.

6. But, after all, we probably suspect that +2 is not really different from
our old friend 2, and +6 is not really different from our old friend 6. Trust
this suspicion, for the moment, and see if it suggests a way to compute the
sum +2 + +6.

7. Did you get the same answer in exercise 6 that you got in exercise 3?

S. Remember that the children are facing the east wall of the
gymnasium. Suppose we now ask them to "take four giant steps back-
ward." We can represent this by the following vector:

.41-1-4111r4---1.--4-4111.

What integer would you associate with this vector?

9. What vector would you associate with the integer -7?

2 8 1

1.1
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10. What can you say about the vectors that corropond to negatiye
integers?

11. What can you say about the vectors that correspond to positive
integers?

12. Use arrow pictures of vectors to compute the following:

a. +2 + +7

b. -3 + -2
e. +5 + -3
d. +4 + -7
. -2 + +5

13. We spoke earlier of "additive inverses." We said "the additive
inverse of +5" would mean "the number we can add to +5 to get a sum of
0." That is to say, the additive inverse of +5 (written as °(+5)) is the unique
element in the solution set of the open sentence

+5 4- = 0.

What is a simpler name for 0(.5)?

14. We have seen (in chap. 5) that every positive rational number
has a multiplicative inverse. Do you suppose that every integer has an
additive inverse?

NEGATIVE RATIONAU

The idea of thinking of positive and negative integers as vectors along the
number line turns out to be very useful. For one thing, we can now easily
extend our system from integers, such as

+3 or -2 or +21,

to rational numbers, such as

-1 ++3.5 or -2- Or or -2
8 3

We need only think of +3.5 as "three and a half giant. steps forward,"
that is, as the vector

..01-.-+-1111111410#-1-111b
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-Iand to think of - as "one-half a giant step backwards," that is to say, as
2

the vector shown next:

.4 1 I I 44 I i I Ili

Exercise Set 5

1. Compute the following sums:

+
a. 2 -2 + 3 -2 d. +5 + -5 12.

b. 3 i + 3 i 6. 2. + +
1

c. +5 + -10

We are now face to face with the entire set of rational numbers, examples
of which are

+11
+3, -5, +2.5, -1 -1

'
0, and

2 13

Moreover, we knowat least informallyhow to add any two rational
numbers, whether they are positive, negative, or zero.

Exorcise Sot 6

1. Do you think every rational number (whether positive, negative,
or zero) has an additive inverse?

2. Can you give a reason to make your answer to exercise 1 seem
plausible?

The Elementary Mathematics for Teachers and Students film T10,
Negative Rationals, also uses a second way to let children have concrete
experiences with the addition of integers. This second method can be used
with a chalkboard drawing that has two parallel lines or with a manipula-
table device made by marking the number lines on separate pieces of
cardboard or wood. Here is a picture of the manipulatable version. It
resembles a slide rule, and we shall call it that.

-5 -4 -3 -2 -1
1 1 1 1 1

1 1

-5 -4

+1 +2 +3
1 1 1

1 1 1

-3 -2 -1

+4 +5 +11

1 1 1

1 1 1 1 1 1

+1 +2 +3 +4 +5 +11
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To relate this slide rule to our "vector" or "arrow" diagrams, one can
consider that we start at zero,

4411111111.1 ow2 1 0 +1 +2 +3 +4 "r5

take three giant steps forward (an arrow 3 units long, pointing to the
right),

41111---1--1--4--0111161114-1-1-1111.'2 1 0 +1 +2 +3 +4 +5
then take two giant steps forward,

2 1 0 +1 +2 +3 +4 +5 +II

which is equivalent (in terms of our final resting place) to taking five
giant steps forward:

It 1 0 +1 +2 +3 +4 +5 +41 +7 +I

The slide rule, in the position that has just been pictured, allows us to
visualize all of the arrows shown below and follow the steps they represent:
first, start here; second, move 3 units to the right; third, then count over 2
more units to the right; fourth and finally, read the result, 5.

let 4th

1121=131

2nd 3rd

Slide-Rule Diagram

We have just used the slide rule to obtain

+3 +2 = +5.
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Exercise Set 7

1. Slide the two pieces of "wood" shown in the slide-rule diagram into
a new position to indicate the sum of +4 + +2.

2. Arrange the slide rule to correspond to +4 + +3.

3. Use the slide rule to show +4 + -5.

4. Compute each of the following sums:

a. +3 + -4

b. +3 + -1
c. +4 + -4
d. -3 + +5

e. +5 + -3

5. Mark off a slide rule so that you can easily deal with half-unit

distances and thus with problems like -2 12. + -2 .

THE QUESTION OF "ORDER"

Properties such as 3 <-5, the fact that a < b and b < c tell us auto-
matically that a < c, and so on, are often referred to as the "order
properties" of the natural numbers. It is reasonable to ask about the
order properties of the set of all integers (positive, negative, and zero) or
the set of all rational numbers (positive, negative, and zero).

An interest in this question arises naturally with children. They sooner or

later come to a question such as "Which is larger, 100 or

This question has two "sensible" answers. The fact is that everyday
lay usage does not coincide entirely, with the language used by professional
mathematidans. In the everyday world, we speak of "large indebtedness"
or "large losses" in the sense that, say, losing a hundred dollars is ordinarily
a more significant event than finding fifty cents. This everyday usage

suggests that, at least in certain senses, -100 is "larger" than +12.. This

285
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notion exists also within mathematics, but it is not the "order" notion
that mathematicians most commonly use.

The clearest way to contrast the two notions is geometrically, by

referring to the number line. When we say that 3 < 5 or -1 < 2, we are
2

(among other things) saying: !Three lies to the left of five on the number
line or "One-half lies to the left of two on the number line." It is this
meaning (a < b says that a lies to the left of b on the number line) that is
most fundamental for mathematicians. Consequently, we shall move into
the new territory of negative numbers by extending this notion: For all
rational numbers, whether positive or negative or zero,

a < b

shall be construed to mean that "a lies to the left of b on the number line."
Once we agree on this fundamental, we can easily answer the question:

Which of the following statements is true?

or 2 < 100

Exorcise Set 8

1. Which of the following statements is true?

+1 +1

or
2

2. Which statements are true, and which are false?

a. +3

b. -3

e. +2

d. -3

<

<

<

<

+5

-5

+2

-2

1
-2

1

-2

<

<

+3

-2

f. Every negative number is
less than zero.

g. If a is a negative number
and b is a positive number,
then a < b.

1 1

-1 -1
e. -1,000,000 < +0.003
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1
3. Mark -2 -2 on the number line. Do you see a possibility of students'

making errors here?

This leads us to a discussion of the geometrical meaning of "absolute
value." We said earlier that there were two possible meanings of "Which is

+1

larger, -100 or 7" We have agreed that the fundamental meaning for
2

mathematicians is "Which lies to the right on the number line, -100
+1

or 2 7" But mathematics does recognize also the other everyday meaning

(which might be expressed as asking which is "more important"), and we
can state that meaning geometrically on the number line by asking:

+1

"IVhich lies further away from 0 on the number line, -100 or 7" This
2

can be written in standard mathematical notation by using absolute
value. The absolute value of 100, which we write as

1-1001,

is the distance between 0 and 100 on the number line. Therefore

1-1001 = +100

and

Exrcise Set 9
1. State whether each of the following s true or false.

a. 1-51 = +5.

b. 1+31

2. Which of the following is true?

1-1001 < 2

c.
1+11 = +1.

2 2

d. For any number x, if x 0,
then 0 < 1x1.

Or
1:11 < 11001.

2
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3. If a < b, which of the following is true?

lal < I bl Or Ibl < lal.

AN INFORMAL LOOK AT THE STRUCTURE
OF THIS NEW NUMBER SYSTEM

We now have available to us all the whole numbers, all the nonnegative
rationals, andfinallyall the negative rationals. For convenience, we
shall call this new, enlarged number system "the set of rational numbers,"
sometimes denoted by Q (for quotient of integers).

NOTILThe words "rational numbers" have now changed their
meaning. Prior to chapter 10, we did not have any numbers available
to use except positive numbers and zero. Hence "integers" really
meant "nonnegative integers", that is, 0, 1, 2, 3, 4, ... , and "ra-
tional numbers" really meant "nonnegative rational numbers." Now
we do have negative numbers available to us. Hence, front now on,
whenever we say "integers" we mean all the integers (positive,
negative, and zero),

-3, -2, -1, 0, +1, +2, +3, .

and whenever we say "rational numbers" we shall mean all the
rational numbers, whether positive, negative, or zero.

With all of these additional numbers available to us, it is reasonable to
wonder how this new number system will be similar to those we have
known in the past and how it will be different.

What equations can we solve? When we had only whole numbers
0, 1, 2, 3, ... we were unable to find a nonempty solution set for (say)
the equation

2 X = 5. (I)

Clearly 2 is too small to be a root of this equation and 3 is too large, and
there was nothing available in between. With the extension of our system
to include the nonnegative rational numbers, we did have a solution for

equation (1), namely, the number 2 1. Indeed, with the nonnegative

rationals, we could solve any equation of the form

a X 0 = b,
provided merely that a was not zero.
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But even with the nonnegative rationals, we could not solve the equation

0 + 5 = 3. (2)

Now, however, with negative numbers available to us, we can solve
equation (2), since

-2 4- 5 = 3.

Indeed, we can now solve any equation of the form 0 + a = b, where a
and b are any rational numbers.

The Existence of Inverses

Closely related to the preceding situation with equations is the question
of inverses. With only the nonnegative integers, we did not have "multi-
plicative inverses"that is to say, we had no solutions for equations such
as

2 X 0 = 1. (3)

When we augmented our number system by including the nonnegative
rational numbers, then every number except zero had a unique multi-
plicative inverse. For equation (3), we had

2 X =

for any positive integer N we had

1

N X -N- = 1;

and for any positive rational number -a we had

(i

Just as the extension to positive rationals gave us multiplicative inverses,
the extension to negative numbers gave us additive inverses. The parallel
between multiplicative and additive inverses is very close and helpful;
we can get all of our discussion of additive inverses from the preceding
discussion of multiplicative inverses by merely replacing

by "0", " X" by "+", "1" by "Mr", and

a
- (as the multiplicative inverse of -) by 4

b

a 4o(a)
b

44b,,

289
0 j .



The Rational Numbers

If we make these changes, we would now say: Before we had negative
numbers, we could not solve either

5 + 0 = 0 or 3 -1 + 0 = 0.
2

Now that we have negative numbers available to us, we have

5 + -5 = 0,
so we say that "-5 is the additive inverse of 5"; and we also have

1 _ 13 -2 + 3 -2 = 0,

so we say that "-3 is the additive inverse of 3 ."

Since, in fact,

-5 -f- 5 = 0,

we can also say that "5 is the additive inverse of -5." U:iing the symbol "0"
to denote additives inverses (a convention apparently introduced by the
University of Illinois Committee on School Mathematics), we can write

0(+5) (+3 -3 and O(_5) = +5.
2 2

Indeed, every rational number now has an additive inverse.

Some Basic Identities

Three familiar properties of our earlier number systems still hold (as
you can probably convince yourself by examples using the vector model):

The commutative law for addition

For all rational numbers x and y, we have

x Y = Y x.

The associative law for addition

For all rational numbers x, y, and z, we have

x (y + = (x y) + z.

Existence of an additive identity element

For every rational nwnber x, it is always true that

x + 0 = x and 0 x = x.
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The Symmetry Property on the Number Line

We really have answered (for the present) our question about what
numbers lie to the left of zero on the number line. The line has a kind of
symmetry that "balances" one side of zero against the other:

-111 I I I I I I 1 I I f lo6 5 4 3 2 1 0 +1 +2 +3 +4 +5 +6

and, in fact, whenever you can find a number on one sidesay, as shown

below for the number "3

hors

;-2 1 +1 +2

you can always be sure that the symmetric point has a number name,
specifically the additive inverse of the "balancing" point on the opposite
side of zero:

here

I I I I I I I
0

(and, in this case, since

0(+3 32 2

we know that the point on the left has the number name "-3

Some Properties of Order

For any negative number x, we know that

x < 0,
and if y is any positive number, we know that

x < y.
Moreover, there are certain "rewriting rules" that allow us to rewrite

an inequality without changing its meaning. For example, if c is positive,
we know that

a < b is true if and only if ac < bc;
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and if c is negative, we know that

a < b is true if and only if bc < ac.

A FORMAL DEVELOPMENT OF THE NEGATIVE INTEGERS

Thus far, we have looked at examples and thought about them. We may
haveindeed, we should havethe feeling that we are beginning to
understand negative numbers reasonably well.

However, all of this work has been "unofficial." To use our analogy
with legislation about environmental pollution, we could say: "We've
looked at lakes and rivers and biological data (and so on), and we're
beginning to feel that we see what the situation is. However, we have not
yet passed any legislation to deal with the problem." Consequently, at
this stage our understanding of negative numbers is informal.

It could be made formal. One of the features that distinguish "modern
mathematics" from "classical mathematics"at least in areas like
arithmeticis the possibility nowadays of saying very precisely and
explicitly what we mean oy -4, for example, or the addition of negative
integers. This level of explicit precision was not available to the great
mathematicians of the classical period not available to Newton, nor to
Euler, nor to Leibniz, nor to Descartes. (In some ways, if we wish to carry
our "legislative" analogy further, the modern explicit mathematics
might be likened to a democratic government that is based on explicitly
stated laws passed by legislatures, whereas classical intuitive mathematics
might be likened to earlier social systems based on an implicit community
consensus or else on the judgment of a monarch. In both earlier systems,
people may have known what they were doing, but they didn't ordinarily
say it with any great explicit precision.)

For reasons of space, we do not pleseltt here a formal development of
the negative integers. Many teachers will nonetheless want to know at
least one way to give a precise, explicit development of the system of
negative integers. (Several different methods exist.) Readers who are
familiar with the notion of equivalence classes may be able to work out the
development themselves by constructing equivalence classes of ordered
pairs of counting numbers so that, for example, the equivalence class

1(1,3), (2,4), (3,5), . . .1

will be given the name "-2." (Hint: You must next define the operation of
addition.)

An alternative method for carrying out an explicit development of the
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system of negative integers is presented in chapter 11 of Retracing Ele-
mentary Mathematics.'

SUMMARY

At the end of chapter 9 we had these numbers:

Name

Nonnegative integers

Nonnegative rationals

1

0,

0,

1

, 3,-i,13,

Examples

1, 2, 3, 4, .

1, 2, 3, 4, .

11
2

. .

. .

2
3

,

Corresponding Nwnber-
Line Points

0

I

+1 +2 +3

0

0

I

+1

+1

I

+2

+2

i
+3

+3

/
14 1 113 2

\
113 214

I. Our main theme in chapter 10 has been to ask whether there might
not be some other numbers that would also be useful. To pursue this
search, we started with the nonnegative integers,

0 +1 +2 +3 +4 +5

and found the negative integers, -1, -2, -3, -4, -5, . . . , that correspond to
points symmetric to the positive integers:

5 4 3 2 1 0

Combining negative integers and nonnegative integers, we obtained the
numbers caned integers, . ..-3,-2, -1, 0, +1, +2, +3, , corresponding to
these points on the number line

3 2 1 0 +1 +2 +3

Notice that at this point the word "integer" changes its meaning: From

6. Leon Henkin, W. Norman Smith, Verne J. Varineau, and Michael J. Walsh (New
York: Macmillan Co., 1962).
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them. We used a concrete model: we picked one direction (east) as

as "three giant steps backwards." Thus the mathematical sentence

three giant steps west, we end up one giant step west of where we started."
This concrete interpretation allows us tn carry out additions, such as

we used the "Pebbles in the Bag" model.

interpreted '2 as "two giant steps forward" (if we are facing east) and -3

now on, the Integers may be positive, zero, or negative.' (Prior to chapter

"positive" and called the opposite direction (west) "negative." We

has the following concrete meaning: "If we take two giant steps east, then

those shown below.

"legislated" yet.)

The Rational Numbers

10, "integers" were either zero or positive. Negative integers hadn't been

2. To give children a concrete experiential meaning for negative integers,

3. Having obtained all the integers, our next task was to decide how to

+ "3 =

Note that this list contains one of each possible case: both addends

larger absolute value; one positive and one negative, where the negative
positive; one positive and one negative, where the positive number has a

number has the larger absolute value; where absolute values are equal;

addition; the case where both addends are negative; and the three cases

elementary verbal rules at this stage are complicated and confusing; and

rearrangements or the last three using the commutative property or

where one addend is zero. One could study this list and formulate some
verbal rules describing the answers, but we rccommend against it. Most

they are unnecessary, since children can work directly with the "giant steps
forward or backward" model whenever they want to get an answer.

states, which were contiguous. Now the phrase "the United States" refers to a nation
of fifty states, not all contiguous.

7. Analogously to this, "the United States" referred, a few years ago, to forty-eight

To avoid confusion, the three different meanings that used to be

3.2
294

!add

+2 + +3 = +5.

+5 + = *1.

*3 + -8 =

*6 + = O.

=

*3 = +1.

+ *6 = 0.

+ =

+ 0 = 1.

*3 + 0

0 + 0 = 0.



Negative Nationals

assigned to the single symbol "" and the single word "minus" have
been assigned to three distinct symbols:

Symbol
(in Use) Name Meaning Examples

5 3 "minus" Subtraction 5 3 = 2.
(In this example,
"five minus three.")

°(+3) "additive inverse The additive inverse *3 + 0(+3) = 0.
(In this example, of positive three is o(l3) .
"the additive in-
verse of positive
three.")

the number you
add to three to get
an answer zero.

°(5) = 1.

-3 "negative"
(In this example,
"negative three.")

Part of the name of
any negative
number

"3

4. At this point in the story we went back to the nonnegative rationals,

1 1 2 1 3 1

2 3 3 4 4 5 '
0, 1, 2, 3, . . . and

0

and again added a symmetric portion of the number line, corresponding
this time to newly created negative rationals,

-1, -2, -3,

1

and
-1 -1 -2 -1 -3 -1
2 3 3 4 4 5

0

so as to get one of the most important of all number systems, the system of
rational numbers:

(and, not in order of size:)
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The Rational Numbers

I -3 -1 -2 -1 -1 1 1 2 1 3 1

5 ' 4 ' 4 ' 3 ' 3 ' 2 ' 2 ' 3 ' 3 ' 4 ' 4 ' 5 '

Notice that, at this point in our study of mathematical systems, the term
"rational numbers" was given a new meaning: Henceforth it includes also
the negative rational numbers.

We extended our "giant steps" model to include "one-half a giant step
forward" and so forth and could thus use it to add rational numbers as
well as integers.

5. At this point our exploration was incomplete; we needed to decide
how to subtract, multiply, and dMde these new numbers (which, in fact,
we shall do in chapter 11). We also needed to formalize our work. Thus far
it would be impossible to settle arguments or answer questions in the way
mathematicians preferby reference to clear, explicit foundations. No
such foundations had been created.. In fact, this formalization was not
carried out here, but suggestions and references make it possible for the
reader to carry this out if he wishes.
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OPERATIONS EXTENDED

TOMIN

NEGATIVE RATIONALS

1. How can the extended number line be used to teach
subtraction with negative rationals?

2. How can missing addends be used in computing differences
with negative rationals?

3. How can missing factors be used in computing quotients
with negative rationals?

4. How can a "pattern" approach be used to teach the
"rules of signs" in multiplication?

5. How can parallel number lines be used to obtain products
with negative rationals?

SUBTRACTION INVOLVING NEGATIVE RATIONAL NUMBERS

In chapter 10 we used the number line with addition problems involving
rational negative numbers. We shall now see that number lines can also be
used with subtraction problems that involve negative rational numbers.

The key for our approach to subtraction is the missing-addend idea.
In the subtraction problem

a b = 0
the difference a b may be interpreted as the missing addend in a cor-
responding addition sentence,

a = 0 + b.
Instead of asking "What is a b?" we ask: "To what missing addend
must we add b in order to obtain a as the sum?"
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The Rational Numbers

For example, suppose we want to compute

5 (-3) = .

We convert this subtraction sentence into an equivalent addition sentence,

5 = 0 + ( 3).
Now we ask: "To what missing addend must we add 3 in order to
obtain 5 as the sum?" By the commutative law for addition, this has the
same answer as the question "What missing addend must we add to 3 to
obtain 5 as the sum?" The answer can easily be.found using a number line
in the manner described in the preceding chapter. We start at 0 on the
number line and interpret the known addend, 3, as a motion of 3 units
to the left.

known addend desired sum

- I 1\r\f'"") 1- I I I 1

Then we ask: "What additional motion on the number line is needed to
bring us to the desired sum of 5?"

known addend + missing addend = desired sum

ler.YY)1111111,1*.
-4 -3 -2 -1 0 1 2 .3 4 5 6 7

We see that a motion of 8 units to the right is required. Hence the missing
addend is 8.

or, equivalently,

5 = 8 + (-3),

5 (-3) = 8.

As another illustration, let us subtract 2 from 6.

(-6) (-2) = 0.
An equivalent addition sentence is

(-6) = 0 + (-2),
We start by locating the known addend, 2, on the number line.
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desired sum

-7 -6 - -4 -3 -2 -1

Operations Extended

known addend

To obtain the desired sum, 6, we need an additional motion of 4 units
toward the left:

rmissing addend-1

-7 -6 -5 -4 -3 -2 -1 0 1 2

Therefore, the missing addend is 4:

(-6) = 4 + (-2).
Hence

(-6) (-2) =

Suppose we want to subtract 6 from 2. This is equally easy to do on
the number line. The subtraction sentence is

(-2) (-6) = 0 .
An equivalent addition sentence is

(-2) = 0 + (-6).
This time the known addend is 6 and the desired sum is 2. We first
locate the known addend. Then, to obtain the desired sum, 2, we must
now move 4 units to the right:

rmissing addend

known addend desired sum

if-Nr\CY-14

Therefore the missing addend is 4:

(-2) = 4 + (-6).
Thus, we conclude that
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The Rational Numbers

A "slide rule" of the type used in the preceding chapter to illustrate
addition can serve equally well as a device for teaching subtraction. For
example, in order to compute

(-6) (-2) = 0,
we first locate the given addend, 2, on the "fixed" scale. Second, we
slide the "movable" scale until 0 is aligned with 2. Third, we locate the
desired sum, 6, on the fixed scale. Fourth, we find the missing addend
on the movable scale, opposite the desired sum, and learn that it is 4.

