
DOCUMENT RESUME

ED 061 978 52 LI 003 648

AUTHOR Aiyer, Arjun K.
TITLE The CIMARON system: Modular Programs for the

Organization and Search of Large Files. Final
Report.

INSTITUTION California Univ.- Berkeley. In t. of Library
Research.

SPONS AGENCY Office of Education (DHEW) washir ton, D.C. Bureau
of Research.

BUREAU NO BR-7-1083
PUB DATE Sep 71
GRANT OEG-1-7-071083-5068
NOTE 60p.;(6 References)

EDRS PRICE MF-$0.65 HC-$3.29
DESC IPTORS *Bibliographic Citations; Computer Programs;

*Electronic Data Processing; *Information Retrieva
On Line Systems; *Search Strategies

IDENTIFIERS Berkeley; *University of California

ABSTRACT
The File Organization Project has made available a

set of programo which are designed to operate on large files of
machine readable bibliographic records. These programs are designed

as an instrument for understanding and refining the techniques of
bibliographic search. This document discuGses four aspects of the
system (1) The retrieval progr&m. CIMARON, is an on-line,
interactive system with two complementary modes of
operation--searching and browsing; CO CIMARON2 terminal operator's
guide is a step by step use of the system through an on-line computer
terminal; (3) The BROWSER2 terminal operator's guide describes a
program_which is an independent routine used to scan currently stored
index files, to save index terms temporarily, and to obtain hard copy
of the displayed terms; and (4) A user's guide to file building.
[Related documents are LI 003610, LI 0036111 and Li 003645 through Li
003647.] (Author/SJ)

U.S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
OFFICE DE EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECETED FROM
THE PERSON OR ORGANIZA ION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION DR POLICY

CC)

FINAL REPORT
Project No. 7-1083

Grant No. 0EG-1-7-071083-5068

THE CIMARON SYSTEM:
MODULAR PROGRAMS FOR THE ORGANIZATION

AND SEARCH OF LARGE FILES

By
Ar un K. Aiyer

Institute of Library Research
University of California

Berkeley, California 94720

September 1971

P/9
8A7- 7- io

The research J:eported herein was performed pursuant to a grant
with the Office of Education, U.S. Department of Health, Education,
and Welfare. Contractors undertaking such projects under Govern-
ment sponsorship are encouraged to express freely their professional
judgment in the conduct of the project. Points of view or opinions
stated to not, therefore, necessarily represent official Office
of Education position or policy.

U.S. DEPARTMENT OF
HEALTH, EDUCATION, AND WELFARE

Office of Education

Bureau of Reseerch

1

TABLE OF CONTENTS

1, GENERAL DESCRIPTION OF CIMARON SYSTEM

1.1 General Retrieval from Large Files 1

1.2 Searching and Browsing 4

1.3 The Formulation of CINARON Search Requests 4

1.4 CIMARON Search Logic 7

1.5 CINARON Retrieval Display 8

1.6 File Generation and Organization 12

2. CIMARON2 TERMINAL OPERATOR'S GUIDE 17

2.1 Overview 17

2.1.1 CIMARON2 Structure and Commands 17

2.1.2 Use of the Sanders 720 Keyboards 20

2.2 Entering CIMARON2 20

2.2.1 Logging In 21

2.2.2 Selecting the Data-Base 21

2.3 Entering Search Requests 21

2.3.1 Search Keys and Attributes 22

2.3.2 The AD Attribute 23

2.3.3 Search Requests in the Form of Boolean Expressions 23

2.4 Search Results 24

2.4.1 Diagnostics 24

2.4.2 The List Overflow Warning 25

2.4.3 Unusual Results 25

2.4.3.1 None 26

2.4.3.2 All 26

2.4.3.3 'All but' 26

2.4.4 Normal Results 27

2.5 Record Retrieval 28

2.5.1 The List Control Commands 28

2.5.2 Record Display Format 29

2.6 Exiting from CIMARON2
2.7 Disastrous Ends in CIMARON2 32

2.8 CIMARON2 Messages and Code Tables 32

BROWSER2 TERMINAL OPERATOR'S GUIDE 41

3.1 Overview..........,... 41

3.2 BROWSER Commands 42

3 2 1 Select Data Base Index F5le 42

3.2.2 Select Portion of Index File to be Displayed 42

3.2.3 Advance the Display 43

3.2.4 Save an Index File Entry.44

3.2.5 Display the Save Area List 44

3.2.6 Remove a Term from Save Area List 44

3.2.7 44

3.2.8 Close or Exit.. 45

3 2 9 Display the Available Commands or File Names 45

TABLE OF CONTENTS (cont.)

USERS' GUIDE TO FILE BUILDING

4.1 Overview
4.2 Creation of the Bibliographic Master File

Pa_Lgf_

47

47
47

4.3 Extraction of the Index Information = 51

4.3.1 Parameter Control 51

4.3.2 ZODIAC Control Tables 53

4.3.3 Processing Sequence 54

4.3.4 Program Constraints 54

4.4 Sequencing the Index Data 55

4.5 Creation of the Index Files 55

LIST OF FIGURES

Figure Title Page

1. Data Collected by CIMARON . 9 3

2. CIMARON Search Request Syntax Defined in Backus-Naur Form
Notation 6

3. CIMARON Display Record Example 10

4. CIMARON Commands Available During Record Display Phase. . . 10

5. General CIMARON Commands 11

6. Phase of CIMARON Operation and Legitima e Transfer Paths 17

7. General CIMARON Commands . . . 18

8. CIMARON Commands Available During Results Display Phase 19

9. CIMARON2 Messages 33

10. Equivalence Table of Graphic Representations and Internal Codes
(Listed in EBCDIC Sequence. . . = 3)4

11. Current BROWSER Commands 42

12. BROWSER2 Display of Index Terms 43

13. Finder File Record Format 49

14. ZODIAC Run Setup 50

15. FILOR Run Setup 52

16. ZODIAC Internal Control Tables 53

FOREWORD

This report contains the results of the second phase (July,
1968 - June, 1970) of the File Organization Project, directed toward
the development of a facility in which the many issues relating to
the organization and search of bibliographic records in on-line com-
puter environments could be studied. This work was supported by a
grant (0EG-1-7-071083-5068) from the Bureau of Research of the
Office of Education, U.S. Department of Health, Education, and Welfare
and also by the University of California. The principal investigator
was M.E. Maron, Professor of Librarianship and Associate D%rector,
Institute of Library Research; the project director and project manager
were, respectively, Ralph M. Shoffner and Allan J. Humphrey, Institute
of Library Research.

This report 1s being issued as seven separate volumes:

Shoffner, 7talph M., Jay L. Cunningham, and Allan J. Humphrey.
The Organizationand Search_of_BibliographicRecords in On-line
Comput2E_fyatems ID..naaIp_ Summary.

Shoffner, Ralph M. and Jay L. Cunningham, eds. 21222Eganization
and Search of_Bibliographic_Recordst Com onent Studies.

Aiyer, Arun K. The CIMARON S stem: Modular Pro rams for the
Quiization and Search of_bage Files.

Silver. -iteven S. INTX: Interactive Assemble Lan u e

Interpreter, ers' Manual.

Silver, Steven S. FMS: Users Guide to the Format Mani ulation
System for Natural hange Documents,

Steven S. and Joseph C. Meredith.
System Usera' Manual.

Smith, Stephen F. and William Harrelson. TMS: A Terminal Monitor
SyRtriLfor Information Processin

Because of the joint support provided by the Information Processing
Laboratory Project (0EG-1-7-071085-4286) for the development of
DISCUS and of TMS, the volumes concerned with these programn are in-
cluded as part of the final report for both projects. Also, the
CIMARON system (which was fully supported by the File Organization
Project) has been incorporated into the Laboratory operation and
therefore, in order to provide a balanced view of the total facility
Obtained, the volume is included as part of the Laboratory project
report. (See Melon, M.E. and Don Sherman, et al. An Information
Processing Laboratory for Education and Research in Library Science:
Phase 2. Institute of Library Research, 1971.)

ACKNOWLEDGMENTS

The CIMARON system evolved both with the help of many members of the
Institute staff and with its use by faculty and students of the School of
Librarianship.

In particular, I would like to acknowledge the many fruitful discussions
with Chakravarthi Ravi during the design of the on-line search and retrieval
components. Ralph Shoffner and William Schieber laid out the broad
specifications of the system, while Jay Cunnin_ am and Allan Humphrey
provided many helpful suggestions.

The BROWSER subsystem was programmed by William Harrelson. Steve
Smith, William Harrelson and Rodney Randall provided excellent system
support.

Special thanks are due to Ed Mignon and Don Sherman, not only for
their introduction of the use of CIMARON to Library School students, but
also for their observations and comments.

Principal acknowledgments are due to the School of Librarianship
of the University of California and the Office of Education of the
Department of Health, Education and Welfare, for making this work possible.

In addition, I wish to thank and to commend the work of the Institute
personnel who prepared these pages for publication: notably Carole Fender
Linda Herold, Barbara Johnson, Jan Kumataka, Pat Oyama, and Rhozalyn
Perkins.

J. GENERAL DESCRIPTION OF CIMARON SYSTEM

1.1 General Retlleval from Large Files

The File Organization Project* has made available a set of programs which
are designed to onerate on large files of bibliographic records, typically
machine-form catalog entries for monographs. From the educational and research
point of view, these programs are designed as an instrument for understanding
and refining the techniques of bibliographic search. At present, aceess is
provided to two data bases in the MARC II record str,

a. 95,000 records, representing approximately 65% of the holdings of the
library of the University of California at Santa Cruz. By 1971,
this file will grow to 120,000 records and represent over 80% of the
Santa Cruz campus holdings.

b. 5,-00 records, representing a portion of the collection of the
University Hospital, U.C., San Diego. This smaller file is focused
almost entirely on medical topics.

The retrieval program, CIMARON, in common with other programs in the Information
Processing Laboratory, operates interactively with the students and researchers
who use it. The riles are organized so that they can be searched "on-line,"
i.e., while the user waits. In most cases, searches are performed in 1eqs than
ten seconds.

Any search request may consist of a series of search keys connected by
Boolean operators and utilizing parentheses. Allowable search keys for a given
data base are specified at the time the data base is locked into the system.
For the San Diego file, four keys currently are allowable: Author, Subject,

Title, and Dolbyized Author.** For the Santa Cruz file, due to present
limitations of available disc space, only Author and Subject search keys are
permitted. In principle, other search keys such as series, Publisher, Publica-
tion Date, Class Number, Dewey Decimal No., etc., can be generated. The search

key lists are as follows:

Current Planned

AU/ - Author

TT/ - Title

SU/ - Subject

AD/ - ,Thyized Author

SE/ - Series

PU/ - Publisher

PD/ - Publication Date

CN/ - Class Number or Call Number

DD/ - Dewey Decimal Number

In CIMARON, search requests consist of a set of Search Keys, having an

explicit relationship between them. The user defines this relationship in

terms of three Boolean connectives: AND, OR, NOT. The meanings of these

ronnectives are as follows:

*USDHEW, Grant No. OEG-1-(-071083-5068.
**Dolbyized Author Naraes refer to a process of association names that are
similar phonetically but spelled differently: Tschaikovskii, Tshaicovsky,

Chaikowski, etc.

'AU/i.REUD' AND 'SU/DREAMS'

'AU/kREUD' OR 'SU/DREAMS'

NOT 'AU/FREUD' AND 'SU/DREAMS'

NOT 'AU/FREUD' AND 'AU/FREUD'

NOT 'AU/FREUD' OR 'AU/FREUD'

Further,

(All books writ en by Freud and
about dreams)

(All books written by Freud, as
well as all books about dreams
including those written by Freud)

(All books about dreams, except
those written by Freud)

(The null set)

(The universal set)

CIMARON allows parenthetic search requests to be formulated:

'SU/DEEAMS' AND ('SU/FREUD' OR
'SU/JUNG')

('AU/FREUD' or 'AU/JUNG') AND
('SU/DREANS' OR 'SU/HYSTERIA')

(All books about Freud's or Jung'
work on dreams)

(All books written by Freud or
Jung on either of the two subjects,
dreams or hysteria)

With suc'h a powerful variety of options available, CIMARON users are
able to explore a number of manaal and computer specific search strategies.
They are able to formulate comparisons between various manual and automated
methodologies related to search formulation and search expansion. In addition,

the users gain many direct insights into the structure of machine-form
bibliographic records, especially the relationship between the identification
of bibliographic data elements and the formulation of search requests.

The CIMARON program was planned as the core program within an expanding
system deloted to experimentation with organization and search of large files
of bibliographic data. As a result, CIMARON was designed as a modular
program with separate segments for:

a. selection of data base to be searched;

b. negotiation of the search request;

c. analysis of the search request and index file search:

d. report of the search results;

e. retrieval and display of the master records;

f. search iteration or termination.

Also, an internal data logging procedure has been developed to provide
extensive information about both the behavior ,of the users of the system and
the internal operation of the system itself.* Students may be interested in
this logging feature since it is anticipated that the data gathered will be
useful for many different types of analyses. The data logged includes the
identification of the user, the search request made, the amount of time spent
in searching the file, etc. (see Figure 1).

