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PREFACE

The purpose of this Navy Training Course is to aid those personnel
who need an extension of the knowledge of mathematics gained from
Mathematics, Vol, 1, NavPers 10069-C. To serve the wide variety
of needs, the text is general in nature and is not directed, therefore,
toward any one specific specialty,

The definitions and notations of logarithms followed by computations
with logarithms occur early in the text, Trigonometric ratios and
analysis and applications along with aids to computations occur next,
Vectors and static equilibrium are followed by trigonometric identities
and equations,

Straight lines, coric sections, tangents, normals, and slopes precede
the introduction to differential and integral calculus,

The introduction to calculus is intended as a survey course prior
to a more rigorous study of the subject. The limit concept is followed
by a discussion of derivatives and integration, Basic integration ..,rmulas
follow this discussion, -

The last chapter of the course covers combinations and permu-
tations, and gives an introduction to probability.

Numerous examples and practice problems are given throughout the
text to aid the understanding of the subject matter.

This training course was prepared by the Navy Training Publications
Center, Memphis, Tennessee, for the Bureau of Naval Personnel.
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THE UNITED STATES NAVY
GUARDIAN OF OUR COUNTRY

The United States Navy is responsible for maintaining control of the sea
and is a ready force on watch at home and overseas, capable of strong
action to preserve the peace or of instant offensive action to win in war.

It i. upon the maintenance of this control that our country's glorious
future depends; the United States Navy exists to make it so.

WE SERVE WITH HONOR

Tradition, valor, and victory are the Navy's heritage from the past. To
these may be added dedication, discipline, and vigilance as the watchwords
of the present and the future.

At home or on distant stations we serve with pride, confident in the respect
of our country, our shipmates, and our families.

Our responsibilities sober us; our adversities strengthen us.

Service to God and Country i3 cur special privilege. We serve with honor.

THE FUTURE OF THE NAVY

The Navy will always employ new weapons, new techniques, and
greater power to protect and defend the United States on the sea, uncer
the sea, and in the air.

Now and in the future, coritrol of the sea gives the United States her
greatest advantage for the maintenance of peace and for victory in war.

Mobility, surprise, dispersal, and offensive power are the keynotes of
‘he new Navy. The roots of the Navy lie in a strong telief in the
future, in continued dedication to our tasks, and in reflection on our
heritage from the past.

Never have our opportunities and our responsibilitics been greater.
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CHAPTER 1

LOGARITHMS

The basic definitions and terminology as-
sociated with the study of logarithms were dis-
cussed in Mathematics, Vol. 1, NavPers
10069-C. Some of these basic topics are re-
viewed ir the fcllowing paragraphs, followed by
discussion of the use of log tables and natural
logarithms.

REVIEW OF DEFINITIONS

The most important definition to remember,
concerning logarithms, isthat everyéogarithm is
an exponent, For example, since 34 is equal to
9, the logarithm of 9 tothebase3 is 2, Inorder
to state a logarithmic relationship, a base must
be stated or implied; the various exponents which
designate powers of the base are logarithms to
that base,

The usual method of expressing the basic
definition of logarithms in symbols is as follows:

Kb = a, thenx = logb a

The two forms shown in the foregoing expres-
sion are defined as follows:
EXPONENTIAL FORM: bX=2a

LOGARITHMIC FORM: x =logp a

EXAMPLE: Change the expression 23 =8to
logarithmic form.,

SOLUTION: If bX = a, then logy, a = x.

Letb=2,x=3,52=8
Substituting,
log2 8=3

EXAMPLE: Change the expressionlogyg 100
= 2 to exponential form,

SOLUTION: I logp a = X, then b® =a
Substituting,

102 = 100

PRACTICE PROBLEMS:
1. Change 103 = 1,060 to logarithmic form,

2. Change eX = N to logarithmic form.
3. Change logg 4 =2 to exponential form,

4, Change logjg 3-16 = 1/2 to exponential
form. :
ANSWERS:

1, logyg 1,000 =3

2, logg N=x
3, 22=4
4. 10V/2-13.16

RULES FOR CALCULATION

Numerical calculation by means of loga-
rithms is performed by using 10 as the base.
Therefore, in the discussion which follows, no
base designation is used. The expression log A
is understood to mean the base 10 logarithm of
A,

Two important abilities are necessary for
logarithmic calculation, as follows:

1. Recognition of logarithms as exponents.

2. Knowledge of the rules for exponents in
multipiication and division of algebraic quan-
tities.

The first of these abilities was discussed
in the foregoing section, The second is the sub-
ject of the following paragraphs.

Multiplication

Suppose that we wish to multiply A and B, and
we know the following:

A=10m
B = 10"
The product AB then is

AB = 10™ x 10"
= lo(m + n)
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In logarithmic form,
logA=m
log B=n
logAB=m+n

Assuming that we can find AB if we know its
logarithm, the procedure then may be stated as
follows:

To multiply two numbers by means of log-
arithms, add their logarithms and find the num-
ber whose logarithm is the sum,

EXAMPLE: Multiply 100 times 1,000 by

logarithms,
SOLUTION:
100 = 10%.". log 100 = 2
1,000 = 10°". log 1,000 = 3

log (100 x 1,000) =2 + 3

=5

100 x 1,000 =10°

= 100,000
Division
If A is to be divided by B, and A and B are

the same numbers as in the foregoing discus-
sion, then we have

m
%= 107 _ 10(m n)
10

In logarithmic form,
logA=m
logB=n
log% =m-n
This may be stated in words as follows:
To divide B into A by logarithms, subtract

log B from log A and find the number whose
logarithm is the difference,

EXAMPLE: Divide 1,000 by 100 by log-
arithms,

- .ot
o

SOLUTION:
log 1,000 =3
log 100 = 2

1,000

oo -!

10

Powers

In order to calculac¢ a power such as A3 by

logarithms, we observe that

3

A"=AxAxA

.. log A3

=log A+logA+logA

=3 1log A

Stated in words, the power rule is as follows:
To find A" by logarithms, first express log

Al ag nlog A, The number whose logarithm is

n log A is the desired power, AT,

EXAMPLE: Find the value of 1002 by using
logarithms,

SOLUTION:
log 100° = 2 log 100

= 2(2)
=4
Therefore,
100% = 10*
= 10,000
Roots

‘The calculation of roots by logarithms is
easily accomplished by first changing the form
of the expression to a fractional power. Then
the power rule is used,

EXAMPLE: Find \hoo by logarith.ns,
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SOLUTION:

V100 = 1001/2

1og 100172 =% log 100

=1 (2)
=1
100172 - 10
-.N100 =10

USING LOG TABLES

Tables of logarithms could be constructed
using any number as a base. For purposes of
calculation, the most logical mumver for a base
is 10, the base of the decimal number system,
Logarithms to the base 10 are called COMMON
LOGARITHMS,

COMMON LOGARITHMS

Most of the numbers encountered in various
calculations are not integral (whole number)
powers of 10, For example, the number 316
can be expressed as a power of 10 only if we
resort to fractional powers., We find that

316 = 105/2

= 102 1/2 (approximately)

= 1020

2.5

(The exact value of 10%°1s very close to 316.23.)

Therefore, in logarithmic form,
log 316 = 2,5 (approximately)

Every logarithm consists of an integral part
and a fractional part. Thus thelogarithmof 316
is

25=2+0.5

The integral part is the CHARACTERISTIC; in
this example, the characteristic is 2. Thefrac-
tional part is the MANTISSA; in this example,
the mantissa is 0.5.

Integers

The characteristic for the logarithm of an
integer may be determined by inspection. For
example, if the integer is between 1 and 10, it
is equal to a power of 10 between 0 and 1, This
concept is explained fully in Mathematics, Vol-
ume 1, NavPers 10069-C.

The numbers in the following list serve to
illustrate how the characteristic is determined
by the size of the number:

log 3.8 = 0.5563
log 36 =1,5563
log 360 = 2,5563
log 3,600 = 3.5563

Since log 1 is 0 and log 10 is 1, we expect the
logarithm of 3.6 to be a numberbetweenO and 1.
Therefore, its characteristic is 0, On the other
hand, 3,600 is greater than 1,000 and less than
10,000. Therefore its logarithm is between log
1,000 and log 10,000, and its characteristic is 3,
In the foregoing tabulation, we find that the com-
plete logarithm of 3,600 is 35563,

Scientific notation provides a convenient
method for determining the characteristic, For
example, 3,600 is written as 3.6 x 103 in scien-
tific notation, Thus we have

log 3,600 = log (3.8 x 10°)

= log 3.6 + log 103

The characteristic é’f log 3.6 is 0, 2ad the char-
acteristic of log 10¥ is 3, Therefore, the char-
acteristic of log 3,600 is 3, the sum of the
characteristics of the two separate logarithms,
Any expression written in scientific notation
consists of a number between 1 and 10, multi-
plied by a power of 10. Sincethe characteristic
of a number between 1 and 10 is 0, the power of
10 determines the characteristic of the log-
arithm,

The exponent that we obtain as the power
of 10 in scientific notation is indicated by the
mumber of digits between the actual position of
the decimal point in the original number and
the standard position of the decimal point, The
standard position is immediately after the first
nonzero digit in the number. For example, in
the number 3,600, the decimal point is understood

8
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to be after the second 0 in the original number,
This is 3 digits to the rightof standard position,
80 that the exponent of 10 for scientific notation
is 3. This exponent is also the characteristic for
log 3,600, If the decimal point in the original
number had been to the left of standard position,
the exponent of 10 (and therefore the character-
istic) would have been negative,

Fractions

When the logarithm of a fraction isobtained,
a negative characteristic occurs. For example,

log 0.036 = log (3.6 x 10'2)

= log 3.6 + log 10'2

= log 3.6 + (-2)

The mantissa for log 3.6 is 0,6563. There-
fore,

log 0.036 = 0,5563 - 2

Since logarithm tables do not list negative
mantissas, we do not subtract 2 from 0.5563
to obtain the final form of log 0,036.

Some tables handle the problem of negative
characteristics by placing a negative signabove
the characteristic as follows:

log 0.036 = 2.5563
Observe that an entry such as
-2.5563

would be misleading, It would be interpretedas
if the mantissa, as well as the characteristic,
were negative,

Perhaps the most universal form for nega-
tive characteristics is as follows:

log 0.036 = 8.5563 - 10
This form is numerically equal to
0.5563 - 2

but it has the advantage of presenting the char-
acteristic, as well as the mantissa, as a posi-
tive mumber,

Negative numbe:s and 0 do not have loga-
rithms, In the case of 0, none is needed for

purposes of calculation. However, it is often
necessary to multiply and divide negative quan-
tities using logarithms. In order to use log-
arithms for this purpose, we first determine
the sign of the final answer., Then all numbers
are treated as positive, and the predetermined
gign is affixed.

PRACTICE PROBLEMS:

Determine the characteristic of the loga-
rithm for each of the following numbers:

1, 32

2, 476

3. 0.25

4, 0.0074

ANSWERS:

1. 1

2. 2

3. -1or9-10

4, -3or7-10

Mantissa

Tables of logarithms normally contain only
mantissas. Since these are understood tobethe
decimal parts of the logarithms which they
represent, the decimal points are often omitted
in the printed table. Appendix I of this course
is constructed in this way, and the user is ex-
pected to supply the characteristic and the deci-
mal point with each mantissa, Table 1-1 is an
excerpt from appendix II,

Observe that the table of logarithms has
headings consisting of the abbreviationNo. (rep-
resenting Number) and the digits 0 thrcu k9.
The first two digits of any number whose loga-
rithm we seek are found in the No. column, The
third digit is found as one of the column head-
ings, 0 through 9. The mantissa for the loga-
rithm of any three-digit number is found op-
posite the first two digits, which are located in
the No, column, and below the third digit.

EXAMPLE: Find the mantissa for the loga-
rithm of 124,

SOLUTION:

1. In the No. column, table 1-1, find the
number 12,

2. Move to the right, stayving in the row of
mantissas opposite 12, until you reach the column
with the digit 4 as a heading.

3. Read the mantissa, .0934.
we supply the decimal point,

EXAMPLE: Find the complete logarithm of
13.7.

Net. - that

9
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Table 1-1. —Example of common logarithm table.

No. 0 1 2 3

5 6 7 8 9

10 | 0ooo | 0043 | 0086 | 0128 | 0170 | 0212 0253 | 0204 | 0334 | 0374

11 0414 | 0453 | 0492 | 0531 | 0569 | 0607 | 0645 0682 | 0719 | 0755

12 | o192 | 0828 | 0864 | 0899 | 0934 | 0969 | 1004 1038 | 1072 | 1106

13 1139 | 1173 | 1206 | 1239 | 1271 | 1303 | 1335 | 1367 1399 | 1430

14 | 1461 | 1492 | 1523 | 1553 | 1584 | 1614 | 1644

1673 | 1703 | 1732

SOLUTION: Always determine the char-
acteristic before entering the table,

1. The characteristic of 13,7 is 1, We
may now disregard the decimal point and enter
the table with just the digits 137,

2. In the No, column, table 1-1, find the
number 13,

3, Move to the right, staying in the 13 row,
until you reach the 7 column,

4, The mantissa is ,1367,

5. The logarithm of 13,7 is 1,1367,

PRACTICE PROBLEMS:

Find the logarithms of the following mum-
bers:

1, 118

2, 342 (See appendix I1,)

3. 14,6

4, 5.48

ANSWERS:

1. 2,0719
2, 2,5340
3, 1,1644
4, 0,7388

INTERPOLATION

Interpolation is the process of calculating
the mantissa for the logarithm of a number
having one more digit than thetable entries, For
example, to find the logarithm of 1125 it would
be necessary to interpolate in table 1-1,

The logarithm of 1125 is halfway between
the logarithms of 1120 and 1130, Therefore,
we find the mantissas for the logarithms of
these two numbers and then determine the
mantissa that is halfway between them, The
work is arranged as follows:

NUMBERS MANTISSAS

S ———

— 1120 0492
5
10 1125 .0039
1130 0531

We analyze the foregoing tabulation interms
of the difference between the numbers and the
difference between the mantissas, The large
bracket on the numbers indicates a difference
of 10, and the small bracket shows that our

number {8 lioof the way between the two num-
bers in the table, Therefore, the mantissa cor-
responding to our number should be 1—560f the
way between the mantissas in the table,

_5 -—
10 (.,0039) = ,00195
= ,0020 (to 4 places)

Adding .0020 to .0492, we obtain the mantissa -

corresponding to 1125; it is ,0512, Therefore,
log 1125 = 3,0512
EXAMPLE: Find log 25.617.
SOLUTION:
1. The characteristic is 1,
2. The number lies between 2560 and 2570,

Therefore the mantissa lies between ,4082 and
,4099,

10
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3. Tabulate:
2560 .4082
d|
10 2567 .0017
2570 40094

7

4, Our number is ) of the way between
2560 and 2570,

Therefore, the mantissa is
'116 of the way between ,4082 and ,4099,

5. 15 (,0017) = 00119
= ,0012 (to 4 places)
6. .4082 + .0012 = .4004
. log 25.67 = 1.4094

PRACTICE PROBLEMS:
Find the logarithms of the following mimbers:
1. 0,2345

2. 5,432

3. 473.6

4, 9817

ANSWERS:

1, 9.3702 - 10

2. 0.7352

3. 2.8754

4, 3,9919

TRIGONOMETRIC FUNCTIONS

Logarithms of trigonometric functions may
be obtained by first looking up the decimal value
of the natural function and then finding theloga-
rithm of this decimal number. However, the
process is laborious, and it is rendered unneces-
sary by the existence of tables of logarithms of
the trigonometric functions,

Appendix I of this training courseisasample
page from a typical table of trigonometric log-
arithms, Its construction is similar to that of
appendix II, except that 10 is added to each
mantissa, Thus the entry for log cot 38°is
10.10719, with the quantity “-10” understood.
The complete logarithm is then

log cot 38° = 10,10719 - 10
= 0,10719

The addition of 10 to each table entry makes
the correct form automatic inthose cases where
a “9 - 10" type of format is involved, For ex-
ample, the characteristic for log sin 38° is -1,
with the following result:

e
’n:!-

log sin 38° = 9,78934 - 10
ANTILOGARITHMS

The procedure of finding a number when we
know its logarithm is called “finding the anti-
logarithm.” The word “antilogarithm” is ab-
breviated “antilog,” and a symbol sometimes
used to indicate the antilog is log-1. The -1 in
a symbol of this kind tends to be confusing, since
it is not an exponent, It is an indicator which
emphasizes the INVERSE relationship between
logs and antilogs.

The antilogarithm is easily found when the
corresponding mantissa is an exact table entry.

EXAMPLE: Find the antilogarithm of
1.1271,

SOLUTION:

1. Find the mantissa .1271 in appendix II,
(The decimal point is understood,)

2. The column in which 1271 is found de-
termines the third digit of the antilog. The third
digit is 4,

3. The row in which .1271 is located de-
termines the first two digits of the antilog, In
that row, and in the No, column, we find the
digits 13, Thus the digits of the antilog are 134.

4, Since the characteristic of the original
logarithm is 1, the antilogarithm must be a
number between 10 and 100, Thus the decimal
point must be placed between the 3 and the 4.

9. We conclude that

antilog 1.1271 = 13.4

Interpolation must be used when the mantissa
whose antilogaritim we seek is not an exact
entry in the table,

EXAMPLE: Find the
8.5124 - 10.

SOLUTION:

1. Find the mantissas nearest to .5124 in
appendix I, These are ,5119 and .5132, Since
.5124 is between .5119 and .5132, its antilog is
between the antilogs corresponding to these two
mantissas,

2, Tabulating the results of step 1, and
letting N represent the antilog corresponding to
.5124, we have

antilogarithm of

NUMBER MANTISSA
.0825 .5119 ]
N 5124 0005 o013
.0326 5132
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(The numbers .0325 and ,0326 are decimalsbe-
cause of the -2 characteristiic,)

3. Our tabulation shows that we use .0005
parts out of 0013 ingoing from ,0325to N, This
is the same as 5 out of 13, so that we use

15—3 of the total difference inthe mantissa. Thus,

N should be 1% of the way from .0325 to .0326.

4, Multiplying to find% of the difference
between the numbers, we have

-153— x . 0001 = .384 x .0001

= ,00004 (approximately)

5. The difference between ,0325 and N is
added to .0325 to obtain N,

N =,0325 + ,00004
= ,03254
6. We conclude that
antilog 8.5124 ~ 10 = ,03254

PRACTICE PROBLEMS:

Find the antilogarithms of the following log-
arithms:

1. 2,7030

2. 9,3636 - 10

3. 1,8451

4, 0,3842

ANSWERS:

1, 504.7

2. 0,2310

3. 70,00

4, 2,422

NATURAL LOGARITHMS

Natural logarithms are sonamedbecause the
number e, the base of thenatural logarithm sys-
tem, is involved in the law of nature governing
growth and decay., This lawisstatedin symbols
as follows:

rt
A=A oe
In the foregoing equation, A represents the

total amount after a period of growth, and Ag
represents the amount at the beginning of the

¥

12

growth period. The letter r represents the
continuous rate of growth, and t represents the
time period during which growth occurs, The
same remarks apply for a period of decay.

By means of higher mathematics, the mum-
ber e is found to have the value

e = 2,71828 (approximately)

This number is the base of the natural loga-
rithm system.

CHANGING BASES

The relationship between the common loga«
rithm of a number and its natural logarithm is
as follows:

In N = 2,3026 log N

Observe that the special abbreviation, In N, i8
used to represent l«f:ge N.

The derivation of the foregoing equation is
described in the following paragraphs.

Let & = N, where N is any number, Taking
the natural logarithms of both sides, we have

xlne=InN

Since In e means loggy €, Ine is the same as 1,
Therefore,

x=InN
This result is also obtainable from the basic
definition of logarithms,
Taking common logarithms on both sides in
the expression
e =N
we have the following:
log e* =log N
xloge=1log N
log N
Equating the two expressions which we have
obtained for x, we have

lnN=-}-°6§%
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From the table of common logarithms, we find
that log 2.71828 is 0.4343. Finally,

log N

Since the rociprocal of 0.4343 is 2.3026,
In N = 2,3026 log N

InN-=

PRACTICE PROBLEMS:
Find the natural logarithms of the following
numbers:

1, 15
2, 80
3. 29
4. 35

ANSWERS,

1, 2.,7080
. 4.3820
. 3.3673
. 3.5553

i G N



CHAPTER 2

COMPUTATION WITH LOGARITHMS

The use of log tables and an introduction to
natural logarithms were discussed in chapter1.
Included in that chapter were the rules for nu-
merical calculations involving logarithms and
a review of the laws of exponents.

Additional mention of the laws of exponents
will be given inthe following paragraphs followed
by discussions of the use of logarithms in numer-
ical computations.

Six rules of exponents are shown intable 2-1
for reference and review,

The purpose of the study of logarithms is to
enable us to shorten computations with numbers.
In many computations involving multiplication,
division, powers, roots, or combinations of
these, the solutions may be reached more easily
by replacing ordinary arithmetical processes
with logarithmical prrcesses.

Appendix 1I gives the common (base 10)loga-
rithms of numbers to four places. All calcula-
tions by means of logarithms in this chapteruse
10 as the base. Inaccordance withthe convention
established in chapter 1 the expression log A is
understood to mean the base 10 logarithm of A.

MULTIPLICATION

The logarithm of the product of two or more
members is the sum of the logarithms of the
gseparate numbers.

EXAMPLE: Use logarithms tofind the prod-
uct:

386 x 254
SOLUTION:
 Logarithmic Exponential
equation equation
log 386 = 2, 5866 386 = 102 9866
log 254 = 2.4048 254 = 102 4048

Exponential solution:

_ 102- 5866 + 2.4048

- 1019914
Logarithmic solution:
log (386 x 254) = log 386 + log 254
= 2,5866 + 2.4048

= 4,991 1

Antilog 4.9914 = 980 + (interpolation correc-
tion)

INTERPOLATION:
NUMBER MANTISSA
980 17— 9912
] ? ].oooz
1 . 9914
. 0005
981 — 9917
0002 . _
o005 x 1 =4

Antilog of .9914 = 980 + .4 = 980.4
When combined with the characteristic of 4 to
place the decimal

Antilog 4.9914 = 98,40 - -
.386 x 254 = 98,0%°

The exponential solution shown inthe example
is not a part of normal calculations involving

logarithms. It was shown in this tirst example -

problem solely for the purpose of reemphasizing

i;
!
i
i
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Table 2-1. ~Laws of exponents.

OPERATION ALGEBRAIC NUMERIC
MULTIPLICATION | %3t = m+n 42.43 = 4243 5
DIVISION al = M8 50+5% = 57-3 . 54

an
POWER OF A ,
(am)n = gfan (123)2 = 123 2_ 126
POWER
POWER OF A
(ab)™ = gDy (5-3-2)% = 54. 34. ot
PRODUCT
POWER OF A o "2 a;
QUOTIENT (E) =;‘ (’4‘) =4
TRANSPOSING 1 1
-m a 5 -
NEGATIVE a
EXPONENTS a1 43 = ._;.
an 4

the relationship between exponents and loga- - antilog 3.7236 = - 5,291
rithms.

EXAMPLE: Use logarithms tofind the prod- Therefore,
uct of (126) x (-42).

SOLUTION: Recall from chapter 1 that nega- (126) x (-42) = - 5,201
tive numbers do not have logarithms. In using
logarithms to solve problems that involve nega- EXAMPLE: Use logarithms tofind the prod-

tive numbers, we first determine the sign of wuctof 1.73 x 0,0024 x 0,08,
the final answer. After this sign isdetermined,

the indicated operaticas are performed treat- SOLUTION:
ing all numbers as poaitive quantities, and the
predetermined sign is affixed to the answer. log (1.73 x 0.0024 x 0. 08)
In our example, dealing first with only signs
we determine the answer to be negative. That * log 1.73 + log 0.0024 + log 0.08
is, (+) x (=) results in (-) answer. Atthis point
the problem can be restated—use logarithms to log 1.73 = 0,2380
find the product of

10 0.0024 = 7,3802 - 10
10 0.08 = 8.9031 - 10

_ sum = 16,5218 - 20
= -(2.1004 + 1.6232) this can be adjusted to

= - 3,7236 sum = 6,5213 - 10

- (126 x 42)
- log (126°42) = -(log 126 + log 42)

10
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or

log (1.73 x 0.0024 x 0.08) = 6.5213 - 10

antilog 6. 5213 - 10 = .0003322
1.73 x 0.0024 x 0.08 = .0003322

It is in problems such as this example that
the relationships of logarithms, exponents, and
the scientific notatior can be used. Go back to
the step where

log (1.73-0.0024-0.08) = 6.5213 - 10

Perform the calculations required to go from this
step to the next one in which

antilog 6.5213 - 10 = 0.0003322

Proper decimal placement is often more diffi-
cult in a problem of this type than in a problem
which does not involve anegative characteristic.
The difficulty may be reduced if the relation-
ships of logarithms, exponents, and scientific
notation are utilized. After the step

log (1.73-0.0024-0.08) = 6.5213 - 10

reference to the tables shows that the antilog
of the mantissa is between 332 and 333. Inter-
polation and rounding off produces the digits
3322 as the antilog of the mantissa.

In chapter 1 it was shown that a character-
istic could be determined by expressing a num-
ber as a number between 1 and 10, multiplied
by a power of 10. An antilog can be deter-
mined by the converse of this procedure if the
digits which represent the antilog of the mau-
tigsa are written as a number hetween 1 and 10
and multiplied by a power of 10. The particular
power of 10 to be used is equal to the character-
igtic of the logarithm in question.

Apply this to the example problem where the
digits are 3322 and the logarithm is8.5213 -10.
The power of 10 is -4 since the characteristic
is 6 - 10 or -4. Expressing the digits as a
number between 1 and 10 multiplied by this
power of 10 yields 3.322 x 10-4, and the anti-
log of 6.5213 -10 equals 3,322 x 10-4. In-
spection of the example problem indicates the
antilog is 0.0003322 and since

0.0003322 = 3.322 x 1074

the results of both methods are the same.

16
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PRACTICE PROBLEMS:

Use logavithms to find the product of the
following:

1. 583 x 76 x 0.021 x 153
1.02 x 109 x 4.76 x 10-3
0.00432 x 0.00106 x 15

Ll

0.102 x 103.5 x 76.2
ANSWERS:

1. 12,042

2. 4,855,555

3. 6.87 x 10-9

4. 804.4

DIVISION
The logarithm of the quotient of two numbers
is the logarithm of the dividend minus the loga-
rithm of the divisor. As with multiplication,
this rule is simply an application of the law of
exponents. For example,
105 + 103 = 105-3 = 102

EXAMPLE: Find the quotient of 3—'11'—47— by use
of logarithms. )

SOLUTION:
log (37.4+1.7) = log 37.4 - log 1.7
log 37.4 =1,5729
- log 1.7 = 0. 2304
1.3425
log (37.4+1.7) = 1.3425
antilog 1.3425 = 22

37.4 _
1.7 - 22
, 16.3
EXAMPLE: Find the quotient of 5555

L q.oad e EAETRL LI B PR S ST N AR
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SOLUTION: _
log (16.3 + 0.008) = log 16.3 - log 0.008
log 16.3 =1.2122
log 0.008 = 7.9031 - 10
In order to prevent the complication of sub-
tracting the characteristic, 7, from the smaller
characteristic, 1, we add 10 to and subtract 10
from, the logarithm of the dividend. Note that

this does not change the value of the logarithm.
Thus,

log 16.3 =11.2122 - 10
- log 0.008 = 7.9031 - 10
3.3091
antilog 3.3091 = 2037

16.3

0.008 - 2037

PRACTICE PROBLEMS: Use logarithms to
solve the following problems:

1.
2.

635.6 + 25.4
0.26 + 0.061
3. 0.126 + 0.00542
4, 874 - 26.3

ANSWERS:
1. 25.03

2.
3.

4.263
23.25

4. 33,23

COLOGARITHMS

Dividing one number by another may be
accomplished logarithmically by addition rather
than subtraction, if the cologarithm is employed.
The cologarithm of a number is the logarithm
of the reciprocal of the number. The reason
that the cologarithm may be added is explained
in the following example:

12

15
Evaluate 12

15 _
15 =log 15

(1

=log 15 + log (TIE)

log

Thus,
15
log 2 log 15 + colog 12

The cologarithm may be easily derived by
subtracting the logarithm of tha number from the
logarithm of 1. Thus,

colog 12 = log (é)
=log 1 - log 12
but logl1=0
Therefore,
colog 12 =0 - log 12
=0- 1.0792
Writing 0 as 10 - 10, we have

colog 12 = (10.0000 - 10) - log 12
colog 12 = (10.0000 - 10) - (1.0792)

= 8.9208 - 10

Since writing the colgarithm isalmostas simple

as writing the logarithm, itis sometimes advan-

tageous touse cologarithms in complicated prob-

lems and thus make the problem one of addition.
Returning to the original problem

log i—g = log 15 + colog 12
15 _ 1.1761
log 15 = 8 9208 - 10
10, 0969 - 10
log 13 = 0. 0969
antilog  0.0969 = 1,25

17




and 1.25 = 2

EXAMPLE: Evaluate the following by use of
logarithms and colgarithms.

343.8
592 x 0.76
SOLUTION:

343, 8
log 592 % 0. 76

= log 343.8 -~ log 592 ~ log 0.76

or
= log 343.8 + colog 592 + colog 0. 76
log 343.8 = 2.5363
colog 592 = 7.227 ~ 10

colog 0.76 = 0, 1192
9.8832 - 10

0. 7642.

antilog 9.8832 - 10

. 343.8
- 592 x 0.76 _ 0- 7642

It should be understood that this problem
could be solved without using cologarithms by
finding the logarithms of the two numbers inthe
denominator, adding them and then subtracting
their sum from the logarithm of the number in
the numerator. Since both methods are equally
accurate, the selectionof either method becomes
one of convenience.

PRACTICE PROBLEMS:

Evaluate the following numbers by use of
logarithms and cologarithms:

1 210 x 4.1
* 3% x0.8754 x 1.7

14 x 0.27 x 36.16
11 x 8x 17 x 6.76

2.

ANSWERS:
1. 17.54
2. 0.0135

Chapter 2—~COMPUTATION WITH LOGARITHMS

RAISING TO A POWER

To find the log of the power of a number,
multiply the logarithm of the number by the
exponent of the power. This rule is based on
the law of exponents for finding the power of a
power. For instance,’

(43)2 - 43 x 4 3 _ 43-4-3 - 46
or
(43)2 - 43x2 - 46
Also
(102. 8)2 _ (102.01205)2 - 104. 02410

EXAMPLE: Find the value of (18.53)°.

SOLUTION:

log (18.53)° =5 log 18.53
51log 18.53 = 1.2679 x 5
= 6.3395

antilog 6.3395 = 2,185,263

. (18.53)° = 2,185,263

TAKING A ROOT

To find the log of the root of a number,
divide the logarithm of the number by the index

of the root.
We recall the law of exponents for taking a

roct. For instance,

3/g2 - (8313 - g2/3

Aiso,
5/103900 = V10°- 012
. (105-0126)1/5
_ 11-0025
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EXAMPLE: Find the value of °V327.6
SOLUTION:

log */327.6 = & log 327.6

log 327.6 = 2.5153

-;—log 327.6 = 2.5153 + 5

= 0.5031
antilog 0.5031 = 3.185

5/337.6 = 3.185

ROOTS OF QUANTITIES WITH
NEGATIVE CHARACTERISTICS

When a logarithm with a negative charac-
teristic is to be divided, it is advisable to add
and subtract a number that will, after dividing,
leave a minus 10 at the right. This is done to
keep the logarithm in standard form. For

example, if the problem were 54 0.0018, we would
have

%/0.0018 = -;- log 0.0018

log
1
=5 (7.2553 -~ 10)

Here, to keep a minus 10 in the final logarithm,
we must add and subtract 40 before dividing.
Thus,

log °V0.0018 = 5 (47.2553 - 50)

tog /0,001 = 47255 - 50

log °v0.0018 = 9.4511 - 10

PRACTICE PROBLEMS: Evaluate the fol-
lowing by the use of logarithms,

14

1. (3.276)3
2, (0,00468)2
3. %/0.00867
4. Va3Tq
ANSWERS:
1. 35.15

2. 0.0000219
3. 0.4532

4. 2.987

ALGEBRAIC OPERAT.ONS

This chapter has demonstrated the use of
logarithms in numerical calculations. Practical
applications in many fields involve calculations
including algebraic expressions in which loga-
rithms are useful. In these problems both the
laws of algebra and the laws of exponents or
logarithms hold true and theuseoflogarithmsin
algebraic operations is valid. For example:

log [(x + 2)(x + 5)] =1log (x + 2) + log (x + 5)
EXAMPLE: Simplify the following.

xz - 5x - 6
x+ 1
SOLUTION: (Using only laws of logarithms.)
2
logl‘—'s—x?—'—sﬂog (x2 -5x - 8) -log (x + 1)

x+ 1

SOLUTION: (Using logarithms and laws of
algebra.)

2
log X ;53 - 8 - 10 (g-(&(xl; 1)

= log (x- 6)

EXAMPLE: Solve for x.
23% = 250

19
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SOLUTION: Take the logarithm of both sides
of the equation.

log 23" = log 250

Then, x log 23 = log 250

. log 250
log 23

_2.3973
= 1.3617

= 1,761

In complicated problems it may not be pos-
sible to solve for the unknown as directly as we
did in the example. In that case we can continue
to use our knowledge of logarithms. Return to

the step where X = 2'3979. Againtake theloga-
rithm of both sides of the equation.

2,
log x = log - 331?—

= log 2.3979 - log 1.3617

0.3798 - 0.1341
0.2457

Take the antilog of both sides of the equation.

x = antilog 0.2457

x = 1,761

EXAMPLE: Solve for x.

3

xz = 729

log xz = log 729
3 =
3 log x = log 729

31og x = 2 log 729

log x = 2 log 729

_ 2(2.8627)
e

_ 5.7254
3

log x = 1,9084

x = antilog 1.9084
x = 81

PRACTICE PROBLEMS: Use logarithms to
solve for x in the following problems.

8

1. 17 =31 2. x5 = 6. 3496

ANSWERS:

1. 0.000121 2. 2.0
APPLICATIONS

The use of logarithms can simplify the solu-
tion of many problems encountered in mathe-
matics, science, and engineering. By application
of the operations described in this chapter, many
complicated equations can be reduced to addition
and subtraction problems.

EXAMPLE: Find the volume of a circular
cone having a height of 3.71 units and a base
radius of 2.71 units.

SOLUTION: The formula for volume of acir-
cular cone is v =1r_3_r2h; where v = volume, r=
radius, and h = height.

Take the logarithm of both sides of the equa-
tion as the first step in the solution.

B—

=‘108""'108r2-o-logh-log3

log 7+ 2log r + log h - log 3
= 0.4972 + 2(0.4330) + 0.5694 - 0.4771

1. 4555
antilog 1.4555

<
n

v=285

. A
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For simplicity, physical units of measure-
ment were not included in the example. When
nvoblems involving physical units are solved,
it is often simpler to solve the problem sepa-
rately for the units and attach the proper units
to the answer. For example, if the base and
height in the example problem were given in
inches, solution for the proper units in the
answers could be as follows:

nrzh
3 -
Since pi and 3 are not involved with physical

units they are ignored in this solution and the
problem is expressed as

v = inches squared x inches
= inches cubed

Therefore, in the solution, v will be expressed
“in cubic inches.

Many electronic problems can be simpli-
fied by wusing logarithms, and other elec-
tronic problems include common logarithms
in the basic formulas. An example of a formula
taat includes a logarithmic expression is the
formula for finding gain in decibels where

P1

decibels = P

10 log

Engineering and electronic problems fre-
quently deal with numbers in the millions and
decimal fractions in the millionths. These
values are easily expressed as exponentiz’ - to
the base ten and common logarithms are then
a natural and convenient means of simpiiiying
these problems.

EXAMPLE: Find the numerical value of XC
in a circuit where f = 22,000,000 cycles per

‘second, C = .0000000015 farads, and Xo =
1

2nfC*
. > - 1
SCLUTION: The formula is XC = 37C

Taking logs on both sides,
log X log 1 + colog (27£C)

C
= 0 + colog 6.28 + colog (2.2 x
107) (+ colog 1.5 x 10~9)
= (9.2020 - 10) + (2.6576 - 10) +
(8.8239)
= 20.6835 - 20 = 0. 6835
XC = antilog 0. 6835
XC = 4,825

PRACTICE PROBLEMS: Use logarithms to
solve for the numerical value of the unknown in
the following problems,

1, Find the volume (v) of a sphere having a
radius of 7.59., The formula for the volume of
a sphere is

4nr3

3
2. Find the value of I in the formula

P=12R

when P = 217 and R = 550,000,
ANSWERS:

1. 1830 0.0198

16




CHAPTER 3

TRIGONOMETRIC

This is the first of several chapters in this
course which deals with the subject of trigo-
nometry. Reference to the table of contents
shows that chapters 4, 5, and 8 also deal
directly with triangles and trigonometry. Ad-
ditionally, chapters 6 and 7 deal with vectors
and their application to statics. The study of
vectors is so closely related to trigonometry
that it is normally included in a trigonometry
course, and in this course it is included in the
same area.

Mathematics, Vol, 1, NavPers 10069-C, in-
troduces numerical trigonometry and some ap-
plications in problem solving. However, trig-
onometry is not restricted to solving problems
involving triangles; it also forms a foundation
for some advanced mathematical concepts and
subject areas. Trigonometry is both.algebraic
and geometric in nature, and in this course
both of these qualities will be utilized.

MEASURING ANGLES

In Mathematics, Vol. 1, it was pointed out
that angles are formed when two straight lines
intersect. Before proceeding with measure-
ment of angles, an extension of the concept of
angles is required. In this course, an angle is
considered to be generated when a line having
a set direction is rotated about a point. Figure
3-1 depicts the generation of an angle.

Lay out the line AO, as shown in figure 3-1,
as a reference line having a set direction. Use
one end of the line as a pivot point and rotate
the line from its initial position OA to another
position OB, as in opening a door. As the line
turns on a pivot point, it is generating the angle
AOB. Some of the terminology used in this and
subsequent chapters is given in the following:

1. Radius vector—the line which is rotated
to generate the angle.

MEASUREMENTS

2, Initial position—the original position of
the radius vector; corresponds to line OA in
figure 3-1. (Also called the initial side of the
angle.)

3. Terminal side—the final position of the
radius vector; corresponds to line OB in figure
3-1.

4. Positive angle=—an angle generated by
rotating the radius vector counterclockwise
from the initial position.

5. Negative angle—an angle generated by
rotating the radius vector clockwise from the
initial position.

The convention of identifying angles by use
of Greek letters is followed in this text. When
only one angle is involved it will be called
theta (9). Other Greek letters will be used
when more than one angle is involved. The ad-
ditional symbols normally used will be phi (),
alpha (@), and beta (8).

One unit of angular measure familiarto most
people is the revolution. However, this unit is
too large for many uses, and three other units
are discussed in following paragraphs.

DEGREE SYSTEM

This is the most common system of angular
measurement. In this system a complete
revolution is divided into 360 equal parts called
degrees (360°). For accurate work each degree
is divided into 60' (minutes), and each minute
into 60" (seconds). In many cases degree
measurements are expressed in degrees and
tenths of a degree.

For convenience in working with angles,
the 360° is divided into four parts of 90° each,
similar to the rectangular coordinate system.
The 90° sectors (calledquadrants)are numbered
according to the convention shown in figure 3-2.

When the radius vector (the line gener-

-ating the angle) has traveled less than 90°

from its starting point in a counterclockwise

R
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0 A
Figure 3-1.—Generation of an angle.

2nd Ist
QUADRANT QUADRANT

3rd 4th
QUADRANT QUADRANT

Figure 3-2.—Quadrant positions.

direction (or, as we conventionally call it, in a
positive direction), the angle is in the first
quadrant. When the radius vector lies between
90° and 180°, the angle is inthe second quadrant.
Angle between 180° and 270° are said to lie in
the third quadrant, while angles greater than270°
and less than 360° are in the fourth quadrant.

When the line generating the angle passes
through more than 360°, the quadrant in which
the angle lies is found by subtracting from the
angle the largest multiple of 360 that the angle
contains, and determining the quadrant in which
the remainder falls. The original angle lies
in the same quadrant in which the remainder
angle falls.

EXAMPLE: In which quadrant is the angle
850°? .

SOLUTION: The largest multiple of 360°
contained in 850° is 720° Then 850° - 720°
= 130°. Since 130° is in quadrant 2, 850° also
lies in the second quadrant. This relationship
is shown in figure 3-3.

RADIANS

There is another and even more fundamental
method of measuring angles. The unit for this
type of measurement is the radian. It has cer-
tain advantages over the degree method, for it
relates the length of arc generated to the size

18

of the angle. Radian measurement also greatly
simplifies work with trigonometric functions in
calculus. Assume that an angle isgenerated, as
shown in figure 3-4. I we impose the condition
that the length of the arc (s) described by the
extremity of the line segment generating the
angle must equal the length of the line (r), then
we would describe an angle exactly one radian
in size; that is, for 1 radian, s = r.

Recall from plane geometry thatthe circum-
ference of a circle is related to the radius by
the formula

C=2rr

This says that the length of the circumference
is 27 times the length of the radius. From the
relationship of arc length, radius, and radians
in the preceding paragraph, this canbe extended
to say that a circle contains 27 radians.

Since the arc length of the circumference is
97 radians and the circumference encompasses
360° of rotation, it follows that

27 radians = 360°
7 radians = 180°

By dividing both sides of this equation by v we
find that

1 radian = 1%9— - 57.2050°

In this course we shall use the following
conversion factors:

1. 1 radian = 57°17'45" - §7.3° (approxi-
mately) ‘

2. 1° = 0.017453 radians (approximately)

It absolute accuracy is desired in a con-
version, use the following:

1. To convert radians to degrees multiply

180°
by =—

2. To convert degrees to radians multiply

T
by 180°

It is customary to indicate degrees by the
symbol (°) and to indicate radians as a pure
number with no name or symbol attached. For
example, sin 3 should be understood to re-
present sine of 3 radians, whereas the sine of
3 degrees would be written sin 3°.

Certain angles occur so frequently in trig-
onometric problems that it is worthwhile to
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QUADRANT QUADRANT
n b1

9s130° 0+ 830°

A )
NEZ

(A) (B)
Figure 3-3.—Angle generation. (A) 130°% (B) 850°.

learn the degree and radianequivalences. These MILS
are shown in the following 1ist:
The mil is a unit of angular measurement

Radians Degrees which is not widely used but has some military
applications in ranging and sighting. A mil is
/6 30 defined as 1/6400 of the circumference of a
circle. This is equavalent to 3'22.5' or 0.00098
/4 45 radians.

The importance of the mil in practical ap-
7/3 60 proximation is due to the fact that it is ap-
proximately 1/1000 of a radian. A circular
/2 80 arc whose length is 1/1000 of the radius will
subtend an angle of 1 mil, For very small
T 180 angles the arc (a) and the chord (c) are nearly

equal as shown in figure 3-5.
3un/2 270 Since the arc and chord are very nearly
equal (ratio of chord to arc nearly 1) for very
2r 360 small angles, we shall consider them as equal

for our purposes and develop a method of ap-
proximating range (R) to a target of known size
(¢c). Recall from the previous section that a
radian is the ratio of arc length to length of
radius, In figure 3-5 (with c essentially equal

s to a), we will consider ¢ as arc length and r as
length of radius. Then the size of angle m in
©+1 RADIAN radians is
=L
e "or
r Then the length (r) is expressed as
=L
Figure 3-4.—-Radian measure. T *m
19
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r

Figure 3-5.—Relationship of arc, chord, and radius.

If we express the angle m in mils (1/1000 of a
radian), the formula for range is

c
N
~ 1000
_ 1000c
r ="

If the range is known and it is desirable to find
the length (c) of a target, this formula can be
transposed to

_ rm
€ = 1000

These formulas yield good approximations
for angles up to several hundred mils and make
rapid estimates of range to an object of known
size possible.

EXAMPLE: A huilding known to be 80 feet
long, perpendicular to the line of sight, sub-
tends an arc of 100 mils. What is the approxi-
mate range to this building?

SOLUTION:
r = 1000 x 80 ft
100
r = 800 ft

PRACTICE PROBLEMS:

Determine the quadrant in which each of the
following angles lies.

1. 260°

2. 290°

3. 800°

4, 1,930°

Express the following angles in degrees; the
angles are expressed in radians.

5. 207w

5w
5 &

7. A tower 500 feet away subtends avertical
angle of 250 mils. What is the height of the
tower?

ANSWERS:

1. 3rd
. 4th
. 1st
. 2nd
. 3,600°
. 150°
. 125 ft

I N >N

MEASURES WITH RADIANS

The radian measure of an angle was intro-
duced in previous paragraphs. It was pointed
out that radian measure of angles was of par-
ticular use when working with trigonometric
functions in calculus.

Because of the relationship of the radian to
arc length, it has some special applications in
measurements of angular velocity and sector
area. It was pointed outearlier thatin the angle
sho™ 1n figure 3-4, 9 = 1 radian when s = r.
This relationship can be generalized by the
formula

s =rf

when 0 is expressed in radians. This relation-
ship is convenient for solving many types of
problems. A few sample problems are included
in this section.

EXAMPLE: The human eye cannot clearly
distinguish objects if they subtend less than
0.0002 radians at the eye. What isthe maximum
distance at which a submarine periscope 6
inches in diameter can be picked out from its
surroundings? (Of course, this problem dis-
regards the wake made by the periscope).

2 .
N
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SOLUTION:
From this information we knowthat 0 = 0.0002
radian and s = 6 in. = 0.5 ft

Substituting in
s =1rb
gives
0.5 = 0.0002r
ar
r = 2990 . 2,500 teet
ANGULAR VELOCITY

Another type of problem which radian mea-
surement simplifies is that which connects the
rotating motion of the wheels of a vehicle to its
forward motion. Here we will not be dealing
with angles alone but also with angular velocity.
Let us analyze this type of motion.

Let us consider the circle at the left in
figure 3-6 to indicate the original position of a
wheel. s the wheel turns it rolls so that the
center moves along the line CC' where C'is the
center of the wheel at its final position. The
contact point at the bottom of the wheel moves
an equal distance PP'; but as the wheel turns
through angle 6, the arc s is made to coincide
with line PP', so that

s = PP!

or the length of arc is equal to the forward
distance the wheel travels. But since

s =16
the forward distance d that the wheel travels is
d =r6

Dividing both sides of the equation (2) by t,
we have

a_.e
t "t

The forward velocity v of the vehicle is
equal to -2—, and the angular velocity w is equal

to the angle divided by the time required to
describe the angle. Thus,

vV =TW

if w is measured in radians per unit time.

EXAMPLE: Determine the distance a truck
will travel in 1 minute if the wheels are 3 feet
in diameter and are turning at the rate of 5
revolutions per second.

SOLUTION: In this problem, first convert
angular velocity from revolutions per second
to radians per second by multiplying the

%

, 7.
///////////////////////////

Figure 3-6.—Angular rotation.
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revolutions by 2r. (There are 27 radiansin one
revolution (360°).)

27 = 6.2832
5 rev x 6.2832 = 31.418 rad/sec

Then, radians per second are converted to
radians per minute as follows:

rad/min

rad/min

rad/sec x 60

31.416 x 60
rad/min = 1,884.96
Thus, after 1 minute 6 = 1,884.96 radians and
d =r6
d =3t x 1,884.96
d = 2,827.44 £t
EXAMPLE: A car is traveling 40 miles
per bour. ¥ the wheel radius is 16 inches,
what is the angular velocity of the wheels (a)
in radians per minute and (b) in revolutions
per minute?
SOLUTION:

(a) First, convert miles per hour to feet
per minute.

ft/mln = mph x 5280

Thus,
40
40 mph = 80 X 5,280 ft/min

40 mph = 3,520 ft/min

Then change the radius to feet and
1

r = l-é-ft
-4
r-aft
Then,
vV = rw
w=<
r

_ 8,520 ft/min

w aft
3
_ 10560
w="%
w = 2,640 radians per minute

(b) rpm = radians per minute

o7
w = 20640 rad/min
27
w = 420.1 rpm

AREA OF A SECTOR

From plane geometry we find that the area
of the sector of a circle is proportional to the
angle enclosed in the sector.

Consider sector AOB of the circle shown in
figure 3-7. H 0 is increased to a full 360° (or
27 radians), it encompasses the entire circle
and the area (A) of the sector equals the area
of the circle which is given by the formula

A=1rr2

Multiplying both sides of the equation by § gives
Af = 01!‘1‘2
We are dealing with a complete circle where
6 = 27, Thus, we can substitute 27 for ¢ in the
left member, obtaining
27A = Onr2

Simplifying this by dividing both sides by 27
gives

or? 1 o
A= 2-21'8

Therefore, the area of a sector of a circle can
be found by the formula

e
A-zre

with 6 expressed in radians.
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Figure 3-7.~Sector of a circle.
¥ the radius and arc length are known, the
area can be found directly by the formula

=1
A-zrs

This formula is found by the following process:

A=%r29

A=%rr9

Since s = ré, we substitute in the formula
above and have

Az-;-rs

Of course, if r and s are given, the area could
be found by computing ¢ and using the formula
for area in terms of r and 6.

EXAMPLE: Find the area of a gsector of a
circle with radius of 6 inches having a central
angle of 60°.

SOLUTION: First convert 80° to radians:
radians = degress X 1%6'6
6 = 60° x 1—’-78-65
-
A= —;-rz 6

23

-1 2.1
A-zx(Ginches) X3

367 inches2
A= 8
A = 61 sq in.

This answer can be converted by multiplying
8 by 3.14159. However, in trigonometry and
higher mathematics the conversion is, in many
cases, not carried out. In many instances it is
less cumbersome to carry 7 through computa-
tions rather than convert it to a decimal number.

PRACTICE PROBLEMS:

1. How far does a car travel in 1 minute if
the radius of the wheels is 18 inches and the
angular velocity of the wheels is 1,000 radians
per minute?

2. A car travels 2,000 feet in 1 minute. The
radius of the wheels is 18 inches. What is the
angular velocity of the wheels in radians per
minute?

3. What is the diameter of a circle if a
gector of this circle has an arc length of 9
inches and an area of 18 square inches?

ANSWERS:

1. 1,500 feet per minute

2. 1,333 radians per minute

3. 8inches

PROPERTIES OF TRIANGLES

Mathematics Vol, 1 contains information on
the trigonometric ratios and other propertiesof
triangles, This section reviews the trigono-
metric functions for acute angles and restates
some of the properties of triangles for review
and reference.

PYTHAGOREAN THEOREM

This theorem states that in any right tri-
angle, the sum of the squares of the sides ad-
jacent to the right angle is equal to the square
of the hypotenuse (side opposite the right angle).
In the triangle shown in figure 3-8 this rela-
tionship is expressed as

2 ey? =i

This relationship is useful in solving many
problems and in developing other trigonometric
concepts. The following are examples of the
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application of this relationship as applied to the
triangles in figures 3-9 and 3-10.

EXAMPLE: The legs of a right triangle,
shown in figure 3-9, which are adjacent to the
right angle are 3 and 4 inches in length. How
long is the hypotenuse?

SOLUTION:

2 2 2

r =x +y

ro= 42 (inchesz) + 32 (inchesz)
r? = 16 (inches?) + 9 (inches?)
r2 = 25 (inchesz)

r = \/25 (inchesz)
r = 5 inches

This, as pointed out in Mathematics, Vol. 1,
is the 3-4-5 triangle, whose side relationships
hold also for multiples of 3, 4, and 5.

EXAMPLE: Figure 3-10 shows a plot of
ground in the shape of a right triangle. The
longest side of the plot is 40 feet. One of the

X

Figure 3-8.—Pythagorean relationship.

4“

Figure 3-9.—~Right triangle with
hypotenuse unknown.

- ——. —— T e e —— - ——— . b e e cem———

other sides is 10 feet long. How long is the
remaining side (x)?

SOLUTION:
2. g2l
2o 2.yl

x> =402 (2t - 10% (&%)

x® = 1,600 (&t2) - 100 (%)
x% = 1,500 (2t2)

X =\/1, 500 (ft2)

x = 38.7ft

SIMILAR TRIANGLES

Another relationship of triangles that is
useful in trigonometry concerns similar tri-
angles. Whenever the angles of one triangle
are equal to the corresponding angles in an-
other triangle, the two triangles are said to
be similar.

For example, triangle (A) in figure 3-11 is
similar to triangle (B). Since the two triangles

Figure 3-10.—Right triangle with one
side unknown.

s T
(A) (8)

Figure 3-11.~Similar triangles.
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are similar by definition, the following propor-
tion involving the lengths of the sides is true:

This relationship can be used to find the
length of unknown sides in similar triangles.
The following is an example of this method
usiug the triangles shown in figure 3-12.

EXAMPLE: Triangles (A) and (B) iu figure
3-12 are similar with lengths as shown. Find
the length of side b' and side c'.

SOLUTION:
a_b _¢c
a' - b! = c!
10 11.18 5

— ot Cn— = —

Solve the first two of the equal ratios for b'.

10 _ 11.18

7= o

b 1118 x 7
W18 x7
_ 18.26

b= o

b' = 7. 826

Solve for side ¢' using the first and third of the
equal ratos.

10_5
7 "¢
_5x1
¢ =30
c'=3.5

NOTE: Side c' could have been determined
by using the second and third of the equal ratios,
and the reader should verify this. The selec-
tion of the first and third ratios in the example
was only because it was obvious thatthe numer-
ical calculations would be simpler without
decimals.

118 10

s [

(A (B)

Figure 3-12.—Similar triangles,
solution example.

Similar Right Triangles

Recall from plane goemetry that the sum of
the interior angles of any triangle is equal to
180°. Using this fact itfollows that two triangles
are similar if two angles of one are equal to
two angles of the other. The remaining angle
in any triangle must be equal to 180° minus the
sum of the other two angles. Keep these
principles in mind during the following dis-
cussion of similar right triangles.

Two RIGHT TRIANGLES are similar if an
acute angle of one triangle is equal to an acute
angle of the other triangle. K these angles are
equal, the trianglesare similar because the right
angles in the two triangles are also equal to
each other. Whenever one acute angle of a
right triangle is given, the other acute angle
may easily be found. Assuming that the acute
angle given is 25 degrees, the other acute angle
will be

180° - 90° - 25° = 65°

But 65° and 25° are complements of each other.
Thus, if one acute angle of a right triangle is
equal to 6, the other acute angle willbe (90° - 6).

Many of the practical uses of trigonometry
are based on the fact thattwo right triangles are
similar if one acute angle of one triangle is
known to ke equal to one angle of the other
triangle.

Thus, in figure 3-13, we have two similar
right triangles, so we may write

X _y
X°y

.
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50° B

x
(A) (8)
Figure 3-13.—Similar right triangles.

or interchanging the mean terms in the propor-
tion, we have

X
y

<%

and in like manner

| b 4 xf
FehFaml-%
This is one of the main principles of numerical
trigonometry.

PRACTICE PROBLEMS: Refer to figure
3-14 in solving the following problems.

1. Use the Pythagorean theorem to cal-
culate the missing sides in triangles (A)and (B).

2. Find sides a and b of triangle (D), as-
suming that triangles (C) and (D) are similar
triangles.

ANSWERS:

1. (a) V5
(b) 2v2

2. (a) 3 3/4
(b) 1 1/2

TRIGONOMETRIC FUNCTIONS
AND TABLES

The properties of triangles given in the
previous section provide a means for solving
many practical problems. Certain practical
problems, however, require knowledge of right
triangle relationships other than the Pythagorean
theorem or the relationships of similar triangles
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before solutions can be found. Examples of two
of the problems which require this additional
knowledge are as follows:

1. Find the value of the missing sides and
angles in a right triangle when the value of one
side and one acute angle are given.

2. Find the value of the missing side and the
value of the angles in a right triangle when two
sides are known.

The additional relationships, between the
sides and anglzs—of a right triangle, are called
trigonometric functions ortrigonometric ratios.
These ratios were introduced in Mathematics,
Vol. 1, and are reviewed in the fullowing para-
graphs. The basic foundations of trigonometry
rest upon these functions.

RATIOS FOR ACUTE ANGLES

There are six ratios of the sides of a right
triangle; these ratios form the six trigono-
metric functions. We use the acute angle 9 in
figure 3-15 and define the trigonometric ratios.

In figure 3-15 the three sides x, y,and r are
used two at a time to form six ratios. These
ratios and the trigonometric function name as-
sociated with each are as follows:

1. %— is the sine of 9, written sin 6

2. % is the cosine of 9, written cos 9

3. % is the tangent of 6, written tan 6
r

4, ¥ is the cosecant of 6, written csec ¢

5. ;— is the secant of 6, written sec 9

6. %is the cotangent of 6, written cot 6

The functions of a right triangle in any posi-
tion are made easier to remember by the con-
vention of naming the sides, as in figure 3-186,

and defining the functions by means of these
names,

In any right triangle the side y is the side
opposite the angle whose function we are seeking.
The side x is always adjacenttothe angle. Thus,
we can summarize the information in this section

31




Chapter 3—TRIGONOMETRIC MEASUREMENTS

—

X o
Fizure 3-15.—Right triangle for <
determining ratios. N
=
in the following manner by reference to figure g
sin 8 = y_ opposite side M
r hypotenuse o
_ x _ adjacent side
cos § = = hypotenuse A B
tan & = £ = 3djacent side £ CAB=X
csc 6 = L = hypotenuse Figure 3-16.—Names of sides of a
y ~ opposite side right triangle.
_ I _ hypotenuse
sec § =3 = adjacent side
. 3
_ x _ adjacent side gin 6 = L = £ = 0.600
cot 6 =3 = gpposite side r 5
os6 =%=2-0.800
Waen the lengths of the sides of a right tri- cosv =3¢ =5
angle are known, as in figure 3-17 (A), the six 3
trigonometric ratios can be computed directly. tan § = L = z° 0.750
The values of all the trigonometric functions X
of the angle § in the triangle in figure 3-17 (A) _r_5_
are as follows: ' sec§ =3 =%~ 1,250

27
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e
i

(A)

3
(8)

Figure 3-17.-Practice triangles.

