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PREFACE

THis TEXT was prepared originally and has been revised annually by
the Space Directorate of the Air University Institute of Professional
Development. The Space Handbook serves as the text for the Funda-
mentals of Space Operations Course. a resident course within AUIPD.
As such, the text was written at an intermediate level of academic dif-
ficulty but with considerablc depth of detail.

The objectives of the Fundamentals of Space Operations Course are:

1. To provide the student with an understanding of the basic physical
laws and principles of the space environment, propulsion, orbital
mechanics, guidance and control, and atmosnheri. penetration which
permit and limit space operations.

2. To provide the student ramiliarization with: objectives of the
national space effort; current technology; propulsion devices and launch
vehicles; electronic applications; present and possible future weapon and
support systems including limitations and feasibility.

3. To stimulate thought on new ideas and concepts so that the stu-
dent may apply more effectively his knowledge in performance of space
planning and operational duties.

The Space Handbook also serves as the support text for the Astro-
nautics and Space Operations phase of instruction, Air Force ROTC
Aerospace Studies 300 Course.

Recommendations for improvements of Space Handbook should be
sent to: Commandant, Air University Institute for Professional De-
velopment, Maxwell AFB, Alabama, 36112.
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CHAPTER 1

THE SPACE ENVIRONMENT

—

OR THOUSANDS of years man has looked at the heavens and wondered.

What arc the stars? What arc the planets? The Moon? The shooting stars?
Why and how do these hcavenly bodies movc? Answers derived from supersti-
tion, philosophy, religion and fear abound in the literaturc and folklorc of all
peeples. Only recently, in the history of man, have answers been found in
observation and cxperimentation. And, even these answers are tentative. The
success of the first manned lunar landing, Apollo 11, was truly a milestone in
the search for understanding which continues at a quickening pace.

Today there are at least two ways of looking at the space environment. The
first is the magnificent look—the look that sces space as the whole universe in
terms of both matter and encrgy. The second is the practical look—the look that
secs space as another region in which man has begun travel. The former staggers
thc imagination and stimulates both wonder and reverence. The latter is the
immediate conccrn of the military man.

This chaptcr will start with a brief discussion of the universe as it is believed to
be today. Following that will be a morc dctailed presentation of the characteristics
of the necar-carth space which has immediate military importance.

THE UNIVERSE

Man lives on an Earth which is onc of nine planets in separate orbits around a
star called the Sun. In addition to the planets, the Solar System contains thirty-two
natural satellitcs, a variable number of artificial satellites, about thirty thousand
asteroids, a hundred billion comets and countless specks of dust. These numbers
seem impressive. But the Sun, which is the master of the entire system, is more
impressive. It contains 99.9 percent of the matter in the Solar System.

The nearest stellar neighbor to the Sun is a star called Alpha Centauri, a
conspicuous double star which is visible from the southern hemisphere. About
two degrees from it is Proxima Centauri, so named because it was once thought to
be even ncarer than Alpha Centauri. This group of three stars is about 4.3 light
years from the Sun. That is, it takes light, traveling at 186,300 miles per second,
about 4.3 years to reach the Solar System. It would take over 100,000 years for a
spacecraft tiavelling at 25,000 miles per hour to make the trip. To date, the
fastest man has ever travelled is about 25,000 miles per hour. It is clear that man
cannot live long enough to travel to the nearest star. Of course, this is the present
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status of such travel. In the future greater speeds, or perhaps the contraction of
time which Dr. Albert Einstein predicted, may make such travel a reality.

Another way to visualize these immense distances is to imaginc the Sun as
represented by a golf ball. On this scalc Alpha Centauri would be represented by
a pair of golf balls which arc a fraction of a mile apart and 500 miles away.
Proxima would be a grain of sand about 25 miles from the pair of golf balls.
Some of the other closest stars are:

Barnard’s Star 6.1 light years
Wolf 359 8 light years
Sirius 8.6 light years
Procyon 11  light years
Vega 27 light years

But thesc are only the Sun’s ncarest neighbors. Betelgeuse is 300 light years
away. Polaris (thc North Star) is 600 light years away. Yet all of these are only
a few of a vast array of stars that form a group called the Milky Way.

The name given to a large group of stars, dust, and gas that stay together in a
structurc is a galaxy. The Milky Way is simply the view from Earth of the
galaxy in which the Sun is onc star. Figure 1 is a view of the Milky Way as it
would appear from the side. Figure 2 is its appearance from above. Of course
these are artists’ conceptions, because such pictures cannot be taken from inside
the galaxy. The Milky Way is about 100,000 light years in diameter. The Solar
System is located in onc of the spiral arms of the galaxy, about 30,000 light years
from the center.

How many stars arc there in this magnificent structure? Of course no one
knows the cx:ct answer. However, Dr. Harlow Shapley estimates the number at
about 200 *' .ion. All of these arc in motion around the center of the galaxy. At
the distar. - of the Solar System from the center of the galaxy, the speed of
revolution is about 135 miles per second or about 486,000 miles per hour. Even
at this tremendous speed, it takes the sun 220 million years to make one trip
around ‘hc galactic center. Stars closer to the center move faster and those
farther from the center move more slowly.

Beyond thc Milky Way the tclescopes show other objects. What are they? Gas?
Dust? Stars? In the year 1755 Immanuel Kant suggested that these were “island
universes”—other galaxics similar to the Milky Way, cach consisting of billions of
stars. However, it was not until 1917 that an astronomer using the Mount Wilson
telescope identified a star in one of these objccts beyond the Milky Way.

Today we know that these objects are indeed other galaxies. Some have
diameters in the order of 7,000 light years. Others have diameters even greater
than the Milky Way—about 150,000 light years. The smaller ones probably
contain a billion stars. The larger ones may contain two hundred billion or more.
How many galaxies are there in the universe? Again the answer must be an
estimate, and the most recent one is huge—one hundred billion! Finally, if one
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asks the question, “How many stars arc there in the Universe?” the answer is
approximately 10-! stars! Although no one can imagine this number, Sir James
Jeans has provided an analogy which helps. He suggests that the number of stars
in the Universe is something hke all the grains of sand on all the beaches of all
the Earth.

To complete the modern idea of this stupendous structure, it is belicved that the
whole thing is expanding. Every galaxy is rushing away from every other galaxy
at tremendous spced! The most distant galaxy visible in a telescope is racing
away at about 75,000 miles per second or 270 million miles per hour.

THE MILITARY SPACE ENVIRONMENT

Most of the space discussed above is of little military importance today. How-
ever, the near-carth space is important for many military operations. Its charac-
teristics set boundary conditions on both the operations that can be conducted
and the equipment required. Consequently, the remainder of this chapter will be
devoted to the hazards and physical conditions of near-earth space. ‘“Near-earth”
will not be defined precisely, but it is understood to mean not more than 100
million miles from Earth. The Sun is about 93 million miles away. Thus the Sun,
the inner planets, and the space between them is the concern of this section.
Emphasis will be upon space this side of thc¢ Moon.

The first topic to consider is: Where does space begin? Certainly it does not
begin at the surface of the Earth because that is where the atmosphere begins. At
an altitude of 10,000 feet the oxygen pressure of the atmosphere is not great
cnough to keep people efficient over a long period of time. Many people, of
course, become acclimatized to altitudes of 10,000 feet and higher. But for a man
who lives near sea-level, the oxygen pressure at levels above 10,000 feet is
insufficient to sustain active and efficient performance. Thus the Air Force
requires the use of supplemental oxygen by crew members at altitudes above
10,000 feet.

Approximatcly one half of the Earth’s atmosphere is below an altitude of
three miles. But it is not until an altitude of about nine miles that supplemental
oxygen fails as a sufficient aid to sustain human life. Here the combined pressure
of carbon dioxide and water vapor in the lungs equals the outside atmosphere
pressure and breathing cannot take place without supplemental pressure. Hence,
at this altitude pressure cabins or pressure suits become a .:acessity.

The vapor pressure of man’s body fluids is about 47 mm of mercury. As soon
as the atmospheric pressure drops to this level, bubbles of water vapor and other
gases appear in the body fluids. This means literally that the blood will boil.
The gas bubbles first appear on the mucous membranes of the mouth and eyes
and later in the veins and arteries. This would happen to an unprotected man at
an altitude of 12 miles. However, supplemental pressure will suppress this evil.

At 15 miles compressing the outside air to pressurize a cabin is no longer
effective. At that altitude the air density is about %- of the sea level value.
Compressing this thin air is perhaps not an impossible task but it certainly is an
uneconomical task. Further, the act of compressing air would involve undesirable
heat transfer to the air. Finally, at this altitude the a‘mosphere contains a
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significant percentage of ozone. If this were compressed it would poison the cabin
atmosphere. Hence, above this altitude the cabin or space suit must have a
supply of both oxygen and pressure independent of the outside atmosphere. As
far as man is concerned. 15 miles above the surface can be considered the
beginning of space. Above this altitude man must take everything he needs with
him. His cnvironment will supply him with neither food nor air. He needs a
senied environment containing necessary supplies from Earth.

Five miles farther out, at the 20 mile level, is the operating limit for turbojet
engines. At 28 miles ramjct engines do not have enough air to operate. Above
this altitude engines must be supplied with both a fuel and an oxidizer. Thus, to a
propulsion engineer 28 miles above the Earth is the beginning of space. Above
this he must use rockets.

In one sense space begins at 50 miles because flight above this altitude earns a
crew member the right to wear Astronaut’s wings.

In 1964, a New York law firm asked the Air Force Office of Aerospace
Research to define the beginning of space. This scientific organization based the
answer on aerodynamic forces. Such forces acting on ballistic reentry vehicles,
lifting recntry vehicles and boost-glide orbital vehicles can usually be neglected
at altitudes above 100 kilometers or 62 miles. Thus, for the aeronautical engineer
concerned with lift and drag, space may begin at 62 miles.

At about 100 miles above the earth is a region of darkness and utter silence.
This is the region of the black sky. The stars appear as brilliant points of
light, and between them is absolutc black because there is not enough air to
scatter light. Neither is there enough air to carry sound or shock waves. There
arc no sonic booms.

From the above discussion it is clear that there are many answers to the

question, “Where does space begin?” The acceptable answer depends upon the
reference frame in which the question was asked.

“Ts space really nothing?” The answer is “No.” Space is filled with surpris-
ing amounts of matter and is flooded with energy. First consider the density of
matter by starting up from the Earth’s surface. At the surface the concentra-
tion of particles in air is about a million, million, million particles per cubic
centimeter (108/cm3). There is a decrease in particle density with altitudes ard
the average figures given are only approximate. An average figure for the zon.
between 7 miles and 50 miles is about 101/cm®. From 50 miles to 600 miles
an average figure is about a million particles per cubic centimeter (108/cm?).
From 600 miles to 1200 miles there cre still jn the order of 100 particles per
cubic centimeter. Above 1200 miles there will be found something like one
particle per cubic centimeter. This is certainly far from nothing. There are aiso
localized conditions that cause the particle density to be much higher. Some of
these conditions will be discussed later. And, all of space is flooded with electro-
magnetic energy in many forms from the Sun, from the stars in the Milky
Way and even from other galaxies in the Universe.