*The computer code for this procedure was developed but was not fully

operational at the time of writing this report.

FIG. I: DATA COLLECTED BY CIMARON

Fiald # Field Name Bytes

1. LRECLEN 2 Length of this log record in hex

2. LTERMNO 2 Terminal number in EBCDIC

3. LUNAME 4 Initials of user

4. LPNAME 8 Name of program

5. LDATE 4 Julian date in packed format

6. LINTIME 4 Time at entry in packed format

7. LSEQN0 2 Sequence nunber in packed format

8. LFLAGS 2 Bit flags indicating up to 16
conditions

9. LBCODE 2 Data-base Code in EBCDIC

10. LDIACNT 2 Diagnostics count in packed format

11. LIXRCNT 2 No. of index records read in hex

12. LADXCNT 2 No. of master addresses read from
disk in hex

13. LTRKCNT 2 No. of tracks read from disk in hex

14. LSRCCNT 3 Number of records reported after
search in packed format

15. LREFCNT 3 Number of records retrieved by user
in packed format

16. LORTIM It Time at query entry in packed format

17. LSRCTINII 4 Time at start of search in packed
format

18. LSRCTIN2 It Time at end of search in packed
format

19. LRETTIM1 it Time at start of retrieval in packed
format

20. LRETTIM2 4 Time at end of retrieval in packed
format

21. LOUTTINE 4 Time at exit in packed format

22. LQRYCEN 2 Length of query in hex

23. LQRTXT var.
up to

Text of the query

256

CINAROW is a highly sophisticated program in its design and operation.
However, some expertise also is required of the user, since some of the
program features are rudimentary as yet. For example, the user must know
the format to use when submitting requests, since the present request
negotiation phase of the program is limited only to testing the syntax of
the request rather than otherwise assisting him in formulating his request.

This document is intended both to serve as an adequate introduction
to !Ia- of the system and to provide a general description of the
system to those with interest in bibliographic storage and retrieval systems.
Subsequent chapters of this volume contain users' guides for these programs
which specify the exact format of commands, sequence of operations, etc.
The remaining sections of this chapter will describe CINARON and the file
building programs at an intermediate level of detail.

1.2 Searching and Browsing

The CIMARON system may be conceptualized as having two distinct but
complementary modes of operation: searching and browsing. The search mode
has as its object the formulation of retrieval requests, the evaluation of
requests against a master file ef indexed records, and the retrieval of a
relevant subset of records. The browsing mode has as its goal the examina-
tion of the CIMARON index files, the extraction of appropriate index file
entries, and the ultimate utilization of index file entries as components
(i.e. terms) of search requests.

The browsing mode is crucial in the CINARON system because it helps th!
user maintain control of search operations. By browsing, the user can ascertain:

legitimate non-empty terms for search requests

variations in the representation of legitimate search request terms

exact format (punctuation, abbreviations, spelling, etc) for search
request terms

which terms will lead to overflow conditions in retrieval requests

Browsing thus can be considered a part of the analysis which precedes
actual searching and which is necessary to avoid inaccurate, illegitimate,
or inappropriate search request terms.

While the capability of browsing through index files was conceived as
part of the original CIMARON design, it has not been implemented as part
of the initial CIMARON code. However, this capability is provided through
the use of Browser, an independent routine, originally coded to aid
programmer debugging. The operation of Browser will not be discussed
here, both because its operation is straightforward and because it
represents a temporary implementation of the CIMARON system. Its opera-
ting instructions are provided following those of CIMARON2.

1.3 The Formulation of CIMARON Search Requests

Because of the hardware and software resources available in the
Information Processing Laboratory, C1MARON is able to operate in real-time,

to communicate bi-directionally with users, and to utilize the Sanders
Cathode Ray Tube (CRT) terminal video screens to obtain the search
specification and to format and display its retrieval results. We use
the general term "interactive mode" to cover all these aspects of request
formulation, real-time search, immediate display of retrieval results, and
user-program communication. This "interactive mode" is distinguished from
"batch mode" processing by the immediacy of the communication cycle. In
CIMARON, the interactive mode is used both to select data base, search key
file, search request formulation, format of retrieval display, and to control
the viewing of the retrieved records.

CIMARON begins with a descriptive summary of its data bases and Search
Key Files. The user is asked to select a data base (SD=San Diego, SC=Santa
Cruz), and CIMARON then opens the appropriate files of master file records
plus associated Search Key files.

CIMARON then asks the user for a search request. A search request has
a precise syntactic definition which is given in Figure 2 in Backus-Naur
Form (BNF) notation. The basic syntactic components of the search request
are:

a. Name of Search Key File (i.e., AU, TI, SU, AD)

b. Specification of search key value (e.g., FREUD or PSYCHOANALYSIS)

c. Boolean conner,tives between search terms (e.g., AND, OR, NOT)

d. Punctuation [e.g., apostrophe ' or slash / or rever e slash\
or left paren (or right paren

Apostrophes are used as left and right brackets around a search term. A
slash is used to separate the name of the Searcb Key file from the search
key value. Reverse slashes are used to bracket hexadecimal values to be
entered into the search key value. (This is used to specify symbols which
cannot be entered legitimately via the terminal keyboard, such as subfield
delimiters \FA\ or an apostrophe within the search key value)

Examples of CIMARON search requests

'AU/FREUD, SIGMUND'

'AU/FREUD, SIGMUND' OR 'SU/FREUD,
SIGMUND

'SU/PSYCHOTHERAPY' AND ('AU/FREUD'
or 'AU/JUNG' OR 'AU/ADLER')

are:

(All books authored ol co-authored
by Sigmund Freud)

(All books by or about Sigmund Freud)

(All books dealing with Psychotherapy
and writt n either by Freud, Jung,
or Adler.)

Before executing a Search Request, CIMARON checks the syntactic validity
of the request and then rejects it if: (1) there are an uneven number of
apostrophes; (2) the Search Key file is incorrectly specified; or (3) an
unknown Boolean operator is used. The user is notified of the type of error
and is given the option of correcting the searcb request which will be checked
again for validity.

-5_

FIG. 2: CIMARON SEARCH REQUEST SYNTAX
DEFINED IN BACKUS-NAUR FORM NOTATION

I. <Senrch request>

2. <boolex>

<term>

4. <factor>

5. <operand>

6. <search key>

7. <attrib. code>

8. <string>

9. <alphanum>

10. <hex>

OR

AND

NOT

= <boolex>

<term>l<boolex>OR<term>

<factor>l<term>AND<factor>

<operand>INOT operand>

<search Rey>k<boolex>)

<attrib. code>l<string>

AUITI1SUIAD

<aiphanum> \<hex>\ <String><alphanum> l<string>\<hex>\

any string of EBCDIC characters excluding
apostrophe and reverse slash*

any string of hexadecimal digits, comprised
of legitimate 2-character hexadecimal
numbers, e.g. FO.

Terminal Types

AU

TI

SU

EBCDIC charact rs

Hexadecimal digits

igNote that if an apostrophe, , is to be included in the alphanumeric
string, the hex representation for it must be provided. Otherwise
it defines the end of the <search key>. Reverse slash, \, must be
treated similarly.

11

The device used for userprogram transmission is the terminal key-
board, with the CRT screen serving as a visual copy of what is being
formulated and transmitted. The program÷user communication is via the
CRT screen. Because there are no mechanical linkages in this system
(except for typing on the terminal keyboard), the interactive cycle is
very rapid, usually on the order of less than two seconds. CIMARON may
be in use at all three terminals at the same time, the small increase in
delay time being due primarily to tying up the single telephonic link
between the Laboratory and the Computer Center.

1.4 CIMARON rJearch Logic

When the user enters an acceptable search request, CIMARON begins
operating according to search logic designed to maximize search efficiency.
This attempt to maximize occurs at two levels. First, the search request
is divided into components (corresponding to the terms of the search
request), and the processing of these components is ordered so that the
minimum evaluation of Boolean expressions is required. Second, the actual
search operation is performed against the Access File (which is a sorted
file), and Master File records are not examined at this stage of processing.
The Access File contains the Search Key Values previously extracted by the
File Generation subsystem and pointers to the master records. Thus,
exhaustive search of the master records need not be performed by CIMARON.

The Boolean search request is treated by CIMARON as if it were an
arithmetic expression; that is, there is a precedence order for eval-atin,,
expressions. That order is NOT, AND, OR. Further, all expressions within
parentheses are evaluated before those without. Any search request thus can
be treatea as a simple binary tree. Each node of the tree is a Boolean
operation with the tree leaves corresponding to the search terms in the
search request expression. For example: 'AU/BACH' AND 'SU/SUITE' OR 'SU/
CANTATA') can be represented as follows:

AND

BACH

SUITE CANTATA

Note that without the parentheses, the expression 'AU/BACH' AND 'SU/SUITE'
OR 'SU/CANTATA' would produce the following binary tree:

0

CANTATA

BACH SUITE

Thus the search logic can be seen in the following way. Beginning
with the lowest level of the tree structure, a search is Conducted for the

term in the left leaf of the node. The search consists of both examining
the appropriate Search Key Access* file and retrieving a list of addresses
of Master File records which satisfy the Search Key value of the search
request term. This list is called Left-List, and it is sorted into
ascending order by Master File location address. A simjlar operation is
performed for the right leaf of the node, and the resulting list of Master
File addresses is sorted and stored in Right-List.

Once these two lists have been generated, they are combined into a
third Result-List according to the Boolean logic specified at the node.
If the node operator is OR, then Left-List and Right-List are additively
combined, except that duplicate Master File addresses are combined into
one entry. If the node operator is AND, then the Result-List consists
only of Master File addresses that are present in both Left-List and Right-
List i.e., that are duplicated in both lists).

1.5 CIMARON Retrieval Display

Once CIMARON has com_pleted execution of its search and retrieval
logic and has created a final result-list of entries to be retrieved, it
presents the requestor with a further set of options concerning the display
of retrieved records. The user may specify briefly the number of records
to retrieve and the format in which they should be displayed. After dis-
play of the records has begun, he may move forward or backward in the record
display, ask for hard copy of a displayed record, or terminate the display.
At that point he may either initiate another request or exit.

Four CIMARON messages are p a ible with regard to retrieval results:

a. NO RECORDS SATISFY REQUEST

b. XXX RECORDS SATISFY REQUEST - HOW MANY ARE DESIRED?

c. ALL EXCEPT XXX RECORDS SATISFY REQUESTTYPE NONE OR XCEPT
FOR THE EXCEPTIONS

d. CONGRATULATIONS - YOUR REQUEST SPECIFIES THE ENTIRE FILE

Message (a) indicates a zero result-list (no records match the search
prescription and no records can be retrieved). The user is then allowed to
exit or to reformulate his request by either altering the current request
or submdtting an entirely new request. The same options are offered to
the user after message (d) which indicates a failure of a different type,
namely that the search result encompasses the entire file (for example:
'AU BACH' OR NOT 'AU/BACH'). Message (b) is a more common result and gives
the student an idea of how many records are potential candidates for
retrieval and display. Message (c) is similar, but the class of retrieval
records in this case is the negation (or exception to) the search request.
For example, NOT 'AU/BACH', if taken literally, would result in specifying
the entire file less those few titles authored by BACH. It is presumed
that the student will work to display the exceptions, namely NOT (NOT 'AU/
BACH'). The response to messages (b) and (c) can specify

*Recall that the _Access File consists of Search Key values and linkages
the addresses of Master File records.

null response is the same as ALL)

NONE (no records to be displayed)

ALL (all re rieval candidates to be displayed)

(a three digit number, indicating how many records to display)

Any speficiation (except NONE) can be overridden during the display t
terminate the display process.

When the user indicates the number of records to be displayed, the

record display is initiated with a format default option (USER format)
which presents all displayable data in the master record. This default
option can be overridden at any time. Currently, two format options are
available: (1) machine-form MARC Il specified as MARC, and (2) user's MARC
II specified as USER. The first option displays records in their original
machine format; i.e., record leader, record directory, and data fields, in

that order. This format is useful for students who are interested in
analyzing the components of the machine-form MARC record. CIMARON is
structured to accept other format display routines in the future.

The user format available is very similar to a normal catalog card,
except that the major (MARC-defined) data fields each are printed on a
separate line.* Each line begins with a short mnemonic identifying the
contents of the line. These identifying codes are:

REC (accession nunber, publication date and call nunber

MEH n entry heading)

TIT le)

IMP (imprint)

PAG (collation statement)

SER (series notes)

NOTE (other notes)

SUB (subject tracings)

OTH (author, title or series tracings)

A typical record under this format appears as Figure 3.

Records are displayed in disc address order and, therefore are not

alphabetized. At the end of each record display, the student had. the

following options: create a hard-copy version of the record currently
displayed; to continue to the next record in the display sequence; skip
forward or backward in the sequence; kill the display and return to the
request formulation stage; or change display format.

*Accession nunber, publieation date and call nunber all are printed on the

first line, in that order.

