ED 057 828

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY

PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME
LT 003 325

Parker, Edwin B.

SPTIRES {Stanford Public Information Retrieval System)
1970-71 Annual Report.

Stanford Univ., Calif. Inst. for Communication
Research.

National Science Foundation, Washington, D.C. Office
of Science Information Services.

Dac 71

154p.3; (23 References)

MF-$0.65 HC-$6.58

*Computer Programs; *Information Retrieval;
*Information Storage; *Information Systems:; *On Line
Systems

Computer Software; SPIRES; *Stanford Public
Information Retrieval System

SPTRES (Stanford Public Information REtrieval System)

is a computer information storage and retrieval system being
developed at Stanford University with funding from the National
Science Foundation. SPIRES has two major goals: to provide a

user-oriented,

interactive, on-line retrieval systex for a variety of

researchers at Stanford; and to support the automation efforts of the
university libraries by developing and implementing common software.
SPIRES I, a prototype system, was implemented at the Stanford Linear
Accelerator Center (SLAC) in 1969, from a design hased on a 1967
information study involving physicists at SLAC. Its primary data base
is a high-energy-physics preprints file. Evaluation of SPIRES I
resulted in the definition of a production information storage and
retrieval system, SPIRES II. This system will be available daily,
beginning in mid-1972, to faculty, staff, and students of the

University.

It is characterized by flexibility, simplicity, and

economy. SPIRES II will operate on-line cn an IBM 360/67 computer.
This report summarizes the uses of the SPIRES I system over the past
vear and describes bcth the nature of SPIRES ITI and this system's
development over the past year. (Author)

U.S. DEPARTMENT OF HEALTH,
EBUCATION & WELFARE
OFFICE,OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
|ONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

a
~J
=
N
7ol
D
o
(S

i ,:}\

“_“SPIRES
(Stanford Public Informatien REtrieval System)

1970-71 Annual Report,

6 s to
“““the National Sci
oreim ? lonal Science Foundation .. o "™~
ice of Science Information Servfc%Q Y- REVEE B
z Al S

L;) Edwin B. Parker
Principal Investigator

PR
<

s t itute FQrzccmmUﬁlcatIDﬂ Research CI.Q¢ - % o
Stanford Univegskty /. (.0 e |
! i f e \.J

(B)December 1971

ABSTRACT

SPIRES (Stanford Pubiic Information REtrieval System?
is a computer information storage and retrieval
system being developed at Stanford University with
funding from the National Science Foundation.

SPIRES has two major goals: to provide a
user~oriented, interactive, on-line retrieval

system for a variety of researchers at

Stanford; and to support the automation efforts of
the university libraries by developing and
implementing common software.

SPIRES |, a prototype system, wss implemented
at the Stanford Linear Acceleratcr Center (SLAC)
in 1969, from a deslign based on a 1967 information
study involving physicists at SLAC.. its primary data base
is a high~-energy-physics preprints file.
Evaluation of SPIRES | resulted in the definition
of a production Information storage and retrieval
system, SPIRES Il, This system will be available
daily, beginning in mid-1972, to faculty, staff,
and students of the University. It is
characterized by flexibility, simplicity, and
economy. SPIRES || will ¢perate on-line on an |BM
360/67 computer.--.This report summarizes the uses
of the SPIRES | system over the past year and
describes both the nature of SPIRES Il and this
system's development over the past vear.

a2

. CONTENTS

BACKGRGUND v v v v v v v . .
SPIRES | IN THE PAST YEAR . . v . +

SPIRES Il DEVELOPMENT & 4 o « .

The Computing Environment. s s e .
Development Status. e = s s
Capabilities and Services Planned.
Work In the Comling Year., . . . v v v o o . .

SPIRES AND BALLOTS

APPENDICES"

A.

List of Selected Publications and Reports
Relating to SPIRES

Cé%ients Pages for Reauiremepnts for SPIRES 11

ES 11, Volume 1

Preprints/Antl-preprints

—
—
—

1.0 Batkgreund

This is the fourth annual report to the National Sgience
Foundation on Project SPIRES (Stanford Physics lLnformation
REtrieval System), now known as the Stanford Pubilic Information
REtrieval System. The first, 1967 Annual Report <11>* described
the results of a behavioral information study of a target
population of physicists; the 1968 Annual Report <12>7documented
the SPIRES | on-1ine programming; the 1969=70 Annual Report <13>
described the operation and evaluation of SPIRES | and the
development plan for SPIRES 1!, the production system. This
report describes the current operation of SPIRES | and the 7
progress made in developing SPIRES Il during the perifod July 1,
1970, to June 30, 1971.

SPIRES has two long-range goals. The first is to provide a
user-oriented, interactive, production on-1ine Information
storage and retrieval system for a variety of research groups In
the Stanford community. The second is to support the automation
efforts of university libraries (Project BALLOTS) <8, 15> by
contributing to common software development. An immediate
short-range goal has been to provide an on=-line bibliographic
information service for Stanford physicists, particularly for
high-energy physicists. All of these goals must be achlieved
within a framework of effective, efficient operations,
Effectiveress is ensured by carefully studying and constantly
interacting with users and the user environment. Efficlency is
ensured by evaluating costs and performance factors under
operating conditions.

In 1967, a comprehensive user study was conducted on a
target population of physicists. This study established
information needs and priorities as a basis for system deslgn
(see the 1967 SPIRES Annuai Report). 1In late 1967, a small,
one-terminal demonstration system was installed on the 360 model
75 computer (slnce replaced by a 360/91) at the Stanford Linear
Accelerator Center (SLAC), using an IBEM 2250 display terminal.
Following the demonstration of the pilot system, most of 1968 was
spent In creating the software necessary for a multiple-user
on~line system. This included the development of an on-line
supervisor program (see the 1968 SPIRES Annual Report), and of
search, retrieval, and update programs. By early 1969, SPIRES |
had been tested and was ready for service; In late February
operation began for an hour and a half a day, five days a week.
This service schedule continued through the summer of 1969, I BM
2741 typewriter terminals were placed in the Stanford University

—

#*Number in brackets refer to Appendix A, a list of
publications and reports relating to SPIRES. '

1

Libraries and in the SLAC Library. (The SPIRES system, however,
can be used from any terminal on campus.)

After severcl months of operational experience, the last
gquarter of 1969 was spent in evaluating the SPIRES | system (see
the 1969-70 SPIRES Annual Report). Thls evaluation was conducted
by members of the SPIRES staff with the assistance of an
independent computer consultant, Robert L. Patrick. It indicated
that with the successful coperation of SPIRES | a major milestone
had been reached, Technical feaslbility was clearly
demonstrated., The special target audtence of high-energy
phvsicists had found the SPIRES system useful,. Another user
group (the Library staff), with almost no knowledge of computers,
had been able to use the system after only a short training
period, Varlous data bases had been created and successfully
searched concurrently from different polnts on campus. The
evaluation revealed that the data bases used by the SPIRES
system, particularly the library fliles and speclial subject files
such as a physics preprint file, are characterized by continued
growth and intenslve updating. If the SPIRES system were in use
full time, Its users would have to be assured of software and
hardware rellability.

The experience with SPIRES | was the basis for a six-phase
development cvcle defined for a SPIRES Il production system. The
first phase of the SPIRES Il system development orocess was
completed during the first quarter of 1970, This phase of
preliminary analysis produced a major document <15> that
characterized the users and the user anvironment and summarized
the 1imitations of SPIRES I; it then went on to outiine a
long-range scope of retrieval and flle management capabilities as
well as the first implementation of SPIRES 11.

The second phase, detalled analysis, was a perlod of cruciai
activity. System requirements (such as performance and output
documentation) were established and approved by project staff anu
system users. A variety of technlcal tasks were carrled out: th:
evaluation of existing programming languages and software, system
“simulation, the writing of an on-ltine command language, the
designing of an analyzer to parse the language. This activity
was well underway in July 1970, the beginning of this reporting
yvear.

a

"

2.0 SPIRES | IN THE PAST YEAR

For most of the reporting vear, 1970-71, SPIRES | contlnued
in operation on the Campus Faclility 360/67, where it was used
primarily by SLAC physicists and Library staff. During this
period, however, work was begun to move SPIRES | to the {BM 360
madel 91 computer at SLAC. By June 1971, the following
components of SPIRES | were successfully operating on the 360/91.

-= 0On-Line Retrieval

-- Batch Build (Data Base and Indexes)

== SLAC Publication List production (by author, subject, and
number

== Weekly Preprint List (PPF) production

== Anti=Preprint List Production

-= Data Base Checkpoint/Restore

-=- Data Base Recovervy/Reconstruct

-~ Miscellaneous Diagnostic Routines

SPIRES | is presently accesslible on the 360/91 from any SLAC
terminal and from terminals on campus and elsewhere that have
telephcne dialup and entree to a SLAC account. Operation of the
system requires mounting one disk pack. A 15-minute search
utflized about ,0004/min CPU time. It uses Jfust under 300,000
bvtes of core storage. Searches typically bring the system up
for five- to twenty-minute periods and are coordinated through
the SLAC Library to minimize the use of system resources,

The SLAC Library's relation to SPIRES has continued to be
that of an experimental user group, Since 1968, a SLAC
Librarian, L. Addis, has acted as l1ialson to SPIRES and as
coordinator of the Library's SPIRES-related activities including

. on-llne development of the principal SPIRES | database, a file of

some 14,000 high energy physics preprints. " During 1970-71, the
library has continued weekly maintenance and updating of the
preprint database (now on the 360/91), as well as weekly
publication of the bulletin "Preprints [n Particles and Flelds
(PPF)". PPF, with Its companion ANTIPREPRINTS, which has been
pubilished since 1969 (see SPIRES Annual Report 1969-70 and
Appendix D), became self-supporting in July 1970 when the AEC

seed-money was exhausted. By the end of FY71l, PPF had more than .

600 subscribers. (not including those at SLAC) at the rates of
$10.00/year in the U.S,, Canada, and Mexico, and $18.50 for
overseas airmall.

By June 1971, arrangements were uriderway to supply weekly
tapes of preprint information, In SPIRES input format, to the
California Institute of Technology, the University of Texas, and
to the Deutsches Elektronen-Synchrotron in Hamburg, (R. Parsons
the University of Texas has plans, for instance, for studies

\‘l

g

R A e Ly i L . :
N e ST e e B I
e b ezl L e

utilizing the citation index feature). If experimental tape
distribution proves successful, It may be feaslble to offer tapes
to the other high-energy physics facilities which have expressed
interest., Tapes are currently written either 7 track or 9 track,
800 BPI, and with or without citations. Users supply minitapes.

At the suggestion of the American Physicail Society Division
of Particles and Fields, arrangements are now underway to inciude
data on current experimental high-energy physlics proposals, in
the SPIRES database and periodically in PPF. The Lawrence
Berkeley Laboratory Particle Data Group utilizing SLAC Library
files (set up, by the way, in response to suggestlons In the 1968
SPIRES interviews) Is analvzing available experimental proposal
information for beam composition, detection method, number of
events, etc., The Particle Data Group also plans to use the
resulting SPIRES jpnput tapes In their own complilations.

The bulilding of a complete database utilizing the DESY High
Energy Physics Index tapes is underway. The size of previous
DESY files has been 1imited by the fact that two additional disk
packs are required for the operation, one for the 1968-69 files
and another for the more current files. When the DESY file is
complete 1t will contain approximateiy 40,000 to 50,000 items
dated from 1968 to the present., It will be updated fortnightly
and searchable by author, title, date, and, most importantly,
keyword. In the meantime, other facilities are experimenting
with possible use of the DESY tapes in the SPIRES format. Dr. K,
Mellentin at DESY has given permission for such experimentation,
the SPIRES format being a particularly convenient one for users.

Together, the preprint and DESY databases aire axpected to
provide on-=1ine access through SPIRES | to virtuaily all high
energy physlics literature, published and unpublished, including
current experimental proposals, from 1968 to the present.

During the 1971-72 reporting period, SPIRES | activities are .

expected to emphasize the completion of the DESY database,
consolidation and correction of the SPIRES input archive tapes
for possible use by other facilitles, corrections to the current
preprint database, as well as continuation of current production
scheduies, Alternative plans for the utilization of SPIRES |1 by
SLAC users will be developed.

e R W S e e

i

3.0 SPIRES |1 DEVELOPMENT

3.1 The Computing Environment

SPIRES | was originally implemented on the Campus Facllity
IBM 360 model 67. During 1969 and early 1970, the Campus
Facility machine was close to saturation. The installation
software at that time was workable and efficient, but had not vyet
been fully optimized. Furthermore, there was a heavy batch
workload. Therefore, a decision was made to turn to a machine
(of the model 50 class) outside the Campus Facility in support of
campus informatlon retriaval., But the restrictive economic
environment later caused that decislion to be rescinded, 7
Meanwhile, two things occurred in the Campus Facility: a gain in
CPU cvcle avalilability due to substantial software optimization,
and a decrease In the overall workload. In the past vear,
reliability on the 360/67 has increased to the point where uptime
is around 96 percent. Throughput in the high-speed batch
partition has Improved 40 peircent. For example, the execution
time for an average job has beer reduced from 4.3 seconds to 2.2
seconds and the minimum job cost has been reduced from fifty
cents to twenty-five cents. Text=edlitor (WYLBUR) throughput has
increased 100 percent--i.e., it has doubled, effectlively cutting
costs to the user by 50 percent. These improvements to the
operation of the 360/67 resuited in an average machine cycle
avatlability of 30 percent.

These facts, coupled with the Univeirsity's desire to make
maximum use of Its avallable computer resources, dictated a
SPIRES Il iImplementation on the Campus Facility computer. The
technical staff of the Campus Facllity agreed to make the

. necessary modifications to the Installation software to support a

reliable on-line sysiem, and to ald the development and 7
installation; of the system, the SPIRES group became an integral
part of the Campus Faclllity systems group. ‘

In order to accommodate SPIRES, the following hardware is
being added to the Campus Facillity configuration.

1. Disk Storage Drives.. When the SPIRES Il system becomes
available to the campus community, there will be additional
storage devices provided. These devices will provide adequate
and fast-access storage for data bases. Each drive will provide

. storage snace for approximately 28-million characters.

2. A PDP-11 Front-end Computer. All communications between
SPIRES and the CRT terminals will be via a PDP-11 "front~-end"
machine. This will, among other things, provide faster

‘communications for the terminals.

8

(93]

3. Terminal Equipment. SPIRES will be avallable via an
upper/lower-case CRT terminal (Sanders Associates 800 series)
and a less expensive upper~case only CRT Terminal (The Hazeltine
2000). These terminals provide fast, silent display of large
amounts of dats. It is estimated that the proposed configuration
will be able to support up to 32 CRT terminals concurrentliy; If
that number is exceeded, a second PDP-11 can be added to the
configuraticn.

In the Campus Facllity 360/67 system software there are si% .
major partitions: the operating system, high-speed batch/FUTIL, .
large batch, the Stanford time~sharing monitor (ORVYL), the
WYLBUR text editor, the MILTEN terminal communicator, and the
HASP spooling processor. ORVYL operates in a 220,000=byte
partition, It enables a program to reside in segments on a drum,
and to share core memory with other executing programs. Such
programs are called subprocessocrs. They are re-entrant; thus
many terminal users can use a subprocessor concurrently. ORVYL
is the time-sharing monitor performing such functions as reading
necessary program segments into core from the drum, and writing
user work areas out to the drum when another user is being
serviced. The monitor further decides which user should be
serviced next,

SPIRES Il will operate as a subprocessar under ORVYL, as
LISP and BASIC do currently. A simple simulation has predicted
good response time, with 1ittle detrimental effect on the rest of
the system.

MILTEN, the communications monitor, currently supports 88 :
2741 typewriter terminals. Modifications to meet the needs of :
SPIRES Include supporting CRT display terminals using the PDP-11 3
computer as a line-handling and intermediate buffering device. 5

"MILTEN allows the user to connect to a time=-sharing subprocessor

or to WYLBUR, the on-line Text Editor. One of the functions of 4
the terminai system is that the user can use WYLBUR text~editing i
commands transparently while connected to an ORVYL subprocessor 3
and vice versa just by typing the command verb required. :

As Indicated above, the project decided that to implement '
SPIRES Il as an ORVYL subprocessor would require modifications to

the Campus Facllity software system. The Stanford Computation
Center has made the necessary expertise available at no cost to
the project to accomplish the following modifications <9>.

_ 1. ORVYL File System. The present file system under ORVYL
‘provides excelient support for small user flles, which are
transient In nature and are easily re-created if a system failure
occurs.. But present Campus Facility requirements double the

3

input-output 1oad in handling large files. An extension is
therefore being provided to the ORVYL file system that will
permit rapld access to large flles and that will ensure fil

protection.

2. Subprocessor Communications Area. An ORVYL subprocessor
is re~entrant, and is written as if only one user existed. Thus
the subprocessor, while acting on behalf of one user, may not
have access to the workspace of any other user. It is therefore
not possible at present for the subprocessor to "remember"
anything as It goes from user to user. To remedy this, a
resident area is being provided for each subprocessor In the
~system. Here the subprocessor can store the work It Is doing for

one user whenever It goes to another user. It will be impossible
for any material in this area to be simultaneously modified
(updated) by more than one user,

3., Virtual Access Method (VAM), Provision [Is being made
for programs running in a batch partition to access any ORVYL
disk data sets, allowing on-line file access modules to be used
in batch mode with no source code modification. Furthermore, the
batch programs may be run whether ORVYL is executing at the time
or not. The only restriction (which turns out to be a benefit
with respect to security and reliability) is that no more than
one such batch program may be executed in the system at one time,

4, CRT Terminal Minicomputer Support. ORVYL and M!LTEN
will be modified to allow CRT terminal support via the front—-end
PDP-11.

3.2 Development Status

The SPIRES 1969-70 Annual Report describes a six~-phase
.development process being followed. At that writing, the project
was involved In the second phase, detaliled analyslis. In the
reporting period 1970-71, detailed analysis was completed; phase
three, general system design, was accomplished; and phase four,
detalled system design and programming, was begun, (The last two
phases, implementation and installation, will be accomplished
during 1971-72,) The phases have shifted and overlapped in
actual practice, so that general and detailed design intermingled

-11and'dﬁtsiléd‘desigh has involved some of the coding and testing
'~M‘descrlbed as part oF phase ?ive, implementation.

e In: the thlrd quarter ‘of 1970, a general flile structure
'deslgn for SPIRES I'l was prepared. This was refined and

;jdccumented in the foilowlng quarters. The design was for a
i,;multIDTEGlndexing structure that allows both full and partial
'vﬁ?data FEﬁords tg be stored and accessed . Access (index) records

10

and goal (data) records can be stored together or separately,
whichever method Is most efficient. Redundancy is butlt into the
file to ensure rellabiility. Access record values are generated
from goal records, so that the access records can be re-created
if necessary. input and output access time is minimized by
providing for frequently used tables and dictionaries to be held
in core storage. Information common to the records in a file Is
stored in one spot for economy of space., Transaction logging
collects information for recovery procedures, if necessary, and
for resource accounting.

Reliability is a major goal of SPIRES II, and general
specifications for the recovery techniques needed to ensure
reliability were also written at the beginning of the reporting
vear. Recovery Is accomplished by reapplving copies of the
deferred update queue, accumulated on tape since the last full
dump., :

Early in the reporting period, the external specifications
for the SPIRES Il on-1ine command language were completed. These
specifications described the language from the user's polint of
view=-for example, they contained descriptions of how individual
commands were to be used to perform required functions. The
on-1ine commands covered four areas: file definition, file update
and maintenance, search and retrieval, and display.

These four classes of commands were specified through the
use of the Action Analyzer, which was fully coded and debugged in
the third quarter of 1570. The Analyzer is a program that was
designed specifically to aid In producing a comprehensive and
unambiguous set of commands for using the on=-line SPIRES I!
system. Command statements are written as they would appear to a
user. Then they are expressed in modified Backus Maur Form
(BNF), a formal metalanguage used to describe the form of other
languages. The equation-like BNF statements are called
"oroductions." A command to set the case for data input,
expressed in BNF, might Took iike this:

{case>::=upper-iower
lupper
fuplow
| lower

Reading "|" as "or," this says that the case can be specified by
any of the phrases on the right side of the production. Commands
written In BNF are Input to the Action Analyzer:; the Analyzer
produces diagnostics indicating errors or ambiguities and

describes the type of ambiguity in each production. When all the

errors have been corrected, the Analyzer produces an Action 1list
that ultimately will drive the SPIRES i parser, This Action

11

list is a coded representation of the BNF productions and their
relations to each other.

The SPIRES |l parser was -Implemented as one component of the
SPIRES |1 subprocessor operating under ORVYL. In conjunction
with the Action list, the parser scans commands from terminals,
identifies thelr component parts, and calls the appropriate.
semantic modules to perform the on-1line functions required:
search, update, display, etc. The semantic modules, in turn, do
this by calling file services routines that operate directly on
goal records and access records in user files.

The four components of the SPIRES 1l subprocessor are the
Action list, the parser, the semantic modules, and the ORVYL
interface. The interface consists of a series of assembler
language routines that permit the subprocessor to use various
services of the time-sharing monitor. These routines were
designed and Implemented in the first quarter of 1971.

On the basis of evaluations completed in the fourth quarter
of 1970, the decision was made to write on-line system modules in
PL360 and to write application programs in PL/1. PL360 Is a
variant of 360 assembler language that Is designed especially for
applications requiring systems programming, PL360 gives the
programmer complete control of machine functions such as register
loading and also provides some of the loglcal capabiiities of
higher-level languages, such as looping and "if,..then"
statements., PL360 code is as efficient to use as assembler
language, and fts similarities to higher-level languages make
writing and correcting programs casier,

The parser was rewritten in PL360, and several tests were
run, parsing command language strings for six simultaneous
terminal users. These runs indicated that core usage was reduced
from 40,000 characters to 4,000.

Parsing rules in BNF were prepared for the entire SPIRES |1
command language in the second quarter of 1971. These rules in
effect define the vocabulary of the ;ammand sanguage, l.e., what
is a legal command.

By the end of this reporting period, a first version of all
the flle services routines had been defined, coded, and put intc
operaticn. First verslions of three of the on-line semantic
modules—-~-search and retrleval, update and maintenance, and
display--had been defined, c¢oded, and checked out, and were In
operation with a small test file of skeleton records.

The'Fcurth segment of the SPIRES Il or. 1ine command

language, file definitlion, is handled by the file definition

12

processor, File definition commands will be used by a "file
manager''=-i.e., a person responsible for establishing and
maintaining a file of data. Through the commands, the file
manager provides the system with such information as the name of
the file he is creating; the types of users who have access to
the file; the operations they may perform (read only, read and
modify, etc.); the types of search requests that may be entered;
the types of information to be stored in the file; and the types
of Information to be retrieved. Forms were designed to permit
file managers to describe input formats, data elements, internal
record contents, ‘and output formats. By the end of the reporting
period, a prototype version of implementation of a final version
had been half completed. The file definition processor {or "file
characteristics processor'") also had been cocded and checked ocut.

Two major documents were written in the course of the
vear. The first, Require 5 SPIRES 11, gives complete
information on using the four areas of the on-1ine command
language described above., The contents pages for this document
are attached as Appendix B. The second, Deslign of SPIRES 11,
Volume I, describes the design for |mplement|ng SPIRES 11
in the Campus Facility computer. It is attached as Appendix C.
Desi covers the computing environment, design goals, the
structure of the ORVYL interface and the SPIRES || subprocessor,
file structure and record structure concepts, and system
support functlons. Volume |l is belng prepared; 1t will
glive further detalls of deslgn.

This work Iin the areas of design, documentationg
programming, and testing was carried out in conjunction with (and
in part as a result of) the developments described in section
3.1, The Computing Envircnment. The decision to implement SPIRES
Il on the Campus Facllity cemputer; the study of Interfacing
requirements for the Campus Facllity software; the analysis of
video terminals leading to the se1ecticn of the Sanders mcdel,
these were all part of the past yvear's effort.

3.3 Capabilities and Services Piaﬁﬁed

The following is a brief summary of the planned scope of the
SPIRES Il system, as evolved over the past vear. The system Is
here defined in terms of its software. Actual progress made in
developing this software, and further detail on some aspects of
SPIRES 1] design, are given in section 3.2, Development Status.