However, from another point of view, space is “not much.” Consider air

pressure. At the Earth’s surface the pressure varies around the figure 760 mm
of mercury. Above 1200 miles the pressure is much less than one mm of mer-
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cury. In fact, it probably is around 10-!2 to 10~1® Torr.* This pressure is so
low that it is often called a “hard vacuum.” It causes some unexpected phe-
nomena. A few of these will be discussed as illustrations.

In the atmosphere any metal is covered with at least a single layer of ab-
sorbed gas. In a hard vacuum this film of gas bleeds into space. Metals touch-
ing each other tend to weld together. In the atmosphere this doesn’t happen
because the thin film of air acts as a lubricant keeping the metals apart. To
prevent this “cold welding” in space, special measures must be taken.

Some metals are stronger in a hard vacuum. If a crack forms in a metallic
surface when the metal is surrounded by air, molecules of air immedi~tely enter
the crack. Chemical reaction with the metal occurs. If the reaction product is
more voluminous than the original crack, a wedging action occurs and enlarges
the crack. In a hard vacuum a chemical reaction causing an enlargement of a
crack does not occur. Thus some metals may be stronger in space than they
are on Earth,

To study space effects such as the above, it is useful to simulate a hard
vacuum on Earth. Late in 1965 USAF completed a large Aerospace Environ-
mental Simulation Chamber at the Arnold Engineering Development Center in
Tennessee.

Electromagnetic Radiation

Visible light, ultra-violet, x-rays, infrared, radio and other forms of energy
can travel through the hard vacuum of space as eleciromagnetic radiation. This
term refers to the fact that radiation consists of a varying electric field and a
varying magnetic field. Together these fields form a wave. Such a wave can
be transmitted through a vacuum and does not require the presence of a ma-

* A Torr is the same as one millimeter of mercury. It is named in honor of Torricelli and is commonly
used in low pressure measurements.
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terial niedium. This form of cnergy floods all of space. Its intensity varies
with proximity to the Sun, or to a star.

Notice in Figure 3 that visible light covers only a very narrow band in the
spectrum of electromagnetic energy. The cntire spectrum  ranges from frequen-
cies of about 10' Hertz up to abeut 107! Hertz.

Most of the radintion coming from the Sun and stars is absorbed by the
Earth’s atmosphere before ii reaches the surface of the Earth. In fact, there
arc only two “windows” through which space may be observed. One window
includes visible light frequencies and part of the ultraviolet and infrared fre-
quencies. This is called the optical window. Another window called the radio
window is found in the radio frequencies of approximately 10° cycles per sec-
ond. Man is protected from (or denied, depending upon the point of view) all
other frequencies by the Earth's atmosphere. In space radiation of frequencics
throughout the spectrum is present. Man may use it as a source of informa-
tion, but he must also protcct himself against it by a space cabin or space suit.

Meteoroids and Micrometeoroids

The three terms “meteoroid,” “meteor,” and “meteorite” have similar meaning
and arc often used interchangeably. Meteoroid refers to a particle, large or
small, moving in spacc. When a metcoroid cnters the atmosphere and begins
to glow. it is then called a meteor. If that same particle survives the trip through
the atmosphere and hits the earth, thc remnant is called a meteorite. Some
meteoroids must be very large because meteorites with masses of several tons
have been found. Most meteoroids, however, are quite small. Extremely small
meteoroids are called micrometeoroids.

Metcoroids and micrometcoroids move with speeds varyirg from about 30,000
miles per hour to 160,000 miles per hour. At these speeds, impact between 2
satllite and a large metcoroid would be catastrophic. Impacts between micro-
meteoroids and a satellite would not be cacastrophic but could erode the satel-
lite’s surface.

Several satellites have rather mystcriously ceased to function, and there is
some conjecture that meteoroid impact damage may have been the cause. The
probability of metcoroid and micrometoroid impact has been extensively studied.
Many methods have been employed. Micrometeoroids so small that it would
take about 125 of them to cqual the thickncss of a piece of paper have been
captured, and they have been studied with an electron microscope. The Pegasus
satellites, Explorer XXIII and Explorer XVI, are examples of satellites used to
study the provlem. The Pegasus satellites reported the number of penetrations
of their panel materials such as aluminum. Explorer XVI, launched December
16, 1962, reported 62 meteoroid penetrations in 7-%2 months of space travel.
Mariner IV was hit by over 150 micrometeoroids on its trip to Mars. These
and othcr data have led to the conclusion that the probability of a satellite
being hit by very small micrometeoroids is high and of being hit by catastrophi-
cally large ones is small

Figurc 4 provides some idea of thc probabilities involved in the Apollo
Project. The probabilities are basea upon an estimated vehicle cross section of
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ten square meters and an exposure of ten days. The horizontal axis shows mass
of the mcteoroids or micrometeoroids in grams. (About 5 grams equals the
weight of a nickel.) The vertical axis is scaled in probability until the figure
onc is reached. This figure means that the vehicle is certain to be hit. Above
that, the scale means number of hits in a ten-day period. Notice that the
probability of collision witl: a particle which weighs 10~% grams is 1.0. This
kind of particle would penetrate about 0.05 cm into an aluminum skin.

In general, the problem of meieoroid hazard is not as great as was once
thought, but it is not negligible. Pintection is provided in space suits and cap-
sules. The possibility of a catastrophic hit remains. Extensive studies are con-
tinuing.

Cosmic Rays

Cosmic rays arc very small particles which have been travelling within the
Milky Way for millions of years. Some may even come from other galaxies.
They arc positively charged and move with great speed. It would take about 10
billion cosmic rays to equal the thickness of a piece of paper. About 84% of
them arc protons, and about 14% are Alpha particles. The rest are nucleii of
atoms with higher atomic numbers ranging from lithium to iron. The speed
of ~osmic rays is not usually dcfined. Rather, the Kinetic energy level is given.
Speed and mass are the two factors which are incorporated into kinetic energy.
The energy of cosmic rays is usually stated in electron volts (ev).* In these

* Other frequently used terms are kev (one thousand ev). mev (one million ev) and bev (one billion ev).
Energy in electron volts can be converted to kinetic energy. Then.if the mass of a proton is known, its
speed can be calculated.
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units. the cnergy of cosmic rays varies from about 40 million electron volts to
about a million, million, millivn clectron volts (10" million ev). Energies greater
than a billion clectron volts mean that the particle’s speed is new that of light.

Cosmic rays arrive at Earth from all dircections. Additional piotons also arrive
at Earth from the direction of the Sun. The former are often called “galactic
cosmic rays™: the latter are “solar protons.” When cither galactic cosmic rays or
solai protons collide with atoms of the Earth’s atmosphere, the atoms break up,
or disintegrate. This process produces a shower of smaller particles which mcve
off in all directions from the site of the collision. The particles are varied in
kind and energy but include neutrons, electrors, and mesons, as well as some
heavier particles. One of the ways used to study cosmic radiation and its -ollision
with atoms is to fly a photographic plate into space. When the plate is recovered,
it frequently will show the result of a cosmic ray striking an atom in the photo-
graphic plate and breaking the atom into smaller particles. The charged particles
lcave traces on the plate; the resulting image resembles a star. Such a collision
is often called a “collision star” or “disintegration star.”

The Earth’s atmosphere serves to protect man from the effects of primary
cosmic radiation; in space man would bc exposed to a higher intensity of cosmic
radiation than he is on Eaith. Also, since the cosmic radiation particles are
charged particles the Earth’s magnetic field acts as a shield. The effect is to
divert many of e particles to the north and to the south. The result is that
man on carth is protected by both the Earth's atmosphere and magnetic field.
When man ventures into space, he abandons this natural protection.

Beyond the magnetic influence of the Earth, the cosmic radiation from the
galaxy presents a flux of one to two particles per square centimeter per second.
Despite the high cnergy of galactic cosmic rays, there will be little hazard to
man because of the low flux. Even in a year’s time the total radiation dose
expected from this source is from 6 to 20 rads. This is less than one-tenth of the
dose that would make one-half of recipient humans feel sick or nauseated.

Solar Flares

The high speced solar protons emitted by a solar flare are probably the most
potent of the radiation hazards to spacc flight. Flares themselves are probably the
most spectacular disturbances seen on the sun. They are observed optically as
a sudden, large increase in light from a portion of the Sun’s atmosphere. A flare
may spread in area during its lifetime which may be from several minutes to a
few hours. Flares arc classified according to a range of importance of 0 to 4.

There is a relationship between the number of sunspots and the frequency of
flarc formation, but thc most important flares do not necessarily occur at sun-
spot maximum.

There arc many events that may occur at Earth following a solar flare although
not many flares produce all of the possible events. In addition to the increase in
visible light, minutes after the start of a flare there is a Sudden Ionospheric Dis-
turbance (SID) in the Eanh’s ionosphere. This, in turn, causes short wave fade-
out, resulting in the loss of long range communications for 15 minutes to 1 hour.
X-rays emitted by the flare probably cause the SID’s. During the first few minutes
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TABLE 1
Solar Flare Classification

Area*
hmportance (Millionths of Sular Hemisphere) Average Duration
I T Less than 100 17 min
1 100 to 249 32 min
2 250 to 599 69 min
3 600 to 1200 145 min
4 Greater than 1200 145 min
BRIGHTNESS CATEGORIES  FAINT (F)
NORMAL (N)

BRILLIANT (B)

* The area of the earth’s disk is approximately cquiv_lent to the area of an Irr;)ortam-c one flare.

of a flare therc may be a radio noise storm, consisting of bursts >f noise over a
wide range of frequencies. In addition, there may be disturbances in th: Earth’s
magnetic field, changes in the Auroras, and decreases in galactic cosmir ray in-
tensity. However, from the point of view of a space traveller, by far tre most
important effect is the marked increase in solar protons. The energy of these
protons ranges from about 10 million electron volts to about 500 million eleitron
volts. The flux may be quite high. Consequently, the dose of radiation accumu-
lated during exposure to the solar protons may vary from negligible to well above
a lethal dose.

Construction of space vchicles sufficiently shielded to protect against all possi-
ble solar proton events is impractical due to the amount and density of required
shielding materials. Consequently the best hope for protection lies in developing
a method for reliable prediction of flare occurrence and intensity. The USAF Air
Weather Service is charged with this responsibility.

The Van Allen Radiation Belt

Another problem that man must overcome in venturing into space is trapped
radiation. As a result of experiments conducted in 1958 with the US Explorer
I satellite and subsequent experiments, Dr. James A. Van Allen and his asso-
ciates discovered the existence of gecomagnetically trapped particles encircling the
earth. When electrons and protons, and perhaps some other charged particles,
encounter the Earth’s magnetic field, many of them are trapped by the field.
They oscillate back and forth along the lines of force, and since the magnetic field
completely encircles the Earth, the trapped particles completely encircle the Earth.

