DOMUMENT RESUME

ED 061 978 52 LI 003 ou8

AUTHOR Aiyer, Arjun K.

TITLE The CIMARON System: Modular Programs for the
Crganization and Search of Large Files. Final
Report.

INSTITUTION California Univ., Berkeley. Inst. of Library

SPONS AGENCY

Researcha
Office of Education (DHEW),
of Research.

Washington, D.C. Bureau

BUREAU NC BR=-7=-1083

PUB DATE Sep 71

GRANT 0EG=1-7-071083~5068

NOTE 60p.; (6 References)

EDRS PRICE MFP-$0.65 HC-$3,29

DESCRIPTORS *Bibliographic Citations; Computer Programs;
*Electronic Data Processing; *Information Retrieval;
On Line Systems; *Search Strategies

IDENTIFIERS Berkeley; *University of California

ABSTRACT

The File Organization Project has made available a

set of programs which are designed to aperate on large files of

machine readable bibliographic records.

These programs are designed

as an instrument for understanding and refining the techniques of
bibliographic search. This document discusses four aspects of the
system: {1) The retrieval program, CIMAKON, is an on-line,

interactive system with two complementary modes of
Gpéfatlﬁﬂiisﬂafchlﬁg and browsing; {2) CIMARON2 terminal operator's
gquide is a step by step use of the system through an on-line computer
terminal: {3) The BKOWSER2 terminal operator's guide describes a
program which is an independent routine used to scan currently stored
index files, to save index terms temporarily, and to obtain hard copy
of the displayed terms; and (4) A user's guide to file building.
[Related documents are LI 003610, LI 003611, and LI 003645 through LI
003647.] (Author/sJd)

U.5. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS ﬁECE¥ED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR QOPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR FOLICY

ED 061978

FINAL REPORT
Project No. T-1083
Grant No. 0EG=1-T-0T71083-5068

THE CIMARON SYSTEM:
MODULAR PROGRAMS FOR THE ORGANIZATION
AND SEARCH OF LARGE FILES

By
Arjun K. Aiyer

Institute of Library Research
University of California
Berkeley, California 94720

September 1971

7 -5 2
GR-7-7083

and Welfare.

The research reported herein was performed pursuant to a grant
with the Cifice of Education, U.S. Department of Health, Education,
Contractors undertaking such projects under Govern-
ment sponsorship are encouraged to exXpress freely their professional
Judgment in the conduct of the project.
stated to not, therefore, necessarily represent official Office
of Education position or policy.

Points of view or opinions

U.S. DEPARTMENT OF
HEALTH, EDUCATION, AND WELFARE

Office of Educatinsn
Bureau of Research

TABLE OF CONTENTS

1. GENERAL DESCRIFPTION OF CIMARON SYSTEM. . « « & ¢« o ¢« o o o o o o« « « 1

1.1 General Retrieval from Large Files. eseessussaa e
1.2 Searching and BrowsSing.....ceveseossonncanss Ceeseresesaroanen L
1.3 The Formulation of CIMARON Search Requests..i.iii..s. ceered b
1.4 CIMARON Search LOGiC.ssecetounesrsorsarnorescassssoosasasssass T
1.5 CIMARON Retrieval DiSplay...eseseesnssssssssssssassnccnsssasses B
1.6 File Generation and OrganiZation...scesecescecsescacnssasees 12

2. CIMARON2 TERMINAL OPERATOR'S GUIDE . . & & « « + & & &+ o« = o+ » « 17

2.1 Overview...:-o.e. I N
2.1.1 CIMARONZ2 Structure and Ccmmands..,..i....i..i..a......lT
2.1.2 Use of the Sanders T20 Keyboards....ceietsiesevensaas-20
2.2 Entering CIMARONZ....:esevnseenscassssssnasssssssansssnasasssl
2.2.1 Logging In...veeasrececrasntnrraossssssssssssnssssssensl
2.2.2 Sslecting the Data-Base. = a X
2.3 Entering Search Requests.. ...i.....-,!;.ii..i...............El
2.3.1 Search Keys and Attrlbutes Chesseatasesasin et ena e B8
2.3.2 The AD Attr;bute.................!_...a.;..........g. 23
2.3.3 Search Requests in the Form of Boolean Expressions....23
2.4 Search ResUltS.ussseesesreiossoessesesssssssinsansansnssesesss2h
2.4.1 Diagnostics...ceeiieiveriversrsrsasisnnscannsannnsensesl
2.4.2 The List Overflow Warning......eceseessirntnaninaaseasa2d ‘
2. 4.3 Unusual ReSULlbSeueenecreresseserssassssssssasssassnsesd .
2. 0.3, NOME.uereseenaennerosessssessssosrsasssnssnsdb }
T T~ B I - :
2. 4,3.3 AL DUL e e uenerrrcentecotaniciaaassnaaeennse26 ‘
2.4, 4 Normal ReSUltS...eeceeceeasssnnnarassnncsassssnsarnssacll :
2,5 Record Rebrieval....cvesusceesrrsscceacsssssnssscanesssaseasssB :
2.5.1 The IList Control COmmanas........,.,,.!.,,;.iii.igg_i.gs g
2.5.2 Record Display Format...i.ceveersassccacacsssscsccsnsaseld
2.6 Exiting from CIMARONZ.ccuicessscaassnossasanssseassssceadl .
2.7 Disastrous Ends in CIMARONZ. . ..ceivevtnnnronnnaananasansssnasll y
2,8 CIMARONZ2 Messages and Code TableS..sccseessanasnasssscssansssdl 2
3. BROWSER2 TERMINAL OPERATOR'S GUIDE 4 + 4 & « &+ = « & o « o + o+ » o 41 i
3
3.1 OvervieWw...ceisses ..;,........g,g,.gi_i.i........i.-.i.a,_i;hl 4
3,2 BROWSER COMMANAS < v v e v sesneanssosaranesanasssssssnssnssneesessd? i
3.2.1 Select Data Base Tndex Fileuevsreeescsacacens . - A
3.2.2 Select Portion of Index File to be Dlsplayed ceeeneal b2 =
35,3 AGVADOE THE DISDLAY+ . oo erssseerssnensesnaneerronneee. b3 P
3.2.4 Save an Tndex File ENtry...eeessssececssssesssosessassdl 4
3.2.5 Display the Save Area List..cevereressresasasacsseasashl A
3.2.6 TRemove & Term from Save Area List..ceeeecesscsrsessssslih 5
3.2, T PrINE eveersreneeeeeaeaaastssssniannsensnsnrssareessoll
3.2.8 C10SE OF EXiteueeeersensnsnransanssassssssssssnsaasenasalth
3.2.9 Display the Ava1¢able Commands or File Names...........5

Page
4., USERS' GUIDE TO FILE BUILDING. . . « .+ . . L7

bl OVvervieWw.issssvesonsasss ceeeaa AP 4 £

4.2 Creation of the Blbllagraphlc Master File.iieeeeeeeoesnaneas BT

4,2 Extraction of the Index Information....iieiiieseeesracaassesadl

4.,3.1 Parameter Controle.cecceecceccnassnosses Ceeaas51

4,3.2 ZODIAC Control TableS..veeeearecanssanas Chrrrreaneaeas 53

4.3.3 Processing Sequence......... Ceresaeaaaean Cerersereaans Sk

4.3.4 Program Constraints..... G e reesoetetsaesat e anens 5k

4.4 Sequencing the Tndex Data...eiesersssenressssssssnasasasssenadd

4.5 Creation of the Index FilesS....veseeesctennnrcassrsrsscrssssssdd

LIST OF FIGURES
Figure Title Page
1. Data Collected by CIMARON e 3
2. CIMARON Search Request Syntax Defined in Backus-=Naur Form

NGta‘tién L] - - - L] & L] L] & & - - L] - L] L] L] L] - a * L] * a * . & & [) 6
3. CIMARON Display Record Example: « « o o s ¢ « s o o « o o o« o+ o » 10
4, CIMARON Commands Available During Record Display Phase. 10
5. Genersal CIMARON CommandsS. .+ « « o s o s s s « 2 5 & s s s o o 3 11
6. Phase of CIMARON Operation and Legitimate Transfer Paths. 1T
7. General CIMARON CommandS. + « « « s o « o« s « o o o o o + s « « « « 18
8. CIMARON Commands Available During Results Display Phase 19
Q. CIMARONZ MeSSALE5 ¢ « o« « s+ = o o s o o o o o o 5 &« &« » s+ s & = 33
10. Equivalence Table of Graphic Representations and Internal Codes 7
(Iisted in EBCDIC SeqUENCE. . « + « + « « « o « « « « + « & = + « « 3k
11. Current BROWSER COMMANAS. + o « o « o s.v = o o o o + o « « o « « . k2
12. BROWSERZ Display of Index Terms . . « « « « « o« & s o« o o o s 43
13. Finder File Record Format « . + . s
1%. ZODIAC Runm SebuP: « « « o o« o o 2 o = & o & s o s o « ¢ s o s s 50
15, TFILOR Run Setup A
16. ZODIAC Internal Control TableS. . « « « « « o & « o &+ = = + « s & 2 53

113

A T R 805§ T 3 i Vnn i wmty i o sl B

FOREWORD

1968 - June, 1970) of the Flle Organ;zatlcn Project, dlrECtEd toward
the development of & facility in which the many issues relating to

the organization and search of bibliographic records in on-line com-
puter environments could be studied. This work was supported by a
grant (OEG-1-T7-071083-5068) from the Bureau of Research of the

Office of Education, U.S. Department of Health, Education, and Welfare
and also by the University of California. The principal investigator
was M.E. Maron, Professor of Librarianship and Associate Director,
Institute of Library Research; the project director and project manager
were, respectively, Ralph M. Shoffner and Allan J. Humphrey, Institute
5f Library Research.

This report is being issued as seven separate volumes:

i * SBhoffner. Talph M., Jay L. Cunningham, and Allen J. Humphrey.
‘ The Drganlzatlon and Search of Bibliographic Records in On-line
Compufer Systems: Project Summary.

* Shoffner, Ralph M. and Jey L. Cunninghem, eds. The Organization
and Seerch of Bibliographic Records: Component Studies.

* Aiyer, Ariun K. The CIMARON System:
Orgamﬁsatgcn and Search of Large Files.

Modular Progrems

for the

¢ Silver. Steven S. INTX: Interactive Assembler Language
Interpreter Users' Manual.

* 8ilver, Steven 8. FMS: Users' Guide to the Format Menipulation
System for Natural Langﬂagf Dccum&nts.

+ S5iiver, Steven 8. and Joseph C. Meredith.
System Users' Manual.

* Smith, Stephen F. and William Harrelson. TMS: A Terminal Monitor
System for Information Processing. - ' -

Because of the Jjoint support provided by the Information Processing
Laboratory Project (OEG-1-T-0T71085-4286) for the development of
DISCUS and of TMS, the volumes concerned with these programs are in-
cluded ag part of the final report for both projects. Also, the
CIMARON system (which was fully suppeorted by the File Organization
Project) has been incorporated into the Laboratory operstion and
therefore, in order to provide a balanced view of the total facility
obtained, the volume is included as part of the Laboratcry prcject
report. (See Maron, M.E. and Don Sherman, et al.

Procass;ng Laboratory for Education end Research in lerary Science:

Phase 2. Institute of Library Research, 1971.)

~iii-

ACKNOWLEDGMENTS

The CIMARON system evolved boti: with the help of many members of the
Institute staff and with its use by faculty and students of the School of
Librarianship.

In particular, I would like to acknowledge the many fruitful discussions
with Chakravarthi Ravi during the design of the on-line search and retrieval
components. Ralph Bhoffner and William Schieber laid out the broad
specifications of the system, while Jay Cunningham and Allsn Humphrey
provided many helpful suggestions.

The BROWSER subsystem was programmed by William Harrelson. BSteve
Smith, William Harrelson and Rodney Randall provided excellent system
support.

Special thanks are due to Ed Mignon and Don Sherman, not only for
their introduction of the use of CIMARON to Library SBchool students, but
also for their observations and comments.

Principal acknowledgments are due to the School of Librarianship
of the University of California and the Office of Education of the
Department of Health, Education and Welfare, for making this work possible.

In addition, I wish to thank and to commend the work of the Institute
personnel who prepared these pages for publication: notably Carole Fender,
Linda Herold, Barbara Johnson, Jan Kumatska, Pat Cyama, and Rhozalyn
Perkins, :

3. GENERAL DESCRIPTION OF CIMARON SYSTEM
1.1 General Ret..eval from Large Files

The File Organization Project* has made available a set of programs which
are designed to operate on large files of bibliogrephic records, typically
machine-form catalog entries for monographs. From the educational and research
point of view, these programs are designed as an instrument for understanding
and refining the techniques of bibliographic search. At present, access is
provided to two data bases in the MARC II record str ~ture:

a. 95,000 recerds, representing approximately 65% of the holdings of the
library of the University of California at Santa Cruz. By 1971,
this file will grow to 120,000 records and represent over 80% of the
Santa Cruz campus holdings.

b. 5,790 records, representing a portion of the collection of the
University Hospital, U.C., San Diego. This smaller file is focused
almost entirely on medical topics.

The retrieval program, CIMARON, in common with other programs in the Information
Processing Laboratory, operates interactively with the students and researchers
who use it. The files are orgenized so that they can be searched "on-line,"
i.e., while the user waits. In most cases, searches are performed in less than
ten seconds.

