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ABSTRACT
This document constitutes a complete revision of the

report of the same name first published in 1965. A new list of basic
courses is described, consisting of Calculus I, Calculus II,
Elementary Linear Algebra, Multivariable Calculus I, Linear Algebra,
and Introductory Modern Algebra. Commentaries outline the content and
spirit of these courses in far more detail than the 1965 report,
including suggested time allocations for each group of topics. Other
courses for use in a four year curriculum are discussed and outlines
reprinted from the 1965 report and other Committee on the
Undergraduate Program in Mathematics (CUPM) reports. (MM)
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SECTION I. PREAMBLE--THE NEED FOR REAPPRAISAL

In 1965 the Committee on the Undergraduate Program in Mathe-
matics (CUPM) published a report entitled A General Curriculum in
Mathematics for Colleges (GCMC); this report has had an extensive
influence on undergraduate mathematics programs in U. S. colleges
and universities. Earlier CUPM reports had recommended specific
undergraduate programs in mathematics for a variety of careers
(teaching; mathematical research; physics and engineering; biological,
management, and social sciences; and computer science). In contrast,
the GCMC report undertook to identify a central curriculum beginning
with calculus that could be taught by as few as four qualified
teachers of mathematics (or four full-time equivalents) and that
would serve the basic needs of the more specialized programs as well
as possible. The extent to which the GCMC report achieved its pur-
pose is indicated by the large number of colleges that have revised
their course offerings in dtrections indicated by that report. In-
deed, its influence has been widespread in spite of its stringent,
self-imposed restrictiorm.

Many departments offer courses in addition to those mentioned in
the GCMC report, such as a mathematics appreciation course for stu-
dents in the arts and humanities, courses for prospective elementary
teachers, courses for students whose high school preparation is
seriously deficient in mathematics, and specialized courses for most
of the careers mentioned above. Thus the fout-man "department" of
the GCMC report often consists of four full-tIme equivalents within
a much larger department having 10, 15, or even more members.

Numerous conferences of collegiate mathematicians have been held,
both by the Sections of the Mathematical Association of America (MAA)
and by CUPM, to discuss the GCMC report and to identify difficulties
in following its suggestions. Although the response has been general-
ly favorable, two criticisms have been made repeatedly: (a) The pace
of some course outlines is unrealistically fast and in particular
leaves no time for applications. (b) Many of the colleges for which
the GCMC report was intended have substantial commitments to programs
that are not discussed in the GCMC report, and they would wslcome
assistance with their problems. (In Section II we cite a number of
recent CUPM reports that offer guidance with some of these problems.)

For these reasons CUPM felt that the GCMC report should be re-
viewed. Such a re-evaluation of the entire program has been in prog-
ress for two years, and this commentary is the result of these de-
liberations.

During this review of the GCMC report, many problems have been
considered by CUPM, of which three central ones are briefly mentioned
below. Aspects of the first two are subjects of other CUPM studies
(see Section II), We hope that these problems will be considered by
individual departments of mathematics in the light of their local
conditions.
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1) The Evolving Nature of Mathematics Curricula. During the
recent past, mathematics has been growing at a phenomenal rate, both
internally and in its interconnections with other human activities.
The subject continues to grow, and its influence continues to broaden
beyond the traditional boundaries of pure mathematics and classical
applied mathematics to include statistics, computer science, opera-
tions research, mathematical economics, mathematical biology, etc.
When thinking about undergraduate education, therefore, is it not
now more appropriate to speak of the mathematical sciences in a
broad sense rather than simply mathematics in the traditional sense?
Although large universities may have separate departments for the
various aspects of the mathematical sciences, this alternative is
not feasible at most colleges. Even in institutions where separate
departments exist, how can one coordinate the various course offer-
ings to take advantage of the impact that each branch of the mathe-
matical sciences has upon the others and on related disciplines?

A closely related question is wilether the "core" of pure mathe-
matics that all departments should offer is now the same as it was
presumed to be a few years ago. As new fields develop, same older
fields seem less relevant, and today some mathematicians even ques-
tion the assumption that calculus is the basic component of all
college mathematics.

However, we wish to emphasize that no matter what changes occur
in the undergraduate mathematics curriculum, one of the desirable
alternatives will surely include basic calculus and algebra courses
ciosely akin to Mathematics 1, 2, 3, 4, and 6 of the GCMC report.

2) The Service Functions of Mathematics. Mathematically edu-
cated people are needed in many kinds of work. It is therefore
pertinent to ask whether the present undergraduate curriculum is
sufficiently broad, especially in the freshman and sophomore years,
to meet the mathematical needs of students interested in preparing
for a variety of careers.

The traditional mathematics curriculum was heavily weighted
toward analysis and its applications to physical sciences. One of
the major innovations of the program in the original GCMC report was
the introduction of linear algebra in the sophomore year and proba-
bility in the freshman year, thus exposing a large number of under-
graduates to a wider range of mathematical topics. But because of
its limited scope, the 1965 GCMC program is necessarily a single-
track system, or essentially so. Should a college de-emphasize
calculus and offer a variety of entrances and exits in its lower-
level mathematics program, assuming that it has adequate staff? If
so, what options should be available, and what advanced work should
follow these courses? What service courses should be given? How
should courses be taught in the light of the availability of com-
puters? How should students be introduced to the mathematics needed
for modern applications in the behavioral, biological, and engineer-
ing sciences?

2
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3) The Initial Placement of Students. Although increasing
numbers of college freshmen arrive with mathematical preparation
that qualifies them for advanced placement, there is a simultaneous
need for a greater variety of precalculus courses; the latter prob-
lem is especially critical at colleges having a policy of open
admission. Does the mathematics curriculum provide suitable points
of entry and exit for all students? Are placement procedures and
policies in mathematics sufficiently flexible?

Thus, for a variety of reasons, it is no longer clear that
there should be a single general curriculum in mathematics. Several
alternative curricula in mathematics are emerging, and colleges with
limited resources will soon have to make difficult choices from
among these alte...natives.
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SECTION II. THE NATURE OF THIS STUDY

The intention of CUPM in establishing a cormnittee to review the
GCMC report was to publish a new version, incorporating changes as
needed to correct deficiencies in the original study and modifying
the curriculum in accordance with new conditions in mathematics and
mathematics education. Some of the technical shortcomings of the
original course outlines (pace and content) proved to be manageable
and are taken up below, whereas other problems mentioned in Section I
are more difficult, both intrinsically and in their effect on the
whole concept of a compact general curriculum. Several of these
problems have been considered by other CUPM panels, and some are
still under intensive study. They include:

(a) Basic mathematics. See A Course in Basic Mathematics for
Colleges (1971) and A Transfer Curriculum in Mathematics for Two
Year Colleges (1969).

(b) The training of elementary and secondary school teachers.
See Recommendations on Course Content for the Training of Teachers of
Mathematics (1971).

(c) A program in computational mathematics. See Recomrnenda-
tions for an Undergraduate Program in Computational Mathematics
(1971).

(d) The impact of the computer on the content and organization
of introductory courses in mathematics. (in preparation)

(e) Upper-division courses in probability and statistics. See
Preparation for Graduate Work in Statistics (1971).

(f) Lower-division courses in statistics. (in preparation)

(g) Courses in the applications of mathematics. See Applied
Mathematics in the Undergraduate Curriculum (1972).

(h) New teaching techniques and unusual curricula. (in prepara-
tion)

Clearly, a definitive restatement of the GCMC report, if possible
at all, would have to take into account not only these reports but
others that will yet emerge from further study. However, suggestions
for improvements in the recommendations of the GCMC report have been
developed, and there is no need to defer their publication until a
comprehensive reformulation is completed. Accordingly, the present
pamphlet gives the current suggestions of CUPM for the half-dozen
courses.that include a substantial part of the mathematics enroll-
ment in almost all colleges, namely first- and second-year calculus,
linear algebra, and the elements of modern algebra. In the next
section we shall discuss our proposed changes and our reasons for
proposing them. It is entirely possible that when the questions



raised in Section I are answered, the needs of large numbers of stu-
dents will be met more adequately by some completely new selections
of courses than by the traditional ones. However, as we stated in
Section I, basic calculus and algebra courses like Mathematics 1, 2,
3, 4, and 6 of the GCMC report will surely continue to be taught.
Thus, those departments that have made or are making efforts to im-
plement the reconmendations of the 1965 GCMC report should continue
to do so, with attention to the changes of detail proposed in Sec-
tion III, changes that do no violence to the basic content of the
core program originally proposed.

5
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SECTION III. NEW DESCRIPTIONS OF THE BASIC CALCULUS AND ALGEBRA
COURSES

As CUPM did in 1965, we use two devices to obtain enough flexi-
bility to accommodate the diversity of achievement and ability of
college freshmen. We describe a basic set of semester courses
rather than year courses; this arrangement makes it easier for stu-
dents to take advantage of advanced placement or to leave the mathe-
matics program at a variety of levels. We also suggest that, wher-
ever possible, a college should offer the basic courses Mathematics 1
through 4 every semester. This allows advanced placement students to
continue a normal program in mathematics without interruptions. More-
over, students who need to begin with precalculus mathematics can
follow it immediately with a calculus sequence.

The following list of basic courses is deliberately given with
bare "college catalogue" descriptions, for we do not wish to seem
overly prescriptive. In Section IV of this report, however, we in-
clude detailed course outlines and commentaries which are meant to
identify those topics that we feel are most significant and to convey
the spirit in which we recommend that these basic courses be taught.

Mathematics 1. Calculus I. Differential and integral calculus
of the elementary functions with associated analytic geometry. [Pre-
requisite: Mathematics 0 or its equivalent. A description of Mathe-
matics 0 is given in Section VI.]

Mathematics 2. Calculus II. Techniques of integration, intro-
duction to raultivariable calculus, elements of differential equations.
[Prerequisite: Mathematics 1]

Mathematics 3. Elementary Linear Algebra. An introduction to
the algebra and geometry of 3-dimensional Euclidean space and its
extension to n-space. [Prerequisite: Mathematics 2 or, in exception-
al cases, Mathematics 0]

Mathematics 4. Multivariable Calculus I. Curves, surfaces,
series, partial differentiation, multiple integrals. [Prerequisites:
Mathematics 2 and 3]

Mathematics 6L. Linear Algebra. Fields, vector spaces over
fields, triangular and Jordan forms of matrices, dual spaces and
tensor products, bilinear forms, inner product spaces. [Prerequisite:
Mathematics 3 ]

Mathematics 6/1. Introductory Modern Algebra. The basic notions
of algebra in modern terminology. Groups, rings, fields, unique
factorization, categories. [Prerequisite: Mathematics 3 ]

(More upper-division courses are!described in Section V, and
outlines for them can be found in Section VI.)
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A reader who is familiar with the 1965 GCMC report will notice
at once that same significant changes are being proposed here.

In the first place, that doctunent sketched only the broad out-
lines of a curriculum, giving for each course a (rather ample) col-
lege catalogue description. Those who accepted the broad outlines
immediately had to face the specific details of implementation: What
iS a reasonable rate at which to cover new material for the average
student? What specific topics can be included if this rate is to be
achieved?

CUPM has now attempted to answer these questions by means of
commentaries on the course outlines. We have tried to develop a
sense of what is meant by "the average student," taking account of
the changing capabilities and preparation of the students in most
undergraduate courses. Because of the frequent objection that the
rate apparently suggested by the 1965 GCMC report was unreasonably
fast, we have made a special effort to be realistic about the mate-
rial that can be covered and to offer suggestions about the pace and
style of its presentation. The course outlines are intended as
existence proofs rather than as prescriptive recommendations; they
represent solutions that CUPM feels are feasible, but we are aware
that these are not the only possible solutions. In fact, we encour-
age others to devise different and more effective ways of achieving
the same ends.

The commentaries accompanying the course outlines attempt to
convey some specific ideas about the manner of presentation that
CUPM feels is appropriate. The suggested pace has been indicated by
assigning a number of hours to each group of topics and, in many
cases, by more detailed suggestions of what to omit, what to mention
only briefly, what to stress. Since a standard semester contains 42
to 48 class meetings, we arbitrarily allowed approximately 36 hours
for each one-semester course, representing class time mainly devoted
to the discussion And illustration of new material; thus the assign-
ment of, say, 6 hours to a topic is a guide to the relative propor-
tion of time to be spent on the topic. CUPM hopes that the commen-
taries are sufficiently detailed to show that the suggested material,
in the recommended spirit, can actually be covered in 36 hours. The
slack time that we have left provides for tests, review, etc. CUPM
feels that a department that wishes to cover additional topics, or to
provide deeper penetration of the topics listed, should not attempt
to crowd such material into the courses as outlined, but rather
should either move to courses of four semester-hours or lengthen the
program.

The structure of the calculus sequence. The 1965 GCMC report
envisioned a program extending over four semesters to cover the
traditional subject matter of calculus courses augmented by elemen-
tary linear algebra. The present Study, on the other hand, seeks to
return to the tradition of a basic two-semester calculus course
serving both as an introduction to further work in calculus and as a

7



unit for students who will end their study at this point. What is
not traditional is that this course (Mathematics 1 and 2) should be
a self-contained introduction to the essential ideas of calculus of
both one and several variables, including the first ideas of differ-
ential equations. Students who stop at the end of a year generally
need calculus as a tool rather than as an end in itself or as prepara-
tion for a heavily mathematical subject like physics, and they ought
to encounter all the math topics, at least in embryo. The present
arrangement was suggested in 1965 only as an alternative to a more
conventional arrangement. The arguments given above for the present
arrangement seem so compelling that now CUPM does not wish to suggest
any alternative for the first year of calculus.

We have, however, preserved the feature of CCMC which makes the
first semester (Mathematics 1) a meaningful introduction to the
major ideas of calculus (limit, derivative, integral, Fundamental
Theorem) in a single-variable setting.

To achieve the aims both of Mathematics 1 in this spirit and of
Mathematics 1 and 2 as set forth above, a very intuitive treatment
is necessary. The course should raise questions in the minds of
students rather than rush to answer questions they have not asked.
We consider such a treatment to be the right one in any case. It

'serves the needs of the many students who are taking calculus for
its applications in other fields. It is also appropriate for mathe-
matics majors.

Although the recomended treatment is intuitive, it is not in-
tended to be careless. Theorems and definitions should be stated
with care. Proofs should be given whenever they constitute part of
the natural line of reasoning to a conclusion but are not technically
complicated. Those proofs that require detailed epsilon-delta argu-
ments, digressions, or the use of special tricks or techniques should
be consciously avoided. Every theorem should be made plausible and
be supported by pictures when appropriate and by examples exhibiting
the need for the hypotheses. It is often the case that such prepara-
tion for a theorem falls short of a proof by only a little. In such
cases the proof should be completed. However, stress should always
be placed on the meaning and use of the theorem. The following ex-
amples should clarify these ideas.