The belt has an inner and outer portion. Recent data shows that the toroidal
shaped volume occupied by the Van Allen radiation is permeated with both pro-
tons and electrons. The protons are most intense at about 2,200 miles. The elec-
tron flux peaks at about 9,900 miles. The low particle density separating the two
belts is often called the “slot.” In this particular volume of space some phenomena,
as yet not fully undestood, reduces the lifetime of the charged particles.

The inner Van Allen belt starts at an altitude of about 250 miles to 750 miles,
dependirg upon latitude. It extends to about 6,200 miles where it begins to over-
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lap the outer belt and where the “slot” begins. The inner belt extends from al.out
45" north latitude to about 457 south latitude.

The outer Van Allen belt buging at about 6,200 miles and extends to between
37.000 and 52,000 miles. The upper boundary is dependent upon the activity of
the Sun.

Both the inner and outer belts were affected by a high altitude nuclear device
test in July 1962. Radiation in both belts increased after the detonation, and the
low radiation slot scparating the two belts was eliminated for some time.

Experience has shown that space vehicles in low circular orbit (125-350 miles)
receive an insignificant amount of radiation from the Van Allen zones. However,
a vehicle in a highly cccentric orbit or one in a high altitude circular orbit can re-
ceive an important dosc. For example, a satellite in a synchronous orbit over thc
cquator will be close cnough to the center of the outer zone to accumulate a
hazardous dose. But, as demonstrated by Apollo lunar missions, man can safely
transit these zones in a spacccraft with minimal shielding by judicious selection of
the flight trajectory.

The Van Allen belt varies daily with changes in the magnetosphere. On the
Sun side of Earth it is flattened. On the night side of the Earth it is elongated.

The Solar Wind

Because of the high temperature of the Siin’s corona, protons and electrons
beyond a certain distance from the San acquire velocities in excess of the rscape
velocity from the Sun. Thus there is a continuous outward flow of charged par-
ticles in all dircctions from the Sun. This has *_.¢n called the solar wind. it is a
plasma wind, rather than a gas wind. Its velocity and density vary with sunspot
activity. During the time of sunspot minimum at the Earth’s distance from the
Sun, the density is about 100 particles per cubic centimeter. The speed is about
300 miles per sccond. At sunspot maximum the corresponding density is probably
around 10,000 particles per cubic centimeter, and the speed is about 900 miles
per sccond. When the solar wind encounters the Earth’s magnetosphere, it flows
around the magnetosphere, which is flattened in the process. On the dark side of
the Earth the magnctosphere is elongated.

The cnergy of the particles in the solar wind is not high. No hazard to man
is expected from the wind. However, it is cither the cause of or a contributor to
the aurora which illuminates the polar night sky. Within the past few years ground
based obscrvations %. . been combined with information acquired by rockets
and carth satellites ‘o provide an explanation of this previously baffling beauty.
The magnetospherc of the Earth acts like a giant cathode-ray tube, directing
charged particles from the solar wind into beams and focusing them on the Earth’s
polar regions. The aurora is a fluorescent luminosity produced by the electrons
and protons of the solar wind which strike atoms and molecules of oxygen and
nitrogen high in the atmosphere of tte polar region.

The radiation hazard of space may be summarized as follows:

(1) Electromagnetic energy in space may be shielded and is not a serioys threat
to life.
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(2) Electromagnetic energy may upset radio communication and guidance
cquipment.

(3) Galactic cosmic rays and solar wind do not precsent a serious threat to
space travel.

(4) Van Allen radiation does present a serious threat, but the location of the
belts is sufficiently well known that flight trajectories may be planned to
limit time spent in the hazardous regions.

(5) Protons emitted at the time of a solar flare present the greatest uncertainty

and the greatest threat to manned flight in regions beyond the protection
of the Earth’s atmosphere and magnetosphere.

BIBLIOGRAPHY

Air Force Cambridge Research Laboratories. AFCRL in Space. L. G. Hanscom Field,
Bedford, Mass: Office of Aerospace Research, 1967.

CosBY, WiLLiaM A. and LYLE, ROBERT G. The Meteoroid Environmen! and its Effects on
Materials and Equipment. Washington, DC: U.S. Government Printing Office, 1965.

Guide to Solar-Gecphysical Activity, 4th Weather Wing Pamphlet, sWWP 105-1, Department

of the Air Force, Headquarters 4th Weather Wing (MAC), Ent Air Force Base, Colorado,
1 February 1969,

FLINDERS, CoL. DALE J. “The Spoce Forecasting System: Confluence of Military and
Scientific Interests,” Air University Review, Nov-Dec 1969, pp. 37-50.

GLASSTONE, SAMUEL. Sourcebook on The Space Sciences. New York: D. Van Nostrand
Company, Inc.,, 1965. Chapters 6 through 12.

Forecasting Solar Activity and Geophysical Responses, 4th Weather Wing Manual, sWWM
105-1, Solar Forecast Facility Headquarters, 4th Weather Wing, Ent Air Force Base,
Colorado, 28 June 1968.

Office of Aerospace Research. “The Videometer, A New Instrument for Soiar Flare Analysis,”
OAR Research Review, Vol. IX No. 1, 1970, p. 7.

ZIMMERMAN, FRANK J. Meteoroid Threat to Extravehicular Space Suit Assemblies. Aerospace
Medical Research Laboratory, AFSC, Wright-Patterson AFB, AMRL-TR-68-86, June 1969.

1-12

<3

o4




CHAPTER 2

ORBITAL MECHANICS

HE STUDY of trajectories and orbits of vehicles in space is not a new science

but is the application of the concepts of celestial mechanics to space vehicles.
Celestial mechanics, which is mainly concerned with the determination of tra-
jectories and orbits in space, has been of interest to man for a long time. When
the orbiting bodies are man-made (rather than celestial), the topic is generally
known as orbital mechanics.

The early Greeks postulated a fixed earth with the planets and other celestial
bodics moving around the earth, a geocentric universe. About 300 B. C., Aristar-
chus of Samos suggested that the sun was fixed and that the planets, including
the earth, were in circular orbits around the sun. Because Aristarchus’ ideas were
too revolutionary for his day and age, they were rejected, and the geocentric
theory continued to be the accepted theory. In the second century A.D., Ptolemy
amplified the geocentric theory by explaining the apparent motion of the planets
by a “wheel inside a wheel” arrangement. According to this theory, the planets
revolve about imaginary planets, which in turn revolve around the earth. It is
surprising to note that, even though Ptolemy considered the system as geocentric,
his calculations of the distance to the moon were in error by only 2%. Finally, in
the year 1543, some 1800 years after Aristarchus had proposed a heliocentric
(sun-centered) system, a Polish monk named Copernicus published his De
Revolutionibus Orbium Coelestium, which again proposed the heliocentric theory.
This work represented an advance, but there were still some inaccuracies in the
theory. For example, Copernicus thought that the orbital paths of all planets were
circles and that the centers of the circles were displaced from the center of the
sun.

The next step in the field of cclestial mechanics was a giant one made by a
German astronomer, Johannes Kepler (1571-1630). Afier analyzing the data
from his own observations and those of the Danish astronomer Tycho Brahe,
Kepler stated his three laws of planetary motion.

A contemporary of Kepler’s, named Galileo, proposed some new ideas and
conducted experiments, the results of which finally caused acceptance of the
heliocentric theory. Some of Galileo’s ideas were expanded and improved by
Newton and became the foundation for Newton’s three laws of motion. Newton’s
laws of motion, with his law of universal gravitation, made it possible to prove
mathematically that Kepler’s laws of planetary motion are valid.

Kepler’'s and Newton’s work brought celestial mechanics to its modern state
of development, and the major improvements since the days of Newton have
been mainly in mathematical techniques, which make orbital calculations easier.
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Because the computation of orbits and trajectories is the basis for predicting
and controlling the motion of all bodies in space, this chapter describes the fun-
damental principles of orbital mechanics upon which these computations are
based. It also shows how these principles apply to the orbits and trajectories used
In spacc opcrations.

MOTION OF BODIES IN ORBIT

Bodies in space move in accordance with defined physical laws. Analysis of
orbital paths is accomplished by applying these laws to specific cases. Orbital
motion is different from motion on the surface of the earth; however, many con-
cepts and terms arc transferable, and similar logic can be applied in both cases.
An understanding of simplified linear and angular motion will permit a more
thorough appreciation of a satellite’s path in space.

Linear Motion

Bodics in space are observed to be continuously in motion because they are
in different positions at different times. In describing motion, it is important to
use a reference system. Otherwise, misundesstanding and inaccuracies are likely
to result. For example, a passenger on an airliner may say that the stewardess
moves up the aisle at a rate of about 5 ft per sec, but, to the man on the ground,
the stcwardess moves at a rate of the aircraft’s velocity plus 5 ft per sec. The
man in the air and the man on the ground are not using the same reference
system. For the present, the matter of a reference system will be simplified by
first describing movement along a straight line, or what is called rectilinear
motion.

Rectilinear motion can be described in terms of speed, time, and distance.
Speed is the distance traveled in a unit of time, or the time rate of change of
distance. An object has uniform speed when it moves over equal distances in
equal periods of time. Speed does not, however, completely describe motion.

Motion is more adequately described if a direction as well as a speed is given.
A speedometer tells how fast an automobile is going. If a direction is associated
with speed, the motion is now described as a velocity. A velocity has both a
magnitude (speed) and a direction, and it is therefore a vector quantity.

Uniform speed in a straight line is not the same as uniform speed along a
curve. If a body has uniform motion along a straight line for a given time, then

St — S,

=t
S, is the initial position, s, is the final position, t, is the initial time, and t; is the
final time; or more simply, the velocity is the change in position divided by the
change in time. The units of velocity are distance divided by time, such as ft
per sec or knots (nautical miles per hour).* Since velocity is a vector quantity,
it may be treated mathematically or graphically as a vector.

If velocity is not constant from point to point (i.e., if either direction or speed
is changed), there is acceleration. Acceleration, which is also a vector quantity,

average velocity is represented by the equation v = . In the equation,

* The nautical mile (NM) is one minute of a great circle. In this course, use the conversion that 1 NM =
6,080 feet = 1.15 statute miles.




is the time rate of change of velocity. The simplest type of acceleration is one
in which the motion is always in the same direction and the velocity changes
equal amounts in equal lengths of time. If this occurs, the acceleration is constant,
and the motion can be described as being uniformly accelerated.

Vi — Vo
tt— 1t
specified time interval. A good example of a constant acceleration is that of a
free-falling body in a vacuum ncar the surface of the earth. This acceleration
has been measured as approximately 32.2 ft per sec per scc, or 32.2 ft per sec®.
It is usually given the symbol g. Since an acceleration is a change in velocity over
a period of time, its units are ft/sec®, or more generally, a length over a time
squared. Actually, constant acccleration rarely exists, but the concepts of constant
acceleration can be adapted to situations where the acceleration is not constant.

The following three equations are useful in the solutions of problems involving
linear motion:

The equation a,, = defines the average acceleration, over the

|
s
—*
+

)

™

(1) s

(3) 2as = v — V2
where s is linear displacement, v, is initial linear velocity, v; is final linear velocity,
a is constant linear acceleration, and t is the time interval.