Any search request mey consist of a series of search keys connected by
Boolean operators and utilizing parentheses. Allowsble search keys for a given
data base are specified at the time the data base is locked into the system.
For the San Diego file, four keys currently are allowable: Author, Subject,
Title, and Dolbyized Author.** TFor the Santa Cruz file, due to present
limitations of available disc space, only Author and Subject search keys are
permitted. In principle, other search keys such as Series, Publisher, Publica-
tion Date, Class Number, Dewey Decimal No., etec., can be generated. The search
key lists are as follows:

Current Planned ?
AU/ - Author SE/ - Series :
T/ - Title PU/ - Publisher
SU/ - Subject PD/ - Publication Date
AD/ - Dalbyized Author CN/ - Class Number or Call Number

DD/ - Dewey Decimal Number

In CTMARON, search requests consist of a set of Search Keys, having an
explicit relationship between them. The user defines this relationship in
terms of three Boolean connectives: AND, OR, NOT. The meanings of these
connectives are as follows:

*USDHEW, Grant No. OEG-1-7~071083-5068.

#%Dolbyized Author Naues refer to a process of association names that are
similar phonetically but spelled differently: Tschaikovskii, Tshaicovsky,
Chaikowski, etc. ’

IToxt Provided by ERI

S i, e e £

g i

'AU/FREUD' AND 'SU/DREAMS' (A1l bocks written by Freud and
about dreams)

'"AU/FREUD' OR 'SU/DREAMS' (A1l beoks written by Freud, as
well as all books about dreams
ineluding those written by Freud)

NOT 'AU/FREUD' AND 'SU/DREAMS' (A1l books about dreams, except
thcse written by Freud)

NOT 'AU/FREUD' AND 'AU/FREUD' (The rull set)

NOT 'AU/FREUD' OR 'AU/FREUD' (The universal set)

Further, CIMARON allows parenthetic search requests to be formulated:

'"SU/DLEAMS' AND ('SU/FREUD' OR (A1l bocks about Freud's or Jung's
'SU/JUNG') work on dreams)

('AU/FREUD' or 'AU/JUNG') AND (A1l books written by Freud or

('SU/DREAMS' OR 'SU/HYSTERIA') Jung on either of the two subjects,

dreams or hysteria)

With such a powerful variety of options available, CIMARON users are
sble to explore a number of manual and computer specific search strategies.
They are able to formulate comparisons between various manual and sutomated
methodologies related to search formulation and search expansion. In addition,
the users gain many direct insights into the structure of machine-form
bibliographic records, especislly the relationship between the identification
of bibliographic data elements and the formulation of search requests.

system devoted to experimentation with organization and search of large files
of bibliographic data. As a result, CIMARON was designed as & modular
program with separate segments for:

a. selection of data base to be searched;

b. negotiation of the search request;
analyais of the search request and index file search;

d. report of the search results;

e. retrieval and display of the master records;

f. search iteration or termination.

Also, an internal data logging procedure has been developed to provide
extensive information about both the behavior of the users of the system and
the internal operation of the system itself.¥* Students may be interested in

this logging feature since it is anticipated that the data gathered will be
useful for many different types of analyses. The data logged includes the

in searching the file, ete. (see Figure 1).

¥The computer code for this procedure was developed but was not fully
operational at the time of writing this report.

IToxt Provided by ERI

FIG. 1: DATA COLLECTED BY CIMARON

Fizld # Field Name Bytes

1. LRECLEN 2 Length of this log record in hex
2. LTERMNO 2 Terminal number in EBCDIC
3. LUNAME L Initials of user
L, LPHAME 8 Name of program
5. LDATE L Julian date in packed format
5. LINTIME h Time at entry in packed format
T. ILSEQNO 2 Sequence nunber in packed format
8. LFLAGS 2 Bit flags indicating up to 16
conditions
9. LBCOLE 2 Data-base code in EBCDIC
10. LDIACNT 2 Disgnostics count in packed format
11, LIXRCNT 2 No. of index records read in hex
12. LADXCNT 2 No. of master addresses read from
disk in hex
13. LTRKCNT 2 No. of tracks resd from disk in hex
1k, LSRCCNT 3 Number of records reported after
search in packed format
15, LREFCNT 3 Number of records retrieved by user
in packed format
16. LQRTIM h Time at query entry in packed format
17. LSRCTIMI h Time at start of search in packed
format
18. LSRCTTIM2 4 Time at end of search in packed
format
19. LREITIM1 L Time at start of retrieval in packed
format
20. IRETTIM2 4 Time at end of retrieval in packed
format
21. LOUTTIME L Time at exit in packed format
22. IQRYCEN 2 Length of query in hex
23. LQRTXT var. Text of the guery
up to
256

CIMARON i=s a highly sophisticated program in its design and operation.
However, scme expertise also is required of the user, since some of the
program featiires are rudimentary as yet. TFor example, the user must know
the formab to use when submitting requests, since the present request
negotiation phase of +the program is limited only to testing the syntax of
the request rather than otherwise assisting him in formulating his reguest.

This document is intended both to serve as an adeguate introduction
to navw-users of the system and to provide a general description of the '
system to those with interest in bibliographic storage and retrieval systems.
Subsequent chapters of this volume contain users' guldes for these programs
which specify the exact format of commands, sequence of operations, etc.
The remaining sections of this chapter will describe CIMARON and the file
building programs at an intermediate level of detail.

1.2 BSearching and Browsing

The CIMARON system may be conceptualized as having two distinet but
complementary modes of operation: searching and browsing. The search mode
has as its object the formulation of retrieval requests, the evaluation of
requests wpzainst a master file of indexed records, and the retrieval of a
relevant subset of records. The browsing mode has as its goal the examina-
tion of the CIMARON index files, the extraction of appropriate index file
entries, and the ultimate utilization of index file entries as components

(i.e. terms) of search requests.

The browsing mode is crucial in the CIMARON system because it helps tho
user maintain control of search operations. By browsing, the user can ascertain:

*+ legitimate non-empty terms for search requests

+ variationa in the representation of legitimate search request terms

reguest terms

» which terms will lead to overflow conditions in retrieval reguests

Browsing thus can be considered s part of the analysis which precedes
actual sgearching and which is necessary to avoid inaccurate, illegitimate,
or inappropriate search request terms.

While the capability of browsing through index files was conceived as
part of the original CIMARON design, it has not been implemented as part
of the initial CIMARON code. However, this capability is provided through
the use of Browser, an independent routine, originally coded to aid
programmer debugging. The operation of Browser will not be discussed
here, both because its operation is straightforward and because it
represents a temporary implementation of the CIMARON system. Its opera-=
ting instructions are provided following those of CIMARONZ.

1.3 The Formulation c¢f CIMARON Search Requests

Because of the hardware and software resources availasble in the
Infoermation Processing Laboratory, CIMARON is able to operate in real-~time,

E§,
=}

A 0 Nl AN L S it et
N

to communicate bi-directionally with users, and tc utilize the Sanders
Cathode Ray Tube (CRT) terminal video screens to obtain the search
specification and to format and display its retrieval results. We use

the general term "interactive mode" to cover all these aspects of request
formulation, real-time search, immediate display of retrieval results, and
user-program communication. This "interactive mode" is distinguished from
"batch mode" processing by the immediacy of the communication cyecle. In
CIMARON, the interactive mode is used both to select data base, search key
file, searzh request formulation, format of retrieval display, and to control
the viewing of the retrieved records.

CIMARON begins with a descriptive summary of its data bases and Search
Key Files. The user is asked to select a data base (SD=San Diego, SC=Santa
Cruz), and CIMARON then opens the appropriate files of master file records
plus associated Search Key files. ‘

CIMARON then asks the user for a search request. A search request has
a precise syntactic definition which is given in Figure 2 in Backus-Naur
Form (BNF) notation. The basic syntactic components of the search request
are:

&. Name of Search Key File (i.e., AU, TI, SU, AD)

b. Specification of search key value (e.g., FREUD or PSYCHOANALYSIS)
¢. Boolean connertives between search terms (e.g., AND, OR, NOT)

d. Punctuation [e.g., apostrophe ' _or slash / or reverse slash \

or left paren (or right paren)I.

Apostrophes are used as left and right brackets around a search term. A
slash is used to separate the name of the Bearch Key file from the search
key value. Reverse slashes are used to bracket hexadecimal values to be
entered into the search key value. (This is used to specify symbols which
cannot be entered legitimately via the terminal keyboard, such as subfield
delimiters \FA\ or an apostrophe within the search key value.)

Examples of CIMARON search requests are:

'AU/FREUD, SIGMUND' (A1l books authored o: co-authored
by Sigmund Freud)

'AU/FREUD, SIGMUND' OR 'SU/FREUD, (All books by or about Sigmund Freud)

SIGMUND'
'SU/PSYCHOTHERAPY' AND ('AU/FREUD' (All books dealing with Psychotherapy
or 'AU/JUNG' OR 'AU/ADLER') end written either by Freud, Jung,

or Adler.)

 Before executing a Search Request, CIMARON checks the syntactic validity
of the request and then rejects it if: (1) there are an uneven number of
apostrophes; (2) the Search Key file is incorrectly specified; or (3) an
unknown Boolean operator is used. The user is notified of the type of error
and is given the option of correcting the search request which will be checked
again for validity.

FIG. 2: CIMARON SEARCH REQUEST SYNTAX

DEFINED IN BACKUS-NAUR FORM NOTATION

1. <=8earch request> : : = <boolex>
2. <boolex> = <term>|<boolex>OR<term>
3. <term> : = <factor>|<term>AND<factor>
L, <factor> : = <operand>|NOT operand>
5 <operand> : : = <search key>|(<boolex>)
6. <search key> : : = '<attrib. code>|<string>'
T. <attrib. code> : : = AU|TI|SU|AD
8. <string> : = <alphanum>|\<hex$\<String><alphanum>I{gtring>\<hex>\
9. <alphanum> = any string of EBCDIC characters excluding
apostrophe and reverse slash¥
10. <hex> : = any string of hexadecimal digits, comprised
of legitimate 2-character hexadecimal
numbers, €.2., FO.
Terminal Types
OR AU
AND TT
NOT suU
(AD
) EBCDIC characters
' Hexadecimal digits
/

#Note that if an apostrophe, ', is to be included in the alphanumeric
string, the hex representation for it must be provided. Otherwvise
it defines the end of the <search key>. Reverse slash, \, must be
treated similarly.

Q .
ERIC 11

'

The device used for user*program transmission is the terminal kKey-
board, with the CRT screen serving as a visual copy of what is being
formulated and transmitted. The programruser communication is via the
CRT screen. Because there are no mechanical linkages in this system
(except for typing on the terminal keyboard), the interactive cycle is
very rapid, usually on the order of less than two seconds. CIMARON may
be in use at all three terminals at the same time, the small increase 1in
delay time being due primarily to tying up the single telephonic link

1.4 CIMARON Search Logic

When the user enters an acceptable search request, CIMARON begins
operating according to search logic designed to maximize search efficiency.
This attempt to maximize occurs at two levels. First, the search request
is divided into components (corresponding to the terms of the search
request), and the processing of these components is ordered so that the
minimum evaluation of Boolean expressions is required. Second, the actual
search operation is performed against the Access File (which is a corted
file), and Master File records are not examined at this stage of processing.
The Access File contains the Search Key Values previously extracted by the
File Generation subsystem and pointers to the master records. Thus,
exhaustive search of the master records need not be performed by CIMARON.

The Roolean search request is treated by CIMARON as if it were an
arithmetic expression; that is, there is a precedence order for evaliating
expressions. That order is NOT, AND, OR. Further, all expressions within
parentheses are evaluated before those without. Any search request thus can
be treated as a simple binary tree. Each node of the tree 1s a Boolean
operation with the tree leaves corresponding to the search terms in the
search request expression. TFor example: 'AU/BACH' AND ('SU/SUITE' OR 'SU/
CANTATA') can be represented as follows:

/ﬁND
BACH OR
SUITE CANTATA

Note that without the parentheses, the expression 'AU/BACH' AND 'SU/SUITE'
OR 'SU/CANTATA' would produce the following binary tree:

D i}
AND CANTATA
BACH SUITE

Thus the search logic can be seen in the following way. Beginning
with the lowest level of the tree structure, a search 1ls conducted for the

<

_I“

term in the left leaf of the node. The search consists of both examining
the appropriate Search Key Access¥* file and retrieving a list of addresses
of Master File records which satisfy the Search Key value of the search
request term. This list is called Left-List, and it is sorted into
ascending order by Master File location address. A similar operation is
performed for the right leaf of the node, and the resulting list of Master
File addresses is sorted and stored in Right-=List.

Once these two lists have been generated, they are combined into a
third Result-List according to the Boolean logic specified at the node.
If the node operator is OR, then Left-List and Right-List are additively
combined, except that duplicate Master File addresses are combined into
one entry. If the node operator is AND, then the Result-List consists

List (i.e., that are duplicated in both lists).
1.5 CIMARON Retrieval Display

Once CIMARON has completed execution of its search and retrieval
logic and has created a final result-list of entries to be retrieved, it
presents the requestor with a further set of options concerning the display
of retrieved records. The user may specify briefly the number of records
to retrieve and the format in which they should be displayed. After dis-
play of the records has begun, he may move forward or backward in the record
display, ask for hard copy of a displayed record, or terminate the display.
At that point he may either initiate another request or exit.

Four CIMARON messages are possible with regerd to retrieval results:

a. NO RECORDS SATISFY REQUEST
b. XXX RECORDS SATISFY REQUEST - HOW MANY ARE DESIRED?

c¢. ALL EXCEPT XXX RECORDS SATISFY REQUEST--TYPE NONE OR XCEPT
FOR THE EXCEPTIONS

d. CONGRATULATIONS - YOUR REQUEST SPECIFIES THE ENTIRE FILE

Message (a) indicates a zero result-list (no records match the search
prescription and no records can be retrieved). The user is then allowed to
exit or to reformulate his request by either altering the current request
or submitting an entirely new request. The same options are offered to

the user after message (d) which indicates a failure of a different type,
namely that the search result encompasses the entire file (for example:

'AU BACH' OR NOT 'AU/BACH'). Message (b) is a more common result and gives
the student an idea of how many records are potential candidates for
retrieval and display. Message (c) is similar, but the class of retrieval
records in this case is the negation (or exception to) the search request.
For example, NOT 'AU/BACH', if taken literally, would result in specifying
the entire file less those few titles authored by BACH. It is presumed
that the student will work to display the exceptions, namely NOT (NOT 'AU/
BACH'). The response to messages (b) and (c) can specify

¥Recall that the Access File consists of Search Key values and linkages to

Fhe addresses of Master File records.

v
ERIC 19

—— (null response is the same as ALL)

NONE (no records to be displayed)

ALL (all retrieval candidates to be displayed)

XXX (a three digit number, indicating how many records to display)

Any speficiatiom (exceyt NONE) can be overridden during the display to
terminate the display process.