(1) A student may get along, at least for a while, without the
formal definition of a limit. But limits, and all other concepts of
calculus, should be taught as concepts in some form at every stage.
For example, the Fundamental Theorem of Calculus involves two con-
cepts: the "limit" of a sum and the antiderivative. The theorem
states that if f is continuous and if

ff (x) dx
a

has been defined by approximating sums, then

8
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f(x) dx = F(b) -

where F' = f. There is, to begin with, no obvious relation between
the two sides of this equation, and an effort is required to make it
credible. One natural approach depends on proving that if

G(x) = ixf(t)dt,
a

then G' = F' = f, whence G and F differ by a constant which can only
be F(a). Thus a simple test to determine whether a student under-
stands the Fundamental Theorem is to ask him to differentiate

G(x) f dt.
Jo

If he does not know how, he does not understand the theorem. It is
dishonest to conceal the connection between the two concepts by con-
ditioning the student to accept the formalism without his being
aware that the concepts are there. On the other hand, to give the
student only the concepts without making him fully aware of the
formalism is to lose sight of the aspect of calculus that makes it
such a powerful tool in applications as well as in pure mathematics.

(2) A "cookbook" course might teach students to find the maxi-
mum of a function by setting its derivative equal to zero, solving
the equation, and perhaps checking the sign of the second derivative;
it might not discuss other kinds of critical points. A thoroughly
rigorous course, on the other hand, might demand careful proofs of
the existence of a maximum of a continuous function, Aolle's theo-
rem, and so on. What we suggest for the first calculus course is a
clear statement of the problem of maxisdaing a function on its do-
main, a precise statement of such pertinent properties as the exist-
ence of the maximum, and examples to indicate that the maximum, aft
exists, may occur either at endpoints, points where the derivative
equals zero, or points where the derivative does not exist.

The commentaries on Mathematics 1 through 4, given in Section
IV, may also be consulted for a more detailed presentation of what
we have in mind.

The computational aspects of calculus should be the center of
attention in Mathematics 1 and 2. This means both the techniques
of differentiation and integration and the numerical-computational
methods that go along with them. Many people believe that a com-
puter should be used, if possible, to supplement the formal pro-
cedures and reinforce their teaching. However, COPM is not prepared
at the present time to provide any specific guidelines for how the
computer should be used in calculus courses or how the traditional
material of calculus ought to be modified in the light of the

9
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availability of computers. This problem is being studied by the
CUPM Panel on the Lmpact of Computing in Mathematics Courses which
expects to issue a report in 1972.

Finally, Mathematics 1 and 2, and indeed all the courses dis-
cussed here, should include examples of applications to other
fields--the more concrete, the better.

The introduction of Mathematics 3 (Elementary Linear Algebra)
was suggested in the 1965 GCMC report for the following reasons:

Our arguments for placing a formal course in linear
algebra in the first semester of the second year are more
concerned with the values of the subject itself and its
usefulness in other sciences than with linear algebra as
a prerequisite for later semesters of calculus. Let us
first consider prospective mathematics majors. Their
official commitment to major in mathematics is usually
made before the junior year of college. It is desirable
that this decision be based on mathematical experience

which includes college courses other than analysis. For
these students linear algebra is a useful subject which
involves a different and more abstract style of reasoning
and proof. The same contrasts could be obtained from
other algebraic or geometric subjects but hardly with the
same usefulness that linear algebra offers.

The usefulness of linear algebra at about the stage
of Mathematics 3 is becoming more and more apparent in
physics and engineering. In physics it is virtually
essential for quantum mechanics which is now being studied
as early as possible in the undergraduate curriculum,
especially in crystal structures where matrix formulation
is most appropriate. In engineering, matrix methods are
increasingly wanted in the second year or earlier for
computation, for network analysis, and for linear operator
ideas. The basic ideas and techniques of linear algebra
are also essential in the social sciences and in business
management. Students in these specialties are best served
by an early introduction to the material in Mathematics 3.

We think, however, that Mathematics 3 is about the
earliest stage at which the subject can profitably be
taught to undergraduates generally. It can be taught to
selected students in high school, though the high school
version of the subject tends to be sommdat lacking in
substance. High school students do not have a sufficiently
broad scientific or mathematical background to motivate it
and have not yet reached the stage of their curriculum
when they can use it outside the mathematics classroom.

These reasons seem equally cogent today. However, CUPM is now
more persuaded, than in 1965 that it is important to have the

10
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terminology and elementary results of linear algebra available for
the study of the calculus of several variables, and we propose a
version of Mathematics 4 that takes as much advantage as possible of

what the student has learned in Mathematics 3. How this can be done

is explained in some detail in the rammentary on Mathematics 4.

The present version of Mathematics 3 is a less denuding course
than the Mathematics 3 described in the 1965 GCMC report, which in-
deed has frequently been criticized as containing too much material.
Students who need more linear algebra than can reasonably be includ-
ed in Mathematics 3 should also take Mathematics 6L.

In 1965 the GCMC report presented a calculus sequence that cul-
minated in Mtthematics 5, a course in vector calculus and Fourier

methods. This has long been the accepted culmination of the calculus

sequence. CUPM no longer feels that this material is to be regarded

as basic in the same sense as the material of Mathematics 1 through

4. It is needed for graduate study of mathematics and for physics,

but not for many other purposes. In fact, we do not suggest any
single sequel to Mathematics 4 as part of the baste program but men-
tion several possible courses at this level, recommending that each
college choose one or more of these, or a course of its own design,
according to its capabilities and the needs of its students.

Mathematics 6M (Introductory Modern Algebra) introduces the
student to the basic notions of algebra as they are used in modern
mathematics. We regard this course, or one of similar content, as
an essential course that should be available in every college. We

also recommend that every college that can do so offer a semester
course containing further topics in linear algebra (Mathematics 6L;
this is independent of Mathematics 6M). The rationale behind these
recommendations is contained in the course descriptions.

11
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SECTION IV. NEW OUTLINES FOR THE BASIC CALCULUS AND ALGEBRA
COURSES

The following course outlines are intended in part as extended
expositions of the ideas that we have in mind, in part as feasibil-
ity studies or existence proofs, and in part as proposals for the
design of courses and textbooks. They are intended only to suggest
content, not to prescribe it; they do, however, convey the spirit
in which we believe the lower-division courses should be presented.

12
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Mathematics 1. Calculus I.

[Prerequisite: Mathematics 0] Mathematics 1 is a one-semester
intuitive treatment of the major concepts and techniques of single-
variable calculus, with careful statements but few proofs; in particu-
lar, we think that epsilon-delta proofs are inappropriate at this
level. We give a brief outline suggesting the amount of time for
each topic; a more detailed commentary follows the outline.

COURSE OUTLINE

1. Introduction. (4 hours) Review of the ideas of function,

graph, slope of a line, etc.

2. Limits, continuity. (3 hours) Limit and approximation

defined intuitively. Derivatives as examples. Definition of con-

timity, types of discontinuity, Intermediate Value Theorem.

3. Differentiation of rational functions; maxima and minima.

(5 hours)

4. Chain rule. (3 hours) Include derivatives of functions

defined implicitly, inverse function and its derivative.

5. Differentiation of trigonometric functions. Higher deriva-

tives. (3 hours)

6. Applications of differentiation. (3 hours) Tangent as

"best" linear approximation. Differential, approximations using

differentials. Extrema, curve sketching.

7. Intuitive introduction to area. (2 hours)

8. Definite integral. (3 hours)

9. Indefinite integrals, Fundamental Theorem. (4 hours)

10. Logarithmic and exponential functions. (3 hours)

11. Applications of integration. (3 hours)

COMMENTARY ON MATHEMATICS 1

The idea of this course is to provide the student with some

understanding of the important ideas of calculus as well as a fair

selection of techniques that will be useful whether or not he con-

tinues his study of calculus. If all this is to be done, formal

13
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proofs must necessarily.be slighted. The following comments attempt

to bring out the spirit that we have in mind.

1. Introduction. The basic ideas of slope of a straight line

and of functions and their graphs can be reviewed in the context of

an applied problem leading to the search for an extreme value of a

quadratic or cubic polynomial. The ideas of increasing and decreas-

ing functions and of maxima and minima should appear early. The

direction of a graph at a point can be introduced as the limiting

slope of chords. No formal definition of s limit need be given here:

the derivative can be understood as a slope-function, and the van-

ishing of the derivative can be explored. Alternative interpreta-

tions are useful: derivative as velocity, as rate of change in gen-

eral, and abstractly as lim using the intuitive idea of a
x-a x - a

limit. Derivatives of the functions x x
2

, of the general quadratic

function, of x - l/x, of x Vic can be determined. The need for a

deeper study of limits can be shown by the attempted computation of

f'(0) for f: x - sin x. Students can use tables or a computer to
sin x

obtain values of - for x near 0.

2. Limits, continuity. We do not intend that this should be

a rigorous treatment with e-eproofs. Rather, the presentation of

continuity and the Intermediate Value Theorem should strive to make

the definitions and the theorems (and the need for their hypotheses)

clear by pictorial means. Limit theorems for sums, products, and

quotients should be mentioned and various types of discontinuity

illustrated by examples. A discontinuity not of jump type can be

illustrated by sketching sin (1/x) near x.= 0. The students should

be convinced that rational functions are continuous (except at zeros

of the denominator).

3. Differentiation of rational functions. The definition of

derivative can be repeated with alternative notations:

f(x+h) - f(x)
dx h

(It is desirable for students to be aware of all the notations that

they are likely to meet in other subjects.) Application of limit

theorems will yield differentiation formulas for integral powers,

sums, products, polynomials; products and quotients; higher

14



derivatives. Calculation of maxima and minima furnishes an immedi-

ate application. The distinction between local and global extrema

needs to be made here. For curve-sketching, one can make good use

of the proposition that a continuous function is monotone between

successive local extrema. This is intuitively clear from a diagram

and is easily proved.

4. Chain rule. Composite functions can be ehought of as com-

positions of mappings from a line to a line. If ehe derivative is

thought of geometrically as a local magnification, the chain rule

then expresses the result of two successive magnifications.

It is worth exploring the geometrical interpretation of the

derivative for the inverse function in terms of reflection in the

line y = x.

5. Differentiation of trigonometric functions. An appppriate

argument for demonstrating the value of 31 131-1tx is the geometrical

argument using areas (which can be more readily justified than the

one using lengths).

6. Applications of differentiation. The Mean Value Theorem is

needed here. Mien this eheorem is discussed, the student should see

its pictorial representation and should understand that the condi-

tions placed on the function (continuity on the closed interval,

differentiability on the open interval) are no more, and no less,

than is necessary.

The phrase "tangent as 'best' linear approximation" ip intended

to suggest the geometric meaning of the formula

f(x) = f(a) + f'(a)(x-a) + E,

where E/(x-a) - 0 as x a.

7. Intuitive introduction to area. Alit is intended is.a

presentation along such lines as the following: Properties of area

(e.g., A(S) 0, S fl T =0=> A(S U T) = A(s) A(T)). Area of

rectangle accepted from geometry. Area within closed curve express-

ed in terms of areas under the graphs of functions. Approximation

from above and below by sums of areas of rectangles. Idea of area

as a limit by squeeze between upper and lower estimates. Error

estimates (pictorially obtained) for monotone functions.

15
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8. Definite integral. No formal proofs of the existence and
properties of the integral are expected. A possible outline is as
follows: Integral as a formal generalization of the idea of area--
a number approximated by upper and lower sums formed for any func-
tion regardless of sign. Integral as limit of Riemann sums. Inter-
pretation of integral as signed area. Integral of af and of f + g.

Reversal of order of limits of integration. ff+ff f. If
a b a

f (x) g(x), then, for a < b, f f g. g.
a a

Improper integrals: a 15-minute introduction to the idea, with
some simple illustrative examples.

9. Indefinite integrals, Fundamental Theorem. Integral as a

function of the upper endpoint, F(x) = f(t) dt. Intuitive dis-
a

cussion of the derivative of this function for continuous f; one can
geometrically motivate the inequalities min f(t) F(x+h) - F(x)

Cx,x+11]

g
[x,x+m11]

ax f(t) and then apply the squeezing or pinching principle.

The student should have some practice in the use of simple substi-
tutions to evaluate integrals by the use of the Fundamental Theorem,
including integrals of trigonometric functions. A brief introduc-
tion to tables of integrals is desirable at this point, to be con-
tinued in the next section when more functions are available.

10. Logarithmic and exponential functions. The definition of
the logarithm as an integral is recommended.

One can give a heuristic argument for the formula for differ-
entiating the logarithmic function: from assumed differentiability
of the exponential function f: x ax (a > 0), obtain f'(x)
= fI(0)ax = Cf(x); hence, for the inverse function g: x logax,
note that g' (x) 1/(Cx). This is one way of suggesting the defini-
tion of the logarithmic funetion as an integral.

The Fundamental Theorem can be used to derive some basic rules
1for logarithms. For example, using D(log ax) = = D(log x) and

integrating from 1 to b, one obtains log(ab) - log(a)
log(b) - log(1) or log (ab) = log(a) + log(b).

Integration exercises requiring simple substitutions and the

16
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use of integral tables may be continued with special emphasis on
in tegrands involving logarithmic and exponential f unc t ions.

The discussion of the differential equation y' = ky provides an
alternate approach to the definition of the exponential function.
One starts with the solution y = yoekx for the differential equation
with initial condition y' (0) = yo. To show that this initial value
problem defines the exponential function, we must prove that the
problem has a unique solution. To do this, suppose z is any solu-
tion. Let u = ze-kx. Then z = uekx and, since z' = kz, it follows
that u' = 0. Hence u = constant and the initial condition requires
u = yo. Hence z = y and the solution is unique. The discussion of
the equation y' = ky also leads naturally to a discussion of growth
and decay tnodels as in the next section.

Students may be reminded at this point of the basic rules for
operations with exponents, and these rules may be justified.

With the derivatives of logarithmic and exponential functions
available, it is now possible to justify the expected rule for
differentiating general powers and hence to provide more diversified
drill problems on differentiation of elementary functions.

Further use of tables of integrals is now possible and is recom-
mended in place of integration by ingenious devices. Of course,
students must be able to make simple substitutions in order to use
integral tables effectively.

11. Applications of integration. It ir very desirable for the
students to see applications of integration to as many fields as
Possitle besides geometry and physics. Since such applications do
not yet appear in many textbooks, we have included some specific
suggestions with references to places where more information can be
f ound.

It is particularly desirable to have some applications of the
integral as a limit of Riemann sums, not merely as an antiderivative.
Examples like the following can be used: defining volume of a solid
by the parallel slice procedure; defining work done by a variable
force applied over an interval as an integral over that interval
suggested by Riemann sums; defining the capital value of an income
stream obtained over time at a given rate and with interest

17



compounded continuously as the limit of a Riemann sum (see Allen,
Roy G. Mathematical Analysis for Economists. New York, St. Martin's

Press, Inc., 1962).
An intuitive understanding of probability density (perhaps

using the analogy with mass density for a continuous distribution of
mass on a line) can also supply sufficient background for interest-
ing applications of definite integrals, since if f is the probabil-
ity density function (pdf) of a random variable X, then

Pr(a < X < b) = f(x) dx. Such important practical pdf's as the
a

exponential and norma2 can be introduced, as well as the uniform,
triangular, and other pdf's defined on a finite interval, e.g.,
f(x) = 3(1 - x)2 if 0 x S 1, f(x) = 0 elsewhere. The normal pdf
offers an opportunity to point out a function that cannot be inte-
grated in elementary form and for which tables are available.