EXAMPLE: Give the values of all the
trigonometric functions of the angle 9 in the
triangle of figure 3-17 (B).

SOLUTION: Here only two sides are given.
To find the third side, use the Pythagorean
theorem.

24 yPe 2
oo i? 42
y2 =62 -32-36-9=27

y=V27 =V9 x 3= 3V3 = 5.196

Now, using these values of x, y, and r

sin 9 =¥ = 2196 _ 4 g4
cos 8 =%=%=0.500
tan 0 = Lo 2198 _ ) o5,
csc 9 =§=-5—.%9—6-=1.1547
sec6 =3 =3 200

cot 6 X3

28

TABLES

Trigonometric tables are lists of the numer-
ical values of the ratios of sides of right tri-
angles. I we desire to know the ratio of two
sides of a right triangle containing a known
acute angle 6, we look for the angle ¢t ina
table and thus find the desired ratio. The ta le
in appendix III provides the sine and cosine of
angles from 0° to 90°. Appendix IV gives natural
tangents and cotangents of angles from 0° to
90°.

The tables in the appendixes give the tri-
gonometric functions in degrees and minutes.
The format used inthese tablesis fairly standard
for trigonometric tables. Refer to appendix III
and the first page of values. Tofind the sine or
cosine of angles less than 5°, enter the table at
the appropriate degree value listed at the top of
the table. The minute column whichisused with
these values is the first column at the left of the
table and is read from top to bottom.

Values of the functions between 85° and 90°
are also listed on this page. To determine the
sine or cosine of an angle in this range, enter
the table at the degree value at the bottom of the
page. The minute values which correspond to
these angles are found in the last column of the
table, and are read from bottom to top. The
column headings (sin and cos) are seen to
change from the top to the bottom of the column.
The correct name of the function is the one
which appears at the degree value in use. The
tables of the tangent and cotangent ratios in
appendix IV are laid out in the same format
as the sine and cosine tables,

Most tables list the sine, cosine, tangent,
and cotangent of angles from 0° to 90°. Very
few give the secant and cosecant since these
are seldom used. When needed, they may be
found from the values of the sine and cosine.
The reciprocal of the sine gives the value of
the cosecant.

~E_1_ 1
CBC - -y-sme
T

The reciprocal of the cosine gives the value of
the secant.
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The other functions, the tangent and co-

Tangent of an Angle
tangent, can also be expressed in terms of sine

and cosine as follows:

y
=1=£_sin9
tan 6 X X cosb
r
X
____x;=cos9
cot § = "_y_ sin 0
T

In addition, the cotangent can be determined
directly as the reciprocal of the tangent.

These relationships are the fundamental
trigonometric identities and will be used ex-
tensively in solving the more complex iden-
tities which are the topic of chapter 8.

PRACTICAL USE OF THE
TRIGONOMETRIC RATIOS

Proper use of the trigonometric ratios and
the other principles of triangles furnish power-
ful tools for use in problem solving. The knowl-
edge of when (and how) to use which of the ratios
is an important partof the problem. This knowl-
edge comes with experience and practice; how-
- ever, each of the functions is more applicable to
certain type problems than to others. This
section points out some of the situations in which
a specific function is used most advantageously.

(- ]
3

20

(A)

y opposite side
The ratio x of m can be used

whenever one of these sides and an acute angle
are given and it is desired to find the other
side.
EXAMPLE:
figure 3-18 (A).
SOLUTION: From the figure

tan 35° =%= 2%

Find the length of side y in

From the tables
tan 35° = 0.70021

Here there are two expressions for tan 35°, so
that

2% = 0.70021

y = 14.0042
Sine of an Angle
To find y or r, when either of these and an

acute angle are given, use the sine to find the
unknown.

EXAMPLE: Fine the value of r in figure
3-18 (B).
SOLUTION: From the figure
5
° o ve—
sin 65° = T

6?’

(8)

Figure 3-18.—Practical use of ratios.
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From the tables

sin 65° = 0.90631
Thus,
S _
T 0.90631
r = 5.517

Cosine of an Angle

To find X or r, when either of these and an
acute angle are given, use the cosine to find
the desired part of the triangle.

EXAMPLE: Find the value of x in the
triangle of figure 3-18 (C).
SOLUTION:
X - o
'5- = cos 66
X = 5 cos 66°
= 5(0.40674)
= 2.0335

526

ZIM A |
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{A) {B)
M /
30° ' 29° 30’ =
X ) 8
(C) {D)

Figure 3-19.—Triangles for practice
problems.

PRACTICE PROBLEMS: Refer to figure

'3-19 in working problems 1 through 4.

30

1. a. Find the values of the sine, cosine,
and tangent of 6 in triangle (A).

b. What is the value of § to the nearest
degree?

2. Using the sine function, find the value of
y in triangle (B).

3. Using the cosine, find the value of x in
triangle (C).

4. Using the tangent, find the value of y in
triangle (D).

5. A navigator on a ship notes that two
points on either side of a strait are 5 miles
apart and subtend an angle of 40° as shown in
figure 3-20. How far from the strait is the
ship- if it is equidistant from both points?
NOTE: The 40° angle can be divided into two

20° angles, and this will form two right
triangles.
ANSWERS:
1. a. sin 8 = 3/5 = 0.60000
cos 8 = 4/5 = 0.80000
tan 6 = 3/4 = 0.75000
b. 6 = 36°
2. 294
3. 12,12
4, 8.4866

5. 6.87 miles

S MILES
A—

d
20°¢8 20 f

Figure 3-20. -Ship~ approaching strait.




CHAPTER 4

TRIGNOMETRIC ANALYSIS

This chapter is a continuation of the broad
topic of trigonometry introduced in chapter 3.
The subject is expanded in this chapter to allow
analysis of angles greater than 90°. The chap-
ter is intended as a foundation for analysis of
the generalized angle, an angle of any number
of degrees. Additionally, the chapter introduces
the concept of both positive and negative angles,

RECTANGULAR COORDINATES

The rectangular or Cartesian coordinate
system introduced in Mathematics, Vol. 1,
NavPers 10069-C, is used here, In Vol. 1 the
coordinate system wasusedin solving equations;
in this chapter it is used for analyzing the gen-
eralized angle, The following is a brief review
of important facts about the coordinate system:

1. The vertical axis (Y axis in fig. 4-1) is
considered positive above the origin and nega-
tive below the origin,

2. The horizontal axis (X axis) is positive
to the right of the origin and negative to the left
of the origin,

3. A point anywhere in the plane may be
located by two numbers, one showing the dis-
tance of the point from the Y axis, and the other
showing the distance of the point from the X
axis. These points are called coordinates,

4, In notation used to locate points, it is
conventional to place the coordinates in paren-
theses and separate them with a comma, The
X coordinate is always written first, Thus,
point P in figure 4-1 would have the notation
PE4,-5). The general form of this notation is
P(x,y). :

5. The X coordinate is positive in the first
and fourth quadrants, negative in the second and
third, The Y coordinate is positive in the first
and second quadrants, negative in the third and
fourth, The signs of the coordinates are shown
in parentheses in figure 4-1, The algebraic

(- ) v (+0 1
4-8
N\ 7
46
>45
14
43
42
T  x-ais X
8-76-5 -4-3-2 49___,: 4 567
+-
4.3
T P(4,-5)
+-5 °
46
47
-4--8
o(-,-) (¢~ X

Figure 4-1,—~Rectangular coordinate system,

signs of the coordinates of a point are used in
this chapter for determining the algebraic signs
of trigonometric functions,

6. The quadrants are numbered in the man-
ner shown in chapter 3 of this course. The
quadrant numbers are shown with the signs of
che coordinates in the figure,

ANGLES IN STANDARD POSITION

An angle is said to be in standard position
when certain conditions are met. To construct
an angle in standard position, first lay out a
rectangular coordinate system. The angle (9)
is then drawn with the vertex at the origin of
the coordinate system, and the original side
lying along the positive X axis as shown in fig-
ure 4-2, In standard position, the terminal side
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Figure 4-2,—Standard position,

(radius vector) of the angle may lie in any of
the quadrants, or on one of the axes which sep-
arate the quadrants, When the terminal side
falls on an axis a special case exists, in which
the angles are called gquadrantal angles and are
discussed separately later in this chapter,

The quadrant in which an angle lies is de-
termined by the terminal side, When an angle
is placed in standard position the angle is said
to lie in the quadraut which contains the termi-
ral side, For example, the negative angle 6,
shown in standard position in figure 4-3, is
said to lie in the second quadrant,

Coterminal Angles

When two or more angles in standard posi-
tion have their terminal sides located at the
same position they are said to be coterminal,
If 8 is any general angle then 9 plus or minus
an integral multiple of 360° yields a coterminal
angle, For example, the angles 4§, ¢, and a in
figure 4-4 are said to be coterminal angles, If
0 is 45° then

¢ =4 - 360°
$ = 45 - 360°
= - 315°

Figure 4-3,~Negative angle in quadrant II,

Figure 4-4,~Coterminal angles,
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and,
a=¢ + 360°
a=45° + 360°
a = 405°

The relationship of coterminal angles can
be stated in a general form. For any general
angle 6, measured in degrees, the angles ¢ co-
terminal with @ can be found by the following

¢ = 0 + n(360°)

where n is any integer, positive, negative or
zero; that is,

n = 0, 1, £2, +3,...

The principle of coterminal angles is used
in developing other trigonometric relationships
and in other phases of trigonometric analysis.
An expansion of this principle states that the
trigonometric functions (ratios) of coterminal
angles have the same value. This fact is the
basis for part of a discussion in a later section
of this chapter.

PRACTICE PROBLEMS: Which of the fol-
" lowing sets of angles are coterminal?

1. 60°, -300°, 420°,
2. 735° -345° -705°
3. 45°, -45°, 345°,

4, 0°, 360° 180°,

ANSWERS:

1. Coterminal
2, Coterminal
3. Not coterminal
4. Not coterminal

Definition Of Functions

The trigonometric functions (ratios) are de-
fined in chapter 3 of this course in two forms
as follows:

1. By means of the sides labeled x,y,and r.

2. By means of the names of the sides: op-
posite side, adjacent side, and hypotenuse,

In this chapter a third form is introduced,
using the nomenclature of the coordinate sys-
tem. The three systems are not different sys-
tems, they merely define the same functions by
using different terminology. Defining the same
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ratios in three different sets of terms no doubt
has the appearance of complicating a relatively
simple operation. However, as progress is
made through this course and inadvance mathe-
matics courses, particular problems or situa-
tions arise where it is natural to think of the
ratios in the specific terms used in one of the
definitions. It is the intention of this course to
introduce the three terminology groups and
show that the three definitions are synonymous
and interchangeable,

‘"o arrive at the definitions, construct an
angle in standard position in respect to a co-
ordinate System as shown in figure 4-5 (A).
Choose a point P with coordinates (x,y) as a
point on the radius vector. The distance OP is
denoted by the positive number r (radius vector).

NOTE: In this chapter the conventional
designation of the radius vector as always
positive is followed.

The trigonometric functions of the general
angle 9 in figure 4-5 (A) are definedas follows:

. ordinate
o =L-_—2
sin r radius vector

abscissa
radius vector

X
cos ¢ =T

tan ¢

y _ ordinate
X abscissa

The remaining functions are reciprocals of the
ones given and can be written in this terminol-
ogy by inverting the given functions.

1 _ radius vector

csc o

sine  ordinate
o = 1 _ radius vector
S€C © = Coso  abscissa
1 abscissa
cot @

“fanog _ ordinate

The values of the functions are dependent on
the angle 6 alone and are not dependent upon
the selection of a particular point P, If a dif-
ferent point is chosen, the length of r, as well
as the values of the X and Y coordinates, will
change proportionally and the ratio will be
unchanged.

Comparing (A) and (B) in figure 4-5 it is
seen that the X and Y values of the point P in
(A) correspond to the lengths of sides xand y in

.
-
4
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Plx,y)

(A)

T ——— e e ~————

Pix,y)

(8)

Figure 4-5,—Functions of general angles,

(B). Therefore, the ratios defined here are the
same ratios defined in chapter 3 of this course;
the only change is in terminology. The proce-
dure given here allows for finding the functions
of an angle when only a point on the radius vec-
tor is given,

EXAMPLE: Find the sine and cosine of the
angle shown in figure 4.5 (A) when the point P
(%,y) has the value P(3,4),

SOLUTION: To determine the sine and co~
sine it is necessary to find the value of r,
Since the values of the X and Y coordinates
correspond to the lengths of the sides x and y
in figure 4-5 (B), we can determine the length
of r by use of the Pythagorean theorem or by
recalling from Mathematics, Vol. 1 the 3-4-5

triangle, In either case, the length of r is 5
units, Then,

sin 0 = rac(l)ilt;ii!:rzt(:etor

sin 0 =-§-

cos 0 = rag?us: ijzcior

cos 6 =‘g-

34

NOTE: In the remaindar of this chapter all
angles are understood to be in standard position,
unless specifically stated to the contrary,

PRACTICE PROBLEMS: Without using ta-
bles, find the sine, cosine, and tangent of the
angles whose radius vectors pass through the
points given below,

1. P(5,12)

2, P(1,1)

3. P(1,V3)
4, P(3,2)
NOTE: Inproblems such as these itis often

helpful to construct a graphic illustration of the
problem similar to figure 4-5,

ANSWERS:
1, sin = }—%
cos = i%
-
2, sin = —1-= '/—;,2:
V2
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cos=-f-§-
tan =1
3. sin =:/-—g-
cos=-;-
tan = V3
4. Sin=i=£-ﬂ§-§—
v13
an -

QUADRANT SYSTEM

The quadrants formed in the rectangular
coordinate system are used to determine the
algebraic signs of the trigonometric functions.
The quadrants in figure 4-6 show the algebraic

I I
SINE (+) SINE (-+)
cos (=) cos (+)
TAN (-) TAN (+)

Il nr
SINE (-) SINE (-)
cos (~) cos (4
TAN (+) TAN ()

Figure 4-6,~—Signs of functions,
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signs of the sine, cosine, and tangent in the
various quadrants,

A ready recall of the algebraic signs of the
functions in particular quadrants will be of as-
sistance in many problems. It is not manda-
tory, however, that the information in figure
4.8 be memorized, The information will be
learned in some cases by extensive usage and,
in addition, the following section on reference
triangles supplies a means for rapidly deter-
mining the algebraic signs of all of the func-
tions for any angle in standard position.

The algebraic signs of the remaining func-
tions, while not shown on the figure, can be de-
termined from the signs of the given functions,
In all quadrants the cosecant has the same sign
as the sine, the secant has the same sign as the
cosine, and the cotangent has the same sign as
the tangent,

The last group of practice problems in-
volved angles in the first quadrant only, where
all of the functions are positive, When the
signs that the functions take on in each quad-
rant are known, more complicated problems of
this type can be solved,

EXAMPLE: Find all of the trigonometric

functions of 8 if tan 6 = 3, sin 6 < 0, and

r =13,

SOLUTION:

Reference to figure 4.6 shows that an angle
with a positive tangent and a negative sine can

occur only in the third quadrant,
Then, since

tan 6 = ordinate _y
an ¢ =Ppscissa X
and

tan ¢ = 1%

it is possible to determine a point P(x,y) which
liles on the radius vector of this angle, The
value of the Y coordinate is the value of the
ordinate and the value of the X coordinateis the
value of the abscissa. Thus, it appears that the
point is P(12,5), However, i. uw Cartesian
coordinate system, both of the coordinates are
negative in the third quadrant so the point is
P(-12,-5), This does not conflict with the value
of the tangent that was given, however, since
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-_5_:

-1

ol

and the tangent is positive in a quadrant where
both coordinates are negative,

Figure 4-7 shows the angle 6 constructed
using the following information which was de-
rived from an analysis of the previous para-
graph, The point

P(x,y) = P(-12,-5)

lies on a radius vector in the third quadrant
with r = 13,

Now the functions can be read from the
figure,
. ordinate _-5__ 5
8in 6 = =43 vector 13" " 13
. _abscigsa _-12 12
€08 6 = Tadius vector -~ 13- - 3
_ordinate = -5 5
tan ¢ = abscissa ~ -12 ~ 12
_ abscissa _ -12 12
cot ¢ = ordinate -5 5
Y
/\e
X
0
'1\
P12 ,~5)

Figure 4-7,~Finding the trigonometric
functions for a third-quadrant angle,
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. radius vector _ 13 13
€ 6 = —3bscissa - =12 "1

- radius vector _ 13 _ 13
€8¢ 8 = ordinate - -5~ " 3

Reference to figure 4-8 shows that the func-
tions have the correct algebraic signs for the
third quadrant., The solution also meets the
specifications of the problem for tan 9 = % and
and sine 6 <0 as the sine of ¢ is ;—g

PRACTICE PROBLEMS: Without using ta-
bles, find the sine, cosine, and tangent of § un-~
der the following conditions:

1, tan 9 =%, r =15, and 9 is not in the first
quadrant,

2. tan0='§—é,r=29,andcose>0.
ANSWERS
L sing =33
cose=-'—g
tan 0 = 3
2, sinO:lg-é
costs?=§-912
tan § = 5L
Reference Angle

The reference angle for any angle ¢ in
standard position is the smallest positive angle
between the radius vector of ¢ and the X axis, .
In general the reference angle for ¢ is n7 & 0,
where n is an integer, Expressed in another
form ¢’ = n(180°) + ¢, where ¢’is the reference
angle for ¢ and again n is some integer.

In trigonometric analysis the reference an-
gle is used to form a reference triangle, This
triangle is used to find the functions of an angle
when less information is given than was avail-
able in the problems of the previous section,

s
- ¥
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For a geometrical explanation of the ref-
erence triangle construct an angle in standard
position, such as the angle 6 in figure 4-8, If
P(x,y) is any point on the radius vector a per-
pendicular from P to the point A on the X axis
forms a right triangle with sides OA, OP, and
AP, Then the X coordinate equals + the dis-
tance OA, the Y coordinate equals + the dis-
tance AP, and r equals the distance OP, The
signs of x and y depend on the quadrant in which
the radius vector falls, The distances OA and
AP are not only the X and Y coordinates, they
are also the lengths of the sides of the refer-
ence triangle AOP,

In the previous section it was possible to
find the functions if the tangent, value of r, and
some means of determining the quadrant were
known, Using the reference triangle, the range
of solvable problems of this type is extended.

EXAMPLE: Find the sin, cos, and tan of 9

whencsc9=-%§,cose<0.

SOLUTION: The cosecant is negative where
the sine is negative; i.e., quadrants 3 and 4.
The cosecant and cosine are both negative only
in quadrant 3, Construct an angle in standard
position in the third quadrant as in figure 4-9,
Drop a perpendicular to the negative X axis and
label the angle formed by the X axis and the
radius vector 9.

Y

<

P(x,y)

N

Figure 4-8.—Reference triangle,
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X=/172-(-15%)

X )

Figure 4-9,—Reference triangle in quadrant 3,

It can be seen in figure 4-9 that angles 9 and
6’ have the same terminal side, Therefore, the

functions of & andd'are identical, and csc §'= :'i%

r_ r _ hypotenuse
Since ¢8c 4 = 7= —%e— ,thehypotenuse is
labeled 17 and the opposite side is labeled -15.

NOTE: ‘The fraction - i—g indicates that

either the numerator or denominator is nega-
tive, but not both, In this case, we know that
the denominator is the negative member from
the following:

1. By convention, r is always positive,

2. The Y coordinate is negative in quadrant
3.

From the Pythagorean theorem the value of
x is found to be 8 and the negative x value is -8,
From this information (y = -15, x = -8,r =17)
the functions can be written as follows:

- ' _ ——

8
= ! =
cos 9 =cos 6@ 7

tan 9 =tan 0'= ——=
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EXAMPLE: Find the value of the six trigo-
25

nometric functions of 6 if sec 6" = - 535 and
0< 6L ' )

SOLUTION: The secant is negative in cvad-
rants 2 and 3; since ¢ must lie between 0 ¢nd 7
radians, or 0° and 180° the angle must lie in
quadrant 2, Construct and label the reference
triangle as shown in figure 4-10 (A). Use the
Pythagorean theorem to determine the y vzalue,

y=\/r2-x2

y= V252 - (-24)5

y = V625 - 576
y = V49
y=1

With the reference triangle labeled as in
figure 4-10 (B), the functions can be read
directly from the figure,

(A)

sin9=2—75
cosez-%
tan9=-§z4-
cot6?=-g7i
sec9=-§%
csc9=37§

EXAMPLE: Find the sine, cosine, and tan-
gent of 9 whencot 0 =1,

SOLUTION: This example requires analysis
of two points that were not encountered in pre-
vious examples. First, with only the cotangent
given, how is it possible to determine which of
two quadrants (where the cotangent is positive)
will contain the angle? The cotangent is posi-
tive in quadrants one and three; from the given

. 25 e
[ x

(B)

Figure 4-10,~Reference triangles in quadrant 2,
38
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information it is not possible to determine in
which quadrant the angle falls, In this example
we are dealing with two angles, The relation-
ships of the functions of these two angles shoyld
be observed when they are determined,

The second new point to consider isthevalue
of the function, There are an infinite number of
side lengths that give a value of 1 for the co-
tangent, Any right triangle which has equal ad-
jacent and opposite sides will result in this
situation, This does not really present a prob-
lem, however, because the angle with a cotan-
gent of 1 has the same value whether the sides
are 1 and 1, 14 and 14, or any other equal side
lengths, For simplicity, we consider the func-

tion to be the ratio of -%- in this problem and

construct reference triangles as in figure 4-11,
From the figure the functions of 61, and 62
can be written directly.

1 V2
sin 8, = —=
17 )
1 V2
cos B, = —=
15772
Y

Figure 4-11,-—-45° reference angles,
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1_
and
T
-1 /2
s 0= 5""3
-1
tan92=-_-i-=1

It is shown here that the functions for thuse
angles are identical, or differ only by algebraic
sign. This is as expected, for the angle 6y «rd
the reference angle 63 are equal, The solutiot.
to this problem would normally consider the
general angle 8 and be given in the following
form:

Use of Tables

The tables of trigonometric functions nor-
mally contain only values for the functions of
angles between 0° and 90°, Use of reference
angles provide a means of using the tables to
find the values of the functions for angles
greater than 90°, The principle involved here’
is the following: Consider 9 as any angle and
9’ as its reference angle, Any trigonometric
function of 6 is equal to the same function of 6
with the sign of the quadrant in which § termi-
nates attached. .

This is shown geometrically in the following
manner, Construct the angle 8 and the refer-
ence triangle with inclosed angle ¢’ as shown
in figure 4-12, The triangle AOB is the refer-
ence triangle and it can be seen that the point B
is also a point on the radius vector of 6, We
derive the functions of the two angles to show
that they are equal except perhaps for the
algebraic sign,
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Figure 4-12.-Angles 6 and 6.

First, consider the triangle AOB. The lengths
of the sides of this triangle are OA and AB, and
the length of the hypotenuse is OB, If we dis-
regard any signs and treat the angle 6° as any
positive acute angle the sine function is deter-
mined as follows,

. a1 _ _Opposite _ AB
8in ' = hypotenuse ~ OB

Considering angle 6, we determine the co-
odinates of point B to be x = OA and y = OB (if
we disregard 3igns), Considering the signs, it
should be clear that the coordinates of B are
given by x = +OA and y = OB, where the signs
are determined by the quadrant in which 8 ter-
minates, This allows the sine of 9, for any size
of 6, t¢c be determined as

_Y_tAB_ _AB
sind =¢= 55+ 0B

By definitior:, .he radius vector OB is always
positive,

Hence, we have determined the sine of 9 to
be = g% and the sine of §° to be(A—)-g— . These
functions values differ only by algebraic signas
stated earlier,

EXAMPLE:
functions of 145°,
SOLUTION: The angle 145° in standard po-
sition is shown in figure 4-13. The reference
angle is the smallest positive angle between the
terminal side (or ray) and the X axis or, in this
case, an angle of 35° Since 145° lies in the
second quadrant the sine and cosecant areposi-
tive and all other functions are negative,
Referring to the tables in appendixes III and
IV, and utilizing the principle explained in this
chapter we have
sin 145° = sin 35° = 0,57358
cos 145° = - cos 35° = -0,81915
tan 145° = - tan 35° = -0,70021
cot 145° = - cot 35° = -1,42815
Recall that earlier in this chapter it was
pointed out that certain functions were recipro-
cals of other functions., Using this we can de-
termine

Find the six trigonometric

1 1

o -] —_ - -
c¢sc 145° = csc 35 = 3in 35° = 0.57356 = 1,7434
o ° - L - 1 - 1 -
gec 145" = -sec 35" = oogre = _g1oTs =
-1.2208
Y

Figure 4-13,=145" angle and reference angle.
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EXAMPLE: Find the sine and cosine of an 4. In which quadrant must 9 fall when:
angle of 690°.

SOLUTION: An angle of 690° is coterminal a. sin >0, co3 6<0
with an angle of 330°

b. cos 6<0, tan 6<0
690° - 360° = 330°

c. sec >0, csc 6<0
and both have a reference angle of 30° as shown

in figure 4-14. 5. Use tables to find the sine, cosine, and
The angle terminates in the third quadrant tangent of 281°.
s0 the sine is negative and the cosine positive
and ANSWERS:
sin 690° = - sin 30° = -0.5000
1. sin 6 = -+
cos 690° = cos 30° = 0.86603 ) 0]
PRACTICE PROBLEMS: Without using ta- 080 = =3
bles, find the six trigonometric functions of 6 5
under the conditions given in problems 1, 2,
and 3. _ 3
tan 0 = 3
1. cos 6 = -2, 6 not in quadrant 2. .
cot 6 = 3‘
5
2. Sin 0 = =-
13 sec 0 = -:—53-
3. tan 6=, 7<O<2n '
15 9 = 5
csc d = -7
5
2. Sin 0 --
Y| i3
cos 6 = % %
690° 5
tan 0 = % iz
(+)
3,30 cot 9 =4 -1??-
30° X
13
sec 0 =+ iz
csc 6 = - -Lgl
3. 81!1 e s - TQ?-
| o8 6 =- 1%
Figure 4-14.—690° angle. ¢ = 1
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8

ta.n9= E

_ 15

cot 0 = 8

.17

sec 0 = - 73

.1

CSC - 8
4, a, 2
b. 2
c. 4

5. sin 281° = - 0.98163
cos 281° = 0.19081
tan 281° 5.14455

o

SPECIAL ANGLES

There are two groups of angles considered
in this section. The first group considered con-
tains angles which occur so frequently in prob-
lems that their functions are normally consid-
ered separately.

The second group considered contains those
angles whose radius vectors fall on one of the
coordinate axes. These angles cannot be con-
sidered as falling in one of the quadrants, and
the group is treated as a special case.

FREQUENTLY USED ANGLES

As stated previously, the approximate values
of the trigonometric functions for any angle can
be read directly from tables or canbe determined
from the tables by the use of principles stated
in this course. However, there are certain
frequently used simple angles for which the
exact function values are often used because
these exact values can easily be determined
geometrically. In the following paragraphs the
geometrical determination of these functions is
shown.

30° - 60° Angles

To determine the functions of these angles
geometrically, first construct an equilateral
triangle with the side lengths of 2 units. The
functions to be determined are not dependent on
the lengths of these sides being two units; this
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size was selected for convenience. The ratios
for given values of angles will be constant for
all side lengths. Triangle OYA in figure 4-15
is a triangle constructed as described above.

K a perpendicular is dropped from angle Y
to the base at point X, two right triangles are
formed. Consider the right triangle YOX,
formed by the perpendicular, which alsobisects
angle Y forming a 30° angle, This triangle con-
tains a 60° and a 30° angle. It is seen in figure
4-15 that the side adjacent to the 60° angle is
one-half the length of the hypotenuse, or in this
case 1, Using the Pythagorean theorem with
right triangle YOX, the length of the side oppo-
site the 60° angle (the length of the perpendicu-
lar) is found to be V3.

Figure 4-16(A) shows the right triangle YOX
of figure 4-15 transferred to a rectangular co-
ordinate system, with the 60° angle positioned
at the origin of the coordinate system.

The triangle now is set as a reference tri-
angle, and inspection of figure 4-16 shows that
the adjacent side is one-half the length of the
hypotenuse. This relationship holds for any 60°
triangle, regardless of the lengths of the sides.
From the figure it is seen that the cosine of 60°

is% The remaining functions can be readfrom

the figure.

Consider now the right triangle XYA of fig-
ure 4-15. If this triangle is placed on a coordi-
nate system with the 30° angle positioned at the
origin, the situation is as shown in figure 4-16
(B). Inthisfigureit is seenthat the side opposite

X

l
d

—

i

2

Figure 4-15.—Equilateral triangle.
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the 30° angle is one-half the length of the hy- In dealing with 30°-60°-90° triangles it is not
N | necessary to memorize the functions of the 30°

potenuse. Therefore, the sine of 30° is 2 and 60° angles. These angles will occur in
pairs in right triangles and if one remembers

that the side opposite the 30° angle is one-half

Y the length of the hypotenuse it is a simple mat-

ter to construct a reference triangle with side

lengths of 1, 2, and V3 to derive the functions.

45° Angles

For a geometrical derivation of the functions
of 45° angles construct a square, one unit length
on a side, as shown in figure 4-17. I a diago-
nal is drawn from point 0 to point Y, two right
triangles are formed. Inspection of the figure
shows that triangle XOY contains two 45° angles
with side lengths of 1 unit. These conditions
are also met in the reference triangle in figure
4-18. Here it is seen that the two legs of a 45°
triangle must be equal. This relationship is
true of all 45° triangles and isnotaltered by the

1 | X lengths of the legs.
. ] Reference to figure 4-18 allows the functions
2 3 for 45° to be written directly. These functions,
like those for 30° and 60°, need not be memo-
rized. It is only necessary to remember that
the legs of a 45° triangle are equal; from this,
it is a simple matter to construct a reference
triangle with sides of unit length and all of the
y functions can be read from thereference figure,
|
A Y
45.77
*T a5
//
//
//
= =9
2 , P
//
| e |
|~ ~v3,1) 7
//
2 | //
_Aw /
{ I L X ,/
of vz | : ' ’
| 2 3 48°
/a5
(B) ok , X
Figure 4-16.—Triangle on coordinate system. Figure 4-17.~Determining 45° angles.
43

ERIC 48,




MATHEMATICS, VOLUME 2

Figure 4-18.—45° reference triangle.

The trigonometric functions for 30°, 60°, and
45° are summarized in table 4-1 for ready ref-
erence. The function values shown are also
applicable for any angle which has one of these
for a reference angle, upon proper considera-
tion of the appropriate algebraic signs of x and
y in the various quadrants.

EXAMPLE: Find the six trigonometric
functions of 300°.

SOLUTION: With the angle drawn in stand-
ard position as shown in figure 4-19, choose the
point (1, - v3) on the radius vector with r = 2.
The functions of 300° are then

X
\ 6'=60°
~-J3
2
(1,~v3)
Figure 4-19.—300° angle in standard position.

o =1 - o \/§
sin 300 r- _f
o_¥Y_ 1
cos 300° = r- -2'
tan 300° =§= -V3
o .X__V3
cot 300° = y© 3

Table 4-1,~Trigonometric functions of special angles,

—— m
!} sin 6 cos @ | tan @ cot 8 sec § cse 8

30° 1] V38 | V3 23 2

2 2 3 V3 3
e0° | V3 1 V3 273

2 2 V3 3 2 3
45° 2 V2

2 2 1 1 V2 V2

44

49



Chapter 4—=TRIGONOMETRIC ANALYSIS

sec 300° 2

]
t L]
n

CDN
|3

csc 300° =

<=

QUADRANTAL ANGLES

In previous sections of this chapter those
angles which are exact multiples of 90° have
been ignored, in order to simplify the explana-
tions, The functions of angles which are exact
multiples of 90° (0°, 90° 180° 270°, -90°, etc.)
are considered a special case and the angles
are called quadrantal angles. By definition, an
angle which has its radius vector falling along
one of the coordinate axes, when the angle is in
standard position, is a quadrantal angle.

The trigonometric functionsof the quadrantal
angles are defined in the same mamner as for
other angles, except for the restriction that a
function is undefined when the denominator of
the ratio is zero.

To derive the functions of quadrantal angles
we choose points on the terminal sides where
r = 1, as shown in figure 4-20, Ineach angle in
this figure it is seen that r = 1, Then either x
ory is zero and the other one is 1.

Congider the case where 8 = 90° in figure
4-20 (A). To derive the functions use the point
PO,1)andr =1.

(-1,0) j:9= 180°

(B)

f
tan 90° =-§1 =-5 is undefined
s _X _0 -
cot 90 =7 °1° 0
sec 90° =-§ = % is undefined
csc 90°'=X =1

|
i

I
<
]
]

The functions for the other quadrantal angles
can be determined from the other parts of fig-
ure 4-20. The functions are summarized in
table 4-2 for ready reference. The values of
the functions of the special angles, quadrantal
and 30°~60°-45°, are used frequently and for that
reason are important. However, additional
importance is attached to the quadrantal angles
for they serve as key values in the graphs of
trigonometric functions.

PRACTICE PROBLEMS: Without using ta-
bles, determine the trigonometric functions of
6 in problems 1 through 4.

1. 9 =210°
2. 6 =360°
3. 6 =585°
4. 9 = - 180°

5. Without reference to tables or drawings
determine the value of 8 described in the fcl-
lowing, where x and y are points on the radius
vector r.

{\amo' -y
. X 0 X
| {1 rl

(C) (D)

Figure 4-20.—Functions of quadrantal angles.
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Table 4-2. —Functions of quadrantal angles.

Deg Rad sin @ cos 9 tan 0 cot o sec o cse 9
0° 0 0 1 0 undefined 1 undefined
90° f.,"- i 0 undefined 0 undefined 1
180° T 0 -1 0 undefined -1 undefined
970° 3r -1 0 undefined 0 undefined -1
2
a. X=y=3 2. sin 360°=0
b. x =-§- cos 360° =1
C. y=-r,x=0 tan 360° =0

Without using tables, determine the numeri- cot 360° = undefined

cal value of the functions of indicated anglesand

verify the statements in problems 6 through 8. sec 360° = 1
6. sin2 150° + cos2 150° =1 c¢sc 360° = undefined
7. sin 340° = 2 sin 170° cos 170 3. sin 585° = - %
8. cos 270° = cos® 135° - sin2 135°
_ . 2 o V2
NOTE: Terms such as sin® 8 are used to cos 585° = - -

indicate (sin 6)2.

1 ta-n 5850 = 1
1. sin 210° = - 5
cot 585° = 1
cos 210° = - g sec 585° = - V2
= csc 585° = - V2
tan 210° = Lg
4. sin (-180°) =0
cot 210° = V3 cos (-180°) = -1
tan (-180°) =0
sec 210° = - 2 cot (-180°) is undefined
V3 sec (-180°) = -1
csc 210° = -2 c¢sc (-180°) is undefined

46

ol




Chapter 4—TRIGONOMETRIC ANALYSIS

5. a. 9 =45°
b. 6 =60°
c. 6 =270°

FUNCTIONS OF ANGLES
GREATER THAN 90°

In previous sections of this chapter a means
of dealing with angles greater than 90°, by use
of reference triangles, was developed. When
using reference triangles, it was found that any
function of an angle is, except possibly for the
algebraic sign, numerically equal to the same
function of the reference angle.

In addition to the refererce triangle, there
are formulas for determining the signs of func-
tions of any angle. These are normally called
reduction formulas. This section shows the
geometrical development of some of the most
commenly used reduction formulas. Ingeneral,
reduction formulas provide a means of reaucing
the functions of any angle to an equivalent ex-
pression for the function in terms of a positive
acute angle. In the discussion in the following
paragraphs, this acute angle is designated 6.
The reduction formulas can be used in the solu-
tion of some trigonometric ideatities and in
other applications wiich require analysis of
trigonometric functions.

SINE OF AN ANGLE

The numerical value of the sine of an angle
is equal to the projection of a unit radius on the
Y axis. Figure 4-21 shows a circle with a unit

radius. According to the definition of the sine
of an angle

A
sine.-r

But r in figure 4-21 is equal to 1 so that
siné =y

Note that y is equal toy', which is the projec-
tion of the unit radius on the Yaxis. Therefore,

sin 9 =¥’

does not contradict the definiiion of the sine of
an angle less than 90°.
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Figure 4-21.~Circle diagram, sine of an angle.

Now, consider an angle in the second quad-
rant. In figure 4-21 we have constructed the
angle (180° - ). The sine of this angle is evi-
dently the same as the sine of the angle in the
first quadrant or

sin (180° - 6) = sin 6

In the third quadrant the projection of unit
radius on the Y axis becomes negative. The
sine of the angle (180° + 6) is the same in mag-
nitude but of opposite sign to that of an angle in
the first quadrant, so that

sin (180° + 6)= - sin 6

These formulas give the value of the sine of
any angle between 90° and 270° in terms of the
sine of an angle less than 90°. The sine of an
angle in the fourth quadrant is found from the
formula

sin (380° - #) = sin (-8) = - 8in 6
COSINE OF AN ANGLE
The numerical value of the cosineof anangle

is equal to the projection ot a unit radius on the
X axis.
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Using the same method of analysis that was
used for the sine, we develop the formulas
~ which- are used to evaluate the cosine of any
angle.

In figure 4-22, notice that the projections of
the unit radius on the X axis, orin other words,
the cosine of the angles 6 and 180° - 9 are the
same length but of different sign.

cos (180° - 6) = - cos ¢

Also, the cosine of an angle in the third
quadrant is found from the relation

cos (180° + 8) = - cos 6

And lastls;, the cosine of an angle in the fourth
quadrant is found from the relation

cos (360° - 9) = cos (-8) = cos 6
TANGENT OF AN ANGLE

The value of the tangent of an angle is equal
to the length of that part of the tangent to the
unit circle at 0° between y =0-and the intersec-
tion of the continuation of the unit radius with
the tangent line.
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Figure 4-22. =Circle diagram, cosine of an
angle.
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Let us clarify this definition by studying
figure 4-23. The line MN is the tangent to the
unit circle at 0°. The continuation of the unit
radius CD cuts the tangent at M.

According to this definition, MA is the tan-
gent of the angle 4. This new definition does
not contradict the previous rule where we found
tan 6 from triangle CMA as follows:

MA
CA

tan 6 =
Therefore, because CA is equal to 1
tan 6 = MA
For angles in the second quadrant we write
tan (180° - 6)= - tan @
For angles in the third quadrant we have

tan (180° + 6) =tan @

M
[
Y
0 TAN @
TAN(180%9)
180°
-9
l60° +0 o \
\_l / ¥ A X
360"
-
TAN (180~-0)
TAN (360%@

Figure 4-23.—~Circle diagram, tangent of an
angle.
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For angles in the fourth quadrant the relationis tan (180° + 6) = tan 0
tan (360° - §) = tan (~8) = - tan 6 cot (180° + 6) = cot @
PRACTICE PROBLEMS: Express each of sec (180° + 8) = -sec 6
the following as trigonometric functions of 6,
1. sin (180° - 0) csc (180° + 6) = -csc 6
3. cos (7200 - 9) Sin (360° - 9) = -Sin 9
5. tan (_9) tan (360° - 9) = =tan 8
1. sin 0 sec (360° '9)= sec 6
2. cos 0 csc (360° - 8)= -csc 8
3. cos @ Functions of -0: |
4. tan 6 sin (-8) = -sin 0
5. - tan 6 cos (-8) = cos 9
This section has developed reduction formu- tan (-0)= -tan 8
las for the sine, cosine, and tangent of angles.
The reduciion formvlas apply as well to the cot (-8)= -cot @
other three functions. The formulas developer!
in this section and the corresponding formulas sec (-0) = sec @
for the remaining functions are summarized in
the following paragraphs. | cse (-0) = -csc 8
Functions of 180° - 8: EXAMPLE: Use reduction formulas and
tables to find the sine of 220°,
sin (180° - ) = 8in 6 SOLUTION: 220° is in the third quadrant

and can be considered a function of 180° + ¢,
cos (180° - 8) = -cos 6
sin (180° + 8) = =-sin @
tan (180° - 6) = -tan 8

sin 220° = sin (180° + 40°)
cot (180° - 8) = -cot 6

sin 220° = -sin 40°
sec (180° - 6) = -gec 8

" sin 220° = -0.64279
csc (180° - 8) = csc 9
EXAMPLE: Find the tangent of -350°,
Functions of 180° + 6: SOLUTION:
. First,

sin (180° + 6) = -gin 8 tan (-9) = -tan 6
cos (180° + 6) = -cos 8 tan -350° = -tan 350°
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then,
tan (360° - 6) = ~tan 6
tan 350° = tan (360° - 350°)
tan 350° = -tan 10°
combining the two,
tan -350° = -tan 350°
tan 350° = -tan 10°
therefore,
tan -350° = -tan 350° = -(~-tan 10°)
tan -350° = tan 10°
tan -350° = 0.17633
COMPOSITE CIRCLE DIAGRAM

All the trigonometric functions can be shown
as lengths of lines in a circle diagram as il-
lustrated in figure 4-24. The circle has a unit
radius, A number of things may be learned
from this diagram. For example, the three
sides of the right triangle OAB are sin 6, cos
0, and 1, so that from the Pythagorean theorem

sinze + cos26 =1

In the same way, in triangle ORM

1+ ta.nza = seczo

and in triangle ONP
1: cot29 = cscze.

These three equations are true for any angle,
These equations are trigonometric identities
and will be used in chapter 8 of this course.
PRACTICE PROBLEMS: Use reduction
formulas and tables to find the values of the
sine, cosine, and tangent of & in the following
problems,

1. 6 =137
2, 60 =214°

Figure 4-24.—-Composite circle diagram.

3. 8 =32%°
4. 0 = "‘290°
ANSWERS:

1. sin 137° = sin 43° = 0. 68200

cos 137° = -cos 43° = -0.73135
tan 137° = -tan 43° = -0,93252
2, sin 214° = -gin 34° = -0.55919
cos 214° = -cos 34° = -0.82904
tan 214° = tan 34° = 0, 67451
3. sin 325° = -sin 35° = -0.57358
cos 325° = cos 35° = 0, 81915
tan 325° = -tan 35° = -0.70021
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4, sin -290° = -sin 290° = sin 70° = 0.93969
cos -290° = cos 290° = cos 70° = 0,34202
tan -2980° = -tan 290° = tan 70° = 2.74748

PERIODICITY OF FUNCTIONS

The trigonometric functions exhibit a prop-
erty which is also possessed by some other
mathematical functions. These functions ex-
hibit a regular repetition of the values which
each function has in a certain range,

The importance of the functions which are
periodic is that once the values are known for
one period of the variable, the values of the
functions are then known for all values the
variable takes on in its range,

GRAPH OF THE SINE

Figure 4-25 shows the graph of the sine
function, The angle is plotted on the horizontal
axis, increasing to the right, and the corre-
sponding value of the sine function is plotted on
the vertical axis. Two complete revolutions
are plotted. It can be seen onthe graph that the
value of the sine varies between +1 and -1 and
never goes beyond these limits as the angle

Y

varies, The graph also shows that the sine in-
creases from 0 at 0°to a maximum positive at

90° (-’27-) and then decreases back to 0 at 180° (7).
The value of the sine continues decreasing to a
maximum negative at 270° (%11) and then in-

creases to a value of 0 at 360°(27). If the sec-
ond revolution is analyzed it is found to repeat
the variations of the first revolution for the
corre:;onding points. Therefore, the period of
the sine function is 360° or 27 radians,

GRAPH OF THE COSINE

The cosine also has a period of 27, as seen
in figure 4-26, The range of values which the
cosine can take on also lies between +1 and -1,
However, as seen on the graph, the cosine va-
ries from a value of 1 at 0° to a value of 0 "
90° and continues decreasing to reach a maxi-
mum negative value at 180°(r), The cosine in-
creases from the 180° point and reaches a
maximum positive value (equal to 1) at the 360°
(2 7) point,

GRAPH OF THE TANGENT

The graph of the tangent, figure 4-27, shows
a special kind of discontinuity called an infinite

Figure 4-25,—~Graph of the sine,
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Figure 4-26,—~Graph of the cosine.

JE]

e o —— e e - s - — - —— A - -

Figure 4-27,—Graph of the tangent,

discontinuity, Waen the angle is slightly less
than 90°, (-g-), the value of the tangent will be
very large and positive, When the angle is ex-
actly%, the tangent curve and the Y axis are
parallel, Thus, the tangent of % is plus or
mims infiui'ty. When the angle becomes slightly
greater than -725, the tangent assumes very large
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negative values, Thus, the tangent goes from
large positive values through infinity to large

negative values at -%, The same occurs at §21_r

This is called an infinite discontinuity, The
period for this function is 180° (7 radians),
PRACTICE PROBLEMS: In the problems

listed below use the graphs of figures 4-25, 4- ..

26, and 4-27 to answer the questions; then use
the tables in appendixes III and IV to verify the
answers.

For what values of 4

1, is cos 0 ircreasingif 0= 6 =7 ?

Z. do sin @ and cos 9 decrease together if
=0= 2n?

3. do cos 6 and tan 6 increase together if
<6 <37 ?

2

4, do sin 6, cos 4, and tan 6 increase to-

gether if 0=0=< 2 7?

0

ooy

ANSWERS:
1. None

2. -g—-SBSﬂ

3. ﬂsessz—"
4, '321505211
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¢ ‘Y¥UNCTIONS AND COMPLEMENTARY
ANGLES

Inspect the two triangles in figure 4-28,

Triangle (B) is exactly the same as triangle (A)
except that it has been turned on the side.

90°-0

r X

) 49

[ -~

X y
(A) (8)

Figure 4-28,—~-Complementary angles,

In triangle (A) In triangle (B)

i —l ° o :..y—
sin 6 =T cos (90 0) =
X . o _i

cos 8 =7 sin (90° - 8) = -
=Y °c.gy=L

tan 6 x cot (90 0) -
—I— e - :L

sec 6 =% csc (90° - 6) "
r o I

csec 6 =— sec (90° - ) =—
€77y ( )=y
cot § == tan (90° - 9)=§-
y y

The ratio% in triangle (A) is equal to ratio
% in triangle (B); therefore

sin 8 = cos (90° - 9)

In the same way,
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cos 6 = sin (90° - 6)
tan 8 = cot (90° - 6)
sec 6 =cse (90° - 6)
csc 6 = sec (90° - 6)

cot 6 = tan (90° - 6)

The trigonometric function of an angle is
equal to the cofunction of its complement. The
six trigonometric functions consist of three
pairs of cofunctions. Thefunctions arearranged
in pairs so that the name of one can be obtained
from the other by adding or deleting the prefix
“co.” For example: sine, cosine; tangent, co-
tangent; secant, cosecant.

The cofunction principle accounts for the
format of tables of trigonometric functions
similar to the one in appendix III, Refer to the
page of this table that contains the function of
21°, Enter the tzble at the top of the sin 21°
column and go down the column to 21°30' as
determined by the minute column ¢n the left.
The value found for sin 21°30' (or 21.5°) is
0.36650, Looking now to the bottom of the page
and reading up the mimute column on the ex-
treme right, find the cosine of 68°30' (or 68.5°).
It is seen that cos 68°30' is also 0.36650. Since

21°30" + 68°30' = 90°

21°30' and 68°30' are complementary anglesand
the cofunctions are numerically equal. If the
relationship of complementary angles and co-
functions did not hold true, a table of values of
functions from 0° o 90° would require 90 col-
umns each for the sine and cosine instead of
the 45 columns that are required,

PRACTICE PROBLEMS: Express the fol-
lowing as a function of the complementary angle.

1. sin 27°

2, tan 38°17"

3. csc 41°

4, cos 16°30'22"

Express the following as an acute angle less
than 45°.

5. sec 79°37'16"

6. cos 56° "

7. sin 438°

8. tan 48°

ANSWERS:

1. cos 83°

2. cc* 51°43'
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3. sec 49° 6. sin 34°

4, sin 73°29'38" 7. cos 12°

5. csc 10°22'44" 8. cot 42°
54




CHAPTER 5

OBLIQUE TRIANGLES

The tvw.o previous chapters considered right
asgles and angies which could be calculated by
4sing triangles which included right angles.
This chapter considers oblique triangles which
are, by definition, triangles containing no right
angles,

In chapter 19 of Mathematics, Vol. 1, NavPers
10069-C, a method for solving problems involv-
ing oblique triangles was introduced. This
method employed the procedure of dividing the
original triangle into two or more right triangles,
and using the right triangles to solve the problem
involved, It was also pointed out at that time
that there were direct methods of dealing with
oblique triangles.

This chapter develops two methods of dealing
directly with oblique triangles. These two
methods, or laws, are developed in the first
section of the chapter as aids to calculations.
The chapter also contains example and practice
problems for solving oblique triangles con-
sidered in four standard cases. In this chapter
“golving a triangle” is defined as finding the
three sides a, b, and ¢ and the three angles A,
B, and C of an oblique triangle, when some of
these six parts are given,

Also included in this chapter are some prob-
lems using log: rithms in solving oblique trian-
gles (where another law is introduced) and prob-
lems concerning the area of a triangle which
combine the area formula of plane geometry
with the laws developed in this chapter,

AIDS TO CALCULATION

The aids to calculations, or aids in solving
oblique triangles, developed in this chapter are
two theorems, known as the law of sinesand the
law of cosines. This section is concerned with
the development and proof of these laws; sub-
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sequent sections will be concerned with using
them in calculations.

T.AW OF SINES

The law of sines states that the lengths of
the sides of any triangle are proportional to the
sines of their opposite angles. K a triangle is
constructed and labeled as shown in figure 5-1
the law of sines can be written

a b c
sin A=sin B=8sinC

PROOF: For the prcof of thelaw of sincs we
redraw the triangle of figure 5-1 and drop a
perpendicular from A to the oppc-ite side as
shown in figure 5-2 (A).

Reference to the triangle shown infigure 5-2
(A) shows that the perpendicular from A to the
opposite side has divided the triangle into two
right triangles and the trigonometric functions
previously developed are used here. Consider-
ing these two right triangles we obtain

sinB=%orh=csinB

and,

sinC=%orh=bsinC

Here we have two expressions for h which are
equal to each other, so

csinB=bsinC

or in another form
c ___b
sinC sin B

In figure 5-2 (B) the triungle isredrawnwith
a perpendicular from C to an extension of the

e

60
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o
Figure 5-1.—Triangle ABC.

h*=bsin A

to form

asin B=bsin A
or

a b

sin A " sin P

(180°-Aa)

a
[
A
8 x ¢
= . —]

(A)

1))

Figure 5-2.—Proving the law of sines.

opposite side. Considering the right triangle
BCD thus formed, it is seen that

]
sinB=§-orh'=asinB

and in triangle ACD
. o _h' ' . o
sin (180 -A)-B-orh = b sin (180° - A)

From chapter 4 of this training course, recall
that

sin (180° - 8) = gin ¢

80
sin (180° - A) = gin A

then

h!

sinA=b—orh' =Dbsin A

Now equate

h'*=a sin B
and
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Two separate triangles were used inproving
the law of sines simply for clarity of explana-
tion. K the two triangles are combined in one
figure, as shown in figure 5-2 (C), it is seen
that the two laws could be derived from this one
illustration. Here it is obvious that the angle B
which appears in both of the ratio pairs is the
sa:ne angle; thus the ratios

c __Db
sinC sin B
and
a___b
sinA sin B

can be combinz2d to form the law of sines

a __b __c
sinA sinB sinC

ag previously stated.
LAW OF COSINES

The second of the laws to be developed in
this section is the law of cosines which states:
In any triangle the square of one side is equal
to the sum of the squares of the other two sides
minus twice the product of these two sides
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multiplic . 1.7 the cosine of the angle between
them. For :he triangle in figure 5-3 (A), the
law of cosines can be stated as

2_,2 2

1“=b“+ ¢c”-2bccos A

PROOF: Consider the triangle in figure 5-3
(B) with a perpendicular dropped from B to
side b to form two right triangles. To prove

2_,2 2

a_:b 4+ C -2bCCOSA

consider first the triangle ABD and note that

cos A=% (1)
c
or
Xx=ccos A (2)
and also
b2 2 o2 52 @)

Substituting in (3) the value of x given in ()
results in

h2=c2-c2cos A

(4)

In triangle BDC

h2=a2 - (b - x)°

which eapands to

2_.2 .2 2

h®=a” -b" + 2bx - x (8)

Substituting again for x the value given in (2)
results in

2_.2 .2 2

h®=a°-b°+ 2bccos A-c coszA 7

Equat:ug the two values of h2 in (4) and (7) gives

(8)
2

2 _ 2 cos? -b +2bccosA-ccoszA

¢ -c¢" cos A=a2

Canceling like terms and rearranging,

cz-e24(=a2-b2+ 2bccosA-ez/K

2

-a =-b2-c2+ 2bc cos A

2_.2

a“=b +c2-2bccosA (9)

The proof is thus complete.
To prove another form of the law of cosines

2__2 2

c“=a"+b"-2accos C

refer to figure 5-3 (C) and note that in the right
triangle CAD

cos C =%

(A)

(8)
Figure 5-3.—Proving law of cosines.
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or
y=bcos C

and also

2 2

n2=p2-y

Substituting for the value of y gives

h2 =b2 - b2 cos2 C

In triangle ABD

h?=c? - (- y?
which expands to

2_2 2

h"=¢” -a 2

+ 2ay -y
With additional substitution

h2=02 —a2+ 2abcos C - bzcos2 C
Equating the two h2 values whichare representa-
tive of the two right triangles results in

b2 - b2 cos? C

2

=c2-a2+ 2abcosC-bzcos C

Canceling and rearranging yields

2_ .2 2

¢c =a +b -2abcos C

completing the proof.

The same procedures can be applied to prove
the remaining form of the law of cosines. In
summary, the three forms of the law of cosines
are

a2=b2+ 02-2bc cos A
=a2+ cz-Zac cos B
02=a.2+ b2-2ab cos C

The law of sines and the law of cosines are
used mainly to solve oblique triangles, as will
be shown in the following sections. In addition,
these laws also hold true for right triangles.
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The trigonometric functions or other methods

previously noted are normally more effective

in dealing with right triangles; however, applica-

tion of these laws can be used in an analysis of

some trigonometric principles and identities.
EXAMPLE: Show that

2__2

¢’ =a +b2—2abcos C

holds true in the right triangle shown in figure
5-4, _
.SOLUTION: In the figure it is shown that
C =90°. Recall from the graph of the cosine in
chapter 4 of this course {or from appendix III)
that cos 90° = 0. Therefore, the formula

02=a2+ b2- 2ab cos C

can be reduced to

2__2 2

c“=a“+ b° - 2ab cos 90°

2 =22+ b2 - (2ab) (0)

02=a2+ b2

Reference to the figure shows that ¢ isthe hypo-
tenuse of a right triangle and from the Pytha-
gorean theorem

c2=a2+ b2

Figure 5-4.—~Example problem, law of cosines.
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Thus, the law of cosines woula vrovide a proper
solution to the right triangle.

In this problem the law of cosines reducesto
the Pythagorean theorem. However, in working
with oblique triangles remember that while the
law of cosines appliestoall triangles, the Pytha-
gorean theorem can only be used when dealing
with right triangles.

PRACTICE PROBLEMS:

1. Refer to figure 5-5 and prove that

b2 = a2 + 02 - 2ac cos B.

2. Assume that the triangle in figure 5-5 is
such that a=b=c=2. Transpose the formula in
problem 1 and solve for cos B, thenrefer to the
table of functions in the appendix and verify that
B = 60°.

FOUR STANDARD CASES

It was stated previously that the solutionof a
triangle consists of finding the six parts (sides
a, b, and c¢; and the angles A, B, and C) when
some of these values are known, If three of
these parts are known, atleast one of which is the
length of a side, the remaining parts can normally
be calculated by one of the methods discussed in
the following paragraphs. For convenience, the
methods for solving oblique triangles aredevel-
oped by considering the triangles infour catego-
ries as follows:

1. Two of the angles and one of the sides are
known.

2.  The three sides are known.

3. Two of the sides and the angle between
them are known.

8
c aQ
A c
b
Figure 5-5.—Practice problem, law of cosines.
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4, Two of the sides and an angle that is not
Letween them are known.

The last situation described in the preceding
list is known asthe AMBIGUOUS CASEfor, under
certain conditions, two triangles which are not
congruent can contain the same three known
parts.

Recall from plane geometry that two triangles
are congruent (having the same shape and size)
if one of the following conditions is met:

1. Three sides of one triangle are equal to
the corresponding sides of a second triang!<

2, Two sides and the included angle of on
triangle are equal to the corresponding parts o.
a second triangle,

3. Two angles and a side of one triangle are
equal to the corresponding parts of a second tri-
angle,

It is seen here that the ambiguous case is
the only one that does not parallel aplane geom-
etry theorem for congruent triangles, The first
and fourth (ambiguous) cases (or categories) of
triangles will employ the law of sines inthe solu-
tions and cases 2 and 3will be solved by using the
law of cosines,

TWO ANGLES AND ONE SIDE

When two angles and a side are known, the re-
maining angle can be determined so easily that
this case could be assumed to be one in which one
side and all angles are known. (The third angle
is equal to the difference between 180° and the
sum of the known angles.) The law of sines is
then used twice tofind the lengthof the remaining
sides. To find either of the unknown sides, select
the ratio pair which includes the ratio involving
the unknown side and the one whichconsiders the
known side.

EXAMPLE: Using the law of sines, find the
length of the lettered sides in the triangle in
figure 5-6 (A).