When the user indicates the number of records to be displayed, the
record display is initiated with a format default option (USER format)
which presents all displayable data in the master record. This default
option can be overridden at any time. Currently, two format options are
aveilable: (1) machine-form MARC II specified as MARC, and (2) user's MARC
II specified as USER. The first option displays records in their original
machine format; i.e., record leader, record directory, and data fields, in
that order. This format is useful for students who are interested in
enalyzing the components of the machine-form MARC record. CIMARON is
structured to accept other format displsy routines in the future.

The user format available is very similar to a normal catalog card,
except that the major (MARC—defined) data fields each are printed on a
separate line.* Each line begins with a short mnemonic identifying the
contents of the line. These identifying codes are:

REC (accession number, publication date and call number)

MEH (mein entry heading)

TIT (title)

IMP (imprint)

PAG (collation statement)

SER (series notes)

NOTE (other notes)

SUB (subject tracings)

OTH (author, title or series tracings)

A typical record under this format appears as Figure 3.

Records are displayed in disc address order .and, therefore, are. not
alphabetized. At the end of each record display, the student has the
following coptions: create a hard-copy version of the record currently
displayed; to continue to the next record in the display sequence; skip

forward or backward in the sequence; kill the display and return to the
request formulation stage; or change display format.

¥Accession number, publication date and call number all are printed on the

first line, in that order.

PR

FT3. 3: CIMARON DISPLAY RECORD EXAMPLE

T,
Lii=

REC: 0001234k 1965 BL1032 BL

MEH: BELLAH, ROBERT NEELLY, 1927

TTT: RELICION AND PROGRESS IN :ODERN ASIA. EDITED BY ROBERT N. BELLAH.

IMP: NEW YORK, FREE PRESS, 1965

PAG: XXV, 246 P., 22 CM.

NOTE: REPORTS OF A CONFERENCE HELD IN MANILA IN 1963 UNDER THE AUSPICES
OF THE CONGRESS FOR CULTURAL FREEDOM

SUB: ASIA--RELIGION

SUB: RELIGION AND SOCIOLOGY

SUB: ECONOMIC DEVELOPMENT

CONGRESS FOR CULTURAL FREEDOM

FIG. 4: CIMARON COMMANDS AVATILABLE DURING RECORD DISPLAY PHASE

(null response, display next record)

Kill (go to request formulation/exit branch; return to the display
can still be accomplished through command Bn)
Bn (display the nth record back in the list; n=0, or n>current
position provides the first record)
SKn {skip n records and display record following; n=0, or n>remaining
records provides the last record)
HARD (send a copy of this record to the printer file, no change
in display)
IMARC (display current and following records in MARC II communications
format)
USER (display current and following records in user format)
4=
1S

=10-

FIG. 5:

GENERAL CIMARON COMMANDS

Commands

Program Phase

Finis

Exit

Reopen

SD

=C

(null)

” 1 T > 3 B 5
Data Base - Request Results Tnd Results File
Selection Formulstion | Display Display Closing
- - - - Terminate
CIMARON
- - - Go to -
Phasgse 5
- - - - Go to
Phase 1
San Diego - - - -
Santa Cruz = - - -
- - Show next|Go to Terminate
record Phase 2 CIMARON

16

11—

Before CIMARON can be used, there must be a data base created on
which it can operate. Thus, a sequence of programs is required to
transform a random collection of machine-form bibliographic records into
well-organized files which are easily searchable by CIMARON. These
programs do not operate interactively nor do they provide real-time response
capability. Rather, they operate in a batch-mode job stream, and the major
guccessive steps are:

a. loading the basic Master File records into disc memory (FILOR)
extracting indicated Search Keys from each individual record
(ZODIAC)

. special search key generation (e.g., DOLBY)

o

sorting the collection of Search Keys (08 Sort)

o

e. consolidating Search Keys into a linked file structure (PAX)

The “irst step in this job stream is to construet on disec (at present,
the IBM 2314) a linear array of the master file of input records. No
ordering or pre-sorting of the input tape is required. The program reads
in streams of variable length records, blocked or unblocked, and develops
disc storage algorithms based upon the four-byte binary record descriptor
word (RDW) in the standard IBM location. Possible input sources would be
either magnetic tape or a segquential file on disec.

This program, called FILOR, creates two output files. The first is
the Master File loaded sequentially onto the disc. These records are packed
to the highest density possible; that is, they are blocked to the full 231k
track capacity of 7294 bytes. Because of this dense packing, some records
may be split across two disc tracks. Although this increases programming
complexities in the record display portion of CIMARON, the net r~avings in
storage space is considerable due to the large size of biblicgrap»’~ records.

The second file created by FILOR is a segquential list of tie dis-
addresses of each Master File record. The data in ea h record of this "inder
File consists of four elements:

a. Master File record number (sequentially assigned)

b. disc track number

c. relative position of the master file record within the disc
track (this is termed the offset)

d. length of the master file record

There is one record in the Finder File for each Master File record.
The data in the Pinder Pile is used in subsequent programs to retrieve
the records in the Master File.

The second step in the file organization process of CIMARON is to
analyze each Master File record and to extract Search Keys from each record.

4"
Q ‘ _12—1L

|

This process is performed by Z0DIAC, which is organized to process MARC II
structured records.¥ The deflnltlcn of what constitutes a Search Key is
controlled by parameter cards which are stated in terms of a set of MARC II
major field tags. An example would be the generation of author (AU) Search
Keys, consisting of:)

100 Personal Name Main Entry
110 Corporate Main Entry
111 Conference Main Entry
130 Uniform Title Main Entry
TOO Personal Name Added Entry
T10 Corporate Added Entry
T11l Conference Added Entry
T30 Uniform Title Added Entry

The definition of the Search Key also could be narrowed, for example, by

the exclusion of Corporate, Conference, and Uniform Title headings, or by
the exclusion of Added Entries. Similarly, the definition could be expanded
by adding Series Headings (400, 410, 411, 800, 810, 811) and/or Subject
Tracings for Personal, Corporate, Ccnference, or Unlfcrm Title names (600,
610, 611, 630).

The extraction of Search Keys occurs by using as input the two files
generated in the previous pass; i.e., the disc-stored Master File and the
Finder File. The Finder File record and its corresponding disc=stored
Master File record are processed together. Each Master File record is
analyzed for the existence of one or more Search Keys. For each Search Key
found, a fixed-length output record is generated consisting of:

a. Search Key (all upper case)
b. Field Tag which caused the generation of Search Key
. disec track number of Master File record

. offset of record location within specified disc track

m pl ‘m‘

. length of Master File record

A Master File record of course may have more than one Search Key, in which
case multiple output records are generated.

ZODIAC will accept definitions of up to twelve Search Key files, and
will, therefore, generate in a single pass Search Key files for author,
title, subject, ete. Currently there are two constraints to the program.
Tirst, if several Search Key files are defined in a single ZODIAC program
pass, the field tags which comprise a Search Key file must be unique and
mutually exclusive. Thus, if one were creating two separate Search Key files,
one for Author (AU) and one for Subject (SU), the 600 field (Personal Name
Subject Tracing) could be allocated to one but not both of these files on a
single ZODIAC run. To achieve placement in both, a second run of ZODIAC must
be made with different parameter cards. The secani constraint concerns the

*lerary of Congress, Subsecriber’s Guide to the MARC Dlstrlbutlcn Bervice,

Washington, D.C.: Information Systems Office, 1970, p. 26.

ability to access subfields. In some situations, it would be useful to

exclude certain subfields from the Search Key (e.g., $e relator), or to
construct Search Keys from subfields altogether (e.g., a Key file consisting
only of geographic subject heading subdivisions). Currently, the level of
Search Key definition does not extend beyond the tagged field level,

Utilizing the output file of ZODIAC, other routines can be applied to
generate "special" Search Keys. One such routine, DOLBY, provides the
ability to generate Search Key files adapted tc "noisy" or uncertain search
specifications. The Search Key file, called Author-Dolby (AD), is obtained
by scanning the output from ZODIAC and reducing the author surname to a
canonical or quasi-phonetic representation. In this form all vowels are
eliminated from the surname, and phonetically related consonants are reduced
to single forms. This Search Key file (AD) may be used to produce a set of
candidate retrievals when the user is uncertain of the pronunciation and/or
orthography of an author search. A second "noisy" Search Key file generator
has been programmed (but not yet implemented) for operation on the title
field. The resulting Search Key file will contain a permuted sequence of
information bearing content woré: 3o bhat title requests can be processed
effectively even where the searc - omits an article or preposition or
confuses the order of the words in a title.

After the Search Key records have been generated, they are sorted using
an IBM utility sort routine. The order of sort is: File Name (AU, 8U, TT,
ete.); Search Key, block/track number, offset. These sorted files are then
presented to PAX, the routine which constructs the random access linked file
structure. The standard access arrangement for indexed files, which is
provided by IBM, has had the dual requirement that the Search Key be unique
(no two records with the same key value) and that the records be the same
length. Therefore, PAX analyzes the input records for duplicate key wvalues
and processes all those with the same value as a string. A Search Key string,
therefore, is defined as one or more occurrences of the same value of the
Search Key.

An example from a hypothetical AU file follows:

Master File Record Address

Search Key Value Track Offset Length-

BACH, CHRISTIAN 51 1343 600._ String 1
BACH, JOHANN SEBASTIAN ‘ 1k 545 712

BACH, JOHANN SEBASTIAN 14 2506 455 String 2
BACH, JOHANN SEBASTIAN 30 1025 512

BACH, KARL PHILIPP EMANUEL 8 7210 650 String
BACH, KART, PHILIPP EMANUEL 13 150 W75 bring 3
BACH, WILHELM FRIEDEMANN L7 4570 580 String U4

If a string consists of only one record, then the author is represented by
only one title in the file. A string also may consist of many Search Key
records, indicating multiple entries for an author in the Master File. 1In
the example above, strings one and four are single-record strings, whereas
strings two and three are multi-record.

Following this analysis, PAX creates two new files: a Key Access file,
and a Key Locator file. There are two possible linkages from these files to
the Master File, as follow:

Access File| Access Filel

Master File| or [Locator Filet
Used where only one [Master File
master record has the
key value. Used where more than

one master record has
the same key value.

The simpler link occurs for each single-record string in the sorted Search
Key file. In that case there is only one Master File Record in the data
base corresponding to the Search Key value in the Key Access file record.
Consequently, there is only one Master File record address and that may be
carried directly in the Key Access record. The second case occurs for each
multi-record string in the sorted Search Key file. In that case the Key
Access file carries the Search Key value, but not the full set of Master File
Record addresses. These addresses are stored instead in sequential fixed
length records of the Key Locator file. The address in the Key Access file
is thus a pointer to a sequential string of records in a second-level Locator
file, each of which in turn points to a Master File record. Thus, to return
to our example of multi-record strings:

Key Access BACH, JOHANN SEBASTIAN
File

)
i
‘ﬂ‘
o
L)
=
g
jas]
H
.
I
g
]
=
g
=

Key Locator Track Offset Length

File
1k 545 712 1
1k 2506 455 ‘
30 1025 512
8 7210 650
13 150 W75

Thus consolidation occurs as a result of carrying each unique Search Key
value only once, thus reducing all multi-record strings to single-record
strings. In order to maintain a fixed-length record structure in the Key
Access file, Master File record addresses are transferred to a separate
Yoy Loeator) file. This two or three level linked file structure is the
final outcome of the file construction process and represents the data
base utilized by the search logic and retrieval portions of the CIMARON
program.

2. CIMARONZ TELRMINAL OFPERATOR'S GUIDE
2.1 Overview

This document is a terminal operator's guide to CIMARONZ2 - the
latest version of an on-line search and retrieval facility, implemented
at the Institute of Library Research, Berkeley. CIMARONZ allows the
user to enter search requests (in a Boolean laenguage) involving authors,
titles, and subjects, from a remote terainal and subsequently presents
the search results at the same terminal.

The hardwaire facility includes three SANDERS T20 character display
terminals a: the Information Processing Laboratory in the Library School
and an IBM 360/40 computer with a 2314 disk storage unit at the Campus
Computer Center. The software facility was developed under a Terminal
Monitor System (TMS) designed specially for the Institute's on~line
computing needs.

The guide is written with a view to conducting the reader through
a complete session with CIMARONZ2 at the terminal. All text appearing
on the display screen, whether generated internally by programs or
keyed in by the user, is shown throughout this document in upper-case
letters.

2.1.1 CIMARONZ Structure and Commands

In order to provide proper control and transfer between the program
components, CIMARON and its command structure are divided into six
phases. During each phase of the program, the user may choose from avail-
able options in order to transfer to other phases of the program, to sub-
mit a request, view the results, etc. Figure 6 lists thes~ program
phases and the legitimate transfers between them. Figure T shows the
generel commends availsble to the user during these phases. And finally
Figure 8 shows the commands available during the results display phase
to assist the user in viewing the retrieval result.