At the conclusion of this semester course, one is able to dis-
cuss the growth of a population governed by a differential equation
of the form N'(t) = (a - bN)N. Here N(t) is the size of the popula-
tion at time t. If b = 0, then we have exponential growth with
growth coefficient a. If, however, the growing population encounters
environmental resistance (due to limited food or space, say), then
b > 0 and the differential equation model involves a growth coef-
ficient (a - bN) that diminishes with increasing population size.
This leads, when the differential equation is solved, to the logistic
curve.

This differential equation and the corresponding logistic curve
arise in many different contexts: (i) in the study of the phenomenon
of diffusion through some population of a piece of information, of
an innovative medical procedure, of a belief, or of a new fashion in
clothes (see Colman, James S. Introduction to Mathematical Sociol-
ogy. New York, Free Press, 1964); (ii) in epidemiology where one
studies the spread of a communicable disease (see Bailey, N. T.
The Mathematical Theory of Epidemics. New York, Hafner Publishing
Company, 1957); (iii) in biological studies of the size of popula-
tions of fruit flies as well as in demographic models of the U. S.
population (see references in Keyfitz, Nathan. Introduction to the



Mathematics of Population. Reading, Massachusetts, Addison-Wesley

Publishing Co., Inc., 1968); (iv) in the analysis of autocatalytic

reactions in chemistry (see Frost, Arthur A. and Pearson, R. G.

Kinetics and Mechanism; A Study of Homogeneous Chemical Reactions,

2nd ed. New York, John Wiley and Sons, Inc., 1961); (v) in studies

of iadividual response and learning functions in psychology and

in operations research models of advertising-sales relationships

(see references in Rao, A. G. Quantitative Theories in Advertising.

New York, John Wiley and Sons, Inc., 1970).

An hour or two spent on this differential equation offers an

opportunity for students to review many parts of the course (inverse

functions, the Fundamental Theorem, integration of a rational func-

tion, relationships between logarithms and exponentials, sketching

the graph of a function with special attention to the asymptotic

limiting population size t - co). But the logistic example enables

the instructor also to make other useful points: that mathematics

is widely applied in not only the physical sciences and engineering,

but also in the biological, management, and social sciences, and

that the same piece of mathematics (the logistic differential equa-

tion) often makes an appearance in many different disguises and con-

texts. Finally, one can point out the progression from simple to

more complex models (from pure exponential population growth to

logistic growth) as one strives to develop mathematical models that

better describe real-world phenomena and data, and one may conclude

by pointing out that the logistic itself can be significantly im-

proved by generalizations that take account of the age structure of

the population and of stochastic and other complicating features of

the growth process.
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Mathematics 2. Calculus II.

[Prerequisite: Mathematics 1] Mathematics 2 develops the
techniques of single-variable calculus begun in Mathematics 1 and
extends the concepts of function, limit, derivative, and integral
to functions of more than one variable. The treatment is intended
to be intuitive, as in Mathematics 1.

COURSE OUTLINE

1. Techniques of integration. (9 hours) Integration by

trigonometric substitutions and by parts; inverse trigonometric

functions; use of tables and numerical methods; improper integrals;

volumes of solids of revolution.

2. Elementary differential equations. (7 hours)

3. Analytic geometry. (10 hours) Vectors; lines and planes

in space; polar coordinates; parametric equations.

4. Partial derivatives. (5 hours)

5. Multiple integrals. (5 hours)

COMMENTARY ON MATHEMATICS 2

1. Techniques of integration. The development of formal in-

tegration has been kept to the minimum necessary for intelligent use

of tables.

At the beginning of the course the instructor should review

briefly the concepts of derivative, antiderivative, and definite

integral, and should emphasize the relationships which hold among

them (Fundamental Theorem). The importance of the antiderivative as

a tool for obtaining values of definite integrals makes it desirable

to have a sizable list of functions with their derivatives. This

should motivate the study of the inverse trigonometric functions and

the further development of integration methods through trigonometric

substitutions and tntegration by parts. We recommend the use of the

latter technique to obtain some of the reduction formulas commonly

appearing in integral tables.

The instructor should point out that not all elementary func-

tions have elementary antiderivatives and should use this fact to
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motivate the study of numerical methods for approximating definite

integrals (trapezoidal rule, Simpson's rule). If students have

access to a computer, they should be required to evaluate at least

one integral numerically with programs they have written.

The hmproper integral with infinite interval of integration

should be introduced. Comparison theorems should be discussed in-

formally as there is not enough time for an excursion into theory.

If additional time can be spared, the improper integral for a func-

tion with an infinite discontinuity in the interval of integration

may be considered.

The method of "volumes by parallel slices" from Mathematics I

should be applied here to find the volume of solids of revolution by

the disk method.

2. Elementary differential equations. Solution of differential

equations is a natural topic to follow a unit on formal integration,

because it extends the ideas developed there and gives many opportu-

nities to practice integration techniques. The coverage recommended

below provides only a brief introduction to the subject, and it is

intended that ekamples be simple and straightforward with time allow-

ed for a variety of applications.

a. First-order equations. The notion of tangent field,

solution curve. Separable equations. Linear homogeneous equations

of first order. Applications: orthogonal trajectories, decay and

mixing problems, falling bodies.

b. Second-order linear equations with constant coeffi-

cients. Homogeneous case, case of simple forcing or damping func-

tion; initial conditions. Applications: harmonic motion, electric

circuits. These topics will require a brief discussion of the com-

plex exponential function and De Moivre's theorem.

3. Analytic zeometa. Vectors and vector operations (sums,

multiples, inner'products; T, r) should be introduced at the

beginning of ehis unit because they greatly simplify the analytic

geometry of lines and planes in three-dimensional space. It is

desirable to discuss the algebraic laws for vector operations, but

proofs should be kept informal. The efficiency of vector notation

can be illustrated by proving one or two theorems from elementary

21

7



geometry.by vector methods, e.g., that the three medians of a tri-

angle intersect in a point.

Equations of lines and planes in three-dimensional space should

first be obtained in vector form and then translated into scalar

equations. The students should be able to solve problems involving

parallelism, orthogonality, and intersections; they should be famil-

iar with the derivation (by vector methods) of the formula for the

distance fram a point to a plane.

A very brief introduction to polar coordinates is suggested.

Students should learn how to draw simple polar graphs and to convert

from x,y to r,8 and vice versa; they should be able to compute areas

using polfir coordinates.

The brief unit on parametric equations should include parametric

representation of curves, motion along curves, velocity, accelera-

tion, and arc length.

4. Partial derivatives. This section is intended to provide a

basic acquaintance with functions of two or three variables and with

the concept of and notation for partial derivatives.

Examples of functions of two or three variables should be given,

and methods of representing such functions as surfaces and by means

of level curves or level surfaces should be shown. The partial

derivatives f
x
(a,b) and f (a,b) should be defined and explained

geometrically as slopes of appropriate curves in the planes y = b

and x = a, respectively. The concept of a tangent plane to a sur-
.

face at a point should be introduced. In particular, the tangent

plane, if it exists, is generated by the tangent lines in the

x- and y-directions. Let these be, respectively,

and

z = c + ce(x - a), y = b

z = c + 0(y - b), x = a,

where c = f(a,b), = f
x
(a,b), B = f (a,b). The normal g to the

plane must therefore be perpendicular to the directions I +Aland

+ 017; hence g = - al - 03 + r, and the tangent plane has the

equation:
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z = a (x - a) + (y - b) + c .

Extremum problems may be treated briefly as follows: at a point

(a,b,c) where z = f(x,y) has a maximum or minimum value, the tangent

plane, if it exists, must be parallel to the xy-plane. This gives

the necessary conditions that fx(a,b) and f (a,b) both vanish at an

interior extremum. Examples should be given to show that this con-

dition is not sufficient. The second derivative test for extrema

may be stated and illustrated by examples. Applicatimm should be

considered, including the method of least squares.

Topics such as the general concept of differentiability, the

chain rule, and implicit functions are not included. (If it is

possible to spend another hour or two on this section, it would be

worthwhile to invest the time in studying the directional derivative

for z = f(x,y), noting that the directions of greatest increase of

the function are orthogonal to level curves.)

5. Multiple integrals. The notions of double and triple inte-

grals should be introduced through consideration of areas, volumes,

or moments. Evaluation of double integrals by means of iterated

integrals can be made plausible by calculating the vohmm of a solid

by integrating the cross-sectional areas. Computations in both rec-

tangular and polar coordinates should be included.
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Mathematics 3. Elementary Linear Algebra

This course is an introduction to the algebra and geometry of
R3 and its extension to Rn. Most students electing Mathematics 3
will have studied some calculus, but Mathematics 2 need not be con-
sidered as a prerequisite.

Since the content and methods of linear algebra are new to
most students, this course should begin by emphasizing computation
and geometrical interpretation in R3, to allow the student time to
absorb unfamiliar concepts. In the outline below, the first eighteen
hours are devoted to this phase of the course. During the second
half of the course, many of the same ideas are re-examined and ex-
tended in Rn, so that theorem-proving techniques can be developed
gradually. Classroom experience has shown that the two outlines
given for Mathematics 3 in the original GCMC report are too exten-
sive, so the content of this outline has been reduced. Students who
need to go further in linear algebra should resume their study of
this subject in Mathematics 6L.

In selecting topics for this first course in linear algebra we
confirm the judgments of the 1965 GCMC report: (1) the course should
be as geometrical as possible to offset its natural abstractness;
(2) the treatment of determinants should be very brief; (3) the next
topics to abbreviate under pressure of limited time are abstract
vector spaces and linear transformations.

To prepare students adequately for Mathematics 4, this course
must provide a knowledge of vectors in Rn, geometry in Rn, linear
mappings from Rn into Rm and their matrix representations, matrix
algebra, and determinants of small order. These topics, coupled
with the solution of systems of linear equations, also provide a
very useful course for students in the social and life sciences,
and applications to those subjects serve to enliven the course.
This much can be accomplished in one semester, but careful planning
is required, and the degree of generality attempted in this first
course must be controlled. For most classes it will be necessary
to defer to Mathematics 6L consideration of such topics as n x n
determinants, eigenvalues and eigenvectors, canonical forms, quad-
ratic forms, orthogonal mappings, an4 the spectral theorem.

The instructor is expected to use judgment in adjusting the
level of this course to the ability of his class by deciding upon a
proper balance between concreteness and generality. Not all theo-
rems have to be proved, but all should be motivated convincingly and
illustrated amply. Coordinate-free methods should be used for
efficiency and generality in definitions, proofs, and derivations,
but students should also be required to perform computations with
n-tuples. The examples developed early in the course for R2 and R3
should be carried along as illustrations in an.
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COURSE OUTLINE

1. Vector algebra and geometry of R
3

. (7 hours) Vector sum

and scalar multiple, with geometric interpretations. Basic proper-

ties of vector algebra, summarized in coordinate-free form. Linear

combinations of vectors; subspaces of R
3

. Points, lines, and planes

as translated subspaces. Vector and cartesian equations of lines and

planes in R
3

. Dot product in R
3
; Euclidean length, angle, orthogon-

ality, direction cosines. Projection of a vector on a subspace; the

Gram-Schmidt process; vector proofs of familiar geometric theorems.

Cross product in R
3

, interpreted geometrically; the triple scalar

product and its interpretation as the volume of the associated paral-

lelepiped.

2. Systems of linear equations. (4 hours) Geometric inter-

pretation of one linear equation in three variables and of a system

of m linear equations; geometric description of possible solutions.

Systems of m linear equations in n variables; solution by Gaussian

elimination. Matrix representation of a linear system. Analysis of

Gaussian elimination as the process of reducing the matrix to echelon

form by three basic row operations (transposition of two rows, addi-

tion of one row to another, multiplication of a row by a nonzero

scalar), followed by backward substitution. The consistency condi-

tion; use of an echelon form of the matrix of the system to obtain

information about the existence, uniqueness, and form of the solution.

3. Linear transformations on R3. (7 hours) Linear dependence

and independence; the use of Gaussian elimination to test for linear

independence. Bases of R
3

; representation of a vector relative to a

chosen basis; change of basis. Linear transformations on R
2
and R

3
;

matrix representation relative to a chosen basis. Magnification of

area by a linear transformation on R
2

; 2 x 2 determinants. Magnifi-

cation of volume by a linear transformation on R3; 3 x 3 determinant

expressed as a triple scalar product and as a trilinear alternating

form. The algebra of 3 x 1 and 3 x 3 matrices, developed as a rep-

resentation of the algebra of vectors and linear transformations.

Extension to m x n matrices; sum, scalar multiple, and product of

matrices.
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4. Real vector spaces. (8 hours) Rn as a vector space; sub-

spaces of Rn. Linear independence, bases, standard basis of R.

Representation of a linear mapping from Rn to Rm by an m x n matrix

relative to standard bases. Range space and null space of a linear

mapping from Rn to Rm; vector space interpretation of the solution

of a system of linear equations in n variables, homogeneous and non-

homogeneous. Axiomatic definition of a vector space over R. A

variety of examples in addition to Rn, such as polynomial spaces,

function spaces, the space of m x n matrices, solutions of a homo-

geneous system of linear equations, solutions of a linear homogene-

ous differential equation with constant coefficients. SubspaceP;

linear combinations; sum and intersection of subspaces. Linear

dependence, independence; extension of a linearly independent set of

vectors to a basis. Basis and dimension; relation of bases to co-

ordinate systems.

5. Linear mappings. (6 hours) Linear mappings of one real

vector space into another. Images and preimages of subspaces;

numerous examples to illustrate the algebra of mappings. Range

space and null space of a mapping and their dimensions. Nonsingu-

larity. Matrix representations of a linear mapping relative to

chosen bases; review of matrix algebra and its relation to the alge-

bra of mappings. Important types of square matrices, including the

identity matrix, nonsingular matrices, elementary matrices, diagonal

matrices. The relation of elementary matrices to Gaussian elimina-

tion, row operations, and nonsingular matrices. Rank of a matrix;

determination of rank and computation of the inverse of a nonsingu-

lar matrix by elementary row operations.

6. Euclidean spaces. (4 hours) Real inner products intro-

duced axiomatically; examples. Schwarz inequality; metric concepts

and their geometric meaning in Rn. Orthogonality, projections, the

Gram-Schmidt process, orthogonal bases. Proofs of geometric theorems

in R
n

.

7. Determinants. (optional) If time is available, the proper-

ties and geometric meaning of 2 x 2 and 3 x 3 determinants may be

used to motivate a brief treatment of n x n determinants. Emphasis

should be given to properties of determinants that are useful in

matrix computations.
26
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COMMENTARY ON MATHEMATICS 3

1. Vector algebra and geometry of R
3

. The primary objectives

of this first section are to develop geometric insight into R
3

and

to gain experience in the methods of vector algebra. Vectors should

be introduced both as ordered triples and as translations, the latter

leading naturally to a coordinate-free interpretation. Algebraic

properties of vectors should be stated in coordinate-free form;

later in the course they can be taken as axioms for an abstract vec-

tor space. The geometry of lines and planes should be stressed, as

should the geometric meanings of the dot and cross product. The

triple scalar product should be shown to be an alternating trilinear

form, later to be called a 3 x 3 determinant.