Angular Motion

If a particle moves along the circumference of a circle with a constant tangential
speed, the particle is in uniform circular motion. Since velocity signifies both
speed and direction, however, the velocity is constantly cha..zing because the di-
rection of motion is constantly changing. Now, acceleration is defined as the time
rate of change of velocity. Since the velocity in uniform circular motion is chang-
ing, there must be an acceleration. If this acceleration acted in the direction of
motion, that is, the tangential direction, the magnitude of the velocity (the speed)
would change. But, since the original statement assumed that the speed was
* constant, the acceleration in the tangent‘al direction must be equal to zero. There-
fore, any acceleration that exists must be perpendicular to the tangential direction,
or in other words, any acceleration must be in the radial direction (along the
radius).

Average speed is equal to the distance traveled divided by the elapsed time.
For uniform circular motion, the distance in one lap around the circle is 27T,
which is covered in one period (I'). Period is the time required to make one

trip around the circumference of the circle. Therefore, the tangential speed

27r . . . . .
Vi =—p - In uniform circular motion, the particle stays the same distance from

the center, therefore, radial speed, v, = 0. It has already been shown that

o . . A2 2
a, = 0; and it will be shown in the next section that a, = "717)'21' = V&
T
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Translatory motion is concerned with linear displacement, s; velocity, v; and ac-
celeration, a. Angular motion uses an analogous set of quantities called angular dis-
placement, 8; angular velocity, @; and angular acceleration, a.

In describing angular motion, it is convenient to think of it in terms of the rota-
tion of a radius arm (r), as shown in Fiare 1. The radius arm initially coincided
with the polar axis, but at some time later (t seconds) it was positioned as shown.

Y .
H v 1 radian

Figure 1.  Position of radius arm as rotated one radian (57.3 degrees) from the starting
point.

Angular displacement (#) is measurcd in degrees or radians. A radian is the
angle at the center of a circular arc which subtends an arc length equal to the radius
length. If the length of s equaled the length of r, & would be equal to one radian, or
57.3°. The central angle of a complete circle is 360° or 27 radians (27 = 6.28).

The following equations for angular motion are analogous to those studied earlier
for rectilinear motion:

0 = —:-—radians
Wy = urad/sec
tf - to
Qgy = urad/seCQ
tf - to
w = w, + at
t2
(-
200 = wlP — 0,2

In the equations, @; is final angular position; 6, is initial angular position; s is linear
displacement (arc length); r is the radius; w is average angular speed; wy is final
angular speed; w, is initial angular speed; t; is final time; t, is initial time; and « is
constant angular acceleration.

If a body is rotating about a center on a radius r, the tangential linear quantities
are related to the angular quantities by the following formulas [where 8, w, and o
are in radians]:

s = rf

Vi = T

a = o
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Principles of the Calculus Applied to Astronautics

Computations in the calculus are based upon the idea of a limit of a variable. Ac-
cording to the formal definition, the variable x is said to approach the constant 1 as
a limit when the successive values of x are such that the absolute value of the differ-
ence x — 1 ultimately becomes and remains less than any preassigned positive num-
ber, however small.

An example will make the definition easier to understand. The area of a regular
polygon inscribed in a circle approaches the area of the circle as a limit as the num-
ber of sides of the polygon approaches infinity (Fig. 2).

a. b. c.

Figure 2. Increase in the number of sides of a regular polygon inscribed in a eircle.

The area of a triangle is 1/2 bh. In general, if there are n sides to a polygon, the
polygon is made up of n triangles as shown in Figure 2. Therefore, the area of the
polygon is 1/2 nbh. As the number of sides (n) approaches infinity as a limit, the
product nb approaches the circumference of the circle (c). Also, as n approaches in-
finity, the value of h approaches the radius (r) as a limit.

This is read, “The limit of 1/2 nbh as n approaches infinity is equal to EZI

Butc = 27r

.". lim area of the polygon = lim nbh _ (271)I
n—> « n->oew 2 2
and —(2%)5 = a2 = area of the circle

Now, an inctement is the difference in two values of a variable. In the example
above, the ‘ncrease in area when the inscribed polygon increases the number of sides
by one is an increment of area; that is, the area of an inscribed square minus the
area of an inscribed triangle is an increment of area. An increment is written as Ax
which is read “delta x,” and does not mean A multiplied by x.
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In the previous section the radial acceleration for uniform circular motion was
. r - . . ..
given as a; = YO With the concepts of an increment and a limit, the value for
T
radial acceleration can be determined mathematically. In Figure 3, an increment of

arc has bLeen expanded to permit closer examination. The length r is the distance
from the center of the circle to the circumference. The horizontal distance v At is

Figure 3. An increment of an arc (left) and the increment expanded (right) to show
change in velocity.

the distance a body in uniform motion with a velocity v, would move in the time At.
However, at the completion of the increment of time the body is not at point A but
at point B, becausc this is uniform circular motion. The distance from A to B is

cqual tov, At + ﬁg_t'" where the subscript r refers to radial. However, for uni-

a, Att
2

form circular motion v, = 0. Therefore, the distance AB is equal to . Now,

applying the Pythagorean theorem to the triangle,

2 2
2 + (v At)? = [r + __a,?t :I

or, r* +v® At? = r2 4+ ra, At + _a,24At4

Subtracting r* from both sides,

a2 Attt

viZ At2 = r1a, At+ 2

Dividing both sides by A t2
v = ra + At

4
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To find the instantaneous values takc the limitas At = 0.

vt2=rar+£_é9)_=rar

LAy = —V—I§; As was to be demonstrated.

This text does not attempt to teach the processes of differentiating and integrating,
but its purpose is to give the student some understanding of how the calculus is used
in the study of space.

The definition of the derivative of y with respect to x is, in symbol form, -g—)%

= lim Ay Any calculus book has a table of derivatives, and fhere is also

Ax~0 A x
one in The Engineer's Manual by Ralph G. Hudson on pages 31 and 32.
The average velocity over a period of time, as given in the previous section, is:

St~ S,

v =
tt—1t,

Usually the average velocity is not of direct value in analysis, but the instanta-
neous velocity is. The speedometer in a car measures instantaneous speed, and if a
motorist is arrested for speeding, it is because of his instantaneous velocity, not his
average velocity. If s is the path of a particle, its instantaneous velocity is equal to:

ds = lim As
dt At~ 0At’

Example: A particle moves so that its distance from the origin at any time follows
the formula s = t3. Find its average and final, velocity and acceleration after 3 sec-
onds.

- St S th = 0’ 8 = 0
V= ==
tt—t te = 3, se = 27
_ 27-0 _
Vay = 3 =0 9 Answer
= G _ d (&)
Vi dt dt

From page 32 of The Engineer’s Manual:

—%—(u“) = p ot G0

4oy = 3es S 2 g

ve = 3(3)2 = 27 Answer

Bav = ‘g:::" = 273—0 = 9 Answer

ar = (g:‘ = d(gf) = 2 (3t2—1)—g+ = 6t = 18 Answer
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Note that with the use of differential calculus, final or instantaneous values for ve-
locity and acceleration can be detecrmined, but only average values can be dcter-
mined from the formulas given in the previous section.

If, in the example above, the acceleration were given as a, = 6t. the instanta-
neous velocity and position could be determined by the process of integration. Inte-
gral calculus is a summation process that is the inverse of differential calcutus.

Example: a; = 6t. Find v, after 3 seconds. If a curve is drawn with acceleration
on the vertical axis and time on the horizontal axis, the area under the curve is the
velocity (Fig. 4). Integration gives the sum of all the individual shaded rectangles as

NN
MARNNNN

N
N

%7,

N
-

Figure 4. Graph of the continuous function as = 6t.

A t approaches O as a limit. As A t—>0, the area of the reciongles approaches the area
under the curve as a limit and is the velocity in this problem. The symbol for inte-
gration is _f°. From the table of fundamental theorems on integrals (Hudson’s The
Engineer's Manual, p. 39),

o =£l_.
fudu n+1+c

In this example problem, the limits of integration, t = O to t = 3, are specified, so
the + c (constant of integration) may be dropped.

8 8 6t1+1 |3
Ve =fafdt —fﬁt dt = > .
[4] 0

3t2

= 3(3)2—3(0)2 =27  Answer

1]

Ve
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The processes of integration and differentintion of variables as applied to the
computation of velocity and acceleration tirough the caleutus are part of the study
of motion taken up in the branch of dynamics known as kinematics. The study of
the forces causing the motion belongs to another branch of dynamics called kineties,

LAWS OF MOTION

Natural bodies in space follow the basic laws of dynamics, as described by
Newton’s universal law of gravitation and his thrce laws of motion. By applying
the basic laws and making usc of calculus (also developed by Newton), onc can
explain and prove Kcpler's three laws of planctary motion. It would be well to
review Kepler’s laws before stating Newton’s law of universal gravitation, which
is onc of the laws upos which computation of trajectories and orbits* is based,
and Newton's three laws of motion, which describe terrestrial motion as well as
celestial mechanics.

Kepler’s Laws

From his observations and study, Kepler concluded that thc planets travel
around the sun in an orbit that is not quite circular. He stated his first law thus:
The orbit of each planet is an ellipse with the sun at one focus.

Later Newton found that certain refinements had to be made to Kepler’s first
law to take into-account perturbing influences. As the law is applied tc manmade
satellites, we must assumc that perturbing influences like air resistance, thc non-
spherical (pear shape) shape of the carth, and the influence of other heavenly
bodies are negligible. The law as applicd to statellites is as follows: The orbit of a
satellite is an ellipse with the center of the earth at one focus. The path of a
ballistic missile, not including thc powered and reentry portions, is also an
ellipsc, but one that happens to interscct the surface of the earth.

Kepler’s second law, or law of areas, states: Every planet revolves so that the line
joining it to the center of the sun sweeps over equal areas in equal times.

To fit earth orbital systems, the law should be restated thus: Every satellite
orbits so that the line joining it with the center of the earth sweeps over equal
areas in equal time intervals.

Wher: the orbit is circular, the application of Kepler’s second law is clear, as
shown in Figure 5. In making one completc revolution in a circular orbit, a
satellite at a constant distance from the center of the carth (radius r) would,
for cxample, sweep out eight equal areas in the total time period (P = 1). BEach
of these eight areas is cqual and symmetrical. According to Kepler’s second law,
the time required to sweep out each of the eight areas is the same. When a
satellite is traversing a circular orbit, therefore, its spced is constant.

When the orbit is elliptical rather than circular, the appli~ation of Kepler's
sccond law is not quitc so easy to sec; although the areas are equal, they arc
not symmetrical (Fig. 6). Note, for example, that the arc of Sector I is much
longer than the arc of Sector V. Therefore, since the radius vector sweeps equal

* The terms “trajectory” and “orbit” are sometimes used interchangeably. Use of the term ‘“‘trajectory”
came to astronautics from ballistics. the science of the motion of projectiles shot from artillery or firearms.
or of bombs dropped from aircraft, The term “orbit” is used in referring to natural bodies, spacecrafs, and
manmade satellites. It is the path made by a body in its revolution about another body, as by a planet about
the sun or by an artificial satellite about the earth.
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P=-0,P-1

Figure 5. Law of areas as applied to a circular orbit.

areas in cqual fractions of the total time period, the satellite must travel much
faster around Scctor T (near perigee) than around Sector V (near apogee). The
perigece (a word derived from the Greek prefix peri-, meaning “near,” and the
Greek root ge, meaning “pertaining to the earth”) is the point of the orbit nearest
the earth. The apogee is that point in the orbit at the greatest distance from the
earth (the Greek prefix apo- means “from” or “away from”).