The basic "building blocks" of SPIRES Il are a series of
standard FILE SERVICES ROUTINES. These operate directly on’
indexes, records, and data within records. For example, they
locate particular key values in indexes, locate particular data
element values in records, and transform records from internal to

13

11

external format for user display and modification. Flile services
will also generate necessary information for recovery procedures.

The SEARCH SEMANTICS MODULES (18 in number), service the
on-line command FIND, which is used to enter search criteria
interactively. Intermediate search results are ANDed or ORed
with previous results, and qualifiers are applied. (A preliminary
version was implemented first, in advance of the file definition
processor. This version has not, of course, been able to use the
file characteristics output of the definition processor.

Instead, it used hand-coded characteristics tables. As the file
definition processor is completed, these modulas will be
augmented to interface with its output. This will result In the
final version of the search semantics.)

. The ten UPDATE SEMANTICS MODULES transform an update trans-

action entered on-line into external format and add the new or
updated record to the deferred update queue. (As with the search
semantlcs, a preliminary version has been Implemented first,
using hand-coded file characteristics tables.)

In creating, for exampie, a locally keyed flle of data, the
externally readable information must be put in a format that
makes it accessible to the file services programs. The BATCH
BUILD PROGRAM is the batch analog of the update semantics
modules,

The DEFERRED UPDATE PROGRAM piaces the entries in the
deferred update queue into the file, building indexes and
transforming elements as guided by file characteristics.

The FILE DEFINITION PROCESSOR permits the user to deflne his
files individually, using data element parameters such as length,
occurence, and content, and then to store this definition. He
may also define user access, input formats, output formats,
validlity checks, and usage statistics. The user may modify his
file definition at a later time if his requirements change.

Rapid recovery from system fallure is essential whether the
error originated with the user, the saFtware, or the hardware.
. The recovery must be completed with the user's data in the same
condition it was in at the time of fallure, In the event of
loss, data recently placed in the system must be reccverabie.
This requires RECOVERY ROUTINES for fuli and partial data base
dumps and for full and partia] data base restoration. In
addition, programs must be written to reconstruct indexes, data
set directories, and the availdble space table, should these be
destrovyed. : o '

DISPLAY SEMANTICS MDDULES service the TYPE, OUTPUT, and
DISPLAY commands. . They transform search resu]ts to an externsl
_Format and p]acﬁ them on the device specnf!ed lﬂ the command.

14

12

There remain some thirty MISCELLANEOUS SEMANTICS MODULES
that service ancillary commands such as TO SPIRES, EXPLAIN,
EXAMPLE, etc. Also In this category are modules to gather usage
~and data statlistics and place them on disk storage at logoff
time,

To carry out '"housekeeping'" functions that ensure efficlient
dalily operation, various UTILITY PROGRAMS are required. These
include a data set aliocator, a disk space mapper, a file '
validator, and a program to ltist file records Iin external format.
A data set allocator organizes data sets for the maximum
utiiization of space. A disk mapper displays the corganization of
data sets on disk. A file valldator makes routine error checks
on files and produces diagnestics, A data base 1ist program
organizes the output from a data base dump so that it is easily
reacible. In addition, system-monitoring routines will record
and report types and frequencies of errors and collect user's
suggestions.

DOCUMEMNTATION for both deve]cpment and production is
necessaryv, The DccumEHts, , , s for SPIRES L1 <10> and
Deslen of SPIRES {f 9> Bresent, flrst from the user' s, then
from the programmer's psint of view, the system design being

implemented. For production, the system recovery, emergency,
and routine operating procedures will be written up for the
computer operators. SP!RES programs will be documented s¢ that
they can be maintalned and modlfied. Manuals will be provided
for users showing them how to create, maintain, and interrogate
files. Types of services and costs will be described so a

user can select services to meet hls needs within the limits

of his budget.

3.4 Work in the Coming Year

In the reporting year 1971-72, the SPIRES staff expects to
initiate, continue or complete work in seven areas.

1. The file definition processor. The final version of tie
file definition processor should be completed around the
beginning of October 1971. This version will provide for the
automatic building of access records and for the generation of
record and build characteristics and also search and pass
characteristics (see Desj for SPIRES 11l). The format of the
final version the processor differs from the first version in
that the final version will take processing rules into account.
This Includes rules applied at the time of input, at the time a
search command is Issued, and at the time of output or displiay.

2, The processing rules. By the end of the 1970-71
reporting vear approximately 130 prccessing rules of several
tvpes had beer defined. Some rules serve double or triple duty

= =
4

13

and apply to updating, searching, and passing. Output processing
rules generally serve only one purpose. By the end of the coming
reporting year all of the processing rules necessary in the
SPIRES Il system will have been defined.

3, The On-Line Semantic Modules. The final versions of the
search and retrieval, update and maintenance, and display
semantic modules will be implemented. The master terminal
semantics and remaining miscellaneous semantics will be put into
operation. Work necessary to implement the parameter commands ==
e.g., CROSS, EXTRACT, etc. == will be completed.

L. Documentation. Volumes 1! and 111 of Design for SPIRES 11

will be published., By the Time the SPIRES Il system comes up ==
the beginning of June 1971 -- a user's manual will be ready. All
the documentation should be completed by the time the system Is
operational,

5. Software Optimization., Efforts wiil be made to optimize
the on-line system before putting it into production. A study
will be made of what ordering of varlous modules in the on-line
system will run optimally in a paging environment. Two of the
tools to accomplish this are a sum hardware monitor that will
ascertain where execution time Is being spent in the on-line
processor and a capabllity called "YITAMINS", The latter is a
virtual terminal system for which a script can be written that,
when Input, simulates many SPIRES users at many terminals, each
inputting the same script for several different runs, each time
changing parameters or reordering modules in SPIRES, we can
evaluate the throughput of the system without worryling about
whether or not the loads are the same.

6. Statistics Gathering. In the months to come, it will be
determined what kinds of statistics are wanted on the system,
Semantic routines will be built to gather statistics at the user
interface on such subjects as; what kinds of commands are being
used; what kinds of disk accesses are being caused by different
commands; what kinds of mistakes are users making; etc. These
statistics will help in determining how to alter the user
interface so that the SPIRES system is more convenient to use.

7. Policy and Procedures for Operating the System.
Procedures will have to be written up for the operators of SPIRES
11, so that they will know such things as: how to analyze
failure; how to bring up the system from a cold start; what.

~action to take In the case of a crash; how to bring up the system
from a warm start. Procedures will also have to be written up
for the people in user services. -For example, telling hew to
bring up a file that a user wants to defline, and outlining ways
" to get user feedback on problems with the system. A1l these
procedures will have to be carefully thought-out. Many of them
Q X

i6

14

will involve policy decisions. (For example, what will the
pricing algorithm be for overnight processing?)

Decisfons must also be made regarding the support of large
public files, such as Chemical Abstracts, Nuciear Science
Abstracts, etc. Such decislons will be based upon subscriptlion
and storage costs, demand, and avallable funds. Smaller, locally
shared and private files wu11 be accommodated on a direct
charge-back basis to the #ile users. lhey may also, at the file
owner's option, be made partially or fully accessible by the user

community at large.
L,.0 SPIRES AND BALLOTS

Project BALLOTS is a production on=1ine and batch system
being developed to apply a time=~sharing computer to bibliographic
management <19, 20> in a network of academic libraries In the San
Francisco Bay area. The network is called CLAN, the California
Library Automation Network, and presentiy involves Stanford and
four other colleges and universities. More members are expected.

The Tibrary automation system is expected to provide
efficient library technical processing and circulation of library
materials, as well as to promote the sharing of resources among
the network librarles. The bibliographic data to be used for
ordering, cataloging, and so on will be derlived partly from the
Library of Congress MARC Distribution Services and partly from
the network 1ibraries' own input. Ultimately BALLOTS will have
four on=line files: a MARC file of 6 to 12 months of the most
recent data; an In Process Flie of all the titles in technical
processing; a Catalog Data File of all titles cataloged; and a
Circulation Inventory Flle of all the titlies in Stanford's Mever
Undergraduate Library collection. Vic:0 terminals will be placed
in the various libraries fer use by :ibrary staff and eventually
patrons, and the printed ouvtputs =-- purchase orders, catalog
cards, spine labels, etc. =-- wlll be produced overnight at the
Stanford Computation Center._ .

SPIRES and BALLOTS have been closely related since their
inception <8, 15>. When the first set of BALLOTS services (the
BALLOTS -MARC module) is implemented at Stanford in the spring of
1972, it will use much of the software described in this report.
Ten more modules, each increasing the range of BALLOTS, wlll be
implemented in the next twoc yvears. Generally speaking, the
relationship between the two systems, SPIRES and BALLOTS, is the
same as what BALLOTS would have had with IMS (Information
Management System), GIS (General Information System), or any
other preexisting software it might have chosen as a glven for
-development. . Simply stated, the general=-purpose SPIRES Ii
software piovides an environment for the BALLOTS application.

_BALLOTSvﬁngrammers~wi]] augment and alter portions of SPIRES
software, and combine it with BALLDTS sgftware (partifu1ar1y
batch app]fcatian prcgrams). o

17

APPENDIX A
(REFERENCES)

SPIRES 7
A BIBLIOGRAPHY OF REPORTS AND PUBL!CATIONS

This 1ist does not include quarterly progress reports
submitted to the Natlonal Sclencz Foundation or
presentations before local professional associations.

ED numbered documents =zre avallable from LEASCO
Information Products, Inc,, P, 0. Drawer 0, Bethesda,
Marvland 20014,

PB numbered documents are available from the National
Technical Information Service (NTIS), Operations Division,
Springfield, Virginia 22151,

I PUBL!CATIONS

1. Addis, Louise. "SLAC Library Monitors Underground Physics
Press.'" THE SLAC NEWS, no. 3 (June 2, 1971), pp. 2-3.

2. Martin, Thomas H., and Edwin B. Parker. '"Designing for User
Acceptance of an Interactive Bibliographic Search Facility."
Paper prepared for discussion at the invitational workshop, "The
User Interface for Interactive Search of Bibliographic Data’
Bases,'" sponsored by the AFIPS Information Systems Comm! ttee,
January 14-15, 1971, at Palo Alto, Cali{fornia. To be published
In the workshop Proceedings (AFIPS Press).

3. Parker, Edwin B. '"Behavioral Research in Development of a
Computer~Based Information System.'" In Nelson, Carnot E., and
Donald K. Pollock, eds., COMMUNICATION AMONG SCIENTISTS AND
ENGINEERS, Lexington, Mass: D. C, Heath & Co., 1970. Pp. 281-92.

L. Parker, Edwin B. '"Democracy and Information Processing."
EDUCOM (Bulletin of the Inter-University Communications Council),
no. 5 (1970), pp. 2~6. - ’

5. Parker, Edwin B. '"Developing a Campus Based |nformation
“Retrieval System.'" In PROCEEDINGS, STANFORD CONFERENCE ON

- COLLABORATIVE LIBRARY SYSTEMS DEVELOPMENT (at Stanford

University, Stanford, California, October 4-5, 1968). Stanford
University Libraries, Stanford, Califormia, 1969. Pp. 213-30.
CERIC document number ED 031 281; microfiche $.65, hard copy
$11.50,> ’ :

18

A=2

6. Parker, Edwin B, "Information Utllities and Mass
Communication." In Nie, N., and H, Sackman, eds., INFORMATION
UTILITIES AND SOCIAL CHOICE, Montvale, New Jersey: AFIPS Press,
1970. Pp. 51-70.

Il DOCUMENTS AND REPORTS

7. Ferguson, Douglas, ed. PROJECT CONTROL NOTEBOOK. 2nd ed.,
rev. SPIRES/BALLOTS Project, Stanford University, Stanford,
California, December 1270. 180 pp.

8. Ferguson, Douglas. "Information Retrieval (SPIRES) and
Library Automation (BALLOTS) at Stanford University."
SPIRES/BALLOTS Project, Stanford University, Stanford,
California, November 1970, 12 pp. <ERIC document number ED 008
543; microfiche $.65, hard copy $3.29.>

9. DESIGN OF THE STANFORD PUBLIC INFORMATION RETRIEVAL SYSTEM
(SPIRES I11). SPIRES/BALLOTS Project, Stanford University,
Stanford, California, July 1971. 385 pp.

10. REQUIREMENTS FOR SPIRES 11, SPIRES /BALLOTS Project,
Stanford University, Stanford, California, April 1971, 58 pp.
<ERIC document number ED 048 747; microfiche $.65, hard copy
$3.29.>

11, SPIRES 1967 ANNUAL REPORT. SP]RES/BALLDTS Project, Stanford
University, Stanford, California, December 1967, 58 pp. <ERIC
document number ED 617 294; microfiche $.65, hard copy $3.29,>

12, SPIRES 1968 ANNUAL REPORT. SPIRES/BALLOTS Project, Stanford
University, Stanford, Callfornia, January 1968, 111 pp. <NTIS
document number PB184L 960; microfiche $.95, hard copy $3.00.>

13, SPIRES 1969-70 ANNUAL REPORT. SPIRES/BALLOTS Project,
Stanford University, Stanford, California, June 1970. 129 pp.
<ERIC document number ED 042 481, The 1969-70 Report is
available without charge from the SPIRES/ BALLOTS Documentation
Office, Cypress Annex, Stanford, California 94305.>

.14, SPIRES REFERENCE MANUAL. 2nd ed., rev. SPIRES/BALLOTS
Project, Stanford University, Stanford, California, January 13569,
63 pp. ‘ '

15, SYSTEM SCOPE FOR LIBRARY AUTOMATION AND GENERALIZED

- INFORMATION STORAGE AND RETRIEVAL AT STANFORD UNIVERSITY.
SPIRES/BALLOTS Project, Stanford University, Stanford,

California, 1970. <ERIC document number ED 038 153, Available

from the SPIRES/BALLOTS Documentation Office, Cypress Hall Annex,

Stanford, California 94305, for $7.50 prepaid.>

19

11l MAJOR PRESENTATIONS

16. Epstein, A, H. "Information Flow." American Society for
Informaticn Sclence, Los Angeles Chapter, Los Angeles,
California, December 1970. :

17. Epstein, A. H. "iInformation Flow Analysis." Canadian
Society for Infcrmation Science, Ottawa, Canada, March 1971.

18. Parker, Edwin B, "A System Theory Analysis of Feedback
Mechanisms for Information Systems.' Paper read at the FID
International Congress of Documentation, September 21-24, 1970,
at Buenos Aires, Argentina.

IV ARTICLES ABOUT SPIRES/BALLOTS

19, "Libraries Seek University-Wide Computer Information
Service.'" CAMPUS REPORT, January 14, 1970, p. 7.

20. "Library Goal: Computerized Information Retrieval System,"
STANFORD OBSERVER, January 1970.

21, A report on automation plans (SPIRES and BALLOTS) at
Stanford. COLLEGE AND RESEARCH LIBRARIES NEWS, Marech 1970, p.
83.

22, Review of the system scope document. COLLEGE AND RESEARCH
LIBRARIES, May 1971, pp. 236-38.

V FILM

23, SPIRES/BALLOTS REPORT. Department of Communications,
Stanford Universlity, Stanford, California, 1269. <A 15-minute,
color, 16mm film giving an overview of the library automation and
information retrieval problem In general and of Stanford’s
- approach to it. Written and directed by D. B. Jones. Coples may
be rented from Extenslon Media Center, University of California,
Berkeley 94720, Rental charge, $15.00 for 24 hours; purchase
price, $180.00.> ‘

APPENDIX B

¥}

Requirements for SPIRES 11

Table of Contents

REQUIREMENTS
FOR
SPIRES TI

AN EXTERNAL SPECIFICATION FOR THE
STANFORD PUBLIC INFORMATION RETRIEVAL SYSTEM

SPIRES
-a project of
the National Science Foundation
Edwin B. Parker, Principal Investigator

APRIL 1971

SPIRES/BALLDTS PROJECT
STANFORD UNIVERSITY -
STANFORD,,CALIFQRNIA

943D5

[~
‘-?.ra;.a

i B=3

4720771
CONTENTS
Pasze
ACKEJDWLEDGMENTS ® & ® & & &# & ¥ & & & & F ¢ & & 5 & F & F & & @ l
INTRQDUCTIQN QDQQQII!lll.?"ll'.'ﬁll.&ll! 2
1.0 THE SPIRES USER
1.1 User Audience ...cieveeveacsesncens 1=1
1,2 The User Consultant ..eeeoessnsscces 1-1
1.3 General CommentsS ..ccccscoctsnsscccs 1=2
2.0 THE SPIRES SYSTEM
2.1- Fi]e DEFin‘tiQn dli.i.lrii.iiil’ilill 2‘1
2.2 File Maintenance and Update 2-1
2.3 Search and Retrieval ..cccveesoncns 2-1
2_"- D|Sp1ay ® 9 9 B ¢ & 5 ¢ 89 % F 2 F F R 4@ 90 & F 2 PG 231
3.0 SOFTWARE, FACILITIES, AND CONCEPTS
3.1 The SPIRES EﬁVil”OnmEjnt R EEEEEE R R 3;1
3.1-.1 r‘ﬂILTEN R R RN N A A A A A) 351
3llj2 wYLEUR ® & ® & ® & F 5 F OO0 00 F O OO OO W 3!1
511-3 STSM g ® ® 9 9 & O 9 9 9 3 9 E OOV O O PO =90 = 3;1
3.2 The SPIRES Facilitiesccoevssss 3.3
3,2,1 The 2741 Terminal ...eieveons 33
3,.2,2 The CRT Terminalcesaases 3l
3.,2,3 SPIRES System Commands 3-5
3.3 STSM System Commandsccrveoeeas 3-8
3.4 Definitions and Conceptsco0.. 3-8
- 3.4.,1 Data Elements ...cecocosncass 3-8
SQLI‘EE RECDFdS R RN N A B 3—9
3.4.3 lndEXEES & & © ® ® 0 # & & & P 5 9 POV O OO P 3ﬁl3
3ik?h Fi]es a & % @ # & % ® & F & % F B & & & S & 56 sgiu
4.0 FILE DEFINITION
L"ul Design !i!iiiiiivl.éllilli..li LI_—]-
L,2 A Typical Session ..eesvecvenss -1
5.0 ~ FILE MAINTENANCE AND UPDATE
5.1 Concepts and Definitionsee. 5-1
Sllll Geﬁéra] ._iiiiiiii"".."i" 5‘1
; 5.1.2 External Data Format ©g_3
5.2 On-Line Entry and Deferred Update .. 5-3
5.3 On-Line File Management Commands .. 5-3
5.3.1 Update Execution Commands .. 5-3
v - 5,3.2 Record and Data Eiement
\‘1 COmmandS S e e v s T s e EBREAERSBD TS 5_,*

=

5.4 Batch ServicCes ...ceeecencccocccess
5.'!!’;1 Batﬂh Update ® ® 8 % 3 & 8 6 0 G s 080w
5.4.2 Batch CONVErsions ,.....oee.s
5..3 Batch Util1Ities .&..eeeeseees

SEARCHING AND RETRIEVING

6.1 General eeosesssuseseesssenacnesens
6.2 Search Languagecceesvessoscascs
6.2.1 bBrowse Commandsccceceaee
6.2.2 Retrieval Commands .ccevesce.
6.2.3 Batch Searching ..icceosocce

DISPLAYING OUTPUT

7.1 Output FOrmats ..eecececccrsncsesss
7.1.1 System Default Format
7.1.2 Formats Defined at File

Definition Time ...ccevescse
7.1.3 Formats Defined During
Session TimMe ..eerecsoccasse

7.2 OQutput Language ..cceecescocscsccssse
7.2.1 Type Command ...c.ccceccacese
7.2.2 Output Command ...eerseeesss
7.2,3 CRT Commands .ceececsscocces

N
&R

iii
4L/20/71

00 00 ~] ~J

o1 R = R e R 2]
L
NN

NN = =

!
+ A\

APPENDIX C

Design of SPIRES 1!, Velume 1

Lo
D
3

This materiai, written for use by SPIRES programmers,
is subject to continual revislion as the design of
SFIRES Il progresses, Anyone wishing to use or

quote this material should first contact John
Schroaeder, SPIRES Systems Development Group Leader,
for Information about its current state.

DESIGN OF THE
STAMFORD PUBLIC IMFORMATION RETRIEVAL SYSTEM
(SPIRES 11)

Volume |

July 1971
SPIRES/BALLOTS Project

Stanford UniVersity; Stanford, California

PREFACE AND ACKNOWLEDGMENTS

This document is a technical paper describing the general
design and structure of the SPIRES Il on-line processor and its
batch support programs. We assume that the reader is familiar
with time-sharing concepts and vocabulary, and that he has some
acquaintance with the software system ai the Campus Facility
cf the Stanford University Computation Center and with the
document REQUIREMENTS FOR SPiRES Il (SPIRES/BALLOTS Project,
Stanford University, Stanford, California, 1971).

The research and development necessary for thlis paper were
carried out by the members of the Information Systems Group of
the Campus Facility, Stanford Computation Center (SCC). They are:

Richard Guertin

William Kiefer

Herbert Ludwig

Thomas Martin

John Schroeder (Group Leader)
Cheryl Stevens

Jerrold West

Our appreciation is extended to T, David Phillips, Deputy
Director, SCC; James Moore, Group Manager, Campus Facility;
Richard Levitt, Group Leader, Campus Facility Systems; John
Borgelt, Campus Facllity Systems; and James Powell, Campus
Facility Systems. The successful implementation of SPIRES Il up
to this point would not have been possible without their encour-
agement and support.

Special thanks are due to Jennifer Hartzell, who edited the
draft document. :

- R7

-y
1

CONTENTS

Introduction e s & s s e s s s s s e s s e s s s .

Chapter
1.1

hapter

2.1

1 Environment, Goals, and Components

ENV!RDPJPdENT L] - L] - [] - - - - - - [] t 3 - - - L]
1.1.1 Existing Campus Facility Hardware . .
1.1.2 Hardware Additions for SPIRES Il . . .
1.1.3 Existing Campus Facility Software . .
l1.1.4 Advantages to SPIRES 1l of the

Campus Facility Environment
1.1.5 Modifications Required in the
Campus Facility System .

1.1.6 The WYLBUR Interface . . . ¢« &« +« +« « =«
1.1.7 The Batch Interface
1.1.8 The Manual Interface . . . ¢ « « o « &
GENERAL DESIGN GCALS | .,+ v W o o o .
1.2.1 Openness to Modification , , ,
1.2.2 Ease of Use , , e e e e e .
1.2.3 Generality . . ¢« ¢« v v & 4 v o o o o
1.2.4 Structural Simplicity + .
1.2.5 Modularity , v v v v v o o o .
1.2.6 Reliability and Recovery _

GENERAL COMPONENTS COF LDESIGN AND

IMPLEMENTATION G« s e s s s 4 e e s e s e .
1.5.1 Interspersion of Syntax and Semantics
1.3.2 Use of ACTION BMNF as a Flow Diagram .,
1.3.3 The Generalizesd Parser . . ¢ o o« + o
IMPLEMENTATIOMN CONVENTIONS s 4 8 s s s e &

1.4.1 Compiler Languages for Implementation
1.4.2 The Use of Standar: Routines and
: StFUQtUFES - - - - - » - - L] - - » .

SPIRES Software Structures

2

ORVYL INTERFACE ROUTINES . . « « « o« « . . .
Z,l;E QUIT - - . = = - *« = . - - - - - a = -
2-1-3 GETCLOK -‘ - - - -'v - L] - Q. B [] L) L] - -

dpd fod el e fed el et e e e et
[|

!
=

i
o0

béjd i OO N AN

1-13
1-15
1-16
1-16
1-18
1-18

1-19

1
[]

11

|
W

TR MO RIN N N NRS
P T R T R S T T

2.1.5 RETCORE ., . . v . o o . .
2.1.6 SLEEP . v « v o v o o o .
2 1 ? ATCH? & - = -] - - - - - -
2.1.8 ATCHNEW .,
2.1.9 SCRATCH . . . + « o « o« .
2.1.10 DTCHF v v & v « o o o « .
2.1.11 READF and WRITEF , . . .
2.1.12 RESERVE o o « . .
2.1.13 RELEASE ., . . . « o « . .
2.1.14% TPUT o
2.1.15 TGET « . .
2.1.16 TPROMPT ., « . .
2.1.17 WYLBUR . . . v o . o o .
2.1.18 WILSEN and WYLCOMN
2.1.19 READTXT . v v v v o o « .
2.1.20 GETCOMZ ., . . v v v v o .
2.1.21 GETCOMZL o .
2.1.11 PUTCOMZ , . . & o o o « .
ACTION LIST v v o v v o .