FIG. 6: PHASES OF CIMARON OPERATION AND LEGITIMATE TRANSFER PATHS

Phase # Phase Typ: Next Phase(s)
1 Data Base Selection 2
2 Request Formulation 2, 3, 6
3 End Search 2, b, 6
Y Start Display 4, 5
5 End Display 2, 4, 6
6 File Closing 1, Terminate
CIMARON

o 21

FIG. T7: GENERAL CIMARON COMMANDS

Program Phases ——>

| 2 3 L 5 6
Available Data Base | Regquest End Q Start End File
Commands ® Selection | Formu— Search¥¥ Results Results Closing
o L - _ lation | Display Displeay
//CLOSE - Go to see - see -
Phase 6 CLOSE CLOSH
EXTT - - - - - Terminate
CIMARON
REOFPEN - - - - - ‘Go to
Phase 2
sD . San Diego - - - - -
sC Santa Crusz - - - - -
L) Seareh | T Show
(null JE¥** Santa Crusz same Go to all Go to Terminate

request| Phase 2 records Phase 2 CIMARON

CLOSE - - Go to - Go to -
Phase 6 Phase 6

RESTART - - Go to = Go to -
Phage 2 Phase 2

EDIT - - Go to - Go to -

Phase 2 Phase 2

¥Dash indicates command unavailable in +this phase.
¥*End search is the phase arr;ved at ;i the searchz"fallei" Phaze b4 is
arrived at if the search "succeeded.
#¥%(pull) indicates depression of SEND BLOCK key with ho typéd response.

FIG. 8: CIMARON COMMANDS AVAILABLE DURING RESULTS DISPLAY PHASE

Available

Commands¥* Meaning
(null) Display next record
KILL Go to Phase 5, End Results Display;

return to the display can still be
accomplished through command EBEn

BACK n Display the nth record back in the list;
n=0, or n>current position provides the
first record; B and Bl are the same

SKIP n Skip n records and display record follow-
ing; n=0, or nrremalining records provides
the last record

HARD Send a copy of this record to the printer
file, no change in display

MARC Display current and following records
in MARC II communications format

USER Display current and following records
in user format

#¥Urnderlined letters are the minimum typed characters to uniquely
define the command. Additienal characters are optional.

2.1.2 Use of the Sanders T20 Keyboards

The Sanders T20 keyboard consists of two major groups of keyz - the
alphanumeric group containing upper-case letters, digits, and punctuation
characters. and the function key group on the right hand side of the key-
board. Of the former group, the user is not concerned currently with the
HOME, horizontal and wvertical TABR and CR keys, because all formatting is
usually controlled by the programs, and user input is expected to be a pure
alphanumeric string. Of the latter group, the user is concerned with the
INSERT, DELETE, and SEND BLOCK keys. The INSERT and DELETE (blue keys) in
conjunction with the cursor positioning key (i.e., +he SPACE key), enable
the user to edit his input string before dispatching it with the SEND BLOCK
funetion key.

Any message from within the program requires a user response. This
may be a simple acknowledgment on his part that he has read what is on
the screen, or it may be & command word or a search request. In any case
the following can be noted:

a. The cursor is positioned one or two lines below the last line
of the program message, often just beyond a right arrow (>) and blinks
steadily.

b. The user types in his input here, edits it if necessary., and
dispatches it by pressing the SEND BLOCK function key.

c. Both the message and the user's input are visible on the sereen
until the next message appears.

d. Sometimes, when all three terminals are being used, the user's
response may go into a blink mode. This usually does not last more than
a few seconds and means the input is being gueued before it is processed.

Also, whenever CIMARONZ prompts the user to select one of many
command options, the first alternative listed is usually a default
cption which may be tazken merely by pressing the SEND BLOCK key. This
causes a zZero-length message to be sent to CIMARONZ as a signal for the
default command. A simple SEND BLOCK (i.e., a zero-length message) is
used elsewhere as an acknowledgment from the user. This is the same

convention if viewed as a default command to "continue." This procedure
allows the user to proceed rapidly along the most commonly used program
paths.

2.2 Entering CIMARONZ

CIMARONZ2 msy be called up on the terminal as a user service under
the Terminal Monitor System. This means that TMS brings into core a
copy of the CIMARON2 mechine cnde stored in a program library on disk and
initializes the communication path between CIMARONZ and the appropriate
terminal. Since the program is reentrant, only one copy of it is in core
at any time, although communication paths may heve been established from
CIMARONZ2 to more than one terminal. The detailed procudure for entering
CIMARON2 is described below.

. =4
-20-

2.2.1 Logging In

When TMS has been initiated, the following messages appear on each
screen:

TMS100I - TMS IN OPERATION
TMS101lA = WAITING FOR LOG N

The normal response to this is to type in either GPOl or GPO2 and
send the messsage (depress the SEND BLOCK button). The initials of some
ILR personnel are also valid, but these are usually entered by those persons
when conducting debugging sessions or when running machine tutorial programs
(i.e., DISCUS). If one of the valid initisls is received (say GPOl), TMS
responds with:

T™™S102I - GPO1l LOGGED 1IN
TMS10LA ~ SPECIFY PROGRAM

The termiral user has been logged in successfully and may now call
CIMARON2 by typing CIMARONZ2 followed by & SEND BLOCK. This results in
entry to the program end the display of a "title-page' message.

2.2.2 Selecting the Date-Base

The initial "title-page' message lists the version of the program,
the date this version was Tirst operational, the data bases currently
stored and indexed on disk, and the attributes via which the data base
master files can be searched. The last line requests the user to select
the dats base, which he does by typing a two letter code. Currently,
there are two data-bases, and the codes are SC (for Santa Cruz University
Catalog) and SD (for San Diego Biomed Catalog). The Santa Cruz data~-base
will be opened by default. The selection of the data-base at this point
ensures that all subsequently opened index (attribute) files will pertain
to the correct datas-base. The code letters typed by the user will appear
in the top left-hand corner of the screen (HOME position). If the code
letters are invalid, the message SELDBR will reappear, allowing the user to
try again.

2.3 Entering Search Requests

Search requests are entered when the following prompt appears on the
top line of the screen:

CIMARON IS READY - ENTER BOOLEAN EXPRESSION:

The cursor is positioned two lines below this message, and the user
may type in the expression immediastely. As always, user input is dispatched
to the computer by a SEND BLOCK at the end of the input. If the input string
typed by the user is detected to be empty (zero length), the above message
(MSG1) reappears, allowing the user to try again.

Three other options are provided here. One is to allow the user 4o

21~

type//CLOSE, instead of a search reguest. Section 2.6 explains what

happens when CIMARONZ2 receives this command. The second is to allow

comments o be entered in the system log. A comment must begin with an
asterisk and may be up to 256 characters long; comment strings longer than
256 characters will be truncated. The third option arises when //SPEC causes
a program interrupt and transfers to the interrupt handler. This option is
for the use of programmers only.

2.3.1 BSearch Keys and Attributes

The minimal form of an input reguest is a search key. A search key is
enclosed in single quotes and the first two characters identify the type of
attribute (associated with master file records) that the search key
represents. E.g., '

' AU/KINSEY'
' 7T /THE HISTORY OF MEDICINE'

These represent search keys of the author and title variety respec—
tively. The attribute codes are AU and TI, and the slash following the cods
is a mandatory delimiter. Currently, the legal attribute codes are AU, TI,
SU, AD. The last two represent subject and "Dolbyized" author. Note that
every character between the slash and the ending quote is significant,
including blanks, and is used in direct comparison with keys in index files.
In actuality, an inclusive Boolean OR iz performed between the associated
master records of every key in the index file whose first part matches
{character for character) the submitted search key. This will henceforth
be referred to as the part-key facility. At present, all user-submitted
search Xeys are part-ksys because they are truncated to 32 characters,
(ineluding the attrituate code and delimiter), before they are entered in
tables, whereas the index files have key lengths of Lo or more.

It is important to realize, however, that in order to get a unique
match on a single record (key) in the index file, it is necessary only %o
enter a sufficiently long part-key by consulting the index file listing.*
An additional facility provided in this respect is defining hexadecinal
strings within the search key. A hexadecimal string is identified by the
fact that it is enclosed in reverse slashes. E.g.,

'SU/NURSING\FAAT\OBSTETRIC'

is a subject search key containing the hexadecimal string FAAT (a MARC IIX
subfield delimiter followed by a lower-case x). This device is used
whenever characters to be included in a search key are not to be found

on the terminal keyboard, and gives access to the entire 8-bit character set.

¥Alsc known as authority listings. These are essentially printouts of
the author, title, and subjeet index files showing the keys and the
number of master records indexed under that key. .

IToxt Provided by ERI

2.3.2 The AD Attribute

The letters AD represent the "Dolbyized" authors attribute. Search
keys preceded by this code are routed to a special index file in which
the keys are canonical forms of author names. The canonical form is
obtained by appliying a series of transformations (rules) to an author
name. These rules, first proposed by Dolby ,* are designed to smooth out
differences due to minor spelling variations (or errors) in English sur-
names, and reduce the variants to a canonical form. Thus by applying
the algorithm to a search key and then looking for hits in an index file
of canonical names, one obtains noisy match, i.e., one achlieves greater
recall at the expense of precision. o

The "Dolbyized" author index files contain not just author names
(in canonical form) but also associate authors, editors, translators,
etc. This further improves recall.

For example, searching the San Diego Biomedical file with the key
'AD/KINSEY' results in retrieving 10 records of which

2 were authored by KINSEY
1l was about KINSEY

L were authored by KUNTZ

e

was authored by KOONTZ
1 was authored by KINSMAN
1 was authored by KUNSTADTER

Tn the last two names, only the first syllable is "close' to KINSEY.
This is because the part-key feature was automatically invoked after
the key typed by the user was "Dolbyized.” In order to suppress the
part-key search on the Dolby file, the user may add a blank to the end
of the key thus: 'AD/KINSEY¥'. In this case, the last two unames, viz.,
KINSMAN and KUNSTADTER, no longer appear in the retrieved records.

2.3.3 Search Requests in the Form of Boolean Expressions

So far, search requests composed of a single search key have been
described. However, CIMARONZ accepts more complex requests in the form
of parenthesized Boolean expressions wherein search keys with different
attributes can be mixed freely. For example, a more complex request
would be:

'SU/OPTICS' AND ('TI/FIBER OPTICS IN SURGERY OF THE EYE'
OR '"AD/KOONS') AND NOT ('SU/LENSES' OR 'SU/TECHNOLOGY ')

¥Dolby, James L., "An Algorithm for Noisy Matches in Catalog Searching,"
in Cunningham, Jay L. et al., A Study of the Organization and Search of
Bibliographic Holdings Records in On-Line Computer Systems: FPhase I,
Berkeley: Institute of Library Research, University of California, March

1969. ,
<7

—-23—=

This expression has five search keys, three attribube types = SU,
TI1, and AD, and uses all three Boolean operators - AND, OR, NOT. The
operators have an implied precedence as follows:

NOT highest
AND next highest
OR lowest

The NOT is a unary operator and associated with the search key or sub-
expression immediately to its right. The AND and OR are binary operators
having a left-nperand and a right-operand, each of which msy be a search
key or sub-expression. Between similar operators the implied precedence
is left-to-right. Parentheses are used to define explicitly a group of
operations of higher precedence: +tThe higher the nesting level, the higher
the precedence.

There are two important limitations on the complexity of the requests
the user may type in:

a. The maximum number of search keys allowed in the expression is
sixteen (16). :

b. The maximum length of the ssarch request, including all blanks,
is 256 characters.

Since a line of the CRT screen accommodates 8L characters, long expressions
have to be typed over more than one line. On typing beyond one line, the
cursor automatically returns to the beginning of the next line, so no carriage
control functions are regquired. On the other hand, by controlling the cursor
position and using the INSERT and DELETE function keys, loecal editing of

the serach request may be performed before dispatching it with a SEND BLOCK.

2.4 Search Results

There are many ways in which a search may end. It may end in a
disgnostic due to an incorrect construction of the search request or due
to storage overflow; it may result in reporting certair unusual results,
or it may report that a finite set of records satisfies the user's reguest.
These causes next are explained individually.

2.4.1 Diagnostiecs

CIMARONZ2 currently provides ten different diagnostics when something
goes wrong either in the analysis of the input request or in the search.
These are numbered DM@ through DM9. Of these, DM@ through DME report
incorrect constructions, syntax errors, etc. in the input expression;

DM7 and DM8 report file search failures; and DM9 is a special warning
indicating partial search failure due to a storage block overflow being
detected during the search. More will be said about DM9 in the next section.
As an example, suppose the user entered the following search request:

Q- oy 28

'"AU/SMITH' AND 'AU/JONES

with a missing ending apostrophe; CIMARONZ immediately responds with
diagnostic message 3 (DM3) which appears at the top of the screen as
follows:

UNBALANCED APOSTROFPHES IN THE EXPRESSION - EDIT:

The improperly constructed expression is displayed 2 lines below this
messags. Once again, the user may employ the INSERT and DELETE function
keys in conjunction with the cursor position control key (SPACE) to

edit the message and send it. In the current example, adding an apostrophe
after the 8 in JONES will correct the expression successfully and result

in a search.

2.4.2 The List Overflow Warning

This is an interim feature in the program to detect and report the
overflow of any of the internal record lists during the progress cof the
search. When corrective action is incorporated in CIMARONZ for this
condition, the warning message (DM9) will be removed and the user will
be unaware of the condition. An example of the appearance of DM9 is
given below. An overflow condition is detected during the search for
'"AU/TOYNBEE' in the Santa Cruz data base when the hundredth record in-
dexed under this key is read, and DM9 sppears thus:

¥WARNING* -~ LIST OVERFLOW DETECTED, CUTOFF OCCURRED AT THE
FOLLOWING KEY: :

AU/TOYNBEE, ARNOLD JAMES, D1819-
+ SEND BLOCK TQ PROCEED +

The middle line shows the last key read from the suthor index file
before overflow was detect. 1; the last line indicates CIMARONZ is awaiting
the user's acknowledgment. TIf the letters 'KKKK' appear Jjust after
the slash in the middle lire, it means the last key read has no speciai
significance since the overflow was detected during a Boolean OR operation.