Ffq. 3: CINARON DISPLAY RECORD EXAMPLE

REC: 0001234 1965 EL1032 B4

NEH: BELLAH, ROBERT NEELLY, 1927

TIT: RELIGION AND PROGRESS IN AODERN ASIA. EDITED BY ROBERT N. BELLAH.

IMP: NEW YORK, FREE PRESS, 1965

PAG: XXV, 246 P. 22 CM.

NOTE: REPORTS OF A CONFERENCE HELD IN MANILA IN 1963 UNDER THE AUSPICES
OF THE CONGRESS FOR CULTURAL FREEDOM

SUB: ASIA--RELIGION

SUB: RELIGION AND SOCIOLOGY

SUB: ECONOMIC DEVELOPMENT

CT::: CONGRESS FOR CULTURAL FREEDOM

FIG. 4: CIMARON COMMANDS AVAILABLE DURING RECORD DISPLAY PHASE

(null response, display next record)

(go to request formulation/exit branch; return to
can still be accomplished through command En)

(display the nth record back in the list; n=0, or n>current
position provides the first record)

skip n records and display record following; n=0, or n>remaining
records provides the last record)

(send a copy of this record to the printer file, no change
in display)

RC (display current and following records in MARC II communications
format)

(display current and following records in user format)

the display

FIG. 5: GENERAL CINARON COMMANDS

Commands Program Phase

Finis

Exit

Reopen

SD

SC

(ull)

1 2 3 4 5

Data Base
Selection

Request
Formulation

Results
Display

End Results
Display

File
Closing

-

-

-

San Diego

Santa Cruz

-

-

-

-

-

-

-

-

-

Show next
record

-

Go to
Phase 5

-

-

-

Go to
Phase 2

Terminate
CINARON

-

Go to
Phase 1

-

-

Terminate
CIMARON

1.6 File Generation and Organization

Before CIMARON can be used, there must be a data base created on
which it can operate. Thus, a sequence of programs is required to
transform a random collection of machine-form bibliographic records into
well-organized files which are easily searchable by CIMARON. These
programs do not operate interactively nor do they provide real-time response
capability. Rather, they operate in a batch-mode job stream, and the major
successive steps are:

a. loading the basic Master File records into disc memory (FILOR)

b. extracting indicated Search Keys from each individual record
(ZODIAC)

c. special search key generation (e.g., DOLBY)

d. sorting the collection of Search Keys (OS Sort)

e. consolidating Search Keys into a linked file structure (PAX)

The "irst step in this job stream is to construct on disc (at present,
the IBM 2314) a linear array of the master file of input records. No
ordering or pre-sorting of the input tape is required. The program reads
in streams of variable length records, blocked or unblocked, and develops
disc storage algorithms based upon the four-byte binary record descriptor
word (RDW) in the standard IBM location. Possible input sources Would be
either magnetic tape or a sequential file on disc.

This program, called FILOR, creates two output files. The first is
the Master File loaded sequentially onto the disc. These records are packed
to the highest density possible; that is, they are blocked to the full 2314
track capacity of 7294 bytes. Because of this dense packing, some records
may be split across two disc tracks. Although this increases programming
complexities in the record display portion of CIMARON0 the net :avings in
storage space is considerable due to the large size of bibliogrn records.

The second file created by FILOR is a sequential list of tLe dis-
addresses of each Master File record. The data in ea h record of this 'T'Aider
File consists of four elements:

a. Master File record number (s_ u_n ially assigned)

b. disc track number

c. relative position of the master file record within the disc
track (this is termed the offset)

d. length of the master file record

There is one record in the Finder File for each Master File record.
The data in the Finder File is used in subsequent programs to retrieve
the records in the Master File.

The second step in the file organization process of CIMARON.is to
ana1yze each Master File record and to extract Search Keys from each record.

This process is performed by ZODIAC, which is organized to process MARC II
structured records.* The definition of what constitutes a Search Key is
controlled by parameter cards which are stated in terms of a set of MARC II
major field tags. An example would be the generation of author (AU) Search
Keys, consisting of:

100 Personal Name Main Entry
110 Corporate Main Entry
111 Conference Main Entry
130 Uniform Title Main Entry
700 Personal Name Added Entry
710 Corporate Added Entry
711 Conference Added Entry
730 Uniform Title Added Entry .

The definition of the Search Key also could be narrowed, for example, by
the exclusion of Corporate, Conference, and Uniform Title headings, or by
the exclusion of Added Entries. Similarly, the definition could be expanded
by adding Series Headings (4m, 410, 411, 800, 810, 811) and/or Subject
Tracings for Personal, Corporate, Conference, or Uniform Title names (6009
610, 611, 630).

The extraction of Search Keys occurs by using as input the two files
generated in the previous pass; i.e., the disc-stored Master File and the
Finder File. The Finder File record and its corresponding disc-stored
Master File record are processed together. Each Master File record is
analyzed for the existence of one or more Search Keys. For each Search Key
found, a fixed-length output record is generated consisting of:

a. Search Key (all upper case)

b. Field Tag which caused the generation of Search Key

c. disc track number of Master File record

d. offset of record location within specified disc track

e. length of Master File record

A Master File record of course may have more than one Search Key, in which
case multiple output records are generated.

ZODIAC will accept definitions of up to twelve Search Key files, and
will, therefore, generate in a single pass Search Key files for author,
title, subject, etc. Currently there are two constraints to the program.
First, if several Search Key files are defined in a single ZODIAC program
pass, the field tags which comprise a Search Key file must be unique and
mutually exclusive. Thus, if one were creating two separate Search Key files,
one for Author (AU) and one for Subject (SU), the 600 field (Personal Name
Subject Tracing) could be allocated to one but not both of these files on a
single ZODIAC run. To achieve placement in both, a second run of ZODIAC must
be made with different parameter cards. The second constraint concerns the

*Library of Congress, Subscriber's Guide to the MARC Distribution Service,
Washin on, D.C.: Information Systems Office, 1970, p. 2

ability to access subfields. In sone situations, it would be useful to
exclude certain subfields from the Search Key (e.g., $e relator), or to
construct Search Keys from subfields altogether (e.g., a Key file consisting
only of geographic subject heading subdivisions). Currently, the level of
Search Key definition does not extend beyond the tagged field level.

Utilizing the output file of ZODIAC, other routines can be applied to
generate "special" Search Keys. One such routine, DOLBY, provides the
ability to generate Search Key files adapted to "noisy" or uncertain search
specifications. The Search Key file, called Author-Dolby (AD), is obtained
by scanning the output from ZODIAC and reducing the author surname to a
canonical or quasi-phonetic representation. In this form all vowels are
eliminated from the surname, and phonetically related consonants are reduced
to single forms. This Search Key file (AD) may be used to produce a set of
candidate retrievals when the user is uncertain of the pronunciation and/or
orthography of an author search. A second "noisy" Search Key file generator
has been programmed (but not yet implemented) for operation on the title
field. The resulting Search Key -Pile will contain a permuted sequence of
information bearing content wore. 30 that title requests can be processed
effectively even where the searc omits an article or preposition or
confuses the order of the words in a title.

After the Search Key records have been generated, they are sorted using
an IBM utility sort routine. The order of sort is: File Name (AU, SU, TI,
etc.); Search Key, block/track number, offset. These sorted files are then
presented to PAX, the routine which constructs the random access linked file
structure. The standard access arrangement for indexed files, which is
provided by IBM, has had the dual requirement that the Search Key be unique
(no two records with the same key value) and that the records be the same
length. Therefore, FAX analyzes the input records for duplicate key values
and processes all those with the same value as a string. A Search Key string,
therefore, is defined as one or more occurrences of the same value of the
Search Key.

An example from a hypothetical AU file follows:

Master File Record Address

Search Ky Value Track Offset Length

BACH, CHRISTIAN 51 1343 600_ String 1
BACH, JOHANN SEBASTIAN 14 545 7121
BACH, JOHANN SEBASTIAN 14 2506 455 String 2
BACH, JOHANN SEBASTIAN 30 1025 512
BACH, KARL PHILIPP EMANUEL 8 7210 650
BACH, KARL PHILIPP EMANUEL 13 150 475

String 3

BACH, WILHELM FEIEDEMANN 47 4570 580 String 4

If a string consists of only one record, then the author is represented by
only one title in the file. A string also may consist of many Search Key
records, indicating multiple entries for an author in the Master File. In
the example above, strings one and four are single-record strings, whereas
strings two and three are multi-record.

19

Following this analysis, FAX creates two new files: a Key Access file,
and a Key Locator file. There are two possible linkages from these files to
the Master File, as follow:

Access File

aster File] or Locator Fil

Used where only one
master record has the
key value. Used where more than

one master record has
the same key value.

The simpler link occurs for each single-record string in the sorted Search
Key file. In that case there is only one Master File Record in the data
base corresponding to the Search Key value in the Key Access file record.
Consequently, there is only one Master File record address and that may be
carried directly in the Key Access record. The second case occurs for each
multi-record string in the sorted Search Key file. In that case the Key
Access file carries the Search Key value, but not the full set of Master File
Record addresses. These addresses are stored instead in sequential fixed
length records of the Key Locator file. The address in the Key Access file
is thum a pointer to a sequential string of records in a second-level Locator
file, each of which in turn points to a Master File record. Thus, to return
to our example of multi-record strings:

Key Access BACH, JOHANN SEBASTIAN
File

BACH, KARL PHILIPP EMANUEL

Key Locator Track Offset Length
File

14 545 712
14 2506 455
30 1025 512
8 7210 650

13 150 475

Thus consolidation occurs as a result of carrying each unique Search Key
value only once, thus reducing all multi-record strings to single-record
strings. In order to maintain a fixed-length record structure in the Key
Pccess file, Master File record addresses are transferred to a separate
,n-y Locator) file. This two or three level linked file structure is the
final outcome of the file construction process and represents the data
base utilized by the search logic and retrieval portions of the CIMARON
program.

20

2. CIMARON2 TERMINAL OPERATOR'S GUIDE

2.1 Overview

This document is a terminal operator's guide to CIMARON2 - the
latest version of an on-line search and retrieval facility, implemented
at the Institute of Library Research, Berkeley. CIMARON2 allows the
user to enter search requests (in a Boolean language) involving authors,
titles, and subjects, from a remote terminal and subsequently presents
the search results at the same terminal.

The hardware facility includes three SANDERS 720 character display
terminals a%-: the Information Processing Laboratory in the Library School
and an IBM 360/40 computer with a 2314 disk storage unit at the Campus
Computer Center. The software facility was developed under a Terminal
Monitor fystem (TMS) designed specially for the Instituters on-line
computing needs.

The guide is written with a view to conducting the reader through
a complete session with CIMARON2 at the terminal. All text appearing
on the display screen, whether generated internally by programs or
keyed in by the user, is shown throughout this document in upper-case
letters.

2.1.1 CIMARON2 Structure and Commands

In order to provide proper control and transfer between the program
components, CIMARON and its command structure are divided into six
phases. During each phase of the program, the user may choose from avail-
able options in order to transfer to other phases of the program, to sub-
mit a request, view the results, etc. Figure 6 lists thes- -Program
phases and the legitimate transfers between them. Figure 'f shows the
general commands available to the user during these phases. And finally
Figure 8 shows the commands available during the results display phase
to assist the user in viewing the retrieval result.

FIG. 6: PHASES OF =MAHON OPERATION AND LEGITIMATE TRANSFER PATHS

Phase # Phase Type Next Phase()

1 Data Base Selection 2

2 Request Formulation 2, 3, 6

3 End Search 2, 4, 6

4 Start Display 4, 5

End Display 2 4, 6

6 File Closing 1, Terminate
CIMARON

FIG. 7: GENERAL CIMARON COMMANDS

Pro ram Phases

Available
Commands*

1
Data Base
Selection

2
Request
Formu-
lation

3
End
Search"

4
Start

Results
Display_

5
End

Results
Display

ClosingFE]
/CLOSE - Go to

Phase 6
see
CLOSE

- see
CLOSE

-

EXIT _ - _ _ Terminate
CIMARON

REOPEN - - - - - Go to
Phase 2

SD San Diego - - - - -

SC Santa Cruz - - - -

(null? Santa Cruz
Search
same

request
Go to

Phase 2

Show
all

records
Go to

Phase 2
Terminate
CIMARON

CLOSE - - Go to
Phase 6

- Go to
Phase 6

-

RESTART - - Go to
Phase 2

- Go to
Phase 2

-

EDIT - - Go to
Phase 2

- Go to
Phase 2

-

*Dash indicates commend unavailable in thia phaSe.
**End search Is the phase arrived:at IT the searcll "failed"; Ph e 4 is

arrived at IT the search "succeeded."
(null) indicates depression of SEND BLOCK key with no typed r--p nse.