SOLUTION: From the law of sines

c b
sin C =sin B

) b
sin 97.5° =sin 30°

Since

sin 6 = sin (180° - 9),

sin 97.5° = sin 82.5° = 0.99144
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Also

sin 30° = 0. 5000

80,

5 _-__b__ . 2.50000_
0.99144 ~ 0.5000 °* 0.99i44

or

b = 2.5216
Angle A is equal to
180°-B-C =52.5°
Again from the law of sines,

c ___a
gin C sin A

] = a
sin 97.5° sin 52.5°
sin 52.5° = 0.79335

5 - a
0.99144  0,79335

o = 5{0.79335)

0.99144

a= 4.001

EXAMPLE: Figure 5-6 (B)shows a flagpole
standing vertically on a hill which is inclined 15
degrees with the horizontal. Aman climbing the
hill notes that at one point hisline of sight to the
top of the pole makes an angle of 40° with the
horizontal. At another point, 200 feet further up
the hill, this angle has increased to 55°. How
high is the flagpole? Solve using only the law of
sines.

SOLUTION: First, define all the anglesinthe
triangles OAB and OBD. I triangle OAB

¢ BAO = 40° - 15° = 25°

<OBA = 180" ~ (55° - 15°)
=180° - 40° = 140°

< AOB =180° - 140° -25°= 15°
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In triangle OBD

<DBO =55° - 15° = 40°
<BDO =90° + 13° =105°
< BOD =90° - 55° = 35°

These two triangles have OB as a common
side. We can use the law of sines to find EO
in triangle OAB and then apply the law again in
triangle OBD to find the length of side OD which
is the height of the flagpole. Thus,

AB -._OB
sin AOB " sin BAQ

200 _ OB
sin 15% ~ sin 25°

= 200510 257 396, 57 1t

OB
And in iriangle OBD

OB _ oD
sin BDPO ~ sin DBO

326.57 __ OD
sin 105° ~ sin 40°

_ 326.57 sin 40°
OD = sin 105°

sin 6 = sin (180° - 9)
sin 105° = gin 75°

_ 326,57 sin 40°
OD = sin 75°

OD = 217.3 1t

PRACTICE PROBLEMS: Refer to figure 5-7
in solving the following problems where the
figures (A), (B), and (C) are to be used respec-
tively with problems 1, 2, and 3. Use the law of
sines in solving these problems.

1. Findaandb using the values givenin the
table of functions of special angles (chapter 4 of
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_this -course).
where applicable.

2. Find sides d and f to two decimal places.
3. Find the length of atotwodecimal places.

~

(A)

0

A °
550
—m

Leave answers in radical form ANSWERS:

1. a=3
b=3V3

2. d=¢€.07
f=23.96

3. 8.39

THREE SIDES

When the three sides of a triangle aregiven,
the triangle can be solved by three successive
applications of the law of cosines. Eachapplica-
tion yields the value of one angle. The order of
determining the angles is not important; any of
the three angles may be determined first. A
particular angle is found by using the form of
the law of cosir.es inwhichthe cosine of the angle
in questions appears. Whenthe three angles have
been found, the solution is checked by verifying
that A+ B+ C =180°

EXAMPLE: Solve the triangle ABC, given
a=1b=13, and ¢ = 14, Determine the size of
the angles to the nearest degree.

SOLUTION: To simplify the procedure solve
the law of cosines algebraically for cos A.

A 4°17,00 L a2=b2+ c2-2bccosA
15°
2bccosA=b2+ cz-a2
(8) 9 2 9
cos A = b"+c¢ -a
Figure 5-6.—Case 1, example problems. 2bc
t
65
d
a
a5 45 70°__75°
10 10
(A) (8) (C)

Figure 5-7.—Case 1 practice problems.
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The remaining forms of the law can be c=-22
solved in the same manner and the results are €OS L =782
_ a2 + c2 _ bz cos C =0,12088
cos B = 22
) ¢ C=83°
an a2, p2_ 2
cos C = =c
2ab Checking the calculations gives
Now in the given problem A+ B+ C=30"+67°: 83°=180°
2 2 9 It may appear that tiie best method to use in
cos A = b” + ¢c%-2a solving a triangle when three sides are given
2bc would be to calculate twc angles and find the third
angle by subtracting the sum of the two from 180°,
132 +1 42 72 While this method shortens the computation, it
cos A = 2% 13 1; also destroys the check on the calculations, and
xlox is not recommended.
EXAMPLE: Solve the triangle ABC when
cos A = 169 + 196 - 49 a=8,b=13,and c = 17, Express the angles to
364 the nearest degree.
SOLUTION:
_316
cas A 364 A_b2+ 02--:9.2
cos A = 3bo
cos A = 0. 86 -
813 cos A = 169 + 289 - 584
o 442
A =30
394
cus A ==+~
Then 442
cos A =0.8914Q..
ccsB=az+ ¢ "bz "
2ac A =27°
- 49 + 196 - 169
cos B 2x 7 x 14 Then
64 + 289 - 169
__16 cos B =
cos B = 196 272
cos B = 0.38776 cos B =0.67647
= D
B =67° B =417
and finally
and
2 2 2
_a"+b%-¢ =84+ 169 - 289
cos € ="—%b c08 € = =0
_49 + 169 - 196 - =56
cos C = 182 cos C 308
62

James
67
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cos C = -0, 26927
cos C = -cos 74°

-cos C = cos 74°

reference to reduction formulas gives
-cos C = cos (180° - C)
and
C =106°
then, checking,
A+ B+ C=27"+ 47"+ 106° = 180°

PRACTICE PROBLEMS: The sidelengthsof
triangle ABC are given in the following problems.
Use the law of cosines to determine the sizes
of the anrgles to the nearest degree.

1. a=3,b=4,c=5

2. a=2,b=3,c=4

3. a=7,b=14,c =11

ANSWERS:

1. A=37

B =53°
C =90°
2. A=29°
B =47°
C =104°
3. A=29°
B =100°
C =51°

TWO SIDES AND THE
INCLUDED ANGLE

Where two sides and the angle between them
are given, the triangle is solved most easily by
repeated use of the law of cosines. Using the
given parts, solve first for the unknown side.
Then, with three sides known, solve for the re-
maining angles in the same manner ~s in case
two.

EXAMPLE: Using the law of cosines, solve
the triangle ABC shown in figure 5-8, angle ac-
curacy to the nearest degree.

SOLUTION: First find the unknown side.

a2 =p2+ c2 - 2bc cos A

2 2

)
a”=7%+ 5% - 2(5) (7) cos 19°

68
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a2 =49 + 25 - 70 cos 19°

a2 = 74 - 70(0.94552)

a2 = 74 - 66.1864

a2 = 7.8136

a =v7.8136
a =2.795

To compute the angles, round the values given
above to

a2+ 02-b2

2ac

cos B =

7.8 + 25 - 49
2x2.8x5

v
cos B=

16.2

COSB=-—2—8'—

cos B = -0.57857

B =125°
and
2 2 2
‘~n2 +b -c
cos C %ab

2x2.8x7 ~ 39.2
cos C =0.81633
C =35°

e

then, checking,

A+ B+ C=19°+ 125°+ 35°=179°

A+ B+ C=180°

This is acceptable with the accuracy required
here. )
EXAMPLE: Two ships leave port at the
same time; one (ship A) sailed on a course of
050° at a speed of 10 knots, the second (ship B)
sails on a course of 110° at 12 knots, How far
apart are the two ships at the end of 3 hours?

far -
RRY
. "
i

— et
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8
esS

Figure 5-8.—Case 3, example problem.

SOLUTION: A good rule in any problem of
this type is to first draw a picture to show the
problem. In figure 5-9 a coordinate system
oriented to compass headings is constructed, and
the given information is plotted. From the figure
it is seen that the desiredanswer isthe distance
AB opposite the angle labeled C, where C = 110°
- 50° = 60°.

Using the law of cosines

2 =q2

+ b2 - 2ab cos C

2 2

c? =36 2

+ 30° - 2(30 x 36) cos 60°

1
¢ = 1206 + 900 - Z (1080) xg

¢ = 2196 - 180 = 1116
¢ =v1116

¢ =33.5 approximately

The ships are approximately 33.5 miles part at
the end of 3 hours.

PRACTICE PROBLEMS: Use the law of
cosines to solve the triangles desciibed below.
Express angles to nearest degree and sides to
two decimal places.

1. a=10,b=17, C =25°

2. b=11,¢c=17, A=20°

3. a=12,c =26, B=140°

ANSWERS:

1. ¢ =4.69
A=116°
B = 39°

2. a="1865
B = 29°
C =131°

64
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Figure 5-9.—Plot of ship’s courses.

3. b=236
A=12°
Cc=28°

TWO SIDES AND AN
OPPOSITE ANGLE

When two sides and a nonincluded angle are
given, the triangle falls in the ambiguous cate-
gory and one of the following cases will exist:

1. There is no solution.

2. There are two solutions.

3. There is one sclution.

The category is called ambiguous for the
given parts cannot alv:ays establish the shape and
size of one triangle. There may be two triangles
which are not congruent, but still contain the
given parts. The ambiguity of this category can
be seen if we assume that three parts (B, b, and
c) are given, and we attempt to construct the
triangle from this data. We consider the possi-
bilities as follows:

1. K angle B is obtuse as in figure 5-10 (A),
the side b must be larger than side cfor a
triangle to exist. In this case, b>c, there is
only one triangle which exists and only one solu-
tion,

2. X B is a rightangle, asinfigure 5-10 (B),
side b must be larger than side c for a triangle
to exist and there is only one triangle and one
solution.
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3. Figure 5-11 shows the situations which
can exist if B is an acute angle. In (A) a figure
is constructed with A <90° and b < c; that is, a
line drawn from vertex A is too short to reach
the line BC, In this case, notriangle exists and
there is no solution.

4. In figure 5-11 (B), the line from A (side
b) is exactly the distance from A tothe line BC.
In this situation, only one triangle exists and it
is a right triangle with one solution.

5. Figure 5-11 (C) shows a triangle where
the line from Atouches the line BC in two places.
In this case the sides b and b' are longer than
the side b in figure 5-11 (B), but still shorter
than line ¢. In this category there are two
triangles, BAC' and BAC, which contain the
given parts. With the law of sinestwo solutions
can be found for this possibility.

6. The last possibility considered is one
shown in figure 5-11 (D). In this figure the line
v is longer than ¢ and again would touch the line
BC in two places to form two triangles. How-
ever, only the triangle ABC is considered since
the triangle ACC' does not include angle B as
an interior angle. This situation is considered
to have only one solution. K b = ¢, then ¢ and c'
coincide and there is only one triangle.

Certain relationships of angle, side, and func-
tion values can be found to determine in advance
which of the possibilities previously listed exists
for a given triangle. However, this knowledge
is not required before the solution.is attempted.
It can be determined in the process of attempt-
ing a solution, as will be shown in the example
problems, or a drawing can be made from the
data given.

The triangles presented in this section have
had value sizes only in relation to eachother or
in relation to 90°. Figure 5-12 points out the
ambiguity which can exist when a triangle is
described by giving two sides and an angle op-
posite one of these sides. Thisfigure shows two
triangles constructed with given data of A=30°
a = 4;and c = 6. Solution of these two triangles
will show that B, C, and b are not the same for
the two, and this is a case where two solutions
arise.

A good approach to solving triangles when
two sides and an opposite angle (ambiguous
category) are given is to first use the law of
sines to find the unknown angle opposite a given
side. Then the third angle can easily be deter-
inined and the law of sines can be used again,
to compute the unknown siaé. In the following
examples and practice problems desired

65

(A)

(B)

Figure 5-10.—Ambiguous case, B > 90°.

accuracy is.in degrees to the nearest minute
and sides to two decimal places.

EXAMPLE: Solve the triangle (ortriangles)
ABCwhen B=45°,b=3,c="1.

SOLUTION: First use the law of sines.to

find angle C
c___Db
sinC sinB
sin C = c__s;n B
-]
sin C = i sain 45
sin C = 7x g 70711
sin C = 4.9;977_

sin C = 1.64992

T eheias -
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A
b
¢
C a 8
(8)
A
b ¢
B C
(D)

Figure 5-11.—Ambiguous case, B < 90°

;The calculations show that

sinC >1

"However, reference to tables or a graph of the
sine function shows that the sine is never greater
than 1, so this is the case where no triangle or
solution existu.

EXAMPLE: Solve the triangle (ortriangles)
ABC when A =22°,a =5.4, ¢ = 14.

SOLUTION: Apply the law of sines todeter-
mine angle C, >

c -_a
8inC sin A

sinc =&8in A
a

71

66

_ 14 sin 22°
sinC = 5.4

_14 x 0.37461
sin C = == -

sin C =0.97121
C =176° 13"
Since the side opposite the known angle is smaller
than the other given side, there are two angles
to consider. Since

sin (180°- C)=sin C

the other angle (C') is 103° 47",
Contimie the solution considering two trian-
gles, ABC and A'B'C', In ABC;
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A=30' \
A ¢

(A)

Az30°

(8)

Figure 5-12.—Two different triingles derived
from identical given ciata.

A=22°a=5.4,c=14, and C =76° 13"

InA'B'C'; A'=4A,a'=a,c'=¢, and

C'=103°47".
Solving ABC first, angle B is found by
B=180°- (A + C)
B =180° - (22° + 76° 13")
B =180° - 98° 13'
B = 81° 47

Then by the law of sines

b =14.27

This completes the solution of triangle ABC.
In the second triangle, angle B' isfound first
by using values previously calculated

B'=180° - (A'+ C")
B' =180° - (22° + 103° 47')
B' =180° - 125° 47"
B' = 54° 13'
Then from the law of sines

b = a' sin B'
sin A"

b' = 9:4 x sin 54° 13"
sin 22°

bt = 5:4 % 0.81123
0. 37461

b'=11.70

This completes the solution for both possible
triangles. Figure 5-13 shows ascaledrawing of
the triangle of this example. The angle A was
constructed with one side of length 14 unitster-
minating at B, and the otherline toform an angle
of 22°. Acompasswas setto 5.4 units and an arc
was struck using B as the center. As shown in
the figure, the arc intersected the line from
A at two points. Theretore, there are two
triangles which satisfy the data.

EXAMPLE: Solve the triangle (ortriangles)
when A = 35°,a =10, b= 8.
SOLUTION: From the law of sines
sin B = 28104

8 sin 35°

8in B = 10

'sin B = 0.45886

p = &8I0 B ° a1
Then
b= 3:4%0 98973 .
0.37461 C=180" - (A + B)
n
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A < 149

Figure 5-13.—Scale drawing of example triangles.

C =180° - (35° + 27° 19")
C =117° 41

Apply the law of sines again to find ¢

c=asinC
sin A

10 sin 117° 41"
- sin 35°

_ 10 x 0.88553
- 0.57358

c=15.44

This solves one triangle and since the side
opposite the given angle is larger than the other
given side, there should be only one solution.
However, if this point is overlooked and the
solution is continued in an attempt to find a
second solution as in the previous example

sin C' = sin (180° - C)
sin C' = sin (180° - 117° 41')
sin C' = sin 62° 19’

Ct =62°19'

Now if this angle is contained in a second
triangle described by the given data, it is
known that

A+ B+ C*'=180°

68 .

73

but
35°+ 27° 19" + 62° 19" = 124° 38"
S0
A+ B+ C'#180°

and ABC' is not a triangle described by the
given data.

PRACTICE PROBLEMS: In the following
problems use the given data to solve the tri-
angle or triangles involved.

1. C=100° ¢ =46,b =30

2. A=40°,a=25b=30

3. B=42°,b=2,¢c=4

4, B=30°%b=10,a=10

ANSWERS:

1. B =239°58", A =40°02',a =30.04

2. B = 50° 29',C =89°31', ¢ = 38.89 and
B =129° 31", C =10°29', ¢ = 7.08

3. No solution

4, A=306"° C=120° c =17.32

LOGARITHMIC “OLUTIONS

Computations involving triangle solutions are
often concerned with the multiplication or divi-
sion of trigonometric functions, which contain
values given in four or five decimal places, and
other values which may also contain numerous
digits. There are many opportunities for arith-
metic errors in these computations and, inmany
cases, the errors are the result of the multipli-
cation and division by large decimals. In
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logarithmic solution the computations are re-
duced to addition problems, and the number of
errors is frequently reduced.

By the combined use of tables of trigonome-
tric functions and tables of logarithms one could
solve the triangles by first finding the value for
the function and converting this to a logarithm
or by converting the logarithm of a function value
to a decimal and then converting thisto an angle.
However, the logarithm equivalents of the princi-
pal natural functions have long since been worked
out, and are available intables, so that the neces-
sary multiplication or division may be performed
by the use of logarithms.

A table of “common logarithms of trigonome -
tric functions®” usually lists the logsfor the sine,
cosine, tangent, and cotangent of angles from
0° through 180°. Appendix I showsa sample page
from such a table; reference to the appendix
shows that both the characteristic and the man-
tissa are listed. In addition, for each value
listed, a characteristic of -10 at the end of the
log is understood.

Take the log listed for the sine of 38° 00'
00'', for example. This is listed as 9.78934.
What this actually means is 9.78934-10, which in
turn means that the log of this function is actu-
ally -1+.78934. On the other hand, thelog listed
for the tangent of 51°10' 00''is 10.09422. What
this means is 10.06422-10; in other words, the
log of this function is 0.09422. The logs are
printed in this manner simply to avoid the neces-
sity for printing minus characteristics. Note
that, even when a characteristic is minus, the
mantissa is considered as plus.

A complete table of the logarithrns of trigono-
metric functions is not included in this course.
For purposes of the examples and practice prob-
lems in this course, z short table of values for
the sine, cosine, andtangent isgivenintable 5-1.
The values in this table are given for each 5°
from 0° to 90°. The complete logarithm (both
characteristic and mantissa) is given in this
table. The problems in this section will be
worked with an accuracy of side lengthstothree
digits and angles to the nearest 5°.

The solution of oblique triangles was con-
sidered in four cases. In logarithmic solutions
the solutions are also considered in four cases.
In cases 1 and 4 the law of sines was used for
solutions. 3Sinze the law of sines fits well with
logarithmic solutions, cases 1 and 4alsouse the
law of sines for logarithmic solutions. Cases 2
and 3 were solved using the law of cosines; how-
ever, the law of cosines involves addition and

74

subtraction and does not lend itself to logarithmic
solutions. For cases 2 and 3, we will use
methods other than the law of cosines for log-
arithmic solutions.

CASES 1 AND 4

As previously stated, the solution of these two
cases by the law of sines adapts readily to log-
arithmic solution since the law of sires involves
multiplication and division. Example solutions
of the cases are given in the following para-
graphs.

EXAMPLES: Uselogarithmsto solve the tri-
angle ABC when A = 110°, B = 25°, and ¢ = 125.

SOLUTION: Find the unknown angle as the
first step

C=180°-A-B
C = 180° - 110° - 25°
C = 45°

Using the law of sines with ratios involving
a and ¢ find the value of a'as follows:

a _ ¢
sin A ~ sinC

a x sin A

= =< __
sin C

Taking the logarithm of both sides of the
eQuation gives

loga = (logc - logsinC) + log sin A

The logarithms of trigonometric funh"étions
given in table 5-1 include only angles from 0° to
90° so the equation above becomes

loga = (logc - log sin C) + log sin (180° - A)
log a = (log 125 - log sin 45°) + log sin 70°

Refer to tsble 5-1 and appendix Il and convert
the values to logarithms, One meathod of simpli-
fying the computation is to convert each log-
arithm to one with an end characteristic of -10
and use the following procedure

log 125 12.0969 - 10
lpg sin 45° 9.8495 - 10

subtract
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Table 5-1. —Logarithms of trigonometric functions.

Degrees Log sin Log cos Log tan
0 — . 0000 _—
5 8.9403 - 10 9.9983 - 10 8.9420 - 10
10 9.2397 - 10 9.9934 - 10 9.2463 - 10
15 9.4130 - 10 9.9849 - 10 9.4281 - 10
20 9.5341 - 10 9.9730 - 10 9.5611 - 10
25 9.6260 - 10 9.9573 - 10 9.6687 - 10
30 9.6990 - 10 9.9375 - 10 9.7614 - 10
35 9.7586 - 10 9.9134 - 10 9.8452 - 10
40 9.8081 - 10 9.8843 - 10 9.9238 - 10
45 9.8495 - 10 9.8495 - 10 0. 0000
50 9.8843 - 10 9.8081 - 10 J. 0762
55 9.9134 - 10 9.7586 - 10 0.1548
60 9.9375 - 10 9.6990 - 10 0. 2386
65 9.9573 - 10 9.6260 - 10 0.3313
70 9.9730 - 10 9.5341 - 10 0. 4389
75 9.9849 - 10 9.4130 - 10 0. 5720
80 9.9934 - 10 9.2397 - 10 0.%5317
85 9.9983 - 10 8.9403 - 10 1.0580
90 .0000 — —_—
log (¢/sin C) = 2. 2474 Taking the antilog,
a= 166
log (125/sin 45°) = 12,2474 - 10 add
same procedure
logsin70° = 9,9730 - 10 b __a
sinB sin A
loga = 22.2204 - 20
log a = 2.2204 b= Sz xsinB

To complete the solution, find side busing the
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logb = (loga - log sin A) + log sin B

log b = (log 166 - log sin 70°) + log sin 25R°

log 166 = 12.2204 - 10
log sin 70° = 9.9730 - 10 subtract
log (a/sin A) = 2.2474
log (a/sin A) = 12,2474 - 10
log sin 25° = 9.6260 - 10 add
log b - 21.8734 - 20

log b= 1.8734

b=14.7

This completes the logarithmic solution for
a triangle in case 1. T

EXAMPLE: _ Solve the triangle (or tri-
angles) when A =40°% a=3,b =4,

This is an ambiguous case and with the .side
opposite the given angle smaller than the other
given side there are two possibilities: either
there are two snlutions or side a is too short
to reach the baseline and there are no solutions.
Recall from earlier examples that there is no
solution when the sine of the angle upposite the
second given side (angle B in this case) is
greater than one. Inlogarithmic solutions the
condition for no solution is when the log sin of
the angle is greater than zero; thiscorresponds
to a sine greater than one. Reference to table
5-1 shows that all of the values listed for log
sin are less than zero (negative characteristic).

SOLUTION: Solve first for the unknown
angle opposite a given side usingthelaw of sines

b sin A
a

sin B =

this in logarithmic form becomes

log sin B = logb + logsin A - loga

76'7 1

Evaluation of the logarithms gives

loghb = 10.6021 - 10

log sin A = 9.8081 - 10 add
log (b x sin A) = 20.4102 - 20

log (b x sin A) = 20.4102 - 20

log a = 10.4771 - 10 subtract
log sin B = 9.9331 - 10

We note that log sin B is less than 0, so
there are two angles to consider, say B and B,
where sin (180° - B) = sin B',

Now
log sin B = 9.9331 - 10
B = 60°
B' = 120°

Then the corresponding angles, C and C', are

C = 180° - (A + B)

C = 180° - (40° + 60°)
C = 80°
and
C' =180° - (A + B")

C' = 180° - (40° + 120°)
C' = 20°

To complete the solution find sides ¢ and c'.
Consider first side ¢ and use the following form
of the law of sines

_asinC
- sin A

or, in logarithmic form,

logc = loga + logsinC - log sin A

okl i e

ngpbahy REedn
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Evaluate the logarithms

log a = 10.4771 - 10
log sin C = 9.9934 - 10 add
log (a x ~inC) = 20.4705 - 20
log sin A = 9.8031 - 10 subtract
log c = 10.6624 - 10
Taking the antilog,
c=4.6

Finally, to find c' use

y _ asinC'

sin A
loge' = loga + log sinC' - log sin A
log a = 10.4771 - 10
log sin C' = 9,5341 - 10 add
log(a x sinC') = 20.0112 - 20
log (a xsinC*) = 10.0112 - 10 subtract
log sin A = 9.8081 - 10
log c' = 0.2031
Therefore,
c'=1.6

PRACTICE PROBLEMS: Use logarithms to
solve the triangle (or triangles)described by the
following data.

1. A=170° B=100° ¢ = 50
2. A=60",a=11,b=18
3. A=40°2a=25b=230

ANSWERS:

1. C=10°,a =271, b = 284

2. No solution

3. B=50° C=90° c = 39.8
4. B'=130°% C' =10° ¢ = 8.75

LAW OF TANGENTS

The law of cosines does not lend itself to loga-
rithmetic solutions. The two cases in which we
used the law of cosines are solved by loga-
rithms using two different methods. The first
method to solve triangles in case 3, where two
sides and the included angle are given.

The law of tangents is expressed inwordsas
follows:

bh: any triangle the difference between two
sides is to their sum as the tangent of half the
difference of the opposite anglesistothe tangent
of half their sum.

For any pair of sides—suchas side a and side
b—the law may be expressed as follows:

a-b tanléng - B%

a+b tanl/2(A + B
The law may be expressed in aform that includes
other combinations of sides and angles by sys-
tematically changing the letters in the formula.
In solving case 3 by thelaw of tangents. select
the formula which includes the given sides, say

a and b; then angle C is also given. The sum of
the unknown angles, A + B, is found as

A+ B=180° -C

and the law of tangents is used to find A - B.
After the sum and difference of A and B are
determined, the angles themselves canbe found.
With the angles known, the law of sines is used
to find the unknown side.

EXAMPLE: Solve the triangle ABC when
A=25, b=10,c =1.

SOLUTION: With b and ¢ given andb > ¢ use
the law of tangents in the form

b-c¢c tanl/2(B - C
b+c¢c tanl1l/2(B + C

First, determine the sum of the unknown angles

B+ C=180° - A
B+ C = 180° - 25°
B+ C = 155°
Then 1/2(B + C) = 1/2(155°)
1/2(B + C) = 711.5°
12- ..
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and

b-¢c=10-7=3

b+c¢c=1 4+ 7=17
At this point, the only unknown in the formula
for the law of tangents is tan 1/2(B - C). The

next step is to transpose the formula and solve
for this unknown.

b-c _tan1/2(B - C)
b+c¢c tanl/2(B + C

(b-c)(tan 1/2(B + C)) =
(tan 1/2(B-C)) (b + ¢)

(b-c)(tan 1/2(B + C)) _ tan 1/2(B - C)
b+ec

tan 1/2(B - C) = 222TT.5
Rounding the angle to 80° for use with the given

table, the following logarithmic equation can be
written:

log tan 1/2(B - C) =1og 3 + log tan 80° - log 17

then
log3  =10.4771 - 10
(+)
log tan 80° = 10.7537 - 10
log (3 x tan 80°) = 21.2308 - 20
log 17 = 11.2304 - 10 <
log tan 1/2(B - C) = 10.0004 - 10
log tan 1/2(B - C) = 0.0004
1/2(B - C) = 45°
B-C = 90°

There are now two equations for B and C,
(B + C) and (B - C); these are solved simulta-
neously to find B and C.
First the two are added to find B

13

8

B + C = 155°
B-C = 90°
2B = 240°

B = 120°

Next, subtract the two to find C

B + C = 155°

-B+ C = -90°
2C = 65°
C = 32,5%°

To fit the given table round C to 35°, then
A+ B+ C=25 + 120° + 35° = 180°

In the final part of the solution, use the law of
sines to find side a.

a___ b
sinA sinP
_bsin A
2 =SB

log a = log b + log sin A - log sin B
log a = log 10 + log sin 25° - log sin 120°

log 10 = 11.0000 - 10
(+)

log sin 25° = 9.62680 - 10

log (b sin A) = 20.6260 - 20
()

logsinB = 9.9375 - 10

loga = 10.6885 - 10

log a = 0.6885
a = 4,88
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There are six forms of the law of tangents,
two of which have been shown. The remaining
four are formed, as previously stated, by re-
placing the corresponding letters inthe formula.

PRACTICE PROBLEMS: Uselogarithms and
the law of tangents to solve the triangles de-
scribed by the given data.

1. a=4,b=3, C=860°

2. a =0.0316, b = 0.0132, C = 50°

ANSWERS:

1. A=170°% B =50°c = 3.69

2. A=105, B =25 ¢ =0.0239

CASE 2

The logarithmic solution of oblique triangles
when three sides are given involves formulas
derived from the law of cosines. Theseformulas
are called half-angle formulas and, in these solu-
tions, are expressed in terms of the semiperi-
meter of the triangle and the radius of a circle
inscribed in the triangle.

The half-angle formulas expressed in s
(semiperimeter) and r (radius of inseribed cir-
cles) are. not presented in this course. The
logarithmic solutions of oblique triangles inthis
course are limited to cases 1, 3, and 4.

AREA FORMULA

In this section two formulas for finding the
area of oblique triangles are given. These
formulas are used to find the area of triangles
in cases 1 and 3 from the given parts.

Recall from plane geometry that the area of
a triangle is found by the formula

A = 5bh

where b is any side of the triangle and h is the
altitude drawn to that side. To avoid confusion
between A for area and A as anangle in the tri-
angle the word “area” will be used inthis chap-
ter. Then the formula is stated as

1
area = 5 bh

Reference to figure 5-3 (B) shows that the
length of the altitude h can be found by

h=c sin A

14
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Substituting this value of h in the area formula
results in

area =%b¢SiDA

This area fermula is stated in words asfollows:
the area of a triangle is equal to one-half the
product of two sides and the sine of the angle
between thera. Thisform:ilaisused for solutions
of triangles whentwo sides and the included angle
are given.

A second formula for area can be derived
from the law of sines and the previous formula.
From the law of sines

b _ ¢
sinB sinC
_csin B
b = sinC

Substituting this value of b in the area formula

area = bc sin A
results in
area = (C.Sin B ((_:__g_in A)
Téa =\=sin C, 2
2 gi ™
area = ¢4 sin A sin E

2sinC

This formula can be used to solve triangles when
two angles and one side are given since, when
two angles are given, the third angle canbe found
directly. It can be seen that the area formulas
can be easily adapted to logarithmic solutions,
as well as to normal solutions.

PRACTICE PROBLEMS: Derive the area
formulas most applicable when the followingare
given.

1. a,b, C

2. a,c, B

3. A,C,b

4. B,C, a

ADo S aild

1. area = ab sin C
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9. area = ?ﬁ_s%l_B. then apply the area formula
3. area = & siinsﬁl sl_;n < area = (12)2zs;rilnzg;°sin 105° )
4. area _a’sinBsinC area = 234 x20;(4(2,.2%g 340.96593

2sin A
With the specific values involved in this prob-
EXAMPLE: Find the area of triangle ABC lem, a logarithmic solution should simplify the

when A = 40°, b=13,and ¢ = 9. arithmetical process. To write the logarithmic
SOLUTION: Use the first area formula equation go bacla to equation (1). Recall that the
given in this section: logarithm of 12° is 2 log 12 and that sin (180° -
105°) = sin 75° and writa the equation as
area = bc sin A
=2 log area = 2log 12 + log sin 25°
area = 13 x § x sin 40° +log sin 75° - (log 2 + log 50°)
210g 12 = 2.1584
13 x 9 x 0.64279 log sin 25° = 9.6260 - 10
area = 2
log sin 75° = 9.9849 - 10 add
log (c2 sin A sin B) = 21.7693 - 20
area = 37.6 (square units)

log (c2 sin A sin B) = 11.7693 - 10

This formula (as well as the other area gand
formula) adapts easily to logarithmic solutions.

In a logarithmic solution the formula log2 = 0.3010
log sin 50° = 9.8843 -
area - Pe sin A g sin 3 -10 add

log (2 sinC) = 10.1853 - 10

is written
subtracting these sums

log area = log b +10g C + log sin A - log 2

1og (c2 sin A sin B) = 11,7693 - 10
EXAMPLE: Find the area of triangle ABC

when A = 25°, B= 1050, c =12. log 2 sinC) = 10.1853 - 1
SOLUTIOi‘I: First determine angle C. ( ) 0 subtract

log area = 1. 5840
C = 180° - (A + B) area = 38. 31

PRACTICE PROBLEMS: Find the area of

C = 180° - 130 the triangles described by the given data.
1. Find the area of the triangle given in the
second example problem (A = 25°, B = 105°,

C = 50° . o e= 12), without using logarithms.

‘ 7%
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2. A=25°, B=45°, c = 24
3. A=42°,b=4.4,c=3
4. A=120°, b=8, c =12

ANSWE
. 38.369
91.6
4.4
41.5

g0 0o 1
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CHAPTER 6

VECTORS

Vector quantities, which we will now concern
ourselves with, are different from scalar quan-
tities, Navigation involves the use of vector
quantities, surveyors use vectors in their work,
as do structural engineers, and electrical and
electronic technicians, Many of the applica-
tions of electricity and electronics involve the
use of vector quantities.

DEFINITIONS AND TERMS3

In this section we will make a distinction
between a Scalar quantity and a vector., We
will also define the coordinate systems used in
working with vectors and show some of the
symbols used. P

SCALARS

Heretofore, we have been concerned with
gcalar quantities, which are measurements or
quantities having only magnitude, in the appro~
priate units, Examples of scalar quantities
are: 10 pounds, 4 miles, 17 feet, and 28,2
pounds per square inch,

VECTORS

A vector, in contrast to a scalar, has di-
rection as well as magnitude, Examples of
vector quantities are: 6 miles due north, 9
blocks toward the west, and 250 knots at 30°,
Notice that the vector quantities have both a
magnitude and a dh{ection.

SYMBOLS

The letters A, B, <, and D have been pre-
viously used to represent scalar quantities in
algebra. In vector algebra, a notation is used
to denote scalar symbols in relation to vector
symbols. A dash over the letters, for example

and B, denotes vectors,

A vector can conveniently be represented
by a straight line, The length of this straight
line represents the magnitude, and its position
in space represeuts the direction of the vector
quantity. In figure 6-1 the vectors A, B,and T
are equal because they have thesame magnitude
and direction and vector D is not equal to
either vector A, B, or T because although it
has the same magnitude it does not have the
same direction,

In navigational problems, a coordinate sys-
tem is used in which the compass points serve
as indicators of directicn, and magnitude is
given by lengths of the lines. For example,
using the origin of the coordinate system as
the point of departure from the harbor, figure
6-2 represents two ships heading out to sea,
Vector A represents a ship bearing 45° from
due north at a speed of 20 knots, and vector B
represents a ship bearing 60° from due north
at a speed of 25 knots, Notice that directions
in this coordinate system are measured clock-
wise from due north,

When we use the trigonometric system in
designating angles or giving a direction to a
magnitude we use the Cartesian coordinate
system which includes the abscissa (measure-
ment on the X axis) and the ordinate (measure-
ment on the Y axis), Directions in this coordi-
nate system are measured counterclockwise
from the X axis, For example, using the origin
of the coordinate system as the point of de-
parture from the harbor, figure 6-3 represents
a ship heading out to sea bearing 30° at a speed
of 25 knots, This is represented by vector B
and i8 the same representation as vector B in
figure 6-2 but is shown on a different coordi-
nate system.

Angle measurements will be referenced
from the vertical in the compass coordinate
system and will be referenced from the hori-
zontal in the Cartesian coordinate system.
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/ /D
Figure 6-1,—-Comparison of vectors,
N
|
.
25 KNOTS
20KNOTS 8
A
“«.
~60°
— ) E

Figure 6-2,—-Compass coordinate system,

COMBINING VECTORS

If a vector A represents the displacement
of a particle or the force acting on the particle,
it i8 convenient to let -A represent the dis-
placement of a particle in the opposite direc-
tion or to represent a force in the direction
opposite to A, Thus, vectors A and -A are
equal in magnitude but are opposite in direc-
tion,

Y { ORDINATE)

25 KNOTS
8

| » % { ABSCISSA)

0
{ORIGIN)

Figure 6-3,—Cartesian coordinate system,

ADDITION

The resultant of two vectors acting in the
same direction or acting in opposite directions
is the algebraic sum of their magnitudes., An
example of this is walking due east four steps
and then walking due west one step., The re-
sultant is three steps due east, If one travels
from his home t¢ his place of employment he
may have several choices for his route, We
will assume two of these routes as indicated in
figure 6-4, He may move east to point A then
north to point B or he may move north to
point C then east to point B, In either case he
arrives at his place of employment, If we
assume his travel in both directions as forces
acting on him, we can call the direct distance
from home to place of employment, in figure
6-4, the RESULTANT of these two forces and
refer to it as vector R, Notice that either
path taken results in vector R,

We may now state that OA + AB = OC +
The symbol (+) is used to indicate
that vector OA is added vectorially to vector
AB, From this it is apparent that vectors may
be added in either order with the same results,

If several vectors A, B, and R are to be
resolved into components, X, X,, Xp, and ¥y,
Y., ¥b are used to denote these components,
as figure 6-5 portrays,

In the addition of vectors, the initial point
of vector B must be placed directly on the

78

83
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.

ﬂ PLACE
REAC
e EMPLOYMENT

terminal point of vector A, and so on for any
number of vectors, Then vector R, which
joins the initial point of vector A with the
terminal point of the last vector N, is the
result of adding vectors A and B and C'through
N vectorlalg. Hence A + B+~ C + D +~
... += N = R, Here it may be shown that the
commutative and associative principles apply,
which means that it makes no difference which
vector is used first and which order is followed
when adding vectors. (The commutative and
agsociative laws may be reviewed in Mathe-
matics, Vol, 1, NavPers 10069-C.)

SUBTRACTION

Subtracting a vector is defined as adding a
negative vector:

A-B=3A+ (-B)
It follows that if
A+~B=0

Then
A=-B

S

> VPR

Figure 6-5,~Components of vectors,

R A el
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A careful study of figure 6-4 will show that

if
OA ~AB =R
Then

R+ (-AB) =R - AB = 0A

VECTOR SOLUTIONS
In the previous sections we agreed that:

A+~B+C+D+... -~N=R
Approaching this relation from a graphical
standpoint, one can understand exactly what
this means,

GRAPHICAL

As an example of the graphical method, six
vectors may be used to represent the path
taken by a man looking for a lost golf ball, He
stands at position Py, hits the ball and does
not notice where the ball went, Vectors A
through F in figure 6-6 represent the path he
takes in an attempt to find the ball, Py is the
position where the ball is found and we will
call it the termination point, Figure 6-7 shows
another of the many different arrangements of
the six vectors, The dotted lines from P to Pt
indicate the resultant vector, and this resultant
has the same magnitude and direction regard-
less of the arrangement of the vectors we use,
This method of graphically solving vector

ol

Figure 6-6,—Polygon example mumber 1,

Figure 6-7,—Polygon example number 2,

problems is called the polygon method, and is
used in civil engineering problems involving
structures such as bridges; it is also. used in
logic problems of everyday living,

If two vectors are to be resolved into a
single resultant, this may be done graphically
by the parallelogram method, Given any two
vectors A and B lying in a plane (fig, 6-8)
form a parallelogram by projecting B onto A,
initial point to terminal point, and A onto B,
initial point to terminal point, thus forming"
a parallelogram which has as a diagonal the
resultant vector R,

This process can be reversed in order to
find the components of a vector as shown in
figure 6-9, Vector R is given and the problem
is to find the rectangular components of this

80

Figure 6-8,—-Parallelogram example 1,

-
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<
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| B

X

[=)

X

Figure 6-9,—Parallelogram example 2,

vector. In this case the parallelogram is a
rectangle and the projections of R on the X
axis and the Y axis show the components,
Generally, the graphical method of resolving
vectors will be used to check the validity of an
analytical method of solution,

ANALYTICAL

The trigonometric functions are used to
solve vector problems analytically,

EXAMPLE: Find the resultant of two
vectors at right angles to each other, Vector
A represents 90 pounds of force and vector B
represents 60 pounds of force,

SOLUTION: Vector A is directed vertically
and B lies on the reference line, as shown in
figure 6-10., In this case the angle 4 is un-
known and the resultant is required, The
Pythagorean theorem is sufficient to solve for
the magnitude of the resultant, This is the
case only if we establish a right triangle from
our vector and its components,

Since the magnitude of R is a scalar quan-
tity we will designate it by r. As you recall
from Mathematics, Vol, 1, NavPers 10089-C,
the Pythagore%n thforem of right triangles
states: x2 + y We apply this to our
figure and find that:

= 00)% + (60)2
r = \/(30?‘ + (6(;2

v11,700

108. 2 pounds

90 1b

60 1b

Figure 6-10.~Vector sum,

If we desire the angle 6§ of the resultant
vector R we may use the trigonometric function
for the tangent of an angle; that is,

tan 6 =§=§g= 1. 50000

Then,
9 = 56° 19’
EXAMPLE: Resolve the vector R into its

components, In figure 6-11, R represents 50
mph at 30°. We are to find the ¥y and Yy
components,

SOLUTION: Recalling thatthetrigonometric
functions for sin 6 and cos # are:

sin @ =¥
r

and

cos 6 =

"IN

86
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r———--— - e e . e e S0 .= oo

-p X

Figure 6-11,—Vector resolution,

we use these and find that

sin 30° = X

50
then
50 sin 30° =y
y = 25 mph
and
o - X
cos 30° = 50
then
50 cos 30° = x
X = 43.3 mph

Vector componenis acting in the same direc-
tion or in opposite directions may be added or
subtracted algebraically. Vector components
in the form R = X, + ¥, fulfill this statement.

EXAMPLE: Add the following vectors given
by their rectangular components.

SOLUTION:
If
A=5+12
B=6-1
Then A+B=1T+1

Observe that the first component of each
pair is the X component, and the second is the
Y component, If vector A is to be added to B,
the X component of the resultant is the sum of

the X components of A and B, The same
reasoning applies to the Y components, Note
especially that an X component is never added
to a Y component or vice versa,

PRACTICE PROBLEMS: Add the following
re__tangular form vectors,

1, I5-5and T+ 2

2, 306 + 287 and 121 + 311

4, 182 + 312 anda 76 - BT

ANSWERS:

1, 18 -T

2, 5.17 + 5,98

3. 0.5 + IV

4, 258 + 231

EXAMPLE: Subtract the following vectors
given by their rectangular components.

If
A=32+31
B=81+58.2
Then subtract A from B-
Thus
B=81+872
A=42+31
B-A=39+731

PRACTICE PROBLEMS: Subtrac: the fol-
lowing rectangular form vectors,

1. Subtract 4.2 + 3.1 from 8.1 + 5.2

2. Subtract 57 + 28 from 103 - 35

3. Subtract 32.3 - 8.3 from 15,3 + 10.2

4, Subtract -8.2 + 2,9 from -3.1 - 2.6

ANSWERS:

. 3,9+31
. 46 - 83
. <I7 + 185
. m - 575

The notation up to this point has involved
the regular rectangular coordinates, The form
R =X, + Y, implies that a number of hori-
zontal units and a number of vertical units
combine to determine the end point of a vector,
A second method commonly used describes
a vector in terms of polar coordinates,

B O D =
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POLAR COORDINATES

If the length of the vector is known, all
that is required to locate the vector is the
angle through which it has been rotated, Mea-
sured from the reference line, the notation
used is

R=r/fo

where r is the magnitude and 6 defines the
direction. Thus, r is a scalar quantity. For
instance, a vector 10 units long at 30° would
be written 10/30°,

If X, and ¥, are known, the scalar quantity
r can be found by using the Pythagorean
theorem:

r= \/(xr)2 + (yr)2

The angle can then be found by using the tan-
gent, thus:

N|‘<
s I L ]

tan ¢ =

Now we have a method whereby we can change

from the rectangular form to the polar coordi-

nate form when working with vectors.
EXAMPLE: Change the vector 3 + 7 into

polar form. (NOTE: x, is alwaysplaced first,)
SOLUTION:

DD
1}
ol >

I

Lo
o
]
(/4]
X
]

- ]
I
(34
w
o
@

=)
I
o}
+
N

Then

R=5/53 8

PRACTICE PROBLEMS: Change the rec-

tangular form into polar form,
1. T+2
2. 8+8

S. v3+71

4, 183 + 2.8

ANSWERS:°

1, 2,24/683° 26’
2. 10/36° 52'

3. 2/30°

4, 18,5/8° 42'

This method may be reversed and it is
possible to change a vector from polar to
rectangular coordinates,

EXAMPLE: Change the vector 30/65° into
rectangular form,

SOLUTION:
If
R = 30/65°
Yr =r sin 6
Then
Yr = 30 sin 65°
= 27.18930
And
Xr = 30 cos 65°
"X'r =r cos 0
= 12. 67860
Thus

R =12768 + 27.19

PRACTICE PROBLEMS: Change the polar
form to rectangular form,

1, 5/25° -

2, 83[%

3. 20/63°

4, 8,2/31° 23'

ANSWERS:

4, 7,00 + 4,27

If we are to combine two vectors, proceed
as follows:

EXAMPLE: Find the resultant of two vec-
tors A and B if A = 12/102° and B = 5/12°in
figure 6-12,
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Figure 6-12,—A new reference,

SOLUTION: In this problem we do not have
either vector to coincide with the X axis or the
Y axis, We may choose a new frame of refer-
ence, that is, X' and Y' to determine the
magnitude of the resultant, Because A differs
in direction by 90° from B, we may still use
the properties of right triangles,

Therefore rz = (12)2 + (5)2
And r=va2? ¢ 6)°
= v 169
= 13

We now have the magnitude of our resultant
and need only to find its direction. As we are
concerned with only two vectors we may ap-
proach this problem in either of two ways, We
may find our direction from our new reference
then add the angle our new reference makes
with the standard X axis and Y axis reference.
In the new frame of reference we find the
resultant to be:

84

89

'

12

'=—5—

<
-

= 2.40000

tan 6 =

"
-

Therefore

6 = 67° 23

Now, the direction of the resultant is 67° 23'
from the X' axis but the X' axis is 12° from
the X axis so the resultant iz 67° 23' + 12° or
79° 23' from the X axis.

Another approach to this problem is by
resolving each of our vectors into their X axis
and Y axis components and then adding these
components algebraically, We have 5/12°which
resolves into the following (fig. 6-13):

sin 0 = b4
r
=3
5
Therefore
y = 5 sin 12°
= 5(0. 20791)
= 1, 03955
And
=X
cos 0 = T
=X
5
Therefore
X =5 cos 12°
= 5(0. 97815)
= 4, 89075

We have now determined the ¥ axis and
Y axis components of one of the vectors, We
will proceed to find the components of the

A
e
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Figure 6-13,—Components for 5/12°,

other vector, 12/102°, as shown in figure
6-14, The Y axis component is as follows:

If
gin 9 = %
sin 0 = ‘1%
Then
Y = 12 sin 102°
And, since
sin (180° - 9) = sin @
Then
sin 102° = sin (180° - 78°)
= sin 78°
Therefore
Y = 12 sin 78°

12(0. 97815)
11. 73780

85

e ————— . —————— e

Y

Figure 6-14,—Components for 12/102°,

We now find the X axis components as follows:

If
cos 6 =i—f
cos 6 = T’%
Then
X = 12 cos 102°
And, since
cos (180° - 8) = - cos @
Then
cos 102° = cos (180° - 178°)
= - cos 78°
Therefore
X = 12(~0.20791)
= - 2.49492

e as won e
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We must now add the X axis components
and the Y axis components of the two vectors
algebraically as follows:

Y = 1.03955 + 11,73780
= 12,77735
And
X = 4,89075 + (-2.49492)
= 2,39583
We now have X, and y, in rectangular form and
may use the Pythagorean theorem to find the
resultant in scalar measurement as shown in
figure 6-15, This is as follows:

If

r? = (2.39583)2 + (12.77735)

Then

r = v 5.74030 + 163.25173
= Vv 168.99203
= 13

This is in agreement with the result found by
using the method of finding the scalar resultant
of two vectors, _

We must now find the direction of R, as
follows:

Since

=¥
tan 9 X

_ 12.77738
- 2.39583

5. 33480

Therefore

L=+
i

79° 23'

This direction agrees with the direction found
when we used the first method oi finding the
direction of the resultzat of two vectors.
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Figure 6-15.~Resultant of X and ¥,

PRACTICE PROBLEMS: Find the resultant
of two_vectors at right angles to each other,

1. A = 5/0°
10/90°
7.5/90°
6.3/180°
131/185°
60/275°
65/45°
120/135°
N :

11,18/63° 26'

2, 9.8/130° 2'

3. 144.1/209° 38

4, 136.5/108° 36'

Let us examine a problem of adding several
vectors, We will use the 'method last de-
scribed. The method may be used to find the
addition of any number of vectors., We will
consider a problem of the addition of several
vectors, as follows:

EXAMPLE: Find the resultant of the vec-
tors in figure 6-16, analytically.

[ TR LR T | O | A TR A
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1
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Figure 6-16.~Resultant of several vectors,

SOLUTION: The vectors are given as fol-
lows:

A is 50/0°

B is 100/3v°

C is 75/90°

D is 50/143° 8'

E is 70.7/2.5°

F is 55/315°

We will use the method of resolving each

vector into its component X axis and Y axis
coordinates, We set up the coordinate system

and place each vector so that it radiates from
the origin. Then we find

ia = 50 cos 0°
= 50(1) .
= 50
;a = 50 sin 0°
= 50(0)
=0

87
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100 cos 30°
100(0. 86603)
86.6

100 sin 30°
100(0. 50000)
50

75 cos 90°
75(0)

0

75 sin 90°
75(1)

75

50 cos 143° 8
50(-cos 36° 52')
50(-0. 80003)

- 40. 002

50 sin 143° 8'
50(sin 36° 52')
50(0. 59995)

30

70.7 cos 225°
70.7 (-cos 45°)
70.7 (-0.70711)
- 50 ‘

70. 7 sin 225°
70. 7(-sin 45°)
70. 7(-0. 77011)
- 50

55 cos 315°
55 (cos 45°)
55 (0. 77011)
38.9

55 sin 315°
55(-sin 45°)
55(-0. 77011)
- 38.9
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We now collect the X axis components and the rectangular form vectors as complex numbers,

Y axis components, as follows: as follows:
Vector X Y u
R = 3+1
A 50 0 1
B 86.6 50 Ry=8+3
C 0 75
D 40 30 Then
- R, = 3+ 4
E - 50 - 50 1
F 38.9 -38.9 Ry = 8+ 5
And
Adding the X axis components and the Y axis ®)E) = 3+ 4
comjp.onents, we find the magnitudes of X and 172!~
Y as follows: 8 + 6i
+ 151 + 20i
¥, = 66.1 24 + 471 + 2042
_ =24 + 471 + 20(-1)
The magnitude of the resultant R is = 4+ 40

— Th
r = (85.5°% + (66.1)° ue

R)R,) = 3+ 47

= v 11680.67
We now_find, as shown previously, the polar
= 108 form of 4 + ﬁwhich is as follows:
The direction is given by using the tangent r= »/ (-1)2 + (4'7)2
function, as follows: = V2995
tan 0 = %S—é = 47.2
And
= 0. 77309 47
tan 9 = T° 11, 75000
Therefore
6 = 85° 8'
0 = 37° 42' Then
MULTIPLICATION ®)®Ry) = 47.2/85° @&
Before we discuss the mechanics of multi- In multiplying vectors Ry and Rg, in polar

plication and division of vectors, in polar form, form, we first change to polar form as foilows:
we will multiply and divide vectors in rec-
tangular form. This will serve as an intuitive If
explanation of why the mechanics of polar form R =34
multiplication and division may be used, 1

As explained in Mathematics, Vol, 1, Nav-
Pers 10069-C, we may express the following

ol

= 8+

&

88

93
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Then

R1 5/53°_8'
ﬁz 9.43/32°

The multiplication of Ry and R2 results ina
product which we will label Ry 2. The follow-
ing rule will be used:

To multiply two vectors find the product of
the scalar quantities and the sum of the angles
through which they have been rotated.

In our example

ﬁl = 5/53°_8'
and
ﬁz = 9,43/32°

The product of the scalar quantities is
(5)(9.43) = 47.2
and the sum of the angles is
(53°/8") + (32°) = 85° &'

We now have the product of F} and Rg which is
Ry,2 and is equal to 47,2/85° 8' , This result
is 'the same as the result of multiplying the
vectors in rectangular form and we intuitively
understand why the mechanics of polar multi-
plication may be used.

DIVISION

We will now divide vector Ry by Rj in
rectangular form as follows:

If
R1=40+3
R, = 8+ 5
Then
-ﬁ1=40+ 301
'ﬁ2= 8 + 5i

Thus
(40 + 301) (8 - 51)
8 + 5i/ \8 - ol
_ 320 + 401 - 15012

64 - 2512

_ 470 + 401
89

_ 410, 40
89 * 89

= 5.28 + 0. 4491
=5.28 + 0.449

And

= (5.282 + (0.440)2
= V7,10
= 5.3

0,449
tan 6 = 558"

0. 08504

Then

6 = 4° 52'

In dividing vector Ky by Ry, in polar form,
we first change to polar form as follows:

If

-ﬁl =40 + 30

ﬁz = 8+ D
Then

ﬁ1=501_36_°_5_'

R, = 9.43/32°

In division of vectors in polar form we will
use the following rule:

To divide two vectors, in polar form, find
the quotient of their scalar quantities and the
difference between the angles through whlgh
they have been rotated.
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Thus It follows that a vector can be raised to any
_ integral or fractional power. To square a
R; 50/36° 52' vector, square the scalar quantity and multiply
Ry  9.43/32° the angle by 2,
= 5.3/4° 52 EXAMPLE: Square the vector 8/32°

This result is the same as the result obtained 9
by dividing vector Ry by Ry, in rectangular SOLUTION: (8/32°)
form, and we intuitively understand why the

mechanics of polar division may be used, = (8)2(32° (2)
PRACTICE PROBLEMS: Multiply the fol- .
lowing vectors: = 64/64°
(-]
1. (5/109 (10/5%) To cube a vector, cube the scalar quantity
2, (8.3/6° (1.1/73° ' and multiply the angle by 3.
3. (6.2/52°) (8/200°)
4, (100/45°) (30/20°) EXAMPLE: Cube the vector 3/4°
ANSWERS: 3
SOLUTION: (3/4°)
1. 5¢/15° 3
2. 9.13/79° - =00/ Q)
3. 49.6/252° = 27/12°
4. 3000/65° To find the Square root of a vector, extract
PRACTICE PROBLEMS: Perform the indi- the square root of the scalar quantity and
cated division: divide the angle by 2,
-]
, har EXAMPLE: Find the square root of the
* 8/24° vector 16/70°, '
, S00/2# SOLUTION:  V16/70° or (16/70°)%/2
20/8° = V16/70° <+ 2
3 620[ 1§4° ’ = 4 @o
5/142° To find the cube root of 2 vector, extract
° the cube root of the scalar quantity and divide
4 64/18° the angle by 3,
[-]
16/27° EXAMPLE: Find the cube root of the
ANSWERS: vector 27/33°,
1. 8/0° SOLUTION:  SV27/33° or (27/33° )1/ 8
2, 15/16° 3
= Y27/33° =~ 3
3. 124/12°
4. 4/-9° = 3/11°
90
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PRACTICE PROBLEMS:

cated operations:
1. (10/20%2
2. (a/10%°
3. (64/90%/2
s, (64/90%/3

Perform the indi-

ANSWERS:

fary
[ ]

w» W N

100/40°
64/30°
8/45°
4/30°

e etk ke AMANCY o w m mem s e bean e
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CHAPTER 7

STATIC EQUILIBRIUM

Statics is a branch of physics that dealswith
bodies at rest. In this chapter we will make use
of the previous investigation of vectors to estab-
lish the mathematical basis necessary for an
understanding of static equilibrium. Since
forces acting upon bodies have magnitude and
direction, they may be represented by vectors,

DEFINITIONS AND TERMS

The following paragraphs include definitions
and terms which will be used in this chapter,
The definitions used will clarify the meanings
of the discussions on static equilibrium,

EQUILIBRIUM

If a body undergoes no change in its motion,
it 18 said to be in a state of equilibrium. We will
discuss a body at rest as indicated by the term
static equilibrium. Balanced forces may act
upon a body in static equilibrium, but no motion,
neither translatory nor rotary, will sccur. In
order for bodies to be in static equilibrium, two
conditions are required. These two conditions
are (1) the body must not have translatory
motion, and (2) the body must not have rotary
motion,

TRANSLATION

Translation, as defined, is motion independ-
ent of rotation, Attention is called to the fact
that translation involves magnitude and direction
of motion and hence canbe described by vectors,

ROTATION

Rotation, as defined, is the turning motion of
a body, such as a wheel turning, Rotation is
independent of translation,
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TRANSLATIONAL EQUILIBRIUM

If a body at rest is acted upon by an un-
balanced force, it will be set into motion, This
motion is called translation, All particles of
the moving body will have atany instant the same
velocity and direction of motion. Two forces
acting in the same line upon a body must be
equal in magnitude, but opposite in Girection,
if the body is to remain in equilibrium. We
will consider our translations to be confined
to the XY plane,

FIRST CONDITION

The first condition of equilibrium may be
stated as follows: For a particle to be in equi-
librium the sum of the vectors (forces) acting
in any direction upon that particle must equal
zero,

In figure 7-1, an iron block is resting on a
table. The weighkt of the block is directed down-
ward; thus the table must exerta force equal and
opposite to the weight of this iron block. The
block has weight, W, and the table exerts a
push, P, upward against the block. Since the
bodies are in equilibrium, there can be no un-
balanced force. Thus,

W=PandW=5

The weight of the block can be represented
by a vector because we know the force and
direction exerted by the weight. The magnitude
and direction of the push (P) by the table is
also known, and it can be represented by a vec-
tor. The vectors W and P are shown in figure
7-1. The weight is in equilibrium because the
sum of the vectors acting upon it is equal to
zero, We call these two forces paraliel con-
current forces. We will also call P the equi-
librant of W, It is relatively easy to find the
equilibrant of two or more vectors which are



Chapter 7—STATIC EQUILIBRIUM

acting upon the same point, We first find the
resultant of the vectors, The equilibrant of
the resultant will have the same magnitude hut
will be opposite in direction, In figure 7-2 the
resultant of A and B is R, The magnitude of R
is 18 and the direction is 56°18'., The magnitude
of C, the equilibrantof R, is 18 and the direction
is 236°18', The sum of ﬁ and C is zero; there-
fore, a point 0 is in equilibrium,

Figure 7-1,—~Table and weight,

Figure 7-2,~The equilibrant,
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In figure 7-2, the vectors A and B are
called nonparallel concurrent vectors, All
vectors can be resolved into horizontal and vert-
ical components, Since the sum of all forces
acting on a particle must be equal to zero, to
satisfy the condition of equilibrium, we can say
that the sum of all vertical components must
equal gero, and the sum of all the horizontal
components must equal zero, The symbols for
this condition of equil%rium are:

X =0

Z¥=0

The symbol Z is the Greek letter, sigma,
and means “the sum of.,” Thus, ZX equals
0 means that the sum of the vectors along the
X axis equals zero,

We may show graphically that a particle P
is in eq%uibrium while being acted upon by
A,B,C, 0D, and E, as in figure 7-3, by drawing
a polygon of forces, If the polygon of forces is
closed, there is no resultant force acting upon
particle P, and that particle is in equilibrium,

We will now examine the condition of equilib-
rium of a point which is acteduponby nonparal-
lel concurrent forces, :

EXAMPLE: We are to find the force of &, in
figure 7-4, in order that point 0 will remain in
equilibrium while being acted upon by B and T,

SOLUTION: We are looking for the equilib-
rant of the resultant of B and C, The resultant
of B and T, called R, is found as follows:

?b = § ain 30°

and

= §5(0. 50000)
=2.5

X, =5cos 30°
= 5(0. 86603)
=4.3

¥, = 8 sin 270°
= 8(-1.00000)
= .8

X, = 8 cos 270°
= 8(0. 00000)
=0
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and
_ =5.5
tanf = —g
= ‘1- 27907
thus
0 =308°1!
E and —5 —5
r=V @32+ (5.57°
Figure 7-3,—Polygon of forces, = v 48. 74
H =6.9
therefore our resultant is
6.9/308° 1°
and the equilibrant is |
6.9/128° 1"

In some cases we are given the vectors by
the problem and can eagily find our solution,
X EXAMPLE: A boy in a swing, as shown in
figure 7-5, weighs 70 pounds and ispulled back-
ward with a force of 30 pounds. Find the force
the ropes exert on the swing; also find the angle

the ropes make with the horizontal axis,
SOLUTION: We must find the resultant of the
two vectors given and then find the equilibrant
of the resultant, This is done as follows:

ia =-30
Y, =0
! %0
yb = <70
Figure 7-4,~Resultant and equilibrant, and
We now add the X axis components and the Y- tanb = =70 _ 2.3333
axis components and find that thus -30 3333
¥Y=25+ (-8) and 6 =246° 48"
= ‘5- 5
_ | r =V (-30)% + (-70)%
X=4.3+0 = /5800
= 4.3 = 76- 2
94
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therefore the resultant is
'76.2(246° 48'

and the equilibrant is
76.2/66° 48'

Thus the ropes exert a 76.2-pound force at
66°48' on the swing,

PRACTICE PROBLEMS: Find the equilibrant
of the following vectors,

1. 35/0° and 60/90°

2, 7/35° and 9/125°
3. 12/15° and 7/25°
4, 9/55° and 10/100°
ANSWERS:

1. 69.4/239° 45'

2, 11.4/267° 7

3. 18.7/198° 43"

4, 117.5/257° 16"

76.2

O
L -]

-~

70

....-
-
-~
o
o

A

————-'i

Figure 7-5.—Boy in a swing.

