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I. Introduction

Physical and physiologlcal measurements are not generally subject to the
limitations inherent in psychological testing, where an unkrown range of
individual variation is compressed into a relatively restricted distribution
of scores from a typically 10- to 40~ item test. Such psychometric variables
produce raw scores distributions which tend to be skewed and platykurtic,
their particular properties being dependent upon the difficulty and discrim-
inating power of the test items employed (Lord & Novick, 1968, pp. 386-392).

To meke valid inferences about the nature of these quantitative traits, especlally
by means of distributional analyses, it is apparent that we need mental

variables possescing better metric properties than is usually the case. A
theoretical solution for the hypothetical value of a trait or ability presumed
to underlie a given set of item-response data is providéd by the‘létent-trait
psychometric models (Lord & Novick, 1968, Chs. 16-20; Rascﬁ, 1960) In the present
study we consider the estimation of these trait values on the basis of n
di.ci.otomously-scored items utilizing the so-called "normal ogive model" of

Lawley and Lord (Lawley, 1943; Lord, 1952; Bock & Lieberman, 1970). This model
provides an internal scale of measurement, 8cores which are independent of the
particilar test items employed, individual estimates of the standard error of
each subject's score, and a statistical test of how well the data conforms

to the constraints of the model.
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2. The Normal Ogive Model

FURTE L T

Consider an unobservable, continuous variable, 8, the "latent ability“ :
of the subjects, which is distributed normally in the population of reference .
with a mean 0.0 and varilance 1.0, Letting rij=l indicate a correct response
by subject 1 to a dichotomously scored item j, and rij°0 otucrwise, define

Pij = Prob {rij = l} I,

= ¢ (cj + ay ©,)

PIRTRTITTY NS LILIEDR R - (U RE-LER

where ¢ 1s the cumulative normal distribution function,

cj is an index of the difficulty of item j

and a 1s an index of the discriminating power of item j.

Then 1f vy = [rij] , the n x 1 score vector for a given subject, with

ability © 4.
= n rij - = - 3
on the assumption of "local independence "; ie that the probabilities
of a corract response to any two jtems for a given value of @ are
statistically independent of each other. (They are necessarily independent of
© since © does not vary.)
A discussion of the plausibility of the normal ogive responseé character-

{stic can be found in Lord and Novick (1968, Ch. 16). However, the adequacy

of the model must be verified for a given sample of test data. A common

é

situation in which one would not expect a good fit is that in which subjects

guess at unknown answers, thus raising the lower gsymptotic wvalue of Pij

¢ e Saeam——— U i s . A b 4 et

considerably above zero. Equation (1) is easily generalized to include

this possibility:

T gj [1 - & (Cj + ajBi)] + ¢ (Cj + Sjei)
= gj + (1 - gj) (1] (Cj + ajei) _
where g4 is a constant gpecifying the probability of a chance correct

P
13 (3)

response to item j when tEB answer is unknown. é



In general, the model requires that

(a) the test in question is measuring substantially one trait (ie. a unifactor
test)

(b) the probability of answering a given item correctly increases mono ton-
fcally with the subject's level on the trait, and

(c) the principle of local independence given above.

3. Maximum likelihood Estimation of Latent Ability and Item Parameters

The estimation of the parameters of the model may be approached from an
unconditional or conditional point of view, depending upon whether the gubjects
are regarded as having been sampled from a specified population or are
treated as given entities (see Bock, 1972). The former approach has provem to
be extremely time consuming for tests of more than, say, ten items (Bock &
Lieberman, 1970), The latter leads to simultaneous estimation of both subject
and item parameters and has been adopted here because of its computational

efficlency.

A. Estimating ability when the item parameters are known

Letting the parameters of the model be defined as in section 2, and Pij
be defined by equation (3), P(!i) in equation (2) is the 1likelihood function of
@ for a given subject. Omitting the i and j subscripts for convenience,

¢ = log P(v) = Ir log P+ I(l-1r) log Q

. (4)
Letting ¥y =cy + aje and h(Yj) = the unit normal ordinate.

3L - - vi=P —) - 0.
o2 - (& - 161) %E e (1~g) h (¥) =0
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2
Also, ﬁ%% _ g2 (A-hC0)  ropy (ay - il:z%hi!l + Ll:glhﬁ!l)-(l-g)h(y)]
n .