2. Systems of linear equations. The problem of determining the

subspace spanned by a given set of vectors in R
3

leads directly to a

system of m linear equations in three variables. The solutions of

such a system can first be interpreted geometrically as intersections

of translated subspaces to provide insight for the consideration of

m x n systems. To solve a system of m linear equations in n varia-

bles, Gaussian elimination provides an effective algorithm that

should be stressed as a unifying computational method of linear alge-

bra. The system AX = Y can be represented by the augmented matrix

(k 1 Y). A succession of elementary row operations can be used to

replace the matrix (A
1 Y) by (E 1 2), where E is in row echelon

form. The solutions of AX = Y coincide with those of EX = Z and are

easily obtained by backward substitution since E is in row echelon

form. At this stage the major emphasis should be concrete and com-

putational. Formal representation of elementary row operations by

elementary matrices and the concept of row equivalence are considered

in Section 5. For some classes it may be appropriate to suggest that

the operations discussed above can be carried out with complex num-

bers as well as with real numbers.

3. Linear transformations on R
3

. Linear independence, basis,

linear transformations, and matrix representations are introduced

concretely here and then are repeated in the next section for Rn

and for the general vector gpaced to provide a gradual, spiral
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development of these important concepts.
Determinants are introduced geometrically for the 2 x 2 and

3 x 3 cases. Properties of these determinants should be observed in
a way that facilitates generalization to n x n determinants, perhaps
in a later course.

Matrix algebra arises naturally as a representation of the
algebra of vectors and linear transformations on R3 and then is
easily generalized to matrices of arbitrary size.

4. Real vector spaces. Consideration of Rn can be motivated
by a geometric interpretation of the algebra of ra x n matrices.
The basic concepts of linear algebra in Rn should be studied briefly
as natural extensions of the same concepts in R3. The stage is then
set for a general study of real vector spaces in coordinate-free
form, illustrated amply by a wide variety of familiar examples.
Theorems of various degrees of difficulty can now be proved for any
finite-dimensional vector space, and students can be expected to
prove some of them.

The concepts of linear independence, basis, and dimension need
to be illustrated with many examples. The student should understand
that questions about linear independence reduce to questions about
the solution of a system of linear equations to which Gaussian elimi-
nation provides an answer. The same method can be used to express a
given vector in terms of a given basis.

A brief mention of complex vector spaces is appropriate for
scam classes.

5. Linear mappings. Properties of linear mappings, including
rank and nullity and their relation to the dimension of the domain
space, should now be treated generally. Prove that if R and T are
nonsingular, then the rank of RST equals the rank of S. The iso-
morphism of matrix algebra with the algebra of linear transformations
should be exploited. Elementary matrices, one for each of the three
types of elementary row operations, can be used to effect row opera-
tions on matrices. A matrix is nonsingular if and only if it is the
product of elementary matrices. For some nonsingular P, PA is in
echelon form. By observing that the column rank of a matrix in
echelon form is the number of nonzero rovs, one can show that the
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row rank and the column rank of any matrix are equal. Elementary

row operations should be used to develop a constructive method for

computing the inverse of a nonsingular matrix.

6. Euclidean spaces. The coordinate-free formulation of a real

inner product as a bilinear, symmetric, positive-definite function

from V x V to R, where V is a vector space over R, can be viewed as

a natural abstraction of the dot product in R 3
. Its role as a

source of all metric concepts should be emphasized. The Schwarz

inequality should be derived in coordinate-free form and then inter-

preted concretely in various inner product spaces to obtain the

classical inequalities. The flavor of this section should be

strongly geometric.
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Mathematics 4. Multivariable Calculus I

[Prerequisites: Mathematics 2 and 3 ] This course completes
a four-semester introductory sequence of calculus and linear algebra,
building on the intuitive notions of multivariable calculus from
Mathematics 2 and the linear algebra of Mathematics 3. The four

semesters contain all the topics that seem to us to be essential for
every student who has only this much time to spend on calculus; sub-
sequently, students with various interests will need different
courses.

A considerable advance in conceptual depth should be possible
in Mathematics 4, but there is not enough time for full formal
proofs of the theorems; these proofs are not needed except by stu-
dents who are going at least as far as Mathematics 12, and their
amission makes it possible tacover more topics here. Since maxi-
mum use should be nuuie of Mathematics 3 and some of the material
suggested here is not yet standard, we give a fairly extensive cam-
mentary on the outline.

COURSE OUTLINE

1. Curves and particle kinematics. (5 hours)

2. Surfaces; functions from R
m

to R
1

. (7 hours)

3. Taylor's theorem for f: Rm -0 RI. (5 hours)

4. Sequences, series, power series. (6 hours)

5. Functions from Rm to Rn (m,n V_ 3). (2 hours)

6. Chain rule. (5 hours)

7. Iterated and 'multiple integrals. (6 hours)

COMMTARY ON MATHEMATICS 4

1. Curves. A (11 arametrically represented) curve in Rn is

thought of here as the range of a function f: R
1

R
n

(with princi-

pal emphasis on n 2,3). Set x (x
1 .....

xn ) f(t). The idea of

him f(t) a can be introduced through lim 0; this limit
t-Ror

is the same as the component-by-component limit. Continuity can be

defined via lim f(t) f(a). The derivative of f is associated with
t-qx

the tangent vector. A curve in R
2
or R

3
can be thought of as the

path of a particle; the first and second derivatives with respect to

time are then interpreted as velocity and acceleration. At this
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point plane curves should be reviewed with attention to curve trac-

ing and convexity. The present point of view makes it easy to de-

rive the reflection properties of the conic sections: for example,

if a and I; are the foci of an ellipse and x is a point on the

ellipse, then

+ - VI k.

Differentiate with respect to the parameter t, using

. (7 . li),ff\dc

to obtain
x a ;7 .
Ix al - vl

where V unit tangent vector. This implies that the rays to the

foci from a point on the ellipse make equal angles with the tangent

at that point.

2. Surfaces. Consider functions f: Rm . RI with emphasis on

the case m 2, interpret the graph of such a function as a surface

in R
3

. The Euclidean norm I...1 in Rm is the most useful, but it is

sometimes also useful to have the AUCKLMUM norm 11.1.11 and the in-

equality g The limit of f: Rm - RI at I should be defined,

and continuity should be defined by lim f(7) f(s). The derivative24
J of f at a can be introduced as the linear transformation from

R
m

to R
I

satisfying

f(;) f() + J(37-4) + odit-71()

(but the o-notation itself should not be introduced unless there is

time to get the students thoroughly used to it). Thus with im as a

space of column vectors, f'(;) is a 1 x m matrix (or row vector),

also called the gradient. This should be illustrated especially

for m 2 and compared with the treatment of the tangent plane in

Mathematics 2. Here J grad fliz f2(;)), where

iLax
I

crease of f(37) in the direction of a given unit vector r, namely

1.grad f. The notation of differentials should be at least men-

tioned since books on other ubjects will presumably continue to use

it. From the present point of view, df grad f, where 7 is an

The directional derivative is the rate of in-a

31



arbitrary vector, conventionally denoted by I dx + 3 dy. The
gradient is a vector in the direction of maximal rate of increase
and is orthogonal to level lines.

In general, J is the 1 x m matrix (row vector) with components
af

-a. , 1 , . . . , m, and the idea of the directional derivativei
and of the gradient extend to the general case.

It is desirable to use the linear approximation also for non-
geometric applications, in particular to estimate the effect on the
computed value of a function resulting from small errors in the
variables (conventionally done in differential notation).

The Implicit Function Theorem for f(x,y) 0 should be treated
geometrically: if J is not the zero vector, the level line z 0
of the surface z f(x,y) defines a function y g(x) locally so
that f(x,g(x)) 0 (this should be treated with a picture, not a
proof). The equation gx - AL/P1 follows.dx ax ay

3. Ta lor's theorem. Begin with f: RI - RI. An easy approach
to the theorem assumes If(n+"(t)I <M for It-al < Ix-al; repeated
integration on (a,x) yields

where

(k)
((x) (x-a)k

kl + Rn(x),
kO

mix-ain+1

IRn(x)1 < (n+1)!
Typical examples: binomial, sine, cosine, exponential, logarithm,
arctangent. Such examples lead naturally to the idea of convergence
of an infinite series.

As an application one can expand f: R2 -4 RI to second degree
terms, first with respect to x and then with respect to y, and in
reverse sequence; assuming continuous third derivatives one then
shows that

2LI a
2
f

bybx amay

Taylor's theorem can now be derived for f: It
2

RI and applied
to extreme value problems. (Extreme value problems for f: Rai R1,

> 2, should be treated lightly, if at all.)

32



4. Sequences, series, power series. It is appropriate to in-

troduce the epsilon and neighborhood definitions of limit of.se-

quences and series of constants, but little attention need be paid

to conditional convergence; in the context of this course, absolute

convergence is the significant idea. The comparison test, ratio

test, and integral test can be treated.

For power series it is important to know that there are an

interval and a radius of convergence; a useful formula for the

radius is lim lan/anal, provided the limit exists. The students

should know that the differentiated and integrated series have the

same interval of convergence as the original series; proofs can be

omitted unless there is ample time. Applications; for example,

fx
approximate computation of e

-t2
dt for small x.

0

5. Functions from Rm to Rm. Interpret f: Rm -, Rm in various

ways, e.g., the graph as a subset of R n 41; representation of the

range of f as a hypersurface. Interpretation by vector fields,

e.g., stationary field of force or stationary flow (R
3

-6 R
3
); pars-

metric representation of a surface (R
2

-6 R
3
); unsteady plane flow

(R
3
- R

2
). Limit and continuity of f: t lim f(S) means

lim If(7)-t1 0. Note that this is equivalent to taking the
IS41-0

limit component by component: setting z f(x) (21 zn), f can

be considered as an ordered set of n mappings cpk: -6% from Rm to

RI, and a f(S) S if and only if a 9010 bk, k 1, ..., n.

The derivative J of f at I is defined as the linear transforma-

mation satisfying

f() f(S) + J(S4) + o(IS-S1).

As a linear mapping from Rm to Rm, J may be represented as an n x m

matrix, the Jacobian matrix, with elements

IS; 1
J w
ki ax

6. Chain rule. Composition of functions f: Ra Rm,

g: Rm -4 RP; emphasis on application to change in parametric equations

of a surface under a coordinate transformation (either of domain or

range space). Lemma (continuity of linear transformation): For
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each linear transformation L there is a constant K such that

1121 1 KI311 for all L Proof: Let be unit coordinate

vectors. Li I' L(E x
i i) = E

i'
whence 1111 Elx I

g maxlx I EIL;
i

= K maxix
i
g K.

Theorem: If Jf J Jgf are the derivatives (Jacobian matrices), t

of f, g, and gf, then Jgf = Jg Jf

Proof: Set f07) = f() + Jf(-;) + o(-71.),

g(7) g(V) + J (i-V) + o(i-V),

= f(i), . f(), and apply the lemma above.

Special cases: R
1

R
1

R
1

, etc. Applications in spaces of

dimension at most 3, particularly to polar and cylindrical coordi-

nates.

Coordinate transformations; interpretation of the Jacobian

determinant det J as a local scale factor for "volume."

7. Iterated and multiple integrals. A more careful and more

general treatment than in Mathematics 2. Iterated integrals of

functions on 1(2 and R
3

(partly review from Mathematics 2). Multiple

integrals as limits of sums; evaluation by iterated integration.

Additivity, linearity, positivity of integrals. Application

to volumes, etc.

Change of variables of integration; geometrical interpretation

as coordinate transformation. Special attention to polar and cylin-

drical coordinates. Further applications.
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Mathematics 6L. Linear Algebra

[Prerequisite: Mathematics 3 3 This course is the first
course in linear algebra proper, although it assumes the material
on that subject taught in Mathematics 3. It contains the usual
basic material of linear algebra needed for further study in mathe-
matics except that the rational canonical form is omitted and the
Jordan form is given only brief treatment.

We point out that Mathematics 6L and 611 together do not include
the following topics in the outline of the course Abstract Algebra
given in the 1965 CUPM report Preparation for Graduate Study in
Mathematics: Jordan-HOlder theorem, Sylow theorems, exterior alge-
bra, modules over Euclidean rings, canonical forms of matrices,
elementary theory of algebraic extensions of fields.

COURSE OUTLINE

1. Fields. (4 hours) Definition. Examples: Q, R, C, Q(x),

R(x), C(x), Q(j). The fields of 2, 3, 4 elements explicitly con-

structed by mmans of addition and multiplication tables. Character-

istic of a field.

2. Vector spaces over fields. (9 hours) Definition. Point

out that the material of Mathematics 3 and 4 on vector subspaces of

R
n

and their linear transformations carries over verbatim to vector

spaces over arbitrary fields. Linear dependence. Bases, dimension,

subspaces, direct sums. Linear transformations and matrices. Rank,

image, and kernel. The preceding material is to be thought of as

review of the corresponding material in Mathematics 3 and 4. Matrix

representation of linear transformations. Change of basis. A trans-

formation is represented by rwo matrices A and B if and only if

there exist nonsingularastrices P and Q so that A PBQ, i.e., if

and only if A and B are equivalent. Systems of linear equations.

Relation to linear transformations. Existence and uniqueness of

solutions in both the homogeneous and nonhomogeneous cases. Two

systems have the same solution if their matrices are row equivalent.

Equivalence under eleeentary row operations of equations and matrix,

row echelon form, explicit method for calculating solutions.

3. Triangular and Jordan forms. (6 hours) State without

proof that C is algebraically closed. Any linear transformation
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(matrix) over C has a triangular matrix with respect to some basis
(is similar to a triangular matrix). Nilpotent matrices and trans-
formations and their similarity invariants, i.e., such a transforma-
tion is completely determined by vectors vi on which it is nilpotent
of index qi, i 1,...,r. Definition of eigenvalue. Jordan form
over C via the theorem: If T is a linear transformation on a vector
space V over C with dim V < W and if T has eigenvalues Xi with
multiplicities mi, i 1,...,r, then V mg 60 V with T(Vi) Pi'

1 i
dim Vi mi, and T - Xi is nilpotent on V. Elementary divisors
and minimum polynomial. The Cayley-Hamilton theorem.

4. Dual spaces and tensor products. (6 hours) The dual space
of a vector space. Adjoints of linear transformations and trans-
poses of matrices. Finite-dimensional vector spaces are reflexive.
Tensor products of vector spaces as the solution of a universal
problem. Behavior of tensor product with regard to direct stens,
basis of a tensor product, change of base fields by means of tensor
products.