"Fhted

3rd

scale" -7 -6 -5 -4 -3
1 1 1 1 1

I 1 1 1 1 1 1

"Movable
scale"

-7 -6 -5 -4 -3 -2 -1

1st

4

-2
1

1

0

-1 0 1 2 3
1 1 1 1 1

1 1 1

1 2 3

In general, to compute

t.
4th 2nd

a = 0
we first locate the given addend, b, on the fixed scale, then (second) slide
the movable scale until 0 on this scale is aligned with b on the other.
Third, we locate the desired sum, a, on the fixed scale. Fourth, opposite
a we find the missing addend, a b.

1st 3rd

ItsI

a - b

2nd 4th

Further examples of this slide-rule technique will be found in exercise
set 1.

Notice that by extending the number system to including negative
rational numbers we have made subtraction an unrestricted operation.
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Operations Extended

Earlier in arithmetic, when we were limited to whole numbers or to
positive rational numbers, a b was defined only for a > b. After
introducing negative numbers, this restriction is no longer necessary. Using
the number fine, we can compute 3 7 just as easily as 7 3.

As children gain skill using the number line for computing sums and
differences 'of rational numbers, they will undoubtedly begin to see
shortcuts, and they may possibly formulate rules for the various situations
that can arise. This is fine, but such rules should not be imposed by the
teacher, nor should the pupils be required to memorize such rules. If a
student discovers a correct rule and wants to use itgood! Do not dis-
courage him. However, do not insist that other pupils use this rule unless
they choose to do so on their own.

Exercise Set 1

1. Compute each of the following by using a missing-addend approach
and by tracing the motions on a number line where that is convenient.

3 1a. 2 (-5) \
4) 2

b. 5 - (-2)

c. (-2) 5

d. (-5) 2

S. (-2) - (-5) n.

3 1

f.

1 3
a.

h.

I. (
2 4

_

0.

3 3

11.

(-D (-1 i)
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1 3
S. 1 - 2 -4

t.

U.

( 3) I
- 1 -

4 2

(-1 (-2 i)

v. 2.7 - 1.2

w. 1.2 - 2.7

x. (-2.7) 1.2

y. 2.7 - (-1.2)

z. (-1.2) - (-2.7)
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The Rational Numbers

2. Construct a pair of sliding number-scales and use them as slide
rules to verify your answers to problems a-e of exercise 1.

3. For each of the following slide-rule settings specify at least three
subtraction problems that can be solved with the slide in the position
shown.

a.

-3 -2 -1 0 1 2 3 4 $ 4 7 10 11III IIIIIIIIIII i
-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

b.

4 -5 -4 -3 -2 -1 0 1 2
I I I I I I I 1 I

-5 -4 -3 -2 -1 0 1 2 3 4

4. Verify that a - (-b) = a + b by showing that both computations
in each of the following exercises yield the same result.

a. 2 - (-3), 2 + 3 e. 2 - 3, 2 + (-3)

b. (-2) - 3, (-2) + (-3) d. (-2) - (-3), (-2) + 3

5. In computing a - b, the result is not altered if the same number c is
added to both a and b. This may be expresscd as follows:

(a + c) - (b c) = a - b (for all a, b, c).

This property can often be used to simplify a subtraction computation.
For otample, to compute

(-6) - (-5)
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Operations Extended

we might add 6 to both numbers to get

(-6) (-5) = (-6 + 6) (-5 + 6)
= 0 I

= 1,

or we might add 5 to both numbers:

(-6) (-5) = (-6 + 5) (-5 + 5)
= 1 o

= 1.
Use this idea to simplify each of the problems a- of exercise 1.

MULTIPLICATION INVOLVING NEGATIVE RATIONAL NUMBERS

After students have learned to compute sums and differences with
positive and negative numbers, it is only natural that they consider
products and quotients. In this section we shall discuss some strntegies
for teaching multiplication involving negative numbers. (We shall conbider
division in the next section.)

There are several good ways to introduce multiplication with negative
rationals to a class. One way is to use a "pattern" approach. Starting with a
series of products, each involving two positive factors, a pattern is de-
veloped that leads pupils to discover what they must do when one factor
in a product is negative. This, in turn, leads to a pattern that enables them
to discover what must be done when two factors in a product are negative.

Consider, for example, the following sequence of indicated products:

3 X 4

3 X 3

3 X 2

3 X 1

3 X 0

3 X ( 1)
3 X (-2)

3 X ( 3)
3 X ( 4)
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Students who have learned their elementary multiplication facts for whole
numbers will readily compute the first five products:

3 X

3 X

3 X

3 X

3 X

4 = 12

3 = 9
2 = 6
1 = 3

0 = 0
3 X (I) = ?

3 X (-2) = ?

3 X (-3) = ?

3 X (-4) = ?

If the pattern is not already obvius, it will be easily recognized if the
students proceed to locate each of the known products on a number line
in the following manner:

3 x 0 3 x 1 3 x 2 3 x 3 3 x 4

411,411113 0 3 6 9 12

, 4 4

If the pattern of getting 3 less is to be preserved, then the remaining
products are:

3 X (-1) 3
3 X (-2) = 6
3 X ,(-3) = 9
3 X (-4) = 12

Still another method that can be used to supplement and reinforce the
results arrived at by the pattern approach above is to have pupils inter-
pret each product as a repeated addition. For example, 3 X (-2) is
interpreted as

3 X (-2) = (-2) + (-2) + (-2) = 6
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Operations Extended

Through activities of this type a class soon learns the general rule:

The product of a positive number and a negative number is a
negative nwnber.

Observe that the rule emerges because of the very natural desire to pre-
serve a multiplication pattern (or interpretation of multiplication) that
applied originally to nonnegative numbers. The natural extension of the
pattern (or interpretation) of the product to the case where one factor is
negative leads us to the desired rule. Moreover, since multiplication of
positive numbers is commutative, it is only natural to require that the
operation remain commutative even when one of the factors is negative.
For example, we agree that

(-2) X 3 = 3 X (-2) = 6
(-4) X 3 = 3 X (-4) = 12

and so forth. Therefore our extended multiplication rule may now be
expressed as follows:

A product is negative whenever exactly one of the factors is
negative and no factor is -en),

With this principle clearly understood, the class can then tackle the
problem of finding a product of two negative factors. Once again, a
pattern that starts with known products can be useful:

(-3) X 4 = 12
(-3) X 3 = 9
(-3) X 2 = 6
(-3) X 1 = 3

Once again, we locate the known products on a number line:

The students will quickly see that the unknown products must be as
shown below.
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The Rational Numbers

(-3) X 0 = 0

(-3) X (I) = 3
(-3) X (-2) = 6

(-3) X (-3) = 9
(-3) X (-4) = 12

Through activities such as these there emerge the following rules:

The producl of any number and zero is zero.
The producl of any Iwo negalive numbers is a posilive number.

A second possible approach to multiplication with negative numbers is
based on preserving the distributivity law. This method is suitable for
classes that have previously studied the distributivity law along with
other properties of the whole numbers. For such classes, the teacher
would first review the distributivity law:

For all whole numbers a, b, and c

a X (b + c) = (a X b) (a X c).

He can then introduce a specific simple addition problem such as

(-3) + 3 = 0

and proceed to investigate the consequences of multiplying each member
of this equation by 2:

2 X (-3 3) = 2 X 0

Assuming that the distributivity law applies even when negative numbers
are involved, we get

2 X (-3) + 2 X 3 = 2 X 0

Then, applying the known number facts, we have

2 X (-3) + 6 = 0

This shows that 2 X (-3) added to 6 yields a sum of 0. But we already
know that

(-6) + 6 = 0

mid since 6 is the only additive inverse for 6, it follows that

2 X (-3) = 6
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A similar argument can be used to show that

(-3) X 2 = 6,
but classes that are well versed in number properties may prefer to view
this result as a natural consequence of the previous result, by assuming
that commutativity of multiplication is also preserved when this operation
is extended to products involving negative numbers.

Arguments of this type are likely to appeal to the more "mathematically
minded" students. For slower students the pattern approach is probably
preferable.

In either case, students can see that the rules for multiplication with
negative numbers are by no means arbitrary or haphazard. These rules
are forced on us by our natural desire to preserve properties and patterns
that hold true for nonnegative numbers. Extension of these properties to
products that involve negative factors necessitates our adoption of the
new rules.

There is yet another approach that teachers may find helpful when
teaching multiplication of positive and negative numbers. This approach
makes use of two number lines and has the advantage that the factors
need not be integers. The method starts with parallel lines carrying equally
spaced division marks. One of these lines is an ordinary whole-number
line. The other is temporarily left unlabeled.

0 1 2 3 4 5 6

Let us construct a "multiply by three" rule. To do this we assign 0 to the
initial mark on the new line and 3 to the next mark (Le., the mark that is
opposite and corresponds to 1 on the original number line). All other
labels for the new line are now determined by these two initial assign-
ments. In fact, each point of the new line is now assigned three times the
number that was assigned to the point directly above it:

0 1 2 3 4 5

0 3 I 9 12 15 3x0
I. I I I es. --t--OP

We can now quickly read ofr such products as

3 X 2 = 6, 3 X 3 = 9,
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If we then extend each number line to the left, maintaining the obvious
pattern on each of the lines, we can now read off the new products:

A

3 x-4-1

3 X (-1) =

I I

3,
I

3 X (-2) = 6,
I5 4 3

15 12 9
2
6

I1
3

I

0 1

0 3

I

2

6

I

3

9

I

4

12

1.1.1
5

15

).
3 x-ioP1 ) i If

In this manner we readily establish the rule for a product of a positive
number and a negative number.

To obtain the rule for finding a product of two negative numbers we can
use a similar procedure. This time we construct a "multiply by minus
three" rule.

I I
0

I

1 2
I

3 4
I

5

0 3 6 9 12 15 (-3)xlJ
I 1---1I I I I I

Each point on the lower line is now assigned minus three times the
number assigned to the point directly above it. Then, as before, we extend
each number line to the left, maintaining the obvious pattern on each
line.

I..* El I 1.1.1
A 5 4 3 2 1 0 1 2 3 4 5

(-3) x 15 12 9 6 3 0 3 6 9 12 15 (-3) x
I I I I I I I I I I

This time we obtain the proiously unknown products such as

(-3) X (-2) = 6, (-3) X (-4) = 12,

and we verify the rule for a product of two negative factors.
Various other scale factors should be used as multipliers for the lower

line, providing further practice and reinforcement for the students, The

"
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Operations Extended

important objective here is getting students to determine for themsdves
when a product is positive and when it is negative.

Exercise Set 2
1. Compute each of the following products:

a. 2 X (-5) I. i X (-5) w. (-1 -!2-) X 6
3

b. (-5) X 2 m. (i) X 4 x. (-6) X (-112)

c. (-2) X (-5) n. (--3-4) X 2 y. 211i X (- i 12)

d. 6 X (A) 0. (_,I) x (_, 0. (-2_) x (._ i 1)4

(i) X (-2)
1

e.-i- X (-6) P. aa. 2.5 X (-1.2)

f. (-6) X (-1) q. (i) X (-5) bb. (-2.5) X (-1.2)

O. 3 X (-0 (-2) X (i)r. cc. (-2.5) X 1.3
1

1
1h. -i. X (-3) s. 1 i X (-4) dd. 1.36 X 2.5

I. (-0 X (-3) t. 4 X (-1 ) ee. (-2) X (-24) X (-6)

4 u. (-4) X (-1 -!2-) ff. 1.5 X (-4) X I X (.6)
2

3

k. 4 X (-2) v. (-1 D x (-4)
3
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The Rational Numbers

2. The "Postman Game" is yet another way to teach multiplication with
negative numbers. In this gan to. we interpret thc product 2 X 3 to mean
that a postman delivers in our mail two checks, each for $3. Then we
interpret 2 X ( 3) to mean that the postman delivers two bills for $3.
Similarly we interpret (-2) X 3 to mean that we snail out two checks, each
for $3, and we interpret ( 2) X ( 3) to mean that we mail out two bills
(due us), each for $3.

a. In each of these cases, do we expect to be richer or poorer, and
by how much?

b. Which "rule of signs" is illustrated by each of the four situations?

e. Interpret problems a , b , and e of exercise 1 in terms of the
Postman Game.

d. Can the game be applied to problems d, f, g, and h of exercise
12 Explain your answer in each case.

3. Using a distributivity argument similar to that in the text, show that
the following statements are true:

a. 2 X (-5) = 10.
b. ( 2) X 5 = 10.
e. ( 2) X (-5) = 10.

d. a X (b) = (a X b).

. (a) X (b) = a X b.

DIVISION INVOLVING NEGATIVE RATIONAL NUMBERS

Division is related to multiplication in the same way that subtraction is
related to addition. The key to subtraction is finding a missing addend.
The key to division is finding a missing factor.

The division sentence

12 + 3 = 0
is associated with the multiplication sentence

12 = X 3.
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Then use of knowledge of multiplication with whole numbers gives the
missing factor, 4.

This same missing-factor approach applies equally well to division
problems involving any rational numbers, whether they are positive or
negative, integral or fractional. For example, thc division scntcnce

(-12) 3 = 0

is replaced by the equivalent multiplication sentence:

(-12) = 0 X 3.

The missing factor is then deduced to be 4, using previous knowledge of
multiplication involving negative numbers.

Similarly, the division sentence

(-12) ÷ (-3) =

is replaced by thc equivalent multiplication sentence

(-12) = 0 X ( 3).
This time thc missing factor is clearly seen to be 4.

After working many examples like

(-12) + 3 = 4,
(-12) (-3) = 4,

12 (-3) = 4,
10 (-2) = 5,

(-10) (-2) r2 5,

anti so forth, students will readily see that the "sign rules" for division arc
the samc as thc sign rules for multiplication. However, the formal rules
should never be imposed by thc teacher. The students should be allowed to
compute without formal rules by referring to meanings and by stressing
the interrelationships among the various operations.

Observe also that it is common practice to extend the concept of a
fraction to allow any rational number as numerator and any nonzero
rational number as denominator. Such fractions represent the quotient of
numerator and denominator. With this definition we can also express the
above results as

12
'3

4
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The Rational Numbers

and so forth. It can be shown that all the rules we have developed for
fractions whose numerators and denominators arc whole numbers hold
equally well for fractions whose numerators and denominators are rational
numbers.

For all rational r and all nonzero rational s,r
Wu shall feel free to use such properties whenever they arc needed.

Exercise Set 3

I. Compute the following quotients:

a. (-6) 4- 3

b. 6 + (-3)

3
is Ts + (-3) S. -1 ( 3 1)

k. 3 + (-2) t. 2.5 + 5
4

1 3e. (-6) + (-3) I. -r -2- U. 2.5 + (-5)

d. (-15) + 5 m. + (A) v. 2.5 + .5

3 16. (-4) + (-2) n. -I- 3 w. 2.5 + (.5)

1. (-2) + (-4) a. 2 + (-0 x. 5 + 2.5

g. (-2) + 8 p. 2 + (-1) y. 5 + (-2.5)

h. 5 + (-15) q. (-21) z. 5 + (-25)

1 1I. (-7) + 2 r. aa. .5 + (.25)
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2. In earlier chapters we discussed the following principle:

In a division computation a 4- b, the result is not altered if both
numbers a and b are multiplied by the same nonzero factor c:

a b = (a X c) (b X c) if c 0 0.

This property can often be used to simplify a division computation. For
example, to compute

( 7 -) 5
2I

we might multiply both numbers by 4:

(-7 5 = (-7 12- X 4) ± (5 X 4)

= (-30) ± 20

3= , or I i

(Other multipliers arc, of course, possible.) Use this idea to work out
problems k, I, o, p, q, v, z, and on of exercise 1.

3. Another important property of division is expressed by

a+ b=axi.
1 /se this property to obtain rapidly the answers to problems j,k,m,,
and q of exercise 1.

SUMMARY

I. Ely extending the number line to the left, we can work with negative
as well as positive addends, interpreting positive addends by motion to the
right and negative addends by motion to the left.

2. Since subtraction is equivalent to finding a missing addend, we can
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subtract with negative rationals by looking for the appropriate missing
addend on the extended number line.

3. Computations involving division with negative rationals make use
of the same missing-factor approach that was. used when dividing with
whole numbers or with positive rationals.

4. Multiplication can be extended to negative rationals by first observing
patterns involving previously known products. Preserving these patterns
when one or more factors becomes negative leads naturally to the "rules
of signs" in multiplication. These rules of signs also arise naturally when
we attempt to preserve the pattern of distributivity of multiplication over
addition.

5. Parallel number lines carrying appropriately chosen scales can be
used effectively to compute products even when one or both factors are
negative.

Riviaw Exircisis

1. Compute each of the following differences.

3a. (-5) (-2) c.
( 3)

11. (-0 I/. (-4) (I3

I.

2. Compute each of the following products.

(-2.7) (-1.2)

a. 5 X (-2) I. (-1 2) X 4 h. (-1.36) X (-2.5)1

1b. (-5) X (-2) f. (-6) X 1 -i I. (-3) X (-4) X (

c. (i) X (-6) g. (-1.2) X 2.5 1. 2 X (--4) X (-6)1

3
d. 4 X (
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3. Compute the following quotients.

a. 15 (-5) 9. (-3) 3
4 I. 2.5 (-5)

b. (-15) (-5)
h. (-12) ÷ .12;

m. (-2.5) 5

c. 2 (-8) i. (A) (A) n. 2.5 ( .5)

d. (-5) (-15) j. (-2
21)

3
4 a. ( .5) 2.5

7 (-2) k. 3 1 (-1 1) p. ( .25) ( .05)2 2

f.
4

4. Compute the following.

a. (3 X (-2)) (4 X (-5))

b. (6 X (-3)) 4" (-9)

(-1.2) X (.5)c.
3 X ( .1)

d. (-1.2 (.5)) 1
X (-8.6))

e. (-1 X 2 X (-3)) (4 X ( .5) X 6) -1- ((-8) (-1 0)
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GRAPHING

Lauren G. Woodby

12
1. What kinds of graphs are used to communicate

number information?
2. How can graphs help children understand equivalent fractions?
3. How can a graph picture the "less than" relation

for an open sentence?
4. How can a graph picture reciprocals?
5. How can graphs help solve problems?

One of the clearest ways to tell certain kinds of number stories is by
means of a graph because a graph can picture number information in a
condensed form that is easy to understand. A graph often helps to clarify a
mathematical formula or to predict a result. Because of the usefulness of
graphs, there has been increased attention to graphing at all levels in
schools and especially in the elementary school.

There are many ways to introduce graphs. In the primary grades, very
young children like to make "living graphs"; for example, the children
could line up in front of pictures of pets to indicate the favorite pet. In
this case each child is actively involvedhe is a part of the picture. Later,
when he sees a graph made by someone else, he realizes that this graph,
too, tells some kind of story.

Children like to collect and organize information about objects or
events. A child can picture the number of people in his family by putting
paper cutouts in a column above his name, and in making this kind of
graph he uses the notion of one-to-one correspondence. Children see the
relations "less than" and "greater than" when thc information is organized
in concise form in a picture graph or bar graph.

3 16---
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Graphing

An important teaching strategy for early work with graphs is to have
each child write his own story to accompany his graph. This is usually a
story of his datacollecting process and his interpretation of the results
pictured by the graph.

Another teaching strategy is to allow children to select their own
toyics and collect their own data so that the graph is a help in telling a
story. The graph is a means to an end, rather than an end in itself.

As children become more experienced in collecting and sorting data,
they can use squared paper to make bar graphs and line graphs, but
squared paper should not be introduced too early. Obtaining graph paper
of the proper kind is a very real problem for teachers. One suggestion is

to make several master sheets 8-1 by 11 inches, with one-inch squares,
2

half-inch squares, and quarter-inch squares, and then duplicate a supply.
However, sheets 17 by 22 inches or larger are often needed, and these are
generally hard to find. Stationery stores, art supply houses, and engineering
supply houses are possible sources.

In gathering data, children get experience in counting and measuring.
Rational numbers result naturally from measurement, so the children
become acquainted with halves, thirds, and fourths in a natural setting.
Circle graphs provide experiences with fractions, percent, and decimals, as
well as measurement of angles. For example, the results of voting by the
class to choose a name for a new pet could be presented in a circle graph,
or pie chart.

DATA

CHOICE OF NAME FOR GERBIL

Name
Number of

Votes
Percent (to

nearest tenth)
Degrees (to

nearest degree)

Oscar 4 15.4 53

Otto 2 7.7 28

Oliver 11 42.3 152

Peter 6 23.1 83

Pepi 3 11.5 42

Totals 26 100.0 360
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Oscar
15.4%

Peal
11.5%

Otto
7.7%

Pater
23.1%

Graph

Oliver
42.3%

Exercise Set 1

1. In the example of a pie chart for the choice of name for the gerbil,
would you expect that the percent column will always add up to exactly
100 percent? Why?

2. Collect or prepare samples of graphs that can be used to tell a story
such as "Favorite Television Programs of People in My Class," "Pets in
My Neighborhood," "Heights of My Classmates," "How Far Do Children
Live from My School?"

3. For each graph, devise a question about the number information
displayedfor exam*, "If you collected the information next week,
what changes might you expect?"

4. Read some accounts of children's work in graphing in Freedom to
Learn: An Active Learning Approach to Mathematics, by Edith E. Biggs
and James R. MacLean (Addison-Wesley [Canada]: Don Mills, Ont.,
1969).

SCALE DRAWING

Scale drawing is anothec form of graphing that can be introduced in
primary grades. Children learn about shape, size, and relative position by
making a scale drawing of their classroom or the street where they live. A
map of the neighborhood provides a meaningful introduction to a coor-
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dinate system and serves as a source of many problems involving distance
and direction. Scale models apply notions of rational numbers in a way
that makes sense in many real problems in measurement. For example, a
boy who lays out a track plan for his HO-scale-model train track knows
what is meant by the statement "The scale is 1 to 87," and the model-ship

1 1builder knows that the expression .. yinch scale" means that -8 inch
1represents 1 foot. In the drawing reproduced here in part, inch rep-

resents 1 foot. The ratio of lengths on the drawing to lengths on the
1tender is 1 to 48. Thus, the 24-inch wheels are drawn as -2-inch circles.