PQ
ﬂg& = 2 . h' ’Y) and hll!l = -Y,
since So2 a“ (1-g)h'{Y) e

Applying the Newton-Raphson method to any k-th stage estimate of O,

2
O el = Ok - () /(Zh).

In the absence of guessing, of course, all computations are performed

with the gy set equal to zero.

B. Estimat’ng item parameters when ability is known.

Given the values of 3, subjectis of similar ability can be grouped to
provide an empirical estimate of the proportion of correct responses to
each item, at intervals along the ability continuum. Item parameters can
then be estimated by means of probit analysis. (Finney, 1971;

Bock and Jones, 1968). This solution is presented in detail in Kolakowski
& Bock (1970)

C. Estimating ability and item parameters simultaneously.
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The above solutions for each set of parameters are developed in terms qf
the other set. A computer program has been developed to estimate each set in
turn, iterating until convergence is reached. (Kolakowski & Bock , 1970), Four
to six estimation cycles usually produce stable values. Because the origin
and unit of measure are abitrary, the subject parameters are standardized

to zero mean and unit varisnce and all items are calibrated relative to the

metric.
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The gy are presently treated as constants which must be determined by

inspectior.. Subjects for whom the procedure will not converge are assigned

a default value and, in the present investigation, are eliminated from subsequent

analysis. The number of groups or fractiles used in partitioning the subjects

for the probit analyeis 1s arbitrary.

4. The Problem of Bias in the M.L. Estimate of Ability

A. Generation of synthetic item responses.

Recall that

Pij = Prob {%ij=é} = gj + (1 - gj)e (cj + aJ Qi)
Assuming constant values for the four parameters of the model, synthetic
response data can be generated by sampling a number ny 4 between 0.0 and 1.0
from the recta:gular distribution and assigning the values
riy = 1l for ny 5 < Py
0 otherwise

This algorithm was performed using 38 previously calibrated test items, for
values of gj = 0.0 and 0.15, and a sample of 750 random normal deviates Gi,

A
hereafter referred to as '"true scores.'" Estimates of these true scores,® ;

N

and of the original item parameters, ay and 2}, were then recovered from beth

sets of response data using 20 fractiles and an empirical prior. Execution
time for runs of six complete estimation cycles on an IBM 360/65 computer
was under 4.5 minutes.

B. Comparison of distributional forms without guessing.

For maximum sensitivity to the distributional forms, five tests of normslity

were employed: the coefficients of skewness and kurtosis, the U-statistic
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= ratio of sample range to std. dev. (David et al , 1954), Geary's A =
ratio of mean deviation to std. dev. (Geary, 1947), and a Chi Square
test on 18 degrees of freedom. Table 1 presents these indices for the distribu~ °*
tion of true scores and that of the resultant raw scores, thus illustrating
the unacceptable properties of the latter.

Table 2 (a) presents our results for the recovered estimates assuming the
B} = 0.0, ie. no chance responses. Although ail of the ability distributidns
have a mean of zero and variance of one by constructica, the form of the
distribution of the Gi is leptokurtic and skewed to the right (Fig.1),indicating
that subjects of high ability rcceive inflated trait estimates. This is
explained by referring to the graph of original vs. recovered item parameters
(Figure 2), in whichit is apparent that the egsiest and most discriminating
items are estimated as being even more extreme, thus defining a lower bound
for ability, but having little weight in most calculations. On the other hand
there 1is very little bilas in the Qj and g; of easy items. The net result is
a relative contraction of the left tail of the distribution.

A systematic correction for such asymmetrical bias is difficult to conceive.
However, the loss of a small number of unrealistically extreme subjects in the
context of a distributional analysis can be tolerated. Therefore, since
there were no true scores beyond the range of approximately T 3 standard
deviations, we aécordingly removed the five subjedts whose trait estimates had
an absolute value greater than 3.0. Tabel 2(b) shows that the distribution
of remaining subjects does not significantly differ from normality on-any
of the five indices.

Similar analyses were performed for subtests of 10 and 20 items,
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7
selected to uniformly span the entire range of difficulty. The program failed
to converge to stable parameter estimates for a 10~item test. Apparently,
this is too few items to adequately describe an underlying normal distribution,
even with such a large number of subjects, and thus confirms the futility of
unconditional estimation with only a handful of items (see Bock, 1972).