When the user acknowledges this message by pressing SEND BLOCK,
CIMARONZ proceeds to report the result of the search. The result will
not reflect the true contents c® the data base since some part of the
search was prematurely ended. DM9 is the only diagnostic followed by
a, report of search results.

2.4.3 Unusual Results
Since search requests are in Boolean form and the concept of negation

(using the NOT operator) is included, there are three types of "anusual"
results that may occur. These are:

-25~

2.4.3.1 None
None of the records in the data-base file meet the conditions of
the search request. This will occur in search requests specifying a
conjunction of two mutually exclusive (record) sets, e.g.,
'AU/CHURCHILI., WINSTON' AND 'AU/HITIER, ADOLF'
CIMARONZ will report this search as follows:
NO RECORDS SATISFY REQUEST (Msc2)
NO RETRIEVAL (MsGT)
OPTIONS ARE: EDIT, RESTART, CLOSE (MsGh)

The user is forced to bypass the record retrieval routines., The
default response is EDIT, which results in the following message:

THE LAST SEARCH REQUEST WAS (MsGE)
Below this is redisplayed an exact copy of the last search request which
the user may edit using the function keys. If he wants to repeat the
same search, he takes the default option by pressing SEND BLOCK. RESTART
search request. FXIT processing is described in Section 2.6.
2.h,.3.2 A1l
All the records in the data base file are defined by the search

request. This occurs whenever a search request specifies a disjunction
of two complementary sets. For example,

'SU/HISTORY' OR NOT 'SU/HISTORY'
would result in the following messages:
CONGRATULATIONS-YOUR REQUEST SPECIFIES THE ENTIRE FILE (MsG3)
NO RETRIEVAL (MsGT)
OPTIONS ARE: EDIT, RESTART, CLOSE (MsGh)

Again the user is not given the option of retrieving records.
2.4.3.3 'All but’

The last "unusual" case is one in which the search request specifies
all but a small portion of the data base. This occcurs for negated re-
guests of the type:

e.g., 1 NoT ' AU/TOYNBEE, ARNOLD'
e.g., 2 NOT ('SU/PSYCHIATRY' OR 'SU/FSYCHOLOGY')
Q - _

30

26—

For these, the search results would be reported thus:
ALL EXCEPT XXX RECORDS SATISFY REQUEST 7
(MsG6)
HOW MANY EXCEPTIONS ARE DESIRED?Y

Here, XXX represents a 3-digit number. The user, for obvious reasons, is
permitted only to retrieve the exceptions. The sllowable responses to
this message are the same az those for MSG5 whicl. appears after searches
ending in normal results. (see Section 2.k4.Lk)

2.4.4 Normal Results

In the usual case, the search ends by accumulating a finite number
of records representing a small subset of the data~base. This is re-
ported by CIMARONZ2 as follows:

XXX RECORDS SATISFY REQUEST
(MsG5)
HOW MANY ARE DESIRED?

Once again, XXX stands for a 3-digit number denoting the search
count. There are fcur ellowable responses to this message and MSG6
(Section 2.4.3.3), namely: ALL, NONE, a number, or //FRMT.

ATTL is the default and is taken to mean that the user wishes to look
st all the records reported in the search count. It results in entry to
the record retrieval routines (see Section 2.5).

NONE means the user wishes to bypass the retrieval routines. It
results in the following messages:

END OF RETRIEVAL 7
(M3a8)
@9 RECORDS DISPLAYED

OPTIONS ARE EDIT, RESTART, CLOSE, BACKUP (MsGL)

BACKUP is one of the list control commands, and its Use is explained
in Section 2.5.1.

The user also may type a number less than or egual to the search
count reported in MSG5 or MSG6. Appropriate validity checking is per-
formed and a number greater than the search count is taken to mean ALL
whereas any number evaluating to zero is equivalent to NONE.

FRMT is a command word indicating the user's deslre to design the
record display format before retrieval. Currently., the user is limited
to a choice between two fixed formats. The following messsge appears
when the user types //FRMT in response to MSG5 or MSG6:

SELECT RECORD DISPLAY FORMAT: 'MARC2' OR 'USER' (M3G3)

On typing either (MARC2 is the default) MSG5 or MSG6 (as the case

-27T-

may be) reappears, and either the number of records to be retrieved may be
indicated, or the format may be changed once again.

if, after checking for the format command, CIMARONZ fails to find AlLL,
NONE or a number in response to MSG5 or MSG6, the following prompt appears:
YOUR OFTIONS HERE ARE: ALL, NONE OR A NUMBER (DMN)

Note that all the cases described sbove in Sections 2.4.3 and 2.L.L
may be preceded by the warning diagnostic (DM9), described in 2.L.2 in
which case the reported search results are only partially right.

2.5 Record Retrieval

Several controls are provided to the user over the display of master
file records. The first is selection of the number of records to be dis-
played. This is indicated either by responding ALL (the default response)
to MSGS5 or MSG6, or by typing a number less than or equal to the count
reported by CIMARON2 in MSG5 or MSG6. The ALL response results in se-—
guential retrieval of every master file record sddressed by the result
list (negated or not), in ascending order of disk address. Search results
normally are displayed in this order unless the list control commands are
employed to force a different segquence.

2.5.1 The List Control Commands

The List Contrel Commands provide the user with the ability to move
freely forward or backward along the list of master records to be dis=-
played, to change the display format between records, and to terminsate
retrieval after any record. At the end of any record displsy the allowable
commands are: ’

K (for E;ll) to stop further display of records

B (for Backup) to display the record previous to the current one

SK (for Skip) to display the iecord after the next one

M (for Marc) to redisplay the current record in MARC format

U (for User) to redisplay the current record in user format

H (for Hard-copy) to obtain a hard-copy of the current record.

Backup and Skip may be followed optionally by a number. Backup
moves back 1 and displays that record, the Skip moves forward 1 and
displays the record following it; thus B n (where n is a number of 1
or more digits) moves back n records, whereas 8K n moves forward n records
and displays the n+l records. Also,

B 1 iz equivalent to B
SK 1 is equivalent to BK
B @ always goes to the first record

o3

[ee—

T

st o st e it

SK ¢ slways goes past the last record
BEn where n exceeds the search count is like B ¢

SKk n where n exceeds the zearch count iz like SK ¢

M and U redisplay the current record only if the current format is U and
M respectively, or else they Jjust continue to the next record. In other
words, if the format is changed, the cvrrent record is redisplayed in the
new formet; otherwise the next record is displsyed in the same format.
The hard-copy command sends the current display to the print file and
makes no other change. Thus the user may type any of the other commands
or just SEi:N BLOCK for the next record.

2.5.2 Record Display Format

The user has a choice of one of two display formats for each record.
The two formats available gre the LC MARC II format¥ and a more readsble
user Tormat. The minor changes spplied to the MARC II format prior to
displey are:

a. All ccdes other than those for punctuation and alphanumerics
are translated to blanks. Such codes will be known as non-printing
characters. The exceptions are as follows:

Original char. Translated
(hex. code) char. Interpretation
1F % begin subfield (old MARC format)
26 + end of field
37 * end of record
FA $ begin subfield

b. Lower-case alphebetics are translated to upper-case since the
display terminals have no provision Tor these.

c. The following four punctuation characters are translated to
blanks since they cause carriage control effects on the display screens:

Char. Hex. code Car. Control Effect
¢ La Horizontal tab

| L Vertical tab

- 0 Carrisge return

B Home cursor

¥J.5. Library of Congress, Books: A MARC Format. Specifications for Magnetic

Tapes Containing Monographic Catalog Records in the MARC II Format, Wth ed.,
Washington, D.C.: Information Systems Office, April 1970, TO p.

33

The user format is a line-indented format with non-printing
characters appearing as dots. The end of each field in the record is
denoted by +, except for the last field which ends with ¥ denoting end
of record. The various fields are identified by brief mnemonics which
are explained below:

Mnemonic Type of field
REC ILR Record accession number,
published date and call number
MEH Main entry heading (usually author)
TIT Title
IMP Imprint
PAG Pagination
SER Series note
NOTE General notes
SUB Subject heading
OTH Other headings (usually co-authors)

In both formats, after displaying a record (or screenful, if the
record is long enough) an acknowledgment 1s awaited from the user before
the next record (or screenful) is displayed. This usually is requested
below the last line of the record as:

+ SEND BLOCK TO PROCEED + or
+ SEND BLOCK FOR NEW PAGE -+

The user's usual response to these messages is to depress the SEND
BLOCK key, whereupon a zer -length message, indicating that the user would
like to proceed, is sent fiom the terminal. The user mey, however, type a
list control command at the end of a record (this may be confirmed by an
asterisk at the end of the last field of the record). The command is typed
just after a right arrow > at the beginning of the last line on the screen
and is, naturally, followed by a SEND BLOCK. Note that on receiving a zero-
length message (i.e., a pure SEND BLOCK) after any record, CIMARONZ2 assumes
the user still wishes to retrieve a number of records he originally indicated
in answer to MSG5 or MSG6, in the currently prevailing format until he types
'K', 'M', or 'U' after some succeeding record. B

The retrieval process is ended in one of three ways: the user typed
NONE or @ to MSGS5 or MSG6, the user typed 'K' after some record, or
all the records requested by the user have been displayed. In either

a2

case, M3G8 followed by MSGL appears thus:

END OF RETRIEVLL)
(MsG8)
XXX RECORDS DISPLAYED
OPTIONS ARE: EDIT, RESTART, CLOSE, BACKUP (modified MSGL)
The BACKUP option provided gives the user one last chance to get

back into the display list. If this opportunity is not taken, the list
is destroyed and can be recreated only with another search. As before,
EDIT is the default option.

The action of CIMARON2 on receiving EDIT and RESTART has been indi-
cated in previous sections. EDI™ processing forms the search of the next
section.

2.6 Exiting from CIMARONZ2

When the user types CLOSE in response to either MSGl or MSGL, a delay
of a few seconds occurs while CIMARON2 proceeds to close all the files
elther explicitly or implieitly opened by the user thus far. The data base
was selected explicitly and opened by the user (see Section 2.2.2), whereas
index files were implicitly opened the first time the associated attribute
code was employed in a search expression. At the end of this "shut down"
procedure, MSGJ appears:

ALL FILES CLOSED
OPTIONS ARE: EXIT, REOPEN (MsSGg)

REOPEN indicates that the user wishes to begin search operations
anew on a different data base (it would be wasteful to close a data base
and reopen it immediately; therefore, EDIT or RESTART should be used to
continue operations on the current data base), and r~ 1ts in the reappearance
of the "title page" message described in Section 2.2.2. The user then may
proceed as before with the new data base.

EXIT, which is the default response here, indicates that the user
both is finished with CIMARON2 and will return control to the Terminal
Monitor System, at which point the following TMS messages appear:

TMS1061 - NORMAL EXIT FROM USER PROGRAM
TMS104A — SPECIFY PROGRAM

The user may at this point recall CIMARON2, but once again it is a
wasteful exercise. If the user desires to sign-off and leave the terminal,
he responds with LOGOUT, whereupon TMS comes back with:

TM5105I - XXXX LOGGED OUT

TMS101A - WAITING FOR LOGIN

S s SR AT, e e

e,

i
where XXXX may 'be GP@l, GPy2, GP@3, or the initials of some ILR personnel.
2.7 Disastrous Ends in CIMARONZ2
These are of two types:

a, Disasters ending in failure of TMS due to failure of the IBM

system or due to one of the user programs damaging parts of TMS. Such
conditions will cause abrupt loss of response from the terminal ard
require a reinitialization of TMS.

b. Disasters detected and trapped by TMS, originating from within
CIMARONZ2. 1In such cases, TMS puts out appropriate messages about the
nature of the disaster and purges that user's storage blocks, file buffers,
and working areas. The user will have lost communication with CIMARONZ;
however, he can recall the program and begin anew. A typical example is
given below:

Failure in opening a file. TMS puts out:

TMS1531 - ATTEMPT TO OPEN AN UNAVAILABLE/UNCATALOGED DATA SET
TMS110I - ABNORMAL RETURN FROM USER FROGRAM VIA PURGE ROUTINE -
TMS10LA - SPECIFY PROGRAM

For other such TMS messages, the user is referred to Appendix 2 in
Part I of the TMS Users' Manual.*

2.8 CIMARON2 Messages and Code Tables

CIMARON2 ordinary messages are nunbered MSG@ through MSG9; diagnostic
messages +wre numbered DM@ through DM9. SELDB is the last line of the
"title page" message. ACK is an acknowledgment request. The first line
of multi-line messages usually sppears at the top left-hand corner of the
screen, i.e.,, the HOME position, while succeeding lines appear double-
spaced below it. The messages currently available are listed in Figure 9.
In the event that one wishes to interpret the internal codes for displayed
or non-displayable characters, Figure 10 provides the eguivalent codes.
EBCDIC is the standard internal code in present files.

*Sﬁifh;'éfébhen F. and William Harrelson, TMS: A Terminal Monitor System
for Information Processing, Berkeley: Institute of Library Research,

University of California, 1971, p. U43-L6.