'1100;11,e;;;i .1:1Pe:

ow-roo

24°

4'. V

Wok

W.11'

11.11.

Model Railroader, December 1968

The following table shows four popular railroad modeling scales:

Name HO N S 0

Ratio 1:87.1 1:160 1:64 1:48

Scale (inches per foot) 0.138 0.075 0.188 0.25

Standard Gauge (inches) 0.649 0.353 0.883 1.177
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Exercise Set 2

1. Have a child bring a scale model he has made and discuss it.
2. Obtain an N-scale railroad car and an HO-scale car. Measure the

length of each and use the scale 1:160 or 1 :87.1 to find the length of the
real railroad car.

3. A standard-gauge railroad track is 4 feet 8 1 inches, inside width.
2

What is the inside width of the track for an HO model? An N model? An S
model? An 0 model? Check your results with the data given in the table
above.

GRAPHS OF FRACTIONS ON PEGBOARD

A teaching strategy that works for many children who are confused by
the idea of equivalent fractions is to graph fractions as ordered pairs on
pegboard. The figure below shows a portion of a 2-by-2-foot pegboard
that has masking tape marked with number lines. The horizontal number
line is for denominators, and the vertical number line is for numerators.
For the moment, we shall rule out 0 as either a denominator or numerator.

0 0 0 0 0 C o 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9

o o o o o o' 70 o o o oo o oo oo
o o o o o o o o o o 000 o oo oo
o o oo o o oo o o 000 o oo oo

o o o o o o oo o 000 o oo oo
5

o o o o o o o o o o o o o o o o
4O -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1

o o oo o 0000 o 000 o oo oo
2o o 0o o oo o o o 000 o oo o o
30 -0 0 0 0 0 0 0 0 0 o o o o o o o

2

01410000*401710/00 02:10 4,4 ,M141
Denominators

To picture the positive fraction 2
'

first locate the denominator 3 on the
3

horizontal scale, then locate the numerator, 2, on the vertical scale. There
is a unique location (hole in the pegboard) for each fraction whose
denominator and numerator are natural numbers. This one-to-one
correspondance between fractions and holes in the pegboard permits us to
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picture any fraction; moreover, every hole in the pegboard is associated
with exactly one fraction.

The first skill in pegboard graphing of fractions is to be able to locate a
given fraction. Care niut be taken to locate the denominator first, along
with the horizontal number line. This may seem like a strange way to do it,
since we usually say the numerator first; but there is a good reason why
we want the denominator first (horizontal) and the numerator next
(vertical). It will become clear when we examine the "slopes" of lines
that are associated with the rational numbers represented by fractions.

The fractions 3- 1. 2 and are shown. Golf tees are put in the
3 2 ' 1 7 ' 15

pegboard holes to mark the locations. The teacher should do the exercises
below to sense fa discovery experience that children will have.

Exercise Set 3

1. Mark, with a golf tee, each of these fractions:

1 3 4 7 1 3 15 8 3

2 ' 5 ' 3 ' 12 ' 1 ' 4 ' 18 ' 5 ' 1

2. Mark all these with golf tees of the same color:

1 2 3 4 5 6 7 8

1 ' 2 ' 3 ' 4 ' 5 ' 6 ' 7 ' 8

3. Mark all these with golf tees of another color:

2 4 6 8 10

3 ' 6 ' 9 ' 12 ' 15

3Now look carefully at the fractions equivalent to Some of these are
4

15 6 9 18

' 12
. Graph these fractions on the pegboard with golf tees of

20 8 24
one color. Notice the pattern. Are there other holes that fit the pattern
which are not marked? Notice that from any golf tee you can go "over 4
and up 3" to find a-hole for another equivalent fraction. This is an im-

portant idea. (The slope of the line on which all these tees lies is
4

Look again at the colored golf tees for fractions equivalent to (exercise

3 of set 3). Add golf tees of the same color to the points for any other

fractions equivalent to for which there is room on the pegboard. What

is the slope of this line? (You should get 1)
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O 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.0 0 0 0 0 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0

10

In the exercises you looked at some special fractions that are equivalent
1

to -1 What is the slope of the line of golf tees picturing those fractions?

Now graph some fractions equivalent to -2 and notice the steepness
I '

(slope) of the line of golf tee
The striking result is that

pictured by golf tees that lie

tees for fractions equivalent

fractions equivalent to -3 is
4

1fractions equivalent to - is 1
1

s.

each collection of equivalent fractions can be
in a straight line. The slope of the line of golf

2 2to is the slope of the line of golf tees for
3 3

-3 , and the slope of the line of golf tees for
4

. In other words, the slope of the line is the

feature that stands out for each collection of equivalent fractions. The
slope of the line for any collection of equivalent fractions is the rational
number named by the equivalent fractions.

Notice that all these lines pass through the (0, 0) point of the graph. We
now come back and examine fractions having 0 in either the numerator or

2the denominator. The fraction - for example, would be located at the
0

2point "over 0 and up 2", that is, on the vertical number line. Although - is
0

formed just like other fractions, it does not name a rational number, so we
rule it out. We shall not consider those points on the vertical axis. What

0about the fraction - ? This fraction would be located at the point "over
3
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3 and up 0", that is, on the horizontal number line. It is a fraction that
names the rational number "zero." In fact, the horizontal axis pictures the
collection of all fractions with numerator 0 and has a slope of 0.

Two rational numbers can be compared readily by examining the
slopes of the lines that picture the fractions for the numberssimply
observe which line has the greater slope. To see why this is so, consider the

two rational numbers -2 and -3 . Select equivalent fractions with a common
3 4

9 ,denominator
'

say 8 and 12 . fhe line from the origin to (12,9) is steeper
I 2

than the line from the origin to (12,8). This example illustrates how the
common denominator method of comparing two rational numbers is
related to the graphic method of comparing slopts. (See the figure.)
Notice that the slopes can also be compared by looking at the golf-tee

6 6
locations for the fractions -9 and -8

O 0 0 0 o o o o oo o o oo
O 0 0 0 0 o o o o o o o o o 0

3O 000 o o o o o o o o 0 0 04
10 o o o o o o o 0 o o o o 2

3
O 0 0 o 0 0 o 0 0 o o

O o o o 0 o o o 0 o

O 00 o oo 0 o o

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

O 0 0

O 0

O 0 0

O 0 0 0 0

O 0 0 0 0

O 0 0 0 0 o 0 0 0 o

O 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0

O 0 o 0 0 0 o 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0

10

Exercise Set 4

51. Picture the fraction - with a golf tee at (2,5). Now find several
2

fractions equivalent to -5 and picture each one with a golf tee of the same
2

color. Describe the pattern. What is the slope of the line?

2. Select another fraction whose numerator is greater than the denom-
inator (i.e., an "improper" fraction), Find several fractions equivalent to
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your selected fraction and picture them wkh golf tees. What is the slope of

the line? Which fraction names the greater number, 5 or the fraction you
2

selected?
2 3

3. Graph the fractions 5 and 3 using golf tees of different colors. Find

some fractions equivalent to and graph them. Find some fractions

equivalent to 3 and graph them. From your graph decide which fraction
7

names the greater rational number. (I-lint: Look especially at the fractions
6 6 ,

anu
15 14

4. Use the pegboard to picture the fraction& 4
' '

6 and 9 From the
5 7 10

graph decide which fraction names the greatest number; the smallest
number.

After the study of rational numbers has been extended to include
negative numbers, pegboard graphing of fractions becomes even more
useful. We are no longer restricted to graphing in the first quadrant. We
can graph any fraction, since fractions are now considered as ordered
pairs of integers, including the negatives.

The pegboard now looks like this:

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

o 0

O 0 0

o o o o o o o o o o o o o o o o o o o

O 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0

O 0 0 0

O 0 0 0

O 0 0 0 0 0 0

O 0 0 0 0 0

O 0 0 0 0 0 0 0
3

0 0 0 0 0 0 0 0 30 o

O o o o o 0 o 4* 0 o o o o o 06 o o o 0 o

0 0

O 0 0 0

O 0 0 0

0---0-0-

O 0 0

O 0 0

O 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0

-o

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0_30 0 0 0 0 0 0O 0 0 0 0 0 0

O 0 0 0
30

0 0 0 0 0 0 o 4o o o o o o o

o 0 o 0 0-60 o o o o o o o o o o 0 o o o o

o o o o o o o o o o o o 0 o 0 0_6o o o

o o o o o o o o o o o o 0 8 0 0 0 0 80 o o

o o o o o o o o o o o 0 o 0 o o o 0 o o o o

1
0-20
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-3The graph of the fraction is shown. Notice that golf tees that
4

3

8

6
picture fractions equivalent to (e.g., and 4-4) lie in a line that has a

4

negative slope. This line pictures the rational number negative 3
4

The golf-tee graph for the fraction lines up with the graph for ,

3

6
as well as 1- 3 4 . The slope of the line is 1

2 6 8 2

GRAPHS OF FUNCTIONS

After children have learned to locate on cross-section paper points that
correspond to number pairs, they can graph the solution set for an open

sentence such as ,L = _ 3 or p = 2 X . The fact that these

graphs have a straight-line pattern gives children another view of the
consistency of the rules for the operations of addition and multiplication.

For example, the open sentence p = 2 X is satisfied by the

following number pairs:

2

- 1

2

5

0

1

3

The points for these number pairs lie in a straight line that goes through
the origin. The fact that (0,0) satisfies the open sentence reminds children
of a property of 0; the product of any number and 0 is 0. The other feature
of this line is that its slope is 2. From any point on the line "up 2 and
over 1" locates another point on the line.
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Now examine the graph for the open sentence = X D. Some

number pairs that satisfy the sentence are shown below:

3

0

6

1

2

0

4

2

3

3 2
The points for these number pairs lie on a straight line. The point (0,0)

lies on the line, and the slope of the line is 2
3'

A suggested teaching strategy here is to have children graph enough

open sentences of the type p = m X 0, where m is any rational
number, to become convinced that the slope of the line is m. The open

sentence p El is satisfied by these pairs of numbers:
2

EJ

0

1

2

2

1

2 2

5

5

These points lie on a straight line through (0,0), but the slope of the
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5
line is negative The line slopes down and to the right (or up and to the

2
left). From any point on the line "down 5 and to the right 2" locates
another point on the line. The graph makes the rule for the product of

two negative numbers plausible. If 2 is used for 0 , the result, 5,

fits the straight-line pattern observed for the graphs of similar open
sentences.

Graphs of open sentences such as

1p= 2 X D + 1, p = 2 X 0 + 2 2 '

Z, = 2 X 0 312 '

call attention to the idea of a family of lines all having the same slope, 2.

LI

\

Graphs of open sentences such as

P= 24x0+ 1,

3
call attention to another family of lines all having the same slope,

4
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i

1 N -

"i

Graphs of the open sentences

p=3><E+11, A.-12-x0+11,
p.ix0+1 ,

call attention to a family of lines that pass through the point (0, 11

Here again it can be observed that open sentences of the type

m X El + k

have straight lines as graphs.
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Exercise Set 5

1. Find several number pairs that satisfy the open sentence

2 X El 2

Graph those pairs. Find the slope of the line from your graph.

2. Graph, on the same set of axes, the open sentences

4 z
and

1

4 2

Describe your results.

GRAPHS OF OPEN SENTENCES FOR INEQUALITIES

Once children can graph open sentences with the "equals" relation,
there is a natural and easy extension to graphing "less than" and "greater
than" relations. The solution set for

is pictured as points on a line in the graph shown here.

simmammummunwpmmumps
NEMMEROMMEMOMMISENNMOVE
EMMOMMOMMINIMM =TAME

MIMMINIMMIWILSIGWAIUMMINIMMOMEMMOMMED =OM
MEMMEMEMEMEME ME OMONG
MOMMEMOMEwOMME0 MGM 0

immymamom ItUmmi mi/
MMEMPEd0 ME MEM UMOOMMV
EMMOIMMORO UMEMEIMMODUMOM MEMO EMMEIN
-UMMOMWMMEPOMMWOR
M .3F9!:llIJEL
0 MOMMOMUOMON OMMOOP

MMOMMOMMM MEIMMOODOFt
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Points that lie on the line satisfy the open sentence

=1X10+112 2 '

points not on the line do not satisfy the open sentence. For example,

(6, 4 1) is on the line, and 4 1 = 1 X 6 + 1 I But consider the point
2 2 2 2

(6,4) just below (6, 4 1-.) . 4 < X 6 + 1 (.4 . In fact all the points

1(6,a) directly below (6, 4 2) satisfy the relation < 1 X El + 1 1
2 2 '

since for all thcse points a < 4 . Similarly, all the points directly above

the point (6, 4 have number pairs that satisfy the relation

A>1><E1-1-1 I.
2

Exercise Set 6

1. Find some number pairs that satisfy the open sentencey = 3x + 1.
5

Graph these points and, from the pattern, find other pairs that satisfy the
open sentence.

2. Now find a number pair that does not satisfy the open sentence
3xy = + 1. Which of the following sentences does that number
5

satisfy?

3x3. Select any other point on the same side of the line for y 1.
5

What number pair is associated with that point? Test to see which open
sentence the number pair satisfies. Repeat for several other points.
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4. Now select a point on the other side of the line from your points
in exercise 3 to see which open sentence its number pair satisfies. Describe

the set of points that satisfy the open sentence y < 3x + 1.
5

GRAPHING A SPECIAL FUNCTION

The following is a class exercise in graphing without numbers. It is a
laboratory approach involving the whole class that has been found to be
an unusually successful discovery-type lesson.

A large sheet of cross-section paper, about 2 feet by 4 feet, is taped flat
on a table and one corner marked "start," as shown.

Start

40

20

10

III

ii30

. _
10, , 20
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Children, working in pairs, are asked to find a circular object and cut a
strip of colored tape that just fits around the object. A child places the
circular object on the graph sheet, as shown in the figure, so that the end
of the diameter can be marked on the horizontal axis. His partner then
unwinds the tape front the object and sticks it onto the sheet, vertically,
from the marked end of the diameter. If no children select a very small
circular object, suggest one, such as a coin. If no very large circular
object was chosen, suggest one, such as a wastebasket. After the children
have put on all the strips, ask them to describe what they see. When
someone observes that the ends of the strips seem to be in line, stretch a
string from the origin to check this observation and fasten the string with
tape. Place a different circular object on the sheet and ask the children to
predict the length of the circumference. Now ask the inverse question;
hold up a length of tape and ask for the diameter of a circular object
that the tape would just fit around. Notice that up to this point, no numbers
have been used at alljust distances marked on the paper and strips of
tape.

In order to measure these distances, label the inch markings on the
horizontal and vertical lines through the origin. Ask the children to find,
from the graph, the circumference of a circle whose diameter is I inch;
10 inches; 20 inches; 30 inches.

What is the slope of the line (the stretched string)?
This graph can be used to solve a practical problem in measurement.

The problem, which must be solved by anyone who wants to make a
trundle wheel that measures in yards, is "How can a piece of plywood
be marked to make a circular disk whose circumference is one yard?"
From the graph the required diameter is found by locating 36 inches on
the vertical axis, moving to the right to the string, then down to the
horizontal axis. This length can be transferred directly to the plywood.
It is the diameter we seek. Compare this solution with the usual com-
putational solution: C = TD, so D 36 3.14.

A teaching strategy that may be used is to ask children to make up
other problems that can be solved directly by the graph and to solve
them. Some samples are:

1

1. What would be the circumference of a wheel 8 inches in diameter?
2

2. If a bicycle tire is 75 centimeters in diameter, what is the circum-
ference?

3. What is the diameter of a circle whose circumference is 19 inches?
19 feet? 19 meters?
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The graph can be thought of as a function machine for the particular
function x 7r. x; the function can be called the "multiply by 7r" function.
Notice also that we have automatically the "divide by 7r" function.

AREA AND PERIMETER

A graphic approach to the study of area and perimeter of rectangles
seems to make sense to most children. The following sequence of activities
is suggested. Children can work in groups of three or four at a table.

11. Cut out from 2-inch cross-section paper about a dozen square

pieces of various sizes. For each square piece find the distance around it
(its perimeter). Make a table of number pairs. It might begin like this:

Length of Side of Square, in Inches 3 I
2

Perimeter of Square, in Inches 14

Graph the number pairs. Now use the graph to find the perimeters of

squares whose sides are 1 3 inches; 6 1 inches; 3.2 inches.
4 8

2. Using the same collection of square pieces, find the area of each
in square inches and again make a table of number pairs:

Length of Side of Squares, in Inches
2

Area of Square, in Square Inches 12 I
4

Graph the number pairs. Now use the graph to find the areas of squares

3
6,

1
iwhose sides are 1 inches. nches; 3.2 inches.

4

The next two activities continue the strategy of using geoinetric models
(this time, rectangles made by the children) for which the desired number
information can be found by counting. Graphs can picture the data in a
concise form.

333



The Rational Numbers

13. Cut out from inch cross-section paper about a dozen rectangles,

each with a perimeter of 12 inches. Children can check this condition
with a 12-inch piece of string. Determine the area of each and graph the
number pairs (length of one side, area). Describe any special cases.

4. Cut out some rectangles whose areas are all the same, say 4 square
inches. Graph the number pairs (length of one side, length of the adjacent
side). Describe ally special cases.

8

7

6

5

4

3

2

1

, ala
:
,
, air a

rill1
0 1

a a,..,...A III
g 7E% Ammv.474rdErA

1 2 3 4 5 6 7

Direct Graph of Rectangles of Area = 4

RECIPROCALS

8

The reciprocal relation is extremely useful in many applications, and a
graph helps children understand this relation.

For what numbers n is it true that n X 1. = 1? Almost every number

1
i

1you try works. For example, if n is 5, s and 5 X -5 = 1. How about
n 5

n = ? In this case
t

is
I

, which is 7, and
1 X 7 = 1.

7 n 1 7

1 . 1Try a negative number, say -15. If is -15, - is and
n -15
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1
15 X 1. Are there any numbers that do not work? How about

15

n = 0?
The relation can be described by the open sentence0X A = 1

or ,L 1 (with U 0). Another way to describe the relation is

which says to pair up n with
1

. Of course, we could use the following:

x.y = 1.
1y = x O.

1
x O.

A table of pairs of numbers that satisfy the open sentence xy = 1 is
easy to make. Some pairs are shown in the table at the left, and some more
in the table at the right.

1

2

2

3

3

4

4

1

2

2

3

3

4

4
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2

3

3

4
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1

1

2

2

1

3

3

4
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The graph of these number pairs looks like this:

Exercise Set 7

1. Suppose you wanted to find the speed of automobiles by measuring
with a stopwatch the time for each vehicle to travel a fixed distance, say
250 feet. A chart that can be used to translate time in seconds into speed-
ometer reading would simplify computation. First complete the following
table, using the formula d = r X 1.

Miles per Hour Feet per Second
Time in Seconds

to Travel 250 Feet

90

60 88 2.8

50

45

ao
30 44 5.7

20

15 22 11.4

10

5
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2. For each speedometer reading in miles per bour, there is a time in

seconds for the car to travel 250 feet. Make a graph of speedometer

reading against time for traveling 250 feet. Could the time ever be as long

as 40 seconds? Use the graph to find the time for traveling 250 feet if the

car is going 27 miles per hour. What is the speed of the car if the time for

the 250-foot distance is 15 seconds?



ANSWERS TO EXERCISES

BEYOND THE WHOLE NUMBERS

Exercise Set 1, pp. 8-10

1. a. Two-thirds, (2,3), 2

2.

b. Three-sixths, (3,6), 3
6

1
e. One-half, (1,2),

2

d. Five-tenths, (5,10), 5
1 0

hIll
MENEM

A_
15

3. Models a, e, and d are good models. Models b, a, and 1, are not subdivided into
congruent regions, and this is a requisite for representing rational numbers.

3

S.

U.
(3, 5)

1

SW
(12, 20)
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6. a.

b.

C.

3 2
4 2

1 2
3

d.

O.

1
3

1

4

7. Two fractions are compared on the basis of shaded regions. If the shaded
regions of the two figures are equal, then the fractions are equivalent. Such a com-
parison can be made only i the two figures (the region models) have the same unit area.

a.

11
1
4 12 to

9. The uait region ( )-1- can be constructed by using five of the given regions (cacIt
5

of which represents I of the unit).
5

If the given region represents , divide tt into 3 congruent parts (each will represent
5

1 of the unit region) and build a region that is 5 times the smaller subdivision
5

(5
.(I) , or I unit region).
5 5
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Answers to Exercises

10. The comparison was made using noncongruent regions, and this does not
provide a basis for comparing the shaded regions.

Exercise Set 2, pp. 16-18

1. a. Three-fourths, (3,4), 3
4

2.

3.

4.

2b. Two-thirds, (2,3),
3

e. Five-sevenths, (5,7), 5
7

0 0 o

0

0
0
0
0

0 0

1
4

For every four dots drawn, there
must be three dots shaded. Any
multiple of (3,4) can be used to

produce a representation of
4

(ts to)( to) 1(00000000Erd)

S. (0

(000000000
ko 00000000

i

(to 6)

(000000000)
(000000000)

I

000000
ft
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6.

r.

S.

b.

a.

h.

C.

d.

e.

I.

a

0

6

f
0

1

0

1
7

0 1
a

1

1

I

0

f

1

1

1

1

S

S.

1

f

-342
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c .

9.

0

Answers to Exercises

0 2 2

41-0 2 3

lo low
0 2

oop, 5000 .©©.
cnt-ii

5000...

1

1
1

Note that cannot be shown with a set of 16 objects, since 12 is not a factor of :6.
12

3 210. e. appears to the right of on the number line.
4 4

b. appears to the left of on the number line.
4 2

5e. 11
appears to the right of on the number line.

4 2

d. 1 can also be written as a fraction where a and b are whole numbers and
a

0.
. All three are represented by the same point on the number line, 0.

