DOCUMENT RESUME

ED 064 896 EM 009 965
AUTHOR Durnin, John H.; Scandura, Joseph M.
TITLE An Algorithmic Approach to Assessing Behavior

Potential: Comparison With Item Forms and
Hierarchical Technologies.

SPONS AGENCY National Science Foundation, Washington, D.C.; Office
of Education (DHEW), Washington, D.C.

PUB DATE 72

GRANT OEG~3~-71-0136

NOTE 47p.; Based on thesis submitted to the University of
Pennsylvania

EDRS PRICE MF-$0.65 HC-$3.29

DESCRIPTORS Branching; *Computer Assisted Instruction; *Criterion

Referenced Tests; *Individualized Instruction:
Programed Materials; *Test Construction

ABSTRACT

For individualized or computer assisted instruction,
norm referenced testing is inadequate to determine each individualt's
mastery on specific kinds of tasks. Hively's item forms and
Ferguson' s stratified item forms, both based on observable
characteristics of the problems, and Scandura's algorithmic
technology, positing that persons use rules to solve problems and
thus that problems should be partitioned on the basis of rules needed
to solve them, have been developed to measure individual mastery.
This study was designed to compare their effectiveness and efficiency
in assessing mastery of column subtraction problems. All three
methods were essentially equal in predicting mastery of individual
items, but the algorithmic method used far fewer items and thus was
more efficient. The item forms technology would seem to have a slight
advantage in the ease with which a computer could randomly generate
test items, but even items for the algorithmic form can be computer
generated, although slightly indirectly. (RH)



TO: LEASCO
FROM: ERIC/EM ‘¢, ° 5‘

-

This document was transferred from
T to CG who, in turn, transferred
it to EMy The OE funding was
provided for the thesis on which
this work is based, thersfore we
included the OEG number on the
cataloging, If you think it should
be deleted, please do so,.

- E&Sq@soﬂ .

0
i
_g
|
;

Compliments of §

ERIC

Clearinghouse :
on Educational Media
and Technology

, 1

at the Institute
for Communication Research
Stanford University
Stanford, California 94305




-

ED 064896

OO 16s

$

U.s. DararTMENY OF o C
HEA
WELARE LTM, ¥DUCATION C‘
s oocthH o Blanon '
5:?:%:;:? RECEIVED rmOM TH:‘:S"IOB%‘:‘cg:
1EW OR O;ION':O?{"S,%"T"AHNG 0 NOT ma [\) |
SARILY REPRESENT OF CIAL oorny 50

An Algorithmic Approach to Assessing Behavior Potential:

Comparison with Item Forms and Hierarchical rechnologiesl
John H. Durnin and Joseph M. Scandura

University of Pennsylvania

Recent research in individualized (e.g., Lipson, 1967) and computer
assisted (e.g., Suppes, 1966) instruction has led to an increasing aware-
ness of the inadequacies of norm referenced testing and the need for
testing procedures which determine each individual's mastery on specific
types of tasks (e.g., Coulson & Cogswell, 1965). Knowing how well a
student has performed relative to some peer group, for example, says
relatively little about the kinds of decisions that must be made if instruc-
tion is to be totally individualized. Ideally, in mastery testing the
procedures used should 1) provide a sound basis for diagnosing individual
strengths and weaknesses on each type of task, 2) require as few items as
possible, and 3) provide a basis for generalizing from overall test per-

formance to behavior on a clearly defined universe or domain of tasks.

LThis article is based on a Ph.D. dissertation submitted by the first
author under the second author's chairmanship to the University of Pennsyl-
vania. This study was supported by U.S. Office of Education Grant 3-71-
0136 and, in part, by National Science Foundation Grant GW6796, both to
the second author. continued
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2.

If, in addition, items can be ordered according to difficulty to allow
for conditional (sequential) testing, efficiency could be further
inereased.

Fortunately, a number of new technologies have recently been
developed for constructing tests that have the above characteristics (e.g.,
Ferguson, 1969; Hively, Patterson & Page, 1968; Johnson, 1970; Nitko,

1970; Osburn, 1968; Rabehl, 1970; Roudabush & Green, 1971; Scandura,
1971a, 1972). The purpose of this study was to compare with respect to
these characteristics three of the technologies: the item forms tech-~
nology (domain referenced testing) of Hively et al. (1968), the hierarchi-
cal or stratified item forms technology of Ferguson (1969), and the algo-
rithmic technology of Scandura (1971a, 1972).

In domain referenced testing, a defined universe or domain of ltems
(e.g., column subtraction problems) is subdivided into classes of items
or item forms on the basis of observable properties the items in each class
have in com;on. Osburn (1968) characterized an item form as having a fixed
syntactical structure (e.g., :f), one or more elements (e.g., :éi, :ig),
and explicit criteria for specifying which elements belong to the form
(e.8., X = X X903 ¥ = ¥1 V23 Y14 X153 ¥2< X235 X1, X9, ¥1» y2£{0,1,2,..., 9} ).
To assess pupil performance on a given domain of problems a test is construc-
ted by randomly selecting one item from each of the identified forms.

It was felt by Hively et al. (1968) that item forms might be used

not only to assess a pupil's overall performance on the domain of problems

The authors thank Alfonso Georeno and David Shore for their cooperation
in providing subjects. The authors would also 1ike to thank Frederick Davis,
James Diamond, Zoltan Domotor and Albert Oliver for helpful comments on an
earlier version of this paper. :3
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but also to predict his behavior on specific problems in the domain.

