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PREFACE

The purpose of this Navy Training Course is to aid those enlisted
men who need a basic knowledge of mathematics to carry out their Navy
duties. Obviously, to serve the wide variety of ratings needing basic
mathematics, the text must be general in nature and is not directed,
therefore, toward any one specific rating.

The early chapters that contain basic arithmetic have been desigied
to give an insight into the thcory behind computational processes. Even
students who have mastered basic arithmetic rules should find these
chapters interesting and useful.

Beginning with chapters on number systems and positive and negative
whole numbers, the course continues with discussions of fractions, deci-
mals and percents, exponents, and radicals. Following these topics are
chapters concerning common logarithms and the slide rule, algebraic
fundamentals, and factoring of polynomials.

Linear equations in one variable and in two variabies are discussed
in separate chapters, followed by a chapter on ratio, proportion, and
variation. Following this are discussions of deperience, functions, and
formulas; complex numbers; and quadratic equat.ons. The topics cov-
ered in the last three chapters are plane figures, geometric construc-
tions and solid figures, and numerical trigonometry.

This training course was prepared by the United States Navy Training
Publications Center, Memphis, Tennessee, for the Bureau of Naval
Personnel.

1966 Edition



THE UNITED STATES NAVY
GUARDIAN OF OUR COUNTRY

The United States Navy is responsible for maintaining control of the sea
and is a ready force on watch at home and overseas, capable of strong
action to preserve the peace or of instant offensive action to win in war.

it is upon the maintenance of this control that our country’s fE‘zlorious
future depends; the United States Navy exists to make it so.

WE SERVE WITH HONOR

Tradition, valor, and victiry are the Navy's heritage from the past. To
these may be added dedication, discipline, and vigilance as the watchwords
of the present and the future.

At l'ome or on distant stations we serve with pride, confident in the respect
of our country, our shipmates, and our families.

Our responsibilities sober us; our adversities strengthen us.

Service to God and Country is our special privilege. We serve with honor.

THE FUTURE OF THE NAVY

The Navy will always employ new weapons, new techniques, and
greater power to protect and defend the United States on the sea, under
the sea, and in tke air.

Now and in the future, control of the sea gives the United States her
greatest advantage for the maintenance of peace and for victory in war.

Mobility, surprise, dispersal, and offensive power are the keynotes of
the new Navy. The roots of the Navy lie in a strong belief in the
future, in continued dedication to our tasks, and in reflection on our
heritage from the past.

Never have our opportunities and our responsibilities been greater.
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CHAPTER 1
NUMBER SYSTEMS AND SETS

Mathematics is a basic tool. Some use of
mathematics is found in every rating in the
Navy, from the simple arithmetic of counting
for inventory purposes to the complicated equa-
tions encountered in computer and engineering
work. Storekeepers need mathematical compu-
tation in their bookkeeping. Damage Control-
men need mathematics to compute stress, cen-
ters of gravity, and maximum permissible roll,
Electronics principles are frequently stated by
means of mathemaiical formulas. Navigation
and engineering also use mathematics to a great
extent. As maritime warfare becomes more
and moro compiex, mathematics achieves ev:r
increasing importance as an essential tool.

From the point of view of the individual there
are many incentives for learning the subject.
Mathematics better equips him to do his pres-
ent job. It will help him in attaining promotions
and the corresponding pay increases. Statisti-
cally it has been found that one of the best indi-
cators of a man's potential success as a naval
officer is his understanding of mathematics.

This training course begins with the basic
facts of arithmetic and continues through some
of the early stages of algebra, An attempt is
made throughout to give an understanding of
why the rules of mathematics are true. This is
doae because it is felt that rules are easier to
tearn and remember if the ideas that led to
their development are understood.

Many of us have areas in our mathematics
background that are hazy,barely understood, or
troublesome. Thus, while it may at first seem
beneath your dignity to read chapters on funda-
mental arithmetic, these basic concepts may be
just the spots where your difficulties lie. These
chapters attempt to treat the subjecton an adult
level that will be interesting and informative.

COUNTING

Counting is such a basic and natural process
that we rarely slop to think about it. The proc-
ess is based on the idea of ONE-TO-ONE COR-
RESPONDENCE, which is easily demonstrated
by using the fiagers. When children count on

their fingers, they are placing each finger in
one-to-one correspondence with one of the ob-
jects being counted. Having outgrown finger
counting, we use numerals.

NUMERALS

Numerals are number symbols. One of the
simplest numeral systems is the Roman nu-
meral system, in which tally marks are used to
represent the objects being counted. Roman
numerals appear to be a refinement of the tally
method still in use today. By this method, one
makes short vertical marks until a total of four
is reached; when the fifth tally is counted, a
diagonal mark is drawn through the first four
marks. Grouping by fives in this way is remi-
niscent of the Roman numeral system, in which
the multiples of five are represented by special
symbols,

A number may have many "names.'" For
example, the number 6 may be indicated by any
of the following symbols: 9 - 3, 12/2,5 + 1, or
2 x 3. The important thing to remember is that
a number is an idea; various symbols used to
indicate a number are merely different ways of
expressing the same idea.

POSITIVE WHOLE NUMBERS

The numbers which are used for counting in
our number system are sometimes called natu-
ral numbers. They are the positive whole num-
bers, or to use the more precise mathematical
term, positive INTEGERS. The Arabpic nu-
merals from O through 9 are called digits, and
an integer may have any number of digits. For
example, 5, 32, and 7,049 are all integers. The
number of digits in an integer indicates its
rank; that is, whether it is "in the hundreds,"
in the thousands," etc. The idea of ranking
numbers in terms of tens, hundreds, thousands,
etc., is based on the PLACE VALUE concept.

PLACE VALUE

Although a system such as the Roman nu-
meral system is adequate for recording the
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results of counting, it is too cumbersome for
purposes of calculation. Before arithmetic
could develop as we know it today, the following
two important concepts were needed as addi-
tions to the counting process:

1. The idea of 0 as a number.

2. Positional notation (place value).

Positional notation is a form of coding in
which the value of each digit of a number de-
pends upon its position in relation to the other
digits of the number. The convention used in
our number system is that each digit has a
higher place value than those digits to the right
of it.

The place value which corresponds to a given
position in a number is determined by the BASE
of the number system. The base which is most
commonly used is ten, and the system with ten
as a base is called the decimal system (decem
is the Latin word for ten). Any number is as-
suined to be a base-ten number, unless some
ocher tase is indicated. One exception to this
rule occurs when the subject of an entire dis-
cussion is some base other than ten. For ex-
ample, in the discussion of binary (base two)
numbers later in this chapter, all numbers are
assumed to be binary numbers unless some
other base is indicated.

DECIMAL SYSTEM

In the decimal system, each digit position in
a number has ten times the value of the position
adjacent to it on the right. For example, in the
number 11, the 1 on the left is said to be in the
"tens place,'" and its value is 10 times as great
as that of the 1 on the right. The 1 on the right
is =aid to be in the "uniis place," with the un-
derstanding that the term 'unit'" in our system
refers to the numeral 1. Thus the number 11
is actually a coded symbol which means ''one
ten plus one unit." Since ten plue one is eleven,
the symbol 11 represents the number eleven.

Figure 1-1 shnws the names of several digit
positions in the decimal system. If we apply
this nomenclature to the digits of the integer
235, then this number symbol means 'two hun-
dreds plus thiree tens plus five units." This
number may be expressed in mathematical
symbols as follows:

2x10x 16+3x10x1+5x1

Notice that this bears out our earlier statement:
each digit position has 10 times the valve of the
position adjacent to it on the right.

TENS
HUNDREDS
THOUSANDS

Figure 1-1.—Names
of digit positions.

The integer 4,372 is a number symbol whose
meaning is "four thousands plus three hundreds
plus seven tens plus two units.'" Expressed in
mathematical symbols, this number is as fol-
lows:

4 x1000 + 3 x100+ 7Tx10+ 2 x1

This presentation may be broken down further,
in order to show that each digit position as 10
times the place value of the position on its
right, as follows:

4x10x100 + 3x10x10 + 7Tx10x1 + 2x 1

The comma which appears in a number sym-
bol such as 4,372 is used for "pointing off" the
digits into groups of three beginning at the
right-hand side. The first group of three digits
on the right is the units group; the second group
is the thousands group; the third group is the
millicns group; etc. Some of these groups are
shown in table 1-1,

Table 1-1.—Place values and grouping.

Billions Millions Thousands Units
group group group group
2
2 | E P
3 g 32 3
28 | =i 288 | s
HERTIRN AW
n bl
288 ug: LE 288 2 S8

By reference to table 1-1, we can verify that
5,432,786 is read as follows: five million, four
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hundred thirty-‘wo thousand, sevea hundred
eighty-six. Notice that the word "and'" is not
necessary when reading numbers of this kind.

Practice problems:

1. Write the number symbol for seven thousand
two hundred eighty-one.

. Write the meaning, in words, of the symbol
23,469.

. If a number is in the millions, it must have
at least how many digits?

. If a number has 10 digits, to what number
group (thousands, millions, etc.) does it
belong?

= W N

Answers:
1. 7,281

2. Twenty-three thousand, four hundred sixty-
nine.

3.1

4. Billions

BINARY SYSTEM

The binary number system is constructed in
the same manner as the decimal system. How-
ever, since the base in this system is two, only
two digit symbols are needed for writing num-
bers. These two digits ars . and 0. In order
to understand why only two digit symbols are
needed in the binary system, we may make
some observations about the decimal system
and then generalize from these.

One of the most striking observations about
number systems which utilize the concept of
place value is that there is no single-digit sym-
bol for the base. For example, in the decimal
system the symbol for ten, the base,is 10. This
symbol is compounded from two digit symbols,
and its meaning may be interpreted as ''one
base plus a0 units." Notice the implication of
this where other bases are concerned: Every
system uses the same symbol for the base,
namely 10. Furthermore, the symbol 10 is not
calied "ten' except in the decimal system.

Suppose that a number system were con-
structed with five as a base. Then the only
digit symbols needed would be 0, 1, 2, 3, and 4.
No single-digit symbol for five is needed, since
the symbol 10 in a base-five system with place
value means "one five plus no units." In gen-
eral, in a number system using base N, the
largest number for which a single-digit symbol
is needed is N minus 1. Therefore, when the
base is two the only digit symbols needed are
1 and 0.

)

An example of a binary number is the sym-
hol 101. We can discover the meaning of this
symbol by relating it to the decimal system.
Figure 1-2 shows that the place value of each
digit position in the binary system is two times
the place value of the position adjacent to it on
the right. Compare this with figure 1-1, in
which the base is ten rather than two.

Figure 1-2.~Digit positions
in the binary system.

Placing the digits of the number 101 in their
respective blocks on figure 1-2, we find that
101 means "one four plus no twos plus one unit."
Thus 101 is the binary equivalent of decimal 5.
Jf we wish to convert a decimal number, such
as 7, to its binary equivalent, we must break it
into parts which are multiples of 2. Since 7 is
equal to 4 plus 2 plus 1, we say that it ''con-
tains" one 4, one 2, and one unit. Therefore
the binary symbol for decimal 7is 111,

The most common use of the binary number
system is in electronic digital computers. All
data fed to a typical electronic digital computer
is converted to binary form and the computer
performs its calculations using binary arith-
metic rather than decimal arithmetic. One of
the reasons for this is the fact that electrical
and electronic equipment utilizes many switch-
ing circuits in which there are only two operat-
ing conditions. Either the circuit is "on' or it
is "off,” and a two-digit number system is
ideally suited for symbolizing such a situation.

Details concerning binary arithmetic are be-

“yond the scope of this volume, but are available

in Mathematics, Volume 3, NavPers 10073, and
in Basic Electonics, NavPers 10087 -A.

Practice problems:

1. Write the decimal equivalents of the bipary
numbers 1101, 1010, 1001, and 1111,

9. Write the binary equivalents of the decimal
numbers 12, 7, 14, and 3.

Answers:
1. 13, 10, 9, and 15
2. 1100, 111, 1110, and 11
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SETS

Any serious study of mathematics leads the
student to investigate more than one text and
more than one way of approaching each new
topic. At the time of printing of this course,
much emphasis is being placed on so-called
modern math in the public schools. Conse-
quently, the triinee who uses thjs course is
likely to find considerable material, in his par-
allel reading, which uses the ideas and termi-
nology of the "new'" math,

In the following paragraphs, a very brief in-
troduction to some of the set theory of modern
math is presented. Although the remainder of
this course is not based on set theory, this brief
introduction should help in making the transi-
tion from traditional methods to newer, experi-
mental methods.

DEFINITIONS AND SYMBOLS

The word "'set" implies a collection or group-
ing of similar objects or symbols. The objects
in a set have at least one characteristic in com-
mon, such as similarity of appearance or pur-
pose. A set of tools would be an example of a
group of objects not necessarily similar in ap-
pearance but similar in purpose. The objects
or symbols in a set are called members or
ELEMENTS of the set,

The elements of a mathematical set are usu-
ally symbols, suchas numerals, lines, or points.
For example, the positive integers greater than
zero and less than 5 form a set, as follows:

{1’ 2’ 3’ 4}

Notice that braces are used to indicate sets.
This is often done where the elements of the set
are not too numerous.

Since the elements of the sget {2, 4, 6} are
the same as the elements of {4, 2, 8}, these two
Setsare said tobe equal. In other words, equal -
ity beétween sets has nothing to do with the order
In which the elements are arranged. Further-
more, repeated elements are not necessary.
That is, the elements of {2, 2, 3, 4} are simply
2, 8, and 4. Therefore the sets {2, 3, 4} and
{2, 2,3, 4} are equal.,

Practice problems:

1. Use the correct symbols to designate the set
of odd positive integers greater than 0 and
less than 10,

2. Use the correct symbols to designate the set
of names of days of the week which do not
contain the istier "s'.

3. List the elements of the set of natural num-
bers g:-eater than 15 and less than 20,

4. Suppose that we have sets as follows:

A={1,2 3 C =11, 2,3, 4}

B ={1,2,2 3 D ={1, 1,2, 3}

Which of these sets are equal ?

Answers:
.11, 8,5, 7, 9}
Monday, Friday}
. 16, 17, 18, and 19
.A=B=D

0o DI

SUBSETS

Since it is inconvenient to enumerate all of
the elements of a set each time the set is men-
tioned, sets are often designated by a letter.
For example, we could let S represent the set
of all positive integers greater than 0 and less
than 10, In symbols, this relationship could be
stated as follows:

$={1,2,3,4,5,6,7,8, 9}

Now suppose that we have another set, T,
which comprises all positive even integers less
than 10. This set is then defined as follows:

T ={2, 4, 6, 8}

Notice that every element of T is also an ele-
ment of S. This establishes the SUBSET rela-
tionship; T is said to be a subset of S.

POSITIVE INTEGERS

The most fundamental set of numbers is the
set of positive integers. This Sset comprises
the counting numbers (natural numbers) and in-
cludes, as subsets, all of the sets of numbers
which we have discussed. The set of natural
numbers has »n outstanding characteristic: it
is infinite. This means that the successive
elements of the set continue ¢:- increase in size
without limit, each number L. 1. “~vger by 1
than the number preceding it, %' .‘ore there
is no '"largest" number; any number that we
might choose as larger than all others could be

i0
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increased to a larger number simply by adding
1 to it.

One way to represent the set of natural num-
bers symbolically would be as follows:

1,2,3,4,5,6,...

The three dots, called ellipsis, indicate that the
pattern established by the numbers shown con-
tinues without limit. In other words, the next
pumber in the set is understood to be 7, the
next after that is 8, etc.

POINTS AND LINES

In addition to the many gsets which can be
formed with number symbols, we frequently
find it necessary in mathematics to work with
sets composed of points or lines.

A point is an idea, rather than a tangible ob-
ject, just as a number is. The mark which is
made on a piece of paper is merely a symbol
representing the point. In strict mathematical
terms,a point has nodimensions (physical size)
at all. Thus a pencil dot is only a rough picture
of a point, useful for indicating the location of
the point but certainly not to be confused with
the ideal.

Now suppose that a large number of points
are placed side by side to form a "string."
Picturing this arrangement by drawing dots on
paper, we would have a "dotted line." If more
dots were placed between the dots already in
the string, with the number of dots increasing
until we could not see between them, we would
have a rough picture of a line. Once again, it
is important to emphasize that the picture is
only a symbol which represents an ideal line.
The ideal line would have length but no width or
thickness.

The foregoing discussion leads to the con-
clusion that a line is actually a set of points.
The number of elements in the set is infinite,
since the line exterds in both directions without
limit.

The idea of arranging points together to
form a line may be extended to the formation of

planes (flat surfaces). A mathematical plane
may be considered as the result of placing an
infinite number of straight lines side by side,
with no space between the lines. Thus the plane
is a set of lines. Anoilier way of defining a
plane in terms of sets is to consider the plane
as the result of placing points side by side in
all directions. In this case, the plane is a set
of points and the points comprising any line in
the plane form a subset.

Line Segments and Rays

When we draw a "line,"” label its end points
A and B, and call it "lin AB," we really mean
LINE SEGMENT AB. A line segment is a sub-
sat of the set of points comprising a line.

When a line is considered to have a starting
point but no stopping point (that is, it extends
without limit in one direction), it is called a
RAY. A ray is not a line segment, becau3e it
does not terminate at both ends; it may be ap-
propriate to refer to a ray as a "half-li:ze."

As in the case of a line segment, a ray is a
subset of the set of points comprising a line.
All three-lines, line segments, and rays—are
subsets of the set of points comprising a plane.

THE NUMBER LINE

Among the many devices used for represent-
ing a set of numbers, one of the most useful is
the number line. To illustrate the construction
of a number line, letus place the clements of
the set of natural numbers in one-to-one cor-
respondence with points on a line. Since the
natural numbers are equally spaced, we select
points such that the distances between them are
equal, The starting point is labeled 0, the next
point is labeled 1, the next 2, etc., using the
natural numbers in normal counting order. (See
fig. 1-3.) Suchan arrangementis often referred
to as a scale, a familiar example being the
scale on a thermometer.

Thus far in our discussion,we have not men-
tioned any numbers other than integers. The
number line is an ideal device for picturing the

|
3

0-1—
N——-

Figure 1-3.—A number line.

5
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relationship between integers and other num-
bers suchas fractions and decimals. It is clear
that many points, other than those representing
integers, exist on the number line. Examples
are the points representing the numbers 1/2
(located halfway between 0 and 1) and 2.5 (lo-
cated halfway between 2 and 3).

An interesting question arises, concerning
the "in-between' points on the number line:
How many points (numbers) exist between any
two integers? To answer this question, suppose
that we first locate the point halfway between 0
and 1, which corresponds to the number 1/2.
Then let us locate the point halfway between 0
and 1/2, which corresponds to the number 1/4.
The result of the next such halving operation
would be 1/8, the next 1/16, etc. If we need
more space to continue our halving operations
on the number line, we can enlarge our "pic-
ture' and then continue.

It soon becomes apparent that the halving
process could continue indefinitely; that is,
without limit. In other words, the number of
points between 0 and 1 is infinite. The same is

true of any other interval on the number line.
Thus, between any two integers there is an infi-
nite set of numbers other than integers. If this
seems physically impossible, considering that
even the sharpest pencil point has some width,
remember that we are working with ideal points,
which have no physical dimensions whatsoever.

Although it is beyond the scope of this course
to discuss such topics as orders of infinity, it
is interesting to note that the set of integers
contains many subsets which are themselves
infinite. Not only are the many subsets of num-
bers other than integers infinite, but also such
subsets as the set of all odd integers and the
set of all even integers. By intuition we see
that these two subsets are infinite, as follows;
If we select 2 particular odd or even integer
which we think is the largest possible, a larger
one can be formed immediately by merely
adding 2.

Perhaps the most practical use for the num-
ber line is in explaining the meaning of nega-
tive numbers. Negative numbers are discussed
in detail in chapter 3 of this course.




CHAPTER 2
POSITIVE INTEGERS

The purpose of this chapter is to review the
methods of combining integers. We have al-
ready used one combination process in our dis-
cussion of counting. We will ex:end the idea of
counting, which is nothing more than simple ad-
dition, to develop a systematic method for add-
ing numbers of any size. We will also learn
the meaning of subtraction, multiplication, and
division,

ADDITION AND SUBTRACTION

In the following Giscussion, it is assumed
that the reader kiuws the basic addition and
subtraction tables, which present such facts as
the following: 2+ 3=5, 9+8 =17, 8 -3=5,
etc.

The operation of addition is indicated by a
plus sign (+) as in 8 + 4 = 12. The numbers 8
and 4 are ADDENDS and the answer (12) is their
SUM. The oreration of subtraction is indicated
by a minus sign (-) as in 9 - 3 = 6. The number
9 is the MINUEND, 3 is the SUBTRAHEND, and
the answer (6) is their DIFFERENCE.

REGROUPING

Addition may be performed with the addends
arranged horizontally, if they are small enough
and not too numerous. However, the most com-
mon method of arranging the addends is to place
them in vertical columns. In this arrangement,
the units digits of all the addends are alined
vertically, as are the tens digits, the hundreds
digits, etc. The following example shows three
addends arranged properly for addition:

357
1,845
22

It is customary to draw a line below the last
addend, placing the answer below this line. Sub-
traction problems are arranged in columns in
the same manner as for addition, with a line at
the bottom and the answer below this line,

Carry and Borrow

Problems involving several addends, with
two or more digits cach, usually produce sums
in one or more of the columns which are greater
than 9. For example, suppose that we perform
the following addition:

357
845
22

—

1,224

The answer was found by a process called
vcarrying.” In this process extra digits, gen-
erated when a column sum exceeds 9, are car-
ried to the next column to the left and treated
as addends in that column. Carrying may be
explained by grouping the original addends.
For example, 357 actually means 3 hundreds
plus 5 tens plus 7 units. Rewriting the problem
with each addend grouped in terms of units,
tens, etc., we would have the following:

300+ 50+ 17
800+ 40+ 5
20+ 2

1,100 + 110 + 14

The "extra" digit in the units column of the
answer represents 1ten. We regroup the col-
umns of the answer sothat the units column has
no digits representing tens,the tens column has
no digits representing hundreds, etc.,as follows:

1,100 + 110 + 14 = 1,100 + 110 + 10 + 4
,100 + 120 + 4
,100 + 100 + 20 + 4
,200 + 20 + 4
,000 + 200 + 20 + 4
1,224

When we carry the 10 from the expression
10 + 4 to the tens column and place it with the
110 to make 120, the result is the same as if

o unuwunn
S Y s

13
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we had added 1 to the digits 5, 4, and 2 in the
tens column of the original problem. There-
fore, the thought process in addition is as fol-
lows: Add the 7, 5, and 2 in the units column,
getting a sum of 14, Write down the 4 in the
units column of the answer and carry the 1l to
the tens column. Mentally add the 1 along with
the other digits in the tens column, getting a
sum of 12, Write down the 2 in the tens column
of the answer and carry the 1 to the hundreds
column, Mentally add the 1 along with the other
digits in the hundreds column, getting a sum of
12. Write down the 2 in the hundreds column of
the answer and carry the 1 to the thousands
column, If there were other digits in the thou-
sands column to which the 1 could be added, the
process would continue as before. Since there
are no digits in the thousands column of the
original problem, this final 1 is not added to
anything, but is simply written in the thousands
place in the answer.

The borrow process is the reverse of carry-
ing and is used in subtraction. Borrowing is
not necessary in such problems as 46 - 5 and
58 - 53. In the first problem, the thought proc-
esc may be "5 from 6 is 1 and bring down the 4
to get the difference, 41." In the second prob-
lem, the thought process is '3 from 8 ig 5" and
"S from 5 is zero," and the answer is 5, More
explicitly, the subtraction process in these ex-
amples is as follows;

40+ 6 50 + 8
5 50+ 3
40+ 1 = 41 0+5=5

This illustrates that we are subtracting units
from units and tens from tens.

Now consider the following problem where
borrowing is involved:

43

_8
If the student uses the borrowing method, he
may think "8 from 13 is 5 and bring down 3 to
get the difference, 35." In this case what actu-
ally was done is as follows:

30 + 13
8

30 +5=35

A 10 has been borrowed from the tens column
and combined with the 3 in the units column to
make a number large enough for subtraction of
the 8. Notice that borrowing to increase the
value of the digit in the units column reduces
the value of the digit in the tens column by 1.

Sometimes itis necessary to borrow in more
than one column. For example, suppose that we
wish to subtract 2,345 from 5,234, Grouping
the minuend and subtrahend in units, tens, hun-
dreds, etc., we have the following:

5,000 + 200 + 30 + 4
2,000 + 300 + 40+ 5

Borrowing a 10 from the 30 in the tens column,
we regroup as follows:

5,000 + 200 + 20 + 14
2,000 + 300 + 40+ 5

The units column is now ready for subtrac-
tion. By borrowing from the hundreds column,
we can regroup so that subtraction is possible
in the tens column, as follows:

5,000 + 100 + 120 + 14
2,000+ 300+ 40+ 5

In the final regrouping, we borrow from the
thousands column to make subtraction possible
inthe hundreds column, with the following result:

4,000 + 1,100 + 120 + 14
2,000+ 300+ 40+ 5

2,000 + 800 + 80 + 9 = 2,889

In actual practice, the borrowing and re-
grouping are done mentally, The numbers are
written in the normal manner, as follows:

5,234
-2,345

2,889

The following thought process is used: Borrow
from the tens column, making the 4 become 14,
Subtracting in the units column, § from 14 is 9,
In the tens column,we now have a 2 in the min-
uend as a result of the first borrowing opera-
tion. Some students find it helpful at first to
cancel any digits that are reduced as a result
of borrowing, jotting down the digit of next lower
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value just above the canceled digit. This has
been done in the following example:

412

8,234
-2,345

—————

2,889

After canceling the 3, we proceed with the
subtraction, one column at a time. We borrow
from the hundreds column to change the 2 that
we now have in the tens column into 12. Sub-
tracting in the tens column, 4 from 12 is 8.
Proceeding in the same way for the hundreds
column, 3 from 11 is 8. Finally, in the thou-
sands column, 2 from 4 is 2.

Practice problems. In problems 1 through
4, add the indicated numbers. In problems 5
through 8, subtract the lower number from the

upper.
1. Add 23, 468, 7, and 9,045.

2. 129 3. 9,497 4, 67,856
958 6,364 22,851
187 4,269 44,238
_4_:_3_@ 9,785 97,156
5. 703 6. 8,700 7. 7,928 8. 75,168
§g§ 5,008 5,349 28,089
Answers:
1. 9,543 2, 2,310 3. 29,915 4, 232,101
5. 115 6. 3,692 7. 2,579 8. 47,079

Denominate Numbers

Numbers that have a unit of measure asso-
ciated with them, such as yard, kilowatt, pound,
pint, etc., are called DENOMINATE NUMBERS.
The word 'denominate" means the numbers
have been given a name; they are not just ab-
stract symbols. To add denominate numbers,
add all units of the same kind. Simplify the re-
sult, if possible. The following example illus-
trates the addition of 6 ft 8 in. to 4 ft 5 in.:

6ft 8 in.
4ft 5 in.

10 £t 13 in,

Since 13 in. is the equivalent of 1ft 1in., we
regroup the answer as 11 ft 1 in.

A similar problem would be to add 20 de-
grees 44 minutes 6 seconds to 13 degrees 22
minutes 5 seconds. This is illustrated as fol-
lows:

23 deg 44 min 6 sec
13 deg 22 min 5 sec

33 deg 66 min 11 sec

This answer is regrouped as 34 deg 6 min
11 sec.

Numbers must be expressed in units of the
same kind, in order to be combined. For in-
stance, the sum of 6 kilowatts plus 1 watt is not
7 kilowatts nor is it 7 watts. The sum can only
be indicated (rather than performing the opera-
tion) unless some method is used to write these
numbers in units of the same value.

Subtraction of denominate numbers also in-
volves the regrouping idea. If we wish to sub-
tract 16 deg 8 min 2 sec from 28 deg 4 min
3 sec, for example, we would have the following
arrangenent:

28 deg 4 min 3 sec
-16 deg 8 min 2 sec

In order to subtr:~ 8 min from 4 min we re-
group as follows:

27 deg 64 min 3 sec
-16 deg 8 min 2 sec

11 deg 56 min 1 sec

Practice problems. In problems 1 and 2,
add. In problems 3 and 4, subtract the lower
number from the upper.

1. 6yd 21t 7 in.
1ft 9in.
2 yd 10 in.

2. 9 hr 47 min 51 sec
3 hr 36 min 23 sec
5h

r 15 min 23 sec

3. 15 hr 25 min 10 sec
-6 hr 50 min 35 sec

4, 125 deg
47 deg 9 min 14 sec
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Answers:

9yd 21t 2 in.

18 hr 39 min 37 sec
8 hr 34 min 35 sec
77 deg 50 min 46 sec

ot s

Mental Calculation

Mental regrouping can be used to avoid the
necessity of writing down some of the steps, or
of rewriting in columns, when groups of one-
digit or two-digit numbers are to be added or
subtracted.

One of the most common devices for rapid
addition is recognition of groups of digits whose
sum is 10. For example, in the following prob-
lem two "ten groups' have been marked with
braces:

To add this column as grouped, you would say
to yourself, "7, 17, 22, 32." The thought should
be just the successive totals as shown above
and not such cumbersome steps as "7 + 10, 17,
+ 5, 22, + 10, 32."

When successive digits appear in a column
and their sum is less than 10, it is often con-
venient to think of them, too, as a sum rather
than separately. Thus, if adding a column in
which the sum of two successive digits is 10 or
less, group them as follows:

3
1, 5
1
8
1} o

4
6} 10

The thought process here might be, as shown
by the grouping, ''5, 14, 24."

10

Practice problems. Add the following col-
umns from the top down, as in the preceding

example:

1. 2 2. 4 3. 88 4. 57
7 6 36 32
3 7 59 . 64
6 8 82 97
4 1 28 79
1 8 57 4

Answers, showing successive mental steps:

. 2,12, 22, 23 - - Final answer, 23
. 10, 17, 26, 34 - - Final answer, 34
- Units column: 14, 23, 33, 40 - - Write down
0, carry 4.
Tens column: 12,
swer, 350.
4. Units column: 9, 20, 29, 33 - - Write down
3, carry 3.
Tens column: 8, 17, 26, 37 - - Final an-
swer, 373.

W N =

20, 30, 35 - - Final an-

SUBTRACTION.—In an example such as
73 - 46, the conventional approach is to place
46 under 73 and subtract units from units and
tens from tens, and write only the difference
without the inter mediate steps. To do this, the
best raethod is to begin at the left. Thus, in the
example 73 - 46, we take 40 from 73 and then
take 6 from the result. This is done mentally,
however, and the thought wouid be '"73, 33, 27,"
or "33, 27." In the example 84 - 21 the thought
is 64, 63" and inthe example 64 - 39 the thought
is "34, 25."

Practice problems. Mentally subtract and
write only the difference:

1. 47- 24 4. 86 - 73
2. 69 - 38 5. 82 - 41
3. 87-58 6. 30 - 12

Answers, showing successive inental steps:

27, 23 - - Final answer, 23
39, 31 - - Final answer, 31
37, 29 - - Final answer, 29
16, 13 - - Final answer, 13
42, 41 - - Final answer, 41
20, 18 - - Final answer, 18

MULTIPLICATION AND DIVISION

Multiplication may be indicated by a multi-
plication sign (x) between two numbers, a dot

S o i
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between two numbers, or parentheses around
one or both of the numbersto be multiplied. The
following examples illustraie these methods:

6 x8=48
6-8=48
6(8) = 48
(6)(8) = 48

Notice that when a dot is used to indicate
multiplication, it is distinguished from a deci-
mal point or a period by being placed above the
line of writing, as in example 2, whereas a
pericd or decimal point appears on the line.
Notice also that when parentheses are used to
indicate muitiplication, the numbers to be mul-
tiplied are spaced closer together than they are
when the dot or x is used.

In each of the four examples just given, 6 is
the MULTIPLIER and 8 is the MULTIPLICAND.
Both the 6 and the 8 are FACTORS, and the
more modern texts refer to them this way. The
"answer" in a multiplication problem is the
PRODUCT; in the examples just given, the
product is 48.

Division usually is indicated either by a
division sign (+) or by placing one number cver
another number with a line between the num-
bers, as in the following examples:

1. 8- 4=2
8.
2.4-2

The number 8 is the DIVIDEND, 4 is the DIVI-
SOR, and 2 is the QUOTIENT.

MULTIPLICATION METHODS

The multiplication of whole iumbers may be
thought of as a short process of adding equal
numbers. For example, 6(5) and 6 x 5 are read
as six 5'g. Of course we couldwrite 5 six times
and add, but if we learn that the result is 30 we
can save time. Although the concept of adding
equal numbers is quite adequate in explaining
multiplication of whole numbers, it is only a
special case of a more general definition, which
will be explained later in multiplication involv-
ing fractions.

Srouping

Let us examine the process involved in mul-
tiplying 6 times 27 to get the product 162. We
first arrange thefactors in the following manner:

11

17

27
_x6

162
The thought process is as {nllows:

1. 6 times 7 is 42. Write down ike 2 and
carry the 4.

9. 6 times 2 is 12. Add the 4 that was car-
ried over ;rom step 1 and write the result, 16,
beside the 2 that was written in step 1.

3. The final answer is 162.

Table 2-1 shows that thefactors were grouped
in units, tens, etc. The multiplication was done
in three steps: Six times 7 units is 42 units (or
4 tens and 2 units) and six times 2 tens is 12
tens (or 1 hundred and 2 tens). Then the tens
were added and the product was written as 162.

Table 2-1.—Multiplying by a
one-digit number.

—

Hundreds

6(27) = 162

o | Tens
N | & =3 | Units

N

In preparing numbers for multiplication as
in table 2-1, it is important to place tne digits
of the factors in the proper columns; that is,
units must be placed in the units column, tens
in tens column, and hundreds in hundreds col-
umn. Notice that it is not necessary to write
the zero in the case of 12 tens (120) since the 1
and 2 are written in the proper columns. In
practice, tbe addition is done mentally, and just
the product i8 written without the intervening
steps.

Multiplying a number with more than two
digits by a one-digit number, as shown in table
2-2, involves no new ideas. Three times 6 unitx
is 1€ units (1 ten and 8 units), 3 times 0 tens is
0, and 3 times 4 hundreds is 12 hundreds (1
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Table 2-2,—Multiplying a three-digit
number by a one-digit number.

1]
=] n
S0
n 4
3| Tlwul A
(@] (=2
HAEIE
3(406) = 1,218| |40 g
18
1l2
1:2(18

thousand and 2 hundr:ds). Notice that it is not
necessary to write the 0's resulting from the
step "3 times O tens is 0." The two terminal
0's of the number 1,200 are also omitted, since
the 1 and the 2 are placed in their correct col-
umns by the position of the 4,

Partial Products

In the example, 6(8) = 48, notice that the
multiplying could be done another way to get
the correct product as follows:

6(3+5)=6x3+6x5

That is, we can break 8 into 3 and 5, multiply
each of these by the other factor, and add the
partial products. This idea is employed in
multiplying by a two-digit number. Consider
the following example:

43
x27

1,161

Breaking the 27 into 20 + 7, we have 7 units
times 43 plus 2 tens times 43, as follows:

43(20 + 7) = (43)(7) + (43)(20)

Since 7 units times 43 is 301 units, and 2 tens
times 43 is 86 tens, we have the following:

12

43
x27

301 = 3 hundreds, 0 tens, 1 unit
86 = 8 hundreds, 6 tens

1, 161

As long as the partial products are written
in the correct columns, we can multiply begin-
ning from either the left or the right of the
multiplier. Thus, multiplying from the left, we
have

43
1

86
301

151
1,151

Multiplication by a number having n)ore places
involves no new ideas.

End Zeros

The placement of partial products must be
kept in mind when multipiying in prolblems in-
volving end zeros, as in the following vxample:

27
%40

1,080

We have 0 units times 27 plus 4 tens times 21,
as follows:

27
x40

0
108

1,080 e

The zero in the units place plays an important
part in the reading of the final product. End
Zeros are often called 'place holders" since
their only function in the problem is to hold the
digit positions which they occupy, thus helpingto
place the other digits in the problem correctly.

The end zero in the foregoing problem can
be accounted for very nicely, wkile at the same
time placing the other digits correctly, by means
of a shortcut. This consists of offsetting the 40
one place to the right and then simply bringing



Chapter 2—POSITIVE INTEGERS

down the 0, without using it as a multiplier at
all. The problem would appear as follows:

27
x40

1,080

I the problem involves a multiplier with
more than one end 0, the multiplier is offset as
many places to the right as there are end 0's.
For example, consider the following multipli-
cation in which the multiplier, 300, has two
end 0's:

220
x300

66,000

Notice that there are as many place-holding
zeros at the end in the product as there are
place-holding zeros in the multiplier and the
multiplicand combined. ,

Placement of Decimal Points

In any whole number in the decimal system,
there is understood to be a terrainating mark,
called a decimal point, at the right-hand end of
the number. Although the decimal point is sel-
dom shown except in numbers involving decimal
fractions (covered in chapter 5 of this course),
its location must be known. The placement of
the decimal point is automatically taker. care of
when the end 0's are correctly placed.

Practice problems. Multiply in each of the
following problems:

1. 287x 8 4, 807 x 28

2. 67x49 5. 694 x 80

3. 940 x 20 6. 9,241 x 7,800
Answers:

1. 2,296 4, 22,596

2. 3,283 5. 55,520

3. 18,800 6. 72,079,800

DIVISION METHODS

Just as multiplication can be considered as
repeated addition, division can be considered as
repeated subtraction. For example, if we wish
to divide 12 by 4 we may subtract 4 from 12 in
successive steps and tally the number of times
that the subtraction is performed, as follows:

13

*

oclew|pol|ar
* *

As indicated by the asterisks used as tally
marks, 4 has been subtracted 3 times. This
result is sometimes described by saying that
"4 ig contained in 12 three times."

Since successive subtraction is too cumber-
some for rapid, concise calculation, methods
which treat division as the inverse of multipli-
cation are more useful. Knowledge of the mul-
tiplication tables should lead us to an answer
for aproblem such as 12 + 4 immediately, since
we know that 3 x 4 is 12. However, a problem
such as 84 + 4 is not so easy to solve by direct
reference to the multiplication table.

One way to divide 84 by 4 is to note that 84
is the same as 80 plus 4. Thus 84 + 4 is the
same as 80 + 4 plus 4 + 4. In symbols, this can
be indicated as follows:

20+ 1
4/80 + 4

(When this type of division symbol is used, the
quotient is written above the vinculum as shown.)
Thus, 84 divided by 4 is 21.

From the foregoing example, it can be seen
that the regrouping is useful in division as well
as in multiplication. However, the mechanical
procedure used in division does not include
writing down the regrouped form of the divi-

‘dend. After becoming familiar with the proc-

ess, we find that the division can be performed
directiy, one digit at a time, with the regrouping
taking place mentally. The following example
illustrates this:

14
4/56
4

16
16

The thought process is as follows: "4 is con-
tained in 5 once' (write 1 in tens place over
the 5); ''one times 4 is 4" (write 4 in tens place
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under 35, take the difference, and bring down 6);
and "4 is contained in 16 four times" (write 4
in units place over the 6). Aiter a little prac-
tice, many peoplc can do the work shown under
the dividend mentally and write only the quo-
tient, if the divisor has only 1 digit.

The divisor is sometimes too large to be
contained in the first digit of the dividend. The
following example illustrates a problem of this
kind:

36
/252
21

42
42

Since 2 is not large enough to contain 7, we
divide 7 into the number formed by the first two
digits, 25. Seven is contained 3 times in 25; we
write 3 abovethe 5 of the dividend. Multiplying,
3 times 7 is 21; we write 21 below the first two
digits of the dividend. Subtracting, 25 minus 21
is 4; we write down the 4 and bring down the 2
in the units place of the dividend. We have now
formed a new dividend, 42. Seven is contained
6 times in 42; we write 6 above the 2 of the
dividend. Multiplying as before, 6 times 7 is 42;
we write this product below the dividend 42.
Subtracting, we have nothing left and the divi-
sion is ccmplete.

Estimation

When there are two or more digits in the
divisor, it is not always easy to determine the
first digit of the quotient. An estimate must be
made, and the resulting trial quotient may be
too large or too small. For example, if 1,862
is to be divided by 38, we might estimate that
38 is contained 5 times in 186 and thefirst digit
of our trial divisor would be 5. However, mul-
tiplication reveals that the product of 5 and 38
is larger than 186. Thus we would change the 5
in our quotient to 4, and the problem would then
appear as follows:

49
38/1862
152

342
342

14

On the other hand, suppose that we had esti-
mated that 38 is contained in 186 only 3 times.
We would then have the following:

3
38/1862
114

72

Now, before we make any further moves in the
divisionprocess, it should be obvious that some-
thing is wrong. I« our new dividend is large
enough to contain the divisor before bringing
down a digit from the original dividend, then the
trial quotient should have been larger. In other
words, our estimate is too small.

Proficiency in estimating trial quotients is
gained through practice and familiarity with
number combinations. For example, after a
little experience we realize that a close esti-
mate can be made in the foregoing problem by
thinking of 38 as "almost 40." It is easy to see
that 40 is contained 4 times in 186, since 4
times 40 is 160. Also, since 5 times 40 is 200,
we are reasonably certain that 5 is too large
for our trial divisor.

Uneven Division

In some division problems such as 7 - 3,
there is no other whole number that, when mul-
tiplied by the divisor, will give the dividend.
We use the distributive idea to show how divi-
sion is done i~ such a case. For example, 7 + 3
could be writt:n as follows:

6+1)_6_1_,1
3 3+t3=23

Thus, we see that the quotient also carries one
unit that is to be divided by 3. It should now be
clear that 3/37 = 3/30 + 7, and that this can be
further reduced as follows:

30 .6 _ 1_ 1.1
3+3+3 10+2+3 123

In elementaryarithmetic the part of the divi-
dend that cannot be divided evenly by the divisor
is often called a REMAINDER and is placed
next to the quotient with the prefix R. Thus, in-
the foregoing example where the quotient was

12 %, the quotient could be written 12 R 1. This
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method of indicating uneven division is useful
in exomples such as the following:

Suppose that $13 is available for the pur-
chase ot spare parts, and the parts needed cost
$3 each. Four parts can b2 bought with the
available money, and $1 will be left over. Since
it is not possible to buy 1/% of a part, express-
ing the result as 4 R 1 gives a more meaningful
answer than 4 1/3.

Placemeat of Decimal Points

In division, as in multiplication, the place-
ment of the decimal point is important. Deter-
mining the location of the decimal point and the
number of places in the quotient can be rela-
tively simp:e if the work is kept in the proper
columns. For example, notice the vertical
alinement in the following problem:

311
31/9,641
93

34
31

31
31

We notice that the first two places in the divi-
dend are used to obtain the first place in the
quotient. Since 3 is in the hundreds column
there are two more places in the quotient (tens
place and units place). The decimal point in the
quotient is understood to be directly above the
position of the decimal point . the dividend. In
the example shown here, the Jlecimal point is
not shown but is understood to be immediately
after the second 1.

Checking Accuracy

The accuracy of a division of numbers can
be checked by multiplying the quotient by the
divisor and adding the remainder, if any. The
result should equal the dividend. Consider the
following example:

5203
42/218541 Check: 5203
210 x 42
85 10406
84 20812
141 218526
126 + 15
15 218541

DENOMINATE NUMBERS

We have learned that denominate numbers
are not difficult to add and subtract, provided
that units, tens, hundreds, etc., are retained in
their respective columns. Multiplication and
division of denominate numbers may also be
performed with comparative ease, by using the
experience gained in addition and subtraction.

Multiplication

In multiplying denominate numbers by inte-
gers, no new ideas are needed. K in the prob-
lem 3(5 yd 2 ft 6 in.) we remember that we can
multiply each part separately to get the correct
product (as in the example, 6(8) = 6(3) + 6(5)),
we can easily find the product, as follows:

5yd 2ft 6in.
x 3

15 yd 6 ft 18 in.

Simplifying, this is
17 yd 11£t 6 in.

When one denominate number is multiplied
by another, a question arises concerning the
products of the units of measurement. The
product of one unit times another of the same
kind is one square unit. For example, 1 ft
times 1 ft is 1 square foot, abbreviated sq ft;
2 in. times 3 in. 18 6 sq in.; etc. I it becomes
necessary to multiply such numbers as 2 yd 1 {t
times 6 yd 2 ft, the foot units may be converted
to fractions of a yard, as follows:

(2 yd 1£t)(6 yd 2 1t) = (2 1/3 yd)(6 2/3 yd)

In order to complete the multiplication, a
knowledge of fractions is needed. Fractions
are discussed in chapter 4 of this training
course.

Division

Thedivision of denominate numbers requires
division of the highest units first; and if there
is a remainder, conversion to the next lower
unit, and repeated division until all units have
been divided.

In the example (24 gal 1 qt 1 pt) + 5, we per-
form the following steps:
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Step 1: 4 gal
5/24 gal

20
4 gal (left over)

Step 2: Convert the 4 gal left over to 16 qt and

add to the 1 qgt.

Step 3: 3 qt

5/17 qt
15

2 qt (left over)

Step 4: Convert the 2 qt left over to 4 pt and
add to the 1 pt.
Step 5: 1 pt
5/5 pt

Therefore, 24 gal 1 qt 1 pt divided by 5 is
4 gal 3 qt 1 pt.

Practice problems. In problems 1 through 4,
divide as indicated. In problems 5 through 8,
multiply or divide as indicated.

1. 549+ 9 5. 4 hr 26 min 16 sec
x5
2. 470/6%
6. 3(4 gal 3 qt 1 pt)
3. 25/2,300
7. 67 deg 43 min 12 sec
4, 64/74,816 9
8. 5/631b 11 oz
Answers:
1. 61 5. 22 hr 11 min 20 s:c
2. TR 29 6. 14 gal 2 qt 1 pt
3. 92 '7. 33 deg 51 min 36 sec
4. 1,169 8. 121b 114/5 oz

ORDER OF OPERATIONS

When a series of operations involving addi-
tion, subtraction, mdtiplication, or division is
indicated, the order in which the operations are
performed is important only if division is in-
volved or if the operations are mixed. A se-
ries of individual additions, subtractions, or
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multiplications may be performed in any order.
Thus, in

4 +2+7+5=18
or
100 - 20 - 10 - 3 = 67
or
4x2x7x5 =280
the numbers may be combined in any order de-

sired. For example, they may be grouped easily
to give

6 +12 =18
and

97 - 30 = 67
and

40 x 7 = 280

A series of divisions should be taken in the
order written.

Thus,
100 - 10 + 2 =10+ 2= 5
In a series of mixed operations, perform
multiplications first, division next, and finally
additions and sultractions.

For example
100 + 4 x5 =100 +20=5

and

60 - 25+ 5 =60 -5 =55

Now consider

60-25 + 5+ 15 - 100 + 4 x 10
=60 - 25 + 5 + 15 - 100 + 40
=60 - 5+ 15 - 100 + 40
=115 - 105
=10

Notice that 25 + 5 could be evaluated at the
same time that 4 x 10 is evaluated, .ince no

‘RR
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other multiplication is to be performed in the

first part of the problem.
Practice problems.

following expressions:

Evaluate each of the

.9 +3+2

18 - 2x5 + 4
90 -+ 2 + 9

D +5x3 +5
T7+1-8x4 +16

.cr-.hwgoo-n

Answers:

.5
. 12
. 9

-N -
9
D -

MULTIPLES AND FACTORS

Any number that is exactly divisible by a
given number is a MULTIPLE of the given
number. For example, 24 is a multiple of 2, 3,
4, 6, 8, and 12, since it is divisible by each of
these numbers. Saying that 24 is a multiple of
3, for instance, is equivalent to saying that 3
multiplied by some whole number will give 24.
Anynumber is a multiple of itself and also of 1.

Any number that is a multiple of 2 is an
EVEN NUMBER. The even numbers begin with
2 and progress by 2's as follows:

2, 4, 6, 8, 10, 12, ...

Any number that is not a multiple of 2 is an
ODD NUMBER. The odd numbers begin with 1
and progress by 2's, as follows:

1,3,5,179, 11,13, ...

Any number that can be divided into a given
number without a remainder is a FACTOR of
the given number. The given number is a mul-
tiple of any number that is one of its factors.
For example, 2, 3, 4, 6, 8, and 12 ar2 factors
of 24. The following four equalities show vari-
ous combinations of the factors of 24:

24
24

24 - 1
12 - 2

24
24

8 -
6 -

3
4

K the number 24 is factored as completely as
possible, it assumes the form

24=2.2.

2 .

3
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ZERO AS A FACTOR

K any number is multiplied by zero, the
product is zero. For example, 5 times zero
equals zero and may be written 5(0) = 0. The
zero factor law tells us that, if the product of
two or more factors is zero, at least onz of the
factors must be zero.

PRIME FACTORS

A number that has factors other than itself
and 1 is a COMPOSITE NUMBER. For exam-
ple, the number 15 is composite. It has the
factors 5 and 3.

A number that has no factors except itself
and 1 is a PRIME NUMBER. Since it is some-
times advantageous to separate a composite
number into prime factors, it is helpful to be
able to recognize a few prime numbers quickly.
The following series shows all the prime num-
bers up to 60:

1, 2, 8,5, 17, 11, 13, 17, 19, 23, 29, 31, 37, 41,
43, 417, 53, 59.

Notice that 2 is the only even prime number.
All other even numbers are divisible by 2.
Notice also that 51, for example, does not ap-
pear in the series, since it is a composite num-
ber equal to 3 x 17.

If a factor of a number is prime, it is called
a PRIME FACTOR. To separate a number into
prime factors, begin by taking out the smallest
factor. If the number is even, take out all the
2's first, then try 3 as a factor, etc. Thus, we
have the following example:

540 = 2 . 270
=2-+2-135
=2:2-:3"45
=2:2:3-3-15

2:.2.3°3-3°-5

Since 1 i8 an understood factor of every num-
ber, we do not waste space recording it as one
of the factors in a presentation of this kind.

A convenient way of keeping track of the
prime factors is in the short division process
as follows:

2/540

2/2170

3/135

3/45

315

5/5
1

”3
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K a number is odd, its factors will be odd
numbers. To separate an odd number into
prime factors, take out the 3's first, if there
are any. Then try 5 as a factor, etc. As an
example,

5,775 = 3 * 1,925
=35 385
=3.5:5-177
=23-5-.5-17-11

Practice problems:

1. Which of the following are prime numbers
and which are composite numbers?

25, 7, 18, 29, 51

2. What prime numbers are factors of 367

3. Which of the following are multiples of 37
45, 53, 51, 39, 47

4. Find the prime factors of 27.

Answers:

[y
M

Prime: 7, 29
Composite: 25, 18, 51

2.36=2-2°3"3
3. 45, 51, 39
4.27=3-3.3

Tests for LCivisibility

It is often useful to be able to tell by inspec-
tion whether a number is exactly divisible by
one or more of the digits from 2 through 9. An
expression which is frequently used, although it
is sometimes misleading, is "evenly divisible."
This expression has nothing to do with the con-
cept of even and odd numbers, and it probably
should be avoided in favor of the more descrip-
tive expression, "exactly divisible." For the re-
mainder of this discussion, the word "divisible"
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has the same meaning as "exactly divisible."
Several tests for divisibility are listed in the
following paragraphs:

1. A number is divisible by 2 if its right-
hand digit is even.

2. A number is divisible by 3 if the sum of
its digits is divisible by 3. For example, the
digits of the number 6,561 add to produce the
sum 18. Since 18 is divisible by 3, we know
that 6,561 is divisible by 3.

3. A number is divisible by 4 if the number
formed by the two right-hand digits is divisibie
by 4. For example, the two right-hand digits of
the number 3,524 form the number 24. Since
24 is divisible by 4, we know that 3,524 is di-
visible by 4.

4. A number is divisible by 5 if its right-
hand digit is 0 or 5.

5. A number is divisible by 6 if it is even
and the sum of its digits is divisible by 3. For
example, the sum of the digits of 64,236 is 21,
which is divisible by 3. Since 64,236 is also an
even number, we know that it is divisible by 6.

6. No short method has been found for de-
termining whether a number is divisible by 7.

7. A number is divisible by 8 if the number
formed by the three right-hand digits is divisi-
ble by 8. For example, the three right-hand
digits of the number 54,272 form the number
272, which is divisible by 8. Therefore, we
know that 54,272 is divisible by 8.

8. A number is divisible by 9 if the sum of
its digits is divisible by 9. For example, the
sum of the digits of 546,372 is 27, which is di-
visible by 8. Therefore we know that 546,372
is divisible by 9.

Practice problems. Check each of the fol-
lowing numbers for divisibility by all of the
digits except T:

242,431,231,320
844,624,221,840
988,446,662,640
207,634,542,480

el ol S S

Answers: All of these numbers are divisible
by 2, 3, 4, 5, 6, 8, and 9.




CHAPTER 3
SIGNED NUMBERS

The positive numbers with which we have
worked in previous chapters are not sufficient
for every situation which may arise. For ex-
ample, a negative number results in the opera-
tion of subtraction when the subtrahend islarger
than the minuend.

NEGATIVE NUMBERS

When the subtrahend happens to be larger
than the minuend, this fact is indicated by plac-
ing a minus sign in front of the difference, as
in the following:

12 - 20 = -8

The difference, -8, is said to be NEGATIVE. A
number preceded by a minus sign isa NEGA -
TIVE NUMBER. The number -8 is read "minus
eight.” Such a number might arise when we
speak of temperature changes. If the tempera-
ture was 12 degrees yesterday and dropped 20
degrees today, the reading today would be
12 - 20, or -8 degrees.

Numbers that show either a plus or minus
sign are called SIGNED NUMBERS. An un-
signed number is understood to be positive and
.is treated as though there were a plus sign
preceding it.

If it is desired to emphasize the fact thata
number is positive, a plus sign is placed in
front of the number, as in +5, waich is read
"plus five." Therefore, either +5 or 5 indi-
cates that the number 5 is positive. If a num-
ber is negative, a minus sign must appear in
front of it, as in -8.

In dealing with signed numbers it should be
emphasized that the plus and minus signs have
two separate and distinct functions. They may
indicate whether a numbe - is positive or nega-
tive, or they may indicate the operation of ad-
dition or subtraction.

When operating entirely with positive num-
bers, it is not necessary to be concerned with
this distinction since plus or minus signs indi-
cate only addition or subtraction. However,
when negative numbers are also involved ina
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computation, it is important to distinguish be-
tween a sign of operation and the sign of a
number.

DIRECTION OF MEASUREMENT

Signed numbers provide a convenient way of
indicating opposite directions with 2 minimum
of words. For example, an altitude ‘of 20 ft
above sea level could be designated as +20 ft.
The same distance below sea level would then
be designated as -20 ft. One of the most com-
mon devices utilizing signed numbersto indicate
direction of measurement is the thermometer.

Theimometer

The Celsius (centigrade)thermometer shown
in figure 3-1 illustrates the use of positive and
negative numbers to indicate direction of travel
above and below 0. The 0 mark is the change-
over point, at which the signs of the scale num-
bers change from - to +.

When the thermometer is heated by the sur-
rounding air or by a hot liquid in which it is
placed, the mercury expands and travels up the
tube. After the expanding mercury passes O,
the mark at which it comes to rest is read as a
positive temperature. If the thermometer is
allowed to cool, the mercury contracts. After
passing 0 in its do'vnward movement, any mark
at which it comes to rest is read as a negative
temperature.

Rectangular Coordinate System

As a matter of convenience, mathematicians
have agreed to follow certain conventions as to
the use of signed numbers in directional meas-
urement. For example, in figure £-2, a direc-
tion to the right along the horizontal line is
positive, while the opposite direction (toward
the left) is negative. On the vertical line, di-
rection upward is positive, while direction
downward is negative. A distance of -3 units
along the horizontal line indicates a measure-
ment of 3 units to the left of starting point 0. A
distance of -3 units on the vertical line indicates
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Figure 3-1.—Celsius (centigrade)
temperature scale.

a measurement of 3 units below the starting
point.

The two lines of the rectangular coordinate
system which pass through the 0 position are
the vertical axis and horizontal axis. Other

vertical and horizontal lines may be included,
forming a grid. When such a grid is used for
the location of points and lines, the resulting
""picture’ containing points and lines is called a
GRAPH.

STARTING POINT

Figure 3-2.-Rectangular
coordinate system.

The Number Line

Sometimes it is important to know the rela-
tive greatness (magnitude) of positive and nega-
tive numbers. To determine whether a partic-
ular number is greater or less than another
number, think of all the numbers both positive
and negative as being arranged along a hori-
zontal line. (See fig. 3-3.)

i 1 A | 1 | )

e 1 ]
-2 =1 0 +1 42 43 +4 +5

-5 -4 -3

Figure 3-3.—Number line showing both
positive and negative numbers.

Place zero at the middle of the line. Let the
positive numbers extend from zero toward the
right. Let the negative numbers extend from
zero toward the left. With this arrangement,
positive and negative numbers are so located
that they progress from smaller to larger num-
bers as we move from left to right along the
line. Any number that lies to the right of a
given number is greater than the given number.
A number that lies to the left of a given number
is less than the given number. This arrange-
ment shows that any negative number is smaller
than any positive number.

The symbol for "greater than" is >. The
symbol for 'less than'' is <. It is easy to dis-
tinguish between these symbols because the
symbol used always opens toward the larger
number. For example, "7 is greater than 4"
can be written 7 > 4 and "-5 is less than -1"
can be written -5 < -1,
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Absolute Value

The ABSOLUTE VALUE of a number is its
numerical value when the sign is dropped. The
absolute value of either +5 or -5 is 5. Thus,
two numbers that differ only in sign have the
same absolute value.

The symbol for absolute value consists of
two vertical bars placed one on each side of the

number, as in | -5 | = 5. Consider also the
following:

la - 20|= 16

| +7] = [-T] =7

The expression |-7]|is read "absolute value of
minus seven."

When positive and negative numbers are
used to indicate direction of measurement, we
are concerned only with absolute value, if we
wish to know only the distance covered. For
example, in figure 3-2, if an object moves to
the left from the starting point to the point in-
dicated by -2, the actual distance covered is 2
units. We are concerned only with the fact that
|-2| = 2, if our only interest is in the distance
and not the direction.

OPERATING WITH SIGNED NUMBERS

The number line can be used to demonstrate
addition of signed numbers. Two cases must
be considered; namely, adding numbers with
like signs and adding numbers with unlike signs.

ADDING WITH LIKE SIGNS

As an example of addition with likeé signs,
suppose that we use the number line (fig. 3-4)
to add 2 + 3. Since these are signed numbers,
we indicate this addition as (+2) + (+3). This
emphasizes that, among the three + signs shown,
two are number signs and one is a sign of

|
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Figure 3-4.—Ucing the number line to add.
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operation. Line a (fig. 3-4) above the number
line shows this addition. Find 2 on the number
line. To add 3 to it, go three units more in a
positive direction and get 5.

To add two negative numbers on the number
line, such as -2 and -3, find -2 on the number
line and then go three units more in the nega-
tive direction to get -5, as in b (fig. 3-4) above
the number line.

Observation of the results of the foregoing
operations on the number line leads us to the
following conclusion, which may be stated as a
law: To add numbers with like signs, add the
absolute values and prefix the common sign.

ADDING WITH UNLIKE SIGNS

To add a positive and a negative number,
such as (-4) + (+5), find +5 on the number line
and go four units in a negative direction, as in
line ¢ above the number line in figure 3-4.
Notice that this addition could be performed in
the other direction. That is, we could start at
-4 and move 5 units in the positive direction.
(See line d, fig. 3-4.)

The results of our operations with mixed
signs on the number line lead to the following
conclusion, which may be statedas a law: To
add numbers with unlike signs, find the differ-
ence between their absolute values and prefix
the sign of the numerically greater number.

The following examples show the addition of
the numbers 3 and 5 with the four possible com-
binations of signs:

3 -3 3 -3
5 -5 -5 5
-8 -2 2

In the first example, 3 and 5 have like signs
and the common sign is understood to be posi-
tive. The sum of the absolute values is 8 andno
sign is prefixed tothis sum, thus signifying that
the sign of the 8 is understood to be positive.

Inthe second example, the 3 and 5 againhave
like signs, but their common sign is negative.
The sum of the absolute values is 8, and this
time the common sign is prefixed to the sum,
The answer is thus -8.

In the third example, the 3 and 5 have unlike
signs. The difference between their absolute
values is 2, and the sign of the larger addend is
negative. Therefore, the answer is -2.

In the fourth example, the 3 and 5 again have
unlike signs. The difference of the absolute
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values is still 2, but this time the sign of the
larger addend is positive. Therefore, the sign
prefixed to the 2 is positive (understood) and
the final answer is simply 2.

These four examples could be written in a
different form, emphasizing the distinction be-
tween the sign of a number and an operational
sign, as follows:

(+3) + (+5) = +8
(-3) + (-5) = -8
(+3) + (-5) = -2
(-3) + (+5) = +2

Practice problems. Add as indicated:

1. -10 + 5 = (-10) + (+5) = ?
2. Add -9, -16, and 25
3. -7T-1-3=(-7+(1)+(-3) =27
4, Add -22 and -13
Answers:
1. -5 3. -11
2. 0 4, -35
SUBTRACTION

Subtraction is the inverse of addition. When
subtraction is performed, we "take away' the
subtrahend. This means that whatever the¢ value
of the subtrahend, its effect is to be reversed
when subtraction is indicated. In addition, the
sum of 5 and -2 is 3. In subtraction, however,
to take away the effect of the -2, the quantity +2
must be added. Thus the difference between
+5 and -2 is +7.

Keeping this idea in mind, we may now pro-
ceed to examine the various combinations of
subtraction involving signed numbers. Let us
first consider the four possibilities where the

minuend is numerically greater than the sub-
trahend, as in the following examples:

8 8 -8 -8
5 -5 S -5
3 13 -13 -3

We may show how each of these results is
obtained by use of the number line, as shown in
figure 3-5.

In the first example, we find +8 on the num-
ber line, then subtract 5 by making a movement
that reverses its sign. Thus, we move to the
left 5 units. The result (difference) is +3. (See
line a, fig. 3-5.)

In the second example, we find +8 on the
number line, then subtract (-5) by making a
movement that will reverse its sign. Thus we
move to the right 5 units. The result in this
case is +13. (See line b, fig. 3-5.)

In the third example, we find -8 on the num-
ber line, then subtract 5 by making a movement
that reverses its sign. Thus we move to the
left 5 units. The result is -13. (See line c,
fig. 3-5.)

In the fourth example, we find -8 on the
number line, then reverse the sign of -5 by
moving 5 units to the right. The result is -3.
(See line 4q, fig. 3-5.)

Next, let us consider the four possibilities
that arise when the subtrahend is numerically
greater than the minuend, as in the following
examples:

5 5 -5 -5
8 -8 8 -8
-3 13 -13 3

In the first example, we find +5 on the num-
ber line, then subtract 8 by making a movement
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Figure 3-5.—Subtraction by use of the number line.
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that reverses its sign. Thus we move to the
left 8 units. The result is -3. (See line e,
fig. 3-5.)

In the second example, we find +5 on the
number line, then subtract -8 by making a move-
ment to the right that reverses its sign. The
result is 13. (See line {, fig. 3-5.)

In the third example, we find -5 on the num-
ber line, then reverse the sign of 8 by a move-
ment to the left. Theresult is -13. (See line g,
fig. 3-5.)

Inthe fourth example, we find -5 on the num-
ber line, then reverse the sign of -8 by a move-
ment to the right. The result is 3. (See line h,
figo 3"50)

Careful study of the preceding examples
leads to the following conclusion, which is
stated as a law for subtraction of signed num-
bers: In any subtraction problem, mentally
change the sign of the subtrahend and proceed
as in addition.

Practice problems. In problems 1 through4,
subtract the lower number from the upper. In
5 through 8, subtract as indicated.

1. 17 2. -12 3. -9 4. 17
-10 _8 -13 16
5.1 «(-5) = ?
6. -6 -(-8) = ?
7. 14 - 7 -(-3) = ?
8. -9 -2=27
Answers:
1. 27 2, -20 3. 4 4, -9
5. 6 6. 2 7. 10 8. -11
MULTIPLICATION

To explain the rules for multiplication of
signed numbers, we recall that multiplication
of whole numbers may be thought of as short-
ened addition. Two types of multiplication
problems must be examined; the first type in-
volves numbers with unlike signs, and the sec-
ond involves numbers with like signs.

Unlike Signs

Consider the example 3(-4), in which the
multiplicand is negative. This means we are
to add -4 three times; that is, 3(-4) is equal to
(-4) + (-4) + (-4), which is equal to -12. For
example, if we have three 4-dollar debts, we
owe 12 dollars in all.

<9
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When the multiplier is negative, as in -3(7),
we are to take away T three times. Thus, -3(7)
is equal to -(7) - (7) - (7) which is equal to -21.
For example, if 7 shells were expended in one
firing, 7 the next, and 7 the next, there would
be a loss of 21 shells in all. Thus, the rule is
as follows: The product of two numbers with
unlike signs is negative.

The law of signs for unlike signs is some-
times stated as follows: Minus times plus is
minus; plus times minus is minus. Thus a
problem such as 3(-4) can be reduced to the
following two steps:

1. Multiply the signs and write down the
signn of the answer before working with the
numbers themselves.

2. Multiply the numbers as if they were un-
signed numbers.

Using the suggested procedure, the sign of
the answer for 3(-4) is found to be minus. The
product of 3 and 4 is 12, and the final answer
is -12. When there are more than two numbers
to be multiplied, the signs are taken in pairs
until the final sign is determined.

Like Signs

When both factors are positive, as in 4(5),
the sign of the product is positive. We are to
add +5 four times, as follows:

45) =5 +5+5+5 =20

When both factors are negative, as in -4(-5),
the sign of the product is positive. We are to
take away -5 four times.

-4(-5) = -(-5) - (-5) - (-5) - (-5)
= +5 +0 +5 45
= 20

Remember that taking away a negative 5 is the
same as adding a positive 5. For example,
suppose someone owes a man 20 dollars and
pays him back (or diminishes the debt) 5dollars
at a time. He takes away a debt of 20 dollars
by giving him four positive 5-dollar bills, or a
total of 20 positive dollars in all.

The rule developed by the foregoing example
is as follows: The product of two numbers with
like signs is positive.

Knowing that the product of two positive num-
bers or two negative numbers is positive, we
can conclude that the product of any even num-
ber of negative numbers is positive. Similarly,
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the product of any odd number of negative num-
bers is negative.

The laws of signs may be combined as 10l-
lows: Mdnus times plus is minus; plus times
minus is minus; minus times minus is plus;
plus times plus is plus. Use of this combined
rule may be illustrated as follows:

4(-2) - (-5) * (8) * (-) = -720

Taking the signs in pairs, the understood plus
on the 4 times the minus on the 2 produces a
minus. This minus times the minus on the 5
produces a plus. This plus times the under-
stood plus on the 6 produces a plus. This plus
times the minus on the 3 produces a minus, so
we know that the final answer is negative. The
product of the numbers, disregarding their
signs, is 720; therefore, the final answer is
-720.

Practice problems. Multiply as indicated:

O BN =
[«;]
o~
[}
[
A g
.
B o~

3. 24
4. -720

DIVISION

Because division is the inverse of multipli-
cation, we can quickly develop the rules for
division of signed numbers by comparison with
the corresponding multiplication rules, as in
the following examples:

1. Division involving two numbers with un-
like signs is related to multiplication with un-
like signs, as tollows:

3(-4) = -12
Therefore, :%-2- = -4

Thus, the rule for division with unlike signs is:
The quotient of two nuinbers with unlike signs
is negative.

2. Division involving two numbers with like
signs is related to multiplication with like signs,
as follows:

30

24

3(-4) = -12

-12

-z =3

Therefore,

Thus the rule for division with like signs is:
The quotient of two numbers with like signs is
positive.

The following examples show the application
of the rules for dividing signed numbers:

-12 _

12 . 4 =12 - 4
3
=12 12
-3 -3
Practice problems. Multiply and divide as
indicated:
e - (-3) (4)
1. 15 + -5 3. ——
2, -2(-3)/-6 4, -81/9
Answers:
1. -3 3. 2
2. -1 4, -9

SPECIAL CASES

Two special cases arise frequently in which
the laws of signs may be used to advantage.
The first such usage is in simplifying subtrac-
tion; the second is in changing the signs of the
numerator and denominator when division is
indicated in the form of a fraction.

Subtraction

The rules for subtraction may be simplified
by use of the laws of signs, if each expression
to be subtracted is considered as being multi-
plied by a negative sign. For example, 4 -(-5)
is the same as 4 + 5, since minus times minus
is plus. This result also establishes a basis
for the rule governing removal of parentheses.

The parentheses rule, as usually stated, is:
Parentheses preceded by a minus sign may be
removed, if the signs of all terms within the
parentheses are changed. This is illustrated
as follows:

12 -3-2+4)=12-3+2 -4
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The reason for the changes of sign is ¢lear
when the negative sign preceding the parenthe-
ses is considered to be a multiplier for the
whole parenthetical expression.

Division in Fractional Form

Division is often indicated by writing the
dividend as the numerator, and the divisor as
the denominator, of a fraction. In algebra,
everyfraction is consideredto have three signs.
The numerator has a sign, the denominator has
a sign, and the frac.ion itself, taken as a whole,
has a sign. In many cases, one or more of
these signs will be positive, and thus will not be
shown. For example, in the following fraction
the sign of the numerator and the sign of the
denominator are both positive (understood) and
the sign of the fraction itself is negative:

4

5

Fractions with more than one negative sign
are always reducible to a simpler form with at
most one negative sign. For example, the sign
of the numerator and the sign of the denomina-
tor may be both negative. We note that minus
divided by minus gives the same result as plus
divided by plus. Therefore, we may change to
the less complicated form having plus signs
(understood) for both numerator and denomina-
tor, as follows:

-15 _ +15 _ 15

5 + 5

Since -15 divided by -5 is 3, and 15 divided
by 5 is also 3, we cornclude that the change of
sign does not alter the final answer. The same
reasoning may be applied in the following ex-
ample, in which the sign of the fraction itself is
negative:

When the fraction itself has a negative sign, as
in this example, the fraction may be enclosed
in parentheses temporarily, for the purpose of
working with the numerator and denominator
only. Then the sign of the fraction is applied
separately to the result, as follows:

) -

All of this can be done mentally.
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I a fraction has a negative sign in one of the
three sign positions, this sign may be moved to
another position. Such an adjustment is an ad-
vantage in some types of complicated expres-
sions involving fractions. Examples of this
type of sign change follow:

- . ———

In the first expression of the foregoing ex-
ample, the sign of the numerator is positive
(understood) and the sign of the fraction is neg-
ative. Changing both of these signs, we obtain
the second expression. 1'0o obtain the third ex-
pression from the second, we change the sign
of the numerator and the sign of the denomina-
tor. QObserve that the signchanges in each case
involve a pair of signs. This leads to the law
of signs for fractions: Any two of the three
signs of a fraction may be changed without al-
tering the value of the fraction.