4 2t. and correspond to the same point on the number line.
4 2

9. Every whole number is a rational number, and therefore the set of whole
numbers is a subset of the set of rational numbers.

h. As illustrated by the number line, there are many rational numbers between
consecutive whole numbers.
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FRACTIONS AND RATIONAL NUMBERS

Exercise Set 1, pp. 33-34

1. The introduction of the rational number a as an address for the point Q0,, lends

itself more readily to the application of sharing a pie. The pie corresponds to the unit
interval on the tiumber line; dividing the pie fairly among b children is analogous to
dividing the unit interval into b parts of equal length, such as is done in locating the
point Q. Finally, if a of the b children are girls, then the part of the pie distributed

to girls has measure 2 ; we obtain this by counting off a of the b parts, again as is done

in locating the point Q,. The location of the point on the number line would be
more analogous to the problem of dividing a pies among b childrena situation
rarely encountered in practice, except for the special cases a = 0 and a = I!

2. The use of the point Pa,b to define the rational number a lends itself naturally

to an explanation of the fact that certain rational numbers a coincide with whole

numbers. For example, to locate the point P 6,3 we must divide the interval from point
0 to point 6 into 3 parts of equal length. Well, it is obvious that the division points
come at point 2 and point 4. By definition, the first of these division points is the point
P 6.3. Thus P 6,3 coincides with point 2. Since the address of P6,3 is the rational number

6, we thus get 6 = 2. Of course the same conclusion can be reached by considering
3 3
point Q6,3 instead of P 6,3, but the reasoning is a little less direct.

3. a. We refold the paper rectangle along the crease In. If the right edge of the
paper then coincides with the crease q, the area to the right of in is exactly
one-third of the area of the rectangle. If the right edge of the paper is to the
right of the crease q, then the area to the right of In is less than one-third of
the total area. Finally, if the right edge of the paper is to the left of q, the
area to the right of in is more than one-third.

b. Suppose that when we apply the test in a above we find that the area to the
right of In is less than one-third the total 'area. This means that when we
refold the paper along crease in, the right edge of the paper lies to the right
of the crease q.

right edge of paper, folded over

What we do, then, is to pull the right edge over toward the left so that it
coincides with the crease q, then make a new crease where the paper is folded
at the right. If we now open the paper and label the new crease n, we shall
find that it is to the left of in.
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The area to the right of n will still be less than one-third the total area, but
of course it is greater than the arca to the right of in, so that we have a better
approximation to one-third. Of course the whole process can be repeated
to obtain a still better approximation.
The facts described above can be ascertained with a very little algebra.
Suppose that the fraction of the total area that lies to the right of crease
in is x. Then the fraction to the left of in is 1 x. Since the crease q divides
the area to the left of in in half, the fraction of the total area to the left of

q will be t
2

The fraction of the total area lying to the right of the crease q will be

1 x 1 x 2x 1 xx =
2 2 2 2

This is the area we divide in half when we form the new crease, n. Hence the

fraction of the total area that lies to the right of tt will be one-half of
1 x

2

or I . Since we assumed to bcgin with that x < , we find 1 + x <
4 3 3

1
and hence

+ x < 1 . Thus the area to the right of crease n is still less than
4 3

one-third the total area, as claimed above.
c. Start by putting a crease, say p, at an estimated point so that the area to the

right of p is approximately one-fifth the total area. Then divide the area to
the left of p into four equal parts by folding the left edge over to coincide
with p, then folding a second time (without opening tilt paper after the
first fold). When the paper is opened out, there will now re 3 creases to the
left of p; label the one closest to p with the letter r.

Now if we refold the paper along p, we can see whether the right edge coin-
cides with, is to the left of, or is to the right of r. This determines whether
the area to the right of p is exactly, a little more, or a little less than one-fifth
the total area. Suppose we are a bit off. By pulling the right edge to coincide
with r and making a new fold near p, we can improve our estimate.

-345-



The Rational Numbers

Exercise Set 2, pp. 39-40

1. There are many possible correct answers to each part of this problem.
Examples:

e. Identifying the President by name or as "the husband of the wife of the
President of the United States"

b. "The largest ocean" or "the ocean at the west coast of the United States"
e. "The set of whole numters between I and 4" or "the set of those numbers x

such that x2 5 x + 6 = 0"
d. "The father of Abraham Lincoln's mother" or "the maternal grandfather

of the sixteenth president of the United States"
"The National Council of Teachers el' Mathematics, Inc." or "the teachers'
organization that published this book"

2. Problem 1. A 5-pound object is divided into 3 parts of equal weight. How much
does each part weigh?

Problem 2. A 10-pound object is divided into 6 equal parts. How much does
each part weigh?

Without computing the solution to problem (1), let us use the letter "x" to stand for
the weight of any of the 3 parts of the 5-pound object. Obviously, then, we have

x + x x = 5 .

From this, by the logic of identity, we can infer that

+ x + x) + x x) = 5 + 5,

so that

x+x-Fx+x-i-x+x= 10.
Since "x" occurs six times in the left side of the last equation, x represents the weight
of each of the 6 parts mentioned in problem 2. Thus problems 1 and 2 have been shown
to have the same solution.

Exercise Set 3, p. 45

6 4
1. To show that > we must show that the point (26,5 is to the right of the

5 5
point Qi.s on the number line. After dividing each unit interval on the number line
into 5 parts of equal length, we count off 4 of these little intervals (starting from 0)
to get Q,,B, and we count off 6 of these little intervals (starting from 0) to get 06,5.

6 4Since 6 > 4, this shows that Q6,5 will lie to the right of Q4,5; hence >
5 5

7 i2. According to the teacher's definition, s the number satisfying the open sentence
3

73. E] = 7, that is, we have 3 X = 7. Similarly, we have 3 X 10 = 10. It follows, by
3 3

the logic of equality, that
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(1)
(3

3) \
(3 El) 7 + 10.\ 3

Answers to Exercises

But by the distributive law, which we assume to hold for rational numbers here, we
know that

(2)
(3

) \
(3 .0)

=
7 10

X + -3-)
3 3

Combining the last two equations, we get

(3) 3 X
(7 10
-3 + = 17.

Now by the teacher's definition of rational numbers, 17 is defined to be the number
3

satisfying the open sentence 3. 0 = 17. Comparing this with equation (3) derived

7 10 17
above, we see that -

3 3 3

3. To gt the point P7,4on the number line, we divide the interval from point 0 to
point 7 into 4 parts of equal length; then P7.4 is the right endpoint of the first of these
parts, To get P7,3, we take the same intetval, from point 0 to point 7, and divide it
into 3 parts of equal length; then P7.3 is the right endpoint of the first of these parts.
Obviously if we divide a given interval first into 4 equal parts and then into 3 equal
parts, the former parts will be shorter than the latter parts. In particular the first interval
of the division into 4 parts is shorter than the first interval of the division into 3 parts;
but both these intervals begin at point 0, so the right endpoint P7,4 of the former will

7 7
be to the left of the right endpoint P7.3 of the latter. Hence - < -

4 3

Exercise Set 4, pp. 53-54

3 6
1. - Since 29 < 34, we get A > A Hence 6 -3=

29 34. 29 > 17

3 45 5 50 7 4
2. = , = . Hence 2 < and <

5 2 2 3

3. a. We know that

a c a d + bc
-L d bd

Hence we want to find all rational numbers
a- and - such that

a + c a d + bc
b + d bd

By "cross-multiplying" we get
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The Rational Numbers

(a b. d) + (c b. d) = (a. d b) + (62 c) + d2) + (b c d).

Thus we must have

0 = (62 .c) + (a. d2).

Since the denominators b and d are different from 0, we must have c = 0

and a = 0. Thus 9- 0 and 2 = 0these are the only rational numbers for

which the "simple-minded" addition rule
+c_a+ c is true.a

b d b + d
b. Now suppose we do not have both a = 0 and b 0, so that

a c a + c a c a +
. Then which is larger,

b d b+d b d b + d
a c a d + d.c , we must compare the fractions
b d b b

a d + b .c a
b. d

+
and b + d'

To do this, we express these by equivalent fractions having a common
denominator:

(1)
a.d + bc (a d + b (b + d)

b. d (b d) (b +

(a b d) + (b2 c) (a d2) + (b.c d)

(2)

(b d). (b + d)

a+c (a + c). (b d)
b d (b + d) (b d)

(a b d) + (b.c. d)
(b d). (b+ d)

Now, comparing the numerators of the two right-hand fractions having a
common denominator, we see that the numerator in equation (1) is greater
than in equation (2). Hence

a +c> a +
d b + d

in this case.

408 36 8 4084. We have 1 . Hence the list of all fractions equivalent to "" .
255 85 5 255

8 16 24 32 408_ .

5 10 15 20 255

",
iSuppose that 4 s any fraction equivalent to 4,408 . Then, representing these by

255
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fractions with a common denominator, we see that

,408 X
255 X b

will be equivalent to

Answers to Exercises

gga X 255
b X 255

But two fractions with the same denominator can be equivalent only if they have the
same numerator (by our rule for comparing fractions with a common denominator).
Hence

408 X b = 255 X a.

Since 408 = 51 X 8 and 255 = 51 X 5, we get

8X6= 5 X a.
From this we can infer that 5 is a factor of b and 8 is a factor of a; so "ts" is in the list

8 16 24 32

5. We get 16 fractions:

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4.
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Using the common denominator 12, we express these as

12 6 4 3 24 12 8 6

12 12 12 12 12 12 12 12

36 18 12 9 48 24 16 12.

12 12 12 12 12 12 12 12

Counting the number of distinct numerators in this list, we see that we have altogether
11 distinct rational numbers. In order of magnitude these numbers are:

Or

3 4 6 8 9 12 16 18 24 36 48
12 12 12 12 12 12 12 12 12 12 ' 12

1 1 1 2 3 1 4 3 2 3 4

4 3 2 3 4 1 3 2 ' ' I.

ADDITION OF RATIONAL NUMBERS

Exercise Set 1, pp. 56-57

4 7 11b. 3+3 =2 2 4

1. a. T
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The Rational Numbers

2. a.

1.

b.

a a & i
s s s $ 5 5

stI -/11 11 4 5 1 111 10 1111.111111111111 sae II

Exercise Set 2, pp. 59-60

7 9 16 10 6 6 3

M -1T) -17) 1 + IT) 1 +

3 3 6 4 2 2

1 +

5 4 9 6 3 3

3

k7 88 145 100 45 45 9 9
b. + = = + + = + = 1

100 100 100 100 100 100 20 20.

Exercise Set 3, pp. 65-67

1 3 2 3 5 3 3 6 3 9

2 1 4 3 7. 2 1 8 3 11
e. 1 3 + i = I ,-,.. +

12 1_2 12
1

2 1 4 5 9
e. 3 + -2 10 4- II -1-0-

2 , 1 1
2. a. -t- = 1

ibt

0 1 2
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3 1 = 1 1

12

1101

O 1 2

1 7 1
C. 1 = 2

84 8

11100-1111,-0-i1110111111-411111111141111
O 1 2

3. a. 1 1 + 1 = 2 1. e. 1
1 + 7 = 2 1

4 4
T

1 0 1 2 6b. 1 + = 1
4 4 4

d. 1 8 + 1 8 = 3.

Ennis. Set 4, pp. 67-66
1 2 3 4 5 10 25 125v. a.

7 14 21 28 3 6 15

8 16 24 32
d. 6 ii = 6 To- = 6 K:o.b.

5 45 54 92. a. F, m b. T e. F, ,m Or
48

d. F,

3 2 30 8

4
3. a. b. 1 ii e. 4 c

100
7

2 7 70 15

100 20
5

2
9 = 3 1 100 23

4 8 8 ' 100 8 20

Eehe Se 5, p. 72
I. a.



The Rational Numbers

b.

3 36
2.

a'
5 40

76
96

(Other diagrams are possibk.)

13 234

7 210
18 540

444
540

Exercise Sit 6, p. 75

I. a. 2 X 2 X 3 b. 2 X 2 X 7 4. 2 X 5 X 7 d. 2 X 2 X 5 X 5

2. a. 6-92 X 312
X 3 X 5_00

b.

C.

d.

15 9 3 X 5

15 9 3 X
3 X 5 X 7 9 105

35 4 5 X 7

16-42 X 2 X 2 X

24-42 X 2 X 2 X 3

28 9 2 X 2X 71.

42 9 2 X 3X 7

2 X 2 X 2.X 2 X 3 4 48

2 X 2 X 3 X 7 4 84

3. a. 5

6
50
60

11

b. ii
528 1 80

2,016 C. i 480
7 42 37 1,554 3 180
10 60 48 2,016 8 480

92 2,082 3 144
60 2,016 10 480

404
480

352--
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4.
a.

5 25

6 30
I I

b.
88

4.
1 20

336
7 21 37 259 3 45
iii iii 48 336 8 120

46 347 3 36

30
.......

10
la

336
.....
120

101

120
S. Same as 4, except that the LCM is arrived at as shown.

5 5 X 5
a. 6 2 X 3 X 3

7 7 X 3
15 2 X 5 X 3

I I 1 1 X 2 X 2 X 2
2X 3X 7X 2X 2X 2

37 37 X 7
718 2X 2 X 2X 2X 3 X 7

I I X2X2X5
4. 62X3X2X2X5

3 3 X 3 X 5
I" 2X 2X 2X 3X 5

3 3 X 2 X 2 X 3
102X5X2X2X3

S. PersonM choice. The pdme-factorization method is shown.

5 5 X 3 X S 75
28 2 2 X 7 X 3 XS" 420
7 7 X 2 X 7 98
30"1 2 X 3X SX2X7 420
9 9 X 2 X 2 X 3 108

33 5X7X 2X2X 3 420
281

420

Ennio* Sof 7, pp. 81-112
I. a. Addition is associative.

h. Addition is commutatiw.
a. Addition is commutative.
C Addition is commutathe and associative (reareansement).

-353-
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The Rational Numbers

2. U.

b.

I.

3 ( 93 7 ) 2

3100 -I- 100

(5 95 247 47
100 + W

,

-10-6

( 9 1 ) (7 1

+ 76 + + 2.

8.

3. b. Addition is commutative.
d. Addition is associative.

lurch, Se $, p. $4
7 7 5 7 5 + 7 12
3 5 5 5 5 3

49 48 + 1 48
12

1

12 + 1 1b. '.'" ............ Of .. + ... WI -: ma4 4 4 4 4 4

by agreement on mixed numerals;

hy rearrangement principle for addition;

2 2 4by addition (4 + 5 9, 3-3),
4by addition G

because
3-
3

so ;

3

because addition is associative and 9 + 1 10;

by agreement on mixed numerals.

SUBTRACTION OF RATIONAL NUMBERS

Surds* se 1, pp. 111-10
10 2. 4 1.1. a. n rt
3 3 5 3

12 7. 9 4b. n
8 8

do g
1 0 5
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f

1 2 1 4 1 1 7 1 10
5

2. a.

3 4

Answers to Exercises

loo

b.

1 1 4

a
4 4

3. a.

b.

4. a. Addend b. Addend e. Sum d. Sum

Exorcise Set 2, pp. 92-93

(1 1 1 1 1 1 1t.l. I I 1 i 1.19111111111119IIIIIIIIII1 1 1

1 III
8

<1 1 1 1 1 1 1 1

1 1 A 1 1 1 1 1 1
s IIIIIIIIIIIIIIII

1 1 1 1 1 I ._4 1

(i I)

3 6 3
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The Rational Numbers

C.

1I
1 1 1

a
s
1

a
9
1

1 1 1 1

1

I

1

1
I

ds1
1111 III] 11

4 I I itmess $
I I

2.6, b, d

I I I 1 1

1 1
11 11 11

1 1 1 1 I.

5 1 5 3e. 0 =
83 3 8

11 2b. 0 =
10 10

5

d. 0 = 100 14

100 100

5 85 84. a. LJ
5

C. + 0 =

11 67=
d Too +

356
4

11.

99
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Exorcise Set 3, pp. 94-95

3I.
4

3
b.

13

10

15
b.

16

74

2 1

4 4

3 0=

7

10

4
16

15

,

13

or 0.

7 6

5

1

59

1

0

3

4

4

1 (

or

1

2

15

10 10

4 11

5

4

16 16

74 15

100

1
d. 1

4

100

2
4

100

2 5 -
100

2
4 4

1. 7 741.3-2= 3X 2 3X 2

Exercise Set 4, pp. 96-97

2 1 2 X 2 3X 1

b.
3 3 3 X 5 4 X 3
4 5 4 X 5 4 X 5

(2 X 2) (3 X 1) 4 - 3 1

3 X 2 6 6

C.

2. a.

9
10

2 9 X 3

(3 X 5) (4 X 3) 15 12 3_ --
20

7

30

_
4 X 5

10 X 2

27

20

20

3 10 X 3

7 168

10 X 3

(9 X 3) 00 X 2)
10 X 3

7 28

1

40

30

30 720
5 150

b. 120
5 25

24 720 24
=

120
18 1 3

720 40 120

357
265
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2 1 173. a. , or

51 47b.
100 41. 160

Exorcise Sot 5, pp. 102-3

1 7 21
. a. 3 = =

2 2 6
2 5 10

1

3 3 6

3 435 435b. 27 = =
16 16 16

3 155 310
19

8 8 16
11 5 125 13

'
3 3 192. a. 3 I = 3 2 = 2 2 b. 27 = 27 = 262 6 6 16 16 16

2 4 4 3 6 6
1 = 1 = 1 19 = 19 = 193 6 6 8 16 16

5 13
1 7

16

3. a. Probably subtracted numerator 1 from whole number 8. Correct result is 71 .
10

3b. Changed 1 to 10
instead of . Correct result: 2

3 3 3

7c. Forgot to compute 5 3. Correct result: 2 .
100

4 3 . 4d. Computed Instead of 3
. Correct result: 2 1

.
8 8 8 8 8
7 3Computed instead of changing 12 to II + + . Correct result:
8 8 8 8 8

4
10 , or 10 1

.
8 2

5 10 5 9. 2 . 2 , not 2 . Correct resuit: 7 .
8 16 16 16

Exorcise Sot 6, pp. 104-6

1 2 ( 1 1 2 1) 2 2I. a. 4 3 - i 3 = 4 3 + - ( 3 4- 3 = 4 3 - 2 = 2 3.

3 6 ( 3 4 ( 6 4 )b.

7= 9
10

6 = 3 7To
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e. - 22 = (61 - (22 +
4 4 4 4 4 4

16 97 ( 16
a. 88 - 27 = 88 iiro

100 100

Answers to Exercises

3wo)

=

=

2 2
6 - 3 = 3-
4 4

I 97 3

or

)

60

13-
2

19

27 di-0-0-

19 =88 - 28
100 100

. 17
2. /

4 11.0 (7 -a + 1)- (410.10 +1).00

(7a + I:2J- (4 1-1- +1)
117 84

= 7 - 5
100 100

34#
3. le.

4

3
4 -4

b. 61f

-4

4 1

2 , or 2
8 2

C.

a.

16

5

4 7

12

MULTIPLICATION OF RATIONAL NUMBERS

Exorcise Set 1, pp. 115-19

Scolumns. Product 3X S.

b. 5columns. Product 3-1 X 5. Lower estimate ra 3 X S.
2

1
Upper estimate 4 X 5. 3 X 5 < 3- X 5 <4 X S.

2

2 1 2 1
e. 3- rows, 4- columns. Product 3- X 4 - . Lower estimate 3 X 4.

3 2 3 2
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Upper estimate = 4 X 5. 3 X 4 < 3

2 2d. 3 rows, 4 columns. Product = 3
3 3

Upper estimate = 4 X 5. 3 X 4 < 3

2 1 2 1s. row, column. Product = x
3 2 3 2

2 3 2 3I. row, column. Product
3 4 3 4

5 2 5 2row, column. Product = x
6 3 6 3

2
X

3

2
X

3

2
X

3

4
1 < 4 X 5.
2

2
4 . Lower estimate

3

2
4 < 4 X 5.

3

= 3 X 4,

2. a.

b.

f

31

3 I

,,
4 I

,.
360-

Lower estimate = 3 X 4.
Upper estimate 3 X 5.

23 x 4 < 3 X 4 < 3 X 5.
3

Lower estimate = 3 X 4.
Upper estimate = 4 X 5.

23x4<3X4-1 <4x5.
3 2



d.

I.

3. S. b.

-361-

S.
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1 for each small box because
10
10 boxes make up the unit
rectangular region.
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d.

S.

I.

-362-
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I.
1

3

k.

Exercise Set 2, pp. 123-24

Answers to Exercises

1. a. There are 6 unit regions and 2 half-unit regions. 6 + 1 + 1 = 7, so 2 X
2 2 2

147. if split into halves, the count is 14, and 14 halves, or , is 7.
2

2 X 3 < 2 X 3 1 < 2 X 4.
2

6 < 7 < 8.

34

II

1 1 1b. There are 6 unit regions and 3 half-unit regions. 6 + = 7
2 2 2 2

1
so 2 X 3 = 7 1

If split into halves, the count is 15, and 15 halves is 14 + 1
2 2

halves, which is 7
1

.

2

2 X 3 <

6 <

1

2-2 X

17-
2

3 <

<

3 X 3.

9.

363 -
3 71
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3

e. There are 6 unit regions, 2 half-unit regions, 3 third-unit regions, and 1
1 1 1 1 1 1 1 16 1 + 8 .2 2 3 3 3 6 6 6If split into sixths, the count is 7 X 7, or 49.