FIG. 8: CIMARON COMMANDS AVAILABLE DURING RESULTS DISPLAY PHASE

Available
Commands* Meaning_

(null) Display next record

KILL

BACK n

SKIP n:

HARD

MARC

Go to Phase 5, End Results Display;
return to the display can still be
accomplished through command Bn

Display the nth record back in the list;
n=0, or n>current position provides the
first record; B and Bi are the same

Skip n records and display record follow-
ing; n=0, or n>remaining records provides
the last record

Send a copy of this record to the printer
file, no change in display

Display current and following records
in MARC II communications format

USLR Display current and following records
in user format

*Underlined letters are the minimum typed characters to uniquely
define the command. Additional characters are optional.

23
-19-

2.1.2 Use of the Sanders 720 Keyboards

The Sanders 720 keyboard consists of two major groups of ke5,71 - the
alphanumeric group containing upper-case letters, digits, and punctuation
characters and the function key group on the right hand side of the key-
board. Of the former group, the user is not concerned currently with the
HOME, horizontal and vertical TAB and CR keys, because all formatting is
usually controlled by the programs, and user input is expected to be a pure
alphanumeric string. Of the latter group, the user is concerned with the
INSERT, DELETE, and SEND BLOCK keys. The INSERT and DELETE (blue keys) in
conjunction with the cursor positioning key (i.e., the SPACE key), enable
the user to edit his input string before dispatching it with the SEND BLOCK
function key.

Any message from within the program requires a user response. This
may be a simple acknowledgment on his part that he has read what is on
the screen, or it may be a command word or a search request. In any case
the following can be noted:

a. The cursor is positioned one or two lines below the last line
of the program message, often just beyond a right arrow (>) and blinks
steadily.

b. The user types in his input here, edits it if necessary, and
dispatches it by pressing the SEND BLOCK function Rey.

c. Both the message and the user's input are visible on the screen
until the next message appears.

d. Sometimes, when all three terminals are being used, the user's
response may go into a blink mode. This usually does not last more than
a few seconds and means the input is being queued before it is processed.

Also, whenever CIMARON2 prompts the user to select one of many
command options, the first alternative listed is usually a default
option which may be taken merely by pressing the SEND BLOCK key. This
causes a zero-length message to be sent to CIMARON2 as a signal for the
default command. A simple SEND BLOCK (i.e., a zero-length message) is
used elsewhere as an acknowledgment from the user. This is the same
convention if viewed as a default command to "continue." This procedure
allows the user to proceed rapidly along the most commonly used program
paths.

2.2 Entering CIMARON2

CIMARON2 may be called up on the terminal as a user service under
the Terminal Monitor System. This means that TMS brings into core a
copy of the CIMARON2 machine code stored in a program lfbrary on disk and
initializes the communication path between CIMARON2 and the appropriate
terminal. Since the program is reentrant, only one copy of it is in core
at any time, although communication paths may have been established from
CIMARON2 to more than one terminal. The detailed procedure for entering
CIMARON2 is described below.

-20-

2.2.1 Logging In

When TMB has been initiated, the following messages appear on each
screen:

TMS100I TNB IN OPERATION

TMS101A - WAITING FOR LOC:N

The normal response to this is to type in either GP01 or GP02 and
send the message (depress the SEND BLOCK button). The initials of some
ILE personnel are also valid, but these are usually entered by those nersons
when conducting debugging sessions or when running machine tutorial programs
(i.e., DISCUS). If one of the valid initials is received (say GP01), TMS
responds with:

TMS102I GP01 LOGGED IN

TMS1014A - SPECIFY PROGRAM

The termdnal user has been logged in successfully and may now call
CIMARON2 by typing CIMARON2 followed by a SEND BLOCK. This results in
entry to the program and the display of a "title-page" message.

2.2.2 Selecting the Data-Base

The initiAl "title-page" message lists the version of the program,
the date this version was first operational, the data bases currently
stored and indexed on disk, and the attributes via which the data base
master files can be searched. The last line requests the user to select
the data base, which he does by typing a two letter code. Currently,
there are two data-baseS, and the codes are SC (for Santa Cruz University
Catalog) and SD (for San Diego Biomed Catalog). The Santa Crum data-base
will be opened by default. The selection of the data-base at this point
ensures that all subsequently opened index (attribute) files will pertain
to the correct data-base. The code letters typed by the user will appear
in the top left-hand corner of the screen (HOME position). If the code
letters are invalid, the message SELDB will reappear, allowing the user to
try again.

2.3 Entering Search Requests

Search requests are entered when the following prompt appears on the

top line of the screen:

CIMARON IS READY - ENTER BOOLEAN EXPRESSION:

The cursor is positioned two lines below this message, and the user
may type in the expression immediately. As always, user input is dispatched
to the computer by a SEND BLOCK at the end of the input. If the input string
typed by the user is detected to be empty (zero length), the above message
(MSC1) reappears, alawing the user to try again.

Three other options are provided here. One is to allow the user to

type//CLOSE, instead of a search request. Section 2.6 explains what
happens when CIMARON2 receives this command. The second is to allow
comments 1,o be entered in the system log. A comment must begin with an
asterisk and may be up to 256 characters long; comment strings longer than
256 characters will be truncated. The third option arises when //SPEC causes
a program interrupt and transfers to the interrupt handler. This option is
for the use of programmers only.

2.3.1 Search Keys and Attributes

The minimal form of an input request is a search key. A search key is
enclosed in single quotes and the first two characters identify the type of
attribute (associated with master file records) that the search key
represents. E.g.,

'AU/KINSEY'

'TI/THE HISTORY OF MEDICINE'

These represent search keys of the author and title variety respec-
tively. The attribute codes are AU and TI, and the slash following the code
is a mandatory delimiter. Currently, the legal attribute codes are AU, TI,
SU, AD. The last two represent subject and "Dolbyized" author. Note that
every Character between the slash and the ending quote is significant,
including blanks, and is used in direct comparison with keys in index files.
In actuality, an inclusive Boolean OR is performed between the associated
master records of every key in the index file whose first part matches
(character for character) the submitted search key. This will henceforth
be referred to as the part-key facility. At present, all user-submitted
search keys are part-keys because they are truncated to 32 characters,
(including the attritute cede and delimiter), before they are entered in
tables, whereas the index files have key lengths of 4o or more.

It is important to realize however, that in order to get a unique
match on a single record (key) in the index file, it is necessary only to
enter a sufficiently long part-key by consulting the index file listing.*
An additional facility provided in this respect is defining hexadecimal
strings within the search key. A hexadecimal string is identified by the
fact that it is enclosed in reverse slashes. E.g.,

'SU/NURSING\FAAT\OBSTETRIC'

is a subject search key containing the hexadecimal string PAA7 (a MARC II
subfield delimiter followed by a lower-case x). This device is used
whenever characters to be included in a search key are not to be found
on the terminal keyboard, and gives access to the entire 8-bit character set.

*Also known as authority listings. These are essentially printouts of
the author, title, and subject index files showing the keys and the
number of master records indexed under that key.

2.3.2 The AD Attribute

The letters AD rerresent the "Dolbyized" authors attribute. Search
keys preceded by this code are routed to a special index file in which
the keys are canonical forms or author names. The canonical form is
obtained by applying a series of transformations (rules) to an author
name. These rules, first proposed by Dolby,* are designed to smooth out
differences due to minor spelling variations (or errors) in English sur-
names, and reduce the variants to a canonical form. Thus by applying
the algorithm to a search key and then looking for hits in an index file
of canonical names, one obtains noisy match, i.e., one achieves greater
recall at the expense of precision.

The "Dolbyized" author index files contain not just author names
(in canonical form) but also associate authors, editors, translators,
etc. This further improves recall.

For example, searching the San Diego Biomedical file with the key
'AD/KINSEY' results in retrieving 10 records of which

2 were authored by KINSEY

I was about KINSEY

4 were authored by KUNTZ

1 was authored by KOONTZ

I was authored by KINSMAN

1 was authored by KUNSTADTER

In the last two names, only the first syllable is "close" to KINSEY.
This is because the part-key feature was automatically invoked after
the key typed by the user was "Doibyized." In order to suppress the
part-key search on the Dolby file, the user may add a blank to the end
of the key thus: 'AD/KINSEYIP. In this case, the last two aames, viz.,
KINSMAN and KUNSTADTER, no longer appear in the retrieved records.

2.3.3 Search Requests in the Form of Boolean Expressions

So far, search requests composed of a single search key have been

described. However, CIMARON2 accepts more complex requests in the form
of parenthesized Boolean expressions wherein search keys with different
attributes can be mixed freely. For example, a more complex request
would be:

'SU/OPTICS' AND ('TI/FIBER OPTICS IN SURGERY OF THE EYE'

OR 'AD/KOONS') AND NOT ('SU/LENSES' OR 'SU/TECHNOLOGY')

*Dolby, James L., "An Algorithm for Noisy Matches in Catalog Searching,"
in Cunningham, Jay L. et al., A Stud of the Or anization and Search of
BibliograThic_Holdings Records Pha

Berkeley: institute of Library Research, University of California, March

1969.

-23-

This expression has five search keys, three attribute types - SU,
TI, and AD, and uses all three Boolean operators - AND, OR, NOT. The
operators have an implied precedence as follows:

NOT highest

AND next highest

OR lowest

The NOT is a unary operator and associated with the search key or sub-
expression immediately to its right. The AND and OR are binary operators
having a left-operand and a right-operand, each of which may be a search
key or sub-expression. Between similar operators the implied precedence
is left-to-right. Parentheses are used to define explicitly a group of
operations of higher precedence: the higher the nesting level, the higher
the precedence.

There are two important limitations on the complexity of the requests
the user may type in:

a. The maximum number of search keys allowed in the expression is
sixteen (16).

b. The maximum length of the seardh request, including all bl
is 256 Characters.

Since a line of the CRT screen accommodates 84 characters, long expressions
have to be typed over more than one line. On typing beyond one line, the
cursor automatically returns to the beginnIng of the next line, so no carriage
control functions are required. On the other hand, by controlling the cursor
position and using the INSERT and DELRTE function keys, local editing of
the serach request may be performed before dispatching it with a SEND BLOCK.

2.4 Search Results

There are many ways in which a search may end. It mgy end in a
diagnostic due to an incorrect construction of the search request or due
to storage overflow; it may result in reporting certain unusual results,
or it may report that a finite set of records satisfies the user's request.
These causes next are explained individually.

2.4.1 Diagnostics

OIMAR0N2 currently proviaes ten different diagnostics when something
goes wrong either in the analysis of the input request or in the search.
These are numbered DMO through DM9. Of these, DMO through DM6 report
incorrect constructions, syntax errors, etc. in the input expression;
DM7 and DM8 report file search failures; and DM9 is a special waliling
indicating partial search failure due to a storage block overflow being
detected during the search. More will be said about DM9 in the next section.
As an example, suppose the user entered the following search request:

-2 4- 28

'AU/SMITH' AND 'AU/JONES

with a missing ending apostrophe; CIMARON2 immediately responds with
diagnostic message 3 (DM3) which appears at the top of the screen as
follows:

UNBALANCED APOSTROPHES IN THE EXPRESSION - EDIT:

The improperly constructed expression is displayed 2 lines below this
message. Once again, the user may employ the INSERT and DELETE function
keys in conjunction with the cursor position control key (SPACE) to
edit the message and send it. In the current example, adding an apostrophe
after the S in JONES will correct the expression successfully and result
in a search.

2.4.2 The List Overflow Warning

This is an interim feature in the program to detect and report the
overflow of any of the internal record lists during the progress of the
search. When corrective action is incorporated in CIMARON2 for this
condition, the warning message (DM9) will be removed and the user will
be unaware of the condition. An example of the appearance of DM9 is
given below. An overflow condition is detected during the search for
'AU/TOYNBEE1 in the Santa Cruz data base when the hundredth record in-
dexed under this key is read, and DM9 appears thus:

WARNING - LIST OVERFLOW DETECTED, CUTOFF OCCURRED AT THE
FOLLOWING KEY:

AU/TOYNBEE, ARNOLD JAMES, D1819-

+ SEND BLOCK TO PROCEED +

The middle line shows the last key read from the author index file
before overflow was detect_i; the last line indicates CIMARON2 is awaiting
the user's acknowledgment. If the letters 'KKKK' appear just after
the slash in the middle line, it means the last key read has no special
significance since the overflow was detected during a Boolean OR operation.

When the user acknowledges this message by pressing SEND BLOCK,
CIMARON2 proceeds to report the result of the search. The result will
not reflect the true contents c the data base since some part of the
search was prematurely ended. DM9 is the only diagnostic followed by
a report of search results.

2.4.3 Unusual Results

Since search requests are in Boolean form and the concept of negation
(using the NOT operator) is included, there are three types of "unusual"
results that may occur. These are:

2.4.3.1 None

None of the records in the data-base file meet the conditions of
the search request. This will occur in search requests specifying a
conjunction of two mutually exclusive (record) sets,e.g.,

'AU/CHURCHILL, WINSTON' AND 'AU/HITLER, ADOLF'

CIMARON2 will report this search as follows:

NO RECORDS SATISFY REQUEST (MSG2)

NO RETRIEVAL (MSG7)

OPTIONS ARE: EDIT, RESTART, CLOSE (MSG4)

The user is forced to bypass the record retrieval routines. The
default response is EDIT, which results in the following message

THE LAST SEARCH REQUEST WAS (MSGE)

Below this is redisplayed an exact copy of the last search request which
the user may edit using the function keys. If he wants to repeat the
same search, he takes the default option by pressing SEND BLOCK. RESTART
causes MSG1 to reappear on the screen and allows the user to submit a new
search request. EXIT processing is described in Section 2.6.