FREE BODY DIAGRAMS

One of the distinct advantages of vectors is
that a vector may be substituted for the cable
or member of a mechanism it is going to repre-
sent. As seen in figure 7-6 vectors may be
substituted for the cables holding the weight W,
Starting at point 0, a vector representing the
tension in cable MO can be drawn, and vectors
may also be drawn for the toasion in cables NO
and OW. This will give us the forces acting
on particle O, Figure 7-6 (B) is called a free
body diagram, and vector A represents the
tension in cable MO, Vectors B and W repre-
sent the tensions in NO and WO, respectively.

»l
ol

w (B)

Figure 7-6,—Single weight.

Free body diagrams are very important in
mechanics and the student should learn to draw
these diagrams with ease. In a free body
diagram, a member of a mechanism is replaced
by a vector representing the force in thatmem-
ber and acting in the same direction as the
member. The student shouid pay particular
attention to the magnitude of the vector which
represents a member of the mechanism. In
figure 7-6, notice that the vector representa-
tion for MO is longer and thevector representa-
tion for NO is shorter ia the free body diagram
(B) than they appear in the pictorial view (A).

We may use the free body diagram to graph-
ically verify our mathematical solution to a
problem, (Refer again to fig. 7-5.) We find the
boy in the swing to be inequilibrium and we will
use a free body diagram to verify this, We
draw our diagram as shown in figure 7-7 (A)
where vector C is the equilibrant of the resultant,
We draw the vectors A, B, and C, initial point
to terminal point, as shown in figure 7-7 (B).
If the vectors form a closed loop, we have the
sum of the vectors equal to zero and have
present a state of equilibrium,
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(/]

\‘.

(B)

Figure 7-7.=~Closed loop.

We have discussed parallel concurrent forces
and nonparallel concurrent forces, Inthe follow-
ing paragraphs we will discuss noncurrent paral-
lel forces, remembering that we are still under
the requirements for the first condition of
equilibrium,

96

In figure 7-8 (A), we find a board balanced
on and supported by a fulcrum. Draw the free
body diagram as showninfigure 7-8 (B). Assume
the board weighs so little that it is insignifi-
cant, Consider forces in a downward direction
to be negative (-) and those upward to be
positive (+). For equlibrium, we must have
ZX equal to 0 and ZY equal to 0, We have no X
axis components, therefore =X equals 0. The
ZY equals 0 because we have a state of equi-
librium. Therefore

-A-B+T=0
and -
A =42 1bs
therefore B=181bs
C =601bs
. 42 POUNDS

&

v

A

(B)

Figure 7-8. —Parallel nonconcurrent forces.
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PRACTICE PROBLEMS: Draw the iree body
diagrams for the member indicated in tie follow-
ing figures (emphasize direction and not magni-
tude):

1. Figure 7-9 (A) (Bar)

2. Figure 7-9 (B) (Boom)

3. Figure 7-9 (C) (Bar)

4, Figure 7-9 (D) (Point 0)

ANSWERS:

1, Figure 7-10 (A) 3. Figure 7-10 (C)

2. Figure 7-10 (B) 4. Figure 7-10 (D)

i
EAEn

Ee—x

L F] W3 Wy
h —of
r 1 {8)
v
v WEIGHT w2

/’ 300

N

W, w2

W) 3
Z (D)
Figure 7-9.—Free body practice problems, Figure 7-10.—Free body answers.
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ROTATIONAL EQUILIBRIUM

The first condition of equilibrium guaranteed
that there would be only translatory motion, It
was stated that there was a distinction between
the motion of translation and rotation, The
Second condition of equilibrium concerns the
forces tending to rotate a body,

SECOND CONDITION

Figure 7-11 shows a body acted upon by two
equal and opposite forces, F1 and F3, The sum
of the forces in the horizontal direction equals
zero, and there is no translatory motion. It is
clear that there will be rotation of the body.
These two equal and opposite forces not acting
along the same line constitutea couple and cause
a moment to be produced. The term couple is
defined as two equal forces acting on a body but
in opposite directions and not along the same
line. For a body acted upon by a couple to

remain in equilibrium, it must be acted upon by °

another couple equal in magnitude but opposite
in direction,

The magnitude of a couple is the perpendic~
ular distance between the forces multiplied by
one of the forces. This product is called the
moment of the couple. Wewilluse M to indicate
a moment and we can say, to fulfill the condi-
tions of equilibrium, that =M equals 0. That is,
the sum of all the moments acting upon a body
must equal zero to maintain equilibrium, Clock-
wise moments, such as in figure 7-11, are
positive and counterclockwise moments are
negative, Our statement that the sum of all the
moments acting upon a body must be zero, that
is, ZM equals 0, is called the second condition
for equilibrium,

Assume that the body shown in figure 7-11
will rotate about a point halfway between the
two forces. A moment, definedasa force acting
on a lever arm L, is present for both of the
forces. The moment acting onthe body in figure

7-11 will be
L) L
F <2> + Fz<2>

Since F 1=

2
then _ L L
M= F1 <2> + Fl <2>
FIL

If it were assumed that the body were to rotate
about the point upon which F9 acted, then the
lever arm would be L for Fy and zero for Fo,
And again M equals FyL. Hence, themoment of
a couple is one of the forces multiplied by the
distance between them. ‘The definition for
moment of a couple holds, The dimensions of
2 moment will include a distance as well as a
force. The effect of a force upon the rotation
is the perpendicular distance from the rotation
point to the line of action of the force. In the
English system the most used term is foot-
pounds,

EXAMPLE: Calculate the moment of acouple
consisting of two forces, Fy (equal to 20 pounds)
and Fg (equal to 20 pounds), acting directly
opposite to each other at a distance of 3 feet,
The moment of this couple is M equals FL or

M = (20)(3) = 60 ft-1b

Notice that in this example there is no
balance of moments; that is, =M does not equal
0, and the conditions for equilibrium are not met,

We now put to use the first and second con-
ditions for equilibrium. That is,

ZY:O
EX:Q
ZM=0

98
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In figure 7-12 (A) we have aboardbalanced on a
fulcrum and we are to find the veight W9 and the
force F on the fulerum if Wy equals 12 pounds
and the distances are as shown, There are no
horizontal forces; therefore =X equals 0, We
draw the free body diagram as shown in figure
7-12 (B) and find the solution as follows:
If

W1 =121b
W2 = unknown
F = unknown
then
LW, = LW,
= (12 1b) (2 ft)
= 24 ft-1b
Therefore
(8 ft) (W2) = 24 ft-1b
W2 =31b
Thus
M =0
and
Wl + W2 - F =0
F=121b+31b
=151b
Thus
ZY =0

A very useful theorem that originates from
the second condition of ¢quilibrium states that: If

89

' ' W
8 2 (A)

|

Y2 @
12 Ibs

Figure 7-12,—~Forces and moments,

three nonparallel forces acting upon abody pro-
duce equilibrium, their lines ofactionmust pass
through a common point, In other words, the
three conditions ZX equals 0, ZY equals 0, and
ZM equals 0 must be satisfied for equilibrium;
and, in order for three nonparallel forces to
produce zero moment, the lines of action of the
forces must pass through a common point, thus
having zero lever arm,

CENTER OF GRAVITY

The earth’s gravitational field attracts each
particle in a body and the weight of that body is
regarded as a system of parallel forces acting
upon each particle of the body. All of these
parallel forces can be replaced by a single
force equal to their sum, The point of zpplica-
tion of this single force is called the center of
gravity (or C. G.) of the body. For bodies of
simple shape and uniform density, the C. G, is
at the geometric center and can be found by
inspection.

The C, G. of an irregularly shaped body can
be found by suspending the body from three dif-
ferent points on the body. In eachcase the body
will come to rest (equilibrium) with its C. G,
directly beneath the point of suspension. The
intersection of any two of these lines will de-
termine the C, G, The third line should also
pass through this intersection and thus may be
used to check the result, Figire 7-13 (A)
shows this simple system for finding the C. G,
Figure 7-13 (B) shows that in some cases the
C. G, may fall outside of the body.
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(A)

Figure 7-13.—Center of gravity.
APPLICATIONS

The greatest difficully encountered in solving
problems dealing with equilibrium is finding all
of the forces acting upon a body. The use of a
free body diagram will aid in eliminating this
difficulty.

The procedure recommended for solving
static equilibrium problems is as follows:

1. Sketch the system, taking into account all
known facts, and assign symbols to all of the
knowns and unknowns.

2. Select a member that involves one or
more of the unknowns and construct a free body
diagram. : '

3. Write the equations obtained from =X
equals 0, ZY equals 0, and ZM equals 0.

4. Solve these equations for the unknowns.

5. Continue the process from one side of a
structure to the other side.

EXAMPLE: Consider the ladder standing
against a building in figure 7-14 (A) and making
an angle of 60° with the ground. The ladder is
16 feet long and weighs 50 pounds.

SOLUTION: We sketch the free body diagram
as shown in figure 7-14 (B) and assign symbols
to the known and unknown forces. The arrows
indicate the directions of the forces and h and v
represent horizontal and vertical components of
a force. The frictional force f holds the ladder
from slipping, h is the horizontal force of the
wall pushing against the ladder, and v is the
vertical force which the ground exerts on the
ladder. We agssume all the weight of the ladder
to be located at the center of gravity and assign
the letter W to indicate this weight. The ladder
is in a state of equilibrium and we have the
following:

100

ZX=0
ZY =20
IM=0
therefore
f-h=0
W-v =0

We use trigonometry to find AB and BC, as
follows:

AB=r cos ¢
=16 cos 60°
=16 (0. 50000)

=8
and

C=rsin ¢
=16 sin 60°
=16 (0. 86603)

=13.85

Using similar triangles we find that Wislocated
directly above the midpoint of AB.

~ D 16.c08 602
|
¥
=
S
Ya
AN 1B
/ ' 4‘—‘L—“ -

(B)

Figure 7-14.—~Ladder problem.

Next, take the moments about the bottom
of the ladder and in that way the two forces
(f and v) have zerolever armandare eliminated.
The moments (clockwise) are as follows:
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ZM=0
= 4W - h(16 sin 60°)
Notice that we used the perpendicular distances
from point A to where the forces were applied.
We now have equations as follows:

f-h=0

W-v=0
4W - h (16 sin 60°) = O

and substituting known values, then solving, we
find

W-v=20
50lb-v=20
v =9501b
and
4W - h (16 sin 60°) = 0
4 (501b) - h (13.85)= 0
h =14.41b
and
f-h=0
f-14c4 =0
f =1441

EXAMPLE: Determine the forces actingupon
the members of the A-type frame as shown in
figure 7-15 (A). The horizontal surface is con-

/ - : O ~>Ep
D AN Dy Ev
(A (B)

gidered smooth and no horizontal force can be
exerted on the legs of the frame. A weight of
1,000 pounds hangs from the crossbar. The
frame is considered as having no weight.
SOLUTION: Draw the free body diagramsand
assign symbols as shown in figures 7-1 5(B) and
(C). Since the system is symmetrical, the
reactions at A and C are equal, and each is
equal to 500 pounds (each carries half the load).
Thus, A, equals 500 pounds and Cy equals 500
pounds. The forces Dy and Ey can be found
from the diagram of the crossbar in figure 7-15
(B) by taking =M about D.
Thus

ZM = 3W - Ev(6)=0

= 3(1000) - EV(G)

E V- 500 lb
and from symmetry
Dv = 500 1b

These forces and Dy are upward to oppose
the weight on the bar; thus this member must
exert the same forces downward on the inclined
member.

It is apparent that BC pushes upward against
AB. This force is unknown, but it does have
a vertical and horizontal component.

Using the two conditions of equilibrium we
find the following:

zx=Dh-Bh=0
z?=Av+3v-Dv=o
M = 5A, - 3Dy - (6 sin 60°)Dy = O

Figure 7-15.—A-type frame.
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Thus
m‘r=500+13v - 500 = 0
Bv =0
EMb = 5(500 1b) - 3(500 1b) - 6(0.86603) = O
Dh = 192 pounds
=X =1921b - Bh=0
Bh =192 1b
From symmetry we find the following:
Eh = Dh = 192 pounds
Ev = Dv = 500 pounds

The magnitude and direction of the X axis
and Y axis forces may be used tofind the forces
and their directions.

One important thing to remember when
taking =M equal to 0 is to take the moments
about some point that will eliminate one or
more of the unknowns. In the last example,
the moment equation was taken about point B
and eliminated the forces By and By. The
moment equations can be taken about any point

and more than one moment equation can be
taken, if necessary.

PRACTICE PROBLEMS: Find the required
information in the following:

1. Two boys pull a wagon, each with a force
of 35 pounds. The angle between the ropes on
which the boys arepulling is 30°. What is the
resultant pull on the wagon?

2. A large portrait weighs 100 pounds, and
is supported by a wire 10 feet long whichis
hooked to the picture at two points 5 feet apart.
Find the tension in the wire.

3. A 180-pound man is standing half-way up
a 20-foot, 20-pound ladder. The bottom of the
ladder is 4 feet from the base of the vertical
wall it is leaning against. Find the forces ex-
erted on the ladder. (Use same symbols as
shown in fig. 7-14 (B).)

4. A bar of uniform weight, 12 feet long and
weighing 7 pounds, is supported by a fulcrum
which is 4 feet from the left end. ¥ a 10-pound
weight is hung from the left end, find the weight
needed at the right end to hold the bar in equi-
librium and find the force with which the ful-
crum pushes against the bar.

ANSWERS:

1. 67.6 pounds

2. 57.8 pounds

3. f = 20.4 pounds, h = 20.4 pounds, v = 200
pounds

4. 3.25 pounds and 20.25 pounds
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CHAPTER 8

TRIGONOMETRIC IDENTITIES AND EQUATIONS

This is the final chapter in the section deal-
ing directly withtrigonometry and trigonometric
relationships. This chapter includes the basic
identities, formulas for additional identities
involving multiples of an angle, and formulas
for identities which involve more than one
angle. Methods and examples of the use of the
identities in simplifying expressions are given,
and practice problems in simplification are
included.

Also included in the chapter are methods
for solving equations involving trigonometric
functions. In many cases, the verification or
simplification of an identity is an integral part
of the solution of an equation. An additional
topic considered in the chapter is the inverse
trigonometric functions. Examples and prob-
lems involving equations and the inverse func-
tions are also given.

FUNDAMENTAL IDENTITIES

In earlier chapters it was shown that all of
the trigonometric functions of an angle could
be determined if one function or certain related
information was given. This seems to indicate
that there are certain special relationships
among the functions. These relationships are
called identities and are independent of any
particular angle. Many of the identities which
will be considered in this section were estab-
lished in earlier chapters and will be used here
to change the form of an expression. In many
problems, especially in calculus and other
branches of mathematics, one particular method
of expressing a function is more useful than
any of the others. In these instances, the
identities are used to put the expression in the
desired form.

An equality which is true for all values of
an unknown is called an identity. Identities are

familiar in algebra, although they are not
always specifically identified as such. A fac-
toring process such as

®2 - 1) = & -1)(x + 1)

involves expression of an identity since it is
true for all values of the variable. In trigo-
nometric identities, the same situation must
hold; that is, the equality must be true for all
values of the variable.

Problems in identities are often given as
equalities, and the identity is established by
changing either one or both sides of the equality
until both sides are the same. The fundamental
rule in proving identities is as follows: NEVER
WORK ACROSS THE EQUALITY SIGN. The
algebraic rules for cross multiplication are
never used. In this course all problems will be
solved by working on only one side of the
equality; that is, one side of the equality will
be reduced or expanded umtil it is identical
to the other side.

There are no hard and fast steps or methods
to use in solving identities. However, there
are some basic procedures or hints which will
normally prove helpful in wverification of the
identities. Some of these hints are as follows:

1. Reduce the complexexpressionsto simple
expressions, rather than building up from a
simpler to a more complex one.

2. When possible, change the expression
to one containing only sines and cosines.

3. K the expression contains fractions, it
may help to change the form of the fractions.

4. Factoring an expression may suggest a
subsequent step.

5. Keep the other member of the equality
in mind. Since we are striving to change one
expression to another, the form of the desired
expression may suggest the steps to be taken.
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RECIPROCALS AND RATIOS

One group of identities was presented in part
in chapter 4 of this course. Recall that

_ 1
¢sc 6 = Sin 0
Since
sin @ =3
and
r
csec 8 = —
y

the cosecant function can be written as

1
sc 6 = —
¢ ¥
r
and simplified to
¢csec 9 = m

There are six reciprocal identities, one for
each function. The numbers assigned these and
subsequent identities in this chapter do not con-
stitute any rules as to order or precedence.
They are used only to simplify the explanation
of steps inthe example problems. The reciprocal
formulas follow directly from the definitions of
the trigonometric functions

sin 4 = c_slc_é' (1)
cos 0 = sei: 5 (2)
tan 0 = 2o (3)
cse 9 = sirlx 0 (4)
sec 0 = cols 5 (5)
cot 8 = &—5 (6)
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There are also identities involving the sine,
cosine, tangent, and cotangent of an angle which
are sometimes called ratio identities. These
identities also resultdirectly from the functions,
and one of these expresses the tangent in terms
of the sine and cosine, as follows:

sin 0

tan 6 = = oz (M
Since

sin 0 = %
and

cos 0 = 31"_

substituting these values in (7) gives

tan 0 =

v [ | he

which can be simplified to

=y
tan 6 X

This is the definition of the tangent function
given in an earlier chapter. The following
identity for the cotangent,

cot 8 = %‘ff‘% (8)

can be shown to reduce identically to the defini-
tion of the cotangent function in terms of x, y,
and r. The reciprocal and ratio identities are
used to simplify trigonometric expressions as
shown in the following example problems.

EXAMPLE: Simplify the expression
sin 9 cos 9 tan 6

to an expression containing only the sine function.

SOLUTION: One method of accomplishing
this is to apply identity (7) to the given expres-
sion; then it becomes

sin a)

sin 6 cos @ (cos 7

- 1(9
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or

sin 0 cos 0 sin @
cos 0

Simplifying the cos ¢ terms in both the numera-
tor and denominator of the fraction results in

gin 6 sin 0
1

or

sin2 6

This is the desired form and isidentical, for all
values of 8, to the original expression.

EXAMPLE: Use fundamental identities to
verify the identity

1 + cos 6
csc  + cot 0 = Sing

SOLUTION: Since the right-hand member of
the identity contains sines and cosines, use 4)
and (8) to change the left member to sines and
cosines.
Then

1 +0056’_1+ cos 6
sin 6 sin 8 ~ sin 9

Change the sum of fractions in the left member
to a single fraction as in the following

1+cosf _ 1+ cos b
sin § gin 6

and the identity is verified

Observe that the right-hand member of the
identity was not altered throughout the entire
nrocess. This is in accordance with our stated
intention of working on just one side of the
equality sign.

I we desire to verify this identity by retain-
ing the left member and operating on the right
member, the following steps may be used.

1+ cos 6
esc 6 + cot 8 = Sin
Change the fraction in the right member to the
sum of two fractions

1 cos @

°s°e+°°t9=ain9+sln9

Next, apply (4) and (8) to the right member
csc 0 + cot 6=csc 8 + cot O

and the identity is verified.
SQUARED RELATIONSHIPS

Another group of fundamental identities in-
volves the squares of the functions. These, in
some texts, are called Pythagorean identities
since the Pythagorean théorem is used in their
development. Consider the Pythagorean theorem

2 ay? et

and divide both sides by rz,
9

2 2
ely=1
r r

Write this in the form

and

sin 9=1
r

If cos 6 and sin 6 are substituted for %—ud%
then

(cos 6’)2 + (sin 9)2 =1

This is rewritten as

cosze+ sin26=1

which is a fundamental squared or Pythagorean
identity.

NOTE: The practice of writing an expreé-
gion such as (sin 6)2 in the form sin 6 is com-
mon, and is the preferred method.

In the same manner, dividing both sides of
the equation
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by x2 (where x is not equal to 0) gives

2 2
1+ L=
:nr.2 x2
or
2 2
Yy - (X
1+ (?) - (x)
Then, since
=¥
tan 6 = X
and
=L
sec 6 = ”
substitution gives
1+ (tan 0)% = (sec 6)2
or
1+ tan?0 = sec? 6 (10)
which is another fundamental identity.
The identity
2 2
1 +cot” 6=csc 6 (11)

is derived in a similar manner,.

The three squared identities can be trans-
posed algebraically to other forms with the
following results:

2 2

cos 6 =1~ sin@ (12)'
smze =1 c0529 (13)
tan?0 = sec?0 - 1 (14)
sec29 - tan29 =1 (15)
cot?6 = csc?6 - 1 (16)

29 - cot0 = 1 (17)

In- addition to the fundamental identities,
there are many complicated identities involving
the trigonometric functions. In the majority of
cases, these identities can be proved by use
of the laws of algebra and the fundamental
identities.
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EXAMPLE: Verify the identify

cos § _
sec § ~

sin 6
csc 0

1

SOLUTION: Reduce the left member toequal
the right member. First, change each function
to sin¢ ; or cosines as follows:

Apply (4) to the denominator of thefirstfraction
to obtain

sin § cos 6 _
1 *Secd-1
sin 6

Simplification of the first fraction gives

sin20 + cos 6 -
1 sec 6

Applying (5) to the remaining fraction gives

Simplification gives

sin29 + cos29 =1

Then applying (9) to the left member results in
1=1

and the identity is verified.
EXAMPLE: Verify the following identity:
1

1+ cot22x = —5—
sin 2x

SOLUTION: As a first step, apply (8) to the
term cot22x.

Then

coszzx 1

1 + =
sin®2x

sin 22x

Combine the left term into a single fraction
with a denominator of sin?2x

sin22x + 00522x . |

sin22x

~i

an
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Applying (9) to the numerator of the left member
gives
1 _

1
sin22x sin22x

and the identity is verified.

PRACTICE PROBLEMS: Verify the follow-
ing identities:
1 = coszx

L. tan"x + 1

2. ¢sc X - sin x = cos x cot x
sinZ8

1+ cosl9=1'cos“9

4, cos 6 (sec 8 - cos 0) = sinze

5. tanzx(l- sin2 x)=1- coszx
2
6. 3. 1 -cos’x
sin'X = —&sex
1 1

7. 2 + cotzx 2csex - cot?‘x
REDUCTION FORMULAS

In chapter 4 of this course, reduction for-
mulas were developed for dealing with angles
greater than 90°. These reduction formulascan
be combined into a general category of iden-
tities which also includes the formulas developed
in chapter 4 for dealing with cofunctions and
complementary angles. The formulas, of the

type

sin(90° - ) = cos 6
or

sec(180° + 0) = -sec 0

are listed in chapter 4 and the listings will not
be repeated in this chapter.

The formulas from chapter 4 will be used to
simplify expressions, in the same manner asthe
other identities, in the following examples.

EXAMPLE: Simplify the expression

sin(180° - 6)tan(90° - 6)cot(180° - 6)

into an expression containing functions of 6
alone.

SOLUTION: From chapter 4, the following

formulas are chosen

sin(180° - 6) = sin 6
tan(80° -~ 6) = cot 6
cot(180° - 6) = -cot 6
Substitution of these values in the expression
sin(180° - 6)tan(90° - 6)cot(180° - 6)
results in the expression
sin 9 cot 8 (~cot 9)
Rewrite this in the formi
-sin 6 cot 8 cot 6

and apply identity (8) to one of the cot 6 factors.
Then,

. cos 8
-sin e(sin 9) cot 6
results and this can be simplified to
~-cos 6 cot 6
to complete the problem.

EXAMPLE: Express the following as anex-
pression containing the least possible number of
functions of 6.

sin(360° - 6)tan(90° - 6)csc 6

SOLUTION: Thefollowingformulasaregiven
in chapter 4:

sin(360° - 0) = sin(-0) = -sin 6
and
tan(90° - 9) = cot 6

Substitution of these values in the original ex-
pression results in

-sin 9 cot 6 csc 6
Rewrite this as

-cot 0 sin 6 ¢sc 6

107
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and apply identity (1)tothe factor sin 6 to arrive
at

cot 8 c¢se TN

or
-cot ¢

which is an expression in terms of one function
of 6.

PRACTICE PROBLEMS: Express the fol-
lowing as expressions containing the least num-
ber of functions of 4.

1. sin (180° - 6) sin @

2. sin (180° + 6) sec (180° - 9)

3. cos (360° - 9) cot (90° - 8) csc (90° - §)

ANSWERS:

1. sin29

2. tan @

3. tan 0

INVERSE TRIGONOMETRIC
FUNCTIONS

In this section we will discuss the definitions
which apply to the inverse trigonometric func-
tions along with the principal values of these
functions. Relations among these functions will
be examined by the use of examples and practice
problems.
DEFINITIONS

It is often convenient and useful to turn a
trigonometric function around so that instead of
writing

tan 9 = A

we write

6 = the angle whose tangent is A

Rather than write out the last statement, math-
ematicians use either of the following notations:

6 = arctan A
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or
9 =tan~la

In the last notation we do not mean -1 to rep-
resent an algebraic exponent and tan-1A does

denote ¥ we meant tan™ > equals

1 1
tan A° tan A’
-1 1
we would have written (tan A) = equals Go A

In this course, the preferred notation is
arctan A.

PRINCIPAL VALUES

For any angle there is one and only one func-
tion which corresponds to it; but to any value of
a trigonometric function, there are numerous
angles which will satisfy the value. For instance,

6 = arctan 1
can be written
tanf =1

but 1 is the tangent of many angles such as 45°,
225° 405°, 585°, and others. Any angle § which
satisfies (45° + n . 180°), where nisaninteger,
satisfies the expression

tan 6 =1

For any inverse trigonometric functionthere
are two angles less than 360° which satisfy it.
Thus,

# = arccos(0.500) refers to 60° and 300°
8 = arccos(-0.500) refers to 120° and 240°
8 = arcsin(0.707) refers to 45° and 135°
8 = arcsec(2.000) refers to 60° and 300°

Since a given inverse trigonometric function
has many values, one of these valuesis selected
as its principal value.

To denote principal values, we will capitalize
the first letter in the name and we will use the
ranges for principal values as follows:

-90° = Arcsin x < 90°
0° = Arccos x = 180°

-90° < Arctan x < 90°

-90" = Arccsc x = 90°
0° = Arcsec x = 180°
0° < Arccotx < 180°
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All principal values lie between -80° and
180° proceeding counterclockwise form -90°
The principal values for positive numbers are
between 0° and 90°. For negative numbers,
principal values of the inverse sine, tangent,
and cosecant lie between -90° and 0°, while
principal values of the inverse cosine, cotangent,
and secant lie between 90° and 180°. We will
use, for understanding, the examples which
follow.

EXAMPLE: Find the principal value of the
angle in the function

9 = Arccos (0.4472)

SOLUTION: Using the trigonometric tables,
we find the angle whose cosine is 0.4472 is 63°
26' or 296° 34'. We choose 63°26' as this is the
first quadrant angle and is the principal value.
We reject 296° 34' because it is afourth quadrant
angle and the principal values for the Arccos
function are limited to the first and second
quadrants.

EXAMPLE: Find the principal value of the
angle in the function

6 = Arccos (~0.5000)

SOLUTION: Using the trigonometric tables,
we find the angle whose cosine is (-0.5000) is
120° or 240°. We choose 120° because 240° is in
the third quadrant and does not satisfy thevalue
we agreed onasthe principal value for the cosine
function.

EXAMPLE: Find the principal value of the
angle in the function

8 = Arctanl

SOLUTION: The angle whose tangent is 1 is
45° or 225°. We reject 225° a third quadrant
angle, and select 45° because it is a first quad-
rant angle.

EXAMPLE: Find the principal value of the
angle in the function

0 = Arcsec 2.236

SOLUTION: K the trigonometric tables do
not list secant values, the function may be
changed by the following:

Since

1
cos 0

sec 0 =

then

Arcsec (2.236) = Arccos 2—-;—33-

= Arccos (0. 4472)

and we find that the angle whose cosine is 0.4472
is 63° 26' and the principal value of the angle
whose secant is 2.236 is 63° 26'.

PROBLEMS: Find the principal values of the
angles in the following functions:

1. 6 = Arccos (0.9135)
= Arcsin (0.8829)
= Arctan (11.430)
Arccot (~0.1169)
= Arcsec (1.0075)
. 6 = Arctan (-0.1228)
ANSWERS:

. 2¢°

62°

85°

96° 40

.7

. =7

n

w
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In dealing with the inverse trigonometric
functions, we may be presented the problem of
finding the (principal value of the function

6 = Arcsin ‘[_—22- . In this case we could solve it
as follows:

Draw a right triangle as shown infigure 8-1.
This expression —%—can be rewritten as J—%- by
the following steps:

V2 (ﬁ) 2 _ 1
oWV2/ 272 " V2
Recall that sin 7 equa.ls%. The triangle is
a 45°-90° triangle as shown in Mathematics,
Vol. 1, NavPers 10069-C. Now, the function

6 = Arcsin 3%:

109
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4, 30°
5. 60°
435° 6. 120°
I we are to find, using the principal values,
the value of the expression Arctan v3 - Arctan
-\/2_ J% in radians, we proceed as follows:
|
Arctan V3 = 60°
and
Arctan J%" = 30°
45° 90° thus

i
Arctan V3 - Arctan ‘7%= 60° - 30°

Figure 8-1.-45° - 90° triangle.

and
becomes 1° = IBLO radians
6 = Arcsin 315
then
and we find that 30° = 5 (31—0) radians
= 45° -
Use this same approach to answer the following = g radians

questions.

PROBLEMS: F'ind the principal valuesof the
angles in the following functions. (Hint; draw
the two special triangles as shown in Math-
ematics, Vol. 1, NavPers 10069-C):

PROBLEMS: Using the principal values,
give the values of the following expressions in
radians:

1. 9 = Arccos (%) 1. Aresin % - Arccos -;—

2. 9 = Arctan (V3) 2. Arccos ‘/—g - Arcsin ig-
3. 6 = Arccot (-V3) 3. Arctan 1 - Arctan Jg-
4, 6 = Arccos g 4. Arctan V3 - Arcsin-;-
5. 6 = Arcsin J‘Z‘ ANSWERS:

6. 0 = Arccot -7%) Lo

ANSWERS: 0 _g

1. 45° T

2. 60° > L

3. 150° %
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RELATIONS AMONG
INVERSE FUNCTIONS

In order to understand the relations among
the inverse functions, we will start by drawing
a triangle. I 0 equals Arcsin x, we can write
sin 6 equals x. We now draw a triangle which
contains the angle whose sine is x and assume
the hypotenuse equal to one. The remaining
side of the triangle will be, from the Pyth-

agorean theorem, V1 - x2. This is shown in
figure 8-2.

Now, we can write all of the functions and
inverse functions of the angle 6 in terms of the
sides of the triangle as follows:

sin 0 = x, or 8 = Arcsin x
cos 6 = V] - x2, or 6 = Arccos V1 - x°
_ X _ —
tanG-Ji__xz’orG-Arctanm
csc 0 =—1-’ or 8 = Arccsc-l
X X
sec 6 = 1 or 0 Arcsec 1
= —, =
v1 - x2 V1 - x2
cot 6 = YL =X2 or 0 = Arccot X
X X

All of the inverse functions are equal to §; there-
fore, they are equal to each other. We will use
this type of analysis to solve a fe'w problems.

EXAMPLE: Using principal values, find

the tangent of the angle whose sine is [%; that is,
tan Arcsin g = ?

SOLUTION: Draw the triangle containing
the Arcsin f% as shown in figure 8-3. The
remaining side will be given by

X=V2 . (V32 =vi=1

Using the tangent ratio we have
tan 9 = V3

and
8 = 60°

111

. 116

- x2

Figure 8-2.—Triangle containing Arcsin x.

EXAMPLE: Using principal values find

sin (Arccos -g— - Arcsin %)

SOLUTION: Draw the triangle as shown in
figure 8-4. The missing side of the triangle

containing Arccos -g-is given by

y = V52 - 32 = V16 = 4

Notice that this triangle also contains Arcsini,
so that

3 _ . 4
Arccos-g- Arcsin 5

.and the original expression becomes

sin 0°
which is zero.

PRACTICE PROBLEMS: Evaluate the fol-
lowing expressions:

1. sin (Arccos %)

1
2. tan (Arcsin 10)

5. cos(Arcsin 2 - 1)

‘I-'~'¢ 1'13" N

3&3‘- o
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) q
(2]
|
(<)
73 3
Figure 8-3. —Triangle containing Aresin —g
ANSWERS: Figure 8-4.—Triangle containing Arccos %
4
1. 5
1 ADDITION AND SUB-
2. 5795 TRACTION FORMULAS
g Vex + 1 Four formulas express the sine or cosine of
X the sum and difference of two angles as a
voxd _2x2 .1 function of the sines and cosines of the single
4, _xgjr angles. They are very important because they
are the basisfor muchof trigonometric analysis.
Jx2 - 2 From the following four formulas we may derive
5. BT all of the formulas in the following sections:

sin (A+ B) =sin Acos B+ cosAsinB (1)
cos(A+ B) =cos Acos B- sin AsinB (2)

In this section we will discuss the trigono- sin (A- B) =sin Acos B-cosAsinB (3)
metric formulas for addition and subtraction -
of angles, half angles, double angles, and trans- cos(A - B) =cos Acos B+ sin AsinB (4)
cendental functions. We will use examples for We will prove these four formulasfor angles
better understanding and in some instances we whose sum is less than 90°. They are actually
will derive formulas. true for all angles.

FORMULAS
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In figure 8-5 we have indicated the sum of
two angles, A and B. The hypotenuse of the
triangle containing angle B has been set equal
to 1 so that the legs of this triangle have the
values sin B and cos B.

Thus,
%E = sin B
]
and
O—IL- = cos B

In the triangle containing angle A, we can see
that

cos A = 'g% = cgg B
Therefore,
ON = cos Acos B
and
sin A = %%‘ = cé:LB
Therefore

NL = sin Acos B

Now, let us add a construction to the figure,
as in figure 8-6, and calculate more lines in

SIN.A COS.B

cos.A ¢€0sB

Figure 8-5.—Sum of two angles, part one.

[ [
e

m 3} N

SINA SINB

Figure 8-6.—Sum of two angles, part two.

terms of the sine and cosine of angles A and B.
First, let us prove that angle Aisequal to angle
A,

Triangle OMF issimilar totriangle PFL, and
angles A and A' are corresponding argles.
Therefore, angle A equals angle A'. In triangle
PRL
PR

? e
cos A = SinB
and

PR = cos A' sin B

=cos A sin B (M
Also,

RL

? -
fin A " sin B

and
RL = sin A' sin B
= sin A sin B (8)
Furthermore,
RL =MN =sin Asin B (9)
Now, in triangle OMP we can write

sin(A+B) =L -PR+RM (10

ol
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but
RM = LN (11)
SO
sin(fA+ B)= PR + LN = LN + PR (12)
Also
cos(a+B) = L -0oN - MN (19)

Substituting from equations (6) and (7) into
equation (12)

sin(A + B) = sin A cos B + cos A sin B (14)

Substituting from equations (5) and (9) into
equation (13)

cos(A + B) = cos A cos B - sin A sin B (15)

EXAMPLE: Use the addition formulas tofind
cos 75°.

SOLUTION: Use cos(A + B) equal to cos A
cos B - sin A sin B. From this we write cos
75° equals cos (45° + 30°) and substitute as
follows:

cos(45° + 30°) = cos 45° cos 30° - sin 45° sin 30°
-@E)- B
BE)- 3

_V6 -2
==

The subtractionformulascanbe derived from
the addition formulas by substituting (-B) for
(+B). Now, we have

éin(A - B) = gin A cos(-B) + cos A sin(-B) (18)

and

cos(A - B) = cos A cos(-B) - sin A sin (-B) (17)
But, the cosine of a negative angle is equal

to the cosine of the angle. The sine of a negative

angle, however, is equal to minus the sine of the
angle; that igs,
cos(-B) = cos B (18)

sin(-B) = -sin B

T 114

1o

Substitution of these values in equations (16)and
(17) gives

sin(A - B) =sinAcos B - cos Asin E (20)
and
cos(A-B)=cos Acos B+ sin AsinB (21)

EXAMPLE: Show that

6 - sin 0

V2
SOLUTION: Applying equation (20)

sin (45° - 9) = 23

sin(45° - 0) = sin 45° cos 8 - cos 45° sin §
but

sin 45° = cos 45° = \f;-

Substituting these values we have

sin (45° - 0) = 352 _ Sp.¢
_¢cos@ - sinb
V2

We can use these four formulas, (14), (15),
(20), and (21), to drive a number of other im-
portant ones. One of these is the tangent ad-
dition formula.

tan A + tan B
1] - tan Atan B

In order to prove this formula, proceed as
follows:

Taking the ratio of equalities (14) and (15),
we have

tan(A + B) =

(22)

gin(A + B) sin Acos B + cos AsinB

cos(A + B) ~cos Acos B - sin AsinB (23

Dividing both numerator and denominator of
the right side of this equation by cos A cos B
we have

sin A sin B

_cosA  cosB
tan (A + B) '_1_ sin A sin B
cos A cos B

(24)

which reduces to

tan A + tanB

Q

~ o/
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Another important formula is the subtraction
formula for the tangent. To find tan(A - B)
replace B by (-B). Therefore,

_ gy _ _tan A + tan(-B)
tan(A B)"l-tax}_.Atan(Tﬁf (26)
_tan A - tan B
"1+ tan Atan B @7

EXAMPLE: Use subtraction formulas to
find tan 15°

SOLUTION: Use the special triangles as
previously discussed.

tan 15° = tan(45’° - 30°)
and

) oy _ tan45° - tan 30°
tan (45° - 30") = 77 a0 45° tan 30

V3

1 - =

3

=1+(1)—5§;

V3 (3 - V3
+

3
3
6v3 + 3
9 -3

12 - 63
6

- V3
3

3
3+
3 -
3+
9 -

=2 -43

EXAMPLE: Given tan 45° equals 1 and tan
60° equals V3. Find the tangent of 105°

SOLUTION: Applying thisknowledge toequa-
tion (22), we have

tan(45° + 60°) = tan 105° = i : ";

It is easy to evaluate a fraction in this form by
rationalizing the denominator.

Multiply numerator and denominator by the
gsame numbers as are in the denominator but
connected by the opposite sign.

(1+v32 1+ 2/3+3
(1-v3)(1+v3)  1-3

4 + 2V3
—

-(2 + V3)
'3- 732

Therefore,

tan . 105° = -3.732

PROBLEMS: Use the addition and subtrac-
tion formulas to find the values of the following
without tables:

1. sin 7%5°

2. cos 15° :

3. tan 75°

4. cot 165° Hint: recall cot(180 - 6) =

~-cot 9 and cot 8 = 'tE;—O'

ANSWERS:
V6 _+ V2
1. 3
6 + V2
2. =—5—
3, 2+ V3
1
4. 3_2or-3-2

DOUBLE ANGLE FORMULAS

The addition formulas may be used toderive
the double angle formulas.
sin2A = 2 sin Acos A

cos 2A = coszA - sinzA

2tan A 28)

tan2A=——2——
1 -tan” A

In equations (14) and (15), if B equals A, we can
write

sin 2A = sin Acos A + cos Asin A (29)

cos 2A =cog Acos A - 8in AsinA
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from which we obtain

sin 2A = 2 sin Acos A (30)
and, using
sin® A + cos? A = 1
then
cos 2A = cos? A - sin® A
=2cos? A - 1 @31)
=1-2sina

Substituting A for B in equation (25), we obtain

2 tan A

tan 2A = 5
1 - tan“ A

32)

EXAMPLE: Evaluate sin 15° cos 15°.
SOLUTION: Since

2 sin A cos A = sin 2A

and
sin Acus A = % sin 2A
then
sin 15° cos 15° = 4 sin 2(15°)

= -% sin 30°
~(1y1
-(2)3)
_1
T4

EXAMPLE: Find the three firs: quadrant
angles which satisfy the trigonometric equation

sin 4x = cos 2x

SOLUTION: From the double angle formulas,
we can write

2 sin 2x cos 2x = cos 2x
or
cos 2x(2 sin2x - 1) = 0

The solutions of this equation may be obtained
by setting the factors equal to zero and making
use of inverse trigonometric functions. We may
write

cos 2x =0
2X = Arccos 0
= 90°

and
2sin2x -1=0

sin 2x = -;-
2x = Arcsin -2!-
2x = 30°, 150°
X = 15°, 75°

The equation has three solutions, x equals 15°,
45°, and 75°. Notice that in writing down the
values of the inverse tunctions, itwasnecessary
to include 150° since, when divided by 2, this
gives an angle in the first quadrant.

HALF ANGLE FORMULAS

Dividing all the angles in equation (31) by 2
we obtain

= cos? A _ gip2 A
cos A = cos 5 - sin® 5 (33)
Using equation (33), we can derive two useful
formulas. Adding and subtracting sin® %on the
right side of equation (33) we have
cos A = (cos? %+ sin? %) - 2 gin2 % (34)

Observe that the methods necessary for
simplifying trigonometric identities and equa-
tions often include operations which mayatfirst
appear to be pointless. Inthe preceding sentence
we referred to “adding and subtracting sin2 %on
the right side of equation (33).” The advantage of

adding sin2 %becomes obvious when we group it

with cos2 %- The expression (--sin2 -%-) is added
to the right-hand side along with (sin2 %) in
order to avoid changing the overall value.
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The quantity in the parentheses in equation
(34) is equal to 1, so

cos A = 1 -2sin2%

(35)
Rearranging equation (35) and taking the square
root of both sides, we have

sin—2‘5=i\/———-1'§°s‘°’ (36)

Adding and subtracting cos® 5 on the right side

of equation (33), we have
A .
cos A = 2 cos? 5 - (cosz—‘;- + sin2 -‘%) (37)

but, the quantity within the parenthesis is equal
to 1 so that

ens A = 2cos2%- 1

(38)
Rearranging equation (38) and taking the square
root of both sides gives us

cos % = 4 \/I_HM (39)

Taking the ratio of equations (36) and (39), we
have
A _ 1-cos A
tan 3 = £V {765 A (40)

Notice that the use ¢f (+) or (-) is dependent
upon the quadrant of argle termination.

EXAMJI:LE: Find cos 15°, if cos 30° equals
0.866 or *3.
SOLUTION: From equation (39)we have

CoS 3‘2’ - cos 15° = Jl—"“%‘i - v0.933
Thus

cos 15° = 0.9659

The solution using [% follows:

funy
+

30°
cOs -2—

= cos 15° =

N

PRACTICE PROBLEMS: Use the half angle
formulas to find the exact value of the following:

1. sin 15°

2. cos 135°
3. tan 22.5°
4. tan 195°

3. +V3-2V2

4. + V1 - 43
TRANSCENDENTAL FUNCTIONS

To define transcendenta! functions we state
that any functions other than algebraic func-
tions will be classified, for the purposes of this
course, as transcendental functions. This group
of transcendental functions includes such func-
tions as trigonometric functions, inverse trigo-
nometric functions, exponential functions, and
logarithmic functions.

Later in calculus we will prove that the sine
and cosine of an angle can be calculated from the
following series, if the angle is expressed in
radian measure:

I O
smx—x-ﬁ+5!-,”

and 5 4 6
cosx =1 . X X

-ﬂ+ﬁ-ﬁ+. .« .

NOTE: 3!is read 3 factorial and is equal to
1x2x3o0r 8. 5!is read 5 factorial and is
equaltol x 2 x 3 x 4 x 5 or 120.

At the same time the expansion of the func-
tion eX where e is the number 2.71828. . ., the
base of the system of natural logarithms, is as
follows:

X x2 x3 x4

_."'_ﬂ =1 A
% e =1+ X+gr+FTt gyt
- and
V2 + V3 -X x2 §_:_3_+x4_
= T2 e =L XTI T3
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Moreover, by using the notation i = V=1 two

similar expressions are obtained:

2 3 4 ;D 6 7
ix-- -x -ix X lx -x -ix . e
el Xy g tITt T BT T

and

. 2 143 x4 ix5 8 ixT
“ix - og_i, U X ix x_ix _X xi ..
& = - - g+ g+ T 5T 8T tAT

Adding elX to e~iX topm by term and dividing by
two we obtain an expression equal to cos x.
ix -ix
e . cosx

Subtracting e ix from elX term by term and
dividing by 2i we have an expression equal to
sin x.

ix ~-ix
e—zlie— = sin x

In calculus, trigunometric and logarithmic
functions are grouped together and called trans-
cendental functions, partly because they cannot
b2 expressed by a simple algebraic formula,
and partly because they both are related to the
number e. This relation becomes important in
derivations in advanced and applied calculus.

EQUATIONS

A trigonometric equation isan equality which
is true for some values but may not be true for
all values of the variable. The principles and
processes used to solve algebraic equations may
be used to solve trigonometric equations. The
identities and reduction formulas previously
studied may also be used in solving trigono-
metric equations. There are so many different
approaches to solving these equations that we
will use several examples for better under-
standing.

MULTIPLE SOLUTIONS

We will use the following examples and prac-
tice problems to show the multiple solutions of
a trigonometric equation.

EXAMPLE: Find the value of 6 if

tan 8 =1
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SOLUTION: We must find the angle or angles
having a tangent equal to 1, Using the inverse
trigonometric functions, we may write

tan9 =1
@ = arctan 1
6 = 45°

and recalling that

tan(180° + 6) = tan ¢
then
tan(180° + 45°) = tan 45°
tan 225° = tan 45°
Thus,
arctan 1 = 45°
and

arctan 1 = 225°

Therefore, the solutions for tia: equation are 45°
and 225°. The 45° angle is a first quadrant
angle and the 225° angle is a third quadrant
angle and both have a positive sign and the
same trigonometric value; thus we have a
multiple solution.

Notice that the two solutions of the equation
differ from the investigation of the inverse
trigonometric functions in which we were re-
quired to find the PRINCIPAL value. The
PRINCIPAL value solution was found to be in a
particular quadrant. In multiple solutions we
will use the term PRIMARY to indicate that we
are searching for solutions which are restricted
to the range

0° = 9 < 360°

Notice also that if we remove the restric-
tion of the term PRIMARY we may write

tan 6 = tan(6 + n . 360°

and we find, if n is an integer, that there are
many solutions to the equation.

EXAMPLE: Find the primary solutions to
the equation

V3
c089=—2-
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SOLUTION: We first use the inverse trigo-
nometric function to write

V3

cos 8 = -5
then

@ = arccos -3

= 30°

but
cos O = cos (360° - 9)
cos 30° = cos 330°

Therefore, the solutions are 30° and 330°.

EXAMPLE: TFind the primary solutions to
the equation

cscf =2

SOLUTION: As in the previous example, we
write

10 tm e = -1
2. sec 6 =2
3. sin § = _J-_g_
1
4. cos 0 = 5
ANSWERS:

1. 135° and 315°
2. 60° and 300°
3. 240° and 300°
4, 60° and 300°

The following examples show how to find the
solution of more difficult equations.

EXAMPLE: Find the primary values of the
equation

sinf + sin@ cotd = 0

SOLUTION: We factor the equation and

csc 9 = 2 find that
and sin 9 + sin 8 cot 6 = 0
csc 0 = 1 and
sin 6 sinf (1 +cot 6) = O
1
sin 6 2 Setting each factor equal to zero, we have the
two equations
: 1
sin 8 = )
sind =0
then and
1 1 +cotf=0
8 = arcsin o
- 30° Solve each as follows:
sinfd =0
but
then
s.in 6 = sin (180° - 9) 9 = arcsin 0
Sin 30o = Sin 1500 = 00 a.nd 1800
. . and
Therefore, the solutions are 30° and 150 1+ cot B=0
PROBLEMS: Find the primary values of &
in the following equations: cot 6 = -1
119
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Therefore,

)
H

arccot -1

135° and 315°

Therefore, the solutions to the equation are 0°,
135°, 180°, and 315°,

EXAMPLE: Find the primary values of the
equation

231n20+sin0 -3=0

SOLUTION: Factor the equation and thenset
each factor equal to zero, as follows:

2sin20+ sing -3 =20

and
(2sin 8 - 1)(sin 0 - 1) = 0
then
2sin9 - 1=0
and

sinf -1=0
Solve each as follows:

2s8inb6 -1=0

2sind =1
; 1
sin 8 = 5
then
6 = arcs.inl
- 2
and
6 = 30° and 150°
Also,
siné - 1=0
sin 0 =1
then
8 = arcsin 1
= 90°

Therefore, the solutions are 30° 90°, and 150°,

PRACTICE PROBLEMS: Find the primary
value of the following equations:

1. 2cos20 = 3 cosf-1
2, tanZ0 = 3 .'

3, 2 sin®0 - 3 sin 0 = -1
ANSWERS:

1. 0° 60° 300°

2, 60°,120°, 240° 300°

3. 30° 90°, 150°
LIMITED SOLUTIONS

We will consider two types of possible
solutions to fall within the category of limited
solutions, The following examples show both of
these types,

The first type of limited solution occurswhen
an equation is solved and one of the solutions is
not true upon inspection,

EXAMPLE: Find the primary values of 8 in
the equation

sin26 sec 9 = sec 0

SOLUTION: We first rearrange, and then
factor the equation as follows:

sin®6 sec 9 = sec 6
sec 6 - sin%9 sec = 0
sec 6 (1- sinze) =0
Set each factor equal to zero
1 - sin%6 = 0
and
sec § =0

Solving the first equation

1 - sin9 = 0
sin2g = 1
i
sin 0 = g1
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then

6 = aresin 1

90° and 180°
Solving the second equation
sec 6§ =0
then
6 = arcsec 0

However, there is no angle for which sec 6
equals zero and we reject this false solution,
Therefore, the primary solutions for the original
equation are 90° and 180°,

The second type of limited solutions occur
when introducing a radical into an equation by
substitution or by squaring both members of an
equation in solving the equation, These solutions
are called extraneous roots, Solutions of this
type must be substituted into the original equa-
tion for verification,

EXAMPLE: Findtheprimaryvaluesof 6 for
the equation

tanf -secf +1=20

SOLUTION: We first rearrange the equa-
tion to read

tan 6 + 1 = gec 9
Square both sides:

tanze +2tan 6 +1 = se029

Rearrange again:
2

2 tan b = secze - (tan®6 + 1)
This gives
2tan 6 = 0
and
tan 6 = 0
Therefore,
6 = arctan 0
= 0° and 180°

These - seem to be the values of the equation,
but we squared both sides of the equation and
we must now substitute these values intc the
original equation to verify the values, Upon
substituting we find

tan 6 - sec 8 + 1 =0
This implies that

tan 0° - sec 0° + 1 =0
and since

0-1+1=0
the value 0° holds true.
For 180° we find
tan 8 - sec 8 + 1 =20

tan 180° - sec 180° + 1 =0
but
1-(-1)+1£0
and we say 180° is an extraneous root.

PRACTICE PROBLEMS: Find the primary
values for 6 in the following equations:
2
6

1. tan @ cosze = sin

2. cos26 sin 0 = sin 6 + 1

3. 2sec9 +1 -cos86 =0

4, cot 8 -csc 6 -V3 =0

ANSWERS:

1. 0°, 45°, 180°, 225°
. 270°
180°

o W N

240°
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CHAPTER 9

STRAIGHT LINES

The study of straight lines provides an
excellent introduction to analytic geometry.
As its name implies, this branch of mathematics
is concerned with geometrical relationships,
However, incontrast o plane and solid geometry,
the study of these relationships in analytic
geom=try is accomplished by algebraic analysis.

The invention of the rectangular coordinate
system made algebraic analysis of geometrical
relationships possible. Rene Descartes, a
French mathematician, is credited with this
invention, and the coordinate system is often
designated as the Cartesian coordinate system
in his honor.

Recalling our study of the rectangular coor-
dinate system in Mathematics, Vol, 1, NavPers
10069-C, we review the following definitions
and terms:

1. Distances measured along, or parallel to,
the X axis are ABSCISSAS. They are positive
if measured to the right of the origin; they
are negative if measured to the left of the
origin, (See fig, 9-1.)

2, Distances measured along, or parallel to,
the Y axis are ORDINATES, They are positive
if measured above the origin; they are negative
if measured below the origin,

3. Any point onthe cooidinate system is des-
ignated by naming its absecissa and ordinate.
For example, the abscissa of point P (fig. 9-1)
is 3 and the ordinate is -2, Therefore, the
symbolic notation for P is

P@3, -2)

In using this symbol to designate a point, the
abscissa is always written first, followed by
a comma., The ordinate is writtenlast., Thus
the general form of the symbol is

P(x, y)

4, The abscissa and ordinate of a point are
its COORDINATES,

DISTANCE BETWEEN TWO POINTS

The distance between two points, P; and
P2, can be expressed in terms of their coor-
dinates by using the Pythagorean Theorem.
From our study of Mathematics, Vol, 1, NavFars
10066-C, we recall that this theorem is stated
as follows:

In a right triangle, the square of the length
of the hypotenuse (longest side) is equal to the
sum of the squares of the lengths of the two
shorter sides,

Let the coordinates of P1 be (x1,y1) and let
those of P2 be (x2,y2), as in figure 9-2, By
the Pythagorean Theorem,

a=/(e N2 (1>2N—)2

where d represents the distance from Pi to P2,
We can express the length of P1N in terms of
X1 and x2 as follows:

P1N =x2 - x1

Likewise,
PN=y2 -7
By substitution in the formula developed

previously for d, we reach the following con-
clusion:

d= iy - x)*+ @y, - y))*

Although we have demonstrated the formula
for the first quadrant only, it can be proved
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'
43
-ba
41
+ 4 ¢ -4 } + X
-2 -2 - © I 2 3
-rcl
4-2 . p(2,-2)
+--3

Figure 9-1, Rectangular coordinate system,

for all quadrants and all pairs of points,
EXAMPLE: In figure 9-2, x1 = 2, x2 = 6,
y1 = 2, and y2 = 5. Find the length of d.

Je-2° + 65-2)°

=\/42+ 32

V16 + 9

SOLUTION: d

Va5

= 5

This result could have been foreseen by ob-
serving that triangle P1NPy is a 3-4-5 tri-
angle,

EXAMPLE: Find the distance between P1
(4, 6) and P2(10, 4).

SOLUTION: 4. /(0-4)% + (4 - 6)°

d=V36 + 4
d=2Y10

DIVISION OF A LINE SEGMENT

Many times it becomes necessary to find
the coordinates of a point which is some
known fraction of the distance between Py and
P2.