5. Forms. (5 hours) Definition of bilinear and quadratic
fr:rms. Matrix of a form with respect to different bases. A form
yields a linear transformation of the vector space into its dual.
General theory of symmetric and skew-symmetric forms, forms over
fields where 2 0. Diagonalization and the canonical forms, both
a form and a matrix approach. The case of the real and complex
fields, Sylvester's theorem.

6. Inner product spaces. (6 hours) Definition over R and C.
Orthogonal bases, Gram-Schmidt process, Schwarz inequality for the
general case. Review of the treatment of Euclidean space in Mathe-
matics 3. Self-adjoint and hermitian linear transformations and
their matrices with respect to an orthonormal basis. Eigenvalues
and eigenvectors. All eigenvalues of self-adjoint linear transforma-
tions are real. The spectral theorem in several equivalent forms
both for transformations and for matrices. Applications to classifi-
cation of quadrics. Relations between quadratic forms and inner
products. Positive-def inite forms.
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COMMENTARY ON MATHEMATICS 6L

................remsinietzrnsweSPIOROrrIVOI

At all times a computational aspect must be preserved. The

students should be made aware of the constant interplay between

linear transformations and matrices. Thus they should be required

to solve several systems of linear equations; find the Jordan form,

invariant factors, and elementary divisors of numerical matrices;

diagonalize symmetric matrices and find the matrix P Ruch that PAPtr

is diagonal; and also diagonalize symmetric and hermitian matrices

by means of orthogonal and unitary similarity. In section 6 the

concept of tensor product should be exploited in complexifying a

real space in order to prove that eigenvalues of self-adjoint trans-

formations are real.

A treatment of the Jordan form along the lines of section 3 can

be found in Halmos, Paul R. Finite-Dimensional Vector Spaces, 2nd ed.

New York, Van Nostrand Reinhold Company, 1958.

In addition to the definitive treatment of tensor products to

be found in Book I, Chapter II of Bourbaki's treatise Algebre

Lineaire (Bourbaki, N. glements de Mathematieues, Livre I,

Chapitre II (Algebre Lineaire),3eme ed. Paris, Hermann et Cie.,

1962) or in MacLane and Birkhoff's Algebra, (MacLane, S. and

Birkhoff, G. Algebra. New York, The Macmillan Company, 1967),

briefer and perhaps more accessible treatments may also be found in

Goldhaber and Ehrlich (Goldhaber, J. K. and Ehrlich, G. Algebra.

New York, The Macmillan Company, 1970) and in Sah (Sah, Chin-Han.

Abstract Algebra. New York, Academic Press, Inc., 1966).

All theorems dealing with linear transformations should be

accompanied by parallel statements about matrices. Thus, for ex-

ample, the spectral theorem should be stated in the following three

forms for real vector spaces:

I(a). Let V be a real finite-dimensional inner product space

and let T be a symmetric linear transformation on V. Then V has an

orthonormal basis of eigenvectors of T.

I(b). With the same hypotheses as I(a), there exists a set of
r

orthogonal projections El,..,Er of V such that T XiEi, where Xi
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are the distinct eigenvalues of T.

II. Let A be a symmetric real matrix. Then there exists an

orthogonal matrix P such that PAP
-1

= PAP
tr

is diagonal.

The student should understand that these are equivalent

theorems and, given T or A, should be able to compute XiEi and P

explicitly in low-dhnensional cases.

In dealing with positive-definite forms, one should point out

that these are equivalent to inner products and that yet another

form of the spectral theorem asserts:

Let A, B be symmettic real matrices with A positive-definite.

Then there is a matrix P such that PAP
-1

= I and PBP
-1

is diagonal.
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Mathematics 6M. Introductory Modern Algebra

[Prerequisite: Mathematics 3 ] This course introduces the
student to the basic notions of algebra as they are used in modern
mathematics. It covers the notions of group, ring, and field and
also deals extensively with unique factorization. The language of
categories is to be used from the beginning of the course, but the
formal intrcduction of categories is deferred to the end of the term.
In order to make the material meaningful to the student, the instruc-
tor must devise concrete examples that will relate to the student's
earlier experiences.

We again point out that Mathematics 6L and 6M together do not
include the following topics in the outline of the course Abstract
Algebra given in the 1965 CUPM report Preparation for Graduate Study
in Mathematics: Jordan-Hader theorem, Sylow theorems, exterior
algebra, modules over Euclidean rings, canonical forms of matrices,
elementary theory of algebraic extensions of fields.

COURSE OUTLINE

1. Groups. (10 hours) Definition. Examples, vector sub-

groups of Rn, linear groups, additive group of reels, permutation

and transformation groups, cyclic groups, groups of symmetries of

geometric figures. Subgroups. Order of an element. Theorem:

Every subgroup of a cyclic group is cyclic. Coset decomposition.

Lagrange's theorem. Normal subgroups. Homomorphisms of groups.

The first two homomorphism theorems.

2. Rings and fields. (9 hours) Definitions. Examples:

integers, integers modulo m, polynomials over the reels, the

rationals, the Gaussian integers, all linear transformations on a

vector subspace of Rn, rings of functions. Zero divisors and in-

verses. Division rings and fields. Domains, quotient fields as

solution to a universal problem. Homomorphisms, isomorphisms, mono-

morphisms. Ideals. Congruences in Z. Tests for divisibility by

3, 11, 9, etc. Fermat's little theorem: aP-1 = 1 (mod p), using

group theory. Residue class rings.

3. Unique factorization domains. (11 hours) Prime elements

in a commutative ring. Reminder of unique factorization in Z. Ex-

amples where unique factorization fails, say in Z[/73]. Definition

of.Euclidean ring, regarded as a device to unify the discussion for
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Z and Frmj, F a field. Division algorithm and Euclidean algorithm
in a Euclidean ring; greatest common divisor; Theorem: If a prime
divides a product, then it divides at least one factor. Unique
factorisation in a Euclidean riug. CCD and 1.04. Theorem: A prin-
cipal ideal domain is a unique factorisation domain. Causs' Lemma.
Theorem: If D is a unique factorisation domain, then D(z) is also
a unique factorisation domain.

4. Categories of sets. (6 hours) The notion of a category
of sets. the categories of sets, groups, abelian groups, rings,

te Ids , vector spaces over the reals. Ep 'morph isms , monommorpMsms ,
isomorphisms, surjections, injections. Examples to show that epi
morphisits may not always be surjections, etc. Exact sequences.
Functors and natural transformations. The hommorphism theorem of
group and ring theory in categorical language, moncluorphisms and

epimorphisms in the categories of groups, rings, and Fields.

COPREATART CIN PIAIEVIATICS 611

From the beginning of the course the language of category
theory should be used. Thus arrow's, diagrams (commutative and other-
uise), and exact sequences should be defined and used as soon as
possible. For examele, the first homamorphiur theater for groups
should be stated as follows: Let 10 be a group, f a surjective
howomorphism of C onto II and A ket f. If p: G GIB is the
natural projection, then there exists a unique hammaarphisa g which
makes the diagram

1

cfg

1
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commutative with exact row and column.

In addition to extensive treatments of categories in such
treatises as Mitchell's (Mitchell, B. Theory of Categories. New

York, Academic Press, Inc., 1965) and MacLane and Birkhoff's
(Mac Lane, S. and Birkhoff, G. Algebra. New York, The Macmillan
Company, 1967), a brief treatment of this subject can also be found
in Coldhaber and Ehrlich (Goldhaber, J. X. and Ehrlich, G. Algebra..
New York, The Macmillan Company, 1970).

In the section on groups, the general linear and orthogonal
groups should be introduced and based on the material of Mathe-
matics 3. The affine group and its relationship to the general
linear group should be discussed. The students should do a consider
able member of concrete cosputations involving groups and counting
problems.

In section 2 there is an opportunity to introduce sone elemen-
tary number theory: the Euler phi-function counts the :umber of
units of the ring ZI(n); ari(n) sr. a is a theorem that can be dawn-
strated by these methods; the divisibility of 232 + 1 by 641 can
easily be asserted using congruences; calendar and time problems can
also be introduced to illustrate the natio:Ms of congruence and
ideals. Again, the homework should include many problems of this
kind so that the student gains some familiarity with the notions
introduced here. Fields of 2, 4, 3, 9, and pa elements, p a prime,
should be introduced, at least in the exercises.

In section 3 the Euclidean algorithm should be introduced and
used to calculate the greatest common divisor of large integers and
of polynomials having degree higher than three. If time permits,
Euclidean rings different from 2 and Fix] should be introduced in
the homework. The integers of certain quadratic maker fields are
especially suitable foT this.

In section 4 the material of the first three sections must be
used to illustrate the definitions at each step; when natural trans
formations are discussed, the "naturatity" of the homomorphisa
theorems should be underlined and many examples given. The language
of categories should be familiar to all students iko pursue mathe-
matics beyond this level. This language reveals how much various
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mathematical disciplines have in common and how different disciplines
may be related to each other. By virtue of its generality, category
theory is a very valuable source of meaningful conjectures and an
effort should be made, even at this level, to emphasise this.
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SECTION V. A FOUR-YEAR CURRICULUM

In the 1965 GCMC report, CUPM presented a curriculum for four
years of college mathematics. It devoted a considerable ammunt of
attention to both upper- and lower-division courses other than basic
calculus and algebra, indicating their relationships and their
significame for various kinds of students. The 1965 GCNC report is
now out of print, but many of its suggestions are still relevant, at
least to one very common kind of mathematics curriculum. Conse-
quently, CUPM feels that it will be useful to remat some of its
suggestions of 1965 with modifications prompted by recent develop-
ments and to reprint some of the course outlines even though exper-
ience has shown they are open to objections such as excessive
length.

We have not described a special one-year course in mathematics
appreciation for students in liberal arts colleges because we think
that it is better for the student to take Mathematics 1 and 2,
1 and 2P, or 1 and 3. (A description of the probability course
Mathematics 2P is given in Section VI.) These ways of satisfying a
liberal arts requirement open more doors for the student than any
form of appreciation course, tnd they are consistent with our view
that mathematics is best appreciated through a serious effort to
acquire some of its content and *methodology and to examine some of
its applications.

A student who has successfully completed Mathematics 1 may
select Mathematics 2, 2P, or 3 according bo his interests. In par-
ticular, many students who are interested in the social sciences
will choose Mathematics 2P or 3 in preference to Mathematics 2.

For those students for whom a sequence beginning with Mathe-
matics 1 is not possible or not appropriate, thcre are several
possibilities. In the first place, Mathesmtics 0 sTO 1 forms a
reasonable year sequence for students whose preparation .411 not
permit them to start with Mathematics I. In many colleges students
have been taking and will continue to take a full year course like
Mathematics O. (A description of MatheMatics 0 is given
Section VI.)

Among the students for whom neither Mathematics 0 nor Mathe-
matics 1 is appropriate we recognize a sizable number who are pre-
paring to become elementary school teachers. Their needs Should he
met by special courses described in the CUPM publication Recommenda-
tions on Course Content for the TraininA of Teachers of Mathematics
(1971).

Finally, there is a rather large number of students who need
further study of mathematics in order to function effectively in the
modern world. Some have never had the usual mathematics courses in
high school, whereas others have not achieoed any mastery of the
topics they studied. These students are older and more mature than
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high school students, and so they need a fresh approach to the
necessary topics, if possible one involving obviously significant
applications to the real uorld. One suggestion is the course
Mathessatics A, "Elementary functions and coordinate geometry," from
the CUPM report A Transfer Curriculum in Mathematics for No Year
Colleges (1969). For students who are not ready even for Mathe-
matics A, we suggest the len conventional course Mathmstics E
described in considerable detail in the CUP14 report A Course in
Basic Mathematics for Colleges (1971).

I. Lower-division counes.

By lower-division courses we mean Mathematics 1, 2, 2P, 3, 4,
Mathematics 0, and any other basic precalculus courses that are
offered. Mathematics 1, 2, 3, and 4 have already been described in
detail, outlines of Mathematics 0 and of Mathematics 2P appear in
Section VI reproduced from the 1965 GCNC report.

2. Upper-division courses.

The following list of typical courses might be offered once a
year or, in sone cases, in alternate years, to meet the needs of
studen:s requiring advanced work in mathematics. At many colleges,
some of these upper-division courses are combined into year courses.
Which of them are offered will depend on the needs of the students
and special qualifications of the staff. The order is a rough
indication of the level. The course outlines for Mathematics 61.
and 641 appear in Section IV and the outlines for the remaining
courses appear in Section V/.

Although we describe the upper-division work in terms of
semester courses, these advanced subjects may also be treated by
independent or directed study, tutorials, or seminars. This is
especially appropriate in a small college where it may not be
possible to organize classes in every subject.

Mathematics 5. Multivatiable Calculus II. This is a calculus
course to follow Mathematics 4. No possibilities are (1) a course
in vector calculus and (2) a course consisting of selected topics in
analysis. Two examples of the first possibility are quoted from the
1965 GCMC report in Section VI. An example of the second, appropri
ate not only for statisticians but atso for physical scientists and
mathematics majors, is quoted from the 1971 CUP/4 report Preparation
for Graduate Work in Statistics.

Mathematics 61. sad 614. Xinear Algebra and Introductot7 Modern
Algebra. Mathematics 614 is essential for all mathematics majors
including prospective high school teachers. both courses ate
essential for students preparing for graduate werk in mathematics
attd are useful for computer science students as well. Many physical
science students are now finding both courses important, and social
science students often require the material of MatheMatics 61..
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Mathematics 7. Probability and Statistics. In place of a one -

semester course recommended in the 1965 GCMC report we now recommend
the two-semester course in probability and statistics suggested in
Preparation for Graduate Work in Statistics (1971) and reproduced in
Section VI. This course is essential for students preparing for
graduate work in statistics. It is desirable for mathematics majors,
for mathematically oriented biology or social science students, for
engineering students, particularly in communication fields or in-,
dustrial engineering, and for theoretical physicists and chemists.

Mathematics S. Introduction to Numerical Analysis. This course
is desirable not only for mathematics majors *at also for students
majoring in a science that makes extensive use of mathematics. In
place of _the course outlined in the 1965 GCMC report we now suggest
the course outlined in Section VI.

Mathematics 9. Geometry. This course should cover a single
concentrated geometric theory from a modern axiomatic viewpoint; it
is not intended to be a descriptive or survey course in "college
geometry." If the college umdertakes the training of prospective
secondary school teachers, the essential content of this course is
Euclidean geometry. A more widely ranging full-year course in the
smite spirit is desirable if it is possible. Other subjects which
provide the appropriate depth include topology, convexity, projec
tive geometry, and differential geometry. A serious introduction
to geometric ideas and geometric proof is valuable for all under-
graduates majoring in mothematics.

In Section VI two geometry courses of general appeal are
quoted from the CUPM report Recommendations on Course Content fat
the Training of Teachers of Mathematics (1971).

-

Mathematics 10. Applied Matlmnsatics. Although this course is
not yet a standard part of the curriculum, it is desirable for mathe-
matics majors to become aware of the ways in which their subject'is
applied. Several versions of such a course-..optiMixation theory,
graph theory and combinatorial analysis, and fluid sechanics- -are
described in the CUPM report Applied Mathematics in the Undergraduate
Curriculum (1972).