AXIOMS AND LAWS

An axiom is a self-evident truth. It is a
truth that is so universally accepted that it does
not require proof. For example, the statement
that ''a straight line is the shortest distance
between two points' is an axiom from plane
geometry. One tends to accept the truth of an
axiom without proof, because anything which is
axiomati: is, by its very nature, obviously true.
On the other hand, a law (in the mathematical
sense) is the result of defining certain quanti-
ties and relationships and then developing logi-
cal conclusions from the definitions.

AXIOMS OF EQUALITY

The four axioms of equality with which we
are concerned in arithmetic and algebra are
stated as follows:

1. K the same quantity is added to each of
two equal quantities, the resulting quantities
areequai. This is sometimes stated asfollows:
I equals are added to equals, the results are
equal. For example, by adding the same quan-
tity (3) to both sides of the following equation,
we obtain two sums which are equal:

-2=-3+1
-2+3=-3+1+3
1=1



MATHEMATICS, VOLUME 1

2. f the same quantity is subtracted from
each of two equal quantities, the resulting quan-
tities are equal. This is sometimes stated as
follows: I equals are subtracted from equals,
the results are equal. For example, by sub-
tracting 2 from both sides of the following equa-
tion we obtain results which are equal:

5=2+3
5-2=2+3-2
3 =3

3. I two equal quantities are multiplied by
the same quantity, the resulting products are
equal. This is sometimes stated as follows: K
equals are multiplied by, equals, the products
are equal. For example, both sides of the fol-
lowing equation are multiplied by -3 and equal
results are obtained:

5=2+3
(-3)(5) = (-3)(2 + 3)
-15 = -15

4. I two equal quantities are divided by the
same quantity, the resulting quotients are equal.
This is sometimes stated as follows: I equals
are divided by equals, the results are equal.
For example, both sides of the following equa-
tionare divided by 3, and the resulting quotients
are equal:

12 +3 =15

12 + 3 _15
3

4 +1=5

These axioms are especially useful when
leiters are used to represent numbers. I we
know that 5x = -30, for instance, then dividing
both 5x and -30 by 5 leads to the conclusion
that x = -6.

LAWS FOR COMBINING NUMBERS

Numbers are combined in accordance with
the following basic laws:

1. The associative laws of addition and mul-
tiplication.

2. The commutative laws of addition and
multiplication.

3. The distributive law.

Associative Law of Addition

The word "'associative' suggests association
or grouping. This law states that the sum of
three or more addends is the same regardless
of the manner in which they are grouped. For
example, 6 +3 + 1 is the same as 6 + (3 + 1) or
(6+3)+1or(6+1)+3.

This law can be applied to subtraction by
changing signs in such a way that all negative
signs are treated as number signs rather than
operational signs. That is, some of the ad-
dends can be negative numbers. For example,
6 - 4 - 2 can be rewritten as 6 + (-4) + (-2).
By the associative law, this is the same as

6 + [(-4) + (-2)] or [6 + (-4)] + (-2).

However, 6 - 4 - 2 isnotthesameas 6 - (4 - 2);
the terms must be expressed as addends before
applying the associative law of addition.

Associative Law of Multiplication

This law states that the product of three or
more factors is the same regardless of the
manner in which they are grouped. For ex-
ample, 6 - 3+ 2 is the same as (6 -3) + 2 or
6-(3°2)or(6*2) 3. Negative signs require
no special treatment in the application of this
law. For example, 6 - (-4) * (-2) is the same
as [6 - (-4)] - (-2) or 6 - [(-4) - (-2)].

Commutative Law of Addition

The word ''co:amute' means to change, sub-
stitute or move irom place to place. The com-
mutative law of addition states that the sum of
two or more addends is the same regardless of
the order in which they are arranged. For ex-
ample, 4 + 3+ 2 is the same as 4 +2 + 3 or
2+44+3.

This law can be applied to subtraction by
changing signs so that all negative signs be-
come number signs and all signs of operation
are positive. For example, 5 - 3 - 2 is changed
to 5 + (-3) + (-2), which is the same as 5 + (-2)
+ (-3) or (-3) +5 + (-2).

Commutative Law of Multiplication

This law states that the product of two or
more factors is the same regardless of the
order in which the factors are arranged. For
example, 3+ 4+5 is the same as 5 3 -4 or
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4 - 3 -5, Negative signs require no special
treatment in the application of this law. For
example, 2 - (-4) * (-3) is the same as (-4) -
(-3) - 2 0or (-3) - 2 - (-4).

Distributive Law

This law combines the operations of addition
and multiplication. The word "distributive" re-
fers to the distribution of a common multiplier
among the terms of an additive expression.
For example,

27

23 +4+5)=2°"3+2°-4+2"5
=6+84+ 10

To verify the distributive law, we note that
2(8 + 4 +5) is the same as 2(12) or 24. Also,
6 + 8+ 10 is 24. For application of the dis-
tributive law where negative signs appear, the
following procedure is recommended:

34 - 2) = 3[4+ (-2)]
3(4) + 3(-2)
12 - 6

6

33?»E,




CHAPTER 4
COMMON FRACTIONS

The emphasis in previous chapters of this
course has been on integers (whole numbers).
In this chapter, we turn our attention to num-
bers which are not integers. The simplest type
of number other than an integer is a COMMON
FRACTION. Common fractions and integers
together comprise a set of numbers called the
RATIONAL NUMBERS; this set is a subset of
the set of real numbers,

The number line may be used to show the
relationship between integers and fractions.
For example, if the interval between 0 and 1 is
marked off to form three equal spaces (thirds),
then each space so formed is one-third of the
total interval. If we move along the number line
from O toward 1, we will have covered two of
the three ''thirds'" when we reach the second
mark. Thus the position of the second mark
represents the number 2/3. (See fig. 4-1.)

L

]
1
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i
2, | 2
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-z },3

Figure 4-1.—Integers and fractions on the
number line.

The numerals 2 and 3 in the fraction 2/3 are
named so thatwe may distinguish between them,;
2 is the NUMERATOR and 3 is the DENOMINA-
TOR. In general, the numeral above the di-
viding line in a fraction is the numerator and
the numeral below the line is the denominator.
The numerator and denominator are the TERMS
of the fraction. The word '"numerator" is re-
lated to the word "'enumerate.'” To enumerate
means to ''tell how many''; thus the numerator
tells us how many fractional parts we have in
the indicated fraction. To denominate means to
'"give a name" or "'tell what kind"'; thus the de-
nominator tells us what kind of parts we have
(halves, thirds, fourths, ete.).

Attempts to define the word '"fraction" in
mathematics usually result in a statement gim-
ilar to the following: A fraction is an indicated

34
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division. Anydivision may be ‘ndicated by plac-
ing the dividend over the divis.- and drawing a
line between them. By this defimcion, any num-
ber which can be written as the ratio of two in-
tegers (one integer over the other) can be con-
sidered as a fraction. This leads to a further
definition: Any number which can be expressed
as the ratio of two integers is a RATIONAL
number, Notice that every integer is a rational
number, because we can write any integer as
the numerator of a fraction having 1 as its de-
nominator. For example, 5 is the same as 5/1.
It should be obvious from the definition that
every common fraction is also a rational
number,

TYPES OF FRACTIONS

Fractions are often classified as properor
improper. A proper fraction is one inwhich the
numerator is numerically smaller than the de-
nominator., An improper fraction has a nu-
merator which is larger than its denominator.

MIXED NUMBERS

When the denominator of an improper frac-
tion is divided into its numerator, a remainder
is produced along with the quotient, unless the
numerator happens to be an exact multiple of
the denominator. For example, 7/5 is equal to
1 plus a remainder of 2. This remainder may
be shown as a dividend with 5 as its divisor, as
follows:

5+2
5

(. =1+2
5 =1+3

The expression 1 + 2/5 is a MIXED NUM-
BER. Mixed numbers are usually written with-
out showing the plus sign; that is, 1+ 2/5 is
the same as l-gs-or 1 2/5. When a mixed num-
ber is written as 1 2/5, care must be taken to
insure that there is a space between the 1 and
the/ 2; otherwise, 1 2/5 might be taken to mean
12 5'
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MEASUREMENT FRACTIONS

Measurement fractions occur in problems
such as the following:

If $2 were spent for a stateroom rug at $3
per yard, how many yards were bought? If $6
had been spent we could find thenumber of yards
by simply dividing the cost per yard into the
amount spent. Since 6/3 is 2, two yards could
be bought for $6. The same reasoning applies
when $2 are spent, but in this case we can only
indicate the amount purchased as the indicated
division 2/3. Figure 4-2 shows a diagram for
both the $6 purchase and the $2 purchase.
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)
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0 Si $2 $3 54 $5 $6 $7
24 YARD PURCHASED FOR $2 AT $3 PER YARD

Figure 4-2.—Measurement fractions.
PARTITIVE FRACTIONS

The difference between measurement frac-
tions and partitive fractions is explained as
follows: Measurement fractions result when we
determine how many pieces of a given size can
be cut from a larger piece. Partitive fractions
result when we cut a number of pieces of equal
size from a larger piece and then determine the
size of each smaller piece. For example, if 4
equal lengths of pipe areto be cut from a 3-foot
pipe, what is the size of each piece? If the
problem had read that 3 equal lengths were to
be cut from a 6-foot pipe,we could find the size
of each pipe by dividing the number of equal
lengths into the overall length. Thus, since 6/3
is 2, each piece would be 2 feet long. By this
same reasoning in the example, we divide the
overall length by the number of equal parts to
get the size of the individual pieces; that is,
3/4 fcot. The partitioned 6-foot and 3-foot

pipes are shown in {igure 4-3.
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Figure 4-3.~Partitive fractions

EXPRESSING RELATIONSHIPS

When a fraction is used to express a rela-
tionship, the numerator and denominator take
on individual significance. In this frame of
reference, 3/4 means 3 out of 4, or 3 parts in
4, or the ratio of 3 to 4. For example, if 1 out
of 3 of the men in a division are on liberty, then
it would be correct to state that 1/3 of the
division are on liberty. Observe that neither of
these ways of expressing the relationship tells
us the actual number of men; the relationship
itself is the important thing.

Practice problems.

. What fraction of 1foot is 11 inches ?

. Represent 3 out of 8 as a fraction.

. Write the fractions that indicate the rela-
tionship of 2 to 3; 8 divided by 9; and 6 out of
T equal parts.

4. The number 6% means 6

N =

23

Answers:

. 11/12

3/8

2/3; 8/9; 6/1
. plus

> W =

EQUIVALENT FRACTIONS

It will be recalled that any number divided
by itself is 1. For example, 1/1, 2/2, 3/3, 4/4,
and all other numbers formed in this way, have
the value 1. Furthermore, any number multi-
plied by 1 is equivalent to the number itself.
For example, 1 times 2 is 2, 1 times 3 is 3,
1 times 1/2 is 1/2, etc.

These facts are used in changing the form
of a fraction to an equivalent form which is
more convenient for use ina particular problem.
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For example, if 1 in the form% is multiplied by

3 but

the product will still have a value of

5’ 5
will be in a different form, as follows:

2, 3_23_6

2 5 25710

Figure 4-4 shows that % of line a is equal to

T% of line b where line a equals line b. Line a
is marked off in fifths and line b is marked off
in tenths. It can readily be seen that % and 3

measure distances of equal length.

—

! 5
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0 L 2 3 4 k-3
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Figure 4-4.—Equivalent fractions.

The markings on a ruler show equivalent
fractions. The major divisionof an inch divides
it into two equal parts. One of these parts

represents % The next smaller markings divide

the inchinto four equal parts. It will be noted that
two of these parts represent the samedistanceas

%; that is, % equals %

markings break the inch into 8 equal parts. How

many of these parts are equivalent to -;-inch?

4 1

3 equals 5
Practice problems. Using the divisions on a

ruler for reference, complete the following

Also, the next smaller

The answer is found by noting that

exercise:
1_ 2 3_2
L.2=3 .7 =16
1_ 2 1_2
2.8 =16 4.7 = 16

36
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Answers:
1. 2 3. 12
2. 2 4. 4

A review of the foregoing exercise will re-
veal that in each case the right-hand fraction
could be formed by multiplying both the nu-
merator and the denominator of the left-hand
fraction by the same number. In each case the
number may be determined by dividing the de-
nominator of the right-hand fraction by the de-
nominator of the left-hand fraction. Thus in

problem 1, both terms of % were multiplied by 2.
In problem 3, both terms were multiplied by 4.

. It is seen that multiplying both terms of a frac-

30

tion by the same number does not change the
value of the fraction.

Since % equals 3, the reverse must also be

true; tliat is i

E‘
We have al-
112 3

ready seen that% is the same as 3'16 equals -,

and-g- % We see that dividing both terms
of a fraction by the same number does not

change the value of the fraction.

must be equal to This can

likewise be verified on a ruler.

equals

FUNDAMENTAL RULE OF FRACTIONS

The foregoing results are combined to form
the fundamental rule of fractions, which is
stated as follows: Multiplying or dividing both
terms of a fraction by the same number does
not change the value of the fraction. This is
one of the most important rules used in dealing
with 1ractions.

The following examples show how the funda-
mental rule is used:

1. Change 1/4 to twelfths. This problem is set
up as follows:

?

1_
4 12

The first step is to determine how many 4's
are contained in 12, The answer is 3, so we
know that the multiplier for both terms of the
fraction is 3, as follows:

Rles

3.1,
3°1
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2. What fraction with a numerator of 6 is equal
to 3/4?

SOLUTION:

We note that 6 contains 3 twice; therefore we
need to double the numerator of the right-hand
fraction to make it equivalent to the numerator

+ of the fraction we seek. We multiply both terms

of 3/4 by 2, obtaining 8 as the denominator of
the new fraction, as follows:

3. Change 6/16 to eighths.

SOLUTION: : 19. -

?

8

We note that the denominator of the fraction
which we seek is 1/2 as large as the denomina-
tor of the original fraction. Therefore the new
fraction may be formed by dividing both terms
of the original fraction by 2, as follows:

6 -2 _3

16 -+ 2~ 8

Practice problems. Supply the missing num-
ber in each of the following:

3 _ 30 2 _3 11
l.g=7 390 = 10 % =72
4 _ ? 1_6 3_2
2. 48 * 12 4.2 6.5 =35
Answers
1. 80 3. 27 5. 6
2. 11 4. 36 6. 15

REDUCTION TO LOWEST TERMS

It is frequently desirable to change a frac-
tion to an equivalent fraction with the smallest
possible terms; that is, with the smallest pos-
sible numerator and denominator. This process

is called REDUCTION. Thus, 35 reduced to

lowest terms is % Reduction can be accom-

plished by finding the largest factor that is
common to both the numerator and denominator
and dividing both of these terms by it. Dividing

both terms of the preceding example by 6 re-
duces the fraction to lowest terms. In computa-
tion, fractions should usually be reduced to
lowest terms where possible.

If the greatest common factor cannot readily
be found, any common factor may be removed
and the process repeated until the fraction is in

18 could first be divided

lowest terms: Thus, 48
by 2 and then by 3.
18 =+ 2 _ 9
48 + 2 ~ 24
9 +3 3
24 +3 8 .

Practice problems. Reduce the following
fractions to lowest terms:

18 15 35
1. 48 2‘ 20 3. 56

12 18 9
4. 60 5. 34 6. 143

Answers:

3 3 3
1. 8 2. a 3. 8

1 3 1
4, 5 5. 4 6. 16

IMPROPER FRACTIONS

Although the "improper' fraction is really
quite '"proper'’” mathematically, it is usually
customary to change it toa mixed number. A

recipe may call for 1-% cups of milk, but would

not call for % cups of milk.

Since a fraction is an indicated division, a
method is already kiown for reduction of im-
proper fractions to mixed numbers, The im-

proper fraction % may be considered as the di-

vision of 8. by 3. This division is carried out
as follows:
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The truth of this can be verified another way:
If 1 equals %’ then 2 equals % Thus,

ol

- 2 _6 2 _
=2+3=3+3°

el

These examples lead to the following con-
clusion, which is stated as a rule: To change
an improper fraction to a mixed number, divide
the numerator by the denominator and write the
fractional part of the quotient in lowest terms.

Practice problems. Change the following
fractions to mixed numbers:

1. 31/20 3. 65/20

2. 33/9 4, 45/8
Answers:

1. 135 3. 3}

2. 3% 4, 5-2-

OPERATING WITH MIXED NUMBERS

In computation, mixed numbers are often un-
wieldy. As it is possible to change any im-
proper fraction to a mixed number, it is like-
wise possible to change any mixed number to an
improper fraction. The problem can be reduced
to the finding of an equivalent fraction and a
simple addition.

EXAMPLE: Change 2% to an improper fraction.
SOLUTION:

Step 1: Write 2—;- as a whole number plus a
fraction, 2 + %

Step 2: Change 2 to an equivalent fraction
with a denominator of 5, as follows:

2_2

15
2(5) _ 10
155;"'5'

Step 3: Add 5 tg=F

11U
Thus, 23 =5
EXAMPLE: Write 5% a8 an improper fraction.
SOLUTION: 52 = 5 4 2
. 9 E)
5_2
19
5(9) _ 45
1(9) ~ 9
45 2 _ 47
*9°9
2 _ 41
Thus, 5§ =3

In each of these examples, notice that the
multiplier used in step 2 is the same number as
the denominator of the fractional part of the
original mixed number. This leads to the fol -
lowing conclusion, which is stated as a rule:
To change a mixed number to an improper frac-
tion, multiply the whole-number part by the
denominator of the fractional partand add the
numerator to this product. The result is the
numerator of the improper fraction; its denom-
inator is the same as the denominator of the
fractional part of the original mixed number.

Practice problems. Change the following
mixed numbers to improper fractions:

1.1} 3. 3

2. 253 4. 43
Answers:

1.3 3. &

m%% m%%

NEGATIVE FRACTIONS

A fraction preceded bya minus sign is nega-
tive. Any negative fraction s equivalent to 2
positive fraction multiplied by -1. For example,
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-y

The number - % is read "minus two-fifths."

We know that the quotient of two numbers
with unlike signs is negative. Therefore,

2 2 2 2

= e=and = = -£

5 5 -5~ 5

This indicates that a negative fraction is equiv-
alent to a fraction with either a negative nu-
merator or a negative denominator.

The fraction _—25- is read '"two over minus

five."" The f{raction % is read "minus two

over five."

A minus sign in a fraction can be moved
about at will. It can be placed before the nu-
merator, before the denominator, or before the
fraction itself. Thus,

2_ 2 _ 2
5 <5 5

Moving the minus sign from numerator to
denominator, or vice versa, is equivalent to
multiplying the terms of the fraction by -1.
This is shown in the following examples:

2(-1) 2 2(-1) -2
5-1) - 5 M FC1) T S

A fraction may be regarded as having three
signs associated with it—the sign of the numer-
ator, the sign of the denominator, and the sign
preceding the fraction. Any two of these signs
may be changed without changing the value of
the fraction. Thus,

3 _-3_3__-3

—
- e 2 emme I emas T

4 4 -4 -4
OPERATIONS WITH FRACTIONS

It will be recalled from the discussion of
denominate numbers that numbers must be of
the same denominationto be added. We can add
pounds to pounds, pints to pints, but not ounces
to pints. If we think of fractions loosely as de-
nominate numbers, it will be seen that the rule
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of likeness applies also to fractions. We can
add eighths to eighths, fourths to fourths, but

not eighths to fourths. To add—;- inch to % inch

we simply add the numerators and retain the
denominator unchanged. The denomination is
fifths; as with denominate numbers, we add 1

fifth to 2 fifths to get 3 fifths, or g—

LIKE AND UNLIKE FRACTIONS

We have shown that iike fractions are added
by simply adding the numerators and keeping the
denominator. Thus,

or

Similarly we can subtract like fractions by
subtracting the numerators.

-— e————
—— g, = e

The following examples will show that like
fractions may be divided by dividing the nu-
merator of the dividend by the numerator of
the divisor.

3 .1,

g 8"’
SOLUTION: We may state the problem as a
question: '""How many times does % appear in _11,

or how many times may % he taken from -g-?"

3/8 - 1/8 = 2/8 (1)
2/8 - 1/8 = 1/8 (2)
1/8 - 1/8 = 0/8 = 0 (3)
7

We see that 1/8 can be subtracted from 3/8
three times. Therefore,

3/8 + 1/8 =3
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When the denominators of fractions are un-
equal, the fractions are said to be unlike. Ad-
dition, subtraction, or division cannot be per-
formed directly on unlike fractions. The
proper application of the fundamental rule,
however, can change their form so that they
become like fractions; then all the rules for
like fractions apply.

LOWEST COMMON DENOMINATOR

To change unlike fractions to like iractions,
it is necessary to find a COMMON DENOMINA-
TOR and it is usually advantageous to find the
LOWEST COMMON DENOMINATOR (L.CD).
This is nothing more than the least common
multiple of the denominators.

Least Common Multiple

K a number is a multiple of iwo or more
different numbers, it is called a COMMON
MULTIPLE. Thus, 24 is a common multiple of
6 and 2. There are many common multiples of
these numbers. The numbers 36, 48, and 54, to
name a few, are also common multiples of 6
and 2,

The smallest of the common multiples of a
set of numbers is called the LEAST COMMON
MULTIPLE. It is abbreviated LCM. The least
common multiple of 6 and 2 is 6. To find the
least common multiple of a set of numbers,
first separate each of the numbers into prime
factors.

Suppose that we wish to find the LCM of 14,

24, and 30. Separating these numbers into
prime factors we have

14=2 .7

24 =23.3

30=2-°3°5

The LCM will contain each of the various prime
factors shown. Each prime factor is used the
greatest number of times that it occurs in any
one of the numbers. Notice that 3, 5, and 7 each
occur only once in any one number. On the
other hand, 2 occurs three times in one number.
We get the following result:

23.3:5-.7
840

LCM

Thus, 840 is the least common multiple of 14,
24, and 30.
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Greatest Common Divisor

The largest number that can be divided into
each of two or more given numbers without a
remainder is called the GREATEST COMMON
DIVISOR of the givennumbers. It isabbreviated
GCD. 1t is also sometimes called the HIGHEST
COMMON FACTOR.

In finding the GCD of a set of numbers, se-
parate the numbers into prime factors just as
for LCM. The GCD is the product of only those
factorsthat appear in all of the numbers. Notice
in the example of the previous section that 2 is
the greatest common divisor of 14, 24, and 30.

Find the GCD of 650,900, and 700. The pro-
cedure is as follows:

650 = 2 - 52 - 13

900---22-3"’-52
700 = 2%.5%2 .9
GCD =2 5% =50

Notice that 2 and 52 are factors of each num-
ber. The greatest commondivisor is2 x 25 = 50.

USING THE LCD

Consider the example

1.1
2 %3

The numbers 2 and 3 are both priine; 8o the
LCD is 6.

1_3
Therefore 2%
and -1'- = -g
3 6
Thus, the addition of % and % is performed as
follows:
1.,1_3.2_5
2 3 6 6 6
In the example
1,3
57 10
10 is the LCD.



Chapter 4—COMMON FRACTIONS

Thereiore, 1 3 2 3
5*10°10 " 10

R T |

10 2

Practice problems. Change the fractions in
each of the following groups to like fractions
with least common denominators:

11 11 2
.3 % 3.3 3
5 2 1 31
2. 19073 4.6 105
Answers:
2 1 6 3 8
. %% 3. i3 12’ 12
5 8 5 9
2. 130 12 4. 30 30’ 30
ADDITION

It has been shown that in adding like frac-
tions we add the numerators. In adding unlike
fractions, the fractions must first be changed so
that they have commondenominators. We apply
these same rules in adding mixed numbers. It
will be remembered that a mixed number is an
indicated sum. Thus, 2 %—is really 2 +%. Add-
ing can be done in any order. The following
examples will show the application of these
rules:

EXAMPLE:

()
R

w

3]
wjeo

This could have been written as follows:

. |
2+'§

1
3+'§

2 _ 2
5+§-53

35

41

EXAMPLE:

4

~3|e2 =3

6

10

«3 [0

Here we change—g to the mixed number 1%. Then

1o%=10+1+l

17
1
=11 7
EXAMPLE:
1
Add 3
2
273

We first change the fractions so that they are
like and have the least common denominator
and then proceed as before.

1_3
3 - 12
2 _o 8
23=21;
11
2 12
EXAMPLE:
Add
45 -45
8 8
1.04
2323
1_2
2~ 3
11
65

Since 1—81 equals 1-3—, the final answer is found
as follows:
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11 _ 3
6_8—-6+1+F
3
78

Practice problems.
sums to simplest terms:

Add, and reduce the

113 2 3 .62 4 3 5.4
Answers:
1.3.2_3. 2.2% 3.9%3 4.243_3_ 5.5.2.

The following example demonstrates a prac-
tical application of addition of fractions:

EXAMPLE: Find the total length of the piece
of metal shown in figure 4-5 (A).

SOLUTION: First indicate the sum ag follows:

3
3

3

3+2
3

16 ?

9 7
Ttatgrat

Changing tolike fractions and adding numerators,

9 .12 14 12 9 _56
6 16Y16+ 16+ 16" 16
.3 8
=318
=3l
=3 5
The total length is 3 1 inches.

2

Practice problem. Find the distance from
the center of the first hole to the center of the
last hole in the metal plate shown in figure
4-5 (B).

. 7
Answer; 2 i6 inches

SUBTRACTION

The rule of likeness applies in the sub-
traction of fractions as well as in addition.
Some examples will show that cases likely to
arise may be solved by use of ideas previously
developed.

{A)

Ly

&

(8)

7/

lll
4

X

[ s -2%_.

4

Figure 4-5.—Adding fractions to obtain
total length or spacing.

EXAMPLE: Subtract l%from 5%

el

WIHH

4

O =t

We see that whole numbers are subtracted from
whole numbers; fractions from fractions.

4

EXAMPLE: Subtract 1 from :

8

,mp—n m[ub

Changing to like fractions with an LCD, we have
32

&3 | &l 3|
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EXAMPLE: Subtract J:

——

2
15 from 3 3

oo

et | gt
D] -

Regrouping 3 f% we have

2+1+-§

12

Then

3
2%

Practice problems. Subtract the lower num-
ber from the upper number and reduce the
difference to simplest terms:

1 2 2 3
1.9 2.3 3.512 4, 5 5.28
1 1 7 2 5
5 3 *m ‘'3 F
Answers
11 1 k) 1 3
1.18 2.3 3.26 4.23 5.14

The following problem demonstrates sub-
traction of fractions in a practical situation.

EXAMPLE: What is the length of the dimen-
sion marked X on the machine bolt shown in
figure 4-6 (A)?

SOLUTION: Total the lengths of the known
parts.

16

64

1
64

2ls

+ +

a:lw
BN

Subtract this sum from the overall length.
317

43

-1 84

2 =1 64

49 _ 49

64 64

15

1 64

The answer is 1 15 inch.

64

(A)

=

fa
i

\if‘;h!

~N »

8
= |

13/" -5 i
R —

Figure 4-6.—Finding unknown dimensions
by subtracting fractions.

Y

Lw
2

Practice problem. Find the length of the
dimension marked Y on the machine bolt in
figure 4-6 (B).

MULTIPLICATION

Thefact that multiplicationby a fractiondoes
not increase the value of the product may con-
fuse those who remember the definition of mul-
tiplicationpresented earlier for whole numbers.
It was stated that 4(5) means 5 is taken as an

addend 4 times. How is it then that%(‘l) is 2, a
number less than 4?7 Obviously our idea of

" multiplication must be broadened.

Consider the following products:

4(4) = 16
3(4) = 12
2(4) = 8
1(4) = 4
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1
5(4) 2
1
r

Notice that as the multiplier decreases, the
product decreases, until, when the mul:iplier
is a fraction, the product is less than 4 and
continues to decrease as the fractiondecreases.
The fraction intrcduces the '"part of" idea:
51(4) means%of 4; l(4) means % of 4.

The definition of multiplication stated for
whole numbers may be extendedto include frac-
tions. Since 4(5) means that 5 is to be used 4
times as an addend, we can say that with frac-
tions the numerator of the multiplier tells how
many times the numerator of the multiplicand
is to be used as an addend. By the same rea-
soning, the denominator of the multiplier tells
how many times the denominator of the mul-
tiplicand is to be used as an addend. The fol-
lowing examples illustrate the use of this idea:

1. The fraction -112-15 multiplied by the whole
number 4 as follows;

1 _4.1
tx3=1%1s
=1+1+14+1
12
-4 _1
1273
This example shows that 4 (1/12) is the same as
4(1)
12°

Another way of thinking aboutthe multiplica-
tion of 1/12 by 4 is as follows:

1,11

1_ — ol
RS TR AR TRETRRT

12

tol-
0o

to e
€O |

2. The fraction 2/3 is multiplied by 1/2 as
follows:

1,2
2*3

Wi~ o

From these examples a general rule is
developec: To find the product of two or more
fractions multiply their numerators together
and write the result as the numerator of the
nroduct; multiply their denominators and write
the result as the denominator of the product;
reduce the answer to lowest terms.

In using this rule with whole numbers, write
each whole number as afraction with 1 as the
denominator. For example, multiply 4 times
1/12 as follows:

1_4_1
tx3=7%1s
_4_1
=12 %3

In using this rule with mixed numbers, re-
write all mixed numbers as improper frac-
tions before applying the rule, as foliows:

21x—21-

1 1
3 2

7
3 X
I

6

A second method of multiplying mixed num-
bers makes use of the distributive law. This
law states that a multiplier applied to a two-part
expression is distributed over both parts. For

example, to multiply 6-:;1’- by 4 we may rewrite

6 % as 6 + 1/3. Then the problem can be written
as 4(6 + 1/3) and the multiplication proceeds as
follows:

24 + 4/3
25 + 1/3

=251
=253

4(6 + 1/3)

Cancellation

Computation can be considerably reduced by
dividing out (CANCELLING) factors common to
both the numerator and the denominator. We
recognize a fraction as an indicated division.

Thinking of -g-as an indicated division, we re-

member that we can simplify division by show-
ing both dividend and divisor as the indicated

38
44
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products of their factors and then dividing like
factors, or canceling. Thus,

6_2x3

9 Ix3

Dividing the factor 3 in the numerator by 3 in
the denominator gives the following simplified
result:

DN
]
p—t

=2
3 x 3

(ST -1

This method is most advantageous when done
before any other computation. Consider the

example,
1,3,2
3*¥3%%
The product in factored form is
1x 3 x2
3x2x5

Rather than doing the multiplying and then
reducing the result 566, it is simpler to cancel

like factors first, as follows:

1 1

1x3x2_1
xZx5 9

1 1

Likewise,

1

1 5
5.5
%xlxs 9

1 2

1

Here we mentally factor 6 to the form 3 x 2,
and 4 to the form 2 x 2. Cancellation is a
valuable tool in shortening operations with
fractions.

The general rule may be applied to mixed
numbers by simply changing them to improper
fractions.

Thus,

a5

B A

39

1 q.1._

24}{33 ?

g 5
9,10 _ l}:.li
s X3 4% )

2 1
= nl
72

Practice problems. Determine the following
products, using the general rule and canceling
where possible:

5 4 1.2

1.8x12 3.5x9 5.3x3

1.1.2 3 4.1

2.‘§X-§X-5- 4.41{6 6.31(6
Answers:

1 2 2

1- 7—2‘ 3.29 50-9‘

1 1 2

2. is 4.42 6.9

The following problem illustrates the mul-
tiplication of fractions in a practical situatiox.

EXAMPLE: Find the distance between the cen-
ter lines of the first and fifth rivets connecting
the two metal plates shown in figure 4-7 (A).

SOLUTION: The distance between two adjacent
rivets, centerline to centerline, is 4 1/2 times
the diameter «f one of them.

Thus,

1 space = 4-;—:;%
=9,3
=2%%
_ 45

16

There are 4 such spaces between the first and
fifth rivets. Therefore, the total distance, D,
is found as follows:

45

45 .. 1
=3 = 113
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(A)

[+—RIVET SPACING =44 DIAMETERS

L

e

N\

N —

N

de
Y

{ .
k‘ i
5 :DIAMETER

— &

(8)

?

: —j 7s =DIAMETER
H—RI"" . SPACING =

JAMETERS

Figure 4-7,—Application of multiplication of fractions
in determining rivet spacing.

The distance is 11 %—mches .

Practice problem. Find the distance between
the centers of the two rivets shown in figure
4‘7 (B)o

Answer: 4 % inches

DIVISION

There are two methods commonly used for
performing division with fractions. One is the
common denominator method and the other is
the reciprocal method.

Common Denominator Method

The common denominator method is an adap-
tation of the method of like fractions. The rule
is as follows: Change the dividend and divisor
to like fractions and divide the numerator of
the dividend by the numerator of the divisor.
This meihod can be demonstrated with whole
numbers, first clianging them to fractions with
1 as the denominator. For example, 12 + 4 can
be written as follows:

12 + 4

-t -t
'-‘lto "‘lN

K}

LR

4
—a

40

12+ 4
=71

=3

If the dividend and divisor are both fractions,
as in 1/3 divided by 1/4, we proceed as follows:

1.1_4 .3

3 4 12 12
_ 4 -+ 3
T 12 + 12
4 + 3
==
=4 :9-11
=4 + 3 13

Reciprocal Method

The word 'reciprocal'" denotes an inter-
changeable relationship. It 18 used in mathe-
matics to describe a specific relationship be-
tween two numbers. We say that two numbers
are reciprocals of each other if their produc4t

is one. In the example 4 x-31-= 1, the fractions 1

andlare reciprocals. Notice the interchange-

4
i’y s 4 18 the reciprocal of %and;}is the re-

¢ _rocal of 4,

46"
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What ig the reciprocal of %? It must be a

number which, when multiplied by %, produces
the product, 1. Therefore,

~J
n
p—t

X

— ag|od = 3w
o

523
]
[y

We see that %is the only number that could ful-

fill the requirement. Notice that the numerator
and denominator of% were simply interchanged
to get its reciprocal. K we know a number, we
can always find its reciprocal by dividing 1 by
the number. Notice this principle in the follow-

ing examples:

1. What is the reciprocal of 77
.=l
1+ 7= 7
Check:
.
171!

Notice that the cancellation process in this ex-
ample does not show the usual 1's which result
when dividing a number into itself. For ex-
ample, when 7 cancels 7,the quotient 1 could be
shown beside each of the 7's, However, since 1
as a factor has the same effect whether it is
written in or simply understood, the 1's need
not be written.

2. What is the reciprocal oi%

.3_8.3
1-9=3"3
=8+3,or-g-
Check:
%x-g-=1.

3. What is the reciprocal of%?

4 . ;i—.&—'-—s-
SOLUTION: 1= 59 %73
= 2 —‘.-5

22

5

Check: -%x%= 1

4. What is the reciprocal of 3 %?

. - l—.a_ -‘-gi
SOLUTION: 1= 38- s 8
=8 +25

_8

- 25

Check: -z-gxz%=

The foregoing examples lead to the rule for
finding the reciprocal of any number: The re-
ciprocal of a number is the fraction formed
when 1 is divided by the number. (X the final
result is a whole number, it can be considered
as a fraction whose denominator is 1.) A short-
cut rule which is pureiy mechanical and does
not involve reasoning niay be stated as follows:
To find the reciprocal of a number, express
the number as a fraction and then invert the
fraction.

When the numerator of afraction is 1, the
reciprocal is a whole number. The smaliler the
fraction, the greater is the reciprocal. For ex-
ample, the reciprocal of 17000 0})0 is 1,000.

’
Also, the reciprocal of any whole number is a
proper fraction. Thus the reciprocal of 50 1s
1 ,
50°

Practice problems. Write the reciprocal of
each of the following numbers:

. 1 1 3 5
1. 4 2.3 3.22 4, 17 5.2 6.1
Answers:
1
1. 2 2. 3
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The reciprocal method of division makes use
of the close association of multiplication and
division. In any division problem, we must find
the answer to the following question: What
number multiplied by the divisor yields the
dividend? For example, if the problem is to
divide 24 by 6, we must find the factor which,
when multiplied by 6, yields 24. Experience
tells us that the number we seek is 1/6 of 24.
Thus, we may rewrite the problem as follows:

294 + 6 = Lx 24

=4

Check: 6 x4=24
1.
2
1%. The number we seek must be one-third of
1

2 Thus we can do the division by taking one-

third of 1 %; that is, we multiply 1% by the re-

ciprocal of 3.

In the example 1 3, we could write3x ? =

[y
DO [
o4
(7]

]

[ X
"
(][

X

ol

Mol M= e -

Check:

(7]
»”
(]
]

1l
[y
DO

The rule for division by the reciprocal
method is: Multiply the dividend by the recipro-
cal of the divisor. This is sometimes stated in
short form as follows: Invert the divisor and
multiply.

The following examples of cases that arise
in division with fractions will be solved by both
the reciprocal method and the common denom-
inator method. The common denominator
method more clearly shows the division proc-
ess and i8 easier for the beginner to grasp.
The reciprocal method is more obscure 2s to
the reason for its use but has the advantage of

42

48

speed and the possibility of cancellation of like
factors, which simplifies the computation. It
is the suggested method once the principles be-
come familiar.

EXAMPLE: +4 =7

S,11.C)

Common Denominator Reciprocal Method

Method
_2.:. --:‘:’.%-2.9 l% _2 -1—
5 74 55 57 4=5%3
=2 +20 - _Zx1
5x2
2
-2 _ 1
20 - 10
_ 1
10
EXAMPLE: z% +8= 9
Common Denominator
Method Reciprocal Method
.2.-:— =—8-+-9- 2—‘3‘ =-8- '1'-
24 +3 3% 23 3 3 X3
=8+ 9 _Bxl
" 3x3
_8
9 -8
=9
EXAMPLE: 9+-§-=?

Common Denominator Reciprocal Method

Method
. 2_.63 _ 2 2 _ 1
S+9=7*7 9 +q=9xy
=63 + 2 _9x 1
1x2
=63 _ .71
"2t =8 .31
3 =g =313
EXAMPLE 10-55=2?
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Common Denominator fractions, the resulting expression is called
Reciprocal Method ) g €exp 1
Method P a complex fraction. The following expression
is a complex fraction:

10+5%=4°+3§ 10 +53 = 10 x =

4 4 4 23 3/5
- 3/4
= 40 + 23 - 10 x 4
1x 23 This should be read ''three-fifths over three-
40 _, 17 fourths' or '"tkree-fifths divided by three-
2 3 -40 _, 17 fourths." Any complex fraction may be sim-
23 3 plified by writing it as a division problem, as
) follows:
2
: Seg=7
EXAMPLE 31 /5 3.3
3745 " 4
Common Denominator
Method Reciprocal Method - % . %
2.,1_8 38 2,1_2.4
37ET-12 T12 3°3°3%1 = 4/5
=8+ 3 8 2 Simila.rly,
= e—= 2—
3 3
8 _ o2 gl 2
=-3-=2-é- .._.3..=.1_0.:.§.=1gx2=_4.-_-1—1.
o1 3 2 37F 3 3
2
EXAMPLE: 3 - 2 =
Complex fractions may also contain an in-
: dicated operation in the numerator or denom-
Common Denominator Reciprocal Method inator or both. Thus,
Method
9 .3 _45 24 9 .3_9_10 1.1
16 © 10 80 " 80 16 10 16 * 3 2 %3
=45 + 24 3 5 3,1
i W 5 "5
=45 _15 18X 4
2 8 8 is a complex fraction. To simplify such a
fraction we simplify the numerator and denom-
= 1_'87_ = L85. =1 _g_ inator and proceed as follows:
1,1 3,2 5
Practice problems. Perform the following 2 "3 _6 6_6
division by the reciprocal method: 9,1 T10 2
5 5 5
3.2 1.1 5.5 1.4 _5 .2
1'--8'3 2.23-12 3'8'16 4‘3'6 =% °1
Answers: 5 1
= = X -
1. 2 2.1 3. 2 4. 1 62
* 16 9 * 2 5
COMPLEX FRACTIONS S 12
When the numerator or denominator, or both, Mixed numbers appearing in complex fractions
in a fraction are themselves composed of usually show the plus sign.
43
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Thus,
2 .41
4 5 7 3
might be written
2
4 + 5
1
T+ -§

Practice problems.
complex fractions:

Simplify the following

91 2 1 1
1_1_ g 2 3 33 . 473
'3 3 "2 1.1
8 5 16 32
Answers:
8 3 19 2
1. 3 2. 6 3.1 36 4. 18 3

Complex fractions may arise in electronics
when it is necessary to find the total resistance
of several resis’ances in parallel as shown in
figure 4-8. The rule is: The total resistance
of a parallel circuit is 1 divided by the sum of
the reciprocals of the separate resistances.
Written as a formula, this produces the follow-
ing expression:

- 1

Re= 11,
R, R, R,
EXAMPLE: Find the total resistance of the
parallel circuit in figure 4-8 (A). Substituting
the values 3, 4, and 6 for the letters R,, R,,

and R,, we have the following:

44

W .L R% R2< R3
= 35 4a en?

B —

(® .L R% R2S R3
= g a0 bo

Figure 4-8.—Application of complex fractions
in calculating electrical resistance.

_ 1
Bes1 1,1
3 4 6
The LCD of the fractions %, %, and% is 12,
Thus,
_ 1
R=3 .3 .2
12 12 12
21
-9
i2
=12 _4
9 3
=11 ohms (measure of resistance).

3

Practice problem: Find the total resistance
of the parallel circuit in figure 4-8 (B).

Answer: 1 %ohms.




CHAPTER 5
DECIMALS

The originand meaning of the word "'decimal"’
were discussedin chapter 1 of this course. Also
discussed in chapter 1 werethe concept of place
value and the use of the number ten as the base
for our number system. Another term which is
frequently used to denote the base of 2 number
system is R..DIX. For example, two is the
radix of the binary system and ten is the radix
of the decimal system. The radix of a number
system is always equal to the number of differ-
ent digits used in the system. For example, the
decimal system, with radix ten, has ten digits:
0 through 9.

DECIMAL FRACTIONS

A decimal fraction is a fraction whose de-
nominator is 10 or some power of 10, such as
100, 1,000, or 10,000. Thus, -1, 22, and 232
are decimal fractions. Decimal fractions have
special characteristics that make computation
much simpler than with other fractions.

Decimal fractions complete cur decimal
system of numbers. In the study of whole num-
bers, we found that we could proceed to the left
from the units place, tens, hundreds, thousands,
and on indefinitely to any larger place value,
but the development stopped with the units place.
Decimal fractinns complete the development so
that we can proceed to the right of the units
place to any smaller number indefinitely.

Figure 5-1 (A) shows how decimal fractions
complete the system. It should be noted that as
we proceed from left to right, the value of each
place is one-tenth the value of the precedinc
place, and that the system continues uninter-
rupted with the decimal fractions.

Figure 5-1 (B) shows the system again, this
time using numbers. Notice in (A) and (B) that
the units place is the center of the system and
that the place values proceed to the right or
left of it by powers of ten. Ten on the left is
balanced by tenths on the right, hundreds by
hundredths, thousands by thousandths, etc.

Notice that 1/10 is one place to the right of
the units digit, 1/100 is two places to the right,

45

ol

etc. (See fig. 5-1.) K a marker is placed after
the units digit, we can decide whether a decimal
digit is in the tenths, hundredths, or thousandths
position by counting places to the right of the
marker. In some European countries, the
marker is a comma; but in the English-speaking
countries, the marker is the DECIMAL POINT.

Thus, ig is written 0.3. To write ﬁ% it is
necessary to show that 3 is in the second place
to the right of the decimal point, soa zero is

inserted in the first place. Thus, T(_)% is written

0.03. Similarly, 1%)7) can be written by insert-

ing zeros in the Iirst two places to the right of
the decimal point. Thus, —--—1300 is written 0.003.
In the number 0.3, we say that 3 is in the first
decimal place; in 0.03, 3 is in the second deci-
mal place; and in 0.003, 3 is in the third deci-
mal place. Quietfrequently decimal fractions
are simply called decimals when written in this
shortened form.

WRITING DECIMALS

Any decimal fraction may be written in the
shortened formbya simple mechanical process.
Simply begin at the right-hand digit of the nu-
merator and count off to the left as many places
as there are zeros in the denominatcr. Place
the decimal point to the left of the last digit
counted. The denominator may then be dis-
regarded. If there are not enough digits, as
many place-holding zeros as are necessary are
added to the left of the left-hand digit in the
numerator.

23

Thus, in 10000’ beginning with the digit 3,

we count off four places to the left, adding two
0's as we count, and place the decimal point to
the extreme left. (See fig. 5-2.) Either form
is read "twenty-three ten-thousandths.'

When a decimal fraction is written in the
shortened form, there will always be as many
decimal places in the shortened form as thers
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PLACE HOLDING
ZERDS ADDED

Figure 5-2.—Conversion
of a decimal fraction
to shortened form.

are zeros in the denominator of the fractional
form.
. 24358
Figure 5-3 shows the fraction 100000
what is meant when it is changed to the short-
ened form. This figure is presented to show
further that each digit of a decimal fraction
holds a certain position in the digit sequence
and has a particular value.

By the fundamental rule of fractions, it

5 _50 _ 500 c4s

should be clear that 10 = 100 - 1000° Writing
the same values in the shortened way, we have
0.5 = 0.50 = 0.500. In other words, the value of
a decimal is not changed by annexing zeros at
the right-hand end of the number. This is not

and

Y

46

f TENTHS OR .54
HUNDREDTHS OR.
24358 ALS0 MEANS 3 THOUSANDTHS oR Q03

100000 THESUM OF 18 ¢ rHOUSANDTHS 0005
8 HUNDRED-THOUSANDTHS on 00005

.24358

Figure 5-3.—Steps in the conversion of a
decimal fraction to shortened form.

true of whole numbers. Thus, 0.3, 0.30, an
0.300 are equal but 3, 3v, and 300 are not equal
Also notice that zeros dlrectly after the deci-
mal point do change values. Thus 0.3 is not
equal to either 0.03 or 0.003.

Decimals such as 0.125 are frequently seen
Although the 0 on the left of the decimal poin’
is not required, it is often helpful. This is par-
ticularly true in an expression such as 32 +0.1
In this expression, the lower dot of the divisio
symbol must not be crowded against the decima.
point; the 0 serves as an effective spacer. I
any doubt exists concerning the clarity of an
expression such as .125, it should be written as
0.125.
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Practice problems. In problems 1 through 4,
change the fractions to decimals. In problems
5 through 8, write the given numbers as deci-
mals:

1. 8/100 5. Four hundredths
2. 5/1000 6. Four thousandths
3. 43/1000 7. Five hundred one ten-
4, 32/10000 thousandths
8. Ninety-seven thousandths
Answers:
1. 0.08 5. 0.04
2. 0.005 6. 0.004
3. 0.043 7. 0.0501
4. 0.0032 8. 0.097

READING DECIMALS

To read a decimal fraction in full, we read
both its numerator and denominator, as in read-
ing common fractions. To read 0.305, we read
"three hundred five thousandths.'" The denomi-
nator is always 1 with as many zeros as deci-
mal places. Thus the denominator for 0.14 is
1 with two zeros, or 100. For 0.0063 it is 1,000;
for 0.101 it is 1,000; and for 0.3 it is 10. The
denominator may also be determined by count-
ing off place values of the decimal. For 0.13
we may think "tenths, hundredths'and the frac-
tion is in hundredths. In the example 0.1276 we
may think 'tenths, hundredths, thousandths,
ten-thousandths.” We see that the denominator
is 10,000 and we read the fraction ''one thou-
sand two hundred seventy-six ten-thousandths."

A whole number with a fraction in the form
of a decimal is called a MIXED DECIMAL.
Mixed decimals are read in the same manner
as mixed numbers. We read the whole number
in the usual way followed by the word ''and" and
then read the decimal. Thus, 160.32 is read
"one hundred sixty and thirty-two hundredths."
The word '"and" in this case, as with mixed
numbers, means plus. The number 3.2 means
three plus two tenths.

It is also possible to have a complex deci-
mal. A COMPLEX DECIMAL contains a com-
mon fraction. The number 0.3% is a complex
decimalandis read "three andone-third tenths."
The number 0.87% means 87—%— hundredths. The
common fraction in each case forms a part of
the last or right-hand place.
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In actual practice when numbers are called
out for recording, the above procedure is not
used. Instead, the digits are merely called out
in order with the proper placing of the decimal
point. For example, the number 216.003 is
read, "two one six point zero zero three." The
number 0.05 is read, 'zero point zero five."

EQUIVALENT DECIMALS

Decimal fractions may be changed to equiv-
alent fractions of higher or lower terms, as is
the case with common fractions. I« each deci-
mal fraction is rewritten in its cr.amon frac-
tion form, changing to higher terms is accom-
plished by multiplying both numerator and
denominator by 10, or 100, or some higher
power of 10. For example, if we desire to

5

change T to hundredths, we may do so by mul-

tiplying both numerator and denominator by 10.
Thus,

5 .50

—

10 ~ 100

In the decimal form, the same thing may be ac-
complished by simply annexing a zero. Thus,

0.5 = 0.50

Annexing a 0 on a decimal has the same ef-
fect as multiplying the common fraction form
of the decimal by 10/10. This is an application
of the fundamental rule of fractions. Annexing
two 0's has the same effect as inultiplying the
commonfraction form of thedecimal by 100/1C0;
annexing threc 0's has the same effect as mul-
tiplying by 1000/1000; etc.

REDUCTION TO LOWER TERMS

Reducing to lower terms is known as ROUND-
OFF, or simply ROUNDING, when dealing with
decimal fractions. If it is desired to reduce
6.3000 to lower terms, we may simply drop as
many end zeros as necessary since this is
equivalent to dividing both terms of the fraction
by some power of ten. Thus, we see that 6.3000
is the same as 6.300, 6.30, or 6.3.

It is frequently necessary to reduce a num-
ber such as 6.427 to some lesser degree of
precision. For example, suppose that 6.427 is
to be rounded to the nearest hundredth. The
questionto be decicled 1s whether 6.427 is closer
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to 6.42 or 6.43. The best way to decide this
question is to compare the fractions 420/1000,
427/1000, and 430/1000. @t is obvious that
427/1000 is closer to 430/1000, and 430/1000
is equivalent to 43/100; therefore we say that
6.427, correct to the nearest hundredth, is 6.43.

A mechanical rule for rounding off can be
developed from the foregoing analysis. Since
the digit in the tenths place is not affected when
we round 6.427 to hundredths, we may limit our
attention to the digits in the hundredths and
thousandths places. Thus the decision reduces
to the question whether 27 is closer to 20 or 30.
Noting that 25 is halfway between 20 and 30, it
is clear that anything greater than 25 is closer
to 30 than it is to 20.

In any number between 20 and 30, if the digit
in the thousandths place is greater than 5, then
the number formed by the hundredths and thou-
sandths digits is greater than 25. Thus we
would round the 27 in our original problem to
30, as far as the hundredths and thousandths
digits are concerned. This result could be sum-
marized as follows: When rounding to hun-
dredths, if the digit in the thousandths place is
greater than 5, increase the digit in the hun-
dredths place by 1 and drop the digit in the
thousandths place.

The digit in the thousandths place may be
any one of the ten digits, 0 through 9. If these
ten digits are split into two groups, one com-
posed of the five smaller digits (0 through 4)
andthe other compogedof the five larger digits,
then 5 is counted as one of the larger digits.
Therefore, the general rule for rounding off is
stated as follows: K the digit in the decimal
place to be eliminated is 5 or greater, increase
the digit in the next decimal place to the left
by 1. I the digit to be eliminated is less than 5,
leave the retained digits unchanged.

The following examples illustrate the rule
for rounding off:

1. 0.1414 rounded to thousandths is 0.141.

2. 3.147 rounded to tenths is 3.1.

3. 475 rounded to the nearest hundred is 500.

Observe carefully that the answer to exam-
ple 2 is not 3.2. Some trainees make the error
of treating the rounding process as a kind of
chain reaction, in which one first rounds 3.147
to 3.15 and then rounds 3.15 to 3.2. The error
of this method is apparent when we note that
147/1000 is closer to 100/1000 than it is to
200/1000.

Problems of the following type are some-
times confusing: Reduce 2.998 to the nearest
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hundredith. To drop the end figure we must in-
crease the next figure by 1. The final result is
3.00. We retain the zeros to show that the an-
swer is carried to the nearest hundredth.
Practice problems. Round off as indicated:

1. 0.5862 to hundredths
2. 0.345 to tenths

3. 2346 to hundreds

4. 3.999 to hundredths

Answers:
1. 0.59 3. 2300
2. 0.3 4. 4.00

CHANGING DECIMALS
TO COMMON FRACTIONS

Any decimal may be reduced to a common
fraction. To do this we simply write out the
numerator and denominator in full and reduce
to lowest terms. For example, to change 0.12
to 2 common fraction, we simply write out the
fraction in full, .

12_
100

and reduce to lowest terms,

3

199 = 25

B

Likewise, 0.77 is written

7_
100

but this is in lowest terms so the fraction can-
not be further reduced.

One way of checkingto see if a decimal frac-
tion can be reduced to lower terms is to con-
sider the makeup of the decimal denominator.
The denominator is always 10 or a power of 10.
Inspection shows that the prime factors of 10
are 5 and 2. Thus, the numerator must be di-
visible by 5 or 2 or both, or the fraction cannot
be reduced.

EXAMPLE: Change the decimal 0.0625 to a
common fraction and reduce to lowest terms.
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, _ 625
SOLUTION: 0.0625 = 7323
_ 625+ 2 _ 25
10000 + 25 _ 400
=L
6

Complex decimals are changed to common
fractions by first writing out the numerator and
denominator in full and then reducing the re-
sulting complex fraction in the usual way. For

example, to reduce 0.12;1,-, we first write

1
100
Writing the numerator as an improper fraction
we have

25

2
100

(31}

and applying the reciprocal method of division,
we have

25 1 1
2 *106 - 8
4
Practice problems. Change the following
decimals to common fractions in lowest terms:

1
1. 0.25 3. 0.6,
3. 0.375 4. 0.03:,1,-
Answers:
1. 1/4 3. 5/8
2. 3/8 4. 4/125

CHANGING COMMON
FRACTIONS TO DECIMALS

The only difference between a decimal frac-
tion and a common fraction is that the decimal
fraction has 1 with a certain number of zeros
(in other words, a power of 10) for a denomina-
tor. Thus, a common fraction can be changed

to a decimal if it can be reduced to a fraction
having a power of 10 for a denominator,

If the denominator of the common fraction in
its lowest terms is made up of the prime fac-
tors 2 or 5 or both, the fraction can be con-
verted toan exact decimal. If some otherprime
factor is present, the fraction cannot be con-
verted exactly. The truth of this is evident
when we consider the denominator of the new
fraction. It must alwaysbe 10 or a power of 10,
and we know the factors of such a number are
always 2's and 5's.

The method of converting a common fraction
to a decimal is illustrated as follows:

EXAMPLE: Convert 3/4 to a decimal.
. 3 _ 300
SOLUTION: 4 " 400
_ 300 1

4 X100

1

0.75

Notice that the original fraction could have been
rewritten as 3000/4000, in which case the re-
sult would have been 0.750. On the other hand,
if the original fraction had been rewritten as
30/40, the resulting division of 4 into 30 would
not have been possible without a remainder.
When the denominator in the original fraction
has only 2's and 5's as factors, so that we know
a remainder is not necessary, the fraction
should be rewritten with enough 0's to complete
the division with no remainder,

Observation of the results in the foregoing
example leads to a shortcut in the conversion
method. Noting that the factor 1/100 ultimately
enters the answer in the form of a decimal, we
could introduce the decimal point as the final
step without ever writing the fraction 1/100.
Thus the rule for changing fractions to deci-
mals is as follows:

1. Annex enough 0‘s to the numerator of the
original fraction so that the division will be
exact (no remainder).

2. Divide the original denominator into the
new numerator formed by annexing the 0's.

3. Place the decimal point in the answer so
that the number of decimal places in the answer
is the same as the number of 0's annexed to the
original numerator.
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K a mixed number in common fraction form
is to be converted, convert only the fractional
partand then write the two parts together. This
is illustrated as follows:

3 _ 3
24—2+4

=2+ .75 = 2.75
Practice problems. Convert the following

common fractions and mixed numbers to deci-
mal form:

1 3 5 i)
1. i 2. 3 3. 39 4, 216
Answers:
1. 0.25 2. 0.375 3. 0.15625 4, 2.3125

Nonterminating Decimals

As stated previously, if the denominator of a
common fraction contains some prime factor
other than 2 or 5, the fraction cannot be con-
verted completely to a decimal. When such
fractions are converted according to the fore-
going rule, the decimal resulting will never
terminate. Consider the fraction 1/3. Apply-
ing the rule, we have

333 ...
3/1.0000
9
10
9
10
9

The division will continue indefinitely. Any
common fraction that cannot be converted ex-
actly yields a decimal that will never terminate
and in which the digits sooner or later recur.
In the previous example, the recurring digit
was 3. In the fraction 5/11, we have

4545
11/5.0000
44
60
55
50
44
60
55

The recurring digits are 4 and 5.

. 06

50

When a common fraction generates such a
repeating decimal, it becomes necessary to
arbitrarily select a point at which to cease the
repetition. This may be done in two ways. We
may write the decimal fraction by rounding off
at the desired point. For example, to round off
the decimal generated by % to hundredths, we
carry the division to thousandths, see that this
figure is less than 5, and drop it. Thus, %
rounded to hundredths is 0.33. The other method
is to carry the division to the desired number
of decimal places and carry the remaining in-
complete division as a common fraction—that
is, we write the resulit of a complex decimal.

1 carried to thousandths would be

For example, 3

1
.3333

% = 3/1.000
_9

Practice problems. Change the. following
common {ractions to decimals with three places
and carry the incomplete division as a common
fraction:

1 5 4 S
1. 13 2. 9 3. i5 4, is
Answers:
ng 6 2
1. 0.53813 3. 0.2663
S 2
2. 0.5559 4, 0.4163

OPERATION WITH DECIMALS

In the study of addition of whole numbers, it
was established that units must be added to
units, tens to tens, hundreds to hundreds, etc.
For convenience, in adding several numbers,
units were written under units, tens under tens,
etc. The addition of decimals is accomplished
in the same manner. S
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ADDITION

In adding decimals, tenths are written under
tenths, hundredths under hundredths, etc. When
this is done, the decimal pointsfall in a straight
line. The addition is the same as in adding
whole numbers. Consider the following example:

2.18
34.35
0.14
4.90

r———

41.57

Adding the first column on the right gives 17
hundredths or 1 tenth and 7 hundredths. As
with whole numbers, we write the 7 under the
hundredths column and add the 1 tenth in the
tenths column—that is, the column of the next
higher order. The sum of the tenths column is
15 tenths or 1 unit and 5 tenths. The 5 is writ-
ten under the tenths column and the 1 is added
in the units column.

It is evident that if the decimal points are
kept in a straight line—that is, if the place
values are kept in the proper columns—addition
with decimals may be accomplished in the ordi-
nary manner of addition of whole numbers. It
should also be noted that the decimal point of
the sum falls directly under the decimal points
of the addends.

SUBTRACTION

Subtraction of decimals likewise involves no
new principles. Notice that the place values of
the subtrahend in the following example are
fixed directly under the corresponding place
values in the minuend. Notice also that this
causes the decimal points to be alined and that
the figures in the difference (answer) also re-
tain the correct columnar alinement.

45.76
-31.87

13.89

We subtract column by column, as with whole
numbers, beginning at the right.

Practice problems. Add or subtract as
indicated:

1. 12.3 + 2.13 + 4 + 1.234
2. 0.5 + 0.04 + 12.001 + 10
3. 237.5 - 217.9
4, 9.04 - 7.156
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Answers:
1. 19.664 3. 19.6
2. 22.541 4, 1.884
MULTIPLICATION

Multiplication of a decimal by a whole num-
ber may be explained byexpressing the decimal
as a fraction.

EXALMPLE: Multiply 6.12 by 4.

. 4, 612 _ 2448
SOLUTION: 1 X 100 100
= 24.48

When we perform the multiplication keeping
the decimal form, we have

6.12
4

24 .48

By common sense, it is apparent that the whole
number 4 times the whole number 6, with some
fraction, will yield a number in the neighbor-
hood of 24. Hence, the placing of the decimal
point is reasonable.

An examination of several examples will re-
veal that the product of a decimal and a whole
number has the same number of decimal places
as the factor containing the decimal. Zeros, if
any, at the end of the decimal should be rejected.

Multiplication of Two Decimals

To show the rule for muitiplying two deci-
mals together, we multiply the decimal in frac-
tional form first and then in the conventional
way, as in the following exampie:

0.4 x 0.37
Writing these decimals as common fractions,
we have
i X _3_.7_ = _é X 31.
10 100 10 x 100
- 148
1000
= 0.148
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In decimal form theqproblem is Practice problems. Multiply as indicated:
0.37 1. 3.7 a 0.02 2. 0.45 x 0.7
04 3. 6.5 4. 0.0073
0.148 x0.01 x5 .4
The placing of the decimal point is reasonable, Answers:
since 4 tenths of 37 hundredths is a little less
than half of 37 hundredths, or about 15 hun- 1. 0.074 2. 0.315
dredths. 3. 0.065 4. 0.03942
Consider the following example: o
4.316 x 3.4 Multiplying by Powers of 10
Multiplying by a power of 10 (10, 100, 1,00C,
In the common fraction form, we have etc.) is done mechanically by simply moving
4 5 x 34 the decimal point to the right as many places
4316 , 34 _ 4315 x 34 as there are zeros in the multiplier. For ex-
1000 = 10 1000 x 10 ample, 0.00687 is multiplied by 1,000 by mov-
_ 146744 ing the decima: point three places to the right
~ 10000 as follows:
= 14.6744 1,000 x 0.00687 = 6.87
. ) Multiplying a number by 0.1, 0.01, 0.001,
In the decimal form the problem is etc., is done mechanically by simply moving
the decimal point to the left as many places as
4.316 there are decimal places inthe multiplier. For
_34 example, 348.2 is muitiplied by 0.001by moving
17264 the decimal point three places to the left as
12948 follows:
14.6744 348.2 x 0.001 = 0.3482
We note that 4 and a fraction times 3 and a DIVISION
fraction yields a product in the neighborhood of When the dividend is a whole number, we
12. Thus, the decimal point is in the logical recognize the problem of division as that of
place. , converting a common fraction to a decimal.
In the above examples it should be noted in Thus in the example 5 - 8, we recall that the
each case that when we multiply the decimals problem could be written
together we are multiplying the numerators.
When we place the decimal point by adding the 5000 . 5000 + 8
number of decimal places in the multiplier and 1000 © 8 = T 1000
multiplicand, we are in effect multinlying the
denominators. _ 625
When the numbers multiplied together are ~ 1000
thought of as the numerators, the decimal points = .625
may be temporarily disregarded and the num-
bers may be considered whole. This justifies This same problem may be worked by the
the apparent disregard for place value in the following, morg direct metl?od: y

multiplication of decimals. We see that the

rule for multiplying decimals is only a modifi- 5 .625
cation of the rule for multiplying fractions. : g = 8/5.000
To multiply numbers in which one or more 48
of the factors contain a decimal, multiply as 20
though the numbers were whole numbers. Mark 16
off as many decimal places in the product as 40
there are decimal places in the factors together. 40

52



Chapter 5—-DECIMALS

Since -~ a1’ qecimals generated by division
terminate ¢ 1y 23 that in the above exam-
ple, i{f at all, it should be predetermined as to
how many decimal places it is desired to carry
the quotient. If it is decided to terminate a
quotient at the third decimal place, the division
should be carried to the fourth place so that the
correct rounding off to the third place may be
determined.

When the dividend contains a decimal, the
same procedure applies as when the dividend is
whole. Notice the following examples (rounded
to three decimal places):
1. 6.31 + 8 .7887 = ,789
8/6.3100

56

71
64
70
64
60
56
4
2. 0.0288 + 32 0.0009 = 0.001
32/0.0288
288

Observe in each case (including the case
where the dividend is whole), that the quotient
contains the same number of decimal places as
the number used in the dividend. Notiice also
that the place values are rigid; that is, tenths
in the quotient appear over tenths in the divi-
dend, hundredths over hundredths, etc.

Practice problems. In the following division
problems, round off each quotient correct to
three decimal places.

1. 10 =+ 6 3. 2.743 + 17

2. 23.5 + 16 4. 1.00 = 3
Answers:

1. 1.667 3. 0.036

2. 1.469 4. 0.333

Decimal Divisors

In the foregoing examples, the divisor in
each case was an integer. Division with divi-
sors which are decimals may be accomplished
by changing the divisor and dividend so that the
divisor becomes a whole number.

. 59
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Recalling that every division expression may
be written in fraction form, we use the funda-
mental rule of fractions as follows: Rewrite
the division problem: as a fraction. Multiply
the numerator (dividend) and denominator (divi-
sor) by 10, 100, or some higher power of 10;
the power of 10 must be large enough to change
the divisor to a whole number. This rule is
illustrated as follows:

2.538 + 0.24 =

Thus 2.568 divided by 0.24 is the same as 256.8
divided by 24.

From the mechanical standpoint, the fore- .

going rule has the effect of moving the decimal
point to the right, as many places as necessary
to change the divisor to an integer. Therefore
the rule is sometimes stated as follows: When
the divisor is a decimal, change it to a whole
numbe> by moving the decimal point to the
right. Balance the change in the divisor by
moving the decimal point in the dividend an
equal number of places to the right.

The iollowing example illustrates this ver-
sion of the rule:

91.1
0.9,/81.9,9

The inverted v, called a caret, is used as a
inarker to indicate the new position of the deci-
mal point. Notice that the decimal point in the
quotient is piaced immediately above the caret
in the dividend. Alinement of the first quotient
digit immediately above the 1 in the dividend,
and the second quotient digit above the 9, as-
sures that these digits are placed properly with
respect to the decimal point.

Practice problems. In the following division
problems, round off each quotient to three dec-
imal places:

1. 0.02958 + 0.12
2. 30.625 + 3.5

3. 4610 + 0.875
4. 0.000576 + 0.008

Answers:
1. 0.247 3, 5268.571
2. 8.750 4. 0.072
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Dividing by Powers of 10

Division of any number by 10, 100, 1,000,
etc., is really just an exercise in placing the
decimal point of a decimal fraction. Thus,
5,031 + 100 may be thought of as the decimal

fraction 5—(1)—3-(-1); to remove the denominator, we
simply count off two places irom the right.
Thus,

5031 _
100 - 50.31

The following three examples serve to illus-
trate this procedure further:

401 + 10 = 40.1
2 + 1,000 = .002
11,431 + 100 = 114.31

I the dividend already cortains a decimal
part, begin counting with the first number to
theleft of the decimalpoint. Thus, 243.6 +100 =
2.436. When the decima) point is not shown in
a number, it is always considered to be to the
right of the right-hard digit.

Dividing by 0.1, G.01, 0.001, etc., may also
be accomplished by a simple mechanical rule.
We simply begin at the position of the decimal
point in thc dividend and count off as many
places to the right as there are decimal places
in the divisor. The decimal point is then placed
to the right of the last digit counted. X there
are not einough digits, zeros may be added.

The foregoing rule is based on the fact that

0.1 is really 15, 0.01 is 1 0.001is 1-01—03, etc.

100’
For example,

33+0.1=23+1—})
=23x1-f-
= 230

Notice that dividing by 0.1 is the same as
multiplying by 10. Likewise,

[ - - & .___1
234.1 + 0.001 = 234.1 + 565
= 234.1 x l%’i’
= 234,100
and
0.0l < 24+ L g4 100 _
24 + 0.01 = 24 + = = 24 k 190 = 2,400

Practice problems. Divide by relocation of
the decimal point.

3. 276 <+ 0.01
4. 2,845 + 0.001

1. 276 + 100
2. 2,845 + 1,000

Answers:
1. 2.76 3. 27,600
2. 2.845 4. 2,845,000




CHAPTER 6
PERCENTAGE AND MEASUREMENT

In the discussion of decimal fractions, it was
shown that for convenience in writing fractions
whose denominators are 10 or some power of
10, the decimal poini could be employed and the
denominators co.'? “e dropped. Thus, this spe-
cial group of fractions could be written in a
much simpler way. As eariy as the 15th cen-
tury, business= » made use of certain decimal
fractions s ..:h that they gave them the spe-
cial desigr ..n FERCENT.

MEANING OF PERCENT

The word "percent" is derived from Latin.
It was originally ''per centum,' which means
by the hundred." Thus the statement is often
made that ""percent means hundredths."

Percentage deals with the group of decimal
fractions whose denominators are 100—that is,
fractions of two decimal places. Since hun-
dredths were used so frequently, the decimal
point was dropped and the symbol % was placed
after the number an: read ''percent' (per 100).
Thus, 0.15 and 15% represent the same value,
15/100. The first is read ''15 hurdredths,' and
the second is read ""15 percent.'" Both mean 15
parts out of 100.

Ordinarily, percent is used in discussing
relative values. For example, 25 percent may
convey an idea of relative value or relationship.
Tu say '"25 percent of the crew is ashore' gives
an idea of what part of the crew is gone, but it
does not tell how many. For example, 25 per-
cent of the crew would represent vastly different
numbers if the comparison werv made between
an LSM and a cruiser. When it is necessary
to use a percent in computation, the number is
written in its decimal form to avoid confusion.

By converting all decimal fractions so that
they had the common denominator 100, men
found that they could mentally visualize the
relative size of the part of the whole that was
being considered.

CHANGING DECIMALS TO PERCENT

Since perceni means hundredths, any decimal
may be changed to percent by first expressing

it as a fraction with 100 as the denominator.
The numerator of the fraction thus formed in-
dicates how many hundredths we have, and
theefore it indicates "how many percent' we
have. For cxample, 0.36 is the same as 36/100.
Therefore, 0.36 expressed as a percentage
would be 36 percent. By the same reasoning,
since 0.052 is equal to 5.2/100, 0.052 is the
same as 5.2 percent.

In actual practice, the step in which the de-
nominator 100 occurs is seldom written down.
The expression in terms of hundredths is con-
verted mentally to percent. This results in the
following rule: To change a decimal to percent,
multiply the decimal by 100 and annex the per-
cent sign (%). Since multiplying by 100 has the
effect of moving the decimal point two places to
the right, the rule is sometimes stated as fol-
lows: To change a decimal to percent, move
the decimal point two places to the right and
annex the percent sign.

Changing Common Fractions and
Whole Numbers To Percent

Common fractions are changed to percent by
first expressing them as decimals. For exam-
ple, the fraction 1/4 is equivalent to the deci-
mal 0.25. Thus 1/4 is the same as 25 percent.