49 48 1 17=T +;=
1 12 X 3 < 2 X 3 < 3 X 4.3 2

16 < 8 < 12.

d. There are 6 unit regions, 3 half-unit regions, 2 third-unit regions, and 1
sixth-unit region. 6 4- (11. 114 (I 11-) L. 6 + 1 + + -I-2 2 2 3 3 6 2 3
1 7 1 8 17 + 4- 7 + 8 . If split into sixths, the count is 5 X 10 50.6 6 6 6 3

50 48 2 1 1 1 17=i+-6,83-so2ix33.83.
-364--
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1 12 X 3 < 2 X 3 < 3 X 4.
2 3

16 < 8 < 12.
3

31

.. The small boxes are each
I-

of a unit region, as 6 of them make up a full unit
6

region. There are 3 X 11 ... 33 of these small boxes.
33 ..
6

34 +
6

1
..,

6
9

1

6
1 2 1So 2 X 3 g= 9 . We could slide 9 of the 10 boxes in the last column be-
2 3 6

1
yond 3 to fill in the boxes above 2 , to make a 3 X 3 array. 3 X 3 + the a

2

1 1box 9 + 1 SI.
6 6

1 22 X 3 < 2 X 3 < 3 X 4.
2 3

16 < 9 < 12.
6



The Rational Numbers

. 'There are 6 small boxes making up I unit region, so each small box is of a
6

unit region. The shaded rectangle has 8 X 7 56 of these boxes. M
6 6

2 I 2" I .So 2 X 3 I
9 . Moving boxes beyond 3 could fill in a square3 2 3

23 X 3 with 2 boxes kft over. 3 X 3 4 9
1

6 3

2 12 X 3 < 2 X 3 < 3 X 4.
3 2

16 < 9 < 12.3

'SSilb,0
31

a. We use a table to organize some information with the hope that a pattern will
be revealed.

Ex.

th

b.

es

41.

Factors

I
2 3

2

12 32

1 1
2"" 3'"

3 2

1 12 32 3

Product Suns DIrnrence

I 1 I I 12 X 3 we 7. 2 + 3 112 5 3 2 we 12 2 2 2 2

1 1 1 12 + 3 im 5-2.. 3 23 ill i S2

1 1 5 1 1 12' + 3. ". 5" 3 2i la li.3 2 6 2

1 1 1 1 1 5 1 1 52 X 3 se 8-3 . 2 + 3 imi 5 . 3-3- 2-2- IN -i.2 3 2 3 6

1 12 X 3 we 7.
2 2

1 1 1
2"' X 3"' 11'"

3 2 6
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Ex. Factors Product Sum Difference

1 2 1 2 1 1 2 I 2 1 Ie. 2 3 2 X 3 = 9 2 + 3 = 6 3 2 = 1
2 3 2 3 6 2 3 6 3 2 6

2 1 2 1 1 2 1 1 2 5
I. 2- 3- 2- X 3-

2
= 9-

3
+ 1 = =

3 2 3 3

a r a+r (a r)(a r) (a r) + (a+ r) (a + r) (a r)
2= a2 r . = 2a. = 2, .

as a+s (a sXa s) (a s) + (a+s) +
= a2

S2 . = 2a . = 2s .

The sums are the same for exercises I. and I b, for exercises le and Id, and for exer-
cises Is and U. The products are different. The greater product goes with the smaller
difference in every case. The last two lines of the table have two pairs of numbers
having the same sums, each 2a. If s < r it then follows that the product al > al
.1, so the generalization holds, namely, if the sums of two pairs of factors are the same,
then the pair having the smaller difference has the greater product.

3. s. There are 12 small boxes in 1 unit region, so each box is of a unit region.
12

12We have 4 x 3 = 12 boxes for the shaded rectangular region. = 1, so
12

4 3
X 1. The last row of 4 shaded boxes may be moved to fill in a unit

6 2
region in the first two columns.

b. There are 18 small boxes in 1 unit region, so each box is of a unit region.
18

8 2
We have for the shaded region 9 X 2 = 18 small boxes.

1
--72 1, so

9 X 1.
18 6 3

L367
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The bottom 3 rows of shaded boxes may be moved to fill in the last empty
column to complete a unit region.

1e. There are 30 small boxes in 1 unit region, so each box is of a unit region.
30

3 10 30The shaded region has 3 X 10 = 30 small boxes, so X = = 1.
5 6 30

If we move 3 X 4 boxes on the lower left corner to the upper right corner a
unit region is completely filled.

1et. There are 28 small boxes in 1 unit region, so each box is of a unit region.
28

3 4 28The shaded region has 7 X 4 = 28 small boxes. So 1 X 1. If we
4 7 28

move the 4 X 4 boxes in the lower left corner, they may be used to fill in a
full unit region.

01, 1. iFl
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Answers to Exercises

4
7

c i
1There are 4 small boxes in 1 unit region, so each box s of a unit region.
4

1 25The shaded region has 5 X 5 = 25 small boxes. So 2 1 X 2 - = 6 1
.

2 2 4 4
We could move the last column to fill in the top row to make a 3 X 2 array
with 1 small box left over. That tells us that

1 1 1 12iX 2i= 2X 3+-4= 6-4

I. There are 4 small boxes in 1 unit region, so each box is I of a unit region.
4

The shaded region has 7 X 7 = 49 small boxes. So 3 i X 3
2

1 =
2

49
12

4
1

.

4
We could MOW the last column of shaded boxes to fill in the top row and
make a 4 X 3 array with 1 small box left over. Hence

1 1 1 13iX 3 .=. 4 X 3 1-i= 12-4.

-369-
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312

There are 4 small boxes in I unit region, so each box is of a unit region.
4

The shaded region is 9 X 9 = 81 small boxes. So 4 1 X 4 1 = = 20 1.81

2 2 4 4
We could move the last column of shaded boxes to the top row and make a

5 X 4 array with 1 small box left over. Hence41 X 4-1 = 5 X 4 + = 201

2 2 4 4

41

1

1 *4. The last three products may be written as follows:

I I I I2-2.:= 2X 3+74= 6 -;-4.
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I I I I
3 -iX 3-2-= 3 X 4 +-4= 12-4.

1 I 1 14iX 4i=4X 5 +-4= 20-4

This suggests the generalization that for any number n,

1 I
(n + -2-) X (n + -i) = n(n + I) + I

4

But

I
( n + i n + -i = n + n +IX I )

and

1 I
n(n + 0 -F -4 r= ii + n + -4 ,

establishing the generalization.

5. a.

1

5 X
2

I 1

5 = 5 X 6 + -4
2

= 30 1-
4

1 1 1 I6-i )< 6i= 6 X 7 +-4 = 42-4.

3
The region for 2

1- X - has 5 X 3 = 15 small boxes, each worth -1 of a unit
2 3 6

3
region. So 2

I- X - = --15 = 2 I- . We could easily split the rectangle into
2 3 6 2

11 + 1 -I- -.
2

21

1---.A.----,
1
e

-............./
I
3

I'

1 2 I
b. The region for 3 - X - has 7 X 2 - 14 small boxes, each - of a unit region.

2 2 4

3 7 1
47. t', n
4.) u
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2 14
So 3

1 X = = 3 1 . We could easily split the entire rectangle into
2 2 4 2

regions of 1 + I + 1 1 = 3 1
.

2 2

31

1

7.1

%.==.400

a

1

Exrcise Set 3, p. 127

3
1. Each small box is 1 X 1 = 1 . The shaded area is X 1

, consisting of 3
5 2 10 5 2

3 1 3
such boxes. Hence X = , which is the same value obtained by the traditional

5 2 10

algorithm.

1 1 1 2 3 6
2. Each box is X . The shaded area is X the same value

5 4 20 5 4 20
obtained by using the traditional algorithm.

3 2 2 3 6IX 3 1.1 3 Xi=i-o

372
3 60



Answers to Exercises

3
4

1 3 3
3. Each box is of a unit region. The shaded area has 3 boxes. So X

20 4 5 20
which is the same answer one obtains from the traditional algorithm.

1
20

I

4. Each box ts -- of a unit region, as 24 or them make 1
24

1
region has 3 X 5, or 15, boxes, each or a unit region. So

24
the same value obtained by using the traditional algorithm.

.1

unit region. The shaded

3 5 15 .
X , which Is

1
S. Each small box is of a unit region, as 3 make up a full unit region. The rectangle

3

1 39
for the product has 3 X 13 39 small boxes. So 3 X 4 13.

3 3

373
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The traditional algorithm yields

3 X 11 = 3 X 13 39
3 i T T 13'

the same result.

3

1

i

1
a

It,

41
a

II. Each small box is 1 of a unit region. The rectangle for the product 3 1 X 4 has
3 3

10 x 4 40 small boxes. It follows then that 3 1- X 4 = = 1340 1

3 3 3
The traditional algorithm yields

1 40 13iX 4 = T. =
3
- = 13

3 '
the same result.

31

4

. 2T. Each small box Is --1
of a unit region. The rectangle for the product 2 x 3 1

10 5 2

contains 12 X 7 = 84 small boxes. Hence 2

The traditional algorithm yields

2 1 12

2 X
5

7

3
1 =
2

84

84 =
10

2

8
2

.
5

the same result as the previous one.

-374--
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Answers to Exercises

34

2. Each small box is --1 The rectangle for the product 2 1 X 3 contains 5 X 17=

85 small boxes. Hence 2
1 X 3
2

2 =
5

85 =8 1
.

10 2
The traditional algorithm yields

1 2 5 17 85 1

2 X 3 = X = = 8
2 5 2 5 10 2

the same result.

A I
MMII

=1

311

11. Each small box is 1 . The rectangle for the product 2 1 X .1 has 5 X 4 = 20
8 2 4

4 20boxes. Hence 2 1 X = 2 1.
2 4 8 2

The traditional algorithm yields

-375-
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the same result.

1 4 5 4 20 12-2 X
4

= X =
8
= 2-2'

2 4

401.10
10. Each small box isi. The rectangle for the product 2 3 X has 8 X 3 = 24 boxes.

9 3 3
The traditional algorithm yields

2 3 8 3 24 62-ix-i=3X.i-=T= 24,
the same result.

21

.*
II

3

I 1 511. Each box is . The rectangle for the product 3 X contains 7 X 5 = 35
10 2 5

boxes. Hence

1 5 35 1

3 2 s 3
The traditional algorithm yields

1 5 7 5 35 _3-i-X3=-ix-5-=i7j 32,
the same result.

376



31

1

I.

Exercis. Set 4, p. 129

(Answers to Exercises

1
1. Each box is . The shaded rectangle has 3 X 2 boxes, or 6 boxes. Hence

3

2 63 X = = 2.
3 3

The traditional algorithm yields

2 3 2 6
3 X = X = = 2

3 1 3 3 '
the same result.

1
2. Each box is . The shaded rectangle has 2 X 3 6 boxes. Hence

5

3 62 x 3 = 3.
The same result is obtained from the traditional algorithm.

Fe.;
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3. Each box is 1
. The shaded rcctansle has 3 X 1 n 3 boxes. So

4

1 3
3 X 4 = 4.

The same result is obtained from the traditional algorithm.

1.0
i
4

1

4
4. Each box is . The shaded rectangle has 2 X 3 = 6 boxes. So

3 62 X = .
4 4

The same result is obtained from the traditional algorithm.

1

i

5. Each box is
1

. The shaded rectangle has 3 X 2 = 6 boxes. So
5

2 63 X =
5 5

The same result is obtained from the traditional algorithm.

s

6. Each box is 1.. The rectangle for the product 3 X 2 has 3 X 3 = 9 boxes. So
3 3

3 9
3 X 3 = 3 = 3.

The traditional algorithm yields the very same computation and the same result.

-378-
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Exercise Set 5, pp. 135-36

1. . (7 X 2) X 2 = 7 X ( X Multiplication is associative.
3 3 2

3 2 3

= 7 X I The product or a number and its
reciprocal is I.

= 7. I is the multiplicative identity.

" 22
63) 7

22 ) 7

a

22 7
X I is the multiplicative identity.

= 1 The product or a number and its
reciprocal is I.

h.

C. x +

.qx + .Manipulation distributes over addi-
tion.

= 2 +

= 2 I.
5

d. (6 + 1) X = X (6 + . . Multiplication is commutative.

Multiplication distributes over
= (I X 6) + X 1)

2 . 2 5 addition.

2= 3 +

2= 3 .
5

379
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2. If 3a = 3b, then

X (3a) = X (3b)

(13
X 3) X a = (1. X 3) X b Multiplication is associative.

IXa=1Xb The product of a number and its
reciprocal is 1.

a = b. 1 is the multiplicative identity.

. a b3. II - = -, then
3 3

( 31
3 X 'Z) X a = (3 X 3) X b.. Multiplication is

a
associative; = a,= b.

1 1

1IXa=1Xb 3 X 3 = 1.

a = b. 1Xa= a, 1 X b=b, as
I is the multiplicative identity.

a b
4. If = , then

c c

J

X X

c Xa cXb1Xc
aXc bXc
1X c 1 X c

a _b
1 1

a = b.
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S. if 3 3

a b
then

3 3(a X b) X ; (a X b) X -1-;

(a X b) X 3 (a X b) X 3
a b

a X (b X 3) (b X a) X 3
a

b X 3 b X (a X 3)
1

3X1)--=3Xa
b = a.

See exercise 2.

6. Replace "3" by "c" in exercise S.

a c e7. Let r = 7) , s = --ii , t = i

U. (rs)t = (I) X .i) X

i

(a X c) e
b X t 1 i

(a X c)X e
(bXd)X1
a X (c X e)
b X (d

=I,Xcd))<(ef

=2/AX0
= r X (s X t)

= r(st).

b. r(s = r X (s

Ili X (i +

381
3
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C.

b dX1 dX/
a xcXI-FdXe

d X

a X (c X I-FdX c)
b X (d X I)

a X (c X I) + a X (d X e)
b X (d X I)

a X (c X ) a X (d X c)
b X (d X I) b X (d X 1)

OIXOX I 4.aX(cX0
(bXd)X/ (bXd)XI
a X c (a>12))_< d
bXd+ bX(dX1)
(9 (a X c) X d
b d b X (I X d)

= (r X s) (a X c) X d
(b X I) X d

a X c= (r X s)
b X

= (r X s) (2 X
b

= (r X s) (r X I)

= rs + rt.
(s Or = (s 1) X r

r X .(s I)

= (r X s) (r X I)

(s X r) (t X r)
= sr + tr.

d. If sr = st, then

sXr=sXt
EX2=EX5
d b d

3C;t6) 382
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Answers to Exercises

x x = x x

tx1)-tx,
a e

b I

r= S.

S.

9.

10.

5 8 5 40The reciprocal of is because " 8

8 5 8 5 40

4 3 4 3 12The reciprocal of .
because X

3 4 3 4 12

Suppose that d were another multiplicative identity. Then for every rational
number r we must have d x r r and r X d r. In particular, dx I I and
I X d I. Out I is a multiplicative identity, so d X I d and 1 X d d. Then
d d X I a. 1, so d I and d cannot be an identity different from I.

II. Suppose that the rational number s had two reciprocals, say, r and t. Then
rxs. 1, and r X t I. But then r Xs t X .r, from which it follows that r t
and s has but one multiplicative inverse, that is, one reciprocal. We made use of the
property of restricted cancellation.

Exorcise Set 6, pp. 138-39

I. 111.
7 It. 6 3

e. 33
5

L a. If r> .t, then r-s-l-p for some number p> 0 and

r X I (s p) X t

sX t PX
so rxt>sXt because pXt> 0, or rt>st.

a c11. We sketch a proof. If > , then for some p> 0
b d
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Now, multiplying both members of the equation by bd, we obtain

ad = bc + bdp.
Dividing both members by (lc, ;

I

c a ac t
d b bdp

Therefore
)

>
d b

or -b < d
c a a c

1

3. a. Multiplication does not distribute over multiplication.
b. Distributivity over addition was not applied properly.

1c. If the numerator had been divided by 2, the result would have been 2 + 3

,
46 64

I
or 5, which is correct.

a. It just does not work in almost all cases. If canceling 6s worked, then

and ought to all equal 4.

16

61 61

Exercise Set 7, p. 140

1-7. The of has the meaning of multiplication in exercises I, 4, 5, and 7.

1
3n

b.

Exercise Set 8, p. 143

6 7 8 10

3 x 21rx 71.



C.

x n

d.

2 x n

1.

Answers to Exercises

I X I In ±
15 4 21I

x n

1 2 3 4
0 5 5 5 5 1

1

3

385--
,



The Rational Numbers

2.

ad

o 1 f: = (ac divisions from 0)

I

° t
ad A
bd

b.15.1xi.

L (ac divisions from 0)

Review Exercises, pp. 141-46

6 3 1
1.

a' °I. RI

18 9 19

b. °r . 4
20

77 17 11
or 3 1. 4

20 20 20

2. a. The student thought that this was an addition problem. Have problems in
which the question calls for the operation with no computation.

b. The student probably got addition and multiplication algorithms mixed up.
Preparing rectangles might help him.

e. The student took the easy way out, which is not correct. Two partial products

were omitted here: 2 X 1 and I X 3. Preparing rectangles for the product
2 2

might help.
d. This is a frequent error, multiplying both numerator and denominator when

niultiplying by a whole number. Among the ways of preventing such an

error are the following: (1) Express the whole number as a fraction: 3 =
1

(2) Recall that the value of a fraction is not changed if both numerator and
denominator are multiplied by the same nonzero number.

3. The answer to this question will be found in the section of this chapter titled
"Properties of the Multiplication of Rational Numbers."

4. These are some properties that hold for multiplication of rational numbers but
not for multiplication of whole numbers:

386
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If a product of two numbers Is I, it is possible for neither factor to be 1.

2 3 6
Example: -3 X -2 = -6 = 1.

Every rational number except 0 has a multiplicativ.: inverse or reciprocal.

Example: -4 and -7 are multiplicative inverses.
7 4

Products may be smaller than either factor or both factors without being 0.

\Example:I xi (1 1 1 1=
2 3 6 -6 -2 -6

1

12. -1
15. a. 2 e . 30

4 4 4

1 1
b. 6 -4 d. 20 -4 f. 42 -4

See exercise set 2, exercise 15.

2 66. a. 2 2 c. 12 . 6
9 9 25

2 6 6f.
9

Let a + b = 1. Then

+ a) X (n b) = n X (n + 1) + a X b.
Proof:

nX(n+ 1)-FaXb= n2 +n+ab.
(n + a) X (n + b) = (n + a) X n + (n + a) X b

=nXn+aXn+nXb+1X.b
= n2 + n(a + b) + ab

=n2+nXl+ab
= n2 + n + ab,

the same result as above.

7. Let a + b c, then

(n + a) X (n + b) = n (n c) + a x b.

387
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Proof:

(a + a) X (a b) = n2 +(nXad-nxb)-FaXb
= n2 + n(a b) ab

= n2 n(c) ab

= n x (n c) ab .

. a. r = 0, or s 0, or both r and s are O.
b. r 0 and s 0, and r and s are reciprocals of each other.

9. A better assignment and its value are shown below.

7 A 6 > B

A B + C 7 6 + 9X XB + 1 D + 1 6 + 1 2 + 1

7 15
= T
= 1 X 5
= 5.

The best assignment and its value are shown below.

9 > A 6 > B C

9 6 + 7 9 1 3
X6 + 1 x 2 + 1 7 3

117

21

4= 5

DIVISION OF RATIONAL NUMBERS

Exercise Set 1, pp. 153-55

4 1
1.

a. L3]

Check: 1 4 4x 3 5.

-388-
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9 3 [3b . d
t_II

Check: 3
X i

9 3
G IT) --

xLJ
Check: 3 3 93 x 2 To

a. [
4 X 3 2 [
7 X 3 3

12 2 [6.
7]t lxiL

I.

Answers to
Exercises

2
2 3

1 X 2 X 3 2 [2 X 2 X 3 3

_ [2112 3 4t IX I=-1
Check: 2 3 6 1

e
[1

2 3

3

2 3 H
3X2X3.2
2X2X3'1-3

18 2 [9
-;1].+ XLJ

Check: 2 9 18 3Check: 2 6
x

2-to 25

12
-271

[

4
5

h .

3 X 2 [it) X 2 5

6 2 [3.120 3 4

t IX

X = =3 4 12 4

1 ÷ = [

3 X 4 X 3 4 [3 X 3]2 X 4 X 3 3 2 X 4t lxi
Check: 2 3 6 3

Check: 4 9 36 3
io To' x
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3 3 1 82. 4.
5

d. , or
2

or 4

3.

b.
3

5

8

2
or 4

3 8
e.

5
1. -2- , or 4

a c a- ÷, - =
d d c

2 3
4.

1
b. , 6

9 5
C. ,

d.
15 8

S.
a -1- .2 and 2

d (1.

6. 6. 1 2
5

Proof: a Xc c a.
dXc. c

L_ I

25 8

8 25

3 2

2 15

7 5

-1 a r e reciprocals.
b

Proof: a c a X d-
b d b X c

c a b X c-
d b a X d

c. 2
2 2

3 5

2 1 1b. 3
9

d. 4 -
5

I. 2 -8

8
or 4

7. c.) ÷E=1.1÷E+E.4.E.bd fb fdf
Proof: (7; .9 e (a X d b X c) e

d b X d
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(a X(1 -FbX c) X
(b X d) X e

(a X d) X I + (b X c) X f
(b X (1) X e

(a X d) X t X e)X
(b X d) X e + (b X d) X e

aXd f bXc IX -F X-bXd e bXd e

=

5

5

b f d e

Exercise Set 2, pp. 157-58

5

2

c. 4

1

2

2

1.
3

1

1

1

2
b. 7

3
1 I

3

5 2
2. a. d. g. 2

5 8 16I.

9 3
e. 1 I. I.

Exercise Set 3, pp. 160-61

2 7 371. . 7 -5 d. 2 e. 3
9

1 1 91
b. 8 .' . 83 h. 1

6 3 125

1 76e. 8 I. 4
231

i. 111 1
3 9

391
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2. An outfit requires 5 yards of cloth. How many outfits can be made from 37
yards of cloth?

A tree is expected to yield 5 bushels of fruit. How many trees are needed to obtain
a yield of 37 bushels?

Five boys worked on a job for which they received collectively $37. If the boys want
to divide the amount equally, how much should each boy get?

100 96 4
12-1.3.

8 + 2

1

12 4 = 12 2.
8

85Tor)
8

20
16

4

Exercise Set 4, pp. 164-66

1. The expressions in b, g, I, 1, k, I, m, and n name no number because 0 appears
as a divisor.

42. a.
3

h.
3 1

O. 1,i

3 4
b. I. Meaningless 11.