Figure 6. Law of areas as applied to an elliptical orbit.

Kepler's third law, also known as the harmonic law, states: The squares of
the sidereal periods* of any two planets are to each other as the cubes of their
mean distances from the center of the sun.

To fit an earth orbital system, Kepler's third law should be restated thus:
The squares of the periods of the orbits of two satellites are proportional to each
other as the cubes of their mean distances from the. center of the earth. The

* The period of a planet about the sun.
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mean distance is the length of the semimajor axis (a) of the ellipse, which is an
average of the distances to perigee and apogee. Of course, in a circular orbit,
the mcan distance is the radius, r.

Newton’s Laws

While Kepler was working out his three laws of planctary motion, Galileo, an
Italian physicist and astropomer, was studying the effects of gravity on falling
bodies. Newton drew upon the work of both Kepler and Galileo to formulate
his laws of motion.

Newton’s first law states: Every body continues in a state of rest or of uniform
motion in a straight line, unless it is compelled to change that state by a force
imposed upon it. In other words, a body at rest tends to remain at rest, and a
body in motion tends to remain in motion unless it is acted upon by an outside
force. This law is sometimes referred to as the law of inertia.

The second law of motion as stated by Newton says: When a force is applied
to a hody, the time rate of change of momentum is proportional 1o, and in the
direction of, the applied force. If the mass remains constant, this law can be
written as F = Ma.

Newton's third law of motion is the law of action and reaction: For every
action there is a reaction that is equal in magnitude but opposite in direction to

the action. 1f body A exerts a force on body B, then body B exerts an equal
force in the opposite direction on body A.

Force as Measured in the English System

Newton’s three laws of motion are stated in terms of four quantities: force,
mass. length, and time. Three of these, length, time and cither forcc or mass,
may be completely independent, and the fourth is defir»d in werms of the other
threec by Newton's Sccond Law. Since the units and re.stve values of these
quantities were not known, Newton stated his second '2v/ as a proportionality.
Assuming that mass does not change with time, this proportionality is stated as
F = ma. ¥ proper units are selected, this statement may be written as an
equatiun:

F = ma

The following are used in the metric system of measurement:
F (dynes) = m (grams) times a (centimeters per second per second)

F (Newtons) = m (kilograms) times a (meters per second per second)

The most common force experienced is that of weight, the measure of the
body’s gravitational attraction to the earth or other spatial body. Since this
attraction is toward the center of the earth, weight, like any force, is a vector
quantity. When the only force concerned is weight, the resulting acceltration is

2-—-11
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normally called “g,” the acceleration due to gravity. For this special case,
Newton's Second Law can then be written:

W = Mg

This equation can be used as a definition of mass. The value of g near the
surface of the carth is approximately 32.2 feet per second per second: “g” is a
vector quantity since it is directed always toward the center of the earth. If the
weight, W, is expressed in pounds, rearranging gives:

W (pounds)
g (feet/sec?)

M =

The unit of mass in this equation is called a “slug.” Note that mass is a scalar

quantity* and is an inhcreni property of the amount of matter in a body. Mass

is independent of the gravitational ficld, whereas weight is dependent upon the

field, the position in the ficld, and the mass of the body being weighed.
Finally, Newton’s Second Law may now be written:

F (pounds) = M (slugs) times a (ft/sec*)

The following cxample shows the use of this system of units and the magnitude
of the “slug”:

A package on carth weighs 161 pounds.

Find: (a) its mass in slugs.
(b) the force nccessary to just lift it vertically from a surface.

(c) the force necessary to accclerate it 10 ft/sec® on a smooth, level
surface.

(d) its weight if it were on the moon; assume the value of “g” therc is
14 of that valuc herc on the carth.

(e) its mass on the moon.

Solution:

- W _ 16l pounds
(a) M(slugs) = g 322 ft/sec?
(b) F=W = Mg = (5slugs) (32.2 ft/sec®) = 161 pounds

The force must be applied upwards, in the direction opposite to weight.

(c) F=Ma = (5 slugs) (10 ft/sec®*) = 50 pounds

= § slugs

(d) Whion = M g = (5 slugs) (126'2 ft/sec*) = 26.83 pounds

_ Wmoon _  26.83 pounds
(@) Muoon = =5 " = 533 fi/sec . = O slugs
6

* A scalar guantity has magnitude only. in contrast to a vector quantity which has magnitude and direction.
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This last solution is, of course, to reemphasize that mass is independent of
position. It will be shown later that the local value of g varies with altitude
above the carth. It is significant to note that the weight will vary such that

the ratio—\zgvi remains constant.
Energy and Work
Work, w, is defined as the product of the component of force in the direction of
motion and the distance moved. Thus, if a force, F, is applied and a body moves a

distance, s, in the direction the force is applied, w = Fs (Fig. 7). The units of work
are foot-pounds. Work is a scalar as distinguished from a vector quantity.

w = Fs

F r==9

i i
/7///////ffff7/7/7/////7/////r////77

le—— s

Figure 7. Work performed as a force (F) is moved over the distance s.

To do work against gravity, a force must be applied to overcome the weight,
which is the force caused by gravitational acceleration, g.
Therefore, F = Mg. If the body is lifted a height h (Fig. 8) and friction is negligi-
ble, w = Mgh. For problems in which h is mich less than the radius from the cen-
ter of the earth (h< <r), g may be considered a constant.

M
T TF w=Fs
F=Mg, s=h
h W=Mgh
| =

L7777 77777777777

Figure 8. Work performed in lifting.
2-13
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If an object is pushed up a frictionless inclined plane. the work done is still Mgh
(Fig. 9).

w = Fs

F = Mg sin 6
— _h

° sin 6

w = Mgh

W Mg

Figure 9. Work performed on a frictionless inclined plane.

For orbital mechanics problems, g varies and must be replaced by the value
V&g: where the subscripts indicate the beginning and final values of g. In such
cases

w = Mygg:h
Another type of work is that work done against inertia. If, in moving from one

point to another, the velocity of a body is changed, work is done. This work against
inertia is computed in the following steps:

w = Fs
but, F = Ma
and 2as = v¢2 — v,2
N V02
T 2a
— — a (v = v*) _ M(vé—v,2) _ Mv@ _ My
$0, W Fs = M 73 2 5 5
The quantity sz—' is defined as kinctic energy (KE). Therefore, work done

against inertia (if the altitude and the mass remain the same) is equal to the change
in kinetic energy. Energy is defined as the ability to do work, and it is obvious that a
moving body has the ability to d-. work (for example, a moving hammer’s ability to
drive a nail). A body is also able to do work because of its position or altitude; this
is known as potential energy (PE). Units used to measurc energy are similar to
those used to measure work in that both are scalar rather than vector quantities.

The sum of the kinetic and the potential energy of a body is its total mechanical
energy.

2-14
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Newton’s Law of Universal Gravitation

Newton published his Principia in 1687 and included in it the law of universal
gravitation, which he had been considering for about twenty years. This law
was based on observations made by Newton. Later work showed that it was
onlv an approximation. but an extremely good approximation. The law states:
Every particle in the universe attracts every other particle with a force that is
proportional to the product of the masses and inversely proportional to the square
of the distance between the particles. A constant of proportionality, G, termed the
Universal Gravitational Constant, was introduced, and the law was written in this
manner:

F = Gmimg
e

The value of G. the Universal Gravitational Constant. was first determined by Ca-
vandish in a classical experiment using a torsion balance. The value of G is quite
small (G = 6.6695 X 10~ cgs units). In most problems the mass of one of the
bodies is quite large. It is convenient. therefore, to combine G and the large mass,
m,, into a new constant, & (mu), which is defined as the gravitational parameter.
This parameter has different values depending upon the value of the large mass, m.
If m, rcfers to the carth, the gravitational parameter, . will apply to all earth satel~
lite problems. However, if the problem concerns satellites of the sun or other large
bodies, u will have a different value based on the mass of that body.

If we now simplify the law of gravitational attraction by combining G and m; and

by adjusting the results for the English engineering unit system, we obtain the fol-
lowing:

ft?
Gmi = p oo
F = —gf— m (Where F is Ib force and m is slugs)

If this cxpression is equated to the cxpression of Newton’s Second Law of
Motion, as it applics in a gravitational field, we sce that:

F=mg=~r'%—m

and after dividing by the unit mass, m, we obtain:

_ M
E = 2

Thus, the value of g varies inversely as the square of the distance from the
center o' the attracting body.

For problems involving earth satellites, the following two constants are nec-
essary for a proper solution:

ftB
sec®

G mearn = Mearth = 14.08 X 1015
r. (radius of earth) = 20.9 X 10°ft
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The formulas must be used with proper concern for the units involved, and
the value given for u applies only to bodies attracted to the earth.

Before applying Newton’s law of universal gravitation to the solution of prob-
lems, it would be well to consider the possible paths that a body in unpowu.cd
flight must follow through space.

CONIC SECTIONS

The conic sections were studied by the Greek mathematicians, and a body of
knowledge has acctmulated concerning them. They have assumed new signifi-
cance in the field of astronautics because any free-flight trajectory can be

Hyperbola

Parabola

Ellipse

Hyperbola

Figure 10. Conic sections.

represented by a conic section. The study of conic sections, or conics, is part of
analytic geometry, a branch of mathematics that brings together concepts from
algebra, geometry, and trigonometry.

A conic section is a curve formed when a plane cuts through a right circular
cone at any point except at the vertex, or center. If the plane cuts both sides
of one nappe of the cone, the section is an ellipse (Fig. 10). The circle is a specia!
case of the ellipse occurring when the plane cuts the cone perpendicularly to the
axis. If the plane cuts the cone in such a way that it is parallel to one of the
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sides of the cone, the scction is called a parabola. If the piwe cuts both
nappes of the conc, the section is a hyperbola which has two branches.

In onc mathematical sense, all conic scctions can be defined in terms of
eccentricity (€). The numerical valuc of € is an indication of the relative shape
of the conic (rotund or slender) and also an indication of the identity of the
conic.

If the eccentricity is zero, the conic is a circle; if the eccentricity is greater
than zcro but less than one, the conic is an cllipsc; if the eccentricity i cqual
to onc, the conic is a parabola; and if the eccentricity is greater than one, the
conic is a hyperbola.

Conic Sections and the Coerdinate Systems

In locating orbits or trajectorics in space, it is possible to make use of either rec-
tangular (sometimes called Cartesian) or polar coordinates. In dealing with artificial
satcllites, it is often more convenient to use polar rather than rectangular coordinates
because the center of the carth can be used both as the origin of the coordinates and
as one of the foci of the ellipse.