That is, if a subject were successful on one problem belonging to an item
form, then he would be successful on any other problem of the same form,
and similarly if he were unsuccessful on a problem belonging to an item
form, he would be unsuccessful on any other problem of the same fornm.
Although Hively et al. (1968) were able to obtain high coefficients of
generalizability (Cronbach, Rajaratnam, & Gleser, 1963; Rajaratnam, Cron-
bach, & Gleser, 1965) for tests based on the item forms technology, they
did not find that item forms, in general, represented homogene‘ous categories
of problems of the type described above.

One criticism of the item forms téchnology has been that the
hierarchical relationships among item forms have not been taken into
account in testing (e.g., Nitko, 1970). In a recent study by Ferguson
(1969) these relationships were dealt with explicitly. In this study, item
forms were generated for both terminal and prerequisite instructional
objectives ;n a way analogous to task analysis (e.g., Gagne, 1962) .
Starting with a terminal item form, corresponding to a terminal instructional
objective, sub-item%forms (1.e., subobjectives) were identified which were
considered prerequisite to the terminal item form. The item forms so
identified were then ordered according to the hypothesized hierarchical
structure and a computer was programmed to make branching declsions based
on probabilistic evaluations of student performance on each of the forms.
Clearly, a conditional testing précedure of this sort could conceivably
provide a highly efficient basis for assessing the behavior potential of

individual subjects.




4.

Although the technologies for assessing mastery developed by Hively
et al. (1968) and Ferguson (1969) appear to be major steps toward improved
mastery and diagnostic testing, they are subject to one fundamental
criticism. There is no real theoretical basis for either technology.

With the possible exception of Ferguson's hierarchical ordering of forms,
which is based essentially on task analysis, there is little basis other
than (possible) sound intuitive judgment as to how items should be cate-
gorized. As a result, both technologies can be criticized on a priori
grounds. For example, the item forms identified for subtraétion by

Hively et al., and those identified by Ferguson, both failed to partition
the domain of subtraction problems into mutually exclusive and exhaustive
classes (i.e., equivalence classes). This lack of partition may very wéll
have contributed to Hively et al.'s finding that item forms did not repre-
sent homogeneous classes of items. In general, it is not an easy task to
generate item forms which will partition a domain. Also, once a set of
item forms has been generated, it is difficult to determine whether or not
the item forms do indeed form a partition.

Furthermore, neither technology specifically takes into account the
knowledge which makes it possible to solve problems belonging to a given
domain. This is an important limitation because there can be any number
of ways of solving problems within a domain. For example, there avre
several common rules a pupil may use to solve subtraction problems. His
performance on such problems could be due to his mastery of any one of
these rules. (Identifying what rules may be used on a domain of problems

also has important implications for providing remediation, and more is

S



said on this below.)

Scandura's (1971a, 1972) theory of structural learning provides a
theoretical basis for an algorithmic technology to assessing behavior
potential which deals directly with the above problems. This theory
consists of three hierarchically related partial theories: a theory of
knowledge, a memory-free théory of learning and performance, and a theory
of memory. For present purposes two basic assumptions of the memory-£free
theory suffice. Stated simply, they are that people use rules to solve
problems and that if an individual has learned a rule for solving a given
problem or task, then ﬁe will use it.

To see how tlhese assumptions are involved, notice that if an observer
knows what rule or rules a subject has available for solving a given
domain of problems, then he can predict perfectly the subject's performance
on problems in that domain. Unfortunately, the observer generally has no
a priori way of knowing this. Nonetheless, with many famlliar tasks (e.g.,
ordinary subtraction) there is a iimited number of rules that subjects
in a given population are most likely to use (e.g., the "borrowing' and
"equal addition' methods for subtraction), and the first step in assessing
behavior potential is for the observer—theofist to identify them.

It does not necessarily follow, of course, that every subject (or
even any subject) will know any one of these rules completely. Rules
consist of operations and branching decisions (i.e., subrules) which are
performed in certain specified orders (see Scandura, 1970b, 1971a).

The branching decisions of the rule serve to combine the operations in

different ways for solving different kinds of problems. Thus a subject

6



may know part of a rule or parts of several rules and, hence, may solve
certain tasks governed by the rule(s) but not others. The object of
testing is to deteruine from a subject's pexrformance on a limited number
of problems what parts of the rule or rules he knows and what parts he
does not know.

Now the operations and branching decisions of a rule can be described
or listed in much the same way that one constructs a computer program.
(An alternative description is a flow chart. When discussing rules in which
the operations and branching decisions are made explicit in either of these
two ways, the term algorithm is used.) From the list or program bne can
gee that there are a finite number of ways In which the subrules may be

combined or sequenced to solve pr'oblems.2

These sequences of subrules,
called paths, partition the domain of tasks governed by an algorithm
into equivalence classes.

Consider, for example, the domain described by "Find sums (less than
100) for column addition using two or more addends of one digit."3 An
algorithm governing this domain may be characterized by the following pro-

gram:

2Som.e of the sequences involve cycles or loops in which the same
subrules may be repeated indefinitely. Each traversal threugh a loop,
of course, generates a new extended sequence of the same subrules.
However, because no new subrules are added or deleted, these sequences
are considered equivalent.