Elements of ACTIOM BMF
The ACTIONM List Format

NN
[] »
R

ARSER - * - - - - - - -]

~
‘ X
W M M

General Description ., ., .
Changing Input Levels _
Callling Semantic Modules
lﬁput Bounding

MR NN
* e e
= N v

SNAP © v v e e e e e e e e e
SEMANT o« o o o o o o o o o« o « .

Declarations .,
lLocal Procedures ., . . .
droup Router . ., .
Semantic Process Rcuter.
Semantic Process Group .

. sk e
L T T
R WM R

THE SAVE STACK ., . . v & « & o .
THE MASTER TABLE

TSAVER , .
T . ..
DI e e ' .
WXTSPACE .

FLAGQ . =
USACCT .
UsPsSwWD
_960=hyte RPSPfVPd

253

>‘ L] [] “D] [] [] []

NN NS NN N

00 NICYUT £ N

» 0 o+ 8 ¢ w

* % & 8 0 @

L | » L]

L] L] L] »

L) L] L] L [] L »* -
. L] [] [] » L] L] L]

L] [] L] L] L] L] » [] - L]

e o & 4 e ® 0. @

L] [] L] » L] L] L] L[] »” * L] » L I | [4 . "

LI T I R)

LI B T]

e e ¥ e e w5 »

L] L] L - []

(N I I O O
LRV T LR E) RV B g i R W R T T R ET YY)

2=5

2-24

2-24L
2-24

- 2=24L

2=24
2=-24

. 22y

2=-214

. 2-25

[a %]
.
©

hapter

v
.
[

W WA
. [
N [N]

hapter

.1

h.2

THE PARSER TABLE . . .« « « « + « =

THE FLOW OF CONTROL e & 2 s = e =
2.9.1 tntry to SPIRES 11 s e e s e
2.9.2 INITIAL . . . ¢ « o o o o« « =«
2.9.3 Call to SEMQ . e e e e .
2.9.4 Call to the Parser . . .
2.9.5 Calls to Semantic Processes .
2.9.6 Call to the ORVYL InterTace |,
2.9.7 QUIT e e e e e e e e e e e
2.9.8 Branch to SNAP e e s s s e s
3 Logical File Concepts
INTRODUCTION | . . & v v v e o o o
FIiLE SYSTEM DESIGN PEGQUIREMENTS o o
FILE STRUCTURE OVERVIEW . s s s = s
3.3.1 Record Types e & 2 s & s s =
3.3.2 Polnters . . . « « + + & =+
3.3.3 Goal Records. . . . « « « +
3.3.1 Access Records. . . + + +« « .
3.3.5 Record Contents . .
3.3.6 Passing Data Element Valies .
PRDFILES L 2 » L] - - - - - - - - - - -
THE HIERARCHICAL STRUCTURING 0OF DATA
ELEMENTS . . & & o o = 2 s & « s

FILE CHARACTERISTICS . .« + & &+ =+ =

4L Organization of Data Sets for Access

INTRODUCTION v v v o o o o o o o =

THE ORVYL ENVIRONMENT . « o o . .

h.2.1
- iz
. ,SY

U]

Data Management Un-der ORVYL
Contiguous Data Sets . . .
Accessing ORVYL Files . . .

ETS AND DATA SET%. e e e e

Flle -;)Ets - & - - ,.g'- ‘& . -

Data Set Hamlnﬁ Convantlcns

30'

- - - - -
=] = = -
- L] - - -
- - . [3 -
- - L] - -
- - 3 -

- . » . -

W WWWWWW W

2-25
2-28

2-28

2-28

2=-28
2-28
2-28
2-28
2-28
2-28

W W
t i I
[R %)

[
NOWWWW N

I
~

=
1
W

L.t THE ORGANIZATIOM OF RECn DATA SETS .,

L.4.,1 Slot=-Structured Data Sets c e e e e e e e . 4-3
L.4.2 Tree-Structured Data Sets e e e s e e e e =3
b.4h.3 Tree Rebalancing , ., ., L=5
ll-.s DATA REN’DVAL [] - - [] . L) -] [] - [) - [] . ® []] [] a - L) Ll'glo
4.5.1 Definition and Criteria . e e e e e e . b-10
4.5.2 The Logical Effects of Removal e e e s o s h-11
4.6 RECORD SPLITTING C e e e e e e e e e e e e e e h-11
4,7 A SIMPLE ILLUSTRATION OF PASSING AND ’
-1k

RE:WDVAL -) [} v [. . - - . . . - - - . . . - - -

Chapter 5 Physical Formats
5.1 INTRODUCTION AND DEFINITIONS e e e e e e e e

5
5.2 RECORD FORMATS | | ., . ., 521
5

5.3 FILE BLOCK FORMAT , | . | 5-2
>.3.1 The Tree Data Set Block Format , , ., | . . . 5=4
5.3.2 The MNon-Tree Data Set Block Format , . | . . '5-9

5.4 RESIDUAL BLNOCK FORMATS * s+ & & = 2 32 e s & e s o = 5-9
5.4.1 The Available Space Table ., e 5-11
5.4.2 Supplemental Write Blocks , . . , 5-13
5.4.3 Status Information Block 5-13

© 5.5 THE ACCOUNT NUMBER TREF . v 4 4 4 o o o o o o o o 5-13

5.5.1 Class Privileges . . v v v v o o o o o o « . 5=14
5.5.2 Sharing Profiles Among Accounts . . . + . . 5-14L
5.5.3 The Format of the ACCDUﬂt Number ~
Record . « s e e e . 5«14
5.5.4° The Or?anlzatlon of the Account Number
Tree « . v i 4 4 6 6 v v o o o o o o o o . 5-17

5.6 THE USER MASTER DATA SET FORMAT . o o + & & o &« .« 5-17

5.6.1 THé Réc©rd Characteristics e e e e e e e 5-19
2.6.2 The Build Characteristics . v v o v o & « . 5-19.
5.6.3 The Search Cha?acteristits'.'. e e e e e e 5-22

'-Chapter"é':iﬂplementatlon of ths SBIEES’iI_Access Method

6.1 H‘JTRDDUCTION T SR PR

81

S .V'

6.2 TASK-ORIENTED SUBROUTINE GROUPS
6.2, SRCHREC . . . ¢ ¢« v ¢ o & « & .
6.2. ADDREC o & & « o o« o« o &
6.2, DELREC . . . ¢ o 4« ¢« ¢ ¢« & o & &
6.2. RPLREC . ¢ o & ¢ ¢ v ¢ o o o &
6.2, ATCHFILE . . . ¢ ¢ v o o« « & o &
6.2, DTCHFILE . < 4 & ¢ « & & o & o @

FILE SERVICES SUBROUTINES . . ., .

&
»

.
w
e
Lty

Data Set Attaching and Detaching
Subroutines e = e & 2 e o o o

%]
»
WM
» .

6.3, Node Manipulation Subroutinaes .
6.3. Entry Manipulation Subroutines .
6.3, Data Element Access Subroutines
6.3. Imput and Output Subroutines ., .
6.3, Data Set Lockout . . . « + o« « .
6.3, Allocation Functions
6.3, Miscellaneous Subroutines . . .

Chapter 7 SPIRES System Support Functions
7.1 INTRODUCTION e 2 2 = s s 5 s = @« e o @

7.2 THE THREE OPERATING CATEGORIES

7.2.1 Master Commands s s % a4 e e e
7.2.2 0O/5 Batch Commands . . ¢ « « «
7.2.3 O0ORVYL User Prograris e e & o & a

7.3 THE FILE MAINTENANCE FUNCTIOMS

7?3.1 BATBL"LD - L] - - - L] L - - L] - o
7.3.2 DEFUPDT . . . v v ¢« v v & o o &

7.4.1 VALIDATE v « o w o o o o o o
7?&52 ?iLEL]ST - - * - L} L] * * - L] E-3 -

7.5 RESTART AND RECOVERY
' DSZAP . |

7'5i1 . . - . - . - - - . e =
7.502 FULDUMP . . . o ¢ ¢ v v« v v o W
7.543 FULRES & . v ¢ v v ¢ v @ o o o
Ze5v RECOVER o .. . o . o o0 ...
7.5.5 WARMSTRT . v & v /e o o « o o o
7.5.6 PASSREC ., . v v v v v ¢ w o« o
7.5.7. DISABLE and ENABLE
7.5.8 AVSPREC . . ¢ w4 o o o o o o o
2 7.5.9 MESSAGE & v 20 0 v e e e e

o
S

<

i

O (O W) 00~ N~

o)

L] L] » L] L]

L] L] [] L] [] [] L]]

» L] » [» L] L] [

L] » [] L] -

L) » [l - - [} [] L[]
= X W X N W N R

=

VRN N R

~

'} -

NNNNaooumn wn

CONE NN NN N SN

7.6

Append

L
-~

)

I

r o

-~ K

7.5.10 |NH|B[T & » - - - - - - - - F Y - - -
7.5;11 KlLL - - - - . L] . . - - . = - - - - -
7.5.12 MAGIC WORD . ¢ & o o« o s & = o« o 2 =«

AIDS TO SYSTEM ADMINISTRATION+ « .« « &

7.6.1 TREREBAL . . « ¢« « ¢ « ¢ & o o « o =«

7;6.2 DISKMAP - - L] *] - L] - L] - - - L - L

7.Gi3 STAT - L] - -. L] - - - - - L] o - - - » L]
ices

tiodel 67 Scope Support for SPIRES Project . . .

Basic Operation of the Stanford Time-Sharing
r"cnitcr (ORVYL) L] - L] L] - - - - - - - - L] - o

DRVYL USEI"“S GUidE & L] L] - - L] - - - L L] L] - *®
Scope Support in ORVYL e« s s 2 & s a e s a e 2

ACTION Controlled Translation: A New Approach
to BNF 1] - & [) - - L] » - -] L] - - - - L] L] - -

Linkage Conventions for PL360 . . .+ .+ « & « &+ =«
Coding and Description Standards for PL3E0 . .
Standard SPIRES Il Dummy Sections . . .+ « . . .

ACTION BNF Grammar, SPIRZS 11 Command Language

ACTION List Macros, SPIRES 11 Command Language

PL360 Predefined and SPIRES 11 Functions . . .

: Remayai‘TfadeQFF’Tab1e Pee . . e s e e e

SPIRES |1 File Services Procedures =

Error Codes Retuﬁhed from ORVINTF in R1

~ S~ ~4 ~NNE N
| i

=] 0o 02 ~J

I
o0 O3 0o

A-17
A=-23

A-124

A-13L
A-153

A=155

A-162
A-172
A-18L
A-192
A-193
A-197
A-~260

11.
12.
13,
L,
15,
16.
17.

18.
19.
20.
21.
2%,
23,
2,

Campus Facility Hardware Configuration
Campus Facility Memory Partitions . . o o« . .
Subprocessor-User Relationship o« « « .« .
SPIRES System Make=up .I. * s s e = e o * &
Storage Layout, SPIRES Il On-Line Subprocessor
ACTION List Production & v & v v o o .
An Example of ACTION BNF . . . v v ¢ . v o o .
The ACTION List . . . ¢ & v v v v v o o o o
Table of Correspondences in ACTION Lists . . .
Parser Production Stack ¢ v o « o o .
SNAP-~ACTION Parser Trace . . v o o o o o o o.
An Example of Shared Semantic Processes . . .
SPIRES Il File Structure « .« « . v v & o & o
Relationships Between Record Types
‘Data Element Structures in External Format . .
Slot-Structured Data Set & & v o « . .
An Example of a Tree-Structured Data Set . . .
Sample Tree . . o« v o o . .‘; e e e s o & s
Sample Tree After Rebalancing o e
Saﬁpie Tree Aftér‘lntEﬁSE Loca] Growth
Sample Tree with WEII—Distrlbuted Growrh .« e e
File Set Uithout Removal o « o v & & o v o o«
‘Fi]e Set with Removai .'.';‘;Vi ;:Aé.', . . . s e
An. :xampie af P855|ng and Renoval‘ o« . .‘; . :-*
fCantro] lnFormataon Appended LD Varlaus Datav
'griemeht‘Va]ues e e e e soe e e e

LIST OF FIGURES

234

ix

1-2
1-4
1-6

1-17

2~7

2=-10
2=13
2-15

2-21
2-23
3-4
3-5
3-9
-l
b~6
b-7

bL-9

4=-9

h-12
h-12
b-13

w
1
W

26.
27.
28.
29.

30.

31,
32,
33,
3,
35,
36.
37,
38,
39,

ho.

File Block Formats . . « o« o s o s s =
File Block Structures . . ¢ o o o o o
Residual Data Set Organization

The Avzilable Space Mechanism

Venn Diagram of Account Numbers and Psuedo=Account

Numbers . . ¢ o ¢ o o « « o o s o =« =
Account Number Record« &«
Organization of the Master Data Set .
Record Characteristics . . . « . « . .
Build Characteristics « « « =
Search Characteristics « . .
SRCHREC Subroutine dierarchy
ADDREC Subroutine Hierarchy
DELREC Subroutine Hierarchy
Record Replacement Subroutine Hierarchy

Utility Support for SPIRES Il

5-6
5=-7
5-10
5-12

5-15
5-18
5-18
5-20

-5=21

5-23
6-3
6=-4
6-5
6=6

7=-2

INTRODUCTION

" PURPOSE

This document was written to serve as a system prggrammers
guide within the SPIRES Il project. It reflects the project's
state of development as of May 1971. As the document now stands,
it serves as a means of project communication and control, In a
vear from now, the document will have evolved into a sufficiently
accurate, organized, and detailed work to serve as an aid in
maintaining the implemented system.

FUTURE CHANGES
It is certain that there will be many additions to the
document during the next 12 months,. It is 1ikely that some of

the material presented here will be changed. At least two kinds
of updates are certain:

the issuance of Volume 11, and

the issuance of revised editions of chapters whenever
changes warrant,

CONTENTS OF VOLUMES | AND !I

~ Volume | describes the project’'s environment, the development
methodulogy, and the basic software concepts and components.
Volume Il will describe in detall the design of the semantic

routines and support modules, and will enable the reader to study
the design and Implementation of the individual commands
daescribed in REQUIREMENTS.

38

Q

CHAPTER 1

ENVIRONMENT, GOALS, AND COMPONENTS

1.1 ENVIRONMENT

The SPIRES Il system will operate as integral system soft-
ware of the Campus Facility, Stanford Computation Center. A major
portiaﬁ of the SPIRES software will be used by Project BALLOTS
staff in implementing library automation at Stanford,

1.1.1 Existing Campus Facility Hardware

The Campus Facility machine conflguration is shown in Figure
1 on the following page. It cente=rs around a one-million-bvte
IBM 360 Model 67 central processing unit, with high-speed drums
for operating system residence and virtual memory: 2314 direct
access facllities for medlum-speed starage, seven=track and
nine-track magnetic tape drives; and appropriate unit record
peripherals. This system supports apprcxlmately ninety terminals
concurrently out of the two hundred IBM 2741 typewriter terminals
located on campus and nearby, Other features of the
configuration are a PDP-9 linked to the system via a 2701 data
adapter and the multiplexor channel, which supports foreign
computers, graphics devices, etc,

1.1.2 Hardware Additions for SPIRES 1]

The shaded components in Figure 1 represent the additions to
Campus Facility hardware for SPIRES I1.

1.1.2.1 2319 Disk Storage Drives, When the SPIRES ||
system becomes avallable to the campus community, there will be
nine 2319 drives Iin addition to the present storage devices,
Additional hardware orders will be placed in advance to allow for
the addition of four more drives every six months, Each drive

“will provide storage space for approximately 28 million
- characters.

1.1.2.2 'A PDP-11 Front-end Computer. A1l communications
between SPIRES |11 and cathode ray tube (CRT) terminals will be

via a PDP-11 "“"front-end" machine, Appendix A contalins a discus-

sion of the PDP-11 design and hardware alternatives involved.
Also listed is a bill of materials covering all items required
for the terminal - PDP-11 cawmunicatlons]inks.

1.1.2.,3 ‘Terminal Equipment,. In additign to the 27&1
tYBEWFItéF terminals, SPIRES |l will be available via two types
of CRT terminals=-=-an inexpensive upper-case terminal (not yet
chosen) and a more expensive upper/lower-case terminal (Sanders-
Associates 800 series). Appendix A glves the hardware .

- configuration for terminal equipment in greater detail. It is

37

oy yRANR Y Junn DIeMpIBH K3{1]

3 sndwesy 7 24n3yg

("11 SIWidS 404 AJPSSIIIN SUOIT|PPR PIOUSP SEAIE PIPRYS)

| I
i 1 [433uldd CONTH
I Aeldsig | | I |
I auiyazey | |
) § | _
] . | .
, L | aspeaspLE] |
| | Hons |
I | | 3tunl 1
| A2pesipley | |4a3deny eveqg| |
! tosz || 10:2]]
! | | | | | | 1 ! |
|] |da3utad £041) fda2uyag £ont I young dowsz]
| | 1 : i ! I ,]
i
|
| 1 | 1 i | | !
=1 j Jdspeaipaes] | pacosy 1iunj | paodsy 1runl | A3}pdredhi] |
[423uldd £hy 1 TSt E |€114! | ezl [TS0t |
{ l | 1 { [| | ! I
3 ! i | 1
| | | } |
!
“ i _ _,
Isaap Nd3-p g | Adp Y=g 1 AAp B =L
I | aapsg adej) I aayap adey] | jod3uog adey ™)
| | 1 zo47| I roqzi £04
{a2e1035 Hs1Q] 1! | |] i
I RTET] |
]
| I |
| ; | Lauueyy | | Buuey3gns |
|eBeanlg ws1g] | Jo13813g | | J0329 95|
| hTEL ! " (G)098T ﬁ ! ﬁgugmuﬁ“
! i !
S 1 fauueyy | | I 1 g | [auueyaans|
|a8es03g ¥Si1q|™ | dJodagas | | G-ddd 1T _\\\\\ 171 4o3zdjag)
I nezl “ (930982 ! 1 1 _\\\“,3, fend / ,3::2,“
1 | K\R \n,.\ I
“ R “, “ Leuueyy ﬁ I \\uapm 1 ﬁmsqﬁﬁuz:mﬁ
afesols sl) J0133({ag | AR ./ 10323 (35|
I migzl i {£)0932 “ \\\\k\k_ ,S;Emﬂ“,
I | !
|98ed03s wnagi— | | |auueyy | [AuueyIqnS |
1 TogZl [_l1oa3uoy wrag 01333t | 1010338
| | | ozazl (z)o98r _ S::E“
|98rr03g wnag™ | | ! ot |
] | ezl 11 1 pauueyy | | ‘ i !
o T H?_gguﬂeg wogl T roaaes T 1 nda Jogaydiagep T
- | 17 pzgzl (110982 1 | T-2902 (a0:82]-
afedolg wniq| | _ ! I , | |
| CrogTtT | S|BULRYY
! dox3pd Y|y
1
1 i |
— — N i _,
| I i | 1 |
| ag9es01g | | @%eiois | afesolg |
{ Jossasougd | E J0SS32044 | 40553204 d
z=5952 | i 2-49%T ﬂ “ T-59%2 “
| |

T e

1

i

estimated that the proposed configuration will be able to support
up to forty CRT terminals concurrently (any mixture of the two
types); if that number is exceeded, a second PDP-1l1 can be added
to the configuration. Such an addition is unlikely in the
foreseeahle future. ' ,

1.1.3 Exlisting Campus Facility Software

The Campus Facility 360/67 provides a broad range of
computational services, including text editing, remote job entry,
hatch compilation and execution, interactive compilation and
execution (time sharing), and specialized partitions for short
jobs and utility programs. Three basic assumptions guided the
development of the system.

The various parts of the system should interact
closely and compiement one another.

Time sharing should be limited to those uses of
the system requiring it.

The overall system should be optimized continually
so as to execute the job load with maximail efficliency.

The following describes the major partitions of the Campus
Facility System. Reference may be made to Figure 2.

1.1.3.1 Operating System, This is presently release 18.6
of 0S8/360, MFT-11, It is conceivable that a shift could be made
to MVT in the future; this in no way affects the design of SPIRES
. '

1.1.3.2 High-Speed Batch/FUTIL, This partition runs in two
modes. (1) On first and second shifts, jobs of short duration
are run. (2) On third shift, file utility runs (IEHMOVE, etc.)
are run, In each case, a small partition monitor exerclises
control to restrict execution to certaln language processors and
utillities. In the case of high~speed johs, the monitor also
performs the function of the 0/S Job Scheduler. Input and ouput
handled in the high-speed programs are limited to unit-record
peripherals and scratch data sets on disk. By substituting
limited but optimized functions in High- Spéed Batch for those of

‘the operating system, the average job time in this partition has

been reduced to two seconds. The language processors supported
in this partition are SPASM (a single-pass assembler), WATFIV,
LISP, BASIC, ALGOLW, XALGOLW, PLC, and any 0/S load modules that
meet the |/0 requirements, ALGDLW accounts for the bulk of the
jobs run in this partition, : ' ’

1.1.3 3 Large Batch. This partition is avallable to users
of FORTRAN-G, LISP, GPSS, FORTRAN-H, the G-level Assembler, PL/1,
COBOL, PL360, and others. '

33

360/67 Core Storage

0/S NUCLEUS
HIGH-SPEED BATCH
LARGE BATCH
ORVYL
WYLBUR
MILTEN
0/S WRITER
HASP

s a0

Size

92,000 bytes

132,000 bytes

276,000 bytes

222,000 bytes
88,000 bytes

66,000 bytes

10,0090 bytes

138,000 bytes

— —';

1.1.3.4 Stanford Time=Sharing Monitor (ORVYL). This
partition Is the one in which SPIRES I! will execute. It Is the
only one in the system that uses the tlme-sharing hardware
peculiar to the model 67. The monitor itself resides (unpaged)
in 120,000 bytes of the partition, The remalnder of the
partition Is divided into 35 4,096-byte pages.

Programs reside on a 2301 drum, and are also segmented into
L,09G6-byte pages. The drum pages are termed "virtual memory':
only as they are required for execution must any of these pages
reside in real memory. If an executing program calls for a page
of itself not presently in real memory, It is interrupted and
relieved of control until the needed page has been transferred
from virtual to real memory. Because a program page may execute
in many locations In real memory, the address operands within the
program page conform to the address space of virtual, not real,
memory. It is necessary to translate these virtual addresses to
real addresses as instructions are fetched and effective
addresses generated. This process is done in the hardware, and
is known as . "dynamic address transiation." (See Appendix B for a
more detafled explanation.)

The programs executed under ORVYL are divided into two
categories: subprocessors and user programs. Suprocessors are
bodies of code written by professional system programmers that
serve many users simuitaneously. (see Figure 3),. Current
examples are the Interactive LISP Processor and Stanford BASIC,
An outstanding design characteristic of subprocessors is
re-entrancy. A subprocessor never stcres within itself; each
user attached to a particular subprocessor has his own work area,
which is logically appended to the subprocessor code whenever it
executes in his behalf. This area may be modified by the ,
subprocessor at wiill. ORVYL thus allows the designer to consider
a subprocessor as a single program divided into two parts: an
unmodifiable part (code) and workspace. The designer need not
consider the fact that there will be a number of concurrent
users, since ORVYL appends the appropriate user workspace and
restarts the code for the user at whatever point it may have bheen
interrupted. SPIRES Il will execute as a subprocessor.

User programs need not be re-entrant, and mav be written
only in FORTRAN, ALP, or PL360. Generally, they may only
interact with only one terminal. However, external devices such
as graphics scopes, foreign computers, paper tape 1/0 devices,
and so on, may also be attached.

A restriction common to both subprocessors and user programs
Is that they may not issue 0S supervisor galls. All requests for
supervisor services must be made via a special subsat of ORVYL
supervisor calls. The required parametey setup and the actual
supervisor calls are accomplished by coding from a special set of

!QRVYL macros., These macros are fully enumerated and described in
Appendix C, the User's Guide for ORVYL.