-3386

FIG. 9: CIMARON2 MESSACES

Message # Text
MSG¢ ALL FILES CLOSED
OPTIONS ARE: EXIT, REOPEN
MsGl CIMARON IS READY - ENTER BOOLEAN EXPRESSION:
MSG2 NO RECORDS SATISFY REQUEST
MSG3 CONGRATULATIONS - YOUR REQUEST SPECIFIES THE ENTIRE FILE
MSGh OPTIONS ARE: EDIT, RESTART, CLOSE
MSG5 XXX RECORDS SATISFY REQUEST
HOW MANY ARE DESIRED?
MSG6 ALL EXCEPT XXX RECORDS SATISFY REQUEST
HOW MANY EXCEPTIONS ARE DESIRED?
MSGT NO RETRIEVAL
MsG8 END OF RETRIEVAL)
XXX RECORDS DISPLAYED
MSG9 SELECT RECORD DISPLAY FORMAT: MARC2 OR USER
MSGE THE LAST SEARCH REQUEST WAS:
DM@ THE EXPRESSION CONTAINS ADJACENT OPERATORS - EDIT:
DM1 INCORRECT USE OF THE "NOT" OPERATOR - EDIT:
DM2 UNBALANCED APOSTROPHES IN THE EXPRESSION - EDIT:
DM3 INVALID SYNTAX IN THE EXPRESSION - EDIT:
DML THE EXPRESSION CONTAINS ADJACENT OPERANDS - EDIT:
DM5 NO SEARCH KEYS IN THE EXPRESSION - RETYPE OR EDIT:
DG UNBALANCED PARENTHESES IN THE EXPRESSION - EDIT:
DMT I/0 ERROR IN SEARCHING INDEX FILE " " - EDIT:
DM8 TLLEGAL INDEX CODE " " IN SEARCH KEY - EDIT:
DM9 : * WARNING * - LIST OVERFLOW DETECTED, CUT OFF
o OCCURRED AT THE FOLLOWING KEY:
SELDB + SELECT DATA BASE: TYPE "SD" OR "scC", THEN SEND BLOCK +
ACK + SEND BLOCK TO PROCEED +
DMN . YOUR OPTIONS HERE ARE: ALL, NONE OR A NUMBER a7

FIG. 10: EQUIVALENCE TABLE OF GRAPHIC REPRESENTATIONS
AND INTERNAL CODES (LISTED IN EBCDIC SEQUENCE)

NAME ASCIT
) A 6-BIT OCTAL
-7
h"’:.»’ée%‘
&
A A Y A
/4 /¢ /)8 /5
Null g@ o] T3g ot}
1
Double Underscore _ g2 F5 T5 65
Angstrom ° ?3 EA 758 52
Bk 8
#5
@6
Delete g7 TF 7T
Circumflex " %8 E3 758 L3
Cedilla L #9 FO 758 60
Superior Dot . @A ET 758 L7
Left Hook J ¢B FT 758 67
Right Hock v #gc Pl 758 Sl
Inverted Cedilla t @D F8 758 ¢
Hacek v ¢E EQ T5g 51
Acute g @F E2 158 L2
Double Acute o 1@ EE T5g 56
Umlaut ' 11 E8 758 5@
Dieresis - 12 FC T5¢g Th
Tape Mark 13 17 ' 27
1h
15
Backspace 16 @8 T3g 10
Idle 17 16
Candrabindu w 18 EF T5g 57
Macron - 19 E5 58 L5
1A
Double Dot Below “ 1B F3 758 63
Dot Below . 1C F2 758 62
Circle Below o 1D Fh 75g an
High Comma s 1E FE T58 T6
High Comma (off center) ’ 1F ED 758 55
2¢
21
22

¥ASCII 6-Bit Code containing no escape code is in standard set.
Escape code =

T3g = Non Standard Set I

758 ~ Non Btandard Set 11

38

-3k

FIG. 10 (Cont.)

NAME

High Question
Line Feed
End of Field
Upadhmaniya w 28 F9 T5g T1
Tilde ~ 29 E4 TEé | Lh
2A)
Grave = 2B El g L1
Breve ~ 2c E6 T5g 46
Double Tilde 1lst Half —~ 2D FA 758 T2
Double Tilde 2nd Half ~ 2E FB T5g T3
2F ’
Ligature lst Half 7| 34 EB | T5g 52
Ligature 2nd Half —\ 31 EC 58 53
32 '
33
34
35
36
End of Transmission 37 1D T3g 35
38
39
34
3B
Patent ® 3¢ | AL | T3g 12
Flat b 3D A9 | T5g 11
Open Rracket [3B 5B T3g T3
Close Bracket] 3F 5D T3g 75
Space Lg 2¢ 0l
: L1
Lo
43
Ll
45
46
L7
L8
L9
LA
Period . LB 2D 16
Less Than < ke 3C 3L
39

FIG. 10 (Cont.)

NAME) ASCIT
5 6-BIT OCTAL
& & &
o /5T)8
5/ & /5
: &)
& & é? S
Open Paren (4D 28 1¢
Plus + LE 2B 13
Ly
Ampersand & 5¢ 26 1)
Miagkil #nak A 51 AT 758 @7
Tverdyi f#nak é 52 BT 758 27
Alif , 53 AE | T5g 16
Ain é 5h BS | 54 24
55
56
57
58
59
Execlamation Point ! 54 21 @1
Dollar Sign $ 5B 2l @h
Asterisk ¥ 5C 2A 12
Close Paren) 5D 29 11
Semi Colon H 5E 3B 33
5F
Minus, Hypen - 60 2D 15
Slash / 61 2F 17
62
63
Middle Dot 64 28 T5g 19
65
66
67
68
69
British Pound £ 6A B9 758 31
Comma, T 6B 2C 1k
Percent % 6C 25 @5
Underline _ 6D F6 T5g 66
Greater Than > 6E 3E - 36
Question Mark ? 6F 3F 37
T
T1
T2
73
Th
5
76
7
40

FIG. 10 (Cont.)

ABCIT
6-BIT OCTAL

Colon 3A 32
Cross Hateh 23 @3
At Sign Lg T3g Lg
Prime, Apostrophe, Quote 27) a7
Equal 2D 35
Double Quote 22 ge
Lower Case A a 81 61 L1
Lower Case B b 82 A2 Lo
Lower Case C c 83 63 43
Lower Case D a 8L 6L Ly
Lower Case E e 85 65 L5
Lower Case F £ 86 66 L6
Lower Case G g 87 67 iy g
Lower Case H h 88 68 48
Lower Case I i 89 69 51
Lower Case [E & 84 BS 758 25
Lower Case Cross D a 8B B3 758 23
Lower Case Eth ¥ 8¢ Bl 758 32
Lower Case I (wlthout dot) 1 8D B8 758 3¢
Lower Case Polish % x 8E Bl T5g 21
Lower Case (B oe 8F TSé 26

o@
Lower Case J J 91 6A 52
Lower Case K k 92 6B 53
Lower Case L 1 93 6C 5l
Lower Case M m gh 6D 55
Lower Case N n 95 6E 56
Lower Case O o 96 6F 57
Lower Case P P o7 79 _ 6@
Lower Case Q q 98 T1 61
Lower Case R r 99 T2 62
Lower Case Hook 0O o 9A BC 758 34
Lower Case Slash 0 ¢ 9B B2 754 22
Lower Case Thorn |4 9C BL 54 ol
Lower Case Hook U w 9D BD TSé 35

9E

oF

Ag

FIG. 10 (Cont.)

NAME A =oCII /
§ 6-BIT OCTAI
& &
5/ 8/
o &?
5/ 5/
Lower Case S 8 A2 73 63
Lower Case T t A3 e 6L
Lower Case U u Al 75 65
Lower Case V v A5 76 6§
Lower Case W w A6 7 67
Lower Case X x AT 78 T8
Lower Case Y y A8 TS 71
Lower Caze # 8 AQ TA T2
AA
AB
AC
AD
AR
AW
Bg
Bl
B2
B3
Bk
BS
B6
BY
B8
B9
BA
BB
BC
BD
BE
BF
Co X
Upper Case A A cl L1 T34 L1
Ugier Case B B ce Lo 133 hg
Upper Case C C c3 L3 T34 43
Upper Case D D ch Ll T34 L
Upper Case E E C5 45 T3g 45
Upper Case F F c6 L6 T3g L6
Upper Case G . G CT L 73g g
Upper Case H H c8 18 738 5¢
Upper Case I I co Lo 73B 51
Upper Case IR £ CA A5 758 @5

FIG. 10 (Cont.)

ABCIT

NAME
6=BIT OCTAL
3]
)
&
&7
s/ &
Upper Case Cross D @3
Upper Case Polish L x CE Al 758 @1
Upper Case (B &= Cl; AB T5g @6
D
Upper Case J J D1 LA 738 22
Upper Csse K K D2 LB 735 53
Upper Case L L D3 Lo T3g 54
Upper Case M M Dk 4D 73g 55
Upper Case N N D5 LE T34 56
Upper Case O Q D6 LF 73g 57
Upper Case P 13 DT 5@ 738 60
Upper Case Q Q D8 51 T3g 61
Upper Case R R D9 52 738 62
Upper Case Hook O o DA AC T5g 14
Upper Case Slash O @ DB A2 T5g g2
Upper Case Thorn P DC Ak g Pl
Upper Case Hook U v DD AD T5g 15
DE
DF
EQ
E1l
Upper Case S S E2 53 T3g 63
Upper Case T T E3 5h T3g 6L
Upper Case U U EL 55 73 65
Upper Case V v E5 56 T3g 66
Upper Case W W E6 57 738 67
Upper Case X X ET 58 T35 T
Upper Case Y Y E8 59 735 71
Upper Case % 4 E9 oA T3g T2
= :
EB
EC
ED
ER
EF |
Zero @ F@ 3¢ 29
One 1 Fl 31 21
Two 2 F2 32 22
43

-390-

FIG. 10 (Cont.)

WAME ASCIIT
A5 6-BIT OCTAL
a7

, N L
Y- AR
o/ F)&
oz 7 , A,
§/68 /&8 /s
¢ /& /& /4]S

Three 3 F3 33 23

Four L FL 34 a2k

Five 5 F5 35 25

Six 6 F6 36 26

Seven T T 37 27

Eight 8 F8 38 39

Nine 9 Fo 39 31

Double Dagger T FA 1F T3g 37

FB -
FC

FD

FE

FF

44

~Lo-

3. BROWSERZ TERMINAL OPERATOR'S GUIDE
3.1 Overview

BROWSER2 is an independent routine, operating under TM5, which may be
used to scan currently stored index files, to save index terms temporarily,
and to obtain hard copy of the displayed terms. Our current development
plans call for increasing the ease of communication between BROWSER and
CIMARON, and eventually for their incorporation into a single program system
with two operating modes.

Currently, however, BROWSER is a separate program and must be entered

using BROWSER2 as the program name following the TMS program select command:
TMS104A - SPECIFY PROGRAM. Once BROWSER2 is entered, two informational dis-

plays are available if positive replies are given to the first two BROWSER2
gquestions.

Q01l: DO YOU WANT OPERATING INSTRUCTIONS?

A YES response results in a summary page of operating instructions being
displayed (see Figure 11).

Q02: DO YOU WANT A LIST OF ACCESSIBLE FILES?
A YES response will display the current index file inventory.
The files currently available in this inventory are:

Santa Cruz Author

SCAUL
5C8U1 - BSanta Cruz Subject
SDAUL ~ SBan Diego Author
SDTI1 - San Diego Title

8DSUL
SDAD]1 ~ San Diego Dolbyized Author

San Diego Subject

After the initial BROWSER informational screen displays, the major BROWESER
command functions are:

a. BSelect a data base index file

b. Select which portion of the index file is to be examined

c. Advance the display

d. ©Save an index file entry

e. Display the Save Area List

f. Remove a term from the Save Ares List

g. Print a hard copy version of the index file display or of the Save
Ares List

h. Exit from file examination or from BROWSER2

i. Display the available commands or file names.
ERIC V-

FIG. 11: CURRENT BROWSER COMMANDS

COMMAND 77“f77A7‘ - L@@HING OF COMMAND” _

sendblock i __display aﬂfﬁEﬁéii 77 _ _

F xbl forward x terms

) 7 _(x should be less than 100)] B

G 'xxxx' get index entry xwx —
s xbl 1sx<10 move line x to save ares - -
R xbl delete line x from save area _ 77

D transfer from current display [;igzvaiié] to l?g:ié
H hard copy output of current display _
//Close - cioae current file o .
//Bxit | exit from BROWSER

3.2 BROWSER Commands

3.2.1 Select Data Base Index File

Following the informational displays or on exit from a prior file, BROWSER2
requests that the user SPECIFY FILE NAME. The proper response to this is
enter the name of any legitimate index file e.g. SCSUl. The index file name
may be entered only as a response to the BROWSERZ2 request to specify a file
name. Entering the name of a non-existent file will cause a syntax error,
and BROWSERZ2 will request that the name be re-specified.

3.2.2 Belect Porticn of Index File to be Displsyed

This command enables the user to specify an alphabetic key as an initial
digplay value, The BROWSERZ2 message is:

SPECIFY KEY OR PARTIAL KEY.
The format of the response is:

G 'Key Value' (e.g. G 'LIBRARIES').
The attribute value (AU, SU, etc.) need not be specified, since it is implicit
in the index file name which has been used for selection. BROWSER will use
the alphabetic value of” the Key Value entered to begin an alpvhabeticslly ordered
display of index file entries. This is shown in Figure 12. The display
contains ten entries, and each entry is numbered. The display also gives a
count field which expresses the number of master file records which are linked

46
~Lho-

20 this index file entry. This count is effectively the number of works
indexed by an individual index descriptor. If the G 'Key Value' gives a
value which does not exist in the index file, then the display begins with
the next legitimate index file entry.