3This description of a class of tasks was adapted from a list of
objectives for the Individualized Prescribed Instruction Program at the
University of Pittsburgh's Learning Research and Development Center,
September, 1965.

s




1.

2.

4,

5.

7.

7.

Add the top two addends.

If there are no other addends, go to 3;
otherwise go to 4.

Write the sum and stop.

Add the units digit of the obtained
sum to the next addend.

If the sum is greater than 10, go to 6;
otherwise go to 7.

Add 1 to whatever is in the tens place
and return to 2.

Return to 2.



This algorithn can be represented by a directed
graph in which the numbered arcs correspond to subrules and
points to branching decisions (i.c., "if" statements) as

followss
siof

SYARY . . 3 >
7i &’ ;‘
o
From the graph it c¢an be determined that there are four
patha (i.2., sequences of subrules) through the algorithm,
a, Path 1yi~9-3—9m s 1ia used to solve prob=
lems having only two addends (e.g.,tg. )e
b Path 2,«—L2H;§~90 y is used to sélve
problems having more than two addends but
with intermediate sums less thén ten anaq
the final sum less than nineteen (e.g., +§ )e
¢, Path 3, -L~21 Z' o , is used to solve pr;;:
lenms having more than two addends where
successive suas increment the tens place

(ecgng % )o
oA

d, Path 4,-JL91q3 s is used to solve prob-—
r (A

lems having more than two addends where the

successive sums may or may not increment the

)e

tens place (e.q.,
*
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9.

It is easy to see from this example, then, that paths partition the
domain governed by an algorithm into equivalence classes. That is, two
problems are equivalent if and only if they are solvable by the same path
through the algorithm.

1f the constituent subrules of an algorithm are atomic (i.e., a
subrule can be used by a subject on all or none of its instances) for
any given subject, then it follows loglcally that the paths of the
algorithm will also be atomic. This implies that if the suﬁject is
successful on any one item o an equivalence class, then he shouid be
successful on any other and similarly for failure. Hence, to assess
his behavior potential all that is needed is one item from each equiva-
lence class.

As was mentioned earlier, of course, there may be rore than one
feasible algorithm underlying a domain of tasks. If several algorithms
are .dentified, then it is likely that some of these algorithms will
partition the domain differently. This slight complication can be easily

handled, however, by forming what we shall call an intersection partition

on the given domain of tasks. The intersection partition is formed by
selecting one eqivalence class from each partition and taking their
intersection. The collection of all possible non-empty intersection94

formed in this way generates the intersection partition. Generally,

410 see in more detail how these intersectione may be obtained, let A e
represent an equivalence class associated with path X of algorithm k.,
The collection of intersection sets for n algorithms can be generated by

taking ALOA N NA N NAL where the &y vary over all paths
of the algorithms. If there are m, paths per algorithm, then there can
be at most Yy non-empty intersections.

e e 10




10.

the intersection partition is a finer partition of the domain than the
partition assoclated with any ome algorithm. To assess behavior potential
simultaneously with respect to all of the identified algorithms, one

item from each equivalence class belonging tp the intersection partition
is randomly selected for testing.

In order for this agsessment procedure to be applicable to a given
population of subjects, the observer must assume that he has refined the
algorithms to a point where the subrules are atomlic for most of the
subjects. According to the theory, this is always possible in principle
because the subrules of an algorithm may be decomposed into ever finer
gubrules. Indeed, rules can be reduced to associations (Arbib, 1969;
Scandura, 1970a, 1970b, 1972; Suppes, 1969), which under memory-free
cpnditions are necessarily atomic. Although this can always be done
for a given population, what is gained at this level of atomicity is

lost in testing efficiency. More test items

11
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are needed, In practice, tho goal is to £ind some
optimal level of refinement,

The algorithnic technology also provides a basis for
ordering clagses of problems according to difficulty,.
Certain paths in an algorithn are superordinate to other
paths in that they contain al#f%he atomic rules of the
subordinate path plus some of their own (e.g., path 4 of
the above algorithm is superordinate to paths 1, 2, and 3),
Since the superordinate path is more difficult (on the
basis of having more constituent rules) than a subordinate
path, and since the branching decisions in the superor-
dinate path account for all performance capable by means
of the subordinate path, it follows that if a subject can
use the superordinate path, he should also be akle to use
the subordinate path. Hence, success on problems associated
with a superordinate path should imply success on all
problens associated with relativéfsubqrdinate paths, An
example of this partial hierarchical ordering is the
following lattice representing the ordering of'paths for the

ahove algorithm,
Cath &

i 2 fath 8

Catnn |
Empirical support for the above analysis was obtained

2
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by Scandura and Durnin (repsrted in Scandura, 1971a, 1972).

In that study a variety of tasks wore used and the subjecis
ranged in abllity fron prenchiol to graduate level, The
atonlc rules of an algorithn vere given cr “"built inte"®
each subject and he was provided an epporbunity toe put

the rules together to golve problens balonging to the
deomain ¢f the algorithu, [The thowsry of structural learn—
ing accounts for the cunbining of subruleé through the

use of highor order rules {sce Scandura, 1970&);} Bach
subject vas thon tested on one itea fror each equivalence
class assuciated with a path of the algorithn, Based on
first test performance predictioens were nade concerning
perfornmance sn individual second test itens., The rosults
of the study showed that prediction of coabined success and
failure on sccond tast itens was possidble with 96% acc:.xracy..5
Furthernware, it was £found that in 954 of the cases vhoere a
subject wvag successtful on a supoerordinate path he wags alas
successful on all subordinate paths,

To Geternine the accuracy of thae abosve analyses -
under claseroosn csnditions an exploratnry study vas
conducted in which the atomic rules of the algorithas were
asguned ratherx than."built into" the subjecta.