ERIC i1

IToxt Provided by ERI

ORVYL
Subprocessor
n

. >

] L

. o}

. E

[4 |

: =

. -

. m

. =3

. ol

. 'S

. “

. (o] |
1]
@
o]
L
Q
fn |
=5 |
oy

ORVYL
Subprocessor
1

irtual Memory

User V

— W — — S—

fonship

lat

Re

Subprocessor-User

Figure 3.

a2

A disk file capability Is provided as part of the ORVYL macro
set. To 0S8, the ORVYL disk file set appears to be one data set
extending over multiple disk packs. ORVYL subdivides the space
into 2,048-byte blocks, and user files consist of non-contiguous
co]]ecticns of these blocks. Associated with each user file Is
one drum~resident directory entry, one disk-resident Master Index
Record (MIXR), and an indeterminate number of disk-resident
Secondary Index Records (SIXR's) that map user logical record
numbers into phvysical record numbers. These files may be
connected with a user by a subprocessor, or attached to a user
program.

1,1.3.5 WYLBUR., ' This partition contains the Stanford Text
Editor. A 2741 terminal user may call in an 0S disk data set:;
manipulate it using line-lavel or character-level editling
‘commands; replace the old copy on disk; submit a copy to the
bateh job stream for execution; retrieve batch execution results;
and dispiay them at his terminals. New data sets may be created
by copying from other data sets, or by collecting (keying) data
line by line at the terminal. Programs to be run interactively
under ORVYL (i.e. user programs) are submitted through WYLBUR.

1.,1.3.6 MILTEN. MILTEN is the terminal communications
processor. Currently, it can service up to eighty 2741's and
eight teletypes at one time. The svystem allows any six of the
terminals to be dial-up; the rest come in via leased lines. It
works on an Interrupt hasis, assigning a buffer from a pool to
each termlinal logged on to the system. The buffer and Its
associated control blocks are termed Remote Terminal Blocks
(RTB's) and are the baslis for interpartition communication. 1 ¥,
for example, a user is connected with WYLBUR, he has two RTB's
assigned to him=-one in MILTEN and one in WYLBUR, with data
transfer via a '"MOVE CHARACTER" instruction. The same situation
exlists for users connected with anmn ORVYL subprocessor,

1.1.3.7 HASP. HASP provides spooling of the unit record
input and output to and from the batch partitions. It also
interfaces with the remote job entry commands in WYLBUR, and with
the commands that enable a user to fetch batch execution results
at a terminal.,

1.1.4 Advantages to SPIRES i1 QF the Campus Facility Environment

SPIRES operating as a suhpraressor under ORVYL vields many
advantages:

"ECONOMY. The user pays only for time during which
the subprocessor servas him,

EXISTING SOFTWARE. The ORVYL time-sharing s~“tware and
the 2741 terminal software are in operation now. SPIRES
~and WYLBUR can be interfaced so. closely that the dividing
line will not be immediately apparent to the user. This
is discussed further below.

43

AUICK RESPONSE TIME, Preliminary studies have shown
response time to be on the order of 1.5 to 2 seconds for
simple searches.

EASE OF DEVELOPMENT. ORVYL has a complete set of on-
line, Interactive debugging aids that will materially
assist the Implementation of SPIRES I1.

The main alternative to developing SPIRES Il as an ORVYL
subprocessor is to develop or to find an already exlsting swap-
ping monitor, and to locate a 200,000-byte partition somewhere
at Stanford In which SPIRES could reside. During early and mid-
1970, it was considered economically feasible to develop an
independent data facility at Stanford. But thils approach was
later ruled out owing to a constricting financial situation.
Exhaustive studies were made of every possible installation at
the University, with negative results.

If such a partition were suddenly to be avallable, IBM's
Time=Sharling Option (TS0) seems the most viable of existing
alternative packages. It has not yet been released, however, and
to commit ourselves to such a package wouid require hands=-on
experimentation and study over a perlod of several months. From
a cursory study we feel that TSO would not equal ORVYL with
respect to either response time or ease of development, It
should be noted that a paging system using the hardware features
of the 360/67, especlally if optimized (ORVYL), should be far
superior in performance to a swapping system that depends

~entirely on software (TS0). The decision has therefore been
taken to implement SPIRES Il as a subprocessor under ORVYL.

1.1.5 Modifications Required in the Campus Facllity System

Before the project decided to implement SPIRES Il as an ORVYL
-subprocessor, it was recognized that modificatlons to the Campus
~Facility System would be necessary, Stanford Computation Center
has made the necessary expertlise available at no cost to the
project to accomplish these modifications, which are described
below,

1.1.5.1 ORVYL File System. The present flle system under
ORVYL provides excellent support for small user files, which are
transient in nature and are easily re-created If a system failure
occurs. But the requirement that a table lookup be done (to
reach Master and Secondary ‘Index Records=-MIXR's and SIXR's) each
time a data block is called for doubles the input-output load on
a system handling large files. Although the fact that the
records In any one file are not contiguous optimizes the use of
disk space among all users, it also doubles the number of seeks
required to use one record. Furthermore, the impossibility of
isolating a file in one spot makes recovery from fallure
needlessly complex, . '

\‘l‘ . | 4%

An extenslion will therefore be provided to the ORVYL file
system to permit files to be declared and maintained as
physically contiguous collections of records. The need for
MIXR's and SIXR'S with contiguous files will be eliminated,
allowing the iIndexes necessary for quick entry into SPIRES files
to exist as the top level of the access tree.

1.1.5.2 Subprocessor Communications Area. An ORVYL
subprocessor, as mentioned above, Is re-entrant, and is written
as If only one user existed. Thus the subprocessor, while acting
on behalf of one user, may not have access to the workspace of
any other user. It is therefore not possible at present for the
subprocessor to '"remember" anything as it goes from user to
~user. A resident (unpaged) area, 256-bytes in length, will
therefore be provided for each subprocessor in the system. Read
and write access to thls area will be via extensions to tha ORVYL
.macro set. An addlitional feature will be "READ WITH LOCKOUT" to
prevent simultaneous updating of the area.

1.1.5.3 Virtual Access Method (VAM), This facility will
allow programs running in a batch partition to access ORVYL disk
data sets, elither contiguous or non-contiguous. The facilities
for file access will be identical externally. This mean: that
the same macros and call sequences will be used, thus allowing
on-line file access modules to he used in batch mode with no
source code modification. The batch programs may be run whether
ORVYL is executing at the time or not. The only restriction (an
insignificant one) is that no more than one such batch program
may he executing in the system at one time.

1.1.5.4 CRT Terminal Small Computer Support. ORVYL and
MILTEM must be modified to allow CRT terminal) support via a
front-end PDP-11., Appendix A discusses the alicrnatlives
considered prior to this design decision, It also gives the
cost and scheduling involved, and Appendix D contalins the
proposed scope support addendum to the ORVYL User's Guide.

1,1-6 The WYLBUR Interface

ORVYL macros exlst to pass commands to WYLBUR for execution,
‘to read the contents of a user's working data set (the data set
he is currently editing), or to write into the data set., In this
manner, a user attached to SPIRES may enter WYLBUR collect mode
by issulng an ADD or SUBSTITUTE command to SPIRES; he may then.
type in his file update, edit it, and issue another command to
cause SPIRES to read the contents of the working data set and -
appiy them to the user's file, In general, SPIRES wlll pass any
command that it cannot recognize to WYLBUR. (If WYLBUR doesn't
recognize the command either, it passes It hack with an error re-
“turn code,) e ’ ~ ' ‘

45

okt

=10

(]
]

1.1.7 The Batch Interface

1.1.7.1 System-Provided. The SPIRES user may choose not to
enter his file updates on=1!line,. Instead, he may wish to collect
a large group of updates using WYLBUR, save the group in an 0S
data set, and inform SPIRES of its existence via a BATCH UPDATE
command. The system will store the data set name in a speclal
system data set., The batch build program will use this data set
in order to find the locatlon of data sets intended for input.
The batch build program, running under ORVYL as a user program,
will then taka the 0S input data sets one at a time, using the
WYLBUR interface, convert their contents to internal format, and
link the results to the batch queue for processing by the
deferred updatp program.

The system will also provide a batch search capability via
the BATCH SEARCH command. When SPIRES recognizes this command,
the contents of the WYLBUR working data set (assumed to ﬂontaiﬁ
the search command) are read and parsed; if no error diaghostics
occur, the command is written into special system data set,
~which will be used by the batch search processor as a command
stream. This processor runs under ORVYL as a user program, and is
nearly identical to the search routines in the on-line system.

1.1,7.2 User-Provided. By using the SPIRES command "OUTPUT
WYLBUR," the user may transfer search ountput (sorted if desired)
to his WYLBUR working data set, He may then issue the WYLBUR
command '"'SAVE <dsname> on <volume>." WYLBUR will then cause the
results to be placed in a seguential disk data set, where they
may be reached and manipulated with a batch statistical packase
of the user's choice.

1.1.8 The Manual Interface

It will be necessary to employ at least one full-time
equivalent to perform the task of monitorinz SPIRES 1! and
administering it dafly., The varlious functions could be carried
out by several part-time persons, or one full-time person. The
following is a 1list of the necessary functions to he performed.

RECOVERY MANAGEMENT, In case of fallure involving
loss, damage must bhe quackiy assessed and a method prescribed
for making corrections. In complex cases, consultation

and assistance from the Information Systems Group will he
obtained.

éommaﬁd usage (user behavior), file content (where allowable),
/ and system component usage. From these statistics,
// conclusions must be drawn about command language adjustments,

/ -~ STATISTICAL MONITORING. Statistics will be kept on

file characteristic adjustments, and promising areas for
optimization in the subprocessor.

a6

SPACE MANAGEMENT. Since disk space will be 1imited,
file growth rates, the use of multiple extents, the dividing
up of avallable space, and future space requirements will
have to be monlitored and coordinated. Recommendations to
Increase the dlisk storage capaclity will originate here.

BATCH JOB SUBMISSION AND MONITORING. Runs such as
batch build, deferred update, and so on, must be regularly
submitted for execution. The results of these runs must be

. passed through a quality control check, and corrective :
action taken where approprliate.

USER COMSULTING. When a prospectlive user approaches .
the system for the first time, he should be given the back-
ground and materials to get him started. As he measures the
system against his requirements, he should be aided In
choosing the correct strategies for his data organization
and storage. Finally, he should be assisted through the
the file definition process. During the time he Is using
the system, he may encounter problems; these should be
brought to the attention of the User Consultant (see
section 1.2 of REQUIREMENTS FOR SPIRES Il, SPIRES/BALLOTS
Project, 1971).

1.2 GENERAL DESIGN GOALS

The subjects discussed below are all gca1s to be pursued in
the General Deslign phase of SPIRES Il development.

1.2.1 Openness to Modiflication

The SPIRES 11 command language differs markedly from that of
SPIRES | in both design and scope. Therefore, despite the fact
that a great <eal of experlience was galned with SPIRES |, some of
the new command language will undoubtedly require modification
and improvement. And It must be possible to modify parts of the
language wlthout overly affecting the rest of the system.
Furthermore, SPIRES !l may in all probability be extended during
1972-73 to support types of appllications not presently
envisloned. The system should be designed in an open-ended
fashion so that extenslons can be accomplished with as little
disturbance to exlIsting code as posslihle,. j

1.2.2 Ease of Use
- In additien to such obvious alds as choosing simple command
verbs, the following points should be kept in mind as ways to
reduce the amount of Infermation a user must remember.
1.2.2.1 Freedom of Movement. MInimum demands should he

made on the user's awareness of where he is in the system or
where he may go next. A user should be able to shift from one

47

function to another (e.g., from searching to updating and back
again) without explicitly informing the system of these moves.

The SPIRES Il command language allows combinatlions like the
one shown below, which Il1lustrates the desired flexibllity.

(logon sequence)

-? select file preprint
-? find author jones

23 DOCUMENTS FOUND

-7 remove record 12345
RECORD 12345 REMOVED

-? and title aardvark

2 DOCUMENTS FOUND

-? type

(output displayved)

1.2.2,2 Prompting for Missing Information. Some commands

~cannot be Issued unless a prerequisite command has been given.

In those cases where it is possible the system should prompt
the user to issue the missing command,

(logon sequence)

=?find author jones

-NO FILE SELECTED

SELECT? (user responds to prompt wlith filename)

(logon sequence)

-?select file preprint

=?and author jones ;
=AND REQUIRES A PRECEDING FIND COMMAND

- In the first example, the system was able to prompt for missing

Q

information, In the second example, this was not possible, so an
error diagnostic was Issued and the command ignored. /

1.2.2.3 Consistency. Rules should rarely have exceptions.
An example of a good rule in SPIRES 1Ii is the abbreviation of
command verbs--all abbreviations are formed u .,ng the first three
characters of the command verb.

; 1,2.2.4 Minimum Prerequisite Knowledge. System users--
whether casual searchers, data input clerks, or flle managers--
should not be required to understand (or use) technically
oriented features such as job contrel language, recovery

procedures, etc,.

1.2.,3 Generallty

The design will not be unduly slanted towards storing and
retrieving the data peculiar to one discipline rather than
another. SPIRES |1, 1ike SPIRES I, will handle bibliographic
lata, but not to the exclusion of clinical data, statistical

43

data, or full text material. Furthermore, the system must be
able to encompass extreme cases with minimal loss to overall ef-
flciency and no programmer Intervention.

1.2.4 Structural Simplicity

The system should be simple enough in structure to be
explainable in a few pages. The relationships between
its various components should be easily understood. It should
be possible to represent the flow of control in flve pages or
less, given an understanding of some baslic system concepts.

1.2.5 Modularity

Modularity Is Implicit in the goals stated above, but rno
design document can be considered complete that does not mention
it expliclitly,

1.2.6 Reliability and Recoverability

Reliability means that hardware and software errors do not
occur during the production executfion of the system. Hardware
and software errors may never be completely elliminated; we
therefore 1imit ourselves to qulck detection of any problems
resulting from such errors and prompt recovery of any data lost.
The programmatic detection of errors is largely accomplished
through redundancy of one kind or another. For example, two sets
of redundant data may be used to calculate a result; If the
results are different, an error has occurred. Redundancy also
plays a role Iin recovery. |If data in one form is lost and it
exlsts in another, the lost data may be ragenerated by
transformation. The SPIRES Il file deslgn makes quick recovery
and programmatic validation possible by redundant storage of

"ecritical control information.

During the execution of an on-line processor, there are
times when the system or a user file is vulnerable, A prime
example is the on-line update of a multiply Indexed data base.
The update sequence commonly involves twenty or more writes. | f
the sequence Is interrupted by a system crash, the file beling
updated loses its Integrity. By routing orn=line updates to a)
batch operation (while simulating an on-1ine update for the user's
benefit), the SPIRES 1l design has reduced this vulnerability
to a point where it can be completely overcome by redundant
writing to disk,.

1.3 GENERAL COMPONENTS OF DESIGN AND IMPLEMEMTATION
The precise definition (and redefinition) of a user command
language is a problem of some magnitude. The languaze must seem

natural to the user (so that he can go ahead on instinct If all
else fails), but Tt must also lend itself to simple recognitlon

d a9

1-14

and breakdown bv the system. This process of recegnition and
decomposition is usually called "parsing."* In order to be
parsed, a language must not contalin circular definitions; the
elements of each of Its commands must be distinguishable from
each other; and none of its commands can be open to more than one
interpretation.

To describe all possible combinations of language elements
clearly and concisely is a lengthy if not impossiibble process.
English is an unwieldy and ambiguous tool to use for command
language definition. A symbolic metalanguage (a formal iTanguage
used to describe the syntax of other formal languages) Is
required to make such definition possible.

7 The most common metalanguage in use for defining computer
languages 1s BNF (Backus=Naur Form). An example follows:

1. <PROG>::=<paren>

2, {paren>::=({expression>)

3. {expresslion>::=<non_paren_body>
| <non_paren_bhody><{paren>
|<paren>

‘I <non_paren_body><body><{paren>
j<non_paren_body><body>
" | <body><{paren>

| <body>
L. <body>::=<{paren><non_paren_body>
| <body><paren><non_paren_body>
5. <{non_paren_body>::=<non_paren>

| <{non_paren_body><non_paren>

This defines a formal language in which
(A+(B+C)/2)

is allowable. The numbered expressions in the example are called
"productions." Production 1 defines a program as composed of one
parenthetical expression. Production 2 defines a parenthetical
expression as an expression surrounded by parens. Production 3
defines an expression as '"(1) a NON_PAREN body, or else (2) a

*Computational lingulists refer to the rules used to parse
command language strings as ''productions of a grammar.'" The
language Is the set of all possible sentences that can be parsed.
Since most programmers do not make that distinction, we will call
grammars languages,

1-15

NON_PAREN body followed by a parenthetical expression, or else
(3) a parenthetical expression...or else (7) a body." Durlng
parsing, each time a string of symbols that constitutes a right
part is discovered, it Is replaced by the left part., For
example, a <NON_PAREN_ BODY><{PAREN> will he treated as an
(EXPRESSION>, A set of productions written in BNF is callied a
grammar, and is sald to describe a formal ltanguage.

Over the last three vears, McKeeman et al. <1> have
developed the XPL system at Stanford. One feature of this
system, the XPL Analyzer, takes a grammar written in BNF,
diagnoses it for errors, and writes out parsing tables for that
grammar. The McKeeman group have written SKELETON, the skeleton
of a parser that can be used with the tables. It is called a
skeleton since it must be filled out with what are called
semantic modules iIf It I5 to do anvthing more than recognize
grammatically corvrect programs, Semantic mhdules are used to
produce machine code or to perform other operations, While the
syntax shows how everything fits together, the semantics dc¢ the
work. :

XPL was studied by the SPIRES project during early 1970,
The overall approach met with approval: use BNF or something
like 1t to define the command language syntax; then use an analyzer
(meta-translatoir) of scme sort to convert the definition into a
data structure, which when combined with a general purpose parser
would constitute the implemented command language (minus, of
course, the semantics).

XPL and BNF, however, were found to have several drawbacks
when used to define Interactive command languages. These
drawbacks were corsidered serious enough to warrant developing a
modified BMF, a new analyzer, and a new parser, each tallored to
the problem of implementing anm interactive language, Qut of this
development came the ACTION Analyzer, ACTION BNF, ACTION LISTS,
and the SPIRES Ii parser. Appendix E explains the ACTION approach
In contrast to that of XPL.

1.3.1 Interspersicn of Syntax and Semantlics

Wihen the XPL parsing methodology is used, the parsing
tables are proportional Tn size to the square of the numher of
terminal symbols. (A terminal symbol is a seif-defining term,
for example, "(" In <PAREN>). Each time a terminal symbag?! is
added, the skeleton must be changed. With ACTION parsing,
the tahles are proportional in size to the number of productions.
Since our formal language definition tends toward few productions
and many terminal symbols, space 1s thus saved.

With bottom=-up parsing, semantics can be performed only
when replacing a right-part symbol string with its left-part
symbol. A requirement in the SPIRES Il system is a close
integration of syntax and semantics.

ol

Semantic module numbering is implicit in XPL, and explicit
in ACTION., Thus the XPL parser must be compiled when new
productions are added, whereas In ACTION, syntax may be changed
or new semantics added without having to modify elther the parser
or the other semantic modules.

The metasymbol
<n> n = 1§2§3gil

is used to number a semantlc module explicitly and to Indicate
the precise point in the parsing process at which it should
bz executed,

Consider the ACTICN BNF production

<COMMAND_LANGUAGE> : : =<1>COMPILE<ECKS>
| ILOGOFF|
ISET<SP><{SET_CASE>
|PAUCSE)<u><9>
] <5>CINPUT_LINE)
| <INPUT_LINE><¢3>
{SE>::=SE

Using the underscored right side as an example, one may translate
as follows: '"As soon as the string 'PAU,' followed optimonally by
.the string 'SE,' is recognized In an input line, call semantic
processes 4 and 9." Semantic process 4 checks to be sure that
the input 1ine is used up, Semantic process 9 calls the ORVYL
interface pause routine.

1.3.2 VUse of ACTION BNF as a Fiow Diagram

In the above example, one can trace the parsing process as
it proceeds from level to level In the languagze definition. It
is also possible, glven a list of semantic mocdule definitions in
numerical sequence, to determine the actions being performed at
any time In the process.

Since semantic processes vary from the obvious to the complex,
the more complex ones will require charting in greater detail
than the example here contains, The ACTION BNF, then, serves
as a first-level flow chart In a two- to three-level hie.archy.

1.”.3 The Generallzed Parser

7 Figure 4 Illustrates the process of command language
Iimplementation, combining the command laguage with other parts
of the system. The parszr, which need never be modified, can be
combined with any desired ACTION 1ist, This cai be done
dynamically if desired. There may be multiple ACTION 1lists
within a system, each representing one node In a hlerarchy of
languages. A semantic routine called by the parser using ACTION

P

r BNF
F£rammar
ACTION
_-Anaiy:er

ACTION —

parser
source

.modules
. source

semantie

GRVYL
interface
object

T

‘D/s 360

Tist source

Figure &4,

O

ERIC

Aruitoxt provided by Eic:

PL360 PL360
Compller Assembler
o 1aN o ORVYL
o/s 360 |- ACTION parser Semantic Interface
Assembler object sbject ébjéct source

SPIRES System Make-up

/ﬁjL,

v

COMBINE

list 1 can initialize the parser to use ACTION list 2, which may
in turn cause another semantic routine to start the parser on
ACTION 1ist 3, and so on.

The parser is re-entrant, and the ACTION lists are read-
only and require no relocation. Therefore, the 1ists may he
readily shared by a number of users, as long as the parser's
status (its location within the ACTION list, its position In the
input string, and so0 forth) Is stored and maintained for each
user so that parsing may be resumed should it be interrupted.

1.4 IMPLEMENTATION CONVENTIONS
1.4.1 Compiler Languages for Implementation

l1.8.1.1 Choosing a Language. The development staff of
SPIRES Il expended considerable effort attempting to find some
other Implementation language than 360 Assembler Language.
Ninety percent of SPIRES | was coded in PL/1. On the basis of
that experience, PL/1 has been ruled cut as the primary
implementation vehicle for SPIRES I1l. It was found that although
PL/1 supported the requlisite functions, programs with a high
degree of modularity were penalized with considerable overhead,
Furthermore, programs written In PL/1 depend on the abillity to
request supervisory functions directly from 0S; they could not be
executed under a time-sharing monitor, FORTRAN and COBOL were
ruled out on the basis of functions to be supported; it was felt
that to use either language to support the data structures found
in SPIRES Il would be difficult or impossible.

In 1966 Niklaus Wirth had defined and implemented a language
called PL360 <2>. This language had, In addlition to
machine-level functions, ALGOL-1tke features such as
"BEGIN..,.END,'" "DO...END," "GOTO...," asslignment statements and
"IF" statements, The efficlency of the compiled code is equal to
that of Assembler Language, and the PL360 compliler Is small and
fast.

: _After some test Implementations using PL360 (the parser was
transliterated from PL/1 to PL360) the Tanguage was adopted as a
project standard for SPIRES Il implementation. The compiler was
modified to Include an equating capability and a cross-referencing
capability, and to compile interactively under

ORVYL.

Implementation using PL360 appears to progress at least
100 percent faster than it would using Assembly Language; the
code 1s much more easily read, and may be learned in a week or
less by a competent Assembly Language programmer.

The PL360 compiler is now distributed by the SHARE organiza-
tion and is maintalned locally by the Language Support Group of

o4

the Stanford Computation Center. Use of the compiler at Stanford
is increasing and we suspect that industry-wide use would
increase markedly were PL360's value as a system programming
language well-known.

1.4.1.2 Language Conventions. All modules or routines
that call ORVYL for supervisory services will be written In G-
Level Assembler Language (0S/360), using ORVYL macros. These
will be gathered together into a multiple-entry=point control
section named ORVINTF.

The parser, the dummy sections, and all the semantic routines
will be coded In PL360,

) The standard 1inkage conventions between modules are given
in Appendix F, Appendix G details the codlng conventions for
PL360.

1.4.2 The Use of Standard Routines and Structures

7 To permit naming standardization, standard dummy sections
will be used to galn access to elements within system data
structures. Any code sequences regulired in more than one
location will be standardized. Appendix H enumerates standard
dummy sections.,

oy
Ui

THAPTER 2

SPIRES SOFTWARE STRUCTURE

This chapter describes in detall each major component of the
SPIRES 11 subprocessor, except the SPIRES access method. Figure
5 provides an overview, showinr each component in storage
sequence., The ORVYL interface, the ACTION 1ists, the PARSER,
SNAP, SEMANT, and the DSECTS within user merory will ail be dealt
with. The last section of this chapter discusses the
subprocesscr flow of control by describing the numbered arrows in
Figure 5. The discussion of the SPIRES access method modules is
sufficiently complex and important to warrant Aevotling a chapter
to it (Chapter 5).