123

In figure 9-3, P is a point lying on the line
joining P; and P2 so that
PP
_1_ =. k

PPy

If P should lie one-quarter of the way between
P and P2, then k would equal 1/4,

Triangles P1MP and P1NP2 are similar,
Therefore,

PIM P.P

= 1
PIN P1P2
P.P
Since P1 Pa is the ratio that defines k,
M
PIN
Therefore.
PIM =k (PIN)

Referring again to figure 9-3, observe that
P1N is equal to x2 - x1. Likewise, PiMisequal
to x - x1. Therefore, replacing P1M and PIN
with their equivalents interms of x, the foregoing
equation becomes

X=X = lz:(x2 - xl)

X=X, + k(x2 - xl)

Y
Y2 fa
S,
y
R N 1T
1 TP,
I
1
4
}
0 X| X2

L_

Figure 9-2. ~Dictance between two points.
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Yl PI/M N

X

Figure 9-3. —-Division of a line segment.
By similar reasoning,
y=y; + kb - y,)
Thexandyfound as a result of the foregoing
discussion are the coordinates of the desired

point, whose distances from P; and from P3are
detexrmined by the value of k,

EXAMPLE: Find the coordinates of a point
1/4 of the way from P1 (2,3) to Pg (4,1),

- SOLUTICN: 1
k= Z' ’ xz'x1=2, y

2+

1 oy 1_
X 4(2)-24-2-

1, 0. 1.
y 3+I(-2)—3-§_

The point P is (% ,é).

FINDING THE MIDPOINT

When tiie midpoint of a line segment is to be
found, the value of k is 1/2, Therefore,

124
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i

1
3 (& * xy)
By similar reasoning,

=1
y—z (yl+y2)

EXAMPLE: Find the midpoint of the line
between P; (2,4) and P2 (4,6).

SOLUTION: | - %

The midpoint is (8,5).

INCLINATION AND SLOPE

A line drawn on the rectangular coordinate
system and crossing the X axis forms a positive
acute angle with the X axis, This angle, shown
in figure 9-4 as angle a, is called the angle of
inclination of the line.

The slope of any line, such azs AB in
figure 9-4, is equal to the tangent of its angle
of inclination, Slope is denoted by the letter
m. Therefore, for line AB,

m=tan a

If the axes are in their conventional positions,
a line sloping upward to the right has a positive
slope. A line sloping downward to the right
fas a negative slope,
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Figure 9-4,—Angle of inclination,

Since the tangent of a is the ratio of PoM
to P1M, we can relate the slope of line AB
to the points P1 and P2 as follows:

P2M
m=tan a= F{ﬁ-

Designating the coordinates of Py as (xi,yl),
and those of P2 as (x2,y2), we recall that

PaM =Yg - 9
PIM =-x2-x1
Yo=Y

T X9 =Xy

The quantities (x% - x1) and (y2 - y1)
represent changes that occur in the values of
the x and y coordinates as a result of changing
from P2 to Pi on line AB, The symbol used
by mathematicians to represent an increment
of change is the Greek letter delta (4), There-
fore, Ax means “the change in x” and Ay means
“the change in y.” The amount of change in

the x coordinate, as we change from P2 to
Py, is x2 - x1. Therefore,

Ay=y2-y1

We use this notation to express the slope of
line AB, as follows:

Ay
m = Ax

EXAMPLE: Find the slope of the line
connecting P» (7,6) and P1 (-1,-4).
SOLUTION:

= Ay
m Ax
Ay:yz-y1=6-(-4)=10

Ax=x2-x1=7-(-1)=8

It is important to realize that the choice
of labels for Py and Pg is strictly arbitrary.
If we had chosen the point (7,6) to be P1 in
the foregoing example, and the point (-1,-4)
to be P9, the following calculation would have
resulted:

v

m?2

Ay:yz-yl=-4-6=-10

Ax=x2-x1=-1-7=-8

-10

= _5
m=2g 71

This is the same result as in the foregoing
example.

The slope of 5/4 means that a point moving
along this line would move vertically +5 units
for every horizontal movement of +4 units,
This result is consistent with the previously

125

130



MATHEMATICS, VOLUME 2

stated m=aning of positive slope; i.e., sloping
upward to the right,

If line AB in figure 9-4 were parallel to the
X axis, y1 and y2 would be equal and the dif-
ference (lyz - y1) would be 0. Therefore,

Thus we conclude that the slope of a horizontal
line is 0, This conclusion can also be reached
by noting that angle a(fig. 9-4)is 0 when the line
is; parallel to the X axis. Since the tangent of
0" is 0,

m=tan ¢ =0

The slope of a line that is parallel to the
Y axis becomes meaningiess, The tangent of
the angle @ increases indefinitely as a ap-
proaches 90°, It is ~~metimes said thatm — «
(m approaches infinity) when a approaches 90°,

PARALLEL AND PERPENDICULAR
LINES

If we are given two lines that are parallel,
their slopes must be equal, Each line will
cut che X axis at the same angle a, sc that

m, =tan o, m, =tan o

Therefore, m; =m,

We conclude that two lines which are parallel
have the same slope.

Suppose that two lines are perpendicular to
each other, as lines L1 and L2 in figure 9-5,
The slope and inclination of L1 are mi and ai,
respectively. The slope and inclination of Lo
are m2 and a2, respectively, Then the following
is true:

m1 = tan al

m2=t9.nat2

It can be shown gecmetrically that ag (fig,
9-5) is equal to a,, plus 90°, Therefore,

126

Figure 9-5. —Slopes of perpendicular lines.

tan @y =tan (a1+ 90°)

= - cot al

Replacing tan a1 and tan a9 by their equivalents
in terms of slope, we have

1
m = e e————
2 m1

We conclude that, if two lines are per-
pendicular, the slope of one is the negative
reciprocal of the slope of the other.

Conversely, if the slopes of two lines are
negative reciprocals of each other, the lines
are perpendicular,

EXAMPLE: In figure 9-6, show that line

L1 is perpendicular to line L2. Line L1 passes

through points P1 (0,5) and Pg (-1,3). Line

{..32 )passes through points P2 (-1,3) and Pg
1),

24
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ANGLE BETWEEN TWO LINES

When two lines intersect, the anglebetween

them is defined as the smallest angle through

/ whick one of the lines must be rotated to make

it coincide with the other line, For example,

/ the angle ¢ in figure 9-7 is the angle between
P,(0,5) lines L1 and L2.

Referring to figure 9-T,

P2
-1,3)

Ly P3(3,1) oy =0+ ¢

~ SR

It is possible to determine the valueof ¢ di-
rectly from the slopes of lines L1 and L2, as
follows:

Figure 9-6.—Proving lines perpendicular.

SOLUTION: Let iny and mg represent the
slopes of lines L1 an L3, respectively. Then

we have
tan¢=tan(a2-a1)
=—-——---—5-3 =
B~ 0-(1) 2 =tana2-tana1
1+ tan o, tan
o.1-3 _=2__ 1 177 %
2 3-(1) 4 5

. . This result is obtained by use of the trigono-
Since their slopes are negative reciprocals petric identity for the tangent of the dif-

of each other, the lines are perpendicular.
PRACTIC:E PROBLEMS: ference between two angles. Trigonometric

1., Find the distance between Py (5,3) and
P2 (6,7).

2. Find the distance between P1 (1/2,1) v
and P2 (3/2,5/3).

3. Find the midpoint of the line connecting
P1 (5,2) and P2 (-1,-3).

4, Find the slope of the line joining P1
(-2,-5) and P2 (2,5).

ANSWERS:

1.v17
3‘@ /

3 4 as .
3. (2’ "%) / /

4, 5
)

Figure 9-7.—Angle betwaen two lines.
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identities are discussed in chapter 8 of this
training course,

Recalling that the targent of the angle of
inclination is the slope of the line, we have

tan @ =m, (the slope of Ll)

tan ay =m, (the slope of Lz)

Substituting these expressions in the tangent
formula derived in the foregoing discussion,
we nave

m2-m

tan ¢ = 1+ mlm2

If one of the lines were parallel to the Y
axis, its slope would be infinite. This would
render the slope formula for tan ¢ useless,
because an infinite value in both the numerator
m m
_2-1
1+ mlm2
duces an indeterminate form. However, if one
of the lines is known to be parallel to the Y
axis the tangent of ¢ may be expressed by
another method,

Suppose that Lg (fig. 9-7) were parallel
to the Y axis, Then we would have

and denominator of the fraction pro-

agy = 90
6=90" - @,
tan ¢ = cot @,
.1
|
PRACTICE PROBLEMS:
1. Find the angle between the two lines
which have my = 3 and my = 7 for slopes.
2. Find the angle between two lines whose
slopes are m; = 0, mo =1, (my = 0 sig-
nifies that line L is horizontal and the formula
still holds),
3. Find the angle between the Y axis and a
line with a slope of m = -8,
4. Find the obtuse angle between the X axis
and line with a slope of m = -8,
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ANSWERS:
1. 10°18*
2, 45°

3, 7°7

4, 97°7T"

EQUATION OF A STRA!GHT LINE

In Mathematics, Volume 1, NavPers 10069-C,
equations such as

2X + y =6

are designated as linear equations, and their
graphs are shown to be straight lines. The
purpose of the present discussion is to study
the relationship of slope to the equation of
a straight line,

POINT-SLOPE FORM

Suppose that we desire to find the equation
of a straight line which passes through 2 known
point and has a known slope, Let (x,y) re-
present the coordinates of any point on the
line, and let (x1,y;) represent the coordinates
of the known point. The slope is represented
by m.,

Recailing the formula defining slope in
terms of the coordinates of two points, we
have

ey - Yy =m(X~x1)

EXAMPLE: Find the equation of a line
passing through the point (2,3) and having a

slope of 3.
SOLUTION:
x1=2andy1=3
y-y, =mx-x)
y-3=3(x-2)
y-3=3x-6
y-3x=-3
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The point-slope form may be used to find
the equation of a line through two known points,
The values of xj, x2, y1, and y2 are first
used to find the slope of theline, and then either
known point is used with the slope in the point-
slope form.

EXAMPLE: Find the equation of the line
through the points (-3,4) and (4,-2).

SOLUTION:
Yo - Y
2 1
_2-4 _ 6
4+ 3 7

Letting (x,y) represent any point on the line,
and using (-3,4) as a known point, we have

y-4= 7 [x-(3)

T(y - 4) = -6(x + 3)
Ty - 28 = -6x - 18
Ty + 6x=10

SLOPE-INTERCEPT FORM

Any line which is not parallel to the Y axis
intersects the Y axis in some point. The x
coordinate of the point of intersection is 0,
because the Y axis is vertical and passes
through the origin, Let the y coordinate of
the point of intersection be represented by b.
Then the point of intersection is (0,b), as
shown in figure 9-8. The y coordinate, b,
is called the y intercept.

Ay
Ax*
The value of Ay in this expression is y-b,
where y represents the y coordinate of any
point on the line, The value of Axis equal
to the x coordinate of P(x,y), so that

The slope of the line in figure 9-8 is

In=AX = t_b
Ax X
mx=y->b

y=mx+ b

Y
L _Plyy
EAY
\ AY
SLOPE ——
| AX
(0,0} ===
% AX
a
7 X

Figure 9-8.—Slope-intercept form.

This is the standard slope-intercept form of
a straight line,

EXAMPLE: Find the equation of a line
that intersects the Y axis at the point (0,3
and has a slope of 5/3.

SOLUTION:
v=mx+ b
y=—§-x+3
3y=5x+ 9

PRACTICE PROBLEMS:

Write equations for lines having points and
slopes as follows:

1. P3,5), m = -2
1
2, P(-2,-1),m = 3

3. Pl(z’z) and pz("4’-1)
4, Y intercept = 2, m = 3
»

ANSWERS:
~2x + 11
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3. 2y = x+ 2

4, y = 3x+ 2
NORMAL FORM

Methods ‘or determining the equation of
a line usually depend upon some knowledge
of a point or points on the line. We now
consider a method which does not require
advance knowledge concerning any of the line’s
points, All that is known about the line is
its perpendicular distance ifrom the origin
and the angle between the perpendicular and
the x axis,

In figure 9-9, line AB is a distance p away
from the origin, and line OM forms an angle ¢
with the X axis, We select any point P(x,y)
on line AB and develop the equation of line
AB in terms of the x and y of P. Since P
represents ANY point on the line, the x and
y of the equation will represent EVERY point
on the line and therefore will represent the
line itself,

PR is constructed perpendicular to OB at
point R, NR is drawn parallel to AB, and
PN is parallel to OB, PS is rerpendicular
to NR and to AB. Since right triangles OMB
and RSP have their sides mutually perpen-
dicular, they are similar; therefore, angle
PRS is equal to 6. Finally, the x distance
of point P is equal to OR, and the y distance
of P is equal to PR,

In order to relate the distance p to x and
¥, we reason as follows:

ON = (OR) (cos 9)
=xco8 0

PS = (PR) (sin 9)

=ysing
OM =ON + PS
p=ON + PS

p=Xxcos 0+ ysinb

This final equation is the NORMAL FORM,
The word “normal” in this usage refers to the
perpendicular relaticusnip between OM and
AB.  “Normal” frequently means “perpen-
dicular” in mathematical and scientific usage.

The distance p is considered to be always
posltive, and 6is any angle between 0° and
360°,

EXAMPLE: Find the equation of a line
that is 5 units away from the origin, if the
perpendicular from the line to the origin forms
an angle of 30° with the positive side of the
X axis,

SOLUTION:

p=5;6=30°
p=xcos 9+ ysin6

5 =x cos 30° + y sin 30°

o))

30=x\/§+y

PARALLEL AND
PERPENDICULAR LINES

The general equation of a straight lmne is
often written with capital letters for co-
efficients, as fnllows:

Ax + By + C =0

These literal coefficients, as they are called,
represent the numeszrical coefficients encoun-
tered in a typical linear equation.

Suppose that we are given two equations
which are duplicates except for the constant
term, as follows:

Ax+ By+ C=0
Ax+ By+ D=0
By placing these two equations in Slope-intercept

form, we can show that their slopes are
equal, as follows:

C

5)

(8 e

(8l D)

Thus the slope of each line is - A/B,
Since lines having equal slopes are parallel,
we reach the following conclusion: In any two
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Figure 9-9.—Normal form,

linear equations, if the coefficientsof the xand y
terms are identical in value and sign, then the
lines represented by these equations are par-
ailel,

EXAMPLE: Write the equation of a line
parallel to 3x - y - 2 = 0 and passing through
the point (5,2).

SOLUTION: The coefficients of x and y in
the desired equation are the same as those in
the given equation, Therefore, the equation is

3x -y+ D=0

Since the line passes through (5,2), the values
x = 5 and y = 2 must satisfy the equation. Sub-
stituting these, we have

3(55) - (2) + D
D =

0
-13

Thus the required equation is

3x-y-13 =0

A situation similar to that prevailing with
parallel lines involves perpendicular lines,
For example, consider the equations

i
o

Ax + By + C

1}
o

Bx - Ay + D

Transposing into the slope-intercept form, we
have

(D= (9
® @

Since the slopes of these two lines are nega-
tive reciprocals, the lines are perpendicular.

y=

y

The conclusion derived from the foregoing
discussion is as follows: If a line is to be
perpendicular to a given line, the coefficients
of x and y in the required equation are found
by interchanging the coefficients of x and y
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in the given equation and changing the sign
of one of them.

EXAMPLE: Write the equation of a line per-
pendicular to the line x + 3y + 3 = 0 and having
a y intercept of 5,

SOLUTION: The required equation is

3x-y+D=0
Notice the interchange of coefficients and the
change of sign. At the point where the line
crosses .ne Y axis, the value of x is 0 and

the value of y is 5. Therefore, the equation
is

3000 - (5) + D=0

D =35

The required equation is
X ~-y+5=0

PRACTICE PROBLEMS:

Find the equations of the following lines:

1. Through (1,1) and parallel to 5x -
3y = 9,

2, Through (-3,2) and perpendicular to
X +y =05,

3. Through (2,3) and perpendicular to 3x -

2y = 1,

4, Through (2,3) and parallel to 3x -
2y = 1,

ANSWERS:

1, 5x - 3y = 2

2, x ~y =45
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3. 2x + 3y = 13
4, 3x - 2y

1}
o

DISTANCE OF A POINT
FROM A LINE

It is frequently necessary to express the
distance of a point from a line in terms of
the coefficients in the equation of the line,
In order to do this, we compare the two 'orms
of the equation of a straight line, as foilows:

General equation: Ax + By + C = 0
Normal form: x cos 6 + y sinf-p=0

The general equation and the normal form
represent the same straight line. Therefore,
A (the coefficient of x in general form) is
proportional to cos 6 (the coefficient of x in
the normal form). By similar reasoning, B is
proportional to sin 6, and C is proportional
to -p. Recalling that quantities propertional
to each other form ratios involving a constant
of proportionality, let k be this constant,

Thus we have

cos 8
A -k
sin 6 -
B =k
cos 8 =kA

sin § =kB

Squaring both sides of these two expressions
and then adding, we have

cos2 0+ sin2 g= k2 (A2 + Bz)

1-1%@a2.+ g
K = - —

A"+ B
k=

1
d:\/A2+ B2
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The coefficients in the normal form, ex-
pressed in terms of A, B, andC, are as follows:

cos 0 = A
:b-‘/A2+ B2
sin 8 = B
3 A2+ B2
_ C
_p_

:bJA2+ B2

The sign of w/A2 + B2 is chosen so as to make p
(a distance) always positive,

The conversion formulas developed in the
foregoing discussion are used in finding the
distance from a point to a line, Let p represent
the distance of line L from the origin, (See
fig, 9-10,) In order to find d, the distance
of point P1 from line L, we construct a line
through Py and parallel to L. The distance
of this line from the origin is OS, and the
difference between OS and p is d.
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We obtain an expression for d, based on the
coordinates of Py, as follows:

OS=x1cosa+ylsinB
d=0S -p

=x1cose+y1sin9-p

Returning to the expressions for sin 6 ,cos ¢,

and -p in terms of A, B, and C (the coefficients
in the general equation), we have

1\/A2+B2 :bJA2+ ‘32

C
:h‘JAz + B2

The denominator in each of the expréessions
comprising the formula for d is the same,
Therefore we may combine as follows:

+

x1A+ y1B+C'
\/A2+ B2

We use the absolute value, since d is adis-
tance, and thus avoid any confusion arising
from the + radical.

- EXAMPLE:. Find the distance from thepoint
(2,1) to the line 4x + 2y + 7= 0,

d=

SOLU ICW:
- Q@@+
42 + 22
- 8+ 2+ 1
V20
_ 17
2v5
_ 17 5
10

2 iR AT e
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PRACTICE PROBLEMS:

In each of the following problems, find the
distance from the point to the line:

(5,2),3x-y+6 =0
(3,-5), 2x+y+4 = 0
(3,-4), 4x + 3y = 10
(-2,5), 3x + 4y -9 = 0
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ANSWERS:
1, 19 V10
10

2. V5
3. 2
4, 1

s




CHAPTER 10

CONIC SECTIONS

This chapter is a contimation of the study
of analytic geometry, The figures presented in
this chapter are plane figures which are in-
cluded in the general class of conic sections or
simply “conics.”

Conic secticns are so named because they
are all plane sections of a right circular cone,
A ¢livrle can be formed by cutting a cone perpen-~
dicular to its axis. An ellipse isproduced when
the cone is cut obliquely to the axis and the sur-
face, A hyperbola results when the cone is
intersected by a -lane parallel to the axis, and
a parabcla is the result when the intersecting
plane is parallel to an element of the surface,
These are illustrated in figure 10-1,

When the curve produced by cutting the cone
is placed on a coordinate system it may be de-
fined as follows:

A conic section is the locus of a point that
moves so that its distance from a fixed point is
in a constant ratio to its distance from a fixed
line, The fixed point is the focus, and the fixed
line is the directrix,

The ratio rferred to in the definition is
called the eccertricity., If the eccentricity (e)
is less than o:e, the curve is an ellipse, If
e is greater than one, the curve is a hyperbola,
If e is equal to 1, the curve is a parabola, A
circle is a special case having an eccentricity
equal to zero, and may be defined by the dis-
tance from a point. It is actually a limiting
case of an ellipse in which the eccentricity ap-
proaches zero, Thus, if

e =0, it is a circle
e <1, it is an ellipse

e =1, it is a parabola
e ? 1, it is a hyperbola

The eccentricity, focus, and directrix are
used in the algebraic analysis of conic sections
and the corresponding equations, The concept
of the locus of an equation also enters into ana-
lytic geometry; this concept is discussed before
the individual conic sections are studied.

THE LOCUS OF AN EQUATION

In chapter 9 of this course, methods for
analysis of linear equations are presented, If
a group of x and y values (or ordered pairs, P
(x,y)) whict: satisfy a given linear equation are
plotted on a coordinate system, the resulting
graph is a straight line,

When higher ordered equations such as

x2 + y2=lory=\/—2§1—§

are encountered, the resulting graph is not a
straight line, However, the points whose coordi-
nates satisfy most of the equationsinxand y are
normally not scattered in a random field, If the
values are plotted they will seem to follow a line
or curve (or a combination of lines and curves),
In many texts the plot of an equation is called
a curve, even when it is a straight line, This
curve is called the locus ot tize equation, The
locus of an equation is a curve containing those
points, and only those points, whose coordinates
satisfy the equation,

At times the curve may be defined by 2 set
of conditions rather than by an equation, though
an equation may be derived from the given con-
ditions, Then the curve in questionwould be the
locus of all points which fit the conditions, For
instance a circle may be said to be the locus of
all points in a plane which lie a fixed distance
from a fixed point, A straight line may be de-
fined as the locus of apoint that moves in a plane
so that it is at all times equidistant from two
fixed points, The method of expressing a set
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HYPERBOLA CIRCLE

A
Q @

PARABOLA ELLIPSE

Figure 10-1,—~Conic sections,

of conditions inanalytical form gives an aquation,
Let us draw up a set of conditions and translate
them into an equation,

EXAMPLE: What is the equationof the curve
which is the locus of all points which ar2
equidistant from the two points (5, 3) and (2,1)?

SOLUTION: First, as in figure 10-2, choose
some point having coordinates (x,y). Recall from
chapter 9 of this course that the distance between
this point and (2, 1) is given by:

Jo-10%+ @-272

The distance between paint (x, y) and (5, 3) will
be given by

Jiy-9%+ &-85)2

Equating these 'dtstances, since the pointistobe
equidistant from the two given points, we have

Jo-1¥+ x-22=V -2+ (x-57

Squaring both sides

G-1%+ x-2%=(-32%+ -5)°2

Expanding 2 9

y =25+ 1+ x"-4x+ 4
=y2 -6y+ 9+ x2 - 10x + 25

Canceling and collecting terms:

4y + 5 = -6x + 34
4y = -6x + 29
y=-=- -g-x+ 7.25

This is the equationof a straight linewith a slope
of minus 3/2, and a Y intercept of +7.25.

EXAMPLE: Find the equation of the curve
which is the locus of all points which are
equidistant from t 2 line x = -3 and the point
(3, 0).

SOLUTION: The distance from the point (x,
y) on the curve to the line will be (x - (~-3)) or

(x,y)

(2,1

B \

Figure 10-2,=Locus of points equidistant
from two given points,
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(x + 3). Refer to figure 10-3. The distance frem

the point (x, y) to the point (3, 0) is Y
Vi -0+ (x - 3)° (X,Y) .
~N L]
Equating the two distances, “
e
x+38=Vy+ (x-3)>° X

. . of (3,0)
Squaring both sides,

x2+ 6x + 9=y2+ x2-6x+ 9

Canceling and collecting terms,

2 _
y =12 Figure 10-4,—Ellipse
which is the equation of a parabola.

EXAMPLE: What is the equationof thecurve Since
the locus of which is apointwhich moves so that

at all times the ratio of its distance from the d, g3 3
point (3, 0) to its distance from the line e -sord; =5 dy
x = 25/8 is equal to 3/5? Refer to figure 10-4, 2
SOLUTION: The distance from a point (x, then
y) to the point (3, 0) is given by
_ 2 2
dl—/(x-3)+(y-0) /(;-3)2+y2=g-<-2-g-x)
The distance from the same point (x, y) to the
line is 25 Squaring both sides and expanding,
dy=-3-x
x2-6x+ 9+ y2=T§ (xz- %x+ §-2§§>
Y
2 2 9 2
X =-06x+ 9+ = X «-6x+ 25
(x,y) V=%
Collecting terms and transposing
Xz-3
o307 X o xlsy?-16
Dividing through by 16
2 2
X + ¥ =
%+ 161!

Figure 10-3.~Parabola, This is the equation of an ellipse,

137

442

- ilw

i‘ e L At -
k ,mﬂ:




MATHEMATICS, VOLIME 2

PRACTICE PROBLEMS: Fiad the equation
which is the locus of the point which moves so
that it is at all times:

1. Equidistant from the points (0, 0) and
(5, 4).

2,
(-3, 2.

3. Equidistant :rom the line x = -4 and the
point (3, 4).

4, Equidistant from the point (4, 5) and the
line y = Hx -4, HINT: Use the standard distance
formula to find the distance from the point P
(%, y) and the point P (4, 5). Then use the formula
for finding distance from a point to aline, given
in chapter 9 of this course, to find the distance
from P (x, y) to the given line, Put the equation
of the line in the form Ax + By + C =0,

ANSWERS:

Equidistant from the points (3, -2) and

y=-1,25x + %—
. 2y =3x

2
y

. x2 + 10xy + 25y2 - 168x - 268y + 1050 =0

-8y=14x -9

#PN

THE CIRCLE

A circle is the locus of a point which is al-
ways a fixed distance from a fixed point called
the center,

The fixed distance spoken of here is the radius
of the circle,

The equation of a circle withits center at the
origin (figure. 10-5) is, from the definition;

Jax-0%+ g-02=r,

where (%, y) is a point on the circle and r is the
radius and replaces d in the standard distance
formula, Then

or

)

If the center of a circle, figure 10-8, is at
some point x = h, y =k, the distance of the mov-
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ing point from the center will be constant and
equal to

Ja-n?+ g-r2=r
or
@)

Equations (1) and (2) are the standard forms for
the equation of a circle. Equation (!} is merely
a special case of equation (2) in which h and k
are equal to zero.

(x-h)2+ (y-k)2=r2

The equation of a circle may also be ex-
pressed in the form:

2

X +y2+ Bx+ Cy+ D=4¢ (3)

where B, C, and D are constants,

THEOREM: An equation of the sezond de-
gree in which the coefficients of the x2 and y2
terms are equal, and there is no (xy) term, re-
presents a circle,

Whenever we find an equation in the form of
equation (3), it is best to convert it to the form
of equation (2), so that we have the coordinates
of the center of the circle and the radius as part
of the equation. This may be done as shown in
the following example problems.,

Y

| (X,Y)
r
5 — X

Figure 10-5,~Circle with center
at the origin,
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(x,Y)

(h,k)

0 X

Figure 10-6,~Circle with center
at (h, k).

EXAMPLE: Find the coordinates of the

center and the radius of the circle which is.

described by the following equation:
x2+ y2-4x-6y+ 9=0

SOLUTION: First rearrange the terms

x2-4x+ y2-6y+ 9=0

and complete the square in both x and y, Com-
pleting the square is discussed in the chapteron
quadratic solutions in Mathematics, Vol. 1,
NavPers 10069-C, Theprocedure consists ..asi-
cally of adding certain quantities to both sides
of a second degree equation to form a perfect
square trinomial, Whenboth thefirst and second
degree members are known, the square of one-
half the coefficient of the first degree term is
added to both sides of the equation. This will
allow the quadratic equation to be factored into
a perfect square trinomial, To complete the
square in x in the given equation

X2 =dx+ y2 -6y + 920

add the square of one-half the coefficient of x
to both sides of the equation

, x2-4x+ (2)2+ y2-6y+ 9=04+ (2)2
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then

(x2-4x+ 4)+y2-6y+ 9=4¢4
x-2)2+ y2-6y+ 9=4

completes the square in x,
For y then

2
x-2) +y2-6y+ (3)2+ 9=4+ (3)2
(x-2)2+ (yz-6y+ 9)+9=44+9
(x-2)2+ (y-3)2+ 9=44+9

completes the square in y,
Transpose all constant terms to the right-
hand side and simplify

®-22+ g-32=4+9-9
(x-2)2+ (y-3)2=4

and the equation is in the standard form of
equation (2), This represents a circle with the
center at (2, 3) and with a radius equal to
v4 or 2.

EXAMPLE: Find the coordinates of the
center and the radius of the circle given by the
equation

x2+ y2+-;-x-3y-—f%=0

SOLUTION: Rearrange and complete the
Squares inxand y

2 1 2 27 _
x+§x+y-3y--1—6--0
2 1 .1 2 _ S 21 _1_ 19
G+ 3%+ @+ 0 -y+ ) -F=5+ 3

Transposing all constant terms to the right-hand
side and adding,

2,01 .1 .2
G+ X+ P+ 6 -3+ 3 =4

#, éﬁ’ ik ’M’rﬂ-’ﬁ_ﬂ_iqﬁmz-.-.. "
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Reducing to standara “urm

1.2 32 _ /002

e+ P+ G-3=0
Thus, the equation represents a circle with its
center at (-1/4, 3/2) and a radius equal to 2.
PRACTICE PROBLEMS: Find the coordi-

nates of the center and the radius for the circles
described by the following equations.

2

1. xz-%x+y -4y+-23=

25 - 0

2. x2+ 6x + y2-14y=23

3. x%- lax+ y2+ 22y = -26

4, x2+ y2+ -g-x+ %y=§%

5. x2+ y2-1=0

ANSWERS:

1. Center (—g-, 2), radius V3
2. Center (-3,7), radius 9

3. Center (7,-11), radius 12

4, Center (- %, - %), radlusz—ﬁ@

5. Center (0,0), radius 1

THE CIRCLE DEFINED
BY THREE POINTS

In certain situations it is convenient to con-
sider the following standard form of a circle

x2+y2+ Bx+Cy+ D=0

as the equation of a circle in which the specific
values of the constants B, C, and D are to be
determined. In this problem the unknowns tobe
found are not x and y, but the values. of the con-
stants B, C, and D. The conditionswhich define

140

the circle -are used to form algebraic relation-
ships between these constants. For example, if
one of the conditions imposed on the cirnle is
that it pass through the point (3, 4) then the stan-
dard form is written with x and y replaced by 3
and 4 respectively; thus

x2+y2+ Bx+ Cy+ D=0

is rewritten as
%+ @2+ BE)+ c@+ D=0
3B+ 4C+ D=-25

There are three independent constants inthe
equation of a circle; therefore, there must be
three conditions given to define a circle. Each
of these conditions will yield an equationwith B,
C, and D as theunknowns. These three equations
are then solved cimultaneously to determine the
values of the constants which satisfy all of the
equations, In an analy-is, the number of inde-
pendent constants in .,: general equation of a
curve indicate how many crnditions must be set
before a curve can be completely defined. Also,
the mumber of unknowns in an equation indicates
the number of equations which must be solved
simultaneously to find the values of the unknowns.
For example, if B, C, and D are unknowns in an
equation, three separate equations involving
these variables are required for a solution,

A circlc may be defined by three noncollinear
points, that is, by three points which do not lie
on a straightline, There is only one possible cix-
cle through any three noncollinear points. To find
the eaation of thecircle determined by the three
points substitute the x, y values of each of the
given points into a general equation to form three
equations with B, C, and D as the unknowns.
These equations are then solved simultaneously
to find the values of B, C, and D in the equation
which satisfies the three given conditions.

The solution of simultaneous equations intwo
variables is discussed in Mathematics Vol. 1,
Systems involving three variables use an exten-
sion of the same principles, but with three equa-
tions instead of two. Step-by-step explanations
of the solution will be giveninthe example prob-
lems.

EXAMPLE: Write the equation of the circle
\(vehlggl passes through the points (2, 8), (5,7), and

’ .

SOLUTION: The method usedin this solution

corresponds to the addition-subtraction method
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used for solution of equations in two variables,
However, the method or combination of methods
used will depend on a particular problem. No
one method is best suited to all problems.

First, write a general equation of the form

2 2

X" +y +Bx+Cy+ D=0

for each of the givenpoints, substituting the given
values for x and y and rearranging

For (2,8) 4+ 64+ 2B+ 8C+ D=0
28+ 8C + D=-68
For (5,7) 25+ 49+ 5B+ 7C+ D=0
5B+ 71C+ D=-74
For (6,6) 36+ 36+ 6B+ 6C+ D=0

6B+ 6C+ D=-T2

To aid in the explanationwe number the three
resulting equations

2B+ 8C + D=-68 (1)
5B+ TC+ D=-74 (2)
6B+ 6C+ D=-T2 (3)

The first step isto eliminate one of the unknowns
and have two equaticns and two unknowns remain,
The cuefficient of Dis the same inali three equa-
tions and is the one most easily eliminated by
addition and subtraction., This is done in the
following manner. Subtract (2) from (1)

9B+ 8C + D =- 68 )
5B+ 71C+ D=-174 (-) (2)
3B+ C = 6 (4)
Subtract (3) from (2)
5B+ 71C+ D=-T74 (2)
6B+ 6C+ D=-172 3)
-B+ C =- 2 (5)
141

This gives two equations, (4) and (5), in two un-
knowns which can be solved simultaneously.
Since the coefficient of C is the same in both
equations it is the most easily eliminated vari-
able,

To eliminate C, subtract (4) from (5)

-B+ C=-2 (5)

-3B+C= 6 (4)
2B =-8

B =-4 ©)

To find the value of C substitute the value
found for B in (6) in equation (5)

-B+ C=-2 (5)
-(-4)+ C=-2
=-6 (7

Now the values of B and C can be substituted
in any one of the original equations todetermine
the value of D,

If the values are substituted in (1)

2B+ 8C + D=-68 (1)
2(-4) + 8(-6) + D= -68
-8-48+ D=-68
D= -68 + 56
D=-12 (8)

The solution of the system of equations gave
values for three independent constants in the
general equation

x2+ y2+ Bx+ Cy+ D=0

When the constant values are substituted the
equation takes the form of

X+y?_ax-6y-12=0
Rearranging and completing the squareinxandy,
(x2-4x+ 4) + (y2-6y+ 9)-12=4+9

x-2%+ y-3)°=25

tid6
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which corresponds to a circle with the center
at (2, 3) with a radius of 5. This is the circle
described by the three given conditions and is
shown in figure 10-7 (A).

The previous cxample problem showed one
method for determining the equation of a circle
when three points are given. The next example
shows another method for solving the same prob.
lem. One of the most important things to keep
in mind when studying analytic geometry is that
many problems may be solved by more thanone
method. Each problem should be analyzedcare-
fully to determine what relationships exist be-
tween the given data and the desired rasuilts of
the problem, Relationships such as distance from
one point to another, distance from a point to a
line, slope of a line, the Pythagorean theorem,
etc., will be used to solve various problems,

EXAMPLE: Find the equation of the circle
described by the three points (2, 8), (5, 7), and
(6, 6). Use a method other than that used in the
previous example problem,

SOLUTION: A different method of solving
this problem results from the reasoning in the
following paragraphs,

The center of tne desired circle wiil be the
intersection of the perpendicular bisectors of
the chords connecting points (2, 8) with (5, 7)
and (5, 7) with (6, 6),as shownin figare 10-7(B).

The perpendicular pisector of the line con-
necting two points is the locus of a point which

Y

.

(2,8)
57)

(6,6)

- r=5
(2,3)

7

(A)

moves So that it is always equidistant from the
two points. Using this analysis we can get the
equations of the perpendicular bisectors of the
two lines.

Equating the distance formulas which de-
scribe the distances from a point (x,y), whichis
equidistant from the points (2,8) and (5,7),gives

Jx-22+ g-82= Jix- 52+ v - 732

Squaring both sides gives

x-2%+ @-82=x-52+ (y- 72

or

x2-4x+ 4 + y2-16y+ 64 =
xz- 10x + 25 + y2- 14y2+ 49
Canceling and combining terms results in
6x - 2y =6

or

3x -

(8)

Figure 10-7.—Circle described by three points.
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Follow the same procedure for the points
(5, 7) and (6, 6).

Jx-52+ g-12 =V x-62+ (5 - 6)

Squaring each side gives

x-5%+ g-12=x-6%+ (- 6)>
X2 - 10K + 25+ y2 + 14y + 49 =
X2 - 12x+ 36+ y° - 12y + 36

Canceling and combining terms gives a second
equation inxandy.

2x - 2y = -2
or
X-y=-1

Solving the equations simultaneously will give
the coordinates of the intersection of the two
perpendicular bisectors; this is the center of
the circle.

3x-y=3

X - y = -1 (Subtract)
2x =4

x=2

Substitute the value x = 2 in one of the equa-
tions to find the value of y,

X-y=-1
2-y=-1
-y =-3
y= 3

Thus, the center of the circle is the point (2,3),

The radius will be the distance between the
center (2,3) and one of the three given points,
Using point (2, 8) we obtain,

r=v@-2°%+ @-32=v35=5
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The equation of this circle is

-2)2%+ (7-3)2=25

as was found in the previous example,

If a circle is to be defined by three points
the points must be noncollinear. In some cases
it is obvious that the three points are non-
collinear. Such is the case with points (1,1),
(-2, 2), and(-1, -1), since the points are in quad-
rants 1, 2, and 3 respectively and cannot be con-
nected by a straight line. However, there are
many cases in which it is difficult to determine
by inspection whether or not the points are colli-
near, and a method for determining this ana-
lytically is needed. In the followng example an
attempt is made to find ‘he circle described by
three points, when the three points are colli-
near

EXAMPLE: Find the equation of the circle
whi(;h passes through the points (1,1), (2, 2),
(3,3). '

SOLUTION: Substitute the given values of x
and y in the standard form of the equation of a
circle to get three equations in three unknowns,

x2+ y2+ Bx+ Cy+ D= 0

For (1,1) 141+ B+C+D=0
B+C+ D=-2 (9)

For (2, 2) 4+4+2B+ 2C+ D= 0
2B+ 2C+ D=-8 (10)

For (3,3) 9+9+3B+3C+D= 0
3B+ 3C+ D=-18 (11)

To eliminate D, first subtract (9) from (10).
2B+ 2C+ D=-8
B+ C+ D=-2 (Subtract)

B+C=-6 (12)
Next subtract (10) from (11).
3B+ 3C+ D=-18
2B+ 2C+ D= -8
B+ C=-10 (13)
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Then subtract (13) from (12) to eliminate one of
the unknowns,

B+ C=-6
B+ C=-10

0+0=4
0=4

This solution is not valid and there is no cir-
cle through the three given pecints, The reader
should attempt to solve (12) and (13) by the sub-
stitution method. When the three given points
are collinear an inconsistent solution of some
type will result,

If we attempt to solve the problem by eli-
minating both B and C at the same time (to
find D) another type of inconsistent solution re-
sults, With the given coefficients it is not
difficult to eliminate both A and B at the same
time. First, multiply (10) by 3 and (11) by
-2 and add the resultant equations,

6B+ 6C+ 3D=-24
-6B- 6C - 2D= 36 (+)

D= 12

Then multiply (9) by -2 and add the resultant
to (10)

-2B- 2C-2D = ¢4
2B+ 2C+ D = -8
-D= -4
D= 4
This gives two values for D and is in-

consistent since each of the constants must have
a unique value consistent with the given con-
ditions. The three points are on the straight
line y = x,

PRACTICE PROBLEMS: In each of the prob-
lems below find the equation of the circle which
passes through the three given points,

. (14,0), (12,4), and (3,7)

. (10,3), (11,8), and (7,14)

. (1,1), (0,0), and (-1,-1)

. (12,-5), (-9,-12), and (-4,3)

B 6D DD =
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ANSWERS:

1. x2+ y? - 10x + 4y = 56

2. x2+ y2-6x-14y= 7

3. No solution; the given points describe
the straight line y = x,

4. X2+ y% 2%+ 14y=15

THE PARABOLA

The parabola is the locus of all points which
are equidistant from a fixed point, called the
focus, and a fixed line called the directrix.
In the parabola shown in figure 10-8, the point
V, which lies halfway between the focus of the
directrix is called the VERTEX of theparabola,
In this figure and in many of the parabolas
discussed in the first portion of this section,
the vertex of the parabola will fall at the origin;
however, the vertex of the parabola, like the
center of the circle, can fall at any point in the
plane,

In figure 10-8, the distance from the point
(x, y) on the curve to the focus (a, 0)is

\/(x-a)2+ y2

The distance from the point (x, y) to the di-
rectrix is

X+ a

Since by definition these two distances are equal
we may set them equal

w/(x-a)2+ y2=x+ a
Squaring both sides

(x-a)2+ y2=(x+ ::\)2

Expanding
x2-2ax+ a2+ y2=x2+ 2ax + az
Canceling and combining terms 2haveanequa-
tion for the parabola
y2 = 4ax

1
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For every positive value of x in the equa-
lion of the parabola there are two values of y,
But when x becomes negative the values of y
are imaginary, Thus, the curve must be en-
tirely to the right of the Y axis when the equa-
tion is in this form and a is positive, If the
equation is

y2=-4ax

(a negative) the curve lies entirely to the left
of the Y axis,
If the form of the equation is

:«:2 = 4ay

the curve will open upward and the focus will
be a point on the Y axis, For every positive
value of y there will be two values of x and the
curve will be entirely above the X axis, When
the equation is in the form

1':2 = -4ay

x+a

DIRECTRIX
-

o O o /
oqv FOCuS

Figure 10-8, -~The parabola,

the curve will open downward, be entirely be-
iow the X axis, and have as its focus a point on
the negative Y axis, Parabolas which are rep-
resentative of the four cases given here are
shown in figure 10-9,

When x is equal to a in the equation

y2 = 4ax
it follows that
y2 - 4a2
and
y =+2a

This value of y is the height of the curve at ¢&
focus or the distance from the focus to point
D in figure 10-8, The width of the curve at the
focus is the distance from point D to point D'
in the figure and is equal to 4a, This width is
called the LATUS RECTUM in many texts; how-
ever, a more descriptive term is FOCAL CHORD
and both terms will be used in this course, The
latus rectum is one of the properties of a par-
abola which is used in the analysis of a par-
abola or in the gketching of a parabola,
EXAMPLE: Give the value of a, the length
of the focal chord, and the equation of the par-
abola which is the locus of all points equi-
distant from the point (3, 0) and the line x = -3,

SOLUTION: First plot the giveninformation
on a coordinate system as shown infigure 10-10
(A). Reference to figure 10-8 shows that the
point (3, 0) corresponds to the position of the
focus and that the line x = -3 is the directrix
of the parabola, Figure 10-8 also shows that
the value of a is equal toone half of the distance
from the focus to the directrix or, in this
problem, one half the distance from x = -3 to
x = 3. Thus, the value of a is 3,

The second value required by the problem
is the length of the focal chord, As stated
previously, the focal chord length is equal
to 4a. The value of a was found to be 3 so
the length of the focal chord is 12. Refer-
ence to figure 10-8 shows that one extremity
of the focal chord will be a point on the curve
which is 2a or 6 units above the focus, and the
other extremity is a second point 2a or 6 units
below the focus, Using this information andre-
calling that the vertex is one-half the distance

145
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Figure 10-9,—Parabolas corresponding to four forms of the equation,
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from the focus to the directrix, plot three more
points as shown in figure 10-10 (B).

Now a smooth curve through the vertex and
the two points that are the extremities of the
focal chord is a sketch of the parabola in this
problem. (See fig. 10-10 (C).)

To find the equation of the hyperbola refer to
figure 10-10 (D) and use the procedure used
earlier, We know by definition that any point
P(x, y) on the parabola is equidistant from the
focus and directrix,

Thus we equate these two distances and

Jx-2)2 4 2oy, a

However, we have found the distance a to be
equal to 3 so we substitute and

(x - 3)2 4 y2=x+ 3

Square both sides
(x - 3)2+ y2=(x+ 3)2
Expand
x2-6x+ 9+ y2=x2+ 6x+ 9

Cancel and combine terms to obtain the equa-
tion of the parabola

y2 = 12x

If we check the consistency of our findings,
we see that the form of the equation and the
sketch agree with figure 10-9 (A). Also, the 12
in the right side of the equation corresponds to
the 4a in the general form and is correct since
we determined that the value of a was 3.

NOTE: When the focus of a parabola lies on
the Y axis, the equated distance equation is

\/(y-a)z+ x2=y+a

PRACTICE PROBLEMS: Give the equation,
the value of a, and the length of the focal chord
for the parabola which is the locus of all points
equidistant from the point and line given in the
following problems,

1. The point (-2,0) and the line x=2

2. The point (0,4) and the liney = -4

148

3. The point (0,-1) and the liney = 1
4. The point (1,0) and the line x=-1

ANSWERS:

1. y2=_8x,a=-2 f.c. =8
2. x°>=16y,a =4, f.c. =16
3. x2=-4y,a=-1, f.c. =4
4. y2=4x, a=1, f.c. =4

FORMULA GENERALIZATION

All of the parabolas in the preceding section
had the vertex at the origin and the correspond-
ing equations were in one of four forms as
follows:

1. y2 = 4ax
2. y? = -dax
3. xz = 4ay
4, x2 = =4ay

In this section we will present four more
forms of the equation of a parabola, generalized
to consider a parabola with a vertex at point V
(h,k). When the vertex is movedfrom the origin
to a point V(h,k) thex and yterms of the equation
are replaced by (x -~ h) and (y - k). Then the
general equation for the parabola whichopens to
the right (fig. 10-y (A)) is

(v - k)2 = 4ax - h)
The four general forms of the equations for

parabolas with vertex at the point V(h,k) are as
follows:

1, (y - k)2 = 4a (x - h), corresponiing to
y2 = 4ax, parabola opens to the right

2, (y- k)z = -4a (x - h), corresponding to
yz = -4ax, parabola opens to the left

151



Chapter 10—CONIC SECTIONS

3. (x - l'n)2 = 4a (y - k), corresponding to
x2 = 4ay, parabola opens upward

4, (x - h)2 = -4a (y - k), corresponding to
x2 = -4ay, parabola opens downward.

The method for reducing an equation to one
of these standardforms is similar to the methods
used for reducing the equation of a circle,

EXAMPLZE: Reduce the equation

y2-6y-8x+ 1=0

to standard form,
SOLUTION: Rearrange the equation so that

the second degree term and any first degree .

terms of the same unknown are on the left side,
Then group the unknownterm which appears only
in the first degree and all constants on the right.

y2-6y=8x-1

Then complete the square in y
y-by+9=8x-14+9

-32=6x+8

To get the equation in the form

v - K2 = 4dax - h)
factor an 8 out of the right side. Thus

-3 =8(x+1)

is the equation of the parabola,

PRACTICE PROBLEMS: Reduce the equa-
tions given in the following problems to stan-
dard form,

1. x2+4-4y
2. y2-4x=6y+9

3. 4x+ 8y + y2+ 20=0

4. 4x-12y+ 40+ x2 =0
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ANSWERS:
1. x®=4(y-1)
2. (v -3)%=4x

3. (+4)2=-a(x+1)
4. (x+2)%=12(y-3)

THE ELLIPSE
An ellipse is a conic section with an eccen-
tricity less than one,
Referring to figure 10-11, let
PO=a
FO=c¢
OM=d
where F is the focus, 0 i3 *he center,'and P and

P' are points on the ellip:ie. Then from the de-
finition of eccentricity,

a=-C
S — = a-c=ed- ea
d-a ¢
a+ C

= +c=ed+ ea
d+ a e a C e

Addition and subtraction of the two equations
give:

2¢ = 2ae or ¢ = ae

1
2a=2deord=% (14)

Place the center of the ellipse at the origin
so that one focus lies at (-ae,0) and one directrix
is the line x = -a/e.

Referring tofigure 10-12, therewill be a point
on the Y axis which will satisfy the conditions
for an ellipse, Let

P'O=b
FO =¢

" }52 .
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and the distance from (x, y) to the directrix

e d —

=_ 2
x—-eis

= Q a
—— ¢ __j X+ E
P 0 F P The ratio of these two distances is equal to e
‘80 that

Figure 16-11.—Development of focus
and directrix.

/(x+ a.e)2+412 ce

a
Then X+ 3
P'F= b2+ ¢ or
2 2 _ a
and the ratio of the distance of P'' from the \/ (x+ae)”+y =e (x * ;)
focus and the directrix is e so that
=ex+ &
Vil + c? -
a ¢ Squaring both sides gives
e
x2 + 2aex + aze2 + yz = ezx2 + 2aex + az
Multiplying both sides by a/e gives
Canceling like terms and transposing termsinx
) 2 2 _ to the left-hand side of the equation gives
. b +c¢c =a
of x2 _ e2x2 + yz - az ) azez
b2 + cz - az Removing a common factor,
8o that 3 x2(1 - e?) + y2 = az(l - &) (17
b=+va“-¢ (15)

Now combining equations (14) and (15) gives

b=ﬂ:\/a2 - aze2
rd
b=saV1 - e (16) ’

Refer to figure 10-13, If the point (x, y) is
on the ellipse, the ratio of its distance from F
to its distance from the directrix willbee: The
distance from (x, y) to the focus (-ae,0) will be

or

-,__
{
!
]
l
]
I
|
]
N
o

Z | DIRECTRIX
x=d

o9

2 3 Figure 10-12,-Focus directrix,
J(x +ae) +y and point P,
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Dividing equation (17) through by the right-
hand member, 9

X

+ —2-1—2- =1
:T a®(l - e%)
From equation (16) we obtain

b=¢a\/1-e2

a2t - %) = b2

so that the equation becomes

(18)

This is the equation of an ellipse instandard
form, In figure 10-14, a is the length of the
semimajor axis and b is the length of the semi-
minor axis,

The curve is symmetrical with respect to the
x and y axes, so that it is easily seen that it
has another focus at (ae,0) and a corresponding
directrix x = a/e,

The distance from the center through the
focus to the curve is always designated a and is
called the semimajor axis, This axis maybe in
either the x or y direction, When it is in the y

direction, the directirix is a line with the equa-
tion

y=k

Y

Figure 10-13.—The ellipse,
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Xs= 2 -

DIRECTRICES

e ]

) F

e MAJOR______|

AXIS

o

Figure 10-14,—Ellipse showing axes,

In the case we have studied, the directrix
was denoted by the formula

x=k

where k is a constant equal to - a/e,

The perpendicular distance from the midpoint
of the major axisto the curve is called the semi-
minor axis and is always signified by b,

The distance from the center of the ellipse to
the focus is called ¢ and in any ellipse the follow-
ing relations hold for a, b, and ¢

Whenever thedirectrixisalinewith the equa-

tion y =k the major axiswill be in the y direction
and the equation of the ellipsewill be as follows:

2 2
X y_
"] + =1
b a.2 (19)

Otherwise everything remains as before and

the equation is given by (18),
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In an ellipse the position of the a2 and b2
terms indicate the orientation of the ellipse
axis, As shown in figure 10-14 the value is
the semimajor or longer axis,

In the previous paragraphs formulas were
given which related a, b, and ¢ and, in the first
portion of this discussion, a formula relating a,
¢, and the eccentricity was given, These relation-
ships will be used to find the equation of an
ellipse in the following example,

EXAMPLE: Find the equation of the ellipse
with center at the origin and having foci at

(+2 ¥/6,0) and an eccentricity equal to 2—7—6

SOLUTION: With the focal points on the x
axis the ellipse is oriented as in figure 10-14
and the standard form of the equation is

2 2

x -
e

With the center at origin the numerators
of the fractions on the left are ¥2 and y2 so
the problem is to find the values of a and b,

The distance from the center to either of
the foci is the value c (fig, 10-14) so in this
problem

c=%2/6

from the given coordinates of the foci,
The values of a, ¢, and e (eccentricity) are
related by

or

a=%
e

From the known information, substitute the
values of ¢ and e

a=*2‘/-é
216
7
a =s2vBx !
2V6
and a = 27
a2=49

Then, using the formula
b=vy 3.2 - c2

or

and substituting for az and c2

b2 = 49 - (2 VB)2
b2 = 49 - (4 x 6)
b2 = 49 - 24

gives the final required value of

b = 25

Then, the equation of the ellipse is
2 2

Xy
a9 * 25 -1

PRACTICE PROBLEMS: Find the equation

of the ellipse with center at the origin and for
which the following properties are given,

1. Foci at (x v7,0) and an eccentricity

ELLIPSE AS A LOCUS OF POINTS

An ellipse may be defined as the locus of
a point which moves so that the sum of its
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distances from two fixed points is a constant
equal to 2a,

Let the foci beF1 and Foat (+ae,0), as shown
in figure 10-15, and let the directrices be

x = 42
e
Then \
a
F1P=e(-;-x/ =a - ex
FP=e<-a4+x =a+
2 o a+ ex
so that

F1P+ F2P=a-ex+ a+ ex

FIP + F2P =2a
Whenever the center of the ellipseisatsome
point other than (0,0), say at the point (hk),
figure 10-16, the equation of the ellipse mustbe
modified to the following form

x-n? g-w_,
a2 b2

(20)

Subtracting h from the value of x reduces the
value of the term (x - h) to the value which x
would have if the center were at the origin, The
term (y - k) is identical in value to the value
cf y if the center were at the origin,

REDUCTION TO STANDARD FORM

Whenever we have an equation in the form

Ax®+ Cy2+ Dx+ Ey+ F=0 (21)

where the capital letters refer to independent
constants and A and C have the same sign, we
can reduce the equation to the standard form for
an ellipse, Completing the squares inxand y
and performing a few simple algebraic trans-
formations will change the form to that of equa-
tion (20).

THEOREM: Anequationof the second degree,
in which the _xy term is missing and the co-
efficients of x2 and y° are different buthave the
same sign, represents an ellipse with axes
parallel to the coordinate axes,

e

Figure 10-15,—~Ellipse, center at origin.

EXAMPLE: Reduce the equation

4x2 + 9y2 -40x - 54y + 145 =0

to the standard form of an ellipse.
SOLUTION: Collect terms in xandy and re-
move the common factors of these terms.

4x? - 40x + 9y° - 54y + 145 =0

4(x? - 10x) + 9(y> - 6y) + 145 =0

Transpose the constant terms and complete
the squares in x and y. Whenthere are factored
terms involved in completing the square, as in
this example, an error is frequently made. The

Y

Figure 10-16,~Ellipse, center at (hk),
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factored value operates on the term added in-
side the parentheses as well as the original
terms, Therefore, the values added to the right
side of the equation will be the product of the
factored value and the term added to complete
the square,

(<% - 10x + 25) + 9(y° - Gy + 9)
= -145 + 4(25) + 9(9)
= -145 + 100 + 81
-5

a(x - 5)2 + 9fy - 3)° = 36

Divide through by the right-hand (constant)
term. This reduces the right member to 1 as
required by the standard form,

2 2
ax-5° oy -3)°2 _
._36_+ _.Ly.s.g__l

m%_sﬁ . (eriﬁ -1
This reduces to the standard form

(g-g)z R (y-g)z 1
(3) @)

Corresponding to equation (20) and represents an
ellipse with the center at (5,3), its semimajor
axis (a) equal to 3, and its semiminor axis (b)
equal to 2,

EXAMPLE: Reduce the equation

3x% + y2 + 20x+ 32 =0

to the standard form of an ellipse,

SOLUTION: .First, collect terms inxand y,
Af in the previous example, the coefficients of
x“ and y2mustbe reducedtol in order to facili-
tate completing the square. Thus the coefficient
of the x¢ term is divided out of the two terms
containing x, as follows:

3x2+ 20x + y2+ 32=0

3 (x2+ 20x

2 _
3> +y =32

154
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Complete the square in x noting that there will
be a product added to the right side

2. 20x 100 2
3 (x +-§—+ T) +y =—32+3(1—gg)
3(x+1—Q2+ =-32+3l0
3 y 9
10\ 2 _-288+ 300
3(x+ —5-) +y = 9

2
3 (x+ 1—0) +y2=-§—

Divide through by the right-hand term,
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This reduces to the standard form

x+-122 2
g + L =1
® &
8 3
2
<x+12% +ﬁr2=1
@ &

PRACTICE PROBLEMS: Express the fol-
lowing equations in the standard form for an
ellipse.

1. 5%2 - 110x + 4y + 4250

2. x2 - 14x + 36y°

- 216y + 337=0
3. 9x%- 5d4x+ dy> + 16y + 61 =0
4. 3x%- 14x+ 4y2 + 11=0
ANSWERS:

p, Eo1m? ¥
@ 6/

2, (x-7)2 + SLI:;)Z =1

THE HYPERBOLA

A hyperbola is a conic section with an ec-
centricity greater than one.
The formulas

c =ae

and
a=2
e

developed in the section concerning the ellipse
were derived so that they hold truefor any value
of eccentricity. Thus, they hold true for the
hyperbola as well as for an ellipse. Since e is
greater than one for a hyperbola, then

c=aeandc > a

=%andd <a

Therefore ¢ >a >d.

According to this analysis, if the center of
symmetry of a hyperbola is the origin, the foci
will lie farther from the origin than the direc-
trices. An inspection of figure 10-17 shows that
the curve will never cross the Y axis. Thus,
the solution for the value of b, the semiminor
axis of the ellipse will yield no real value for
b. In other words, b will be animaginery
number. This can easily be seen from the

equation
b=V az - c2

since ¢ > a for a hyperbola,

However, we can square both sides of the
above equation, and since the square of an
imaginary nmumber is a negative real numberwe

(5)2 write
-b2 - az _ cz
2 2
(x - 3) +2)” _ 1
3. =—3— or
(2) 3)
nc)2 = c2 - az
7)2 and, since ¢ =
(x + 9 ’ ec =ae,
3 + __Y__ = 1
4. 2 2
4 23
(’:?) ( 3 > bl =aZe? - a?= a.z(e2 -1)
155
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»
x x
o E ojo
" 8 8 1]
(] o
Y
() (0,0)

F, (c,0)

Figure 10-17,—The hyperbola.

Now we can use this equation to obtain the equa-
tion of a hyperbola from the following equation
which was developed inthe section on the ellipse.