Forty four subjects in two first vear highschaal

3 The correlation between corresponding items was .92.

13
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algebra classes were given two tests on factoring umonic
trinomials shortly after they had completed a unit on that
topic. The tests wore devisad by first identifying the
procedure used in the text and determining those rules
which the author of the text assumed the students knew
(i.e.,, that were atomic) and, then, constructing two sets
of test items corresponding to each path in the procedurc,

As in the previous study first test performance wvas
used to predict second test performance, The results of
the study showed that prediction on individual seceond test
items vas possible with 86% accuracy.f{ And in 87% of the
cases where a suﬁject vas successful on a superordinate
path he also was successful on all subordinate paths,

By way of summary, it is important to n6£ice that
the algorithmic .approach to assessing behavior potential

deals directly with all of the

questions raised earlier. It provides a theoretical basis
for categorizing classes of problems and assures that this
categorization partitions the domain of prohlems into
equivalence classes, It also provides a theoretical hasis
for the hierarchical relationship between tasks and takes
into account the different vays in which a domain of tasks
may be solved, (The impl&cation of this for task analysis,
of course, is that there can be more than one way of hier-

archically ordering problems within a given domain of tasked.

o The. carrelation beotwoen correspanding items was .60,
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In fact, thare is a different hierarchy for each rule
governing the domain. )

Granting the more rigorous theoretical foundations
for the algorithmic technology, its pragmatic valuve
relative to other existing technologies was still an open
question, The objective of this study.was to help clarify
this issue., Specifically, we wanted to deteimine whgther
or not the algorithmic approach - to assessing behavior
potential was an improvement over the technologies déveloped
by Hivély‘gg 2le. k1968) and Ferguson 51969). The domain
of column subtraétion problems was chosen for the compar-
ison because of the availability in the literature of
relevant information (i.e., Hively'gg ale.s, 19683 Ferguson,
1969), |

For the purposes of this study, improvement meant.
one or moré of the following: |

a., an improvement in predictions concerning
' the performance of individual subjects on
| particular kinds of test items,
be an inprovement in the degree of generaliza-
bility (£rom test items to a clearly
specifieqxdomain),
¢. a reduction in the nunber of test instances
required to determine behavior potential, and

de an improvement in the hierarchical ordering

. 15
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of tasks (with its important implications

for conditional testing).

16
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16.

METHOD

The algorithmic technology was used to consfruct four algorithms
for column subtraction. Two algorithms were based on a "borrowing"
procedure for subtraction and consisted of 6 and 5 paths, respectively,
The other two algorithms were based on an "equal additions" procedure
and consisted of 4 and 8 paths, respectively. The intersection partition
with respect to all four algorithms was then constructed (seg footnote
4). It contained 12 equivalence classes. The flow chart of the sub-
traction algorithm shown in Figure 1 was designed explicitly to héve a
path corresponding to each and every equivalence class in the intersection

partition,

Insert Figure 1 about here

The directed graph, the twelve possible paths, and items from
corresponding equivalence classes of the subtraction algorithm of Figure
1 are shown in Figure 2. The numbered arcs in the graph and paths
correspond to rules in the flow chart and the points to the initial

(START), terminal (STOP) and branching rules of the flow chart.

Insert Figure 2 about here

Hively gg_él, (1968) used an item forms analysis of subtraction
problems to identify 28 subclasses of problems. Of these 28 subclasses,
the following 22 pertained to column subtraction:

1. Basic fact; minuend < 10

2. Subtract O 17




17.

3. Answer = 0

4., Basic fact; minuend > 10

5« No borrow; no 0 in answer or problem

6. No borrow; x~0 fact in prcblem

7; No bqrrow; 0-0 fact in problem

8., No borrow; x-x fact in problem

9. No borrow; small; unequal lengths

10,. No borrow; large; unequal lengths

11, Simple borrow .

12. Simple borrows; oﬁe digit subtrahend

13. Simple borrow; ene digit answer

14, 8Sinple borrow; medium

15. Borrows one digit from large number

16. Eorrow; mediumj;subtrahend one digit short

17, Borrow; medium; unequal lengths

18, Separated borrows

19, Repeated borrows,

20, Borrow across O

21, Borrow across two (or more) O's

22, Large numbers
With the exception of "Large numbers" which was omitted
from conéideration because it included several of the other
categories (e.g., "Borrow one digit from large number,"
“Repeated borrows," "Separated borrows," etc.,), the item

forms in the above list were interpreted so as to represent

18
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18.

mutually exclusive classes of problems.7
By taking intersections of the 21 item forms with the 12 equivalence
classes generated by the algorithmic approach, 37 new classes of sub-

2 traction problems, shown in Table 1, were obtained.