2.4.3.2 All

All the records in the data base file are defiried by the search
request. This occurs whenever a search request specifies a disjunction
of two complementary sets. For example,

'SU/HISTORY' OR NOT 'SU/HISTORY'

would result in the following messages:

CONGRATULATIONS-YOUR REQUEST SPECIFIES THE ENTIRE FILE (MSG3)

NO RETRIEVAL (MST()

OPTIONS ARE: EDIT RESTART, CLOSE (MSG4)

Again the user is not given the option of retri-ving records.

2.4.3.3 'All but'

The last "unusual" case is one in which the search request specifies
all but a small portion of the data base. This occurs for negated re-
quests of the type:

e.g., I NOT 'AU/TOYNBEE, ARNOLD'

e.g., 2 NOT ('SU/PSYCHIATRY' OR 'SU/FSYCHOLOGY')

For these, the search results would be reported thus:

ALL EXCEPT XXX RECORDS SATISFY REQUEST
(MSG6)

HOW MANY EXCEPTIONS ARE DESIRED? }

Here, XXX represents a 3-digit number. The user, for obvious reasons, is
permitted only to retrieve the exceptions. The allowable responses to
this message are the same as those for MSG5 whick appears after searches
ending in normal results. (see Section 2.4.4)

2.4.4 Normal Results

In the usual case, the search ends by accumulating a finite nuMber
of records representing a small subset of the data-base. This is re-

ported by CIMARON2 as follows:

XXX RECORDS SATISFY REQUEST

HOW MARY ARE DESIRED?
(MSG5)

Once again, XXX stands for a 3-digit number denoting the search

count. There are four allowable responses to this message and MSG6

(Section 2.) .3.3), namely: ALL, NONE, a number, or //FRMT.

ALL is the default and is taken to mean that the user wishes to look
at all the records reported in the search count. It results in entry to
the record retrieval routines (see Section 2.5).

NONE means the user wishes to bypass the retrieval routines. It

results in the following messages:

END OF RETRIEVAL

000 RECORDS DISPLAYED

OPTIONS ARE EDIT, RESTART, CLOSE BACKUP (MSG4)

BACKUP is one of the list control commands, and its use is explained
in Section 2.5.1.

(MSG8

The user also may type a number less than or equal to the search
count reported in MSG5 or MSG6. Appropriate validity checking is per-
formed and a number greater than the search count is taken to mean ALL

whereas any number evaluating to zero is equivalent to NONE.

FRMT is a command word indicating
record display format before retrieval
to a choice between two fixed formats.
when the user types //FRMT in response

the user's desire to design the
. Currently, the user is limited
The following message appears

to MSG5 or MSG6:

SELECT RECORD DISPLAY FORMAT: 'MARC2' OR 'USER' (MSG9)

On typing either (MARC2 is the default) MSG5 or MSG6 (as the case

at
-2T-

may be) reapbears, and either the nutber of records to be retrieved may be
indicated, or the format may be changed once again.

If, after checking for the format command, CIMARON2 fails to find ALL,
NONE or a number in response to MSG5 or MSG6, the following prompt appears:

YOUR OPTIONS HERE ARE: ALL, NONE OR A NUMBER (DM)

Note that all the cases described above in Sections 2.4.3 and 2.4.4
may he preceded by the warning diagnostic (DM9), described in 2.4.2 in
which case the reported search results are only partially right.

2.5 Record Retrieval

Several controls are provided to the user over the display of master
file records. The first is selection of the number of records to be dis-
played. This is indicated either by responding ALL (the default response
to MSG5 or MSG6, or by typing a number less than or equal to the count
reported by C1MARON2 in MSG5 or MSG6. The ALL response results in se-
quential retrieval of every master file record addressed by the result
list (negated or not), in asLending order of disk address. Search results
normally are displayed in this order unless the list control commands are
employed to force a different sequence.

2.5.1 The List Control Commands

The List Control Commands provide the user with the ability to move
freely forward or backward along the list of master records to be dis-
played, to change the display format between records, and to terminate
retrieval after any record. At the end of any record display the allowable
commands are:

K (for Kill) to stop further display of records

B (for Backup) to display the record previous to the c,'"rent one

SK (for Skip) to display the lecord after the next one

M (for Marc) to redisplay the current record in MARC format

U (for User) to redisplay the current record in user format

H (for Hard-copy) to obtain a hard-copy of the current record.

Backup and Skip may be followed optionally by a number. Backup
moves back_l and displayS that record, the Skip moves forward 1 and
displays the record following it; thus B n (where n is a number of 1
or more digits) moves back n records, whereas SR n moves forward n records
and displays the /1+1 records. Also,

B 1

SK 1

B 0

is equivalent to B

is equivalent to SK

always goes to the first record

SK 0 always goes past the last record

B n where n exceeds the search count is like B 0

SK n where n exceeds the search count is like SK 0

M and U redisplay the current record only if the current format is U and
M respectively, or else they just continue to the next record. In other
words, if the format is changed, the current record is redisplayed in the
new format; otherwise the next record is displayed in the same format.
The hard-copy command sends the current display to the print file and
makes no other change. Thus the user may type any of the other commands
or just SEA-) BLOCK for the next record.

2.5.2 Record Display Format

The user has a choice of one of two display formats for each record.
The two formats available are the LC MARC IT format* and a more readable
user format. The minor Changes applied to the MARC II format prior to
display are:

a. All codes other than those for punctuation and alphanumerics
are'translated to blanks. Such codes will be known as non-printing
characters. The exceptions are as follows:

Original char. Translated
(hex. code) char. Interpretation

1F

26

37

FA

begin subfield (old MARC forina

end of field

end of record

begin adbfield

b. Lower-case alphabetics are translated to upper-case since the
display terminals have no provision for these.

c. The following four punctuation characters are translated to
blanks since they cause carriage control effects on the display screens:

Char. Hex. code Car. Control Effect

4A

4F

5F

TB

Horizontal tab

Vertical tab

Carriage return

Home cursor

*U.S. Library of Congress, Books: A MARC Format ifications for Ma etic
Ta es Containin Mono a hic Cat
Washington, D.C.: Information Systems 0 fice, April 1970,

33

ma. th ed. ,

P.

The user format is a line-indented format with non-printing
characters appearing as dots. The end of each field in th,- record is
denoted by +, except for the last field which ends with * denoting end
of record. The various fields are identified by brief mnemonics which
are explained below:

Mnemonic Type of field

REC

MEH

TIT

IMP

FAG

SER

NOTE

SUB

OTH

ILR Record accession nutber,
published date and call number

Main entry heading (usually author)

Title

Imprint

Pagination

Series note

General notes

Subject heading

Other headings (usually co-authors)

In both formats, after displaying a record (or screenful, if the
record is long enough) an acknowledgment is awaited from the user before
the next record (or screenful) is displayed. This usually is requested
below the last line of the record as:

SEND BLOCK TO PROCEED -I- or

SEND BLOCK FOR NEW PAGE

The user's usual response to these messages is to depress the SEND
BLOCK key, whereupon a zex -length message, indicating that the user would
like to proceed, is sent fLom the terminal. The user may, however, type a
list control command at the end of a record (this may be confirmed by an
asterisk at the end of the last field of the record). The command is typed
just after a right arrow > at the beginning of the last line on the screen
and is, naturally, followed by a SEND BLOCK. Note that on receiving a zero-
length message (i.e., a pure SEND BLOCK) after any record, OINABON2 assumes
the user still wishes to retrieve a number of records he originally indicated
in answer to MSG5 or MSG6, in the currently prevailing format until he types
'K', 'M', or 'U' after some succeeding record.

The retrieval process is ended in one of three ways: the user typed
NONE or 0 to MSG5 or MSG6, the user typed 'K' after some record, or
all the records requested by the user have been displayed. In either

case, MSG8 followed by MSG4 appea thus:

END OF RETRIEVkL

IKX RECORDS DISPLAYED

(msG8)

OPTIONS ARE: EDIT, RESTART, CLOSE, BACKUP (modified MSG4)

The BACKUP option provided gives the user one last chance to get
back into the display list. If this opportunity is not taken, the list
is destroyed and can be recreated only with another search. As before,

EDIT is the default option.

The action of CIMARON2 on receiving EDIT and RESTART has been indi-
cated in previous sections. EDIrn processing forms the search of the next

section.

2.6 Exiting from CIMARON2

When the user types CLOSE in response to either MSG1 or MSG4, a delay
of a few seconds occurs while CIMARON2 proceeds to close all the files
either explicitly or implicitly opened by the user thus far. The data base
was selected explicitly and opened by the user (see Section 2.2.2), whereas
index files were implicitly opened the first time the associated attribute
code was employed in a search expression. At the end of thi3 "shut down"

procedure, MSGO appears:

AIL FILES CLOSED

OPTIONS ARE: EXIT, REOPEN (MSGO)

REOPEN indicates that the user wishes to begin search operations
anew on a different data base (it would be wasteful to close a data base
and reopen it immediately; therefore, EDIT or RESTART should be used to
continue operations on the current data base), and r- _Its in the reappearance

of the "title page" message described in Section 2.2.. The user then may

proceed as before with the new data base.

EXIT, which is the default response here, indicates that the user
both is finished with CIMARON2 and will return control to the Terminal
Monitor System, at which point the following TMS messages appear=

TMS1061 - NORMAL EXIT FROM USER PROGRAM

TMS104A - SPECIFY PROGRAM

The user may at this point recall CIMARON2, but once again it is a
wa teful exercise. If the user desires to sign-off and leave the terminal,
he responds with LOGOUT, whereupon TMS comes back with:

TMS105I XXXX LOGGED OUT

TMS101A - WAITING FOR LOGIN

35
31-

where XXXX may"be 0P01, 0P02, GPØ3.

2.7 Disastrous Ends in CIMARON2

These are of two types:

or the initials of some ILR personnel.

a. Disasters ending in failure of TMS due to failure of the IBM
operating system or hardware failure in the CPU or the teleprocessing
system or due to one of the user programs damaging parts of TMS. Such
conditions will cause abrupt loss of response from the terminal and
require a reinitialization of TMS.

b. Disasters detected and trapped by TMS, originating from within
CIMARON2. In such cases, TMS puts out appropriate messages about the
nature of the disaster and purges that user's storage blocks, file buffers,
and working areas. The user will have lost communication with CIMARON2;
however, he can recall the program and begin anew. A typical example is
given below:

Failure in opening a file. TMS puts out:

TMS1531 - ATTEMPT TO OPEN AN UNAVAILABLE/UNCATALOGED DATA SET

TMS110I - ABNORMAL RETURN FROM USER PROGRAM VIA PURGE ROUTINE'

TMS104A - SPECIFY PROGRAM

For other such TMS messages, _he user is referred to Appendix 2 in
Part I of the TM'S Users' Manual.*

2.8 CIMARON2 Messages and Code Tables

CIMARON2 ordinary messages are numbered MSGO through MSG9; diagnostic
messages numbered DMO through DM9. SELDB is the last line of the
"title page" message. ACK is an acknowledgment request. The first line
ef multi-line messages usually appears at the top left-hand corner of the
screen, i.e., the HOME position, while succeeding lines appear double-
spaced below it. The messages currently available are listed in Figure 9.
In the event that one wishes to interpret the internal codes for displayed
or non-displayable characters, Figure 10 provides the equivalent codes.
EBCDIC is the standard internal code in present files.

Smith, Stephen F. and William Harrelson, TMS: A Terminal Monitor System
for Information Processing, Berkeley: Institute of Lfbrary Research,
University of California, 1971, p. 43-46.

FIG. 9: CIMARON2 MESSAGES

1,19.22a&e-ii Text

MSGO ALL FILES CLOSED
OPTIONS ARE: EXIT, REOPEN

MSGI CIMARON IS READY - ENTER BOOLFAN EXPRESSION:

MSG2 NO RECORDS SATISFY REQUEST

MSG3 CONGRATULATIONS - YOUR REQUEST SPECIFIES THE ENTIRE FILE

MSG4 OPTIONS ARE: EDIT RESTART, CLOSE

MSG5 XXX RECORDS SATISFY REQUEST
HOW MANY ARE DESIRED?

MSG6 ALL EXCEPT XXX RECORDS SATISFY REQUEST
HOW MANY EXCEPTIONS ARE DESIRED?