FIG. 12: BROWSERZ2 DISPLAY OF INDEX TERMS

COUNT
1, LIBRARIES $X AFRICA $X DIRECT* 0001
2. LIBRARIES $X ANECDOTES, FACETIAE, SATIRE¥* 0001
3. LIBRARIES $X AUSTRALIA* 0003
4. LIBRARIES $X AUSTRALIA+ 0002
5. LIBRARIES $X AUTOMATION* 0004
6. LIBRARIES $X AUTOMATION $X CONGRESSES¥ 0002
7. LIBRARIES $X BIBL* 0001
8. LIBRARIES $X CALIFORNIA* 0002
9. LIBRARIES $X CALIFORNIA $X PERIOD¥ 0001
10. LIBRARIES $X CALIFORNIA $X PERIOD+ , 0001

Of note here are the meanings of the special characters $X, ¥, and +.
The $X is the MARC subject heading subfield $X and is used to identify a topic
subdivision of a subject heading. In the Santa Cruz file (from which this
example is taken), $X is a default value and will be used to identify geo~
graphic and chrcnologlcal subject subdivisions as well as topical. The
symbols * and + correspond to the MARC ¥ (end~of-field) and ¥ (end-of-record)
signals.

Also of note are the double index file entries for lines 3-L4 and 9-10.
It is the current practice of CIMARON not to ignore the MARC P and R signals
nor to treat these as logically equivalent codes. Consequently, the same
subjeet heading will be entered twice i it occurs both as a final and a non-
final field in two or more master file records., This practice does not
effect search requests, and will probably be eliminated from future versions
of CIMARON.

3.2.3 Advance the Display

In order to move the display, the user may specify a new Key Value (e.g.
G '"ECONOMICS') or he may move farward in the file a fixed number of terms by
entering:

FXy (e.g. F 5 0or F 10 or F 100)

where X¥ is any number followed by a blank space. The display will then be
advanced by X terms. When the next screen is displayed, it should be noted
that the lines (i.e. index file entries) will be numbered consecutively from

1-10. To move backward in the list, only the G command may be used. WARNING:

4
ERIC ke

Only numeric values of less than 100 should be used since the intervening
terms must be retrieved and counted serially in order to maintain correct
positioning. For larger moves use the G command.

3.2.4 Save an Index File Entry

Since the ultimate goal of browsing is to collect candidate terms for
CIMARONZ search requests, BROWSERZ2 allows users to save index file entries
for later use. This is done by transferring entries from the index file
display to a special Save List or Save Area. The command to transfer index
file entry to the Save Area is:

S X¢ (e.g. 5 5¥)
where Xp is entry number (from 1-10) of + = term to be saved. A number

larger than 10 will result in a syntax error. The rersult of this command is
to add the selected term to the end of the Save Area List.

3.2.5 Display the Save Ares List

In order to review the current contents of the Save Area List, the user
enters the command

D.

This causes the Save Area List to be displayed. The Save Area List looks
exactly like an index file display. That is, each line is numbered

consecutively from 1-10 and contains the term and its count. In order to
return to the display of index file entries, the commend D is re-entered.

3.2.5 Remove s Term from Seave Area List

Frequently, the Save Area List may need to be pruned. In order to do
this the following command is used:

R Xp (e.g. R 5¥)

where X is any number from 1-10 followed by a blank. The command results in
the deletion of the Xth term from the Save Area List.

3.2.7 Print

The Information Processing Laboratory as yet does not have a direct
faeility for producing printed versions of selected terminal displays. In
order to accomplish this useful function, the line printer of the 360/40 at
the Campus Computer Center is utilized. The command to create a hard copy

version of a BROWSERZ2 display is:
H.

The command results in the printing of the current display, whether that
display currently consists of index file entries or of the Save Area List.

3.2.8 Close or Exit

Two exit options are available. The current index file may be closed.
The command for this is

//CLOSE.

This will terminate examination of the current index file and will re-
initiate the question:

SPECIFY FILE NAME.

At this point another file may be opened fcr browsing. Closing a file does
not affect the contents of the Save Area List.

To leave the program entirely and return to TMS the command
//EXIT

is used. This results in the termination of all BROWSERZ2 operations, including
the purging of the Save Area List.

3.2.9 Display the Available Commands or File Names

If the user would like to review the commands available, he may
enter:

//HELP.
This will result in a redisplay of the page defining the commands and their
uses. In a similar manner, the availasble file names will be displayed in
response to the user's command:

//LIST.

With these commands at his disposal, the user can master the use of BROWSER
rapidly.

49

~L5=

L. USERS' GQUIDE TO FILE BUILDING
L,1 Overview

A core set of three IIR data base programs, FILOR, Z0DIAC, and PAX, and
an IBM utility sort srs required to establish the three~level linked file
structure which is searched by CIMARONZ2, the on-line retrieval routine. The
three-level file structure that is established on disk consists of a search
key file, an intermediste address file, and a master file. An index-
sequential file is at the highest level and each of its records contains a
search key and an address (link) to the next level file. If but one master
record is referenced by a given search key, the associated address points to
that master record. Otherwise, it pouints to a record in the intermediate
address file. At the second level is an address file which has sets of
addresses of mastver file records associated with a given search key in the
level one file. At the third and last level of the file structure is the
master file itself. It consists of a sequential array of master bibliographic
records stored in a direct-access file. Any given record in this file can be
accessed by the address obtained from the other files.

By dividing the file construetion operations into separate, small, func~
tionally oriented routines, the set of routines can be used flexibly in order
both to carry out the file construction operations on a wide variety of files
and to provide a wide variety of indexing to the individual records. This
is not to say that any file could be utilized readily without modification of
the routines, but rather that when modifications are required, it is a straight-
forvard matter to identify the affected component routine and thie nature of
the change that would be required.

For example, ZODIAC, the routine which searches master bibliographic

to obtain the master records from a random access disk Tile via an intermediate
index file. If it were desired to obtain search keys from records stored in

a sequential file for which no intermediate index were available, it would be
necessary to modify only that segment of ZODIAC which is concerned with obtain-
ing the next logical record from the master file.

As another example, if it were desired to utilize bibliograrhic records
which are not in the MARC structure, it would not be necessary to modify any
of the routines in the file building system except ZODIAC. It would be
necessary to develop . new routine to replace ZODIAC since it is heavily
dependent upon the MARC structure. And finally, only the display "CSECT" of
CIMARONZ2 would have to be modified in order to store, search, and retrieve
these records appropriately.

4,2 Creation of the Bibliogrephic Master File

The first step in the file creation sequence is performed by the program
known as FILOR. This program takes as input a file containing source master
records and provides two files as output: the first is a direct-access master
file which ultimately will be the third level of the file structure, and the
second is a sequential finder file in which each record contains the master
file record accession number and the disk address at which that record can be

-1 B0

f@und At pTESEﬂt the input file is defined as a seguential file >f variable
tLQn on placement Df the record length 1nformatlon. However, w;th minor
modification, the program could run on fixed length records as well.

The first output file is a direct access file and the variable run para-
meters in this file are the block size (BILKSIZE) and the loglcal record
(LRECL) length.* These two parameters in association with the UNIT and VOLUME
parameters would enable this file to be 2stablished on a variety of direct-
access secondary storage media.¥¥ At present, if a master record will not fit
within a physiecal block, it is segmented and stored in two contiguous blocks.
The finder file, the other output file produced by this program, is a sequential
file of blocked records. The block size is again a variable parameter, as are
UNIT and VOLUME. This file thus can be established on any sequentially access-
ible storage medium, and in general a tape file is used.

An important characteriztic of the direct-access master file created by
this program has to be mentioned here. A logical record in this file can be
laid out across a block boundary.¥¥¥ This has been done with the view <f
optimizing the packing density in this file. Thus, r@utlnes which attempt to
retrieve records from this file would have to make use of "splicing" proce-
dures¥¥¥% for split records. ©Split records are those having a first part at
the end of a given block and the second part at the start of the next sequential
block in the file. Information gbout the size of each part in the two differ-
ent blocks can be obtained easily from the three-part disk address which has
been described earlier., The combination of track number, track offset, and
record length, in conjunction with a knowledge of the capacity of each track
or block is sufficient to determine the sizes of the two parts of a split
record.

Each record of the finder file consists of eighteen bytes (see Figure

13). The first six bytes contain the record (accession) number in EBCDIC,
and the next twelve bytes constitute what is known as the pointer field. This
field essentially consists of an eight-byte disk address, in addition to type and
flag information. The type and flag information irn each finder file record

an attempt to standardize the file types and the nature of the content of
each file into two or three classes so tuat future programs can obtain
dynamically the type of the file and the nature of its content and invoke
gpecialized retrieval routines. In detail then, the first six bytes give the
accession number; the seventh byte in the finder file record is a code indicat-=
ing the type of file (e.g., index sequential, direct-access, ete.); the eighth
byte in the record is a code indicating the type of content. Currently three
types of file content are defined: key-type content, address-type content and

data-type content. The master file for example, would be a file with data—

¥For reasons of storage efficiency, it is recommended that BLESIZE equal
IRECL equal track capahlty on disks and drums, i.e., the record format is
fixed (RECFM=F).

*¥*Including tape devices with a block-skip feature.

¥%¥%¥In the terminology of IBM access methods such records would be known as
spanned records,
¥%¥¥¥May now be available in BDAM, RECFM=FS.

e wl

type content. The ninth and tenth bytes in the record constitute a two-byte
file code. Currently the letters MF have been chosen to indicate the master
file. Other codes are for attributes, for example AU for authors, TI for
titles, SU for subjects, etc. (These codes are established by PAX.) The
remaining eight bytes constitute the true disk address of the master file
record. Of these, the first forr bytes give the relative track number in
binary, the next two bytes give the offset into this track at which the master
record begins, and the lagt two bytes give the length or extent of the master
record. The four-byte track number has been designed towards making use of
the IBM direct block addressing facility. This facility requires a three-byte
relative block number, which in our case happens to be the relative disk track
number.* The fourth byte could be used in the future to indicate the relative
unit on which the file is to be found. This would handle the case of a very
large file which spans a number of disk units. However, CIMARON currently is
estahliched to accept only the value O,

FIG. 13: FINDER FILE RECORD FORMAT
File Name (controlled by JCL of FILOR)

Type of File: Sequential
Record Length: 18 bytes

Data Type Fizld Name and Position
EBCDIC Accession number (1-6)
Pointer field (7-18)
EBCDIC | Type lof the file referred to] (1)
Values: 1, index seguential
[@,%* direct access
_ , 3, sequential _ B
EBCDIC Type of content (8)
Values: O, key
1, address
o . 13, date - _ o
EBCDIC File code (9-10)
Values: [EE, master file
AU, author index
o o B ete. - _
Binary __ Track location (11-13)]
Binary Unit number*#*% (1L)
I Values: [0, 18t 2334 i —
Binary __Offset (15-16) location of beginning of record)
Binary Record 1~ gth (17-18)

¥Tf the master file were established on tape, this would be the relative
block number.

*¥%¥[] indicates the standarc values set by FILOR.
*¥¥%¥Unit number is provided in order to allow storage and access to multiple
disk units. To be put into effect, however, additional unit designations
must be included in CIMARON Table.
g, DR

FIG. 1k4: ZODIAC RUN SETUP

Job Control Lanjzuage (JCL):

//B58L4TA7 JOB (584k4,15,50,00),'ILR-CUNNINGHAM' ,MSGLEVEL=1,CLASS=L
//GO EXEC PGM=FODIAC2

//STEPLIB DD UNIT=231L4,DSN=ILR.BATCHLIB,DISP=SHR

//GO.SYSUDUMP DD SYSOUT=A

//GO.LONEACC DD UNIT=231L4,V0I=SER=ILRO2,DSN=ILR.SCAC3,DISP=0LD,

// DCB=(RECFM=FB,BLKSIZE=1800,LRECL=18)

//GO.MASTERR DD UNIT=231L4,VOIL=SER=(ILRO3,ILRO5),DSN=ILR.SCMF2,

// DCB=(DSORG=DA,RECFM=F,BLKSIZE=T7294) ,DISP=0LD

//GO.PRINT DD SYSOUT=A,DCB=(RFCFM=FB,LRECL=25,BLKSIZE=750)

/ /GO JAUTH "? DD UNIT TAPE DCBs(REGFM;FB LRECL-Qh BLKSIZE=1692,

MQQEE hllBR),DISP—(NEW KEEP) ,DSN=SCAUTH

//G0. Eﬁﬁiﬁﬁﬁ DD UNII—TAPE DCB-fBECFm—FB LRECL—gh BLKSIZE=1692,

L fr;),DISP—(NEW KEEE) DSN=SCTITLE
//GO. E Q]DD UNIT=TAPE, DCB—(RECFM;FB LRECL=9L ,BLKSIZE=1692,
// TRTCH, DEN—E),LABEL—(l BLP)
// VQL—SER—(EFEEF1
//GO.CARDIN DD DCB—BLESIZE _80

AUTHORS 100.4%,110.4,111.4,700.4,710. 4,711, 4
TITLES 130.k4,240.4,245, 4 440.4,730.4, 74O 4,840, 4
SUBJECT 600.4,610.4,611.4,630.4,650.4,651.4,660.4
/*

//

INPUT FILES:

Master file - DSNAME=ILR.SCMF2 refer DD=MASTERR
Finder file ~ DSNAME=ILR.SCAC3 refer DD=LONEACC

Controls = none atc present

OUTPUT FILES:

Authors -~ DSNAME=SCAUTH refer DD=AUTHORS

Titles .= DSNAME=SCTITLE refer DD=TITLES

Subjects ~ DSNAME=5CSUBJ refer DD=SUBJECT

Controls ~ Through card input refer DD=CARDIN
o3

The control input for the program FILOR 1s indicated on cards as shown
in Figure 15. The information supplied on these cards is as follows: the
number of records that are to be appended to the master file, the relative
track number, and the track offset at which the records are to be appended.
In the case of a master file which is being estdblished on disk for the
first time, the track number and offset would be zero, indicating it is being
appended "from the beginning." In the case of update runs, track number and
offset in the master file would be obtained from the run statistics of the
previous run, and this would be input as control to the program so that the
file is appended at the right point.