2.1 OPVYL INTERFACE ROUTINES

These routines are contained in a multiple entry point
control section. Corresponding to each entry point is an ORVYL
macro surrounded by interface code; all interfaces with ORVYL
are daone via calils to one of these routines, 0Of particular
Importance are INIT and OUIT, which are the entry and exit
routines for the entire subprocessor.

2.1.1 IHIT

This routine handles entry to the subprocessor, It locates
the haginning of user memory, attaches the user's terminal, sets
to upper case, makes the timer and attention routines operabhle,
and initializes the parser, The interface routine "GETCOMZ"
is called to bring the 256-byte common area (see section 1.1.5.2).
The master terminal and logon flags are checked to make sure the
subprocessor is enabled to receive users. If so, semantic process
0 is called and upon return the parser is called, starting with
production 1.

2.1.2 NUIT

/ This routine gains control by beling called from a semantic
/Eracess because of an error condition or because the parser
executes a return using R1lhk; OUIT is the label on the next
! sequential instruction after the BALR in INIT that transferred to
the parser at start-up time. A message is emitted, "returned to
WYLRUR"; the terminal is detached:; and the user is passed back to
WYLBUR with his working data set cleared. '

2,1.3 GETCLOK

o This routine returns the real-time clock value in milli-
Ric‘seccnds in R1.

IText Provided by ERIC

515

2-2
- e - —1) SUBPROCESSOR ENTRY POINT
o lNIT_If!l.l:_‘?) I S - :
QmTf3; - 3 ' - -
L e SRR — SUBPROCESSOR EXIT POINT
T @
ORVYL INTERFACE RDUTINES o /
(section (. a /i
ot !
- 1 {0
! /!
, I o ,/
R
PARSER R §
{section 2.3} ! o .
— —— ®
snap f T]] - ®
(section 2.4) , - | i? i
B ENTRY I
_ DECLARATIONS]
7 LOCAL PROCEDURES | ! |
L ROUTER -
SEMANT I L
{section 2.5) T~ Lo '
T sEmeROC. . o j
SPIRES ACCESS ETHOD
ROUTINES
o (| OTFSET LAST NONTERL! PROD™ |
C OFFSET TOAL |
E OFFSLT TUPROD TEL |
=) oFFSET TOPCT |
ACTION LIST LAST NONTLR . PRQD=]
{section 2.2) ACTION LIST
| PRODUCTIONTAFLE |
PACKED CHAR TABLE | SUBPROCESSORIWEMORY
¢ “C(RIE USER MEMORY
SAVE '_ﬂ/\(_‘,l{ \ I 260 GYTES 0
| U . S

{sectior, Z.0)

i 120 CYTES
JAASTER TABLE e

DSECT ,)(J '

(seclion Z.

T scoamc (R1D

f
.
PARSER TABLE ¢ i -
{section zZ. 2 ér L‘L:‘:!]
|

SE lANTIC F‘DRTIDN

p——

TEMPORARY WORK SPACE

. T
b e ————{ NEXT SP)

Q
ERIC Figure 5. Storage Layout, SPIRES Il On-Lire Subprocessor
ey
L o7

2.1.4h GETCORE

This routine keeps track of requests for virtual memory made
in behalf of each user. A pointer, MNXTSPACE, exists in the
master table NSECT (see section 2.7). When this routine is
called, Rl contains the numher of bytes of core desired.

Nxtspace is incremented by that amcunt, rounded up to the next
doubleword boundary, and restored in the table, If a page
boundary has been crossed, a load is done from the new page to
place it in keep status. When the caller gets control hack, Rl
points to the core just allocated. If no core is available, R1
contains zero. If Rl contains zero at entry to this routine, R1
is returned pointing to the start ot the next area ts be allocated.

2.1.5 RETCORE

This routine deallocates core using the reverse of GETCORE,
Wlhen the routine is called, Rl contains the address bavond which
core Is to be deallocated. if a page boundarv is crossed, a set
macro is issued to free that page and make it available to other
users.

2.1.6 SLEEP

When this routine is called, R1 contains a count in milli-
seconds. If R1 is equal to or less than zero, one second is
assumed. The user in whose behalf the call was issued is
placed in the wait state for the stated interval.

2.1.7 ATCHF

This routine attaches an ORVYL fille to a user. Rl ceontains a
pointer to the filename. R2 contains the length of the filename.
R3 contains zero or nonzero, according to whether or not the file
is old or new, R2 is returned with zero if the attach was ;
successful, and nonzero if it was not. RI contains the dEVICE;
identifier, which is stored in the user’s master table.

2.1.8 ATCHMEW

This routine is used to attach a new file for unshared use.
If the file already exists, it is scratched. At entry to this
routine, R1 contains a pointer to the filename; R2 contains the
length of the filename. At exit, Rl is zero (successful attach)
or nonzero (unsuccessful attach?.

2.1.9 SCRATCH

This routine deletes an attached file. At entry to this
routine, R1 contains the device ID (DI). At exit, Rl is zero
or nonzero, depending on success or failure, DI is zeroed.

[KC 58

wll Toxt Provided by ERIC

2.1.10 DTCHF

This routine detaches a file from a particular user. R1
contains the device identifier.

2.1.11 READF and WRITEF

These routines read and write a specified bhlock from and to
the file whose identifier is stored in DI, At entry to either
routine, R1 contains the block size, R2 contains the record
number, and R3 contains the core address where the input or
output is to take place. At exit, Rl contains the record size
and R2 contains the next block number; or, Rl contains an error
code (see the ORVYL Guide) and R2 contains zero. :

2,1.12 RESERVE

Reserves a file for exclusive control. The file is
determined by the contents of DIi.

2.1,13 RELEASE

Releases a file from exclusive control. The fite is determined
by the contents of DI.

2.1.1 TPUT

This routine causes a message to be written to the user's
terminai. At entry to this routine, Rl contains a pointer to
the message to be written. R2 contains the length, a number
equal to or less than 132.. Nothing Iis returned.

2.1.15 TGET

This routine causes a message to be read from the user's
terminal. At entry to this routine, Rl contains a pointer to an
area tc receive upper-case Input and R2 points at an area to
receive upper/lower-case input; if Rl and R2 are equal, then
upper-case input only is assumed. At exit, R2 contains the
length of the message received. It should be noted that if the
user types "<blank>...<carriage re urn>" or "{hlank>,..<attn>,"
he is reprompted. |f the user just types ATTN, he is placed in
coliect mode unless he was already in collect mode, in which
case he is returned to command mode.

'2.1.16 TPROMPT

This routine causes a prompt to be written to the user's
terminal, and a message to be read back. At entry to this
routine, R1 points to an area to receive upper=case input.

R2 points to a prompt message block (aligned on a full~word
boundary) that contains a full-word length of prompt, foliowed
by the prompt message. At exit, R2 contains the length of

O

i

3

the message received back. It should be noted that if the user
types '"<blank>...<carriage return>" or "<blank>...<attn>," he is
reprompted. I!f the user just types ATTN, he is placed in collect
mode.

2.1.17 WYLBUR

This routine is called whenever it is necessary to cause
a WYLBUR command to be executed in the user's behalf. At
entry to this routine, Rl points to the command string to
be passed to WYLBUR, and R2 contains the lJength of the string.
At exit, R1 will contain zero if the command execution was
successful,

2.1.18 WILSEN and WYLCON

These routines Issue either SENSE or CONTROL macros to de-
termine the user account number, password, terminal D, number
of lines in the WYLBUR working data set, etc.

2.1.19 READTXT

This routine is used to read text from the WYLBUR working
data set. At entry to this routine, Rl points to the area in
user core to recelive the text, R3 contains length information,
and R2 points to a block of control information (aligned on
a full-word boundary) that contains a code (see the ORVYL Guide),
the number of lines to be read, the first line number, and
the last line number,

2.1.20 GETCOMZ

This routine obtains the 256-byte communications area and
places it into a designated area of user virtual memory.

2.1.21 GETCOMZL

This routine is identical to the above, except
the lockout feature is invoked. This means that the copy being
obtained is for update, and other users may not obtain copies
until a PUTCOMZ has been executed (see below).

2.1.22 PUTCOMZ

This routine causes a 256-byte area of user virtual memory
to replace the current contents of the communication area,

2.2 ACTION LIST

To discuss the ACTION list and its format, it is first
necessary to explain ACTION BNF and its elements; the ACTION
Glist is nothing more than a compact list representation of

60

2-6

the BNF grammar that defines the SPIRES command languasge.

As indicated in section 1.3.1, the ACTION list is generated by
passing an ACTION BNF grammar through the Analyzer (see Figure
6). The Analyzer produces a source deck, composed almost
entirely of ACTION macro statements. When the source deck is
prefixed by the ACTION macro definition deck and they are
assembled, a data structure composed of absolute constants is
created. Appendix | contains the ACTION BNF grammar for the
SPIRES |l command language. Appendix J contains the
corresponding ACTION 1list source.

2.2.1 Elements of ACTION BNF

ACTION BNF is composed of a series of expressions called
productions. A series of productions is called a grammar and
defines a formal language--in the case of SPIRES I, an
interactive, on~line command language,

Productions comprise two parts, the left part and the right
part, written:

LEFT_PART: :=RIGHT_PART
There may be alternate right parts, written:

R1GHT_PART1
RIGHT_PART2
RIGHT_PART3
RIGHT_PARTnN

LEFT_PART::=
' |
|
|

Left parts may contaln only one term, ‘ ch defines the produc-
tion, whereas right parts may contain .veral terms:

Term l::=term 2 term 3
|term &4
| term 5

Term 2::=term 6

Term 3::=term 7 term 8

ACTION BNF can be considered a programming language, with the
terms as the language elements. The right-part terms can be
thought of as calls to a closed subroutine, and the left-part
terms as subroutines names. There are several different types of
left parts, .and these may be thought of as several categories of
subroutines, with a different behavior assigned to each category.
There are also several kinds of right-part terms. A central
point is whether or not a return to the caller reports success oOr
failure; the difference between various types of calls lies in
whether they must succeed or fail, and whether ot not they are to
be repetitive.

A BMF grammar thus may be thought of as a set of nested
subroutine calls or, alternatively, a hierarchy of subroutines,

61

]
{
~

BNF macro

(ACTION
definitions

iL_ 360 ACTION
' Assembler list

Analyzer ACTICN object
list
source

Figure 6. ACTION List Production

N
{
o}

ften, no action is performed by a '"subroutine" save the caliing
f other "subroutines." Eventually, a cali will be made to a
ubroutine that actually performs some function, such as scanning
or legal or illagal characters or making comparisons to find a
pecified character string.

The following sections discuss the different types of
roductions (left-part terms) and the different kinds of
roduction calls (right-part terms).

2.2.1.1 Production Types. A grammar written in ACTION BRNF
s composed of four types of productions. These productions,
lescribed below, differ in format and interpretation.

The Comment. The comment may be inserted anywhere in the
et of productions except between alternate right parts., In
ormat, this statement simply requires an asterisk in position
yne of the Iinput record.

The Standard Production. The standard production is
dentifiable by "<name>" in the left part, 'name' must appear in
y right part of another production. Standard productions are
ised to show alternative ways command language elements fit
ogether, During parsing, the first right part is used. |If it
‘ails, then the next right part is taken. If none of the alter-
\ate right parts suczceeds, then the production fails. :

The Terminal Production. The Terminal Preduction is used to
lefine some subset of the 256 eight-bit codes that is allowable
'n a command element string. A minimum and maximum length must
e specified. The terminal production is identifienole by
"(name)" in the left part. When a terminal production is called
‘he byte code subsets are reserved in a TRT table, and the input
string is scanned for illegal characters. The occurence of such
y character stops the scan. The length of the scanned string is
"hen compared with the minimum and maximum lengths to ensure that
it falls within the allowable range.

The Basic Production. The basic production is identifiable
by "lnamel" in the left part. Unlike the standard production
-equirement, it is not necessary for "name' to appear
in a right part of any other productions. Basic productions are
ised In the same way as standard productions during parsing.
There are three kinds of basic production:

Nonreferenced. In this case, '‘name' does not
appear as a term in any right part of any other
production. Every ACTION BNF grammar contains at
least one basic nonreferenced production, the goal
symbol. Basic nonreferenced productions may only
be entered semantically, i{.e., by setting the P
register to the production number and calling the

Q
ERIC

IToxt Provided by ERI

o
I

parser. This always happens where the user enters
the system, because the parser is called from INIT
with P=1; hence the goal symbol production is a
basic nonreferenced production.

Referenced. !n this case, ''name" appears as
a term in the right part of another production,
Using the symbol "lnamel" as a left part serves to
place the following restriction on the "Inamel"
production: none of the productions called by
the right parts of "Inamel|" may in turn call
"inamel|." The following example contalns recursion,
which contradicts the use of vertical bars in the
left part.

(example) I x]::=<y><z>

{yrs:=<{X%X> -

The use of vertical bars in this case serves as a
precaution against inadvertent recursion,

Nnedefined. In this case, '"name' is used a&s
the left part of a previous standard or basic production,

(example) |xl::=<a>

Ix|:e=<y>

(example) <x>::=<a>

-

I x|::=<y>

In these two examples, if the right part "ea><hd"
parses the Input substring successfully, the redefining
production is entered to reparse the same input
substring. 1 f the redefinition fails, the original
right part also fails.

2.2.1.2 Formation of Right Parts. Right parts may be
composed of several kinds cf terms, with some restrictions
as to which terms may occur together, and which terms may be
in the right parts of certain types of production,

Required Link. This term is the most common Kind of

right-part term. |In Figure 7, "(BUILD_LANGUAGE>" is a required
link. The presence of this term in a right part means, "cail the

ERIC 64

| COMMAND LAMGUAGE] @ :
<MASTER__LANGUAGED : @

<BUiLD_LANGUAGE>::

<LOGOFF>::
<OFF>:

Figure 7.

0,MASTER_LANGUAGE) <LOGOFF>
BUILD_ " OMMAND><BUI LD_LAMNGUAGE>
| LOGO# r |

CEXTRA COMMANDS>

<1> BUILD (SP) <t>

VaSah)

f—— 1 u

LOG(OFF)
OFF

it e o

0,1,1,40

1

An Example of ACTION BNF

o
]

production whose left part is <BUILD_ LAMGUAGE>." If the called
production fails to parse, the right part of the calling
production fails and the next alternate right part is tried, If

the required link is in the last alternate right part of the
calling production, the calling production fails.

If the called production succeeds, the parser continues with
the next term in the right part containing the required 1link. | f
there are no other terms, the calling production succeeds.

Lookahead 1ink, This term must appear by itself In a right
part, and it cannot be the last alternate right part in a
production. 1in Figure 7, "1LOGOFF|" is a lockahead link. It
means, "call the production whose left part is LOGOFF>." If the
CLOGOFF> production reports failure, the right part of the
calling production fails. |If the {LOGOFF> production reporis
success, then the entire calling production fails immediately.

Character string. The oc.urrence of a character string
without surrounding brackets, parentheses, or vertical bars in a
right part causes the parser to compare a substring of the input
line with the character string. In Figure 7, the string "BUILD"
is a call to the character scanner. The success or failure of
character strings follows the same pattern as that of required
1inks.

Semantic link. The occurrence of "<n>" as a right-part term
means, "at this point..in the parsing call semantic process n."
In Figure 7, the <BUILD_LANGUAGE> production, when called, will
call semantic process 1 to read a line from the terminal before
it calls the character scanner to look for the string "gutLD."

Optional link, standard. The occurrence of the symbols
"(name)" or "(1, name)'" (the two symbols are equivalent) in a
right part means, '"call the production <name>, Inamel, or
(name)." The parser continues to the next term in the right part
containing the standard optional link, regardless of whether the
called production succeeds or failts. If there are no other
terms, the calling production succeeds. Figure 7 contains uses
of the standard optional 1ink: the call for optional spaces,
"(SP)," in the <BUILD_LANGUAGE> production and the call for
optional occurrence of the string "OFF" in the (LOGOFF>
production. The latter case also shows how command abbreviations
may be handled.

Optisnal 1ink, call until failure (CUF). The occurrence of
the symbol "(0, name)'" as a right-part term means, Ukeep calling
the production <name>, lnamel, or (name) unti? that production
fails." Upon failure, the parser continues to the next ferm in
the right part containing the cuflink, |If there are no other
terms. the calling production succeeds. The term "(Q,
MASTER-LANGUAGE)" in Figure 7 is a CUFLINK: it calls

66

"]MASTER_LANGUAGE>" until it fails; a call is then made to the
{LOGOFF> production.

Optional 1ink, pseudo-recurslive. The occurrence of the
symbol "(2, name)" indicates that a transfer to the <name> or
[name] production should occur, but that the action level Is not
incremented.. This amounts to a transfer from cne part of the
ACTION list to another wlthout the parser's '"remembering'" where
the transfer came from. Such a call must be the last term of any
right part in which it Is used,.

Class scan terms. Class scan terms can only be right-part
terms in terminal productions. The right part of the (SP)
production in Figure 7 contains ciass scan terms, and it may be
interpreted, "look for a string, minimum length = 1, no maximum
length, consisting of hex - 40°s (blanks)." |If non-blank
strings ware to be looked for, a production could be wrlitten
such as

(NON_BLANK)::=0,1,0,40

The usual class scan terms are max, min, unlike/like, hexstring,
and charstring. Hexstring and charstring are szparate entities,
so if charstring occurs a comma must foliow hexstring, even if
hexstring is missing. Permissible combinations are:

hexstring
Jhexstring,charstring
+»,Charstring

One exampie that defines a numeric string not lconger than ten
characters is

{digits)::=10,1,1,,0123456789
or, alternatively,
(digits)::=10,1,1,FOF1F2F3FuUF5F6F7F8F9
A non-numeric string could be represented as
(alpha_special)::=10,1,0,,0123456789
2.2.2 The ACTION List Format

The following is a discussion of the different parts of the
ACTION 1ist. Figure 8 shows the layout graphicaliy.

2.2,2.1 LINK#TB., This is a four-element vector containing
the offsets, relative to zero, of the other parts of the ACTION
list. These offsets must be made permanent before the ACTION
list can be used by the parser; this is accomplished by adding

r~

3)

ACTION List

Source Labels

TERM#TB

WORK#TSB

PROD#TB

CHAP *TB

Relative Zero

L
| —— —> LAST NONTERM PROD#
N
K
—— —> ACTION LIST
T
B
~— —> PROD TABLE
——-—2> PACKED CHAR TABLE
LAST NONTERM PROD#
A
C
T NONTERMINAL
! PRODUCTIONS
0
N
L
i
s
T

TERMINAL PRODUCTIONS

(CLASS SCANS)

PRODUCTION TABLE

PACKED CHARACTER

TABLE

Figure 8,

The ACTION List

63

Q

2-14

each element of the vector along with the origin address of the
ACTION list and storing the result in the parser table,

2.2.2.2 TERM#TB, This is the last nonterminal production
number in the ACTION 1ist. {(The parser has a separate routine
to handle calls to terminal productions. Production numbers are
numbered sequentially by the Analyzer, as are right parts,) The
parser compares each production number to the value of TERM#TB
to ascertain if the production is terminal or nontermlnal.

2.2.2.3 WORK#TB, This constitutes the ACTION list proper.
Figure 9 shows the correspondence between the BNF left- and
right-part terms, the ACTION list source code, and the ACTION
list object code, it is the object code that drives the parser.

Eaéh right part of a nonterminal production has the follow-
ing parts:

PROLOG
MACRO1
MACRO2

MACéOn

where MACROl...n are any of REQ#LINK, LAH#LINK, .RDF#LINK, _
CHR#SCAN, SEM#LINK, OPT#LINK, If machine code is to be included
in an ACTION list, it must be hand-inserted by surrounding the
Assembly lLanguage statements with INS#LINK and INS#TERM macros,
RDE#LINK is unconventional In that it appears as the last term in
each right part of the production being redefined, not of the
redefining production itself, and is automatically generated by
the Analyzer.

Each right part of a terminal production consists of the
macro

CLS#SCAN T,X,N,H,L

This assembles Into a five-byte ACTION 1ist object element.
Nonterminal production macros produce eilther two- or three-byte
object elements, with an ACTION code from 1 to 9. CLS#SCAN
produces an ACTION code of 0 or 1, depending on whether the
string given in the BNF was "i1ike" or "unlike." The "1" with
REQ#LINK is not ambiguous because nonterminal productions are
handled sparately and distinctly from terminal productions.

2.2.2.4 PROD#TB. This is a table of halfwords, each of
which contains the offsets, relative to the beginning of the
ACTION 1ist proper, of each production. A production number
whose locatiocor is to be found is simply doubled and used as an
index based on a register containing the address of PROD#TB, The

&3

?2-15

S3S11 NOILOY U) $32udpupdsdaioy JO 3|qel

‘g 2an3)y

Jaqunu 3Jed I421s Ixsy - 7
d3qunu 3aied 143y Judling - Y
pud A1(nd(que 03 13540 - Y
YI8ud| 3400 puey-3ydjy - A
Y13ua(Buirais wnwiuly - 9
y33ua| Surals wnuixey - H MNIT#5H]1 Buimoptoy uoliona3suy
X{{ 40 Y[(un Js3ylaym uo Juipuadop ‘1 4O § - | 15J,4 jo ssauppe 031 13s QT 43351834 aseq
WY3L2SN! AQ pR3eJaus2 41 Y9 9yl puoAsqg 01 13S140 ~ £S91313U3 3|QRILD0|II MU UIRIUOD PINCYUS saxs
434qwnu 3{Npow Jt1IuewIg - § laed 14814 e U] Widl ISE| 3G ISNK ass
ajqey Jsijoeseyd payoed syl uy Jurals ;0 yiduan N jaed 14312 J3yjoue Ag pamol(oy 3q
314el Jal1oedeyd payoed ayl Ui JUIWIIL(ASIQ - X i1snw pue j4ed 1yFra B Up wid] A{UO 3 1SN aa
4aqunu uUoj3IINpodyd d JJed 143| B se |aweu| JO (dweu) Aq pIp3NALY »
pPUIFaT IUGTI 1433539
] A I ‘% 907044 1ded 1y31a jo *33q
1 H N X 1 THNXL HYISHSTY deya’¥ay’ (‘1 y (dweu)
d 6 1=d34 ‘d WNI111d0 sax(duU‘7)
d 8 1=434 ‘d ¥i1111d0 (dweu’t) Jo0 (duweu)
d L 0=dJ% ‘d ¥N1121d0 (3weu ‘p)
3 4 0 HY314SH1 s
+225(SUOIIINIISU) BUIYIRW) /" ’
a 9 NS \r
S S S AN1TAN3S (s>
N X f N ‘X NVIS#YR) 1oquAs
d < d ANi7ed0H » |3uey|
d Z d AIN1TIHVT »| 3weu|
d 1 d AP (3ueu)
S 3LA8 | h 31A8 | € 31A9 | T 31A8 { 1 31A9 SOUIVMW 1S171 KOlLdY a3143S 14vd 1HOIY NG 1dvd 1437 348
=] Qive
133040 ISTT NOTLOV HOY¥3 437NC0YUd

T~

E

Q
RIC

2-16

contents of the halfword loaded in a register from that location
then serve as an index based on a reglster pointing to the ACTION
list proper (WORK#TB).

2.2.2.5 CHAR#TB. The packed character table (PCT) is a
string of bytes, substrings of which foirm comparison arguments
and TRT table arguments. The PCT is entirely derived from
character string symbols given as right-part terms in the BNF
and from the hexstring and charstring parameters of terminatl
productions. the two ACTION 1list macros that refer to the PCT
are

CHR#SCAN X,N
and
CLS#SCAN T,X,N,H,L

where X is the displacement into the PCT and N is the byte length
of the PCT substring.

The PCT derives its name from the fact that attempts are
made to keep substrings within substrings to save space. (For
example, "USET" vields the strings "USE" and “SET."™)

2.3 THE PARSER
2.3.1 General Description

This parser is a re-entrant, 1,350-byte routine written In
PLZ80, The parser's function is tec break down the input stream
into its component parts (decomposition and recognition) using
the ACTION list as a gulde, and to delineate the input for
semantic routines whenever processing is to be done. The parser
can be thought of as an interpretive driver (mainline module) for
the SPIRES Il subprocessor.