The results for a 20-item test were similar to those for the 38 items
(Table 2(c)), with a stronger upward bias than was the case for the longer
test. Hence, the possibility exists that the use of large item pools could
itself improve the validity of ability estimates.
Given our priviledged knowledge of the true score distribution, the
original analysis was performed again assuming a normal orior rather than
the usual empirical prior. It camn be seeﬁ in Table 2(d) that the results for
the two apprcaches are virtually identical. ‘This is not surprising because,
whereas the normal prior fits the data more precisely, the extreme cases
(in both tails) are given comsiderably more weight than the moderate subjectsf
Lastly, an analysis was performed assuming, contrary to fact, that the
"subjects" might have been guessing. Here the procedure failed to converge
for each of three reasongble sets of guessing constants, each subjectively
determined from an examination of the item response proportions in the 20
fractiles. This tends to indicate that any results obtained under the guessing

model when this assumption is unwarranted will undoubtedly be invalid.
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C. Comparison of distributions for data containing chance responses 8

The results of the analysis of the synthetic guessing data are presented
in Table 3 and Figure 3 for both the guessing and conventional options of the
computer program. Whereas removing the extreme 61 from these distributions
eliminated the original leptokurtosis, they remain significantly skewed to
the right although not nearly as extreme. Comparing the two response models in
Table 3 reveals that the guessing analysis is decidedly less skewed, and
therefore more valid, when chance responses are in fact present in the data.
However, the sensitivity of these tests will be better appreciated by referring

to Figure 3 for a subjective evaluation of the differences between models.
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In conclusion, the normal ogive guessing model should be employed °
when chance responses are likely to be preseni in the data, but failure of
the conventional model to converge for guessing data —~and not vi.ce versa—
indicates that the procedure will have the most validity in applications
where guessing can be ruled out. In any case, if the present methodology
is found to be valid for a variety of prior distributioms, provision of
suitable default values for unrealistically high ability estimates and the
use of subjectively determined guessing constants might still allow generation
of pools of calibrated items and the implementation of sequential item

testing under consistent, if not ideal conditions.

5. Resolution of a Spatial Visualization trait distribution into normal components.

An empirical problem with data meeting the above ideal criteria involved
making an inference about the mode of inheritance of an educationally important
mental trait,spatial visualizing ability, by contrasting the properties of
the separate ability distributions for the sexes. A 29-item audio-visual
version of the Guilford=-Zimmerman (1953) Spatial test was administered to
a sample of 727 eleventh-grade students. The Normal Ogive latent ability
estimates were obtained under the conventional model and the forms of the
distributions were analysed for the sexes separately. Table -4 (a & b) shows
the results after removing extreme cases. Our first-hand knowledge of the data
plus the fact of convergence of the parameter estimates under the conventional
model, lead us to place considerable faith in the validity of this analysis.

A maximum likelihood decomposition of these distributions into normal
components by the method of Day (1969) yielc - .e results in Table 5 (a & b),

namely an upper component comprising 51% of the variation in boys' spatial

10

IRBRRTTL. TR

bl

e ittt

IV IRP TR UL RRTE

LRI IR

ol $inal

sl dtbmttaa

T o S et S

¥



e

e el F g
SiahigRE

10

ability which cocresponds to a similar component comprising only 20% of

the variance for girls. Given the range of ability estimates from -2.0 to

+3.0, the means of .80 and .68 of these components, respectively, are virtually .
equal. To deal objectively with the significance of the findings, a likelihood

ratio x2 test on 2 degrees of freedom was calculated to test the fit of only

B LY e Ly T OC N SMRE -7 o SR

one component. Also, a Pearsonilan gz on 16 degrees of freedom was used to

FECReT

apetink

check the adequacy of a bimodal model. These indices (Table 5) verified

that the deviation from normality shown in Table 4 is due to the presence of

two and only two underlying components. This structure is illustrated in

Figure 3 against the background of the frequency histograms for the data.
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The existence of a sex-differentiating duality in the distribution

of a continuous human variable is compelling evidence for a sex-influenced

PR D e Finna UL

major gene. The above proportions immediately suggest an X-linked recessive

allele with frequency close to 0,5. Moreover, the (assumed) common variance

of the components for girls is estimated at nearly one half the magnitude
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¥

of that for boys (Table 5), suggesting an averaging effect in females which

Hr o

does nof occur in males., This is entiraly consistent with the hypothesis of

sex~-linkage and decidedly reinforces the correlational evidence for this model.
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(stafford, 1961; Hartlage, 1970; Kolakowski, 1970)