X_ 4 y2 =1
a2 a2(1 - e2)
and since
a2(1 - e2) = -az(e2 -1)= -b2
we have
a b

This is a standard form for the equation of
a hyperbola. The solution of this equation for

y gives
y = d:gw/ x2 - a2

wgich shows that y is imaginary only when
x® <a2,  The curve, therefore, lies entirely
beyond the two lines x = #a and crosses the x
axis at x = z1a,

The two straight lines

bx + ay =0 and bx - ay = 0 (22)
can be used to illustrate an interesting property
of a hyperbola. The distance from the line
bx - ay = 0 to a point (x1, y1)on the curve is
given by

a2 +b

Since (x,, y, ) is on the curve, its coordinates
satisfy the aquation

2.2 2 2_ 22
bx1 -ay, =ab

which may be written

2.2
(bx1 - ayl) (bx1 + ayl) =a"p

or
2 2

ab

bx, - ay, = ———2—
1 1 b:u:1 + ay,

Now substituting this value into equation (23),

gives us

a2b2

1
bx +ay>
8.2+b2 < 1 )

As the point (xq, y;) is chosen farther and
farther from the center of the hyperbola, the
absolute values for X1 and yj will increase and
the distance d will approach zero. A similar
result can easily be derived for the 1line
bx + ay = 0,

The lines of equation (22) which are usually
written

d=

y=-3¥andy +3X

are called the asymptotes of the hyperbola. They
are very important in tracing acurveand study-
ing its properties, The asymptotes of a hyver-
bola, figure 10-18, are the diagonals of the rect-
angle whose center 1s the center of the curve and
whose sides are parallel and equal tothe axes of
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the curve, The latus rectura of a hyperbola is

2
al to 2b
equal ™0 mar

Another definition of a hyperbola is thelocus
of a point that moves so that thedifference of its
distances from two fixed points is constant, The
fixed points are the foci and the constant
difference 18 2a,

The nomenclature of the hyperbola is slightly
different from that of an ellipse, The trans-
verse axis is 2a or the distance between the in-
tersections of the hyperbola with its focal axis,
The conjugate axis is 2b and is perpendicularto
the transverse axis,

Whenever the foci are on the Y axis and the
directrices are lines of the formy =1k, where k
is a constant, the equation of the hyperbola will
read

2 2
%-%:1
a b

This equation represents a hyperbolawithits
transverse axis on the Y axis, Its asymptotes
are the lines by - ax = 0 and by + ax =0,

ANALYSIS OF THE EQUATION

The properties of the hyperbola most often
used in analysis of the curveare thefoci, direc-
trices, length of the latus rectum, and the equa-
tions of the asymptotes,

Reference to figure 10-17 shows thatthefoci
are given by the points F; (c,0) and Fa (-c,0)
when the equation of the hyperbolaisinthe form

i
—_— - 1
az b2
If the equation were
2 2
b a

the foci would be the points (0,c) and (0,-c),
The value of cis either determinedfrom the for-
mula

cz=az+ b2

or the formula

(e
1

ae

Figure 10-18,~Using asymptotes to sketch a hyperbola,
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Figure 10-17 also shows that the directrices
g or, in the case where the
hyperbolas open upward and downward, y = :L-%.

This is also given earlier in this discussion

a
asd:E-

are the lines x =+

The equations of the asymptotes are given
earlier as

bx+ay=0andbx -ay=0

or

=_E — R
y axandy +3 X

It was also pointed out that the lengthof the latus
2
rectum is equal to %:T

The properties of a hyperbola can be deter-
mined from the equation of a hyperbola or the
equation can be writtengivencertainproperties,
as shown in the following examples. In these
examples and in the practice problems immedi-
ately following, all of the hyperbolas considered
have their centers at the origin,

EXAMPLE:
hyperbola withaneccentricity of 3/2, directrices
x = +4/3, and foci at (£3,0),

SOLUTION: The foci lie on the X axis at the
points (3,0) and (~3,0) so the equation is of the

form 9 9
a b

This fact is also shown by the equation of the
directrices,

Before proceeding with the problem one point
should be emphasized: in the basic formula for
the hyperbola the a2 term will always be the de-
nominator for the x2 term and the b2 term the
denominator for the y2 term. Theorientationof
the axis of s etry is not dependentonthe size
of a2 and b2 as in the ellipse; it Jtes along or
parallel to the axis of the positive x“ or yzterm.
Since we have determined the form of the equa-
tion and since the center of the curve in this
section i8 restricted to the origintheproblem is
reduced to finding the values of a2 and

First, the foci are given as (+3,0)and since
the foci are also the points (z¢,0) it follows that

c =13

The eccentricity is given and the value of a2
can be determined from the formula

-~
il

a:‘-
a =+2
a2=4

The relationship of a, b, and ¢ for the
hyperbola is

and

Find the equation of the

When these values are substituted in the equa-
tion

2 2
f-Lr=1
a b
the equation
2 2
¥ -3
4 5

results and is the equation of the hyperbola,
The equation could also be found by the use
of other relationships which utilize the given
information, '
The directrices are given as . -

»

it

H
Wik
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and, since
a
d=—
e
or
a=de

Substituting the values given for d and e results

in
2=s5 (3)
Whend > 0
e )
a=2
Whend <« 0
40
a= -2
therefore
a=zx2
and
3.2:4

While the value of ¢ can be determined by the
given information in this problem, it could also
be computed since '

and, whena > 0

Fora< 0
- 3
¢=-2 (2)
c=-3
Then
c =3

With values for a and ¢ computed, the value
of b is found as before and the equation can be
written,

EXAMPLE: Find the foci, directrices,
eccentricity, length of the latus rectum, and
equations of the asymptotes of the hyperbola
described by the equation

2 2
X .Y -4
9 16
SOLUTION: This equation is of the form
2 2
- =1
a b

and the values for a and bare determined by in-

c =ae spection to be
a2 =9
and a hasbeen found to equal +2 and eis given as
3 a=%3
9 then _
and
b2 = 16
_ 3
eme2 () b =44
159
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With a and b known, find ¢ by using the

formula b2 _ cz _ a2
c2=az+ b2
c=xvV9 + 16
c=x V25
c=%5

From the form of the equation we know that the
foci are at the points

Fl(c, 0)

and

Fz(—c,O)
so the foci = (£5,0).
The eccentricity is found by the formula

=L
€=
- £9
=13
=9
€°3

Reference to figure 10-17 shows that with the
center at the origin, ¢ and a will have the same
sign,

The directrix is found by the formula

a=2
e

or, since this equation will have directrices
parallel to the Y axis, use the formula

Whena > 0

x=2
5
andwhena < 0
3
x=-3 5)
=9
X=-%

80 the direcirices are the lines

Y]
X=75

The latus rectum (1. r.) is found by

2

lL.r. =%:j|-

Lr. =g-(31—6)
- 32
1.1‘. - 3

=2

X~ e Finally, the equations of the asymptotes are the
equation of the two straight lines
Then

_ 43 bx+ ay=0

X=75
3 and
3
x=t3'("5-) bx -ay = 0
160
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In this problem, substituting the values of a
and d in the equation gives

4x+ 3y =0
and

4x -3y =0
or

4x+3y =0

The equa‘ions of the lines asymptotic to the
curve can also be written in the form

=P
y= ax
and
_.b,
a
In this form the lines are
]
y= 3x
and
=4,
y=-3
or
y=i%x

If we think of this equation as a form of the
slope intercept formula

y=mx+ Db
from chapter 9, the lines would have slopes of
i g and each would have its Y intercept at the

origin as shown in figure 10-18.
PRACTICE PROBLEMS:
1. Finc¢ the equation of the hyperbola with an

eccentricity of V2, directrices x = = 32-, and foci
at &v2, 0).

2. Find the equation of the hyperbola with an
eccentricity of 5/3, foci at (+5,0), and directrices
x =z 9/5.

Find thefoci, directrices, eccentricity, equa-
tions of the asymptotes, and length of the latus
rect:m of the hyperbolas given in problems 3
and-4.

22
3.-9—---9 =1
2 2
L. S A
4 9~ "4 1
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ANSWERS:
1, x2-y>=1
2 2
x Yy _
2. 9 -{g =1
3. foci = (23 v2,0); directrices, x =%,

eccentricity = v2; Lr. = 6; asymptotesxxy = 0.

4, foei = (& V13,0); directrices x = j%;
eccentricity =‘/-1—§§; 1. r. =-§; asymptotes 2x
+3y=0.

The hyperbola can be representedbyan
equation in the form

Ax2+ Cy2+ Dx+ Ey+ F=0

where the capital letters refer to independent
constants and Aand have different signs. These
equations can be reduced to standard forminthe
same manner in which similar equations for the
ellipse were reduced to standard form. The
general forms of these standard equations are
given by

a-n?  @-m:
o Sl S

a b
and
v-w? &-w?_
b2 az
POLAR COORDINATES

So far we have located a point in a plane by
giving the distances of the point from two per-
pendicular lines. The location of a point can be
defined equally well by noting its distance and
pearing. This method is commonly used aboard
ship to show the position of another ship or
target, Thus, 3 miles at 35° locates the posi-
tion of a ship relative to the course of the ship
making the reading. We can use this method
to develop curves and bringout their properties.
Assume a fixed direction OX and a fixed point
0 on the line in figure 10-19. The position of
any point P is fully determined, if we know the
directed distance from 0 to P and the angle that
the line OP makes with reference line 0X. The
line OP is called the radius vector and the angle
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POX is the polar angle, The radius vector is
designed p while 8 is the angle designation,

Point 0 is the pole or origin, As in conven~
tional trigonomeatry, the polar angle is positive
when measured counterclockwise and negative
when measured clockwise, However, unlike the
convention established in trigonometry, the
radius vector for polar coordinates is positive
only when it is laid off on the terminal side
of the angle. When the radius vector is laid
off on the terminal side of the ray produced be-
yond the pole (the given angle plus 180° a
negative value is assigned the radius vector.
For this reason, there may be more than one
equation in polar coordinates to describe a
given locus. The concept of a negative radius
vector isutilized in some advanced mathematics,
For purposes of this course the concept is not
explained or used. It is sufficient that the
reader remember that the convention of an
always positive radius vector is not followed

in some _branches of mathematics.

TRANSFORMATION FROM CARTESIAN
TO POLAR COORDINATES

At times it will be simpler to work with the
equation of a curve in polar coordinates than in
cartesian cocrdinates, Therefore, it is im-
portant to know how to change from one system
to the other, Sometimes both forms are useful,
for 3ome properties of the curve may be more
apparent from one form of the equation and other
properties more evident from the other.

Transformations are made by applying the
following equations which can be derived from
figure 10-20,

X =pcos 0 (24)
y=psin b (25)

p2 = x2 + y2 (26)

=X
tan = & (27)
P
P
8 X

Figure 10-19. — Defining the polar coordinates.

EXAMPLE: Change the equation
2
y=x
from rectangular to polar coordinates.

SOLUTION: Substitute p cosg for xand P sin
0 for y so that we have

p sind =p2 cos’ 8
2
sin® = p cos™ 0
or
o = sin 8
c0920
p = tan 8 secd

EXAMPLE: Express the equation of the
circle with its center at (a,0) and with a radius
a, as shown in figure 10-21,

(x - a)2+ y2=a.2

in polar coordinates.

Figure 10-20,—Cartesian and polar
relationship,
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SOLUTION: First, expanding this equation
gives us

x2-2ax+ a2+ y2=a2

Rearranging terms we have

x2+ y2=2ax

The use of equation (26) gives us
p2 = 2ax

and applying the value of x given by equation
(24), results in

p2 =2apcosi

Dividing through by p we have the equation of a
circle with its center at (a,0) and radius a in
polar coordinates

p =2a cosb

TRANSFORMATION FROM POLAR
TO CARTESIAN COORDINATES

In order to transform to an equation in
cartesian or rectangular coordinates from an
equation in polar coordinates use the following
equ;tions which can be derived from figure
10-22,

(X,Y)

—
(a,0)

4

p =V yi (28)
cosf = —= (29)
/ 2 2
X + y
sing = —J— (30)
v x2 + y2
=X
tan o " (31)
2 2
secd = ’—‘—;—Y— (32)

Q
(/]
Q
<D
]
o
N
<+

33)
cotfd == (34)

EXAMPLE: Change the equation
p =sech tanb
to an equation in rectangular coordinates

SOLUTION: Applying relations (28), (31),
and (32) to the above equation gives

[l

Dividing both sides by v x2 + yz, we obtain

or

which is the equation we set out to find,

Figure 10-21,—~Circle with center (a,0).

EXAMPLE: Change the following equation
to an equation in rectangular coordinates,

= 3
P 8in@ - 3 cosd

v

163




MATHEMATICS, VOLUME 2

(x,y) 1. x2+ y2=4

2. (x2 + yz) = 3.3 x2
3. 3y-Tx=10

40 y=2X'3

Change the equations in the following problems
to equations having Cartesian coordinates,

y 5. p=4sind
©=Arc Tan X
3 6. p=8ind + cosf
Figure 10-22,~Polar to cartesian relationship, 7. p= az
SOLUTION: Written without a denominator ANSWERS:
the polar equation is
1. p =12

psind -3pcosd =3

Using the transformations 2. p=avacos?t

10

p sind =y 3. p=331n6-7c089
P cos b =x . . -3
L] p =
9 -
we have sin 2 cosb
y-3=3 5. x2+y2-4y=0
as the equation in rectangular coordinates, 6. x° 4+ y2 =y+x
PRACTICE PROBLEMS: Change the equa~
tion in problems 1 through 4 to equations having 2 9 4
polar coordinates, 7. x +y =a
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CHAPTER N

TANGENTS, NORMALS, AND SLOPES OF CURVES

In chapter 9, the notation 2% was introduced

to represent the slope of a line, The straight
line discussed has a constant slope and the
symbol Ay was defined as (yg - yp) and Ax
was defined as (xg - Xq). In this chapter we
will discuss the slope of curves at specific
points on the curves, We will do this with as
little calculus as possible but our discussion
will be directed toward the study of calculus,

SLOPE OF A CURVE AT A POINT

In figure 11-1, the slope of the curve is

represented at two different places by 2—1. The
A

value of -A—% taken on the lower part of the curve

will be extremely close to the actual slope at
Py because Py lies on a nearly straight portion
of the curve. The value of the slope at Py will
be less accurate than the slope near Py because
P9 lies on a portion of the curve which has
more curvature than the portion of the curve
near Pj. In order to obtain an accurate mea-
sure of the slope of the curve at each point, as
small a portion of the curve as possible should
be used. When the curve is nearly a straight
line a very small error will occur when finding
the slope regardless of the value of the incre-
ments Ay and.Ax, If the curvature is great and
large increments are used when finding the
slope of a curve, the error will become very
large.

Thus, it follows that the error can be re-
duced to an infinitesimal if the increments are
chosen infinitely small, Whenever the slope of
a curve at a given point is desired, the incre-
ments &y and Ax should be extremely small
Consequently, the arc of the curve can be re-
placed by a straight line, which determines the
slope of the tangent at that point,
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It must be understood that when we speak
of the tangent to a curve at a specific point we
are really considering the secant line, which
cuts a curve in at least two points, This secant
line is to be decreased in length, keeping the
end points on the curve, to such a small value
that it may be considered to be a point, This
point is then extended to form the tangent to
the curve at that specific point, Figure 11-2
shows this concept.

DIRECTION OF A CURVE
If we allow
y = f(x)

to represent the equation of a curve, then
2—% is the slope of the line tangent to the curve

at P (x, y).

The direction of a curve is defined as the
direction of the tangent line at any point on the
curve, Let 6 equal the inclination of the tan-
gent line; then the slope equals tan § and

A

Zixf =tan 6
is the slope of the curve at any point P (x, y).
The angle 64 is the inclination of the tangent
to the curve at Py in figure 11-3, This angle
is acute and the value of tan 61 is positive,
Hence the slope is positive at point Py, The
angle 62 is an obtuse angle and tan 6 9 i neg-
ative and the slope at point P2 is negative, All
lines which lean tc the right have positive
slopes and all lines which lean to the left have
negative slopes, At point P3 the tangent to the
curve {is horizontal and 6 equals 0, This
means that

Ay - ° _
AX tan 0 0
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Figure 11-1,~Curve with increments
Ay and AXx.

Figure 11-2,—~Curve with secant line
and tangent line,

The fact that the slope of a curve is zero
when the tangent to the curve at that point is
horizontal is of great importance in calculus
when determining the maximum or minimum
points of a curve. Whenever the slope of a
curve is zero, the curve may be at either a
maximum or a minimum,

Whenever the inclination of the tangent to a
curve at a point is 90° the tangent line is

166

Figure 11-3,—~Curve with tangent lines.

vertical and parallel to the Y axis, This re-

sulis in an infinitely large slope

Ay - ° =
AX tan 90

TANGENT AT A GIVEN POINT
ON THE STANDARD PARABOLA

The standard parabola is represented by the
equation

y2 = 4ax
Let P; with coordinates (x1, y1) be a point on
the curve. Choose P' on the curve,figure 11-4,

near the given point so that the coordinates of
P' are

(:rt1 + Ax, y, + Ay)
Since P' is a point on the curve
y2 = 4ax

the values of its coordinates may be substi-
tuted for x and y. This gives

(y1 + Ay)z = 4a(x1 + AX)

or

yf + 2y, Ay + (Ay)2 =4ax, + 4a ax (1)
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Figure 11-4,--Parabola,

The point Py(xy, yy) also lies on the curve and
we have

vy = 4:=1x1

Substituting this value for yf into equation (1)
transforms it into

4ax1 + 2y1 Ay + (Ay)2 = 43.::1 + 4a Ax
Simplifying we obtain
2y1Ay + (Ay)2 = 4aAx (2)

Divide through by Ax, obtaining

Ay
Solving foere find
(Ay)2
Ay _ 4a T Ax
AX 2y1 2y1
(3)
(Ay)2
- 2a . b8x
yl 23’1

Before proceeding, a discussion of the term

(ay)?
ax
2y1

in equation (3) is in order. If we solve equation
(2) for Ay we find

Zy1 Ay + (Ay)2 = 4aAXx

then
Ay(2y1 + Ay) = daax
and
_ 4daax
4y = 2y, + Ay

Since the denominator -contains a term not de-
pendent upondy or Ax, as we let Ax approach
zero Ay will also approach zero,

NOTE: We may find a value for Ax that will
make Ay l¢ss than 1 and then when Ay is
squared it will approach zero at least as rapidly
as Ax does,

We now refer to equation:(3) again and make

@y

) Ax
the statement that we may disregard
A (ay? _ danx Y TR oy
Ax Ax Ax since it approaches zero when Ax approaches
zero,
which gives
Then
2 Ay _ 2a (4)
8Y . 4. lay) a-a
) ax "B - i o
167

170



MATHEMATICS, VOLUME 2

The quantity%% is the slope of the line con-

necting Py and P'. From figure 11-4, itis
obvious that the slope of the curve at P is
different from the slope of the line connecting
Py and P',

A

As Ax and Ay approach 2ero, the ratioK%
will approach more and more closely the true
slope of the curve at Py, We designate the
slope by (m). Thus, as &8x approaches zero,

equation (4) becomes

The equation for a straight line in the
point. slope form is

y-y, = m(x - xl)
Substituting —33- for m gives
1

2a
- = a—— x -
y Yl 3 ( xl)

Clearing fractions we have

2 _
vy, - ¥ = 2ax - 2ax, (5)
but
2 _
Yy = 4:ax1 (6)

Adding equations (5) and (6) yields
¥y, < 2ax + Zax1

Dividing by 2 gives
2ax 2ax1

W

which is an equation of a straight line in the
slope intercept form, This is the equation of
the tangent line to the parabola

y2=4ax

at the point (xl, yl).

EXAMPLE: Given the equation

yz = Bx

find the slope of the curve and the equation of
the tangent line at the point (2, 4). :

SOLUTION: Put the equation in standard
form as follows: Solve for (a) by letting

y2 = 8x
have the form
y2 = 4ax
Then
4a = 8
a=2
and
2a = 4
The slope m at point (2, 4) becomes
-.2a
"1
X,y

The slope of the line is 1 and the equation of
the tangent to the curve at the point (2, 4) is

e, @@
B 4 4

=X+ 2

This method, used to find the slope and
equation of the tangent for a standard parabola,
can be used to find the slope and equation of
the tangent to a curve at any point regardless
of the type of curve. The method can be used
to find these relationships for circles, hyper-
bolas, ellipses, and general algebraic curves,

This general method is outlined as follows:
To find the slope (m) of a given curve at the
point Pj (xq, y1) choose a second point P' on
the curve so that it has coordinates (xq +AOx,
y1 +Ay) and substitute the coordinates of P’
in the equation of the curve and simplify.
Divide through by Ax and eliminateterms which"
contain powers of Ay higher than thefirst power,
as previously discussed. LetAx approachzero

168

A7




Chapter 11—TANGENTS, NORMALS, AND SLOPES OF CURVES

and %% will approach the absolute value for the

slope (m) at point Py, Finally solve for (m),

When the slope and coordinates of a point
on the curve are known, the equation of the
tangent line can be found by using the point
slope method.

EXAMPLE: Using the method outlined, find
the slope and equation of the tangent line to the
curve

2 2 2

xX“+y =1r"at (xl, yl) (N

SOLUTION: Choose a second point Pl such
that it has coordinates
(x1 + AX, vy + Ay)

Substitute into equation (7) and

(x1 + .f.\x)2 + (y1 + Ay)2 = r2

thus

xf + 2, A% + (Ax)2 + y% + 2y1Ay + (Ay)2 = r2

then

2

2x1Ax + (Ax)2 + 2y1Ay + (Ay)2 =r2 - xf -y

_.2 ,2 2
=pr - (x1 + yl)
=0

Divide through by Ax

—_—— 4 ——-—E + 2y1Ay + (Ay)z =0
AX AX AX ax

and eliminating (Ay)2 results in

ay -
2x1 + AX + 2y1 Ax 0

Solve for %-Xx as follows:

-2x, - AX
Ay - 1

ax 2y,

but
Ay _
Ay cm
and
. -2x1 - AX
23,71

Let Ax approach zero and

Now use the point slope form of a straight line
-X
with the slope equal to —l and find at point
(x4 ¥¢) "
171
y-y = m(x -xl)
-X
S
=3 (x - xl)

1
Rearranging

2 2
b4S T S U s |

and
2 2
but
2 2 2
xl + yl =7

Then, by substitution
o 2
w, = -XqX +r
and

which is the general equation of the tangent
line to the curve

x +y = r2 at (xl, yl)
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EXAMPLE: Using the given method, with
minor changes, find the slope and equation of
the tangent line to the curve

x? - y2 - kz

SOLUTION: Choose a second point P1 such
that it has coordinates

at (xl, yl) (8)

(x1 +Ax, yy + AY)

Substitute into equation (8) and

(x, + 2% - (7, + ay)? = K2

and
xf+ 2x1Ax+ (Ax)2 - yf - 2y1Ay - (Ay)2 = k2 (9

then subtract equation (8) from (9) and obtain

2, ax + (ax)” - 25,8y - (a9)% = 0

then divide by Ax and we have

2
) ay _ (ay)” _
X, + 80X -2y Zx © ax -0
Let Ax approach zero and
- ay -
2:*%:1 2y1 AX 0
Ay
Solving for X results in
AX yl

Use the point slope form of a straight line to
find the equation of the tangent line at point
(xl, yl) as shown in the following:

y-y1=m(x-x1)

X
Substitute —- for m
Y
X

1
Y-y, =—(x - x,)
1 Yy 1
Multiply through by ¥y and

2 2
YWy =Y = ¥x - %

Rearrange to obtain
2 2
YY) = XqX - Xy + ¥y

_ 2 2
= *x '("1 - Yl)

2 and

_ 2
yyl-xlx-k

Substitute xf - yf for k

Divide through by 2 to obtain

which is the equation and slope desired.

PROBLEMS: Find the slope (m) and equa-
tion of the tangent line, in problems 1 through
6, at the given points,

1, y2=%x at (3, 2
2. y2 = 12x at (3, 6)

2 2
3. x“+y =25 at (-3, 4)
4. «2 + y = 100 at (6, 8)
5. x2 - y2 =9 at (3, 4)
6. x> - y° = 3 at (2, 1)
7. Find the slope of y = x2 at (2, 4)
8. Find the slope of

y=2x2- 3x+ 2 at (2, 4)

ANSWERS:
Ly=3+1,m=3
2, y=x+3 m=1
2

5 _5x 9 _5

Y SR SR |
v, . ~a=3, m=2

m=4
8. m=5
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EQUATIONS OF TANGENTS
AND NORMALS

In figure 11-5, the coordinates of point Py
on the curve are (x1, y;). Let the slope of the
tangent to the curve at point Py be denoted by
mi. Knowing the slope and a point through
which the tangent line passes, the equation of
that tangent line can be determined by using
the point slope form,

Thus, the equation of the tangent line (MPI)
is

y-y1=m(x-x1)
The normal to a curve at a point (x1, y1) is

the line which is perpendicular to the tangent
line at that point, The slope of the normal

line is then - m}— where, as before, the slope
1

of the tangent line is m,. This is shown in the

following:

If
m, =tan 6
then

m, = tan (6 + 90°)

= -tan [180° - (8 + 90°)]
= -tan (90° - )
= -cot @

_1
tan 6

A
my
therefore

me = -—L
2 m,

The equation of the normal through Pl is

1
Y-y1=-5;(X-x1)

Figure 11-5,—Curve with tangent and
normal lines,

Notice that if the slope of the tangent is
my and the slope of the normal to the tangent
is mg and

then the product of the slopes of the tangent
and normal equals -1, The relationship be-
tween the slopes of the tangent and normal
stated more formally is: The slope of the
normal is the negative reciprocal of the slope
of the tangent,

Another approach iv show the relationship
between the slopes of the tangent and normal
follows: The inclination of one line must be
90° greater than the other, Then

92 = 91 + 90
If .
tan 92 =mg
and
tan 92 = tan (01 + 90°)
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then

sin (61 +90°)
O\ o -
tan (91"' 90°)= cos (91+ 90°)

sin 6, cos 90° + cos 6, sin 90°
cos Blcos 90° - sin 91 8in90°

cos 91

sin 91

therefore

=. 1 _
LENGTHS OF SUBTANGENT
AND SUBNORMAL

The length of the tangent is defined as that
portion of the tangent line between the point
Py (%1, yq) and the point where the tangent
line crosses the X axis. In figure 11.5, the
length of the tangent is (MPy),

The length of the normal is defined as that
portion of the normal line between the point Py
and the X axis, That is (PyR) which is perpen-
dicular to the tangent,

The projections of these lines on the X
axis are known as the length of the subtangent
(MN) and the length of the subnormal (NR),

The relationships between the slope of the
tangent and the lengths of the subtangent and
subnormal follows:

From the triangle MPIN, in figure 11-5,
PIN
tan 0 = rn1 = MN
and
PIN
MN = —=—-
1

172

The line segment (MN) is the length of the
subtangent ard (PyN) is equal to the vertical
coordinate y,. erefore, the length of the

4!
Subtangent is — ,
b |

In the triangle NP1 R,
_ NR
tan 8 = ———Npl
but
tan 9 = m1
and
NR = mlNP1
R 4

Therefore, the length of the subnormal is m,y,.

From this, as shown in figure 11.5, the
length of the tangent and =normal may be found
by using the Pythagorean theorem.

NOTE: If the subtangent lies to the right of
point M, it is considered positive, if to the
left it is negative, Likewise, if the subnormal
extends to the right of N it is positive, to the
left it is negative,

EXAMPLE: Find the equation of the tan-
gent, the equation of the normal, the length of
the subtangent, the length of the subnormal,
and the lengths of the tangent and normal of

yz = %x, at (3, 2)
SOLUTION: Find the value of 2a from

y2 = 4ax
Since
2 ¢4
y =3x
then
4a =%
a=3
-2
2a = 3

A5
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The slope is

2a

ms=—-=

1

oaf e oo

=1
3

Using the point slope form
y-y1=m(x-x1)
then, at point (3, 2)
y=-2-= %(x - 3)
= % -1

and

y = %— +1
which is the equation of the tangent line,

Use the negative reciprocal of the slope to

find the equation of the normal as follows:

y-2=-3x -3

-3x + 9O

then

y = -3x + 11

The length of the subtangent is

1 2
m TL°
3

and the length of the subnormal is

_ofl) -2
™y = 2(‘5) =3

To find the length of the tangent we use the
Pythagorean theorem. Thus, the leagth of the

tangent is
2
y
/(Tn'l'> d ("1)2

1
=V(6) + (2)°
= V40
= 6,32

The length of the normal is equal to

/ (ylml)2 + (yl)2

K

) 2, (2%

PROBLEMS: Find the equation of the tan-
gent and normal, and the lengths of the sub-
tangent and subnormal in the following:

1, y° = 12x, at (3, 6)

2. x° + y° = 25, at (-3, 4)

3. xz - yz = 9’ at (5’ 4)

4 y =26 - 3x + 2, at (1, 1)

ANSWERS:

1. Equation of tangent y=x+3
Equation of normal y=-x+9
Length of subtangent 6
Length of subnormal 6

2. Equation of tangent y=3. #
Equation of normal y = -'%’5
Length of subtangent 1-3-6-

Length of subnormal 5

3. Equation of tangent y = §4— - %

Equation of normal y = '—;—’5 + 8

Length of subtangent T%
Length of subnormal 5
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4, Equation of tangent =X

Equation of normal = X + 2
Length of subtangent

Length of subnormal

[ B A

PARAMETRIC EQUATIONS

Equations used previously have been func-
tions involving two unknowns such as x and y,
The functions have been in either Cartesian or
polar coordinates and have been defined by one
equation, If a third variable is introduced it
is called a parameter. When two equations
are used, each containing the parameter, the
equations are called parametric equations,

MOTION IN A STRAIGHT LINE

To illustrate the application of a parameter
we will assume that an aircraft takes off from
a field which we will call the origin, Figure
11-6 shows the diagram we will use, The air-
craft is flying on a compass heading of due
north, There is a wind blowing from the west
at 20 miles per hour and the airspeed of the
aircraft is 40C miles per hour, Let the direc-
tion of the positive Y axis be due north and the
positive X axis be due east as shown in figure
11-6, Use the scales as shown,

One hour after takeoff the position of the
aircraft, represented by point P, is 400 miles
north and 20 miles east of the origin. If we
use t as the parameter, then at any time t the
aircrafts position (x, y) will be given by x
equals 20t and y equals 400t,

The equations are

x = 20t
and
y =400 t

and are called parametric equations., Notice
that time is not plotted on the graph of figure
11-6. The parameter t is used only to plot the
position (x, y) of the aircraft,

We may eliminate the parameter t to obtain
a direct relationship between x and y asfollows:

If
= X

t =30
then

y = 400 (—2%)

y = 20x
and we find the graph to be a straight line,
When we eliminated the parameter the result

was the rectangular coordinate equation of the
line,

Y
$ MOTION IN A CIRCLE
5007 Consider the parametric equations
400+ P X=r cost
MILES
300-
and
2001 y=rsint
1001 These equations describe the position of a
) point (x, y) at any time t. They can be trans-
O/ 10 20 30 40 50 posed into a single equation by squaring both
sides of each equation to obtain
MILES
x2 = r2 coszt
2 2 2
Figure 11-8.—Aircraft position, y =r gint
174
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. and adding

x2 + yz = r2 coszt + r2 sinzt

Rearranging we have

2

x+y2= 2

rz (cos™t + sinzt)

but
coszt + sinzt =1

then

2 y? e

which is the equation of a circle,

This means that if various values were
assigned to t and the corresponding values of
x and y were calculated and plotted, the re-
sult would be a circle. In other words, the
point (x, y) moves in a circular path,

Using this example again, that is

X =1rcos t
and
y=rsgint
and given that
m, = %’{- =-rsint
and
m, = %{- =rcost

we are able to express the slope at any point
on the circle in terms of t,

NOTE: These expressions for %—:—‘- and %tz

By substituting we find

Ay . rcost
Ax -rsint

Comparing this result with equation (7) of the
previous section, we find that in rectangular
coordinates the slope is given as

= -cott

X
m = - -
M

while in terms of a parameter it is
m=-cott
OTHER PARAMETRIC EQUATIONS

EXAMPLE: Find the equation of the tangent
and the normal and the length of the subtangent
and the subnormal for the curve represented
by

X = t2

and
y=2t+1

at

t=1
given that

-2-;5= 2t
and

M =2

SOLUTION: Since t equals 1 we write

x=1
may be found by using calculus, but we will
accept them for the present without proof, and
A Ax A
If we l-:nowztx and At we may find—A-% y =3
w*ich ig the slope of a curve at any point, and
Ay _ 2 _ 1
That is, AX S " 3
A
LAy i then
ax © ax m=1
At -t
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The equation of the tangent line when t is equal
tolis

y=3=1x-1)
y=x+ 2
The equation of the normal line is
y-3=-1(x - 1)
y=-x+4

The length of the subtangent is

The length of the subnormal
yym = (1)(3) = 3

EXAMPLE: Find the equation of the tangent
and normal and the lengths of the subtangent
and subnormal to the curve represented by the

parametric equations
X=2cos @
and
y =28in @
at the point where
8 =45°
given that
A% = _2 sin 6
AB
and
Ay _
3% =2cos 8

SOLUTION: We know that

4y
Ay . A9 _ 2cos@ _
a%_él-_zsma cot 6
Af

Then at the point where
9 =45°

we have
= = - e S -
m= .l cot 45 1

In order to find (xl, yl) we substitute

§=45°

in the parametric equations and

_ oo (Y
X, =2 cos 45 -2(2) V2

1

y, =2 sin 45° = 2(—‘/-3-) =/2

The equation of the tangent is

y-y1=m(x-x1)

Substituting we have
y-V2=-1(x- V2)
or
X+y=2 V2

The equation of the normal is

y-\/—_2-=1(x-‘/-§)
or
X~-y=0
The length of the subtangent is

The length of the subnormal is
ylm = (‘/—2) (‘1) =.y2

The horizontal and vertical tangents of a
curve can be found very easily when the curve
is represented by parametric equations, The
slope of a curve at any point equals zero when
the tangent is parallel to the x axis, Inpara-
metric equations the horizontal and vertical
tangents can be found easily by setting

Ay -
At 0
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and
AX _
at -0
Ay
For the horizontal tangent solve At equals
zero for t and for the vertical tangent solve

Ax
X3 equals zero for t,

EXAMPLE: Find the points of contact of the
horizontal and vertical tangents toc the curve
represented by the parametric equations

x=3-4siné6
and
y=44+ 3cosf
Plot the graph of the function by taking 0

from 0° to 360° in increments of 30°,
Given that

AX _
A0 - 4cos b
and
Al:- i
Y] 3 sin @

SOLUTION: The graph of the functionshows
that the figure is an ellipse, figure 11-7, and
consequently there will be two horizontal and
two vertical tangents, The coordinates of the
horizontal tangent points are found by first
setting

¥ =0
This gives
-38in9=0
Then
sin6 =0
and
6 =0° or 180°

Substituting 0° we have
x=3-4s8in0°

3-0
3

177

-.180

and

4 + 3 cos 0°

<
]

=4+ 3
=1
Substituting 180° we obtain
x = 3 - 4 sin 180°

=3-0
=3
and
y = 4 + 3 cos 180°
=4 -3
=1

The coordinates of the points of contact of
the horizontal tangents to the ellipse are (3, 1)
and (3, 7).

The coordinates of the vertical tangent
points of contact are found by setting

Ay _
a0 -0

(3,7)

(~1,4) o (7,4)

0 (3,1

Figure 11.7,~Ellipse,

P oM
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We find 2, x=t2+8
-4cos6=0 Y=t2+1
from which att = 2
— ano o . Ax _ Ay _
6 =90 or 270 given £+ = 2t and AL = 2t
Substituting 90° we obtain 3. x=1t
x = 3 - 4 sin 90° y=t2
=3 -4 att=1
= . Ax _ Ay _
= -1 given 3+ = 1 and K%' 2t
and 4, Find the points of contact of the hori-

. zontal and vertical tangents to the curve
y =4+ 3 cos 90

X = 2cos 9
=4+0 y =3 sind
= 4 given
Substituting 270° gives ﬁ% =-2sin @
- ]
x =3 -4 sin 270 %2230089
6
=3+4 ANSWERS:
=17 1. Equation of tangent y=%x=-2
and Equation of normal y=-x -4
. Length of subtangent 3
y=4+3cos 200 Length of subnormal 3
=4+0 2, Equation of tangent y=x-1
=4 Equation of normal y = -x + 17

The coordinates of the points of contact of Length of subtangent 5
the vertical tangents to the ellipse are (-1, 4) Length of subnormal 5
and (7, 4).

PROBLEMS: Find the equations of the tan- 3. Equation of tangent y=2x -1
gent and the normal and the lengths of the sub- x 3
tangents and the subnormal for each of the Equation of normal y=95t3g
following curves at the point indicated, 1

9 Length of subtangent ]
1L x=t Length of subnormal 2
y = 3t
at t = -1 4, Coordinates of the points of contact of
the horizontal tangent tc the ellipse are
given %%{_ = 3t2 and %%l -3 (0, 3) and (0, -3) and the vertical tangent

to the ellipse are (2, 0) and (-2, C),
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CHAPTER 12

LIMITS AND DIFFERENTIATION

Limits and differentiation are the beginning of
the study of calculus, which is an important and
powerful method of computation,

LIMIT CONCEPT

The study of the limit concept is very im-
portant as it is the very heart of the theory and
operation of calculus, We will include in this
section the definition of limit, some of the in-
determinate forms of limits, and some limit
formulas, along with example problems,

DEFINITION OF LIMIT

Before we startdifferentiationtherearecer-
tain concepts which we must understand, Oneof
these concepts deals with the limit of afunction,
Many times it will be necessary to find the value
of the limit of a function,

The discussion of limits will begin with an
intuitive point of view,

We will work with the equation

y = f(x) = x2

waich is shown in figure 12-1, The point P
represents the point corresponding to

y = 16
and
x=4

The behavior of y for given values of x near
the point

x=4
is the center of the discussion, For the present

we will exclude the point P which is encircled
on the graph,

179

189

We will start with values lying between

and

x=6

indicated by line A in figure 12-1, This interval
may be written as

0<|x-4|<2
The corresponding interval for y is between
y=4
and
y = 36

We now take a smaller interval about
x = 4 (line B)

by using values of

and

and find the corresponding interval for y to be
between

and
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]
]
]
]
]
30 ¢ H
]
!
|
|
P
i [}
1 1
T
20 N ] ] ]
P
P 1 : | ]
16 |----—-=-===-m-- v
PJ ] : :
el L
_ng : |
ot
10 __%__ﬂj :
| :
1 i
_______ L___ Al
]
]
|
]
e; 2 i x
| 2 3 4 5 6 7 8
(A)
interval of Inferval of
2 1(x)
2~-6 (A) 4- 36
3-95 (8) 9-25
3.5-45 () 12.28 - 20.2%
3.9- 4.1 (D) 18,21 - 16.01
(B)

Figure 12-1,—(A) Graphof y = x2;

(B) value chart,

These intervais for x and y are written as

As we diminish the interval of x around
x = 4 (line C and line D)

we find the values of

2
y=x

to be grouped more and more closely around
y = 16

This is shown by the chart in figure 12-1,

Although we have used only afew intervalsof
x in the discussion, it should be apparent that
we can make the values about ygroupas closely
as we desire by merely limiting the values
assigned to x about

x=4

Because theforegoing is true, we may now say
that the limit of x2, as x approaches 4, results

in the value 16 for y and we write

lim x2 = 16

X-4
In the general form we may write

lim f(x) = L
X-a

and we mean that as x approaches a, the limit of

f(x) will approach L and L is called the limit of

f(x) as x approaches a, No statement is made

about f(a) for it may or may not exist although the

limit of f(x), as x approaches a, is defined.
If £(x) is defined at '

x=a
and for all values of x near a, and if the function
is continuous, then

lim {(x) = 1(a)
x-a

We are now ready to define a limit,
Let f(x) be defined for all x in the interval

near

0< |x-4|<1
x=a
and bu. - necessarily at
9<y<25 xX=a
180
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Then there exists a mumber L such that for every
positive number €

lix) - Li< e
provided that we may find the number & such that
0< | X - al <o

Then we say L isthelimitof f(x) as x approaches
a and we write

lim f(x) = L
X-a

This means that for every challenge number
¢ we must find a number § in the interval

0<|X-a|<6

such that the difference between f(x) and L is
smaller than the number €.
EXAMPLE: Suppose we are given
x2 + X-2
x-1

lim

x—-1 =3

and the challenge number € is 0.1,
SOLUTION: We must find a number 6 such
that in the neighborhood of
x=1
for all points except

x=1

we have the differencebetween{ (x) and 3 smaller
than 0.1,

We write
x2+ X-2
x_l -3|<0.1
and
x2+ X -2 -3
x-1

- (x+ 2)(x-1)_3
x-1

and we consider only values where

x#1

Simplifying the first term, we have

(x+ 2)(x-1)

% -1 =X+ 2

Finally, combine terms as follows:

x+2-3=x-1

-

and
|x - 1] < 0.1
or
-0.1<x-1< 0.1
then

0.9<x<1.1

and we have fulfilled the definition of the limit,
If the 1imit of a function exists and the function
is continuous then

lim f(x} = f(a)
X—+a

For instance, in order to find thelimitof the
function x2 - 3x + 2 as xapproaches 3,we sub-
stitute 3 for x in the function, Then

£(3) =

=9 -9+ 2

32 - 3(3) + 2

=2

Since x is a variable it may assume a value
as close to 3 as we wish, and the closer we
choose the value of x to 3, the closer i(x) will
approach the value 2, Therefore, 2 is called the
limit of f(x) as x approaches 3 and we write

lim (:i:2 -3x+ 2)=2
x—3

PROBLEMS: Find the limit of each of the
following functions,

2

1 lim 2x -1
fx—-1 2x-1
lim ,.2
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3 lim xz-a
X-a a

lim /. 2
4. t...o(st -3t+ 2)

lim E3- E

5 E-6 E-1
lm Z%-3Z+ 2

6. o0 Z-1

ANSWERS:

o N
o N B W -
[~

]

-

o o
]
|

* 2
INDETERMINATE FORMS

Whenever the answer obtained by substitu-
tion, in searching for the value of a limit,
assumes any of the following forms, another
method for finding the correctlimit mustbeused.

1]
0 1
These are called indeterminate forms.

The proper method for evaluating the limit
depends on the problem and sometimes calls for
a high degree of ingenuity, We will restrict the
methods of solution of indeterminate forms to
factoring and division of the mimerator and de-
nominator by powers of the variable. Later in
the study of limits, L’Hospital’s rulewill be used
as a method of solving indeterminate forms,

Sometimes factoring will resolve anindeter-
minate form,

EXAMPLE: Find the limit of

=, (90, 0°, =%, 1°

x2-9

x-3

as x approaches 3

SOLUTION: By substitution we find

lim xz-ggg
XxX—-3 x-3 0
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which is an indeterminate form and is therefore
excluded as a possible limit, We must now
search for a method to find thelimit, Factoring
is attempted and results in

2

x"-9 _ (x+3)(x-3)
x-3 x-3
=x+ 3
then
lim(x+ 3)=6
X—3

and we have a determinate limit of 6.

Another indeterminate formis often met when
we try to find the limit of afunction as the inde-
pendent variable becomes infinite,

EXAMPLE: Find the limit of

x4+2x3 -§§2+ 2x

3x4 - 2x2 + 1

as8 x becomes infinite,
SOLUTION: I we let x become infinite in the
original expression the result will be

4 3 2

lim x +2x -3x"+2x _ ®
x=» g4 _ 241 ®

which must be excluded as an indeterminate

form, However, if we divide both numerator
and denominator by x4. we obtain
2 3 2
1+ — - +
lim x ::2- ;3-
X—® g _ N 'IT
x X
1+40-0+0
3-0+0
=1
3

and we have a determinate limit of %
PROBLEMS: Find the limit of the following:

,, lim X2 - 4
‘' X-2 x-2

9 lim 2x+ 3
" X—® Tx-0
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g, lim 2a2p - 3ab2 + 2ab

a=0  5ap - adp?
lim xz-x-G
4. x--3 x-3
5 lim 24-3.4
X—-3 X-a
6 lim (x-a)z-x2
‘ a=0 a
ANSWERS
1, 4
2
2. 0
2 - 3b
3. 5
4, 5
5. 4a3
6. -2x

LIMIT FORMULAS

To obtain results in calculus we will fre-
quently operate with limits, The proofs of
theorems shown in this section will not be given
as they are quite long and demand considerable
discussion,

The theorems will be stated and examples will
be given, Assume that we have three simple
functions of x,

f(x) = u
gx) = v
h(x) = w

Further, let these functions have separate limits
such that

limu=A

X=a

limv=8B
X~=a

limw=C
X-a

183

Theorem 1, The limit of the sum of two
functions is equal to the sum of the limits,

lim [f(x) + gx)] =A+ B
X—2a
- lim f(x) + lim g(x)
X-—-2a X—-a

This theorem may be extended to include any
number of functions such as

lim [f(x) + g(x) + h{x)] =A+ B+ C
X-2a
_lim f(x) + im g(x) + im h(x)
X—a X—3& X—-a

EXAMPLE: Fird the limit of

(x - 3)2 as x—-3
SOLUTION: 2
i - 9
lim (x - 3)2 - ’1‘1_1313(:: 6x + 9)
x-3
lim xz- lim6éx+ 1lim9
= X- 3 X3 X-3
=9 -18+ 9

=0

Theorem 2, The limit of a constant ¢ times
a function f(x) is equal to the constant ¢ times
the limit of the function.

lim cf(x) = cA= ¢ lim f(x)
X=a X=a

EXAMPLE: Find the limit of

2x2 as x-—-3

SOLUTION: 2 - 2lim x 2
X-3

= (2) (9)

=18

Theorem 3, The limit of the product of two
functions is equal to the product of their limits,

lim 2x
x-3

lim f(x) g(x) = AB
X-a

X-a X~

= <lim f(x)) (lim g(x))

£
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EXAMPLE: Find the limit of

(x2 - x) (V2x) as x-2
SOLUTION:

,I:iinz x? - x) V2%) = AB
= (nm &2 - x)) (nm Jﬂ)
xX=2 X2
= @4 -2 (Vo)
= 4

Theorem 4. The limit of the quotient of two
functions is equal to the quotient of their limits,
provided the limit of the divisor is not equal to
zero,

lm £(x) _ A
x~agx) B
lim f(x)
= X8 ___ i{B#0
lim g(x) ’ g
X~a

EXAMPLE: Find the limit of

3x2+x-6

Ts—— as x-3

SOLUTION:
2
lim 3x™ + x - 6
x-3 2x -5

lim 3x% + x - 6
- X=3
im 2 x - 5
X--3

= 24

PROBLEMS: Find thelimits of the following,
using the theorem indicated.

1. x2 + x+ 2 as x-1 (Theorem 1)

9. x> - 13) as x4 (Theo.em 2)

184

3. 5x} as x~2 (Theorem 3)
o+ x - 4

4. 3x - 7

as x~3 (Theorem 4)

ANSWERS:
1. 4

2. 21

3. 80

4, =5~

INFINITESIMALS

In chapter 11, the slope of a curveat a given
point was found by taking verysmallincrements
of Ay and Ax and the slope was said to be equal

to % . This section will be a continuation of

this concept.

DEFINITIONS

A variable that approaches 0 as a limit is
called an infinitesimal. This may be written as

lim V=0
or
V-0

and means, as recalled from a previous section
of this chapter, that thenumerical valueof V be-
comes and remains less than any positive chal-
lenge number ¢ .

If the

lim V=1L
then
limV-L=0
which indicates that the difference between a
variable and its limit is an infinitesimal. Con-
versely, if the difference between a variableand
a constant is an infinitesimal, then the variable

approaches the constant as a limit, _
EXAMPLE: As x becomes increasingly

large, is the term -1—2 an infinitesimal?
x

St 5
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SOLUTION: By the definition of infinitesi-

mal, 1—2— approaches 0 as x increases in value,
x

1—2- is an infinitesimal, It doesthis, and is there-

X
fore an infinitesimal,
EXAMPLE: As x approaches 2, is the ex-
2

pression X X - g - 4 an infinitesimal?
SOLUTION: By the converseof the definition

2
of infinitesimal, if the difference betweenx—x—:—g—
and 4 approaches 0, as x approaches 2, the ex-

pression X - g- 4 is an infinitesimal, By

direct substitution we find an indeterminate
form; therefore we make use of our knowledge
of indeterminates, and write

1{2-
X -

4 (x+ 2) (x-2) _
5 = pr— =X+ 2

and
lim (x+ 2) = 4
x-~2
The difference between 4 and 4 is 0 and the ex-

2
pression xx ~ g- 4 is an infinitesimal, as =x

approaches 2,

SUMS

An infinitesimal isa variable that approaches
0 as a limit. We state that € and §, in figure
12-2, are infinitesimals because they both
approach 0 as shown,

Theorem 1. Thealgebraic sum of any number
of infinitesimals is an infinitesimal,

In figure 12-2, as € and 8 approach 0, notice
that their sum approaches 0 and by definition this
gum 1is an infinitesimal and the truth of
theorem 1 hasbeenshown, This approach may be
used Zor the sum of any number of infinitesimals.

PRODUCTS

Theorem 2. The product of any number of
infinitesimals is an infinitesimal,

In figure 12-3, the product of two infinitesi-
mals, € and §, is an infinitesimal as shown. The

product of any number of infinitesimals is also
an infinitesimal by the same approach as shown
for two numbers,

Theorem 3. The product ofaconstantand an
infinitesimal is an infinitesimal,

This may be shown, infigure12-3, by holding
either € or 6 constant and noticing their product
as the variable approaches 0.

£ ! / / /
k ‘1% |72 |iz |i56|"°
4 76 | 6% | 256
2|2 L |2 12|85
4 # 2 16 | g% | 2%
WA RGN I N VA O I 7 A
/6 6 | /6 & 64 |a256
t s |z |5 | L |5
64 | 6F |6F |é¢ | 32 |25¢
/7 257 |65 | »7 5 /
256 | 256 |25¢ |256 |256 |,28
0 [/

Figure 12-2,~Sums of infinitesimals,

& / / L
INERAEALA A s
2 |2 | £ | L
/|17 |76 |é# |25
A A /4 | L | L
Z |# |76 [6% |256 |/02¢
a / [ A A
7¢ |76 | 6F |256¢ |,;02¢ |40
Ll 4 | L)L |4
% |eF |23% |i02¢4 |vo% %638%
L L | | L Lo L
256 |56 |ioz# 4096 |/c56% |¢s5%
| 0
0 I

Figure 12-3,—=Products of infinitesimals,
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CONCLUSIONS

The term infinitesimal was used to describe
the term Ax as it approaches zero. The quantity
Ax was called in increment of : where increment
was used to imply that we have added a small
amount to x, Thus x + Ax indicates thatwe are
holdi: ¢ x constant and adding a small but variable
amount to which we will call Ax,

A very small increment is Sometimes called a
differential, A small Ax is indicatedbydx, The
differential of 6 is df and that of y is dy. The
limit of Ax as it approaches zero is of course
zero, but this does not meanthat the ratio of two
infinitesimals cannot be a real number orareal
function of x, Forinstance, no matter how small
Axis chosen, theratio gi-will still be equal to 1,

In the section on indeterminate forms, a
method for evaluating the form -g-was shown,

This form results whenever the limit takes the
form of one infiritesimal over another, Inevery
case the limit was a real mumber,

DISCONTINUITIES

The discussion of discontimiities will be
based upon a comparison to contimuity which is
defined by:

A function f(x) is continuous at

X=a
if f(x) is defined at

X=a
and has a limit as x--a, as follows:

lim f(x) = f(a)
X-2a

Notice that for contimuity a function must fulfil
the following thre2 conditions:

1, f(x) is defined at x = a,

2, The limit of f(x) exists as xapproachesa,

3. The value of f(x) at x = a is equal to the
1imit of f(x) at x = a,

If a function f(x) is not continuous at

X=a

then it is said to be discontinuous at
X =2

We will use examples to show the above state-
ments.,

EXAMPLE: In figure 12-4, is the function

f(x)=x2+x-4

continuous at £(2) ?
SOLUTION:

f(2) =4+ 2 -4

!
[ ]

and

li.mx2+x-4=2
X2

and

lim f(x) = £(2)
X-2

Therefore the curve is continuous at
X =2

EXAMPLE: In figure 12-5, is the function

2
_X -4
“")"x-z

continuous at £(2)?

SOLUTION:
£(2) is undefined at
X =2
and the function is therefore discontinmuous at
X=2

. However, by extending the original definition
of f(x) to read

186
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Figure 12-4. —Function f(x) = x2 + x =4,

2 4
E—'—x#z

x -2
f,) =
4, x =2

we will have a contimious function at
x =2

NOTE: The value of 4 at x = 2 was found
by factoring the numerator of f(x) and then
simplifying.

A common kind of discontinuity oceurs when
dealing with the tangent function of an angle,
Figure 12-6 is the graph of the tangent as the
angle varies from 0° to 80°; thatis, from 0 to

2
Figure 12-5,~Function f(x) = 3-8—-:—24-.

-271. It should be obvious that the value of the tan-

gent at 1'2— is undefined, Thus the functionis said
to be discontinuous at %.

PROBLEMS: In the following definitions of
the functions find where the functions are dis-
continuous and then extend the definitions so that
the functions are continucus,

2 .
1. f(n) = 2822
x* 4+ 2x - 8
X+ 3
2

3. f(x) = 2 EE 12

2. f(x) =

ANSWERS:
1. x=2, £(2) = §
2- X s '33 ‘('3) = "‘

3. x =3, {3) --}

167
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(-"U‘,O)

—
H

o

L

Figure 12-6,—Graph of tangent function,

INCREMENTS AND DIFFERENTIATION

In this section we will extend our discus-
sion of limits and examine the idea of the deriva-
tive, the heart of differential calculus.

We will assume we have a particular func-
tion of x, such that

y=x

If x is assigned the value 10, the corresponding
value of y will be (10)2 or 100, Now, if we in-
crease the value of x by 2, making it 12, we may
call this increase of 2 anincrement or Ax, This
results in an increase in the value of y and we
may call this increaseanincrement or 4y, From
this we write

y+ Ay = (x + Ax)2
= (10 + 2)2
= 144

As x increases from 10 to 12, y increases from
100 to 144 so that

Ax = 2
44

Ay

and
4y . 44
-5 =2
We are interestedintheratio S because the

limit of this ratio as Ax approaches zero is the
derivative of
y = f(x)

As recalled from the discussion of limits,
asAx is made smaller, Ay gets smaller also,

but the radio %% approaches 20, This is Shown
in table 12-1,

Table 12-1. —Slope values.

R —

Ii

Variable Values of the variable

0.5 0.2 0.1 o.01

0. 2001 0.00230001

aAx 2 1 0.0001

44 21 10.25 4.04 2.01

ay
% 22 21 20.5 20.2 20.1 20.01 20.0001

There is a much simpler way to find that the
limit of %% as Ax approaches zero is, in this

case, equal to 20, We have two equations

y+ Ay = (x + Ax)2

and

_ .2
y=x

By expanding the first equation so that

y + Ay=x2+ 2x AX + (Ax)2
and subtracting the second from this, we have

Ay = 2x AX + (Ax)2

Dividing both sides of the equation by Ax gives

Ay _
AX 2x + Ax

188
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Now, taking the limit as &x approaches zero

lim Ay _
Ax-0 Kyf =2x
Thus,

%Yx-= 2x @)

NOTE: Equation (2) is onewayof expressing
the derivative of y withrespecttox, Other ways
are

A
Yoyt 6 =DW = g A
Equation (2) has the advantage thatitis exact
and true for all values of x, Thus if

x =10
then
dy - =
ax 2 (10) = 20
.and if
x=3
then
4y - 23) =6

dx

This method for obtaining the derivative ofy
with respect to x is general and may be formu-
lated as follows:

1. Set up the function of x as a function of
(x + Ax) and expand this function, .

2. Subtract the original functionof xfrom the
new function (x + Aax).

3. Divide both sides of the equation of Ax,

4, Take the limitofalltheterms inthe equa-
tion as Ax approaches zero, The resulting equa-
tion is the derivative of f(x) with respect to x.

GENERAL FORMULA

In order to obtain a formula for the deriva-
tive of any expression in x, assume the function

y = £(x) (3)

so that
y + Ay = f(x + Ax) 4)
Subtracting equation (3) from equation (4) gives
Ay = f(x + Ax) - £(x)

and dividing both sides of the equation by Ax we
have

Ay _ f(x + ax) - f(x)
AX AX

The desired formula is obtained by taking the
limit of both sides as Ax approaches zero, So
that

lim Ay _ f(x+ Ax) - £(x)
Ax~0 Ax AX

or

_ lim f(x + Ax) - i(x)
dx Ax-0 AxX

NOTE: The notation %% is not to be con-

sidered as afractionwhichhasdy for the numer-
ator and dx for thedenominator. The expression

ﬁ-;y{ is a fraction with Ayas its numerator and Ax

as its denominator and g% is a symbol repre-

senting the limit approached by % as Ax ap-

proaches zero,
EXAMPLES OF DIFFERENTIATION

In this last section of the ehapterwewill use
several examples of differentiation to obtaina
firm understanding of the general formula,

EXAMPLE: Find the derivative gyi for the
function 3
y=5" -3&x+ 2

and determine the slope of its graph at

x = -1, -4%, o,é, 1

Draw the graph of the function, as shown in
figure 12-17
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(B)

-

Expand equation (5), then subtract equation (6)
from equation (5) and simplify to obtain

f(x + Ax) - f(x)
= 5 [3x% ax + 3x(ax)% + (ax)%] - 34x
Divide through by Ax and we have

f(x + ax) - f(x)
Ax

= 5 [3x% + 3xAx + (ax)?] - 3

Take the limit of both sides as Ax--0 and

m £+ AX) - () _ 4.2

Ax-~0 ax

then

2

_Q,Y_=15x

dx

Using this derivative let us find the slope of

the curve at the points given,
Thus we have a new method of graphing an

equation, By substituting different values ofxin
equation (7) we can find the slopeof the curve at

the point corresponding to the value of x,
EXAMPLE: Differentiate the function, that

dy
is, find 3 of

-3

_1
y ==

X

and then find the slope of the curve at

2.89 it

Figure 12-7,—(A) Graph of f(x) = 5x° - 3x

+ 2; (B) chart of values,

SOLUTION: Finding the derivative by for-

mula, we have
f(x + Ax) = 5(x + Ax)3 -3x+ Ax) + 2

and
f(x) = 5x3 -3x + 2

LS

-
—1

XxX=2

SOLUTION: Apply the formula for the de-
rivative, and simplify as follows:

1

fx + Ax) - f(x) _ X+ ax
AXx AX

1
X

x + AX)
X + AX)
AX

-1

= x(x + Ax)

x-
X

()

(6)
190
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Now take the limit of both sides as Ax-0 and
dy _ =1
dx 2
X

In order to find the slope of the curve at the
point where x has the value 2, substitute 2 for x

in the expression for gf-t:
I |
24
2
- - -}—
4

EXAMPLE: Find the slope of the tangent line
on the curve

"
"

£(x)
at
Xx =3

SOLUTION: We need to find %}"—whmh is the

slope of the tangent line at a given point. Apply
the formula for the derivative; then,
(8)

f(x + Ax) = (x + Ax)2 + 4

and

f(x) = x2 + 4 ®)
Expand equation (8) so that

f(x + AX) = x2 + 2XAX + (A:ic)2 + 4
then subtract equation (9) from equation (8) and

f(x + Ax) - f(x) = 2xAx + (Ax)2

Now, divide through by Ax and

fix + ax) - fX) _ oy 4+ Ax
AX

then take the limit of both sides as Ax-0 and

dy _
ix 2x

Substitute 8 for x in the expression for the de-
rivative to find the slope of the function at

x=3
so that
slope = 6

In this last example wewill Set the derivative
of the function f(x) equal to zero to find a maxi-
mum or minimum point on the curve. By maxi-
mum or minimu' . of a curve we mean the point
or points through which the slope of the curve
changes from positive to negative orfromnega-
tive or positive.