Central to the operation of the parser is the parser table,
in which Is stored the status information reauried by the
parser; each user nas his own parser table In user memory (see
section 2.8). A basic component cf the parser table is the pro-
duction stack. This LIFO stack is a twenty-element array, with
stack elements consisting of six halfwords. The current stack
element is referenced using the AL (ACTION level) reglister. Each
time a right-part term calls another productlon, the AL register

.is itncremented by 1. Figure 10 is a representation of the

productiori stack.

Before the parser is started up for a user, semantic pro-
cess 0 (SEMO0) is called by INIT. TIPA, S0(0), TiPB, STC(O), 1L,

- ES(0), LAH(O0), AL, SS(0), and SE(0) must be set to inftial

values. (See section 2.8, THE PARSER TABLE, for an exp]anation

71

AL=20

Current productionr
number

Current right-part
number

Current right-part
term number

Input pointer at
entry to
production

Relative address oi
currently active
prclog

Relative address of
current ACTION list
position

Figure 10.

Parser Production Stack

of these terms.) Also, INIT must make absclute the pointer terms
of LINK#TB and store them in TV, AV, PV, and CV, respectively, of
the parser table. SEMANTIC, the first word of the parser table,
must contain the address of SEMANT, the collection of semantic
processes (see section 2.4).

When the parser Is first entered, R8 (called P) contains the
production number of the first production to receive controcl. 1f
a user has just logged on through INITIAL, P will contain 1,

The parser begins by initializing I1L2 and register zero.
Register usage is as follows:

ZERD (RD) Contains 0.
TP (rRL) Temporary input pointer used for
based variables,

PTR (R2) Pointer register for based varlables.
TEMP (R3) General purpose.
AL (RL) Maintains action level. PROD, PLOG,

POS, 1S, PLEV, and XLEV are
controlled by AL.

L (R5) Maintains Input level. Input level
varies as parsing switches from one
imput edium to ariother. Controls
SS, SE, and LAH.

12 (R6) Contains I1L+1L, Controls ES anad SIP.
SO referenced by I1L2+1L2,
X (R7) Maintains relative location within

the ACTION list for the currently
active production,

P (R8) Contains current production number,
PCT displacement, or
semantic number,

FipP (RS) Maintains the current relatlive
position in the input Yy oLEng
parsed. For any particular produc-
tion, FIP's value lies within the
range defined by IS(AL) through
ESCIL2).

2.3.2 Changing Input Levels

It may be desirable during the parsing process to change
"input channels'"; that is, to switch to a new source of Input.
An example in the SPIRES |1 command language is the ADD, SUBSTI~
TUTE, TRANSFFR,...UPDATE sequence, where on recoghition of the
string UPD(ATE} the Input pointer is switched to the WYLBUR
working data set. This process is controlled by the semantics.
The following demonstrates the process.,

Assume that all registers are saved on entry to

the semantic module and are accessible; l.e., that
SFIP is where FIP was saved, etc.

73

I~

-19

SEMnn: TEMP. :=1L2 + IL2;
ES(1L2+2):=ZERO;
SIPC(IL2):=FIP;
ISCAL) :=ZERO; SFIP:=ZERO:
TIP:=@NEWINPUT; TIPA:=TIP;
SO(TEMP+L):=TIP;
PTR:=@ST+BL; SET(CODE(1));
PTR:=@SS+(IL); SET(CODE(1));
PTR:=@SE+(IL); RESET(CODE(1));
PTR:=@LAHCIL); RESET(CODE(1));

TEMP:=8L+1; BL:=TEMP;
IF ZERO < PROD(AL) THEN BEGIN
TEMP:=NEG PROD(AL); PROD(AL):=TEMP; END;
IL:=1L+1; IL2:=1L+IL;
SIL:=1L+1; SILZ2:=tL2;
GOTO EXIT; COMMENT EXIT BACK TO PARSER;

COMMEMT CODE is defined BYTE CODE SYN MEM(PTR),
FIP,IL, and IL2 are changed on exlt.

2.3.3 Calling Semantic Modules

The parser calls semantic modules by loading register P with
the semantic process number S contained within the ACTION list
element SEM#LINK and then issuing the call. The sequence is:

TIP:=ZERO;
R10:=SEMANTIC;
CALLS (R14,R10); <note: this is equivalent to a BALR>

2.3.4 Input Bounding

When a command input has parsed successfully and all
necessary processing has been performed, the command string may
be "thrown away." The semantic module that is called to r=sd a
command input line will not physically read anything except
unparsed input. When an input line {s read, the productian that
calls the "read input" semantic module is marked in a certain

way; the oroduction is then said to be "bounded." |If the
bounded production succeeds, then the line Jjust parsed is thrown
away., |If it coes mot succeed, the line is retained, The '"“read
input" samantic module bounds the production that called iz by

negating P{AL).

2.4 SNAP

Withirn the parser there are calls to SNAP that can b=
turned on by the system programmer who i(ssues the command

PATCH CORE SNAP+9 00

~J

That person then recelves at his terminal a term-by-term tracing
of the parsing process. Figure 11 contains an example of the
tracing. As with a conventional programming language, BNF
grammars must be debugged and optimized. The former is of course
assumed, but the latter Is extremely important, especially with a
"top-down" parser like ACTION. With this sort of parser it is
possible to write grammars that are horrendousiy inefficlent to
parse; but it is also possible, by using some of the ACTION
extensions, to write a semantically assisted grammar that

parses with very little backtracking. 1t is necessary,

however, to be able to "see'" the parsing in progress, and to be
able to compare command parsing that Is done with two or more
variants of a grammar. These requirements are met by SNAP,

2.5 SEMANT

SEMANT is a PL360 global procedure that is composed of
n parts:

Declarations

Local Procedures

Group Router ;

Semantic Process Router, Group#l
Semantic Process Group#l

Semantic Process Router, Group#n
Semantic Process Group#n

Fach part is discussed below.
2.5.1 Dectarations

The names of external procedures called from SEMANT are de-
clared first. These procedures are the various entry points
within the ORVYL interface group, l.e., TGET, TPUT, QUIT, etc.
After them, the PL360 SPIRES functlons (see Appendix K) are de-
clared. Also, the standard register names for the parser (se:2
section 2.3.1) are declared, a dummy section for the parser table
is declared based on R11l, and a dummy section for the master
table is declared based on R1l2. {These last two items are ex-
plained in more detail in sections 2.7 and 2.8.)

2.5.2 Local Procedures

These are procedures that are used by several semantic pro-
cesses, such as MOVECORE (a generalized move routine); SHELSORT
({an in-core sort routine); and BCSRCH (a routine to search
the mnemonic dictionary). These and other local procedures are
to be found in Appendix H,

Q. 75
E119

IToxt Provided by ERI

2-21

ipf

-? display file

e—— loog H:Qf

!
Suy 5, uuaﬁo‘_a P

.2 0y, .
@ loo 4y «@c_wu T
" 4

./

-
T——

. /

(-~ IR
{10 | pg ccw 3! .tmf:‘%@:

Iyew coZu:_:F_ N

- Ral AN

///]

Ss

3dang _ ©11e —_—]

ey o

6

—

CE b oAkt
. . >y b oak
L N R - . -

COZCCCCIDCOODOCDCOCCOEDOOLOCOO

COOCCCoCOOOCODCOCOOOCCCOODOUOCO0

e e S e e e e

COCCCCEOUCOCoOCooO0CRCCTSSOOCO0

NOONMONNOANMI IIIIITIIIIANNMANCGHOAN

AHHM A A A A A AR A A A A A A A A A A A 0 O

ccocccococcogCEooOodDOCcCOCCOOCOD

COCLDEULLEGLETCVSDVLDEVESDCE S

et At A A A A A H A A A Attt 4 O CO &

CUMMARAGLRANGN MM TUCOUBLUCLO0C G
e R R R e R R R e R R R]

S S MO A e DRICINE eI N6 S C OO
R e L ka ke Rtk

AN 2 AR e L e C ROV I T T VNN M A S L e

B L e ke L R L B O g R e R e P DD

L A A N N AT
- RN
- PR
R S U
e
- B e i r At an e e
T e e e el e e 00 eiTe T e T ez exiize e

SMAP--ACTION Parser Trace

Fipure 11,

0
™~

N
}

22

2.5.3 Group Router

It will be convenient during implementation to categorize
semantic processes according to function (search, update, miscel-
laneous, etc.). The semantic process numbers will be arranged
in such a way that the semantic processes for each functlon occupy
a subset of contlguous process numbers. Such a subset is called
a "group."

The group router is simply a series of "if" statements that
route control to the appropriate process router, depending on the
range that P falls into:

F P > 14 GOTO GROUPL;
F P > 27 GOTO GROUP3;
F P > 49 GOTO GROUP2;

2.5.4 Semantic Process Router

For any group of semantic processes, the semantic process
router routes control to the process whose number ts In P.
This is done using a simple hranch table:

GROUP2:
P:=P - 14 SHLL 2
BRANCH (SWITCH(P));
GOTO SEMI1L;
GOTO SEM15;

2.5.5 Semantic Process Group

Each semantic process can either bhe unique or can share por-
tions of other semantic processes within a group or a set of
Zroups. Ail returns to the parser are effected hy the statement
"eOTO EXIT;". Figure 12 shows shared semantic processes. The
vertical lines represent ccde hetween specified statement labels,
and the horizontal lines repnresent transfers ("GOoTO's").

2,6 THE SAVE STACK

(The discussiaon shifts in this section to a consideration of

. the user memory area. This and the follewing two sections

describe the save stack, the master table, and the parser table.)
A stack of 15 register save areas that consist of 16 full-

words per area is set aside in each user memory workspace. Each
time = PL360 global procedure is called, or an Assembiy Language

77

<5> <77> <88>
SEMS5 : SEM77: SEM88:
A 4
SEM5A: &« SEM77A: €
<28>
SEM28:
27>
EXIT: & SEM27: <&
v

Figure 12: An Example of Shared Semantic Processes

™~

-2h

entry point, the following PL360 code (or its Assembly Language
equivalent) is executed:

STM(R1,R0,B13);
R13:=R13++#010020L0

The "++" indicates a logical addition of 64 to the current value
of R13, thus pointing it at the next save area in the stack. R13
is reduced by the same amount on exiting.

2.7 THE MASTER TABLE

By convention, R12 always points to the master table. This
table contains user identification information, the user's
terminal ID, the ID of the file currently attached, and so on.

2.7.1 TSAVER

Thirteen doublewords used by the timer and attention inter-
rupt routines.

2.7.2 T

A fullword containing the user's terminal 1D,
2.7.3 DI

A fullword contalining the user's file ID.
2.7.04 MXTSPACE

A fullword containing the address of the next space
available for use itn the user memory area. This cell is added to
by the ORYYL interface routine "GETCORE,'" and reduced by the
routine "RETCORE."

2.7.5 FLAGS

A fullword whose four bytes are used for various flag
conditions, such as "ATTM has occurred at the terminal," or
"time-out has occurred.,"

2.7.6 USACCT

A fuilword containing the account number given by the user
when he logged on.

2.7.7 USPSHWD

A fullword containing the terminal identification name
(e.gz., P24) that corresponds to the terminal at which the user is
logged on,

73

2.7.8 960-Byte Reserved Area

An area reserved for the growth of the master tabie. 1t s
probahle that a large portion will be devoted to files devices
work space and to counters in which on-tine statistics will be
accumulated.

2.8 THE PARSER TABLE

This table contains the constants and variables required by
the parser during its execution on behalf of a particular user.
The following is a list of table elements and their lengths and
descriptions.

PARSER TABLE: VARIABLE NAMES + FORMAT (R11-BASED)
VARIABLE NAME SIZE DESCRIPTION

1. SEMANTIC L) Absolute address of the
semantic module associated
with the ACTION list beinsg
parsed, -

2. TV (4) Absolute address of the
terminal productions in the
ACTION 1list.

3. AV (1) Absolute address of the
nonterminal productions In
the ACTION 1list.

4, PV (%) Absolute address of the
production tahle.

5. CV (W) Absolute address of the
character table.

<The preceding five terms must be pre-set hefore
calling the parser. The method of establishing TV, AV,
PV, and CV is describhed in section 2.9.2. The
remaining terms of the parser table may be in any
order, but are currently defined as follows:>

6. TIPA (L) Ahsolute address of the input
data being parsed (upper
case only).

7. TIPB (4) Ahsolute address of upper/
lower-case input data. Not
used by the parser.

10.
11,
11.
12,
13,
13.
15.

16.

18.

CHARSTART

CHARPOS

PLOGX

BL

WS 2

LNTH

MAXC

MINC

CONF

PROD

PLOG

POS

(i)

(2)

(2)

(2)

(2)
(2)

(2)

(2)

(2)

(20%2)

(20+2)

(20%2)

(20%2)

(20%2)

Pointer to the heginning

of the character string most
recently parsed by a
terminal production.

Numher of bytes last parsed
by a terminal production.

Relative address of the cur-
rent production prolog.

Bounding level counter--
initialized to 0 by parser,

Work space for parser.

Used by terminal productlon
pirocess to hold size infor-
mation.

Used by terminal production
process to hold H.

Used by terminal production
process to hold L,

Used by terminal production
process to hold function
code.,

Array that maintains pro-
duction numbers currently
In process. 1f a number in
this array is negative, the
corresponding production is
bounded, and BL was incre-

mented when boundings occurred.

Array that malntains re-
1z.tive address of prologs
currently active,

Array that maintains re-
lative address in the
ACTION 1ist of productions
in process.

Array that saves relative
input pointer at eniry to
each production.

Array that maintains right-
part number withtm a pro-
duction (may be eliminated).

22.

23.

2L,

25.

26,

27.

28,

29,

30.

31.

S0

ES

StP

SS

SE

LAH

ST

CAOF

CAON

CHAR1

CHAR2

RS

(20%2)

(hel)

(L*2)

(4%2)

(L=1)

(b=x1)

(h=1)

(8x1)

(256*1)

(256=1)

(1)
(1)

(1)

2-27

Array that maintains term
number within a right part
(may be eliminated).

Array that maintains TIPA
as input levels vary.

Array that maintains length
of input data heing parsed
at the various Input levels.

Array that maintains rela-
tive input pointer as input
levels vary.

Array of flags that spect-
fies if start of inrut data
is static (00) or flexible (FF).

Array of flags that speci-
files if end of input data is
static (00) or flexible (FF).

Array of flags that
specifies 1f a lookahead .
is in progress (FF) or not (00).

Array of flags thac main=-
talns bounding state: (00) =
normal bounding; (FF) =
bounding input level

change.

Array of (00) used by
terminal production pro-
cess.

Array of (FF) used by
terminal production pro-
cess.

Flag byte used by terminal
production process.

Flag hyte used by terminal
production process.

Return Switch flag.

(00) = production success-
ful; (FF) = productlion
failed,

2.9 THE FLOW OF CONTROL

The following sections refe(back to Figure 5. The last
number of each sectlion corresponds to a numbered arrow 1In
Figure 5.

2.9.1 Entry to SPIRES 11

The user has logged on to the system through MILTEN, and
issued the command "SPIRES."

2.9.2 INITIAL

INITIAL then initiaiizes the master table, finds the address
of the first page of user memory, and initializes for communica-
tion with WYLBUR, It also initializes the parsing tahle by adding
the ACTION 1list origin address to the LINK#TB vector to get TV,
AV, PV, and CV,

2.9.3 Call to SEMD

SEMO is a semantic process that Initializes the parser.
After doing so, it returns to INITIAL.

2.9.4 call to the Parser

The P register is set to 1 and the parser Is called. The
first right part of production %2 has a call to SEM1l, which, by
convention, reads a line of Input. The pParser remalns In primary
control until a LOGOFF command is recognized.

2.9.5 ¢Ccalls to Semantic Processes

Fach time the parser finds a semantic link ecall, It loads
the P register with the production number from the ACTIOHN Tist
and calls SEMANT.

2.9.86 ralls to the ORVYL Interface

Semantic modules lIssue calls to ORVYL interface entry points
whenever supervisor services, such as disk or terminal Input
or output, or WYLBUR communication, are required.

2.9.7 QUIT

The parser has recognlzed LOGOFF and therefore does a return
(BR 14); or, an error has occurred and the parser gives the user
back to WYLBUR by calling QUIT.

2.9.8 Branch to SMNAP

llhenever the branch-condition-15 instruction at SNAP + 9 has
been altered to branch condition 0, a trace line Is printed by
SNAP each time a production Is called or a return Is made to
Q calling production. : 53

g i SR e e i e

FR—

CHAPTER 3

LOGICAL FILE COMCEPTS

3.1 IMTRODUCT!OHN

This chapter and the three following describe the SPIRES 11
file structure. This chapter initroduces the concepts and ter-
minology required for a basic understanding of the =enerai
structure, it does not attempt to outline the structure in all its
physical detail, but rather attempts a logical presentation. The
concepts "record,'" '"record type,'" "profile," and "“record
characteristics! are emphasized.

Chapter b4 explains how data are organized to facilitate econ-
omic storage and easy access. A wlde range of storage strategies
has been provided to accomodate hoth simple and sophisticated
appliications.

Chapter 5 deals with the physical formats of the entire data
structure: records, blocks, characteristics tables, and so forth,
This chapter is not required reading for an interested observer
of the system, but it is vital for anyone wishing to wrijte pro-
zrams, modules, or subroutines that manipulate SPIRES Il files.

Chapter 6 presents the structure of the Rasic Files Ser-
vices software. This software, used in conjunction with ORVYL
macros (see Appendix D) or the virtual access method (see
section 1.1.5.3) constitutes an access method for locating,
adding, replacing, or deleting records within a SPIRES 1|1 file,

3.2 FILE SYSTEM DESIGN REOQOUIREMENTS

In order to provide SPIRES Il wlth the functional capabilities
deemed necessary by its desizners, a flle structure capable of
handling a wide varifety of applications was concelved. Following
are some oFf the major requirements for such a file structure.

It must be possible to search the file through a
number of access paths. Where files are too large for
sequential searching, it must be possible to build
quick access paths using any data elements desjired.
Desired data should be locatable through such paths
in an average of three to four disk accesses,
depending on file size.

The file must be able to accomodate data elements

of indeterminate length with reasonably efficient use
of space.

54

A et gy e e

The file must be able to accomodate opticnal
and multiple occurrences of data elements within records.

The file owner must be able to defirie the
characteristics and contents of his file, within
practical 1Iimits, without the intervention of programming
personnel.

It must be possible to modify a record at the most
basic level, i.e. by character,.

The file structure must interface easily with
special data element transformation algortithms and
tables.

The structure must be able to encompass large,
growing flles. Documented requirements Include a catalog
data file, which will grow at the rate of 50,000 records
per year to an uitimate size of 250,000 records.

it must be possible to provide file security at the
data element level.

The system must attempt to provide absolute integrity
among data entering the system. No user data should be
permanently lost by the system. .

The structure must allow for a varfiety of recovery
techniques, ranging from the simple overwriting of one
byte in a file to the complete reconstitution of the flle
from previously gathered informaticn.

Response time, which is tied to the number of disk
accesses required to service a request, must be minimized.

There must be sufficient areas of .redundancy
built In to permit programmatic flle verification
and reconstruction of certain parts of user files.

Time intervals durins which a file's integrity Is
unprotected must be eliminated or significantly reduced.

To reduce the number of accessing routines necessary,
data structures must be as few and as zeneral as possible,

There must be cptions for holding frequently

used tables a2nd dictionaries in user virtual memory
in order to reduce accesses to disk,

FILE STRUCTURE OVERVIEW

To someone familiar with classic computer file organizations
feature "indexes, "'prime data records,'" "inverted lists,"

895

and soc on, the terminology used to describe the SPIRES file
structure may seem strange. Nowhere is the word “index™
mentioned; nowhere is the phrase ''prime data record™ use ., The
reason for these omissions is simple. Suct terminology .uggests
the narrower consideration of a two-level file structure: a
series of prime data records pointed to by one or mere indexes of
data element values. SPIRES 1!, although it is desiznec to ef-
ficiently accomodate one level of indexing, is not 1imitz=d to
this, (See Figure 13.) The concepts that are presented here
relate to files composed of n-level hierarchies of record types,
and to "profiles! that define the Nwindow!" on a file open to a
particular set of users. These profiles not only defirne the
leveis of the hilerarchy to which the set of users is atlowed
access, but also the portions of each record type that the users
are allowed to access or modify. Also presented in this chapter
are brief introductions to the concepts of data element structure
within a record type and file characteristics that enabhle the
reneralized system software to operate on different files, each
having a different structure and format.

3.3.1 lNecord Tupes

A file is defined as a coliection of one or more record
types, stored with characteristics information that describes
those record types, how they may be searched, and how data are
passed between them. All the records of one type are stored
together in a single data set. Within the system, each record
type is assigned a number from an integer code 1, 2, ...n, and is
referred to as REC1l, REC2, etc.

3.3.2 Pointers

Records of one type may refer to records of another type
by means of pointers (see Figure 14). Records of one type
may not point to records of more than one other type, but,
as shown in Figure 14, one type of record may be pointed to by
more than one other type. In one method of record organization,
it is possible to form hierarchies of record types that point
to one another, with no theoretical limit to the number of levels
possible,

3.3.3 nRoal Records

1€ a certain type of record is to be retrieved, the records
of that tvpe are called ''moal records." A record that is pointed
to by records of another type is also called a goal record, Goal
records are usually the basis for creating access records,

3.3.4 Access Records .

Types of records that point to goal records are called "Yac-
cess records." However, an access record may also contain data

86

ANIINAIS B114 1) STYNGS CET ednuly
w 1 _ i :
i w
L t~ L —
R S ~
$135 3793 ¥3KLD
i
_ | .
. | A .
~ i
~ . |
~ S A
~ ————] {
- SN) .
~
/]
. i ! j)
" ﬁ|||||| s _ ~ i w wir Sib _W YLSH * I~
' . TARALSLAA “AARAAALA *AAAAARAR
| aovssia SISOl ~ AdAIAMLY % . e M Wy | et s X0
. EHIS R N e W 1 1744
0TS 45 7LV L35 ¥LIVG
, N S115 Yime 138 ivd (IUNO11d0)
. Al 1111 u“;w 96%.“,_ 3% 138 il HILSYH -
. 461 FRHATY SIS W AR nots. w IR S 3%
[IEFIA Y oL ' ' : ! i
| _y [— j Lo
_ — [T | S b s
: | ﬁlix/ s !
: _ - MAAARARA = JaVHITIA NNNY = 4100V
i !
| — w h
! ; L0d(. b ~
4 1 i
SN : L e Rt HUGVISH ~
TNHES . “ nns ERHE ~
| STk ~N
LTI i 314 13§ vLw 103 ~
JaNTS vidil 3Lvgdn i HIAV 35 N
. KLYy IV
] _ ~
. N
. RS N
- N
456) |
s | | i | ~ N
, i) ! !
ERIEI ! nine - - ~
SILSILVLS I divdan | 2 : ~
WILSAS | ddueiadg ALvE : $2714
b : ~
! { : ! ~ ¥3sn
i T y - e N
! { ! i
_ —
53714 131SAS
\Vl

e i

E

[T g

Ny

¢ 8 7 ®i140dd

sadf] p40d3y ulamlag sdiysuojie|ay

S

8{ 14044

*#1 94n8 |4

g
34K} p4od34

92dA) pJaodOBd

L

3df; p4023d ~

: *

——td matm— ——— i a———

—

h
adA3 plodad

¢
adA3 p41023d

| I.HV

P4
adA3 p4oo3d

~

1
2dA) p4oDe.

T @2113404d

o

O

A Fui Toxt Provided by ERIC

E

to be retrieved; in such cases the access record is also a goal
record.

3.3.5 Pacord fontents

Within a record of a particular type, the followling components
may exist,

THE KEFY DATA ZLEMENT, Each record of 2 specific
type must contain a key data element whose value 1is
unique amons the records of that type, This key data
element value distincuishes one record from annther
and it is the basis for organizing record data sets for
quick access (see section h, l4). It is common practice
to refer to a particular record type by the name of its
key data element--c.g., the Author record type.

THE POINTER GPOUP, 1¥f a record data set consists
of access records, then the records in that data set
may contain pointer groups. An access record pointer
group is a set of pointers to the goal records that
contain, or have some association with, the key data
element values of the access record, (These polinter
groups are furnished by the goal records--see section
3.3.6.) Fach pointer may be accompanied by quali-
fying information that identifies the goal record
pointed to as a member of some class, range, or set,
Pointers may consist of block number (see section
4,2.3) or node or entrvy number references (see section
5.2) or of key data element values, Pointer gsroups
are maintained in ascendine order according to the
collating sequence.