4,3 Extraction of the Index Information

The next program in the file creation sequence is known as ZODIAC. This
program has the function of extracting various fields from MARC records as
attributes of the record, on which index files will be subsequen .y established.
The program is definitely tied down to the MARC II format* in that each record
is expected to have a MARC structured leader and directory through which the
variable fields are obtained. Thess variable fields which will be used to
establish the index files are selectively extracted by the program., This
program has two input files and a variable number of output files begsides the
controlling input which is supplied on cards. The two input files are the
game files which are produced by FILOR in the first step of the file creation
process viz. the sequential finder file and the direct-access master file. The
controlling tables which are set up as a result of reading in the parameter
cards determine the number of sequential output files created and their content
(see Figure 14).

The structurs of any record in an output file is the same. It's a 9k-
syte record of wbich the first eighty bytes contain the variable field waich
has been extractad for the purposes of establishing an index. Since only
eighty bytes are allowed¥* there might be cases where the field was truncated.
The remaining fourteen bytes in each record consist of two parts. The first
two bytes represent the MARC tag (in binary) identifying the type of variable
field, and the last twelve bytes are the pointer field (see Figure 13) picked
up from the last twelve bytes of the finder file entry for this particular
MARC record. The construction of an output file record in this manner makes
sure that any variable field which is extracted from a given MARC record is
firmly associated with an address 'pointer' to the MARC record itself and the
tag identifying this variable field in the MARC record.

4.3.1 Parameter CGontrol

A parameter card consists of the name of the output file followed by a
sequence of three-digit tags, delimited by commas. The tags indicate the
variable fields that have to be extracted from each MARC record and routed to
a given file whose name is supplied in the card. For example (see Figure 14),
a parameter card which could be supplied as controlling input to ZODIAC may

*See '"Specifications for Magnetic Tapes Containi- Moncgraphic Catalog Records
in the MARC II Format," in Books: A MARC Format, Washington, D.C.: Library

of Congress, Information Systems Office, April 1970.

¥¥This is a reprogrammable parameter.

FIG. 15: FILOR RUN SETUP

Job Control Lenguage (JCL):

//B58ULJTAF JOB (58u4L,15,50,00),'ILR~CUNNINGHAM',MSGLEVEL=1,CLASS=L
//GO EXEC PGM=FILOR2 ,COND=COND=EVEN

//STEPLIB DD UNIT= 231u DSNAME=ITR.RATCHLIB,DISP=SHR

//GO.SYSUDUMP DD SYSOUT=A

//GO.CARDIMIN DD UNIT=TAPE,VOL=SER=(3717,3760,3780),LABEL=(1,BLP),

// DCB=(RECFM=VB ,LRECL=2048 ,BLKS IZE=3600 ,TRTCH=C ,DEN=2) ,
// DISP=(OLD,KEEP)

// DD UNIT=TAPE VOL=SER=(3725 3766,3787) ,LABEL=(1,BLP),

// DGB=(RECFM=VB LRECL—gous BLKSIZE—3600 TRTCH=C, DEN—E)
// DISP=(0LD, KEEP)

//G0.LONEACC DD DCB= (BLKSIZE—,SOO LRECL=18 ,RECFM=FB) ,UNIT=231k,
// VOLUME=SER=ILRO2,DISP=(NEW, KEEP) DSN= ILR,SCACCQB

// SPACE=(CYL,(15,1),RLSE)

//GO.MASTERR DD UNIT=231L,DISP=(NEW,KEEP),

// vor=(,,,2, SER=(ILRO3,ILROS)),

// SPACE= (CYL (199,15) ,RLSE CONTIG),DSNsiLP.SCMARCE,
// DCB=DSORG=DA

/*

//

Master file ~ DSNAME= refer DD=MASTERR
Controls ~ none at present

OUTPUT FILES:

Méstér file -~ DSNAME=ILR.SCMARC2 refer DD=MASTERR
Finder file - DSNAME=ILR.SCACC2 refer DD=LONEACC

33

—-E 2

M PP

b

P4 pa B

consist of the word AUTHORS in the first seven columns of the card followed
by the tag 100 beginning at column ten.¥ This would indicate that all
varigble fields associated with tag 100 (which identifies a personal author
entry) be routed to an 'authors' file. The digit following the tag specifies
an initial offset in the variable field. This is tc skip over binary indica-
tors and codes which may occur at the start of the field. Each re. "rd in the
output file SCAUTH would consist of a personal author name (blank filled) in
the first eighty bytes, followed by the tag 100.in binary in the next two
bytes followed by the twelve-byte pointer field (see Figure 16).

FIG. 16: ZODIAC Internal Control Tables

NAME maximum of twelve eight-byte entries, one entry for each
output file

CALTEX maximum of twelve one-byte entries

MARCEL 850 one-byte entries, one for each possible MARC tag; each byte
is a possible index to an entry in the NAME table

TAGOFF B850 one-=byte entries; each byte gives an offset from the
beginning of the field, to skip fixed length control (e.g.,
$a)

4,3.2 ZODIAC Control Tables

It might be instructive to describe the tables which are used to drive
this program. There are four important tables in this program: NAME, CALTEX,
MARCEL and TAGOFF. These tables are summarized in Figure 16. The first is
known as NAME, and this table can have twelve eight-byte entries. This is a
table of the twelve possible output file names each of which can be eight
characters long. The next table is known as CALTEX, and this can hold twelve
eight~bit flag entries. The next table is known as MARCEL, which has 850
positions ~ each of which is one byte wide, This table reserves one entry
for each possible MARC tag. MARC tags currently run from 000 to 850; thus
we have 851 positions in this table. The table is initialized to blanks and
after the reading in of the parameter cards, a given entry in this table
contains a one-byte index into the NAME table. This defines a given tag as
being required in a given output file. A table which is parallel to this
table is known as TAGOFF, which also consists of 850 one~byte entries. Each
entry in this table gives an offset from the beginning of the variable field
in order to skip over fixed-length control fields at the head of the variable
field. The offset table is set up in parallel with MARCEL, as a result of
reading in the parameter cards. On the parameter card each tag is followed
by the offset, which is supplied within two digits and delimited from the
tag by a period. This two digit offset indicates the number of bytes that
have to be skipped over from the beginning of the variable field in order to
get at the data which is required in the output file. TFor example, 12
currently skip over the sub-field delimiter and the sub-field code at the
-7 % of variable fields. The other sub-field delimiters and the sub=field
.v .o within the varisble field itself will be carried as part of the output
7ite. The table known as CALTEX is associated with the programming logie.

¥The file name can be up to eight characters long in accordance with 0.8.
conventions. Column 9 is ignored. Tags must begin in column 10.

56

-53-

This table is initialized to zZero and indicates by a non-zero entry the fact
that records have been output to a given file previously. Thus, on the first
time that a given tag is encountered in a MARC record and found to be required
in a given output file, a special routine finds zero entry for that file in
CALTEX and obtains working storage for that file, opens the file and performs
other initialization procedures. CALTEX is a table of flags which indicates
whether the initislization procedures have been performed or not.

4.3.3 Processing Sequence

We might end by briefly describing the typical sequence of operations
that take place on reading in a particular MARC record. First a record is
read in from the finder file and the porticn of the finder file record which
gives the record address is used to issue a read to the direct-~access master
file. This results in bringing in a particular MARC record into main storage.
Next, the MARC record directory is sequentially scanned from beginning to end
and the tables simultaneously consulted. As each tag is encountered the table
MARCEL is looked into and a non~blank entry indicates that the varisble field
associated with this tag is required in a given output file. The name of
this output file is indirectly known via the index quantity in the current
entry of MARCEL. By making use of this index the flag table, namely CALTEX,
is indexed and it is determined whether this file has been initialized for
output or not. In the event that it has not been initialized for output,
initialization procedures are performed and then one goes on to the subsequent
portions of the routine. These subsequent portions pick up the relative
address of the variable field from the current entry in the record directory
and move the variable field out to the output record buffer where a 9U-~byte
legical record described earlier is constructed and written out to the asso-
ciated output file. This procedure is repeated by going back to the finder
file and finding the address of the next MARC record, after all the directory
entries in the current MARC record have been scanned.

4.3.4 Program Constraints

There are two limitations in the number and nature of output files that
can be created in one run. First, the number of output files that ZODIAC can
create is variable up to a maximum of twelve. This is a limitation of the
table-structure in the program because the first step in the Program is to
read the parameter cards and create tables which are subsequently used to
drive the program in its variable field extraction procedures, The second
limitation is that there must be an exclusive partition of the tags across
the various output files, in other words a given tag cannot appear in more
than one output file-defining parameter card. This means that a MARC variable
field can be routed to one and only one output file,

The execution of this program is also controlled by the finder file in
the following manner: as many records are brought into main storage and
analyzed as there are entries for them in the finder file and the finder file
1s accessed sequentially from beginning to end. A possible future control on
this program would be to define contiguous subsets of the master file to be
analyzed by ZODIAC, through the incorporation of record skip and record count
cratrols. .

Currently the program is tied to the format of the finder file (18-byte
records) and also the format of the output files (9L-byte records). By
reassembly, the length of the output records can be changed, in order to
change the length of the key field carried in the output records. This length
can be anywhere from 1 to 256 bytes, since the variable field is eventually
to be used as the key in an index-sequential file, and the 0.3. limitation on
the size of this key is 256-bytes.

.4 Sequencing the Index Data

: The next step in the file creation procedure is executed by the IBM sort
utility. Each of the output files produced as a result of a run of ZODIAC
are passed through the sort utility, which sorts the records so that the key
portion (the first 80 bytes) are in alphabetical sort order. Each run of this
program takes one input file, »orts it and produces one output file, which is
. then ready for the final step in the procedure.

The controls supplied to the IBM sort utility are as follows: +the
record length, the offset from the beginning of the record to the sort key
in each record, the length of the sort key, and the sort order, namely
ascencing or descending. The sort utility alsc has provision to specifiy the
sort key in two parte. This in fact is being done currently with the records
output from ZODIAC., As mentioned earlier, each of these records consist of
9L-bytes, the first 80 of which have the variable field and the last twelve
contain the pointer field, which contains the disk address of the master
file record. The sort is currently being performed primerily on the variable
field and secondarily on the twelve-byte pointer field. This insures that
any collection of pointers in the level two address file of the file structure
associated with some key in the level one file, will be in ascending order
of master file address. This buys a little efficiency in the running of the
retrieval routines. One of the first things that is done on retrieving a list
can be done between two lists. BSo by specifying this secondary sort
key one can save the initial sort on reading in a list of addresses from disk.

4.5 Creation of the Index Files

The final step of the file creation procedure is performed by a program
called PAX. This program has one input file and produces two output files.
The input file is a sequential file and it is the output of the IBM sort
utility. The two output files produced by this program are respectively, the
level one index-sequential access file and the level two direct-access
addrese file. If a pair of these files is established for a given attribute
in a record collertion, it will enable the master file colleection to be
gzarched via this attribute.

The process performed by the program PAX and indeed much of its logical
structure is quite similar to that of FILOR. The points of difference lie in
the format and ccntent of files handled by this program. The level one index-
sequential file consists of records which have two importan®; parts. The first
part 1s the key and this key will be the argument for searches performed on

this file. The second part of the record consists of a twelve-byte pointer
field, which will point to-a collection of twelve-byte pointer fields in

the level two address file. The length of the record keys of this first
level file is variable up to a maximum of 80. On loading different files,
this can be varied without reassembly of the program, since the key length is
supplied as a PAX run-time parameter. After the file is opened (e.g., by
CIMARON) this parameter is available in the data contrél block for the file and .
thus files can be created with records different length and the using program
can be adjusted to the key length of the specific file.

Currently the two-byte binary tag which is carried in the input records
does not appear in the index-sequential file. At a later time, it may be
used to further 'refine' attributes (to the tag level) during search.

One of the important functions performed by PAX is to make sure that only
one index-sequential record is created for each unique key in the input file.
This is established on the basis of a comparison between the 80-byte variable
field portion of the current input record and the corresponding field in the
previous record. At the point when a mismatch is detected the program will
create a new record in the access file -~ that is the level one file. This
record would consist of a key constructed from the variable field portion
of the previous record followed by a twelve-byte pointer field which points
to the location in the level two file at which can be found a sequence of
twelve-byte pointer fields identifying all the MARC records in which this
particular variable field appeared.

It is important to note that the structure of the pointer field is
uniform throughout the system, and it is by this field that links are
established across the levels of the file structure. Specifically, the
pointer field in a record in the level one file establishes a link to a
series of poiater fieids in the level two file. Each pointer field in the
level two file establishes a direct link to a master record in the level three
file. This briefly, is the file structure employed to zearch master file
records via indexed attributes.

The creation of entries in the level two file proceeds in parallel with
the reading in of input records. As each input record is read in and its
sort key found to be the same as that of the previous record, an additional
entry (a twelve-byte pointer field entry) is made in the level two direct-
access file. This additional entry is in fact the pointer field in the current
input record. At the end of a sequence of identical sort keys on input records,
it is time to create a new record in the level one file for the collection of
input records which have the same variable field. The address at which a
sequence of master record addresses can be found associated with this collec-
tion of similar variable fislds is entered in the level one file.

Where there is but one master record linked to a given sort key, the
lsvsl twa file is bypasssd Instssd PAX establishes a dirsct link frsm:the

sll cases whsre ths scrt ksy in ths lsvel one flls is ur;qpely assoclatsd
with a single master file record in which it appears. This enables one to
bypass both the construction and subsequent reading of a record in the level
two file during search. Thus, the speed of the s=zarch process is increased
for such keys.

.

56-59

In the future, it may be possible to dispense with the level two file
altogether. 1In this improved file structure, all of master file addresses
associated with a key would be found in the level one file entry for that key.
However, this will be possible only when the IBM operating system supports
variable-length records in index-sequential files. Currently only fixed-
length records are supported in these files.

I A o e o