MSG7 NO RETRIEVAL

MSG8 END OF RETRIEVAL
XXX RECORDS DISPLAYED

MSG9 SELECT RECORD DISPLAY FORMAT: MARC2 OR USER

MSGE THE LAST SEARCH REQUEST WAS:

DMO THE EXPRESSION CONTAINS ADJACENT OPERATORS - EDIT:

DMI INCORRECT USE OF THE "NOT" OPERATOR - EDIT:

DM2 UNBALANCED APOSTROPHES IN THE EXPRESSION - EDIT:

DM3 INVALID SYNTAX IN THE EXPRESSION - EDIT:

THE EXPRESSION CONTAINS ADJACENT OPERANDS - EDIT:

DM5 NO SEARCH KEYS IN THE EXPRESSION - RETYPE OR EDIT:

DM6 UNBALANCED PARENTHESES IN THE EXPRESSION - EDIT:

DM7 I/0 ERROR IN SEARCHING INDEX FILE " " - EDIT:

DM8 ILLEGAL INDEX CODE " " IN SEARCH KEY - EDIT:

DM9

SELDB

ACK

DMN

* WARNING * - LIST OVERFLOW DETECTED, CUT OFF
OCCURRED AT THE FOLLOWING KEY:

4 SELECT DATA BASE: TYPE "SD" OR " ", THEN SEND BLOCK +

+ SEND BLOCK TO PROCEED +

. YOUR OPTIONS HERE ARE: ALL, NONE OR A NUMBER

FIG. 10: EQUIVALENCE TABLE OF GRAPHIC REPRESENTATIONS
AND INTERNAL CODES (LISTED IN EBCDIC SEQUENCE)

NAME ASCII
6-BIT OCTAL

Null 00 00 738 00
01

Double Underscore
Angstrom F 02

03
F5
EA

75
8

75

65
52

04

05
06

Delete 07 7F 77
Circumflex 08 E3

758
43

Cedilla 09 FO 75 60

Superior Dot OA E7 75 47

Left Hook 03 F7 758 67

Eight Hook LI OC Fl 758 61

Inverted Cedilla OD F8 75 70
Hacek V OE 39 75 8

51

Acute OF E2 75)42

Double Acute
#

10 EE 75 56

Umlaut
9

11 E8 75 50
Dieresis 12 FC 75 74

Tape Mark 13 17 27

14
15

Backspace 16 08 738 10
Idle 17 16

C an ab in du 18 EF 758 57
Macron 19 758 45

lA
Double Dot Below 13 F3 758 63

Dot Below 1C F2 758 62

Circle Below 1D Pb 758 64

High Comma 5 lE FE 758 76

High Comma (off center 1F ED 758 55

20
21
22

*ASCII 6-Bit Code containing no escape code is in standard set.
Escape code =

738 - Non Standard Set I
758 - Non Standard Set II

NAME

High Question

Line Feed
End of Field

Upadhmaniya
Tilde

Grave
Breve
Double Tilde let Half
Double Tilde 2nd Half

Ligature lat Half
Ligature 2nd Half

End of Transmission

Patent
Flat
Open Bracket
Close Bracket
Space

Period
Less Than

FIG. 10 (Cont.)

ASCII
6-BIT OCTAL

0

23 EO 758 40
24
25 OA 738 12
26 lE 738 36

27

...... 28 F9 758 71
29 E4 756 44

2A
2B El 758 41

,..., 2C E6 758 46

2D FA 758 72

2E FB 758 73

2F

30 EB 75 52

-N, 31 EC 758 53
32

33
34

35
36

37 1D 738 35

38

39
3A
3B

I'D 3C AA 758 12
b 3D A9 758 11

[3E 5B 738 73

] 3F 5D 738 75
40 20 00
41
42
43
44
45
46
47

48
49
4A
4B 2D 16
4c 3c 34

FIG. 10 (Cont.)

NARIE ASCII
6-BIT OCTAL

A7

Open Paren
Plus

Awers,and
Miagkii gnak
Tv6rdyi tnak
Alif
Ain

1

4

4D
4E
4F

50
51

52

53
54

55
56

57

58
59

28
2B

26
A7
37
AE
BO

75
8

75
8

75
8

758

10
13

06
07
27

16
20

Exclamation Point 5A 21 01
Dollar Sign 5B 24
Asterisk 5c 2A 12
Close Paren 5D 29 11
Semi Colon 5E 311 33

5F
Minus, Hypen 60 2D 15
Slash 61 2F 17

62

63
Middle Dot 64 A8 75

8
10

65
66
67
68
69

British Pound 6A 39 31
Comma 6B 2C 14
Percent 6c 25 05
Underline 6D F6 758 66
Greater Than 6E 3E 36
Question Mark 6F 3F 37

70
71
72

73
74

75
76

77

40
6-

FIG. 10 (Cont.)

ASCII
6-BIT OCTAL

78
79

Colon 7A 3A 32
Cross Hatch 73 23 03
At Sign 7c 40 40

Prime, Apostrophe, Quote 7D 27 07
Equal 7E 3D 35

Double Quote 7F 22 02

80
Lower Case A a 81 61 41

Lower Case B 82 62 42

Lower Case C 83 63 43

Lower Case D 84 64 44

Lower Case E 85 65 45

Lower Case F 86 66 46

Lower Case G 87 67 47

Lower Case H 88 68 48

Lower Case 89 69 51

Lower Case AE 8A 35 75
8

25

Lower Case Cross D 8B B3 75
8

23

Lower Case Eth 8c B4 75 32

Lower Case I (without dot)
Lower Case Polish

1 8D
8E

B8
Bl

758
_8

75
8

30
21

Lower Case OB ce 8F 75
8

26

90
Lower Case J 91 6A 52

Lower Case K 92 63 53

Lower Case L 1 93 6c 54

Lower Case M 94 6D 55

Lower Case N 95 6E 56

Lower Case 0 96 6F 57

Lower Case P 97 70 60

Lower Case Q 98 71 61

Lower Case E 99 72 62

Lower Case Hook 0 91 BC 758 34

Lower Case Slash 0 93 B2 758 22

Lower Case Thorn 9c 314 758 24

Lower Case Hook U 9D BD 758 35
9E
9F
AO
Al

FIG. 10 (Cont.)

NAME

rt,7

,SCII
6-BIT OCTAT

Lower Case S
Lower Case T
Lower Case U
Lower Case V
Lower Case W
Lower Case X
Lower Case Y
Lower Case g

A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
BO
91
92
B3
B4

73
74

75
76

77
78
79
7A

63
64

65
66

67

70
71
72

95

96
57

98
99
BA
BB
BC
BD
BE
9F
CO

Upper Case A A Cl 41 41
Upper Case B C2 42 42
Upper Case C C3 43 43
Upper Case D 04 44 7

8
44

Upper Case E C5 45 73
8

45
Upper Case F 06 46 738 46
Upper Case G c7 47 73

8
47

Upper Case H c8 48 73
8 50

Upper Case I C9 49 73 51
Upper Case AR CA A5 75

8 05

42
-18-

FIG. 10 (Cont.)

Upper Case Cross D P CB
CC
CD

A3

Upper Case Polish L CE Al 75
8

01

Upper Case OR CF A6 75 06

DO
Upper Case J J D1 4A 73 52

Upper Case K
Upper Case L

K
L

D2
D3

4B
4C

73 8

47 8

53
54

Upper Case M M D4 4D 55

Upper Case N N D5 4E 73
8

56

Upper Case 0 0 D6 4F 73 57

Upper Case P P D7 50 73 60

Upper Case Q. Q DE3 51 738 61

Upper Case R R D9 52 738 62

Upper Case Hook o a DA AC 758 14

Upper Case Slash 0 0 DB 12 75 02

Upper Case Thorn I' DC A4 758 04

Upper Case Hook U Uj DD AD 758 15

DE
DF
E0
El

Upper Case S S E2
5. 738

63

Upper Case T T E3 54 738 64

Upper Case U U E4 55 738 65

Upper Case V V E5 56 73
8

66

Upper Case W w E6 57 738 67

Upper Case X X E7 58 738 70

Upper Case Y Y E8 59 73 71

Upper Case g g E9 5A 738 72

EA
EB
EC
ED
EE
EF

Zero 0 FO 30 20

One 1 Fl 31 21

Two 2 F2 32 22

AI .el%

rn
[Lroz t--- *G

t. H
 t

N
I al ed (li N

 In (11
fl

tin -1- is,
c co cs.

rn
rn c

01 cn 1-1

ur*A
o N

--a) th. .44 P
q

rx1 P
14

i±
4

p4 P
T

-I
4,0

144
P

i

crt
\O

 IN
- co

BROWSER2 TERMINAL OPERATOR'S GUIDE

3.1 Overview

BROWSER2 is an independent routine, operating under TMS, which may be
used to scan currently stored index files, to save index terms temporarily,
and to obtain hard copy of the displayed terms. Our current development
plans call for increasing the ease of communication between BROWSER and
CIMARON, and eventually for their incorporation into a single program system
with two operating modes.

Currently, however, BROWSER is a separate program and must be entered
using BROWSER2 as the program name following the TMS program select command:
TMS104A - SPECIFY PROGRAM. Once BROWSER2 is entered, two informational dis-
plays are available if positive replies are given to the first two BROWSER2
questions.

Q01: DO YOU WANT OPERATING INSTRUCTIONS?

A YES response results in a summary page of operating instructions being
displayed see Figure 11).

Q02: DO YOU WANT A LIST OF ACCESSIBLE FILES?

A YES r--ponse will display the current index file inventory.

The files currently available in this inventory are:

SCAU1 - Santa Cruz Author

SCSU1 - Santa Cruz Subject

SDAU1 - San Diego Author

SDTI1 - San Diego Title

SDSU1 - San Diego Subject

SDAD1 - San Diego Dolbyized Author

After the initial BROWSER informational screen disnlays, the major BROWSER
command functions are:

a. Select a data base index file

b. Select -which portion of the index file is to be examined

c. Advance the display

d. Save an index file entry

e. Display the Save Area List

f. Remove a term from the Save Area List

g. Print a hard copy version of the index file display or of the Save
Area List

h. Exit from file examination or from BROWSER2

i. Display the available commands or file names.

45

FIG. 11: CURRENT BROWSER COMMANDS

COMMAND
,

MEANING OF COMMAND

endblock display advance

F xbl forward x terms
(x should be less than 100

G 'x get index entry xxx

s xbl lx10 move line x _to -ave area

R xbl delete line x from save area

D
rnde area

transfer from current display .

ex area
rindex
Lsave

hard Co. out.ut of current dis- a-

//Close close current file

//Exit exit from BROWSER

3.2 BROWSER Commands

3.2.1 Select Data Base Index File

Following the informational displays or on exit from a prior file BROWSER2
requests that the user SPECIFY FILE NAME. The proper response to this is
enter t'lle name of any legitimate index file e.g. SCSUl. The index file name
mgy be entered only as a response to the BROWSER2 request to specify a file
name. Entering the name of a non-existent file will cause a syntax error,
and BROWSER2 will request that the name be re-specified.

3.2.2 Select Portion of Index File to be Displayed

This command enables the user to specify an alphabetic key as an initial
display value. The BROWSER2 message is:

SPECIFY KEY OR PARTIAL KEY.

The format of the response is:

G 'Key Value' (e.g. G 'LIBRARIES').

The attribute value (AU, SU, etc.) need not be specified, since it is implicit
in the index file name which has been used for selection. BROWSER will use
the alphabetic value orthe Key Value entered to begin an alphabetically ordered
display of index file entries. This is shown in Figure 12. The display
contains ten entries, and each entry is numbered. The display also gives a
count field which expresses the number of master file records which are linked

46

to this index file entry. This count is effectively the number of works
indexed by an individual index descriptor. If the G 'Key Value' gives a
value which does not exist in the index file, then the display begins with
the next legitim te index file entry.

FIG. 12: BROWSER2 DISPLAY OF INDEX TERMS

COUNT

1. LIBRARIES $X AFRICA $X DIRECT* 0001

2. LIBRARIES $X ANECDOTES, FACETIAE SATIRE* 0001

3. LIBRARIES $X AUSTRALIA* 0003

4. LIBRARIES $X AUSTRALIA4 0002

5. LIBRARIES $X AUTOMATION* 0004

6. LIBRARIES $X AUTOMATION $X CONGRESSES* 0002

T. LIBRARIES $X BIBL* 0001

8. LIBRARIES $X CALIFORNIA* 0002

9. LIBRARIES $X CALIFORNIA $X PERIOD* 0001

10. LIBRARIES $X CALIFORNIA $X PERIOD+ 0001

Of note here are the meanings of the special characters $X, *, and +.
The $X is the MARC subject heading subfield $X and is used to identify a topic
subdivision of a subject heading. In the Santa Cruz file (from which this
example is taken), $X is a default value and will be used to identify geo-
graphic and chronological subject subdivisions as well as topical. The
symbols * and + correspond to the MARC y (end-of-field) and 0 (end-of-record)
signals.

Also of note are the double index file entries for lines 3-4 and 9-10.
It is the current practice of CIMARON not to ignore the MARC r and signals
nor to treat these as logically equivalent codes. Consequently, the same

subject heading will be entered twice i it occurs both as a final and a non-
final field in two or more master file records. This practice does not
effect search requests, and will probably be eliminated from future versions

of CIMARON.