4

2 3c. 0 I. 9. 4

1
d. Meaningless k. Meaningless 1

2

. 0
89

m. 98

2

2
t.

g. Meaningless n. Meaningless u. 0

3. r = O.

4. r = s, r 0, s 0.

5. r = 0, or s = 0, or both r and s are O.

6. r 0 0, s 0 0, r and s are reciprocals.

7. s = 1, or r = 0, or both.

U. s 0 0, and r = s X s.

9. s = 1, or r = 0, or both.
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Exercise Set 5, pp. 170-72

1 1 7
1. a. 5 i d. 5-6 g. 1 To

3 1

b. 3 . 4 h. 2-3
40

3
c. 6 . 7 3

31 4 35 8 11
2. a. , or 3-9 d. T , or 3-9 g 34

29 7 9 9
b. if , or 2 .. h. Tsil 31

34 1 11
or 3 P. T-9

11

3. Sec the section preceding this exercise set for the answer to the first part. We
sometimes say that 1 is a partial identity or right identity for division because for every
number r we have r + 1 = r.

4. For r2 = s2 and r 0. Then r and s commute under division.

5. For r = 0 or t2 = I. In all cases s 0 0 and t 0 0. The associative property holds
for r, s, and t under division.

6. r = 0, s 0, and t 0 0.

7. 3 = 6. They are less than 1 and greater than 0.
2

S. a. r p = s. b. r p = .

(r p)t = st . r + p s

rt + pt = st.
rt < st . + 12, =

t t

<
t

Exercise Set 6, p. 176

1. a. Missing-factor method

401
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Reciprocal method

3

4

3

-4

3

4

3 1

4 2

Equal-multiplication method

2

3 2
Tt X

6

4

3

2.

X

X

X

2

1

1

2

3 1 3 2 1 /
4 5- 2 -4 X

2
X -1

6 2
4 2

3
1

2

3

Same-denominator method

3 1 3 2
4 -r 2 4 4

3

2.
Number-line method

x n2 0 1 1 1 1
4 2 4

Check: X -3 =
2 2 4

394



Rectangle method

3 1

4 2

1
4

1 1
4 4

1
a

1
4

b. Missing-factor method

Reciprocal method

1
a

1 3

2 4

12 3 4 2

6 3

t xT

Building block

Answers to Exercises

1 3

2 4

2

2

1 3

2 4

4
3

4
2

X
3

4
2

X
3

4
6

2

3
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Equal-multiplication method

1 3

2 4

1 4
X

2 3

3 4

4
X

3

4

6 -r 1

4

6

2

3.

Swne-denominator method

1 3 2 3

2 4 4 -- 4

=

Manber-line method

2

3

34 X

0 9
2

answer

3

11\4 I.

n
1

0 1
12

1 3
2 4

Rectangle method

3 2 6
Check: A

4 3 12 2.

1 3 1 X 6 3

-r 2 X 6 4

6 3.

12 4

answer

4

1 1 1
21 Building block =,*

12 12 12

3
4 4

1
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c. Number-line method

4 x n

Answers to Exercises

Rectangle method

answer 6

5

4

3

2

1 6 3Check: x 6 = 4 =

3 1 6 1

2 4 4 4

4

4

4

4

1
4

4

1

4

d. Number-line method

8 _ 3
4 2

Building block =

1
2

Check: 3 = 3X = I.
2 6 12 4
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Rectangle method

Ianswer

.

1 1

1 3 1 X 3 3

4 2 4 X 3 2

3 3

12 2

1. J.
12

I.
12 il .i.

4 Building block = Ili12

/ 1 11
2 2

2. Justifying by the reciprocal method:

a c- =
d d

a

a

a

d'

a d
TI

X

a c

d d 71X

a X d
d X c

a

1

x

x

Justifying by the equal-multiplication method:

a- - =
d d

a d
Xd c

a X d
1

d X c

a X d
c X d

a

-398-
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24

answer --I. 6
5

4

3

2

4

4

4

4

4

b.

answer I.- 4
3

2

1

C.

answer

4

6

6
6

1 11 11111 I

Answers to Exercises

Building block = 4

24
Building block =

6

1 2 3 2 X 6 32 ÷ 1 :
2 1 2 1 X 6 2

3

1
112

1 4 3Check:I3X

Building block =

12

6

= 2.

Review Exercises, pp. 177-78

1. Answers are the same, regardless of the method used. They are shown below.

4
U.

3

3
b.

4

c. 15 1.

1

3

10

10

b .

10

3

-399--
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The Rational Numbers

2. If a 0 and b 0, then a b and b a are reciprocals.

3. Probably the missing-factor method.

4. "The right one will be inverted, but so will the wrong one." Go back to basic
principles when such a situation arises.

s. If the numerator and the denominator are the same, then adding the same
number to both does not change the value of the fraction.

If the numerator is less than the denominator, then increasing both by the same
number increases the value of the fraction: for example,

1 1 + 1 2

2 2 + I 3

A general proof that this is so may go like the following. Let a < b, and let r be any
number greater than 0. To show that

it will suffice to show that

or that

or that

or that

or that

a + r a
>b + r b

a + r a

b r

b(a + r) a(b + r)
b(b + r)

ba + br ab ar > 0

br ar > 0

r(b a) > 0,
which is the case as b > a.

If the numerator is greater than the denominator, then increasing both by the same
number decreases the value of the fraction: for example,

5 5 + 1 6

2
>

2 + I 3
2.

A general proof that this is so can follow along the same lines as the one given above.

a6. Let r = b s = , I = ,

400



.

b .

C .

rt = (rt) (st)
st

ae ce

ae Xdf
bf X ce

a X (I
b X c

a= - 4- -
b d

= r s

r
-t = (r s) s)

s s

ad ed

+

b c

= (r t)

= (r -1- t) s

r t

r XL= (r s) X04-0
s

(t) X
(fg

=LIX-(-1-X.e-X11bcig
a e d X h=-b-X-/Xcxg

cXR= (r X t) .

401 -
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Answers to Exercises
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and denominator by ef)



The Rational Numbers

d.

= (r X 1) (s X u)

r X t
s X it

ri=
su

r = (r s) (1 u)
s u

(y1.)
bc/ \fg/
d fg=
ax
ad (g

X X
bc h e

ad (g= x

= (r s) X (u t)

s t

DECIMALS: ADDITION AND SUBTRACTION

Exercise Set 1, pp. 188-93

1. . 0.3 d. 0.01 g. 1.56

b. 1.6 e. 0.42 h. 0.008

e. 2.0 t. 3.09 I. 0.023

1 18 42.
a. 10 d.

100 g.
1,000

4 47 37b. 3 e. 3 h.10 100 1,000

7

loo
6f. 2

100

402---
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3. a. 0.6,
6m

32 m

6 m7

d. 0.04,

0.12,

1. 0.23,

4
100

12

100

23
100

Answers to Exercises

3
g. 6.03, 6

100

h. 0.007'
1,0700

54
i. 0.054'

1,000

4. a. 0.8 b. 0.5 e. 2.9 d. 2.2 1.4

5. Answers are in italic type.

o. 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12. The numbers increase by 0.01.

b. 0.05, 0.10, 0.15, 0.20, 0.25, 0.30. The numbers increase by 0.05.

e. 0.18, 0.15, 0.12, 0.09, 0.06, 0.03. The numbers decrease by 0.03.

d. 0.004, 0.005, 0.006, 0.007, 0.008, 0.009. The numbers increase by 0.001.

6.

7.

S.

6.23, 6.27,

a. 0.4, 1.8,

a. 0.6

a. >

6.31, 6.35, 6.39, 6.43. The numbers increase by 0.04.

2.0, 2.1, 3.4 b. 0.9, 1.0, 1.4, 3.2, 4.7

b. 1.3 e. 0.1 d. 3.4 1.5

b. = e. > d. < a. < f. =
9. a. 0.01, 0.1, 0.15, 0.25, 0.3 e. 0.09, 0.25, 0.4, 0.50, 0.8

b. 0.10, 0.2, 0.33, 0.4, 0.42

10. a. 12.5 b. 9.0 e. $3.50

o. 6.5 1. 0.723 I. 1.9

b. 0.42 g. 32.46 k. 3.25

e. 83.79 h. 11.2 I. 979

d. 3.08 1 8.08 m. 837.96

0.009

12. a. 3.8 miles b. 4.2 miles e. 3.8 miles d. 3.9 miles

13. a.

It I I 7i-
0 1.0 2.0 3.0 4,0 5.0

3.8 4.3

I--1

1.0 2.0 3.0 4.0

4.2 4.4

-403-
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The Rational Numbers

.14 I I I I..
0 1.0 2.0 10

0 1.0 2.0 3.0

b.

/ I 4.0 5.0

3.8 3.8

,,./74.0 5.0
3.89 3.9

3.8

4.0

4.3

These pictures are for the responses in 12a. Similar diagrams can be used
for the responses in parts b, e, and d.

14. a. 1.8 b. 2.07 e. 32.8

15. Preferable answers are the following:

a. 0.700 b. 0.401 e. 600.022

One method used to minimize confusion in situations like parts a and b is to omit
or use hyphens to make the meaning clear:

Seven hundred thousandths = 0.700.

Seven hundred-thousandths = 0.00007.

Four hundred one thousandths = 0.401.

Four hundred one-thousandths = 0.400.

-404-
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Answers to Exercises

The statement in part c should present no difficulty if "and" is used solely to indicate
the location of the decimal point.

600.022 = six hundred and twenty-two thousandths.

0.622 = six hundred twenty-two thousandths.

These answers do not remove oral ambiguities.

16. Answers will vary. Some activities suggested by this chapter include exercises
similar to those in numbers 4 and 7. Any exercises, activities, or questions that focus
on the meaning of place value should be of help.

17. a.

b.

18.

13
100

-MIMEO
A MENNEN

EMMEN, 'MORONI.mammon
,*15111111rnow

200
1 00

a. 0.10,".

19. . 2
3

30 4
100 100

2 3 4
10 100

MANN
MM.misio

MENEM
, ,M111.

.;MEN11111NONEE

b. I .2,1o C. 2.2t1roo d.

2
b. 2 -3 c. 7 a. 22 2

3 9
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'113



The Rational Numbers

1.

Exercise Set 2, pp. 197-98

Fraction Equivalent Fraction Equivalent Decimal

1

4

1 X 25 25
0.25-

4 X 25 100

1

2

1 X 5 5

10
0.5-2 X 5

3

20

3 X 50 15
0.15-

20 X 5 100

9

25

9 X 4 36
0.36_

25 X 4 100

2.

3.

4.

5.

6.

7.

a. 0.6 b. 0.75

a. 2.5

1 5 50

e. 0.625

b. 3.75

500

d. >
3.125

.100,

a. 0.06 0.45

e. 1.2
100 10 1

. 0.16

g. >

3.2500

2 10 100

2 4 40

1,000

400

e.
1,000

750

= -
100 10

75 3

b. To 100

a. b. >
. 0.4
a. .5, .50, .500

c.

b.

b. .1,

d.
1,000

e.

.1000

100 4

t. <

c. 3.25, 3.250,

We knew how to name as a decimal a rational number with a denominator that
was a power of ten. Therefore, when given a rational number without such a denomi-
nator, we found an equivalent fraction that showed a denominator that was a power
of ten.

9. Answers will vary. The prerequisite skills and understandings required include
the ability to name rational numbers with a denominator that is a power of ten as a
decimal, the ability to generate equivalent fractions for any given rational number, and
an understanding of place value.

Exercise Set 3, p. 200
1. e. 0.40

b. Cannot
e. 0.25

d.

.
0.14 v. 0.26
Cannot h. 0.625
Cannot I. Cannot

1. Cannot
k. 0.50
I. 0.36

2. a. 5, 4, 50, 20, 8, 2, 25

b. 5 5. 20 = 2 X 2 X :i. 2 = 2.
4 = 2 X 2. 8 = 2 X 2 X 2. 25 = 5 X S.

50 = 2 X 5 X S.

-406-
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3. a. 3, 9, 7, 6, 11
b. 3 = 3.

9 = 3 X 3.

4. Answers will vary.

7 = 7.
6 = 2 X 3.

Answers to Exercises

Exercise Set 4, pp. 209-11

1. Answers will vary. One likeness is that the same digits are used. The major
difference is that the place values represented by the digits differ.

2. Answers will vary. Although both examples represent the sum of the same
numbers, they differ in the way the numbers are named.

3. . 2 b. 7

4. a. 9.7
b. 0.68
e. 1.21
d. 4.99

3. a. 6.2
b. 1.49

c. 5.1
f. 4.43
g. 1.092

c. 0.46
d. 4.3

c. 13 d. 15

2.203
t. 0.18

h. 46.09
i. 17.75

25.17

. 0.122
h. 2.71

6. a. 0.24 0.2 -= 0.24 - 0.20 = 0.04.
b. 1.7 0.9 = 0.8.

C. -3 - 0.5 = 0.6 0.5 =
5

7. The major difference is in the place values represented by the digits. Since the
pattern between adjacent place values was an extension of whole-number place values,
similarities include the regrouping procedure and the adding of digh in the same
place-value position.

S. Both algorithms involve the computing of sums (or differences) of numbers
that can be shown by like fractions.

9. Answers will vary.

10. Answers will vary.

DECIMALS: MULTIPLICATION AND DIVISION

1. a.

Exercise Set 1, pp. 217-18

.....aammommrosmarMEM MWM1SMMIONNEOOMMIMMOMMEEMM
MIIIMSMOMMERNOMOOMMEMWOMEMEMEWOMMEAMUM
MOINOMMEMMESOMEMMEMMEM
MMEMIIIMMOMOMMIMMEMK1
IIIMMIMIMMEMMSXMMAISMUMS

MOS MWOMOVIONMEN
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The Rational Numbers

b.

2. . 3.7 X 6.2 = 3 -1- X 6 1
10 10

c. .8 X 17.5 = -180 X 17 -15-0

37 62

10 10

37 X 62
10 X 10

8 175

10 10

8 X 175
10 X 10

2,294 1,400

100 100

94= 22
100

= 22.94.

1 83b. 4.1 X .83 = 4 X
10 IN

41 83

10 ' 100

41 X 83
10 X 100

3,403
1,000

403= 3
1,000

= 14.

d. .67 X 3.29 = 67 29
3

100
X

100

67 329

100 ' 100

67 X 329
100 X 100

22,043
10,000

2
2'043

10,000

= 3.403.

Exercise Set 2, pp. 219-20

= 2.2043.

1. 33.5 3. 49.8 s. 166 7. 4.12

2. 9.62 4. 5.56 6. 84.4 . 4.72

Exercise Set 3, p. 221
1. Upper bound 4.25 X 7.35 = 31.2375.

Lower bound = 4.15 X 7.25 = 30.0875.

2. Upper bound = 9.75 X 14.15 = 137.9625.

Lower bound = 9.65 X 14.05 = 135.5825.

-408-
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3. Upper bound = 6.05 X 9.15 = 55.3575.
Lower bound = 5.95 X 9.05 = 53.8475.

Exercise Set 4, p. 223

Answers to Exercises

1. a. 2,840 b. 6,700 c. 283.7 d. 610.000

2. a. 4.75 X 102 c. 5.7 X 101 4.3689 X 10
b. 2.89 X 10 a. 3.287 X 101 F. 3.5 X 10"

Exercise Set 5, p. 224
1. 1.4 2. 8.3 3. .63 4. 4.3 5. .468 6. .27

Exercise Set 6, p. 226
1. True. 5. False. .00064 .004 = .64 4.

2. False. 6.53 .7 = 65.3 7. 6. False. 3.9 .003 = 3,900 3.

3. True. 7. True.

4. True. S. True.

Exercise Set 7, pp. 230-31

1. . 19.6 b. 18.9 c . 43.8 d. 1 .9

2. . .5 b. .571428 c. .45 d. .230769. *. .1.89

3. If the decimal does not terminate, the possible remainders are 1, 2, 3, .. . , b - 1,
so the maximum number of digits in the repeating block is b - I.

Exercise Set 8, p. 232
1. Let w = .38888 ... . 3. Let w = 2.77777 ....

Then 100 X w = 38.8888 .. . , Then 10 X w = 27.77777 ....
and 10 X w - 3.8888 ... . So 9 X w = 25,
So 90 X w = 35, 25

and w - - .
9and 35 7= ,

90 18
4. Let w = .499999 ....

2. Let w = .43434343 . Then 100 X w -= 49.99999 .

Then 100 X w = 43.434343 . ... and 10 X w = 4.99999
So 99 X w = 43, So 90 X w = 45,

43 45 1= .and and
w

Exercise Set 9, pp. 234-35

3 71. .. -4 = .755 = .74-4 c . i = .8755 = .8749

5 6= 2.55 = 2.4-4 d = .245 = .23-
25
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The Rational Numbers

2. Since it is nonrepeating, the expression represents an irrational number.

3. One such number is .34231010010001 ... (where the decimal continues in the
manner described in exercise 2).

1.

Exercise Set 10, pp. 237-38

REPEATING DECIMALS

a

b

Repeating Decimal

for LI
b

Number of Digits
in Repetend b 1

1

7
6 6.142857

3

13
6 12.230769

1

3
.-i 1 2

6

11
.1:i 2 10

4

37
3 36.108

7

41
5 40.17073

15

73
8 72.20547945

11
4 100.1089

101

30
5 270.11070

271

2. The number of digits in the repetend is a divisor of b 1.

410
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Answers to Exercises

3. In the computation for A. the numbers 7, 5, II, 6, 8, and 2 occur as remainders.
13

These are the numbers less than 13 that did not occur as remnindo.:, in the computation

3
for

13

MEASUREMENT

A laboratory approach was chosen for this chapter, and it suggests the use of activities
in place of giving exercise sets, as other chapters do. Answers will, in most cases, vary
a great deal; only a few are given below.

Activity 1, p. 241

The answer to 6 is b, c, e, a, cl.

Activity 8, p. 253

Reading across, the answers are as follows: first row, 3, 4, 9, 3, 4 ; second, 5 ,
2 2

4, 8, 8, 8; third, 2 , 3, 6, 4, 6.

Activity 14, p. 261

The answer to question 1 is shown below.

A/,A.k

Activity 15, pp. 265-66

I am not really measuring area. My assumption is that the ratio of the areas is the
same as the ratio of the weights.

Miscellaneous Problems, p. 266

1. 43 feet (or 42 ft. 11 in.)

2. The watch reading is too small. The number of seconds in a day is 86,440, and
the number of seconds in 15 minutes 23.7 seconds is 923.7. Therefore the correct

4 X 60reading should be increased by - X 923.7, ibout 2.6 seconds. The correct
86, 400
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The Rational Numbers

reading will then be

15 min. 23.7 sec. -I- 2.6 sec. 15 min. 26.3 sec.

3. Answers will vary.

4. 1 foot represents 8,000 miles or 1:42,000,000. The model of the mocn would be
about 3 inches in diameter.

3. The ratio is 8:1.

NEGATIVE RATIONALS

Exercise Set 1, pp. 270-71

1. John' reply number 2 + class's number, or y = 2 -I- x.

2. Owl's reply number = class's number 5.

3. Billy made up the rule. 12 is the first number given Billy, who replied, "19."
Billy's reply for 100 is "107." Billy's rule is to add 7 to the number given him by the
children.

Exercise Set 2, pp. 276-77

1. B,-3; C, -1; D,-5; E,+1 1
.

2

2. At B.

3. At the point for -2 1 .
2

4. The temperature was -7°, or 7° below zero.

3. His new balance was -75 dollars, or "$75 in the red."

Exercise Set 3, p. 279

1. We put 8 pebbles in the bag and take out 2, so there are now 6 more pebbles in
the bag than there were before. 8 2 +6.

2. We put 3 pebbles in the bag and take 4 out, so now there is 1 pebble less in the
bag than before. 3 4 .s :-1.

3. We put 5 pebbles in the bag and take 5 pebbles out, so there is still the same
number of pebbles in the bag as when we started. 5 5 0. 0.

2. +3

Exercise Set 4, pp. 2111-82

412



3. +2

4. +8

5.

+2 +6 = +8.

Answers to Exercises

+2 +5I I I I I
+8

6. +2 + +6 = 2 6 = 8.

7. Yes.

S. -4

9.

to. They point to the left.

11. They point to the right.

12. a. +2 + +7 = +9.

+2 +7
tiol I I $ -1

+9

b. -3 + = -5.

e. +5 + 1 = +2.

-s

-.3

-47-1
I. it II 14I.

+2 I
+5

413.rTA
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The Rational Numbers

d. +4 + -7 = -3.

.14
'7

11-1--- -I
3 I

ID. -2 + +5 = +3.

13. -5

14. Yes.

1. a. -1

b. -7

C. -5

1. Yes.

+5

+4

Exercise Set 5, p. 283

-1
d.

2

+1.
2

Exercise Set 6, p. 283

t. -3

1

g.

2. Use the number that indicates a motion in the opposite direction but the same
distance.

1.

Exercise Set 7, p. 285

+4 + +2 = +6.

(
1 0 1 2 3 4 5 6 7 6 9

1.1.1.1.101 I I

I I i i i 1 I I I2 1 0 1 2 3 4 5 6

414
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2.

3.

Answers to Exercises

+4 + +3 = +7.(
1 0 1 2 3

I
5 6 6 9

I I

I2 1 1 2 4 5 6

+4 + "5 =

4.

3.

6 5 4 3 2 1 0 1 2 3 4

a.

7 6 4 3 2 1 0 1 2

+

b. +2

= 5.

e. 0 d. +2 +2

4 3 2 1 0

1-443 2 1 0 1 2

Exorcise Set 8, pp. 286-87
+ 1

1. MO < .
1

2. True: a, c, d, 1, g, h. Statements b and i are false.

3.

4rfa



The Rational Numbers

Yes. They frequently use the point midway between -1 and -2 for -2 I .

2

Exercise Set 9, pp. 287-88

1. All of the statements are true.

2.
+11

3. Neither statement is true for all numbers a and b for which a < b.

OPERATIONS EXTENDED TO NEGATIVE RATIONALS

1. a. 7

b. 7

C. 7

d. 7

3

1
I.

Exercise Set 1, pp. 301-3

1I. 1
4

, or

k.

I.