6. Discussion

While the importance of a latent-trait measurement model for validly

investigating the mode of inheritance of an intellectual ability is apparent,
it is equally clear that we need to be able to objectively select omne of several

conflicting models without resort to considerations external to the estimation
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problem. Internal corrections for bias and/or the simultaneous estimation of
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guessing parameters for the Normal Ogive model are two as yet unrealized

approaches which would correct the weaknesses in the present invesatigation.

On the other hand, other psychometric models based upon the logistic distri- B

bution may be more promising in this regard. (see Birnbaum, 19683 Rasch, .
1960).
For instances in which chance responses can be eliminated on external %

grounds, the assumption of normality of the components is still cpen to
scrutiny. Lord (1960) has shown that errors oé neasurement cannot be assumed
to be normally distributed if a subject's gcore is taken to be the number

of items answered correctly. Latent tralts being cant’nuous and unbounded,
however, this assumption 1is at least plausible. It therefore remains to
investigate the bias of the foregoing procedures for a variety of true score
distributions or better yet, to specify theoretically the conditions under

which unbiased estimates can be expected to obtain.

12

gl R AR




References

Birnbaum, A. (1968) Some latent trait models and their use in inferring
an examinee's ability. Part V in Lord & Novick (1968) Statistical
Theories of Mental Test Scores, below.

Bock, R.D. (1972) Estimating item parameters and latent ability when responses
are scored in two or more nominal categories. Psychometrika, 37; in press.

Bock, R.D. and Jones, L.V. (1968) The Measurement and Prediction of Judgement
and Choice. San Francisco: Holden Day.

Bock, R.D. and Lieberman, M. (1970) Fitting a response model for n dichotomously
scored items. Psychometrika,35; 179-197.

David, H.A., Hartley, H.0., and Peafson, E.S. (1954) ihe distribution
of the ratio, in a single normal sample, of range to standard deviation.

Biometrika, 41; 482-493.

Day, N.E. (1969) Estimating the components of a mixture of normal distributions.
Biometrika, 56; 463-474. ' '

Finney, D.J. (1971) Probit Analysis, 3rd o4, Cambridge University Press.

Geary, R.C. (1947) Testing for normality. Biometrika, 34; 209-242,

Guilford, J.P. and Zimmerman, W.F., (1953) Spatial visualization, form B.
Part VI of the Guilford-Zimmerman Aptitude Survey. Beverly Hills:
Sheridan Supply Company.

'Hartlage, L.C. (1970) Sex~linked inheritance of spatial ability. Perceptual
and Motor Skills, 31; 610,

Kolakowski,. D. (1970) A behavior-genetic analysis of spatial ability
utilizing latent~trait estimation. Unpublished Ph.D. dissertation,
Department of Education, University of Chicago.

Kolakowski, D. and Bock, R.D. (1970) A Fortran IV Program for maximum
1ikelihood item analysis and test scoring: Normal Ogive Model. Research
Memorandum No. 12, Educational Statistics Laboratory, University of Chicago.

Lawley, D.N. (1943) On problems connected with item selection and test
construction. Proceedings of the Royal Society of Edinburgh, 61; 273-287.

Lord, F.M. (1952) A theory of test scores. Psychometric Monograph No.7.

Lord, F.M. (1960) An empirical study of the normality and independence
of errors of measurement in test scores. Psychometrika, 25; 91-104,

Lord, F.M. and Novick, M.R. (1968) Statistical Theories of Mental Test Scores.
Reading, Mass.: Addison-Wesley.

13

8% i

Dok pest

!Eéz .

=i
UL

RN
ISR TS

w._
B TN

g ak Bl

e
5

I
iy

Lt
L

Lt

R P FERCN B 1Y
e st st so A e bad
RS T o R A SR U Pt

1 ke
Rt

1)
A

LI b e 1y g e dree
CPRIERL IO R ER NPT HEAE, o g

iiating Gk n g B

“ﬁ‘-«x )

bkl

ey Lo i bl
TRt E e R

o R R S T
2GS Ol &

hi2 g

by ot} 1mz:u¢g];}§;;r- 2 7,




13

Rasch, G. (1960) Probabilistic Models for some Intelligence and Attainment
Tests. Copenhagen: Danish Institute for Educational Research.