Whole numbers may be considered as special
types of decimals (for example, 4 may be writ-
tenas 4.00) and thus may be expressed interms
of percentage. The meaning of an expression
such as 400 percent is vague unless we keep in
mind that percentage is a form of comparison.
For example, a question which often arises is
"How can I have more than 100 percent of some-
thing, if 100 percent means all of it?"

This question seems reasonable, if we limit
our attention to such quantities as test scores.
However, it is also reasonable to use percent-
age in comparing a current set of data with a
previous set. For example, if the amount of
electrical power used by a Navy facility this
year is double the amount used last year, then
this year's power usage is 200 percent of last
year's usage. :
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The meaning of a phrase such as ''200 per-
cent of last year's usage' is often misinter-
preted. A total amount that is 200 percent of
the previous amount is not the same as an in-
crease of 200 percent. The increase in this
case is only 100 percent, for a total of 200. I
the increase had been 200 percent, then the
new usage figure would be 300 percent of the
previous figure.

Baseball hatting averages comprise a spe-
cial case in which percentage is used with only
occasional reference 0 the word 'percent.'
The percentages in' batting averages are ex-
pressed in their decimal form, with the figure
1.000 representing 100 percent. Although a
batting average of 0.300 is referred to as 'bat-
ting 300,'" this is actually erroneous nomencla-
ture from the strictly mathematical standpoint.
The correct statement, mathematically, would
be 'batting point three zero zero' or 'batting
30 percent."

Practice problems. Change each of the fol-
lowing numbers to percent:

1. 0.0065 3. 0.363 5. 7

2. 1.25 4, 3/4 6. 1/2
Answers:

1. 0.65% 3. 36.3% 5. 700%

2. 125% 4, 5% 6. 50%

CHANGING A PERCENT
TO A DECIMAL

Since we do not compute with numbers in the
percent form, it is often necessary to change a
percent back to the decimal form. The proce-
dure is just opposite to that used in changing
decimals to percents: To change a percent to a
decimal, drop the percent sign and divide the
number by 100. Mechanically, the decimal
point is simply shifted two places to the left
and the percent sign is dropped. For example,
25 percent is tue same as the decimal 0.25.
Percents larger than 100 percent are changed
to decimals by the same procedure as ordinary

vercents. For example, 125 percent is equiva-

lent to 1.25.
Practice problems. Change the following
percents to decimals:

1. 2.5% 3. 125% 5. 5%
2. 0.63% 4. 25% 6. 95%
56
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Answers:
1. 0.025 3. 1.25 5. 5.7%5% = 0.0575
2. 0.0063 4. 0.25 6. 9.50% = 0.095

THE THREE PERCENTAGE CASES

To explain the cases that arise in problems
involving percents, it is necessary to define the
terms that will be used. Rate (r) is the number
of hundredths parts taken. This is the number
followed by the percent sign. The base (b) is
the whole on which the rate cperates. Percent-
age (p) is the part of the base determined by
the rate. In the example

5% of 40 = 2

5% 1is the rate, 40 is the base, and 2 is the
percentage.

There are three cases that usually arise in
dealing with percentage, as follows: .

Case I-To find the percentage when the
base and rate are known.

EXAMPLE: WkLat number is 6% of 50 ?

Case II-To find the rate when the base and
percentage are known.

EXAMPLE: 20 is wha. percent of 60?

Case III-To find the base when the percent-
age and rate are known.

EXAMPLE: The number 5 is 25% of what
number ? :

Case I
In the éxample
6% of 50 = ?

the '"of" has the same meaning as it does in
fractional examples, such as

1 -
‘4-0f16-?

In other words, "of'' means to multiply. Thus,
to find the percentage, multiply the base by the
rate. Of course the rate must be changed from
a percent to a decimal before multiplying can

¥, ";
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be done. Rate times hase equals percentage.
Thus,

6% of 50 = ?
0.06 x 50 = 3

The number that is 6% Jf 50 is 3.

FRACTIONAL PERCENTS.—Afractional
percent represents a part of 1 percent. In a
case such as :his, it is sometimes easier to
find 1 percent of the number and then find the
fractional part. For example, we would find
1/4 percent of 840 as follows:

1% of 840 = 0.01 x 840
= 8.40

Therefore, %% of 840 = 8.40 x 41

2.10

Case II

To explain case II and case III, we notice in
the foregoing example that the base corresponds
to the multiplicand, the rate corresponds to the
multiplier, and the percentage corresponds to
the product.

50 (base or multiplicand)
.06 (rate or multiplier)

3.00 (percentage or product)

Recalling that the pr oduct divided by one of its
factors gives the other factor, we can solve the
following problem:

?% of 60 = 20

We are given the base (60) and percentage (20).

60 (base)
_? (rate)

20 (percentage)

We then divide the product (percentage) by the
multiplicand (base) to get the nther factor (rate).
Percentage divided by base equals rate. The
rate is found as follows:

gg=.!‘.
60 3

- 1
= .33-§

33-;-% (rate)

The rule for case II, as illustrated in the
foregoing problem, is as follows: To find the
rate when the percentage and base are known,
divide the percentage by the base. Write the
quotient in the decimal form first, and finally
as a percent.

Case III

The unknown factor in case II is the base,
and the rate and percantage are known.

EXAMPLE: 25% of ? =5

? (base)
.25 (rate)

5.00 (percentage)

We divide the product by its known factor to
find the other factor. Percentage divided by
rate equals base. Thus,

3

55 = 20 (base)

Tue rule for case III may be stated as follows:
To find the base when the rate and percentage
are known, divide the percentage by the rate.

Practice problems. In each of the following
problems, first determine which case is in-
volved; then find the answer. -

1. What is 3% of 7407

. 7.5% of 2.75 = ?

. 8 is 2% of what number?
. 7% of 18 15.

. 12% of ? = 1%.
. 8 is what percent of 32?7

Answers:

1. Case I; 5.55

. Case I; 0.20625
. Case III; 400

. Case II; 833%

. OI; 100
. Case II; 25%
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PRINCIPLES OF MEASUREMENT

Computation with decimals frequently in-
volves the addition or subtraction of numbers
which do not have the same number of decimal
places. For example, we may be asked to add
such numbers as 4.1 and 32.31582. Kow should
they be added? Should zeros be annexed to 4.1
until it is of the same order as the other deci-
mal (to the same number of places)? Or, should
.31582 be rounded off to tenths? Would the sum
be accurate to tenths or hundred-thousandths?
The answers to these questions depend on how
the nhumbers orignially arise.

Some decimals are finite or are considered
as such because of their use. For instance, the

decimal that represents El, that is 0.5, is as
accurate at 0.5 as it is at 0.5000. Likewise,
%has the value
0.125 and could be written just as accurately
with additional end zeros. Such numbers are
said to be finite. Counting numbers are finite.
Dollars and cents are examples of finite values.
Thus, $10.25 and $5.00 are finite values.

To add the decimals that represent % and 21,
it is not necessary to round off 0.125 to tenths.
Thus, 0.5 + 0.125 is added as follows:

the decimal that represents

0.500
0.125

0.625

Notice that the end zeros were added to 0.5 to
carry it out the same number of places as (.125,
It is not necessary to write such place-holding
zeros if the figures ar~» kept in the correct col-
umns and decimal points are alined.. Decimals
that have a definite fixed value may be added or
subtracted although they are of different order.

On the other hand, if the numbers result
from measurement of somekind, then the ques-
tion of how much to round off must be decided
in terms of the precision aad accuracy of the
measurements.

ESTIMATION

Suppose that two numbers to be added re-
sulted from measurement. Let us say that one
number was measured with a ruler marked off
in tenths of an inch and was found, to the near-
est tenth of an inch, to be 2.3 inches. The other
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number measured with a preciciun rule was
found, to the nearest thousandth of an inch, to
be 1.426 inches.

Each of these measurements requires esti-
mation between marks on the rule, and estima-
tion between marks on any measuring instru-
ment is subject to human error. Experience
has shown that the best the average person can
do with consistency is to decide whether a
measurement is more or less than jaliway be-
tween marks. The correct way to state this
fact mathematically is to say that a measure-
ment miade with an instrument marked off in
tenths of an inch involves a maximum probable
error of 0.05 inch (five hundredths is one-half
of one tenth). By the same reasoning, the prob-
able error in a measurement made with an in-
strument marked in thousandths of an inch is
0.0005 inch.

PRECISICON

In general, the probable error in any meas-
urcment is one-half the size of the smallest
division on the measuring instrument. Thus
the precision of a measurement depends upon
how precisely the instrument is marked. It is
importan’ to realize that precision refers to
the size of the smallest division on the scale; it
has nothing to do with the accuracy (correct-
ness) of the markings. In other words, to say
that one: instrument is more precise than an-
other does not imply that the less precise in-
strument is poorly manufactured. In fact, it
would be possible to make an instrument with
very high apparent precisic:, and yet mark it
carelessly so that measurements takein with it
would be inaccurate.

From the mathematical standpoint, the pre-
cision of a number resulting from measurement
depends upon the number of decimal places;
that is, a larger number of decimal places
means a smaller probable error. In 2.3 inches
the probable error is 0.05 inch, since 2.3 actu-
ally lies somewhere between 2.25 and 2.35. In
1.426 inches there is a much smaller probable
error of 0.0005 inch. If we add 2.300 + 1.426
and get an answer in thousandths, the answer,
3.726 inches, would appear to be precise to
thousandths; but this is not true since there
was a probable error of .05 in one of the ad-
dends. Also 2.300 appears to be precise to
thousandths but in this example it is prec.se
only to tenths. It is evident that the precision
of a sum is no greater than the precision of the
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’least precise addend. It can also be shown that
the precision of a difference is no greater than
the less precise number compared.

To add or subtract numbers of different or-
jers, all numbers should first be rounded off to
the order of the least precise number. In the
foregoing example, 1.426 should be rounded to
tenths —that is, 1.4.

This rule also applies to repeating decimals.
Since it is possible to round off a repeating
decimal at any desired point,the degree of pre-
cision desired should be determined and all re-
peating decimals to be added should be rounded
to this level. Thus, to add the decimals gener-
ated by %-, %, and 1% correct to thousandths,
first round off each decimal to thousandths, and
then add, as follows:

323
hLi
417

1.417

When a common fraction isused in recording
the results of measurement, the denominator of
the fraction indicates the degree of precision.
For example, a ruler marked in sixty-fourths
of an inch ! as much smaller divisions than one
marked in fourths of an inch. Therefore a

4 . . .
measurement of 36—4 inches is more precise

than a measure of 3-1— inches, even though the

two fractions are numerically equal. Remember

that a measurement of 3—4— inches contains a

64
prcbable error of only one-half of one sixty-
fourth of an inch. On the other hand, if the
smallest division on the ruler is one-fourth of

3% inches con-

tains a probable error of one-eighth of an inch.

an inch, then 2 measurement of

ACCURACY

Even though a number may be very precise,
which indicates that it was measured with an
instrument having closely spaced divisions, it
may not be very accurate. The accuracy of a
measurement depends upon the relative size of
the probable error when compared with the
quantity being measured. For example, a dis-
tance of 25 yards on a pistol range may be

29
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measured carefully enough to be correct to the
nearest inch. Since there are 900 inches in 25
yards, this measurement is between 899.5
inches and 900.5 inches. When compared with
the total of 900 inches, the 0.5-inch probable
error is not very great.

On the other hand, a length of pipe may be
measured rather precisely and found to be 3.2
inches long. The probable error here is 0.05
inch, and this measurement is thus more pre-
cise than that of the pistol range mentioned be-
fore. Tocompare the accuracy of thetwomeas-
urements, we note that 0.05 inch out of a total
of 3.2 inches is the same as 0.5 inch out of 32
inches. Comparing this with the figure obtained
in the other example (0.5 inch out of 900), we
conclude that the more precise measurement is
actually the less accurate of the two measure-
ments considered.

It is important to realize that the location of
the decimal point has no bearing on the accu-
racy of the number. For example, 1.25 dollars
represents exactly the same amount of money
as 125 cents. These are equally accurate ways
of representing the same quantity, despite the
fact that the decimal point is placed differently.

Practice problems. In each of the following
problems, determine which number of each pair
is more accurate and which is more precise:

1. 3.72 inches or 2,417 feet

2. 2.5 inches or 17.5 inches

3
3. 53

34.2 seconds or 13 seconds

inches or 12% inches

Answers:

3.72 inches is more precise.
2,417 feet is more accurate.

The numbers are equally precise.
17.5 inches is more accurate.

7
12g

rate.

inches is more precise and more accu-

. 34.2 seconds is more precise and more ac-
curate.

Percent of Error

The accuracy of a measurement is deter-
mined by the RELATIVE ERROR. The relative
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error is the ratio between the probable error
and the quantity being measured. This ratio is
simply the fraction formed by using the prob-
able error as the numerator and the measure-
ment itself as the denominator. For example,
suppose that a metal plate is found to be 5.4
inches long, correct to the nearest tenth of an
inch. The maximum probable error is live
hundredths of an inch (one-half of one tenth of
an inch) and the relaiive error is found as
follows:

probable error _ 0.0

measured value =~ 5.4
' 5

4 540

Thus the relative errorf is 5 parts out of 540,

Relative error is usually expressed as PER-
CENT OF ERROR. When the denominator of
the fraction expressing the error ratio is di-
vided into the numerator,a decimal is obtained,
This decimal, converted to percent, gives the
percent of error. For example, the error in
the foregoing problem could be stated as 0.93
percent, since the ratio5/540 reduces to 0.0093
(rounded off) in decimal form.

Significant Digits

The accuracy of a measurement is often de-
scribed in terms of the number of significant
digits used in expressing it. If the digits of a
number resulting from measurement are exam-
ined cne by one, beginning with the left-hand
digit, the first digit that is not 0 is the first
significant digit. For example, 2345 has four
significant digits and 0.023 has only two sig-
nificant digits.,

The digits 2 and 3 in a measurement such as
0.023 inch signify how many thousandths of an

inch comprise the measurement. The 0's are -

of no significance in specifying the number of
thousandths in the measurement; their presence
is required only as "place holders" in placing
the decimal point.

A rule that is often used states that the sig-
nificant digits in a number begin with the first
nonzero digit (counting from left to right) and
end with the last digit. This implies that 0 can
be a significant digit if it is not the ‘.rst digit
in the number. For example, 0.205 inch is a
measurement having three significant digits.
The 0 between the 2 and the 5 is significant
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because it is a part of the number specifying
how many thousandths are in the measurement,

The rule stated in the foregoing paragraph
fails to classify final 0's cn the right. For ex-
ample, in a number such as 4,700, the number
of significant digits might be two, three, or
four. If the 0's merely locate the decimal point
(that is, if they show the number to be approxi-
mately forty-seven hundred rather than forty
seven), then the number of significant digits is
two. However, if the number 4,700 represents
a number such as 4,703 rounded off to the near-
est hundred, there are three significant digits.
The last 0 merely locates the decimal point. If
the number 4,700 represents a number such as
4,700.4 rounded off, then the number of signifi-
cant digits is four.

Unless we know how a particular number
was measured, it is sometimes impossible to
determine whether right-hand 0's are the result
of rounding off. However, in a practical situa-
tion it is normally possible to obtain informa-
tion concerning the instruments used and the
degree of precision of the original data before
any rounding was done.

In a number such as 49 20 inches, it is rea-
sonable to assume that the b i» the hundredths
place would not have been recorded at all if it
were not significant. In other words, the in-
strument used for the measurement can be read
to the nearest hundredth of an inch. The 0 on
the right is thus significant. This conclusion
can be reached another way by observing that
the 0 in 49.30 is not needed as a place holder i
placing the decimal point. 'Therefore its pres-
ence must have semé other significance.

The facts concerning significant digits may
be suminarized as follows:

1. Digits other than Oare always significant.

2. Zero is significant when it falls between
significant digits.

3. Any final O to the right of the decimal
point i3 significant.

4, When a 0 is present only as a place
holder for locating the decimal point, it is not
significant.

5. The following categories comprise the
significant digits of any measurerent number:

a. The first nonzero left-hand digit is
significant.

b. The digit which indicates the precision
of the rumber is significant. This is the digit
farthest to the right, excent when the right-hand
digit is 0. If it is 0, it may be only a place
holder when the number is an integer.
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c. All digits between significant digits
are significant.
Practice problemms. Determine the percent
of error and the number of significant digits in
each of the following measurements:

1. 5.4 feet
2. 0.00042 inch

3. 4.17 sec
4. 147.50 miles

Answers:

1. Percent of error. 0.93%
Significant digits: 2

2. Percent of error: 1.19%
Significant digits: 2

3. Percent of error: 0.12%
Significant digits: 3

4, Percent of error: 0.0034%
Significant digits: 5

CALCULATING WITH
APPROXIMATE NUMBERS

The concepts of precisionand accuracy form
the basis for the rules which govern calculation
with approximate numbers (pumbers resulting
from measurement).

Addition and Subtraction

A sum or difference can never be more pre-
cise than the least precise number in the cal-
culation. Therefore, before adding or sub-
tracting approximate numbers, they should be
rounded to the same degree of precision. The
more precise numbers are all rounded to the
precision of the least precise number in the
group to be combined. For example, the num-
bers 2.95, 32.7,and 1.414 would be rounded to
tenths before adding as follows:

3.0
32.7
1.4

Multiplication and Division

When two numbers are multiplied, the result
often has several more digits than either of the
original factors. Division also frequently pro-
duces more digits in the quotient than the orig-
inal data possessed, if the division is "carried
out" to several decimal places. Results such

61
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as these appear to hove more siganificant digits
thanthe original measurements from which they
came, giving the false impression of greater
accuracy than is justified. In order to correct
this situation, the following rule is used:

In order tc multiply or divide two approxi-
mate numbers having an equal number of sig-
nificant digits, round the answer to the same
number of significant digits as are shown in the
original data. If one of the original factors has
more significant digits than the other, round
the more accurate number before multiplying.
It should be rounded to one more significant
digit than appears in the less accurate number;
the extra digit protects the answer from the
effects of multiple rounding. After performing
the multiplication or division, round the result
to the same number of significant digits as
are shown in the less accurate of the original
factors.

Practice problems:

1. Find the sum of the s:des of a triangle in
which the lengths of the three sides are as
follows: 2.5 inches, 3.72 inches, and 4.996
inches.

2. Find the product of the length and width of a
rectangle which is 2.95 feet long and 0.9046
foot wide.

Answers:

1. 11.2 inches
2. 2.67 square feet

MICROMETERS AND VERNIERS

Closely associated with the study of d=zci-
mals is a measuring instrument known as a
micrometer. The ordinary micrometer is ca-
pable of measuring accurately toone -thousandth
of an inch. One-thousandth of an inch is about
the thickness of a human hair or a thin sheet of
paper. The parts of a micrometer are shown
in figure 6-1.

MICROMETER SCALES

The spindle and the thimble move together.
The end of the spindle (hidden from view in
figure 6-1) is a screw with 40 threads per inch.
Consequently, one complete turn ¢f the tuimble
moves the spindle one-fortieth of an inch or
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THIMBLE RATCHET STOP

LOCKNUT SLEEVE

ANVIL  SPINDLE

|

T

(=]

(B)

Figure 6-1.—(A) Parts of a micrometer;
(B) micrometer scales.

0.025 inch eince 7110 is equal to 0.025. The

sleeve has 40 markings to the inch. Thus each
space between the markings on the sleeve is
also 0.025 inch. Since 4 such spaces are 0.1
inch (that is, 4 x 0.025), every fourth mark is
labeled in tenths of an inch for con. 'nience in
reading. Thus, 4 marks equal 0.1 inch, 8 marks
equal 0.2 inch, 12 marks equal 0.3 inch, etc.

To enable measurement of a partial turn,
the beveled edge of the thimble is divided into
25 equal parts. Thus each marking on the

thimble is 1

1 .1
25 25 °f 30
of an inch, Multiplying 2—15- times 0.025 inch, we

find that each marking on the thimbie repre-
se:t:: & M1 inch,

of a complete turn, or

PLALING THE MICROMETER

it is sometimes convenient when learning to
read a micrometer to writedown the component
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parts of the measurement as read on the scales
and then to add them. For example, in figure
6-1 (B) there are two major divisions visible
(0.2 inch). One minor division is showing
clearly (0.025 inch). The marking on the thimble
nearest the horizontal or index line of the sleeve
is the second marking (0.002 inch). Adding
these parts, we have

0.200
0.025
0.002

0.227

Thus, the reading is 0.227 inch. As explained
previously, this is read verbally as '"two hun-
dred twenty-seven thousandths." A more skill-
ful method of reading the scales is to read all
digits as thousandths directly and to do any
adding mentally. Thus, weread the major divi-
sion on the scale as "two hundred thousandths"
and the minor division is added on mentally.
The mental process for the above setting then
would be "two hundred twenty-five; two hundred
twenty-seven thousandths."

Practice problems:

1. Read each of the micrometer settings shown

in figure 6-2.
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Figure 6-2.—Micrometer settings.
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Answers:

1. (A) 0.750 (F) 0.009
(B) 0.201 (G) 0.662
(C) 0.655 (H) 0.048
(D) 0.075 (I) 0.526
(E) 0.527

VERNIER

Sometimes the marking on the thimble of the
micrometer does not fall directly on the index
line of the sleeve. To make possible readings
even smaller than thousandths, an ingenious
device is introduced in the form of an additional
scale. This scale, called a VERNIER, was
named after its inventor, Pierre Vernier. The
vernier makes possible accurate readings to
the ten-thousandth of an inch.

Principle of the Vernier

Suppose a ruler has markings every tenth of
an inch but it is desired to read accurately to
hundredths. A separate, freely sliding vernier
scale (fig. 6-3) is added to the ruler. It has 10
markings on it that take up the same distance
as 9 markings on the ruler scale. Thus, each

space on the vernier is -l%of i% inch, or

100
inch. How much smaller is a space on the ver-
nier than a space on the ruler? The ruler

10 100
space is %)- inch. The vernier space issmaller

space is inch, ox inch, and the vernier

by the difference between these two numbers,
as follows:

10 9 _ 1
100 - 100 ~ 100

CECIMAL RULER (ENLARGED)
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Figure 6-3.—Vernier scale.
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1
106 inch smaller than a

Each vernier space is
ruler space.

As an example of the use of the vernier
scal¢, suppose that we are measuring the steel
bar shown in figure 6-4. The end of the bar
almost reaches the 3-inch mark on the ruler,
and we estimate that itis about halfway between
2.9 inches and 3.0 inches. The vernier marks
help us to decide whether the exact measure-
mentis 2.94 inches, 2.95 inches, or 2.96 inches.

DECIMAL RULER (ENLARGED)

t 2 3
1111111111111@11111114.l|11|L|n i

Mty

I\
\&\ \ "sreEL BAR

BEING MEASURED
Figure 6-4.—~Measuring with a vernier.
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The O on the vernier scale is spaced the
distance of exactly one ruler mark (in thiscase,
one tenth of an inch) from the left hand end of
the vernier. Therefore the 0 is at a position
between ruler marks which is comparable to
the position of the end of the bar. In other
words, the 0 on the vernier is about halfway
between tw. adjacent marks on the ruler, just
as the end of the bar is about halfway between
two adjacent marks. The 1 on the veraier scale
is a little closer to alinement with an adjacent
ruler mark; in fact, it is one hundredth of an
inch closer to alinement than the 0. Thig is
because each space on the vernier is one hun-
dredth of an inch shorter than each space on
the ruler.

Each successive mark on the vernier scale
is one hundredth .f an inch closer to alinement
than the preceding mark, until finally alinement
is achieved at the 5 mark. This means that the
0 on the vernier must be five hundredths of an
inch from the nearest ruler mark, since five
increments, each one hundredth of an inch in
size, were used before a mark was found in
alinement.

We conclude that the end of the bar is five
hundredths of an inch from the 2.9 mark on the
ruler, since its position between marks is ex-
actly comparable to that of the 0 on the vernier
scale. Thus the value of our measurement is
2.95 inches.
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The iforegoing example could be followed
through for any distance between markings.
Suppose the 0 mark fell seven tenths of the dis-
tance between ruler markings. It would take
seven vernier markings, a loss of one-hundredth
of an inch each time, to bring the marks in line
at 7 on the vernier.

The vernier principle may be used tc get
fine linear readings, angular readings, etc.
The principle is always the samc. The vernier
has one more marking than the number of mark-
ings on an equal space of the conventional scale
of the measuring instrument. For example, the
vernier caliper (fig. 6-5) has 25 markings on
the vernier for 24 on the caliper scale. The
caliperis marked off to read to fortieths (0.025)
of an inch, and the vernier extends the accuracy
to a thousandth of an inch.

.
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Figure 6-5.—A vernier caliper.

Vernier Micrometar

By adding a vernier to the micrometer, it is
possible toread accurately to one ten-thousandth
of an inch. The vernier markings are on the
sleeve of the micrometer and are parallel to
the thimble markings. There are 10 divisions
on the vernier that occupy the same space as 9
divisions on the thimble. Since a thimble space
is one thousandth of an inch, a vernier space is
169f Topg inch, or rogsg inch. It is —-—-10(1)00 inch
less than a thiimble space. Thus, as in the pre-
ceding explanation ¢f verniers, it i8 possible to
read the nearest ten-thousandth of an inch by
reading the vernier digit whose marking coin-
cides with a thimble marking.

In figure 6-6 (A), the last major division
showing fully on the sleeve index is 3. The
third minor division is the last mark clearly

showing (0.075). The thimble division nearest
and below the index is the 8 (0.008). The ver-
nier marking that matches a thimble marking
is the fourth (0.0004). Adding them all together,
we have,

0.3000
0.0750
0.0080
0.0004

0.3834

The reading is 0.3834 inch. With practice these
readings canbe irade directly fromthe microm-
eter, without writing the partial readings.
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Figure 6-6.—Vernier micrometer settings.
Practice problems:

1. Read the micrometer settings in figure 6-6.

Answers:

1. (A) See the foregoing example.

(B) 0.1539 (E) 0.4690
(C) 0.2507 (F) 0.0552
(D) 0.2500




CHAPTER 7
EXPONENTS AND RADICALS

The operation of raising a number to a power
is a special case of multiplication in which the
factors are all equal. In exauples such as
42=-4x4=16and 5% = 5x5x5 =125, the
number 16 is the second power of 4 and the
number 125 is the third power of 5. The ex-
pression 5° means that three 5's are tobe mul-
tiplied together. Similarly, 4° means 4 x 4.
The first power of any number is the number
itselt. The power is the number of times the
number itself is to be taken as a factor.

The process of finding a root is the inverse
of raising a number to a power. A reot is a
special factor of a number, such as 4 in the
expression 42 = 16. When a number is taken
as a factor two times, as in the expression
4 x 4 = 16. it is called a square root. Thus, 4
is a square root of 16. By the same reasoning,
2is a cube root of 8, since 2x 2 x 2 is equal
to 8. This relationship is usually written as
23 =8,

POWERS AND ROOTS

A power of a number is indicated by an EX-
PONENT, which is a number in small priat
placed to the right and toward the top of the
number. Thus, 1n 43 = 64, the number 3 is the
EXPONENT of the number 4. The exponent 3
indicates that the number 4, called the BASE,
is to be raised to its third power. The expres-
sion is read "4 to the third power (or 4 cubed)
equals 64." Similarly, 5%= 25 is read "5 to the
second power (or 5 squared) equals 25." Higher
powers are read accordng to the degree indi-
cated; for example, "fourth power," "fifth
power,' etc.

When an exponent occurs, it must always be
written unless its value is 1. The exponent 1
usually is not written, but is understood. For
example, the number 5 is actually 5. When we
work with exponenis, it is important to remem-
ber that any number that has no written expo-
nent really has an exponent equal to 1.

A root of a number can be irdicated by plac-
ing a radical sign, ¥, over the number and
showing the root by placing a small number

i

within the notch of the radical sign. Thus, J64
indicates the cube oot of 64, and 32 indicates
the fifth root of 32. The number that indicates
the root is called the INDFX of the root. In the
case of the sauare root, the index, 2, usually is
not shown. When a radical has no index, the
square root is understood to be the one desired.
For example, V36 indicates the square root of
36. The line above the number whose root is to
be found is a symbol of grouping called the vin-
culum. When the radical svmbol is used, a vin-
culum, long enough to extend over the entire
expression whose root is to be found, should be
attached.

Practice problems. Raise to the indicated
power or find the root indicated.

1. 23 2. 62 3. 43 4, 253

5. N 16 6. X8 7. 125 8. V32
Answers:

1. 8 2. 36 3. 64 4. 15,625

5. 4 6. 2 7.5 8. 2

NEGATIVE INTEGERS

Raising to a power is multiplication in which
all the numbers being muitiplied together are
equal. The sign of the product is determined,
as in ordinary multiplicaticsi, by the number of
minus signs. The number of minus signs is odd
or even, depending on whether the exponent of

" the power is odd or even. For example, in the
. problem

65

71

(-2)% = (-2)(-2)(-2) = -8

there are three minus signs. The result is

negative. In
(-2)° = 64

there are six minus signs.
tive.

The result is posi-
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Thus, when the exponent of a negative num-
ber is odd, the power is negative; when the ex-
ponent is even, the power is positive.

As other examples, consider the following:

(-3)% =81
(_3 . X
5 125
(-2)% = 256
-1)° = -1

Positive and negative numbers belong to ihe
class called REAL NUMBERS. The square of a
realnumber ispositive. For example, (-7)2 = 49
and 72 = 49. The expression (-7)2 is read
"minus seven squared.” Note that either seven
squared or minus seven squared gives us +49.
We cannot obtain -49 or any other negative
number by squaring any real number, positive
or negative.

Since there is no real number whose square
is a negative number, it is sometimes said that
the square root of a negative number does not
exist. However, an expression under a square
root sign may take on negative values. While
the square root of a negative number cannot
~ actually be found, it can be indicated.

The indicated square root of a negative num-
ber is called an IMAGINARY NUMBER. The
number V-7, for example, is said to be imagi-
nary. It is read "square root of minus seven."
Imaginary numbers are discussed in chapter 15
of this course.

FRACTIONS

We recall that the exponent of 2 number tells
the number of times that the number is to be
taken as a factor. A fraction is raised to a
power by raising the numerator and the denom-
inator separately tc the power indicated. The

expression (%)2 means-?; is used twice as a
factor. Thus,

Iy _3,3_3°2
('7)z S Xy Tz
-9
T 49
Similarly,
4 -2
5/ ° 2%

66

Since a niinus sign can occupy any one of
three locations in a fraction, notice that evalu-

2

ating (- %) is equivalent to
2 l 2 -1 2 12
€7 (5) "o &5 or e

The process of taking a root of a number is
the inverse of the process of raising the num-
ber to a power, and the method of taking the
root of a fraction is similnr. We may simply
take the root of each term separately and write
the result as a fraction. Consider the following
examples:

L./ N3 6
49 ~NI9 7
, 73 J8 2
" Vizs Y135 5

Practice problems. Find the values for.the
indicated operations:
) (@)
3. (5 4. 3

NO-}

5 Y3 6 Va4, ;/% 8. ‘/-4%
Answers:

1. 1/9 2. 9/16 3. 36/25 4. 8/27

5. 4/6 6. 4/5 7. 2/3 8. 3/17

DECIMALS

When & decimal is raised to a power, the
number of decimal places in the result is equal
to the number of places in the decimal multi-
plied by the exponent. For example, consider
(0.12)3. There are two decimal places in 0.12
and 3 is the exponent. Therefore, the number
of places in the power will be 3(2) = 6. The re-
sult is as follows:

(0.12)3 = 0.001728

The truth of this rule is evident when we re-
call the rule for multiplying decimals. Part of
the rule states: Mark off as many decizmal
places in the product as there are decimal
places in the factors together. If we carry out
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the multiplicaticn, (0.12) x (0.12) x (0.12), it is
obvious that there are six decimal places in the
three factors together. The rule can be shown
for any decimal raised to any power by simply
carrying out the multiplication indicated by the
exponent.

Consider these examples:

(1.4)% = 1.96

(0.12)% = 0.0144
(0.4)% = 0.064
(0.02)? = 0.0004
(0.2)% = 0.04

Finding a root of a number is the inverse of
raising a number to a power. Te determine the
number of decimal places in the root of a per-
fect power, we divide the number of decimal
places in the radicand by the index of the root.
Notice that this is just the opposite of what was
done in raising a number to a power.

Consider ~0.0625. The square root of 625
is 25. There are four decimal places in the
radicand, 0.0625, and the index of the root is 2.
Therefore, 4 + 2 = 2 is the number of decimal
places in the root. We have

N0.0625 = 0.25

Similarly,
N1.69 = 1.3
0.027 = 0.3
V1728 = 1.2
{0.0001 = 0.1

LAWS OF EXPONENTS

All of the laws of exponents may be devel-
oped directly from the definition of exponents.
Separate laws are stated for the following five
cases:

1. Multiplication.

2. Division.

3. Power of a power.

4. Power of a product.

5. Power of quotient.

MULTIPLICATION

To illustrate the law of multiplication, we
examine the following problem:

67

- 73

43 x 42 = ?

Recalling that 43 means 4 x 4 x 4 and 42 means
4 x 4, we see that 4 is used as a factor five
times. Therefore 43 x 4% is the same as 45,
This result could be written as follow s:

43 x 42 -4x4x4x4x4
= 45

1

Notice that three of the five 4's came from
the expression 43, and the other two 4's came
from the expression 42. Thus we may rewrite
the problem as follows:

43 x 4% =402
= 453

The law oi exponents for multipiication may
he stated as follows: To multiply two or more
powers having the same base, add the exponents
ond raise the common base to the sum of the
exponents. This law is further illustrated by
the following examples:

23 x 2%=12"
3x32=33
15¢ x 15% = 15°
102 x 10%% = 10*°

Common Errors

It is important to realize that the base must
be the same for each factor, in order to apg)ly
the laws of exponents. For example, 2°x 3° is
neither 25 nor 35. There is no way to apply the
law of exponents to a problem of this kind. An-
other common mistake is to multiply the bases
together. For example, this kind of error in
the foregoing problem would imply that 23x 32
is equivalent to 65, or 7776. The error of this
may be proved as follows:

23x32-8x9

72

i

)

DIVISION
The law of exponents for division may be
developed from the following example:

67;65_¢x5x5x5x5x6x6 ’
' - FxBxpfxpPxB

62
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Cancellation of the five 6's in the divisor w.th
five of the 6's in the dividend leaves only two
6's, the product of which is 62,

This result can be re.ched dircctly by noting
that 62 is equivalent to 6<7~5), In other words,
we have the following:

67_:_ 65 - 6(7‘5)
= 6°

Therefore the law of exponents for division is
as follows: To divide one power into another
having the same base, subtract the exponent of
the divisor from the exponent of the dividend.
Use the number resulting from this subtraction
as the exponent of the base in the quotient.

Use of this rule sometimes produces a neg-
ative exponent or an exponent whose value is 0.
These two special types of exponents are dis-
cussed later in this chapter.

POWER OF A POWER

Consider the example (3%)°. Remembering
that an exponent shows the number of times the
base is to be taken as a factor and noting in
this case that 32 is considered the base, we
have
3 2

(32)4 = 32 .32 . 32 .

Also in multiplication we add exponents. Thus,

32 . 32,32, 32 _ g(2+2+232) _ 38
Therefora,
(32)4 = g(4x2)
= 38

The laws of exponents for the power of a
power may be stated as follows: To find the
power of a power, multiply the exponents. It
should be noted that this case is the only one in
which multiplication of exponents is p2rformed.

POWER OF A PRODUCT

Consider the example (3 - 2 : 5)3, We know
that
2“.)3 =

3-.2. 3-2-5(3.2.5)(3-2.5)

Thus 3, 2, and 5 &ppecur three times each as
sactors, and we can show this with exponents as
33,23, and 5. Therefore,
(3:2-.53=23%.23%.53

The law of exponents for the power of a
product is as follows: The power of a product
is equal to the product obtained when each of
the original factorc is raised to the indicated
power and the resulting powers ar. multiplied
together.

POWER OF A QUOTIENT
The law of exponents for a power of an indi-

cated quotient may be developed from the fol-
lowing example:

(z)’_z 2 2
3) °3°3°3
2.2.2
~3.3.3
23
=373
Therefore,
3 23

The law is stated as fcllows: The power of
a quotient is equal to the quotient obtained when
the dividend and divisor are each raised to the
indicated power separately, before the division
is performed.

Practice problems. Raise each of the fol-
lowing expressions to the indicated power:

2 .32 3 - 2) 3 5°
1. (3% . 29 3.(5.6/ 5. 2
2. 3% + 3?2 4, (-39° 6. (3-2.7?°
Answers:
1. 3% x 2% = 5,18¢
2. 27
q L
4 125
4. [(-3)*])°% = 729
5. 25
6.9 -4 .49 = 1,764
68
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SPECIAL EXPONENTS

Thus far in this discussion of exponents, the
'mphasis hasbeen on exponents whichare posi-
ive integers. There are two types of exponents
vhich are not positive integers, and two which
wre treated as special cases even though they
nay be considered as positive integers.

ZERO AS AN EXPONENT

Zero occurs as an exponent in the answer to
. problem such as 4° + 43. The law of expo-
sents for division states that the exponents are
.0 be subtracted. This is illustrated as follows:

%§-= 4373 = 4°

Another way of expressing the result of
dividing 4° by 4% is to use the fundamental
axiom which states that any number divided by
itself is 1. Inorder for the laws of exponents
to hold true in all cases, this must also be true
when any number raised to a power is divided
by itself. Thus, 4°/4° must equal 1.

Since 43/43 has been shown to be equal to
both 4° and 1, we are forced to the conclusion
that 4° = 1.

By the same reas.ning,

5  g1-1_ g0
5 = 5 =5
Also,
o _
B - 1
Therefore,
5 = 1

Thus we see that any number divided by itself
results in a 0 exponent and has a value of 1.
By definition then, any number (other than zero)
raised to the zero power equals 1. This is fur-
ther illustrated in the following examples:

30 =1
400° = 1
0.02° = 1

1\°
(’s‘) =1
(W3° =1

69

ONE AS AN EXPONENT

The number 1 arises as an exponent some-
times as a result of division. In the example
53 .

52 we subtract the exponents to get

53-2= 51

This problem may be worked another way as
follows:

53
5275 - B

Therefore,
5! = 5

We conclude that any number raised to the
first power is the number itself. The exponent
1 usually is not written but is uanderstood to
exist.

NEGATIVE EXPONENTS

If the law of exponents for division is ex-
tended to inciude cases where the exponent of
the denominator is larger, negative exponents
arise. Thus,

32 p2-5_ o-3

35 = 3 = 3
Another way of expressing this problem is as
follows:

32 _ 3 -3 _ 1
353 .3.3.3-.-3 3°
Therefore,
I |
37 =37

We conclude that a number N with a negative
exponent is equivalent to a fraction having the
foilowing form: Its numerator is 1; its denomi-
nator is N with a positive exponent whose abso-
lute value is the same as the absolute value of
the original exponent. In symbols, this rule
may be stated as follows:

—a_ 1
N =N°

7S
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Also,

The following examples further illustrate
the rule:

5“=%
62 =57
4-12=4_}§

Notice that the sign of an exponent may be
changed by merely moving the expression which
contains the exponent to the other position in the
fraction. The sign of the exponent is changed
as this move is made. For example,

._1'._.. - 1 = L
1072 ~ 102
_ gy 102
=1x 1
Therefore,
1 _ 10°
1002 T 1

By using the foregoing relationship, a prob-
lem such as 3 + 5% may be simplified as fol-
lows:

-5%=3x-5-17;
5°

=3 x 1
=3 x 5%

FRACTIONAL EXPONENTS

Fractional exponents obey the same laws as
do integral exponents. For example,
41/2 X 41/2 - 4(1/2+ 1/2)
= 422

=4 = 4

.. '76

70

Another way of expressing this would be

4V2 x 412 _ (41/2)2

= 4(1/.2 % 2)

=41 =14

Observe that the number 42, when squared
in the foregoing example, produced the number
4 as an answer. Recalling that a square root of
a number N is a number x such thatx2= N, we
conclude that 41’2 js equivalent to ¥4, Thus
we have a definition, as follows: A fractional
exponent of ‘he form 1/r indicates a root, the
index of which is r. This is further illustrated
in the following examples:

2V2 - g
=7

62/3 - (61/3)2 - (&"S')Z

4 1/3

Also,
62/3 - (62\1/3 - m‘

Notice that in an expression such as 83 we
can either find the cube rootof 8 firstor square
8 first, as shown by the following example:

(81/3 )2 =22= 4 and (82)1'/3 _ m -4

All the numbers in the evaluation of 83
remain small if the cube root is found before
raising the number to the second power. This
order of operation is particularly desirable in
evaluating a number like 645, If 64 were first
raised to the fifth power, a large number would
result. It would require a grea: deal of unnec-
essary effort to find the sixth root of 645. The
rosult is obtained easily, if we write

645/6 - (641/6)5 - 25 = 392

If an improper fraction occurs in an expo-
nent, such as 7/3 in the expression 27/3 | it is
customary to keep the fraction in that form
rather than express it as a mixed number. In
fraction form an exponent shows immediately
what power is intended and what root is in-
tended. However, 27/ can be expressed in
another form and simplified by changing the
improper fraction to a mixed number and writ-
ing the fractional part in the radical form as
follows:

27/3 = 2213 _ 92 V3 L 4 ¥
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The law of exponents for multiplication may
be combined with the rule for fractional expo-
nents to solve problems of the following type:

PROBLEM: Evaluate the expression 42:5,

42.5 = 42 X 40.5
= 16 x 412
= 16 x 2

= 32

SOLUTION:

Practice problems:

1. Perform the indicated division: 2—1-273

2. Find the product: 725 x 7¥10 x 7310

3. Rewrite with a positive exponent and sim-
plify: 9°1/2

4. Evaluate 10032
5. Evaluate (8°)°
Answers:
1. 23/3 = 21/3 = ?\/'4_
2. 78/10
1 1
3. 977 =3
4, 1,000
5. 1

SCIENTIFIC NCTATION
AND POWERS OF 10

Technicians, engineers, and others engaged
in scientific work are often required to solve
problems involving very large and very small
numbers. Problems such as

22,684 x 0.00189
0.0713 x 83 x 7

are not uncommon. Solving such problems by
the rules of ordinary arithmetic is laborious
and time consuming. Moreover, the t2dious
arithmetic process lends itself to operational
errors. Also there is difficulty in locating the
decimal point in the result. These difficulties
can be greatly reduced by a knowledge of the
powers of 10 and their use.

77

71

The laws of exponents form the basis for
calculation using powers of 10. The following
list includes several decimals and whole num-
bers expressed as powers of 10:

10,000 = 10
1,000 = 103
100 = 102
10 = 10!

1 = 10°

0.1 =107
0.01 = 1072
0.001 = 1073
0.0001 = 1074

The concept of scientific notation may be
jemonstrated as follows:

60,000 = 6.0000 x 10,000
= 6 x 104
538 = 5.38 x 100
= 5.38 x 102

Notice that the final expression in each of
the foregoing examples invelves a number be-
tween 1 and 10, multiplied by a power of 10.
Furthermore, in each case the exponent of the
power of 10 is a number equal to the number of
digits between the new position of the decimal
point and the original position (understood) of
the decimal point.

We apply this reasoning to write any number
in scientific notation; that is, as a number be-
tween 1 and 10 multiplied by the appropriate
power of 10. The appropriate power of 10 is
found by the followin3 mechanical steps:

1. Shift the decimal point to standard posi-
tion, which is the position immediately to the
right of the first nonzero digit.

2. Count the number of digits between the
new position of the decimal point and its origi-
nal position. This number indicates the value
of the exponent for the power of 10.

3. If the decimal point is shifted to the left,
the sign of the exponent of 10 is positive; if the
decimal point is shifted to the right, the sign of
the exponent is negative.

The validity of this rule, for those cases in
which the exponent of 10 is negative, is demon-
strated as follows:
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0.00657 = 6.57 x 0.001
= 6.57 x 1073

0.348 = 3.48 x 0.1
= 3.48 x 107!

Further examples of the use of scientific
notation are given as follows:

543,000,000 = 5.43 x 108
186 = 1.86 x 10°
243.01 = 2.4301 x 102
0.0000007 = 7 x 1077
0.00023 = 2.3 x 107

Multiplication Using Powers of 10

From the law of exponents for multiplication
we recall that to multiply two or more powers
to the same base we add their exponents. Thus,

10* x 102 = 106
We see that multiplying powers of 10 together

is an application of the general rule. This is
demonstrated in the following examples:

1. 10,000 x 100 = 104 x 102
= 104+2
= 106

2. 0.0000001 x 0.001 = 1077 x 1073
= 10777 Y
= 10710

3. 10,000 x 0.001 = 10% x 10~3
= 104-2
= 10

4. 23,000 x 500 = ?

23,000 = 2.3 x 10¢
500 = 5 x 102

Therefore,

23,000 x 500 = 2.3 x 10* x 5 x 102
2.2 x 5 x 10* x 10?
= 11.5 x 10°

11,500,000

5. 62,000 x 0.003 x 4,600 = ?
62,000 = 6.2 x 10%
0.0003 = 3 x 107*
4,600 = 4.6 x 103
Therefore,
62,000 x 0.0003 x 4,600 = 6.2 x 3
x 4.6 x 10 x 10™* x 103
= 85.56 x 10°
= 85,560

Practice problems. Muitiply, using powers
of 10. For the purposes of this exercise, treat
all numbers as exact numbers:

1. 10,000 x 0.001 x 100
. 0.000350 x 5,000,000 x 0.0004
. 3,875 x 0.000032 x 2,000,000
. 7,000 x 0.015 x 1.78

B W o

Answers;
. 1.0 x 103
7.0 x 107}
3.72 x 10°
1.869 x 102

o W N

Division Using Powers of 10

The rule of exponents for division states
that, for powers of the same base, the exponent
of the denominator is subtracted from the ex-
ponent of the numerator. Thus,

107 . 43
103 = 10
= 104

It should be remembered that powers may
be transferred from numerator to denominator
or from denominator to numerator by simply
changing the sign of the exponent. The follow-
ing examples illustr.te the use of this rule for
powers of 10:

1. 72,000 7.2 x 10
0.0012 - 1.2 x 10-3
- %lg-x 104 x 103
=6x 10’
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{2. 44 x 107% 44 -4 5 Answers:
* Tra0s -0 x 0 By
= 4x 10 1. 2.38 x 10 ° -
2. 3.64 x 10
Combined Multiplication and Division 3. 9.8 x 1072

Using the rules already shown, multiplica-
tion and division involving powers of 10 may be
combined. The usual method of solving such
problems is to multiply and divide alternately
until the problem is completed. For example,

36,

000 x 1.1 x 0.06
0.012 x 2,200

Rewriting this problem in scientific notation,
we have

3.6x 10*x 1.1x6x 1072 _ 3.
1.2x 102 x 2.2 x 10°

=9
= 90

Notice th.t the elimination of 0's, wherever
possible, simplifies the computation and makes
it an easy matter to place the decimal point.

SIGNIFICANT DIGITS.—One of the most im-
portant advantages of scientific notation is the
fact that it simplifies the task of determining
the number of significant digits in a number.
For example, the fact that the number 0.C0045
has two significant digits is sometimes ob-
scured by the presence of the 0's. The confu-
sion can be avoided by writing the number in
scientific notation, as follows:

0.00045 = 4.5 x 107*

Practice problems. Express the numbers in
the following probletus in scientific notation
and round off before performingthe calculation.
In each problem, round off calculation numbers
to one more digit than the number of significant
digits in the least accurate number; round the

answer to the number of significant digits in

the least accurate number:
1. 0.000063 x 50.4 x 0.007213
780 x 0.682 x 0.018

2. 0.015 » 216 x 1.78
79 x 0.0624 x 0.0353

3. 0.000079 x 0.00036
20 x 10 °

Other Applications

The applications of powers of 10 may be
broadened to include problems involving recip-
rocals and powers of products.

RECIPROCALS.—The following example il-
lustrates the use of powers of 10 in the forma-
tion of a reciprocal:

1
250,000 x 300 x 0.02

1

=95 x10°x3x102x 2x 10°
1075

25x 3 x 2

1075

15

Rather than write the numerator as 0.00001,
write it as the product of two factors, one of
which may be easily divided, as follows:

1075 102 x 1077
15 T~ 15
100

——

=15
6.67 x 1077
0.000000667

x 1077

POWER OF A PRODUCT.—The following
example illustrates the use of powers of 10 in
finding the power of a product:

8 x 104 x 2 x 10%)2
82 x 22 x (10%%5)?2
64 x 4 x 10

956 x 1018

2.56 x 10%°

(80,000 x 2 x 10%)2

RADICALS

An expression such as N2, V5, or Na + b
that exhibits a radical sign, is referred toas a

13

79
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RADICAL. We have already worked with radi-
cals-in the form of fractional exponents, but it
is also {requently necessary to work with them
in the radical form. The word *'radical" is de-
rived from the Latin word ''radix,"” which means
"root." The word 'radix" itself is more often
used in modern mathematics to refer to the
base of a number system, such as the base 2 in
the binary system. However, the word "radical”
is retained with its origiinal meaning of '"'root."

The radical symbol (V) appears to be a dis-
tortion of the initial letter '"r" from the word
"radix." With long usage, the r gradually lost
its significance as a letter and became dis-
torted into the symbol as we use it. The vin-
culum helps to specify exactly which of the
letters and numbers following the radical sign
actually belong to the radical expression.

The number under a radical sign is the RAD-
ICAND. The index of the root (except in the
case of a square root) appears in the trough of
the radical sign. The index tells what root of
the radicand is intended. For example, in ¥ 32,
the radicand is 32 and the index of the root is 5.
The fifth root of 32 is intended. In ~50, the
square root of 50 is intended. When the index
is 2, it is not written, but is understood.

If we can find one square root of a number
we can always find two of them. Remember
(3)2 is 9 and (-3)2is also 9. Likewise (4)2 and
(-4) 2 both equal 16 and (5)2 and (-5)? both equal
25. Conversely, V9 is +3 or -3, ~16 is +4 or
-4, and N 25 is +5 or -5. When we wish to show
a number that may be either positive or nega-
tive, we may use the symbol : which is read
"plus or minus." Thus +3 means 'plus or
minus 3." Usually when a number is placed
under the radical sign, only its positive root is
desired and, unless otherwise specified, it is
the only root that need be found.

COMBINING RADICALS

A number written in front of another number
and intended as a multiplier is called a COEF-
FICIENT. The expression 5x means 5 times x;
%_means a times y; and 7 N2 means 7 times

2. In these examples, 5 is the coefficient of
X, a is the coefficient of y, and 7 is the coeffi-
cient of V2.

Radicals having the same index and the same
radicand are SIMILAR. Similar radicals may
have different coefficients in front of the radi-

cal sign. For example, 3 v2, ¥2, and % N2
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are similar radicals. When a coefficient is not
written, it is understood to be 1. Thus, the co-
efficient of N2'is 1. The rule for adding radi-
cals is the same as that stated for adding de-
nominate numbers: Add only units of the same
kind. For example, we could add 2 ~¥3 and
4 V'3 because the "unit" in eac’ : these num-
bers is the same (V' 3). By the same reasoning,
we could not add 2V 3 and 4 V5 because these
are not similar radicals.

Addition and Subtraction

When addition or subtraction of similar rad-
icals is indicated, the radicals are combined by
adding or subtracting their coefficients and
placing ti:e result in front of the radical. Add-
ing 3 N2 and 5 V2 is similar to adding 3 bolts
and 5 bolts. The following examples iliustrate
the addition and subtraction of similar radical
expressions:

1. 3N2+5N2 =82

2. 1/2 (V3) + 173 (3) = 5/6 (13)
3. N5 -6~N5 + 2N5 = -35
4. BT -2YT+1¥T=0

Example 4 illustrates a case that is some-
times troublesome. The sum of the coefficients,
-5, -2, and 7, is 0. Therefore, the coefficient
of the answer would be 0, as follows:;

0T = 0 x VT

Thus the final answer is 0, since 0 multiplied
by any quantity is still 0.
Practice problems.

operations:

1. 4N3 - N3 + 53
2.%ﬁ+‘\f—6_

3, V5 - 6 3%
4, -2N10 - 1N10

Perform the indicated

Answers
1. 8 N3 3. -5 %
2, % NE 4. -9 N0
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Multiplication and Division

If a radical is written immediately after an-
other radical, multiplication is intended. Some-
times a dot is placed between the radicals, but
not always. Thus, either N7 « N 1T or N7 N 11
means multiplication.

When multiplication or division of radicale
is indicated, several radicals having the same
index can be combined into one radical, if de-
sired. Radicals having the same index are said
to be of the SAME ORDER. For example, N2
is a radical of the second order. The radicals
N2 and N5 are of the same order.

If radicals are of the same order, the radi-
cands can be multiplied or divided and placed
under one radical symbol. For example, N5
multiplied by ~3 is the same as ¥'5x 3. Also,
NG divided by V3 is the same as N6 + 3. If
coefficients appear before the radicals, they
also must be included in the multiplication or
division. This is illustrated in the following
examples:

1. 2NZ2.345 =2.N2.3.45
=2.3v2.N5
=2.342-5
= 6 N10
S
3 3
5xN2
52

=

|

2

It is important to note that what we have
said about multiplication and division does not
apply to addition. A typical error is to treat
the expression N9 + 4 as if it were equivalent
to + N 4. These expressions cannot be
equivalent, since 3 + 2 is not equivalent to ~'13.

FACTORING RADICALS.—A radical can be
split into two or more radicals of the same or-
der if the radicand can be factored. This is
illustrated in the following examples:

1. V20 = NE.N5 = 2 Wb

2. V54 = V272
=¥z -332
3. VO _ NENE
NS NS
=N4d=2

81
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SIMPLIFYING RADICALS

Some radicals may be changed to an equiva-
lent form that is easier to use. A radical is in
its simplest form when no factor can be re-
moved from the radical, when there is no frac-
tion under the radical sign, and when the index
of the root cannot be reduced. A factor can be
removed from the radical if it occurs a number
of times equal to the index of the root. The fol-
lowing examples illustrate this:

1. N38 = V22.7 = 27T
9. V54 = VP .2 = 3(VD)
3. Vi50 = V255 = 2(V3)

Removing a factor that occurs a number of
times equal to the index of the root is equiva-
lent to separating a radical into two radicals so
that one radicand is a perfect power. The rad-
ical sign can be removed from the number that
is a perfect square, cube, fourth power, etc.
The root taken becomes the coefficient of the
remaining radical.

In order to simplifv radicals easily, it is
convenient to know the squares of whole num-
bers up to about 25 and a few of the smaller
powers of the numbers 2, 3, 4, 5, and 6. Table
7-1 shows some frequently used powers of
numbers.

Table 7-1.— Powers of numbers.

2 .1 142 = 196 |
2% = 152 = 225
3% = 162 = 256
4% = 16 172 = 289
52 = 25 182 = 324
62 = 36 192 = 361
72 = 49 202 = 400
8% = 64 212 = 441
92 = 81 222 = 484
102 = 100 232 = 529
112 = 121 242 = 576
122 = 144 252 = 625
132 = 169

(A)
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Table 7-1.—~Powers of number s—Continued.

2! = 2 3'=3
22 = 32=9
23=8 33=27
29 = 16 34=381
25 = 32 35 = 243
6:
26 = 64 ©
27 = 128
2% = 256
(B)
41 : 4 5} = 5
42 = 16 52 = 25
43 = 64 53 = 125
44 = 256 54 = 625
(D) (E)
6:=6
62= 36
63 =216
(F)

Referring to table 7-1 (A), we see that the
series of numbers

1, 4, 9, 16, 25, 36, 49, 64, 81, 100

comprises all the perfect squares from 1 to 100
inclusive. If any one of these numbers appears
under a square root symbol, the radical sign
can be removed immediately. This is illus-
trated as follows:

N3S =5
NBI = 9

A radicand such as 75, which has a perfect
square (25) as a factor, can be simplified as
follows:

N5 = N25 - 3
= N25 . N3
=5 N3

76
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This procedure is further illustrated in the fol-
lowing problems:

1. N8 =NE-2
=N4d . N2
=2 N2

N3G - 2

N36 - N2

6 N2

2. VT2 =

By reference to the perfect fourth powers in
table 7-1, we may simplify a radical such as

405. Noting that 405 has the perfect fourth
power 81 as a factor, we have the following:
V405 = V81 5
= 3 (V5)

As was shown with fractional exponents,
taking a root is equivalent to dividing the expo-
nent of a power by the index of the root. If a
factor of the radicand has an exponent that is
not a multiple of the index of the root, the fac-
tor may be separated so that one exponent is
divisible by the index, as in

N37= N353 = 36/2.31/2 - 383 . N3 =273
Consider also
=2-.-33(W2.3.9)

54 30

If the radicand is a iarge number, the per-
fect powers that are factors are not always ob-
vious. In such a case the radicand can be sepa-
rated into prime factors. For example,

N8,B820 = N2¢4.3%.5.17%
2.3-74%
42 N5

Practice problems. Simplify the radicals
and reduce to lowest terms:

1. NT . NT5 3. 18(~30)
NE 3(N'10)
2. ¥81 4. V3,830

N N80




Chapter 7T-EXPONENTS AND RADICALS

Answers:
.3 3. 6(V3)
b, I3 4.7

RATIONAL AND
RRATIONAL NUMBERS

Real and imaginary numbers make up the
umber system of algebra. Imaginary numbers
hre discussed in chapter 15 of this course.
Real numbers are either rational or irrational.
"he word RATIONAL comes from the word
‘ratio." A number is rational if it can be ex-
ressed as the quotient, or ratio, of two whole
wmbers. Rational numbers include fractions
ike 2/7, whole numbers, and radicals if the
‘adical sign is removable.

Any whole number is ratioual. Ite Aenouzi-~

ator is 1. For instance, 8 equals %’ which is

he quotient of two integers. A number like
.16 is rational, since it can be expressed as

he quotient of two integers in the form 91- The
W ollowing are also examples of rational numbers:

1. |/-g§§, ‘which equals%
. -6

2. -6, which equals T

3. 5-,2’-, which equals %Z

| . Any rational number can be expressed as the

juotient of two integers in many ways. ‘or
'xample,
;.1 14 _21
17 2" 83 °°°

An IRRATIONAL number is a real number
hat cannot be expressed as the ratio of two in-

egers. The numbers N3, 5 ~2, N7, % N20,

and :/_2'5 are examples of irrational numbers.
Rationalizing Denominators

Expressions such as 7% and 'g%have ir-
rational nhumbers in the denominator. If the

83
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denominators are changed immediately to deci-
mals, as in

€ 1

NZ T 1.4142

the process of evaluating a fraction becomes an
exercise in long division. Such a fraction can
be evaluated quickly by first changing the de-
nominator to a rational number. Converting a
fraction with an irrational number in its de-
nominator to an equivalent fraction with a ra-
tional number in the denominator is called
RATIONALIZING THE DENOMINATOR.

'‘Multiplying a fraction by 1 leaves the value
of the fraction unchanged. Since any number
divided by itself equals 1, it follows, for exam-
ple, that

N2

—_=1

NZ

If the numerator and denominator of 7?2-' are

each multiplied by ~'2, another fraction having
the same value is obtained. The result is

71 N2 " NZ
NZT NZT NT 2
The denominator of the new equivalent frac-

tion is 2, which is rational. The decimal value
of the fraction is

7 NT _ 1(1.4142) _
2 - 2

7(0.7071) = 4.9497
N2
To rationalize the denominator in 5 V3 ve
multiply the numerator and denominator by 3.
We get
NI NT N NE . gp
= . = = "9 9
5v3 53 N3 53 15

1 g
Ts- 6

Practice problems. Rationalize the denomi-
nator in each of the following:

1-6" 3‘2"
* A2 * N
NS 6
2.-3?- 4‘Ty
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Answers:
1. 342 3. 2?-
g NT& 4 8V
3 y

EVALUATING RADICALS

Any radical expression has a decimal equiv-
alent which may be exact if the radicand is a
rational number. If the radicand is not rational,
the root may be expressed as a decimal ap-
proximation, but it can never be exact. A pro-
cedure similar to long division may be used for
calculating square root and cube root, and
higher roots may be calculated by means of
methods based on logarithms and higher math-
ematics. Tables of powers and roots have been
calculated for use in those scientific fields in
which it is frequently necessary to work with
roots.

SQUARE ROOT PROCESS

The arithmetic process for calculation of
square root is outlined in the following para-
graphs:

1. Begin at the decimal point and mark the
number off into groups of two digits each, mov-
ing both to the right and to the left from the
decimal point. This may leave an odd digit at
the right-hand or left-hand end of the number,
or both. For example, suppose that the number
whose square root we seek is 9025. The num-
ber marked off as specified would be as follows:

N90'25.

2, Find the greatest number whose square
is contained in the left-hand group (90). This
nymber is 9, since the square of 9 is 81. Write
9 above the first group. Square this number (9),
place its square below the left-hand group, and
subtract, as follows:

9
8

-0

9
N'90'25.
25

ol

Bring down the next group (25) and place it be-
side the 9, as shown. This is the new dividend
(925).

3. Multiply the first digit in the root (9) by
20, obtaining 180 as a trial divisor. This trial

divisor is contained in the new dividend (925)
five times; thus the second digit of the root ap-
pears to be 5. However, this number must be
added to the trial divisor to obtain a "true
divisor." If the true divisor is then too large
to use with the second quotient digit, this digit
must be reduced by 1. The procedure for step 3
is illustrated as follows:

9 5.
N90725.
81
180 9 25
185 925
0 00

The number 180, resulting from the multi-
plication of 9 by 20,is written as a trial divisor
beside the new dividend (925), as shown. The
quotient digit (5) is then recorded and the trial
divisor is adjusted, becoming 185. The trial
quotient (180) is crossed out.

4. The true divisor (185) is multiplied by
the second digit (5) and the product is placed
below the new dividend (925). This step is
shown in the illustration for step 3. When the
product in step 4 is subtracted from the new
dividend, the difference is 0; thus, in this ex-
ample, the root is exact.

5. In some problems, the difference is not 0
after all of the digits of the original number
have been used to form new dividends. Such
problems may be carried further by adding 0's
on the right-hand end of the original number,
just as in normal long division. However, in
the square root process the 0's must be added
and used in groups of 2.

Practice problems. Find the square root of
each of the following numbers:

1. 9.61 2. 123.21 3. 0.0025
Answers:
1. 3.1 2. 11.1 3. 0.05

TABLES OF ROOTS

The decima) values of square roots and cube
roots of numbers with as many as 3 or 4 digits
can be found from tables. The table in appen-
dix I of this course gives the square roots and
cube roots of numbers from 1 to 100. Most of
the values given in such tables are approximate
numbers which have been rounded off.

-,
et
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For example, the fourth column in appendix I
shows that NET 8.4853, to 4 decimal places.
By shifting the decimal point we can obtain
other square roots. A shift of two places in the
decimal point in the radicand corresponds to a
shift of one place in the same direction in the
square root.

The following examples show the effect, as
reflected in the square root, of shifting the
location of the decimal point in the number
whose square root we seek:

NT2 = 8.4853
N0.72 = 0.84853

0.0072 = 0.084853
NT,200 = 84.853

Cube Root

The fifth column in apoendix I shows that the
cube root of 72 is 4.1602. By shifting the deci-
mal point we immediately have the cube roots
of certain other numbers involving the same
digits. A shift of three places in the decimal
point in the radicand correspond= to a shift of
one place in the same direction in the cube
root.

9
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Compare the following examples:

Y72 = 4.1602
¥0.072 = 0.41602
ATZ;000 = 41.602

Many irrational numbers in their simplified
forms involve ~2 and ~/3. Since these radicals
occur often, it is convenient to remember their
decimal equivalents as foliows:

NZ = 1.4142 and N3 = 1,7321

Thus any irrational numbers that do not contain
any radicals other than ~'2 or ~'3 can be con-
verted to decimal forms quickly without re-
ferring to tables.

For example consider

NT2 = 6 N2 = 6(1.4142) = 3.485
N27T = 33 = 3(1.7321) = 5.196

Keep in mind that the decimal equivalents of
N2 and N3 as used in the foregoing examples
are not exact numbers and the results obtained
with them are approximate in the fourth deci-
mal place.




CHAPTER 8
LOGARITHMS AND THE SLIDE RULE

Logarithms represent a specialized use of
exponents, By means of logarithms, computa-
tioc1r with large masses of data can be greatly
simplified. For example, when logarithms are
used, the process of multiplication is replaced
by simple addition and division is replaced by
subtraction. Raising to a power by means of
logarithms is done in a single multiplication,
and extracting a root reduces to simpledivision.

DEFINITIONS

In the expression 23 = 8, the number 2 is
the base (not to be confused with the base of the
number system), and 3 is the exponent which
must be used with the base to prod: ce the num-
ber 8. The exponent 3 is the logarithm of 8
when the base is 2, This relationship is usually
stated as follows: The logarithm of 8 to the
base 2 is 3. In general, the logarithm of a
number N with respect to a given base is the
exponen! which must be used with the base to
produce N. Table 8-1 illustrates this.

Table 8-1.—~Logarithms with various bases.

Exponential form Logarithmic form
23 =8 log,8 = 3
42 = 16 log, 16 = 2
5° = 1 logsl =0
213 = 9 log ,,9 = 2/3

Table 8-1 shows that the logarithmic rela-
tionshipmay be expressed equally well in either
of two forms; these are the exponential form
and the logarithmic form. Observe, in table
8-1, that the base of a logarithmic expression
is indicated by placing a subscript just below
and to the right of the abbreviation "log." Ob-
serve also that the word '"logarithm" is abbre-
viated without using a period.

The equivalency of the logarithmic and ex-
ponential forms may be used to restate the fun-
damental definition of icgarithms in its most
useful form, as follows:

b* = N implies that log, N = x

In words, this definition is stated as follows: If
the base b raised to the x power equais N, then
x is the logarithm of the number N to the base b.

One of the many uses of logarithms may be
shown by an example in which the base is 2.
Table 8-2 shows the powers of 2 from 0 through
20. Suppose that we wish to use logarithms to

multiply the numbers 512 and 256, as follows:
From table 8-2, 512 = 29
256 = 28

Then 512 x 256 = 2% x 28
= 917

and from the table again 217 = 131072

It is seen that the problem of multiplication
is reduced to the simple addition of the expo-
nents 9 and 8 and finding the corresponding
power in the table.

Table 8-2 (A) shows the base 2 in the expo-
nential form with its corresponding powers.
The actual computation in logarithmic work
does not require that we record the exponential
form. All that is required is that we add the
appropriate exponents and have available a
table in which we can look up the number cor-
responding to the new exponent after adding.
Therefore, table 8-2 (B) is adequate for our
purpose. Solving the foregoing example by this
table, we have the following:

10g2 512 =
log, 256 = 8
log, of the product = 17

Therefore, the number we seek is the one in
the table whose logarithm is 17. This number
is 131,072, In this example, we found the expo-
nents directly, added them since this was a
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Table 8-2.=Exponential and logarithmic
tables for the bzse 2.

— J

() Powers ot 2 trom | Py 5 e corre.

sponding powers

Log Number
20 = 1 0 1
2! = 2 1 2
22 - 4 2 4
23 = 8 3 8
24 = 16 4 16
25 = 32 5 32
26 = 64 6 64
27 = 128 7 128
28 = 256 8 256
2° = 512 9 512
210 = 1024 10 1024
211 = 2048 11 2048
212 = 4096 12 4096
213 = 8192 13 8192
214 = 16384 14 16384
215 = 32768 15 32768
216 = 65536 16 65536
217 = 131072 17 131072
218 = 262144 18 262144
219 = 524288 19 524288
220 = 1048576 20 1048576

multiplication problem, and located the coirre-
sponding power. This avecided the unnecessary
step of writing the base 2 each time.

Practice problems. Use the logarithms in
table 8-2 toperform the following multiplication:

1. 64 x 128 3. 128 x 4,096

2. 1,024 x 256 4. 512 x 2,048
Answers:

1. 8,192 3. 524,288

2. 262,144 4. 1,048,576
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NATURAL AND COMMON LOGARITHMS

Many natural phenomena, such as rates of
growth and decay, are most easily described in
terms of logarithmic or exponential formulas.
Furthermore, the geometric patterns in which
certain secds grow (for example, sunflower
seeds) is a logarithmic spiral. These facts ex-
plain the namc 'natural logarithms.'" Natural
logarithms uses the base e, which is an irra-
tional number upproximately equal to 2.71828.
This system is sometimes called the Napierian
system of logarithms, in honor of John Napier,
who is credited with the invention of logarithms.

To distinguish natural logarithms from other
logarithmic systems the abbreviation, 1n, is
sometimes used. When 1n appears, the base is
understood to be e and need not be shown. For
example, either log, 45 or 1In 45 signifies the
natural logarithm of 45.

COMMON LOGARITHMS

As has been shown in preceding paragraphs,
any number may be used as a base for a system
of logarithms. The selection of a base is a
matter of convenience. Briggs in 1617 found
that base 10 possessed many advantages not
obtainable in ordinary calculations with other
bases. The selection of 10 as a base proved so
satisiactory that today it is used almost exclu-
sively for ordinary calculations. Logarithms
with !0 as a base are therefore called COM-
MON LOGARITHMS.

When 10 is used as a base, it is not neces-
sary to indicate it ir writing logarithms. For
example,

log 100 = 2
is understood to mean the same as

If the base is other than 10, it must be speci-
fied by the use of a subscript to the right and
below the abbreviation 'log." As noted in the
foregoing discussion of natural logarithms, the
use of the distinctive abbreviation "In" elimi-
nates the need for a subscript when the base
is e.

It is relatively easy to convert common log-
arithms to natural logarithms or vice versa, if
necessary. It should be noted further that each
system has its peculiar advantages, but for
most everyday work, the common system is
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more often used. A simple relation connects
the two systems. If the common logarithm of a
number can be found, multiplying by 2.3026
gives the natural logarithm of the number. For
example,

log 1.60 = 0.2041
In 1.60 = 2.3026 x 0.2041
= 0.4700

Thus the natural logarithm of 1.60 is 0.4700,
correct to four significant digits.

Conversely, multiplying the natural loga-
rithm by 0.4343 gives the common logarithm of
a number. As might be expected, the conver-
sion factor 0.4343 is the reciprocal of 2.3026.
This is shown as follows:

1
373096 - 0.4343

Positive Integral Logarithms

The derivation of positive whole logarithms
is readily apparent. For example, we see in
table 8-3 (B) that the logarithm of 10 is 1. The
number 1 is simply the exponent of the base 10
which yields 10. This is shown in table 8-3 (A)
opposite the logarithmic equation. Similarly,

10°=1...........1lg1=0

102=100......... log 100 = 2
10%=1,000 ......log 1,000 = 3
104 = 10,000. . ...log 10,000 = 4

Table 8-3.—Exponential and corresponding logarithmic notations using base 10.