3.2.3 Advance the Display

In order to move the display, the user may specify a new Key Value (e.g.
G 'ECONOMICS') or he may move forward in the'file a fixed number of terms by
entering:

(e.g. F 5 or F 10 or F 100)

where X)8 is any number followed by a blank space. The display will then be
advanced by X terms. When the next screen is displayed, it should be noted
that the lines (i.e. index file entries) will be numbered consecutively from
1-10. To move backward in the list, only the G command may be used. WARNING;

47
-43-

Only numeric values of less than 100 should be used since the intervening
terms must be retrieved and counted serially in order to maintain correct
positioning. For larger moves use the G command.

3.2.4 Save on Index File Entry

Since the ultimate goal of browsing is to collect candidate terms for
CIMARON2 search requests, BROWSER2 allows users to save index file entries
for later use. This is done by transferring entries from the index file
display- to a special Save List or Save Area. The command to transfer index
file entry to the Save Area is:

S XV (e.g S 516)

where is entry number (from 1-10) of t'e telm to be saved. A number
larger than 10 will esult in a syntax error. The reslt of this command is
to add the selected term to the end of the Save Area List.

3.2.5 Display the Save Area List

In order to review the current contents of the Save Area List, the user
enters the command

D.

This causes the Save Area List to be displayed. The Save Area List looks
exactly like an index file display. That is, each line is numbered
consecutively from 1-10 and contains the term and its count. In order to
return to the display of index file entries, the command D is re-entered.

3.2.6 Remove a Term from Save Area List

Frequently, the Save Area List may need to be pruned. In order to do
this the following command is used:

R (e.g. R 516)

where XV is any number from 1-10 followed by a blank. The command results in
the deletion of the Xth term from the Save Area List.

3.2.7 Print

The Information Processing Laboratory as yet does not have a direct
facility for producing printed versions of selected terminal displays. In
order to accomplish this useful function, the line printer of the 360/40 at
the Campus Computer Center is utilized. The command to create a hard copy
version of a BROWSER2 display is:

H.

The command results in the printing of the current display, whether that
display currently consists of index file entries or of the Save Area List.

3 2.8 Close or Exit

Two exit options are available. The current index file may be closed.
The command for this is

//CLOSE.

This will terminate examination of the current index file and will re
initiate the question:

SPECIFY FILE NANE.

At this point another file may be opened for browsing. Closing a file does
not affect the contents of the Save Area List.

To leave the program entirely and return to TNS the command

//EXIT

is used. This results in the termination of all BROWSER2 operations, including
the purging of the Save Area List.

3.2.9 Display the Available Commands or File Names

If the user vould like to review the commands available, he may
enter:

//HELP.

This will result in a redisplay of the page defining the commands and their
uses. In a similar manner, the available file names will be displayed in
response to the user's command:

//LIST.

With these commands at his disposal, the user can master the use of BROWSER
rapidly.

4. USERS' GUIDE TO FILE BUILDING

4.1 Overview

A core set of three ILR data base programs, FILOR, ZODIAC, and FAX, and
an IBM utility sort ara required to establish the three-level linked file
structure which is searched by CIMARON2, the on-line retrieval routine. The
three-level file structure that is established on disk consists of a search
key fi:a, an intermediate address file, and a master file. An index-
sequential file is at the highest level and each of its records contains a
search key and an address (link) to the next level file. If but one master
record is referenced by a given search key, the associated address points to
that master record. Otherwise, it points to a record in the intermediate
address file. Pt the second level is an address file which has sets of
addresses of masuer file records associated with a given search key in the
level one file. At the third and last level of the file structure is the
master file itself. It consists of a sequential array of master bibliographic
records stored in a direct-access file. Any given record in this file can be
accessed by the address obtained from the other files.

By dividing the file construction operations into separate, small, func-
tionally oriented routines, the set of routines can be used flexibly in order
both to carry out the file construction operations on a wide variety of files
and to provide a wide variety of indexing to the individual records. This
is not to say that any file could be utilized readily without modification of
the routines, but rather that when modifications are required, it is a straight-
forward matter to identify the affected component routine and the nature of
the change that would be required.

For example, ZODIAC, the routine which searches master bibliographic
records and creates the individual search keys desired, presently is organized
to obtain the master records from a random access disk file via an intermediate
index file. If it were desired to obtain search keys from records stored in
a sequential file for which no intermediate index were available, it -would be
necessary to modify only that segment of ZODIAC which is concerned with obtain-
ing the next logical record from the master file.

As another example, if it were desired to utilize bibliograrhic records
which are not in the MARC structure, it would not be necessary to modify any
of the routines in the file building system except ZODIAC. It would be
necessary to develop new routine to replace ZODIAC since it is heavily
dependent upon the MARC structure. And finally, only the display "CSECT" of
CIMARON2 would have to be modified in order to store, search, and retrieve
these records appropriately.

4.2 Creation of the Bibliographic Master File

The first step in the f'ile creation sequence is performed by the program
known as FILOR. This program takes as input a file containing source master
records and provides two files as output: the first is a direct-access master
file which ultimately will be the third level of the file structure, and the
second is a sequential finder file in which each record contains the master
file record accession number and the disk address at which that record can be

found. At present the input file is defined as a sequential file of variable
length master records, either blocked or unblocked, with standard IBM conven-
tion on placement of the record length information. However, with minor
modification, the program could run on fixed length records as well.

The first output file is a direct access file and the variable run Dara-
meters in this file are the block size (BLKSIZE) and the logical record
(LRECL) length.* These two parameters in association with the UNIT and VOLUME
parameters would enable this file to be established on a variety of direct-
access secondary storage media.** At present, if a master record will not fit
within a physical block, it is segmented and stored in two contiguous blocks.
The finder file, the other output file produced by this program, is a sequential
file of blocked records. The block size is again a variable parameter, as are
UNIT and VOLUME. This file thus can be established on any sequentially access-
ible storage medium, and in general a tape file is used.

An important characterlotic of the direct-access master file created by
this program has to be mentioned here. A logical record in this file can be
laid out across a block boundary.*** This has been done with the view cf
optimizing the packing density in this file. Thus, routines which attempt to
retrieve records from this file would have to make use of "splicing" proce-
dures**** for split records. Split records are those having a first part at
the ena of a given block and the second part at the start of the next sequential
block in the file. Information about the size of each part in the two differ-
ent blocks can be obtained easily from the three-part disk address which has
been described earlier. The combination of track number, track offset, and
record length, in conjunction with a knowledge of the capacity of each track
or block is sufficient to determine the sizes of the two parts of a split
record.

Each record of the finder file consists of eighteen bytes (see Figure
13). The first six bytes contain the record (accession) number in EBCDIC,
and the next twelve bytes constitute what is known as the pointer field. This
field essentially consists of an eight-byte disk address, in addition to type and
flag information. The type and flag information ir each finder file record

an attempt to standardize the file types and the nature of the content of
each file into two or three classes so tliat future programs can dbtain

namically the type of the file and the nature of its content and invoke
specialized retrieval routines. In detail then, the first six bytes give the
accession number; the seventh byte in the finder file record is a code indicat-
ing the type of file (e.g., index sequential, direct-access, etc.); the eighth
byte in the record is a code indicating the type of content. Currently three
types of file content are defined: key-type content, address-type content and
data-type content. The maste7 file for example, would be a file with data-

*For reas ns of storage efficiency, it is recommended that BLKSIZE equal
LRECL equal track capacity on disks and drums, i.e., the record format is
fixed (RECFM=F).

**Including tape devices with a block-skip feature.
***In the terminology of IBM access methods such records would be known as
spanned records.
****May now be available in BDAM, RECFM=FS.

type content. The ninth and tenth bytes in the record constitute a two-byte
file code. Currently the letters MF have been chosen to indicate the master
file. Other codes are for attributes, for exanple AU for authors, TI for
titles, SU for subjects, etc. (These codes are established by PAX.) The
remaining eight bytes constitute the true disk address of the master file
record. Of these, the first foer bytes give the relative track number in
binary, the next two bytes give the offset into this track at which the master
record begins, and the last two bytes give the length or extent of the master
record. The four-byte track number has been designed towards making use of
the IBM direct block addressing, facility. This facility requires a three-byte
relative block nunber, which in our case happens to be the relative disk track
number.* The fourth byte could be used in the future to indicate the relative
unit on which the file is to be found. This would handle the case of a very
large file which spans a number of disk units. However, CIMARON currently is
estahliehed to accept only the value O.

FIG. 13: FINDER FILE RECORD FORMAT

File Name (controlled by JCL of FILOR)
Type of File: Sequential
Record Length: 18 bytes

Data Type Field Name and Position

EBCDIC Accession number (1-6)
Pointer field (7-18)

EBCDIC Type of the file referred torrn
Values: 1, index sequential

IK,** direct access
3, sequential

EBCDIC Type of content (8)
Values: 0, key

1, address
CE, data

EBCDIC File code (9-10)
Values: N, master file

AU, author index
etc.

Binary Track location (11-13)

Binary Unit number*** (1)-i)
Values: E0 lst 2 iIi

Bip= 0 fset 15-16) location of beginning of record

Binary Record 1- gth (17-18)

*If the master file were established on tape, this would be the relative
block number.
"0 indicates the standare values set by FILOR.
***Unit number is provided in order to allow storage and access to multiple
disk units. To be put into effect, howeer, additional unit designations
must be included in CIMAFON Table.

52_49_

FIG. 14: ZODIAC RUN SETUP'

Job Control Language (JCL):

//B5844JAZ JOB (584),15,50,00),'ILR-CUNNINGRAW,MSGLEVEL=1,CLASS=L
//GO EXEC PGWZODIAC2
//STEPLIB DD UH1T=2314,DSN=ILR.BATCHLIB,DISP=SHR
//GO.SYSUDUMP DD SYSOUT=A
//GO.LONEACC DD UNIT=2314,VOL=SER=ILR02,DSN=ILR.SCAC3,DISP=OLD,
// DCE=(RECFM=FS,BLKSIZE=1800,LRECL=18)
//GO.MASTERR DD UNIT=2314,VOL=SER=(ILR03,ILR05),DSN=ILR.SCMF2,
// DCB=(DSORG=DA,RECFM=F,BLKSIZE=7294),DISP=OLD
//GO.PRINT DD SYSOUT=A,DCB=(PFCFM=FB,LRECL=25,BLKSIZE=750)
//GOILUTHIDREIDD UNIT=TAPE,DCB=(RECFM=EB,LRECL=94,BI1KSIZE=1692,
// TRTCH=C,DEN=2),LABEL=(1,BLP),
// VOL=SER44117RI.4118R1 ,DISP=(NEW,KEEP),DSN=SCAUTH
//G0.1151101WM1 DD UNIT=TAPE,DCB=(RECFM=FB,LRECL=94,BLKSIZE=1692,
// TRTCH=C,DEN=2),LABEL=(1,BLP)5
// VOL=SER=(),DISP=(NEW,KEEP),DSN=SCTITLE
//GOTUTIDD UNIT=TAPE, DC9=(RECFM=FB,I9ECL=94,BL IZE=1692,
// TRTCH,DEN:2)22ABEL=(1,BLP),
// VOL=SER=(1412221,4122R),DISP=(NEW,KEEP),DSN=SCSUBJ
//GO.CARDIN DD *,DCB=BLKSIZE=80

AUTHORS 100.4,110.4,111.4,700.4,710.4,711.4

TITLES 130.4,240.4,245.4,440.4,730.4,740.4,84o.4

SUBJECT 600.4,61o.4,611.4,63o 4,65o.4,651.4,660.4

/*

//

INPUT FILES:

Master file - DSNANE=ILR.SCMF2 refer DD=MASTERR

Finder file - DSNAME=ILR.SCAC3 refer DD=LONEACC

Controls - none at present

OUTPUT FILES:

Authors DSNAME=SCAUTH refer DD=AUTHORS

Titles DSNAME=SCTITLE refer DD=TITLES

Subjects - DSNANE=SCSUBJ refer DD=SUBJECT

Controls - Through card input refer DD=CARDIN

The control input for the program FILOR is indicated on cards as shown
in Figure 15. The information supplied on these cards is as follows: the

nutber of records that are to be appended to the master file, the relative
track number, and the track offset at which the records are to be appended.
In the case of a master file which is being established on disk for the
first time, the track number and offset would be zero, indicating it is being
appended "from the beginning." In the case of update runs, track number and
offset in the master file would be dbtained from the run statistics of the
previous run, and this would be input as control to the program so that the
file is appended at the right point.

4.3 Extraction of the index Information

The next program in the file creation sequence is known as ZODIAC. This

program has the function of extracting various fields from MARC records as
attributes of the record, on which index files will be subsequen _y established.
The program is definitely tied down to the MARC II format* in that each record
is expected to have a MARC structured leader and directory through which the
variable fields are obtained. These variable fields which will be used to
establish the index files are selectively extracted by the program. This
program has two input files and a variable number of output files besides the

controlling input which is supplied on cards. The two input files are the
same files which are produced by FILOR in the first step of the file creation
process viz. the sequential finder file and the direct-access master file. The

controlling tables which are set up as a resuit of reading in the parameter
cards determine the number of sequential output files created and their content
(see Figure 14).