Insert Table 1 about here

Prediction and criterion tests (parallel tests A and B respectively)
were constructed by generating two arbitrary items for each of the 37
classes in the intersection set obtained from item forms ana equivalence
classes, one for each test. The order of items was randomized in each
test.,

Subjects and Procedures. The subjects were 34 ninth grade general mathe-

matics students attending summer school at Shaw Junior High School in
Philadelphia. Tests A and B were administered to the subje#ts in their
classrooms on consecutive days. The order in which the tests were given
was counterbalanced over subjects. Of the 34 subjects, 25 were in
attendance both days and received both tests A and B. |

Analysis of Results. Since Ferguson (1969) in his analysis on-

Mhere was one ambiguous class of problems (e.g.,%§§;)~which may be
interpreted as borrow or no borrow depending upon how one considers the
problem. Also, some of the item forms (i.e., classes of problems defined
by the item forms) are properly contained in other item forms. For example,
"Borrow; medium; subtrshend one digit short" is properly contained in
"Borrow; medium; unequal lengths.” In this case, unequal lengths was
taken to mean that the minuend contained two or more digits more than the
subtrahend. .

In effect, using mutually exclusive item forms had the effect of
improving the ievel of item forms predictions by 1% so.the present study

provides a more conservative comparison ds regards the algorithmic approach.

19




19.

ly identified hierarchical forms (see Fig, 3 ) invelving
threce or fgwer digit numbers, comparison of the -
assessﬁent procedures was done in two parts (1) for the
entire domain of colunn subtraction problems and (2) for
a restricted domain of subtraction prcblems, comparable
to Ferguson's hierarchical forms, The restricted domain
consisted of classes of proklems (marked by & in Table 1)
in the intersection set associated with the first seven
equivalence classes and the thirtecn item forms, 1-9,
11-13, and 19, pertaining to basic facts and no borrow
(minus large lengths), simple borrow, and kepeated borrow,
respectively, Parallel tests, A* and B', wefe constructed
for the restricted domain by deleting from tests A and B
items from those classes of problems not marked by an
.agterisk,

In order to compare the item forms and algorithmic
:approaches on the unrestricted
domain of subtraction problems, two subtests were con-
structed for each technology, one from , test
A and the other from . test B, Tﬁis was done
for each technology by randomly taking one test item f£rom
each class of items associated with an'item fofm‘or_
egquivalence class,

To compare pefformance on the restricted domain, a
pair of similar subtests was constructed from the restricted

tests A' and B! for each technoloqy'(algo“

20
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rithmic, hierarchical forms, and item forms),
Pexrformance on the unrestricted subtests pro-
vided the basic data for comparison of the algorithmic
and item forms technologies for the unrestricted domaln
of subtraction problems., Performance on the restricted
subtests provided the basic data for comparison of the
algorithmic, item forms, and hierarchical forms techno-

logies on the restricted domain of subtraction problcoms.

" ERiC
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21.

RESULTS AND DISCUSSION

Levels of Predictability. Table 2 shows the levels of predictability

and correlation between items belonging to the same class for each of
the various types of tests. The top half of Table 2 shows the levels
of predictability for tests measuring performance on the unrestricted

domain of subtraction problems,

Insert Table 2 about here

In regard to the first criterion (p. 14), the overall levels of
predictability on individual items were approximately the same for all
unrestricted tests. However, the correlation between corresponding
test A and test B items for equivalence classes, .53, was significantly
greater (p € .05, Edwards, 1966, p. 82) than the correlation, .39,
between corresponding items for item forms. This correlation for
equivalence classes was also higher, although not significantly so,
than that for the intersection of equivalence classes and item form
(.49).

The difference in correlations between equivalence classes and
item forms was due to the significantly higher (p £ .05, Edwards, 1966,

p. 33) levels of predictability for equivalence classes for those test

R




22.

A items on which subjects were not successful., Furthermore, the level
of predictability for those test A iltems on which subjects were not
successful was also significantly greater (p € .05) for equivalence
classes than for the intersection of item forms and equivalence classes.
This latter result must be tempered, however, because the difference in
levels of predictability between the intersection and equivalence classes
for those test A items on which subjects were successful was also signi-
ficant (p £ .05). (The corresponding difference between equivalence
classes and item forms was not significant.)

In effect, the test constructed on the basis of the algorithmic
technology with approximately 57% as many items (12 as compared to 21)
gave better predictions on individual items than the corresponding test
for item forms. Furthermore, tests formed from the two algorithms based
on "borrowing" (see p. 16) had 65% and 757 levels of prediction where
subjects were unsuccessful on test A items with overall levels of pre-
dictability at 78%. These levels of prediction were obtained with only
6 and 5 items for the respective tests. Hence, with considerably fewer
items these tests were not only as effective in overall predictability as
the intersection and item forms tests but also had higher (and for the 5
item test significantly higher, p € .05) levels of predictability tham
the item forms test for those test A items where subjects were unsuccessful.

It is also worth noting that of the four algorithms (see p. 16)

25




23.

originally identified, the two based on "borrowing' had significantly
higher (p € .05) levels of prediction than the two algorithms based on
Yequal additions" where subjects were unsuccessful on test A items
(65% and 75% as compared to 297 and 32%). The implication of this, of
course, is that for these subjects the tests formed from algorithms
based on "borrowing' were better predictors than the tests formed from

' This difference between the two

algorithms based on "equal additioms.'
types of subtraction appears to reflect the fact that "borrowing" is
the more common procedure taught in American schools. |

The components of variance (Winer, 1962, pp. 184-191) shown in
Table 3 are also relevant to criterion one (p. 14). Consider the contri-
bution of variance due to the interaction of subjects by items within
classes. Although this source contributed most of the variance for each
of the three types of test on the unrestricted domain, the contribution
was lowest for equivalence classes. Furthermore, the sources of variance
due to classes and subjects by classes wcre greater fnr equivalence
classes than item forms. These results tend to confirm the previous
finding that even with fewer items, the algorithmic approach was more

sensitive than the item forms technology in pinpointing strengths and

weaknesses of individual students.