1074 = -1—(1)—; = 0.0001 log 0.0001 = -4
107 = 1h5 - 0.001 log 0.001 = -3
1072 = —1%-2- = 0.01 log 0.01 = -2
107! = -130—- = 0.1 log 0.1 = -1
10°V2 = 1__= m: 0.31623 log 0.31623 = -0.5
Ni0 10
= 0.5 -1
10° = 1 log 1 =0
102 = N10 = 3.1623 log 3.1623 = 0.5
10! . = 10 log 10 =1
10¥2 -10v10 =  31.623 log  31.623 = 1.5
102 = 100 log 100 = 2
1052 = 102 (N10) =  316.23 log 316,23 =25
103 = 1,000 log 1,000 =3
10772 = 103 (N10) = 3162.3 log 3162.3 = 3.5
104 = 10,000 log 10,000 = 4
82
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Positive Fractional Logarithms

Referring to table 8-3, notice that the loga-
rithm of 1 is 0 and the logarithm of 10 is 1.
Therefore, the logarithm of a number between
1 and 10 is between 0 and 1. An easy way to
verify this is to consider some numbers be-
tween 1 and 10 which are powers of 10; the ex-
ponent in each case will then be the logarithm
we seek. Of course, the only powers of 10
which produce numbers between 1 and 10 are
fractional powers.

EXAMPLE: 1012 = 3.1623 (approximately)
10%-5 = 3.1623
Therefore, log 3.1623 = 0.5

Other examples are shown in the table for
102, 10%/2, and 107/2. Notice that the num-
ber that represents 1032, 31.623, logically
enough lies between the numbers representing
10! and 102—that is, between 10 and 100. No-
tice also that 1052 appears between 102 and
103, and 107/2 lies between 10° and 104,

Negative Logarithms

Table 8-3 shows that negative powers of 10
may be fitied into the system of logarithms.
We recall that 10~! means %, or the decimal
fraction, 0.1. What is the logarithm of 0.1?

SOLUTION: 107! = 0.1; log 0.1 = -1

Likewise 1072 = 0.01; log 0.01 = -2

Negative Fractional Logarithms

Notice in table 8-3 that negative fracticial
exponents present no new problem in loga-
rithmic notation. For example, 10"Y2means

1

y/10°
1 _ V10 _ 31603
Yio 10
What is the logarithm of 0.31623?
SOLUTION:
107V2 = 0.31623; log 0.31623 = - 5
= -0.5

83
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Table 8-3 shows logarithm: for numbers
ranging from 0.0001 to 10,000. Notice that
there are only 8 integral logarithms in the en-
tire range. Excluding zero logarithms, the
logarithms for all other numbers in the range
are fractional or contain a fractional part. By
the year 1628, logarithms for all integers from
1 to 100,000 had been computed. Practically
all of these logarithms contain a fractional
part. It should be remembered that finding the
logarithm of a number is nothing more than ex-
pressing the number as a power of 10. Table
8-4 shows the numbers 1 through 10 expressed
as powers of 10. Most of the exponents which
comprise logarithms are found by methods be-
yond the scope of this text. However, it is not
necessary to know the process used to obtain
logarithms in crder to make use of thum.

Table 8-4.—The numbers 1 through 10
expressed as powers of 10.

1 = 100 6 = 100.77815
9 = 100.30103 7 = 100.84510
3 = 100.47712 8 = 100.90309
5 = 100-6%% 10 = 10*

COMPONENTS OF LOG..RITHMS

The fractional part of a logarithm is usually
written as a decimal. The whole number part
of a logarithm and the decimal part have been
given separate names because each 'plays a
specizal part in relation to the number which the
logarithm represents. The whole number part
of a logarithm is called the CHARACTERISTIC.
This part of the logorithm shows the position of
the decimal point in the associated number.
The decimal part of a logarithm is called the
MANTISSA.

For a particular sequence of digits making
up a number, the mantissa of a common loga-
rithm is always the same regardless of the
position of the decimal point in that number.
For example, log 5270 = 3.72181; the mantissa
is 0.72181 and the characteristic is 3.

CHARACTERISTIC

The characteristic of a common logarithm
shows the position of the decimal point in the
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associated nuraber. The characteristic for a
given number may be determined by inspection.
It will be remembered thata common logarithm
is simply an exponent of the base 10.

When we write log 360 = 2.55630, we under-
stand this to mean 10 #-3%63% = 360. We know
that the number is 360 and not 36 or 3,600 be-
cause the characteristic is 2. We know 10% is
10, 102 is 100, and 103 is 1,000. Therefore,
the number whose value is 102-55630 muyst lie
between 100 and 1,000 and of course any num-
ber in that range has 3 digits.

Suppose the characteristic had been 1: where
would the decimal point in the number be
placed? Since 10! is 10 and 102 is 100, any
number whose logarithm is between 1 and 2
must lie between 10 and 100 and will have 2
digits. Notice how the position of the decimal
point changes with the velue of the character-
istic in the following examples:

log 36,000 = 4.55650
log 3,600 = 3.55630
log 360 = 2.55630
log 36 = 1.55630

log 3.6 = 0.55630

Note that it is only the characteristic that
changes when the decimal point is moved. An
advantage of using the base 10 is thus revealed:
If the characteristic is known, the decimal point
may easily be placed. If the number is known,
the characteristic may be determined by in-
spection; that is, by observing the location of
the decimal point.

Although an understanding of the relation
of the characteristic to the powers of 10 is
necessary for thorough comprehension of loga-
rithms, the characteristic may be determined
mechanically by application of the following
rules:

1. For a number greater than 1, the charac-
teristic is positive and is one less than the
number of digits to the left of the decimal point
in the number.

2. For a positive number less than 1, the
characteristic is negative and has an absolute
value one more than the number of zeros be-
tween the decimal point and the first nonzero
digit of the number.

Table 8-5 contains examples of each type of
characteristic.

Practice problems. In problems 1 through
4, write the characteristic of the logarithm for
each number. In 5 through 8, place the decimal

Table 8-5.—Positive and negative characteristics.

Digits in number
Number Power of 10 to the left of Characteristic
decimal point
Between:
134 102 and 103 3 2
13.4 10! and 102 2 1
1.34 10° and 10! 1 0
Zeros between
decimal point
and first non-
zero digit
0.134 107! and 10° 0 -1
0.0134 102 and 107! 1 -2
0.00134 10 73 and 1072 2 -3
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point in each number as indicated by the char-
acteristic (c) given for each.

1. 4,321 2. 1,23 3. 0.05 4, 12

5. 123; ¢ = 4 6. 8,210; ¢ = 0

7. 8; ¢ = -1 8. 321; ¢ = -2
Answers:

1, 3 2. 0 3, -2 4. 1

5. 12,300 6. 8.210 7. 0.8 8. 0.0321

Negative Characteristics

When a characteristic is negative, such as
-2, we do not carry out the subtraction, since
this would involve a negative mantissa. There
are several ways of indicating 2 negative char-
acteristic. Mantissas as presented in the table
in the appendix are always positive and the sign
of the characteristic is indicated separately.
For example, where log 0.023 = 2.36173, the
bar over the 2 indicates that only the charac-
teristic ic negative—that is, the logarithm is
-2 + 0.361%3.

Ancther way to show the negative character-
istic is to place it after the mantissa. In this
case we write 0.36173-2.

A third method, which is used where possi-
ble throughout this chapter, is to add a certain
quantity to the characteristic and to subtract
the same quantity to the right of the mantissa.
In the case of the example, we may write:

2.36173
10 -10
8.36173-10

In this way the value of the logarithm remains
the same but we now have a positive character-
istic as well as a positive mantissa.

MANTISSA

The mantissa is the decimal part of a loga-
rithm. Tables of logarithms usually contain
only mantissas since the characteristic can be
readily determined as explained previously.
Table 8-6 shows the characteristic, mantissa,
and logarithm for several positions of the deci-
mal point using the sequence of digits 4, 5, 6.
It will be noted that the mantissa remain: the
same for that particular sequence of digits, re-
gardless of the position of the decimal point.

Table 8-6.—Effect of changes in the
location of the decimal point.

Numbler f;ﬁﬁf; Mantissa | Logarithm

45,600 4 0.6590 4.6590
4,560 3 0.6590 3.6590
456 2 0.6590 2.6590
45.6 1 0.6590 1.6590
4.56 0 0.6590 0.6590

0.456 -1 0.6590 0.6590-1

0.0456 -2 0.6590 0.659¢-2

0.00456 -3 0.6599Q 0.6590-3

Appendix I of this training course is a table
which includes the logarithms of numbers from
1 to 100. For our present purpose in using this
table, we are concerned only with the first and
sixth columns.

The first column contains the number and
the sixth column contains its logarithm. For
example, if it is desired to find the logarithm
of 45, we would find the number 45 in the first
column, look horizontally across the page to
column 6 and read the logarithm, 1.6532i. A
glance down the logarithm column will reveal
that the logarithms increase in value as the
numbers increase in value.

It must be noted in this particular table that
both the mantissa and the characteristic are
given for the number in the first column. This
is simply an additional aid, since the charac-
teristic can easily be determined by inspection.

Suppose that we wish to use the table of
Appendix I to find the logarithm of a number
not shown in the "number'' column. By recall-
ing that the mantissa does not change when the
decimal point moves, we may be able to deter-
mine the desired logarithm. For example, the
number 450 does not appear in the number col-
umn of the table. However, the number 45 has
the same mantissa as 450; the only difference
between the two logs isin their characteristics.
Thus the logarithm of 450 is 2.65321.

Practice problems. Find the logarﬁhms of
the following numbers: '
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1, 64 2. 98 3. 6400 4, 9.8
Answers:

1. 1.80618 2. 1.99123

3. 3.80618 4, 0.99123

THE SLIDE RULE

In 1620, not long after the invention of loga-
rithms, Edmond Gunter showed how logarithmic
calculations could be carried out mechanically.
This is done by laying off lengths on a rule,
representing the logarithms of numbers, and by
combining these lengths in various ways. The
idea was developed and with the contributions
of Mannheim in 1851 the slide rule came inte
being as we know it today.

The slide rule is a mechanical device by
which we can carry out any arithmetic calcula-
tion with the exception of addition and subtrac-
tion. The most common operations with the
slide rule are multiplication, division, finding
the square or cube of a number, and finding the
square root or cube root of a number. Also
trigonometric operations are frequently per-
formed. The advantage of the slide rule is that
it can be used with relative ease to solve com-
plicated prc-‘ems. One limitation is that it
will give results with a maximum of only three
accurate significant digits. This is sufficient
in most calculations, however, since most phys-
ical constants are only correct to two or three
significant digits. When greater accuracy is
required, other methods must be used.

A simplified diagram of a slide rule is pic-
tured in figure 8-1. The sliding, central part
of the rule is called the SLIDE. The mei ahle
glass or plastic runner with a hairline imprinted
on it is called the INDICATOR. Thereis a C
scale printed on the slide,and a D scale exactly
the same as the C scale printed on the BODY
or STOCK of the slide rule. The mark that is
associated with the primary number 1 on any
slide rule scale is called the INDEX. There is

SLIDE

. l f-lrlulJ“qu : 4
o oy T 3 H i ; o

/ 80Dy / INDICATOR ‘

Figure 8-1.—Simplified diagram of a slide rule.
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INDEX'
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an index at the extreme left and at the extreme
right on both the C and D scales. There are
other scales, each having a particular use.
Some of these *vill be mentioned later.

SLIDE RULE THEORY

We have mentioned that the slide rule is
based on logarithms. Recall that, to multiply
two numbers, we simply add their logarithms.
Previously we found these logarithms in tables,
but if the logarithms are laid off on scales such
as the C and D scale of the slide rule, we can
add the lengths, which represent these loga-
rithms. To make such a scale we could mark
off mantissas ranging from 0 to 1 on a rule as
in figure 8-2. We then find in the tables the
logarithms for numbers ranging from 1 to 10
and write the number opposite its correspond-
ing logarithm on the scale.

NUMBER 7 9
1 1

e o

o]
—_
1.0

.
O pw
1.
J—O

1 S
} H
L) L
o .7

[

T T
0.4 .8 O

T T
LOGARITHM o1 02 o. 0, .9 O

w

Figure 8-2.—-Logarithms and corresponding
numbers on a scale.

Table 8-7 lists the numbers 1 through 10
and their corresponding logarithms to three
places. These numbers are written opposite
their logarithms on the scale shown in figure
8-2. If we have two such scales, exactly alike,
arranged so that one of them is free to slide
along the other we can perform the operation
of multiplication, for example, by ADDING
LENGTHS; that is, by adding logarithms. For
example, if we wish to multiply 2 x 3, we find
the logarithm of 2 on the stationary scale and
move the sliding scale so that its index is over
that mark. We then add the logarithm of 3 by
finding that logarithm on the sliding scale and
by reading below it, on the stationary scale, the
logarithm that is the sum of the two.

Since we are not interested in the logarithms
themselves, but rather in the numbers they
represent, it is possible to remove the loga-
rithmic notation on the scale in figure 8-2, and
leave only the logarithmically spaced number
scale., The C and Dscales of the ordinary slide
rule are made up in this manner. Figure 8-3
shows the multiplication of 2 x 3. Although the
logarithm scales have been removed, the num-
bers 2 and 3 in reality signify the lcgarithms of
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Table 8-7.—Numbers and their
corresponding logarithms.

Number | Logarithm m Number { Logarithm
1 0.000 6 0.778
2 0.301 7 0.845
3 0.477 8 0.903
4 0.602 9 0.954
5 0.699 10 1.000
2%X3+6
SN H
| 1 2./ 3 a4 s\s/7 8 51|

Figure 8-3.—Mulitiplication by use of
the slide rule.

2 and 3, namely, 0.301 and 0.477; the product 6
on the scale really signifies the logarithm »f 6,
that is, 0.778. Thus, although logarithms are

the underlying principle, we are able to work

with the numbers directly.

It shorld be noted that the scale is made up
from mantissas only. The characteristic must
be determined separately as in the case where
tables are used. Since mantissas identify only
the digit sequence, the digit 3 on the slide rule
represents not only 3 but 30, 300, 0.003, 0.3,
and so forth. Thus, the divisions may repre-
sent the number multiplied or divided by any
power of 10. This is true also for numbers
that fall between the divisions. The digit se-
quence, 1001, could represent 100.1, 1.001,
0.01001, and so forth. The following example
shows the use of the same set of mantissas
which appear in the foregoing example, but with
a different characteristic and, therefore, a dif-
ferent answer:

EXAMPLE: Use logs (positions on the slide
rule) to multiply 20 times 30.

SOLUTION:
log 20 = 1.301 (2 on the slide rule)
log 30 = 1.477 (3 on the slide rule)

log of answer = 2.778 (6 on the slide rule)

Since the 2 in the log of the answer is
merely the indicator of the position of the deci-
mal point in the answer itself, we do not expect
to find it on the slide rule scale. As in the
foregoing example, we find the digit 6 opposite
the multiplier 3. This time, however, the 6
represents 600, because the characteristic of
the log represented by 6 in this problem is 2.

READING THE SCALES

Reading a slide rule is no more complicated
than reading a yard stick or ruler, if the dif-
ferences in its markings are understood.

Between the two indices of the C or D scales
(the large digit 1 at the extreme left and right
of the scales) are divisions numbpered 2, 3, 4,
5,6, 17,8, and 9. Each length between two con-
secutive divisions is divided into 10 sections

and each section is divided into spaces. (See
fig. 8-4.)
DIVISION
A )
r SECTION
SPACE [—“-]
| 2
b, ]
0 1 2 3

! 2

Figure 8-4.—Division, section, and space of
a slide rule scale.

Notice that the division between 1 and 2
occupies about one-third of the length of the
rule. This is sufficient space in which to write
a number for each of the section marks. The
sections in the remaining divisions are not
numbered, because the space is more limited.
Notice also that in the division between 1 and 2,
the sections are each divided into 10 spaces.
The sections of the divisions from 2 to 4 are
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subdivided into only 5 spaces, and those from
4 to the right index are subdivided into only 2
spaces. These subdivisions are SO arranged
because of the limits of space.

Only the sequence of significant digits is
read on the slide rule. The position of the dec-
imal point is determined separately. For ex-
ample, if the hairline of the indicator is in the
left-hand position shown in figure 8-5, the sig-
nificant digits are read as follows:

[
-
r»
[}

4
“T

194
103

Figure 8-5.—Readings in the first division
of a slide rule.

1. Any time the hairline falls in the first
division, the first significant digit is 1.

2. Since the hairline lies between the index
and the first section mark, we know the number
les between 1.0 and 1.1, or 10 and 11, or 100
and 110, etc. The second significant digit is 0.

3. We next find how for from the index the
hairline is located. It lies on the marking for
the third space.

4, The three significant digits are 103.

In the second example shown in figure 8-5,
the hairline is located in the first division, the
ninth section, and on the fourth space mark of
that section. Therefore, the significant digits
are 194, :

Thus, we see that any number falling in the
first division of the slide rule will always have
1 as its first significant digit. It can have any

TEN SPACES IN EACH
SECTION

Y

number from 0 through9 as its second digit,and
any number from 0 through 9 as its third digit.
Sometimesa fourth digit can be roughlyapprox-
imated in this first division, but the number is
really accurate to only three significant digits.

In the second and third divisions, each sec-
tionis divided into only 5 spaces. (See fig.8-6.)
Thus, each space is equal to 0.2 of the section.
Suppose, for example, that the hairline lies on
the third space mark after the large 2 indicat-
ing the second division. The first significant
digit is 2. Since the hairline lies between 2 and
the first section mark, the second digit is 0.
The hairline lies on the third space mark or
0.6 of the way between the division mark and
the first section mark, so the third digit is 6.
Thus, the significant digits are 206. Notice
that if the hairline lies on a space mark the
third digit can be written accurately; otherwise
it must be approximated.

From the fourth division to the right index,
each section is divided into only two spaces.
Thus, if the hairline is in the fourth division
and lies on the space mark between the sixth
and seventh sections, we would read 465. If the
hairline did not fall on a space mark, the third
digit would have to be approximated.

OPERATIONS WITH THE SLIDE RULE

There are two parts in solving problems
with a slide rule. In the first part the slide
rule is used to find the digit sequence of the
final result. The second part is concerned with
the placing of the decimal point in the result.
Let us consider first the digit sequence in mul-
tiplication and division.

Multiplication

Multiplication is performed on the Cand D
scales of the slide rule. The following proce-
dure is used:

ONLY FIVE SPACES IN EACH
SECTION

| |ll llllllll

l LR l I | | |

2
HAIRLINE /

| |Il llllllllll

Figure 8-6.—~Reading in the second division of a slide rule.
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1. Locate one of the factors to be multiplied
the D scale, disregarding the decimal point.
2. Place the index of the C scale opposite
it number.

3. Locate the other factor on the C scale

move the hairline of the indicator to cover

s factor.

4. The product is on the D scale under the
rline.
Sometimes in multiplying numbers, such as
x 6, the number on the C scale extends to
e right of the stock and the product cannot be
id. In such a case, we simply shift indices.
stead of the left-hand index of the C scale,
p right-hand index is placed opposite the fac-
on the D scale. The rest of the problem
imains the same. By shifting indices, we are
ply multiplying or dividing by 10, but this
iys no part in reading the significant digits.
ifting indices affects the characteristic only.

AMPLE: 252 x 3 = 756

1. Place the left index of the C scale over

2. Locate 3 on the C scale and set the hair-
e of the indicator over it.

3. Under the hairline on the D scale read
e product, 756.
AMPLE: 4 x 64 = 256

"8 1. Place the right index of the C scale
5 J XK

2. Locate 64 on the C scale and set the
rline of the indicator over it.

3. Under the hairline on the D scale read
e product, 256.

Practice problems. Determine the following

»ducts by slide rule to three significant
rits:

2.8 x 16 3. 6 x 85
7x 1.3 4, 2.56 x 3.5
Answers:

44.8 3. 510

9.10 4. 8.96

ision

Division being the inverse of multiplication,
e process of multiplication is reversed to

89
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perform division on a slide rule. We subtract
the length representing the logarithm of the
divisor from the length representing the loga-
rithm of the dividend to get the logarithm of the
quotient.

The procedure is as follows:

1. Locate the dividend on the D scale and
place the hairline of the indicator over it.

2. Move the slide until the divisor (on the C
scale) lies under the hairline.

3. Read the quotient on the D scale opposite
the C scale index.

If the divisor is greater numerically than
the dividend, the slide will extend to the left. If
the divisor is less, the slide will extend to the
right. In either case, the quotient is the number
on the D scale that lies opposite the C scale in-
dex, falling within the limits of the D scale.
EXAMPLE: 6 +3=2

1. Locate 6 on the D scale and place the
hairline of the indicator over it.

2. Move the slide until 3 on the C scale is
under the hairline.

3. Opposite the left C scale index, read the
quotient, 2, on the D scale.

EXAMPLE: 378 - 63 = 6

1. Locate 378 on the D scale and move the
hairline of the indicator over it.

2. Move the slide to the left until 63 on the
C scale is under the hairline.

3. Opposite the right-hand index of the C
scale, read the quotient, 6, on the D scale.

Practice problems. Determine the following
quotients by slide rule.

1. 126 = 3 3. 142 -+ 71

2. 960 + 15 4. 459 + 17
Answers:

1. 42 3. 2

2. 64 4. 27

PLACING THE DECIMAL POINT

Various methods have been advanced regard-
ing the placement of the decimal point in num-
bers derived from slide rule computations.
Probably the most universal and most easily
remembered method is that of approximation.
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The n.ethod of approximation means simply
the rounding off of numbers and the mechanical
shifting of decimal points in the numbers of the
problem so that the approximate size of the
solution and the exact position of the decimal
point will be seen from inspection. The slide
rule may then be used to derive the correct se-
quence of significant digits. The method may
best be demonstrated by a few examples. Re-
member, shifting the decimal point in a number
one place to the left is the same as dividing by
10. Shifting it one place to the right is the
same as multiplying by 10. Every shift must
be compensated for in order for the solution to
be correct.

EXAMPLE: 0.573 x 1.45

SOLUTION: No shifting of decimals is neces-
sary here. We see that approximately 0.6 is to
be multiplied by approximately 1 1/2. Immedi-
ately, we see that the solution is in the neigh-
borhood of 0.9. By slide rule we find that the
significant digit sequence of the product is 832.
From our approximation we know that the deci-
mal point is to the immediate left of the first
significant digit, 8. Thus,

0.573 x 1.45 = 0.832

EXAMPLE: 239 x 52.3

SOLUTION: For ease in multiplying, we shift
the decimal point in 52.3 one place to the left,
making it 5.23. To compensate, the decimal
point is shifted to the right one place in the
other factor. The new position of the decimal
point is indicated by the presence of the caret
symbol.

239.0/\ X 5/\2.3
Qur problem is approximately the same as

2,400 x 5 = 12,000
By slide rule the digit Sequence is 125. Thus,
239 x 52.3 = 12,500

EXAMPLE: 0.000134 x 0.092
SOLUTION:
Shifting decimal points, we have

0/\00.000134 x 0.09,2

90
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Approximation: 9 x 0.0000013 = 0.0000117.
By slide rule the digit sequence is 123. From
approximation the decimal point is located as
follows:

0.0000123
Thus,
0.000134 x 0.092 = 0.0000123
EXAMPLE: 53.1

42.4
SOLUTION: The decimal points are shifted so
that the divisor becomes a number between 1
and 10. The method employed is cancellation.
Shifting decimal points, we have

5 /\3'1
Approximation:

Digit sequence by slide rule:
1255

Placing the decimal point from the approxi-
mation:

1.255
Thus,
531 - 1.255
EXAMPLE: 0.00645
0.0935
SOLUTION:

Shifting decimal points
0.00/\645
0.09 35

Approximation:

Digit sequence by slide rule: 690
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Placing the decimal point from the approxi-
mation:

0.0690
Thus,

0.00645 _
m - 0.0690

Practice problems. Solve the following
problems with the slide rule and use the method
of approximation to determine the position of
the decimal point:

1. 0.00453 x 0.1645 3. 0.0362 x 1.21

2. 53.1 + 1.255 4. 67 + 316
Answers:

1. 0.000745 3. 0.0438

2. 424 4. 0.212

MULTIPLICATION AND
DIVISION COMBINED

In problems such as

0.644 x 330
161 x 12

it is generally best to determine the position of
the decimal point by means of the method of
approximation and to determine the significant
digit sequence from the slide rule. Such prob-
lems are usually solved by dividing and multi-
plying alternately throughout the problem. That
is, we divide 0.644 by 161, multiply the quotient
by 330, and divide that product by 12.
Shifting decimal points, we have

0/\0.644 X 3/\30
1/\61 X 1/\2

Since there is a combined shift of three places
to the left in the divisor, there must also be a
combined shift of three places to the left in the
dividend.

2

Approximation: 0—%73‘—! = 0.06 x 2 - 0.12

The step-by-step process of determining the
significant digit sequence of this problem is as
follows:

1. Place the hairline over 644 on the D scale.

2. Draw the slide so that 161 of the C scale
lies under the hairline opposite 644.

3. Opposite the C scale index (on the D scale)
is the quotient of 644 + 161. This is to be mul-
tiplied by 330, but 330 projects beyond the rule
so the C scale indices must be shifted.

4. After shifting the indices, find 330 on the
C scale and place the hairline over it. Opposite
330 under the hairline on the D scale is the
product of -?—g-"i-x 330.

5. Next, move the C scale until 12 is under
the hairline. Opposite the C scale index (on the
D scale) is the final quotient. The digit se-
quence is 110.

The decimal point is then placed according
to our approximation: 0.11. Thus,

0.644 x 330

wix g - U

Practice problems. Solve the following
problems, using a slide rule:

1. 22 x 718.5 x 157
17 x 18.3 x 85

2. 432 x 9,600
35,600 x 198

3. 2.77 x 0.064
0.17 x 1.97

Answers:

1. 10.2 2. 0.817 3. 0.529

SQUARES

Squares of numbers are found by reference
to the A scale. The numberson the A scale are
the squares of those on the D Scale. The A
scale is really a double scale, each division
being one-half as large as the corresponding
division on the D scale. The use of a double
scale for squaring is based upon the fact that
the logarithm of the square of a number istwice
as large as the logarithm of the number itself. .
In other words,

log N2=21og N
This is reasonable, since

log N2 = log (N x N)

log N + log N
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For a numerical example, suppose that we
seek to square 2 by means of logarithms.

log 2 = 0.301

log 22 = 2 log 2
=2 x 0.301
= 0.602

Since each part of the A scale is half as
large as the corresponding part of the D scale,
the logarithm 0.602 on the A scale will be the
same length as the logarithm 0.301 on the D
scale. That is, these logarithms will be oppo-
site on the A and D scales. On the A scale as
on the D scale, the numbers are written rather
than their logarithms. Select several numbers
on the D scale, such as 2, 4, 8, 11, and read
their squares on the A scale, namely 4, 16,
64, 121.

Notice also that the same relation exists for
the B and C scales as for the A and D scales.
Of interest, also, is the fact that since the A
and B scales are made up as are the C and D
scales, they too could be used for multiplying
or dividing.

Placing the Decimal Point

Usually the decimal may be placed by the
method of approximation. However, close ob-
servation will reveal certain fccts that elimi-
nate the need for approximations in squaring
numbers. Two rules suffice for squaring w:.ole
or mixed numbers, as follows:

1. When the square of a number is read on
the left half of the A scale, that number will
contain twice the number of digits to the left of
thedecimal point in the original number, less 1.

2. When the square of a number is read on
the right half of the A scale, that nunmber will
contain twice the number of digits to the left of
the decimal point in the original number.

EXAMPLE: Square 2.5.

SOLUTION: Place the hairline over 25 on the
D scale. Read the digit sequence, 625, under
the hairline in the left half of the A scale.

By rule 1: (2xnumber of digits)-1 = 2(1)-1=1.,
There is one digit to the left of the decimal
point. Thus,

(2.5)% = 6.25

EXAMPLE: Square 6,340.

SOLUTION:

Digit sequence, right half A scale: 402.
By rule 2: 2 x number of digits =2x4 =8
(digits in answer). Thus,

(6,340)% = 40,200,000
Positive Numbers Less Than One

If positive numbers less than one are to be
squared, a slightly different version of the pre-
ceding rules must be employed. Count the
zeros between the decimal point and the first
nonzero digit. Consider this count negative.
Then the number of zeros between the decimal
point and the first significant digit of the
squared number may be found as follows:

1. Left half A scale: Multiply the zeros
counted by 2 and subtract 1.

2. Right half A scale: Multiply the zeros
counted by 2.

EXAMPLE: Square 0.0045

SOLUTION:

Digit sequence, right half A scale: 2025.
By rule 2: 2(-2) = -4. (Thus, 4 zeros be-
tween the decimal point and the first digit.)

(0.0045) 2= 0.00002025
EXAMPLE: Square 0.0215
SOLUTION:

Digit sequence, left half A scale: 462.
By rule 1: 2(-1) -1 =-3

(0.0215)2= 0.000462

SQUARE ROOTS

Taking the square root of a number with the
slide rule is the inverse process of squaring a
number, We find the number on the A scale,
set the hairline of the indicator over it, and
read the square root on the D scale under the
hairline.

Positioning Numbers on the A Scale

Since there are two parts of the A scale
exactly alike and the digit sequence could be

&8




Chapter 8—LOGARITHMS AND THE SLIDE RULE

found on either part, a question arises as to
which section to use. Generally, we think of
the left half of the rule as being numbered from
1to 10 and the right half as being numbered
from 10 to 100. The numbering continues- left
half 100 to 1,000, right half 1,000 to 10,000, and
so forth.

A simple process provides a check of the
location of the number from which the root is
to be taken. For whole or mixed numbers, be-
gin at the decimal pointof the number and mark
off the digits to the left (including end zeros) in
groups of two. This isillustrated in the follow-
ing two examples:

1. ~40,300.21
~4'03'00.21

2. ~2,034.1
\20'34.1

Look at the left-hand group. If it is a 1-digit
number, use the left half of the A scale. If it
is a 2-digit number, use the right half of the A
scale. The number inexample 1 is thus located
in the left half of the A scale and the number in
example 2 is located in the right half.

Numbers Less Than One

For positive numbers less than one, begin at
the decimal point and mark off groups of two to
the right. This is illustrated as follows:

1. ~0.000245
N0.00'02'45

~ 2. ~0.00402
~0.00'40'2

Looking from left to right, locate the first group
that contains a digit other than zero, If the
first figure in this group is zero, locate the
number in the left half of the A scale. If the
first figure is other than zero, locate the num-
ber in the right half of the A scale. Thus,

~0.0070245 is located left

and

~0.00'40'2 is located right
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Powers of 10

When the square root of 10, 1,000, 100,000,
and so forth, is desired, the center index is
used. That is, when the number of digits in a
power of 10 is even, use the center index.

The slide rule uses only the first three
significant digits of a number. Thus, ii the
rule is used, .6 must be considered as
n23400.0. Likewise, 1.43567 would be consid-
ered 1.43000, and so forth. For greater accu-
racy, other methods must be used.

Practice problems. State which half of the
A scale should be used for each of the following:

1. 432 5. ~N4,320
2. ~0.014 6. ~0.00301
3. 24187 7. ~0.0640
4, ~0.00045 8. N9.41
Answers:

1. Left 5. Right

2. Left 6. Right

3. Left 7. Left

4, Left 8. Left

Placing the Decimal Point

To place the decimal point in the square
root of a number, mark off the original number
in groups of two as explained previously.

For whole or mixed numbers, the nuraber of
groups marked off is the number of digits in-
cluding end zeros to the left of the decimal
point in the root. The following problems il-
lustrate this:

1. 23,415
\2734715 Three digits to left of dec-
imal point in square root
2. V421,582.4
N43715'62.4 Three digits to left of dec-
imal point in square root
3, ~231.321
N2731.321 Two digits to left of deci-

mal point in sguare root
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For positive numbers less than one, there
will be one zero in the square root between the
decimal point and the first significant digit for
every pair of zeros ccunted between the deci-
mal point and tie first significant digit of the
original number. This isillustrated as follows:

1. ~0.0004
N0.00'04 One zero before first digit
in square root
2. ~0.00008
~0.00'00'8 Two zeros before first digit
in square root
3. ~0.08' No zeros before first digit
in square root
EXAMPLE: V4,521
N45'21

(Two digits in left-hand group)

Place the hairline over 452 on the right half of
the A scale. Read the digit sequence of the
root, 672, on the D scale under the hairiine.
Since there are two groups in the original num-
ber, there are two digits to the left of the deci-
mal point in the root. Thus,

N4,521 = 67.2

N0.000741
N 0.00'07'41

(First figure is zero in this group)

EXAMPLE:

Place the hairline over 741 on the left half of
the A scale. Read the digit sequence of the
rnot, 272, under the hairline on the D scale.
Since there is one pair of zeros to the left of
the group containing the first digit, there is one
zero between the decimal point and the first
significant digit of the root. Thus,

~0.000741 = 0.0272

Practice problems. Evaluate each of the
following by means of a slide rule:

1. (17.75) 3. \0.42
2. (0.65)2 4. ~0.074
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Answers:
1, 315 3. 3.07
2. 0.422 4, 0.272

CUBES AND CUBE ROOTS

Cubes and cube roots are read on the D and
K scales of the slide rule. On the K scale are
compressed three complete logarithmic scales
in the same space as that of the D scale. Thus,
any logarithm on the K scale is three times the
logarithm opposite it on the D scale. To cube
a number by logarithms, we multiply its loga-
rithm by three. Therefore, the logarithms of
cubed numbers will lie on the K scale opposite
the numbers on the D scale.

As with the other slide rule scales men-
tioned, the numbers the logarithms represent,
rather than the logar'thmic notations, are
printed on the rule. In the left-hand third of
the K scale, the numbers range from 0 to 10; in
the middle third they range from 10 to 100; and
in the right-hand third, they range from 100 to
1,000.

To cube a number, find the number on the D
scale, place the hairline over it, and read the
digit sequence of the cubed number on the K
scale under the hairline.

Placing the Decimal Point

The decimal point of a cubed whole or mixed
number may be easily placed by application of
the following rules:

1. If the cubed number is located in the left
third of the K scale, its number of digits to the
left of the decimal point is 3 times the number
of digits to the left of the decimal point in the
original number, less 2.

2. If the cubed number is located in the
middle third of the K scale, its number of digits
is 3 times the number : digits of the original
number, less 1.

3. If the cubed number is located in the
right third of the K scale, its number of digits
is 3 times the number of digits of the original
number.
EXAMPLE: (1.6)°
SOLUTION: Place the hairline over 16 on D
Scale. Read the digit sequence, 409, on the K
scale under the hairline.
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Number of digits to left of decimal point in the
number 1.6 is 1 and the cubed number is in the
left-hand third of the K scale.

3 x (No. of digits)-2 = (3 x 1)-2
=1
Therefore,
(1.6)% = 4.09
EXAMPLE: (4.1)3

Digit sequence = 689.

SOLUTION: Number of digits to left of decimal
point in the number 4.1 is 1, and the cubed
number is in the middle third of the K scale.

3 x (No. of digits)-1 = (3 x 1)-1
=2
Therefore,
(4.1)® = 68.9
EXAMPLE: (52)3

SOLUTION: Digit sequence = 141.

Number of digits to left of decimal point in the
number 52 is 2, and the cubed number is in the
right-hand third of the K scale.

3 x No. of digits = 3 x 2

6

Therefore,
(52)3 = 141,000

Positive Numbers Less Than One

K positive numbers less than one are to be
cubed, count the zeros between the decimal
point and the first nonzero digit. Consider the
count negative. Then the number of zeros be-
tween the decimal point and the first significant
digit of the cubed number may be found as
follows:

1. Left third of K scale: Multiply the zeros
counted by 3 and subtract 2.

2. Middle third of K scale:
zeros counted by 3 and subtract 1.

3. Right third of K scale: Multiply the zeros
counted by 3.

Multiply the

EXAMPLE: Cube 0.034
SOLUTION: Digit sequence = 393

Zero count of 0.034 = -1, and 393 is in the mid-
dle third of the K scale.

3 x (No. of zeros)-1 = (3 x -1)-1 = -4

Therefore,
(0.034)* = 0.0000393

Practice problems. Cube the following num-
bers using the slide rule.

1, 21 2. 0.7 3. 0.0128 4, 404
Answers:

1. 9260 3. 0.0000021

2. 0.342 4, 66,000,000

Cube Roots

Taking the cube root of a number on the
slide rule is the inverse process of cubing a
number. To take the cube root of a number,
find the number on the K scale, set the hairline
over it, and read the cube rcot on the D scale
under the hairline.

POSITIONING NUMBERS ON THE KSCALE.~
Since a given number can be located in three
positions on the K scale, the question arises as
to which third of the K scalz= to use when locat-
ing a number. Generally, the left index, the
left middle index, the right middle index, and
the right index are considered to be numbered
as shown in figure 8-7.

1 1 1 1

1 ] | J

I i 1 ]

} 10 100 1,000
1,000 10,000 100,000 1,000,000

Figure 8-7.—-Powers of 10 associated with
K-scale indices.

A system similar to that used with square
roots may be used to locate the position of a
number on the K scale. Groups of three are
used rather than groups of two. The grouping
for cube root is illustrated as follows:
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1. V40,5316
V30'531.6

2. V4,561.43
V561,43

3. 0.000043
N0.000'043

For whole or mixed numbers the followirg
rules apply:

1. K the left-hand group contains one digit,
locate the number in the left third of the K scale.

2. I the left group contains two digits, lo-
cate the number in the middle third of the K
scale.

3. I the left group contains three digits,
locate the number in the right third of the K
scale.

The following examples illustrate the fore-
going rules:

1. Y¥4'561.43
(One digit)—1left third K scale.

2. ¥V40'531.6
(Two digits)—middle third K scale.

3. V4557361
(Three digits)—right third of K scale.

For positive numbers less than one, look
from left to right and find the first group that
contains a digit other than zero.

1. K the first two figares in this group are
zeros, locate the number in the left third of the
K scale.

2. H only the first figure in this group is
zero, locate the number in the middle third of
the K scale.

3. K the first figureof the group is not zero,
locate the number in the right third of the K
scale. '

The f{following examples illustrate these
rules:

1. 0.000'004'53
(Two zeros)-—left third K scale.

2. ¥0.000'050'43
(One zero)—middle third K scale.
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3. ¥0.000°'000'430
(No zero)—right third K scale.

PLACING THE DECIMAL POINT.~To place
the decimal point in the cube root of a number,
we use the system of marking off in groups of
three as shown above.

For whole or mixed numbers, there is one
digit in the root to the left of the decimal point
for every group marked in the original number.
Thus,

V45316
(Two digits in root to left of decimal point.)

For positive numbers less than one, there
will be one zero in the root between the decimal
point and the first significant digit for every
three zeros counted between the decimal point
and the first significant digit of the original
number. Thus,

/0.000'000'004

(Two zeros between decimal point and first sig-
nificant digit of root.)

V2160004
21670004
(Three digits in left group)

EXAMPLE:

Place the hairline over 216 in the right third of
the K scale. Read the digit sequence, 6, under
the hairline on the D scale. Since there are
two groups in the original number, there are
two digits to the left of the decimal point in the
root. Thus,

V2160004 = 60

Y0:0000451
N0.000'045"1
(Only first figure 1s zero in this group)

EXAMPLE:

Place the hairline over 451 in the middle third
of the K scale. Read the digit sequence, 357,
under the hairline on the D scale. Since there
is one group of three zeros, there is one zero
between the decimal point and the first signifi-
cant digit of the root. Thus,

\0.0000451 = 0.0357
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POWERS OF 10.-—To take the cube root of a
power of 10, mark it off as explained in the
preceding paragraphs. The number in the left
group will then be 1, 10, or 100. We know that
the cube root of 10 is a number between 2 and
3. Thus, for the cube rootof any number whose
left group is 10, use the K scale index which
lies between 2 and 3 on the D scale. The cube
root of 100 lies between 4 and 5. Therefore,
for a number whose left group is 100, use the K
scale index between 4 and 5 on the D scale.

Practice problems. Following are some
problems and the digit sequence (d. s.) of the
roots. Locate the decimal point for each root.

1. ¥0.000023 d. s. 2844
2. ¥0.051 d.s. 371
3, Y127 d. s. 5026
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4.
5.
6.

X1204,000 d. s. 589
734,000,000 d.s. 902
XE913 d.s. 17
Answers:

0.02844

0.371

5.026

58.9

902

17




CHAPTER 9
FUNDAMENTALS OF ALGEBRA

The numbers and operating rules of arith-
metic form a part of a very important branch
of mathematics called ALGEBRA.

Algebra extends the concepts of arithmetic
so that it is possible to generalize the rules for
operating with numbers and use these rules in
manipulating symbols other than numbers. It
does not involve an abrupt change into a dis-
tinctly new field, but rather provides a smooth
transition into many branches of mathematics
with a continuation of knowledge already gaired
in basic arithmetic.

The idea of expressing quantities ina gen-
eral way, rather than in the specific terms of
arithmetic, is fairly common. A typical exam-
ple is the formula for the perimeter of a rec-
tangle, P = 2L + 2W, in which the letter P rep-
resents perimeter, L represents length, and W
represents width. It should be understood that
2L =2(L) and 2W = 2(W). If the L and the W
were numbers, parenthesesor some other mul-
tiplication sign would be necessary, but the
meaning of a term such as 2L is clear without
additional signs or symbols.

All formulas are algebraic expressions, al-
though they are not always identified as such.
The letters used in algebraic expressions are
often referred to as LITERAL NUMBERS (lit-
eral implies "letteral").

Another typical use of literal numbers is in
the statement of mathematical laws of operation.
For example, the commutative, associative, and
distributive laws, introduced in chapter 3 with
respect to arithmetic, may be restated in gen-
eral terms by the use of algebraic symbols.

COMMUTATIVE LAWS

The word ''comrutative" is defined in chap-
ter 3. Remember that the commutative laws
refer to those situations in which the factors
and terms of an expression are rearranged ina
different order.

ADDITION

The algebraic form of the commutative law
for addition is as follows:

a+b+c=a+c+b=c+b+.

In words, this law states that the sum of two or
more addends is the same regardless of the
order in which the addends are arranged.

The arithmetic example in chapter 3 shows
only one specific numerical combination in
which the law holds true. In the algebraic ex-
ample, a, b, and c represent any numbers ve
choose, thus giving a broad inclusive example
of the rule. (Note that once a value is selected
for a literal number, that value remains the
same wherever the letter appears in that par-
ticular example or problem. Thus, if we givea
the value of 12, in the example just given, a's
value is 12 wherever it appears.)

MULTIPLICATION

The algebraic form of the commutative law
for multiplication is as follows:

abc = acb = cba

In words, this law states that the product of

two or more factors is the same regardless of

the order in which the factors are arranged.
ASSOCIATIVE LAWS

The associative laws of addition and multi-
plication refer to the grouping (association) of
terms and factors in a mathematical expression.

ADDITION

The algebraic form of the associative law
for addition is as follows:

a+b+c=(a+b)+c=a+(b+c)

In words, this law states that the sum of three
or more addends is the same regardless of the
manner in which the addends are grouped.

MULTIPLICATION

The algebraic form of the associative law
for multiplication is as follows:

a‘b:-c=(@@+b)-c=a-(b-c)
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[n words, this law states that the product of
three or more factors is the same regardless
of the manner in which the factors are grouped.

DISTRIBUTIVE LAW

The distributive law refers to the distribu-
tion of factors among the terms of an additive
expression. The algebraic form of this law is
as follows:

alb + ¢ + d) = ab + ac + ad

[n words, this law may be stated as follows: If
the sum of two or more quantities is multiplied
oy a third quantity, the product is found by ap-
plying the multiplier to each of the original
juantities separately and summing the result-
ing expressions.

ALGEBRAIC SUMS

The word "sum' hasbeen used several times
in this discussion, and it is important to realize
the full implication where algebra is concerned.
Since a literal number may represent either a
sositive or a negative quantity, a sum of sev-
aral literal numbers is always understood to be
an ALGEBRAIC SUM. That is, it is the sum
that results when the algebraic signs of all the
iddends are taken into consideration.

The following problems illustrate the proce-
dure for finding an algebraic sum:

Leta=3,b=-2,and c = 4.
Thena +b + ¢ =(3) + (-2) + (4)
=D
Also,a-b-c=a+(-b) + (-¢)
=3 + (+2) + (-4)
=1
The second problem shows that every expres-
sion coniaining two or more terms to be com-
bined by addition and subtraction may be re-
written as an algebraic sum, all negative signs
being considered as belonging to specific terms
and all operational signs being positive.
It should be noted, in relation to this subject,

that the laws of signs for algebra are the same
as those for arithmetic.

ALGEBRAIC EXPRESSIONS

An algebraic expression is made up of the
signs and symbols of algebra. These symbols

include the Arabic numerals, literal numbers,
the signs of operation, and so forth. Such an
expression represents one number or one quan-
tity. Thus, just as the sum of 4and 2 is one
quantity, that is, 6, the sum of ¢ and 4 is one

quantity, that is, ¢ + d. Likewise %, N'b, ab,

a - b, and so forth, are algebraic expres-
sions each of which represents one quantity or
number.

Longer expressions may be formed by com-
binations of the various signs of operation and
the other algebraic symbols, but no matter how
complex such expressions are they still repre-
sent one number. Thus the algebraic expres-
-a+~N2a+b

6
The arithmetic value of any algebraic ex-

pression depends on the values assigned to the
literal numbers. For example, in the expres-
sion 2x2- 3ay, ifx =-3, a=5, and y = 1, then
we have the following:

sion

-c is one number

2(-3)? -3(5)(1)
2(9) - 15 =18 - 15 = 3

2x2 - 3ay

Notice that the exponent is an expression
such as 2x2 applies only to the x. If it is de-
sired to indicate the square of 2x, rather than
2 times the square of x, then parentheses are
used and the expression becomes (2x)2

Practice problems. Evaluate the following
algebraic expressions when a=4,b=2,c = 3,
x=1T, andy = 5. Remember, the order of op-
eration is multiplication, division, addition, and
subtraction.

1. 3x + 7y - ¢ 3..B_+y
2
2. xy - 4a? 4. ¢ + 3%—
Answers:
1. 53 3. 19
2. -29 4. 53

TERMS AND COEFFICIENTS

The terms of an algebraic expression are
the parts of the expression that are connected
by plus and minus signs. In the expression
3abx + cy - k, for example, 3abx, cy, and k are
the terms of the expression.
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An expression containing only one term, such
as 3ab,is called a monomial (mono means one).
A binominal contains two terms; for example,
2r + by. A trinomial consists of three terms.
Any expression containing two or more terms
may also be called by the general name, poly-
nomial (poly means many). Usually special
names are not given to polynomials of more than
three times. The expression x3 - 3x2 + Tx + 1
is a polynomial of four terms. The trinomial
x?+ 2x + 1 is an example of a polynomial which
has a special name.

Practice problems. Identify each of the fol-
lowing expressions as a monomial, binomial,
trinomial, or polynomial. (Some expressions
may have two names.)

1. x 3. abx 5. 3y% + 4
2. 3y+a+b 4. 4+ 2b+y +2 G.Esy-+1
Answers:
1. Monomial 2. Trinomial
(also polynomial)
3. Monomial 4. Polynomial
5. Binomial 6. Bincmial

(also polynomial) (also polynomial)

In general, a COEFFICIENT of a term is
any factor or group of factors of a term by
which the remainder of the term is to be multi-
plied. Thus in the term 2axy, 2ax is the coeffi-
cient of y, 2a is the coefficient of xy, and 2 is
the coefficient of axy. The word "coefficient"
is usually used in reference tothat factor which
is express.d in Arabic numerals. This factor
is sometimes called the NUMERICAL COEF-
FICIENT., The numerical coefficient is cus-
tomarily written as the first factor of the term.
In 4x, 4 is the numerical coefficient, or simply
the coefficient, of x. Likewise, in 24xy?2, 24 is
the coefficient of xy?> and in 16(a + b), 16 is the
coefficient of (a + b). When no numerical coef-
ficient is written it is understood to be 1. Thus
in the term xy, the coefficient is 1.

COMBINING TERMS

When arithmetic numbers are connected by
plus and minus signs, they can always be com-
bined into one number. Thus,

1

5-75-

1
+8-5§-

1C6H

100

Here three numbers are added algebraically
(with due regard for sign) to give one number.
The terms have been combined into one term.

Terms containing literal numbers can be
combined only if their literal parts are the
same. Terms containing literal factors in
which the same letters are raised to the same
power are called like terms. For example, 3y
and 2y are like terms since the literal parts
are the same. Like terms are added by adding
the coefficients of the like parts. Thus, 3y + 2y
=0y just as 3 bolts + 2 bolts =5 bolts. Also
3a®b and a’b are like; 3a’b + a?b = 4a?b and
3a%b - a’b = 2a%b. The numbers ay and by are
like terms with respect toy. Their sum could
be indicated in two ways: ay + by or (a + b)y.
The latter may be explained by comparing the
terms to denominate numbers. For instance,
a bolts + b bolts = (a + b) bolts.

Like terms are added or subtracted by add-
ing or subtracting the numerical coefficients
and placing the result in front of the literal
factor, as in the following examples:

Tx? - 5x2 = (7 - 5)x2 = 2x°2
5b2x - 3ay? - 8b%x + 10ay2? = -3b2x + Tay?

Dissimilar or unlike terms in an algebraic
expression cannot be combined when numerical
values have not been assigned to the literal
factors. For example, -5x? + 3xy - 8y2? con-
tains three dissimilar terms. This expression
cannot be further simplified by combining terms
through addition or subtraction. The expres-
sion may be rearranged as x(3y - 5x) - 8y? or
y(3x - 8y) - 5x2, but such a rearrangement is
not actually a simplification.

Practice problems. Combine like terms in
the following expression:

1. 2a + 4a 4. 2ay? - ay?
2.y +y2 + 2y 5, bx2 + 2bx?
ay _ ay 2
3. 4T - 6. 2y + y

Answers:
1. 6a 4, ay?
2. v + 3y 5. 3bx?
3. 3% 6. 2y + y?
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SYMBOLS OF GROUPING

Often it is desired to group twoe or moie
terms to indicate that they are to be considered
and treated as though they were one term even
though there may be plus and minus signs be-
tween them. The symbols of grouping are pa-
rentheses ( ) (which we have already used),
brackets [ ],braces { }, and the vinculum __.
The vinculum is sometimes cailed the '"over-
score." The fact that -7 +2 - 5 is to be sub-
tracted from 15, for example, could be indi-
cated in any one of the following vrays:

15 - (-7 + 2 - 5)
15 - [-7 + 2 - 5]
15 - {-7 + 2 - 5}
15 - -7+2-5

Actually the vinculum is seldom used except
in connection with a radical sign, such as in
Va + b, or in a Boolean algebra expression.
Boolean algebra is a specialized kind of sym-
bolic notation which is discussed in Mathe-
matics, Volume 3, NavPers 10073.

Parentheses are the most frequently used
symbols of grouping. When several symbols
are needed to avoid confusion in grouping, pa-
rentheses usually comprise the innermost sym-
bols, followed by brackets, and then by braces
as the outermost symbols. This arrangement
of grouping symbols is illustrated as follows:

2x - {8y + [-8 - 5y - (x - 4)]}

REMOVING AND INSERTING
GROUPING SYMBOLS

Discussed in the following paragraphs are
various rules governing the removal and inser-
tion of parentheses, brackets, braces, and the
vinculum. Since the rules are the same for all
grouping symbols, the discussion in terms of
parentheses will serve as a basis for all.

Removing Parentheses

If parentheses are preceded by a minus sign,
the entire quantity enclosed must be regarded
as a subtrahend. This means that each term of
the quantity in parentheses is subtracted from
the expression preceding the minus sign. Ac-
cordingly, parentheses preceded by a minus
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sign can be removed, if the signs of all terms
within the parentheses are changed.

This may be explained with an arithmetic
example. We recall that to subtract one num-
ber from another, we change the sign of the
subtrahend and proceed as in addition. To sub-
tract -7 from 16, we change the sign of -7 and

proceed as in addition, as follows:
16 - (-7) =16 + 7
= 23

It is sometimes easier to see the result of
changing signs in the subtrahend if the minus
sign preceding the parentheses is regarded as
a multiplier. Thus, the thought process in re-
moving parentheses from an expression such
as - (4 - 3 + 2) would be as follows: Minus
times plus is minus, so the first term of the
expression with parentheses removed is - 4.
(Remember that the 4 in the original expres-
sion is understood to be a +4, since it has no
sign showing.) Minus times minus is plus, so
the second term is +3. Minus times plus is
minus, so the third term is -2. The result is
- 4 + 3 - 2, which reduces to -3.

This same result can be reached just as
easily, in an arithmetic expression, by combin-
ing the numbers within the parentheses before
applying the negative sign which precedes the
parentheses. However, in an algebraic expres-
sion with no like terms such combination is not
possible. The following example shows how the
rirle for removal of parentheses is applied to
algebraic expressions:

2a - (-4x + 3by) = 2a + 4x - 3by

Parentheses preceded by a plus sign can be
removed without any other changes, as the fol-
lowing example shows:

2b+(@a-b)=2b+a-b=2a+b

Many expressions contain more than one set
of parentheses, brackets, and other symbols of
grouping. In removing symbols of grouping, it
is possible to proceed from the outside inward
or from the inside outward. For the beginner,
it is simpler to start on the inside and work to-
ward the outside, collecting terms and simpli-
fying as one proceeds. In the following example
the inner grouping symbols are removed first:
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2a - [x + (x - 3a) - (9a - 5x)]
=2 - [x +x - 3a - 9a + 5x]

2a - [7x - 12a)

2a - Tx + 12a

14a - 7x

Enclosing Terms in Parentheses

When it is desired to enclose a group of
terms in parentheses, the group of terms re-
mains unchanged if the sign preceding the pa-
rentheses is positive. This is illustrated as
follows:

& -2y +Tx -y =(3x -2y) + (7x - y)

Note that this agrees with the rule for removing
parentheses preceded by a plus sign,

If terms are enclosed within parentheses
preceded by a minus sign, the signs of all the
terms enclosed must be changed as in the fol-
lowing example:

-2y + x-y=3&-(2y -T™x+y)

Practice problems. In problems 1 through 4,
remove the symbols of grouping and combine
like terms. In problems 5 through 8, enclose
the first two terms in parentheses preceded by
a plus sign (understood) and the last two in pa-
rentheses preceded by a minus sign.

1, 6a - (42 - 3)

2. x + [2x - 4y(6 - 4x)] + 2y - (3 - x + 3y)

3. -a+[-a-(2a+3)] +3

4, (7x - 3ay) - (4a - b) + 16

5. 4a - 3b - 2¢ + 4d

6. -2 -3x +4y - 2z

7.x +4y + 8z + 7

8. -4 + 2a - 6¢c + 3d
Answers:

1. 2a + 3

2. 6x + 16xy - 25y - 3

3. -4a

4, 7x - 3ay - 4a + b + 16

5. (4a - 3b) - (2c - 4d)
6. (-2 -3x) - (-4y + 2z)
T. x + 4y) - (-3z - T)
8. (-4 + 2a) - (6¢c - 3d)

EXPONENTS AND RADICALS

Exponents and radicals havethe same mean-
ing in algebra as they do in arithmetic. Thus,
if n represents any number then n? =n . n,
nd=n.n.n, etc. By the same reasoning, n"
means that nis to be taken as a factor m times.
That is, n"isequal ton . n.n ....,withn
appearing m times. The series of dots, called
ellipsis (not to be confused with the geometric
figure having a similar name, ellipse), repre-
sents continuation of the same pattern or the
same symbol.

The rules of operation with exponents are
also the same in algebra as in arithmetic. For
example, n? . n3 = n2*3 = n5, Some care is
necessary to avoid confusion over an expres-
sion such as 32 - 33. In this example, n = 3 and
the product desired is 35, not 95. In general,
32. 3> = 32*b and a similar result is reached
whether the factor which acts as a base for the
exponents is a number or a letter. Thus the
general form can be expressed as follows:

n®. n® = n**b

In words, the general rule for multiplication
involving exponents is as follows: When multi-
plying terms whose literal factors are like, the
exponents are added. This rule may be applied
to problems involving division, if all expres-
sions containing exponents in denominators are
rewritten as expressions with negative expo-

2
nents. For example, the fraction%%’- can be

rewritten as (x2y)(x~!y-2), which is equal to
(x2-1){y!*2). This reduces to xy~!, or%. No-
tice that the result is the sams as it would have
been if we had simply subtract2d the exponents
of literal factors in the denominator from the
exponents of the same literal factors in the
numerator.

The algebraic rules for radicals also rema’n
the same as those of arithmetic. In arithmetic,
V4=412 =2, Likewise, in algebra Va=al/?
and W= al/ n,
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MULTIPLYING MONOMIALS

If 2 monomial such as 3abc is to be multi-
plied by a numerical multiplier, for example 5,
the coefficient alone is multiplied, as in the
following example:

5 x 3Jabc

15abc

When the numerical factor is not the initial
factor of the expression, as in x(2a), the result
of the multiplication is not written as x2a. In-
stead, the numerical factor is interchanged with
literal factors by use of the commutative law of
multiplication. The literal factors are usually
interchanged to place them in alphabetical or-
der, and the final result is as follows:

x(2a) = 2ax

The rule for multiplication of monomials
may be stated as follows: Multiply the numeri-
cal coefficients to form the coefficient of the
product. Muliiply the literal factors, combining
exponents in like factors, to form the literal
part of the product. The complete process is
illustrated in the followirng example:

(2ab)(3a2)(2b3) = 12al*2p?*3
= 12a3pb?
Practice problems. Perform the indicated
operations:
1. (2x2)(5x5) 4. (22)(2v)
2. (-5ab?)(2a?b) 5. (-4a3)2
3. (-4x*y)(-3xy*) 6. (3a2b)2
Answers:
1. 10x? 4, 2°*b
2. -10a3p3 5. 16a6
3. 12x%° 6. 9a%b?

DIVIDING MONOMIALS

As may be expected, the process of dividing
is the inverse of multiplying. Because 3 x 2a
=6a, 6a+ 3 = 2a, or 6a+ 2 = 3a. Thus, when
the divisor is numerical, divide the coefficient
of the dividend by the divisor.

When the divisor contains literal parts that
are also in the dividend, cancellation may be
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performed as in arithmetic. For example,
6ab - 3a may be written as follows:

(2)(32)b)

Cancellation of the common literal factor, 3a,
from the numerator and denominator leaves 2b
as the answer for this division problem.

When the same literal factors appear in both
the divisor and the dividend, but with different
exponents, cancellation may still be used, as
follows:

1423b%x _ (7)(2)a2ab’x

-21a2b5%x ~ (7)(-3)a2b3b2x
_2a _ 2
=3 T T

This same problem may be solved without
thinking in terms of cancellation, by rewriting
with negative exponents as follows:

1423b3x _ 2a3-2p3-Sx!1-!

-21a2b%x -3
_2ab? 2
- -3 -3h2
_ 2a
-7 3p2
Practice problems. Perform the indicated
operations:
., X
X 6. VxiyZ
9 ap* q 5a*b
* ap3 * 10a2p3
a2bc? 10x2y3z4
3. abc 8. -5xy z
a’b 4
4. ab? 9. ¥100ab
5. ¥Vi6x*y® 10. Va6bén
Answers
1. x~1? 6. + x2ay®
2. a3b . a2
. %}‘
3. ac
8. - 2xyz
4 2
‘b 9. + 10a‘p?
5. + 4x2y3 10. + a3b3n
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OPERATIONS WITH POLYNOMIALS

Adding and subtracting polynomials is sim-
ply the adding and subtracting of their like
terms. There is a great similarity between the
operations with polynomials and denominate
numbers. Compare the following examples:

1. Add 5 qt and 1 pt to 3 qt and 2 pt.

3qt + 2pt
Sqt + 1pt

8qt + 3 pt
2. Add 5x + y to 3x + 2y.

3x + 2y
5x+!

8x + 3y

One method of adding polynomials (shown in
the above examples) is to place like terms in
columns and to find the algebraic sum of the
like terms. For example, to add 3a + b - 3c,
3b + ¢ - d, and 2a + 4d, we would arrange the
polynomials as follows:

3a+ b - 3¢
3w+ ¢c- d
2a + 4d

5a + 4b - 2¢ + 3d

Subtraction may be performed by using the
same arrangement—that is, by placing terms of
the subtrahend under the like terms <f the min-
uend and carrying out the subtraction with due
regard for sign. Remember, in subtraction the
signs of all the terms of the subtrahend must
first be mentally changed and then the process
completed as in addition. For example, sub-
tract 10a + b from 8a - 2b, as follows:

8a - 2b
10a + b

-2a - 3b

Again, note the similarity between this type of
subtraction and the subtraction of denominate
numbers.

Addition and subtraction of polynomials also
can be indicated with the aid of symbols of
grouping. The rule regarding changes of sign
when removing parentheses preceded bya minus

T -4

sign automatically takes care of subtraction
For example, to subtract 10a + b from 8a - 2k
we can use the following arrangement:

(8a - 2b) - (102 + b)

8a -2b -10a - b
-2a - 3b

Similarly, to add -3x + 2y to -4x - 5y, we ca
write

(-3x + 2y) + (-4x - 5y)

-3x + 2y - 4x - 5y
= -Tx - 3y

Practice problems. Add as indicated, i
each of the following problems:

1.3a + b
2a + 5b
2. (6s3t + 38%t + st + 5) + (s3t - 5)

3.4a+b +c,a+c -d, and 3a + 2b + 2¢

4, 4x + 2y
3X - y+z
P - 2

In problems 5 through 8, periorm the indi-
cated operations and ~ombine li} e terms.

5. (2a + b) - (3a + 5b)
6. (5x3y + 3x%y) - (x3y)
T.(x+6) + (3x + 1)

8. (4a® - b) -~ (222 + b)

Answers:
1. 5a + 6b 5. -(a + 4b)
2. Ts3t + 382t + st 6. 4x3y + 3x?y
3. 8a+3b + 4c - d 7. 4x + 13
4. 8x +y 8. 2(a? - b)

MULTIPLICATION OF A POLY-
NOMIAL BY A MONOMIAL

We can explain the multiplication of a poly-
nomial by a monomial by using an arithmetic
example. Let it be required to multiply the
binomial expression, 7 - 2, by 4. We may write
this 4 x (7 - 2) or simply 4(7 - 2). Now7 - 2 = 5.
Therefore, 4(7 - 2) = 4(5) = 20. Now, let us
solve the problem a different way. Instead of
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subtracting first and then multiplying, let us
nultiply each term of the expression by 4 and
hen subtract. Thus, 4(7-2) =(4x7) -(4x2)
= 20. Botnh methods give the same result. The
second method makes use of the distributive
law of multiplication.

When there are literal parts in the expres-
sion to be multiplied, the first method cannot
se used and the distributive method must be
smployed. This is illustrated in the following
axamples:

45 + a) = 20 + 4a
3(a +b) = 3a +3b
ab(x + y - 2z) = abx + aby - abz

Thus, to multiply a polynomial by a monomial,
multiply each term of the polynomial by the
monomial.

Practice problems. Multiply as indicated:

1. 2a(a - b) 3. ~dx(-y - 3z2)

2. 4a%(a? + 52 + 2) 4. 2a%(a? - ab)
Answers:

1. 2a? - 2ab 3. 4xy + 12xz

2. 4a% + 20a3 + 8a2 4. 2a% - 2a‘b

MULTIPLICATION OF A POLY-
NOMIAL BY A POLYNOMIAL

As with the monomial multiplier, we explain
the multiplication of a polynomial by a poly-
nomial by use of an arithmetic example. To
multiply (3 + 2)(6 - 4), we could do the opera-
tion within the parentheses first and then mul-
tiply, as follows:

(3 + 2)(6 - 4) = (5)(2) = 10

However, thinking of the quantity (3 + 2) as one
term, we can use the method described for a
monomial multiplier. That is, we can multiply
each term of the multiplicand by the multiplier,
(3 + 2), with the following result:

(3 +2)(6-4)=[3+2x6-(3+2)x4]

Now considering each of the two resulting
products separately, we note that each is a bi-
nomial multiplied by a monomial.

The first is
(3+26=(3x6)+(2x6)
and the second is

-(3 x 2)4

- [(3x 4) + (2 x4)]
-(3x4)-(2x4)

Thus we have the following result:

(3 +2)6 -4)=(3x6) +(2x6)
-(3x4)-(2x4
=18+ 12 - 12 - 8
= 10

The complete product is formed by multiplying
each term of the multiplicand separately by
each term of the multiplier and combining the
results with due regard to signs.

Now let us apply this method in two exam-
ples involving literal numbers,

1. (a+ b)(m+n) =am+an +bm +bn

2. (2b + ¢)(r + 8 + 3t - u) = 2br + 2bs
+ 6bt - 2bu + cr +¢8s + 3ct - cu

The rule governing these examples is stated as
follows: The product of any two polynomials is
found by multiplying each term of one by each
term of the other and adding the results alge-
braijcally.

It is often convenient, especially when either
of the expressions contains more than two
terms, to place the polynomial with the fewer
terms beneath the other polynomial and multi-
ply term by term beginning at the left. Like
terms of the partial products are placed one
beneath the other to facilitate addition.

Suppose we wish to find the product of
3x2 - 7x - 9 and 2x - 2. The procedure is

32 - x - 9

2x - 3
6x3 - 14x2? - 18x

- Ox? 4+ 21x + 27
6x3 - 23x%2 + 3x + 27

Practice problems. In the following prob-
lems, multiply and combine like terms:
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1. (2a - 3)(a + 2) 3. x3 + 5x2 - x + 2
2x + 3
2, (ax + b)(ax - b) 4. 222 + 5ab - b2
a+b
Answers:
1. 232 +a3 -6 3. 2x% +13x3 + 13x2 +x+ 6
2. a2x? - p? 4, 2a3 + 7ab + 4ab? - b3

SPECIAL PRODUCTS

The products of certain binomials occur fre-
quently. It is convenient to remember the form
of these products so that they can be written
immediately without performing the complete
multiplication process. We present four such
special products as follows, and then show how
each is derived:

1. Product of the sum and difference of two
numbers,

EXAMPLE: (x - y)(x +y) =x2 - y2

2. Square the sum of two numbers.
EXAMPLE: (x +y)2=x2 + 2xy + y2

3. Square of the difference of two numbers.
EXAMPLE: (x - y)? = x2 - 2xy + y2

4. Product of two binomials having a com-
mon term.

EXAMPLE: (x + a)(x+b) = x2 +(a+b)x + ab
Product of Sum and Difference

The product of the sum and difference of
two numbers is equal to the square of the first
number minus the square of the second number,
If, for example, x - y is multiplied by x + y, the
middle terms cancel one another. The result
is the square of x minus the square of y, as
shown in the following illustration:

X -y
X + vy
x? - xy
+ Xy - y?
x2 _y2
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By keeping this rule in mind, the product of
the sum and difference of two numbers can be
written down immediately by writing the differ-
ence of the squares of the numbers. For ex-
ample, consider the following three problems:

x +3)(x -3)=x2-32=-x2_09
(5a + 2b)(5a - 2b) = (5a) 2 - (2b)2 = 2522 - 4p?
(Tx + 4y)(7x - 4y) = 49x? - 16y2

RATIONALIZING DENOMINATORS.— The
product of the sum and difference of two num-
bers is useful in rationalizing a denominator
that is a binomial. For example, in a fraction
such as

2
N2 - 6

the denominator can be altered so that no radi-
cal terms appear in it. (This process is called
rationalizing.) The denominator must be mul-
tiplied by N2 + 6, which is called the conjugate
of N2 - 6. Since the value of the original frac-
tion would be changed if we multiplied only the
denominator, our multiplier must be applied to
both the numerator and the denominator. Mul-
tiplying the original fraction by

N2 + 6
N2 + 6

is, in effect, the same as multiplying it by 1.
The result of rationalizing the denominator
of this fraction is as follows:

2 N2 + 6
N2 -6 N2 +6

2N2 + 6)
(‘\/—2)2 - 62

2(V2 + 6)
2 - 36

2(N2 + 6)
2(1 - 18)

2(V2 + 6)
2(-17)

N2 + 6
-17
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MENTAL MULTIPLICATION.-The product
of the sum and difference can be utilized to
mentally multiply two numbers that differ from
a multiple of 10 by the same amount, one
greater and the other less. For example, 67 is
3 less than 70 while 73 is 3 more than 70. The
product of 67 and 73 is then found as follows:

67(73) = (70 - 3)(70 + 3)
. 702 - 32 = 4,900 - 9 = 4,391

Square of Sum or Difference

The square of the SUM of two numbers is
equal to the square of the first number plus
twice the product of the numbers plusthe square
of the second number. The square of the DIF-
FERENCE of the same two numbers has the
same form, except that the sign of the middle
term is negative.

These results are evident from multiplica-
tion. When x and y represent the two numbers,
we obtain

X+y X -y
X +y X -y
x? + xy x2 - xy
+ Xy +y°2 - xy + y2

x2 + 2xy + y? x? - 2xy + y?

Applying this rule to the squares of the bi-
nomials 3a + 2b and 3a - 2b, we have the fol-
lowing two cases:

1. (32 + 2b)?

(32)2 + 2(3a)(2b) + (2b) 2
9a2 + 12ab + 4b?

2. (3a - 2b)2 = 9a2 - 12ab + 4b?

The square of the sum or difference of two
numbers is applicatle to squaring a binomial
that contains one or two irrational terms, as in
the following examples:

1. W3 +8)2=(W32+ 2(8)(N3) + 64
- 3+16N3+64=67T+ 163
2. (W3 - 8)2=(N3)2 - 2(8)(N3) + 64

3-163+64=67-16~3

3. (\/-5+~/_'7)2=(~/-5)2+2~/§*f'7+(~/-7)2
5+2~35+7=12+2+35

12 - 2 N3

4, (N5 - ~NT)?

1.
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The square of the sum or difference of two
numbers can-be applied to the process of men-
tally squaring certain numbers. For example,
822 can be expressed as (80 + 2)2 while 672
can be expressed as (70 - 3)2. We find that

(80 + 2)2 = 802 + 2(80)(2) + 22
= 6,400 + 320 + 4 = 6,724
(70 - 3)2 = 70% - 2(70)(3) + 32

4,900 - 420 + 9 = 4,489

Binomials Having a Common Term

The binomials x + 2 and x - 3 have a com-
mon term, x. They have two unlike terms,
+2 and -3. The product of these binomials is

X + 2

x -3

x2 + 2x
-3 -6

x2 - x-6

Inspection of this product shows that it is
obtained by squaring the common term, adding
the sum of the unlike terms multiplied by the
common term, and finally adding the product of
the unlike terms.