3

4

_3
4

m. 2 1 or
4

.
3

4

1

4

1 1

P. 4
1 5 1

h. 1 7t , or
4 q. 4

1 5 1 5
I. 1 '

or r . 1 74 , or
4 4 4

5 1 5e. 1 -4 or
4 4

_9
4

1 9t. 2 -4 ' or
4

1 5
u. 1 74 , or 74

v. 1.5

w. 1.5

x. 3.9

y. 3.9

x. 1.5

3. m 7 3 = 4, (-1) 3 = 4, 0 3 = 3. Other variations are possible.
b. 1 (-2) = 3, 0 (-2) = 2, (-6) (-2) = 4. Other variations

are possible.

4. a. Both yield 5, e. Both yield 1.
b. Both yield -5. d. Both yield 1.



Answers to Exercises

5. a. 2 - (-5)
b. 5 - (-2)

= (2
- (5

+ 5)
+ 2)

- (-5
- (-2

+ 5)
+ 2)

= 7
= 7

- 0
- 0

= 7.
= 7.

e. (-2) - (5) = (-2 + 2) - (5 + 2) = 0 - 7 = -7.
d. (-5) - (2) = (-5 + 5) - (2 + 5) = 0 - 7 = -7.

Exercise Set 2, pp. 309-10

1510 , or 32 w. 9
4

b. 10 In. 4 x. 9

6 3 1 27 3
e. 10 n. -- or , or y. or

4

27 3
1.

8 8

6 3 1.. 3 p. 7.4 , or , or li as. 3

15
V. 3 bb 3q. 74- , or 342 .

3 1 6 3 .1
g. --2 , or li r. , or , or 1- ee. 3.25

4 2 2

3 .1h. --2 , or 1-2 It 6 dd. 3.4

3 1

, or 1 e. 6 so. 9
I. 3 u. 6 ff. 1.8

6 3 1

k. , or -2 , or 1-2 v. 6

2. a. Richer, poorer, poorer, richer (by $6 each time)
b. Product of two positive numbers

Product of a positive and a negative number
Product of a negative and a positive number
Product of two negative numbers

e. Problem of exercise 1 means that the postman delivers two bills for $5 each.
Problem b means that we mail out five checks for $2 each. Problem e means
that we mail out two bills for $5 each.

I lit
d. Yes in problems d, f, and g of exercise I, provided we interpret "-- as a

2
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The National Numbers

bill for 50 cents. No in problems and h because there cannot be such a thing
as one-half of a check or one-half of a bill.

3. a. 2 X (-5) + 2 X 5 = 2 X (-5 5) = 2 X 0 = 0. Therefore 2 X (-5) is
the additive inverse of 2 X 5, that is, it is 10.

b. (-2) X 5 + 2 X 5 = (-2 + 2) X 5 = 0 X 5 = O. Therefore (-2) X 5 is
the additive inverse of 2 X 5, that is, it is 10.

e. (-2) X (-5) + (-2) X 5 = (-2) X (-5 + 5) = (-2) X 0 = a Therefore
(-2) X (-5) is the additive inverse of (-2) X 5, that is, the additive inverse

of 10, which is 10.
d. a X (b) -FaXb=aX(b+b) = a X 0 = Therefore a X (b) is

the additive inverse of a X b, that is, (a X b).
(a) X (b) + a X (b) = (a + a) X (b) = 0 X (b) = 0. Therefore
(a) X (b) is the additive inverse of a X (b), that is, the additive inverse

of (a X b), which is a x b.

Exercise Set 3, pp. 312-13

1

v. 2 I.

b. 2 It. 4
1

e. 2 I. 3

a. 3 1
sn.

3

t. .5
U. .5

V. 5

. 2 n. 3 w. 5

; 1 ( 10). 3 3 or i- it. 2
2

1
ip. P. 3 1 (or l'311-) y. 2

.4

1 3 1

h. q. 10
z. (or .2)

3 5

1 7s. 3 , or -- e. 2 I (or 2) 2
2 3 3 3

3 3
2. k. 3 4- (-4) = (3 X 4) ± (-4 X 4) = 12 (-3) = 4.

1 + 3 =

-418-



3.

Answers to Exercises

3 -3.( 3\ ( 1

4

3 1

p. Similarly gives

q. Similarly gives

1(-10) + (-3) = 3 3.

33 + (-10) = _3
10 10

v. (-2.5) + .5

I. Similarly gives

aa. Similarly gives

= (-2.5

(-1)

2 ÷

)< 2) ÷

(-5)

(-1) =

(.5 X 2) =

1 1

(-5)

, or

+ 1

.2.

= 5.
= = 3

= 2.

I. (-1) (-3) (i) X (-1)

k. 3 + (-34) = 3 X (-1) =

m. (-2)÷ (-2) (-2) X (-1) = 3

1

. 21 + (-2) = 21 X (-1) = X (--34-)
2 4 2

20 10

6 3

q. (-2 = - = x -T3.6
2 4 2 4 2 =

3

Review Exercises, pp. 314-15

1 9 1 3I. a. 3 b. 74 e. , or 274 d. 74 . 1.5
4

2. a. 10 ID. 6 h. 3.4

b. 10 V. 9 I. 6
e. 3 v. 3 1 3

1. 1.5, or 1 , or,
2 2
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3. a. 3

b. 3

C. --4

1

d.

.

4. . 14

1

7
,

4

or

b. 2

3

I. 4
1

h. -3

e. 3

to
I. , or

1 7k. -- or
3

e. 2 d. 6.7

1.

n.

1

3 -3-

2 I
3

p.

e. 24

.5,

.5,

5
15

5

or

or

or

1

2

1

2

.2

GRAPHING

Exercise Set 1, p. 318

1. No, because of rounding off to the nearest tenth.

Exercise Set 2, P. 320

2. Answers vary.

3. The track width is 56.5 inches.

For an HO model, the (reek width is
56.5 87.1 = .649 inches.

For an N model, the track width is
56.5 4- 160 = .353 inches.

For an S model, the track width is
56.5 6.4 = .883 inches.

For an 0 model, the track width is
56.5 48 = 1.177 inches.

Exercise Set 4, pp. 323-24

5 1

1. The golf tees lie on a line. The slope is , or 2
2 2

2. Answers vary.
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Answers to Exercises
..

ii!--4 > -A. (alsoi > ).
. 3 2

9 6 4
,

,

Exorcise SO 3, p. 329

11. Some pairs are (0,--1 ), (1,1), (3,4), and (4,5 ). The graph is shown below. The
2 2

3.

3slope is
2

MINIMMOMMEMMII
MEMMOMMEMPAIM

MEMNIMOMMMMUM
MEMMEMMAIMEM
11111111MAMMIIMM
MINIAMMEMEMEM
MMOMMRAMMMIIM
MOMPINOMMEMM
MEINKOMOMMEM
MMERMOMMIIMME
EMEMEMffiffirs
MEMPOMMEMOMM
OWARMINIMUMME

A
IMMEMOIMEMEMMINIMMM
OMMUMMIIMMWMEMMIUM

MEMOMMIMMIIMMAI
OMEROPEGNMEMMUMM
MINE2MOMMIUMMIMM
NIMINOOMMIMOMMIIM
MINIIIMEMOMMIMMUMEM
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The Rational Numbers

herein Set 6, pp. 330-31

I. Some number pairs that satisfy the open sentence are (0,1) and (5,-2), shown
on the graph below.

0,1

(1 2

2. The number pair (2,2), for example, added to the graph above, does not satisfy

y + 1. It does satisfy y > 3x + 1.
5 5

3. Answers vary.

4. Points below and to the left satisfy y < =1! + 1.
5

Exerciai Set 7, pp. 336-37
I.

Miles per Hour Feet per Second
Time in Seconds to Travel

230 Feet

90 132 1.9
60 88 2.8
50 73.3 3.4
45 66 3.8
40 58.7 4.3
30 44 5.7
20 29.3 8.5
15 22 11.4
10 14.7 17.0

5 7.3 34.1
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GLOSSARY

The particular words and symbols in this glossary have
been selected to help clear up any possible misundastand-
ing. Usually a description rather than a precise definition
is given. Moreover, not all the meanings arc given but only
those needed for the text materials. Examples are pro-
vided to clarify meanings still further.

Aimee. An ancient device (still used today) for computing. A common
type consists of a frame with parallel rods. The rods arc usually
matched with the ones place, the tens place, the hundreds place,
and so on. Movable counters along the rods record numbers and
are used to carry out computation.

Absolute video. The absolute value of any number r Is the gaiter of the
numbers r and r. It is symbolized by 1.1". Thus,

fr is the greater of r and r.
If r 0, 1.1 iui 101 0.
frf is the distance of the point for 0 from the point for r.

Addend. One of the numbers added to determine a sum. When a pair
of numbers is associated with a sum under addition, each number
of the pair is called an addend of the sum. In the sentence 6 -1- 7 . 13,
the numbers 6 and 7 are addends. In more general terms, a + b is
the sum of its addends a and b. In the sentence 6 + 1:1 13, one or
the addends is "missing." See Minim; eiddend.

Additlen. With every pair of numbers a and b, addition associates the
sum a + b. For example, with the pair 13 and 6, addition associates
13 -1- 6, or 19. The sum a b may be determined in the following
way:

11 A and B are disjoint sets such that n(A) a and n(B) b, then
a b n(A B).
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The Rational Numbers

Addition property of zero. For every rational number b, b + 0 = b and
0 + b = b. Informally stated, the sum of every rational numbcr and
zero is the given rational numbcr. See Identity element for addition.

Additiv inven. If a + b = 0, a is the additive inverse of b and b is
the additive inverse of a. Example: -3 is the additive inverse of 3,
and 3 is the additive inverse of -3.

Additiv property of numration systams. Each symbol in a numeral
stands for a number. The sum of these numbers is the value of
the numeral. In "XXIII", the individual symbols stand for 10,10, I, 1,
and I. Because of the additive property, the numbcr represented by
"XXIII" is 10 + 10 + I + 1 + 1, or 23.

Algorithm (nlgorism). A systematic, step-by-step procedure for reach-
ing some goal. An algorithm for a subtraction computation is
a systematic procedure for obtaining a standard name for a difference.
Sec Compute.
One of the possibk algorithms for computing 624 397 yields the
following steps:

(c) 6'2'4
31917

2 2 7

(a) 6 2'4 (b) 6'2'43 9,7 3,917
7 2 7

Array, rectangular. A rectangular arrangement of objects in rows and
columns. The array below, viewed both as a whole and as split into
two parts, illustrates the distributive property.

6

Thc large array has 6 rows and 13 columns. We Say that it is a
6-by-I3 or 6 X 13 array. The 6 X 13 array is shown partitioned into
two arrays, a 6 X 9 array and a 6 X 4 array, showing that
6 X (9 + 4) = (6 X 9) + (6 X 4).

Associative property of addition. (Mso called the grouping propedy of
addition.) Whenever a, b, and c arc rational numbcrs, a + (b + c) =
(a + b) + c. That is, when numbers arc added, the grouping of the
numbcrs does not affect the sum. An instance of this property is
thc fact that 6 + (9 + 4) la (6 + 9) + 4. Subtraction, on the other

4 2 6--
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hand, is not associative. A single exception, although there are
many, suffices to show this:

(8 5) 2 8 (5 2).

Associative property of multiplication. (Also called the grouping
property of multiplication.) Whenever a, b, and c are rational
numbers, a X (b X c) = (a X b) X c. That is, when numbers are
multiplied, the grouping of the factors does not affect the product.
An instance of this property is the fact that 3 X (7 X 5) =
(3 X 7) X 5. Division, on the other hand, is not associative. A single
exception, although there are many, suffices to show this:

(8 4) ÷ 2 8 (4 2).

Base. A number used as a repeated factor. In the expression 103 =
10 X 10 X 10, for example, the base is shown to be 10. We refer
to "3" as the exponent. In the expression "43", 4 is the base. In
general, "b" is the base for "b"". See Exponent and Factor.

The symbol "10" is a name for the number ten in our Hindu-Arabic
decimal numeration system, but it is not a name for the number ten
in systems with other bases.

Base-sixty system. A system of writing numerals designed to represent
ones, sixties, sixty sixties, and so on.

Base-ten system. A system of writing numerals based upon ones, tens,
ten tens, and so on. The Egyptian system of numeration is a base-
ten system, as is the Hindu-Arabic system.

Cancellation property of addition. If r s = t s, then r = t. Example:
If n + 3 = 7 + 3, then n = 7.

Cancellation property of multiplication (restricted). In general terms,
if rs = Is and s 0, then r = t.

Column. A vertical line of objects in an array. The array below has three
columns.

r*N

4--------- a column

Commutative property of addition. Also called the order property
of addition. Whenever a and b are rational numbers, a + b = b + a.
That is, when two numbers are added, the order in which the num-
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bers are added or the order of the addends does not affect the sum.
An instance of this property is the fact that 9 4 = 4 9.

Commutative property of multiplication. Also called the order prop-
erty of multiplication. Whenever a and b are rational numbers,
aXb=bXa. That is, when two numbers are multiplied, the order
in which they are multiplied or the order of the factors does not
affect the product. An instance of this property is the fact that
6 X 14 = 14 X 6.

Composite. An integer n is composite if it has an integer divisor other
than 1, 1, n, and n. Examples; 4, 6, 33. The divisors of 6
are 1, 1, 2, 2, 3, 3, 6, 6,

Computation. A process for finding the standard numeral for a sum, a
product, etc.; a process for finding a standard name.

Compute. To find a standard numeral for a sum, a product, etc. To
compute the sum of 34 and 8 means to find the standard numeral
for 34 8, namely "42". To find a standard name.

Correspondence. A pairing of the members of two sets whereby each
member of the firit set is paired with a member of the second set
and never with more than one member of the second set. See also
One-to-one correspondence and Operation.

Counting. The process of pairing the elements of a set with the counting
numbers taken one after another in order of "size" and starting
with 1. If this process stops, the last counting number used is the
number of elements in the set being counted. When this happens,
the set is said to be a finite set, and the number associated with the
set a finite number. Every whole number is a finite number.

Counting number. Any whole number other than 0. (Some authors in-
clude 0 among the counting numbers.)

Cross product. The cross product of a pair of sets is the set of all ordered
pairs whose first element is from the first set and whose second
element is from the second set. The cross product of (a, 61 and
x, y, z I is 1(a, 4, (a, (a, A(b, x), (b, AO, . See Symbol,"X".

Decimal. Pertaining to ten (from the Latin word decima, meaning "tithe"
or "a tenth part"). Also, a numeral in base-ten numeration consisting
of a string of digits with a decimal point. (Also called a decimal
numeral.) Examples; 1.7, 2.35, 2.03005010, .46666 ...

Decimal numeration system. A system for naming numbers based on
tens. See Hindu-Arabic system of numeration.
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Denominator. The number named by the numeral written below the
fraction Lir of a fraction is the fraction's denominator. For example,
the denominator for each of the following fractions is 7:

2 3 9.
7 7 7

Difference. A number assigned to pairs of rational numbers by sub-
traction. 18 11, or 7, is the difference of 18 and 11. See Miss-
ing addend. a b is the difference of a and b. If a set A has a ele-
ments and one of its subsets, B, has b elements, then the number of
elements in A but not in B is a b. Alternately, the difference a b
is the missing addend in 0 + b = a.

Digits. The basic symbols in a numeration system. In the Hindu-Arabic
system the digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Direct measurement. A process for finding a number associated with a
property of an object by seeing how many times a specified unit can
be used to obtain this property of the object. A measurement in
which the actual unit is used to obtain the measure.

Disjoint sets. Two sets are disjoint if they have no elements in common.
If a, b, c, d, and e are distinct objects, then the sets {a, bl and lc, d,
are disjoint; but the sets la, b } and b, c} are not disjoint.

Distributive property, or distributive property of multiplication over addi-
tion. Whenever a, b, and c are rational numbers,

a X (b + c) = (a X b) + (a X c).
An instance of this property is the fact that

13 X (8 + 7) = (13 X 8) + (13 X 7).
Because multiplication is commutative, the distributive property may
also be written in the form (b c) X a = (b X a) + (c X a).

Distributive principle for division. Division distributes over addition
from the right. In general terms,

(r s) t = (r t) (s 1).

Dividend. In the sentence a + b = q, the number a is called the dividend.
The number a is also called the dividend in the sentence a = (q X b)
r, with r < b. In the sentence 15 + 3 = 5, the number 15 is the
dividend. In the sentence 15 = (2 X 7) + 1, the number 15 is again
the dividend.

Division. With pairs of rational numbers a and b, b # 0, division asso-
ciates the quotient, a + b. Division assigns to pairs of rational
numbers a and b a unique rational number a + b. Such a unique

429---
. 436



The National Numbers

rational number a b exists provided b 0 0 and there is a number c
such that c X b = a. For example, 51 3 = 17 because 17 X 3 = 51.
(Of course 3 0.) Division assigns 72 9, or 8, to the pair 72 and 9.
The standard name for a b can be obtained in three ways:

1. If a set of a elements can be partitioned into disjoint subsets of
b elements each, then the number of subsets thus formed is a b.

2. If an array has a elements and h rows, then the number of columns
of the array is a b. If an array has a elements and b columns,
then the number of rows is a b.

3. If a and b are whole numbers, the rational number that correctly
completes the sentence b X 0 = a, or 0 X b = a, is a b, pro-
vided there is exactly one such fational number.

Division by zero. Division by zero has no meaning. The expressions 50,
18 4- 0, 0 0, 1 0, etc., do not name numbers. Division by 0
is meaningless because there are no rational numbers that fit sentences
like

0 X 0 = 5, 0 X 0 = 18, 0 X 0 = 1, etc.,

and because every rational number fits the sentence 0 X 0 = 0.

Division with a remainder assigns a quotient and a remainder to a pair
of whole numbers. If a and b are whole numbers (b 0), then there
are whole numbers, a quotient q and a remainder r (with r < b),
which satisfy the equation

a = (b X q) r.
If a = 23, b = 4, division with a remainder determines q = 5 and
r = 3.

23 = (4 X 5) + 3.

Divisor. In the sentence a b = q, the number b is called the divisor.
The number b is also called the divisor in the sentence a = (q X b)-F r.
For example, in the sentence 15 + 3 = 5, the number 3 is the divisor;
in the sentence 15 = (3 X 4) + 3, or 15 = (0 X 4) + A, the number
4 is the divisor.

Element of a set. Each object in any nonempty set of objects is an element
of the given set. For example, the set 1 New York, California,
Michigan/ has three elements: New York, California, and Michigan.

Empty set. The set that has no elements, the null set. Often designated
by either the symbol "1 1" or "0". Examples: the set of people 30
feet tall; the set of female presidents of the United States.

Equal addition principle. Adding the same number to both the sum and
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the given addend does not change the missing addend. In general
terms,

a b = (a + c) (b c).

Equal multiplication principle. Multiplying a product and a given factor
by the same number does not change the missing factor. In general
terms,

a + b = (ac) (bc) for c 0.

Equal sign. See Symbol.

Equivalence class. The equivalence class for a rational number r is the
set of all fractions that name r where each fraction indicates a quotient
of integers with each integer expressed by a standard numeral.

1Example: 2 has the equivalence class

It - 1 2 22 2 4 4
Equivalent. If there is a one-to-one correspondence between two sets,

then the sets are said to be equivalent. Sets that are equivalent are
assigned the same number. Sets that are not equivalent are not as-
signed the same number. Examples of equivalent sets are la, b I and
I blue, green .

Equivalent numeral. If two numerals name the same number, they are
called equivaleat numerals. Examples:

3

2
and 1.5

42 and 6 (which are also equivalent fractions)
3

.9 and 1
.24-4 and .25 (which are also equivalent decimals)

Expanded form. An expanded form of a decimal numeral is a numeral
that shows explicitly the place value of the digits in a decimal numeral.
Expanded forms of the numeral 456 include:

400 + 50 + 6
(4 X 100) + (5 X 10) + (6 X 1)
(4 X 102) + (5 X 10) + (6 X 1)

(4 X 102) + (5 X 10') + (6 X 100)

Exponent. A number used to indicate a repeated factor. The repeated
factor is called the base. In 102, "2" is the exponent and "10" is the
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base. 10' means 10 X 10. In IC "3" is the exponent and "10" is
the base. 103 means 10 X 10 X 10. See ease.

Factor. One of the numbers multiplied to determine a product. When a
pair of numbers is associated with a product under multiplication,
each number of the pair is called a factor of the product. In the
sentence 3 X 4 = 12, 3 and 4 are factors of 12. in general terms, if
a X b = c, a and b are factors of c. In the sentence 3 X 0 = 12,
one of the factors is "missing." See Misshig factor.

Family. A collection of sets every two of which are equivalent.

Finite decimal. See Terminating decimal.

Four-in-a-Row. A game in which two teams play, taking turns to mark
points in a plane having integer number pairs. The team first to
obtain four consecutive marked points vertically, horizontally, or
diagonally wins.

Fraction. A symbol consisting of a numeral written over a bar (usually
horizontal), which is over another numeral. Examples:

3 ' 5 ' 3 denominator
fraction bar

Fraction in lowest terms. If both the numerator and the denominator
of a fraction are integers and have for their greatest common divisor 1
or I, then the fraction is in lowest terms. Also called a reduced
fraction. Examples:

4 .9 is a fraction in lowest terms.

4 .
ts not in lowest terms.

6

Frame. A shape in which a symbol is to be written. Some of the frames
most frequently used are shown in the following sentences:

+ 3 = 5. 4 70 22.

6.

4 Itiv 5 > 7.

Function. Any nonempty set of ordered pairs no two of which have
the same first number.
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Fundamental theorem of arithmetic. Every positive composite integer
can be expressed as a product of poskive prime numbers in exactly
one way except that the order of the factors may vary.

Geobaord. A visual aid consisting of
a board containing n' nails or
pegs placed at corners of
squares. An example is showit at
the right.

Graph. A graph pictures numerical quantities. The graph for y = x is a
straignt line, as shown here.

To graph is to picture with a graph.

Greater than.
I. Whole number a is greater than whole number b if there is a

whole number c, other than 0, such that a = b c. For example,
5 is greater than 3 because there is the whole number 2 such that
5 = 3 2. Also holds for rational numbers in general.