Insert Table 3 about here

The levels of predictability and correlation associated with the
restricted domain are shown in the lower half of Table 2. None of the

obtained results was significontly different. Restricting the domain,

4
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24,

however, had the effect of increasing overall predictability for each
technology. Since most of the problems in the restricted domain appeared
to be relatively easy for the subjects, the levels of predictability for
"success” items were quite high. The relatively small number of errors
involved overall suggests that the low levels of predictability for items
on which subjects were not successful may have been due to careless
mistakes.

Components of variance could not be obtained for most of the tests
in regard to the restricted domain because estimates of variance due to
items within classes were negative for all restricted tests except item
forms. In that case, the contribution of variance due to persons by

items within item forms was 777.

Generalizability Results. In regard to the second criterion (p. 14),

Table 4 shows the coefficients of generalizability ex’ and o¢'gy for each
type of test.’ The coefficient®’ is a lower bound estimate of how well
one can generalize from a subject's obtained score on a test to his per-
formance on the stated domain of items (Crombach et al., 1963), in this
case column subtraction problems. It is also an intraclass correlation
coefficient for estimating reliability (Winer, 1962, pp. 124-132). The
coefficientor’s (Rajaratnam, et al., 1965) is an estimate of generaliza-~

bility for stratified parallel tests, tests for which the domain of items

? o and @x‘s are estimates of generalizability from a single test to
a well-defined domain of items and correspond to Cronbach's (1951) * and
Rajaratnam et al.'s (1965) &g, respectively, which are estimates of
generalizability from the mean of two or more parallel tests (to a well-
defined domain).
RO
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is divided into different classes as was the case in this study.

Insert Table 4 about here

The top half of Table 4 shows the coefficients of generalizability
for the unrestricted domain of subtraction problems. Of these, the
intersection test provided the highest estimates of generalizability;
those for equivalence classes were next; and item forms last. Again,
it is of interest to note that the two subtests formed from "borrowing"
algorithms had levels of generalizability as high as the subtest formed
from item forms. For the test with 6 items &’ = 753 o’ = .60, and
for the test with 5 items O’/ = ,64; ©'s = ,62.

On the restricted domain of subtraction problems, the coefficients
shown in the lower half of Table 4 for the restricted intersection,
restricted item forms, and restricted equivalence classes were greater
than the coefficients for ,ierarcﬁical forms.

The values of ox' and ©*'s obtained for the restricted tests were not
the same as those obtained for the unrestricted tests (X? = 20.6, 6df,

p € .01; X% = 26.19, 6df, p < .01, Edwards, 1966, p. 83). In effect,

a subject's score on a restricted test and in particular on the test
generated by hierarchical forms could not viably be generalized to the
entire domain of calumn subtraction problems. Hence, although the overall
levels of predictability for these tests were higher than those generated
from the unrestricted domain, the above results indicate that this was

accompanied by a significant loss in generalizability.
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Efficiency Criterion. The data clearly show that the algorithmic

approach wés more efficient than the item forms technology. Only 12,
as compared to 21, items were required to achieve about the same
overall level of predictability and somewhat better levels of.generali-
zability. The increase in efficiency evident with the tests formed
from the two 'borrowing" algorithms is even more striking. With only 6
and 5 items, respectively, they had essentially the same levels of pre-
dictability and generalizability as the item forms test with 21 items.

Furthermore, although it seems reasonable to suppose tﬁat the
intersection test with 37 items would produce the highest levels of
predictability and generalizability, in general this was not the case.
With a third (12 as compared to 37) as many items, the algorithmic
approach maintained as high a level of overall predictability and only
slightly (nonsignificantly) lower levels of generalizability. The item
forms test, which had slightLy more than half the number of items as the
intersection test, also obtained as high a level of predictability
although somewhat lower levels of generalizability. Overall, these
results lead one to suspect that under the testing conditions used the
algorithmic approach for assessing mastery approaches asymptote.
Further improvement would almost necessarily require more rigorous testing
conditions (cf., Scandura & Durnin in Scandura, 1972).

Even on the restricted domain the equivalence classes test appeared
to be the most efficient. Overall lévels of predictability weve the
same for all tests, while generalizability coefficients were somewhat

higher for the equivalence class and item forms tests. These higher levels of

14
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generalizability, however, were obtained with half as many items in the

case of the equivalence classes test.

> Hierarchical Analyses. The fourth criterion (p. 14) 1s concerned with

the fact that efficiency may sometimes be increased through the use of

conditional testtﬁg procedures, at least where the various items lend

themselves to Cuttman (1947) type scaling. In the present study, however,

if must be noted that each of the technologies compared provides an

explicit basis for ordering items that is indepéndent of empirical data.
Figures 3, 4 and 5, respectively, show the ~various hierarchies

(partial orderings) proposed for hierarchical forms (Ferguson, 1969), item forms

(Hively et al., 1968), and the algorithm of Figure 1.

Insert Figures 3, 4 and 5 about here

The method of analysis used to determine the relative validity of
the three hierarchies was similar to that used by Gagné (1962) to confirm
relationships between higher and lower levels in task analysils.