Mathematics 11-12. Introductory Real Variable Theory. Prefer-
ably this is a one-year course, but if necessary it may be offered
in a one-semester version or combined with complex analysis in a one-
year course. The student should learn to prove the basic proposi-
tions of real variable theory.

At least one semester is desirable for any mathematicsimajor.
Mathematics 11-12 is essential for students preparing for graduate
work in mathematics. On completion of Mathematics 12 a student
should be ready to begin a graduate course in ueasure and integration
theory or in functional analysis. The topics and skills are basic
in such fields of analysis as differeotial equations, calculus of
variations, harmonic analysis, complex variable*, probability theory,
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and many others. We fee an extensive coverage of subject matter,
especially in the directions of abstract topologies and functional
analysis, should be sacrificed in favor of active practice by the
student in proving theorems. For an outline of Mathematics 11.42,
see Section VI.

Mathematics 13. Complex Analysis. Ibis course contains stand-
ard material in the elementary theory of analytic functions of a
single complex variable.

Many prefer to have this course precede Mathematics 11-12. It
is important for mathematics majors, engineering students, applied
mathematicians, and theory-oriented students of physics and chemis
try. For an outline of Hatheaatics 13 see Section VI.
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SECTION VI. ADDITIONAL COURSE OUTLINES

Mathematics O. Elementary Functions and Coordinate Geometry. (3 or
4 semester hours) (Reprinted from the 1965 CCM report)

1. Definition of function and algebra of functions. (5 les-

sons) Various ways of describing functions, examples from previous

mathematics and from outside muthematics, graphs of functions, alge-

braic operations on functions, composition, inverse functions.

2. Polynomial and rational functions. (10 lessons) Defini-

tions, gtaphs of quadratic and power functions, zeros of polynomial

functionL, remainder and factor theorems, complex roots, rational

functions and their graphs.

3. Exponential functions. (6 lessons) Review of integral

and rational expcments, real exponents, graphs, applications, ex-

ponential growth.

4. logarithmic functions. (4 lessons) Logarithmic function

as inverse of exponential, graphs, applications.

5. Trigonometric functions. (10 lessons) Review of numerical

trigonometry and trigonometric functions of angles, trigonometric

functions defined on the unit circle, trigonometric functions de-

fined on the real line, graphs, periodicity, periodic motion, in-

verse trigonometric functions, graphs.

6. Functions of two variables. (4 lessons) Tbreedimensional

rectangular coordinate system, sketching graphs of z = f(x,y) by

plane slices.
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Mathematics 2P. Probabilit . (3 semester hours) (Reprinted from
the 1965 CCMC report) Prerequisite: Mathematics 1]

1. Probability as a mathematical system. (9 lessons) Sample

spaces, events as subsets, probability axioms, simple theorems,
finite sample spaces and equiprobable measure as special case, bi-
nomial coefficients and counting techniques applied to probability
problems, conditional probability, independent events, Bayes'
formula.

2. Random variables and their distributions. (1 3 lessons)
Random variables (discrete and continuous), probability functions,
density and distribution functions, special distributions (binomial,
hypergeometric, Poisson, uniform, exponential, normal, ...), mean
and variance, Chebychev inequality, independent random variables,
functions of random variables and their distributions.

3. Limit theorems. (4 lessons) Poisson and normal approxi-
mation to the binomial, Central Limit Theorem, Law of Large Ntobers,
some statistical applications.

4. Topics in statistical inference. (7-13 lessons) Estima-

tion and sampling, point and interval estimates, hypothesis-testing,
power of a test, regression, a few examples of nonparametric methods.

Remarks:

For students with only the minimum prerequisite training in
calculus (Mathematics 1), about six lessons will have to be devoted
to additional calculus topics needed in Mathematics 2P: isyroper
integrals, integration by substitution, infinite series, power
series, Taylor's expansion. For such students there will remain
only about seven lessons in statistical inference. Students elect-
ing Mathematics 2P after Mathematics 4 will be able to complete the
entire course as outlined above.
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Mathematics 5. Multivariable Calculus I/. (3 semester hours)
(Conventional version of Advanced Multivariable Calculus as printed
in the 1965 GCMC report) [Prerequisites: Mathematics 1, 2, 3, 4]

The differential and integral calculus of Euclidean 3-space,
using vector notation, leading up to the formulation and solution
(in simple cases) of the partial differential equations of mathe-
matical physics. Considerable use can and should be node of the
students' preparation in linear algebra.

I. Vector algebra,. (4 lessons) Dot and cross product, identi-

ties. Geometric interpretation and applications. Invariance under

change of orthogonal bases.

2. Differential vector calculus. (8 lessons) Functions from

Vm to V
n
, continuity. Functions from VI to V3, differential geometry

of curves. Functions from V3 to V1, scalar fields, directional de-

rivative, gradient. Functions from V3 to V3, vector fields, diver-

genre , cur 1 . The differential operator 7, identities. Expression

in general orthogonal coordinates.

3. Integral vector calculus. (15 lessons) Line, surface, and

volume integrals. Change of variables. Green's, divergence, and

Stokes' theorems. Invariant definitions of gradient, divergence,

and curl. Integrals independent of path, potentials. Derivation

of Laplace's, heat, and wave equations.

4. Fourier series. (6 lessons) The vector space of square-

integrable functions, orthogonal sets, approxination by finite sums,

notion of complete orthogonal set, general Fourier series. Trigono-

metric functions as a special case, proof of completeness.

5. Boundary value problems. (6 lessons) Separation of

variables. Use of Fourier series to satisfy boundary conditions.

Numerical methods.
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Mathematics 5. Multivariable Calculus II. (3 semester hours)
(Alternate version of Advanced Multivariable Calculus employing
differential forms as printed in the 1965 GCMC report)

[Prerequisites: Mathematics 1, 2, 3, 4]

A study of the properties of continuous mappings from En to Ein,
making use of the linear algebra in Mathematics 3, and an introduction
to differential forms and vector calculus based upon line integrals,
surface integrals, and the general Stokes' theorem. Application

should be made to field theory, ehmentary hydrodynamics, or other
similar topics so that some intuitive understanding can be gained.

1. Transformations. (15 lessons) Functions (mappings) from

E
n

to En, for n, m = I, 2, 3, 4. Continuity and Lmplications of

continuity; differentiation and the differential of a mapping as a

matrix-valued function. The role of the Jacobian as the determinant

of the differential; local and global inverses of mappings and the

Lmplicit Function Theorem. Review of the chain rule for differentia-

tion and reduction to matrix multiplication. Application to change

of variable in multiple integrals and to the area of surfaces.

2. Differential forms. (6 lessons) Integrals along curves.

Introduction of differential forms; algebraic operations; differen-

tiation rules. Application to the change of variable in multiple

integrals. Surface integrals; the meaning of a general k-form.

3. Vector analysis. (4 lessons) Reinterpretation in terms of

vectors; vector function as mapping into E3; vector field as mapping

from E
3

into E
3'

Formulation of line and surface integrals (1-forms

and 2-forms) in terms of vectors. The operations Div, Grad, Curl,

and their corresponding translations into differential forms.

4. Vector calculus. (8 lessons) The theorems of Gauss, Green,

Stokes, stated for differential forms and translated into vector

equivalents. Invariant definitions of Div and Curl. Exact dif-

ferential forms and independence of path for line integrals. Appli-

cation to a topic in hydrodynamics, or to Maxwell's equations, or

to the derivation of Green's identities and their specializations

for harmonic functions.

5. Fourier methods. (6 lessons) The continuous functions as

a vector (linear) space; inner products and orthogonality; geometric

concepts and analogy with E. Best L
2
approximation; notion of an

orthogonal basis and of completeness. The Schwarz and Bessel
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inequalities. Generalized Fourier series with respect to an ortho-

normal basis. Treatment of the case le
i
nxj and the standard trigono-

metric case. Application to the solution of one standard boundary

value problem.
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Mathematics 5. Multivariable Calculus II. (3 semester hours)
(Reprint of Selected Topics in Analysis from the 1971 report
Preparation for Graduate Work in Statistics)

The Panel on Statistics feels that the course Mathematics 5
presented in the 1965 GCMC report is not particularly appropriate
for statistics student4, and it has reccmmnended that a course in-
cluding the special topics listed below be offered in place of
Mathematics 5 for students preparing for graduate work in statistics.

The course it recommends gives the student additional analytic
skills more advanced than those acquired in the beginning analysis
sequence. Topics to be included are multiple integration in n
dimensions, Jacobians and change of variables in multiple integrals,
improper integrals, special functions (Beta, Gamma), Stirling's
formula, Lagrange multipliers, generating functions and Laplace
transforms, dif ference equations, additional work on ordinary dif-
ferential equations, and an introduction to partial differential
equations.

It is possible that the suggested topics can be studied in a
unified course devoted to optimization problems. Such a course, at
a level vhich presupposes only the beginning analysis and linear
algebra courses and which may be taken concurrently with a course
in probability theory, would be a valuable addition to the under-
graduate curriculum, not only for students preparing for graduate
work in statistics but also for students in economics, business
administration, operations research, engineering, etc. Experimenta-
tion Sy teachers in the preparation of written materials and text-
books for such a course would be useful and is worthy of encourage-
ment.
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Mathematics 7. Probability and Statistics. (6 semester hours)
(Reprinted from the 1971 report Preparation for Graduate Work in
Statistics)

This key course is a one-year combination of probability and
statistics. On the semester system, a complete course in probabil-
ity should be followad by a course in statistics. If the course is
given on a quartet system, it may be possible to have a quarter of
probability, followed by two quarters of statistics or by a second
quarter of statistics and a third quarter of topics in probability
and/or statistics. In any case, these courses should be taught as
one sequence.

Prerequisites for this one-year course are Mathematics 1, 2,
and 4 (Calculus). Students should also be encouraged to have taken
Mathematics 3 (Linear Algebra). [For detailed course descriptions
see Section IV.? All students in this course, whether they be pro-
spective graduate students of statistics, other mathematics majors,
or students from other disciplines, should be encouraged to take
the full year rather than only the first-semester probability course.
Almost all students will have studied the calculus sequence and per-
haps linear algebra without interruption during their first two
years in college. Although our recommended probability course and
mathematics 2P differ only little in content, our course assumes the
additional maturity and ability of students who have successfully
completed the three or four semesters of the core curriculum de-
scribed ab,ve.

The probability course should include the following topics:

Sample spaces, axioms and elementary theorems of proba-

bility, combinatorics, independence, conditional proba-

bility, Sayes' Theorem.

Random variables, probability distributions, expectation,

mean, variance, moment-generating functions.

Special distributions, multivariate distributions,

transformations of random variables, conditional and

marginal distributions.

Chebychev's inequality, limit theorems (Law of Large

Numbers, Central Limit Theorm).

Examples of stochastic processes such as random walks

and Markey chens.
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The course in probability should provide a wide variety of
examples of problems which arire in the study of random phenomena.
With this aim in mind, wo recommend this course be taught so as to
maintain a proper balance between theory and its applications.

The time allotted to the probability course will not permit
detailed treatment of all topics listed above. We recomnend that
such topics as the Central Limit Theorem and the use of Jacobians
in transformations of random variables be presented without proof.
Also, discusJion of multivariate distributions should include only
a brief description of the multivariate normal distribution. Ran-
dom walks and Markov chains may serve as useful topics for two or
threo lectures to illustrate interesting applications of probability
theory. Even though the topics of this paragraph are not treated in
depth mathematically, we recommend their inclusion to enrich the
student's comprrension of the scope of probability theory.

The statistics course can be hmplemented in a variety of ways,
giving different emphases to topics and, indeed, including different
topics. Widely divergent approaches are acceptable as preparation
for graduate work and are illustrated in the statistics books listed
below, selected from many appropriate texts for this course:

Brunk, H. D. Introduction to Mathematical Statistics, 2nd ed.
New York, Blaisdell Publishing Company, 1965.

Freeman, H. A. Introduction to Statistical Inference.
Reading, Massachusetts, Addison-Wesley Publiahing Company, Inc.,
1963.

Freund, John E. Mathematical Statistics. Englewood Cliffs,
New Jersey, Prentice-hall, Inc., 1962.

Hadley, C. Introduction to T.Irobability and Statistical
Decision Theory. San Francisco, Califotnia, Holden-Day, Inc.,
1967.

Noel, Paul G.; Port, Sidney C.; Stone, Charles J. Introduction
to Statistical Theory. Boston, Massachusetts, Houghton Mifflin
Company, 1971.

Hogg, Robert V. and Craig, A. T. Introduction to Mathematical
Statistics, 3rd ed. New York, The Macmillan Company, 1970.

Lindgren, B. W. 'Statistical Theory, 2nd ed. New York, The
Macmillan Company, 1968.

Mood, Alexander M. and Graybill, F. A. Introduction to the
Theory of Statistics, 2nd ed. New York, McGraw-Hill Book
Company, 1963.

Despite the diversity of possible approaches, most will include
the following topics:

54



Estimation: consistency, unbiasedness, maximum likeli-

hood, confidence intervals.

Testing hypotheses: power functions, Type I and II

errors, Neymnn-Pearson lenma, likelihood ratio

; tests, tests for means and variances.

Regression and correlation.

Chi-square tests.

Other topics to be included in the statistics.course will
depend on the available time and method of approach. Possible
topics include:

Estimation: efficiency, sufficiency, Cramer-Rao Theorem,

Rao-Blackwell Theorem.

Linear models.

Nonparametric statistics.

Sequential analysis.

Design of experiments.

Decision theory, utility theory, Bayesian analysis.

Robustness.

The above list of additional topics for the key course in sta-
tistibs is much too le:LA to be adequately covered in its entirety.
The fact that many topizs will have to be omitted or treated super-
ficially gives the statistics course much more flexibility in ap-
proach and coverage than is possible in the probability course. The
instructor's choice of topics may be Influenced by the following
factors. Decision theory, Bayesian analysts, and sequential analy-
sis dealing with foundations of inference will appeal to the philo-
sophically inclined students. The Cramer-Ran Theorem and the Rao-
Blackwell Theorem appeal to mathematically oriented students and
illustrate statistical theory. In design of experiments and estima-
tion, one has an opportunity to apply techniques of optimization.

Nonparametr:c techniques utilize combinatorial probability and il-
lustrate the high efficiency that can be attained from simple methods.
Analysis of variance provides an application of linear algebra and
matrix methods and should interest students who have taken Mathe-
matics 3.

Detailed outlines for the probability and statistics courses
have not been presented on the assumption that the choice of texts,
which is difficult to anticipate, will tend to determine the order
of presentation and the emphasis in a satisfactory fashion. It may
be remarked that most statistics texts at this level begin with a
portion which can be used for the probability course.

To avoid a formal, dull statistics course and to provide



sufficient insight into practice, we recommend that meaningful cross-
references between theoretical models and real-world problems be
made throughout the course. Use of the computer would help to ac-
complish this goal. Three reports that are valuable in appraising
the potential role of computers in statistics courses are:

Development of Materidia and Techniques for the Instructional
Use of Computers in Statistics Courses, University of North
Carolina, Chapel Hill, North Carolina, 1971.