Yy
Parabola, ¢ - I \
d
Ellipse, « —(-; .
-4
k s i) —— ogue Sy
/\l‘
X
Focus
&—/
! k
}
Hyperbola, ¢ :-é > 1
Directrix >

Figure 11.  Rectangular and polar coordinates superimposed on the conic sections.

If rectangular and polar coordinates are superimposcd upon a set of conics as
shown in Figure 11. equations of the curves can be derived.
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The formula for the eccentricity ¢f a conic is € = % This ratio is constant for a

specific curve.
In Cartesian coordinates:

e = I — Vx2+y
d k—x
vVx+y = ek —x)

Squaring both sides gives:
x2 + y2 = éf(k — x)?

To convert the rectangular coordinates to polar coordinates, substitute as follows:

X = rcos ¥ (vis the lower case Greek nu)
= rsiny
e = I = T
d k —rcosv
ke — recosy = r
r + recosvy = ke
r = ke
1+ ecosv

This result is the general equation for all conics.

Ellipse

The ellipse is the curve traced by a point (P) moving in a plane such that the sum
of its distances from two fixed points (foci) is constant. In the ellipse in Figure 12,
the following are shown: the foci (F and F’); c, distance from origin to either focus;
a, distance from origin to either vertex (semimajor axis); 2a, major axis; b, distance
from origin to intercept on y-axis (semiminor axis); 2b, minor axis; and r + r’, dis-
tances from any point (P) on the ellipse to the respective foci (F and F’).

A number of relationships which are very useful in astronautics are derived
from the geometry of the ellipse:

r+ 1’ = 2a(atany point on the ellipse)
a* b% + c*ora = \/b? + ¢?
b = VaF—cF
= V@—&F

The eccentricity of the ellipse (€) =-2—. A chord through either focus perpendicu-
2b?
a

lar to the major axis is called the latus rectum and its length =
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These relationships can be used to determine the parameters of an elliptical
orbit of a satellite when only the radius of perigee and the radius of apogee
are known. These parameters are important because, as is shown later, they

Y

Figure 12. Ellipse with center at origin of rectangular coordinate system.

are related to the total mechanical energy and total angular momentum of the
satellite. Thereby they offer a means of determining these values through the
simple arithmetic of an ellipse rather than the vector calculus of celestial
mechanics.

Sample problem: A satellitc in a transfer orbit has a perigee at 300 NM

above the surface of the carth and an apogee at 19,360 NM. Find a, b, ¢, and €

for the ellipse traced out by this satellite.
Solution:

Since the center of the carth is one focus of the ellipse, first convert the

apogee and perigee to radii by adding the radius of the carth (3440 NM):

radius of perigee r, = altitude of perigee -+ radius of earth
= 300 + 3440 = 3740 NM.
radius of apogee r, = altitude of apogee + radius of earth

il

19,360 + 3440 = 22,800 NM.
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Figure 13. Orbit of an artificial satellite showing radius of perigee ond radius of
apogee (not to scale).

With this information, an exaggerated sketch of the ellipsc can be made (Fig. 13).
Compare this with Figure 12 to obtain:

r, + r, = major axis = 2a

then 2a = 3740 + 22,800 = 26,540 NM

or a = 26_’25_4_0 = 13270 NM

Also from comparing Figures 12 and 13:

cC = a-—r5

= 13,270 — 3740 = 9530NM

Since a and c arc known, find b from the relationship given:

b = va—c?
or b = /(1.327 X 10%)2 — (.953 X 10%)”

b
b

[

V(1.761 X 10%) — (.908 X 10%) = /.853 X 108
923 X 10* = 9230 NM

According to the formula given for eccentricity:

_ ¢
€T Ta
9530

The ellipse is a conic section with eccentricity less than 1 (e < 1).

CircLE. The circle is a special case of an ellipse in which the foci have
merged at the center; thus € = 0. The ellipse relationships can be used for a

circle.
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ENERGY AND MOMENTUM

Once the basic geometry of a trajectory or orbit is understood, the next
subject for investigation is the physics of energy and momentum. From concepts
of linear and angular motion, concepts of linear and angular momenta logically
follow. Once thc formulas tor computing the specific angular momentum and
the specific mechanical encrgy of a body in orbit are delineated, then it is possible
to solve for unknown quantities, such as the altitude of the body above the
surface of the earth or the velocity at any point on the orbit. Any body in space
following a free-flight path—whether it is a missile, a satellite, or a natural
body—is governed by the laws of the conservation of specific mechanical energy
and specific angular momentum. Once the value of either of these items is
known at any point along a free-flight trajectory or orbit, then its value is known
at all other points, since the value does not change unless the body is acted upon
by some outside force.

Mechanical Energy

The law of Conservation of Energy states that energy can neither be created
nor destroyed but only converted from one jorm to another. This law can be
applied to orbital mechanics and restated in this way: The total mechanical
energy of an object in free motion is constant, provided that no external work
is done on or bv the system. During reentry, work is done by the system and
some of the mechanical energy is converted to heat. Similarly, during launch,
work is done on the system as the propulsion units give up chemical energy. In
this chapter, only the free-flight portion of the trajectory is considered, and it is
assumed that there is no thrust and no drag.

in order to establish a common understanding about changes in the amount
of energy, it is necessary to agree upon a Zero reference point for energy.
Potential energy, or energy due to position, can be, and often is, measured from
sea level. In working with earth-orbiting systems, however, the convention is to
consider a body as having zero potential energy if it is at an infinite distance
from the earth and as having zero kinetic energy if it is absolutely at rest with
respect to the center of the earth. Under these circumstances, the total mechanical
energy (PE + KE) is also equal to zero. If the total mechanical energy is
positive—that is, larger than zero—the body has enough energy to escape from
the earth. If the total mechanical energy is negative—that is, less than zero—
the body does not have enough energy to e€scape from the earth, and it must
be either in orbit or on a ballistic trajectory.

The formula for PE, with the reference system as stated above, is PE =
—M  Instead of using PE, a specific PE (PE per unit mass) can be used if both

r
sides are divided by m; for example

PE ~—u

m T
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If a body is at infinity, it has a specific PE equal to — Jri~ = ..?c‘z_ = 0.

A similar casc can be presented for kinetic energy. A body with some velocity
relative to the center of the earth has kinetic energy defined by:

_ mv:
KE = 5
Again, the specific kinctic energy (Kkinetic energy per unit mass) can be de-
fined as:

- _ KE ¢
Specific KE = m = 3

In general, a body in frec motion in space has a particular amount of me-
chanical energy, and this amount is constant because of the conscrvation of
mechanical energy.

Total Mechanical Energy = KE + PE

A more uscful expression is obtained if we define Specific Mechanical Energy,
E, or the Total Mechanical Encrgy per unit mass. Thus, we can write:

E = Total Mechanical Energy
m
_ KE _ PE
E=-"Tht m
N
E = r

Specific Mechanical Energy, E, is also conserved in unpowered flight in space.

2

The units of E are _s% Since the mass term does not appear directly in the

cquation, E represents the specific mechanical cnergy of a body in general.

If the solution to the Specific Mechanical Energy equation yields a negative
value for E, the body is on an elliptical or circular path (nonescape path). If
E is exactly equal to zcro, the path is parabolic; this is the minimum energy
escape path. If E is positive, the path is hyperbolic, and the body will also escape
from the earth’s gravitational field.

Although the value of E, once determined, remains constant in free flight, there
is a continuous change in the values of specific kinetic energy and specific po-
tential energy. High velocities ncarer the surface of the earth, representing high
specific kinetic energies, are exchanged for greater specific potential energies
as distance from the center of the earth increases. In general, velocity is traded
for altitude; kinetic energy is traded for potential energy. The sum remains
constant.

Linear and Angular Momentum
When a body is in motion, it has momentum. Momentum is the property a
body possesses because of its mass and its velocity. In linear motion, momentum

is expressed as mv and has the units, foot-slug
sec
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When a rigid body, such as a flywheel, rotates about a center, it has angular
momentunt. Once the flywheel is in motion, its angular momentum would remain
constant if it were not acted upen by forces such as friction and air resistance.
Similarly, a gyroscope would rotate indefinitely in the absence of friction and air
resistance.  Thus, ignoring such losses, angular momentum will remain constant.
In spacc, it can be assumed that such forces are regligible and that angular
momentum is conserved. This is another tool to use in analyzing orbital systems.

Angular momentum is the product of moment of inertia, I, and the angular
velocity, @. Moment of inertia of a body of mass, m, rotating about a center
at a distance, r, can be expressed as m r®. The angular momentum is then equal
tom 1’ .

For convenience in calculations, the term Specific Angular Momentum, H, is
defined as the angular momentum per unit mass. Remembering that the magni-

Angular Momentum = m £ w

V.,
horizontal

I

«y

H - Ang. Momentum
m

“H=vr (Circular Motion)

[
Figure 14. Specific angular momentum of a circular orbit.

tude of the instantancous velocity vecior of a body rotating in constant circular
motion about a center with radius r is equal to wr and that the vector is perpen-
dicntar to the radius, the expression for specific angular momentum of a circular
orbit can be simplified as shown in Figure 14.

The general application of specific angular momentum to all orbits requires
that the component of velocity perpendicular to the radius vector be used. This
velocity component is defined as

v, = VCos @

where ¢ is the angle the velocity vector makes with the local horizontal, a line
perpendicular to the radius. In an elliptical orbit, the geometry is as shown in
Figure 15. The body in orbit has a total velocity v which is always tangent to the
flight path.

The formula, H = vr cos ¢, defines the specific aagular momentum for all or-
bital cases. The angle ¢ is the flight path angle and is the angle between the local
horizontal and the total velocity vector. It should be noted that the angle ¢ is
equal "o zero for circular orbits. Further, in elliptical orbits, ¢ is zero at the
points of apogee and perigee.

The two important formulas that have been presented in this section are those
for E and H. These formulas permit a trajectory or an orbit to be completely
defined from certain basic dat .
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= v _® : fit:
E=— r » Whenunits of Eare —

2]
-

H = vrcos ¢, when units of H a1 P

If v, 1, and ¢ are known for a given trajectory (or orbit) at a given position,
then E and H can be determined. In the absence of outside forces, E and H
are constants; therefore v, r, and ¢ can be determined at any other position on
the trajectory or orbit. Equations for the specific angular momentum and the
specific mechanical energy can be used in practical application to the two-body
problem and to the free-flight portion of the ballistic missile trajectory.

H:Vhr

but Vh =V cos¢

“H = vrcos & (General orbit)

Figure 15. Specific angular momentum.

THE TWO-BODY PROBLEM

It is implicit in Newton’s law of universal gravitation that every mass unit
in the universe attracts, and is attracted by, every other mass unit in the universe.
Clearly, small masses at large distances are infinitesimally attracted to each other.
It is neither feasible nor necessary to consider mutual attractions of a large
number of bodies in many astronautics problems. The most frequent problems of
astronautics involve only two interacting bodies: a missile payload, or satellite,
and the earth. In these instances, thc sun and moon effects are negligible except
in the case of a space probe, which will be noticeably affected by the moon, if
it passes close to the moon, and which will be controlled by the sun, if it escapes
from the earth’s gravitational field.