DATA. This important component consists of all
the values of data elements that are associated with a
particular key data element value. A record does not al-~
ways contain data; it could be abhsent, for example, from
a record type 1ike number 1 in Figure 1lh. Records of
this type only refer to records of another type; they
are not themselves the moal records of any other record
tvpe,

0f these three components, the key data element must alwavs
he present. The pointer group must exist if the record type is
an access record and refers to a goal record outside itself, The
data portion should exist in all goal records, and may exist in

access reacords as well,

:
i
!
{
i
}

3.3.6 FPassing NData Element Values

Key data element values and pointer sroups are added to
access records by means of '"passing.'" FEach goal record passes
over to the appropriate access record a data element value that
will be the key data element in the access record. Also passed
is a pointer back to the goal record and any data element
values to be used as qualifiers.

The algorithm for passing from goal record to access record
is as follows. |f among the access records to receive the
"sassed" data element value there is none that has as its key
data element value the value that is being passed by the goal
record, a new access record is created. This new access record
includes a single pointer back to the goal record (together with
any qualifying information, this will be the pointer group). I f
an access record already exists with the key data element
required, then the pointer passed upward from the goal record
(2'ong with qualifying informaticen) is merged into the pointer
group in the existing access record; the collating sequence
within the pointer group is maintained throughout.

3.4 PROFILES

When a user wishes to search or update a flle, he is dealing
with a goal record type and zero or more access record types, The
requirements of one or more users with respect to certain
sections of a file are called a profile. This word is more
clearly defined to mean a subset of the record types (a goal
record type and one or more access recorrd types): a set of
restrictions on searching and updating records in this suhset;
and a set of account numbers of the users that are allowed to use
the file in the way the profile permits. Figure 1lb4 shows a
hierarchy of record types. In profile 1, record type L4 is the
~0al record and record types 1, 2, and 3 are the access records,
in profiles 2 and 3, record type 7 is the goal record and record
types 4, 5, and 6 are the access recoards, The difference between
nrofile 2 and profile 3 lies in the up-date and search privileges
sranted to the two corresponding user sroups. Profile 4 1Is
interesting in that there record type 6 is hoth a goal and an
access racord. Profile 5 is even more interestine: record type 7
is the access record, and record type 5 is the goal record,. This
is a revaersal of the relaitionship hetween these two reccrds in
nrofiles 2 and 3. The double arrow indicates the second set of
rointers, An implicit limitation in defining profiles is that no
more than one goal record and two levels can bhe included within
one profile.

A user must select the profile in which be wishes to work
by issuing a SELECT <name> command. Until he overrides this
with a LOROFFE or another SELECT command, he may only operate
under the record type subset and accessing restrictions dic-

g0

vé
i
{
:
&
!
¥
;
1
i

tated kv his profile. If he should select a profile that does
not exist under his account number, he receives an error
diagnostic.

3.5 THF HIERARCHICAL STRUCTURING OF DATA FLEMENTS

Up to this point, hlerarchies of record types have been the
only ones discussed. 1t is also possible, however, to have
nwierarchies of data elements within a record type.

Each record type may be considered the top level of an n=level
data element hierarchy. In a hierarchy of only one level, none
of the elements at that (record) level break down into subelements.
In a hlerarchy of several levels, there are data elements at the
record level that can be broken down into other data elements.
(For example, "date" may resolve into '"month," "day,'" and "year,"
although st~uctures are usually more complex than this.) Such
data elements are called "structures.'" Data elements in a
structure may themselves be structures.

NData element structures are treated as records within
records. Figure 15 shows at the larger record level the record
types '"Author," "Title," and '"Date.' The Author structure is
made up of "Name' and "Affiliation,' and the Date structure of
"puhlication (Date)" and "(Date of) Receipt." The latter two are
themselves composed of '"Month" and "Year."

Within a record type, each structure is assigned a unique
internal structure number, Fach Adata element is referred to in-
ternally by its "structure element number,'" which uniquely iden~
tifies the data element and the internal structure of which it
is a part,

Althouegh the implementation l1imit on the depth of structuring
is ten levels, it is felt that a depth exceeding three levels
places a procassing burden on the system that should he avoided if
possibhle.

5.6 FILE CHARACTERISTICS

For each record tvpe there are three tahles that together
descrihe its format, content, searchability, and updateability.
The characteristics tables are storecd in the master data set as
the search, build, and record format characteristics, It is
impossible to access or Mmanipulate records without using these
characteristics tahles.

The search characteristics table lists all the access recor-s
and any other means (such as sequential scannins using something
other than the key data element) for locating goal recorrls,

These characteristics also describe qualifying information

PN oy

7 4

¢

3| - N|
3| E 2|
< 3 g
5| o
[&] | . | .
§| b >
g g
| - | .
by 3;
AUTHOR; | '
' .NAME = JONES4 JOHN R.;
| |AFFILIATION = ., STANFORD UNIVERSITY:
I I
AUTHOR; {
l MAME = SMITH,| RORERT L.;
| AFFILIATION = RAND CORPORATION;
TITLE = REAFTOR-POWERED DJSALINIZATION;
DATES;

PUBLICATION;
MONTH = JUNE;
YEAR = 1970;

RECEIPT;
MONTH = OCTOBER;
YEAR = 1970;

Figure 15 Data Element Structures In External Format

ENC 9

contained in access records that may restrict the goal records
located, tf search characteristics do not exlist for a record
type, the records can be iocated only by their key data elezment.

The build characteristics tahle contains the information

needed to construct the record type from data input in external
format.

The record characteristics table contains information for
each data element in the record type, including its location
in the record, its length (if fixed), occurrence, its type, etc.

93

CHAPTER I
ORGAMIZATION OF DATA SETS FOR ACCESS AMD STORAGE

h,1 iNTRODUCTIOH

The preceding chapter discussed logical file entities:
record types, profiles, data structures, and record
characteristics. This chapter hegins by describins the data
management features provided by ORVYL. It then touches briefly on
the various data sets that make up a SPIRES Il file and the data
set naming conventions. It describes how record type data setls
are organized for access, and how that organization is
maintained. Finally, it give an example of a typical arrangement
in a bibliogsraphic file.

b,2 THE ORVYL ENVIRONMEMT
L,2.,1 Data Management tUnder ORVYL

ORVYL, the Stanford Time=-Sharing Monitor, provides basic read
and write capabilities to 2314 disk in a paging environment,
Lloglcal data sets are composed of a collection of 2,048-byte
hblocks. Such data sets mav be organized either so that their
hlocks are contiguous, or so that the blocks Aare noncontiguous,
In the noncontiguous arrangement, allocations of new hlocks to
a user's file are made from a common pool; hlocks for one logical
file are stored noncontiguously, and are perhaps spread across
several volumes. Although this is the most efficient use of
space, it creates the need for additional access paths to relate
a losgical record number to a block number. For large data sets,
this arrangzement adds significantly to the numher of accesses
required to retrieve a record. It also complicates recovery
sequences. For these reasons, file contents will be organized
contiguousty for SPIRFS |1,

h,2.?2 Contiguous NData Sets

Data sets with contiguous blocks (hereafter called
contisuocus data sets) are deciared using the COMTROL 21 and
COMTROL 22 macros (see Appendix £). Up to 15 secondary
contisguous extents (not necessarily contiguous with previous
extents) may be allocated after the primary extent has heen
allocated. Initially, SPIRES volumes will be allocated
completely as one large common data set to prevent other ORVYL
users from galning space for noncontiguous data sets. All
allocatlons for SPIRES files will take place under ORVYL during
second or third shift, at a time when no users are on-1ine, and
no batch activity is in progress. The sequence of events will be

Q. - 94

-2

(1) deallocate a group of blocks from the '"pool!" data set; (2)
allocate that sroup of blocks to the new data set primary extent
or the old data set secondary extent.

It shoul” be noted that whereas ORVYL noncontiguous data sets
may consist of logical records that are sreater or lass than
2,048 bytes, contlisuous data sets must consist of logical records
that are precisely 2,048 bytes. The term "logical' is used here
with reference to ORVYL. SPIRES/BALLOTS will subdivide ORVYL
blocks into i : own logical records.

L,2.3 Accessing ORVYL Files

Accessing contiguous data sets within ORVYL is done via the
standard ORVYL macros ATTACH, READ, WRITE, etc. A directory of
contiguous data sets will be maintained on disk by ORVYL and kept
up~-to-date via the allocation mechanism mertioned above,. The
dAirectory will contain information about extent iimits and
vihether a particuiar file is divided into extents, The fact that
files may have several extents is not apparent tc the programmer;
it 1s necessary oniy to provide a block number, and QORVYL
will convert it to the apprcpriate physical record number by
subtracting the number of records in previous extents and adding
the result to the block numher that hegins the extent,

5,3 FILE SETS AND DATA SETS

h,3.1 File Sets

in reality, several

vlhat the user thinks of as a "file" is,
is composed of the

dzta sets (refar to Figure 13), The file
following data sets.

A master data set that contains the charac-
teristics of the file.

One data set for each record type in the flle.

An optional residual data set, to be used in
cases where it is considered economic to remove or split
data away from accessing informatioin (see sections
L,5 and 4.6).

L.3,2 Data Set Maming Conventions

Svsterm data sets are individually named on the basis of
the system account number and a mnemonijc that surgests the con-
tents. These mnemonics will be discussed in further detail be-
low.

User data sets within a file set are named with the user
account number C(ANNN) and the file name (up to eight aliphanumeric
characters) in the format

ERIC 95

IToxt Provided by ERI

-3

ANMN,F I LENAME . DSNAME,

where DSMAME will be one of the following:

MSTR = the master data set.
RES = the residual data set if one exists.
REC1 - the data set containing all records

of type number 1.

REC2...n - the data sets containing the other
record types in the fitle.

h.h THE ORGANIZATION OF RECn DATA SETS

The records in the data sets ANMM,.FILENAME.RECN are
organized either as a series of simple, fixed-length slots or in
a tree structure. In either case, the organization is based on
the unique key data element value in each record. Since all
nhysical data blocks under ORVYL are 2,0u48-bytes long, each
physical block will probably contain a number of records,

L.h,1 Slot-Structured Data Sets

Ficure 16 is a graphic representation of a slot structure.
The slot structure may only be used for fixed-length consecutive
integer key Adata element values, If the records are not removed
to the residual data set, the records must he fixed length.
renerated hy the system. The primary advantage to this structure
is the quick access it permits to any record. Given a key data
alement value and the number of records that will fit into a
2,048-hyte block, one can compute the block numher of the
physical record that contains the desired value,

L.u.?2 Tree-Structured Data Sets

When records are organized in a tree structure, they are
called "nodes." tModes are accessed by their key data element
values, The "tree'" refers to the logical pattern of the blocks
making up the data set, One enters at a common block (the trunk)
and the nodes in this block point to other hlocks (branches).
(The tree is in effect uprooted, being represented upside-down.)
The nodes are so arranged in the tree that an examination of a
trunk bliock determines which hranch block (if any) needs to be
examined next.

Consider the thumb index on the edge of a dictionary: it
contains ahout twenty nodes that determine on which pages to
begin a more discriminating search. Then the words at the tops
of the pases can he used as nodes in crder to determine which
page to examine in detail, This example illustrates two rules

96

record

[T

Figure 16,

record
L

s m——— e Seam—— ctvme mer—

record
5

e T .

record
6

/77T TTT]

record
7

. T

record
8

fomae — o—— m—— — ———

record
9

[T

etc.

\—/’

N N~

Physical
Block
1

Physical
Block
2

Physical
Block
3

etc.

Slot-Structured Data Set

governing tree structures: (1) 2% any level of the tree the
nodes in a brarmch alphabetically surround terms contained in
branches emanating from that branch, or trunk; (2) a branch
contains only terms that fall between alphabhetically adjacent
terms in its trunk.

Put the tree structure used in SPIRES [l Aata sets differs
from that of the dictionary in a number of ways. First, the
physical lavout of a dictionary is quite di fferent from the
nhysical layout of the SPIRES blocks. Second, the thumb index
and running head words are incomplete dictionary entries and have
to be repeated on the pages; each of the SPIRES nodes is complete
and so occurs only once in a structure. Third, in the dictionary
example there are a fixed number of levels; in the SPIRES tree
sructures there may be any number of levels, and some branches
may contain more levels than others (their branches may have
branches). The SPIRES tree structure grows when a terminal
branch has become filled and has to start pointing to additional
hranches. Since growth may bhe uneven, it is likely that the tree
will occasionally need rebalancing. This means that the tree
will be reconstructed so that each branch in the tree contains
about the same number of nodes. Figure 17 shows a simplified
tree. A line of words makes up a hlock. The words are ncdes and
the arrows are branch pointers, Fach word preceded by an
extended arrow is "nonterminal'; i.e., it points to another
bhranch (hlock).

4.4.3 Tree Rebalancing

The processes of rebalancing and constructing record data
set trees are similar, If an old tree is heing rebalanced, the
" 6ld nodes are written out on tape in alphabetical order. If a
new tree is being constructed, the nodes to bhe placed in it are
sorted alphabetically. If the initial nodes are carefully chosen
so that they form a balanced subhset of what will probabhly be the
ultimate node set, the tree is more likely to =row in a balanced
manner. During construction or rebalancing, the nodes are placed
in the tree starting at the tips of the hranches (bottom=level)
and workine toward the trunk (top-level). Firsure 18 shows the
relative positions of nodes in a sample tree. For the sake of
simplicity it is assumed that four nodes fit in a hranch (i.e.,
four records in a block). Unless the tree is 1ikely to grow
heavily near the end of the sort order, the tree can be improved
by bringing nodes close to the trunk. This minimizes the
accesses needed to find a node. Modes are bhrouzht toward an
unfilled top level in the following wavs: (1) if the farthest-
left branch in the level just below the top contains nonterminal
nodes, these nodes and their hranch pointers are extracted,
starting at the end of that block and working toward the
bezinning, until the higher level of the tree has bheen filled; or
(2) if the farthest-risht branch contains terminal nodes, then
these nodes are extracted startinsg at end of that block and
working toward the beginning, until either the higher levei “has

98

commi t herb never

\ 4

> basil cyst element join,\lezf;\i:ny, mumble zero, 2

xdon concave idiot, igloo Jumble, jungle, tabel
v

damage, data
v
attach, bank : jousting

Figqure 17. An Example of a Tree~Structured Data Set

93

h-7

_h /”\

/ | 8 16 24 28

v \7 $ \l vl 2 \
1 5 9 17 21 25 29
2 6 10 14 18 22 26 30
3 7 11 15 19 23 27 31

Figure 18, Sample Tree

B R T

9 10 11 17 18 19 28 , 30

\

21 25 29
22 26
23 27

Fimu~e 19, Sample Tree After Rebalancing

ERIC 100

been filled or the lower level block has been emptied, This
process fills nearly all the top level blocks, Figure 19 shows
the final position of the nodes of Figure 18,

Trees are rehbalanced infrequently, Between rehalancings,
nodes may be deleted, modiflied, or Inserted. Neleting Is the
simbiest function, since all that |Is done Is to set a status
switch indicating that the node has heen deleted, The actual
node jtself will not be removed from the tree until the next re-
balancing. This allows the value of the key data element to he
used for branching but precludes actual retrieval of the node.
If the updating of a node involves changing the value of a key
data element, ther the node is set to "deleted" and an updated
version of the node is inserted into the tree. If the key data
element value is not changed and the updated node will occupy
less space than before, then the old node is written over. (1 f
the updated node would occupy more space, then the old node is
written over with a portion of the updated node and the remainder
is stored In the file's residual data set-~see Figure 13.)

When a node is to be inserted in the tree, the tree is
examined until a block is encountered where there is no branch
pointer between the two nodes alphabetically bounding the new
node. Then an attempt is made to insert the node Tnto this
hlock. It will sometimes happen that there is not enough
reserved space 1eft in a block for the new node. If this
happens, then the contents of the block must be divided and a new
block must be added to the tree. If all of the terminal nodes
(including the new one) will fit into one block leaving growth
space, then they are put into the new block with a branch pointer
left In the old block, I¥f they do not all fit into one terminal
block, then they must be split hetween the old and new biocks.

It is at this point that a lopsided growth factor (a file
characteristics parameter entered when the flle is defined) is
referred to in dividing the terminal nodes hetween hlocks. | £
the factor is .5, half the nodes are assigned to esach bhlock. | f
the fTactor is close to 1 (new key values are monotonically
increasingl), almost all the old nodes are put in the rew block
with 1ittle space reserved for growth, (The supposition here is
that the tree will be growing horizontally and not vertically;
hence there is not a requirement to provide growth space.) At
this point, the first terminal node remaining in the old block
has bhecome nonterminal, since it points to the new block, 1f the
old hlock has no other nonterminal nodes and if there is space in
the hlock above this one in the tree, then the new nonterminal
node is passed up to it for insertion. Ntherwise it remains in
the old block,

Althourh the algorithm as presentad may appear complicated,
it is relatively easy to program and has the advantaze of
ensurine halanced local growth. Firure 29 shows the treen
npresented in Figure 19 after a period of intense egrowth In one
area. The letters were added in alphahetical order and all fall

® 101

8 12 16 20
4L 5 6 7 cl/g 10 11 13 14 15 17 18 19 J2u¢28 \130 31
g// 9ab def Kkosuw 21 25 29
! V{'L'L \N 22 26
2 h 1 p t X
23 27
- i m Q@ u vy

Figure 20, Sample Tree After Intense Local Growth

20 40
41/”’///’ ¢ \“NN“N\‘“*ﬁQ
s 8 11 16 26 28 32 36 44 48 52 56
A 2 AR B B AR
1 5 9 13 17 21 25 29 33 37 41 LT 49 53 57
2 6 10 14 18 22 26 30 34 38 42 146 50 54
3 7 11 15 19 25 27 31 35 39 43 47 51 55

Figure 21, Sample Tree with Well~distributed Growth

O

ERIC

Aruitoxt provided by Eic:

L-10

hetween 9 and 10, It is anticipated that most trees, if
constructad properly, wil?! grow equally in all areas. If this is
so, then trees will rarely need rebalancing.

| f we had assumed Figure 18 to be a monotonically growing
tree, and we had added 32-57 onto that tree, the resultins tree
would have looked like the one in Figure 21. Figure 19, however,
would not then represent the tree aftar rebalancing, since

monotonically growing trees are not rehalanced in the manner
shown here.

5.5 DATA REMOVAL
L.5.1 Definition and Criteria

Data removal means moving data that had been stored with an
associated key data element value to another place of storare,
and leaving behind a pointer to the data's new ilocation. The
residual data set ACCTN.FILENAME RES exists to receive all such
data removed Ffrom the record type data sets.

The reasons for removal are due to the fact that in a tree-
structured data set (which the majority of data sets are),
efficient access 1Is produced by maximizing the number of nodes
per block. In certain cases, it is most efficient to keep key
data element values in a tree structure and to remove the
relatively larger body of data, to be retrieved in one separate

access after the corvect key data element value and residual
pointer have been located.

The decision a]gorithm for removail is basad on the
following:

There are N occurrences of the record in the record tvpe
data set; in order to locate a particular occurrence, some number
of key data elements needs to he examined. K is the length of
the key data element as a percentage of a typical record. On the
averace M records it into a block; the hlocks form a balanced
tree structure; and it is equally likely that any record will be
requested. That there are two storage strategies leads to
different formulas for the expected number of accesses needed to
find a record. V\here the record is stored as a whole, there is a

probability of M/HN that only one access will bhe needed, a
orobability of (M + 1)M/N that exactly two accesses will be
needed, and so on. where only the portion needed for access is
stored, with a pointer to the rest, there is a probabllity of
(M/K)/N that only two accesses will he needed to retrieve the
whole record, a probability of (M/K * 1)(M/K)/N that exactly three
accesses will be needed, and so on. As M, K, and M vary, the
expected number of accesses will vary.

103

i b R e ke 0 S e R B S R D Y

In the tahle in Appendix L, the breakpoints are given at
which both storage strategzies lead to the same expected numher of
accesses. The top row contains the values of XK, the column
farthest to the left contains valiues of M, and the remaining
columns contain values of M, Keeping K and M fixed, if N is less
than the value in the table, then the whole-record storage
strategy requires fewer accesses; if N is greater than the value
in the matrix, then the residual-record storage strategy requires
fewer accesses. It can be seen that, for a given number of
occurrences of a record, the larger the record and the smaller
the key data elemerit the more advisable it is to store only the
accessing information in the record type data set.

An fnitial implementation restriction in SPIRES 1t will bhe
that the data of any record type that passes data element values
to another record type will be removed to the residual data set.

4.5.2 The Logical Effects of Removal

Figure 22 shows a file set consisting of four record type
Adata sets. Type 1 is the ID records, which are also the goal
records. Types 2, 3, and U4 are access records. It should be
noted that all access record pocinter groups are hased on key data
element values; in general, whenever access records point to goal
records with unremoved data, the pointers are of this sort.

it should also be noted that althousgh Figure 23 shows the
data portion of the ID records stored in the residual data set,
the removal decision may be made on any or alil record types
vivithin a file. The decision is, of course, always made according
to the algorithm given in section L4L.5.1.

4,6 RECORD SPLITTING

It is possible that even though a node pointer group begins
in a tree-structured data set it may continue and end in the
residual data set. The reason for this is that the number of
tree levels is directly proportional to the node slze, given some
fixed number of nodes. Thus a tree-structured data set may
becorme Inefficient to access if large nodes are stored there in
their entirety. A maximum node size (a file characteristic) is
used to determine whether or not splitting should occur. As much
of the record value as possible is stored in the node, and the
rest is stored in a residual entry. The node points to the
residual data set,

Even if removal has occurred and record values are stored
Airectly as entries in the residual data sets, there are times
when more than one residual entry will be needed to store the
value. This occurs when the record value is larger than the
maximum residual data set entry size. Then the first part of the

104

(- - - tree or slot - = =)
Record Type Record Type Record Type
2 I 3 y
L
,,/
Record Type
1
{D Record
(trea or slot)
Figure 22. File Set Without Removal
(- - ~ tree or slot = - =)
Record Type 3 Record Type Record Type Record Type
ID Record Ke 2 3 L
Valus &
Pointer

“E\E\e Block Numb r/EntriZ;;?yér Pointers - -

Record Type
1

ID Recoerd

Data

Residual Data Set

Figure 23, File Set with Removal

EB&C‘ 100

L-13

[RAULDY puB dujssed 30 @lduexyi uy

p1023Yy 19§ BIRQ |BNP}SdY

17 ShENE

{suog ¥
fsBW|] pue 811 SiH ‘ydnosoqajley =
f1Liyddny) g uojsulpm
2-6072T-489 = 43QUNN 400§ PJBpUB)S

{pue|fuj jo uany ‘suuy
£30 B]33PY ‘OpIRRUBDNQ

130 3311eg ‘S3j|luey

{j0 a(3ileg ‘wlayualg

49UQ140§ S3|4BY) = 49Ys}|qng

otdoy

21d0)
01do}

21doj

A=

pos
loyiny

Anmgsuuzgwm|mwguu

7
Vv
7
e
e

/ 493Uu}0d

2-60%2T-189

p4033y (|

7 1 b AR
passed - / il o
passed __ ')///
7 /
/s (P34m2n135-9243) ~W (P84n19n4315-93.3) /

/
/

/

/

. J33ul0d

UOISUIM ‘11 1Yo4ny)

plo23y Joyiny

41

e

W
\

\
\

433u}0d /

|
|
|
hi

[SABI0Y3 | IoH

passed

sed

(p34n3dnJ}s-33.l])

° 13juj0d

40 @l3leg ‘wiayuaig

o

=1

SPJ0D3Y P4OM3[IY]

JO aliieg ‘s luey |e—

mL

E

Aruitoxt provided by Eic:

,. 10 9]116g 'opJeguopn(|<c———
— pue{guj jo uaany ’euly | &———
sp4023y 21doj
qe
(C
Jl
O
&l

L-1h

record value is stored in one entry with a pointer to another
rasidual entry that contains the rest,

4.7 A SIMPLE ILLUSTRAT!ON OF PASSING AND REMOVAL

In Figure 24 there are four record type data sets: an 1D
record type, an Author record type, a Titleword record type, and
a Topic record type. The data within the ID records is to be
removed to the residual data set, The key data element values
for the Author, Titleword, and Topic records will be passed from
the ID record data in the residual data set.