The structure of any record in an output file is the same. It's a 94-
oyte record of wtich the first eighty bytes contain the variable field vlich
has beei extracted for the purposes of establishing an index. Since only
eighty bytes are allowed** there night be cases where the field was truncated.
The remaining fourteen bytes in each record consist of two parts. The first
two bytes represent the MARC tag (in binary) identifying the type of variable
field, and the last twelve bytes are the pointer field (see Figure 13) picked
up from the last twelve bytes of the finder file entry for this particular
MARC record. The construction of an output file record in this manner makes
sure that any variable field which is extracted from a given MARC record is
firmly associated with an aadress 'pointer' to the MARC record itself and the
tag identifying this variable field in the MARC record.

4.3.1 Parameter Control

A parameter card consists of the name of the output file followed by a
sequence of three-digit tags, delimited by commas. The tags indicate the
variable fields that have to be extracted from each MARC record and routed to
a given file whose name is supplied in the card. For example (see Figure 14),
a parameter card which could be supplied as controlling input to ZODIAC may

*See Specifications for Magnetic Tapes Containi Monographic Catalog Records
in the MARC II Format," in Books: A MARC Format, Washington, D.C.: Library
of Congress, Information Systems Office, April 1970.
**This is a reprogrammable parameter.

-515_4

FIG. 15: FILOR RUN SETUP

Job Control Language (JCL):
//B5844JAF JOB (5844 ,15,50,00) , 'ILR-CUNNINGHAW,MSGLEVEL=1,CLA -=L1

//GO EXEC PGM=FILOR2,00ND=COND=EVEN
//STERLIB DD UNIT=2314,DSNANE=ILR.PATCHLIB,DISP=SHR
//GO.SYSUDUMP DD SYSOUT=A
//GO.CARDIMIN DD U1IT=TAPE,VOL=SER=(3717,3760,3780),LABEL=(1,BLP), X

// DCB=(RECFM=VB,LRECL=20)48,BLKSIZE=3600,TRTCH=C,DEN=2), X
// DISP=(OLD,KEEP)
// DB UNIT=TAPE,VOL=SEE=0725,3766,3787),LABEL=(1,BLO, X

// DCB=CRECFM=VBbLRECL=2048bBLICSIZE=3600,TRTCH=C,DEN=2), X

// DISP=(OLD,KEEP)
//GO.LONEACC DD DCB=(9LKSIZE=_300,LRECL=18,RECFM=FB),UNIT=2314, X

// VOLUME=SER=ILR02,DISP=(NEW3KEEP),DSN=ILR,SCACC23
// SPACE=(CYL,(15,l),RLSE)
//GO.MASTERR DD UNIT=2314,DISP=(NEW,KEEP), X
// VOL=(,,2,SER=(I1203,I1205)), X
// SRACE=(CYL,(199,15),RLSE,CONTIG),DSN=ILR.SCMARC2, X

// DCB=DSORG=DA

/*

//

INPUT FILES:

Master file - DSNAME= refer DD=MASTERR

Controls - none at present

OUTPUT FILES:

Master file - DSNAME=ILR.SCMARC2 refer DD=MASTERR
Finder file - DSNAME=ILR.SCACC2 refer DD=LONEACC

consist of the word AUTHORS in the first seven columns of the card followed
by the tag 100 beginning at column ten.* This would indicate that all
variable fields associated with tag 100 (which identifies a personal author
entry) be routed to an 'authors' file. The digit following the tag specifies
an initial offset in the variable field. This is tc skip over binary indica-
tors and codes which may occur at the start of the field. Each re rd in the
output file SCAUTH would consist of a personal author name (blank filled) in
the first eighty bytes, followed by the tag 100,in binary in the next two
bytes followed by the twelve-byte pointer field (see Figure 16).

FIG. 16: ZODIAC Internal Control Tables

NANE maximum of twelve eight-byte entries, one entry for each
output file

CALTEX maximum of twelve one-byte entries

MARCEL 850 one-byte entries, one for each possible MARC tag; each byte
is a possible index to an entry in the NANE table

TAGOn 850 one-byte entries; each byte gives an offset from the
beginning of the field, to skip fixed length control (e.g.,
$a)

4.3.2 ZODIAC Control Tables

It might be instructive to describe the tables which are used to drive
this program. There are four important tables in this program: NAME, CALTEX,
NARCEL and TAGOFF. These tables are summarized in Figure 16. The first is
known as NAME, and this table can have twelve eight-byte entries. This is a
table of the twelve possible output file names each of which can be eight
characters long. The next table is known as CALTEX, and this can hold twelve
eight-bit flag entries. The next table is known as MARCEL, which has 850
positions - each of which is one byte wide. This table reserves one entry
for each possible MARC tag. MARC tags currently run from 000 to 850; thus
we have 851 positions in this table. The table is initialized to blanks and
after the reading in of the parameter cards, a given entry in this table
contains a one-byte index into the NAEE table. This defines a given tag as
being required in a given output file. A table which is parallel to this
table is known as TAGOFF, which also consists of 850 one-byte entries. Each
entry in this table gives an offset from the beginning of the variable field
in order to skip over fixed-length control fields at the head of the variable
field. The offJet table is set up in parallel with MARCEL, as a result of
reading in the parameter cards. On the parameter card each tag is followed
by the offset, which is supplied within two digits and delimited from the
tag by a period. This two digit offset indicates the number of bytes that
have to be skipped over from the beginning of the variable field in order to
get at the data which is required in the output file. For example, le
e-irrently skip over the sub-field delimiter and the sub-field code at the

of variable fields. The other sub-field delimiters and the sub-field
,. within the variable field itself will be carried as part of the output

The table known as CALTEX is associated with the programming logic.

*The file name can be up to eight characters long in accordance with 0.5.
conventions. Column 9 i- ignored. Tags must begin in column 10.

This table is initialized to zero and indicates by a non-zero entry the fact
that records have been output to a given file previously. Thus, on the first
time that a given tag is encountered in a MARC record and found to be required
in a given output file, a special routine finds zero entry for that file in
CALTEX and obtains working storage for that file, opens the file and performs
other initialization procedures. CALTEX is a table of flags which indicates
whether t'ae initialization procedures have been performed or not.

4.3.3 Processing Sequence

We might end by briefly describing the typical sequence of operations
that take place on reading in a particular MARC record. First a record is
read in from the finder file and the portion of the finder file record which
gives the record address is used to issue a read to the direct-access master
file. This results in bringing in a particular MARC record into main storage.
Next, the MARC record directory is sequentially scanned from beginning to end
and the tables simultaneously consulted. As each tag is encountered the table
MARCEL is looked into and a non-blank entry indicates that the variable field
associated with this tag is required in a given output file. The name of
this output file is indirectly known via the index quantity in the current
entry of MARCEL. By making use of this index the flag table, namely CALTEX,
is indexed and it is determined whether this file has been initialized for
output or not. In the event that it has not been initialized for output,
initialization procedures are performed and then one goes on to the subsequent
portions of the routine. These subsequent portions pick up the relative
address of the variable field from the current entry in the record directorY
and move the variable field out to the output record buffer where a 94-byte
logical record described earlier is constructed and written out to the asso-
ciated output file. This procedure is repeated by going beck to the finder
file and finding the address of the next MARC record, after all the directory
entries in the current MARC record have been scanned.

4.3.4 Program Constraints

There are two limitations in the number and nature of output files that
can be created in one run. First, the nueber of output files that ZODIAC can
create is variable up to a maximum of twelve. This is a limitation of the
table-structure in the program because the first step in the program is to
read the parameter cards and create tables which are subsequently used to
drive the program in its variable field extraction procedures. The second
limitation is that there must be an exclusive parLition of the tags across
the various output files, in other words a given tag cannot appear in more
than one output file-defining parameter card. This means that a MARC variable
field can be routed to one and only one output file.

The execution of this program is also controlled by the finder file in
the following manner: as many records are brought into main storage and
analyzed as there are entries for them in the finder file and the finder file
is accessed sequentially from beginning to end. A possible future control on
this program would be to define contiguous subsets of the master file to be
analyzed by ZODIAC, through the incorporation of record skip and record count
cratrols.

-5 574-

Currently the program is tied to the format of the finder file (18-byte
records) and also the format of the output files (94-byte records). By
reassembly, the length of the output records can be changed, in order to
change the length of the key field carried in the output records. This length
can be anywhere from 1 to 256 bytes, since the variable field is eventually
to be used as the key in an index-sequential file, and the O.S. limitation on
the size of this key is 256-bytes.

4.4 Sequencing the index Data

The next step in the file creation procedure is executed by the IBM sort
utility. Each of the output files produced as a result of a run of ZODIAC
are passed through the sort utility, which sorts the records so that the key
portion (the first 80 bytes) are in alphabetical sort order. Each run of this
program takes one input file, -)rts it and produces one output file, which is
then ready for the final step in the procedure.

The controls supplied to the IBM sort utility are as follows: the
record length, the offset from the beginning of the record to the sort key
in each record, the length of the sort key, and the sort order, namely
ascencing or descending. The sort utility also has provision to specify the
sort key in two parts. This in fact is being done currently with the records
outpnt from ZODIAC. As mentioned earlier, each of these records consist of
94-bytes, the first 80 of which have the variable field and the last twelve
contain the pointer field, which contains the disk address of the master
file record. The sort is currently being performed primarily on the variable
field and secondarily on the twelve-byte pointer field. This insures that
any collection of pointers in the level two address file of the file structure
associated with some key in the level one file, will be in ascending order
of master file address. This buys a little efficiency in the running of the
retrieval routines. One of the first things that is done on retrieving a list
of addresses from disk is to put them in a sort order, so that comparisons
can be done between two lists. So by specifying this secondary sort
key one can save the initial sort on reading in a list of addresses from disk.

4.5 Creation of the Index Files

The final step of the file creation procedure is performed by a program
called PAX. This program has one input file and produces two output files.
The input file is a sequential file and it is the output of the IBM sort
utility. The two output files produced by this program are respectively, the
level one index-sequential access file and the level two direct-access
address file. If a pair of these files is established for a given attribute
in a record co1lee4-ion, it will enable the master file collection to be
searched via this attribute.

The process performed by the program FAX and indeed much of its logical
structure is quite similar to that of FILOR. The points of difference lie in
the format and content of files handled by this program. The level one index-
sequential file consists of records which have two important parts. The first
part is the key and this key will be the argument for searches performed on

this file. The second part of the record consists of a twelve-byte pointer
field, which will point to a collection of twelve-byte pointer fields in
the level two address file. The length of the record keys of this first
level file is variable up to a maximum of 80. On loading different files,
this can be varied without reassembly of the program, since the key length is
supplied as a FAX run-time parameter. After the file is opened (e.g., by
CIMARON) this parameter is available in the data contrel block for the file and
thus files can be created with records different length and the using program
can be adjusted to the key length of the specific file.

Currently the two-byte binary tag which is carried in the input records
does not appear in the index-sequential file. At a later time, it may be
used to further 'refine' attributes (to the tag level) during search.

One of the important functions performed by FAX is to make sure that only
one index-sequential record is created for each unique key in the input file.
This is established on the basis of a comparison between the 80-byte variable
field portion of the current input record and the corresponding field in the
previous record. At the point when a mismatch is detected the program will
create a new record in the access file - that is the level one file. This
record would consist of a key constructed from the variable field portion
of the previous record followed by a twelve-byte pointer field which points
to the location in the level two file at which can be found a sequence of
twelve-byte pointer fields identifying all the MARC records in which this
particular variable field appeared.

It is important to note that the structure of the pointer field is
uniform throughout the system, and it is by this field that links are
established across the levels of the file structure. Specifically, the
pointer field in a record in the level one file establishes a link to a
series of pointer fields in the level two file. Each pointer field in the
level two file establishes a direct link to a master record in the level three
file. This briefly, is the file structure employed to search master file
records via indexed attributes.

The creation of entries in the level two file proceeds in parallel with
the reading in of input records. As each input record is read in and its
sort key found to be the same as that of the previous record, an additional
entry (a twelve-byte pointer field entry) is made in the level two direct-
access file. This additional entry is in fact the pointer field in the current
input record. At the end of a sequence of identical sort keys on input records,
it is time to create a new record in the level one file for the collection of
input records which have the same variable field. The address at which a
sequence of master record addresses can be found associated with this collec-
tion of similar variable fields is entered in the level one file.

Where there is but one master record linked to a given sort key, the
level two file is bypassed. Instead, FAX establishes a direct link from the
record in the level one file to the master record in the level three file, in
all cases where the sort key in the level one file is uniquely associated
with a single master file record in which it appears. This enables one to
bypass both the construction and subsequent reading of a record in the level
two file during search. Thus, the speed of the search process is increased
for such keys.

In the future, it may be possible to dispense with the level two file
altogether. In this improved file structure, all of master file addresses
associated with a key would be found in the level one file entry for that key.
However, this will be possible only when the IBM operating system supports
variable-length records in index-sequential files. Currently only fixed-
length records are supported in these files.

GO
,57-