Military officers concerned with operational matters are primarily interested
in launching a missile fromn one point on the earth’s surface to strike another point
on ihe earth’s surface and in launching carth satellites. In these problems, the
path followed by the payload is adequately described by considering only two
bodies, the sarth and the payload. The problem of two bodies is termed the
two-body problem; its solution dates back to Newton.

It is indeed fortunate that the solution of the two-body trajectory is simple
and straightforward. A general solution to a trajectory involving more than two
bodies does not exist. Special solutions for these more complex trajectories
usually require machine calculation.
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Trajectory
of m,

Figure 16. Trajectory relationships.

The two-body problem is described graphically in Figure 16. A small body,
m.. has a velocity. v, at a distance r from the origin choscn as the center of
mass of a very massive body, my. The problem is to cstablish the path followed by
body, my, or to define its trajectory. This is a typical problem in mechanics—
given the present conditions of a body. what will these conditions be at any
time. t. later? First, we shall find r as a function of », where v is the polar
angle measured from a reference axis to the radius vector.

At the outset, it should be apparent that the entire trajectory will take place
in the plane defined by the velocity vector ard the point origin. There are no
forces causing the body, m., to move out of this planc; otherwise, the conditions
arc not those of a two-body free-flight problem.

In the carlier outline of the laws of conscrvation of energy and momentam,
the following conditions were cstablished:

v?
5T ’f— = E = a constant (1)
H = vr cos ¢ = a constant (2)

Equations (1) and (2) can be combined and, with thc aid of the calculus,
the following cquation can be derived:

*/u

r == e ———— e e e
' 2EH-
|+ —-==— CcOos Vv
1 + \/ h

(3)

Equation (3) is the equation of a two-body trajectory in polar coordinates.
Earlicr, the following cquation was given as the cquation of any conic scction in
polar coordinates, the origin located at a focus:

ke
1 + ecosv 4)

Equations (3) and (4) are of the same form; hence, equation (3) is also the
equation of any conic section (origin at a focus) in terms of the physical constants,
E and H, and the two-body trajectories arc then comic sections. This conclusion sub-
stantiates Kepler’s first law. In fact, Kepler’s first law is a special case because an
ellipse is just one form of conic section.
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Since equations (3) and (4) are of the same form, it is possible to equate like
terms, which will lead to relationships between the physical constants, E, H, and Hs
and the geometrical constants, ¢, a, b, and c. Thus:

" (5)
and

T (6)

Physical Interpretation of the Two-Body Trajectory Equation

Analysis of the two-body trajectory cquation will give an understanding of the
physical rcaction of a vehicle (small body) under the influence of a planet
(large body).

If E ~ 0, the trajectory is an cllipsc  What is the condition that E be less than
zero? It is simply that the kinetic energy of the small mass, m., because of its
relatively Tow velocity, is less than the magnitude of its potential cnergy. There-
fore, the body cannot possibly go all the way to infinity: that is, it cannot g0
to a point where it is no longer attracted by the larger body-—where the potential
cnergy is zero. The smaller mass cannot escape. It must remain “captured” by
the force ficld of the larger body. Therefore, it will be turned back toward the
larger body, or, more in keeping with the idea of potential energy, it will always
be “falling back” toward thc morc massive body. When this particular balance
of encrgy cxists, the trajectory is eclliptical with one focus coincident with the
center of mass of the larger body. In the actual physical case, the larger body
will have a finitc size; that is, it will not be a point mass, and this ellipse may
intersect the surfacc of the larger body as it does in the case of a ballistic missile.
If the velocity is sufficiently high, and its dircction proper, the ellipse may com-
plctely cncircle the central body, the condition of a satellite.

If E = 0, the kinetic energy cxactly equals the magnitude of the potential
energy, and the small mass. m.. has just cnough cnergy to travel to infinity, away
from the influence of the central body, and come to rest there. The small body
will follow a parabolic path to infinity. The velocity which is associated with this
very special energy level is also very special and is commonly called the “escape
velocity.”

Escape velocity can be calculated by setting E = 0 in the mechanical energy
equation (1) as follows:

2 ~ T —E=0
M
Vo =2 (4
_ [ 2u
e = 9

F 73




Thus, it can be scen that escape velocity decreases with distance from the
center of the carth. At the carth’s surface,

o e\
o=y 2 [ @ e
\ (20.9) (10" 1)

Vese = 36,700 ft/sec.

If the velocity of the small mass exceeds cscape velocity, which will be the
casc if E > O. it will follow a hyperbolic trajectory to infinity. In practice infinity
is a large distance at which the carth’s attractive force is insignificant, and there
the mass will have some residual velocity. In a mathematical sense, the body
would still have velocity at infinity. Tn a physical sensc, it would have velocity
relative to the carth at any large distance from the earth.

Considering the sounding rocket, only the straight-line, degencrate conic is a

possible trajectory. But. again, the value of E will determine whe'her escape is
possible; that is, if E < O, the straight-line trajectory cannot extend to infinity.
If E = O or E > O. the straight line will extend to infinity.
Example Problem: The first U.S. “moon shot,” the Pioneer I, attained a height
of approximately 61.410 NM above the carth's surface. Assuming that the
Pioncer had been . sounding rocket (a rocket fired vartically), and assuming
a spherical, nonrotating carth without atmosphere, calculate the following:

a. E (total specific energy)
b. Impact velocity (earth’s surface)
Solution: Given

(a) Atapogee (greatest distance from carth):
Aliitude (above carth’s surface) = 61,410 NM
Earth radius = 3440 NM
Velocity = O (Only for a sounding rocket)
r = altitudc + carth’s radius
r = (61,410 + 3440) NM = 64,850 NM

ft:‘
I b _ (14.08) (10%) —
- 2 T Ty T YT ft
(64,850) NM (6080) ~M
E = — 3.57 X 107 ft*/sec?

Answer
(b) Since the specific cnergy is constant,

At the earth's surface:

r = 3440 NM
E = — 357 X 107 ft*/sec®
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E 2 r
ftr

sec”

it v (14.08) (10
ot : C e e

— 357 X 1O¢ N
(3440) NM (6080) ENIYE
V'.' .

s = 21— 387 X 107) +(67.4 X 107)] = 2(63.8 X 107)ft*/sec*
V impueny = 35.700 ft/sec Answer

This is alse the approximate burnout velocity of the vehicle. As the surface
escape velocity is 36.700 ft/scc. it is clear that Pioncer I did not attain c¢scape
velocity, and so it returncd to carth.

Elliptical Trajectory Parameters

While parabolic and hyperbolic trajectorics, especially the latter, are of interest in
problems of int~rplanceary travel, elliptical trajectories comprise the ballistic missile
and satellite cases, which are of current military interest. It is important, then, to re-
late the dimensions of an ellipse (a, b. and ¢) to the physicai constants (E, H, and
() as was previously done for e.

The relationship, r, + r, = 2a, was presented carlier. If this cquation is applied
to point P in Figure 17,

AY
r ——L—-— i1 v oat P
1 @ cos
—
r
r
" b p .
4 > \
A L’
\
AN %
. .

Figure 17. Eliipse.
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But ¢ = —%— therefore. substituting ¢ = ea into (8),

ke _ _ = _
. a €a a(l €)

ke = a(l — €)
But from equations (5) and (6),

ke = H*/p and € = \/ 1 + 2};‘5;

Substituting these relationships into equation (9),

B u?
H: _ _ 2EH%a
7 T
—1 = 2Ea
73
a = — i"z—E- (EXTREMELY USEFUL)
Also a = — > Lol
2( v __l’;_)
2 r
From the following equation:
b,z, =1 - €
ah
b _ _ .2
a a(l €2)

But from equation (9),

H2
1 -— 2 - k =
a( €) € m
Therefore,
be _ H?
a M

(9)

(10)

(1D)

(12)

Equations (10) and (12) are extremely important relationships; an understand-
ing of them is essential to material that foilows on ballistic missiles and satellites. If
injection conditions of speed and radius are fixed, it is clear that a, the semimajor
axis of the elliptical irajectory, becomes fixed, regardless of the vaue of the flight
path angle at burnout. Equation (10} points out there ic a direct relationship be-
tween the size of an orbit and the energy level of the orbiting cject. . yaation (12)
points out that for a given energy level there is = dircct relanonship hetween the
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length of the semi latus rectum of an elliptical trajectory (a shape parameter) and
the specific angular momentum of the orbiting object. This implies that the size and
shape of an elliptical trajectory are determined by the E and H.

Two-Body Trajectory Definitions and Geometry

The general equation of two-body trajectorics has now been introduced. Before
proceeding to problem applications it would be well to consider in detail some
commonly used terms and symbols,

First, refer to Figure 18. In general, the point P is called the periapsis and
P’ the apoapsis. If the ecarth is at point O, the cllipse would then represent the
trajectory of an carth satcllite; P is then termed perigee and P’ apogee. If
the sun is at point O, the ellipsc would represent a planetary orbit; P is then
called perihelion and P’ aphelion.

In order to explain the use of the angle », the geomeciry of satellites will be
discussed briefly. Figure 18 depicts a planetary orbit (not to scale).

In astronomy and celestial mechanics it is standard practice to measure a body’s
position from perihelion point P. There are scveral reasons for using penibelion,
including the fact that pcrihclion of any body in the :sur svatem oxeopt Moy
and Venus is closer to the earth’s orhit than is the oo apheliog  in fa.
for @ highly eccentrie orbit such as a comer’s, the body would not B -isile
st aphrchon, i order to conform te accepted practice, the ., the angle nu (»),
measased freonoperi pos, has been introduced. This angle, which is called the
true unomaly, is of considerable importance in time-of-flight calculations.

(Planert)

P

Figure 18. Sun-centered orbit

The true anomaly, however, does not lend itself well ‘o ballistic missile problems,
as can be seen from the simplified ballistic missile geometry in Figure 19.
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Farth

Iragectorny —

Figure 1. ...ilistic missile trajectory.

In a ballistic missile wayjectory, perigee is entirely fictitious. The missile obviously
never traverses the dashed portion of the trajectory. The solid portion of the trajec-
toryv is all that is of real interest, and this portion is in the second and third quad-
raniws of the angle v. It is convenient then to define an angle 6, measured counter-
clockwise from apogee (apoapsis, in general), such that

vy =0 + m (13)

6 will normally have values in the first and fourth quadrants. From (13), it is clear
that derivatives of » and @ will be interchangeable. The equation of a conic section
in terms of # can be found by substituting (13) into (4},

r = ke = ke
1 4+ ecosv 1 + ecos (6 + 7)
r = ke

1—c¢€cosf’

With this understanding of the relationship between v and 6, it will be convenient
to use » when working with satellite and space trajectories and 6 when working with
ballistic missiles (see App. C).

EARTH SATELLITES

During their free flight trajectory, satellites and ballistic missiles follow paths
described by the two-body equation. For a satellite to achieve orbit, enough
energy must be added to the vehicle so that the ellipse does not intersect the
surface of the carth. However, not enough energy iz added to allow the vehicle
to escape. Therefore, the ellipse and the circle are the paths of primary interest.