Proceedings of a Conference on Computers in the Undergraduate
Curricula, The University of Iowa, Iowa City, Iowa, 1970.

Proceedings of the Second Annual Conference on Computers in
the Undergraduate Curricula, Dartmouth Cullege, Hanover,
New Hampshire, 1971.



Mathematics 8. Introduction to Numerical Analysis. (3 semester
hours) [Prerequisites: Mathematics 1, 2, 3, 4]

1. Introduction. (1 hour) Number representation on a com-

puter, discussion of the various types of errors in numerical pro-

cesses, the idea of stability in numerical processes.

2. Solution of a single nonlinear equation. (7 hours) Exist-

ence of a fixed point; contraction theorem and some consequences;

Ostrowski's point-of-attraction theorem; the rate of convergence for

successive approximations; Oewton's method: local convergence and

rate of convergence, convergence theorem in the convex case; secant

methods, in particular, regula falai; roots of polynomials: Newton-

Raphson method, Sturm sequences, discussion of ill-conditioning.

3. Linear systems of equations (7 hours) Gaussian elimination

with pivoting, the factorization into upper and lower triangular

matrices, inversion of matrices, discussion of ill-conditioning,

vector and matrix norms, condition numbers, discussion of error

bounds, iterative improvement, Gaussian elimination for symmetric

positive-definite matrices.

4. Interpolation and approximation. (6 hours) Lagrange

interpolating polynomial; Newton interpolating polynomial; error

formula for the interpolating polynomial; Chebychev polynomial

approximation; least squares approximation: numerical problem

associated with the normal equations, the use of Orthogonal poly-

nomials.

5. Numerical integration and differentiation. (6 hours)

Quadrature bead on interpolatory polynomials, error in approximate

integration, integration over large intervals, Romberg integration

including development of the even-powered error expansion, error in

differentiating the interpolating polynomial, differentiation by

extrapolation to the limit.

6. Initial value problems in ordinary differential equations.

(9 hours) Taylor's series eLpansion technique; Ruler's method with

couvergence theorem; Runge-Kutta methods; predictor-corrector

methods: convergence of the corrector as an iteration, local error

hound for predictor-corrector of same order; general discussion of

stability using the model problem y' Ay, consistency and
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convergence; reduction of higher-order problems to a system of first-

order problems.

References:

Forsythe, George and Moler, Cleve B. Computer Solution of
Linear Algebraic Systems. Englewood Cliffs, New Jersey,
Prentice-Hall, Inc., 1967.

FrOberg, Carl-Erik. Introduction to Numerical Analysis, 2nd ed.
Reading, Massachusetts, Addison-Wesley Publishing Co., Inc.,
1969.

Henrici, Peter. Elements of Numerical Analysis. New York,

'John Wiley and Sons, Inc., 1964.

Isaacson, Eugene and Keller, H. B. Analysis of Ntmerical

Methods. New York, John Wiley and Sons, Inc., 1966.

Ralston, Anthony. First Course in Numerical Analysis. New
York, McGraw-Hill Book Company, 1965.
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Mathematics 9. Geometry. (3 semester hours) (Reprint of
Foundations of Euclidean Geometry from the 1971 report Recommenda-
tions on Course Content for the Training of Teachers of Mathematics)

The purpose of this course is two-fold. On the one hand it
presents an adequate axiomatic basis for Euclidean geometry, includ-
ing the one commonly taught in secondary schools, while on the other
hand it provides insight into the interdependence of the various
theorems and axioms. It is this latter aspect that is of the greater
importance for it shows the prospective teacher that there is no one
Royal Road to the classical theorems. This deeper appreciation of
geometry will better prepare the teacher to assess the virtues of
alternative approaches and to be receptive to the changes in the
secondary school geometry program that loom on the horizon.

Courses similar to this have now become commonplace. As a con-
requence, no great detail should be necessary in this guide. There
is a greater abundance,of appropriate topics than can be covered in
one course, so some selection will always need to be made.

Although enough consideration should be given to three-space to
build spatial intuition, the major emphasis should be on the plane,
since it is in two-space that the serious and subtle difficulties
first become apparent. The principal defects in Euclid's Elements
relate to the order and separation properties and to the complete-
ness of the line. Emphasis should be directed to clarifying these
subtle matters with an indication of some of the ways by which they
can be circumvented. The prospective teacher must be aware of these
matters and have enough mathematical sophistication to proceed to
new topics with only an indication of how they are resolved.

The course consists of six parts, after a brief historical
introduction and a critique of Euclid's Elements. The allotment of
times that have been assigned for these parts are but suggestions to
be used as a guide, because empaasis will vary with the background
of the students, the text used, and the tastes of the instructor.
Prerequisites for the course are a modest familiarity with rigorous
deduction from axioms, for example as encountered in algebra, and
the completeness of the real number system.

1. Incidence and order properties. (8 lessons) In this part

of the course, after a brief treatment of incidence properties, the

inherent difficulties of betweenness and separation are discussed.

The easiest, and suggested, way to proceed is in terms of distance.

The popular method today is to use the Birkhoff axioms or a modifica-

tion such as given by the School Mathematics Study Group. In addition,

one should give some indication of a synthetic foundation for between-

ness such as that of Hilbert. A brief experience with a synthetic

treatment of betweenness is enough to convince the student of the

power of the metric apparatus.
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Alternatively, one can begin with a synthetic treatment of

betweenness and then introduce the metric apparatus. With this

approach, metric betweenness is a welcome simplification.

2. Congruence of triangles and inequalities in triangles.

(8 lessons) It is recommended that angle congruence be based on

angle measure (the Birkhoff axioms). Yet here too some remarks on

a synthetic approach are desirable.

The order of presentation of the congruence theorems can depend

on the underlying axiom system use4. What is perhaps more important

is to observe their interrelations. At this point a global view of

transformations of the plane should receive attention. Ruler and

compass constructions should be deferred, as the treatment is simpler

and more elegant after the parallel axiom has been introduced. The

triangle inequality and the exterior angle theorem occur here.

3. Absolute and non-Euclidean geometry. (6 lessons) Up to

this point there has boen no mention of the parallel postulate. It

is desirable to explore some of the attempts to prove it. One should

prove a few theorems in absolute geometry, in particular ones about

Saccheri quadrilaterals. Then some theorems in hyperbolic geometry

can be given, among which the angle-sum theorem for angles in a tri-

argle is most important. A model, without proof, for hyperbolic

geometry is natural here.

This part of the course can also be taught after Part 4 when

Euclid's parallel axiom and consequences of it have been covered.

4. The parallel postulate. (8 lessons) There are many topics,

of central importance in high school, that need to be discussed in

this part of the course. It is desirable to give here, as well as

in Part 3, considerable attention to the history of the parallel

axiom. Due to time limitations, it will probably be necessary to

omit some topics. Nevertheless, some attention should be given to:

parallelograms, exittence of rectangles, Pythagorean theorem, angle-

sum theorem for triangles, similarity, ruler and compass construc-

tions, and an introduction to the notion of area.

5. The real numbers and geometry. (8 lessons) This part is

levoted to matters in which the completeness of the real number

system plays a role. Some attention must be given to the completeness
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of the line and the consequences thereof. Archimedes' axiom arises

naturally here. Lmportant topics are: similarity of triangles for

the incommensurable case; circumference; area in general and, in

particular, area of circles; and, finally, a coordinate model of

Euclidean geometry. It is possible to give a coordinate model of

non-Archimedean geometry at this Lime.

6. Becapitulation. (3 lessons) This part is intended to give

perspective on the preceding sections. It should have a strong

historical flavor and might well include lectures with outside read-

ing or a short essay.

References:

Birkhoff, G. D. and Beatley, R. Basic Geometry. New York,
Chelsea Publishing Company, 1941.

Borsuk, K. and Szmielew, W. Foundations of Geometry. New York,
Interscience, 1960.

Coxeter, H. S. M. Introduction to Geometry. New York, John
Wiley and Sons, 1961.

Eves, Howard. A Survey of Geometry, Vol. I. Boston,
Massachusetts, Allyn and Bacon, Inc., 1963.

Hilbert, David. Foundations of Geometry, trans. by E. J.
Townsend. Chicago, Illinois, Open Court Publishing Company,
1959.

Moise, Edwin E. Elementary Geometry from an Advanced
Standpoint. Reading, Massachusetts, Addison-Wesley Publishing
Company, Inc., 1963.

Prenowitz, W. and Jordan, M. Basic Concepts of Geometry.
New York, Blaisdell, 1965.
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Mathematics 9a. Geometry. (Reprint of Vector Geometry from the
1971 report Recommendations on Course Content for the Training of
Tenclwrs of Mathematics)

There are approaches to geometry other than the classical syn-
thetic Euclidean approach, and several of these are being suggested
for use in both the Ii igh school and col lege curricula. Moreover,
exposure to dif ferent foundations for geometry yields deeper in-
sights into geometry and can serve to relate Euclidean geometry to
the mainstream of current mathematical interest. It is this latter
reason which underlies much of the discussion about geometry that is
now prevalent. There are at least three approaches that merit con-
sideration.

I. The classical npproncI of Felix Klein, wherein one begins
wi th projective spaces and, by considering successively sma 1 ler sub-
groups of the group acting on the spare, one eventually arrives at
Euclidean geometry. A course of this nature might be called projec-
tive geometry, but it should proceed as rapidly a s possible to Euclid-
ean geometry. Besides books on projective geometry, other refercn(
are:

1. Art in, Emi . Geometric Algebra . New York, John Wiley and
Suns, Inc., 1957,

2. Cans , David . Trmis forma t ions and Geome tries . New York,
App le ton-Cen tury-Cro fts , Inc. , 1968.

1. K le in, Pe l ix. Vorlesungen Ober Nicht -Eukild ische
Geometric. New York, Chelsea Publishing Company, 1959,

4. Schreier, Otto and Sperner, Emanuel. Projective Geometry
of n Dimensions. New York, Chelsea Publirhing Company,
1961.

(Throughout this outline, references are given because of their con-
tent with no implication thnt the level of presentation is appropri-
ate. Indeed, adjustments will normally be necessary.)

II. The transformation approach, which in some ways is a vari-
ant of Klein's, uses the Euclidean group to define congruence and
other familiar concepts. As n further variant of this, one finds
books which begin with g yn the t ic Euclidean geometry and proceed to
the Euclidean group. References are:

5. Baclttnann, F. /turban der Geometric aus dem
Spiegclungsbegriff. Berlin, Springer-Verlag, 1959.

6, Choquet, Gustave. Geometry in a Modern Setting. Boston,
Massachusetts, Houghton Mifflin Company, 1969.

7. Coxforcl, A. F. and Usiskin, Z. P. Geometry, A Transforma-
tion Approach, Vol. I, II. River Forest, Illinois,
Latd1aw Brothers, 1970.
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8. Eccles, Frank. An Introduction to Trausfonnational
Geometry. Read ing, Massachusetts, Add ison-Wes ley
Publishing Company, Inc., 1971.

III. The vector space approach, the one suggested for this
course, uses vector spaces as an axiomatic foundation for the inves-
tigation of affine and Euclidean geometry. Through the use of vector
spaces, classical geometry is brought within the scope of the central
topics of modern mathematics and, at the same time, is illuminated by
fresh views of familiar theorems. Some of the references below con-
tain isolated chapters which are relevant to this approach; in such
cases these chapters are indicated.

9. Artin, Emil. Geometric Algebra. New York, Interscience,
1957.

10. Artzy, Rafael. Linear Geometry. Reading, Massachusetts,
Addison-Wesley Publishing Company, Inc., 1965.

11. DieudonnC, Jean. Linear Algebra and Geometry. Boston,
Massachusetts, Houghton Mifflin Company, 1969.

12. Gruenberg, K. W. and Weir, A. J. Linear Geometry. New
York, Van Nostrand Reinhold Company, 1967

13. McLane, Saunders and Birkhoff, Garrett. Algebra. New
York, The Macmillan Company, 1967. (Chapters VII, XI,
XII)

14. Mostow, George; Sampson, Joseph; Meyer, Jean-Pierre.
Fundamental Structures of Algebra. New York, McGraw-Hill
Book Company, 1963. (Chapters 8, 9, 14)

15. Murtha, J. A. end Willard, E. R. Linear Algebra and
Geometry. New York, Holt, Rinehart and Winston, Inc.,
1969.

16. Snapper, Ernst and Troyer, Robert. Metric Affine GeometLy.
New York, Academic Press, 1971.

The course outlined below has as prerequisite an elementary
course in linear algebra (Mathematics 3). The main topics are:

1. Affine Geometry and Wine Transformations

2. Euclidean Gc.emetry and Euclidean Transformations

3. Non-Euclidean Geometries.

Because of the relative unfamiliarity of this approach to geometry,
more details such as definitions and typical results will be included.Also, a brief justification is given.
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In Euclidean geometry, one considers the notion of a translation
of the space into itself. These translations form a real vector space
under the operation (addition) of function composiLion and multipli-
cation by a real number. Thua the "vector space of translations"
acts on the set of points of Euclidean space and satisfies the
fo l lowing two properties :

A. If (x,y) is an ordered pair of points, there is a trans-
lation T such: that T(x) y. Moreover, this translation
is un ique .

11. If T1 and T2 are translations and x is a point, then the
definition of "vector addition" as function composition is
indicnted by the formula

(Ti + T2)(x) T1(T2(x)).

With this intuitive background, the details of the course outline
are now given. The definitions and propositions are stated for
dimension n since this causes no complication, but the emphasis wilt
be on dimensions two and three.

I. Affine Geometry and Affine Tranafonnations. One defines

real n-dimensional affine space as the triple (V,X,p,) where V is a
real vector snace of dimension n (the vector space of the transla-
tions), X is the set of pointa of the geometry, and V x X - X
defined by p,(T,x) T(x) is the action of V on X which satisfies
properties A nnd 13 above. For convenience, the affine space (V,X,p,)
Is usually denoted simply by X.

Affine subapaces of X are defined as follows. Let x E X nnd
let U be a linear subspace of V (a subspace of translations). The

affine aubspace determined by x and U is denoted by S(U,x) and
conaists of the set of points

(T(x)IT E ,

i.e., S(U,x) consists of all translates of x by a translation be-
longing to U. The dimension of S(U,x) is defined to be the dimen-
sion of U. Then one-dimensional affine subspaces are called lines,
two-dimensional affine subspaces are called planes, and (n-1)-
dimensional affine subspaces are called hyperplanes (n dimension

of V).
Two affine subspaces S and 5' are called parallel (S 0 S') if

there exists a translation T such that T(S) C S' or T(S') C S.
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Parallelism and incidence are investigated, with special emphasis on

dimensions two and three. Such results as the following are obtained:
a. Lines 4, and m in the plane are parallel if and only if

4., in or ( fl rn
b. A line t, and a plane 11 in three-space are parallel if and

only if t, n or 4 (1 0. If 4, rt, then 4, (1 n is a
point.

c. There exist skew lines tn three-space.
d. Planes r and rt' in three-apace are parallel if and only if

I or TT n 0, 0. If IT g it', then TT (1 te is a line.
A coordinate system for the affine space X consists of a point

c E X and an ordered basis for V. A point x E X is assigned the
coordinates (x1,...,xn) if T is the unique translation such that
T(c) = x and T has coordinates (xi,...,xn) with respect to the given
ordered basis for V. Using these notions, one can study analytic
geometry, e.g., the parametric equations for lines, the linear equa-
tions for hyperplanes, the relationship between the linear equatiors
of parallel hyperplanes, incidence in terms of coordinate representa-
tions, etc.