In Table 5, the positive-positive (++) superordinate-suborcinate
relationship shows for each hierarchy the number of cases where uniiorm
success on the two superordinate problems assoclated with a class implied
uniform success on all problems associated with relatively subordinste
classes. The (--) superordinate-subordinate relationship shows the number
of cases where failure on at least one of the superordinate problemws in a
superordinate

aclass implied fallure on at least one of the relatively subordirsite

clagses. The (+-) superordinate-subordinate relationship shows the

<8
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number of cases where success on & superordinate class failed to indicate
success on all relatively subordinate classes. The (~+) spperordinate-
subordinate relationship shows the number of cases where there was uniform
success on all subordinate classes but not on the relatively superordinate

class.

Insert Table 5 about here

The ++ and ~- relations, thefefore, validate an ordering whereas
the +~ relation contradicts one. The ~+ relation is considered neutral.

The proportion of verifying cases to the number of verifying plus
contradictory cases was..82 for the equiﬁalence classes hierarchy as
compared to .74 for the item forms hierarchy (p € .0l). None of the
differences on the restricted domain.were significant. To summarize,
then, the algorithmic approach not only provided the best and most
efficient method for assessing behavior potential, but the hierarchy
induced by the approach could be used to increase this efficiency even
more through the use of conditional testing procedures which involve

branching (with or without computer assistance).

Implications. On almost all measures obtained the algorithmic approach

to assessing behavior potential proved to be either better, or at least
as good, as the technologies based on item forms or hierarchical analysis.
Nonetheless, at first thought the item forms technology might appear to
have a certain advantage over the algorithmic approach. Given an iéem

form, it is a routine matter to generate an instance of that item form.

29
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This could be particularly useful in computer assisted testing (e.g.,
Shoemaker and Osburn, 1969; Ferguson, 1969), since the computer could
be programmed to randomly generate test items within forms. (The item
forms themselves, however, must be determined directly by the test
constructor.)

In the algori‘hmic approach this would have to be done indirectly.
Nonetheless, the computer, once given an algorithm, could be programmed
to automatically trace out the paths, identify the equivalence classes
of problems, randomly generate test items in the equivalence classes,
and order the items for testing. That is, the computer should be able
to generate not only the items but also the item forms (i.e., equivalenc
classes) themselves.

Moreover, on further reflection, it becomes apparent that the more
circuitous route required for generating test items via the algorithmic
approach has a further major advantage. It provides an explicit basis
for remedial instruction. To see this, we assume in accordance with
Scandura's (1971a, 1971b, 1972) theory that subjects actually use rules
(algorithms) to genmerate their behavior. Then, because each equivalence
class of items corresponds to a unique path of a rule, and because tﬁe
steps in each such path are known explicitly to the instructor (or
computer), each pupil can be given specific instruction to overcome his
inadequacies. Put succinctly, he can be taught the needed paths. These
ideas constitute the theoretical basis for a series of self-diagnostic

and remedial tapes and workbooks developed by the Mathematics Education

30
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Research Group (e.g., Scandura, 1970c; Scandura, Gramick & Durnin, 1971)
and could be extended for use in computer assisted testing and

instruction.
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Table 1 36.

' Stimulus Instances
Equivalence from Classes in
classes Jtem Forms the Interscction

1. ® pasic facts; minuend< 10
@ suptract 0

@ Answer O

2, © Basic facts; minuend” 10

@ Bagic facty minuend= 10

g,.;; gsx-' !n-t hl .!l !t_
wur O w o oA N

3. @No borrowy no O in answer or problem

@ " x~0 fact in problem 36

=10

we

® o 0-0 fact in problem 802

=301

L 14

@ " ;3 x-x fact in problem :.';,4?12
. ~321

$ small unequal lengths 228
=24

large unequal lengths 28759643
-427102

ve

4, ®No description 15;
=92

Se ® Simple borrow 3;
=1

@ Simple borrow; ene digit answar 68
' =59

® .epeated borrow 811
~523

ERIC

Full Tt Provided by ERIC.
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Table 1 cont,

Stimulus Instances
ggquivalence from Classes in
Clagsoes ITtom Forms the Intersection

@Simple borrows 1 digit subtrahend 38
-0

6. o Repeated borrow _ 1563

=275

7. @ simple borrow 352
: =216
®

Simple borrow; 1 digit answer : 723
“7-! 6‘

Simple borrow; 1 digit subtrahend 5673
-

Simple borrow; mediuam 68423
' -51712

Borrows 1 digit from large number 9463217
——2

Borrow; medium; unequal lengths 85463
_=392

Repeated borrows 4223
=1332

Separated borrows 98542
-4617

Borrow; nmedium; subtrahend 1 digit short 74918
-d 022

8. Borrow; rmedium; subtrahend 1 digit short 15362
~8071

Repeated borrows 12459
-6990

Separated borrows 186421
-S8371

S. Borrow across O 603
‘=578

Borrow across two (or more) U's 5002

- . : -2138

Q ! 36
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Table 1 cont,

Stimulus Instances
Equivalence from Classes in
Classos Item FTorms the Intexsection

10, Borrow across O 4029
=3642

Borrow across two {(or more) O's 70035
~41362

1. Borrow across 0 1500

-877

Borrow across two (or more) O's © 14003
=9678

12, Borxyow across 0 11029
~8437

Borrow across two (or more) O's 160018
- ~76325

J?
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Table 3

Ccmponents of V lanq$fgn ltem Scores

r.
TES

SOURCE TNTERSECTION TTEm FORMS aﬁauwﬁmué' CASSES

Subijects : l
MS 1.144 . 420 « 539
o~ 014 . 008 .019
% - 6 9
Classes
MS 1,887 1.443 2,525
ot .033 .020 . 045
% 19 15 22
Itcns
(within

classes)
M «e157 « 106 ' v 182

ot . 0033 . 001 . 004
% 2 1 2

Subijects by
Classes

MS 163 W24 194
ot «037 + 020 055
% 21 15 27 .