The orientation, shape, and size of orbits are important to the accomplishment
of prescribed missions. Therefore, eccentricity (€), major axis (2a), minor axis
(2b), and distance between the foci {2c) are of interest. It is necessary to know
the relationships of these geometric values to the orbital parameters in order to
make a. analysis of an orbit. For example, it is helpful to remember that:
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r, (radius at perigee) = a — ¢

r, (radius at apogee) = a + ¢
T, + r, = 2a
e = 5
a
a® = b + ¢

Specific mechanical energy. E. and specific angular momentum, H, are of primary
concern when elliptical and circular orbits are discussed. If there are no outside
forces acting on a vehicle in an orbit, the specific mechanical energy and the specific
angular momentum will have constant values, regardless of position in the orbit.
This mcans that if E and H are known at one point in the orbit, they are then known
at each and every other point in the orbit. At a given position if radius r, speed v,
and flight path angle ¢ are known, E and H can be determined from:

U Y A
E 2 r 2a
H = vr cos o

If the values of E and H are known for a particular orbit, and the speed and
flight path angle at a certain point in the orbit are to be determined, the energy
equation can be solved for v, and then the angular momentum equation can
be solved for ¢.

The equations for the speed in circular and elliptical orbits are important.
The cquation for circular speed is:

The equation for elliptical speed is:

v=\/2u _ B
r a

Another equation that is important in the analysis of orbits is the equation
for orbital period. For a circular orbit the distance around is the circumference
of the circle which is 2#r. Therefore, the period, which is equal to the distance
around divided by the speed, is this:

27T
v

P =

Now, substitute for v the speed in circular orbit:
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v = \; L
ﬂ)

P= T
;M
T

p — _ZANVr 2w
VA Vi
r

Using the principle of Kepler’s third law, replace r by the mcan distance from
the focus, which is cqual to the semimajor axis a, and the cquation becomes:

Ay 352
P = .-’77;1—:_
VM
: , I (o PR ¥/ - .
Squaring both sides. P* = - R Since —— is a constant, P* is proportional

to a3, and for earth satcllites P = (2.805 X 107717 _s_g_t%-_) (a)®. Or, P =

_g SCC 3
(5.30 X 107% LR
ft=

Problem: TInitial data from Friendship 7 indicated that the booster burned out
at a perigec altitude of 100 statute milcs, speed of 25,700 ft/sec, and flight path
angle of 0°. Dectermine the speed and height at apogee, and the period.

Given*: h, = 100SM = .5 X 10°ft r. = 20.9 X 10°ft
Ve = 25.700 ft/sec
d)bo = Oo

Find: v, h,. P

Figure 20. Orbit of Friendship 7 (not to scale).

* Even though g, = 0°, if burnout altitude were not given as perigee altitude, you would have to de-

termine if this were perigee or apogee. To do this. you would compute the circular speed for the given
burnout altitude and compare this with the actual wpeed. If the circular speed is greater than the actual,
burnout was at apogee: if the circular speed was less than the actual speed, burnout was at perigee.
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Solution:

g ooV o _ (2STX109° 1408 X 10%
2 r 2 (20.9 + .5) X 10°
= (331 X 10%) — (6.58 X 108) = —3.27 X 108
_ B _ _ m _ _—1408 X 101®
but E = — ;73 2a E =3.27 X 108
= 43.1 X 10¢

From Figure 20,1, + 1, = -2a

Sr.=2a—1, = (43.1 —21.4) X 10

= 21.7 X 108
hy =1, — o = (1.7 —20.9) X 10¢ = 8 X 108 ft
= 151 sm Answex
H, = H,
VpIp = ViIy v, = _Vlr_{lg
(2,57 X 10%) (214 X 10%)
vV, = 519 X 10° = 25,400 ft/sec
= 17,300 mph Agsswer
2 = ﬂid:_ = { - 3 sec?
Pz = @ = {2.805 X 10-15) (21.6 X 10°ft) o

= 28.1 X 10¢% sec?
P = 530 X 10%sec = 88.3 min Ans.

It is interesting to compare the computed apogee and period results with the
actual orbit (later data gave a higher accuracy for burnout conditions) :

Item Actual figures Computed figures
Voo o .. 25,728 ft/sec 25,700 ft/sec
oo —ocoooe ... 97.695 SM 10C SM
he oo .... 15885 SM 151 SM
P 88.483 min 88.3 min
Note that using three significant figures results in hy = .5 X 108 ft, about 94

SM. Such errors are common using slide rule accuracy, but this problem does
illustrate :he techniques used.

From the foregoing problem, it is evident that the principles and relatively
simple algebraic expressions presented thus far are extremely important. They
cnable one .0 analyze a trajectory or orbit rather completely—with a slide rule
for academic or generalized discussion purposes, or with a digital computer for
system design and operation. The discussion has been, however, confined to the
two dimensional orbital plane. Before discussing some of the more interesting
facets of orbital mechanics, it is necessary to properly locate a payload in three
dimensions. :
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LLOCATING BODIES IN SPACE

In onc of the coordinate systems for space used by engineers and scientists,
the origin is the center of the carth. This is a logical choice since the center of
the earth is a focus for ali earth orbits.

With the center of the coordinate systems ostablished, a reference frame is
required on which angular measurements can be made with “espect to ithe center.
The reference frame should be regular in shape, and it should be fixed in space.
A sphere satisfies the requirement of a regular shape. The sphere of the carth
would be a handy reference if it were fixed in space, but it rotates constantly.

- T T
- - ~
e
P -
- 7 - T~ b
- -~ ~
- e ~
- 7 -~
- 7 Argument of ~
P s Perigee (w)
. N
Vg \
/
/ P N
/ Perigee
; Celestal

Equator v

, N

N

/

[ / .
/

Right Ascension  Q

Orbit Trace

Figure 21. Celastial Sphere.
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TO THE FIRST
POINT OF ARIES ()

Figure 22. The vernal equinox.

Therefore. the celestial sphere is used to satisfy the requirecment for a reference
frame. This is a nonrotating sphere of infinite radius whose center coincides with
the center of the carth and whese surface contains the projection of the celestial
bodies as they appear in the sky (Fig. 21). The celestial equator is a projection
of the carth’s cquator on the celestial sphere. The track of a sateliite can be
projccted on the celestia! sphere by extending the planc of the oribt to its inter-
section with the celestial spherc.

After the center of the system and the celestial cquator have been defined,
a reference is required as a starting point for position measurements. This point,
determined at the instant winter changes into spring, is found by passing a line
from the center of the carth through the center of the sun to the celestial cquator,
and is called the vernal equinox (Fig. 22).

After the references for the coordinate system have been established, the orbit
itself must be located. The first item of importance is right ascension (Q) of the
ascending node. which is defined as the arc of the celestial equator measured
eastward from the vernal equinox to the ascending node (Fig. 21). The ascend-
ing node is the point where the projection of the sateliite path crosses the celestial
cquator from south to north. In other words, right ascension of the ascending
node is the angle measured castward from the {irst point of Aries to the point
where the satellite crosscs the equator from south to north.

The next item of importance is the angle the path of the orbit makes with the
cquator. This is the angle of inclination (i), which is defined as the angle that
the planc of the orbit makes with the plane of the equator, measured countcr-
clockwisc from the equator at the ascending node. Equatorial orbits have i = 0°;
posigrade orbits have i = 0° to 907; polar orbits have i = 90°; and retrograde
orbits have i= 90° to 180°.
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To describe the orbit further, the perigec is located. The angular measurement
from the ascending node to the perigee, measured along the path of the orbit in
the direction of motion, is called the argument of perigee ( @ ).

If. in addition to the coordinates of the orbit. a time of either perigee or right
ascension of the ascending node is known, along with the eccentricity and tne
major axis of the orbit, the exact position and velocity of the satellite can be
determined at any time. Six quantities (right ascension, inclination, argument of
perigee, eccentricity, major axis, and epoch time at cither perigee or ascending
node) form a convenient grouping of the minimum information neccssary to
describe the orbital path as well as the position of a satellite at any time. They
constitute one set of orhital elements, known as the Breakwell Set of Keplerian
Elements.

Orbital Plane

Another interesting facet of earth satellites concerns the orbital plane. There
is a relationship between the launch site and the possible orbita! planes. This
restriction arises from the fact that the center of the earth must be a focus of
the orbit and, therefore, must lie in the orbital plane.

The inclination of the orbital plane, i, to the equatorial plane is determined
by the following formula: cos i (inclination) = cos (latitude) sin (azimuth) where
the azimuth is the heading of the vehicle measured clockwise from true north.

As an example, a satellite launched from Cape Kennedy and injected at 30° N on

a heading due east (Azimuth 90°) will lie in an orbital plane which is inclined 30°
to the equatorial plane.

cos i == (cos latitude) (sin azimuth)
= cos 30° sin 90°
cos i = cos 30°
i = 30°

It can be deduced from the above that the minimum orbital plane inclination for a
direct (no dog leg or maneuvering) injcction will be closely defined by the latitude
of the launch site. All launch sites, thereby, will permit direct injections at irclina-
tion engles from that minimum (the approximate latitude of the launch site) to
polar orbits (plus retrograde supplements), provided there were no geographic re-
strictions oni launch azimuth, such as range safety limitations. For example, direct
injections from Vandenberg AFB (35°N) would permit inclination angles from
about 35° to 145°.

Once the inclination of the orbital plane is defined, the ground track can be dis-
cussed.
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SATELLITE GROUND TRACKS

The orbits of all satellites lic in planes which pass through the center of a
theoretically spherical carth. Each plane intersects the swface of the carth in a
great circle (Fig. 23).

Figure 23. Satellite ground track geometry.

A satellite’s ground track is formed 'y the intersection of the surface of the
carth and a linc between the center of the earth and the satellite. As the space
vehicle moves in its orbit, this intersection traces out a path on the ground below.

There are five primary factors which affect the ground track of a satellite
moving along a free flight trajectory. These are:

1. Injection point

=. Inchnation angle (1)
3. Pericd (P)
4. Eccentricity (¢)
5. Argument of Perigee (@)

Of the above, the injection point simply determines the point on the surface from
which the ground track begins, foliowing orbital injection of the sateli:te. Inclination
angie has been discussea in the previous section and will be treated below n further
dr¢ail. Period, eccentricity, and argument of perigee each affect the ground track,
bi.c 1t is often difficult to isolate the effect of any one of the three. Therefore, only

general remarks regarding the three factors will be made, rather than an intricate
mathematical treatment.

If the study of satellite ground tracks is predicated upon a nonrotating earth,
the track of a satellite in a circular orbit is easy to visualize. When the satellite’s

orbit is in the cquatorial plane, the ground track coincides with the equator
(Fig. 24).
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Figure 24. Equatorial track.

If the planc of the orbit is inclined to the equatorial plane, the ground track
moves north and south of the cquator. It moves between the limits of latitude
equal to the inclinatinn of its orvital plane (Fig<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>