Apply this rule to the product of 3y -5 and
3y + 4. The common term is 3y; its square is
9y 2. The sum of the unlike termsis -5 + 4:=-1;
the sum of the unlike terms multiplied by the
common term is -3y; and the product of the
unlike terms is -5(4) = -20. The product of the
two binomials is '

(3y - 5)(3y + 4) = 9y? - 3y - 20

The product of two binomials having a com-
mon term is applicable to the multiplication of
numbers like N3 +7 and '3 - 2 which contain
irrational terms. For example,

(N3)2 + 5 N3 - 14
3+5~N3- 14

-11 + 5 ~3

(N3 + T)(N3 - 2)

Practice problems. In problems 1 through 4,
multiply and combine terms. In 5 through 8,
simplify by using special products.
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1. (x + 4)(x + 2) 5 2
2. (Va - b)? "NZ -2
3. (7Ta + 4b)(7a - 4b) 6. 48(52)
4, (ax + y)? 7. (V3 + 7)2
8. (73)2
Answers:
1. x> + 6x + 8 5. =(N2 + 2)
2.a-2b va +b? 6. (50 - 2)(50 + 2)
3. 49a% - 16b? = 2496
4 a%x? + 2axy + ¥ 7. 52 + 14 V3
8. (70 + 3)(70 + 3)

= 5329

DIVISION OF A POLY-
NOMIAL BY A MONOMIAL

Division, like multiplication, may be dis-
tributive. Consider, for example, the problem
(4 +6 -2) -+ 2, which may be solved by adding
the numbers within the parentheses and then
dividing the total by 2. Thus,

4 + 6 - 2
=

Now notice that the problem may also be solved
distributively.

8
5 4

2 2 2 2
=2+3-1
= 4
CAUTION: Do not confuse problems of the

type just described with another type which is
similar in appearance but not in final result.
For example, in aproblemsuchas 2 + (4 + 6 - 2)
the beginner is tempte. todivide 2 successively
by 4, then 6, and then -2, as follows:

2 ,424_&_2
4§d+6-2"9° 6 2

Notice that we have canceled the ''equals'' sign,
because 2 + 8 is obviously not equal to 1/2 +
2/6 - 1. The distributive method applies only
in those cases in which several different nu-
merators are to be used with the same de-
nominator

When literal numbers are present in an ex-
pression, the distributive method must be used,
as in the following two problems:

%ax + aby + & _ 2ax _ aby A a
1. a == t3 tsw
=2Xx + by + 1
2 18ab2 - 12bc _ 18ab? _ 12bc
T @b - T6b T T6b
= 3ab - 2¢

Quite often this division may be done men-
tally, and the intermediate steps need not be
written out.

DIVISION OF A POLY-
NOMIAL BY A POLYNOMIAL

Division of one polynomial by another pro-
ceeds as follows:

1. Arrange both the dividend and the divisor
in either descending or ascending powers of the
same letter.

2. Divide the first term of the dividend by
the first term of the divisor and write the re-
sult as the first term of the quotient.

3. Multiply the complete divisor by the quo-
tient just obtained, write the terms of the prod-
uct under the like terms of the dividend, and
subtract this expression from the dividend.

4, Consider the remainder as a new dividend
and repeat steps 1, 2, and 3.

EXAMPLE:
(10x3 - Tx%y - 16xy? + 12y%) + (5x - 6y)

SOLUTION:
2x2 + Xy - 2y?
5x - 6y I10x° - 7Tx?y - 16xy* + 12y°
10x3 - 12x2%y
5x%y - 16xy?
5x2y - 6xy?2
- 10xy? + 12y3
- 10xy2 + 12y3

In the example just shown, we began by di-
viding the first term, 10x3, of the dividend by
the first term, 5x, of the divisor. The result is
2x2, This is the first term of the quotient.

Next, we multiply the divisor by 2x2 and
subtract this product from the dividend. Use
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the remainder as a new dividend. Get the sec-
ond term, Xy, in the quotient by dividing the
first term, 5x2y, of the new dividend by the
first term, 5x,of the divisor. Multiply the divi-
sor by xy and again subtract from the dividend.
— Continue the process until the remainder is
zero or is of a degree lower than the divisor.
In the example being considered, the remainder
is zero (indicated by the double line at the bot-
tom). The quotient is 2x? + xy - 2y2.

The following long division problem is an
example in which a remainder is produced:

X + 3
2x 2
3x 2

%2
x2 - 3&x

+95

3 + 9
3 +9

-4

The remainder is -4.

Notice that the term -3x in the second step
of this problem is subtracted from zero, since
there is no term containing x in the dividend.
When writing down a dividend for long division,
leave spaces fui missing terms which may en-
ter during the long division process.

In arithmetic, division problems are often
arranged as follows, in order to emphasize the
relationship between the remainder and the
divisor:

[

S _
2—2+

This same type of arrangement is used in alge-
bra. For example, in the problem just shown,
the results could be written as follows:

x3+2x* +5 _ 2 _ 4, 3. 4
X + 9 - X+ 9

Remember, before dividing polynomials ar-
range the terms in the dividend and divisor
according tc either descending or ascending
powers of one of the literal numbers. When
only one literal number occurs, the terms are
usually arranged in order of descending powers.

For example, in the polynomial 2x2 + 4x3 +
5 - Tx the highest power among the literal terms

is x3, Ifthetermsarearrangedaccording to de-
scending powers of X, the term in x3 should ap-
pear first. The x3 term shouldbe followed by the
x* term, the x term, and finally the constant term.
The polynomialarranged accordingto descending
powers of x is 4x3+ 2x? - Tx + 5.

Suppose that 4ab + b2 + 15a? is to be divided
by 3a + 2b. Since 3a can be divided evenly into
15a2, arrange the terms according to descend-
ing powers of a. The dividend takes the form

15a2 + 4ab + b?

Synthetic Division

Synthetic division is a shorthand method of
dividing a polynomial by a binomial of the form
x - a. For example, if 3x* +2x*+2x? -x -6
is to be divided by x - 1, the long form would
be as follows:

3x3 + 5x2 + ™X + 6

x - 103x% +2x3 + 2x2 -x - 6
3x4 - 3x3
+ 5x3 + 2x?
+ 5x3 - 5x2
+ Tx?2 - x
+ X2 - I
+6x -6
+ 6x - 6

Notice that every alternate line of work in
this example contains a term which duplicates
the one above it. Furthermore, when the sub-
traction is completed in each step, these dupli-
cated terms cancel each other and thus have no
effect on the final result. Another unnecessary
duplication results when terms from the divi-
dend are brought down and rewritten prior to
subtraction. By omitting these duplications,
the work may be condensed as follows:

3x3 +5x% +1x +6
x - 1[3x% +2x3 +42x2 -x -6
-3x3 -5x2 -7x -6

+5x3 +Tx2 4+6x 0

The coefficients of the dividend and the con-
stant term of the divisor determine the results
of each successive step of multiplication and
subtraction. Therefore, we may condense still
further by writing only the nonliteral factors,
as follows:
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3 +5 +7 46
-113 +2 +2 -1 -6
-3 -5 -7 -6
3 45 +71 +6 0

Notice that if the coefficient of the first term
in the dividend is brought down to the last line,
then the numbers in the last line are the same
as the coefficients of the terms in the quotient.
Thus we do nnt really need to write a separate
line of coefficier.s to represent the quotient.
Instead, we br.». down the first coefficient of
the dividend and make the subtraction ‘'sud-
totals" serve as coefficients for the rest of the
quotient, as follows:

x-113 2 2 -1 -6
-3 -5 -7 -6
3 5 T 6 0

The unnecessary writing of plus signs is also
eliminated here.

The use of synthetic division is limited to
divisors of the form x - a, in which the degree
of x is 1. Thus the degree of each term in the
quotient is 1 less than the degree of the corre-
sponding term in the dividend. The quotient in
this example is as follows:

33 + 5x2 + Ix + 6

The sequence of operations in synthetic di-
vision may be summarized as follows, using as
an example the division of 3x - 4x2 + x* - 3 by
x+2:

2|1 0 -4 3 -3
2 -4 0 6
1 -2 03 -9
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First, rearrange the terms of the dividend
in descending powers of x. The dividend then
becomes x* - 4x? + 3x - 3, with 1 understood
as the coefficient of the first term. No x3 term
appears in the polyrnomial, but we supply a zerc
as a place holder for the x3 position.

Second, bring down the 1 and multiply it by
the +2 of the divisor. Place the result under
the zero, and subtract. Multiply the result (-2)
by the +2 of the divisor,place the product under
the -4 of the dividend, and subtract. Continue
this process, finally obtaining x3 - 2x2 + 3 as
the quotient. The remainder is -9.

Practice problems. In the following prob-
lems, perform the indicated operations. In 4,
5, and 6, first use synthetic division and then
check your work by long division:

1. (a3 - 3a2 + a) + a

x8 - x5 + 4&*

2. =

3. (10x3 - Tx2%y - 16xy? + 12y3)
+(2x2 + xy - 2y?)

4, (x2 + 11x + 30) = (x + 6)
5. (12 + x2 - 7x} = (x - 3)

6. a2 - 11a + 30) - (a - 5)

Answers:
1.a2-3a+1 4. x +5
2. x% - Tx3 + 4x2 5. x - 4
3. 5x - 6y 6.a -6



CHAPTER 10
FACTORING POLYNOMIALS

A factor of a quantity N, as defined in chap-
ter 2 of this course, is any expression which
can be divided into N without producing a re-
mainder. Thus 2 and 3 are factors of 6, and
the factors of 5x are 5 and x. Conversely, when
all of the factors of N are multiplied together,
the product is N. This definition is extended to
include polynomials.

The factors of a polynomial are two or more
expressions which, when multiplied together,
give the polynomial asa product. For example,
3, x, and x2 - 4 are factors of 3x° - 12x, as the
following equation shows:

(3)x)x2 - 4) = 3x3 - 12x

The factors 3 and x, which are common to both
terms of the polynomial 3x°® - 12x, are called
COMMON FACTORS.

The distributive principle, mentioned in
chapters 3 and 9 of this course, is an important
part of the concept of factoring. It may be
stated as follows:

If the sum of two or more quantities is multi-
plied by a third quantity, the product is found
by applying the multiplier to each of the origi-
nal quantities separately and summing the re-
sulting expressions. It is this principle which
allows us to separate common factors from the
terms of a polynomial. '

Just as with numbers, an algebraic expres-
sion is a prince factor if it has no other factors
except itself and 1. The factor x2? - 4 is not
prime, since it can be separated intox - 2 and
x + 2. The factors x - 2 and x + 2 are both
prime factors, since they cannot be separated
into other factors.

The process of finding the factors of a poly-
nomial is called FACTORING. An expression
is said to be factored completely when it has
been separated into its prime factors. The
polynomial 3x® - 12x is factored completely as
follows:

3x3 - 12x = 3x(x - 2)(x + 2)

COMMON FACTORS

Factoring any polynomial begins with the
removal of common factors. Notice that 're-
moval" of a factor does not mean Jiscarding it.
To remove a factor is toinsert parentheses and
move the factor outside the parentheses as a
common multiplier. The removal of common
factors proceeds as follows:

1. Inspect the polynomial and find the fac-
tors which are common to all terms. These
common factors, multiplied together, comprise
the "largest common factor."

2. Mentally divide each term of the poly-
nomial by the largest common factor and write
the quotients within a set of parentheses.

3. Write the largest common factor outside
the parentheses as a common multiplier,

For example, ite expression x’y - xy 2 con-
tains xy as a factor of each term. Therefcre,
it is factored as foilows:

x%y - xy? = xy(x - y)

Other examples of factoring by the removal
of common factors are found in the following
expressions:

6mn + 3m®n? - 3m3 = 3m?n(2m? + mn - n?)
-5z2 - 152 = -5z(z + 3)
7 -y + 1z = Mx - y + 2)

In selecting common factors, always remove
as many factors as possible from each term in
order to factor completely. For example, x is
a factor of 3ax? - 3ax, so that 3ax? - 3ax is
equal to x(3ax -3a). However, 3 and a are also
factors. Thus the largest common factor is 3ax.
When factored completely, the expression is as
follows:

3ax? - 3ax = Jax{x - 1)

Practice problems: Remove the common

factors:

-

n?
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1.y2-y 4, 6mn? + 30m2n
2. a’b? - a%p?
2 1 1
3.20°-8p%-6p >3X"3V*y
Answers:
1. y(y - 1) 4. 6mn(n + 5m)

2. a%b?(a - 1)

1
3. %2 - 4p - 3) O 3&E-y+1

LITERAL EXPONENTS

It is frequently necessary to remove com-
mon factors involving literal exponents; that is,
exponents composed of letters rather than num-
bers. A typical expression involving literal
exponents is x2* + x % in which x® is a common
factor. The factored form is x%(x* +1). An-
other example of this type is a™" + 2a™ Re-
raember that a™" is equivalent to a™ . a™. Thus
the factored form is as follows:

m+n m
a

+ 22" = a™ . 32" + 2™
a™a" + 2)

BINOMIAL FORM

The distinctions between monomial, bino-
mial, and trinomial factors are discussed in
detail in chapter 9 of this course. An expres-
sion such as a(x +y) + b(x +y) has a common
factor in binomial form. The factor (x + y) can
be removed from both terms, with the following
result:

a(x +y) +b(x +y) = (x +y)a + b)

Sometimes it is easier to see this if a single
letter is substituted temgpcrarily for the bino-
mial. Thus, let (x+y) = n, so that a(x+y) +
b(x + y) reduces to (an + bn). The factored
form is n(a + b), which becomes (x +y)(a + b)
when n is replaced by its equal, (x +y).

Another formof this type isx(y - 2) - w(z - y).
Notice that this expression could be factored
easily if the binomial in the second term were
(y - 2). We can show that -w(z - y) is equiva-
lent to +w(y - z), as follows:

-w [(-1) « (-1) « z + (-1) . y]
-w {(-1) [(-1) z + y]}}

(-w)(-1) [-z + y]

+w(y - z)

-w(z - y)

Substituting +w(y - 2) for -w(z - y) in the origi-
nal expression, we may now factor as follows:

X(y - 2) -w(z - y) = x(y - 2) + wly - 2)
=(y - z)(x + w)

In factoring an expression such as ax + bx +
ay + by, common monomial factors are re-
moved first, as follows: .

ax + bx + ay + by = x(a + b) + y(a + b)

Having removed the common monomial factors,
we then remove the common binomial factor to
obtain (a + b)(x +y).

Notice that we could have rewritten the ex-
pression as ax + ay + bx + by, based on the
commutative law of addition, which states that
the sum of two or more terms is the same re-
gardless of the order in which they are ar-
ranged. The first step in factoring would then
produce a(x +y) + b(x + y) and the finul form
would be (x + y)a + b). This is equivalent to
(a + b)(x + y), by the commutative law of multi-
plication, which states that the product of two
or more factors is the same regardless of the
order in which they are arranged.

Practice problems. Factor each of the fol-
lowing:

1. x32 4+ 3x2°

2. xy? + y +x7y +x
3. e* + 4e*"

4. Mx® + y9) - 32(x* + y?)
5. a2 +ab - ac - cb

6 1 2

7
8

12 21
.Eer Ger

L a*?, 42

Xy - 3x - 2y + 6
Answers:

. X2 (x* + 3)

c(xy + 1)(x + y)

. e*(1 + 4e¥¥)

1
2
3
4, (x* + y)(7 - 3z)
5
6

. (@ +b)a - ¢)
. %er(e - %r)

7. a’(a* + 1)

8. (y - 3 -2)

112
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BINOMIAL FACTORS

After any common factor has been removed
from a polynomial, the remaining polynomial
factor must be examined further for other fac-
tors. Skill in factoring is principally the ability
to recognize certain types of products such as
the square of a sum or difference. Therefore,
it is important to be familiar with the special
products discussed in chapter 9.

DIFFERENCE OF TWO SQUARES

In chapter 9 we learned that the product of
the sum and difference of two numbers is the
difference of their squares. Thus, (a + b)(a - b)
=a? - b%. Conversely, if a binomial is the dif-
ference of two squares, its factors are the sum
and difference of the square roots. For exam-
ple, in 9a% - 4b? both 9a? and 4b? are perfect
squares. The square roots are 3a and 2b, re-
spectively. Connect these square roots with a
plus sign to get one factor of 9a2 - 4b? and with
a minus sign to get the other factor. The two
binomial factors are 3a - 2band 3a + 2b. There-
fore, factored completely, the binomial can be
written as follows:

9a2 - 4b? = (3a - 2b)(3a + 2b)

We may check to see if these factors are
correct by multiplying them together to see if
their product is the ori§ina1 binomial.

The expression 20x%y - 5xy> reduces to the
difference of two squares after the common
factor 5xy is removed. Completely factored,
this expression produces the following:

20x3y - 5xy® = Sxyldx? - y?)
5xy(2x - y)(2x +y)

Other examples that show the difference of
two squares in factored form are as follows:

49 - 16 = (7 + 4)(7 - 4)
1622 - 4x2? = 4(4a® - x?)
= 4(2a + x)(2a - x)
ax2y - 9y = y(4x® - 9)

Practice problems: Factor each of the fol-
lowing:

y(2x + 3)(2x - 3)

113

119

1. a? - b? 5. x2 - y?

2. b2 -9 6.y2 - 36

3. a’b? - 1 7.1 - 4y?

4. a? - 144 8.9a% - 16
Answers:

1. (a + b){a - b)
2. b + 3)b - 3)
3. (ab + 1)(ab - 1)
4., (a + 12)(a - 12)

5. (x +y)x -y)
6. (y + 6)y - 6)
7. (1 + 2y)(1 - 2y)
8. (3a + 4)(3a - 4)

SPECIAL BINOMIAL FORMS

Special cases involvingbinomial expressions
are frequently encountered. All such expres-
sions may be factored by reference to general
formulas, but these formulas are beyond the
scope of this course. For our purposes, anal-
ysis of some special cases will be sufficient.

Even Exponents

When the exponents on both terms of the bi-
nomial are even, the expression may be treated
as the sum or difference of two squares. For
example, x5 - y° can be rewritten as (x3)? -
(y3)? which rcsults in the following factored
form:

x6 - y® = (3 -y 4y

In general, a binomial with even exponents
has the form x 2™ £ y 2", since all even numbers
have 2 as a factor. If the connecting sign is
positive, the expression may not be factorable;
for example, x? +y2,x% + y?%, and x% +y® are
all nonfactorable binomials. If the connecting
sign is negative, a binomial witheven exponents
is factorable as follows:

X2 - y¥= &" - y)&" ¢ y7)

A special case which is particularly impor-
tant because it occurs so often is the binomial
which has the numeral 1 as one of its terms,
For example, x* - 1 is factorable as the differ-
ence of two squares, as follows:

x} - 1= (x2-1)&x?+1)
x - Dix + )x? +1)
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Odd Exponents

Two special cases involving odd exponents
are of particular importance. These are the
sum of two cubes and the difference of two
cubes. Examples of the sum and difference of
two cubes, showing their factored forms, are
as follows:

P +yd=(x+y)x?-xy+yd)
oyi=(x- 92 +xy+yd)

Notice that each of these factored forms in-
volves a first degree binomial factor ((x + y)
in the first case and (x - y) in the second). The
connecting sign in the first degree binomial
factor corresponds to the connecting sign in the.
original unfactored binomial.

We are now in a p051tion to give the com-
pletely factored form of x® - yb, as follows:

- yo=(x}- v+ yY)
= (x - )2+ xy +y)
(x + y)x? - xy + y?)

In general, (x + y) is a factor of (x" + y") if
n is odd. If n is even, (x" + y") is not factor-
able unless it can be expressed as the sum of
two cubes. When the connecting sign is nega-
tive, the binomial is always factorable if n is
a whole number greater than 1. That is, (x - y)
is a factor of (x" - y") for both odd and even
values of n.

The special case in which one of the terms
of the binomial is the numeral 1 occurs fre-
quently. An example of this is x* + 1, which is
factorable as the sum of two cubes, as follows:

x3+1=(x+1)x2-x+1)

In a similar manner, 1 + x5 can be treated
as the sum of two cubes and factored asfollows:

1+x8=1+ (x?3
1+ x3)(1 - x% +x%

Practice problems. In each of the fcllowing
problems, factor completely:

1. x* - y* 4, x3 - y3 7.1 - x4
2. m3 +nd 5. a° - b? 8. x5 +1
3. x8 - yb 6. x22 - y2 9. 1- x3

Answers:

Lo(x +y)x - y)x2+ y?)

2. (m + n)(m? - mn + n?

3. (x + Y)x - Y& + xy + yU(x? - xy +y)
4. (x - y)(x2%+ xy + y?)

5. (a - b)(a? + ab + b?)(a® + a’b3 + b%)

6. (x* - y?)(x° + yP)

7. (1 + x2)(1 - x(1 + %)

8. (x2 + 1(x*-x2+1)

9. (1 - x)(1 + x + x?)

TRINOMIAL SQUARES

A trinomial that is the square of a binomial
is called a TRINOMIAL SQUARE. Trinomials
that are perfect squares factor into either the
square of a sum or the squa.re of a difference.
Recalling that (x + y)2 = x2+2xy +y? and
(x - y)2 = x? - 2xy + y 2 the form of a trinomial
square is apparent. The first term and the last
term are perfect squares and their signs are
positive. The middle term is twice the product
of the square roots of these two numbers. The
sign of the middle terin is plus if a sum has
been squared; it is minus if a difference has
been squared.

The polynomial 16x? - 8xy + y is a trino-
mial in which the first term, 16x2 and the last
term, y2 are perfect squares with positive
signs. The square roots are 4x and y. Twice
the product of these square roots is 2(4x)(y) =
Bxy The middle term is preceded by a minus
sign indicating that a difference has been
squared. In factored form this trinomial is as
follows:

(4x - y)?

To factor the trinomial, we simply take the
square roots of the end terms and join them
with a plus sign if the middle term is preceded
by a plus or with a minus if the middle term is
preceded by a minus.

The terms of a trinomial may appear in any
order. Thus, 8xy + y2 + 16x? is a trinomial
square and may be factored as follows:

16x2 - 8xy + y? =

8xy + y2 + 16x2 = 16x2 + 8xy + y> = (4x + y)?
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Practice problems. Amorg the following
expressions, factor those which are trinomial
squares:

1. y2 - 8y + 16 5. 12y + 9y2 - 4
2. 16y2 + 30x + 9 6. 4x2 + y? + 4dxy
3. 36 + 12x + x? 7.9 - 6ed + c2d?
4, a? + 2ab + b? 8. x* + 4x? + 4
Answers:
1. (y - 4)?2 5. Not a trinomial
2. Not a trinomial Square
square 6. 2x +y)?
3. (6 + x)? 7. (3 - cd)?
4. (@ + b)? 8. (x* +2)?

SUPPLYING THE MISSING TERM

Skill in recognizing trinomial squares may
be improved by practicing the solution of prob-
lems which require supplying a missing term.
For example, the expression y? + (?) + 16 can
be made to form a perfect trinomial square by
supplying the correct term to fill the paren-
theses.

The middle term must be twice the product
of the square roots of the two perfect square
terms; that is, (2)(4)(y), or 8y. Check: y?+ 8y
+16 = (y + 4)2. The missing term is 8y.

Suppose that we wish to supply the missing
term in 16x2? + 24xy + (?) so that the three
terms will form a perfect trinomial square.
The square root of the first term is 4x. One-
half the middle term is 12xy. Divide 12xy by 4x.
The result is 3y which is the square root of the
last term. Thus, our missing ‘erm is 9y’
Checking, we find that (4x + 3y)? = 16x* +
24xy + 9y 2.

Practice problems. In each of the following
problems, supply the missing term to form a
perfect trinomial square:

1. x2 + (?) +y?
2. t2 + (?) + 25

4, 4m? + 16m + (?)
5. x2 + 4x + (?)

3. 9a2 - (?) + 25b? 6. c2 - 6cd + (?)
Answers:

1. 2xy 4, 16

2. 10t 5. 4

3. 30ab 6. 9d2
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OTHER TRINOMIALS

It is sometimes possible to factor trinomials
that are not perfect squares. Following are
some examples of such trinomials, and the ex-
pressions of which they are products:

1 (x + 3)(x +4) =x2+ Tx + 12
2. (x - 3)(x - 4) =x2- Tx + 12
3. (x - 3)(x +4) =x%+x - 12
4, (x + 3)x - 4) =x2 - x - 12

It is apparent that trinomials like these may
be factored into binomials as shown. Notice
how the trinomial in each of the preceding ex-
amples is formed. The first term is the square
of the common term of the binomial factors.
The second term is the algebraic sum of their
unlike terms times their common term. The
third term is the product of their unlike terms.

Such trinomials may be factored as theprod-
uct of two bincmials if there are two numbers
such that their algebraic sum is the coefficient
of the middle term and their product is the last
term.

For example, let us factor the expression
x? - 12x + 32. If the expression is factorable,
there will be a common term, X, in each of the
binomial factors. We begin factoring by placing
this term within each set of parentheses, as
follows:

)(x )

Next, we must find the other terms that are to
go in the parentheses. They will be two num-
bers such that their algebraic sum is ~12 and
their product is +32. We see that -8 and -4
satisfy the conditions. Thus, thke following ex-
pression results:

(x

x2 - 12x + 32 = (x - 8)(x - 4)

It is of value in factoring to note some use-
ful facts about trinomials. If both the second
and third terms of the trinomial are positive,
the signs of the terms to be found are positive
as in example 1 of this section. I the second
term is negative and the last is positive, both
terms to be found will be negative as in exam-
ple 2. If the tiird term of the trinomial is neg-
ative, one of the terms to be found is positive
and the other is negative as in examples 3 and 4.
Concerning this last case, if the second term i8
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positive as in example 3, the positive term in
the factors has the greater numerical value. If
the second term is negative as in example 4,
the negative term in the factors has the greater
numerical value.

It should be remembered that not all trino-
mials are factorable. For example, x? + 4x + 2
cannot be factored since there are no two ra-
tional numbers whose product is 2 and whose
sum is 4.

Practice problems.
the following problems:

Factor completely, in

.x2 - 12x - 45

1. y2 + 15y + 50 5. x* -

2, y? -2y - 24 6. x2 - 15x + 56
. X% + 8x - 48 7. X%+ 2x - 48

4, x? - 4x - 60 8. x%+ l4x + 24

Answers: -

1. (y + 5)(y + 10) 5. x ~ 15)(x + 3)
2. (y - 6)y + 4) 6. x - T)x - 8)
3. (x + 12)(x - 4) 7. (x -~ 6)(x + 8)
4, (x - 10)(x + 6) 8. (x + 12)(x + 2)

Thus far we have considered only those ex-
pressions in which the coefficient of the first
term is 1. When the coefficient of the first
term is other than 1, the expression can be fac-
tored as shown in the following example:

6x2 -x -2 =(2x + 1)(3x - 2)

Although this result can be obtained by the trial
and error method, the following procedure
saves time and effort. First, find two numbers
whose sum is the coefficient of the second term
(-1 in this example) and whose product is equal
to the product of the third term and the coeffi-
cient of the first term (in this example, (6)(-2)
or -12). By inspection, the desired numbers
are found to be -4t and +3. Using these two
numbers as coefficients for x, we can rewrite
the original expressicn as 6x% - 4x + 3x - 2 and
factor as follows:

6x2-4x+3x-2=2x(3x-2)+1(3x-2)
= 2x + (% - 2)

Practice problems.
the following problems:

Factor completely, in
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L]

¢

1. 2x2 + 13x + 21
2. 16x% + 26x + 3

3. 15x2 - 16x - 7
4, 12x* -8x - 15

Answers:

1, 2x + T)(x + 3)
2. (2x + 3)(8x + 1)

3. (3x + I)(5x - 7)
4., (6x + 5)(2x - 3)

REDUCING FRACTIONS TO
LOWEST TERMS

There are many useful applications of fac-
toring. One of the most important is that of
simplifying algebraic fractions. Fractions that
contain algebraic expressions in the numerator
or denominator, or both, can be reduced to
lower terms, if there are factors common to
numerator and denominator. If the terms of a
fraction are monomials, common factors are
immediately apparent, as in the following ex-
pression:

&%y _ 3xy(x)
6xy 3xy(2)

X
2

If the terms of a fraction are polynomials,
the polynomials must be factored in order to
recognize the existence of common factors, as
in the following two examples:

a->b _ a->b _ 1
1'3.2-2:;.b+b2—(a-b)(a.—b) (a - b)
5 4x? -9 (2x + 3)(2x - 3) (2x + 3)
" 6x2 - 9x  3x(2x - 3) 3x

Notice that without the valuable process of fac-
toring, we would be forcec to use the fractions
in their more complicated form. When there
are factors common to both numerator and de-
nominator, it is obviously more practical to
cancel them (first using the factoring process)
before proceeding.
Practice probklems,

in each of the following:

Reduce to lowest terms

) 12 4 v? - 25
t6x + 12 "y?-8y+ 15
2 2 2

_a -b a‘ - 5a - 24
2. 27 - 2ab+ b O AT -4
3 v? - 14y + 45 6 4x%y - 9y
" y*-8 -9 *4xZ + 12x + O
2
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Answers:

2 + 5
) Ly =3
a+b a+ 3
2'a.--b 5'a.+8
3y-5 6y(2x-3)
*y + 1 * 02X + 3

OPERATIONS INVOLVING FRACTIONS

Addition, subtraction, multiplication, and di-
vision operations involving algebraic fractions
are often simplified by means of factoring,
whereas they would be quite complicated with-
out the use of factoring.

MULTIPLYING FRACTIONS

Multiplication of fractions that contain poly-
nomials is similar to multiplication of fracticns
that contain only arithmetic numbers. If this
fact is kept in mind, the student will nave little
difficulty in mastering multiplication in algebra.
For instance, we recall that to multiply a frac-
tion by a whole number, we Simply multiply the
numerator by the whole number. This is illu-
strated in the following example:

Arithmetic: 4 x 3 = 12
17 1
_ ) 3 _ 3x - 12
Algebra:  (x -4)" 72_ 57 xZ-5

Sometimes the work may be simplified by fac-
toring and canceling before carrying out the
multiplication. The following example illu-
strates this:

3

2
(2a-8)° 3753716 -

1

3
‘a4

2(3) _ 6
a-4 a-4¢4

When the multiplier is a fraction, the rules of
arithmetic remain applicable—that is, multiply
numerators together and denominators together.
This is illustrated as follows:

K

4.2
Arithmetic: 5 X 3= 15
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a+b
a-b

a _ala +b)
'a-b (@a-b°

Algebra:

Where possible, the work may be considerably
reduced by factoring, canceling, and then car-
rying out the multiplication, as in the following
example:

x2 - 2x + 1,
x“ -9

(x = Doe—1) | Ler3)lx - 2)
T3k - 3) (x+ a1

X

C(x - 1x -2 _x?-3x+2
T x - 3)x + 1 x? -2x - 3

Although the factors may be multiplied to form
two trinomials as shown, it is usually suificient
to leave the answer in factcred form.

Practice problems. In the following prob-
lems, multiply as indicated:

3b
a+b

1, 5a2 .

2.x+y.x-y

x? x -1
3a2+2ab+b2. 6a
* a2 - b2 3a + 3b
ya-=1  (a+}?
* 232 + 4a + 2 a-1
Answers:
115a2b 3 6a
*a +b * 3a - b)
x2- y? s L
*x3-x2 * 2

DIVIDING FRACTIONS

The rules of arithmetic apply to the division
of algebraic fractions; as in arithmetic, simply
invert the divisor and multiply, as follows:

. . 3.8 _3. 16
Arithmetic: 8 X5 °3 X 9
-8 (3 3
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Algebra: x - 3y  x2 - 6xy + 9y?
x + 3y~ x?+ Txy + 12y°

-3 24+ 7 12
Ny
_ X—3y x—+3(x + 4y)
T X3y [x—3y)(x - 3y)

- X + 4y
x - 3y

Practice problems. In the following prob-
lems, divide and reduce to lowest terms:

x -2 P 3
*x2+4x +4 x2-4
9 2a-l_,_a+l
a3+ 32 a‘ + 3
-4a2 + 3a ., .
4 _ Bt+12 8t - 12
"Oot2 4+ 6t - 24 15t - 20
Answers:
(x - 2)2 a(a - 1)
l'x+—2_ 3. a+ 2
2a - 1 4 5
‘a? +a ‘4t - 6

ADDING AND SUBTRACTING
FRACTIONS

The rules of arithmetic for adding and sub-
tracting fractions are applicable to algebraic
fractions. Fractions that are to be combined
by addition or subtraction must have the same
denominator. The numerators are then com-
bined according to the operation indicated and
the result is placed over the denominator. For
example, in the expression

2 - 1lix
2 -x

x-4
X -2

+

the second denominator will be the same as the
first, if its sign is changed. The value of the
fraction will remain the same if the sign of the
numerator is also changed. Thus, we have the
following simplification:

x-4_ 2-11x _x-4 -@2-1)
X -2 2-x " x-2 -(2 - x)
=x-i+11x-l
X -2 X -2
_Xx-4+11x - 2
- X -2
_12x - 6
T x -2
_6(2x - 1)
X -2

When the denominators are not the same, we
must reduce all fractions to be added or sub-
tracted to a common denominator and then pro-
ceed.

Consider, for example,

4 + 3
x%2 -4 x2- 4x - 12

We first must find the least common denomina-
tor (LCD). Remember this is the least number
that is exactly divisible by each of the denomi -
nators. To find such a number, as in arithme-
tic, we first separate each of the denominators
into prime factors. The LCD will contain all of
the various prime factors, each one as many
times as it occurs in any of the denominators.
Factoring, we have

4 3
(x + 2)(x - 2) + (x - 6)(x + 2)

and the LCD is (x + 2)(x - 2)(x - 6). Rewriting
the fractions with this denominator and adding
numerators, we have the following expression:

4(x - 6) 3(x - 2)
(x+ 2)(x - 2)(x - 6) (x + 2)(x - 2)(x - 6)

o Ax - 6) + 3(x - 2)
LCD

4x - 24 + 3x - 6
ICD

- Ix - 30
T(x+ 2)x - 2)(x - 6)

As another example, consider

4 X+ 2
X+3 x2+4x + 3
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Factoring the denominator of the second frac- 3 X - 3 LX: 2
tion, we find that the LCD is (x + 3)(x + 1). Re- X 2x
writing the original fractions with the LCD as
denominator,we may now combine the fractions 4 1 |
as follows: *at -1 a+1
4(x + 1) ) x + 2) 5 3 . 2 . 1
x + 3)x+1) (x+3)x +1) ‘(@ + 42 ala+ 4 6@ +4)
_4x +4 -x -2 Answers:
Tk o+ 3)x + 1)
1 x - x?
- x + 2 cx+ 2)(x - 1)
x + 3)x + 1) . 6a + 9
Fractice problems. Perform the indicated @+ 3@ - 3)
operations in each of the following problems: 3 5
*6
3 - 4 X -2 3 2
| - 2 -a° +a° -2
X + X - 2 X 1 4, (a} + 1)(a + 1)(a ~ 1)
9 3a 3 5. a2 + 10a - 48

‘a2 -9 3 -a 6aa + 4)°
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CHAPTER Tl
LINEAR EQUATIONS IN ONE VARIABLE

One of the principal reasons for an intensive
study of polynomials, grouping symbols, fac-
toring, and fractions is to prepare for solving
equations. The equation is perhaps the most
important tool in algebra, and the more skillful
the student becomes in working with equations,
the greater will be his ease in solving problems.

Before learning to solve equations, it is nec-
essary to become familiar with the words used
in the discussion of them. An EQUATION is a
statement that two expressions are equal in
value. Thus,

4+5=09
and
A=lw
(Area of a rectangle = length x width)

are equations. The part to the left of the equal-
ity sign is called the LEFT MEMBER, or first
member, of the equation. The part to the right
is the RIGHT MEMBER, or second member, of
the equation.

The members of an equation are sometimes
thought of as corresponding to two weights that
balance a scale. (See fig. 11-1.) This com-
parison is often helpful to students who are
learning to solve ejuations. It is obvious, in

9 =

4+5

Figure 11-1. Equation compared to a
balance scale.

the case of the scale, that any change made in
one pan must be accompaniedby an equal change
in the other pan. Otherwise the scale will not
balance. Operations on equations are based on
the same principle. The members must be kept
balanced or the equality is lost.

CONSTANTS AND VARIABLES

Expressions in algebra consist of constants
and variables. A CONSTANT is a quantity
whose value remains the same throughout a
particular problem. A VARIABLE is a quan-
tity whose value is free to vary.

There are two kinds of constants--fixed and
arbitrary. Numbers such as 7, -3, 1/2, and 7
are examples of FIXEDconstants. Their values
never change. In 5x + 7 = 0, the numbers 5 and
7 are fixed constants.

ARBITRARY constants can be assigned dif-
ferent values for differentproblems. Arbitrary
constants are indicated by letters—quite often
letters at the beginning of the alphabet such as
a,b,c,andd. In

ax + b =0,

the letters a and b represent arbitrary con-
stants. The form ax + b = 0 represent many
linear equations. I we give a and b particular
values, say a = 5 and b = 7, then these constants
become fixed, for this particular problem, and
the equation becomes

5 + 7= 0

A variable may have one value or it may
have many values in a discussion. The letters
at the endof thealphabet, such as x, y, z, and w,
usually are used to represent variables. In
5% + 7, the letter x is the variable. ¥ x = 1,
then

5x + 1T=56+17=12

If x =2, then

5x+ 7 =5(2) +7=10 + 7= 17
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and so on for as many values of x as we desire
to select.

If the expression 5x + 7T is set equal to some
particular number, say -23, then the resulting
equality

5k + T = -23

holds true for just one value of x. The value is
-6, since

5(-6) + 7= -23

In an algebraic expression, terms that con-
tain a variable are called VARIABLE TERMS.
Terms that do not contain a variable are CON-
STANT TERMS. The expression 9x + 7 con-
tains one variable term and one constant term.
The variable term is 5x, whiie 7 is the constant
term. In ax + b, ax is the variable term and b
is the constant term.

A variable term often is designated by nam-
ing the variable it contains. In 5x + 7, 5x is the
x-term. In ax + by, ax is the x-term, while by
is the y-term.

DEGREE OF AN EQUATION

The degree of an equation that has not more
than one variable in each term is the exponent
of the highest power to which that variable is
raised in the equation. The equation

3x-17=0

is a FIRST-DEGREE equation, since x is raised
only to the first power.

An example of a SECOND-DEGREE equa-
tion is

5x2-.2x+1=0.
The equation,
4x3 - 1x%=0,

is of the THIRD DEGREE.
The equation,

3x-2y=5

is of the first degree in two variables, x and y.
When more thanone variable appears in a term,
as in xy = 5, it is necessary to add the expo-
nents of the variables within a term to get the
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degree of the equation. Since 1 +1 = 2, the
equation xy = 5 is of the second dgeree.

LINEAR EQUATIONS

Graphs are used in many different forms to
give visual pictures of certain related facts.
For example, they are used to show business
trends, production output, continued individual
attainment, and so forth. We find bar graphs,
line graphs, circle graphs, and many other
types, eac™ of which is used for a pariicular
need. In a.gebra, graphs are also used to give
a visual picture containing a great deal oi in-
formation about equations.

Sometimes many numerical values, when
substituted for the variables of anequation, will
satisfy the conditions of the equation. On a
particular type of graph (which will be explained
fully in chapter 12) several of these values are
plotted (located), and when enough are plotted,
a line is drawn through these points. For each
particular equation a certain type of curve re-
sults. For equations in the first degree in one
or two variables, the resulting shape of the
"eurve" is a straight line. Thus, the name
LINEAR EQUATION is derived. Equations of
a higher degree form various other shapes.
The name '"linear equation" now applies to
equations of the first degree, regardless of the
number of variables they contain. Chapter 12
shows how an equation may be pictured on a
graph. The purpose and value of graphing an
equation will also be developed.

IDENTITIES

If a statement of equality involves one or
more variables, it may be either an IDENTITY
(identical equation) or a CONDITIONAL EQUA-
TION. An identity is an equality that states a
fact, such as the following examples:

1. 9+5 =14
2. 2n+5n="Tn
3. 6(x - 3) =6x- 18

Notice that equation 3 merely shows the fac-
tored form of 6x - 18 and holds true when any
value of x is substituted. For example, ifx =5,
it becomes

6(5-3) = 6(5) - 18
6(2) =30- 18
12 =12
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If x assumes the negative value -10, this iden-
tity becomes

6(-10-3) = 6(-10)-18
6(-13) = -60-18
-78 = -78

An identity is estabiished when both sides of
the equality have been reduced to the same
number or the same expression. When 5 is
substituted for x, the value of either side of
6(x-3) = 6x -~ 18 is 12. When -10 is substituted
for x, the value on either side is -78. The fact
that this equality is an identity can be shown
also by factoring the right side so that the
equality becomes

6(x-3) = 6{(x-3)

The expressions on the two sides of the equality
are identical.

CONDITIONAL EQUATIONS

A statement such as 2x-1 =0 is an equality
only when x has one particular value. Such a
statement is called a CONDITIONAL EQUA-
TION, since it is true only under the condition
that x = 1/2. Likewise, the equation y - 7= 8
holds true only if y = 15. i

The value of the variable for which an equa-
tion in one variable holds true is a ROOT, or
SOLUTION, of the equation. When we speak of
solving equations in algebra, we refer to condi-
tional equations. The solution of a conditional
equation can be verified by substituting for
the variable its value, as determined by the
solution.

The solution is correct if the equality re-
duces to an identity. For exampie, if 1/2 is
substituted for x in 2x - 1 = 0, the resuit is

.1.) -

2(2 -1=0
1-1=0

0 =0 (an identity)

The identity is established for x =-%, since the

value of each side of the equality reduces to
zero.

SOLVING LINEAR EQUATIONS

Solving a linear equation in cne variable
means finding the value of the variable that
raa¥cs the equation true. For example, 11 is
the SOLUTION of x - 7 =4, since 11 -7 = 4.
The number 1! is said toSATISFY the equation.
Basically, the operation used in solving equa-
tions is to manipulate both members, by addi-
tion, subtraction, multinlication, or division
until the value of the variable becomes appar-
ent. This manipulation may be accomplished in
a straightforward manner by use of the axioms
outlined in chapter 3 of this course. These
axioms may be summed up in the following
rule: If both members of an equation are in-
creased, decreased, multiplied, or divided by
the same number, or by equal numbers, the re-
sults will be equal. (Division by zero is ex-
cluded.)

As mentioned earlier, an equation may be
compared to a balance. What is done to one
member must also be done to the other tomain-
tain a balance. An equation must always be
kept in balgnce or the equality is lezt. We use
the above rule to remove or adjust terms and
coefficients until the value of the variable is
discovered. Some examples of equations solved
by means of the four operations mentioned in

the rule are given in the following paragraphs.

ADDITION
Find the value of x in the equation
x-3=12

As in any equation, we must isolate the variable
on either the right or left side. In this prob-
lem, we leave the variable on the left and per-
form the following steps:

1. Add 3 to both members of the equation,
as follows:

X-343=12+3

In effect, we are "undoing''the subtraction indi-
cated by the expression x - 3, for the purpose
of isolating x in the left member.

2. Combining terms, we have

x=15
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SUBTRACTION
"~ the value of x in the equation
X + 14 =24

1. Subtract 14 from each member. In effect,
this undoes the addition indicated in the expres-
sion x + 14,

X+ 14 -14 - 24 - 14
2. Ccmbining terms, we have

10

X
MULTIPLICATION

Find the value of y in the equation

y_
5..10 |

1. The only way to remove the 5 so that the
y can be isolated is to undo the indicated divi-
sion. Thuswe use the inverse of division, which
is multiplication. Multiplying both members by
5, we have the following:

f»(%) = 5(10)

2. Performing the indicated multiplications,
we have

y = 50
DIVISION

Find the value of x in the equation

1. The multiplier 3 may be removed from
the x by dividing the left member by 3. This
must be balanced by dividing the right member
by 3 also, as follows:

15
3

3 _
7 =

2. Yerforming the
have

indicated divisions, we
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Practice problems. Solve the following equa-
tions:

x—
l.m+2 =28 4'ﬁ'2
2.x - 5 =11 5. 2n =5
3. 6x = -48 6. gy = 6
Answers:
1.m-=26 4, x = 28
2. x = 16 5.n=2-;—
3.x = -8 6. y = 36

SOLUTIONS REQUIRING MORE
THAN ONE OPERATION

Most equations involve more steps in their
solutions than the simple equations already de-
scribed, but the basic operations remair un-
chaaged. If the basic axioms are kept well in
mind, these more complicated equations will
not become too difficult. Equations may re-
quire one or all of the basic operations before
a salution can be obtained.

Subtraction and Division
Find the value of x in the following equation:

2x + 4 = 16

1. The term containing x is isolated on the
left by subtracting 4 from the left member.
This operation must be balanced by also sub-
tracting 4 from the right member, as follows:

2x +4 -4=16 - 4

2. Performing the ind’cated operations, we
have

2x

= 12

3. The multiplier 2 is removed from the x
by dividing both sides of the equation by 2, as
follows:

% _ 12
2 7 2
x =6

17
& 8
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Addition, Multiplication, and Divi: ion

Find the value of y in the followir.g equation:

1, Isolate the term containing y on the left
by adding 4 to both sides, as follows:

3y 1
-2-4+4—_1+4
3y _
_2__15

2. Since the 2 will not divide the 3 exactly,
multiply the left member by 2 in order to elim-
inate the fraction. This operation must be bal-

anced by multiplying the right member by 2, as

follows:

2(15)

30

3. Divide both members by 3, in order to
isolate the y in the left member, as follows:

Equations Having the Variable in
More Than One Term

Find the value of x in the following equation:

3x _
-4—+x—12'x

1. Rewrite the equation with no terms con-
taining the variable in the right member. This
requires adding x to the right member to elim-
inate the -x term, and balance requires tha! we
also add x to the left member, as follows:

—I+x+x=12-x+x
§‘f_+2x=12

2. Since the 4 will not divide the 3 exactly,
it is necessary to multiply the first term by 4

RS
’
2

to eliminate the fraction. However, notice that
this multiplication cannot be performed on the
first term only; any multiplier which is intro-
duced for simplification purposes must be ap-
plied to the entire equation. Thus each term in
the equation is multiplied by 4, as follows:

4(Z) + 420 = 412)

\ 4

3x + 8x = 48

3. Add the terms containing x and then di-
vide both sides by 11 to isolate the x in the left
member, as follows:

11x = 48
x = 38
1

4

_4H

Practice problems. Solve each of the follow-
ing equatio—~:

Lx-1l=3% 4.4 -Tx =9 - 8x

Zl+y=8 51+6y=13

*3 * 2

3.%+3x=7 6.-%x-2x=25+x

Answers:

1. x = 3/2 4, x = 5

2,y=6 5.y = 2

3. x = 28/13 6. x = -10
EQUATIONS WITH LITERAL

COEFFICIENTS

As stated earlier, the first letters of the
alphabet usually represent known quantities
(constants), and the last letters represeat un-
known quantities (variables). Thus, we usually
3olve for x, y, or z.

An equation such as

ax - 8 =bx - 5

has letters as coefficients. Equations with lit-
eral coefficients are solved in the same way as
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equations with numerical coefficients, except
that when an operation cannot actually be per-
formed, it merely is indicated.

In solving for x in the equation

ax - 8 =bx -5

subtract bx from both members and add 8 to
both members. The result is

ax - bx =8 - 5

Since the subtraction on the left side cannot
actually be performed, it is indicated. The
quantity, . - », is the coefficient of x when
terms are collected. The equation takes the
form

(a-b) x = 3
Now wavide both sides of the equation by a-b.

Again the result can be only indicated. The
solution of the equation is

-3
X =30

In solviang for y in the equation
ay + b = 4
subtract b froia both members as follows:
ay =4 -0
Dividing both members by a, the solution is

4-b
y=3

Practice problems. Solve for x in each of
the following:

1.3+x=0D 35, 3x + 6m = Tm
2. 4x =8 + t 4, ax - 2(x + b) = 3a

REMOVING SIGNS OF GROUPING

If signs of grouping appear in an equation
they should be removed in the manner indicated
in chapter 9 of this course. For example, solve
the equation

5 = 24 - [x-12(x-2) - 6(x-2)]
Notice that the same expression, x-2, occurs in

both parentheses. By combining the terms ¢ -
taining (x-2), the equation becomes

5 = 24 - [x-18(x-2)]
Next, remove the parentheses and then the
bracket, obtaining
5 =24 - [x-18x + 36]
24 - [36 - 1Tx]
24 - 36 + 17x
-12 + 17x
Subtracting 17x from both members and than
subtracting 5 from both members, we have
-17x = -12 - 5
-17x = - 17

Divide both members by -17., The solution is
x=1

EQUATIONS CONTAINING FRACTIONS
To solve for x in an equation such as

2x X 1 x
3t l=7+3
first clear the equation of fractions. To do
this, find the least common denominator of the
fractions. Then multiply both sides of the equa-
tion by the LCD.

The least common denominator of 3, 12, 4,
and 2 is 12, Multiply both sides of the equaticn
by 12. The resulting equation is

8x + x -12 =3 + 6x

Subtract 6x from both members, add 12 to both
members, and collect like terms as follows:

9x - 6x =12 + 3
3x =15
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The solution is
X =95

To prove that x =5 is the correct solution,
substitute 5 for x in the original equation and
show that both sides of the equation reduce to
the same value. The result of substitution is

26) 5 _,_1_5
5t l=3+73

In establishing an identity, the two sides of
the equality are treated separately, and the op-
erations are performed as indicated. Some-
times, as here, fractions occur on both sides of
the equality, and it is desirable to find the least
common denominator for more than one set of
fractions. The same denominator could be used
on both sides of the equality, but this might
make some of the terms of the fractions larger
than necessary.

Proceeding in establishing the identity for
x = 5 in the foregoing equation we obtain

10 5 3 _1 10
3 TR 337
7.5 _1
37127 1
.2_8.4-_5—:1]_‘
12 12 4
33 _11
12 4
1 _11
4 2

Each member of the equaiity has the value
11/4 when x = 5. The fact that the equation be-
comes an identity when x is replaced by 5
proves that x = 5 is the solution. :

Practice problems. Solve each of the fol-
lowing equations:

X_9:=-X y_ Y-
1.4 2 5 3..2. 3 5
1 1 1 3 _
2.-2--;--5 4.5-6

Answers:
1. x = 24 y = 30
2.v==56 x = 1/8
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GENERAL FORM OF A LINEAR
EQUATION

The expression GENERAL FORM, in mathe-
matics, implies a form to which all expressions
or equations of a certain type can be reduced.
The only possible terms in a linear equaticn in
one variable are the first-degree term and the
constant term. Therefore, the general form of
a linear equation in one variable is

ax + b =0
By selecting various values for a and b, this
form can represent any linear equation in one
variable after such an equation has been simpli-
fied. For exampie, f a=7andb=5,ax+b=0
represents the numerical equation
x +5=0

Ifa=2m-n andb=p - q, then ax + b = 0 rep-
resents the literal eqnation

2m-n)x +p-q =0

This equation is sclved as follows:

(2m-n)x + (p-q) - (p-q) = 0 - (p-q)
(2m-n)x = 0 - (p-q)

x = -(P-9) _ q-p

2m-n 2m-n

USING EQUATIONS TO
SOLVE PROBLEMS

To solve a problem, we first translate the
numerical sense of the problem into an equa-
tion. To see how this is accomplished, con-
sider the following examples and their solutions.

EXAMPLE 1: Together Smith and Jones have
$120. Jones has 5 tiraes as much as Smith.
How much has Smith?

SOLUTION:

Step 1. Get the problem clearly in mind.
There are two parts to each problem—what is
given (the facts) and what we want to know (the
question). In this problem we know that Jones
has 5 times as much as Smith and together they
have $120. We want to know how much Smith
has.

131




Chapter 11-LINEAR EQUATIONS IN ONE VARIABLE

Step 2. Express the unknown as a letter.
Usually we express the unknown or number we
know the leas! about as a letter (conventionally
weuse X). Heve we knowthe least about Smith's
money. Le. .. represent the number of dollars
Smith has.

Step 3. Express tne other facts in terms of
the unknown. If x is the number of dollars
Smith has ana Jones has 5 times as much, then
9x is the number of dollars Jones has.

Step 4. Express the facts as an equation,
The problem will express or imply a relation
between the expressions in steps 2 and 3.
Smith's dollars plus Jones' dollars equal $120.
Translating this statement into algebraic sym-
bols, we have

%z + 5x =120

Solving the equation for x,

6x = 120
x =20

Thus Smith has $20.

Step 5. Ckeck: See if the solution satisfies
the original statement of the problem. Smith
and Jones have $120.

$20
(Smith's money)

$100
(Jones' money)

+ = $120

EXAMPLE 2: Brown can do a piece of work in
5 hr. If Olsen can do it in 4 hr how long will it
take them to do the work together?

SOLUTION:

Step 1. Given: Brown could do the work in
9 hr. Olsen could do it in 4 hours.

Unknown: How long it takes them to do the
work together.

Step 2. Let x represent the time it takes
them to do the work together.

1
Step 3. Then - is tke amount they do to-

gether in 1 hr. Also, in 1 hour Brown does% of
the work and Olsen does % of the work.

Step 4. The amount done in 1 hr is equal to
the part of the work done by Brown in 1 hr plus
that done by Olsen in 1 hr.

_1.1
“5+7%

R Lo

Solving the equation,

20 (1) - 20x (5) + 200 ()

20 = 4x + pbx
20 = 9x
20 _ = 22 hou
g = % O0rx .‘Z9 hours
They complete the work together in 292— hours.
Step 5. Check: Zg X % = amount Brown does
2 1
2§ Xg= amount Olsen does
20 l) (&Q _1_)_;4_ 5.9
(9 X5/*\9X*¢/"9*t0" 79

Practice problems. Use a linear equation in
one variable to solve each of the following
problems:

1. Find three numbers such that the second is
twice the first and the third is three tiices as
large as the first. Their sum is 180.

2. A seaman drew $75.00 pay in doliar bills
and five-dollar bills. The mumber of dollar
bills was three more than the number of five-
dollar bills. How many of each kind did he
draw? (Hint: If x is the number of five-dollar
bills, then 5x is the number of dollars they
represent.)

3. Airman A can complete a maintenance task

‘in 4 hr. Airman B requires only 3 hr to do the
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same work. I they work together, how long
should it take them to complete the job?

Answers:

. First number is 30.
Second number is €0.
Third number is 90.

. Number of five-dollar bills is 12.
Number of one-dollar bills is 15.

5
1-7 hr.
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INEQUALITIES

Modern mathematical thought gives consid-
erable emphasis to the concept of inequality. A
ineaningful comparison between two quantities
can be set up if they are related in some way,
even though the relationship may not be one of
equality.

The expression '"number sentence' is often
used tc describe a general relationship which
may be either an equality or an inequality. If
the number sentence states an equality, it is an
EQUATION; if it states an inequality, it is an
INEQUATION.

ORDER PROPERTIES
OF REAL NUMBERS

The idea of order, or relative rank accord-
ing to size, is based upon two intuitive concepts:
“greater than' and 'less than.' Mathematicians
use the symbol > to represent 'greater than'
and the symbol < torepresent 'less than.'" For
example, the inequation stating that 7 is greater
than 5 is written in symbols as follows:

7T>5

The inequation stating that x is less than 10 is
written as follows:

x <10

A 'solution" of an inequation involving a
variable is any number wiich may be substi-
tuted for the variable without changing the re-
lationship between the left member and the
right member. For example, the inequation
x < 10 has many solutions. All negative num-
bers, and all positive numbers between 0 and 9,
may be substituted for x successfully. These
solutions comprise a set of numbers, called the
SOLUTICON SET. -

The SENSE of an inequality refers to the
direction in which the inequality symbol points.
For example, the following two inequalities
have opposite sense:

7>5
10 < 12
PROPERTIES OF INEQUALITIES
Inequations may be manipulated in accord-

ance with specific operational rules, in a man-
ner similar to that used with equations.

Addition

The rule for addition 1s as follows: If the
same quantity is added to both members of an
inequation, the result is an inequation having
the same sense as the original inequation. The
following examples illustrate this:

1. 5 < 8
5 +2 <8 +2
7 <10
The addition of 2 to both members does not
change the sense of the inequation.
2. 5< 8
5+ (-3) <8 + (-3)
2 <5
The addition of -3 to both members does not
change the sense of the inequation.

Addition of the same quantity to both mem-
bers is a useful method for solving inequations.
In the following example, 2 is added to both
members in order to isolate the x term on the
left:

x-22>6
X -2+2>6+2
x> 3

Multiplication

The rule for multiplication is as follows: If
both members of a.. inequation are multiplied
by the same positive quantity, the sense of the
resulting inequation is the same as that of the

original inequation. This is illustrated as
follows:
1, -3 <-2
2(-3) < 2(-2)
-6 <-4

Multiplication of both members by 2 does not
change the sense of th inequation.

2. 10 < 12

1 1
5(10) < §(12)

5 < 6
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Multiplication of both members by 1/2 does not
change the sense of the inequation.

Notice that example 2 illustrates division of
both members by 2. Since any division can be
rewritten as multiplication by a fraction, the
multiplication rule is applicable to both multi-
plication and division.

Multiplication is vsed to simplify the solu-
tion of inequatiors such as the following:

X
-§>2

Multiply both members by 4:

3 (%) > 3(2)
X > 6
Sense Reversal

If both sides of an inequation are multiplied
or divided by the same negative number, the
sense of the resulting inequation is reversed.
This is illustrated as follows:

1. -4 < -2
(-3)(-49) > (-3)(-2)

12 > 6

7>5
(-2)(7) < (-2)(5)
-14 < -10
Sense reversal is useful in the solution of an

inequation in which the variable is preceded by
a negative sign, as follows:

Add -2 to both members to isolate the x term:
2 -x~-2<4-2
-x<2

Multiply both members by -1:
X > -2

Practice problems. Solve each of the fol-

lowing inequations:

1.x+2 >3 3.3 -x<6

2.%-1<2 4. 4y > 8
Answers:

1.x>1 3. x > -3

2.y <89 4. y > 2

GRAPHING INEQUALITIES

An inequation such as x > 2 can be graphed
on a number line, as shown in figure 11-2.

The heavy line in figure 11-2 contains all
values of x which comprise the solution set.
Notice that this line continues indefinitely in
the positive direction, as indicated by the arrow
head. Notice also that the point representing

= 2 is designated by a circle. This signifies
that the solution set does not contain the num-
ber 2.

F1gure 11-3 is a graph of the inequation
x? > 4. Since the square of any number greater
than 2 is greater than 4, the solution set con-
tains all values of x greater than 2. Further-
more, the solution set contains all values of x
less than -2. This is because the square of any
negative number smaller than -2 is a positive

2 -x<4 number greater than 4.
————————— el
-4 -3 -2 - 0 I 2 3 4

Figure 11-2.—Graph

)ﬂ: x

of the inequation x > 2.
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Figure 11-3.—Graph of x? > 4,
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CHAPTER 12
LINEAR EQUATIONS IN TWO VARIABLES

Thus far in this course, discussions of equa-
tions have been limited to linear equations in
one variable. Linear equations which have two
variables are common, and their solution in-
volves extending some of the procedures which
have already been introduced.

RECTANGULAR COORDINATES

An outstanding characteristic of equations in
two variables is their adaptability to graphical
analysis. The rectangular coordinate system,
which was introduced in chapter 3 of this course,
is used in analyzing equations graphically. This
system of vertical and horizontal lines, meeting
each other at right angles and thus forming a
rectangular grid, is often called the Cartesian
coordinate system. It is namedafter the French
philosopher and mathematician, Rene Descartes,
who invented it.

COORDINATE AXES

The rectangular coordinate system is devel-
oped on a framework of reference similar to
figure 3-2 in chapter 3 of this course. On a
piece of graph paper, two lines are drawn in-
tersecting each other at right angles, as in
figure 12-1, The vertical lineisusually labeled
with the capital letter Y and called the Y axis.
The hovizontal line is usually labeled with the
capita! letter X and called the X axis. The
point where the X and Y axes intersect is called
the ORIGIN and is labeled with the letter o.

Above the origin, numbers measured along
or parallel to the Y axis are positive; below the
origin they are negative. To the right of the
origin, numbers measured along or parallel to
the X axis are positive; to the left they are
negative.

COORDINATES

A point anywhere on the graph may be lo-
cated by two numbers, one showing the distance
of the point from the Y axis, and the other show-
ing the distance of the point from the X axis.

1
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Figure 12-1.—Rectangular coordinate system.

Point P (fig. 12-1) is 6 units to the right of the
Y axis and 3 units above the X axis. We call
the numbers that indicate the position of a point
COORDINATES. The number indicating the
distance of the point measured horizontally
from the origin is the X coordinate (6 in this
example), and the number indicating the dis-
tance of the point measured vertically from the
origin (3 in this example) is the Y coordinate.

In describingthe location of a point by means
of rectangular coordinates, it is customary to
place the coordinates within parentheses and
separate them with a comma. The X coordinate
is always written first. The coordinates of
point P (fig. 12-1) are written (6, 3). The co-
ordinates for point Q are (4, -5); for point R,
they are (-5, -2); and for point S, they are
(-8, 5).

Usually when we indicate a point on a graph,
we write a letter and the coordinates of the
point. Thus, in figure 12-1, for point S, we
write S(-8, 5). The other points would ordinarily

e e
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be written, P(6, 3), Q(4, -5), and R(-5, -2). The
Y coordinate of a pointis often called its ORDI-
NATE and the X coordinate is often called its
ABSCISSA.

QUADRANTS

The X and Y axes divide the graph into four
parts called QUADRANTS. In figure 12-1, pcint
P is in quadrant I, point S is in quadrant II, R
is in quadrant III, and Q is in quadrant IV. In
the first and fourth quadrants, the X coordinate
is positive, because it is to the right »of the
origin. In the second and third quadrant it is
negative, because it is to the left of the origin.
Likewise, the Y coordinate is nositive in the
first and second quadrants, being above the
origin; it is negative in the third and fourth
quadrants, being below the origin. Thus, we
know in advance the signs of the coordinates of
a point by knowing the quadrant in which the
point appears. The signs of the coordinaies in
the four quadrants arz shown in figure 12-1,

Locating points withrespect to axes is called
PLOTTING. As shown with point P (fig. 12-1),
plotting a point is equivalent to completing a
rectangle that has segments of the axes as two
of its sides with lines drepped perpendicularly
to the axes forming the other two sides. This
is the reason for the name 'rectangular co-
ordinates."

PLOTTING A LINEAR EQUATION

A linear equation in two variables may have
many solutions. For example, in solving the
equation 2x - y = 5, we can find an unlimited
number of values of x for which there will be a
corresponding value of y. When x is 4, y is 3,
since (2x4) -3=5. When x is 3, yis 1, and
when x is 6, y is 7. When we graph an equa-
tion, these pairs of values are considered co-
ordinates of points on the graph. The graph of
an equation is nothing more than a line joining
the points located by the various pairs of num-
bers that satisfy the equation.

To picture an equation, we first find several
pairs of values that satisfy the equation. For
example, for the equation 2x - y = 5, we assign
several values to x and solve for y. A conven-
ient way to find values is to first solve the
equation for either variable, as follows:

2x -y=25
~y = =2X + 5
y=2x-95

Hae

Once this is accomplished, the value of y is
readily apparent when values are substituted
for x. The information derived may be re-
corded in a table such as table 12-1. We then
lay off X and Y axes on graph paper, select
some convenient unit distance for measurement
aiong the axes, and then plot the pairs of values
found for x and y as coordinates of poinis on
the graph. Thus, we locate the pairs of values
shown in table 12-1 on a graph, as shown in
figure 12-2 (A).

Table 12-1.~-Values of x and y in the equation
2x -y=05.

fxX=cce-a- -2 1 ({356 |7]| 8

Theny=we-}| -9 [-3|1!51 71911

o(8,11)
*(7,9) Ly
*(6,7) £
.(5.5) N
[ ] (31" X X

v 0 /
o(1,-3)

(-2,-9)e /

(A) (B)

Figure 12-2,—Graph of 2x -y = 5.

Finally, we draw a line joining these points,
as in figure 12-2 (B). It is seen that this is a
straight line; hence the name "linear equation."
Once the graph is drawn, it is customary to
write the equation it represents along the line,
as shown in figure 12-2 (B).

It can be shown that the graph of an equation
is the geometric representation of all the points
whose coordinates satisfy the conditions of the
equation. The line represents an infinite num-
ber of pairs of coordinates for this equation.
For example, selecting at random the point on
the line where x is 2-% andy is 0 and substitut-
ing these values in the equation, we find that
they satisfy it. Thus,

1 _
2(25) -0=5
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If two points that lie on a straight line can
be located, the position of the line is known.
The mathematical language for this is "Two
points DETERMINE a straight line.” We now
know that the graph of a linear equation in two
variables is a straight line. Since two points
are sufficient to determine a straight line, a
linear equation can be graphed by plotting two
poin‘s and drawing a straight line through these
points. Very often pairs of whole numbers
which satisfy the equation can be found by in-
spection. Such points are easily plotted.

After *he line is drawn through two points, it
is well to plot a third point as a check. If this
third poin* whose coordinates satisfy the equa-
tion lies on the line the graph is accurately
drawn.

X AND Y INTERCEPTS

Any straight line which is not parallel to one
of the axes has an X intercept and a Y inter-
cept. Thesc are the points at which the line
crosses the X and Y axes. At the X intercept,
the graph line is touching the X axis, and thus
the Y value at that point is 0. At the Y inter-
cept, the graph line is touching the Y axis; the
X value at that point is 0.

In order to find the X intercept, we simply
lety = 0 and find the corresponding value of x.
The Y intercept is found by letting x = 0 and
finding the corresponding value of y. For ex-
ample, the line

5x + 3y = 15

crosses the Y axis at (0,5). This may be veri-
fied by letting x = 0 in the equation. The X in-
tercept is (3,0), since x is 3 when y is 0. Fig-
ure 12-3 shows the line

5x + 3y = 15
graphed by means of the X and Y intercepts.
EQUATIONS IN ONE VARIABLE

An equation containing only one variable i3
easily graphed, since the line it represents lies
parallel to an axis. For example, in

2y = 9
‘he value of v is

9 1
3 OF 4§

132

Y,
10 1]
N\
(0,5)
bt
(3,0). :
e o o
_5' 0 _"?: i
Y \‘!I\.‘ ‘
A\ 1
2
-5 » 8 B
N
S
N

Figure 12-3.—Graph of 5x + 3y = 15.

The line 2y = 9 lies parallel to the X axis ata

distance of 4-2- units above it. (See fig. 12-4.)

Notice that each small division on the graph
paper in figure 12-4 represents one-half unit.
The line 4x + 15 = 0 lies parallel to the Y

axis. The value of x is - 14§ Since this value is

negative, the line fies to the left of the Y axis

at a distance of 3% units. (See fig. 12-4.)

U e

wn

4x + 15 =0

Figure 12-4,—Graphs of 2y = 9 and 4x + 15 = 0.
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From the foregoing discussion, we arrive at
two important conclusions:

1. A pair of numbers that satisfy an equa-
tion are the coordinates of a point on the graph
of the equation.

2. The coordinates of any point on the graph
of an equation will satisfy that equation.

SOLVING EQUATIONS IN
TWO VARIABLES

A solution of a linear equation in two vari-
ables consists of a pair of numbers that satisfy
the equation. For example, x = 2 andy =1
constitute a solution of

3x -5y=1

When 2 is substituted for x and 1 is substituted
for y, we have

3(2) - 5(1) =1

The numbers x= -3 and y = -2 also form a
solution. This is true because substituting -3
for x and -2 for y reduces the equation to an
identity:

3(-3) -5(-2) = 1
-9 +10=1
1=1

Each pair of numbers (x, y) such as (2, 1) or
(-3, -2) locates a point on the line 3x - 5y = 1.
Many more solutions could be found. Any two
numbers that constitute a solution of the equa-
tion are the coordinates of a point on the line
represented by the equation.

Suppose we were asked to solve a problem
such as: Find two numbers such that their sum
is 33 and their difference is 5. We could indi-
cate the problem algebraically by letting x rep-
resent one number and y the other. Thus, the
problem may be indicated by the two equations

33
X-y=95

X+y=

Considered separately, each of these equations
represents a straight line on a graph. There
are many pairs of values for x and y which sat-
isfy the first equation, and many other pairs
which satisfy the second equation. Our problem
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is to find ONE pair of values that will satisfy
BOTH equations. Such a pair of values is said
to satisfy both equations at the same time, or
simultaneously. Hence, two equations for which
we seek a common solution are called SIMUL-
TANEOUS EQUATIONS. The two equations,
taken together, comprise a SYSTEM of equa-
tions.

Graphical Solution

If there is a pair of numbers which may be
substituted for x and y in two different equa-
tions, these numbers form the coordinates of a
point which lies on the graph of each equation.
The only way in which a point can lie on two
lines simultaneously is for the point to be at
the intersection of the lines. Therefor=z, the
graphical solution of two simultaneous equa-
tions involves drawing their gvaphs and locat-
ing the point at which the grapl. lines intersect.

For example, when we graph the equations
X+y=33 and x -y =5, as in figure 12-5, we
see that tiey intersect in a single point. There
is one pair of values comprising coordinates of
that point (19, 14), and that pair of values sat-
isfies both equations, as follows:

X+y=233 X-y=5
19 + 14 = 33 19 - 14 =5
{ 1T
~—1r LSw
'i‘x np~a
Ry 2
20 \?
5
(1?,14
03__ |
10 ¢
4 "3
+
X
' 0 10 20
1
il

Figure 12-5.—Giraph of x +y = 33 andx=y=5.
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This pair of numbers satisfies each equation.
It is the only pair of numbers that satisfies the
two equations simultaneously.

The graphical method is a quick and simple
means of finding an approximate solution of
two simultaneous equations. Each equation is
graphed, and the point of intersection of the two
lines is read as accurately as possible. A high
uegree of accuracy can be obtained but this, of
course, is dependent on the precision with which
the lines are graphed and the amount of accu-
racy possible in reading the graph. Sometimes
the graphical method is quite adequate for the
purpose of the problem.

Figure 12-6 shows the graphs of x +y =11
and X -y = -3. The intersection appears to be
the point (4, 7). Substituting x =4 andy =7
into the equations shows that this is the actual
point of intersection, since this pair of num-
bers satisfies both equations.

1
{
Y
o in
N &
l‘%
o+
10
. }
| *x
54 "
] .
%
. Pt X
-5 -1 0 |5 1
b—Jr—u
5

Figure 12-6.—Graphof x+y=11andx-y = -3.

The equations 7x -8y = 2 and 4x + 3y = §

are graphed in figure 12-7. The lines intersect
where y is approximately 1/2 and x is approxi-
mately 5/6.

Practice problems. Solve the following si-
multaneous systems graphically:

1.x+y=28 2. 3x + 2y = 12

X-y=2 4x + S5y = 2
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Answers:

—

1. x

y
Addition Method

3

The addition method of solving systems of
equations is illustrated in the following ex-
ample:

X-y=2
xX+y=28
2x + 0 = 10

X=9

The result in the foregoing example is obtained
by adding the left member of the first equation
to the left member of the second, and adding the
right member of the first equation to the right
member of the second.