NOTE: When the derivative of a function is
set equal to zero this does not mean that in all
cases we Will have found 2 maximum or minimum
point on the curve. A complete discussion of
maxima or minima may be found in most calcu~
lus texts.

We will require that the following conditions
are met:

1. We have a maximum or minimum point.

2. The derivative exists.

3. We are dealing with an interior point on
the curve,

When these conditions are met the derivative
of the function will be equal to zero.

EXAMPLE: Find the derivative of th.2 func-
tion

y=5x3-6x2-3x+3

and set the derivative equal to zero and find the
points of maximum and minimum on the curve,
then verify this by drawing the graph of the
curve.

SOLUTION: Apply the formula for g%as fol-
lows:
f(x + Ax) =
(10)
5(x + Ax)3 - B(x + A:i:)2 -3(x+ Ax) + 3

and

f(x) = 5%° - 6x° - 3x + 3 1)

Expand equation (10) and subtract equation (11),
obtaining
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f(x + Ax) - f(x) = 5(3x2Ax + 3xAx2 + Ax3) -
6(2xAx + sz) - 3Ax

Now, divide through by Ax and take the limit as y
Ax-~0, so that
3
dy . 2) _ -
i 5(3x°) - 6(2x) - 3
= 15x° - 12x - 3 \
Set g’z‘ equal to zero, thus
2
15" - 12x =3 =0 |
then S
2
3(5x° - 4x - 1) =0 .
-1 0 [ 2
and
x+1)(x-1)=0
Set each facter equal to zero and find the points -
of maximum or minimum are
5x = - 1
_ 1 ~?
X = -5 ‘
and
= 3 2
x=1 Figure 12-8,~Graph of 5x° - 6x° .
3x + 3.

The graph of the functionis shown infigure 12.8,
PROBLEMS: Differentiate the functions in 5. Find the values of x where the function
problem 1 through 3, .

3

1.f(x)=x2-3 f(x) = 2x° - 9x° - 60x + 12

2, 1(x) = x® - 5x has a maximum or a minimum,

3, f(x) = 3x% - 2x + 8
4, Find the slope of the curve ANSWERS:

1, 2x
y=x3-3x+2 2 2% - §
'3. 68-2
4
5

at the points . hi=9, -8, and 24

x=-2,0,and 8
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CHAPTER 13

DERIVATIVES

In the previous chapter on limits, we used
the delta process to find the limit of a function
as Ax approached zero. We called the result
of this tedious and in some cases lengthy pro-
cess the derivative. In this chapter we will
examine some rules used to find the derivative
of a function without using the delta process.

To findhow y changesas x changes, we take

the limit of -ﬁ;‘{- as Ax- 0 and write

lim _A_z_
Ax—~ 0 Ax

which is called the derivative of y with re-
spect to x, and we use the symbol % to indi-
cate the derivative and write

lim Ay _dy
Ax—~ 0 Ax dx
In this section we will takeup a number of
rules which will enable us to easily obtain the
derivative of many algebraic functions. In the
derivation of these rules, which will be called
theorems, we will assume that
lim
Ax- 0 f(xA+x Ax) - £(x) _ £ (x)

or

dy _ lim Ay
dx -~ Ax-0 Ax

exists and is finite.

DERIVATIVE OF A CONSTANT

FORMULA
Theorem 1. The derivative of a constant is
zero. Expressed as a formula, this may be
written as

dy _lim Ay _,
dx = Ax~-0 Ax

when y is parallel to the x axis.

PROOF
In figure 13-1, the graph of
y = ¢ (a constant)

the value of y is the same for all values of
x, and any change in X (that is, Ax) does not
affect y, then

Ay = C
and

ay .

Ax"o
and

dy

dx-o

Another way of stating this ig that when x is
equal to xq and when x is equal to Xy + AX,
y has the same value. Therefore,

The method used to find the derivative of a y=¢e
constant will be similar to the aeita process
used in the previous chapter but will include an  and
analytical proof. A diagram is used to give a
geometrical meaning of the function. y+A4y =¢
193
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o X; Xt ox ¥

Figure 13-1,—~Graph of Yy = ¢ (a constant).

s0 that

Ay_f(x+Ax)-f(x)_c-c
Ax T Ax T AX

and

lim Ay _ 0
Ax-0 Ax
then

_ lim f(x + AX) - f(x)
T Ax~0 AXx

dy
dx

_lime -¢ _ 0
“Ax-0"Ax  *

The equation
y=c¢c

represents a straight line parallel to the X
axis. The slope of this line will be zero for
all values of x. Thezefore, the derivative is
zero for all values of x.

EXAMPLE: Find the derivative % of the
function

y=6
SOLUTION:
y=86
and
y+ Ay =6

194

therefore
= lim f(x + Ax) - f(x)
%xL T Ax-0 AX
_6 -8 -
T AX
=0
VARIABLES

In this section on variables, we will extend
the theorems of limits covered previously. Re-
call that a derivative is actually a limit. The
proof of the theorems presented here invoive the
delta process, and only a few of these proofs
will be offered.

POWER FORM
Theorem 2. The derivative of the function
y = x"

where n is any number is given by

dy _ __n-1
dx = nx

Proof: By definition

dy _ lim (x + ax)" - )?

dx ~ Ax-~0 AX

The expression (x + ax)® may be expanded
by the binomial theorem into

x® ¢ nx-1 AX + g(né_ll xn'zsz oot AXD

Substituting in the expression for the deriva-
tive, we have

dy _ lim nx™lax + n_(g;ll 2ax? 4, | eax"

dx = x-0

AX
Simplifying, this becomes

n-2

n'1-1-'”1'1)x AX +. .. +AX '1]

& o
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Letting ax approach zero, we have

Thus, the proof is complete.
EXAMPLE: Find the derivative of

f&x) = x°
ENT.SITION: Apply Theorem 2 and find

xs= x"
té . iore
n=>5
and
n-1=4
so that given
% - nxn'l

and substituting values for a find that

4
%:’;—-= ox

EXAMPLE: Find the derivative of
fix) = x
SOLUTION: Apply Theorem 2 and find

X =X
therefore
n=1
ard
n-1=0
so that

The previous example is a special case of
the power form and indicates that the deriva-
tive of a function with respect to itself is 1.

EXAMPLE: Find the derivative of

f(x) = ax, a = constant
SOLUTION:

f(x) = ax

and

f(x + AX) = alx + AX)

ax + aAx

so that
Ay = 1(x + Ax) - £(x)

= (ax + aAX) - ax

= aAXx
Therefore

_ lim aAx
dx " Ax-0 Ax

= a

The previous example is a continuation of
the derivative of a function with respect to
itself and indicates that the derivative of a
function with respect to itself, times a con-
stant, is that constant.

EXAMPLE: Find the derivative of

f(x) = 6x
SOLUTION:

& e

A study of the functions and their deriva-
tives in table 13-1 should further the under-
standing of this section.

- 188




MATHEMATICS, VOLUME 2

Table 12-1. —Derivatives of functions.
f(x) {3 |x x2 |3 xt |ax? 9x3 x1 |x? 3x~4
¥ lohr |2 3x? |4x® ex |27x%]-x"2 -zx“"l-mx‘s

FROBLEMS: Find the derivatives of the

following:

1. f(x) = 21

2, f(x) = x

3. f(x) = 21x

4, f(x) = 7%°

5. 1(x) = 4x°

6. f(x) = 3x"2

ANSWERS:

1. 0

2,1

3. 21

4, 2lx2

5. 8x

6. -6x™
SUMS

Theorem 3. The derivative of the sum of
two or more functions of x is equal to the sum
of their derivatives,

Assume two functions of x which we will
call u and v, such that

u
and
v
and also
y =

g(x)

h(x)

u+yv

g(x) + h(x)

then
g! = gu_'l- EY_
dx dx dx
Proof:
y = g(x) + h(x) (1)
and

y+ Ay = g(x + Ax) + h(x + ax) (2)
Subtract equation (1) from equation (2) and

Ay = g(x + AX) + h(x + Ax) - g(x) - h(x)
Rearrange this equation such that

Ay = g(x + Ax) - g(x) + h(x + Ax) - h(x)

Divide both sides of the equation by Ax and
then take the limit as Ax-0 and

lim Ay _ lim gx + Ax) - g(x)
Ax-0 AX Ax-0 AX

lim h(x + AXx) - h(x)

+ Ax-0 A

but, by definition

lim g(x + Ax) - g(x) _ du

Ax-0 Ax dx
and
lim h(x + Ax) - h(x) _ dv
Ax-0 AX dx

then by substitution

dy _du dv
dx dx dx

EXAMPLE: Find the derivative of the func-
tion

y=x3-8x2+7x-5

SOLUTION: Theorem 3 indicates that we
should find the derivative of each term and
then show them as a sum; that is, if
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v o=z x3, %: 3::2
y = -sz, gx!= -16x
d
y = Tx, a%= 7
d
y = =5, a—%: 0
then, if
y=x3-8x2+7x-5
then

dy _ g2 _
ax 3x 16x+ 7T+ 0

= 3x° - 16x + T
PROBLEMS: Find the derivative of the fol-
lowing:

2

1, f(x) = x" +x -1

2, f(x) = 2x4 + 3x + 16

3. f(x)=2x3+3x2+x-3

3 1 -3

4, f(x) = 3x" + 2x2-4x+2+2x' -3x

ANSWERS:

1, 2x+1

3

2, 8"+ 3

3. 6x2+6x+1

2 -4

4, 9x2+4x-4-2x' + 9%

PRODUCTS

Theorem 4. ‘The derivative of the product
of two functions of x is equal to the first func-
tion multiplied by the derivative of the second
function, plus the second function multiplied by
the derivative of the first function,

If

197

<90

then

dv du
ax - Yax * Vax
This theorem may be extended to include

the product of three functions. The result will
be as follows:

)i ¢
y = uvw
then
dy _ 3% du dv
ax - Wax t Wikt WWax
EXAMPLE: Find the derivative of
f(x) = (x2 - 2)(::4 + 5)
SOLUTION: The derivative of the first fac-
tor is 2x, and the derivative of the second fac-
tor is 4xY, Therefore

@ = @ - 2@ + &+ 5)Eex)
= 4x5 - 8:’:3 + 2x5 + 10x

5 3

= Bx" - 8x" + 10x

EXAMPLE: Find the derivative of
i) = & - 16 + 2 - 5)
SOI.UTION: The derivatives of the three
ga’.tczt.ors, in the order given, are 3x2, 2x, and
Therefore
£ = & - E + 24x)
s (2 + 26t - 5D
+ & - 3a? - s

then

f' (x) = 4x8 + 8::6 - 12x5 -24x3

2

- 15x% - 30x

- 10}

4

8
+ 3x + Bxe

5

+ 2x5 - Bx + 30x

2

= 9xB + 14x8 - 1825 - 25x%- 24x3 _30x%+30x
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PROBLEMS: Find the derivatives of the
following:

1 ) = X6 - 4)

2. fix) = (x° - x? + 2x)

3. ix) = (x% - T - 4x°)

& 10 = (x - D& - I - 2

ANSWERS

1, 5x4 - 121:2

2, 5x4 + 81:3 - 6x'6

3. 70 - 42%° - 16x° + 84x?

4, 6x5 - 10::4 - 12x3 + 6x2 + 16x + 12
QUOTIENTS

Theorem 5. The derivative of the quotient
of two functions of x is equal to the denomina-
tor times the derivative of the numerator mimus
the numerator times the derivative of the de-
nominator, all divided by the square of the de-
nominator,

If

then

EXAMPLE: Find the derivative of the func-
tion

“

-1

=558

SOLUTION: The derivative of the numerator
is 2x, and the derivative of the denominator is

2. Therefore
{2x + 8)(2x) - (x - T(2)
(2x -i-JB)E

' (x) =

4x2 + 18x - 2x2 + 14

‘ (2x + 8)2

2x% + 16x + 14
4(x + 4)r

x2+8x+'7

2(x + 4)2

PROBLEMS: Find the derivatives of the
following:

1

-2

1, f(x) =

2. f(x) ‘-‘-' -7-:1

N 4 '“w "

+ 3x + 95

x3-4

3. f(x) = X

ANSWERS:

5 3

2x
(x

- 8x
- 2)

1.

9 x2+14:_:+3

(x + 7)2

3

-(x4 + 6x° + 15::2 + 8x + 12)

o - a2
POWERS OF FUNCTIONS

Theorem 6. The derivative of any func-
tion of x raised to the power n, whe-e n is
any number, is equal to 2 times the po! momial
function of x to the (n - 1) power times the
derivative of the polynomial itself.

3.

If
y=u"
where u is any function of x then
4y _ -l du
ax - ™ dx
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EXAMPLE: Find the derivative of the func-
tion
y = (x3 - 3x2 + 2::)'z
SOLUTION: Apply Theorem 6 and find

T =163 - 3?1 208 3 - 6x + 2)

EXAMPLE: Find the derivative of the func-
tion

2 3
f(x) = %’_2*)

SOLUTION: This problem involves Theorem
5 and Theorem 6, Theorem 6 is used to find
the derivative of the numerator, then Theorem
5 is used to find the derivative of the resulting
quotient,

The derivative of the mmerator is

3(x2 + 2)2 (2x)

and the derivative
Then, by Theorem 5

of the denominator is 1,

dy _ (x-0{36%+ 2% @) - )P+ 23
dx (x - 1)2
_6x6P + 22 (x-1)- (o2 4 2)3
(x-1)
_ &2+ 22 (et 1) - (o 4 2)]
x-12

& 2?6 ek - 2
(x - 1)°

PROBLEMS: Find the derivatives of the
following:

1. £(x) = (° + 2x - 6)2

2, f(x) = S(x2 + X+ 7)4
3
3. f(x) = __3___2(:: ;3)

ANSWERS:
1, 2(x3 + 2x - 6)(3x2 + 2)

2. 206 + x+ M3 @x + 1)
3. 18x(x + 3) - 6(x + 3)3
9x2

RADICALS

To differentiate a function containing a radi-
cal, replace the radical by a fractional expo-
nent then fird the derivative by applying the
appropriate theorems,

EXAMPLE: Find the derivative of

i(x) = Vox® . 5

SOLUTION: Replace the radical by the
proper fractional exponent, then

f(x) = (2x° - 5)1/2

and by Theorem 6

(2x? - 5)1/2-1 (4,
= 5 (2x% - 5)"1/2 (g

= 2x(2x® - 5)"1/2

2
2x2 .5

- \/2x2- -5

2;2_- 5

EXAMPLE: Find the derivative of

fx) =2x+ 1
1/3x2 + 2

Replace the radical by the
exponent, thus

SOLUTION:
proper fractional

2x + 1
f(x) = 5
(3:!:2 + Z)Wz

At this point a decision is in order, This

problem may be solved by either writing

2x + 1
f(x) =
(3x% + 2)1/2

(&)

and applying Theorem 6 in the denominator
then applying Theorem 5 for the quotient, or
writing

o = (2x + (32 + 2°1/2 (g

199
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and applying Theorem 6 for the second factor
then applying Theorem 4 for the product,
The two methods of solution will be com-
pleted individually as follows:
Use equation (3)

2x + 1
(31:2 + 2)1/2

f(x) -

Find the derivative of the denominator
d 2 1/2
Ei(3x + 2)

by applyi’ng' the power theorem and

(3 + 22 = L @a? 4 2)1/21 (o

= 3x(3x% + 2)°1/2
The derivative of the numerator is
E‘-{ (2 + 1) = 2
Now apply Theorem 5 and

') = 3x2 + 2V 2(2) -@x + 1)[3x(3x2 + 2)°1/2]
(3x% + 2)

Multiply both numerator and denominator by
(31:2 + 2)1/2

and simplify, then

d 0.2 -1/2 _
ax (3x° + 2) =

Find the derivative of each factor

d

= Sx + 1) =

and

-%(3::2 + 2)°1/2-1 (g

= -32:(31:2 + 2)"3/ 2
Now apply Theorem 4 and
f'(X) = (2x+ 1) [—3x(3x2 + 2)'3/2]+ (3x2+ 2)'1/2 (2)

Multiply both numerator and denominator by

(31:2 + 2)'1/2

and

-3x(2x + 1) + 2(31:2 + 2)

f'(x)
(3x2 + 2)%/2

_ Bx> - 3x + 6x° + 4

) (3x2 + 2)372

-4 -3
(3x2 + 2)3/2

which agrees with the solution of the first
method used,

PROBLEMS: Find the derivatives of the
following:

Y(x) = 2(3x2 + 2) - 3x(2x + 1) 1. f(®) = yx
P'x) = 2. ,3/2
(3x° + 2) ‘ .
2 2 20 f(X) =ﬁ
_6x +4 - 6x" - 3x
(@3x2 + 2)%/2 3, f(x) = V3x - 4
_4 -3 4, f(x) = 3V 4x -3x+2
(3::2 + 2) 3/2
ANSWERS:
To find the same solution, by a different 1 1 fx_
method, use equation (4) . “"2.,— or x [3
or -
1) = (2x + 1) + 2)71/2 2, -5/ % g3
200
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3 3 3v3x - 4 but
* 2V3x - 4 or 2(3x - 4)

u=(x+x2)

4 8x - 3 —5 Or
33 V(4x® - 3x + 2) therefore,
' Jax? dy _ 2(x + xz)(l + 2x)
(8x - 3) 3v4x"™ - 3x + 2 dx
3(4x° - 3% + 2) )
EXAMPLE: Find E% where
CHAIN RULE
A frequently used rule in differential calculus y =12t} + 2t
is the chain rule. This rule links together deri-
vatives which have related variables. Thechain and
rule is 9
t=x"+ 4
dy _ dy du
dz ~ du dx SOLUTION: By the chain rule
when the variable y dependson u and u inturn dy _dy dt
depends on x, dx dt dx
EXAMPLE: Find the derivative of
and
y=(x+ x2)2 p 3
?1% = 48t° + 17
SOLUTION: Let
and
u=(x+ x2)
at _
and dx 2x
y = u’ then
dy _ (48t
Then i = (48t° + T)(2x)
dy . 2u
du and by substitution
and g-% = [48(1v:2 + 4)3 + 7] (2x)
dx dudx dx d
PROBLEMS: Find a{- in the following:
Now,
du 1,y=3t3+8tand
—=1+2x
dx 3
t=x"+ 2
and substituting into equation (5) gives ) 9
2, y="TT" + 8n+ 3 and
dy _ dy du _
dx du dx 2u(l + 2x) n=2x3+4x2+x
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ANSWERS:
1. [9t3 + 222 + 8] (3x)
2, [14(2x3 +4x + x) + 8] (sz +8x+1)

INVERSE FUNCTIONS

Theorem 7, The derivative of an inverse
function is equal to the reciprocal of thederiva-
tive of the direct function,

In the equations to this point, x has been
the independent variable and y has been the
dependent variable. The equations have been
in a form such as

y = x2 +3x+2
Suppose that we have a function like

1 1

y y

and we wish to find the derivative g% . No-

tice that if we solve for y in terms of x, using
the quadratic formula, we get the more com-
plicated function

X =

_=1++v1 + 4x
y= 2x

If we call this function the direct function,
then

1 1
X = —2' - —
y y
is the inverse function, It is easy to deter-

mine %x! from the inverse function,

EXAMPLE: Find the derivative % of the
function

x = —15 -1
vy
SOLUTION: Find the derivative %”% thus

dx _ -2 1
il S )

=-24_1
P

2y

y

202
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dx d
The reciprocal of & is the derivative H% of
the direct function, and we find

av 1 __y
dx dx " y-2
dy

EXAMPLE: Find the derivative g;"; of the
function

X = y2
: dx a4 _
SOLUTION: Find ay to be dy = 2y
then
dx " dx 2y
dy

PROBLEMS: Find the derivative g% of the
following functions:

1, x=4-y2
2, x=9+y2
ANSWERS:
Lok

2 %

IMPLICIT FUNCTIONS

In equations containing x and y, it is not
always easy to separate the variables, If we
do not solve an equation for y, we call y an

“implicit function of x, In the equation

x2-4y=0

y is an implicit function of x, and x is also
called an implicit function of y. If we solved
this equation for y, that is

2
_x°
y=-3

then y would be called an explicit function of
x. In many cases such a solution would be
far too complicated to handle conveniently,
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When y is given by an equation such as
:I:2 + xy2 =0

y is an implicit function of x.

Whenever we have an equation of this type
in which y is a function of x, we can dif-
ferentiate the function in a straightforward
manner., The derivative of each term con-

tatning y will be followed by 3L . Refer to
theorem 6,

EXAMPLE: Obtain the derivative %,Y;- of the
following:

xz + xy2 =0
SOLUTION: Find the derivative
%; (xz) = 2%
and the derivative
d 2, _ dy 2
= @)= x(2y) g5 + (y")(1)
Therefore,

d .2 2, _ dy = .2
-a;‘-(x +xy)-2x+2xydx+y

Solving for %% we find that

-2xy %: 2x + y2

and
2
1
=-—y—-%x

Thus, whenever we differentiate an implicit
function, the derivative will usually contain
terms in both x and y,

PROBLEMS: Find the derivative gz— of the
following:

10+’ -8y =2

ANSWERS:

4 3

- 4y
12xy° - 15y°

2, - 3L

X + 3y

1. -5x

TRIGONOMETRIC FUNCTIONS
If we are given

y =8inu
we may state that, from the general formula,

g% _lim sin(u + Au) - sin.u
Au-0 Au

_lim sin u cosAu + cos u siiAu - sinu

~ Au=0 Au
_lim sinu(cosAu -1) lim sinducosu
= Au-0 Au Au-0 Au
(6)
It can be shown that
lim cosAu -1 _ 0
Au-0 Au N
and
lim sinAu
Aau=0 au -1 (8)

Thereforz, by substituting equations (7) and
(8) into equation (6)

%% = co8 U (9)

Now, we are interested in finding the deriva-

tive % of the function sin u so we apply the
chain rule

2, xOy° = 3
‘ dy du
3, xPy + y° = 4 r-2%
203
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and from the chain rule and equation (9) we
find

d - d_u
% (sinu) = cos u T

In words, this states that to find the deriva-
tive of the sine of a function, we use the cosine
of the function times the derivative of the
function,

By a similar process we find the deriva-
tive of the cosine function to be

d du
ax (cosu) = - sin u gy

The derivatives of the other trigonometric

functions may be found by expressing them in
terms of the sine and cosine. That is

d -8 /sinu
ax (tanu) =5 (cos u)

and by substituting sin u for u, cos u for v,

and du for dx in the expression of the quotient
theorem

_q_(a)_‘if"_?u.‘“%
dx \v/ ~ ;2_—

we have

dy _d (sinu
du du \cosu

_cosu &isin u) - sin u‘aﬁ’icos u) (10)

005211

Taking

d
i (sinu) = cos u

and

d
E(conu)s - stnu

tion

and substituting into equation (10) find that

dy _ cos2 u + sin2 u
du ~ 2
cos” u

_ 1
= —?-—-

CoS u

= secl u (11)

Now, using the chain rule and equation (11)
we find

dy _ dy du
dx dudx
2

_ du
= sec u o

By stating the other trigonometric func-
tions in terms of the sine and cosine and

using similar processes, the following deri-
vatives may be found to be

d - cosu
i (sinu) = cos u ax

g—x (cosu) = - sinu-g‘xi

d 2 du
E}-‘-(tanu)-sec uge

4 (cot u) = cse? y &8
ax (cotu) =-csc ug ‘

%;(secuhsecutanug%

d du
a—(cscu)s-cscucotua;

EXAMPLE: Find the derivative of the func-

y = #in 3x
SOLUTION:

dy . a
i cos 3x i (3x)

= § cos 3x
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EXAMPLE: Find the derivative of the func- Combining all of these, we find that

tion
dy _ 2
y = tan® 3x 3 = (2 tan 3x)(sec 3x)(3)
SOLUTION: Use the power theorem and = 6 tan 3x secz 3x
dy _ d PROBLEMS: Find the derivative of the fol-
ax - 2 tan 3x5 (tan 3x) lowing:
then find 1, y=sin2x
2.2
d . 2, y =(cos x")
ax (tan 3x) = sec™ 3x = (3x)
ANSWERS:
and
1. 2 cos 2x
d -
dx (3x) = 3 2, - 4x cos x2 sin x

205
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CHAPTER 14

INTEGRATION

The two main branches of calculus are dif-
ferential calculus and integral calculus. Having
investigated differential calculus in previous
chapters, we now turn our attention to integral
calculus. Basically, integration ig the inverse
of differentiation just as division is the inverse
of multiplication, and as subtraction is the in-
verge of addition.

DEFINITIONS

Integration is defined as the inverse of dif-
ferentiation. When we were dealing with dif-
ferentiation, we were given a function F(x) and
were required to find the derivative of this
function. In integration we will be given the
derivative of a function and will be required
to find the function. That is, when we are given
the function f(x), we will find another function
F(x) such that

= f(x)

e M

In words, when we have the function f(x), -ve
must find the function F(x) whose derivative is
the function £(x).
K we change equation (1) to read
dF(x) = f(x) dx (2)
we have used dx as a differential. An equiva-
lent statement for equation (2) is

F(x) = [ f(x) dx

We call f(x) the integrand, and we say F(x) is
equal to the indefinite integral of f(x). The
elongated S, that is, [, is the iategral sign. This
symbol 1is used because integration may be
shown to be the limit of a sum.

206

INTERPRETATION OF AN INTEGRAL

We will use the area under a curve for the
interpretation of an integral. It should be
realized, however, that an integral may repre-
sent many things, and it may be real or abstract.
It may represent plane area, volume, or surface
area of some figure.

AREA UNDER A CURVE

In order to find the area under a curve, we
must agree on what is desired. In figure 14-1,
where f(x) is equal to the constant 4, and
the “curve” is the straight line

y=4

The area of the rectangle isfound by multiplying
the height times the width. Thus, thearea under
the curve is

A =4(b - a)

Tho next problem will be to find a method
for determining the area under any curve, pro-
vided that the curve is continuous. ™ figure
14-2, the area under the curve

y = {(x)

between points x and x + Ax is approximately
f(x)Ax. We consider that Ax 18 small and the area
is given to be AA. This area under the curve
is nearly a rectangle. The area AA, under the
curve, would differ from the area of the rec-
tangle by the areaof the triangle ABCif AC were
a straight line.

When Ax becomes smaller and smaller, the
area of AB” bhecomes smaller at a faster rate,
and ABC finally becomes indistinguishable from
a triangle. The area of this triangle becomes
negligible when Ax is sufficiently small.
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W

Figure 14-1.—Area of a rectangle.

y /

0 X x4ax

Figure 14-2.—Area AA.

Therefore, for sufficiently small valuesof Axwe
can say that

AA = f(x)ax

Now, if we have the curve in figure 14-3, the
qum of all the rectangles will be approximately
equal to the area under the curve and bounded by
the lines at a and b. The difference between the
actual area under the curve and the sum: of the
areas of the rectangles will be the sum of the
areas of the triangles above each rectangle.

As Ax is made smaller and smaller, the sum
of the rectangular areas will approach the value

Z
& A A

/
_/‘/"rﬁd ]
. Ax r-—

0 x' x2x3x4

Figure 14-3.—Area of atrips.

of the area under the curve. The sum of the
areas of the rectangles may be indicated by

n
A =1lim z f(xk) ax (3)
k=1

n- o

where Z (sigma) is the symbol for sum, nisthe
number of rectangles, f(x)Ax is the area of each
rectangle, andkisthede signation number of each
rectangle. In the particular example just dis-
cussed, whore we have four vectangles, we would
write

4
A= 21 f(xk)Ax

and we would have only the sum of four rec-
tangles and not the limitingarea under the curve.

When using the limit of a sum, as in equa-
tion (3), we are required to use extensive alge-
braic techniques to find the actual areaunderthe
curve.

To this point we have been given a choice of
using arithmetic and finding only anapproxima-
tion of the area under a curve, or we could use

207
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extensive algebraic preliminaries and find the
actual area.

We will now use calculus to find the area
under a curve fairly easily.

In figure 14-4, the area under the curve, from
a to b, is shown as the sum of the areas of

A and A . The notation A means the
a ¢ ¢ b a ¢

area under the curve from a to c.

The Intermediate Value Theorem states
that

aAp =) (b - a)

where f(c) in figure 14-4 isthe function at an in-
termediate point between a and b.

We now modify figure 14-4as shown infigure
14-5.

When
X=a
aAa =0

It is seen in figure 14-5 that

an + xA(x+ ax) - aA(x-c- AX)

g
— 171 -

¢ at+ ax b

Figure 14-5.—Increments of area at f(c).

therefore, the increase in area, as shown, is

aA = xA(x-c- Ax)

but reference to figure 14-5 shows

xA(x+ Ax) = f(c) Ax

where ¢ is a point etween a and b.
Then, by substitution

LA =f(c) Ax

ﬁ% =1(c)

A A and as Ax approaches zero we have

e 2
Ax~0

= lim f(c)
c~x

= f(x)

R R I

Z

b
£

]
K
4
3
5
28
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Now, from the definition of integration

A, = [{(x) dx
=F(x)+ C
and
aAa =F@)+ C
but
aAa =0
therefore
Fla)+ C=0

and solving for C we have
C = -F(a)

By substituting -F(a) into equation (4) we find
an = F(x) - F(a)

I we let

then
a8y, = F(b) -Fa) ()

where F(b) and F(a) are the integrals of the
function of the curve at the values b and a.

The constant of integration C is omitted in
equation (5) because when the function of the
curve at b and a is integrated C will occur with
both F(a) and F(b) and will therefore be sub-
tracted from itself.

EXAMPLE: Find the area under the curve

y=2x-1
in figure 14-6, bounded by the vertical lines at

a and b, and the x-axis.
SOLUTION: We know that

a’p ° F(b) - F(a)

209
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ol I+ 2 3 4 §5 6

X

Figure 14-6.—Area of triangle and reciangle.

and find
F(x) = [f(x)dx
= f (2x - 1)dx

= x2 - X (this step will be
justified later)

Then, substituting the values for a and b into
F(x) (that is, x¢ - x) find that when

X=a

and when

F(b) =25 -5
= 20
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Then by substitu: ‘~z these values in

a®p = F) - F(a)
find that

aAb=20-0

=20

We may verify this by considering figure 14-6 to
be a triangle with base 4 and height 8 sitting on
a rectangle of height 1 and base 4. By known
formulas, we find the area under the zurve to be
20.

CONSTANT OF INTEGRATICN

A number which is independent of the variable
of integration is called a constant of integration.
This is to say that two integrals of the same
function may differ by the constant of integration.

INTEGRAND

When we are given a differential (or de-
rivative) and we are to find the function whose
derivative is the differential we were given,
we call the operation integration.

K we have

and are asked to find the function whose de-
rivative is this value, x2, we write

or we write

The symbol [ 1s the integral sign, | x2dx is the

integral of x“dx, and x© js called the integrand.
The C is called the constant of integration.

INDEFINITE INTEGRALS

When we were finding the derivative of a func-
tion, we wrote

'g‘xL'-' F(x)

dgx (x) = f(x)

whe.e we say the derivative of F(x) isf(x). Our
problem is to find F(x) when we are given £(x).
. We know that the symbol J...dx is the in-

verse of 3, or when dealing withdifferentials,

the operator symbols d and f are the inverse of
each other.

That is
Fiv = [ f(x)dx

and when the derivative of each side is taken,
d annulling /, we have

dF(x) = f(x)dx

or wheref eoodx annuls%x- sy we have

B L [

= fix)
From this, we find that
i) = 3x%ax

[ axPax=x3+ C

Also we find th:t
dx® + 3) = 3x2dx
then

[axlax =2+ 2

Again, we find that
d@® - 9) = 3x2ax

210
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then

f 3x2dx =% -9
This is to say that

e + ©) = 3x°dx

and

3x2

dx = x3 + C
where C is any constant of integration. Since
C may have infinitely many values, then a dif-
ferential expression may have infinitely many
integrals which differ only by the constant.
We assume the differential expression has at
least one integral.

Because the integral contains C and C is in-
definite, we call

Fx)+ C

an indefinite integral of f(x)dx. In the general
form we say

[f(x)dx = F(x) + C

With regard to the constant of integration,
a theorem and its converse state:

I two functions differ by a constant, they
have the same derivative.

E two functions have the same derivative,
their difference is a constant.

EVALUATING THE CONSTANT

To evaluate the constant ui integration we will
use the following approach.

I we are to find the equation of a curve
whose first derivative is 2 times the independent
variable x, we may write

%%= 2x
or
dy = 2xdx (6)

We may obtain the desired equation for the curve
by integrating the expression for dy. That is,
integrate both sides of equation (6).

dy = 2xdx

then
[ay = [2xax
but
Jay=y

and also

[oxdx=x%+ C
therefore

y= x2 +C

We have obtained only a general equation of the
curve because a different curve resultsfor each
value we assign to C. This is shown in figure
14-7. X we specified that

x=0
and
y=6

we may obtain a specific value for C and hencz
a particular curve.
Suppose that

y=x2+ C, x=0,andy =6

then

2

6=0"+C

or
C=6

By substituting the value 6 into the general
equation, the equation for the particular curve
is

y=x2+6

which is curve C of figure 14-7.

The values for x and y will determine the
value for C and also determine the particular
curve.of the family of curves.

In figure 14-7, curve A has a constant equal
to -4, curve B has a constant equal to 0, and
curve C has a constant equal to 6.

211
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we have
or

and the equation is

2

y=3x"+ 2

RULES FOR INTEGRATION

Although integration is the inverse of dif-
ferentiation, and we were given rules for dif-
ferentiation, we are required to determine the
answers in integration by trial and error. There

X are some formulas which aid us in the determi-
6 nation of the answer.
In this section we will discuss four of the
rules andhnwthey are usedtointegrate standard
 ~ elementary forms. In the ruleswe willlet u and
-4 v denote a differentiable function of a variable
such as x. We will let C, n, and a denote con-
stants.
Our proofs will involve remembering that
Figure 14-7.~Family of curves. we are searching for a function F(x) whose de-
rivative is f(x)dx.

EXAMPLE: Find the equation of the curve Rule 1. fau=u+C

;fa;t; S:St d:;"::f;“z’e 2 dsxti;;?:l;hg independent The integral of a differential of a function is
s ¥ ’ : the function plus a constant.

SOLUTION: We may write Proof: If
&gx- = 6x a%(u +C) =1
and then
Jdy = [6xdx d(u + C) =du
therefore and
y=3x2+C fau=u+cC
Solving for C when EXAMPLE: Evaluate the integral
x=0 Jax
and SOLUTION: By Rule 1 we have
y=2 fdx=x+C
212

7245




Chapter 14—INTEGRATION

Rule 2. [adu=a fdu=au+ C

The integral of the product of a constant and
a variable is equal to the product of the constant
and the integral of the variable. Thatis, a con-
stant may be moved across the integral sign.
NOTE: A variable may NOT be moved across
the integral sign.

Proof: X

d(au + C) = (@) dlu + C)

=au

fadu=a [du=au+ C
EXAMPLE: Evaluate the integral
[4ax
SOLUTION: By Rule 2
faax =4 [dx
and by Rule 1
fdx=x+ Cc
therefore
fadx=4x+ C
Rule 3. [(du+ dv+ dw) = [du+ [dv+ [dw
=u+v+w+ C
The integral of a sum is equal to the sum of
the integrals.
Proof: ¥
du+ v+ w+ C)=du+ dv+ dw
then
f(du+ dv+ dw) = (u+ C1)+ v+ Cz)
+ (w+ 03)
=u+v+w+C

C=Cl+ Cz+ C3

EXAMPLE: Evaluate the integral
f(2x - 5x + 4)dx

SOLUTION: We will not combine 2x and -5x.
Then, by Rule 3

J(2x - 5x + 4)dx
f 2xdx - [+ 5xdx+ [4dx
2 [xdx - 5 [xdx+ 4 [dx

2 2
2x" 5x
9 +Cl-——2 +Cz+ 4x + C3

= xz-%xz-i- 4x+ C
where C is the sum of Cq, C2, and Cg.
This solution requires knowledge of Rule 4 which
follows. '
1

funclu=u

Rule 4.
n+ 1

+C

The integral of ulldu may be obtained by add-
ing 1 to the exponent, then dividing by this new
exponent. NOTE: H n is minus 1, this rule is
not valid and another method must be used.

Proof: K

n+1

n+l n
d(‘;‘H_ 1+C)=£—Ln+ Du_ s

= undu

n+1

fundu=‘1

n-i-l"'c

EXAMPLE: Evaluate the integral
[ x3dx
SOLUTION: By Rule 4

3+1

fxsdx - X

34-1"'c
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EXAMPLE: Evaluate the integral

I5

X
SOLUTION: First write the integral

7
J
X
as
/ 7x Sdx
then, by Rule 2 write
7 [x 3ax
and by Rule 4

EXAMPLE: Evaluate the integral

(. 3)
x2+;3_dx

SOLUTION:

1]
—,
»
()
3
+
—
aew|
&

PRACTICE PROBLEMS: Evaluate the fol-
lowing integrals:

214

1. [x2dx
2. [4xdx
3. f(x3 + X%+ x)dx
4. [6dx

5
5. [—5 dx

2
ANSWERS:

3

10 '_3—' + C
2. 2x + C
3. —’-‘4—+
4. 6x+ C

50 -24' C
X

DEFINITE INTEGRALS

The general form of the indefinite integral
is

[1(x)dx = F(x) + C

and has two identifying characteristics. First,
the constant of integration was required to be
added to each integration. Second, the result of
integration is a function of a variable and has no
definite value, even after the constant of inte-
gration is determined, until the variable is as-
signed a numerical value.

The definite integral eliminates these two
characteristics. The form of the definite inte-
gral is

fbf(x)dx =F(d)+ C - [F@@) + C]
a

Q)
=F(b) - F(x)

where a and b are given valuzs. . tice that the
constant of integration does not agpear in the
final expression of equation (7). In words,

wigad
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this equation states that the difference of the
values of

b
[ f(x)dx
a
for
Xx=a
and
x=b

gives the area under the curve defined by f(x),
the x axis, and the ordinates where

X=a

and

x=Db

UPPER AND LOWER LIMITS

In figure 14-8, the value of b is the upper
limit and the value at aisthelower limit. These
upper and lower limits may be any assigned
values in the range of the curve. The upper
limit is positive with respect to the lower limit
in that it is located to the right (positive in our
case) of the lower limit.

Equation (7) is the limit of the sumof all the

y

O/a

Figure 14-8.—Upper and lower limits.

where b is the upper limit and a is the lower
limit.

EXAMPLE: Find the area houncd by the
curve

Y=xz

the x axis, and the ordinates

x=2
and

x=3

as shown in figure 14-9.
SOLUTION: Substituting into equation (8)

strips between a and b, having areas of f(x)Ax. b b
That is [ f(x)dx = F(x)| =F(b) - F(a)
a a
x=b b
lim & {(x)Ax= f f(x)dx 3 9
x=a a = [ x“dx
2
To evaluate the definite integral x3 3
I e
f(x)dx
find the function F(x) whose derivative is f(x)dx =3 -3
at the value of b and subtract the function at the
value of a. That is 97 8
b | b 3 3
J f(x)dx = F(x) _ 19
a a (8) 31
= F(b) - F@@) =63
215
"848

M ia ) LM taar Bl .

et R



MATHEMATICS, VOLUME 2

- b & 6 N O e

<4 -3 -2 -

Figure 14-9.—Area from x = 2 to x= 3.

We may make an estimate of this solution by
considering the area desired in figure 14-9 a:
being a right triangle resting on a rectangle
The triangle has an approximate area of

=1
A-—zbh

1
=3 WG

-4 -3 -2 - o 1 2 3 4

=2
2

and the area of the rectangle 18 Figure 14-10.—Area under a curve.

A = bh SOLUTION: Substituting into equation (8)
= (14 b g
-4 J 1x)dx = F(x)
a -2
and =
= F(2) - F(-2)
5.1 _ .1
4+3="3=63 g
= [ xPdx
which is a close approximation of the area -2
found by the process of integration.
EXAMPLE: Find the area bounded by the
curve 312
=X
y = x° 3 .2
the x axis, and the ordinates =8 [_ 5_]
3 3
x = =2 16
and =3
X =2 1
= §=
as shown in figure 14410. 3

216
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The area above a curve and belowthe x axis,
as shown in figure 14-11, will through integr. -
tion furnish a negative answer.

Then when dealing with area as shown in
figure 14-12, each of the areas shown must be
found separately. The areas thus foundarethen

added together, with area considered as the ab-
solute value.

Y

L

AN,

Figure 14-11,—Area above a curve.

Figure 14-12,—Negative and positive value
areas

EXAMPLE: Find the area between the curve
y=x
and the x axis, bounded by the lines
X = -2
and
x =2
SOLUTION: These areas must be computed

separately; therefore we write

0
Area A = f f(x)dx
-2

0
=f xdx
-2

x2

Il

0

and the absolute value of -2 is
i-2|=2
Then

2
Area B= [ o f(x)dx

'
210
=5 - [0]
=2

and adding the two areas A and B we {ind

A+ B=2+ 2
=4

s it bR Shn
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NOTE: INCORRECT SOLUTION: K the func-
tion is integrated from -2 to 2 the following in- y
correct result will occur

2
Area = | f(x)dx

SOLUTION)

This is obviously not the area shown in figure
14-12. Such an example emphasizes the value Figere 14-13.~Positive and negative vaive
of making a commonsense check on every so- areas.
lution. A sketch of the function will aid
this commonsense judgment.

EXAMPLE: Find the total area bounded by The area

the curve
y= < - 9x A2 = f (
the x axis, and the lines
x=-3
and
x=3 _ 81 81
as shown in figure 14-13. 4

SOLUTION: The area desired is both above
and below the x axis; therefore we need to find
the areas separately, then add them together = -
using their absolute values.

Therefore and
0 3
A1=f- (x° - 9x)dx I-—-
Then
=ﬁ_2xz|°
4 2 -3 A1+A
_o.[8L_ 81
‘°'[4 - z]
=81
4

218
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PROBLEMS:

and

1. Find, by integration, the area under the

curve
y=x+4
bounded by the x axis and the lines
Xx =2
and
x=1
Verify this by a geometric process.
2. ¥ind the area under the curve
y = 3:!:2 + 2
bounded by the x axis and the lines

x=0

3. Find the area between the curve

X=2

y=x

and the x axis, from

to

219
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ANSWERS:

1. 42 5
2. 12
3. 391/4

X
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CHAPTER 15

INTEGRATION FORMULAS

In this chapter several of the integration
formulas and proofs are discussed and ex-
amples are given. Some of the formulas frcm
the previous chapter are repeated because they
are considered essential for the understanding
of integration. The formulas in this chapter
are basic and should not be considered a com-
plete collection of integration formulas. Inte-
gration is so complex that tables of integrals
have been published for use as reference
sources.

In the following formulas and proofs, u, v,
and w are considered functions of a single
variable.

POWER OF A VARIABLE
The integral of a variable to a power is

the variable to a power increased by one and
divided by the new power.

Formula:
n xn+1
[x dx =<5+ C,n#-1
Proof:
n+1 n+1-1
X _ (n+ 1)x
d(n+1 +C> - (E)TI) dx
- [+ 1)xn
= The+1 &
= xndx
therefore
xn+1
n = -
Jx0 dx T+t Cin#-l
EXAMPLE: Evaluate
J x5 dx

220

SOLUTION:

5+1
fx5ax = & +C

5+ 1

-
=8 + C

f x-9 dx
SOLUTION:

fx"5d1n:=x__—4 + C

PRODUCT OF CONSTANT
AND VARIABLE

When the variable is multiplied by a con-
stant, the constant may be written either be-
fore or after the integral sign.

Formula:

fadu=a fdu=au+ C

Proof:

d@u+ C)=ad (u+ g—)
= a du
therefore
Jadu=a [du=au+ C
EXAMPLE: Evaluate

17 dx
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SOLUTION:
T dax=17 [dx
=1Tx+ C
EXAMPLE: Evaluate
[ 3x4 ax
SOLUTION:

[ax? ax =3 [x% dx

5

=@ % +C

5

SUMS

The integral of an algebraic sum of differen-
tiable functions is the same as the algebraic
sum of the integrals of these functions taken
separately.

Formula:

f(@u+ dv+aw)= fau+ [dv+ [aw
Proof:
du+ v+w+C)=du+ dv+ dw
therefore
fdu+ [dv+ fdw=u+ Ci+v+Cotw+ 03
where
C1 +C

+C,=C

I T

Then
fau+ fav+ [aw=u+v+w+ C

and

f(du+ dv + dw) fdu+ fdv+ fdw

u+v+w+C

221

EXAMPLE: Evaluate
[(3x% + x) dx
SOLUTION:
f(3x2+ x) dx = [3x2 dx + [x dx

2
X + Cl-'»liz--'»c2

2
x3+§-é-+c

EXAMPLE: Evaluate
[ (x5 + x3) ax
SOLUTION:

f(x5+ x'3)dx=fx5dx+ fx'adx

6 -2
= X_ X _
6 -2
5.5l

6
2x

PROBLEMS: Evaluate the following inte-
grals:

1. fxsdx

2. fx‘4dx

3. [17x% ax

4. [rrar

5. [1x"? ax

8. [(x7+ x84+ 3x3)ax

7. [(6 - x3) dx

ANSWERS:

7
X
1. 7+C

1
2. - —¢ C
x3

el
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6.
7. GX'%"‘C

POWER OF A FUNCTION OF x

The integral of a function raised to a power
and multiplied by the derivative of that function
is found by the following steps:

1. Increase the power of the function by 1.

2. Divide the result of step 1 by this in-
creased power.

3. Add the constant of integration.

Formula:
un+1
fundu=n+1+C,n;£-1
Proof:
n+1 n
u _(n+ lu
d(n+1 +C) T n+ 1 du
= undu
therefore
0 un+].
fun du = sl +tC

NOTE: Recall that

2lRex-99 =@ 2 ex- 9
= 2(2x - 3)°
EXAMPLE: Evaluate
fex- 3% (2) ax
SOLUTION: Let
u=(2x - 3)-

and
du =2 dx
and
n=2
Then
0 n+1
fu du= -7+ C
3
=1—1§+ C

and by substitution
3
J(ex - 3)? @ax = ZX 3T, ¢

When using this formula the integral must
contain precisely du. K du is not present it
must be placed in the integral and then com-
pensation must be made.

EXAMPLE: Evaluate

[ @x+ 5)% ax
SOLUTION: Let
u=(@3x+ 5)
and

du=3 dx

We find dx in the integral butnot 3 dx. A 3 must
be included in the integral in order to fulfill the
requirements of du.

In words, this means the integral

[ @x + 5)% ax

needs du in order that the formula may be used.
Therefore, we write

3 [ex+ 5% ax

and recalling that a constant may be carried
across the inlegral sign, we write

%f(3x+ 5)2dx=%'f(3x+ 5)23dx

EAESTEUL L I
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Notice that we needed 3 in the integral for du
and we included 3 in the integral, then com-
pensated for the 3 by multiplying the integral
by 1/3.

Then

: 3
% JBx+ 5?3 ax = (-%)@%i+c
=%-(3x+ 5)3+ C

EXAMPLE: Evaluate
[ x(2 + %)% ax

SOLUTION: Let

u=(2+ x2)
and
du = 2x dx
Then
=2+ x2)2 dx =% %@+ x2)2 dx
=2 [ox(2 + xB% ax
1, @+ x9°
= (-i) 3 + C
2,3
2+ x + C

PROBLEMS: Evaluate the following inte-
grals:

1. [+ 6)(2x) ax

2. fx2 (7T + x3)2 dx

3. f(3x2 + 2x)2 (6x + 2) dx

4. f(6x3 + 2:'<)1/2 9x2 + 1) dx
5. [+ N %xax

ANSWERS:

2 2
1. ‘x;—ﬁ)_.‘.c

3.3
9, 0+ X7) . o

9

3. g____sng 2x)3 + C

(6x3 + 2x)3/ 2
3

1
2(x + 1)

4. + C

+ C

QUOTIENT

In this section three methods of integrating
quotients are discussed but only the second
method will be proved.

The first method is to put the quotient into
the form of the power of a function. The second
method results in operations with logarithms.
The third method is a special case in 1 hich the
quotient must be simplified in order to use the
sum rule.

METHOD 1

If we are given the integral

2x
S PRV dx

we observe that this integral may be written as

-1/2
J2x(9 - 4x2) dx

and by letting
u=(9 - 4x%)
and
du = -8x dx
the only requirement for this to fit the form
fu? du

is the factor for du of -4. We accomplish this
by multiplying 2x dx by -4, giving -8x dx which
is du. We then compensate for the factor -4
by multiplying the integral by - 1/4.

223
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Then
-1/2
2x - 2, ™
J 21/§dx-f2x(9-4x) dx
(9 - 4x°)
-1/2
= -% S (200-47)  ax
-1/2
= -%f—Bx(Q Saxd | dx
9 1/2
=(--i-)(—-—9'41x) +C
2
9 1/2
- _ (- 4x2) + C
EXAMPLE: Evaluate
J——17 «
LY 2 1 2
3 + x°
SOLUTION: Write
-1/2
[ —= 173 dx=fx(3+x2) dx
(3 + xz)
Then, let
u=(3+ xz)
and
du = 2x dx

The factor 2 is used in the integral to give du
and is compensated for by multiplying the inte-~

gral by 1/2,
Therefore
-1/2 -1/2
Jx@+xh) " ax=1 B+ 2 &
. 9.1/2
2
9 1/2
=@B+x") +¢C

PROBLEMS: Evaluate the following inte-
grals:

Y i S

(2 + xz)l/2 =

2. ITL
3z + 1
dx

3. I ——
(3x + 2)5

ANSWERS:

21/2
1. (2 + x%) + C

2/3

2. @Bx+ 1) + C

-1

— g+ C
12(3x + 2)

3.

METHOD 2

In the previous examples, if the exponent of
u was -1, that is

where
we would have applied the following.

Formula:
fg-:-=lnu+ C,u»>0

Proof:
dln u+ C) = % du
therefore
J %"— =lnu+C
EXAMPLE: Evaluate the integral
1
S x &

224
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SOLUTION: If we write We find we need 3 dx but we have 2 dx, There-
fore, we need to change 2 dxto3 dx, We do this
f;l‘-dx = fx'l dx by writing
2 o (32 (2
we find we are unable to evaluate J3x-|- 1 dx (2)(3)f3x+ ldx
[x1 ax 282 g
372 3x+1
by use of the power of a variable rule so we
write
=2 3
y =3 ST &
f;dx =lnx+ C
=-§- In(3x+ 1)+ C

because the 1 dx in the numerator is precisely
du and we have fulfilled the requirements for .. the 2/3 is used to compensate for the 3/2
used in the integral.

du _
f u Inu+C Therefore
EXAMPLE: Evaluate 2 s -2
f3x+ 7 =3 l@Bx+ 1)+ C
[s2— dx PROBLEMS: Evaluate the following inte-
2x+ 1 .
grals:
SOLUTION: Let
1 f 31:‘;‘-:-c 2
u=2x+1
_dx
and 2. [roos
du =2 dx x
3. | 5 dx
then we have the form 2 -3x .
3
du 2x
[==2=1nu+ C 4. [F—gax
u _ 3+ 2x
therefore ANSWERS:
2 _ 1
Jargax=l(x+ 1)+ C 1. 5 In@Bx+ 2)+C
EXAMPLE: Evaluate 2, - %m(5 -2+ C
2
JagrT 3, --%-l.n(2-3x2) + C
SOLUTION: Let 4 % 1@ + 2ty + C
u=3x+1
and METHOD 3
In the third method that we will discuss, for
du =3 dx solving integrals of quotients, we find that to
225
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integrate an algebraic function which has a
numerator which is not of lower degree thanthe
denominator we proceed as follows,

Change the integrand into a polynomial plus
a fraction by dividing the denominator into the
numerator, After this is accomplished, apply
the rules available,

EXAMPLE: Evaluate

fl(ix2 -4x -8

2x + 1 dx

SOLUTION:
numerator, then

Divide the denominator into the

) ax

2
2x+1dx

2

+ 3

-4x -8

16x
f 2x+ 1

dx=f<8x—6-

= f8xdx-f6dx-

2X

and, integrating each separately, we have
2

J8x dx = 4x° + ¢,
and
- [6dx = -6x + C2
and
%t 1 dx=-In(2x + 1) + C3

Then, by substitution, find that

dx=4x2-6x-1n(2x+ 1)+ C

f16x2 -4x - 8
2x+ 1

where

C=C +CZ+C

1
EXAMPLE: Evaluate
X

fx+1

SOLUTION: The numerator is not of lower
degree than the denominator; therefore we di-
vide and find that

[

3

dx

dx= [1- dx

x+1
—fdx fx+1 dx

x+1

226

Integrating separately,

fdx=x+C1
and
1 -
'fx+1 dx = -In(x + 1) + C,
therefore
f X dx =x-Iln(x+ 1)+ C
x+1
where
C=Cl+C2

PROBLEMS: Evaluate the following inte-
grals:

1 f2x2 + 6x+ 5

* x+ 1

dx

2. [3E=8 &

3

f6x + 13x2+ 20x + 23

2x + 3

3. dx

+ 16x + 4

4. 3x+ 1

dx

fle

ANSWERS:
1. x2+ 4x+ In(x+ 1) + C

2, 3x-8In(x)+ C
3. x3+ x2+ 7x+ In(2x+ 3) + C
4, %x2+ 3x+—;-1n(3x+ 1)+ C

CONSTANT TO A VARIABLE POWER

In this section a discussion of twoformsof a
constant to a variable power is presented. The
two forms are al and eU where uis the variable
and a and e are the constants.

Formula:

u
fa“du——+ C

RED::
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Proof:
d(a“-l- Cl) =a’lna du
then
Ja'madu=a"+C,
but In a is a constant, then
faul.na.du=1nafaudu
and

lnafaudu=au+ C,

SOLUTION: Let
u=2xX
and
du = 2 dx

The integral should contain afactor of 2 in order
that

du = 2dx

Thus we adda factor of 2in the integraland com-
pensate by multiplying the integral by 1 /2.

Then
Then, by dividing both sides by ln a, we have f 32x dx = % f (2) 32x dx
Ina faudu= a” + ¢ ='l'f32x2dx
Ina Ina Ina 2
and letting therefore
<
C=—— 2x
a 1 re2x (1 3
2f3 2ax=(3) 5 + C
we have
faudu=—§1—1-—+c =2alix3+c
Ina
EXAMPLE: Evaluate EXAMPLE: Evaluate
X 2
/3" ax [1xbX ax
SOLUTION: Let SOLUTION: Let
u=x u-= x2
and and
du = 1ax du = 2x dx
therefore, by knowing that In order to use
u - & u
fadu 1na+C faudu=%‘1—£+c
and using substitution, we find that the integral must be in the form of
U ?
Jahax =5+ C [ %2 2x dx
EXAMPLE: Evaluate but we have j
[32% gx [o%% 7x ax
227 3
N %
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therefore we remove the 7 and insert a 2 by therefore

writing

Jro®® ax = [(3)(2) 10X ax

=X (2 q5,x2
= 5 [ & 10X ax

%f 2xbx2 dx

% [ 5% 2x ax

7 pXe
2 Inb

+ C

PROBLEMS: Evaluate the following inte-
grals:

1. [10% ax
2. [ 1% &
3. [ 9x%xax
4. f2(3x2+1)xdx

ANSWERS:
102X

1. Dl a0

amio * €

gx2

8 o

+ C

2(3x2 +1)

¢ w2

+ C

We will now discuss the second form of the

integral of a constant to a variable power.
Formula:

feu du=e’+ C
Proof:

d(eu+ C) = e du

228

f etdu=e"+ C
EXAMPLE: Evaluate
f e™ dx

SOLUTION: Let

and
du =1 dx
The integral is in the correct form to use;
f e'du=e"+ C
therefore, using substitution, we find
f e* dx = e* +- C
EXAMPLE: Evaluate
f ezx dx
SOLUTION: Let
u=2x
and
du= 2 dx
We need a factor of 2 in the integral and write
f o2X dx = % f ezx dx
= % J 2 2dx

e2x+C

-
-

0 s

EXAMPLE: Evaluate

2

fxezx dx
Let

u = 2x

SOLUTION:
2

and
du = 4x dx

231
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Here a factor of 4 is needed in the integral,

therefore

2 2

fxezx dx = f%xezx

SOLUTION: Write the integral

dx

-x3
e

2 3
x_é_ dx = fx2 e * ax
ex
and let
u=-x3
and
_ 2
du = -3x dx
therefore
2 -x3 1 2
[xe” & = --gf-:)x
3
_ .1, x
== = 3 e

PROBLEMS: Evaluate the
grals:

2
[-2xe™* dx

fe4xdx

1,

2.