2. Whole number a is greater than whole number b if there are two
sets A and B such that set A contains all the elements of set B, A
has at least one element not in B, a is the number of elements
in set A, and b is the number of elements in set B. For example,
5 is greater than 3 because (see
diagram) n(A) 5, n(B) = 3,
and set A has elements d and e

=
tor.

which are not in set B.
3. Let whole number a be the number of elements in set A. Let

whole number b be the number of elements in set B. We say that
a is "greater than" b if and only if set 8 can be matched with a
proper subset of set A. (In this case, we say that set A has "more"
elements than set B.)
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4. Integer a is greater than integer b, symbolized by "a > b", if and
only if the point for a on the number line is to the right of the
point for b.

5. If c > 0, then 2 > b if and only if a > b.
c c

6. Rational number r is greater than rational number g if and only if
the point for r on the number line is to the right of the point for g.

Greatest common divisor (GCD). The greatest common divisor of a
set of two or more integers is the greatest integer that divides each
integer in the set. Example: The GCD of 112, 18, 601 is 6.

Grouping property of addition. See Associative property of addition.
Grouping property of multiplication. See Associative property of mul-

tiplication.

Guess My Rule. A game played by a Student's Leader's
leader and the class. A student number
supplies a number, which is
entered in a table. The leader
enters his reply number using his
rule. The class tries to guess his 1 3

rule. The student who guesses 4 12

his rule becomes the leader, and 6 18

a new game begins. The rule for
the table shown could he

p X 3 = .

Hindu-Arabic system of numeration. Our decimal system for naming
numbers. All whole numbers can be expressed using ten digits and
the idea of place value.

Hypsometer. An instrument for obtaining an indirect measurement for a
length, based on the use of similar triangles.

identity element for addition. The number 0 is the identity element for
addition of rational numbers because whenever b is a rational number,
b 0 = b and 0 b = b. That is, when 0 is an addend, the sum is
the same number as the other addend. The number 0 is sometimes
called the neutral element for addition. Examples: 4 + 0 = 4,
0 + 56 = 56, etc.

Identity element for multiplication. The number 1 is the identity element
for multiplication of rational numbers because whenever b is a
rational number, b X 1 = b and 1 X b = b. That is, when 1 is a
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factor, the product is the same as the other factor. The number 1 is
sometimes called the neutral element for multiplication. Examples:
4 X 1 = 4, 1 X 56 = 56, etc.

Indirect measurement. Any measurement in which the unit itself is not
used to obtain the measure.

Integer. Any member of the set of integers

JO, I, I, 2, 2, 3, 3, ...1.
Any number that can be obtained by adding or substracting ones.

Irrational number. Any real number that is not a rational number.
It is assumed that for each point on a number line there is a cor-
responding number. It can be shown that some points do not cor-
respond to rational numbers, that is, the rational numbers do not
"use up" all the points on a line. Any point that does not correspond
to a rational number can be thought of as corresponding to an
irrational number. The decimal representation of an irrational
number must be nonterminating and nonrepeating. Examples:

Vi, Vi, 71", .1o1 moill000mmoo . . .

Known addend. In a sentence such as 0 + 8 = 14, 8 is the known
addend, or given addend. Sec Missing addend.

Known factor. In a sentence such as 0 X 3 = 12, 3 is the known factor,
or given factor. See Missing factor.

Least common multiple (LCM). The least common multiple of a set of
two or more integers is the smallest positive integer that is a multiple
of each integer in the set. Example: The LCM of 14, 6, 91 is 36.

Less than. a is less than b means b is greater than a. See Greater than.

Match. See One-to-one correspondence.

Measur. The number obtained from a measurement.

Measurement. The process of associating a number with a particular
property of an object.

Member of a st. In any nonempty set of objects each object is a mem-
ber of the set. Synonymous with lement of set. For example,
the set consisting of the elements a, b, c has for its members a, b,
c. It follows that a is a member of this set, b is a member of this
set, and c is a member of this set. The members of the set 1(3,7), 91
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arc (3,7) and 9. The membcrs of a set may be ordered pairs as well
as numbers.

Minus. The namc for the subtraction symbol. "". See undcr Symbol.

Missing addend. In a sentence such as 8 -I- 0 12, onc of thc addends
is not given, or is "missing." Thc 0, called a frame, provides a
place in which to namc the missing addend. Dctcrmination of thc
missing addcnd in 8 0 12 corresponds to subtracting 8 from
12. That is, sincc 8 + 4 12, 4 12 8.

Missing factor. In a sentencc such as 0 X 8 40, one of thc factors is
not givcn, or is "missing." The 0, called a frame, providcs a place
in which to name thc missing factor. Determination of thc missing
factor in 0 X 8 40 corresponds to dividing 40 by 8. That is, sincc
5 X 8 40, 5 40 + 8.

Mixed nummal. C lmooscd of a fraction and a standar,' numcral for an
intcgcr. Thc fraction appears immcdiatcly to thc right of thc integer
numcral. Thc valuc of a mixcd numcral is thc sum of the values of its
intcgcr numeral and its fraction. Thc fraction part must express a
quoticnt of a nonncgativc integer and a positivc integer. Examplcs:

2 4-3 has thc value 2 +

32 -3 has thc valuc (2 + i) or 2 -- 3

Multiple. A numbcr which is thc product of a givcn intcgcr and anothcr
integer. A wholc numbcr a is a multiplc of a whole numbcr b if there
is a whole number c such that a b )< c. For cxamplc, 30 is a mul-
tiplc of 10 because 30 10 X 3. 28 is a multiplc of 7 be-
cause 28 7 X 4. Thc multiples of 10 arc 0, 10, 20, 30, 40 The
sct of multiples of a nonzero number is an infinite set.

Multiplication. With cvcry pair of rational numbcrs a and b multiplication
assoc;ates thc product a X b. For example, with the pair 7 and 9
multiplication assigns thc product 7 X 9, or 63. The product a X b
can be computcd in thc following ways:

I. If sct A contains a cicmcnts and set B contains b elements, thcn
a X b n(A X B), the numbcr of ckments in thc cross-product
set, A X B.

2. Choose a sets, disjoint from each othcr, with b cicmcnts in each
of thc a sets. Thcn a b is thc number of cicmcnts in thc union of
these sets.
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3. Thc number of elements in an a-by-b array is a X b.
4. On a number line, the product a X b is the number of units in a

single "jump" that covers the same distance as a jumps with b
units in each jump.

5. t X(:- agaXe.d 10(d
prepedy of one. For any rational number a,aX1= a

and I X a = a. Informally stated, the product of any rational number
and I is that rational number. See One in division.

Maltiplkation prepony of we. For any rational number a, a X 0 = 0
and 0 X a Et 0. Informally stated, the product of any rational number
and 0 is 0. See Divisien by tem

KA) is the number of elements in set A. See "n(A)". Symbol.

Natural number. Each of the numbers I, 2, 3, 4, 5, . ; any whole num-
ber except 0. (Some authors include 0 as a natural number, but we
do not.)

Negative number. kny real number whose point on the number line is to
the left of the point for zero. Denoted by a minus sign affixed before
a numeral for an unsigned or positive number. Zero is neither a
negative nor a positive number. Examples:

223, 7.9, .032, , 3 5.

Neutral element. Same meaning as identity element. See Identity ele-
ment fer addition and Identity element for multiplicatian.

Nenropeating decimal. See Nonterminating decimal and Irrational
number.

Nenterminating decimal. A decimal numeral that has infinitely many
nonzero digits to the right of the decimal point. Examples:

Repeating: 6.8272727 . . . (.4.827)
Nonrepeating: .1011011101111011111 ...

Notation, system of. See Numeration system,

Null set. Sec Empty set.

Number. See Ceunting number, Integer, Natural number, Itatisnal
number, Real number. and Whole number.

Number line. A drawing of a line (with arrows to indicate unlimited
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length) on which a unit length has been selected and marked off
consecutively beginning at any fixed place and moving to the right
and to the left. The marks are labeled in order "0", "1", "2", "3",
"4", "5", and so on to the right; and "I", "-2", "-3", and so on
to the left of "0". The drawing below is an example of a number line
for nonnegative numbers.

4

0 4 2 3 4 5 7 S 9 to

Numniul. Mark or name for a number; any symbol that names a num-
ber. For example, some numerals for the number five are "V,"

Numeration system. A scheme for naming numbers. Any organized sys-
tem of using words or marks to denote numbers. Examples: decimal
numeration system, Roman numeration system, Egyptian numera-
tion system.

Numerator. The number named by the numeral written above the fraction
bar of a fraction. For example, the numerator for each of the fol-
lowing fractions is 7:

7 7 7
2 ' 9 ' 2

One In division. For any rational number a, a 1 = a and, if a # 0,
a + a =-- I. Informally stated, any rational number divided by I is
that rational number, and any rational number (except 0) divided by
itself is I.

One-to-one correspondence between two sets. A pairing of the mem-
bers of the two sets, not necessarily different sets, so that each pair
contains exactly one member from each set, and each element of
each set is in exactly one pair. For example, one-to-one corre-
spondence between the sets Ia, b, c, dl and II, 3, 5, 71 is shown by
the accompanying diagram. This correspondence can also be shown
by listing the pairs: (a, 5), (b, 1), (c, 7), (d, 3).

7

Operation. A set of associations for elements of two sets, pairing each
member of the first set with a member of the second set but never
pairing the same member of the first set with more than one mem-
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ber of the second set. In a binary operation the elements of the first
set are ordered pairs. According to this definition, addition, sub-
traction, multiplication, and division are binary operations. An op-
eration is a correspondence.
Mathematicians generally consider a binary operation on, say, set
A, to be more restricted: A binary operation on set A is a
correspondence between A X A and A such that every member of
A X A has a partner in set A. Under this restricted definition for
rational numbers, addition and multiplication are still binary opera-
tions while subtraction and division are not.

Opposite of a number. See Additive inverse.

Order property of addition. See Commutative property of addition.

Order property of multiplication. See Commutative property of multipli-
cation.

Ordered pair. Two objects considered together where one of the objects
is first in the pair and the other is second in the pair. The ordered
pair of numbers (4,7) is different from the ordered pair (7,4). In
an ordered pair the first and second elements (also called com-
ponents) may be the same, as in (7,7).

Ordered set. An example of an ordered set is the set of counting numbers
11, 2, 3, 4, 5, . This particular listing in the braces means that its
members are assigned specific positions in the ordering; namely, 1 is
the first number, 2 is the second number, 3 is the third, etc. The
ordering of the counting numbers used here is according to "size."
Each number is 1 less than its successor. This particular ordering is
essential for counting. The set of rational numbers is also an ordered
set for the relation of "less than." For every two distinct rational
numbers r and s, we must have either r ( s or s < r.

Pair. See Ordered pair.

Padial quotient. When a quotient has
been computed as a sum, each addend
of this sum is called a partial quotient.
For instance, in computing 8,972
24, we obtain the quotient 300 + 70 +
3. Each of the numbers (300 or 70
or 3) is a partial quotient.

24)0,572
7,2004

72

20

300

70

3

373 -4

Partition. To partition a set is to split up the set into nonempty disjoint
subsets so that every element in the set is in exactly one of the sub-
sets. See Division (1).
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Place valu. The number assigned to each position occupied by a digit in
a standard numeral. In the standard numeral "289", the "2" occupies
the position to which the value 100 is assigned. We say the "2" is in
the hundreds place. The place value of "2" in "289" is 100.

Plus. A name for the symbol "+". See Symbol, "+".

Positionul valu of digits in a numral. See Place value.

Positiv number. Any real number whose point on the number line is to
the right of the point for zero. See Negative number. It is denoted by a
numeral having no sign or the positive sign. Examples:

22 22 1 1

7, +7, 3.4, +3.4, , +7 , 3 +3

Powrs of ten. In this book, powers of ten refers to the numbers I, 10,
100, 1,000, etc. These numbers are also expressed as 100, 101, 102,
103, etc.

Prime. An integer n is a prime number if it has exactly 4 divisors: 1, 1, n,
n. The smallest positive prime number is 2. Its only divisors are 1,
1, 2, 2. See Composite.

Product. With every pair of rational numbers a and b multiplication asso-
icates the product "a X b." The product of whole numbers a and b,
denoted by a X b, is the number of elements in a cross-product set
A X B, where n(A) = a and n(B) = b. Alternately, a X b is the num-
ber of elements in the union of a sets, disjoint from each other, with
b elements in each. Finally, a X b, the product of a and b, is the num-
ber of elements in an array having a rows and b columns, Example:

a c ac
X dbd=

See Multiplication.

Proper subst. Set A is a proper subset of set II if A is a subset of B
while B contains at least one element which is not a member of A.
&ample: If a, b, c, and y are distinct elements, (a, b) is a proper
subset of (a, b, c, y).

Quotient. A number assigned to pairs of rational numbers by division.
In the sentence a b = q, b 0 0, the number q is called the quo-
tient of a and b. When we try to compute a 4. b, the unique rational
number q for which a = (q X b) r with r < b is also called the
quotient. Examples: The quotient of 15 and 3 is 15 3, or 5. In 17 =
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(2 X 7) + 3, the number 2 is the quotient when we regard 7 as the
divisor.

Ratio. Numbers a and b are said to be in the ratio of c to d if (for some
nonzero number r) a = rc and b = rd. Example: 15 and 20 are in the
ratio of 3 to 4 because 15 = 5 X 3 and 20 = 5 X 4.

Rational number. Any number that is expressible as a quotient of integers.
An equivalence class of fractions. Its decimal representation must
either be terminating or repeating. Every whole number and every
integer is a rational number. See Irrational number.

Real number. Every point in the number line has a number associated
with it. All such numbers are real numbers. Every rational number is a
real number. See Irrational number.

Remainder. When we try to compute a b, the unique whole number r
less than b for which a = (q X b) r is called the remainder. For
example, in 15 = (2 X 7) + 1, the number 1 is the remainder.

Repeated addition. If m and a are whole numbers,

m addends
Thus, for example,

3 X 4 = 4 + 4 + 4.
If m = 1, the right side is interpreted to mean a. If m = 0, the right
side is taken to mean 0.

Repeating decimal. A decimal numeral in which a block of one or more
digits, at least one of which is not 0, repeats successively infinitely
many times to the right. Examples are .333 . . . , which may be
written .3, and 5.27070 . , which may be written 5.270. A repeating
decimal is sometimes called a periodic decimal. (Sometimes we
regard expressions like .30 as being repeating.)

Repetend. The block of repeating digits in a repeating decimal. Examples:
The repetend of 5.20707 . . . = 5.207 is 07. The repetend of
2.49999 . . . = 2.49 is 9.

Repetitive property. A numeration system has this property provided,
when any of its basic symbols is repeated in a numeral, it has the
same particular value regardless of its position. In the Egyptian sys-
tem, each basic symbol in "n n" has the same value, 10. In our
system, each digit in "333" represents a different number according
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to its position in the numeral, so our decimal numeration system
does not have the repetitive property.

Row. A horizontal line of objects in an array. The array below has four
rows.

0 0

0 o

0 0

0

o

11\0

a row

Scal drawing. A scale drawing or a scale model is a representation
(or a one-to-one correspondence) having the following property:

For every three points A' , B' , C' of the scale drawing or scale
model and the corresponding three points A, B, C of the prototype
we have:
I. z ABC = L A' IP C' , L 4CR = L A'C' , and L BAC =

B' . That is, corresponding angles have the same measures.

AB AC BC
2. --T-7 = ---r-T = That is, corresponding lengths are in

AB AC BC
proportion.

Set. Collection or group or aggregate of objects that may be concrete or
abstract, similar or dissimilar. One would usually like to be able to
decide if any particular object is or is not a member of the set.
Mathematicians usually do not define set.

Similar figures. Two figures are similar if one is a scale drawing or scale
model of the other.

Similar triangles. Two triangles are similar if one triangle is a scale
drawing or scale model of the other. Example:

C'

Slope. If (a, b) and (c, d) with a c are number pairs for points on a
line /, then the slope of / is the value of the fraction

d h

c a
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If a = c, the line is parallel to th,: y-axis and has no slope. If I has
the equation y = mx + b, then in is the slope of I.

Standard form of a numeral (Standard numeral, standard name for a
number). In the Hindu-Arabic system, a numeral consisting of
digits only without any sign of operation. The symbols "0", "1",
"2", "3", "4", "5", ... , "11", "12", "13", .... See Expanded form.
The standard name for 2 + 3 is "5."

Standard numeral. The following are generally regarded as standard
numerals for rational numbers:
I. Any reduced fraction. Examples:

2 3 2 2
3 ' 2 ' 3 ' 3

2. Any mixed numeral, provided the fraction part is reduced and
has a value less than I.

3. Any decimal, except a repeating decimal with repetend 9.

Subset. Set A is a subset of set B if every member of A is also a member
of B. Alternately, set A is a subset of set B if every element not in
B is also not in A. As a special case, A may be the entire set B itself.
As another special case, A may be the empty set; that is, A may
have no elements. Thus, if set A is identical to set B, or if A is the
empty set, set A is a subset of set B.

Subtraction. With every pair of rational numbers a and b, subtraction
assigns the difference of a and b, denoted by a b. For example, the
difference of 8 and 2 is 8 2, or 6.

Successor. If is is a whole number, then n + I is the successor of is.
Examples: The successor of 0 is 1, the successor of 8 is 9, etc.

Sum. With every pair of numbers a and b addition associates thc sum
a + b. The sum of whole numbers a and b, denoted by a -I- b, is
the number of elements in the union of sets A and B provided that
n(A) = a, n(B) = b, and scts A and B are disjoint. For example,
4 + 2, or 6, is the sum of 4 and 2. See Addition.

Symbol. A mark, a collection of marks, or an expression that is used to
communicate an idea. For example, numerals arc symbols for
numbers. Some special mathematical symbols follow:

"1 1" Braces. Sometimes called curly brackets. Consist of two
symbols used to enclose the names of members of a set or a
description of the members of a set, as 1a, b, cl and I even

443
4S0



The Rational Numbers

66 =11

numbers). If nothing appears between the braces, then the
set has no members and is the empty set, designated by

Equal sign. The symbol is used between two expressions to
assert that the expressions name the same thing and, in
particular, when referring to numbers, name the same num-
ber. Examples: 3 + 3 = 4 + 2, 1a,b lb, .

"n(A)" An abbreviation for any one of the following synonymous
expressions:
I. The number of elements in set A
2. The number associated with set A
3. The number property of set A
4. The number of set A
5. The cardinal number of set A

". . ." Three ellipsis points, or dots, as in 1, 2, 3, 4, 5, , signify
that the indicated pattern (in this case, of adding 1) is to
continue indefinitely.

"+" The plus sign, a symbol.of addition. The symbol "a b"
(read "a plus b") names the sum of numbers a and b. See
Addition.

"V" A symbol for union. A U B (read "A union B") names the
union of sets A and B. A U BV C means the union of sets
A, B, and C.

">" means "is greater than." For example, 5 > 3 means 5
is greater than 3.

means "is less than." For example, 3 < 5 means 3 is less
than 5.

The minus sign, the symbol for subtraction. a b (read "a
minus b") names the difference of a and b, that is, the miss-
ing addend in the sentence 0 b = a. See Subtraction.

Elevated minus sign. Negative 2. Opposite of 2.
-2 = (-1).2 = 2.

Elevated minus sign. Opposite of n.
"n = (-1).n = a,

'n is a positive number if n <
"n is a negative number if n > 0.

"X" The symbol for cross product. A X B (read "A cross B")
names the cross product of sets A and B. See Cross product.

66-211

66-.1111
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"X" The times sign, the symbol for multiplication. a X b (read
"a times b") names the product of numbers a and b. See Mul-
tiplication.

" The symbol for division. a b (read "a divided by b")
names the result of dividing a by b, that is, the missing factor
in 0 Xb=a or b X 0 = a, that is, the quotient of a and b.
See Division.

"" Means "is not equal to," "does not equal." The symbol is
used between two expressions to assert that the expressions
do not name the same thing. For example, 5 + I 8 asserts
that 5 4- I and 8 are different numbers.

"0" A frame for entering a symbol. Examples: Compute the
missing number: 0 = 14 -I- 2. Determine the missing opera-
tion: 2 0 3 = 6. When the same frame is repeated in a sen-
tence, the same symbol must be used. If different frames are
used, the symbols need not be different.

Terminating decimal. An ordinary decimal expression. This term is used
to contrast with a nonterminating or infinite decimal. In a terminating
decimal, there are a finite number of nonzero digits to the right of the
decimal point.

Union. The union of two sets is the set consisting of all the elements
that are in either or both of the two sets. The union of Ix, yl and
I y, z, w is fly, x, y, zl. See Symbol, "V". If A = Ix, y , B = y, z,
w I , then the union of A and B is denoted by A LI B. Thus A LI B =
fw, x, y, z }. The union of two sets is the set that contains all the
elements of each set and no others. In more general terms, the
union of any collection of sets is the set consisting of all those elements
that are members of at least one of the sets in the given collection.

Uniqueness property of addition. See Well-defined property of addition.

Unit. In this book, the word unit is uscd in reference to a representa-
tion of a number line. Any length we wish to select is used as a
basic length to be marked off consecutively on thc illustrated line.
For example, we might choose as our unit the segment illustrated
by . Then we mark consecutively on the drawing of the num-
ber line as many of these lengths as we want.411 fit I I I

On the above representation of the number line, we have markcd
off 7 of the selected units.
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The word is also used to denote a unit region.

I unft

Vector. A vector may be represented by a line segment with an arrow-
head at one end, an arrow. The length of the vector arrow represents
the magnitude of the vector quantity, and the arrow generally
indicates its direction. Two vectors for similar vector quantities must
add according to the following rule:

"a.--FT="Ac'. as shown by

Well-drained property of addition. If r = s and t = u, then r t =
s u. (Also called the uniqueness property of addition.) Example:

SO

3
and = .75,

I 3 = .5 -I- .75.
2 4

Whole number. One of the numbers 0, 1, 2, 3, . . . . The set of whole num-
bers consists of 0 and the counting numbers.
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