Having found the value of X, we substitute
this value in either of the original equations to
find the value of y, as follows:

X-y=2

() -y=2
“-y=2-95
-y = -3
y=3

Notice that the primary goal in the addition
method is the elimination (temporarily) of one
of the variables. If the coefficient of y is the
same in both equations, except for its sign,
adding the equations eliminates y as in the
foregoing example. On the other hand, suppose
that the coefficient of the variable which we de-
sire to eliminate is exactly the same in both
equations.

In the following example, the coefficient of x
is the same inboth equations, including its sign:

X+ 2y =4
x-3y=-1

Adding the equations would not eliminate eithex
xor y. However, if we multiply both members
of the second equation by -1, then addition will
eliminate x, as follows:

vra
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Figure 12-7.—Graph of 7x - 8y = 2 and 4x + 3Y = 5.
X+ 2y =4 are multiplied by 4 and both members of the
X + 3y =1 second equation by -3. Then addition will elim-
inate x.
o9y = 5 Following this procedure to get the value of
y=1 y, we multiply the first equation by 4 and the

The value of x is found by substituting 1 for y
in either of the original equations, as follows:

X+ 2(1) = 4
X=2

As a second example of the addition method,
find the solution of the¢ simultaneous equations

3x + 2y = 12
4x + S5y = 2

Here both x and y have unlike coefficients. The
coefficients of one of the variables must be
made the same, except for their signs.

The coefficients of x will be the same except
for signs, if both members of the first equation

135

second equation by -3, as follows:

12x + 8y = 48
-12x - 15y = -6
-7y = 42

y = =6

Substituting for y in the first equation to get the
value of x, we have
3x + 2(-6) = 12
X + 2(-2)
x -4

X

1490
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This solution is checked algebraically by
substituting 3 for x and -6 for y in each of the
original equations, as follows:

1. 3x + 2y = 12

3(8) + 2(-6) = 12
24 - 12 = 12

2. 4x + 5y = 2
4(8) + 5(-6) = 2
32 - 30 = 2

Practice problems. Use the addition metiiod
to solve the following problems:

l.x+y= 24 3, x-2y=-1
X -y=12 Zx + 3y = 12

2. 5t + 2v =9 4, 2x + Ty = 3
3t - 2v = -5 3x - 5y = 51
Answers:

1. x =18 3.x=3
y:G }'-‘:2

2. t=1/2 4, x = 12
- 13 = -
v=Z y=-3

Substitution Method

In some cases it is more convenient to use
the substitution method of solving problems. In
this method we solve one equation for one of
the variables and substitute the value obtained
into the other equation. This eliminates one of
the variables, leaving an equation in one un-
known. For example, find the solution cf the
following system:

4 +y =11
X+ 2y = 8

It is easy to solve for either y in the first equa-
tion or x in the second equation. Let us solve
for y in the first equation. The resuit is

y =11 - 4x

Since equals may be substituted for equals,
we may substitute this value of y wherever y
appears in the second equation. Thus,

x + 2(11 - 4x) = 8

We now have one equation that is linear in x;
thatis, the equation contains only the variable x.

Removing the parentheses and solving for x,
we find that

X+22-8x=28
-7x = 8§ - 22
-7x = -14
X=2

To get the corresponding value of y, we sub-
stitute x = 2 in y = 11 - 4x. The result is

y = 11 -4(2)
=11 - 8
=3

Thus, the solution for the two original equa-
tionsis x=2andy = 3.

Practice yroblems. Solve the following sys-
tems by the substitution method;:

1. 2x - 9y =1 3. 5r + 2s = 23
X -4 =1 4r + s = 19
2. 2x +y=0 4, t - 4v =1
2x ~y=1 2t - 9v = 3
Answers
1.x=5 3. r=5
v = s = -1
2X=1/4 4ot=-3
y = -1/2 v=-1

Literal Coefficients

Simultaneous equations with literal coeffi-
cients and literal constants may be solved for
the value of the variables just as the other
equations discussed in this chapter, with the
exception that the solution will contain literal
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numbers. For example, find the solution of the
system:

3x + 4y = a

4 + 3y =D

We proceed as with any other simultaneous
linear equation. Using the addition method, we
may proceed as follows: To eliminate the y
term we multiply the first equation by 3 and the
second equation by -4. The equations then

become
9x + 12y = 3a
-16x - 12y = -4b
-Tx = 3a - 4b
X = 3a - 4b
-1
_4b - 3a
x 7

To eliminate x, we multiply the first cqua-~
tion by 4 and the second equation by -3. The
equations then become

12x + 16y = 4a
-12x - 9y = -3b
7y = 4a ~ 3b
_4a - 3b
y="7

We may check in the same manner as that
used for other equations, by substituting these
values in the original equations.

INTERPRETING EQUATIONS

Recall that the general form for an equation
in the first degree in one variable is ax + b = 0.
The general form for first-degree eguations in
two variables is

ax + by + ¢ = 0.

It is interesting and oiten useful to note what
happens graphically when equations differ, in
certain ways, from the general form. With this
information, we know in advance certain facts
concerning the equation in question.

LINES PARALLEL TO THE AXES

If in a linear equation the y term is miss-
ing, as in

2x -15=0

the equation reprosents a line varallel to the Y

axis and '7l units from it. Similarly, an equa-

2
tion such as

4y - 9= 0

which has no x term, represents a line paral-

lel tc the X axis and ol units from it. (See

4
fig. 13-R,)

The fact that one of the two variables does
not appear in an equaiion means that there are
no limitations on the values the missing vari-
able can assume. When a variable does not ap-
pear, it can assume any value from zero to
plus or minus infinity. This can happen only if
the line represented by the equation lies paral-
lel to the axis of the missing variable.

Lines Passing Through the Origin

A lirear equation, such ar
4 + 3y =0

that has no constant term, represents a line
passing through the origin. This fact is obvi-
ous since X = 0, y = 0 satisfies any equation not
having a constant term. (See fig. 12-8.)

Lines Parallel to Each Other
An equation such as
3x - 2y = 6

has all possible terms present. It represents
a line that is not parallel to an axis and does
not pass through the origin.

Equations that are exactly alike, except for
the constant terms, represent parallel lines.
As shown in figure 12-8, the lines represented
by the equations

3x - 2y = -18and 3x - 2y = 6

are parallel.
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Figure 12-8.~Interpreting equations.

Parallel lines have the same slope. Chang-
ing the constant term moves a line away from
or toward the origin while its various positions
remain parallel to one another. Notice in fig-
ure 12-8 that the line 3x - 2y = 6 lies closer to
the origin than 3x - 2y = -18. This is revealed
at sight for any pair of lines by comparing their
constant terms. That one v/hich has the constant
term of greater absolute value will lie farther
from the origin. In this case 3x - 2y = -18 will
be farther from the origin since |-18]| > |6|.

The fact that lines are parallel is indicated
by the result when we try to solve two equations
such as 3x- 2y = -18 and 3x - 2y = 6 simultane-
ously. Subtraction eliminates both x and y im-
mediately. If both variables disappear, we can-
not find values for them suchthat both equations
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are satisfiedat the same time. This means tha
there is no solution. No solution implies tha
there is no point of intersection for the straigh
lines represented by the equations. Lines tha
do not intersect in the finite plane are parallel

USING TWO VARIABLES IN
SOLVING WORD PROBLEMS

Many problems can be colved quickly an
easily using one equation with one variable
Other problems that might be rather difficult t
solve in terms of one variable can easily b
solved using two equations and two variables
The difference in the two methods is shown i
the following example, solved first by using on
variable and then using two.
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Chapter 12—LINEAR EQUATIONS IN TWO VARIABLES

EXAMPLE: Find the two numbers such that
half the first equals a third of the second and

twice their sum exceeds three times the second
by 4.

SOLUTION USING ONE VARIABLE:

1. Let x = the first number.

2. Then== 1 of the second nurhber.

2 3
3. Thus %‘- = the second number.

From the statement of the problem, we then

have
2 (x+35) -5 (35) -
2x + 3% = 97" + 4
10x = 9x + 8
x=8 (first number)
§2§ = 12 (second number)

SOLUTION USING TWO VARIABLES:

If we let x and y be the first and second num-
bers, respectively, we can write two equations
almost directly from the statement of the prob-

lem. Thus,
XX
1. 5 =3

2. 2(x+y) =3y + 4

Solving for x in the first ejuation and sub-
stitutine this value in the second, we have

=2y
*=3
2y ) =
2 (3 +y 3y + 4
Hioy=3y+4
4y + 6y = 9y + 12
. y = 12 (second number)
x_ 12
2 3
x=28 (first number)

Thus, we see that the solution using two vari-
ables is more direct and simple. Often it would
require a great deal of skill to manipulate a
problem so that it might be solved using one
variable; whereas the solution using two vari-
ables might be very simple. The use of two
variables, of course, involves the fact that the
student must be able to form two equations
from the information given in the problem.

Practice problems. Solve the following prob-
lems using two variables:

1. A Navy tug averages 12 miles pex hour down-
stream and 9 miles per hour upstream. How
fast is the stream flowing?

2. The sum of the ages of two boys is 18. If 4
times the younger boy's age is subtracted from
3 times the older boy's age, the difference is
12. What are the ages of the two boys?

Answers:

1. 1= mph.

B[+

2. 6 years and 12 years.

INEQUALITIES IN TWO VARIABLES

Inequalities in two variables are of the fol-
lowing form:

X+y >2

Many solutions of such an inequation are ap-
parent immediately. For example, x could have
the value 2 and y could have the value 3, since
2 + 3 is greater than 2.

The existence of a large number of solutions
suggests that a graph of the inequation would
contain. many points. The graph of an inequa-
tion in two unknowns is, in fact, an entire area
rather than just a line.

PLOTTING ON THE
COORDINATE SYSTEM

It would be extremely laborious to plot
enough points at random to define an entire
area of the coordinate system. Therefore our
method consists of plotting a boundary line and
shading the area, on one side of this line,
wherein the solution points lie.

The equation of the boundary line is formed
by changing the inequation to an equation. For
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example, ti2 equation of the boundary line for
the graph of

X+y>2
is the equation
X+y=2

Figure 12-9 is a graphof X + y > 2. Notice
that the boundary line x + y = 2 is not solid.
This is intended to indicate that points on the
boundary line are not members of the solution
set. Every point lying above and to the right of
the boundary line is a member of the solution
set. Any sclution point may be verified by sub-
stituting its X and Y coordinates for x and y in
the original inequation.

Figure 12-9.—~Graph of x +y > 2.

SIMULTANEOUS INEQUALITIES

The areas representing the solutions of tw
different inequations may overlap. If such a
overlap occurs, the area of the overlap include
all points whose coordinates satisfy both in
equations simultaneously. An example of thi
is shown in figure 12-10, in which the followin
two inequations are graphed:
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The double crosshatched area in figure 12-1
contains all points which comprise the solutio
set fcr the system.




CHAPTER 13
RATIO, PROPORTION, AND VARIATION

The solution of problems based on ratio,
proportion, and variation involves no new prin-
ciples. However, familiarity with these topics
will often lead to quick and simple solutions to
problems that would otherwise be more com-
plicated.

RATIO

The results of observation or measurement
often must be compared with some standard
value in order to have any meaning. For ex-
ample, to say that a man can read 400 words
per minute hac little meaning as it stands.
However, when his rate is compared to the 250
words per minute of the average reader, one
can zee that he reads considerably faster thin
the average reader. How much faster? 'i'o
find out, his rate is divided by the avewage
rate, as follows:

400 _ 8

250 5

Thus, for every 5 words read by the average
reader, this man reads 8. Another way of mak-
ing this comparison is to say that he reads 1%
times as fast as the average reader.

When the relationship between two numbers
is shown in this way, they are compared as a
RATIO. A ratio is a comparison of two like
quantities. It is the quotient obtained by divid-
ing the first number of a comparison by the
second.

Comparisons may be stated in more than
one way. For example, if one gear has 40 teeth
and another has 10, one way of stating the com-
parison would be 40 teeth to 10 teeth. This
comparison could be shown as a ratio in four
ways as follows:

1, 40:10
2. 40+ 10
3. -4_9-

10

4. The ratio of 40 to 10,

!
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When the emphasis is on 'ratio," all of these
expressions would be read, 'the ratio of 40 to
10." The form 40 - 10 may also be read '40

divided by 10."" The form %—g may also be read

"40 over 10."

Comparison by means of a ratio is limited
to quantities of the same kind. For example, in
order to express the ratio between 6 ft and 3 yd,
both quantities must be written in terms of the
same unit. Thus the proper form of this ratio
is 2 yd: 3 yd, not 6 ft : 3 yd. When the parts of
the ratio are expressed in terms of the same
unit, the units cancel each other and the ratio
consists simply of two numbers. In this exam-
ple, the final form of the ratio is 2 : 3.

Since a ratio is also a fraction, all the rules
that govern fractions may be used in working
with ratios. Thus, the terms may be reduced,
increased, simplified, and so forth, according
to the rules for fractions. To reduce the ratio
15:20 to lowest terms, write the ratio as a
fraction and then proceed as for fractions.
Thus, 15:20 becomes

15 _
20 ~

Hence the ratio of 15 to 20 is the same as the
ratio of 3 to 4.

3
g

4

% as a ratio. As a fraction we

as the single quantity ''three-fourths."

Notice the distinction in thought between

as a fraction and

4
As a ratio, we think of ‘—:i as a comparison be-

think of

tween the two numbers, 3 and 4. For example,

the lengths of two sides of a triangle are 11_95 ft

and 2 ft. To compare these lengths by means
of a ratio, divide one number by the other and
reduce to lowest terms, as follows:

(9 2
16 _ 16 _ 25
2 - 2 " 32
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The two sides of the triangle compare as 25
to 32.

INVERSE RATIO

It is often desirable to compare the numbers
of a ratio in the inverse order. To do this, we
simply interchange the numerator and the de-
nominator. Thus, the inverse of 15:20 is 20:15,
When the terms of a ratio are interchanged, the
INVERSE RATIO results,

Practice problems. In problems 1 through 6,
write the ratio as a fraction and reduce to low-
est terms. In problems 7 through 10, write the
inverse of the given ratio.

1. The ratio of 5 1b to 15 1b
2. $16 : $12
3. 16+ 4
4. One quart to one gallon
5. 5xto 10x
1,1
6. 35 : 42
1. The ratio of 6 ft to 18 ft
4
8. 8
9. 5:8
10. 15to 21
Answers:
1 20
1. 3 6. a5
4 3
2. 3 7. 1
4 PA
3. 1 8. 1
1 8
4, 3 9., 3
1 7
5. 3 10. 3
PROPORTION

Closely allied with the studv of ratio is the
subject of proportion. A PROPORTION is
nothing more than an equation in which the

members are ratios. In other words when two
ratios are set equal to each other, a proportion
is formed. The proportion may be written in
three different ways as in the following ex-
amples:

15:20 :: 3:4
15:20 = 3:4
15 _3
20 4

The last two forms are the most common. All
these forms are read, ""15 is to 20 as 3 is to 4."
In other words, 15 has the same ratio to 20 as
3 has to 4.

One reason for the extreme importance of
proportions is that if any three of the terms
are given, the fourth may be found by solving a
simple equation, L. :cience many chemical and
physical relations are expressed as propor-
tions. Consequently, a familiarity with propor-
tions will provide one method for solving many
applied problems. It is evident from the last
form shown, % = %, that a proportion is really
a fractional equation. Therefore, all the rules
for fraction equations apply.

TERMS OF A PROPORTION

Certain names have been given to the terms
of the two ratios that make up a proportion, In
a proportion such as 3:8 = 9:24, the first and
the last terms (the outside terms) are called
the EXTREMES. In other words, the numerator
of the first ratic and the denominator of the
second are called the extremes. The second
and third terms (the inside terms) are called
the MEANS. The means are the denominator of
the first ratio and the numerator of the second.
In the example just given, the extremes are 3
and 24; the means are 8 and 9,

Four numbers, such as 5, 8, 15, and 24, form
4 proportion if the ratio of the first two in the
order named equals the ratio of the second two.
When these numbers are set up as ratios with
the equality sign between them, the members
will reduce to an identity if a true proportion
exists. For example, consider the following
proportion:

oo}
1}
NP-A
-3 X3
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In this proportion, é—i must reduce to % for the
proportion to be true. Removing the same fac-
tor from both members of ;‘—2 we have

5 _ 3(5)

8 ~ 3(8)

The number 3 is the common factor that
must be removed from both the numerator and
the denominator of one fraction inorderto show
that the expression

N'H
wlon

S
8
is a true proportion. To say this another way,
it is the factor by which both terms of the ratio

8

ratio is the same as

must be multiplied in order to show that this
15

g& .
Practice problems. For each of the follow-
ing proportions, write the means, the extremes,

and the factor of proportionality.

|

3

16 8

4:5 = 12:15
Answers:

Means: 16 and 15
Extremes: 3 and 80

Factor of proportionality: 5

5 and 12
4 and 15
¢ 3

75 and 1
25 and 3
: 20

-1
-3

o
—_ 4'(\3
[ )

w

3.
4, v 4:1

M:
3.

3 and 4
12 and 1
FP: 3
OPERATIONS OF PROPORTIONS

It is often advantageous to change the form
of a proportion. There are rules for changing
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or combining the terms of a proportion without
altering the equality between the members.
These rules are simplifications of fundamental
rules for equations; they are not new, but are
simply adaptations of laws or equations pre-
sented earlier in this course.

Rule 1. In any proportion, the product of the
means equals the product of the extremes,

This is perhaps the most commonly used
rule of proportions. It provides a simple way
to rearrange a proportion so that no fractions
are present. In algebraic language the rule is
illustrated as follows:

Qe

a
b

—
=

bc = ad

To prove this rule, we note that the LCD of the
two ratios% and % is bd. Multiplying bothmem-

bers of the equation in its original form by this
LCD, we have .

bd - bd -

2 4
b d

ad = be

The following numerical example illustrates
the simplicity of rule 1:

3_ 9
8 24
8(9) = 3(24)

If one of the terms of a proportion is a vari-
able to the first power as in

7:5 = x:6

the proportion is really a linear equation in one
variable. Such an equation can be solved for
the unknown,

Equating the products of the means and ex-
tremes produces the following:

S5x = 42

X 8%
Mean Proportional

When the two means of a proportion are the
same quantity, that quantity is called the MEAN
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PROPORTIONA L between the other two terms,
In the proportion

EIEY
1]
olx

X is the mean proportional between a and c.
Rule 2. The mean proportional between two

quantities is the square root of their product.

This rule is stated algebraically as follows:

li

X Mlp

X
Cc
*

Nvac

To prove rule 2, we restate the proportion
and apply rule 1, as follows:

a_x
X ¢
x? = ac
X =xNac

Rule 2 is illustrated by the following nu-
merical example:

2_38
8 " 32
8 = N2(32)
8 = V64

OTHER FORMS FOR PROPORTIONS

If four numbers, for example, a, b, ¢, and d,
form a proportion, such as

ol
n
oo

they also form a proportion according to other
arrangements.

Inversion

The four selected numbers are in proportion
by INVERSION in the form

d
c

plo

The inversion relationship is proved as fol-
lows, by first multiplying both members of the
bd ,

original proportion by ac’

Note that the product of the meansand the prod-
uct of the extremes still yield the same equal-
ity as in the original proportion.

The inversion relationship may be illustrated
by the following numerical example:

5 _ 10

816
Therefore,

8 _ 16

510
Alternation

The four selected numbers (a, b, ¢, and d)
are in proportion by ALTERNATION in the fol-
lowing form:

a_b
c d

To prove the alternation relationship, first
multiply both sides of the original proportion

by 2, as follows:

ol
n

ol
ol

N
"
Qo olo ale

olp
I

The following numerical example illustrates
alternation:

5_10

8 16
Therefore,

5 _ 8

10 ~ 16

SOLVING PZ.OBLEMS BY
MEANS OF PROPORTION

One of the most commor .y~ of problems
based on proportions invagisc - 1 -iangles with
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roportional sides. Suppose taat the corre-
ponding sides of two triangles are known to be
roportional. (See fig. 13-1.) The lengths of
he sides of one triangle are 8, 9, and 11. The
ength of the side of the second triangle corre-
;ponding to side 8 in the first triangle is 10.
Ve wish to find the lengths of the remaining
sides, b and c.

8 10

Figure 13-1,—Triangles with opposite
sides proportional.

Since the corresponding sides are propor-
tional, the pairs of corresponding sides may be
used to form proportions as follows:

1]
ol oln Tle

5|°° ol 5|°°

To solve for b, we use the proportion

2
10

ol

and obtain the following result:

8b = 90
4b = 45
-1l
b = 11

The solution for c is similar to that for b,
using the proportion

8 _1
10 ¢

with the following result:
8c =110

. - 133
t..-134

The sides of the second triangle are 10, 11-:-:,

3
and 137.

using the factor or proportionality. Since 8 and
10 are lengihs of corresponding sides, we can
write

fhe result can also be obtained by

gk = 10
_10_5
k=3 =3

The factor of proportionality is thus found to
be -2-

Multiplying any side of the first triangle by
% gives the corresponding side of the second
triangle, as follows:

b 11

1
- T4

- ) _ 85 _ 133
e =11 (§) = 7 = 133
Proportional sides of similar triangles may

be used to determine the height of an object by
measuring its shadow. (See fig. 13-2.)

il
©
T
o)
N ~—
n
o ""‘
b I

N° ;
/7
/ //
// s 12FT.
/7

7 20FT. 7 FT
) A E

Figure 13-2.—Measuring height by
shadow length.

In figure 13-2, mast AC casts a shadow 20 ft
long when the shadow of DF is 16 ft long. As-
suming that both masts are vertical and on
level ground, triangle ABC is similar to tri-
angle DEF and their corresponding sides are
therefore proportional. Thus the height of AC
may be found as follows:
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AC _ 20
12 ~ 16

(12)(20) _
AC = 255 = 15

Practice problems. In each of the following
problems, set up a proportion and then solve
for the unknown quantity:

1. Referring to figure 13-1, if the shortest side
of the larger triangle is 16 units long, rather
than 10, how long is side ¢ ?

2. If a mast 8 ft high casts a shadow 10 ft long,
how high is a mast that casts a shadow 40 it
long ?

Answers:

1, & U 2. &

- _h

*16 ~ ¢ 10 ~— 40
8c = (11)(16)
e = (11)(16)

c =22

Word Problems

A knowledge of proportions often provides a
quick method of solving word problems. The
following problem is a typical example of the
types that lend themselves to solution by means
of proportion.

If an automobile runs 36 mi on 2 gal of gas,
how many miles will it run on 12 gal? Com-
paring miles to miles and gallons to gallons,
we have

36:x = 2:12

Rewriting this in fraction form, the solution is
as follows:

36 _ 2
x 12
2x = 12(36)
x = 6(36)
216 mi
Practice problems. In each of the following

problems, first set up a proportion and then
solve for the unknown quantity:

1. The ratio of the speed of one aircraft to that
of another is 2 to 5. If the slower aircraft has
a speed of 300 knots, what is the speed of the
faster aircraft ?

2. If 6 seamen can empty 2 cargo spaces in 1
day, how many spaces can 150 seamen empty in
1 day?

3. On a map having a scale of 1 in. to 50 mi,
how many inches represent 540 mi?

Answers:

1. 750 kt 2, 50 3. 10.8 in,

VARIATION

When two quantities are interdependent,
changes in the value of one may have a predict-
able effect on the value of the other. Variation
is the name given to the study of the effects of
changes among related quantities. The three
types of variation which occur frequently in the
study of scientific phenomena are DIRECT,
INVERSE, and JOINT,

DIRECT VARIATION

An example of direct variation is found in
the following statement: The perimeter (sum
of the lengths of the sides) of a square in-
creases if the length of a side increases. In
everyday language, this statement might be-
come: The longer the side, the bigger the
square. In mathematical symbols, using p for
perimeter and s for the length of the side, the
relationship is stated as follows:

p = 4s

Since the number 4 is constant, any varia-
tions which occur are the results of changes in
p and 8. Any increase or decrease in the size
of s results in a corresponding increase or de-
crease in the size of p. Thus p varies in the
same way (increasing or decreasing) as s. This
explains the terminology which is frequently
used: p varies directly as s.

In general, if a quantity can be expressed in
terms of a second quantity multiplied by a con-
stant, it is said to VARY DIRECTLY AS the
second quantity. For example if x and y are
variables and k is a constant, x varies directly
as y, if x=ky. Thus, as y increases x increases,
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nd as y decreases, x decreases. There is a
lirect effect on x caused by any change in y.
The fact that x varies as y is sometimes in-
licated by x ~y, or x ~y. However, it is usu-
Jdly written in the form x = Ky.
The relationship x = ky is equivalent to

, = k. If one quantity varies directly as a sec-

ond quantity, the ratio of the first quantity to
he second quantity is a constant, Thus, what-
swer the value of x, where it is divided by vy,
he result will always be the same value, k.

A quantity that varies directly as another
juantity is also said to be DIRECTLY PRO-
S0RTIONAL to the second quantity. In x = Ky,
he coefficient of x is 1. The relationship x = ky
:an be written in proportion form as

xX_Yy

k-1
by

k_1

X ¥

Notice that the variables, x and y, appear
aither in the numerators or in the denominators
of the equal ratios. This implies that X and y
are directly proportional. The constant, K, is
‘he CONSTANT OF PROPORTIONALITY.

Practice problems. Write an equation show-
ing the stated relationship, in each of the fol-
lowing problems:

1. The cost, C of a dozen wrenches varies di-
rectly as the price, p, of one wrench.

9, X is directly proportional to Y (use k as the
constant of proportionality).

3. The circumference, C, of a circle varies
directly as its diameter, d (use 7 as the con-
stant of proportionality).

In the following problems, based on the formula
p = 4s, find the appropriate word or symbol to
fill the blank.

4. When s is doubled, p will be .
5. When s is halved, p will be .
6. is airectly proportional to s.
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Answers:
1. C = 12p 4, doubled
2. X = kY 5. halved
3, C =nd 6. p

Variation as the Power of a Quantity

Another form of direct variation occurs
when a quantity varies as some power of an-
other. For example, consider the formula

2

A=n71r

Table 13-1 shows the values of r and the cor-
responding values of A.

Table 13-1.—Relation between values of
radius and area in a circle.

Whenr = ---- |12 |3 | 4 o 7 9

Then A = -=-=- |7 |47 | 97| 167 | 257 497 817

Notice how A changes as a result of achange
in r. When r changes from 1to 2, A changes
from 7 to 4 times 7 or 22 times 7. Likewise
when r changes from 3 to 4, A changes not as
r, but as the SQUARE of r. In general, one
quantity varies as the power of another if it is
equal to a constant times that quantity raised
to the power. Thus, in an equation such as
x = ky", x varies directly as the n*® power of y.
As y increases, X increases but more rapidly
than y, and as y decreases, x decreases, but
again more rapidly.

Practice problems.
1. In the formula V = e3, how does V vary?
2. In the formula A = s?, if s is doubied how
much is A increased?
3. In the formula s = —;-, g is a constant, If t
is halved, what is the resulting change ins?
Answers:
1. Directly as the cuoe of e.
2. It is multiplied by 4.

3, It is multiplied by -‘-11-
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INVERSE VARIATION

A quantity VARIES INVERSELY as another
quantity if the product of the two quantities is a
constant. For example, if x and y are variables

and k !s a constant, the fact that x varies in-
versely as y is expressed by

Xy =k

or

X =

< |

If values are substituted for x and y, we see
that as one increases, the other must decrease,
and vice versa. Otherwise, their product will
not equal the same constant each time.

If a quantity varies inversely as a second
Guantity, it is INVERSELY PROPORTIONAL to
the second quantity., In xy =k, the coefiicient
of k is 1. The equality xy = k can be written in
the form

]
{}
< |

or

I
I
o-nl"<

Notice that when one of the variables, x or
y, occurs ir the numerator of a ratio, the other
variable uccurs in the denominator of the sec-
ond ra¢io. This implies that x and y are in-
versely proportional.

Inverse variation may be illustrated by
means of the formula for area of a rectangle,
If A stands for area, L for length, and W for
width, the expression for the area of a rec-
tangle in terms of the length and width is

A=L1LW

Suppose that several rectangles, all having the
same area but varying lengths and widths, are
to be compared. Then LW = A has the same
form as xy = k, where A and k are constants.
Thus L is inversely proportional to W, and W
is inversely proportional to L.

If the constant area is 12 sq ft, this rela-
tionship becomes

LW = 12
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If the length is 4 it, the width is found as fol-
lows:

- r - T -
If the length increases to 6 ft, the width de-
creases as follows:

If a constant arez is 12, the width of a rec-
tangle decreases irom 3 to 2 as the length in-
creases from 4 to 6. When two inversely pro-
portional quantities vary, one decreases as the
other increases,

Ancther example of inverse variation is
found in the study of electricity., The current
fiowing in an electrical circuit at a constant
potential varies inversely as the resistance of
the circuit. Suppose that the current, I, is 10
amperes when the resistance, R, is 11 ohms
and it is desired to find the current when the
resistance is 5 ohms.

Since I and R vary inversely, the equation
for tne reiationship is IR = k, where k is the
constant voltage. Therefore, (10)(11) = k, Also,
when the resistance changes to 5 ohms, (5)(I) =k.
Quantities equal to the same quantity are equal
to eachother, so we have the following equation:

51 = (10)(11)
_ 110 _
=35 =22

The current is 22 amperes when the resistance
is 5 ohms. As the resistance decreases from
11 to 5 ohms, the current increases from 10 to
22 amperes.

One type of variation problem which tends to
be counfusing to the beginner involves rates of
speed or rates of doing work. For example, if
7 men can complete a job in 20 days, how long
will 50 men require to complete the same job?
The strictly mechanical approach to this prob-
lem might result in the following false solution,
relating men to men and days to days:

. 20 days

However, a little thought brings out the fact
that we are dealing with an INVERSE relation-
ship rather than a direct one. In other words,

T men
50 men
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the more men we have, the less time is re-
quired. Therefore, the co.rect solution re-
quires that we use an inverse proportion; that
is, we must invert one of the ratios as follows:

1.1
50 ~ 20

_ (MR20) _ 54
T =50 -25days

Practice problems. In problems 1 and 2,
express the given data as a proportion, using k
as the constant of proportionality.

1. The rate, r, at which a vessel travels in
going a certain distance varies inversely as the
time, t.

2. The volume, V, of a gas varies inversely as
the pressure, p.

3. A ship moving at a rate of 15 knots requires
10 hr to travel a certain distance. If the speed
is increased tc 25 knots, how long will the ship
require to tr-.vel the same distance ?

Answers:

o |-

1
t

<

1. 3. 6hr

W

JOINT VARIATION

A quantity VARIES JOINTLY as two or more:

quantities, if it equals a constant times their
product. For example, if x, y, and z are vari-
abies and k is a constant, x varies jointly as
y and z, if x = kyz. Note that this is similar to
direct variation, except that there are two var-
jable factors and the constant with which to
contend in the one number; whereas in direct
variation, we had only one variable and the
constant. The equality, x = Kyz, is equivalent to

X _x
yZ

If a quantity varies jointly as two or more other
quantities, the ratio of the first quantity to the
product of the other quantities is a constant.

The formula for the area of a rectangle is
an example of joint variation. If A is allowed
to vary, rather than being constant as in the
example used earlier in this chapter, then A
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varies jointly as L and W. When the formula is
written for general use, it is not commonly ex-
pressed as A = KLW, although this is a mathe-
matically correct form. Since the constant of
proportionality in this case is 1, there is no
practical need for expressing it.

Using the formula A = LW, we make the fol-
lowing observations: If L=5 and W= 3, then
A=305)=15. IfL=25and W =4, then A=
4(5) = 20, and so on. Changes in the area of a
rectangle depend on changes in either the length
or the width or both. The area varies jointly
as the length and the width.

As a general example of joint variation,
consider the expression a « bc. Written as an
equation, this becomes a = kbc. If the value of
a is known for particular values of b and ¢, we
can find the new value of a corresponding to
changes in the valuec of b and c. For example,
suppose that a is 12 when b is 3 and c is 2.
What is the value of a when b is4and ¢ is 3?
Rewriting the proportion,

_a'.- =X
bec ~
Thus
12 _
@@ -k
Also,
a_ _
D) - K

Since quantities equal to the same quantity are
equal to each other, we can set up the following
proportion:

12
(3)(2)
.40

a
(4)(5)

a

=

Practice problems, Using k as the constant
of proportionality, write equations that express
the following statements:

1. Z varies jointly as x and y.
2. S varies jointly as b times the square of r.
3. The length, W, of a radio wave varies jointly

as the square root of the inductance, L, and the
capacitance, C.
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Answers: E = kw?L
p?

1. Z = kxy

2. S = kbr? is an example of combined variation and is
» O = kbr read, "E varies jointly as L and the square of

W, and inversely as the square of p." Likewise,

3. W=k ~NLC
COMBINED VARIATION V = krs

t

The different types of variation can be com-
bined. This is ‘requently the case in applied is read, "V varies jointly as r and s and in-
problems, The n:quation versely as t,"
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CHAPTER 14
DEPENDENCE, FUNCTIONS, AND FORMULAS

In chapter 13 of this course, use is made of
several formulas, such as A = LW, E = IR, etc.
It is the purpose of this chapter to explain the
function and dependency relationships which
make formulas so useful.

DEPENDENCE AND FUNCTIONS

Dependence may be defined as any relation-
ship between two variables which allows the
prediction of change in one of them as a result
of change in the other. For example, the cost
of 200 bolts d~pends upon the price per hun-
dred. I C represents cost and p represents
the price of 100 bolts, then the cost of 200 bolts
may be expressed as follows:

C=2p

In the example just given, C is called the
~ DEPENDENT VARIABLE because its value de-

pends upon the changing values of p. The IN-
DEPENDENT VARIABLE is p. It is standard
practice to isolate the dependent variable on
the left side of an equation, as in the example.

Consider the formula for the area of a rec-
tangle, A = LW. Here we have two independent
variables, L and W.

Figure 14-1 (A) shows what happens if we
double the length. Figure 14-1 (B) shows the
result of doubling the width. Figure 14-1 (C)
shows the effect of doubling both length and
width. Notice that when the length or width
alone is doubled the area is doubled, but when
both length and width are doubled the area is
four times as great.

In any equation showing a dependency rela-
tionship, the dependent variable is said to be a
FUNCTION of the independent variable. An-
other use of the term ''function" in describing
an equation such as C = 2p is to refer to the
whole expression as '"the function C = 2p."
This terminology is especially useful when the
right-hand expression has several terms. For
example, consider the equation y = 2x2% + 3x - 4,
Mathematicians frequently use a shorthand no-
tation and rewrite the equation as y = f(x). The

Figure 14-1,—-Changes in the area of a
rectangle resulting from changes in
lergth and width.

expression f(x) is understood to mean "a func-
tion of x'' and reference to the function by call-
ing it f(x) saves the space and time that would
otherwise be required to write out all three
terms.

Practice problems. Answer the following

questions concerning the functionr = g,

s

1. When t increases and d remains the same,
doesr increase, decrease, or remain the same?

2, When d increases and t remains the same,
doesr increase, decrease, or remain the same?

3. When t decreases and d remains the same,
doesr increase, decrease, or remain the same ?

4, When d decreases and t remains the same,
doesr increase, decrease, or remain the same?

5. When d is doubled and t remains the same,
is r doubled or halved?

6. When t is doubled and d remains the same,
is r doubled or halved?
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Answers:
1. Decreases. 4. Decreases.
2. Increases. 5. Doubled.
3. Increases. 6. Halved.
FORMULAS

One of the most common uses of algebra is
in the solution of formulas. Formulas have a
wide and varied use throughout the Navy. It is
important to know how formulas are derived,
how to translate them into words, how to make
them from word statements, and how to use
them to solve problems.

A formula is a general fact, rule, or princi-
ple expressed in algebraic symbols. It is a
shorthand expression of a rule in which letters
and signs of operation take the place of words.
The formula always indicates the mathematical
operations involved. For example, the formula
P = 2L + 2W indicates that the perimeter (sum
of the lengths of the sides) of a rectangle is
equal to twice its length plus twice its width.
(See fig. 14-2.)

F

P=2L +2W |W

L

Figure 14-2,—Perimeter
of a rectangle.

A formula obtained by logical or mathemati-
cal reasoning is called a mathematical for-
mula. A formula whose reliability is based on
a limited number of observations, or on imme-
diate experience, and not necessarily on estab-
lished theories or laws is called an EMPIRI-
CAL formula. Empirical formulas are found
frequently in engineering and physical sciences.
They sometimes are valid for only a limited
number of values.

SUBJECT OF A FORMULA

Usually a formula is taken almost directly
from the verbal rule or law. For instance, the
perimeter of a rectangle is equal to twice the
length plus twice the width. Where possible,
letters are used as symbols for the words.

Thus, P = 2L + 2W. A simple formula such as
this is iike a declarative sentence. The left
half is the SUBJECT and all the rest is the
predicate. The subject is P. It corresponds to
the part of the verbal rule that reads ''the pe-
rimeter of a rectangle." This subject is usu-
ally a single letter followed by the equality sign.

All formulas are equations, but not all equa-
tions are formulas. Some distinctions between
a formula and an ordinary equation are worthy
of note. The equation may not have a subject,
while the formula typically does. In the for-
mula, the unknown quantity stands alone in the
left-hand member. No computation is per-
formed upon it, and it does not appear more
than once. In the equation, on the other hand,
the unknown quantity may appear once or more
in either or both members, and computation
may be performed with it or on it. We evaluate
a formula by substituting for the literal num-
bersin the right member. An eguation is solved
by computation in either or both members until
all that remains is an unknown in one member
and a known quantity in the other. The solution
of an equation usually requires a knowledge of
algebraic principles, while the evaluation of a
formula may ordinarily be accomplished with
only a knowledge of arithmetic.

SYMBOLS

Letters that rovresent words have been
standardized in many cases so that certain for-
mulas may be written the same in various texts
and reference books. However, to avoid any
misunderstanding a short explanation often ac-
companies formulas as follows:

A = hw,
where
A = area in square units
h = height
= width

Stbscripts and Primes

In a formula in which two or more of the
same kind of letters are being compared, it is
desirable to make a distinction between them.
In electronics, for example, a distinction be-
tween resistances may be indicated by R, and
R, or R, and R,. These small numbers or
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letters written to the right and below the R's
are called subscripts. Those shown here are
read: R sub a, R sub b, R sub one, and R sub
two. Primes are also used in the same manner
to distinguish between quantities of the same
kind. Primes are writtento the right and above
the letters, as in S', S", and S'''. They are
read: S prime, S double prime, and S triple
prime.

CHANGING THE SUBJECT
OF A FORMULA

If values are given for all but one of its var-
iables, a formula can be solved to obtain the
value of that variable. The first step is usually
the rearranging of the formula so that the un-
known value is the subject—that is, a new for-
mula is derived from the original. For exam-
ple, the formula for linear motion—distance
equals rate times time—is usually written

d =rt

Suppose that instead of the distance we wish
to know the raie, r, or the time, t. We simply
change the subject of the formula by the alge-
braic means developed in earlier chapters.
Thus, in solving the formula for r, we divide
both sides by t, with the following result:

d_rt
t t
d_ . _d
—t-—z. orr = T

In words, this formula states *hat rate equals
distance divided by time. Likewise, in solviag
for t, we have the following :

rt
t

d
r

" | '-slo..

t,ort=

[n words, this formula states that time equals
distance divided by 1ate.

We have in effect two new fcrinulas, the
subject of one being rate and the subject of the
sther being time. They are related to the orig-
inal formula because they were derived from
it, but theyv are different in that they have dif-
‘erent subjects.

Practice problems. Derive new formulas
from the following expressions with subjects
as indicated.

1. A = %bh, subject h

2. P = 2L + 2W, subject L
3. i = prt, subject r

4. p = br, subject b

€. E = IR, subject I

6. The modern formula for converting Fahren-
heit temperatures to Celsius (centigrade) is

= (F + 40)(-9-) - 40. Express the formula for

converting Celsius (centigrade) temperatures
to Fahrenheit.

Answors:
_2A _p
1.h--—b— 4.b-?
P - 2W _E
2.L_——2— 51——§
_ 4 =t 9 .
3.r = ; 6. F C + 40) 40

EVALUATING FORMULAS

The f{irst step in finding the value of the un-
known variable of a formula is usually the der-
ivatioir of a formula that has the unknown as its
subject. Once this is accomplished, the evalua-
tion of a formula consists of nothing more than
substituting numerical values for the letters
representing known quantities and performing
the indicated operations.

For example, suppose we wish to find the
time required to fly 1,250 nautical miles at the
rate of 250 knots. The formula isd = rt. We
can change the subjec¢ by dividing both sides of
the equation by r, as follows:

d _rt

T T

d._4

r

1250 _
t——2§——5hr

Formulas can be solved for an unknown by
substituting directly in the original formula
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even though that unknown is not the subject.
Generally, however, it is simpler to first make
the unknown the subject.

Formulas vary widely, from the simpie type
such as we have been considering to some that
are very complex. All formulas have certain
characteristics in common. There is always a
subject, the quantity whose value is sought as a
final answer. This subject usually stands alone,
being placed equal to at least one and possibly
several literal numbers, which are combined
according to certain indicated operations. The
formula can always be evaluated for a specific
case when numerical values are known for all
these literal quantities.

Evaluating formulas may be facilitated by
developing a routine order of doing the work.
If someone else can read the work and clearly
understand what has been done, the work is in
good order. The original formula should be
written first, then the derived formula that is
going to be used in solving the problem, and
finally the actual substitutions. The indicated
operations may then be carried out. Care
should be taken to label answers with correct
units; that is, miles per hour, foot-pounds,
square feet, etc.

Practice problems.

1. E = IR. Solve for R inohms if E is 110 volts
and I is 5 amperes.

2. d = rt. Solve for t in hours if d is 840 nauti-
cal miles and r is 25 knots.

3. F=(C+ 40)(%) - 40. Solve for C if F is 32°.

Answers:

1. 22 ohms 2. 33.6 hr 3.0

DEVELOPING FORMULAS

Developing a formula from a verbal state-
ment is nothing more than reducing the state-
mentto a shorthand form and showing the math-
ematical relationships between the elements of
the statement.

For example, suppose that we wish to de-
velop a formula showing the distance, D, trav-
eled at the rate of 20 knots for t hours. If the
distance traveled in 1 hr is 20 nautical miles,

then the distance traveled in t hours is 20t.
Therefore, the formula is

D = 20t
Practice problems.

1. Write a formula for the cost, C of p pounds
of sugar at 15 cents per pound.

2. Write the formula for the cost, C, of one
article when the total cost, T, of n similar ar-
ticles is known.,

3. Write a formula for the number of days, d,
in w weeks.

4. Write a formula for the number of ounces,
n, in p pounds.

Answers:
1. C = 15p 3.d = Tw
2.C =T/n = 16p

Developing Formulas from Tables

In technical work, instrument readings and
other data are often recorded in a tabular ar-
rangement. By careful observation of such
tables of data, it is frequently possible to find
values that are related in a definite pattern.
The table can thus be used in developing a for-
mula showing the relationship between the re-
lated quantities.

For example, table 14-1 shows the results
of time trials on a ship, with the data rounded
to the nearest whole hour and the nearest whole
mile.

Table 14-1.—-Time trials.

Nautical miles (d) | 20 | 40 | 60 { 80 | 100

Hours (t) 1 2 3 4 5

By inspection of the table, it soon becomes
clear that the number of miles traveled is al-
ways 20 times the corresponding number of
hours. Therefore the formula developed from
this table is as follows:

d = 20t
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A second example of the derivation of a for-
mula from a table is shown in figure 14-3.
Figure 14-3 (A) shows several polygons (many-
sided plane figures), each with one or more
diagonals. A diagonal is a straight line joining
one vertex (point where two sides meet) with
another.

N Q Q) W

DIAGONALS (d) | 1 |2 13 |4

SIDES (n) 4|5(6]|7
(B)

Figure 14-3.-Diagonals of plane figures.

The table in figure 14-3 (B) compares the
number of sides of each polygon with the num-
ber of diagonals that can be drawn from any
ane vertex. Using this table, we make a for-
mula for the number, d, of diagonals that can
pe drawn from one vertex of a polygon of n
sides. In the table we note that the number of
diagonals is always 3 less than the number of
sides. Therefore the formula is d =n - 3.

Practice problems. Complete the following
tables and write formulas to show the relation-
ship between the numbers.

Lo T 2T 5 8] 11 [1a]17] 20

P |12 |30 {48 | 66 | 84

(W]
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Answers:
1. P = 6L 3. y = 3x
2. b=2a+ 4 4, s =n? + 2

TRANSLATING FORMULAS

Thus far, we have been concerned primarily
with reducing verbal rules or statements to
formula form. It is also necessary tobe able
to do the reverse, and translate a formula into
words. Technical publications frequently take
advantage of the fact that it is more convenient
to write formulas than longhand rules. Under-
standing is hampered if we are not able to
translate these formulas into words. As an ex-
ample of translation, we may translate the for-
mula V =lwh into words, with the literal fac-
tors representing words as follows:

V = volume of a
rectangular solid

1 = length

w = width

h = height

This produces the following translation: The
volume of a rectangular solid equals the length
times the width times the height.

As a second example, we translate the alge-
braic expression 2 VX - 4 into words as fol-
lows: Twice the square root of a certain num-
ber, minus 4.

Practice problems. Translate each of the
following expressions into words.

1. PV =k, where P represents pressure of a
gas and V represents volume. (Assume con-
stant temperature.)

2. X =y + 4, where x and y are numbers.

3. A= LW, where A is the area of a rectangle,
L is its length, and W is its width.

4. d = rt, where d is distance, r is rate, and t
is time.

Answers:

1. The pressure of a gas multiplied by its vol-
ume is constant, if the temperature is constant.
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2. A certain number, X, is equal to the sum of
another number, y, and 4.

3. The area of a rectangle is equal to the prod-
uct of its length times its width.

4. Distance is equal to rate multiplied by time.
GRAPHING FORMULAS

We have seen that the formula is an equa-
tion. Since all formulas are equations they
may be graphed. Graphs of formulas have wide
use in the Navy in such fields as electronics
and engineering. In practical applications it is
often convenient to derive information from
graphs of formulas rather than from formulas
directly.

As an example, suppose that a fuel costs 30
cents per gallon. The formula for the cost in
dollars of n gallons is

C = 0.30n

We see that this is a linear equation, the re-
sulting curve of which passes tiarough the origin
(nc constant term). Since we are interested
only in positive values, we can eliminate three
guadrants of the graph and use only the first
quadrant. We already know one point on the
graph is (0,0). We need plot only one other
pcint to graph the formula. The result is shown
in figure 14-4.

3.00

270
3 2.40
2.10
1.80
1.50
1.20
0.90
¢.60
0.30

COST (DOLLAR

——t— 1
10 1

i}
6 7 8 9

Figure 14-4.—Graph for the formula C = 0.30n.

We may read the cost directly from the
graph when the number of gallons is known, or
the number of gallons when the cost is known.
For instance, if 5-1/2 gal are sold, find 5-1/2
on the gallons scale and follow the vertical line
from that point to the point where it intersects
the graph of the formula. From this point, fol-
low the horizontal line to the cost scale. The
horizontal line intersects the cost scale at 1.65.
Therefore the cost of 5-1/2 gal is $1.65.

Likewise, to answer the question, ''How many
gallons may be bought for $1.27," we would en-
large the graph enough to estimate to the exact
cent. Then we would follow a horizontal line
from 1.27 on the cost scale to the formula
graph and follow a vertical line from that point
to the gallons scale. Thus, 4-1/4 gal may be
bought for $1.27.

Plotting two formulas on the same graph may
help to solve certain kinds of problems. For
example, suppose that two ships leave port at
the same time. One averages 10 knots and the
other averages 15 knots. How far has each
traveled at the end of 3 hr and at the end of
5 hr? A graph to relate the two ships' move-
ments at any time can be made as follows: Let
the vertical scale be in nautical miles and the

l
I
I
l
!
5

4

-~ 4
oo 4
O+
o

=
HOURS (t)

Figure 14-5.—Graph of the formulas d = 10t
and d = 15t.
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horizontal scale be in hours. The formula for
the first ship's distance related to time is

d = 10t

The formula for the second ship's distance re-
lated to time is

d = 15t

We see that these formulas are linear and
their curves pass through the origin. They are
graphed in figure 14-5.

With this graph we cannow answer the ques-
tions originally posed, at a glance. Thus in 3
hr the first ship traveled 30 mi and the second
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traveled 45 mi. In 5 hr the first ship traveled
50 mi and the second traveled 75 mi.

We could also answer such questions as:
When the second ship has traveled 100 mi, how
far has the other traveled? We first find the
point on the graph of d = 15t where the ship has
traveled 100 mi. We then follow the vertical
line from that point to the point where it inter-
sects the graph of the other formula. From the
point of intersection we follow a horizontal line
to the distance axis and see that the first ship
has traveled about 67 mi when the second has
traveled 100 mi.

The foregoing examples serves to illustrate
the wide variety of applications in which graphs
of formulas are useful.




CHAPTER 15
COMPLEX NUMBERS

In certain calculations in mathematics and
related sciences, it is necessary to perform
operations with numbers unlike any mentioned
thus far in this course. These numbers, unfor-
tunately called "imaginary" numbers by early
mathematicians, are quite useful and have a
very real meaning in the physical sense. The
number system, which consists of ordinary
numbers and imaginary numbers, is called the
COMPLEX NUMBER system. Complex num-
bers ave composed of a '"real"' part and an
"imaginary' part.

This chapter is designed to explain imagi-
nary numbers and to show how they canbe com-
bined with the numbers we already know.

REAL NUMBERS

The concept of number, as has been noted in
previous chapters, has developed gradually. At
one time the idea of number was limited to
positive whole numbers.

The concept was broadened to include posi-
tive fractions; numbers that lie between the
whole numbers. At first, fractions included
only those numbers which could be expressed
with terms that were integers. Since any frac-
tion may be considered as a ratio, this gave
rise to the term RATIONAL NUMBER, which
is defined as any number which can be ex-
pressed as the ratio of two integers. (Remem-
ber that any whole number is an integer.)

It soon became apparent that these numbers
were not enough to complete the positive num-
ber range. The ratio, 7, of the circumference
of a circle to its diameter, did not fit the con-
cept of number thus far advanced, nor did such

numbers as V2 and ~3. Although decimal
values are often assigned to these numbers,
they are only approximations. That is, 7 is not
exactly equal to 22/7 or to 3.142. Such num-
bers are called IRRATIONAL to distinguish
them from the other numbers of the system.
With rational and irraticnal numbers, the posi-
tive number system includes all the numbers
from zero to infinity in a positive direction.

Since the number system was not complete
with only positive numbers, the system was ex-
panded to include negative numbers. The idea
of negative rational and irrational numbers to
minus infinity was an easy extension of the
system.

Rational and irrational numbers, positive
and negative to * infinity as they have been
presented in this course, comprise the REAL
NUMBER system. The real number system is
pictured in figure 15-1.

OPERATORS

As shown in a previous chapter, the plus
sign in an expression such as 5 + 3 can stand
for either of two separate things: It indicates
the positive number 3, or it indicates that +3
is to be added to 5; that is, it indicates the op-
eration to be performed on +3.

Likewise, in the problem 5 - 3, the minus
sign may indicate the negative number -3, in
which case the operation would be addition; that
is, 5 + (-3). On the other hand, it may indicate
the sign of operation, in which case +3 is to be
subtracted from 5; that is, 5 - (+3).

Thus, plus and minus signs may indicate
positive and negative numbers, or they may in-
dicate operations to be performed.

- () — —+00
4 21 L 1 A [ L 4 L [ [ 11 |
L) | L) v L ] L] L] L 1] A LI ] ¥
-4 T~3 t -2 1-1 0 1 +1 1 +2 +31 +4
o ST VA 2t |

Figure 15-1.—The real number system.
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IMAGINARY NUMBERS

The number line pictured in figure 15-1 rep-
resents all positive and negative numbers from
plus infinity to minus infinity. However, there
is a type of number which does not fit into the
picture. Such a number occurs when we try to
solve the following equation:

x2+4=0
x? = -4

Xx =1+ N-4

Notice the distinction between this use of the
radical sign and the manner in which it was
used in chapter 7. Here, the : symbol is in-
cluded with the radical sign to emphasize the
fact that two values of x exist. Although both
roots exist, only the positive one is usually
given. This is in accordance with usual mathe-
matical convention.

The equation

X=2xnN-4

raises an interesting question:

What number multiplied by itself yields -4 ?
The square of -2 is +4. Likewise, the square
of +2 is +4. There is no number in the system
of real numbers that is the square root of a
negative number. The square root of a nega-
tive number came to be called an IMAGINARY
NUMBER. When this name was assigned the
square roots of negative numbers, it was natu-
ral to refer to the other known numbers as the
REAL numbers.

IMAGINARY UNIT

To reduce the problem of imaginary num-
bers to its simplest terms, we proceed as far
as possible using ordinary numbers i:u the so-
lution. Thus, we may write v -4 as a product

N-14 = NI N-T
= 22 V-1
Likewise,
N=b = N§ N-T
Also,

3N-T=3N-TN-T

Thus, the problem of giving mearing to the
square root of any negative number reduces to
that of finding a meaning for v -1,

The square root of minus 1 is designated i
by mathematicians. When it appears with a co-
efficient, the symbol i is written last unless
the coefficient is in radical form. This con-
vention is illustrated in the following examples:

£2 V=1 = 22§
NE N1 =i+N5

3NTN-T=3i~NT

The symbol i stands for the imaginary unit
N'-1. An imaginary number is any real multi-
ple, positive or negative, of i. For example,
-Ti, +71, i V15, and bi are all imaginary num-
bers.

In electrical formulas the letter i denotes
current. To avoid confusion, electronic techni-
cians use the letter j to indicate V-1 and call it
"operator j." The name ''imaginary' should be
thought of as a technical mathematical term of
convenience. Such numbers have a very real
purpose in the physical sense. Also it can be
shown that ordinary mathematical operations
such as addition, multiplication, and so forth,
may be performed in exactly the same way as
for the so-called real numbers.

Practice problems. Express each of the
following as some real number times i:

1. V-18 3. Vb 5. N-95

2. 2 V-1 4.-fd-~/-f2 6. 135
Answers:

1. 4i 3.i V5 5. 5i

2. 2i 4. di 6. %

Powers of the Imaginary Unit

The following examples illustrate the re-
sults of raising the imaginary unit to various
powers:

i= =T
i2 = ¥=1 ~~1, or -1
3 2

pube
1

=ii =-1i, or -i
i*=i%%=-1. -1 =41

i

1 i
=-i—-=-i-2 =3 = -1
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We see from these examples that an even
power of i is a real number equal to +1 or -1.
Every odd power of i is imaginary and equal to
i or -i. Thus, all powers of i reduce to one of
the following four quantities: +~-1, -1, -~'-1,
or +1.

GRAPHICAL REPRESENTATION

Figure 15-1 shows the real numbers repre-
sented along a straight line, the positive num-
bers extending from zero to the right for an
infinite distance, and the negative numbers ex-
tending to the left of zero for an infinite dis-
tance. Every point on this line corresponds to
a real number, and there are no gaps between
them. It follows that there is no possibility of
representing imaginary numbers on this line.

Earlier, we noted that certain signs could be
used as operators. The plus sign could stand
for the operation of addition. The minus sign
could stand for the operation of subtraction.
Likewise, it is easy to explain the imaginary
number i graphically as an operator indicating
a certain operation is to be performed on the
number of which it is the coefficient.

If we graphically represent the length, n, on
the number line pictured in figure 15-2 (A), we
start at the point 0 and measure to the right
(positive direction) a distance representing n
units. If we multipiy nby -1, we may repre-
sent the result -n by measuring from 0 in a
negative direction a distance equal to n units.

Graphicaily, multiplying a real number by
-1 is equivalent to rotating the line that repre-
sents the number abcut the point 0 through 180°
so that the new position of n is in the opposite
direction and 2 distance n units from 0. In this
case we may think of -1 as the operator that
rotates n through two right angles to its new
position (fig. 15-2 (B)).

As we have shown, i? = -1, Therefore, we
have really multiplied n by i%, or i x i. In other
words, multiplying by -1 is the same as multi-
plying by i twice in succession. Logically, if
we multiplied n by i just once, the line n would
be rotated only half as much as before--that is,
through only one right angle, or 90°. The new
segment ni would be measured in a direction
90° from the line n. Thus, i is an operator that
rotates a number through one right angle. (See
fig. 15-3.)

We have shown previously that a positive
number may have two real square roots, one
positive and one negative. For example, N9 = x3.
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L—n(-l)=-n

-n

1

Figure 15-2.—Graphical multiglication by
-1 and by operator i “

-rr\

ni
ni
™~
90°
a \
2 n—]

Figure 15-3.—Graphical multi-
plication by operator i.

We also saw that an imaginary number may
have two roots. For example, v-4 is equal to
+2i. When the operator -1 graphically rotates
a number, it may do so in a counterclockwise
or a clockwise direction. Likewise, the opera-
tor i may graphically rotate a number in either
direction. This fact gives meaning to numbers
such as +2i. It has been agreed that a number
multiplied by +i is to be rotated 90° in a coun-
terclockwise direction. A number muitiplied
by -i is to be rotated 90° in a clockwise di-
rection.

.‘ !-‘
LN

1
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Infigure 15-4, +2i is represented by rotating
the line that represents the positive real num-
ber 2 through 90° in a counterclockwise direc-
tion. It follows that -2i is represented by rotat-
ing the line that represents the positive real
number 2 through 90° in a clockwise direction.

+2i
] | |
l | l
-2 -| 0 | 2
=2i
Figure 15-4.—Graphical representation
of +2i.

In figure 15-5, notice that the idea of i as an
operator agrees with the concept advanced con-
cerning the powers of i. Thus, i rotates a num-
ber through 90°; i2 or -1 rotates the number
through 180°, and the number is real and nega-
tive; i ? rotates the number through 270°, which
has the same effect as -1; and i* rotates the
number through 360°, and the number is once
again positive and real.

THE COMPLEX PLANE

All imaginary numbers may be represented
graphically along a line extending through zero
and perpendicular to the line representing the
real numbers. This line may be considered in-
finite in Loth the positive and negative direc-
tions, and all multiples of i may be represented
on it. This graph is similar to the rectangular
coordinate system studied earlier.

In this system, the vertical or y axis is
called the axis of imaginaries, and the horizon-
tal or x axis is called the axis of reals. In the
rectangular coordinate system, real numbers
are laid off on both the x and y axes and the
plane on which the axes lie is called the real
plane. When the y axis is the axis of imagi-
naries, the plane determined by the x and y axes
is called the COMPLEX PLANE (fig. 15-6).

In any system of numbers a unit is neces-
sary for counting. Along the real axis, the unit
is the number 1. As shown in figure 15-6,
along the imaginary axis the unit is i. Numbers
that lie along the imaginary axis are called
PURE IMAGINARIES. They will always be
some multiple of i, the imaginary unit. The
numbers 5i, 3i ~2, and V-7 are examples of
pure imaginaries.

NUMBERS IN THE COMPLEX PLANE

Allnumbers inthe complex planeare complex
numbers, including reals and pure imaginaries.
However, since the reals and imaginaries have

#bi=b./-7

e 3
Qis LY AW ARV ARV Al
N _/ =bnen=b
~—]_~"

?

bi3 = b1 A A

= -bi

Figure 15-5.~Operation with poweis of i.
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All complex numbers correspond to the gen-

AXIS OF IMAGINARIES eral form a + bi, where a and b are real num-

Y bers. When a has the value 0, the real term
disappears and the complex number becomes a
4it pure imaginary. When b has the value of 0, the
3i+ imaginary term disappears and the complex
, number becomes a real number. Thus, 4 may
2it be thought of as 4 + 0i, and 3i may be consid-
it ered 0 + 3i. From this we may reason that the
L 4 4 A}IS ,OF BEAkS X real number and the pure imaginary number
-4 -3 -2 - |0 L 2 3 4 are special cases of the complex number. Con-
=T sequently, the complex number may be thought
-2i+ of as the most general form of a number and
, can be construed to include all the numbers of
-3iT algebra as shown in the chart in figure 15-7.
-4i..
Plotting Complex Numbers

Figure 15-6.—The complex plane. Complex numbers may easily be plotted

in the complex plane. Pure imaginaries are

the special property of being located on the plotted along the vertical axis, the axis of imag-
axes, they are usually identified by their dis- inaries, and real numbers are plotted along the
tinguishing names. horizontal axis, the axis of reals. It follows
The term complex number has been defined that other points in the complex plane must
as the indicated sum or difference of a real represent numbers that are part real and part
number and an imaginary number. imaginary; in other words, complex numbers.
For example, 3+5 ~ -1 or 3+ 5i, 2 - 6i, If we wish to plot the point 3 + 2i, we note that
and -2 + V-5 are complex numbers. In the the number is made up of the real number
complex number 7 - i N2, 7 is the real part and the imaginary number 2i. Thus, as in fig-
and -1 2 is the imaginary part. ure 15-8, we measure along the real axis in¢

COMPLEX NUMBERS

(a + bi)
|
1 ]
REAL NUMBERS PURE IMAGINARIES
(FORMIS o WHERE (FORM IS bi WHERE
b IS o) alSo)
| ]
RATIONAL IRRATIONAL
|
NEGATIVE POSITIVE Jé
INTEGERS INTEGERS

/B

NEGATIVE POSITIVE ]
FRACTIONS FRACTIONS efc.

Figure 15-7.~The complex number system.
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=3it

Figure 15-8.—Plotting complex numbers.

positive direction. At point (3, 0) on the real
axis we turn through one right angle and meas-
ure 2 units up and parallel to the imaginary
axis. Likewise, the number -3 + 2i is 3 units
to the left and up 2 units; the number 3 - 2i
is 3 units to the right and down 2 units; and the
number -3 -2i is 3 units to the left and down
2 units.

Complex Numbers as Vectors

A vector is a directed line segment. A com-
plex number represents a vector expressed in
the RECTANGULAR FORM. For example, the
complex number 6 + 8i in figure 15-9 may be
considered as representing either the point P
or the line OP. The real parts of the complex
number (6 and 8) are the rectangular compo-
nents of the vector. The real parts are the legs
of the right triangle (sides adjacent to the right
angle),and the vector OP is its hypotenuse (side
opposite the right angle). If we merely wish to
indicate the vector OP, we may do so by writ-
ing the complex number that represents it along
the segment as in figure 15-9. This method not
only fixes the position of point P, but also shows
what part of the vector is imaginary (PA) and
what part is real (OA).

If we wish to indicate a number that shows
the actual length of the vector OP, it is neces-
sary to solve the right triangle OAP for its
hypotenuse. This may be accomplished by tak-
ing the square root of the sum of the squares of

AXIS OF IMAGINARIES
Y P

53.1° AXIS OF REALS
0 6 A

X

Figure 15-9.—A complex number
shown as a vector.

the legs of the triangle, which in this case are
the real numbers, 6 and 8. thus,

NG6Z + 82
N 100

= 10

n

OoP

u

However, since a vector has direction as
well as magnitude, we must also show the di-
rection of the segment; otherwise the seg-
ment OP could radiate in any direction on the
complex plane from point 0. The expression
10/53.1° indicates that the vector OP has been
rotated counterclockwise from the initial posi-
tion through an angle of 53.1°. (The initial po-
sition in a line extending from the origin to the
right along OX.) This method of expressing the
vector quantity is called the POLAR FORM.
The number represents the magnitude of the
quantity, and the angle represents the position
of the vector with respect to the horizontal ref-
erence, OX. Positive angles represent coun-
terclockwise rotation of the vector, and nega-
tive angles represent clockwise rotation. The
polar form is generally simpler for multiplica-
tion and division, but its use requires a knowl-
edge of trigonometry.
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ADDITION AND SUBTRACTION OF
COMPLEX NUMBERS

Pure imaginaries are added and subtracted
in the same way as any other algebraic quanti-
ties. The coefficients of similar terms are
added or subtracted algebraically, as follows:

4i + 3i = Ti
4i - 3i =1
4i - (-8i) = T

Likewise, complex numbers in the rectangular
form are combined like any other algebraic
polynomiuals. Add or subtract the coefficients
of similar terms algebraically. If parentheses
enclose the numbers, first remove tne paren-
theses. Next, place the real parts together and
the imaginary parts together. Collect terms.
As examples, consider the following:

1. (2 -3i) + (5 +4i) =2 -31i +5 + 4i
=2+ 95 -3 +4i
=7 + i

2. (2-343) - (5 +j4) =2 -3 -5 -4
=2-5-33 -4
= -3 - i1

In example 2, notice that the convention for
writing operator j (the electronics form of the
imaginary unit) with numerical coefficients is
to place j first.

If the complex numbers are placed oae un-
der the other, the results of addition and sub-
traction appear as follows:

ADDITION SUBTRACTION
3 +44+-1 a+ jb

2 -71N-1T f—c + jd

5 - 3 -1 (@ - c) + jb - d)

Practice problems. Add or subtract as in-
dicated, in the following nroblems:

1. (3a + 4i) + (0 - 2i)
2. (3 + 2i) + (-2 + 3i)
3. (a + bi) + (c + di)
4. (1 + 2 N-1) + (-2 - 2 V-T)
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5. (-5 + 3i) - (4 - 2i)
6. (a + bi) - (-c + di)

Answers:
1. 3a + 2i 4. -1
2. 9i 5. -9 + bi

3.a+c+ (b+ d)i 6.a+c+ (b - di
MULTIPLICATION OF
COMPLEX NUMBERS

Generally, the rules for the multiplication of
complex numbers and pure imaginaries are the
same as for other algebraic quantities. How-
ever, there is one exception that should be
noted: The rule for multiplying numbers under
radical signs does not apply to TWO NEGA-
TIVE numbers. When at least one of two radi-
cands is positive, the radicands can be multi-
plied immediately, as inthe following examples:

VTNT =NE
VENTT =N

When both radicands are negative, however
as in V-2 V-3, an inconsistent result is ob-
tained if we multiply both numbers under the
radical signs immediately. To get the correc
result, express the imaginary numbers first i
terms of i, as follows:

N2 N-3=in~N2-1i+~3
= i2N2AN3
= i246
= (-1) Vg = -N6

Multiplying complex numbers is equivalen
to multiplying binomials in the manner ex
plained previously. After the multiplication i,
performed, simplify the powers of i as in th
following examples:

1. 4 - i
3 +1i
12 - 3i
+4i -2
12 +1 - i2 =12 +1i - (-1)
=13 +1i
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(8 -2 N7
(-6 + 51 NT) (8 - 2i N7)
-48 + 401 N7 + 12i T - 10(7)i?

2. (-6 +5 ~N=7)

= -48 + 52i N7 + 70
= 22 + 52i VT
Practice problems. Perform the indicated
operations:
1. ¥v-9 v-16
2, V-2 V18
3. V-9 N2
4. a ~¥-ba - N-b
5. (2 + 5i) (3 - 2i)
6. (a + V-b) (a - V-Db)
7. (-2 + N-4) (-1 + N=3)
8. (8 - N-T) (6 + ~-7)
Answers:
1. -12 5. 16 + 11i
2. 6i 6. a2 + b
3. 6 7. -2 - 6i
4, -ab Va 8.55 + 2 V7T

CONJUGATES AND
SPECIAL PRODUCTS

Two complex numbers that are alike except
for the sign of their imaginary parts are called
CONJUGATE COMPLEX NUMBERS. For ex-
ample, 3 + 5i and 3 - 5i are conjugates. IEiiher
number is the conjugate of the other.

If one complex number is known, the conju-
gate can be obtained irmmediately by changing
the sign of the imaginary part. The conjugate
of -8 + ¥-10 is -8 - ~-10. The conjugate of
-N-6 is \<86.

The sum of two conjugate complex numbers
is a real number, as illustrated by the following:

1. (3 + j5) + (8 - jb) = 2(3) = 6
1 ~-3 1 ~N-3

2. (-2+—2-—.>+(-2-—2>
_ .1 N3, 1 N3,
=Tt 2l m o

1 1

S
= -1
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Product of Two Conjugates

The product of two conjugate complex num-
bers is a real number. Multiplying two conju-
gates is equivalent to finding the product of the
sum and difference of two numbers.

Consider the following examples:

1. (3 +j5) (3 - j5) = 3% - (j5)2
=9 - 25(-1)
=9 + 25
= 34
L2 (3 ) ()
V2T Y et T/ c\e?
4[]
1 3
=31t 7
=1

Squaring a Complex Number

Squaring a complex number is equivalent to
raising a binomial to the second power. For
example:

(-6 - V-25)% = (-6 - j5)°
= [(-1) « (6 + j5)]°
= (-1 . (62 + j60 + j%25)
= 36 + j60 - 25
= 11 + j60
DIVISION OF COMPLEX NUMBERS

When dividing by a pure imaginary, the de-
nominator may be rationalized and the problem
thus simplified by multiplying both numerator
and denominator by the denominator. Thus,

12 12 iv2
N2 iN2 iNZ2
12i V2
2i2

6i N2

-1

-6i V2
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Division of complex numbers can be accom-
plished by multiplying the numerator and de-
nominator by the number that is the conjugate
of the denominator. This process is similar to
the process of rationalizing a denominator in
the case of real numbers that are irrational.

As an example, consider

5 - 2i
3 +1i

The denominator is 3 +i. Its conjugate is
3 - i. Multiplying numerator and denominator
by 3 - i gives

5 - 2i
3 +1i

3 -i

_ 15 - 11i + 2i?
3 -1

9 - j?
15 - 11i - 2
9 +1

. 13 - 11i

=y

=18 11,
10~ 10

Practice problems. Rationalize the denomi-
nators and simplify:

1 2 -1 4 3
T4+ 2 VT 1.1 4T
-2 + 4i 1 -

2'--1+4i 5'2-

33+\/—-'2' 6 8
"3 - N2 EE
Answers:
2i + 1 3, 3.

1, . 4.T+?1'\/_3'
18 + 4i 3 - i

2.——1,7 5.——5-—

) 11 ) 3
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CHAPTER 16
QUADRATIC EQUATIONS IN ONE VARIABLE

The degree of an equation in one variable is
the exponent of the highest power to which the
variable is raised in that equation. A second-
degree equation in one variable is one in which
the variable is raised to the second power. A
second-degree equation is often called a QUAD-
RATIC EQUATION. The word quadratic is de-
rived from the Latin word quadratus, which
means "squared." In a quadratic equation the
term of highest degree is the squared term.
¥or example, the following are quadratic equa-
tions:

x2+3x+4=0

3m + 4m? = 6
The terms of degree lower than the second
may or may not be prusent. The possibleterms
of lower degree than the squared term in a

quadratic equation are the first-degree term
and the constant term. In the equation

3xx2-8-5=0

-5 is the coefficient of x°. If we wished to
emphasize the powers of x in this equation, we
couid write the equation in the form

3x2 - 8x! - 5x°=0

Examples of quadratic equations in which either
the first-degree term or the constant term is
missing are:

1. 4x%= 16
2.y2+ 16y =0
3.e2+12=0

GENERAL FORM OF A
QUADRATIC EQUATION

Any quadratic equation can be arranged in
the general form:

ax2+bx +c¢c=0

If it has more than three terms, some of them
will be alike and can be combined, after which
the final form will have at most three terms.
For example,

2%2 +3+5x-1+x2=4-x%-2x-3
reduces to the simpler form
42 + ™x+1=0

In this form, it is easy to see that a, the coef-
ficient of x2, is 4; b, the coefficient of x, is 7;
and c, the constant term, is 1.