Stafford, R.E. (1961) Sex differences in spatial visualization as evidence
of sex-linked inheritance. Perceptual and Motor Skills, 13; 428.

=
.
EhE
S
SRS
K
T3
B
iy
s
i
L%
35%
TeEd
R
AR
o
e
"‘ X
e
S s‘\;
N
=2
3

o
BTt

i

RS B TR TN B R TR AL L MR g AR R ALE T Jo PR Tuk L TR P
R i, TP oA JE B O L TSR e Ve

o

14




T0*>d so10UBTEOP g

co*>d sojuelrsop y

zotxd
s11amy03det #oys IY8Ta L°12 XY AN #%£0°8 ¥¥81°Yy #%8€L’ oYL 23jewylse B L
&TITW rgwan (P
I013d
aeyndueldaa
spianyozder Aoys IUBTY  xxh°EY  #x96L° 869  ¥*¥6L°%  xxl8L° 474 swalT (F rgwan (2
paaowal
S3Wa31IXD xotad Tp)
i9puwlIsSe iein3ue3vaz ot
9°%T T6l® 78°S €0°€ YA 4L AIFTTQV CPWEN (q
1o0tad
3jewTIS?d FeTndueloal
o13any031dey mays Y32 2L w#xTLL’ ¥%10°8  »x02°%  «¥¥8E° 572 LI3TTFAY CPWIN (e
¢ TIEVL
SaJ00S
op1anyhaeTd meys IIST  xx0ET »2T8°  #xL6°%  *»x19°CT ¥»66L°-  0SL mey (a
$23008
A A1 N L6°S €8z SLO*~ 0S. onig (e
uopidraoseq Awﬂum‘x v §,A183H -0 sTsO3INy. esouMays. N atdmeg T12POR
BlRp MOpury syoafqns @G/ smaly AieInqedoa g¢

T T19VL




T0*>d ssjeudysap 22

¢0°>d sojeulyssp 4

16

pasomal
Bl®p S3aWIIIXD
maYs IY3T1  40°Z¢ T6L°  (1)%€9°S %6'T  ¥¥€82° L€l 3ugssany ssand (P
paaowax
elEep SOllaIlIXD
soYs JUTL  4x8°6Y 208° %T€°C 98°C  ¥x/0S° vali Suyssangy cowaN (@
22 %27 )
orIanyoldaT moys IYBTI /7€ xx08L° ¥#(€°8  ¥x%T9°€ »¢L9€ " ovL Zursseny ssEnd (9
2lep
OT2INN0IdST MoYS IUBYI  yx6°LG 98/L* *¥9Y°L  ¥%20'%  xx€LL° 0SL 3ugsseny (PN (e
uoT3drI0o8g Amﬂwmx,.. ¥ s,4x1m0n 0 sfsojany Se3UMRNS N at1dueg T2PoK

€ TavL




SN C°'1¢ ¥ GET (A% 89°
SN L°T1 ¥x8%7 09° 08°
D, (D
uzpuosIead ‘¥4I vA 4
mays IYBTL  %x7°CTY 708 °
s>pranyfaerd L°0T 118"
uworadiaosad - (8T)g X Vv s, 4383

09°- %0T : %408 c7e

4£6% 99t

L1}

A% %lS

7 *BA T 2iniX1W
1 3o suofixodoid N

vIeq lBT3Ieds 3O doﬂuﬁmomaoomn,

¢ 19Vl
L8°S ot °t »xyv9° cve
*xIT°S 2¢9°C 260° 99¢
[ SIS03AnY S59UMIYS u

y TIAVL

10" >4 8972 US IS9P ¥x

cp* >d ©93eudysap ¢

STATO

sfog

STITFD
shog

a1dueg

CPREN

CEWIN

T°POR

CEITEN

CHWEN

T3P°R

(a

(e

a

(e

17




Frequency

18

-1 0 1
Scaled score

FIGURE 1: Distribution of recovered estimates for the conventional model
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