For each point c E X, there is a natural way to make X into a

vector space which is isomorphic to V. Namely, if r is a real num-
ber, x,y E X, and T1,T2 are the unique translations satisfying
T 1(c) = x and T 2(c) = y, then one defines

x + y T2(T1(c)) and rx (rT1)(x).

The vector space Xc with origin c is the tangent space of classical
differential geometry. (Affine space is often defined as the vector
space V itself; this approach to affine geometry is based on the
isomorphism between Xc and V.)

An affine transformatirm is a function f: X X with the follow-
ing properties:

a. f is one-to-one and onto.
b. If L and t4 are parallel lines, then f(t) and f (') are

parai!el lines.
The affine transformations foot a group called the affine group
which contains the translation group as a commutative subgroup.
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For each point c E X, the set of affine transformations which leave

c fixed form a subgroup of the affine group; moreover, this subgroup

is the general linear group of the vector space Xc and is therefore

isomorphic to the general linenr group of V. Finally, properties

of affine transformations are investigated.

Other topics of aftine geometry which are studied include

orientation, betweenness, independence of points, affine subspace

spanned by points, and simplexes.

2. Euclidean Geometry and Euclidean Transformations. Euclidean

space is defined ns the affine space (V,X,p), where V has been given

the additional st.,:cture of a positive-definite inner product. Thus

for each T E V, T
2

is a nonnegative real number. A distance function

is introduced on X by defining the distance between an ordered pair

(x,y) of points of X to be 47 where T is the unique translation

such that T(x) = y. A Euclidean transformation (rigid motion, iso-

metry) of X is a mapping of X which preserves distance.

The Euclidean transformations form a subgroup of the affine

group. For each c E X, the Euclidean transformations which leave c

fixed form a subgroup of the Euclidean group. In fact, this is the

orthogonal group of the vector space Xc (with the inner product

induced on it from V through the given isomorphism) and therefore

is isomorphic to the orthogonal group of V.

Rotations and reflections are first defined for the Euclidean

plane and then for n-dimensional space. The Cartan-Dieudonn4 theorem

becomes an importan'.. tool in the investigation of the Euclidean

group. It states that every Euclidean transformation of n-space is

the product of at most n + 1 reflections in hyperplanes. It follows

immediately that there are four kinds of Euclidean transformations of

the Euclidean plane: translations, rotations, reflections, and glide

reflections.

Rotations and reflections of Euclidean three-space are investi-

gated. From the Cartan-Dieudonn4 theorem it follows that every

rotation of three-space has a line of fixed points (the axis of

rotation). The set of all rotations with a given line t as axis is

a subgroup of the rotation group of three-space. Moreover, this
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rotation group with axis 4, is isomorphic to the rotation group of

the Euclidean plane, thus giving the classical result that every

rotation of three-space is determined by an axis and a given "angle

of rotation."

One now defines a figure to be a subset of X nnd calls two

figures congruent if there is a Euclidean transformation which maps

one figure onto the other. Using these concepts, one proceeds to

proofs of the classical congruence theorems nf plane geometry

(S.S.S., S.A.S., A.S.A., H.S.).

Finally, orthogonality and similarity are investigated.

3. Non-Euclidean Gcometries. The classical method of obtain-

ing a non-Euclidean plane geomAry is to replace the parallel postu-

late by another postulate on parallel lines and thus obtain hyper.

bolic geometry. Here the approach is different. The positive-

definite inner product is replaced by other (nonsingular) inner

products. The geometry obtained is non-Euclidean, but the parallel

postulate is still valid! This st.:rtling result is true because the

underlying space is the affine plane (in which the parallel postu-

late is valid) and the change of inner product does not disturb the

affine structure.

Actually, the investigation of non-Euclidean geometries can be

made concurrently with that of Euclidean geometry. For example, the

Lorentz plane and the negative Euclidean plane can be defined and

investigated at the same time as the Euclidean plane. "Circles" in

the LorenL,1 plane are related to hyperbolas of the Euclidean plane,

etc.

One of the major results is Sylvester's theorem, from which one

concludes that there are precisely n + 1 distinct nonsingular

geometries which can be placed on n-dimensional affine space.
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Mathematics 10. . Applied Mathematics.

Applied mathematics is a mathematical science distinguished from
other branches of mathematics in :hat it actively employs the scien-
tific method. A working applied mathematician is usually confronted
with a real situation whose mathematical aspects are not clearly de-
fined. He must identify specific questions whose answers will shed
light on the situacion, and he must consttuct a mathematical model
whi.A1 will aid in his study of these questioos. Using the model he
translates the questions from the original terms into mathematical
terms. He then uses mathematical ideas and techniques to study the
problem. He must decide upon methods of approximation and computation
whicn will enable him to determine relevant numbers. Tiinally, he must
interpret the results of his mathematical work in the setting of the
originel situation.

Mathematics 10 was designed to introduce the student to applied
mathematics and, in particular, to model building. Courses concen-
trating primarily on mathematical techniques which are useful in
applications do not satisfy the goals set here for Mathematics 10.
Rather, it is intended that the student participate in the total
experience of applied mathematics from formulating precise questions
to interpreting the results of the mathematical analysis in terms of
the original situation, and that particular emphasis be given to
model building. A number of courses involving different mathematical
topics can be constructed which fulfill these goals. In construct-
ing such a course the instructor should have the following recommenda-
tions in mind.

First, the role of model building must be made clear and should
be amply illustrated. The student should have considerable exper-
ience in building models, in noting their strengths and weaknesses,
and in modifying them to fit the situation more accurately. Also,
he must realize that often there is more than one approach to a
situation and that different approachas may lead to different models.
He should be trained to be critical of the models he constructs so
that he will know what kind of information to expect from the model
and what kiud not to expect.

Second, the situations investigated must be realistic. Through-
out the course the student should be working on significant problems
which are interesting and real to him.

Third, the mathematical topics which arise in the course should
be worthwhile and should have applicability beyond the specific
problem being discussed. The mathematical topics and the depth of
treatment should be appropriate for dhe level at which the course
is offered.

Fourth, the mathematical results should always be interpreted
in the original setting. Stopping short of this gives the impres-
sion that the manipulation of symbols, methods of approximation,
techniques of computation, or other mathenatical points are the
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primary concerns of the course, whereas they are only intermediate
steps, essential though they are, in the study of a real situation.

Finally, the course should avoid the extremes of (1) a course
about mathematical methods whose reference to the real world con-
sists mainly of assigning appropriate names to problems already
completely formulated in mathematical terms and (2) a kind of survey
of mathematical models in which only trivial mathematical develop-
men:: of the models is carried out.

The 1972 report of the Panel on Applied Mathematics, Applied
Mathematics in the Undergraduate Curriculum, offers three outlines
as aids to constructing courses of the type recommended here.
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Mathematics 11-12. Introductory Real Variable Theory. (6 semester
hours) (Reprinted from the 1965 GCMC report)

FIRST SEMESTER - 39 lessons

1. Real numbers. (6 lessons) The integers; induction. The

rational numbers; order structure, Dedekind cuts. The reels defined

as a Dedekind-camplete field. Outline of the Dedekind construction.

Least upper bound property. Nested interval property. Denseness of

the rationals. Archimedean property. Inequalities. The extended

real number system.

2. Complex numbers. (3 lessons) The complex numbers intro-

duced as ordered pairs of reals; their arithmetic and geometry.

Statement of algebraic completeness. Schwarz inequality.

3. Set theory. (4 lessons) Basic notation and terminology:

membership, inclusion, union and intersection, cartesian product,

relation, function, sequence, equivalence relation, etc.; arbitrary

unions and intersections. Countability of the rationals; uncount-

ability of the reels.

4. Metric spaces. (6 lessons) Basic definitions: metric,

ball, boundedness, neighborhood, open set, closed set, interior,

boundary, accumulation point, etc. Unions and intersections of open

or closed sets. Subspaces. Compactness. Connectedness. Convergent

sequence, subsequences, uniqueness of limit. A point of accumulation

of a set is a limit of a sequence of points of the set. Cauchy

sequence. Completeness.

5. Euclidean spaces. (6 lessons) Rn as a normed vector space

over R. Completeness. Countable base for the topology. Bolzano-

Weierstrass and Heine-Borel-Lebesgue theorems. Topology of the

line. The open sets; the connected sets. The Cantor set. Outline

of the Cauchy construction of R. Infinite decimals.

6. Continuity. (8 lessons) (Functions into a metric space)

Limit at a point, continuity at a point. Continuity; inverses of

open sets, inverses of closed sets. Continuous images of compact

sets are compact. Continuous images of connected sets are connected.

Uniform continuity; a continuous function on a compact set is

uniformly continuous. (Functions into R). Algebra of continuous

70

,76



functiins. A continuous function on a compact set attains its maxi-

mum. Intermediate Value Theorem. Kinds of discontinuities.

7. Differentiation. (6 lessons) (Functions into R) The

derivative. Algebra of differentiable functions. Chain rule.

Sign of the derivative. Mean Value Theorems. The Intermediate

Value Theorem for derivatives. L'Hospital's rule. Taylor's theorem

with remainder. One-sided derivatives; infinite derivatives. (This

material will be relatively familiar to the student from his calculus

course, so it can be covered rather quickly.)

SECOND SEMESTER - 39 lessons

8. The Riemann-Stielties integral. (11 lessons) [Alternative:

the Riemann integral] Upper and lower Riemann integrals. [Exist-

ence of the Riemann integral: for f continuous, for f monotonic.]

Monotonic functions and functions of bounded variation. Riemann-

Stieltjes integrals. Existence of f
b

f dot for f continuous and a
a

of bounded variation. Reduction to the Riemann integral in case a

has a continuous derivative. Linearity of the integral. The inte-

gral as a limit of sums. Integration by parts. Change of variable.

Mean Value Theorems. The integral as a function of its upper limit.

The Fundamental Theorem of Calculus. Improper integrals. The gamma

function.

9. Series of numbers. (11 lessons) (Complex) Convergent

series. Tests for convergence (root, ratio, integral, Dirichlet,

Abel). Absolute and conditional convergence. Multiplication of

series. (Real). Monotone sequences; lim sup and lim inf of a

sequence. Series of positive terms; the number e. Stirling's

formula, Euler's constant.

10. Series of functions. (7 lessons) (Complex) Uniform con-

vergence; continuity of uniform limit of continuous functions.

Equicontinuity; equicontinuity on compact sets. (Real). Integra-

tion term-by-term. Differentiation term-by-term. Weierstrass

approximation theorem. .Nowhere-differentiable continuous functions.

11. Series expansions. (10 lessons) Power series, interval of



convergence, real analytic functions, Taylor's theorem. Taylor

expansions for exponential, logarithmic, and trigonometric functions.

Fourier series: orthonormal systems, mean square approximation,

Bessel's inequality, Dirichlet kernel, Fejer kernel, localizatIon

theorem, Fejer's theorem. Parseval's theorem.
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Mathematics 11. Introductory Re;)) Variable Theory. (3 semester
hours) (One-semester version) (keprinted from the 1965 GCMC report)

1. Real numbers. (3 lessons) Describe various ways of con-

structing them but omit details. Least upper bound property, nested

interval property, denseness of the rationals.

2. Set theory. (4 lessons) Basic notation and terminology:

membership, inclusion, union and intersection, cartesian product,

relation, function, sequence, equivalence relation, etc.; arbitrary

unions and intersections. Countability of the rationals; uncount-

ability of the reals.

3. Metric spaces. (4 lessons) Material of topic 4 in Mathe-

matics 11-12, condensed.

4. Euclidean spaces. (4 lessons) Rn as a normed vector space

over R. Completeness. Bolzano-Weierstrass and Heine-Borel-labesgue

theorems. Topology of the line. Outline of the Cauchy construction

of R. Infinite decimals.

5. Continuity. (5 lessons) (Functions into a metric space)

Limit at a point, continuity at a point, inverses of open or closed

sets. Uniform continuity. (Functions into R). A continuous func-

tion on a compact set attains its maximum. Intermediate Value

Theorem.

6. Differentiation. (3 lessons) Review of previous informa-

tion, including sign of the derivative, Mean Value Theorem,

L'Hospital's rule, Taylor's theorem with remainder.

7. Riemann-Stieltjes or Riemann integration. (5 lessons)

Functions of bounded variation (if the Riemann-Stieltjes integral is

covered), basic propertios of the integral, the Fundamental Theorem

of Calculus.

8. Series of numbers. (8 lessons) Tests for convergence,

absolute and conditional convergence. Monotone sequences, lim sup,

series of positive terms.

9. Series of functions. (3 lessons) Uniform convergence,

continuity of uniform limit of continuous functions, integration

and differeLtiation term-by-term,



Mathematics 13. Complex Analysis. (3 semester hours) (Reprinted
from the 1965 GCMC report)

This course is suitable for students who have completed work at
the vector analysis and ordinary differential equation level. The
development of skills in this area is very important in the sciences,
and the course must exhibit many examples which illustrate the in-
fluence of singularities and which require varieties of techniques
for finding conformal maps, for evaluating contour integrals (espe-
cially those with multivalued integrands), and for using integral
transforms.

1. Introduction. (4 lessons) The algebra and geometry of
complex numbers. Definitions and properties of elementary functions,
e.g., ez, sin z, log z.

2. Analytic functions. (2 lessons) Limits, derivatives,
Cauchy-Riemann equations.

3. Integration. (6 lessons) Integrals, functions defined by
integrals. Cauchy's theorem and formula, integral representation of
derivatives of all orders. Maximum modulus, Liouville's theorem,
Fundamental Theorem of Algebra.

4. Series. (5 lessons) Taylor and Laurent series. Uniform

convergence, term :.erra differentiation, uniform convergence in
general. Domain of convergence and classification of singularities.

5. Contour integration. (3 lessons) The residue theorem.
Evaluation of integrals involving single-valued functions.

6. Analytic continuation and multivalued functions. (6 les-
sons) Analytic continuation, multivalued functions, and branch
points. Technique for contour integrals involving multivalued
functions.

7. Conformal mapping. (6 lessons) Conformal mapping. Bi-

linear and Schwarz-Christoffel transformations, use of mapping in
contour integral evaluat ion. Some mention should be made of the
general Riemann mapping theorem.

8. Boundary value problems. (3 lessons) Laplace's equation
in two.dimensions and the solution of some of its boundary value
problems, using conformal mapping.

9. Integral transforms. (4 lessons) The Fourier and Laplace
transforms, their inversion identities, and their use in boundary
value problems.
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