Sometimes the coefficients of the terms of
a quadratic appear as negative numbers, as
follows:

2x%2 -3x-5=0

This equation can be rewritten in such a way
that the connecting signs are all positive, as in
the general form. This is illustrated as follows:

2x2 + (-3)x + (-5 =0

In this form, the value of a is seen to be 2,
b is -3, and c is -5.
An equation of the form

x2+2=0

has no x term. This can be considered as a
case in which a is 1 (coefficient of x2 under-
stood to be 1), bis 0, and c is 2. For the pur-
pose of emphasizing the values of a, b, and ¢
with reference to the general form, this equa-
tion can be written

x2+0x+2=0

The coefficient of x? can never be 0; if it
were 0, the equation would not be a quadratic.
If the coefficients of x and x° are 0, then those
terms do not normally appear. To say that the
coefficient of x° is 0 is the same as saying that
the constant term is O or is missing.
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A ROOT of an equation in one variable is a
value of the variable that satisfied the equation.
Every equation in one variable, with constants
as coefficients and positive integers as expo-
nents, has as many roots as the exponent of the
highest power. In other words, the number of
roots is the same as the degree of the equation.

A fourth-degree equation has four roots, a
cubic (third-degree) equation has three roots, a
quadratic equation has two roots, and a linear
equation has one root.

As an example, 6 and -1 are roots of the
quadratic equation

X2-5x-6=0
This can be verified by substituting these val-
ues into the equation and noting that an identity
results-in each case.

Substituting x = 6 gives

62 - 5(6) - 6 =
36 - 36 =
0 =

Substituting x = -1 gives

(-1 - 5(-1) - 6 = 0
1+5-6=20
6-6=0

0=0

Several methods of finding the roots of quad-
ratic equations (SOLVING) are possible. The
most common methods are solution by FAC-
TORING and solution by the QUADRATIC FOR-
MULA. Less commonly used methods of solu-
tion are accomplisked by completing the square

and by graphing.

SOLUTION BY FACTORING

The equation x2 - 36 = 0 is a pure quadratic
equation. There are two numbers which, when
substituted for x, will satisfy the equation as
follows:

(+6)2 - 36 = 0
36 - 36 =0
also
(-6)%2 - 36 =0
36 - 36 =0

oy
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Thus, +6 and -6 are roots of the equation
x2-36 =0

The most direct way to solve a pure quad-
ratic (one in which no x term appears and the
constant term is a perfect square) involves re-
writing with the constant term in the right
member, as follows:

x2

36

Taking square roots on both sides, v- have

X +6

The reason for expressing the solution as both
plus and minus 6 is found in the fact that both
+6 and -6, when squared, produce 36.

The equation

x?%- 36
can also be solved by factoring, as follows:

x2 - 36
(x + 6)(x - 6)

0
0

We now have the product of twofactors equal
to zero. According to the zero factor law, if a
product is zero, then one or more of its factors
is zero. Therefore, at least one of the factors
must be zero, and it makes no difference which
one. We are free to set first one factor and
then the other factor equal to zero. In so doing
we derive two solutions or roots of the equation.

If x + 6 is the factor whose valu= is 0, then
we have

If x - 6 is the zero factor, we have

—

0
6

When a three-term quadratic is put into
simplest form, it is customary to place all the
terms on the left side of the equality sign with
the squared term first, the first-degree term
next, and the constant term last, as in

9x?2 -2x+17=0
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If the trinomial in the left member is readily
factorable, the equation can be solved quickly
by separating the trinominal into factors. Con-
sider the equation

3x2-x-2=0

By factoring the trinominal, the equation be-
comes

3 + 2)x -1 =0

Once again we have two factors, the product of
which is 0. This means that one or the other of
them (or both) must have the value 0. If the
zero factor is 3x + 2, we have

x+2=0
3x = -2
x = -2
-3

If the zero factor is x - 1, we have
x-1=0

x=1

Substituting first x = 1 and then x = -% in

the original equation, we see that both roots
satisfy it. Thus,

31)%-1)-2=0
3-1-2=0

0=0

2] [ 2 _
s[-3] - [-3]-2-0
4 2 _
§+§-2—0

0=0

In summation, when a quadratic may be
readily factored, the process for finding its
roots is as follows:

1. Arrange the equation in the order of the
descending powers of the variable so that all
the terms appear in the left member and zero
appears in the right.

2. Factor the left member of the equation.

3. Set each factor containing the variable
equal to zero and solve the resulting equations.

4. Check by substituting each of the derived
roots in the original equation.
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EXAMPLE: Solve the equatinn x? - 4x = 12
for x.

1. x°-4x-12=0

2. x -6)x +2) =0

3.x-6=0 Xx+2=0
x =6 X = -2
4, (6)% - 4(6) =12 (x = 6)
36 - 24 = 12
12 = 12
-2)2 -4 (-2 =12 (& = -2
4 + 8§ =12
12 = 12

Practice problems. Solve thefollowing equa-
tions by factoring:
1. x2 + 10x - 24 =0 4. 79%-19y-6 =0
2.a2-a-5 =0 5. m2 - 4m = 96
3. y2 -2y =863

Answers:
1. x = -12 4.y=3
= 2 2
y=-7
2. a=8 5. m = -8
a=-7 m = 12
3.y =-1
y=29
SOLUTION BY

COMPLETING THE SQUARE

When a quadratic cannot be solved by fac-
toring, or the factors are not readily seen, an-
other method of finding the roots is needed. A
method that may always be used for quadratics
in one variable involves perfect square trino-
mials. These, we recall, are trinomials whose
factors are identical. For example,

x2 - 10x + 25 = (x - 5)(x - 5) = (x - 5)?

Recall that in squaring a binrmial, the third
term of the resulting perfect square trinomial

d'74
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is always the square of the second term of the
binomial. The coeificient of the middle term of
the trinomial is always twice the second term
of the binomial. For example, when (x + 4) is
squared, we have

X+ 4

X + 4

x? + 4x

+ 4x + 16
x% + 8x + 16

Hence if both the second- and first-degree
terms of a perfect square trinomial are known,
the third may be written by squaring one-half
the coefficient of the first-degree term.

Essentially, in completing the square, cer-
tain quantities are added to one member and
subtracted from the other, and the equation is
so arranged that the left member is a perfect
square trinomial. The square roots of both
members may then be taken, and the subsequent
equalities may be solved for the variable.

For example,

11

4

x? + 5x - 0

cannot be readily factored. To solve for x by
completing the square, we proceed as follows:

1. Leave only the second- and first-degree
terms in the left member.

2 U
X° + 5x = 2
(If the coefficient of x? is not 1, divide through
by the coefficient of x2.)

2. Complete the square by adding to both
members the square of half the coefficient of
the x term. In this example, one-half of the

coefficient of the x term is %, and the square

of g is 2—45 vhus,

25

4

i,
4

x? + 5x + 2—45
3. Factor the left member and simplify the
right member.

5) " _

)

9

4. Take the sguare root of both members.

D)

Remember that, in taking square roots on both
sides of an equation, we must allow for the fact
that two roots exist in every second-degree
equation. Thus we designate both the plus and
the minus root of 9 in this example.

5. Solve the resulting equations.

5 _ S _
x+2-3 x+2--3
_6 _5 __8_5
X=3-3 X=-3°-3
<=1 N 0 §
=2 -3
6. Check the results.
12 5 11
(3) +3-%-0
5 10 _
3-73°0
0=0
11\ 2 11 11
(%) +@ (5)-§-0
121 55 11 .
T "2 " 73°
110 55 _
7 -73=0
0=0

The process of completing the square may
always be used to solve a quadratic equation.
However, since this process may become com-
plicated in more complex equations, a formula
based on completing the square has been devei-
oped in which known quantities may be substi-
tuted in order to derive the roots of the quad-
ratic equation. This formula is explained in
the following paragraphs.

SOLUTION BY THE
QUADRATIC FORMULA

The quadratic formula is derived by apply-
ing the process of completing the square to
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solve for x in the general form of the quadratic
squation, ax? + bx + ¢ = 0. Remember that the
zeneral form represents every possible quad-
ratic equation. Thus, if we can solve this equa-
:ion for X, the solution will be in terms of a, b,
and ¢. To solve this equation for x by complet-
ing the square, we proceed as follows:

1. Subtract the constant term, c, from both
members.
ax2 + bx +¢c=0
ax? + bx = -¢

2. Divide all terms by a so that the coeffi-
cient of the x? term becomes unity.

2. b, _ C
X2+ -X=~-—
a a

3. Add the square of one-half the coefficient

the values of a, b, and ¢, as they appear in the
particular equation, to derive the roots of that
equation. This expression is called the QUAD-
RATIC FORMULA. The general quadratic
equation, ax2? + bx + ¢ = 0, and the quadratic
formula should be memoriz- d. Then, when a
quadratic cannot be solved quickly by factoring,
it may be solved at once by the formula.

EXAMPLE: Use the quadratic formula to solve
the equation

X2+ 30 - 11x = 0.
SOLUTION:
1. Set up the equation in standard form.

x2 - 11x+30 =0

s e 2 =
of the x term, g, to both members. Then a (coefficient of x%) 1
b (coefficient of Xx) = -11
2 2
b (b _ b ¢ (the constant term) = 30
Square 5t (2a) Ty
) 2. Substituting,
Add'x+9x+b2=b - £
‘ as " % " 4a’  a _ -b + VbZ - 4ac
- 2a
4. Factor the left member and simplify the
right member. _= (1) = N(-11)2 - 4(1)(30)
(X+L>2=b2'4ac 2(1)
2a ta _ 11 + V121 - 120
5. Take the square root of both members. 2
x.,._ll_._,:_“b__ﬂ _11‘—’:1_601.5
2a ~ 2a -2
6. Solve for x. 3. Checking:
b ~Nb?-4ac
X = -p- ¢t 5a When When
_ -b :+ NbZ- dac x =86, x =5,
= 2a (6)% - 11(6) +30=10 (5)% - 11(5) +30=10
- 20 = - =
Thus, we have solved the equation repre- 36 - 66 + 50=0 25-55+30=0
senting every quadratic for its unknown in.erms 0=0 0=0

of its constants a, b, and c¢. Hence, in a given
quadratic we need only Substitute in the ex-
pression

EXAMPLE: Find the roots of

2?2 - 3x -1=0
-b + ¥Vb? - 4ac
2a Here, a=2, b=-3, and ¢ = -1,
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Substituting into the quadratic formula gives

- (-3) £ N(-3)% - 4(2)(-1)

X =

2(2)
_ 3+ N9 +8
- 4
_ 83+ NIT
- 4
The two roots are
_3.1 _3_ 1
x-4+4~fﬁandx-4-4\/_ﬁ

These roots are irrational numbers, since the
radicals cannot be removed.

If the decimal values of the roots are de-
sired, the value of the square root of 17 can be
taken from appendix I of this course. Substi-

tuting V17 = 4.1231 and simplifying gives
X, = 3 + 1.1231 and x, = 3 - 1.1231
7.1231 -1.1231
X, = —=F X, =
x1 = 1-781 X2 = "0-281

In decimal form, the roots of 2x2 - 3x - 1=0
to the nearest tenth are 1.8 and -0.3.

Notice that the subscripts, 1 and 2, are used
todistinguish between the two roots of the equa-
tion. The three roots of a cubic equation in x
might be designated x ;, x,, and x;. Sometimes
the letter r is used for root. Using r, the roots
of a cubic equation could be labeled r,, r,,
and r.

Checking:
When x1=%
2x2 - 3x -1=0
then
2(3+ ﬁ7)2_3(3+ m) 10
— — =
B+ NID2 9 + 3 NIT 1=u
g —g—— -1=
9+6'~f—17+17-18-6'~/ﬁ-8_0
3 =
0=0
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When
_3- N1T
then
2
2(2;4ﬂ) _3(3_‘_4Lﬁ) -1=0

9 -6 V17 + 17 _ 9 - 3 NIT _

5 ) 1=0

Multiplying both members of the equation by 8,
the LCD, we have

8(9

9-6~N1T+17-209-3~NIN)-8=0

-6 N1T + 117
8

)_8(9-3~/‘17

2 )-8(1)=0

9 -6 N1T+17-18+6N17-8=0
0=0

Practice problems. Use the quadratic for-
mula to find the roots of thefollowing equations:

1. 3x%- 20 -Tx=0 3. 15x2-22x -5=0

2. 4x%2 - 3x-5=0 4. x>+ =8
Answers:
1. x, = 4 3. %, =3
5 1
X2=-§ x2=-—5-
2.x1=3+T’\/?g 4.x, =1
3 - 89
x2=—T X, = -8

GRAPHICAL SOLUTION

A fourth method of solving a quadratic equa-
tion is by means of graphing. In graphing lin-
ear equations using both axes as reference, we
recall that an independent variable, x, and a
dependent variable, y, were needed. The co-
ordinates of points on the graph of the equation
were designated (x, y).

Since the quadratics we are considerinz con-
tain only one variable, as in the equation

x?2-8x+12=0
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we cannot plot values for the equations in the
present form using both x and y axes. A de-
pendent variable, y, is necessary.

If we think of the expression

x2 - 8x + 12

as a function, then this function can be consid-
ered to have many possible numerical values,
depending on what value we assign to x. The
particular value or values of x which cause the
value of the function to be 0 are solutions for
the equation

x2 -8 +12=20

For convenience, we may choose to let y
represent the function

x2? - 8x + 12

If numerical values are now assigned to x, the
corresponding values of y may be calculated.
When these pairs of corresponding values of x
and y are tabulated, the resulting table pro-
vides the information necessary for plotting a
graph of the function.

EXAMPLE: Graph the equation

x2+2x-8=20

y
(-5.7)e o(3,7)
(-4,0) 2,0)
e =
{-3,-5)e o(1,-5)
(-2,-8) f(o.-e)
179 ) -0

(A)

and from the graph write the roots of the equa-
tion.

SOLUTION:

1. Let y = x2 + 2x - 8.

2. Make a table of the y values corresponding
to the value assigned x, as shown in table 16-1.

Table 16-1.—Tabulation of x and y values
for the function y = x2 + 2x - 8.

— T
if x= ----- -5|-41-3|-2{-1]1 0} 1|23
theny --- 71 0{-5|-8]-9|-8{-5|0|7

3. Plot the pairs of x and y values that ap-
pear in the table as coordinates of points on a
rectangular coordinate system as in figure
16-1 (A).

4, Draw a smooth curve through these points,
as shown in figure 16-1 (B).

Notice that this curve crosses the X axis in
two places. We also recall that, for any point
on the X axis, the y coordinate is zero. Thus,
in the figure we see that wheny is zero, x is
-4 or +2. When y is zero, furthermore, we
have the original equation,

P
”

(8)

Figure 16-1.—~Graph of the equation y = x? + 2x - 8. (A) Points plotted;
(B) curve drawn through plotted points.
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x2+2x-8=0

Thus, the values of x at these points where
the graph of the equation crosses the X axis
(x = -4 or +2) are solutions tothe original equa-
tion. We may check these results by solving
the equation algebraically. Thus,

x2+2x-8=0
x+4)x-2 =0
x,+4=20 X, -2=0
x, = -4 Xy =
Check:
(-4)% + 2(-49) -8=0 (2 +2(2) - 8 =
16 - 8 -8=0 4 +4 - 8 =
0= 0=

The curve in figure 16-1 (B) is called a
PARABOLA. Every quadratic of the form
ax? + bx + ¢ = y will have a graph of this gen-
eral shape. The curve will open downward if a
is negative, and upward if a is positive.

Graphing provides a fourth method of finding
the roots of a quadratic in one variable. When
the equation is graphed, the roots will be the X
intercepts (those values of x where the curve
crosses the X axis). The X intercepts are the
points at which y is 0.

Practice problems. Graph the following
quadratic equations and read the roots of each
equation from its graph

1.x%? -4 -8=0
2.6x -5 -x2=
Answers:
1. See figure 16-2. x = 5.5;x = -1.5
2. See figure 16-3. x=1;x=5

MAXIMUM AND MINIMUM POINTS

It will be seen from the graphs of quadratics
in one variable that a parabola has a maximum
or minimum value, depending on whether the
curve opens upward or downward. Thus, when
a is negative the curve passer through a maxi-
mum value; and when a is positive, the curve
passes through a minimum value. Often these
maximum or minimum values comprise the only
information needed for a particular problem.
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In higher mathematics it can be shown that
the X coordinate, or :bscissa, of the maximum
or minimum value is

_zb
T 2a

In other words, if we divide minus the coeffi-
cient of the x term by twice the coefficient of
the x2 term, we have the X coordinate of the
maximum or minimum point. If we substitute
this value for x in the original equation, the
result is the Y value or ordinate, which corre-
sponds to the X value.

For example, we know that the graph of the
equation

X

x2 +2x -8 =y

passes through a minimum value because a is
positive. To find the coordinates of the point
where the parabola has its minimum value, we
note that a=1, b =2, ¢c = -8, From the rule
given above, the X value of the minimum pointis

=b
x=§§
_ (2
Xx = -1

Substituting this value for x in the original
equation, we have the value of the Y coordinate
of the minimum point. Thus,

-1D* +2(-1) -8 =y
1-2-8-=y
-9=y

The minimum point is (-1, -9). From the graph
in figure 16-1 (A), we see that these coordi-
nates are correct. Thus, we can quickly and
easily find the coordinates of the minimum or
maximum point for any quadratic of the form
ax?2 +bx +c = 0.

Practice problems. Without graphing, find
the coordinates of the maximum or minimum
points for the following equations and state
whether they are maximum or minimum.

1. 2x2 - 5x + 2
2. 68 - 3x - x?
3.3+ 7 - 6x2
4, 24x? - 14x =

AL
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14l

11

T

Figure 16-2.—Graph of x? - 4x - 8 = 0.

Answers:
r 3. x

I ;
= 13 Maximum
5 .
1. x = 2 Minimum " 121
o 7 ¥
y=-3
3 4. x = N Minimum
2. X = -3 Maximum : 24
_ 281 ..t
y=73 y= -7
175
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Figure 16-3.—Graphof 6x - 5 - x2 = 0.

THE DISCRIMINANT

The roots of a quadratic equation may be
classified in accordance with the following
criteria:

1. Real or imaginary.
2. Rational or irrational.
3. Equal or unequal.

The task of discriminating among these possi-
ble characteristics to find the nature of the
roots is best accomplished with the aid of the
quadratic formula. The part of the quadratic
formula which is used is called the DISCRIMI-
NANT.

If the roots of a quadratic are denoted by the
symbols r, and r,, then the following relations
may be stated:

_ -b + Vb7 - 4ac
B 2a

r,
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-b - Vb2 - 43¢
2a

r, =

We can show that the character of the roots
is dependentupon the form taken by the expres-
sion

b? - 4ac

which is the quantity under the radical in the
formula. This expression is the DISCRIMI-
NANT of a quadratic equation.

IMAGINARY ROOTS

Since there is a radical in each root, there
is a possibility that the roots could be imagi-
nary. They are imaginary when the number
under the radical in the quadratic formula is
negative (less than 0). In other words, when
the value of the discriminant is less than 0, the
roots are imaginary.
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EXAMPLE:

a=1,b=1-c¢c=1
b2 - 4ac = (1)2 - 4(1)(1)
=1-4
- -3

Thus, without further work, we know that the
roots are imaginary.

CHECK: The roots are

_ -1+ ~N-3 _ =1 - +~-3
Ty = 2 T2 = 2

1 i3 1 i N3
' =-37 73 T2==3~72

We recognize both of these numbers as being
imaginary.

We may also conclude that when one root is
imaginary the other will also be imaginary.
This is because the pairs of imaginary roots
are always conjugate complex numbers. If one
root is of the form a + ib, then a - ib is also
a root. Knowing that imaginary roots always
occur in pairs, we can conclude that a quad-
ratic equation always has either two imaginary
roots or two real roots.

Practice problems. Using the discriminant,
state whether the roots of the following equa-
tions are real or imaginary:

1.x2-6x-16 =0
2. x2 - 6x = -12
3. 3%x2 - 10x + 50 = O

4, 6x2 +x=1
Answers:

1. Real
2. Imaginary
3. Imaginary
4.. Real

EQUAL OR DOUBLE ROOTS

If the discriminant b? - 4ac equals zero, the
radical in the quadratic formula becomes zero.

In this case the roots are equal; such roots are
sometimes called double roots.
Consider the equation
9x2 + 12x +4 =0

Comparing with the general quadratic, we mo-
tice that

a=9,b=12,and c = 4

The discriminant is

b2 - 4ac = 122 - 4(9)(4)
= 144 - 144
=0

Therefore, the roots are equal.

CHECK: From the formula

o _12s0 o -12-0
1= 2(9) 27 29
2 2
r, = '§ 'y = "§

The equality of the roots is thus verified.

The roots can be equal only if the trinomial
is a perfect square. Its factors are equal.
Factoring the trinomial in

Ox2 + 12x + 4 =0
we see that
(3x + 22 =0

Since the factor 3x + 2 is squared, we actu-
ally have

x + 2

|
o

twice, and we have

¥

"

]
(X

twice.

The fact that the same root must be counted
twice explains the use of the term "double
root." A double root of a quadratic equation is
always rational because a double root canoc-
cur only when the radical vanishes.
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REAL AND UNEQUAL ROOTS

When the discriminant is positive, the roots
must be real. Also they must be unequal since
equal roots occur only when the discriminant
is zero.

Rational Roots

If the discriminant is a perfect square, the
roots are rational. For example, consider the
equation

3x2-x-2=0
in which
2=3,b=-1,and ¢

-2
The discriminant is

b2 - 4ac

(-1)2 - 4(3)(-2)
1+ 24
25

We see that the discriminant, 25, is a per-
fect square. The perfect square indicates that
the radical in the quadratic formula can be re-
moved, that the roots of the equation are ra-
tional, and that the trinomial can be factored.
In other words, when we evaluate the discrimi-
nant and find it to be a perfect square, we know
that the trinomial can be factored.

Thus,
3%2-x-2=0
B3x + 2)x -1 =0
from which
3x+2=0 x-1=0
x=-% x=1

We see that the information derived from the
discriminant is correct. The roots are real,
unequal, and rational.

Irrational Roots

If the discriminant is not a perfect square,
the radical cannot be removed and the roots
are irrational.
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Consider the equation
2x2 - 4x +1=0
in which
a=2,b=-4 andc = 1,

The discriminant is

b2 - 4ac

(-4)2 - 4(2(1)
16 - 8
8

This discriminant is positive and not a perfect
square. Thus the roots are real, unequal, and
irrational.

To check the correctness of this information,
we derive the roots by means of the formula.
Thus,

x_-biVb2-4ac
- 2a
_ 4+ N8
- 4
_ 2+ N2
- 2
N2 N2
x=1+Torx=1-—2-

This verifies the conclusions reached in
evaluating the discriminant. When the dis-
criminant is a positive number, not a perfect
square, it is useless to attempt to factor the
trinomial. The formula is needed to find the
roots. They will be real,unequal, andirrational,

SUMMARY

The foregoing information concerning the
discriminant may be summed up in the follow-
ing four rules:

1. If b?- 4ac is a perfect square or zero,
the roots are rational; otherwise they are
irrational.

2. If b2 - 4ac is negative (less than zero),
the roots are imaginary. ,

3. If b?- 4ac is zero, the roots are real,
equal, and rational,

4. If b? - 4ac is greater than zero,the roots
are real and unequal.
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Practice problems. Determine the character
of the roots of each of the following equations:

1.x2-Tx+12=0

2. 9x2 -6x+1=0

3.2x2 -x+ 1i=0

4, 2x - 2x2+6 =0
Answers:

1. Real, unequal, rational

2. Real, equal, rational

3. Imaginary

4, Real, unequal, irrational

GRAPHICAL INTERPRETATION
OF ROOTS

When a quadratic is set equal toy and the
resulting egquation is graphed, the graph will
reveal the character of the roots, but it may
not reveal whether the roots are rational or
irrational.

Consider the following equations:

1.x2+6x-3=y
2.x2+6x+9 =y

]

3.x2+6x+13=y

The graphs representing these equations are
shown in figure 16-4.

We recall that the roots of the equation are
the values of x at those points where y is zero.
Y is zero on the graph anywhere along the X
axis. Thus, the roots of the equation are the
positions where the graph crosses the X axis.
In parabola No. 1 (fig. 16-4) we see iinmedi-
ately that there are two roots to the equation
and that they are unequal. These roots appear
to be -6.5 and 0.5. Algebraically, we find them
to be the irrational numbers

-3+ 2 ~N3 and -3 -2 ~3.

For equation No. 2 (fig. 16-4), the parabola
just touches the X axis atx = -3. This means
that both roots of the equation are the same—
that is, the root is a double root. At the point
where the parabola touches the X axis, the two
roots of the quadratic equation have moved
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iS4

Figure 16-4.—Graphical interpretation of roots.

together and the two points of intersection of the
parabola and the X axis are coincident. The
quantity -3 as a double root agrees with the
algebraic solution.

When the equation No. 3 (fig. 16-4) is solved
algebraically, we see that the roots are -3 + 2i
and -3 - 2i. Thus they are imaginary. Para-
bola No. 3 does not cross the X axis. When this
situation occurs, imaginary roots are implied.
Only equations having real roots will have
graphs that cross or touch the X axis. Thus we
may determine from the graph of an equation
whether the roots are real or imaginary.

VERBAL PROBLEMS
INVOLVING QUADRATIC EQUATIONS

Many practical problems give rise to quad-
ratic equations. In such problems it often hap-
pens that one of the roots will have no meaning.
We must select the root that satisfies the con-
ditions of the problem.

Consider the following example: The length
of a plot of ground exceeds its width by 7 ft and
the area of the plot is 120 sq ft. What are the
dimensions?
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SOLUTION:

Xy = 120

Solving *.; ™ry,y=x-17

Substituting (x - 7 for y in (2)

x(x -7 = 120

Therefore
x2 - Tx - 120 =0
(x - 15)(x + 8 =0
x = 15, -8
Thus, length = +15 or -8.

But the length obviously cannot be a negative
value. Therefore, we reject -8 as a value for
x and use only the positive value, +15. Then
from equation (1),

15 -y =19
y=28
Length = 15, Width = 8

Practice problems. Solve the following
problems by forming quadratic equations:

1. A rectangular plot is 8 yd by 24 yd. I the
length and width are increased by the same
amount, the area is increased by 144 sq yd.
How much is each dimension increased?

2. Two cars travel at uniform rates of speed
over the same route a distance of 180 mi. One
goes 5 mph slower than the other and takes
1/2 hr longer to make the run. How fast does
each car travel?

Answers:
1. Length and width are each increased by 4 yd.

2. Faster car: 45 mph.
Slower car: 40 mph.




CHAPTER 7
PLANE FIGURES

The discussion of lines and planes in chap-
ter 1 of this course was limited to their con-
sideration as examples of sets, The present
chapter is concerned with lines, angles, and
areas as found in various plane (flat) geometric
fijgures.

LINES

In the strictly mathematical sense, the term
'"line segment' should be used whenever we re-
fer to the straight line joining some point A to
some other point B. However, since the straight
lines comprising geometric figures have clearly
designated end points, we may simplify our
terminology. Throughout the remaining chap-
ters of this course, the general term '"line' is
used to designate straight line segments, unless
stated otherwise.

TYPES OF LINES

The two basic types of lines in geometry are
straight lines and curved lines. A curved line
joining points A and B is designated as ''curve
AB." (See fig. 17-1.) If curve AB is an arc of
a circle, it may be designated as "arc AB."

— N\

LINE AB CURVE AB

Figure 17-1,—Straight and curved lines.

The term ‘'broken line'"' in mathematics
means a series of two or more straight seg-
ments connected end-to-end but not running in
the same direction. In mathematics, a series
of short, straight segments with breaks be-
tween them, wi.ch would form a single straight
line if joined end-to-end, is a DASHED LINE.
(See fig. 17-2,)

BROKEN L!NE DASHED LINE

Figure 17-2,—Broken and dashed lines.

ORIENTATION

Straight lines may be classified in terms of
their orientation to the obzerver's horizon or
in terms of their orientation to each other. For
example, lines in the same plane which run be-
side each other without meeting at any point,
no matter how far they are extended, are PAR-
ALLEL. (See fig. 17-3 (A).) Lines in the same
plane which are not paraliel are OBLIQUE.
Oblique lines meet to form angles (discussed in
the following section). If two oblique lines
cross or meet in such a way as to form four
equal angles, as in figure 17-3 (B), the lines
are PERPENLICULAR. This definition includes
the case in which only one angle is formed,
such as angle AEC in figure 17-3 (C). By ex-
tending line AE to form line AD, and extending
CE to form CB, four equal angles (AEC, CED,
DEB, and BEA) are formed.

A
I B.-—-L—Qc
{
é
' D
(A) (8) (C)

Figure 17-3.—(A) Parallel lines; (B) and (C)
perpendicular lines.

Lines parallel to the horizon are HORIZON-
TAL. Lines perpendicular to the horizon are
VERTICAL.
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ANGLES

Lines which meet or cross each other are
said to INTERSECT. Angles are formed when
two straight lines intersect. The two lines
which form an angle are its SIDES, and the point
where the sides intersect is the VERTEX. In
figure 17-4, the sides of the angles are AV and
BV, and the vertex is V in each case. Figure
17-4 (A) is an ACUTE angle; (B) is an OBTUSE
angle,

(A) (8)

Figure 17-4.—(A) Acute angle; (B) obtuse angle.
CLASSIFICATION BY SIZE

When the sides of an angle are perpendicular
to each other, the angle is a RIGHT angle. This
term is related to the Latin word ''rectus,"
which may be translated "erect" or "upright."
Thus, if one side of a right angle is horizontal,
the other side is erect or upright.

The size of an angle refers to the amount of
separation between its sides, and the unit of
angular size is the angular DEGREE. A right
angle contains 90 degrees, abbreviated 90°. An
angle smaller than a right angle is acute; an
angle larger than a right angle is obtuse. There-
fore, acute angles are angles of less than 90°,
and obtuse angles are angles between 90° and
180°,

If side AV in figure 17-5 (A) is moved down-
ward, the size of the obtuse angle AVB is in-
creased. If side AV is moved so far that it
coincides with (lies on top of) CV as in figure
17-5 (B), an angle is formed which is equal to
the sum of two right angles. The special angle
thus formed (AVB) is a straight angle, so called
because it is visually indistinguishable from a
straight line.

GEOMETRIC RELATIONSHIPS
Angles are often classified by their relation-

ship to other angles or to other parts of a geo-
metric figure. For example, angles 1 and 3 in
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A

C:-—\—-w J éc— —— —oB
v v
(A) (8)

Figure 17-5.—~(A) Large obtuse angle;
(B) straight angle.

figure 17-6 are VERTICAL angles, so called
because they share a common vertex. Angles 2
and 4 are also vertical angles. Lines which
cross, as in figure 17-6, always form two pairs
of vertical angles, and the vertical angles thus
formed are equal in pairs; that is, angle 1
equals angle 3, and angle 2 equals angle 4,

Figure 17-6.—Vertical angles,

Angles 1 and 2 infigure 17-6 are ADJACENT
angles. Other pairs of adjacent angles in fig-
ure 17-6 ure 2 and 3,3 and 4, and 1and 4. In
the sense used here, adjacent means side by
side, not merely close together or touching,
For example, angles 1 and 3 are not adjacent
angles even though they touch each other.

COMPLEMENTS AND SUPPLEMENTS

Two angles whose sum is 90° are comple-
mentary. For example, a 60° angle is the com-
plement of a 30° angle, and conversely. "Con-
versely' is a mathematical word meaning ''vice
versa." Two angles whose sum is 180° are
supplementary. For example, a 100° angle is
the supplement of an 80° angle, and conversely.

Practice problems.

1. Describe the angle which is the complement
of an acute angle.

2. Describe the angle which is the supplement
of a right angle.
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3. If two equal angles are complementary, each
contains how many degrees ?

4, Find the size of an angle which is twice as
large as its own complement.

(Hint: If x is the angle, then 90° - x is its
complement.)

Answers:

1. Acute

2. Right

3. 45°

4‘ 600

GEOMETRIC FIGURES

The discussion of geometric figures in this
chapter is limited to polygons and circles. A
POLYGON is a plane closed figure, the sides of
which are all straight lines. Among the poly-
gons discussed are triangles, parallelograms,
and trapezoids.

TRIANGLES

A triangle is a polygon which has three sides
and three angles. In general, any polygon has
as many angles as it has sides, and conversely.

Parts of a Triangle

Each of the three angles of a triangle is a
VERTEX; therefore, every triangle has three
vertices. The three straight lines joining the
vertices are the SIDES (sometimes called legs),
and the side upon which the triangle rests is its
BASE, often designated by the letter b. This

C

|

0

|
A |
b=AB

b
(A)
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definition assumes that the standard position of
a triangle drawn for general discussion is as
shown in figure 17-7, in which the triangle is
lying on one of its sides. The vertex opposite
the base is the highest point of a triangle in
standard position, and is thus called the APEX.

APEX

BASE

Figure 17-7.—Triangle in standard position.

A straight line perpendicular to the base of
a triangle, joining the base to the apex, is the
ALTITUDE, often designated by the letter a.
The altitude is sometimes referred to as the
height, and is then designated by the letter h.
Figure 17-8 (B) shows that the apex may not be
situated directly above the base. In this case,
the base must be extended, as shown by the
dashed line, in order to drop a perpendicular
from the aper to the base. Mathematicians
often use the term "drop a perpeandicular,"
The meaning is the same as ''draw a straight,
perpendicular line."

in general, the geometrical term 'distance
from a point to a line'" means the length of a
perpendicular dropped from the point to the
line. Many straight lines could be drawn from
a line to a point not on the line, but the shortest
of these is the one we use in measuring the

A
b=AB

(B)

Figure 17-8.—(A) Interior altitude line; (B) exterior altitude line,
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distance from the point to the line. The short -
est one is perpendicular to the line.

Perimeter and Area

The PERIMETER of a triangle is the sum of
the lengths of its sides. In less precise terms,
this is sometimes stated as ''the distance
around the triangle." If the three sides are
labeled a, b, and ¢, the perimeter P can be
found by the following formula:

P=a+b+c

The area of a triangle is the space bounded
(enclosed) by its sides. The formula for the
area can be found by using a triangle which is
part of a rectangle. In figure 17-9, triangle
ABC is one-half of the rectangle. Since the
area of the rectangle is a times b (that is, ab),
the area of the triangle is given by the follow-
ing formula:

Area ab

DI =

Written in terms of h, representing height,
the formula is:

This formula is valid for every triangle, in-
cluding those with no two sides perpendicular,

C

b

Figure 17-9,—Area of a triangle.

Practice problems. Find the perimeter and
area of each of the triangles in figure 17-10.
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Figure 17-10.—Perimeters and areas
of triangles,
Answers:
1, P =12 units
A = 6 square units
2, P =16 units
A = 12 square units

3. P =12 units

A = 6 square units
4, P = 24 units

A = 24 square units

CAUTION: The concept of area is meaning-
less if the units of the multiplied dimensions
are not the same., For example, if the base of
a triangle is 2 feet long and the altitude is 6
inches long, the area might be carelessly stated

as % (6) (2). However, the units must be con-

sidered in order to decide whether the answer
is in square feet or square inches. When the
units are considered, we realize that the cor-
rect answer is

%(6 in.) (24 in.) = 72 sq in.

11y (2 ft) = + sq ft
(7 ) 2

DI =a
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Special Triangles

The classification of triangles depends upon
their special characteristics, if any. For ex-
ample, a triangle may have all three of its sides
equal in length; it may have two equal sides and
a third side whicl. is longer or shorter than the
other two; it may contain a right angle or an
obtuse angle. If it has none of these special
characteristics, it is a SCALENE triangle. A
scalene triangle has notwo of its sides equal
and no two of its angles equal.

RIGHT TRIANGLE,-If one of the angles of a
triangle is a right angle, the figure is a right
triangle. The sides which form the right angle
are the LEGS of the triangle, and the third side
(opposite the right angle) is the HYPOTENUSE.

The area of a right triangle is always easy
to determine. If the base of the triangle is one
of its legs, as in figure 17-10 (4), the other leg
is the altitude. If the hypotenuse is acting as
the base, as in figure 17-10 (3), the triangle
can be turned until one of its legs is the base,
as in figure 17-10 (1). If the triangle is not
known to be a right triangle, then the altitude
must be given, as in figure 17-10 (2), in order
to calculate the area.

Any triangle whose sides are in the ratio of
3:4:5 is a right triangle. Thus, triangles with
sides as foilows are right triangles:

§i_de_1 Side 2 Side 3
3 4 5
6 10
12 16 20
3x 4x 5x

(x ic any positive number)

In addition to the 3-4-5 triangle, two other
types of right triangles occur frequently. Any
triangle having one 30° angle and one 60° angle
is a right triangle; that is, its third angle is
90°. Any triangle having two 45° angles is a
right triangle.

ISOSCELES TRIANGLE.—A triangle having
two of its sides equal in length is an ISOSCE-
LES triangle. Since the length of the side op-
posite an angle is determined by the size of the
angle, the isosceles triangle has two equal
angles. In figure 17-11 (A), triangle ABC is
isosceles. Sides AC and BC are equal inlength,
and angles A and B are equal,
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AV

i
(A) (8)

Figure 17-11,—~(A) Isoceles triangle;
(B) equilateral triangle.

Figure 17-11 (B) illustrates an EQUILAT-
ERAL triangle, which is a special case of an
isosceles triangle. An equilateral triangle has
all three of its sides equal in length. Since the
lengths of the sides are directly related to the
size of the angles opposite them, an equilateral
triangle is also equiangular; that is, all three
of its angles are equal.

OBLIQUE TRIANGLES.—Any triangle con-
taining no right angle is an OBLIQUE triangle.
Figure 17-12 illustrates two possible configu-
rations, both of which are oblique triangles.
An oblique triangle which contains an obtuse
angle is often called an OBTUSE triangle.

AN

(B) OBTUSE

(A) ACUTE

Figure 17-12,--Oblique triangles,
(A) Acute; (B) obtuse.

Sum of the Angles

The sum of the angles in any trianglc is
180°. For example, if one of the angles is 40°
and another is 20°, the third angle is 120°, It
is this relationship that justifies the statements
made in the preceding section concerning 45°
triangles and 30°-60°-80° triangles. If two of
the angles are 45° each, then the third angle is
180° - (45°+45°) and the figure is a right tri-
angle. If one angle is 60° and another is 30°,
the third angle is 96° and the figure is a right
triangle.

A4S0
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QUADRILATERALS

A QUADRILATERAL is a polygon with four
sides. The parts of a quadrilateral are its
sides, its four angles, and its two DIAGONALS.
A diagonal is a straight line joining two alter-
nate vertices of a polygon. Figure 17-13 illus-
trates the parts of a quadrilateral, in which
AC and DB are the diagonals,

D 7

Figure 17-13.—Parts of a quadrilateral.

Perimeter and Area

The perimeter of a quadrilateral is the sum
of the lengths of its sides. For example, the
perimeter of the quadrilateral in figure 17-13
is 30 units.

The area of a quadrilateral can be found by
dividing it into triangles and summing the areas
of the triangles. However, the altitudes of the
triangles are usually difficult to calculate un-
less the quadrilateral has at least one pair of
parallel sides.

Parallelograms

A PARALLELOGRAM is a quadrilateral in
which the opposite sides are parallel. For ex-
ample, in the parailelogram in figure 17-14,
side AB is parallel to side CD. Furthermore,
side BC is parallel tc side AD,
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A E B F

Figure 17-14.—A parallelogram.

Since lines AB and CD are parallel, lines
DE and CF (both perpendicular to line AF in
figure 17-14) are equal. Angles DAE and CBF
in figure 17-14 are equal, because a straight
line cutting two parallel lines, such as AD and
BC, forms equal angles with the parallel lines,
Thus, triangles AED and BFC are equal, and
line AD equals line BC. Therefore we have
proved that the opposite sides of a parallelo-
gram are equal. If all four of the sides are the
same length, tae parallelogram is a RHOMBUS,

In addition to the equality of the opposite
sides, the opposite angles of a parallelogram
are also equal. For example, angle DAB equals
angle BCD in figure 17-14, and angle ADC
equals angle ABC.

RECTANGLES AND SQUARES.—When all of
the angles of a parallelogram are right angles,
it is a RECTANGLE. A rectangle with all four
of its sides the same length is a SQUARE, Thus
a square is a rhombus having 90° angles. Every
square is a rectangle, and every rectangle is a
parallelogram. Notice that the reverse of this
statement is not true.

The area of a rectangle is found by multi-
plying its length times its width, Therefore, if
each side of a square has length s, the area of
the square is s?,

Written as formulas, these 2reas are as
follows:

Rectangle: A = lw
or A = bh, where b = base,
h = height

Square: A=5s?

AREA.—The area of a parallelogram can be
found by dividing it into rectangles and tri-

angles, For example, in figure 17-14 the area
of the parallelogram is the sum of the areas of
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triangle AED and figure EBCD. Since triangle
AED is equal to triangle BFC, the sum of AED
and EBCD is equal to the sum of BFC and
EBCD. Thus the area of parallelogram ABCD
is the same as the area of rectangle EFCD.
Since the area of EFCD is DC multiplied by
DE, and DC has the same length as AB, we
conclude that the area of a parallelogram is the
product of its base times its altitude. Written
as a formula, this is

A = ba
or

A = bh, where h is height
Trapezoids

A TRAPEZOID is a quadrilateral in which
two sides are parallel and the other two sides
are not parallzl. By orienting a trapezoid so
that its parallel sides are horizontal, we may
call the parallel sides bases. Observe that the
bases of a trapezoid are not equal in length.
(See fig. 17-15.)

N\

N

Figure 17-15.-—""ypical trapezoids.

(A) (B)

The area of a trapezoid may be found by
separating it into two triangles and a rectangle,
as in figure 17-16. The total area A of the
trapezoid is the sum of A, plus A, plus A,, and
is calculated as follows:

A= A51+A2 +A3

= ha +hb; +

-1y (a +2b, +c)

1
2hc

h(a+b; +c)+b,

DNt D=t DD

h(b +b1)

Thus the area of a trapezoid is equal to one-
half the altitude times the sum of the bases.

187

f{Hae

Figure 17-16.—Area of a trapezoid.

Practice problems. Find the area of each of
the following figures:

1. Rhombus; base 4 in., altitude 3 in.

2. Rectangle; base 6 ft, altitude 4 ft

3. Parallelogram; base 10 yd, altitude 12 ft

4, Trapezoid; bases 6 it and 4 ft, altitude 2 yd.
Answers:

1. 12 sq in. 3. 40 sq yd

2. 24 sq ft 4, 30 sq ft

CIRCLES

The mathematicaldefinition ofa circle states
that it is a plane figure bounded by a curved
line, every point of which is equally distant
from the center of the figure. The parts of a
circle are its circumference, its radius, and
its diameter.

Parts of a Circle

The CIRCUMFERENCE of a circle is the
line that forms its outer boundary. Circumfer-
ence is the special term used in referring to
the '"perimeter" of a circle. (See fig. 17-17.)
A RADIUS of a circle is a line joiningthe center
to a point on the circumference, as shown in
figure 17-17. A straight line joining two points
on the circumference of a circle, and passing
through the center, is a DIAMETER. A straight
line which touches the circle at just one point
isa TANGENT, A tangent is perpendicularto a
radius at the point of tangency.
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2
o)
)

Figure 17-17.—Parts of a circle.

An ARC is a portion of the circumference of
a circle. A CHORD is a straight line joining
the end points of any arc. The portion of the
area of a circle cut off by a chord is a SEG-
MENT of the circle, and the portion of the
circle's area cut off by two radii (radius lines)
is a SECTOR. (See fig. 17-18.)

Formulas for Circumference and Area

The formula fo:r the circumference of a
circle is based on the relationship between the
circumference and the diameter. This com-
parison can be made experimentally by mark-
ing the edge of a circular object, such as a
coin, and rolling it (without slippage) along a
flat surface. (See fig. 17-19.)

The distance from the initial position to the
final position of the disk in figure 17-19 is ap-
proximately 3.14 times as long as the diameter
of the disk. With any circle, this is always
found to be the case; but it is not possible to
give the value of C/d (circumference divided by
diameter) exactly. The ratio C/d is repre-
sented by the symbol 7, which is the Greek
letter pi. Thus we have the fol’owing equations:

C

qa°="

C=1nd

188
¢

Figure 17-18.—Arc, chord, segment, and sector.

o .
./

h—— c=3.14 iNcHES ——+

INITIAL POSITION FINAL POSITION

Figure 17-19.—Measuring the circumference
of a circle.

This formula states that the circumference of a
circle is 7 times the diameter. Notice that it
could be written as

C=2r . nor C = 27r

since the diameter d is the same as 2r (twice
the radius),

Although the value of 7 is not exactly equal
to any of the numerical expressions which are
sometimes used for it, the ratio is very close
to 3.14. If extreme accuracy is required, 3.1416
is used as an approximate value of 7. Many
calculations involving 7 are satisfactory if the
fraction 22/7 is used as the value of 7,

7}

e o
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Practice problems. Calculate the circum-
ference of each of the following circles, using
22/7 as the value of m;

1. Radius = 21 in. 3. Radius = 14 ft

2. Diameter = 7.28 in. 4. Diameter = 2.8 yd
Answers:

1. 132 in. 3. 88 ft

2. 22.88 in, 4, 8.8 yd

AREA.-The area of a circle is found by
multiplying the square of its radius by n. The
formula is written as follows:

A = 7r?

EXAMPLE: Find the area of a circle whose
diameter is 4 ft.

SOLUTION: The radius is one-half the diam-
eter. Therefore,

1
3(4 ft)

2 ft

mr? = 7(2 ft) 2

3.14 (4 sq ft)
12.56 sq ft

Practice problems. Find the area of each of
the following circles:

1. Radius = 7 in. 3. Diameter = 2.8 ft

2. Diameter = 42 mi 4, Radius = 14 yd
Answers:

1, A = 154 sq in. 3. 6.16 sq ft

2. A = 1,386 sq mi 4, 616 sq yd

Concentric Circles

Circles which have a common center are
said to be CONCENTRIC. (See fig. 17-20.)

The area of the ring between the concentric
circles in figure 17-20 is calculated as follows:

18
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Figure 17-20.—Concentric circles.

Let R = radius of large circle
r = radius of small circle
Ag = area of large circle
A_ = area of small circle
A = area of ring
Then A= Ag - A,
= TR2 - 7r?
= 7(R? - r?)

Notice that the last expression is the difference
of two squares. Factoring, we have

A=1R+1r)R -r1)

Therefore, the area of a ring between two
circles is found by multiplying 7 times the
product of the sum and difference of their radii.

Practice problems. Find the areas of the
rings between the following concentric circles:

1. R = 4 in, 2. R=6 ft
r = 3 in. r = 2 ft
Answers:

1. 22 8q in. 2. 100.6 sq ft




CHAPTER 18
GEOMETRIC CONSTRUCTIONS AND SOLID FIGURES

Many ratings in the Navy involve work which
requires the construction or subdivision of
geometric figures. For example, materials
must be cut into desired shapes, perpendicular
lines must be drawn, etc. In addition to these
skills, some Navy ratings require the ability to
recognize various solid figures and calculate
their volumes and surface areas.

CONSTRUCTIONS

From the standpoint of geometry, a CON-
STRUCTION may involve either the process of
building up a figure or that of breaking down a
figure into smaller parts. Some typical con-
structions are listed as follows:

1. Dividing a line into equal segments.

2. Erecting the perpendicular bisector of a
line.

3. Erecting a perpendicular at any point on
a line.

4. Bisecting an angle.

5. Constructing an angle.
6. Finding the center of a circle.
7. Constructing an ellipse.

EQUAL DIVISIONS ON A LINE
A line may be divided into any desired num-

ber of equal segments by the method shown in
figure 18-1.

Figure 18-1.—Dividing a line into
equal segments.

Suppose that line AB (fig. 18-1) is to be
divided into seven equal segments. Draw line
AC at any convenient angle with AB and mark
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off seven spaces of some convenient length, say
1/2 inch, on it. Extend AC, if necessary, in
order to get seven intervals of the chosen length
on it. This produces the points a, b, ¢, d, e, {,
and g, as shown in figure 18-1. Draw a line
from g to B, and then draw lines parallel to gB,
starting ateach of the points a, b, ¢, d, e, and {.
The segments of AB cut off by these lines are
equal in length.

It is frequently necessary to rule a pre-
determined number of lines on a blank sheet of
material. This may be done by a method based
on the foregoing discussion. For example, sup-
pose that the sheet of typing paper in figure
18-2 is to be divided into 24 equal spaces.

The 12-inch ruler is laid across the paper
at an angle, in such a way that the ends of the

105 INCHES

A3

|~——\-lauecuzs

Figure 18-2.—Ruling equal spaces on
a sheet of paper.

it
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ruler coincide with the top and bottom edges of
the paper. There are 24 spaces, each 1/2 inch
wide, on a 12-inch ruler. Therefore, we mark
the paper beside each 1/2-inch division marker
on the ruler. After removing the ruler, we
draw a line through each of the marks on the
paper, parallel to the top and bottom edges of
the paper.

PERPENDICULAR BISECTOR

OF A LINE

To bisect a line or an angle means to divide
it into two equal parts. A line may be bisected
satisfactorily by measurement, or by a geo-
metric method. If the measuring instrument
does not reach the full length of the line, pro-
ceed as follows:

1. Starting at one end, measure about half
the length of the line and make a mark.

2. Starting at the other end, measure exactly
the same distance as before and make a second
mark.

3. The bisector of the line lies halfway be-
tween these two marks.

The geometric method of bisecting a line is
not dependent on measurement. It is based
upon the fact that all points equally distant from
the ends of a straight line lie on the perpen-
dicular bisector of the line.

Bisecting a line geometrically requires the
use 2f a mathematical compass, which is an in-
strument for drawing circles and comparing
distances. If a line AB is to be bisected as in
figure 18-3, the compass is opened until the
distance between its points is more than half as
long as AB. Then a short arc is drawn above
the approximate center of the line and another
below,using A as the center of the arcs' circle.
(See fig. 18-3.)

Two more short arcs are drawn, one above
and one below the approximate center of line
AB, this time using B as the center of the arcs'
circle.

The two arcs above line AB are extended
until they intersect, forming point C, and the
two arcs below line AB intersect to form puint
D. The line joining point C and point D is the
perpendicular bisector of line AB.

PERPENDICULAR AT ANY
POINT ON A LINE

Figure 18-4 shows a line AB with point C
between A and B. A perpendicular to AB is
erected at C as follows:
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Figure 18-3.~Bisecting a line geometrically.

1»

Figure 18-4.—Erecting a perpendicular
at a point.

1. Using any convenient point above the line
(such as O) as a center, draw a circle with ra-
dius OC. This circle cuts AB at C and at D.

2. Draw line DO and extend it to intersect
the circle at E.

3. Draw line EC. This line is perpendicular
to AB at C.

BISECTING AN ANGLE

Let angle AOB in figure 18-5 be an angle
which is to be bisected. Using O as a center
and any convenient radius, draw an arc inter-
secting OA and a second arc intersecting OB.
Label these intersections C and D.

Using C and D as centers, and any conven-
ient radius, draw two arcs intersecting halfway
between lines OA and OB. A line from O
through the intersection of these two arcs is
the bisector of angle AOB.
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B
Figure 18-5.—Bisecting an angle.
SPECIAL ANGLES

Several special angles may be constructed
by geometric methods, so that an instrument
for measuring angles is not necessary in these
special cases.

Figure 18-4 illustrates a method of con-
structing a right angle, DCE, by inscribing a
right triangle in a semicircle. But an alternate
method is needed for those situations in which
drawing circles is inconvenient. The methocd
described herein makes use of a right triangle
having its sides in the ratio of 3to 4to 5. Itis
often used in laying out the foundations of build-
ings. The procedure is as follows:

1. A string is stretched as shown in figure
18-6, forming line AC. The length of AC is
3 feet. _

2. A second string is stretched, crossing
line AC at A, directly above the point intended
as the corner of the foundation. Point D on this
line is 4 feet froin A.

3. Attach a third string, 5 feet long, at C
and D. When AC and AD are spread so that line
CD is taut, angle DAC is a right angle.

A 60° angle is constructed as shown in fig-
ure 18-7. With AB as a radius and A and B as

centers, draw arcs intersecting at C. When A
and B i@ connected to C by straight lines, all
three angles of triangle ABC are 60° angles.

The special angles already discussed are
used in constructing 45° and 30° angles. A 90°
angle is bisected to form two 45° angles, and a
60° angle is bisected to form two 307 angles.

FINDING THE CENTER
OF A CIRCLE

It is sometimes necessary to find the center
of a circle of which only an arc or a segment is
given. (See fig. 18-8.)

From any point on the arc, such as A, draw
two chords intersecting the arc in any two
points, such as B and C. With the points A, B,
and C as centers, use any convenient radius
and draw short intersecting arcs to form the
perpendicular bisectors of chords AC and AB.
Join the intersecting arcs on each side of AC,
obtaining line MP, and join the arcs on each
side of AB, obtaining lin: NQ. The intersection
of MP and NQ is point O, the center of the
circle.

ELLIPSES

An ellipse of specified length and width is
constructed as follows:

1. Draw the major axis, AB, and the minor
axis, CD, as shown in figure 18-9.

2. On a straightedge or ruler, mark a point
(labeled a in the figure) and from this point
measure one-half the length of the minor axis
and make a second mark (b in figure 18-9).
From point a, measure one-half the length of

Figure 18-6.—Constructing a right angle by the 3-4-5 method.
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60° 60°\

8

A

Figure 18-7.—Constructing 60° angles.

Figure 18-8.—Finding the center
of a circle.

-
s

Figure 18-9.—Constructing an ellipse.

the major axis and make a third mark (c in the
figure).

3. Place the straightedge on the axes so that
b lies on the major axis and c lies on the minor
axis. Mark the paper with a dot beside point a.
Reposition the straightedge, keeping b on the
major axis and ¢ on the minor axis, and make a
dot beside the new position of a.

4. After locating enough dots to see the el-
liptical pattern, join the dots with a smooth

curve.
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SOLID FIGURES

The plane figures discussed in chapter 17 of
this course are combined to form solid figures.
For example, three rectangles and two triangles
may be combined as shown in figure 18-10.
The flat surfaces of the solid figure are its
FACES; the top and bottom faces are the BASES,
and the faces forming the sides are the LAT-
ERAL FACES.

EDGE UPPER
\ ~BASE
|
|
i S
F. \ :
]
- ‘\\
P4
. \ LOWER
el L —" "BASE

Figure 18-10.-Parts of a solid figure.

Some solidfigures do not have any flat faces,
and some have a combination of curved surfaces
and flat surfaces. Examples of solids with
curved surfaces include cylinders, cones, and
spheres.

PRISMS

The solid shown in figure 18-10 is a PRISM.
A prism is a solid with three or more lateral
faces which intersect in parallel lines.

Types of Prisms

The name of a prism depends upon its base
polygons. If the bases are triangles, as in fig-
ure 18-10, the figure is a TRIANGULAR prism.
A RECTANGULAR prism has bases which are
rectangles.

If the bases of a prism are perpendicular to
the planes forming its lateral faces, the prism
is a RIGHT prism.

A PARALLELEPIPED is a prism withparal-
lelograms for bases. Since the bases are par-
allel to each other, this means that they cut the
lateral faces to form parallelograms. There-
fore, in a paralieiepiped, all of tlLe faces are
parallelograms. If a paralleiepiped is & right
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prism, and if its bases are rectangles, it is a
rectangular solia. A CUBE is a rectangular
solid in which all of the six rectangular faces
are squares.

Parts of a Prism

The parts of a prism are shown in figure
18-10. The line fcrmed by the joining of two
faces of a prism is an EDGE. If the two faces
forming an edge are lateral faces, the edge
thus formed is a LATERAL EDGE.

Surface Area and Volume

The SURFACE AREA of a prism is the sum
of the areas of all of its faces, including the
bases. The VOLUME of a prisma may be con-
sidered as the sum of the volumes of many thin
wafers, each having a thickness of one unit and
a shape that duplicates the shape of the base.
(See fig. 18-11.)

Figure 18-11.—~Volume of a prism.

The wafers which corprise the prism in
figure 18-11 all have the same area, which is
the area of the base. Therefore, the volume of
the prism is found by multiplying the area of
the base times the number of wafers. Since
each wafer is 1 inch thick, the number of wafers
is the same as the height of the prism in inches.
The resulting formula for the volume of a
prism, using B to represent the area of the
base and h to represent the heicht, is as follows:

V = Bh

When a prism has iateral edges which are
not perpendicular to the bases, the height of the
prism is the perpendicular distance between
the bases. (See fig. 18-12.) The formula for
the volume remains the same, even though the
prism is no longer a right prism.
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Figure 18-12,.—Height of 4 prism
which is not a right prism.

CIRCULAR CYLINDERS

Any surface may bz considered as the result
of moving a straight line in a direction at right
angles to its length. For example, suppose that
the stick of charcoal in figure 18-13 is moved
from position AB to position CD by dragging it
across the paper. The broad mark mace by the
charcoal represents a plane surface. The sur-

face is said to be ''generated" by moving line
AB.

.....

CHARCOAL
STICK

Figure 18-13.—Surface generated by
a moving line.

The movement of the line in figure 18-13
may be controlled by requiring that its lower
end trace a particular path. For example, if
line AB moves so as to trace an ellipse as in
figure 18-14 (A), a cylindrical surface is gen-
erated by the line. This surface, shown in fig-
ure 18-14 (B), is an elliptical cylinder.

Any line in the surface, parallel to the
generating line, such as CD or EF in figure
18-14 (B), is an ELEMENT of the cylindzre. If
the elements are perpendicular to the bases,
the cylinder is a RIGHT CYLINDER. If the

-? { 6
A .




_ Chapter 18—~GEOMETRIC CONSTRUCTIONS AND SOLID FIGURES

a

la)

(B)

-
o

—

\
\
1
——p—————
/
’

/

Y
-

Cs

{C)

Figure 18-14.—(A) Line generating a cylinder,
(B) elliptical cylinder;
(C) circular cylinder.

bases are circles, the cylinder is a CIRCULAR
CYLINDER. Figure 18-14 (C) illustrates a
right circular cylinder. Line O-0O', joining the
centers of the bases of a right circular cylin-
der, is the AXIS of the cylinder.

Surface Area and Voiume

The lateral area of a cylinder is the area of
its curved surface, excluding the area of its
bazes. Figure 18-15 illustrates an experimen-
tal method of determining the lateral area of a
right circular cylinder. '

s L -
w
(A) CARD
1 TN
—

(C} CARD HALF
ROLLED

The card of length L and width W in figure
18-15 is rolled into a cylinder. The height of
the cylinder is W and the circumference is L.
The lateral area is the same as the original
area of the card, LW. Therefore, the lateral
area of the cylinder is found by multiplying its
height by the circumference of its base. Writ-
ten as a formula, this is

A =Ch

EXAMPLE: Find the lateral area of a right
circular cylinder whose base has a radius of
4 inches and whose height is 6 inches.

CARD STARTING
TO ROLL

-

(B}

—
- -~ -

—

CARD ROLLED
INTO CYLINDER

(D)

Figure 18-15.—Lateral area of a cylinder.
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SOLUTION: The circumference of the base is

C=1nd
C=3.14x8in.
= 25.12 in.
Therefore,
A = 25.12 in. X 6 in.

151 sq in. (approximately)

The formulx for the volume of a cylinder is
obtained by the same reasoning process that
was used for prisms. The cylinder is consid-
ered to be composed of many circular wafers,
or disks, each one unit thick. The area of each
disk, multiplied by the number of disks, is the
volume of the cylinder. With V representing
volume, A representing the area of each disk,
and n representing the number of disks, the
formula is as follows:

V = An

Since the number of disks is the same as the
hieight of the cylinder, the formula for the vol-
ume of a cylinder is normally written

V = Bh

In this formula, B is the area of the base and h
is the height of the cylinder.

EXAMPLE: Determinethe volume of a circular
cylinder with a base of radius 5 inches and a
height of 14 inches.

SOLUTION:

-—
=

Bh
(r x 5% x 14
22

—

7

22 x 25 x 2
22 x 50
1,100 cu in.

X 25 x 14

Practice problems:

1. Determine the lateral area of a right circu-
lar cylinder with a base of diameter 7 inches
and a height of 4 inches.

Y

’f‘ “\ o
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A

2. Determine the volume of the cylinder in
problem 1,

Answers:

1. 88 sq in. 2. 154 cu in.

REGULAR PYRAMIDS AND
RIGHT CIRCULAR CONES

A PYRAMID is a sol.d Jigure, the lateral
faces of which are triangles. (See fig. 18-16.)
A REGULAR PYRAMID has all of its lateral
faces equal.

~

(B)

(A)

Figure 18-16.—(A) Irregular pyramid;
(B) regular pyramid.

A regular pyramid with a very large number
of lateral faces would have a base polygon with
many sides. If the number of sides is suffi-
ciently large, the base polygon is indistinguish-
able from a circle and the surface formed by
the many lateral faces becomes a smoothly
curved sarface. Tle soiid figure thus formed
is a RIGHT CIRCULAR CONL. (See fig. 18-17.)

Figure 18-17.—Right circular cone.

Slant Height

The slant height of a regular pyramid is the
perpendicular distance from the vertex to the
center of any side of the base. For example,
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the length of line AV in figure 18-18 (A) is the
slant height. The slant height of a right circu-
lar cone i: ‘ae iength of any straight line join-
ing the veric { to the circumference line of the
base. Such a line is perpendicular to a line
tangent to the base at the point where the slant
height intercects the base. (See fig 18-18 (B).)
Lines AV, BV, and CV in figure 18-18 (B) are
all slant heights.

Figure 18-18.—(A) Slant height of a regular
pyramid; (B) slant height o1 a right circular
corne.

Lateral Area

The lateral area of a pyramid is the sum of
the areas of its lateral faces. If the pyramid is
regular, its lateral faces have equal bases;
furthermore, the slant height is the altitude of
each face. Therefore, the area of each lateral
face is one-half the slant height multiplied by
the length of one side of the base polygon. Since
the sum of these sides is the perimeter of the
base, the total lateral area of the pvramid is
the product of one-half its slant height multi-
plied by the perimeter of its base. Using s to
represent slant height and P to represent the
perimeterof thebase, the formuia is as follows:

=1
2
A right circular cone can be considered as a

regular pyramia with an infinite number of faces.

Thereiore, using C to represent the circumfer-

ence of the base, the formula for the lateral

area of a right circular cone is

1

ESC

Lateral Area sP

Lateral Area
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Volume

The volume of a pyramid is determined by
its base and its altitude, as is the case with
cther solid figures. Experiments show that the
volume of any pyramid is one-thirdof the prod-
uct of its hase and its altitude. This may be
stated as a formula with V representing vol-
ume, B representing the area of the base, and
h representing height (altitude), as follows:

The formula for the volume of a pyramid
does not depend in any way upon the number of
faces. Therefore, we use the same formula for
the volume of a right circular cone. Since the
base is a circle, we replace B with nr2 (where
r is the radius of the base¢). The formula for
the volume of a right circular cone is then

\4 Bh

mr2h

COjtt O 1=t

Practice problems:

1. Find the lateral area of a regular pyramid
with a 5-sided base measuring 3 inches on each
side, if the slant height is 12 inches.

2. Find thelateral area of a right circular cone
whose base has a diameter of 6 cm and whose
slant height is 14 cm.

3. Find the volume of a regular pyramid with a
square base measuring 4 cm on each side, if
the vertex is 9 cm above the base.

4. Find the volume of a right circular cone
whose base has a diameter of 14 inches, if the
altitude is 21 inches.

Answers:
1. 90 sq in. 3. 48 cucm
2. 132 sqcm 4, 1078 cu in.
SPHERES

A SPHERE is a solid figure with all points
on its surface equally distant from its center.

?
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Figure 18-19.—Parts of a sphere.

In figure 18-1G, the center of the sphere is
point O.

A RADIUS of a sphere is a straight line seg-
ment joining the center of the sphere to a point
on the surface. Lines OA, OB, OC, OD, OE,
and OF in figure 18-19 are radii. A DIAMETER
of a sphere is a straight line segment joining
two points on the surface and passing through
the center of the sphere. Lines AB, CD, and
EF in figure 18-19 are diameters. A HEMI-
SPHERE is half of a sphere.

Circles of various sizes may be drawn on
the surface of a sphere. The largest circle
that may be so drawn is one with a radius equal
to the radius of the sphere. Such a circle is a
GREAT CIRCLE. In figure 18-19, circles
AEBF, ACBD, and CEDF are great circles.

On the surface of a sphere, the shortest dis-
tance between two points is an arc of a great
circle drawn so that it passes through the two
points. This explains the importance of great
circles in the science of navigation, since the
earth is approximately a sphere.

Surface Area

The surface area of a sphere may be calcu-
latea by multiplying 4 times 7 times the square
of the radius. Written as a formula, this is

A= 41rr2

The fcrmula *orthe surface area of a sphere
may be rewritten as follows:

A = (27r)(2r)
When the formula is factored in this way, it is
easy to see that the surface area of a sphere is
simply its circumferencz times its diameter.

Volume

The volnme of a sphere whose radius is r
is given by the formula

\'

r3

(XIS

EXAMPLE: Find the volume of a sphere whose
diameter is 42 inches.

SOLUTION:
-4 .3
V—szrr
_4, 2 in)3
3x,7x(2lm.)
=gx37‘3x21x21x21cuin.

88 x 2! x 21 cu in.

38,806 cu in.

Practice problems. Calculate the surface
area and the volume of the sphere in each of
the follov-ing problems:

1. Radius = 7 inches 2. Radius = 14 cm

Answers:
. Area = 616 sq in.
Volume = 1,437 cu in. (approx ;

. Area = 2,464 sq cm
Volume = 11,499 cu cm (approx.)



CHAPTER 19
NUMERICAL TRIGONOMETRY

The word "'trigonometry'’ means ''measure-
ment by triangles.” As it is presented in many
textbooks, trigonometry includes topics other
than triangles and measurement. However, this
chapter is intended only as an introduction to
the numerical aspects of trigonometry as they
relate to measurement of lengths and angles.

4

SPECIAL PROPERTIES OF
RIGHT TRIANGLES

A RIGET TRIANGLE has been defined as
any triangle containing a right angle. The side
opposite the right angle in a right triangle is a
HYPOTENUSE. (See fig. 19-1.) In figure 19-1,
side AC is the hypotenuse.

Figure 19-1.—A right triangle.

An important property of all right triangles,
which relates the lengths of the three sides,
was discovered by the Greek philosopher
Pythagoras.

PYTHAGOREAN THEOREM

The rule of Pythagoras, or PYTHAGOREAN
THEOREM, states that the square of the length
of the hypotenuse (in any right triangle) is equal
to the sum of the squares of the lengths of the
other two sides. For example, if the sides are

199

xz...yz.'. [2 42+32= fz

N

X 4
(A) (8)
Figure 19-2.~The Pythagorean Theorem.
(A) Genesal triangle; (B) triangle with
sides of specific lengths.

labeled as in figure 19-2 (A), the Pythagorean
Theorem is stated in symbols as follows:
x2 +y? = r?

An example of the use of the Pythagorean
Theorem in a problem follows:

EXAMPLE: Find the length of the hypotenuse
in the triangle shown in figure 19-2 (B).

2 32+42
NO + 16

N2 =5

SOLUTION:

r

oy

r

EXAMPLE: An observer on a ship at point A,
figure 18-3, knows that his distance from point
C is 1,200 yards and that the length of BC is

1,300 yards. He measures angle A and finds
that it is 90°. Calculate the distance from A
to B.

SOLUTION: By the rule of Pythagoras,
(BC)? = {AB)? + (AC)?
(1,300)2 = (AB)? + (1,200)%:x ..
(1,300) 2 - (1,200)2 = (AB)?
(13 x 102)2 - (12 x 1032 = (AB)°
(169 x 10%) - (144 x 10%) = (AB)>
25 x 10% = (AB)
500 yd = AB

LR Yy
<
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C

90°

A

Figure 19-3.-Using the Pythagorean Theorem.
SIMILAR RIGHT TRIANGLES

Two right triangles are SIMILAR if one of
the acute angles of the first is equal to one of
the acute angles of the second. This conclusion
is supported by the following reasons:

1. The right angle in the first triangle is
equal to the right argle in the second, since all
right angles are equal.

2. The sum of the angles of any triangle is
180°. Therefore, the sum of the two acute
angles in a right triangle is 90°.

3. Let the equal acute angles in the two tri-
angles be represented by A and A' respectively.
(See fig. 19-4.) Then the other acute angles,
B and B', are as foliows:

B = 90° - A
B' = 90° - A’
BI
B
A c Iy ¢’

Figure 19-4.—Sinmilar right triangles,

4. Since angles A and A' are equal, angles
B and B' are also equal.

5. We conclude that twc right triangles with
one acute angle of the first equal to one acute

200

angle of the second have all of their corre-
sponding angles equal. Thus the two triangles
are similar.

Practical situations frequently occur in which
similar right triangles are used to solve prob-
lems. For example, the height of a tree can be
determined by comparing the length of its
shadow with that of a nearby flagpole, as shown
in figure 19-5.

Bl
B
FLAGPOLE
TREE
{ 4
A “Saoow © A —srmoow — ©

Figure 19-5.—Calculatior of height by
comparison of shadows.

Assume that the rays of the sun are parallel
and that the tree and flagpole both form 90°
angles with the ground. Then triangles ABC
and A'B'C' are right triangles and angle B is
equal to angle B'. Therefore, the triangles are
similar and their corresponding sides are pro-
portional, with the following result:

BC _ B'C’
AC  A'C'
BC - (AC) x (B'C")

A'C’

Suppose that the flagpole is known to be 30
feet high, the shadow of the tree is 12 feet long,
and the shadow of the flagpole is 24 feet long.
Then

_ 12 x 30

= 24 = 15 feet

BC

Practice problems,

1. A nmastat the top of a building casts a shadow
whose tip is 48 feet from the base of the build-
ing. If the buildingis 12 feethigh and its shadow
is 32 feet long, what is the length of the mast?
(NOTE: If the lengta of the mast is x, then the
height of the mast above the ground is x + 12.)