3.

+ C

dx

following inte-

229
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ANSWERS:

TRIGONOMETRIC FUNCTIONS

Trigonometric functions, whichcompriseone
group of transcendental functions, may be dif-
ferentiated and integrated in the same fashion
as the other functions, We will limitour proofs
to the sine, cosine, and secant functions, but will
list several others,

Formula:
[sinudu=-cosu+ C
Proof:
d(cos u + C) = -sinu du
and
d(-cos u + C) =sinu du
therefore
fsinudu=-cosu+ C
FoMaula:
fcosudu=ginu+ C
Proof:
d(sin u + C) = cos u du
therefore

feosudu=sinu+ C
Formula:

fseczudu=tanu+ C
Proof: ?

ditan u + C) =d(—°—‘—“—l‘- ' c)

. ot

cosu

.&’!‘Hf““ s a1 b b Rt

thi
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and by the quotient rule

8in u _. cos u(cos u) - sin u(-sin u)
d(cosz u)"' €= du

cos u
_<¢:oszu + sin2u>
cos u

1
du
(cos2u>

seczu du

therefore
[sec’ucu=tanu+ C

To this point we have considered integrals
of trigonometric functions which result in func-
tions of the sine, cosine, and tangent. Those
integrals which result in functions of the co-
tangent, secant, and cosecant are included in
the following list of elementary integrals,

fsinudu =-cosu+ C
fcosudu=sinu+C
fseczudu=tanu+ C
fcsczu du=-cotu+ C
fsec utan udu=secu+ C
fcscucotudu=-cscu+ Cc

EXAMPLE: Evaluate
[ sin 3x dx

SOLUTION: We needtheintegral in the form
of

[sinudu=-cosu+ C

therefore, we let

and
du =3 dx

but we do not have 3 dx. Therefore, we multiply
the integral by 3/3 and rearrange as follows:

fsin3xdx=-g fs'm3xdx
=-;-fsin3x3dx
then

%fsin3x3dx=% (-cos 3x) + C
-1
=-gcosdx+ C

EXAMPLE: Evaluate
fcos(2x + 4) dx
SOLUTION: Let

u=(2x+ 4)
and
du=2dx
Therefore,
fcos(2x + 4) dx = % [ cos(2x + 4) ax
=% fcos(2x+ 4) 2 dx

sin(2x + 4) + C

DO =

EXAMPLE: Evaluate
f(3 sin 2x + 4 cos 3x) dx

SOLUTION: We use the rule for sums and
write

J (3 sin 2x + 4 cos 3x) dx
= [3sin2xdx+ [4 cos 3xdx

Then, in the integral
/3 sin 2x dx

let
u=2x

230
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and where
du=2dx Cl + Cz =C
but we have EXAMPLE: Evaluate
3 dx [sec? 3x dx
To change 3 dx to 2 dxwe divide by 3 and multiply SOLUTION: Let
by 2, with proper compensation, as follows:
u=3x
. _ 12,3 .
/3 sin 2x dx = (3)(3) [3 sin 2x dx and
du=3 dx

/28 sin 2x ax)
[ 2 sin 2x dx

(-cos 2x) + C1

I
ol ojw e

S cos 2x + C1

-T2

The second integral

[4 cos 3x dx
with
u =3x
and
du =3 dx

is evaluated as follows:
f4 cos 3x dx = (%)(%) J 4 cos 3x dx

-g—f3cos3xdx

4 , .
3 (sin 3x) + 02

Then, by combining the two solutions, wehave

J @3 sir 2x + 4 cos 3x) dx

3 4
cos 2x + C1+ 3asin3x+ 02

= 7
- _3 4
= - 2c032x+3 sin3x+ C

We need 3 dx so we write

fseczsxdx=%fsec23xdx

=%—fsec23x3dx

=%—(ta.n3x)+ C

EXAMPLE: Evaluate
J esc 2x cot 2x dx

SOLUTION: Let

u=2x

and
du=2dx
We require du equal to 2 dx so we write
fcsc2xcot2xdx=-§fc302xcot2xdx

=-;-f2csc2xcot2xdx

= --%-csc2x+ C

EXAMPLE: Evaluate
[ esc? 3x dx

SOLUTION: Let
u =3x

M.z
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and
du =3 dx
then
fcsc23xdx=-§-f3csc23xdx
=-%cot3x+ C

EXAMPLE: Evaluate

[sec = tan X ax

2 2
SOLUTION: Let
u==X
2
and
du= 2 ax
2
then

fsec%tanidx-‘-zf-;-secl‘-tan-’idx

2 2

=2sec%+c

PROBLEMS: Evaluate the following inte-

grals:
1. fcos4xdx
2. [sin 5x dx
3. fsec2 6x dx
4. [3 cos(6x + 2) dx
5. [x sin (2x2) ax

2

6. J2csc® 5x dx

X X
7. [3sec 3 tan 3 dx

ANSWERS:

1. -i—sin4x+ C

2. -%c035x+ C

3. %tan6x+C

4.

0]

sin(6x + 2)+ C
5. - i— cos(zxz) + C
2

6. -=cotb5x+ C

7. 93ec§-+c

TRIGONOMETRIC FUNCTIONS
OF THE FORM [uh du

The integrals of powers of trigonometric
functions will be limited to those which may,

by substitution, be written in the form
J u” du
EXAMPLE: Evaluate ..
S/ sin? x cos x dx
SOLUTION: Let
u = 8in x
and
du = cos x dx
By substitution

fsin4xcosxdx= fu4du

5
=9
= 5+C

Then, by substitution again, find that

5 5
Li.c-80X,c

therefore

[ sin® x cos x dx = e +C
EXAMPLE: Evaluate

fco8® x(-sin x) dx
232
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SOLUTION: Let 4. f cosszx dx
u=cosx sin” 2x
and 5. [cos® x sin x dx
du = -sin x dx 6. fsinxcosx(sinx+cosx)dx
Write ANSWERS:
4
[l a=2 s c 1. Tsind x4
3
and by substitution 9. % sin5 x+ C
4 4
%—+C=-c£2—x+c 3. sin2x+C
PROBLEMS: Evaluate the following inte- 4. —%— +C
grals: 4 sin™ 2x

.2
1. fsm X cos x dx 5. -—i—cos4x+C
3

2, fsin4xcosxdx

Y

3
6. sinx:;cos X +C

3. /2 sinxcos x dx

233
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CHAPTER 16

COMBINATIONS AND PERMUTATIONS

This chapter deals withconcepts required for
the study of probability and statistics. Statistics
is a branch of science which is an outgrowth of
the theory of probability. Combinations and
permutations are used in both statistics and
probability, and they, in turn, involve opera-
tions with factorial notation. Therefore, combi-
nations, permutations, and factorial notation
are discussed in this chapter.

DEFINITIONS

A combination is defined as z possible se-
lection of a certain number of objects taken
from a group with no regard given to order.
For instance, suppose we were to choose two
letters from a group of three letters. If the
group of three letters were A, B, and C, we
could choose the letters in combinations of two
as follows:

AB, AC, BC

The order in which we wrote the letters is of
no concern, That is, AB could be written BA
but we, would still have only one combination of
the letters Aand B. .

If order were considered, we would refer
to the letters as permutations and make a dis-
tinction between AB and BA. The permutations
of two letters from the group of three letters
would be as follows:

AB, AC, BC, BA, CA, CB

The symbol used to indicate the foregoing
combination will be 3Cy, meaning a group of
three objects taken two at a time. For the
previous permutation we will use 3P2, meaning
a group of three objects taken two at a time
and ordered.

An understanding of factorial notation is
required prior to a detailed discussion of com-
binations and permutations. We define the
product of the integers 1 through n as n frac-
torial and use the symbol n! todenote this. That
is,

3! = 1.2.3

6! = 1-2-3-4.5-6

n! = 1.2.3.¢+(n - 1):n

Find the value of 5!
Write

EXAMPLE:
SOLUTION:

5!

1. 2-3-4'5

= 120

Find the value of
]

S
3l

EXAMPLE:
SOLUTION: Write

5! 5:4.3.2.1

and

3!

I
w
')
—_

then

! 5-4
3! 3

and by simplification

5-4.
3

3.2
1 - ot

20

234
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Ay

The previous example could have been solved by

writing

51 _ 314.5
! 31
= 5-4

Notice that we wrote
5! = 5.4.3.2.1

and combined the factors

3-2-1
as
3!
then
5! = 3!14.5

EXAMPLE: Find the value of

6! - 4!
4!
SOLUTION: Write
6! = 4! 56
and
4! = 411
then
6!1-4! _ 4! (5.6 - 1)
4! 4!
= (5.6 - 1)
= 29

Notice that 4! was factored from the expression
6! - 4!
THEOREM

K n and r are positive integers, withn groater
than r, then

nl=rl(r+ 1)@+ 2)..en

235

This theorem allows us to simplify an expres-
sion as follows:

g

5! 4! 5

3! 4.5

2] 3-4-5
102:3.4.5

Another example is
m+2)! =+ 1) (n+ 2)
=n!l (n+ 1)(n + 2)
=(-1)!nn+ 1)(n+ 2)

EXAMPLE: Simplify

n+ 3)!
n!

SOLUTION: Write
m+3)!=n! m+ 1)n+ 2){n + 3)

then

m+3)! _nl@+1)(n+ 2)(n + 3)
n! n!

=@+ 1)n+ 2@+ 3)

PROBLEMS: Find the value of problems
1-4 and simplify proilems 5 and 6.

1. 6!
2. 3! 4!

3. 8L

4.
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1
" 990
. 19

n
. NM+1)(n+2)

Db W

COMBINATIONS

As indicated previously, a combination isthe
selection of a certain number of objects taken
from a group of objects without regardtoorder.
We use the symbol 5C3 to indicate that we have
five objects taken three at a time, without re-
gard to order. Using the letters A, B, C, D, and
E, to designate the five objects, we list the
combinations as follows:

ABC ABD ABE ACD ACE
ADE BCD BCE BDE CDE

We find there are ten combinations of five ob-
jects taken three at a time. We made the se-
lection of three objects, as shown, but we called
these selections combinations. The word com-
binations infers that order is not considered.

EXAMPLE: Suppose we wish to know -how
many color combinations can be made from
four different colored marbles, if we use only
three marbles at a time. The marbles are
colored red, green, white, and blue.

SOLUTION: We let the first letter in each
word indicate the color, then we list the pos-
sible combinations as follows:

RGW RGY RWY GWY

If we rearrange the first group, RGW, to form
GWR or RWG we still have the same color
combination; therefore order is not important.

The previous examples are completely within
our capabilities, but suppose we have 20 boys
and wish to know how many different basket ball
teams we could form, one at a time, from these
boys. Our listing would be quite lengthy and we
would have a difficult task to determine that we
had all of the possible combinations. In fact,
there would be over 15,000 combinations we
would have to list. This indicates the need for
a formula for combinations.

FORMULA

The general formula for possible combina-
tions of r objects from a group of n objects is

236

_nn-1)...n-r+ 1)
- 1:2:3.-.r

nr
The denominator may be written as
102030001' =rl

and if we multiply both numerator and denomi-
nator by

(n-r)..2.1
which is
(n - r)!

we have

cC = nn-1)...m-r+ 1)@ -1r)..2.1
nr ri(n-r)..2.1

The numerator

nn-1)...h-r+1)(n-r)--2.1

is
nl!
Then
_ n!
nCr = 71 (n - r)!

This formula is read: The number of combi-
nations of n objects taken r at a time is equal
to n factorial divided by r factorial times n
minus r factorial.

EXAMPLE: In the previous problem where
20 boys were available, how many different
basketball teams could be formed?

SOLUTION: K the choice of whichboy played
center, guard, or forward is not considered,
we find we desire the number of combinations
of 20 boys taken five at a time and write

- n!
ncr T rl(n-r)!
where
n =20
and
r =5
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Then, by substitution we have

_ 20!
51 (20 - 5)1

_ _20
51 151

_ 15! 16-17.18-19.20
151 5!
16-17- 18- 19- 20
5.40302.1

1

nCr = ZOC5

15,504

EXAMPLE: A man has, in his pocket, a sil-
ver dollar, a half-dollar, a quarter, a dime, a
nickel, and a penny. If he reaches into his
pocket and pulls out three coins, how many dif-
ferent sums may he have?

SOLUTION: The order in not important,
therefore the number of combinations of coins
possible is

63 = 376 -9

[}
o
o

EXAMPLE: Find the value of

C

373

SOCLUTION: We use the formula given and
find that

3!
3 ~ 313 -3)

0
[

3

This seems to violate the rule, “division by
zero is not allowed,” but wedefine 0! asequal 1.
Then

which is obvious if we list the combinations of
three things taken three at a time.

PROBLEMS: Find the value of problems1-6
and solve problems 7, 8, and 9.

6C3 * 7C3

13%6

6. ¢ 6%
14%4

7. We want to paint three rooms in a house,
each a different color and we may choose from
seven different colors of paint. How many color
combinations are possible, for the three rooms?

8. If 20 boys go out for the football team,
how many different teams may be formed, one at
a time?

9. Two boys and their dates go to thedrive-
in and each wants a different flavor ice cream
cone. The drive-in has 24 flavorsof ice cream.
How many combinations of flavors may they
choose?

ANSWERS:
1. 15

2. 15

3. 3,003
4. 1

S 156
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7. 35
8. 167,960
9. 10,626

PRINCIPLE OF CHOICE

The principle of choice is discussed in re-
lation to combinations although it is also, later
in this chapter, discussed in relation to permu-
tations, It is stated as follows:

If a selection can be made in ny ways, and
after this selection is made, a second selection
can be made in n2 ways, and after this selec-
tion is made, a third selection can be made in
ng ways, and so forth for r ways, then ther
selections can be made together in

nl.nz.ns....nr ways

EXAMPLE: In how many ways can a coach
choose first a football team and then a basket-
ball team if 18 boys go out for either team?

SOLUTION: First let the coach choose a
football team, That is

- 181
111 (18 - 11)!

_ _18l
1

_ 11! 12-13-14:15.16.17-18
11! 7:6-5.4.3.2.1

18%11

31, 824

The coach now must choose a basketball team
from the remaining seven boys. That is

P |

7°5 = BI (7 - 5)1

= 21

Then, together, the two teams can be chosen in
(31, 824) (21) = 668,304 ways

EXAMPLE: A man ordering dinner has a3
choice of one meat dish from four, a choice of
three vegetables from seven, one salad from
three, and one dessert from four, How many
different menus are possible?

SOLUTION: The individual combinationsare
as follows:

meat. .......q"
vegetable, . ... ..7C4
s:a.lad.........:;C1
dessert...... .4C1

The value of

4!

1 1! (4-1)!
4]

!

4

3
= 4
and

774 ~ 41 (7 - 4)!

and

3l
1 1!(@3-1)!

(@]
1

3
3

2
3

[

therefore, there are

(4)(35) (3) (4) = 1680

different menus available to the man,
PROBLEMS: Solve the following problems,
1. A man has 12 different colored shirts
and 20 different ties. How many shirt and tie
combinations can he select to take on a trip, if
he takes three shirts and five ties?
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2. A petty officer, in charge of posting the
watch, has in the duty section 12 men, He must
post three different fire watches, then post four
aircraft guards on different aircraft. How many
different assignments of men can he make?

3, If there are 10 third class and 14 second
class petty officers in a division which must
furnish two second class and six third class
petty officers for shore patrol, how many dif-
ferent shore patrol parties can be made?

ANSWERS:

1, 3,410,880

2, 217,720

3. 19,110

PERMUTATIONS

Permutations are similar to combinations but
extend the requirements of combinations by con-
sidering order,

Suppose we have two letters, A and B, and
wish to know how many arrangements of these
letters can be made, Itis obvious that the answer
is two, That is

AB and BA

If we extend this to the three letters A, B, and
C, we find the answer to be

ABC, ACB, BAC, BCA, CAB, CBA

We had three choices for the first letter, and
after we chose the first letter, we had only two
choices for the second letter, and after the
second letter, we had only one choice. This is
shown in the “tree” diagram infigure16-1, No-
tice that there is a total of six different paths
to the ends of the “branches” of the “tree”
diagram,

SECOND
CHOICE

THIRD
CHOICE

FIRST
CHOICE

STARTING X
POINT

If the mimber of objects is large, the tree
would become very complicated; therefore, we
approach the problem in another manner, using
parentheses to show the possible choices. Sup-
pose we were to arrange five objectsinas many
different orders as possible. We have for the
first choice six objects,

GININIGIGI®

For the second choice we haveonly five choices,
@ @GO OO

For the third choice we have only four choices.
@G @00

This may be continued as follows:
() (5) (4 (3) (2 (1)

By applying the principle of choice we find the
total possible ways of arranging the objects to
be the product of the individual choices. That is

6.504030201
and this may be written as
6!

This leads to the statement: The number of
permutations of n objects, taken all together, is
equal to nl.

EXAMPLE: How many permutations
seven different letters may be made?

SOLUTION: We could use the “tree” but this
would become complicated, (Try it to seewhy.)
We could use the parentheses as follows:

of

(T (6) (5) (4) (3) (2) (1) = 5040

The easiest solution is to use the previous
statement and write

.7P,7 = 7!

That is, the number of possible arrangements
of seven objects, taken seven at a tine, is71.
NOTE: Compare this with the number of COM-
BINATIONS of seven objects, taken seven at a
time.
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If we are faced with finding the number of
permutations of seven objects taken three at a
time, we use three parentheses as follows:

In the first position we have a choice of
seven objects,

()Y ()

In the second position we have a choice of six
objects

(7 (6 ()

In the last position we have a choice of five ob-
jects,

(7 (6) (5)
and by principle of choice, the solution is
7.6.5 = 210

FORMULA

At this point we will use our knowledge of
combinations to develop a formula for the num-
ber of permutations of n objects taken r at a
time,

Suppose we wish to find the number of per-
mutations of five things taken three at a time,
We first determine the number of groups of three,
as follows:

5C3 = 3]

ll'

= 10

Thus, there are 10 groups of threeobjects each.

We are now asked to arrange each of these
ten groups in as many orders as possible, We
know that the mumber of permutations of three
objects, taken together, is 3!, We may arrange
each of the 10 groups in 3! or six ways, The
total number of possible permutations of 503
then is

5C3 « 3! = 10:6
which is written

5C3 * 3! = 5Py
Put into the general form, then

ncr erl T nPr

240
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and knowing that

_ n!
nCr T rl (n-r)!
then
= —nl_
nCr ° T T @-91° T
. .nl!
(n - r)!
but
ncr ~rlo= nPr
therefore
_ _n!
npr " (n- !

EXAMPLE: How many permutations of six
objects, taken two at a time, can be made?

SOLUTION: The number of permutations of
six objects, taken two at a time, is written

_ _6l
2 -~ ©-91

6!
4]

4! 5-6

6P

= 5.6
= 30

EXAMPLE: In how many ways can eight
peopie be arranged in a row?

SOLUTION: All eight people must be in the
row; therefore, we want the number of permu-
tations of eight people, taken eight at a time,
which is

8!
(8 - 8)!
8!

gPg =

0

(Remember that 0! was defined as equal to 1)
then

—

! 1

8l _ 87.5.5.4.3.2.1

40, 320
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Problems dealing with combinations andper-
mutations often require the use of both formulas
to solve one problem,

EXAMPLE: There are eight first class and
six second class petty officers on the board of
the fifty-six club, In how many ways can they
elect, from the board, a president, a vice-
president, a secretary, and a treasurer if the
president and secretary must be first class
petty officers and the vice-president and treas-
urer must be second class petty officers?

SOLUTION: Since two of the eightfirst class
petty officers are to fill two differentoffices, we
write

8y
sF2 = @ - 21

8!
6!

=178
= 56

Then, two of the six second class petty officers
are to fill two different offices; thus we write

61
6¥2 = (6 - 2)1

6!
4!

= 5:6
= 30

The principle of choice holds in this case; there-
fore, there are

56.30 = 1680

ways to select the required office holders, The
problem, thus far, is a permutationproblem, but
suppose we are asked the following: In how
many ways can they elect the office holders from
the board, if two of the office holders must be
first class petty officers and two of the office
holders must be second class petty officers?

SOLUTION: We have already determined
how many ways eight things may be takentwo at
a time and how many ways six may be taken
two at a time, and also, how many ways they
may be taken together, That is

P, = 50

82

and

2=30

then

P

82'6P = 1680

2

Our problem now is to find how many ways we
can combine the four offices, two at a time,
Therefore, we write

c = 4!
4°2 ~ 2! (4 -2)!
4]
212!

4.3.2.1
2-2

= 6

Then, in answer to the problem, we write
In words, if there are 4Cg ways of combining
the four offices, and then, for every one of these

ways there are gPy « gP2 waysofarrangingthe
office holders, then there are

8F2 * 6¥2 * 4C2
ways of electing the petty officers,

PROBLEMS: Find the answers to the fol-
lowing.

1
2

- 6%3
- 4%3
8. 7P3 * 5P
4, In how many wayscansixpeoplebe seated
ina row?
5. There are seven boys and nine girls in
a club, In how many ways can they elect four
different officers designated byA,B, C,andD if:
(a) A and B must be boys and C and D
must be girls?
(b) two of the officers must be boys and
two of the officers must be girls?
ANSWERS:
. 120
. 24
840
720
(a) 3,024
(b) 18,144

cn.c-.wto.-n
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In the question “How many different arrange-
ments of the letters in the word STOP can be
made?” were asked, we would write

Rt
aP4 = @-an
4
- o!
= 24

We would be correct since all letters are dif-
ferent, If some of the letters were the same,
we would reason as given in the following prob-
lem.,

EXAMPLE: How many different arrange-
ments of the letters in the word ROOM can be
made?

SOLUTION: We have two letters alike, If
we list the possible arrangements, using sub-
scripts to make a distinction between the O’s,
we have

R O,O,M

192 O, O0MR OMO,R

199 1 9 MO.O,R

172

R 0201M

R OlM O2

R 02M 01

RM 0102

0201M R

OIOZR M

OZOIR M

OOMRO

1 2

OLMRO

02M OIR

OIR M 02

02R M 01
OIR 02M

M 0201R

M OlR O2

M 02R O1

MR 0102

RM 0201 9 1 02R OlM MR 0201
but we cannot distinguish between the O’s and
R 0109M and R O201M would he the same ar-
rangement without the subscript. Notice in the
list that there are only half as many arrange-
ments without the use of subscripts or a total
of twelve arrangements, Thisleads to the state-
ment: The number of arrangements of n items,
where r1, r9, and rx are alike, is given by

n!

1'11 rz! "‘rk!

In the previous example n was equal to fcur and
there were two lettersalike; therefore, we would
write

4! 4.-3-2-1

! 2-1

n
—t
n

EXAMPLE: How many arrangements canbe
made using the letters in the word ADAPTA-
TION ?

SOLUTION: We use

n!
rll r2! --.rk!
where
n = 10
and
r, = 2 (two T's)
and
r, = 3 (three A's)
Then
n! . 10!
r1! r2!~--rkl 2! 3!
- 2:5-6.7.8.9.10
| 1
= 302, 400

PROBLEMS: Find the number of possible
arrangements of the letters in the following
words,

i, DOWN

2. STRUCTURE

3. BOOK

4, MILLIAMPERE

5. TENNESSEE

ANSWERS:

1. 24

2, 45,360

3. 12

4, 2,494,800

5. 3,780

Although the previous discussions have been
associated with formulas, yroblems dealingwith
combinations and permn:tations may be analyzed
and solved in a more meaningful way without
complete reliance upon the formulas,

EXAMPLE: How many four-digit numbers
can be formed from the digits 2, 3,4, 5, 6, and 7

(a) without repetitions?
(b) with repetitions?

SOLUTION: The (a) part of the question isa

straight forward permutation problem and we
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reason that we want the number of permutations
of six items taken four at a time,
Therefore
_ 6!
64 = (6 - 4N
- 6 5.4.3.2.1
2.1
= 360

The (b) part of the question would become quite
complicated if we tried to use the formulas;
therefore, we reason as follows:

We desire a four digit number and find we
have six choices for the first digit. That is,
we may use any of the digits 2, 3, 4, 5, 6, or 7
in the thousands column which gives us six
choices for the digittobe placed in the thousands
column, If we selectthedigit4for the thousands
column we still have a choice of any of the digits
2, 8, 4, 5, 6, or 7 for the hundreds column,
This is because we are allowed repetition and
may select the digit 4 for the hundreds column
as we did for the thousands column, This gives
us six choices for the hundreds column,

Contimiing this reasoning, we couldwritethe
number of choices for each place value column
as shown in table 16-1,

Table 16-1. —Place value choices.

tition. We would be required to startin the units
column because ai. odd number isdetermined by
the units column digit, Therefore, we haveonly
three choices. That is, either the 3, 5, or 7,
For the tens column we have five choices and
for the hundreds column we have four choices,
This is shown in table 16-2,

Table 16-2. —Place value choices.

— —
hundreds tens units
column column column
four five thxree
choices choices choices

thousands hundreds tens units

column column column column
six six six six

choices choices choirces choices

In table 16-1, observe that the total number
of choices for the four digit number, by the
principle of choice, is

6.6:6.6 = 1,296

Suppose, in the previous problem, we were
to find how many three-digit odd numbers could
be formed from the given digits, without repe-

In table 16-2, observe that there are
4.5-3 = 60

three-digit odd numbers that can be formed
from the digits 2, 3, 4, 5, 6, and 7, without
repetition,

PROBLEMS: Solve the following problems,

1. Using the digits 4, 5, 6, and 7, how many
two-digit mumbers can be formed:
(a) without repetitions?
(b) with repetitions?

2. Using the digits 4, 5, 6, 7, 8, and 9, how
many five-digit numbers can be formed:
(a) without repetitions?
(b) witk repetitions?

3. Using the digits of problem 2, how many
four-digit odd numbers can be formed, without
repetitions?

ANSWERS

1, (a) 12
(b) 16
2. (a) 720
(b) 7,776
3. 180
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CHAPTER 17

PROBABILITY

The history of probability theory dates back
to the 17th century and at that time was related
to games of chance. In the 18th century it was
seen that probability theory had applications
beyond the scope of games of chance. Some of
the applications in which probability theory is
applied are situations with outcomes suchaslife
or death and boy or girl. Inthe present century,
statistics and probability are applied to insur-
ance, annuities, biology, and social investiga-
tions.

The treatment of probability inthis chapter is
limited to simple applications. These applica-
tions will be, to a large extent, based on games
of chance which lend themselves to an under-
standing of basic ideas of probability.

BASIC CONCEPTS

I a coin were tossed, the chance that it would
land heads up is just as likely as the chance it
would land tails up. That is, the coin has no
more reason to land heads up than ithas to land
tails up. Every toss of the coinis called a trial.

We define probability as the ratio of the dif-
ferent number of ways a trial can succeed (or
fail) to the total numbers of ways inwhich it may
result. We will let p represent the probability
of success and q represent the probability of
failure.

One commonly misunderstocd concept of
probability is the effect prior trials have on a
single trial. That is, after a coin has been
tossed many times and every trial resulted in
the coin falling heads up, will the nexttoss of the
coin result in tails up? The answer is “not
necessarily,” and will be explained later in this
chapter.

PROBABILITY OF SUCCESS

K a trial must result in any of n equally
likely ways, and if s isthe number of successful

244
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ways and f is the number of failing ways, then
the probability of success is

s
s+f

p:
where
s+f=n

EXAMPLE: What is the probability that a
coin will land heads up?

SOLUTION: There is only one way the coin
can land heads up, therefore s equals one.
There is also only one way the coin can land
other than heads up; therefore, f equals one.
Then

and

f =1

Thus the probability of success is

o

p=

/]
+
=5

]}
[...

+
b

D= -

This, then, is the ratio of successful waysin
which the trial can succeed to the total number
of ways the trial can result.

EXAMPLE: What is the probability that a
die (singular of dice) willland withathree show-
ing on the upper face.

SOLUTION: There is only one favorable
way the die may land and there are a total of
five ways it can land without the three face up.
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s=1
and
£f=5
and
_ 8
P=5+1
1
“1+5
=1
6

EXAMPLE: What is the probability of draw-
ing a black marble from a box of marhles if all
six of the marbles in the box are white?

SOLUTION: There are no favorable ways
of success and there are six total ways, there-
fore;

s=0
and
f=6
then
p=ogs
=0
6
=0

EXAMPLE: What is the probability of
drawing a black marble from a box of six
black marbles?

SOLUTION: There are six successful ways
and no unsuccessful ways of drawing the marble,
therefore

s=6
and

f=0
then

_ 6

P=g+0

8

6

=1

The previous two examples are the extremes
of probabilities and intuitively demonstrate that

the probability of an event ranges from zero to
one inclusive.

EXAMPLE: A box contains six hard lead
pencils and twelve soft lead pencils. What is
the probability of drawing a softlead pencil from
the box?

SOLUTION: We are given

s =12
and
f=0
then
_ 12
P=1376
_12
- 18
_2
)
PROBLEMS:

1. What is the probability of drawing an
ace from a standard deck of fifty-two playing
cards?

2. What is the probability of drawingablack
ace from a standard deck of playing cards?

3. If a die is rolled, what is the probability
of an odd number showing on the upper face?

4. A man has three nickels, two dimes, and
four quarters in his pocket. Thedraws a single
coin from his pocket, what is the probability
that:

(a) he draws a nickel?
(b) he draws a half-dollar?
(¢) he draws a quarter?

ANSWERS:

[y
-

| ud
LUl O

Ll
—
()

O
L 4 -
O O w|=-
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PROBABILITY OF FAILURE

I a trial results in any of n equally likely
ways, and s is the number of successful ways
and f is the number of failures then, as before,

s+f=n
or
n-s=f§

The probability of failure is given by

£
+

q:

B w
wm ™

=

A trial must result in either successorfail-
ure. If success is certain then pequals one and
q equals zero. K success is impossible then
p equals zero and q equals one. By combining
both events—that is, in either case—the proba-
bility of success plus the probability of failure
is equal to one as shown by

p=s+f
and
_ f
=351
then
_ 8 f
P+A=g3 T s+1
=1
If, in any event
p+q=1
then
a=1-p

In the case of tossing a coin, the probability
of success is

7]

T
"
t
-+
-

H
o = )
|

and the probability of failure is

q=1-p
=1-1
_1..2
-1
T2

EXAMPLE: What is the probability of not
drawing a black marble from a box containing
six white, three red, and two blackmarbles from
a box containing six white, three red, and two
black marbles?

SOLUTION: The probability of drawing a
black marble from the box is

_ S
P=s+1

2
2+9

2
11
Since the probability of drawing a marble is

one, then the probability of not drawing a black
marble is

—3

—

q=1-p
2
11

1}
—

=9
T 11

PROBLEMS: Compare the following prob-
leras and answers with the preceding problems
dealing with the probability of success.

1. What is the probability of not drawing an
ace from a standard deck of fifty-two playing
cards?

2. What is the probability of not drawing a
black ace from a standard deckof playing cards?

3. If a dieisrolled, whatisthe probability of
an odd number not.- showing on the upper face?

4. A man has three nickels, two dimes, and
four quarters in his pocket. If he draws a single
coin from his pocket, what is the probability that:

(a) he does not draw a nickel?

(b) he does not draw a half-dollar?

(¢) he does not draw a quarter?
ANSWERS:

12
1 13
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5 25
26
1
3. 2
2
4. (a) 3
() 1
)
() )
EXPECTATION

In this discussion of expectation we will con-
sider two types. One is a numerical expecta-
tion and the other is value expectation.

Numerical Expectation

I you tossed a coin fifty timesyou would ex-
pect the coin to fall heads about twenty-five
times. Your assumption is explained by the
following definition.

I the probability of success inone trial is
p, and k is the total number of trials, then pk is
the expected number of successes inthek trials.

In the above example of tossing the coinfifty
times the expected number of heads (successes)
is

En = pk
where
E n= expected number

p = probability of heads (successes)

k = number of tosses
Substituting values in the equation, we find that

1
En = (—2-) 50
= 25

EXAMPLE: A die is rolled by aplayer. What
is the expectation of rolling a six in 30 trials?

SOLUTION: The probability of rolling a six
in one trial is

(o]
"
-

and the number of rolls is

k =30
therefore
En = pk
=% 60)
=5

In words, the player would expect to roll a
six five times in thirty rolls.

EXAMPLE: K a box contained seven num-
bered slips of paper, each nunbered differently,
how many times would a man expect to draw a
single selected number slip, if he returned the
drawn slip after each draw and he made a total
of seventy draws?

SOLUTION: The probability of drawing the
selected number slip in one drawing is

.

and the number of draws is

k=170
therefore
En = pk
=G0
=10

Note: When the product of pk is not an inte-
ger, we will use the nearest integer to pk.

Value Expectation

We will define value expectation as follows:
I, in the event of a successful result, a person
is to receive m value and p is the probability of
success of that event, then mp is his value ex-
pectation.

K you attended a house party where a door
prize of $5.00 was given and ten people attended
the party, what would be your expectation? In
this case, instead of using k for expected num-
ber we use m for expected value. That is

Ev = pm
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where
p = probability of success
m = value of prize
and
Ev = expected value
Then, by substitution

EXAMPLE: In a game, a wheel is spun and
when the wheel stops a pointer indicates one of
the digits 1, 2, 3, 4, 5, 6, 7, or 8. The prize
for winning is $16.00. I a person needed a 6 to
win, calculate the following:

(@) What is his probability of winning?

(b) What is his value expectation?

SOLUTION

() p=%

() p=3% and m = $16.00
therefore

E, = pm = (}) $16.00

= $2.00

PROBLEMS:;

1. When a store opened, each person who
made a purchase was given one ticket ona chance
for a door prize of $400. At the close of the
day 2,000 people had registered.

(a) ¥ you made one purchase, what is
your expectation?

(b) ¥ you made 5 purchases, what isyour
expectation?

2. Each person at a Bingo game Purchased
a fifty-cent chance for the jackpot of twenty
dollars. I fifty people purchased chances,
what is each person’s

(a) probability of winning?
(b) probability of not winning?
(c) expectation?

248
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ANSWERS:

1. (a) $.20
(L) $1.00

2. (a) glﬁ

49
()] 50
(c) $.40

COMPOUND PROBABILITIES

The probabilities to this point have been
single events. In the discussion on compound
probabilities, events which may affect others
will be covered. The word “may” is used be-
cause included with dependent events and mu-
tually exclusive events is the independent event.

INDEPENDENT EVENTS

Two events are said to be independent if the
occurrence of one has no effect on the occur-
rence of the other.

When two coins are tossed at the same
time or one after the other, whether one falls
heads or tails has no effect on the way the
second coin falls. Suppose we call the coins
A and B. There are four ways in which the
coins may fall, as follows:

1. A and B fall heads.

2. A and B fall tails.

3. A falls heads and B falls tails.

4. A falls tails and B falls heads.

The probability of any one way for the coins
to fall is calculated as follows:

s=1
and
n=4
therefore
1
P=7

This probability may be determined by con-
sidering the product of the separate probabil-
ities; that is

p that A falls heads is -;-

p that B falls heads is %




Chapter 17—PROBABILITY

and the probability that both fall heads is
1

2

o] =

1
> =

In other words, when two events are inde-
pendent, the probability that one and then the
other will occur is the product of their sepa-
rate probabilities.

EXAMPLE: A box contains three red mar-
bles and seven green marbles. Ka marble is
drawn, then replaced and another marble is
drawn, what is the probability that both mar-
bles are red?

SOLUTION: Two solutions are offered.
First, there are, by the principle of choice,
10 - 10 ways in which two marbles can be se-
lected. There are three ways the red marble
may be selected on the first draw and three
ways on the second draw and by the principle
of choice there are 3 - 3 ways in which a red
marble may be drawn on both trials. Then the
required probability is

_9
P = 1060

The second solution, using the product of
independent events, follows: The probability of

drawing a red ball on the first draw is —l%and
the probability of drawing a red ball on the
second draw is -1% Therefore, the probability

of drawing a red ball on both draws is the
product of the separate probabilities

- — 0 e— =

PROBLEMS:

1. If a die is tossed twice, what is the prob-
ability of a two up followed by a three up?

2. A box contains two white, three red, and
four blue marbles. I after each selection the
marble is replaced, what is the probability of
drawing, in order:

(a) a white then a blue marble?
(b) a blue then a red marble?
(c) a white, a red, then a blue marble?

ANSWERS:

1
1. 3
8
2. (a) 81

4
®) 57
8
() 543
DEPENDENT EVENTS

In some cases one event is dependent on
another. That is, two or more events are said
to be dependent if the occurrence or nonoccur=
rence of one of the events affects the probabil-
ities of occurrence of any of the others.

Consider that two or more events are de~-
pendent. K pp is the probability of a first event,
pg the probability that after the first happens
the second will occur, p3 the probability that
after the first and second have happened the
third will occur, etc., then the probability that
all events will happen in the given order is the
product p1 . P2 -P3 - - -

EXAMPLE' A box containsthree whitemar-
bles and two black marbles. What is the
probability that in twodraws both marblesdrawn
will be black. The first marble drawn is not
replaced.

SOLUTION: On the firstdraw the probability
of drawing a black marble is

-2

%
and on the second draw the probability of draw-
ing a black marble is

21
pz - 4
then the probability of drawing both black mar-
bles is

p=p1'p2
1

2.1
"5 1
=L

10

EXAMPLE: Slips numbered one throughnine
are placed in a box. K two slips are drawn,
what is the probability that

(a) both are odd?

(b) both are even?

SOLUTION:
(a) The probability that the first is odd is

_5
P1=7%
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and the probability that the second is odd is
4

Py =3
therefore, the probability that both are odd is

p= pl ¢ pz
=5.4
"9 8
=9
~ 18
(b) The probability that the first is even is _
-4
P1=%9
and the probability that the second is even is
_3
P2=8

therefore, the probability that both are even is

p=pl°p2

o= Ol

3
'8

]}

A second method of solution involves the use
of combinations.

(@) There are a total of nine slips taken two
at a time and there are five odd slips taken two
at a time, therefore

(b) There are a total of 9C2 choices and four
even slips taken two at a time, therefore
. 4%
oC2

1
6

250

PROBLEMS: In the following problems as-
sume that no replacement is made after each:
selection.

1. A box contains five white and six red
marbles. What is the probability of success-
fully drawing, in order, a red marble then a
white marble?

2. A bag contains three red, two white, and
six blue marbles. What is the probability of
drawing, in order, two red, one blue and two
white marbles?

3. There are fifteen airmen inthe line crew.
They must take care of the coffee mess and line
shack cleanup. They put slips numbered 1
through 15 in a hatanddecide that any who draws
a number divisible by 5 will be assigned the
coffeemess and any who draws a number divis-
ible by 4 will be assigned cleanup. The first
person draws a 4, the second a 3, and the third
an 11. As fourth person to draw, what is the
probability that you will:

(a) be assigned the coffee mess?
(b) be assigned the cleanup?
ANSWERS:

3

10—1‘

[y

1
Z.W

3

3. (a)

SRR

o) 3

MUTUALLY EXCLUSIVE EVENTS

Two or more events are called mutually ex-
clusive if the occurrence of any one of them
excludes the occurrence of the others. The
probability of occurrence of some one of two
or more mutually exclusive events is the sum
of the probabilities of the individual events.

It sometimes happens that when one event
has occurred, the probability of another event
is excluded, it being understood that we are re-
ferring to the same given occasion or trial.

For example, throwing a die once can yield

» 72 8, but not both, in the same toss. The

g=ollity that either a 5 or a 6 occurs is the
s . cf their individual probabilities.

O3 . -
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p=p1+p2

1.1
“8°®
L
-3

EXAMPLE: From abag containingfive white
balls, two black balls, and eleven red balls, one
ball is drawn. What is the probability that it is
either black or red?

SOLUTION: There are eighteen ways in
whicl: the draw can be made. There are two
black ball choices and eleven red ball choices
which are favorable, or a total of thirteen fav-

orable choices. Then, the probability of suc-
cess is

1
P=1

Since drawing a red ball excludes the drawing
of a black ball, and vice versa, the two events
are mutually exclusive. Then, the probability
of drawing a black ball is
=2

P1 " 18
and the probability of drawing a red ball is

11
P =18

Therefore the probability of success is

P=p; +P,y
_2.,1 13
~18 " 18 T 18

EXAMPLE: What is the probability of araw-
ing either a king, a queen, or ajack from a deck
of playing cards? :

SOLUTION: The individual probabilitiesare

ng < &
king = =5
queen = 5—2
4

jack = )

Therefore the probability of success is

- 4,4 4
P=52 +52 * 52
_12

" 52

-3

13

EXAMPLE: What is the probability of roll-
ing a die twice and having a 5 and then a 3 show
or having a 2 and then a 4 show?

SOLUTION: The probability of havinga 5and
then a 3 show ic

211
PP="6" %

_ 1
- 36
and the probability of having a2 and then a 4 show
is
1\ N1
Py = (‘6‘) (B')

_ 1
- 36
Thken, the probability of either pl or ) 8 is

P=p) +P,
1,1
“3%"3
=Ll
- 18

PROBLEMS:

1. When tossing a coin, whatisthe probabil -
ity of getting either a head or a tail?

2. A bag contains twelve blue, three red, and
four white marbles. What is the probability of
drawing:

(a) in one draw, either a red or a white
marble? .

(b) in one draw, either a red, white, or
blue marble?

{¢) in two draws, either a red marble
followed by a blue marble or a red marble fol-
lowed by a red marble?

3. What is the probability of getting a total of
at least 10 points in rolling two dice?

(HINT: Ycu want either a total of 10, 11, or
12.)
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ANSWERS:
1. 1
7
2. (a) 19
M) 1
(c) 5—?7
1
3. 3

EMPIRICAL PROBABILITIES

Among the most important applications of
probability are those in situations where we
cannot list all possible outcomes. To this point
we have considered problems in which the
probabilities could be obtained from situationg
in terms of equally likely results.

Because some problems are so complicated
for analysis we can only estimate probabilities
from experience and observation. This is em-
pirical probability.

In modern industry probability now plays an
important role in many activities. Quality
control and reliability of a manufactured article
have become extremely important considera-
tions in which probability is used.

RELATIVE FREQUENCY OF SUCCESS

We define relative frequency of success as
follows. After N trials of an event have been
made, of which S trials are success, then the
relative frequency of success is

S

N

Experience has shown that empirical proba-
bilities, if carefully determined on the basis of
adequate statistical samples, can be applied to
large groups with the result that probability and
relative frequency are approximately equal. By
adequate samples we meanalarge enough sample
so that accidental runs of “luck,” both good and
bad, cancel each other. Withenoughtrials, pre-
dicted results and actual results agree quite
closely. On the other hand, applying a probabil-
ity ratio to a single individual event is virtually
meaningless.

For example, table 17-1 shows a small num-
ber of weather forecastsfrom April 1to April 10.
The actual weather on the dates is also given.

Observe that the forecasts on April 1, 3, 4,
6, 7, 8, and 10 were correct. We have observed
ten outcomes. The event of a correct forecast
has occurred seven times. Based on thisinfor-
mation we might say that the probability for

future forecasts being true is % . This num-

ber is the best estimate that we can make from
the given information. In this case, since we
have observed such a small number of outcomes,
it would not be correct to say that the estimate
of P is dependable. A great many more cases
should be used if we expect tomakea good esti-
mate of the probability that a weather forecast
will be accurate. There are a great many fac-
tors which affect the accuracy of a weather
forecast. This example merely indicates some-
thing about how successful a particular weather
office has been in making weather forecasts.

Another example may be drawn from in-
dustry. Many thousands of articles of a certain
type are manufactured. The company selects
100 of these articles at random and subjects
them to very careful tests. In these tests it is
found that 98 of the articles meet all measure-
ment requirements and perform satisfactorily.
This suggests that i—?%
relizbility of the article.

One might expect that about 98% of all of the
articles manufactured by this process will be
satisfactory. = The probability (measure of
chance) that one of these articles will be satis-
factory might be said to be 0.98.

This second example of empirical probability
is different from the first example in one very
important respect. In the first example all of
the possibilities could be listed and inthe second
example we could iict 0 so. The selection of a
sample and its size is a problem of statistics.

Considered from another point of view, sta-
tistical probability can be regarded as relative
frequency.

EXAMPLE: In a dart game, a player hit
the bull’s eye 3 times out of 25 trials. What is
the statistical probability that he will hit the
bull’s eye on the next throw?

is a measure of the

SOLUTION:
N =25
and
S =3
hence
_3
P =35
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Table 17-1. —Weather forecast.

Did the actual
Date Forecast Actual weather forecasted event
occur ?
1 Rain Rain yes
2 Light showers Sunny No
3 Cloudy Cloudy Yes
4 Clear Clear Yes
5 Scattered Warm and sunny No
showers
6 Scattered Scattered showers Yes
showers
1 Windy and Overcast and windy Yes
cloudy
8 Thundershowers Thundershowers Yes
9 Clear Cloudy and rain No
10 Clear Clear Yes
EXAMPLE: Using table 17-2, what is the therefore
probability that a person 20 years old will live S
to be 50 years old? P= N
SOLUTION: Of 95,148 persons at age 20, where
81,090 survivec: to age 50. Hence 1
P=<
3
81,090
P = 55148 S=?
= 0.852 and
EXAMPLE: How many times would a die be N = 20
expected to land with 5 or 6 showing in 20 trials? -
SOLUTION: The probability of a 5 or 6 show- Rearranging and substituting, find that
ing is P = S
1 N
P=3 1.8
3 20
The relative frequency is approximately equal 20
to the probability S = 3
P=p =17
253 !
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Table 17-2. —Mortality table (based on 100,000 indi-
viduals 1 year of age).

Age Number of people
T 98, 382
917, 180
L 96, 227
20 L i i e e e e e e e e e e e e 95, 148
2 93, 920
B0 L e e e e e e e e e 92, 461
1 90, 655
L 88, 334
L5 85, 255
50 L it e ettt e e 81,090
51 75,419
B0 . i et et et et e e e 617,771
1 57,718
10 i i i et ittt e e et e e 45, 455
TS e e e e e e 31,598
L 18,177
15 7,822
00 L i e e et e e et e 2,158
(NOTE: The number obgerved in an experi- 3. Using table 17-2, find the probability that
ment may differ from that predicted; therefore, a person whose age is 30 will live to age 60.
the results may be taken to the nearest integer.) ANSWERS:
PROBLEMS: 2 15
). In a construction crew there are sixelec- 3. 0.733
tricians and 38 other workers. How manyelec-
tricians would you expect to choose if youchose DATA PROCESSING
one man each day of a week for your helper?
2. How many times would a tossed die be Data processing is an extremely large and

expected to turn up 3 or less in thirty tosses? complex field and applications are usually made
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for individual situations. For a general under-
standing of how data processing can be related
to probability and statistics, the functional op-
eration of the computer is needed.

COMPUTER OPERATIONS

High speed computers are used in data
processing because taey are able to solve prob-
lems in seconds where humans may require
months and even years to solve the same
problem.

A problem which arises, when using a com-
puter, is how the human can communicate with
the computer. This communication isa function
of mathematics. We refer tothisform of mathe-
matics as computer-oriented mathematics.

Digital computers are high speed adding ma-
chines. To perform multiplication they make
repeated additions. To perform subtraction the
addition sequence may be reversed, and.division
is the process of repeated subtraction.

An example of an operation of a digital
computer is finding the square root of 36. We
know that the sum of the first n odd integers
is equal to n2. The computer is programed to
subtract successive odd integers from 36 until
zero is reached. That is,

6-1-3-5-7-9-11=0

When zero is reached, the computer thencounts
the number of odd integers it has subtractedand
this sum is the square root of 36. For a further
discussion on computers and number systems
refer to Mathematics, Volume 3, NavPers 10073.

APPLICATION TO PROBABILITY

Many problems may be solved on computers
with the use of the proper mathematical model.
The mathematical model may include any of the
variables and the probability with which they
occur. The collection of statistical data plays
an important part in building a mathematical
model for the computer.

The mathematical model may be used to de-
termine probabilities by the use of computers.
That is, the computer will “play a game” many
times and give a result comparable to many
trials for determining probabilities.

To understand how a game of chance may be
used to produce a useful result, consider the

problem of determining the product of 3/8 and
2/3. Place eight ping-pong balls of which three
are coated with a conducting material in one
container. Place three other ping-porg balls
of which two are coated with the conducting ma-
terial in a second container. A trialconsists of
a detecting head from the computer touching a
ball in each container. K both balls are coated
a point is registered; if not,azerois registered.
The number of points registered divided by the
total trials, if the number of trials islarge, will
closely approximate the fraction 6/24.

The reasoning for the result is that the
probability of touching a coated ball in the
first container is 3/8 and the probability of
touching a coated ball in the second container
is 2/3. The events of touching a coated ball in
the first container and one in the second con-
tainer are independent,and the probability of both
balls being coated is the productof the individual
probabilities. This is exactly what we setout to
determine.

The preceding example is extremely simpli-
fied, in comparison with the complexity of the
actual statistical problems solved by computers.
However, it does serve to indicate some of the
possibilities of computer-oriented mathematics.

USAGE OF STATISTICAL DATA

Suppose a squadron, through years of opera-
tion, has accumulated statistical data on the
operation of an aircraft. By using a computer,
the probability of the failure of an engine can be
determined from the many bits of information
regarding individual parts of the engine. A re-
lated problem is to determine how the engine
failure probability can be decreased.

While changiag all of the components of an
aircraft engine to try to improve efficiency is
unsound, the mathematical model, from a se-
lected group of experiments, may be used to
predict the change in efficiency for any combi-
nation of component changes.

One solution is by trial and error, but this
would take years of time. Anothersolution is to
make a few flights using various configurations
of the engine and then usethe computerto simu-
late years of operation. Researchers would then
determine the probability of failure, basedonihe
new statistical dataobtained from the few flights.
By this high speed determination of the failure
of the engine with different combinations of new
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parts, the optimum design of the modified engine being developed. It is hoped that this brief
may be determined. introduction will stimulate the reader to
The field of data processing with computers

search further for a better understanding of
is just beginning and maay new techniques are this new field.
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APPENDIX 1l

NATURAL SINES AND COSINES
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Abscissas, 122

Acute angles, ratio for, 26

Addition of vectors, 78

Algebraic operatinng, logarithms, 14
Arngle between two lines, 127

Angles:
30° - 60°, 42
45°, 43

cofunctions, 53
cosine of, 30, 47
coterminal, 32
degree system, 17
greater than 90°, 47
quadrantal, 45
radians, 18
reference, 36
sine of, 47
special, 42
standard position, 31
tangent of, 48
Angular velocity, 21
Antilogrithms, 6
Applications:
equilihrium, 100
logarithms, 15
probability, 255
Area:
formula, 74
of a sector, 22
under a curve, 206

Basic concepts of probability, 244

Cartesian to polar coordinates, 162
Center of gravity, 99
Chain rule of differentiation, 201
Changing bases, logarithms, 7
Circle:
defined by three points, 140
diagrams, composite of, 50
general, 138
motion in, 174

Cofunctions and complementary angles, 53

Cologarithms, 12
Combinations, 236
Combining vectors, 78

INDEX

Common logarithms:
characteristics, 3
fractions, 4
integers, 3
mantissa, 3

Complementary angles, 53

Composite circle diagram, 50

Compound probabilities, 248

Computer operations, 255

Constant:
derivation of, 193
of integration, 210
to a variable power, 226

Constant and variable, product of, 220

Coordinates:
converting Cartesian to polar, 162
polar, 83
rectangular, 31

Cosine:
graph of, 51
law of, 56
of an angle, 30, 47

Coterminal angles, 32

Curve:
direction of, 165
slope of, 165

Definite integrals, 214
Definition of:
combinations and permutations, 234
limit, 179
Derivative of a constant, 193
Differentiation:
chain rule, 201
general, 188
implicit functions, 202
inverse functions, 201
powers of functions, 195
products, 197
quotients, 198
radicals, 199
sums, 196
trigonometric functions, 203
variables, 194

. Direction of a curve, 165

Discontinuities, 186
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Distance:
between two points, 122
of a point from a line, 132
Division:
logarithms, 11
of a line segment, 123
of vectors, 89

Ellipse:

equation, 152

general, 149

locus of points, 152

standard form, 153
Empirical probabilities, 252
Equation:

ellipse, 152

hyperbola, 157

parametric, 174

straight line, 128

tangent and normal, 171

trigonometric, 118
Equilibrium:

applications, 100

first condition, 92

rotational, 98

second condition, 98

translational, 92
Events:

dependent, 249

independent, 248

mutually exclusive, 250
Expectation:

numerical, 247

value, 247

First condition of equilibrium, 92
Formula:

area, 74

combinations, 236

limit, 183

parabola, 148

permutations, 240

reduction, 107
Free body diagrams, 95
Frequency of success, relative, 252
Functions, transcendental, 117
Fundamental identities, 103

General differentiation, 188
Graph of the:

cosine, 51

sine, 51

tangent, 51
Gravity, center of, 99

e’y

Hyperbola, 155

Identities, 103
Implicit functions, differentiation, 202
Inclination and slope, 124
Increment and differentiation, 188
Indefinite integrals, 210
Independent events, 248
Indeterminate forms, 182
Infinitesimals:
conclusions, 186
products, 185
sums, 1€5
Integrand, 210
Integration:
area undzr a curve, 206
constant, 210
definite integrais, 214
definitions, 206
evaluation of constant, 211
general, 206
indefinite, 210
integrand, 210
interpretation, 206
limits, 215
rules, 212
Integration of:
constant to a variable power, 226
power of a function of x, 222
power of a variable, 220

product of constant and variable, 220

quotient, 223

sums, 221

trigonometric functions, 229, 232
Interpolation, logarithms, 9
Inverse functions:

differentiation, 201

relations, 111

trigonometric, 108

Laws of:
cosines, 56
sines, 55
tangents, 72

Length of subtangents and subnormals, 172

Limit:
concept, 179
definition of, 179
formulas, 183
lower, 215
upper, 215
Limited solutions, trigonometric, 120
Line:
equations:
normal form, 130
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Line: (continued)
equations: (continued)
parallel and perpendicular, 130
point-slope form, 128
slope-intercept form, 129
inclination and slope, 124
midpoint, 124
segment, division of, 123
Lines, parallel and perpendicular, 126
Logarithmic solutions, triangles, 68
Logarithms:
definitions, 1
division, 2
forms, 1
multiplication, 1
powers, 2
rules, 1

Mantissa, 4
Measures with radians, 20
Measuring angles, 17
Midpoint cf a line, 124
Mils, 19
Motion in a:

circle, 174

straight line, 174
Multiplication:

logarithms, 9

vectors, 88
Mutually exclusive events, 250

Natural logarithms, 7

Negative characteristics, logarithms, 14

Numerical expectation, 247

Oblique triangles, solutions:
three sides, 61
two angles and one side, 59
two sides and an opposite angle, 64
Lw0 sides and included angle, 63
Operations, computer, 255
Ordinate, 122

Parabcla, 144

Parallel and perpendicular lines, 126, 30

Parametric equations, 174, 175
Periodicity of functions, 51
Permutations, 239
Point-slope form, 128
Polar coordinates, 83, 161
Polar to Cartesian coordinates, 163
Power of a:

function of x, 222

variable, 220
Powers of functions, differentiation, 198
Principal values, 108

Principle of choice, 238
Probability:

application of, 255

basic concepts, 244

compound, 248

of failure, 246

of success, 244
Product of constant and variable, 220
Products, differentiation, 197
Properties of triangles, 23
Pythagorean Theorem, 23

Quadrantal angles, 45
Quadrant system, 35
Quotients, differentiation, 198

Radians, 18, 20

Radicals, differentiation, 199
Raising to a power, logarithms, 13
Ratios for acute angles, 26
Reciprocals and ratios, 104
Rectangular coordinates, 31
Reduction formulas, 107
Reference angle, 36

Relations among inverse functions, 111
Relative frequency of success, 252
Right triangles, 25

Rotation, 92

Rotational equilibrium, 98

Rules of integration, 212

Scalars, 17
Second condition of equilibrium, 98
Sector, area of, 22
Similar triangles, 24
Sine:

graph of, 55

law of, 55

of an angle, 47
S.- pe-intercept form, 129
Slope of a curve at a given point, 165
Special angles, 42
Squared relationships, 105
Standard position, angles, 31
Statistical data, usage of, 255
Straight line, motion of, 174
Subnormal, length of, 172
Subtangent, length of, 172
Subtraction of vectors, 79
Sums, difierentiation, 196

Tangent:
graph of, 51
law of, 72
of an angle, 48
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Tangents:

and normals, 171

at a given point, 166
Transcendental functions, 117
Translation, 92
Translational equilibrium, 92
Triangles:

logarithmic solutions, 68

properties of, 23

similar, 24
Trigonometric:

equations, 118

formulas:

addition and subtraction, 112

double angle, 115

halt angle, 116
functions:

definition, 33

differentiation, 203

inverse, 108

logarithms, 6
limited solutions, 120

273

ratios, 29

reciprocals and ratios, 104
square relationships, 105
tables, 26, 39

Usage of statistical data, 255
Use of:
tables, trigonometric, 39
trigonometric ratios, 29

Value expectation, 247
Variable, power of, 220
Variables, differentiation, 194
Vectors:
addition, 78
combining, 78
division of, 89
multiplication, 88
solutions, 80, 81
subtraction, 79
symbols, 77
Velocity, angular, 21