Subiects by

Itoms
(within

classes)

MS ' . 089 « 084 . 083

o~ . 089 . 084 ,083

% 5% 63 | 40

ERIC

Full Tt Provided by ERIC.
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Tadble 4

Coefficients of Generalizability &' and &'
for each Test

Tests d’ ‘*'S

. st S et o
Intersection « 85 «87
Item Forms 62 .66
Equivalence Classes 71 74
Restricted Intersection ¢« 39 ¢ 46
Hierarchical Forms '15 ' W14
Restricted Item Forms .29 25
Restricted Eguivalence « 30° 21

Classes . | '

Note: &° = 1S botween veowvle = MS veople X tests
HS between oeooTe + S people X tests
(2% Fs22 %

“'s:::—s-~ (4_.%&_———
e*(zz :. 5, 2:;&)

t 3
where S¢ is test variance, 5/  is item variance
within a class and S is class wvariance,
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Table 5

Pass(+)~Fail(-~) Relationship Between Superordinate
Problems and Relatively Subordinate Problems |

Number of Cases for each

Relationship Between Super=- Test for

ordinate Problems and Rela- rVerifying

tively Subordinate Problems Hieraxrchies

1. 20 30 40
- Proportion

Super.+ | Super.,~f Super,+} Supar,- N O} 12
Hierarchies ) Sub.4 | Sube= | Sub.= ] k23] 4243
Item Forms 219 79 ‘461 . 74
Equivalence | 109 53 197 .82
Classes '
Hierarchicil} 64 3 - 80 .84
Forms :
Restricted [181 13 34 22 228 .85
Item Forms _
Restricted 92 2 13 18 107 '+ 88
Equivalence
Classes S

ERIC

Full Tt Provided by ERIC.
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Figure 2:
Figure 3:

Figure 4:

Figure 5:
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Figure Captions

Subtraction Algorithm
Directed graph and paths of subtraction algorithm
Hierarchical Forms adapted from Ferguson (1969)

Hypothesized hierarchy for subtraction item forms
adapted from Hively, Patterson, & Page (1968)

Hierarchy of Paths based on Subtraction Algorithm
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START .
1. Go to right
most column

Is

3. Go to next Yes
column to left

2. Subtract the bottom

top no.\, Yes no. from the top
2 bottom no. using facts for
no.? top no. £ 9,
4,
there only Yeq Subtract the bottom

no. from the top no.
using facts for top
no. = 10. :

one column to
left with 1 as
op no.?

& No —

5. Go to next
column

Is
0 top
no. in

this column
9

Change O
to 9.

Change top no. to next lower no.;
return to original column and place
"1" in front of top no.; subtract;

and go to the next column to the left.

Figure 1: Subtraction Algorithm

&



Directed Graph

START STOP
0-—-’—---)0-—-—-&—-—’90—--—«-—0
=

20 .—-!--—)0 “ [
\\~‘___~__‘,JW
3
30. ’ 7\. 2- >'-—- - - P
z‘;"\
4, o f e 2 e .
\.—J——'ﬂ
5 i 2

Figure 2:

Stimulus Instances from
Corresponding Equivalence
Classes

153
=92

54
=21

1563
-875

268
=97

1663
-824

603
~-578

4029
-3642

1300
~-423

16059
~-8797

Directed graph and paths of subtraction algorithm
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Subtracts 3 digit nos.
with borrowing from the
tens and hundreds place.

Subtracts 3 digit nos.
with borrowing from the
' tens or hundreds place.

Subtracts two digit
numbers with borrowing
- from tens place

Solves subtraction
problems from memo
for two. digit sums%= 20,

Solves subtraction
problems with no
borrowing. Three
and four digit com-
binations.

Solves subtraction
problems from memory
for sums <« 9,

Figure 3: Hierarchical Forms adapted from Ferguson (1969)
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Repeated Borrow across
borrows. two O0's.,
Separated Borrow across |
borrows. 0.
Simple borrow;
medium. _

Borrow; unequal
lengths; medium.

Borrow; one
digit from
large number.

Borrow; medium;
subtrahend one
digit short.

Simple borrbw;
one~digit answer.

Simple borrow;‘
one~digit
subtrahend. .

Simple
No borrow large; . borrow.
unequal lengths. ' > T

No borrow;

i No borrow; No borrow; { |No borrow;] |[No borrow;

small; no 0 in Basic fact. } }x-0 fact 0-0 fact x-x fact
unequal | answer or minuend > 10.} Jin jin in
lengths problem, problem, problem, problem.:

s

Basic fact ' Subtract Answer
minu>nd £ 10. | 0. = 0,

Figure 4: Hypothesized hierarchy for subtraction item forms
adapted from Hively, Patterson, & Page (1968)
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Figure 5:

Hierarchy of Paths based on Subtraction Algorithm

4
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