YA Sey
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2. Figure 19-6 represents an L-shaped build-
ing with dimensions as shown. On the line of

sight from A to D, a stake is driven at C, a
point 8 feet from the building and 10 feet from o
A. If ABC is a right angle, find the length of
AB and the length of AD. Notice that AE is 18 & W i
feet and ED is 24 feet. & 23 y
& 52
AL 4R
' 8 7 8
S IR A NN O N EE SRS SIDE ADJACENT X
S T T TO ANGLE 8
o X (A) (B)
3 D Figure 19-7.—Relationship of sides and angles
in a right triangle. (A) Names of the sides;
(B) symbols used to designate the sides.
Table 19-1.~Trigonometric ratios.
Name of ratio Abbreviation
sine of 0 sin 6
o 8 —Tiei . .
Figure 19-6.—Using similar triangles. cosine of g cos 0
Ahswers: tangent of 0 tan 6
1. 6 feet 2. AB = 6 feet cotangent of § cot &
AD = 30 feet secant of o sec 6
cosecant of A csc 8
TRIGONOMETRIC RATIOS
The relationships between the angles and the . - hypotenuse . r
sides of a right triangle are expressed in terms 2. sec U = gige adjacent tof ~ x
of TRIGONOMETRIC RATIOS. For example, in
figure 19-17, the sides of the triangle are named 6 _ hypotenuse . r
in accordance with ..eir relationship to angle 4. . €SC 6 = Sde opposite to " y
In trigonometry, angles are usually named by
means of Greek letters. The Greek name of The other acute angle in figure 19-7 (B) is
the symbol 6 is theta. labeled « (Greek alpha). The side opposite a
The six trigonometric ratios for the angle 6 is x and the side adjacent to « is y. Therefore
are listed in table 19-1. the six ratios for o are as follows:
The.ratios are defined as follows:
. x _Y
. SIN 6 = Thypotenuse =T g .
5 _ side adjacentto _ x 2. cos a = 5. sec a =3
+ €OS 0 = ~punotenuse | T < -
3. tan g = side opposite 8 _ y 3. tan @ =3 6. csc a =
[ ] — . . 0 —-—
side adjacent to x Suppose that the sides of triangle (B) in fig-
4 _ side adjacentto 6  x ure 19-7 are as follows: x=23, y=4, r=5.
. cot o = Tgiqe opposite ¢ ~ vy Then each of the ratios for angles 6 and o may
201
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be expressed as a common fraction or as a
dercimal. For example,

0.800

sin 6

0.600

o ok

sin o

Decimal values have been computed for
ratios of angles between 0° and 90°, and values
for angles above 90° can be expressed in terms
of these same values by means of conversion
formulas. Appendix II of this training course
gives the sine, cosine, and tangent of angles
from 0° to 90°. The secant, cosecant, and
cotangent are calculated, when needed, by using
their relationships to the three principal ratios.
‘These relationships are as follows:

1
secant = Fogine o
to = o
cosecan = Sine 6
1
cotangent 6 = tangent 6

TABLES

Tables of decimal values for the trigono-
metric ratios may be constructed in a variety
of ways. Some give the angles in degrees, min-
utes, and seconds; others in degrees and tenths
of a degree. The latter method is more com-
pact and is the method used for appendix II.
The "headings' at the bottom of each page in
appendix II provide a convenient reference
showing the minute equivelents for the decimal
fractions of a degree. For example, 12' (12
minutes) is the equivalent of 0.2°.

Finding the Function Value

The trigonometric ratios are sometimes
called FUNCTIONS, because the value of the
ratio depends upon (is a function of) the angle
size. Finding the function value in appendix I
is easily accomplished. For example, the sine
35° is found by looking in the "sin" row oppo-
site the large number 35, which is located in
the extreme left-hand column.

Since our angle in this example is exactly
35°, we look for the decimal value of the sine
in the column with the 0.0° heading. This col-
umn contains decimal values for functions of

the angle plus 0.0°; in our example, 35° plus
0.0° or simply 34.0°. Thus we find that the
sine of 35.0° is 0.5736. By the same reasoning,
the sine of 42.7° is 0.6782, and the tangent of
32.3° is 0.6322.

A typical problem in trigonometry is to find
the value of an unknown side in a right triangle
when only one side and one acute angle are
known. EXAMPLE: In triangle ABC (fig. 19-8),
find the length of AC if AB is 13 units long and
angle CAB is 34.7°.

13

34.7°

: Je

Figure 19-8.—Using the trigonometric
ratios to evaluate the sides.

SOLUTION:
AC _ .
13 cos 34.7
AC = 13 cos 34.7°
= 13 x 0.8221

10.69 (approx.)

The angles of a triangle are frequently stated
in degrees and minutes, rather than degrees
andtenths. For example, in the foregoing prob-
lem, the angle might have been stated as 34°42°.
When the stated number of minutes is an exact
multiple of 6 minutes, the minute entries at the
bottom of each page in appendix iI may be used.

Finding the Angle

Problems are frequently encountered i which
two sides are known, in a right triangle, but
neither of the actue angles is known. For ex-
ample, by applying the Pythagorean Theorem
we can verify that the triangle in figure 19-9 is |

28
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S

Figure 19-9.--Using trigonometric
ratios to evaluate angles.

a right triangle. The only information given,
concerning angle 6,is the ratio of sides in the
triangle. The size of 0 is calculated as follows:

3
12

the angle whose tangent is 0.4167

tan 6 = 0.4167

6

Assuming that the sides and angles in figure
19-9 are in approximately the correct propor-
tions, we estimate that angle 6 is about 20°.
The table entries for the tangent in the vicinity

of 20° are slightly too small, since we need a

number near 0.4167. However, the tangent of
22° 36' is 0.4163 and the tangent of 22°42' is
04183 Therefore, 6 is between 22°36' and
22°42",

Interpolation

It is frequently necessary to estimate the
value of an angle to a closer approximation
than is available in the table. This is equiva-
lent to estimating between table entries, and
the process is called INTERPOLATION. For
example, in the foregoing problem it was deter-
mined that the angle value was between 22°36'
and 22°42', The following paragraphs describe
the procedure for interpolating to find a closer
approximation to the value of the angle.

The following arrangement of numbers is
recommended for interpolation:

ANGLE TANGENT
I‘ 22°36' 0.4163
.0004
6' < 0 0.4167 .0020
L 22°42' 0.418¢

The spread between 22°36' and 22°42' is 6',
and weuse the comparison of the tangent values
to determine how much of this 6' spread is in-
cluded in 6, the angle whose value is sought.
Notice that the tangent of 6 is different from
tan 22°36' by only 0.0004, and the total spread
in the tangent values is 0.0020. Therefore, the
tangent of 6 is ggggg of tne way between the
tangents of the two angles given in the table.
This is 1/5 of the total spread, since

0.0004 _ 4 _ I
0.6020 N
Another way of arriving at thic result is
to observe that the total spread is 20 ten-
thousandths, and that the partial spread cor-
responding to angle 6 is 4 ten-thousandths.
Since 4 out of 20 is the same as 1 out of 5, angle
0 is 1/5 of the way between 22°36' and 22°42'
Taking 1/5 of the 6' spread between the
angles, we have the following calculation:

1
-5-x 6'

= X 5'60"
= 1'12" (1 minute and 12 seconds)

The 12" obtained in this calculation causes ou.
answer to appear to have greater accuracy than
the tables from which it is derived. This appar-
ent increase in accuracy is a normal result of
interpolation, Final answers based on inter-
polated data should be rounded off to the same
degree of accuracy as that of the original data.

The value of 1 minute and 12 seconds found
in the foregoing problem is added to 22°38°', as
follows:

g = 22°36' + 1'12" = 22°37'12"

Therefore 6is 22°37', approximately.

The foregoing problem could have been
solved in terms of tenths and hundredths of a
degree, rather than minutes, as follows:
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ANGLE TANGENT
22.60° 0.4163
' 0.0004
0.1° 6 0.4167 0.0020
22.70° 0.4183

In this example, we are concerned with an
angular spread of 0.10° and 9 is located 1/5 of
the way through this spread. Thus we have

6 = 22.60° + (% x o.1o°)
6 = 22.60° + 0.02°
6 = 22.62°

Interpolation must be approached with com-
monsense, in order to avoid applyin> correc-
tions in the wrong direction. For example, the
cosine of an angle decreases in value as the
angle increases from 0° to 90°. If we need the
value of the cosine of an angle such as 22°39',
wie calculation is as follows:

ANGLE COSINE
22°36' ' 0.9232

6" 22°39' } y 0.0007
22°42' 0.9225

In this example, it is easy to see that 22°39'
is halfway between 22°36' and 22°42'. There-
fore the cosine of 22°39' is halfway between the
cosine of 22°36' and that of 22°42'. Taking
one-half of the spread between these cosines,
we then SUBTRACT from 0.9232 to find the
cosine of 22°39', as follows:

cos 22°39' = 0.9232 - (% x o.ooo7)
= 0.9232 - 0.00035

= 0.92285
= 0.9229 (approximately)

Practice problems:

1. Use the table in appendix II to find the deci-
mal value of each of the following ratios:

a. tan 45° d. sin 37°14'
b. sin 60° e. cos 51.5°
c. cos 42°¢' f. tan 13,75°

2. Find the angle which corresponds to each of
the following decimal values in appendix II:

a. sin 6 = 0.2790 c. tan 6 = 0.7604:
b. cos 6 = 0.9018 d. sin 6 = 0.8142

Answers:
1.a.1 d. 0.6051
b. 0.8660 e. 0.6225
c. 0.7420 f. 0.2447
2. a. 6= 16.2° c. 6 =37°15
b. 6= 25°36' d. 9 = 54°30"

RIGHT TRIANGLES WITH
SPECIAL ANGLES AND SIDE RATIOS

Three types of right triangles are expecially
significant because of their frequent occur-
rence. These are the 30°-60°-90° triangle, the
45°-90° triangle, and the 3-4-5 triangle.

THE 30°-60°-90° TRIANGLE

The 30°-60°-90° triangle is so named be-
cause these are the sizes of its three angles.
The sides of this triangle are in the ratio of
1to V3 to 2, as shown in figure 19-10,

60°

30° 90°|

C

/3

Figure 19-10.—30°-60°-90° triangle.

The sine ratio for the 30° angle in figure
19-10 establishes the proportionate values of
the sides. For example, we know that the sine
of 30° 18 1/2; therefore side AB must be twice
as long as BC. H side BC is 1 unit long, then
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side AB is 2 units long and, by the rule of
Pythagoras, AC is found as follows:

N (AB)2 - (BC)?
Ng - 1= N3

AC

Regardless of the size of the unit, a 30°-
60°-90° triangle has a hypotenuse which is 2
times as long as the shortest side. ‘lI'he short-
est side is opposite the 30° angle. The side op-
posite the 60° angle is .3 times as long as the
shortest side. For example, suppose that the
hypotenuse of a 30°-60°-90° triangle is 30 units
long; then the shortest side is 15 units long,
and the length of the side opposite the 60° angle
is 15 /3 units.

Practice problems. Without reference to
tables or to the rule of Pythagoras, find the
following lengths and angles in figure 19-11:

1. Length of AC.

2. Size of angle A.
3. Size of angle B.

A T
2

.

c9°°l g RLEY 90st

Figure 19-11.~Finding parts of
30°-60°-90° triangles.

4. Length of RT.

5. Length of RS.
6. Size of angle T.

AnsWwers:
1. N3 4, 4
2. 30° 5. 2
3. 60° 6. 30°

THE 45°-90° TRIANGLE

Figure 19-12 illustrates a triangle in which
two angles measure 45° and the third angle
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A
4

45

c|0 B

Figure 19-12.—A 45°-90° triangle.

measures 90°. Since angles A and B are equal,
the sides opposite them are also equal. There-
fore, AC equals CB. Suppose that CB is 1 unit
long; then AC is also 1 unit long, and the length
of AB is calculated as follows:

(AB)? = 12 + 12 =2
AB =2
Regardless of the size of the triangle, if it

has two 45° angles and one 90° angle, its sides
are in the ratio 1 to 1 to ~2. For example, if

sides AC and CB are 3 units long, AB is 3 N2

units long.

Practice problems. Without reference to
tables or to the rule of Pythagoras, find the
following lengths and angles in figure 19-13:

1. AP 2. BC 3. Angle B
Answers:
1. 2 N2 2. ¢ 3. 45°

THE 3-4-5 TRIANGLE

The triangle shown in figure 19-14 has its
sides in the ratio 3 to 4 to 5. Any triangle with
its sides in this ratio is a right triangle.

It is a common error to assume that a tri-
angle is a 3-4-5 type because two sides are
known to be in the ratio 3 to 4, or perhaps 4
to 5. Figure 19-15 shows two examples of tri-
angles which happen to have two of their sides
in the stated ratio, but nct the third side. This
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/]B
A45{90

Figure 19-13.-~Finding unknown purts
in a 45°-90° triangle.

43

Figure 19-14.—A 3-4-5 triangle.

) 4
107,

4 ~ 3
(A) (8)

Figure 19-15.—Triangles which may be
mistaken for 3-4-5 triangles.

can be because the triangle is not a right tri-
angle, as in figure 19-15 (A). On the other
hand, even though the triangle is a right tri-
angle its longest side may be the 4-unit side,
in which case the third side cannot be 5 units
long. (See fig. 19-15 (B).)

208

It is interesting to note that the third side in
figure 19-15 (B) is ~7. This is a very unusual
coincidence, itn which one side of a right tri-
angle is the square root of the sum of the other
two sides.

Related to the basgic 3-4-5 triangle are all
triangles whose sides are in the ratio 3 to 4
to 5 but are longer (proportionately) than these
basic lengths. For example, the triangle pic-
tured in figure 19-6 is a 3-4-5 triangle.

10

8

Figure 19-16.~Triangle with sides which
are multiples of 3, 4, and 5.

The 3-4-5 triangle is very useful in calcula-
tions 0. distancc. If the data can be adapted to
fit a 3-4-5 configuration, no tables or calcula-
tion of square root (Pythagorean Theorem) are
needed.

EXAMPLE: An observer at the top of a 40-foot
vertical tower knows that the base of the tower
is 30 feet from a target on the ground. How
does he calculate his slant range (direct line of
sight) from the target ?

SOLUTION: Figure 19-17 shows that the de-
sired length, AB, is the hypotenuse of a right
triangle whose ghorter sides are 30 feet and 40
feet long. Since these sides are in the ratio 3
to 4 and angle C is 90°, the triangle is a 3-4-5
triangle. Therefore, side AB represents the
S-unit side of the triangle. The ratio 30 to 40
to 50 is equivalent to 3-4-5, and thus side AB
is 50 units long.

Practice problems. Without reference to
tables or to the rule of Pythagoras, solve the
following problems:

1. An observer is at the top of a 30-foot verti-
cal tower. Calculate his slant range from a
target on the ground which is 40 feet from the
base of the tower.
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B

A —Jc

30

Figure 19-17.—Solving problems with a
3-4-5 triangle.

2. A guy wire 15 feet long is stretched from
the top of a pole to a point on the ground 9 feet
from the base of the pole. Calculate the height
of the pole.

Answers:

1. 50 feet 2. 12 feet

OBLIQUE TRIANGLES

Oblique triangles were defined in chapter 17
of this training course as triangles which con-
tain no right angles. A natural approach to the
solution of problems involving oblique triangles
is to construct perpendicular lines and form
right triangles which subdivide the original tri-
angle. Then the problem is solved by the usual
methods for right iriangles.

DIVISION INTO RIGHT TRIANGLES

The oblique triangle ABC in figure 19-18
has been divided into two right triangles by
drawing line BD perpendicular to AC. The
length of AC is found as follows:

1. Find the length of AD.

%?,Q = cos 40°
AD = 35 cos 40°
= 35 (0.7660)

26.8 (approximately)

B
|
:
35 {
:
400
A p C

Figure 19-18.—Finding the unknown parts
of an oblique triangle.

CAUTION: A careless appraisal of this prob-
lem may lead the unwary trainee to represent
the ratio AC/AB as the cosine of 40°. This
error is avoided only by the realization that the
trigonometric ratios are based on RIGHT tri-
angles.

9 In order to find the length of DC, first
calculate BD.

BD _ sin 40°
BD = 35 sin 40°
- 35 (0.6428)

22.4 (approximately)

3. Find the length of DC.

22.4 °
BC = tan 75
nC = 224 _ 224

tan 15° 3.73

DC = 6.01 (approximately)

[

4. Add AD and LC to find AC.

26.8 + 6.01 = 32.81
AC = 32.8 (approximately)
SOLUTION BY SIMULTANEOUS
EQUATIONS

A typical problem in trigonometry is the
determination of the height of a point such as
B in figure 19-19.
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A 50FT ¢ x D

Figure 12-19. —~Calculation of urkknown
quantities by means of oblique triangles.

Suppose that point B is the top of a hill, and
point D is inaccessible. Then the only meas-
urements possible on the ground are those
shown in figure 19-19. If we let h represent
BI* and x represent CD, we can set ug the fol-
lowing system of simultaneous equations:

h _ o
< = tan 70

h o
50 + x - tan 30

Solving these two equations for h in terms of
X, we have

h = x tan 70°
and
h = (50 + x) tan 30°

Since the two quantities which are both equal
to h must be equal to each other, we have

40 F

320 (]

A C A

(A)

X tan 70° = (50 + x) tan 30°
X (2.748) = 50 (0.5774) + x(0.5774)
x (2.748) - x (0.5774) = 28.8
x (2.171) = 28.8
= .28.8 _
X = 5177 13.3 feet

Knowing the value of X, it is now possible to
compute h as follows:

X tan 70°
13.3 (2.748)
36.5 feet (approximately)

h

Practice problems:
1. Findthe lengthof side BC in figure 19-20 (A).

2. Find the height of point B above line AD in
figure 19-20 (B). '

Answers:

1. 21.3 feet 2. 41.7 feet

LAW OF SINES

The law of sines provides a direct approach
to the solution of oblique triangles, avoiding the
necessity of subdividing into right triangles.
Let the triangle in figure 19-21 (A) represent
any oblique triangle with all of its angles acute.

The labels used in figure 19-21 are stand-
ardized. The small letter a is used for the
side opposite angle A; small b ig opposite angle
B; small c is opposite angle C.

5° 65°

70FT C D
(8)

Figure 19-20.—(A) Oblique triangle with all angles acute;
(B) obtuse triangle.

2.3
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(A)

b C
(B)

Figure 19-21.—(A) Acute oblique triangle with standard labels;
(B) obtuse triangle with standard labels.

The law of sines states that in any triangle, SOLUTION: By the law of sines,

whether it is acute as in figure 19-21 (A) or
obtuse as in figure 19-21 (B), the following is
true:

a __b___¢_

sin A sin B sin C
EXAMPLE: In figure 19-21 (A), let angle A be
15° and let angle C be 85°. If BC is 20 units,

find the length of AB.

209

<14

20 _ c
sin 15° _ sin 85

_ 20 sin 85°

¢ sin 15
oo 20 (.0.9962) R
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APPENDIX |

SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS,
LOGARITHMS, AND RECIPROCALS OF NUMBERS

! No.=Dis.
be 1000
No | Square Cube sﬁ:? %Inol Lee. % Recip. Circum., Aves .
} 1 1]1.0000] 1.0000 | 0.00000 |1000.000 3.142 0 7854
2 4 8 |1.4142] 12599 | 0.30103 | 500.000 6.283 3.1416
3 9 27 | 1.7321| 1.4422 | 0.47712 | 333.333 9.425 7.0686
4 16 64 | 2.0000f 1.5874 | 0.60206 | 250.00c | 12.566 | 12.5664
s| 25 125 1 2.2361] 1.7100 | 0.69897 | 200.97%0 | 15.708 | 19.6350
6] 36 2151 2.4495} 1.8171 | 0.77815 ]| 166.667 | 18.850 | 28.2743
7] 49 343 | 2.6458| 1.9129 | 0.84510 | 142.857 | 21.991 | 38.4845
8] o4 512 | 2.8284| 2.0000 | 0.90308 | 125.000 | 25.133 | 50.2653
9| 81 729 | 3.0000| 2.0801 | 0.95424 | 1i1.111 | 28.274 | 63.6173
16 100 1000 ] 3.1623] 2.1544 | 1.00000 | *-°0.000 | 31.416 | 78.5308
11] 121 1331 ] 3.3166| 2.2240 | 1.04139 | 40.9001] 34.558 | 95.0332
12] 144 1728 | 3.4641] 2.2894 | 1.07918 ) 83.3333] 37.699 | 113.097
13| 169 2197 | 3.6056| 2.3513 | 1.11394 | 76.9231| 40.841 | 132.732
14| 196 2744 | 3.7417| 2.4101 | 1.14613 | 71.4286] 43.982 | 153 938
15| 225 3375 | 3.8730] 2.4662 | 1.17609 | ¢5 6667| 47.124 | 176.715
16] 256 4096 | 4.0000] 2.5198 | 1.20412 | 62.5000| $0.26S | 201.062
17] 289 4913 | 4.1231] 2.5713 | 1.23045 | 58.8235] $3.407 | 226.980
18] 324 S832 | 4.2426; 2.6207 | 1.25527 | 55.5556] 56.549 | 254.469
19{ 361 6859 | 4.3589| 2.6684 | 1.27575 | S2.6316] $9.690 | 283.529
20| 400 8000 | 4.4721; 2.7144 | 1.30103 | s0.0000 62.832 | 314.159
211 441 9261 | 4.5826]| 2.7589 | 1.32222 | 47.6190] 65.973 | 346.361
221 484 10648 | 4.3 2.8020 | 1.34242 | 45.454S] 69.115 | 380.133
23} s29 12167 | 4.7958 | 2.8439 | 1.36173 | 43.4783] 72.257 | 415.476
24| s76 13824 | 4.8990| 2.8845 | 1.38021 | 41.6667] 75.398 | 452.38¢
S| 625 15625 | 5.0000| 2.9240 | 1.39794 | 40.0000| 78 S40 | 490.874
26] 676 17576 | 5.0990| 2.9625 | 1.41457 | 38.4615| 81.681 | 530.929
271 720 19683 | 5§.1962}) 3.0000 | 1.43136 | 37.0370] 84.823 | §72.55¢
28] 784 21952 | 5.2015| 3.0366 | 1.44716.] 35.7143] 87.965 | 615.752
29| 841 24389 { 5.3852| 3.0723 | 1.46240 | 34.4828] 91.196 | 660.520
30| 900 27000 | 5.4772| 3.1072 | 1.47712 | 33.3333| 94.248 | 706.858
31| 961 29791 | 5.5678| 3.1414 | 1.49136 | 32.25A1] 97.380 | 754.7¢68
. 32] 1024 32768 | 5.6569 | 3.1748 | 1.50515 | 31.2500 100.531 | 804.248
33| 1089 35937 | 5.7446] 3.2075 | 1.51851 | 30.303n{ 103.673 | 858.2%
34| 1156 39304 | 5.8310 3.2396 | 1.53148 | 29.4118| 106.814 | ©07.920
as| 1228 42875 | s.9161] 3.2711 | 1.54407 | 28.5714} 109.956 | 962.113
36] 1296 46656 |1 6.0000| 3.3019 | 1.55630 | 27.7778] 113.097 |1017.88
371 1369 S0653 | 6.0828| 3.3322 | 1.56820 | 27.0270] 116.239 {1075.21
38| 1444 S4872 | 6.1644| 3.3620 1 1.57978 | 26.3158] 119.381 |1134.11
39| 1521 §9319 1 6.2450] 3.3912 | 1.59106 | 25.6410] 122.522 |1104 59
40| 1600 64000 | 6.3246| 3.4200 | 1.60206 | 25.0000! 125.66 [1256.64
41] 1681 68921 | 6.4031 | 3.4482 ] 1.61278 | 24.3902] 128.81 {1320 25
42| 1764 74088 | 6.4807| 3.4760 | 1 62325 | 23.809S| 131.95 [1385.44
43] 1849 79507 | 6.5574 ] 3.5034 | 1.63347 | 23.2553]| 135.09 [1452.20
44 1930 85184 | 6.6332] 3.5303 | 1.64345 | 22.7273| 138.23 [1520.53
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Appendix I-POWERS, ROOTS, LOGARITHMS, ETC.

No.=Dis.
C 1

No. | Bquare{ Cube Bg:? n:g: Lot “&?p. e e

45| 2025 o1125 | 6.7082] 3.5569 | 1.65321 | 22.2222 | 141.37 | 1590 43
46{ 2116 07336 | 6.7823| 3.5830 | 1.66276 | 21.7391 | 144.51 | 1661.90
47| 2209 | 103823 | 6 8557 3.6088 | 1 67210 | 21 2766 147 65 | 1734 .94
48| 2304 | 110592 | 6.9282| 3.6342 | 1.68124 | 20 8333 150 .80 | 1809.56
49] 2901 | 117649 | 7.0000] 3.6593 | 1.69020 | 20.4082 | 153.94 1885.74
so| 2500 | 125000 | 7.0711| 3 6840 | 1.69897 | 20.0000 | 157.08 1963 .50
51| 2601 | 132651 | 7.1414| 3.7084 | 1 70757 | 19.6078 | 160 22 | 2042.82
s2| 2704 | 140608 | 7.2111] 3.7325 | 1.71600 | 19.2308 } 163 36 2123.72
s3| 2809 | 148877 | 7.2801| 3.7503 | 1.72428 | 18.8679 | 166 50 2206 .18
s4| 2016 | 157464 | 7.3485| 3.7798 | 1.73239 | 18 5185 169.65 | 2290 22
ss| 3025 | 166375 | 7.4162| 3.8030 | 1.74036 | 1R.1818 | 172.79 2375.83
s6| 3136 | 175616 | 7 4833] 3.8259 | 1.74819 1 17 #S71 | 175 93 | 2463 .01
s7| 3240 | 185193 | 7.5498| 3.8485 | 1.75587 | 17.5439 179.07 | 2551.76
s8l 3364 | 195112 | 76157  3.8700 | 1.76343 | 17 2414 | 182.21 2642.08
so! 3481 | 205379 | 7.6811] 3.8930 | 1.77085 | 16.9492 | 185.35 2733.97
60| 3600 | 216000 | 7.74r0| 3.9149 | 1.77815 | 16.666i | 188.50 2827 .43
61| 3721 | 226981 | 7.#102] 3.9365 | 1.78533 | 16 3934 | 191.64 2022 47
o2l 3844 | 238328 | 7.8740] 3.9579 | 1.79239 | 16.1290 | 194.78 3019.07
63| 3060 | 250047 | 7.9373| 3.9701 | 1.79934 | 15 8730 | 197.92 3117 25
o4| 4096 | 262144 | 8.0000| 4.0000 | 1.80618 | 15.6250 | 201.06 3216.99
65| 4225 | 274625 | 8.0623| 4.0207 | 1.81291 | 15.3846 | 204.20 3318 31
66| 4356 | 287496 | 8.1240| 4.0412 | 1 81954 | 15,1515 | 207.35 3421.19
67| 4480 | 300763 | 8.1854| 4 0615 | 1.82607 | 14.9254 | 210.49 3525 .65
o8| 4624 | 314432 | 82462 4 0817 | 1.83251 | 14.7059 | 213.63 3631.68
6o 4761 | 328500 | 8.3066| 4.1016 | 1.83885 | 14.4928 | 216.77 3739.28
70! 4000 | 343000 | 8.3666| 4 1213 | 1 84510 | 14.2857 | 219.91 | 3B48.45
21! soa1 | 357911 | 8.4261] 4.1408 | 1.85126 | 14 0845 | 223 OS 3959 .5

72| 184 | 373248 | 8.4853| 4.1602 | 1.85733 | 13 8889 | 226.19 | 4071 50
73| 5320 | 385017 | 8.5440| 4.1793 | 1.86332 | 13.6086 | 229.34 | 4185 39
74] 5476 | 405224 | 8.6023| 4.1983 | 1.86923 | 13.5135 | 232.43 4300 .84
95| se2s5 | 421875 | 8.6603| 4.2172 | 1.87506 | 13.3333 | 235.62 4417 86
26| 5776 | 438976 | 8 7178 | 4.2358 | 1.88081 | 13.1579 | 238.76 4536.46
27| 5920 | 456533 | 8.7750| 4.2543 | 1.88649 | 12 9870 | 241.90 | 4656.63
78| 6084 | 474552 | 8.8318] 4.2727 | 1.89200 | 12.82CS | 245.04 | 4778 36
79| 6241 ' 493039 | 8.8852| 4.2908 | 1.89763 | 12.6582 | 248.19 4901 .67
80| 6400 | 512000 | 8.9443| 4.3089 | 1.90309 | 12.5000 | 251.33 5026.5S
81] 6561 | 531441 | 9 0000 4.3267 | 1.90849 | 12.3457 | 254.47 $153.00
82| 6724 | 551368 | 9.0554| 4 3445 | 1.91381 | 12,1951 | 257.61 ) 5281 02
83! 6880 | 571787 | 9.1104] 4.3621 | 1.91908 | 12.0482 | 26D.75 } 5410.61
8¢! 7056 | 592704 | 9.1652| 4. 3795 | 1.92428 | 11.9048 | 263.89 | 5541 77
asl 7225 | 614125 | 9.2195] 4.3908 | 1.92942 | 11.7647 | 267.04 | 5674 S0
86| 7306 | 636056 | 9.2736| 4.4140 | 1.93450 | 11.6279 | 270.18 | 5808.80
87! 7569 | 658503 | 9.3274| 4.4310 | 1.93952 | 11.4943 | 273 32 | 5944 .63
88| 7744 | 681472 | 9.3808 | 4.4480 | 1.94448 | 11.3636 | 276.46 6082.12
89 19}11 704969 | 9.4340| 4.4647 | 1.94939 11.2360 279.60 | 6221.14
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No.

9
92
93

95

97
98

100
101
102
103
104

105
106
107
108
109

110
111
112
113
114

115
116
117
118
119

120
121
122
123
12¢

125
126
127

129

130
131
132
133
134

No.wDia.
Square uare Cube 1000
Cube sﬂoot Root Log. T Recip. C:.cum. Ares

8100| 729000 | 9.4868] 4.4814 | 1.9542¢ 11.1111 282.74 6361.73
8281] 753571 | 9.5.7] 4.4979 | 1.95904 [10.9890 285.88 6503.88
8464| 778668 | 9.5917] 4.5144 | 1.96379 110.8696 289.03 6647.61
8649 804357 | 9.6437] 4.5307 | 1.96848 [10.7527 292.17 6792.91
88361 830584 | 9.6954] 4.5465 | 1.97313 10.6383 295.31 6939.78
9025| 857375 | 9.7468| 4.5629 | 1.97772 110.5263 298 .45 7088.22
9216 884736 | 9.7980] ¢.5789 | 1.98227 10.4167 301.59 7238.23
9409 912673 | 9.8489] 4.5947 | 1.98677 10.3093 304.73 7389.81
9604] 941192 | 9.8995] 4.6104 | 1.99123 10.2041 307.88 7542.96
9801] 970299 | 9.9499| 4.6261 | 1.99564 [10.1015 311.02 7697.69
10000] 1000000 | 10.0000] ¢.5416 2.00000 {10.00000 314.16 7853.98
10201 1030301 | 10.0499 4.6570 | 2.00432 | 9.90099 317.30 8011.8%
10404] 1061208 | 10.6995| 4.6723 2.00860 | 9.80392 320.44 8171.28
10609] 1092727 |10.1489] 4¢.687% 2.01284 | 9.70874 323.58 8332.29
10816) 1124864 | 10.1930/ ¢.7027 | 2.01703 9.61538 326.73 8494.87
11025 1157625 | 10.2470] 4.7177 | 2.02119 9.52381 329.87 8659.01
11236/ 1191016 |10.2956] 4.7326 | 2.02531 9.43396 333.01 8824.73
11449 1225043 | 10.3441 4.7475 | 2.02938 | 9.34579 336.15 8992.02
11664 1259712 110.3923! 4.7622 | 2.03342 9.25926 339.29 9160.88
118811 1295029 | 10.4403 ¢.7769 | 2.03743 9.17431 342.43 9331.32
12100] 1331000 | 10.4881 4.7914 | 2.04139 | 9.0909% 345.58 9503.32
12321] 1367631 {10.5357] 4.8059 | 2.04532 9.00901 348.72 9676.89
12544] 1404928 [ 10.5830] 4.8203 | 2.04922 8.92857 351.86 9852.03
12769| 1442897 | 10.6301] 4.8346 | 2.05308 8.84956 355.00 { 10028.7
12996] 1431544 | 10.6771] 4.8488 2.05690 | 8.77193 358.14 | 10207.0
13225] 1520875 110.7238] 4.2629 2.06070 | 8.6956S 361.28 | 10386.9
13456] 1560896 |10.7703 4.8770 | 2.06446 | 8.62069 364.42 | 10568.3
13689! 1601613 | 10.8167] ¢.8910 2.06819 | 8.54701 367.57 | 10751.3
13924| 1643032 | 10.8628] 4.9049 2.07188 | 8.47458 370.71 | 10935.9
34161] 1685159 | 10.9087 4.9187 | 2.07555 | 8.40336 373.85 ) 11122.0
14400] 1728000 | 10.9545 4.9324 | 2.07918 | 8.33333 376.99 | 11309.7
14641 1771561 | 11.0000 4.9461 | 2.08279 | 8.26446 380.13 | 11499.0
14334] 1815848 | 11.0454 4.9597 | 2.08636 | 8.19672 383.27 | 11669.9
15129| 1860867 | 11.0905 4.9732 | 2.08991 | 8.13008 386.42 | 11882.3
15376| 1906624 11.1355| 4.9866 | 2.09342 | 8.06452 389.56 | 12076.3
15625| 1953125 |11.1803 5.0000 | 2.09691 | 8.00000 392.70 | 12271.8
15876/ 2000376 | 11.2250 5.0133 | 2.10037 | 7.93651 395.84 | 12469.0
16129] 2048383 { 11.2694 5.0265 | 2.10380 | 7.87402 398.98 | 12667.7
16384] 2097152 | 11.3137 5.0397 | 2.10721 | 7.81250 402.12 | 12868.0
166411 2146689 | 11.3578 5.0528 | 2.11059 | 7.75194 405.27 | 13069.8
16900} 2197000 ! 11.4018 S.0653 | 2.11394 | 7.69231 408.41 | 13273.2
17161] 2248091 | 11.445s §.0788 | 2.11727 | 7.633%9 411.55 | 13478.2
17424] 2299968 | 11.4891 5.0916 | 2.12057 | 7.57576 A14.69 | 13684.8
17689| 2352637 | 11.8326 $.1045 | 2.12385 | 7.51880 417.83 | 13892.9
17956| 2606104 u.sml $.1172 | 2.12710 | 7.46269 | 420.97 | 141026
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APPENDIX 1l
NATURAL SINES, COSINES, AND TANGENTS

OF ANGLES FROM 0° to 90°

y
Degs. | Function | 0.0° | 0.1° | 0.3° | 0.8° | 0.6° ll 06 | 0.6° | 0.7° | 0.8° | 0.9°
|
sin 0.0000| 0.0017| 0.0035| 0.0052| 0.0070; 0.0087| 0.0105; 0.0122 0.0140} 0.0157
0 cos 1.0000| 1.0000| 1.0000| 1.0000| 1.0000, 1.0000] 0.9899{ 0.9989| 0. 0.9999
tan 0.0000] 0.0017| 0.0035| 0.0052; 0.0070| 0.0087| 0.0105] 0.0122| 0.0140| 0.0157
sin 0.0175! 0.0192| 0.0200| 0.0227| 0.0244| 0.0262| 0.0279] 0.0297) 0.0314} 0.033
i cos 0.9098| 0.0998| 0.9998| 0.9897| 0.9997; 0.9897) 0.9996| 0.9956 0.9995| 0.9968
tan 0.0175| 0°0192! 0'0209| 0.0227| .0244/ 0.0262| 0.0279| 0.0207( 0.0314} 0.0332
sin 0.0340! 0.0368| 0.0384| 0.0401] 0.0419] 0.0436| 0.0454| 0.0471| 0.0488{ 0.050¢
2 cos 0.9094| 0.9993] 0.9993| 0.9992| 0.9091] 0.9990| 0.9990| 0.9989| 0.9988/ 0.
tan 0.0349] 0.0367] 0.0384] 0.0402| 0.0419| 0.0437| 0.0454| 0.0472) 0.0489; 0
sin 0.0523] 0 0541] 0.0558| 0.0576| 0.0593| 0.0810| 0.0628] 0.0645 0.0663 0
3 cos 0.9988| 0.9985| 0.9984] 0.9983| 0.9982| 0.9981| 0.9930| 0.9973| 0.9978 0
tan 0.0524| 0.0542] 0.0589| 0.0577 0.0594| 0.0612 0.0629| 0.0647| 0.0684| 0
sin 0.06¢3! 0.0715] 0.0732| 0.0750| 0.0767| 0.0785 0.0802! 0.0818} 0.0837} 0.0
4 cos 0.0976| 09974 0.9973| 0.9972| 0.9971| 0.9969| 0.9988! 0.9068| 0.9965| 0.
tan 0.0899| 0.0717| 0.0734| 0.0752| 0.0760| 0.0787| 0.0805| 0.0822| 0.0840; 0.
sin 0.0872| 0.0889 0.0006| 0.0924| 0.0941| 0.0958| 0.0976| 0.0993; 0.1011) 0.
5 cos 0.9062| 0.9960| 0.9950| 0.9957| 0.9956| 0.9954! 0.9952| 0.9951; 0.9949/ q,
tan 0.0875| 0.0892] 0.0910] 0.0928| 0.0345( 0.7963| 0.0981) 0.0998| 0.1018 0.
sin 0.1045| 0.1063] 0.1080] 0.1097| 0.1115{ 0.1132] 0.1149( 0.1167| 0.1184| 0.
6 cos 0.0945} 0.9043) 0.9942] 0. 0.9935) 0.9936; 0. 0.9932] 0.9930] 0.9¢
tan 0.1051| 0.1069] 0.1086| 0.1104] 0.1122| 0.1139| 0.1157| 0.1175| 0.1192 0.
sin 0.1219] 0.1238] 0.1253] 0.1271| 0.1288| 0.1305| 0.1323! 0.1340 0.1357} 0.
7 cos 0.9925! 0.9923| 0.9923| 0.9919( 0.9917| 0.9914! 0.9912} 0.9910( 0.9907| 0.9
0.1228] 0. 12¢6| 0.1263| 0.1281| 0.1209{ 0.1317] 0.1334| 0.1353( 0.1370 0.
sin 0.1392] 0.1409] 0.1426] 0.1444] 0.1461| 0.1478| 0.1495( 0.1513| 0.1530] 0.
8 cos 0.9903] 0.9000| 0.9893] 0.9805( 0.9803] 0.98%0| 0 0.9885! 0.9852, 0.
tan 0.1405| 0.1423| 0.1441: 0.1459| 0.1477] 0.1495| 0.1512| 0.1530| 0.1548] 0.
sin 0.1564| 0.1582| 0.1599( 0.1616{ 0.1633| 0.1650| 0.1668| 0.1685 0.1703 0.
9 cos 0.9877| 0.9874| 0.9871| 0.9869 0.9866| 0.9863| 0.9860| 0.9857| 0.9854| 0.
tan 0.128¢1 0.1602| 0.1620| 0.1638] 0.1888( 01673/ 0.1691| 0.1709{ 0.1727| 0.
sin 0.1736| 0.1754] 0.1771} 0.1788) 0.1806| 0.1822| 0.1840| 0.1857] 0.1874| 0.
10 cos 0.9848| 0.9848] 0. 0.9539] 0.9836| 0.9833| 0.9829! 0.0828) O
tan 0.1763! 0.1781} 0.1799| v.1817| 0.1835| 0.1853| 0.1871| 0.1890] 0.1908| 0.
sin 0.1908] 0.1025! 0.1942] 0.1959] 0.1977} 0.1994| 0.2011( 0.2038] 0.2045 0.3
11 co8 0.0818] 0.9813] 0.9810| 0.9808! G 9803] 0.9799] 0.97¢6 0.9703| 0.9780! 0.
tan 0.1944| 0.1962{ 0.1980| 0.1998] G.2016{ 0. 0.2083| 0.2071| 0.2089] 0.
sin 0.2070| 0.2098] 0.2113] 0.2130( 0.2147| 0.2164! 0.3181] 0.2198| 0.2315) 0.3
12 cos 0.9781] 0.9778! 0.9774| 0.9770| 0.9767| 0.9743 0.9759; 0.9755] 0.9761! 0.
tan 0.2126] 0.2144] 0.2162| 0.2180{ 0.2199] 0.2217| 0.2235! 0.2354| 0.2273} 0.2
sin 0.2250| 0.2367] 0.2284| 0.2300| 0.2318| 0.2334| 0.23511 0.2368| 0.2385 0.4
13 cos 0.9744| 0.9740| 0.9736| 0.9732] 0.9728| 0.9734] 0.9720| 0.9718| 0.9711) 0.6
tan 0.3300] 0.2337] 0.2345| 02364 0.2383| 0.2401| 0.2419] 0.2438) 0.2456| 0.
sin 0.2419] 0.2436] 0.2458| 0.2470| 0.2487} 0.2504] 0.2531] 0.2838| 0.2554] 0.
14 cos | 0.0703] 0.9600 0.9604| 0.9690| 0.9688 o.mxl 0.0677| 0.0673| 0.9668! 0.9
tan 0.3403] 0.9518| 0.2530| 0.2849| 0.2588| 0.2588] 0.2008{ 0.2423| 0.3843( 0.
ogs. | Fuaction | & ¢ 19° | 10 | W | 800 | 0 | 4% | & u"l
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Appendix II-NAT JRAL SINES, COSINES, AND TANGENTS

<0

30°-44.9°
Degs.| Function | 0.0° | 0.1° [ 0.3° | 0.3° | 0.4° | 0.5° | 0.6° | 0.7° | 0.8
sin 0.5000; 0.5018| 0.5030] 0.5048| 0.5080] 0.5075| 0.5090| 0.5108| 0.5130
30 cos | 0.5600| 0.8883| 0.3643| 0.8434| 0.8628] 0.5616] 0.8807| 0.3599| 0.8500
tan | 0.5 05797 0.5820| 0.5844| 0.8887] 0.3800! 0.5014] 0.3038| 0.%61
sin 0.5150| 0.5185! 0.5180| 0.5198| 0.5210f 0.5238] 0.5240] 0.5288] 0.8270
31 cos | 0.8572| 0.8883| 0.8584{ 0 345| 0 0.8826{ 0.8517| 0.8508| 0.8409
tan | 0.6009| 0.6032| 0.6038] 0.0080| 0.6104] 0.6128| 0.6153 0.6176| 0.6200
sln 0.5299| 0.5314[ 0.5320| 0.5344) 0. 0.5373] 0.5388| 0.5402 0.8417
32 | cos | 0.8430| 0.8471( 0.8462) 0.8453] 0.8443] 0 8434] 0.8428| 0.r415| 0. ¥406
tan | 0.0249) 0.6373| 0.6297) 0.6122| 0.6346| 0.6371| 0.0395| 0.0420( 0. 06445
sin 0.5446) 0.5461| 0.5476| 0.5490| 0.5505] 0.5519| 0.5534] 0.5548| 0.8503
33 coa 0.8387| 0.8377| 0.8368| 0.4358} 0.8348| 0.4330| 0.5320| 0.8320| 0.8310
tan | 0.6494| 0.6519 0.6544] 0. 0.6594| 0.6619| 0.6044| 0.66(9| 0.6604
sin 0.5502! 0.560¢| 0.5621| 0.5635| 0.5650] 0.5664] 0.5678| 0.5603( 0.5707
3¢ cos 0.8200| 0.8281| 0 8271( 0.8241| 0.8351| 0.8241| 0.8231| 0.8221| 0.8311
tan | 0.6745] 0.6771] 0.6796| 0.6823] 0.U847| 0.6873| 0.6899] 0.6024| 0.6930
aln 0.5736] 0.5750| 0.5784| 0.5770{ 0.5793] 0.5807| 0.5831] 0.5835( 0.8850
as cos | 0.8193] 0.5181] 0.8171{ 0.8161] 0.4151] 0.8141| 0.8131| 0.8121} 0.8111
tan 0.7002| 0.7028| 0.7054| 0.7080| 0.7107| 0.7133{ 0.7189 0.7186| 0.7213
sin 0.5878| 0.5803| 0.5008| 0.5020| 0.5934] 0.5948] 0.5802| 2.5976| 0.5000
36 cos 0.8000| 0.5080| 0.8070| 0.8039( 0.8040| 0.9030| 0.8028| 0.8018] 0.8007
tan | 0.7268| 0.7202| 0.7310| 0.7348| 0.7373| 0.7400| 0.7427| 0.7454] 0.7481
sin 0.6018] 0.6033| 0.6048( 0.0060| 0.6074| 0.6088| 0.6101] 0.6115| 0.6129
37 cos | 0.7986| 0.7976( 0.7965| 0.7055| 0.7944| 0.7034| 0.7923| 0.7012( 0.7002
tan ] 0.7536] 0.7563| 0.7590{ 0.7618| 0.7648| 0.7673 0.7701| 0.7729| 0.7787
sin 0.6157] 0.6170| 0.0184| 0.6198| 0.6211] 0.6225( 0.6330| 0.6252! 0. 6208
38 cos | 0.7880 omw .7859| 0.7848| 0.7837] 0.7526( 0.7818) 0.7504 0. 7793
tan | 0.7813| 0.7441] 0.7869| 0.7808| 0.7926] 0.7954| 0.7983| 0.8012| 0.8040
sin 0.6203| 0.6307] 0.0320] 0.6334| 0.6347{ 0.6361| 0.6374| 0.6388( 0.6401
39 cos 0.7771} 0.7760| 0.7740| 0.7738! 0.7727] 0.7718| 0.7708| 0.7694} 0. 7683
tan | 0.8008{ 0.8137| 0.5188) 0.8185| 0.8214} 0.8243} 0.8273| 0.8302| 0. 8332
sin 0.0428! 0.6441| 0.6455 0.6408| 0.0451| 0.0404| 0.0508| 0.6521| 0.6534
40 cos | 0 7600] 0 7u40] 0.7638| 0.7627| 0.7618] 0.7004| 0.7503| 0.7581| 0 7570
tan | 0.8391| 0.8421] 0.8451{ 0.8481] 0.8511] 0.8541| 0.8571| 0.8601| 0.8632
sin 0.6501| 0.0574| 0.0587| 0.0600( 0.0613] 0.0620| 0.0639] 0.0652] 0. 6685
41 cos 0.7547} 0.7536] 0.7524| 0.7513| 0.7501] 0.7400| 0.7478| 0.7488| 0. 7485
tan | 0.8803| 0 8724| 0.x754| 0.5785] 0.8510] 0.8847| 0.8878 0.8910] 0. 5041
sin 0.6091| 0.6704| 0.6717( 0.6730| 0.6743] 0.6758! 0.6700; 0.5782| 0.6794
42 cos 0.7431) 0.7420) 0.7408] 0.7306 0.7373| 0.7361] 0.7349] 0.7337
tan | 0.0004] 0.0036] 9.0087| 0.9099] 0.9131] 0.9103| 0.9198] 0.9228| 0.9260
sin 0.0820| 0.6833] 0.0845| 0.06858] 0.6871| 0.6884] 0.6500| 0.6808] 0.6621
43 cos 0.7314| 0.7302| 0.7290! 0.7278 0.7266( 0.7254| 0.7242| 0.7230 0. 7218
tan | 0.9225| 0.9358! 0.0301] 0.9424] 0.0457] 0.0490( 0.9523| 0.9556| 0. 9850
sin 0.6047| 0.6030 0.6973} 0.6084| 0.6907] 0.7000] 0.7022| 0.7034] 0.7046
44 cos 0.7103| 0.7181{ 0.7160] 0.7157| 0.7148] 0.7133] 0.7120 0.7108| 0. 7098
tan | 0.9657| 0.9691) 0.9725| 0.9759| 0-9703| 0.9827| 0.9881] 0.980G| 0.9830
Dega.| Function | 0 ¢ 18’ 18’ ¢’ » ] 3 48’ 4
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MATHEMATICS, VOLUME 1

76°-89.9°
Degs. | Function | 0.0° | 0.1° | 0.8° | 0.3° | 0.4° | 0.5° | 0.6° | 0.7° | 0.8° | 0.9°
sin 0.9659( 0.9664| 0.9568! 0.9673| 0.9877] 0.9681| 0.9636! 0.9600; 0.9634| 0.
76 | cos |o0:2588| 0:2571 0 285¢| 0/2838| 0:2531| 0:2504| 0.2487 0.2470 o.ms' 0
tan 3.7321| 3.7583] 3.7548] 3.8118) 3.8301] 3.8867| 3.8047] 3.9%2; 5.9520] 8.
ain 0 9703] 0.9707| 0.97117 0.9715| 0.9730] 0.9724! ©.9728] 0.9733] 0.9738| 0.97
76 cos 0.2415( 0.2402| 0.2385| 0.2308| 0.2351, u.2334| 0.2317| 0.3300| 0.2284] 0.
tan 4.0108] 4.0408| 4.0713| 4.1022; 4.1338] 4.1653] 4.1976{ 4.2303| 42635 4.
sin 0 9744| 0.0748; 0.9751] 0.9785! 0.9759] 0.9762| 0.9767] 0.9770( 0.9774} 0.977!
7 cos 0 2955 0.2232( 0.2216| 0.2198| 0.2181] 0.2164| 0.2147| 0.2130| 0.2113] 0.
tan 4.3315 43862 4.4015| 4.4374| 4.4737] 4.5107| 4.5483| 4.5864| 4.6252] 4.
sin 0.9781] 0.9785] 0.9789] 0.9792 G.9706] 0.9769( 0.9803{ 0.9808| 0.9810 0.
78 cos 0.2070| 0.2063| 0.2045| 0.2028| 0.2011] 0.1994| 0.1977} 0.1959| 0.1943} 0.
tan 4.7040) 47453 4.7887} 4.8288] 4.8716] 4.9182] 4.9504| 5.0045| 3.0504| 5.
sin 0.9816| 0.9820] 0.9823] 0.9826( 0.9820] 0.9833] 0.9838] 0.9839| 0.9842| 0.
79 cos 0.1908) 0.1891; 0.1874| 0.1857| 0.1840] 0.1822] 0.1805| 0.1788| 0.1771, 0.
tan 5.1446) 5 1029] 5.2422( 5.2024| 5.3435| 5.3958| 5.4486( 5.5026( 5.8575] 5.
sin 0.9848| 0.0851| 0.0854} 0.9887( 0.9860] 0.9863] 0.9368( 0.9869( 0.9471} 0.
80 cos 01735 0 1719| 0.1702' y.19%51 0.1688] 0.1650{ 0.1633] 0.1818] 0 1589} 0.
tan 5 6713| §.7207| 5.7804; 5.880%| 4.0124] 5.9758] 6.0405| 6.1086| 6.1742} 8.
sin 0.9877) 0.9880| 0.9382| 0.9885| 0.9888] 0.9800! 0.94g31 0.9895, 0.9898| 0.
81 cos 0.1564| 0.1547) 0.1530{ 0.1513| 0.1495] 0.1478| 0.1461( 0.1444] 0.1426| 0.
tan 8.3138| 6.3859| 6.4696( 6.5350| 6.6122] 6.6912] 6.7720( 6.8548| 6 4305| 7.
sin 0.9903| 0.0905] 0.9907] 0.9910 0.9912] 0.9914| 0.9917] O 9910} 0.9931] 0.
82 cos 0.1392| 0.1374| 0.1357( 0.1340| 0.1323] 0.1308/ 0.1388] :.1271) 0.1253| 0.
tan 7.1154| 7.2066| 7.3002| 7.3982| 7.4947] 7.5058| 7.6096| 7.8062; 7.9138, 8
sin 0.9925| 0.9028| 0..930! 0.9932( 0.9934] 0.9936] 0.2033| 0.9940 0.9942] 0.
83 cos 0.1218] 0.1201| 0.1184 0.1167| 0.1149] 0.1132] 0.1115] 0.1097 0.1080| 0.
tan 8.1443| 8.2636| 8.3863| 8.5126| 8.6427} 8.7760! 8.9152| 9.0579] 9.2083| 9.
sin 0.9945) 0.5047| 0.9949] 0.9951( 0.9952] 0.9054] ©.9956! 0.9057( 0.9959! 0.
84 con 0.1045! 0.1028 0.1011} 0.0993| 0.0976] 0.0058] 0.0941| V.0924| 0.0906/ 0.
tan 9.5144| 9.6768 9.8448/10.02 [10.20 [10.39 ,10.58 [10.78 [10.99 |11.
sin 0.0962| 0.9963| 0.9965! 0.9986| 0.9968| 0.9049( 0.9971| 0.6972] 0.9973; 0.
86 cos 0.0872| 0.0854| 0.0837] 0.0819| 0.0802] 0.0788] 0.0747} 0.0750] 0.0732| 0.
tan [11.43 [11.66 {11.01 [12.16 [12.43 |12 71 [13.00 {13.30 (13.62 [13.
sin 0.9976| 0.9977| 0.9978 0.9979| 0.9980} 0.9081] 0.9982| 0.9983| 0.9984| 0.
88 cos 0.0898{ 0.0880; 0.0683| 0.0845| 0.0628; 0.0610| .0593| 0.0576] 0.0888| 3.
tan  [14.30 [14.67 |15.08 [15.48 [15.89 [16.35 [16.83 [17.5* [17.89 |18
sin 0.9086) 0.9987| 0.9089 0.9089] 0.p390] 0.9080| 0.9691| 0.9992| 0.9893| 0.
87 cos 0.0523| 0.0508] 0_0488| 0.0471) 0 0484] 0.0426( 0.0410] 0.0401| 0.0384] 0.
tan [19.08 [19.74 120.45 |21.20 [22.02 [22.00 [23.86 [24.90 |26.03 (27.
sin 0.9994] 0.9995| 0.9095| 0.9996, 0.9908] 00997/ 0.9997; 0.9997( 0.9998| 0.
88 cos 0.0349| 0.0332| 0.0314| 0.0297| 0.0279| 0.0262| 0.0244| 0.0227| 0.0209] 0.01
tan [28.64 (30.14 (31.82 [33.60 (35.80 [33.10 [40.93 [44.07 [47.74 183.08
sln 0.9693| 0.9009| 0.9099] 0.9999| 0.0999] 1.000 | 1.000 | 1.000 | 1.000 | 1.000
89 cos 0.0175] 0.0157| 0.0140| 0.0122| 0.0103] 0.0087{ 0.0070{ 0.0083] 0.0035| 0.0017
tan {57.20 [63.66 (71.62 |#1.85 [05.49 [114.6 [143.2 [101.0 [288.5 |873.0
Degs.| Function | ¢ ¢ 19 | 100 | ¢ | 300 | 80 | 48 | &8 | &4
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APPENDIX Ill
MATHEMATICAL SYMBOLS

NAME OR MEANING
Addition or positive value
Subtraction or negative value
Positive or negative value

Multiplication dot (Centered; not to
be mistaken for decimal point.)

Multiplication symbol

Parontheses

Brackets Grouping
Braces e symbols
Vinculum (overscore) J

Percent

Division symbol

Ratio symbol
Proportion symbol
Equality symbol

""Not equal" symbol
Less than

Less than or equal to
Greater than

Greater than or equal to
""Varies directly as' or "is propor-

tional to" (Not to be mistaken
for Greek alpha (a).)

SYMBOL
N

—

ar

iorj

log, N
log N

|1 X |

L or <

219
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NAME OR MEANING
Square root symbol

Square root symbol with vinculum.
Vinculum is made long enough to
cover all factors of the number
whose square root is tobe taken.

Radical symbol. Letter n repre-
sents a number indicating which
root is to be taken.

Imaginary unit; operator j for elec-
tronics; represents V-T,

Infinity symbol

Elliosis. Used in series of num-
Lrs in which successive num-
bers are predictabic by their
conformance to a pattern; mean-
ing is approximated by "etc."

Logarithm of N to the base a.

Logarithm of N to the base 10.
(understood)

Natural or Napierian logarithm of N.
Base of the natural or Napierian
logarithm system.

Absolute value of X.

Pi. The ratio of the circumference
of any circle to its diameter.
Approximate numerical value is
22/1.

Therefore

Angle



APPENDIX IV

WEIGHTS AND MEASURES

Dry Measure

2 cups = 1 pint (pt)

2 pints = 1 quart (qt)

4 quarts = 1 gallon (gal)
8 quarte = 1 peck (pk)

4 pecks = 1 bushel (bu)

Liquid Measure

3 teaspoons (tsp) = 1 tablespoon (tbsp)
16 tablespooas = 1 cup

2 cups = 1 pint

16 fluid ounces (oz) = 1 pint

2 pints = 1 quart

4 quarts = 1 gallon

31.5 gallons = 1 barre!l (bbl)

231 cubic inches = 1 gallon

7.48 gallons = 1 cubic foot (cu ft)

Weight

16 ounces = 1 pound (lb)

2,000 pounds = 1 short ton (T)

2,240 pounds = 1 long ton
Distance

12 inches = 1 foot (ft)

3 feet = 1 yard (yd)

5-1/2 yards = 1 rod (rd)

16-1/2 feet = 1 rod

1,760 yards = 1 statute mile (mi)

5,280 feet = 1 statute mile

Area

144 square inches = 1 square foot (sq ft)
9 square feet = 1 square yd (sq yd)
30-1/4 square yards = 1 square rod

160 square rods = 1 acre (A)

640 acres = 1 square mile (sq mi)

Volume
1,728 cubic inches = 1 cubic foot
27 cubic feet = 1 cubic yard (cu yd)

Counting Units

12 units = 1 dozen (doz)
12 dozens = 1 gross
144 units = 1 gross

24 sheets = 1 quire

480 sheets = 1 ream

Equivalents

1 cubic foot of water weighs 62.5 pounds
(approx) = 1,000 ounces

1 gallon of water weighs 8-1/3 pounds (approx)
1 cubic foot = 7.48 gallons

1 inch = 2.54 centimeters
1 foot = 30.4801 centimeters
1 meter = 39.37 inches

1 liter = 1.05668 quarts (liquid) = 0.90808 quart
(dry)

1 nautical mile = 6,080 feet (approx)
1 fathom = 6 feet

1 shot of chain = 15 fathoms

220
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APPENDIX V
FORMULAS

Areas

The area of a square is equal to
the square of a side.

The area of a triangle is equal to
one half the base times the
height.

The area of a circle is equal to
the radius squared times pi.

The area of a rectangle is equal
to the length times the width.

The lateral area of a cylinder is
equal to the circumference of
the base times the height.

221
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Areas

The square area of a sphere is
equal to 4 times pi times the
radius squared.

Volumes

The volume of a cube equals the
cube of an edge.

The volume of a rectangular solid
or cylinder equals the area of
the base times the height.

The volume of a sphere equals -%
pi times the radius cubed.



INDEX

Absolute value, 21 Centigrade thermometer, 19
Accuracy, 15, 59 Changing:
Addend, 7 common fractions to decimals, 49
Adding: fractions to percent, 55
complex numbers, 164 integers to percent, 55
decimals, 51 percent to a decimal, 56
fractions, 118 Characteristic, logarithms, 83
signed numuers, 21 Checking accuracy, 14
unlike fractioas, 35 Chord of a circle, 188
Addition: Circle, 187
and subtraction, 7 Circular cylinder, 194-195
method for solving simultaneous equations, Circumference of a circle, 187
135 Coefficients, literal, 125, 136
Adjacent angles, 182 Combined variation, 150
Algebraic: Combining:
expressions, 99 radicals, 74
fractions, 117 terms, 100
sum, 99 Common:
Alternation in a proportion, 144 denominator, 34
Altitude of a triangle, 183 factors, 111
Angles, 182 fractions, 28, 49
Apex of a triangle, 183 logarithms, 81
Approximate numbers, 61 Commutative jaws, 26, 98
Arabic numerals, 1 Complement of an angle, 182
Arbitrary constant, 120 Completing the square, 169
Areas: Complex:
circle, 189 decimal, 47
quadrilateral, 186 fraction, 43-44
triangle, 184 numbers, 158-163
Associative laws, 26, 98 plane, 161
Axioms of equality, 25 Cozaponents of logarithms, 83
Composite number, 17
Base of: Concentric circles, 189
exponent, 65 Conditional equation, 121-122
number system, 2 Conjugates of complex numbers, 165
solid, 193 Constant:
triangle, 183 definition, 120
Binary number system, 3 of proportionality, 147
Binomial factors, 113 Construction, geometric, 190
Bisecting an angle, 191 Coordinates, 130-131
Borrow process, 7, 8 Counting, 1
Broken lines, 181 Cube:
by slide rule, 94
Calculating with approximate numbers, 61 geometric, 194
Caliper, vernier, 64 root, 79, 95
Cancellation, 38
Carry and borrow, 7 Dashed line, 181
Celsius thermometer, 19 Decimal:
Center of a circle, 192 adding, 51

222
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INDEX

Decimal-Continued:

complex, 47

divisors, 53

equivalent, 47

fractions, 45

mixed, 47

multiplying, 51-52

nonterminating, 50

number system, 2, 45

points, 13, 15

power of, 66

reducing, 47

system, 2
Degree:

angular, 182

of an equation, 121
Denominate numbers, 9, 15
Denominator, definition, 28
Dependence, 151
Dependent variable, 151
Developing formulas, 154
Diameter:

circle, 187

sphere, 198
Difference:

answer in subtraction, 7

of two squares, 113
Digit positions:

binary, 3

decimal, 2
Digits, significant, 60
Direction of measurement, 19
Directly proportional, 147
Direct variation, 146
Discriminant, 176
Distributive law, 27, 99
Dividend, 11
Dividing:

a line into equal segments, 190

approximate numbers, 61
by powers of ten, 54
complex numbers, 165
decimals, 52
denominate numbers, 15
Divisibility, test for, 18
Division:
fractions, 40
general, 10
in fraction form, 25
methods, 13
signed numbers, 24
synthetic, 110
Divisor, 11
Double roots, 177

223

Edge of a prism, 194
Element:

cylinder, 194

set, 4
Ellipses, 192
Ellipsis, definition, 5
End zeros in multiplication, 13
Equality axioms, 25
Equal or double roots, 177
Equations, plotting, 131
Equilateral triangle, 185
Equivalent:

decimal, 47

fraction, 29
Error:

percent of, 59

relative, 60
Estimation, 14, 58
Evaluating:

formulas, 153

radicals, 78
Exponential form, 80
Exponents:

and radicals, 102

definition, 65

fractional, 70

laws of, 67

literal, 112
Extremes of a proportion, 142

Faces of a solid, 193
Factor, 11, 17
Factoring:
definition, 111
method of solving quadratic equations, 168
radicals, 75
trinomials, 115
Fixed constant, 120
Formulas:
developing, 154
evaluating, 153
graphing, 156
table of, 221
translating, 155
Fractional:
exponents, 70
percents, 57
Fractions:
algebraic:
dividing, 117
multiplying, 117
changing to decimals, 49
complex, 43-44
equivalent, 29

yes)
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MATHEMATICS, VOLUME 1

Fractions—Continued:
fundamental rule, 30
improper, 28, 31
in equations, 125
measurement, 29
negative, 32
partitive, 29
power of, 66
proper, 28
reducing, 31, 116

Function:
general, 151
trigonometric, 202, 213

Fundamental rule of fractions, 30

General form of a linear equation, 126
Geometric:
classification of angles, 182
figures, 183-190
Graphical:
interpretation of roots, 179
representation of complex numbers, 160
solution of quadratic equations, 172
Graphing:
formulas, 156
general, 20
inequalities, 129, 139
Great circle, 198
Greater than (symbol), 20, 128
Greatest common divisor, 34
Grouping:
for multiplication, 11
symbols, 101

Hemisphere, 198

Highest common factor, 34
Horizontal lines, 181
Hypotenuse, 199

Identity, 121
Imaginary:

number, 66, 159

root, 176

unit, 159
Improper fraction, 28, 31
Independent variable, 151
Index of a root, 65
Inequalities, 128
Inequalities in two variables, 139
Infinite sets, 6
Integers, 1
Intercepts, definition, 132
Interpolation, 203
Interpreting equations, 137
Interpreting roots by graphs, 179

Intersecting lines, 182
Inversely proportional, 148
Inverse ratio, 142
Inverse variation, 148
Inversion in a proportion, 144
Irrational:

number, 77, 158

root, 178
Irregular pyramid, 196
Isosceles triangle, 185

Joint variation, 149

Lateral:
area, pyramid, 197
edge, prism, 194
Laws:
associative, 26
commutative, 26
distributive, 27
exponents, 67
sines, 208
Least common multiple, 34
Less than (symbol), 20, 128 '
Like:
fractions, 33
signs, adding, 21
Line:
general, 161
parallel, 137
segment, 5
Linear equation, 121, 126
Literal:
coefficient, 124, 136
exponent, 112
Logarithm:
definition, 80
natural, 81
Lowest common denominator, 34

Mantissa, 83, 85
Mathematical symbols, 219
Maximum and minimum points, 174
Means of a proportion, 142
Measurement:

fraction, 29

principles of, 58
Mental:

calculation, 10

multiplication, 107
Micrometer:

scale, 61

settings, 62

vernier, 64
Minimum and maximum points, 174
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Minuend, 7
Mixed:
decimal, 47
number, 28, 32
Monomial multiplication, 103
Multiples, 17
Multiplicand, 11
Multiplication:
fractions, 37
general, i0
grouping, 11
Multiplier, 11
Multiplying:
approximate numbers, 61
complex numbers, 164
decimals, 51-52
denominate numbers, 15
signed numbers, 23

Natural logarithms, 81
Negative:

exponents, 69

fractions, 32

logarithms, 83

numbers, 19
Nonterminating decimals, 50
Number:

set, 4

systems, 2, 3
Number line:

fractions, 28

general, 5, 20
Numerals, 1
Numerator, definition, 28
Numerical coefficient, definition, 100

Oblique:

line, 181

triangle, 185, 207
Obtuse:

angle, 182

triangle, 185
One as an exponent, 69
Operation:

with decimals, 50

with inequalities, 128
Operator i, 1¢0-161
Operators, 158
Order:

of operations, 16

properties of numbers, 128
Orientation of lines, 181

‘e

Parabola, 174
Parallelpiped, 193

Parallel lines, 181
Parallelogram, 186
Parentheses, removing, 101
Partial products, 12
Partitive fractions, 29
Percent:
changing numbers to, 55
changing to decimal, 56
definition, 55
fractional, 57
of error, 59
Percentage cases, 56
Perimeter:
quadrilateral, 186
triangle, 184
Perpendicular:
at any point on a line, 191
bisector of a line, 191
lines, 181
Pi (7), 188
Place value, 1, 2, 46
Placing decimal points, 13, 15
Plotting:
complex numbers, 162
coordinates, 131
equations, 131
inequalities, 139
Points and lines, 5
Polar form, 163
Polynomials, 104-106
Positional notation, 2
Positive:
and negative numbers, 20
integers, 4
Powers and roots, 65
Powers of:
fractions, 66
negative integers, 65
ten, 52, 54, 71-73
Precision, 58
Prime:
factor, 17
number, 152
Principles of:
measurement, 58
verniers, 63
Prims, 193
Product:
general, 11
of sum and difference, 106
Proper fraction, 29
Proportion, 142
Proportionality constant, 147
Pure imaginaries, 161
Pythagorean Theorem, 199
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Quadrant, definition, 131
Quadratic:
definition, 167
equations, 172, 179
formula, 170-172
Quadrilateral, 186
Quotient, 11

Radical, 73, 102
Radicand, definition, 74
Radius:

circle, 187
sphere, 198
Ratio:

definition, 141

trigonometric, 201
Rational:

number, 28, 77, 158

roots, 178

Rationalizing denominators, 77, 106

Ray, geometric, 5
Reading:
decimals, 47
micrometers, 62
slide rule scales, 87
Real numbers, 66, 158
Reciprocals, 73
Rectangle, 186
Rectangular,
coordinates, 19, 130
prism, 193
Reducing:
decimals, 47
fractions, 31, 116
Regrouping, 7
Regular pyramid, 196
Relative error, 60
Remainder, 14
Removing parentheses, 101

Rhombus, 186
Right:
angle, 182

circular cone, 196

cylinder, 194

prism, 193

triangle, 185, 199
Roots:

equal, 177

imaginary, 177

of aa equation, 65, 168

rational, 178
Rounding off, 47

Scientific notation, 71
Sector of a circle, 188

226

Segment of a circle, 188
Sense reversal, inequalities, 129
Sets:

comprising points and lines, 5

elements of, 4

infinite, 6
Sides of a triangle, 183
Signed numbers, 19, 23
Significant digits, 60, 73
Similar triangles, 200
Simplifying radicals, 75
Simultaneous:

equations, 133

inequalities, 140
Sines, law of, 208
Slide rule:

description, 86

operation, 88-97
Solid figures, 193
Solving:

linear equations, 122-124

oblique triangles, 208
Special:

exponents, 69

products, 106

triangles, 204-2%0
Spheres, 197-198
Square:

geometric, 186

of a sum or difference, 108

root, 78, 92
Squaring:

by slide rule, 91

complex numbers, 165
Straight and curved lines, 181
Subject of a formula, 152
Subscripts, 152
Subsets, 4

Substitution method for solving systems of

equations, 136

Subtracting:

by borrowing, 8

complex numbers, 164

decimals, 51

fractions, 118

general, 7

mentally, 10

signed numbers, 22
Subtrahend, 7
Sum:

angles of a triangle, 185

general, 7
Supplement of an angle, 182
Surface area:

prism, 194

k31
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Surface area—Continued:
sphere, 198
Symbols:
grouping, 101
in formulas, 152
mathematical, 219
Synthetic division, 110
System of equations, 133

Tangent to a circle, 187
Terms:

and coefficients, 99

of a proportion, 142
Test for divisibility, 18
Thermometer, 19
Three percentage cases, 56
Translating formulas, 155
Trapezoid, 187
Trial quotients, 14
Triangles:

general, 183- 186

similar, 200

special, 204-205
Triangular prism, 193
Trigonometric:

ratios, 201

tables, 202, 213
Trinomial:

factoring, 115

squares, 114

Uneven division, 14
Unit, imaginary, 159

2217

Unlike:
fractions, 33
signs, adding, 21

Variable, 120, 151
Variation:
combined, 150
general, 146
joint, 149
Vector representation of complex numbers, 163
Verbal problems, 138-139, 179
Vernier:
caliper, 64
general, 61-64
measurements, 63
micrometer, 64
principle, 63
Vertex:
angle, 182
triangle, 183
Vertical:
angle, 182
line, 181
Volume:
prism, 194
pyramid, 197
sphere, 198

Weights and measures, 220
Whole numbers, 1

Zero as an exponent, 69
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