CHAPTER 5

PHYSICAL FORMATS

5.1 [INTRGDUCTION AND DEFINITIONS

This chapter describes the formats of the various kinds of user
data sets in SPIRES Il. The records in tree-structured data sets
are called nodes; the records in non-tree-structured data sets
are called entries. The record format common to both nodes and
eritries is given. A system data set of crucial importance, the
account number tree, is described. The format of the user master
data set is also outlined. From these last two descriptions one
learns how the profile is implemented.

5.2 RECORD FORMATS

hen the user defines his file he specifies either
implicitly or explicitly the record types within the file and any
structures within a record type. Internal structures are
soverned by the same rules soverning record types and are, in
fact, trecated as records within records. Therefore, records and
their internal structures are formatted similarly.

A record or an internal record structure is made up of one
to three different sections. These are the FIXED REOUIRED
section, the REMAINING REOUIRED section, and the OPTIONAL section
~-~-in that order.

The FIXED REQUIRED section contains elements of fixed length
and fixed occurrence. If there is a fixed-lensth key data
element, it must be the first element of the FIXED REQUIRED
section. (Mote: A record must have a key data element, but an
internal record structure need not have a key data element.

Also, a key data element must occur only once.)

Following the FIXED REOQUIRED section is the REMAINING
REQUIRED section. If there is a variable~lenrth key data element,
it must be tha first element of the REMAINIMA REQUIRED section.

If there is a possibility of optional alements, an optional
element hit mask comes next. Then come the remaining redquired
elements that are either variable in length, variable in
occurrence, or both.

Following the REMAINING REQUIRED sectlion comes the OPTIONAL
section. Within this section are those elements that need not
occur, but which, when they do, may be fixed or variable in lensth
and occurrence. The bits in the optional element bit mask are
used to determine if an optional element occurs and, if so, how
many other optional elements occurred hefore it.

Q
i03

IToxt Provided by ERI

Fach element in the REMAINING REQUIRED and OPTIONAL sectlions
bezins with a TOTAL VALUE LENGTH HEADER (TVLHH), as does the
optiornal element bit mask when it occurs.

This format has been chosen hecause of its simplicity.
There is no need for data element pointers; the total lengths
nreceding elements provide values to be used during record value
validity tests. The design favors records that are updated
infrequently hut accessed often, and that are accessed for all
thelr Aata element values rather than for a few,

From the above, it is seen that each data element value is
etther fixed or variable in length; the element may efther occur
singly or multiply, and it may be required to appear at least
once, or may be optional. Figure 25 shows the total value length
headers and other control information that must prefix data
elements whose occurrence or length is variable.

If the record contains only fixed-length, fixed~occurrence,
required data elements, then the record will contain only a fixed
required section. |I|f the record contains only required data
elemants, but some elements may have variable lengths or some
elements may occur a variable number of times, then ti.e record
will have a remaining reguired section. I1f the record can
contain optional elements, then the record will have a remaining
required section, and an optional section.

Users will be encouraged to define as fixed in length and
occurrence the data elements they plan to access and update
heavily. They will also be encouraged to define their required
elements so that the most heavily accessed are physically stored
first and the most heavily modified are stored last. 1¥ optional
data elements need to be accessed frequently, then they can be
defined as required data elements and given some default value
when they do not occur, ¥ merely the fact of the occurrence or
absence of an optional element is all that is needed, then that
information is stored in the easily accessed optional data
element bit mask. The optional data elements section should he
used for the data elements in a record that fluctuate the most
radically.

5.3 FILE BRLOCK FORMAT

A1l physical file blocks are 2,048 hytes in length. Most
nodes and entries will be a fraction of that size; a few entries
may exceed that size. Therefora, a hlock management scheme
is necessary that accommodates nodes and entries within a block
as well as nodes and entries that span hlocks. Since physical
blocks constitute the basic unit of storage and transfer, they
must contain the control Information that enables validity
checking, damare lockout, and other reliability mechanisms to
operate. '

IToxt Provided by ERI

ERIC 109

Data Flement Values Descriptions
value 1 - singular, fixed occurrence,

fixed tength

value 2 | value 3 | value &L multiple, fixed occurrence,
fixed length

t@& value 5 | value 6 value 7 multiple, varying
occurrence, fixed length

2] value 8 singular, variable length

aJme] vatue 9 Rol value 10 multiple, variahle length

total value length header (TVLH)
occurrence count header
particular value length header (PVLH)

0T
wun

Figure 25. Control Information Appended to
Various Data Element Values

The basic file block format for tree data sets is almost the
same as the format for non-tree data sets. The two are treated
separately below, however, and their few differences are pointed
out. '

5.3.1 The Treea DNData Set Block Format

Pegardless cf record format, the blocks of all tree data
sets have the same format. Block size and maximum nhode size are
system constants. Mo tree can contain more than 32,767 blocks.
Each block begins with a header foliowed by nodes that bulld
toward the end of the block, and trailers that start from the end
of the block and build toward the header information. When there
is no more available space between the nodes and the tralilers,
then the block is full.

There are five data elements in the BLOCK HEADER, The flirst
is four bytes long and contains the date and sequence number of
the last transaction that modified the block. The second is the
two-byte block number-~this is the number of the bliock relative
to the beginning of the tree data set.

The third data element in the header is two bytes long and
contains the number of trailers in the block. There is exactly
one more trailer than there are nodes in the block, so this data
element can also be used to calculate the number of nodes. (One
trailer is reserved to locate avalilable space.)

The fourth data element contains the number of bhranch
pointers in the block. Recall from the explanation of tree
growth that nonterminal nodes are those that are preceded by a
branch pointer, and that all nonterminal nodes in a hiock
alphabetically precede all terminal nodes. When a hlock Is being
searched for a key data element value, the branch pointers do not
get in the way. When it is found that the key data element value
fails between nodes nl an: n2, then the fourth data element of
the header is used to determine whether or not node n2 Is
preceded by a branch pointer. If it is, then that branch pointer
is used to access the ne:t block of the tree; if It is not, then
there is no node in the i ree with this key data element value,

The fifth data element in the header is a two-~bvyte block

number, Instead of being the number of this block, it is the
numbher of the preceding block in the tree, i.e., the block that
contains the bhranch pointer to this block, Hhen a hlock in the

tree is examined, this number is matched against the previous
block's numher to ensure that the tree is functioning properily.
If a hlock of the tree is damaged, the sign bit of the second
data element is set to on (~1). This causes the reliability test
to fail and prevents the block from being used.

At the very end of each blocl is a duplicate imace of
the Ffirst data element that contains the Adate and sequence

. 111

number of the lTast transaction that modified the block. Storing
duplicate information at the beginning and end of each block
makes it possible to identify a half~written block simply by
comparing the first and last words of the block.

The TRAILERS, which point to the nodes in the block, bhulld
towards the headeiy Tnformation in alphabetical order. For
example, If the three nodes in tha block have key data element
values of hot, coid, and warm, then the traller at the end of the
block points to the second ncde. The trailer hefore that points
to the first node, and the trailer hefore that points to the
third node. Every trailer Is four bytes long. The first three
bits contalin status information about the node pointed to. | f
the first bit (the "sign bit") of the traliler is set to off
(+0), then all of the status bits are set to off. Otherwisa, at
least one of the remaining status bits is in use., 7The second bhit
Is set to on when a node has been so damaged that it should
not be used. The third bit is set to on when 2 node has been
logically, although not physically, deleted from the tree. The
fifth through the sixteenth hits of the trailer contain the size
(in number of bytes) of the node. The seventeenth hit is set to
on when the node contains only the first segment of the record
value, The last 12 ipits of the trailer, bits 21 through 32,
contain the displacement of the node within the block (i.e., the
byte address of the node, where the first byte of the bhlock has a
displacement of zero)., ®Bits 4, 18, 19, 20 are not currently
used for nodes.

There is always one more trailer than there are nodes. The
trailer closest to the nodes contains the location and length of
the available space in the block. its first and third bit are
set to on even though all its other status bits are set to off.
This is to distinguish it from all other trailers.

Little has to be sajd about the NODES and BRANCH (block)
POIMTERS In a block. If the node is nonterminal, it is preceded
by a two-byte branch pointer that is the block number of the next
block down In the tree. Trallers point to the besinning of the
nodes rather than to the beginning of branch pointers, ~and the
node length glven in a trailer does not include the length of the
branch pointer. If a trafler indicates that a node does not
contain the entire record value, then the last four bytes of the
node contain the residual block number and the relative trailer
location within that block where the next segment can bhe found.
!1f there Is one more branch pointer in the block than there are
nodes, then the final branch pointer is stored before the
available space. Figure 26 is a graphic representation of the
tree hlock format, and Figure 27 is a table showing the lengths
and displacements of the various data alements in a tree block,
as well as a non~tree block,

Tree-Structurad Data Set Block Non~Tree- (Slot-) Structurad Date Set Block
[ID of transaction that last N
Q 1D of transaction that last modified this block (same 0
modifled this block (same as last four bytes)
as last four bytes)
dam=- block number of
4 | dem- | block number of aged | number trailers L ? header
header < aged number trallers block} (of this in this
: block] (of this in this bit block) block
hit block} block
number of branch 2;”;? n:m?er
g | vointers that next a? h'" availahle space chain 8
point to blocks ex gher block 1ink
in next lower level of tree
level in tree that points to
el thig block i /
. A ,./v %
S 12
branch pointer
that points
to block in
next lower
tevel of tree
node entry
ant < entry space
branch node
pointer
space
available
space
F e
availanle available
space ¢ Space
available ¢ Ll I i I P 1 availabie
' Lo | b wace
trailer
: | 1 L ! 1

> trailers
trailers j ? f . . ‘? $

! v

i

| 4 tenath 4 cntry
N b - - - — e bity of bits { pointer
bits bits) €~ - entry (displace-

man t

ID of transaction that last
modified this block (same
as first four bytes)

ID of transaction that last
modified this block (same
as flrst four bytes)

f(—-——— - - - -—---

bit 0 -~ if = 0, tben all bits = 0, bit 0 - if = 1, then node/entry is the
bit 1 - if = 1, then node/entry is damaged f first segment of the record
— bit 2 ~ if = 1, then node/entry is logically bit 1 - ift= 1, then update for this node/
delated - entry exists in batch gueue
hit 3 ~ if = 1, then node/entry has additional bit 2 - LF ; i; then entry Is a continuation
header informatlon egme

bit 3 - not used

Flpure 26, Fille Rlock Formats
O

ERIC i13 ;

(FRTRED)

O

ERIC

Aruitoxt provided by Eic:

—>

Residual and Non-Tree
Nata Sat 31neck
0 | 1 l 2 J 3
0 FBHMDTI .
4ol FsHDpBK | FBHDNT (header)
FBHDASB
12
(FRTREN)
—_—
entry
(FBTREL)
N/
E]TRAL
47 Z> (trallars)
3TUy | FBTREL, | STLy | FBTREN,
STU; | FBTREL; | STL; | FRTREM
FBOUTI
FIELD NAME IM |DISP, |B |LEMATHIB |ID
cmemamm——— e N I Lt T P I T |
FRHDR . I o-fw | 1 12 | |
~=FRHDT! | I o | [
[I [
--FRHDD s 111 x|
-=FBHNRBK | I B P12 [
I (I [
P [1
-=FRHONT-(nz) | | 6 I 1 2 i |
~-~FRHNDAR I 1 8 Il 1 & 11
--FRHDNB 1 | 8 |12 [
| [1!
-=-FBHDAK Il 1 1m0 1] 2 |
P [[
| 1 t] ' §

Figure 27,

)

4

4

Trea Nata Set ?1nck

n l 1 ‘ 9 z
FRUNT]
n| FRunRK FRUDNT
FRYNNRAR FRHNAY
‘ ERDOTR |
nade
(FzERFL)
ST!, | FRTREL, | <T1, | FaTRFN,
STi1y | FBTRELy | STly | FRTREN,
FBDUTI
FIELD DESCRIPTION
Block Header
Last transaction ID which

modified this block,
Damaged Block Indicator
This field holds the block
number of this block {mod
32768)
Nutaber of trailers In the hlock
Available space block linkarse
Index Rlock - Number of
branch pointers,
index hlock «~ The block number
throuah which this block is
acecessad., .

File Block Structures

QO

E

Aruitoxt provided by Eic:

RIC

ID

.
!

o

fuy W N

N

[}

W N

I
I
I
I
|
!
I
I
I
|
I
I
I
I
I
I
!
2|
[
f
!
I
I
]
I
34
I
I
I
|
|
|
I
I
I
I
I
I
!
I
I
I
I
!
!
I
I
I
I
I
|

5-8

FIELD DFSCRIPTION

Duplicate transaction 1D for

damared block checking

Trailer -~ n=trailer number
(references block entry)

Upper status bits

00N0; Indicates normal entry
(sizn bit= 0, Tken all are
zero)

11X%XX, the entry is damaged

1X1X, the entry is logically
deleted,

(1f length fierld 1s zero, the

entry Is physically deleted)

1XX1l, the entry has header in-

formation which further deflines

the ernitry contents.

Lensth (bytes) of entry

(!ncludes sezment pointer)

Lower status bits

1XXX, the entry is an initial
segment. (within this data set)

X1XX, the entry has been
updated and now exists Tn
the Ratch Queue. (if
FBTRSTU = 1X00)
Cr the entry has been lofi-
cally deleted and is
referenced in the Delete
Queue (if FBSRSTU = 1X1).

XX1X, the entry is a contin-
uation serment (Residual
Onty)

riote: if entry Is a segment

there will always bhe an

fhenpt. The last serment In the

chaln locates the iniftlial sag,

Displacement (bytes) of
entry within the block,

EFntry Pointer

Index overflow - locate
overflow segment In
residual,

Residual overflow -
overflow segment

Batch Nueue -~ Delete Queue
Locator. Locates entry
in BATCH or DELFTE NUEUE.

Block numher of the Data
Set Foldino the entry.

Trailer numher in hlock
which lncates the entry,

Branch Rlnck Polnter in
an Index Plock.

Locates lower level
in this data set.

Locates
in restduai,

block

continued

FLELD NAME IM |DISP, IB ILENGTHlB o=
-------_---_-----!_-l_----- - ——-—- -] | -—-
FBDUTI I Ibiksizl | I i

I I ~4 7 | [
FRTRAL IntlR1ksizl | & |
| I=t-n=4| | 1
-<-FBTRSTU | | 0 IX 1 & 11X
[N | | [
| [[
[| | [
| 1 [
[I [
[| | I
[1| [
|1 I ! [
| | [
| [|
I [I
-=FBTREL : : 4 : : 12 :x :
~=-FBTRSTL I 116 X1 & X |
| | [
| | [
P [1 I
(I | [
| I |
o !] |]
] | b
[o I
[[[
[1 [
I T P
| (| [
| | I
| I [
1 ! |
| | [
| [|
-=FBTRED | 120 IX I 12 X |
| | [
FBENPT I == (A [
[I |
| I | |
(| I I
[b .
I oo 1
I b I
I b |
I | .
~--FRERLK I 10 13 |
b (1 |
-~FBENUM 1 3] I 1 |
I o |
FBRPTR I [4 [
I i | |
I I [
[1 |
Figure 27
LiO

5.3.2 The Non-Tree Data Set Block Format

'""Mon-tree data sets" Is a term that may be applied to
slot-structured data sets, residual data sets, the master data
saet, and some system data sets.

A block of the non-tree set is almost identical to a tree
block. Every non-tree block begins with header information,
entries that build toward the end of the block, and trallers that
start near the end of the block and bulld towards the header
information. When the entries and traller meet, the hlock is
full, The first data element of the non-tree block header 1s a
four-byte transaction ID; the second data element is the block
number; the third data element is the number of trallers--all the
same as in the tree record. The fourth data element is different
from the one In the tree block header; It is the available space
chain pointer. For a detailed explanation of this data element,
see the discussion of the available space scheme in sectlon
5.4.,1.

The non-tre ;tock trailers are almost ldentical to the tree
block trallers except for the order in which they are arranged.
Whan an entry is assigned to a residual block, trafilers are
scanned starting from the end of the block until a "free" trajiler
is found, A free trailer is one that corresponds to some
previously deleted entry. whose sign bit deleted entry status bit
are set to on, and whose length fleld is zero. if the available
space traller is the first free trafler found, then a new
avallable space trailer is created. Once a tralier has heen
assigned to an entry, It cannot be released untl} the entry has
either been physically deleted or else moved to another block
during cleanup.

The first three status bi‘s function in exactly the same way
as do the tree block status bics. The fifth through sixteenth
bits contain the slze of the entry. If either hit 17 or hit 19
Is on, then the last four bytes of the entry contaln a pointer to
the block and the relative traller location of the next segment
of the entrv. When bit 19 Is set to on, the entry s a
continuation of either a node or another entry. Rits 21 through
32 contain the displacement of the entry within the block.

Figure 26 may be studied for a pictorial representation of
the non-tree block format, and Figure 27 for the lengths and
displacements of the various elements.

5.k RESIDUAL BLOCK FORMATS

The components of a residuzi data set are shown in Figure
28. The data content block format has already been described in
section 5.3.2 (The non-tree data set block format). Blocks 0, 1,
and 2, however, have special uses and are described relow.

Q

ii6

Block 1

Block 2

Blocks 3-n

Figure 28.

Supplemen=-
tal Write
Block

Availabie
Space
Tabtle

Status
Informa-
tion Block

Residual
Data
Content

Residual Data Set Organization

117

5.4.1 The Available Space Table

There are two kinds of empty space [n the rasidual data set:
the contiguous set of empty blocks at the end, which have never
contalned data, and the "holes" in the blocks that do contain
d=ta. These holes result from the imprecise flitting of entries
into blocks during file bullding, from the deletion of whole
blocks, and from the replacement of records by updated versions
shorter in length.

When a requirement for space arises during an update run,
the strategy will always be to find the smallest segment of
available space that fulfills the reguirement. Such a strategy
minimizes the amount of space broken down into segments too small
for use.

Fisure 29 is a graphic representation of the mechanism for
locating a requlred amount of space; it includes the
format of the available space tabile. Biock 1 in the figure
consists of the standard non-tree block header and trafler and a
single record conslisting of an array of four-byte record
pointers, 506 data elements in all. These pointers form the
heads of a series of available space chains. These chalns are
lists of residual blocks; all the blocks listed on a particular
chain (usually) have the same amount of available space.

Requests for available space for record additions are
handled in the foilowing wavy, The number of bytes reauired is
rounded up to the next multiple of four. The resulting
number Is used as an index to the proper pointer in the av: 'lable
~pace table. This pointer either contains the block number of
the first block In a logical chain of blocks, all sunposedly (the
equivocation is explained below) containing the required amount
of availahle space, or it is set to off. If the pointer is set
to off, then no blocks exlst that contain the reguired amount of
space, and pointers to increasingly larger amouhts of space are
examined until a nonzero polnter Is found. Nnce a nonzero
pointer is located, the first block in the chain is accessed. A
check is made to see if the available space in the hlock equals
the amcunt assumed for the chain, if not, the block is placed at
the head of the corraect bilock chain, and the next block in the
chain is read and similarly examined. When a bHlock is
encountered in the chain that contains the correct amount, the

space is allocated and used. if there is still space available
in the block, the block is stiil pointed toc as part of the same
chain, unless it happens to be the flrst block in the chain. in

that case, the block is “"relocated" in the correct chain

Deletions and replacements in the space chaln are handled
similarily. Even though the available space in the block has
srown larger or smailer, the block Is left on the same chain,
unless it happens to be the flrst block of the chain, The
reasoning behind this algorithm is a2s follows. To make

‘ ; 118

IToxt Provided by ERI

ws [ueyday aseds ajqe|(eay ayL

'§04a7

s) 43019 "493Ulod

wdy H3018

-.—.: 300 — m

504497

ki A30(8

50437

s h %SOLg ‘Jajulod

Y 3}0ig ‘433u)04

why A3018

ady ¥30(8

w¥n ¥20(4

‘6Z 24ndyg4

:\\\\\\\\ﬂw: %0[4 03 431ujod

&

335 B32M [BNpISeY - T W01

X ¥20ig 03 431u(0d

WV %2014 01 lajujog

$0497

VAl s,

\&K\\\\\\\\

je— sS85 » —>|

(24
20T

LLLRA
onn't

"ot P
6Gh v~

1111
91
A

Aruitoxt provided by Eic:

[E ©

ul
1

13

on-the-spot chain corrections, one must have access to the
preceding block In the chain. Since two-way pointers cannot be
maintained easily, this means beginning at the head of the chaln
and following it down untll the preceding blcck Is reached. In
contrast, chain correctlons at the head of the chain can be made
without accessing. Therefore, bhlocks with Incorrect amounts of
space for thelr chain will be left to "pop up” to the head before
they are switched to a new chain.

5.4.2 Supplemental Write Blocks

Any on-line writes to the fille will be done twice: once to
the supplemental write block, and once to the block being work.d
with. When the system is restarted after a crash, but before
users are allowed to log on, a small module will be called to
perform the following check on every suppiemental write block in
the system.:

Does the first word of the block match the
last word of the block? 1f not, the supplemental
write was not successfully completed, and the update
sequerce (reserve, read, update in core, write,
release) falled during a critical phase
but cannot be restarted. If the first and
last word agree, then perform the next check.

Does the content of the supplemental write
block equal! that of the block being doubie-
wiritten? If so, the last update operation was
completed successfully. 1f not, re~initiate
the update sequence using the contents of the
supplemental write block,

5.4.3 Status Infermation 8lock

This block contains a pcinter to the beginning of contlguous
empty blocks at the end of the data set, and the file update table.
This table contalins the julian date of the last dump made
and an array contal'ning the last seven julian dates on which
elther a batch update run or a deferred ":pdate transaction
occurred. The remainder of block two is unused at present.

5.5 THE ACCOUNT NUMBER TREE

The account number tree is the primary mechanism for f
governing access to SPIRES files. wWhen a user logs onto
the system, hils account number is used as a search key to locate
a node Iin the account number tree. The node that corresponds to
his account number contalns a series of profiles that may bhe
used only by holders of that account number. During his sessio
at the termlnal, the user may only work within one of these /
permissible profiles. A profila (see section 3.4) outlines a set

120

of access data sets and a goal data set, and defines the data
elements that may be used as search arguments, that may be
changed, and that may be displaved.

5.5.1 Class Privileges

Users who have the same privileges In accessing and updating
certain files belong to the same user class (it may happen that a
user class consists of only orne user) . Each class Is identified
by a unique account number. Fach user class !s entitied to use a
f1'a In the ways defined by some profile. A profile (see section
3.4) defines a set of access data sets and a goal data set, and
lists the data elements that may be used as search arguments,
that may be changed, or that may be displayed. A class may work
within one or several profile sets, and these profile sets may
apply to more than one file set and more than one user class.

Y
5.5.2 Sharing Profiles Among Accounts

As Figure/30 1llustrates, more than one account number may
be given access to the same profile. Only profiles restricted
to a single account number are actually stored with that number.
A1l other profiles are divided into discrete sets, with each set

assigned a '"pseudo-account number." These pseudc~azcount numbers
‘are stored wilth each accourt number that has access to the set of
p-ofiles. in Figure 30, both accounts B00O1 and B(U02 have access

t . profile XYZ, but only BO0O1 has access to profile WW1,
5.5.3 The Format of the Account Number Record

Figure 31 shows the format of the account number record.
This record contains definitions for all the profiles that a user
class may operate under and polnters to pseudo~account records
that contain definitions for the profiles the user class shares
with other user classes.

A profile definition consists of the foliowing elements.

The record number of the goal record for thls
profile.

The password algorithm code, which at the present
stage of SPIRES system design is not being used.

The build flag, = one-byte field that indicates
whether the build mask is used only for displayving
records or for both buillding and displaying records.

The profile name, a field that must be matched
with the name given in the SELECT <name> command.

The file r-me of the file to which the profiie
applies.

.}

121

3}

ACCOUNT

ACCOUNT
8001

§ PSEUDO~ACCOUNT § B002
PROFILE |

"AY PROFILE

WW1 PROFILE XYZ WW2

Figure 30, Venn Dlagram of Account Numbers
and Psuedo~Account Numbers

O

ERIC

Aruitoxt provided by Eic:

node

16

L bytes
Acct. No,
total profile | length oq
profile | count profile
| largth no, 1
goal record
number
assword
flag
PVLH | profile name
PVLH file nane
PYLH | search mask <
PVLY | build mask i
PVLHY | update mask 4
length of
profile
no. 2
(more profiles)
. psuedo~ psuedo-
TVLH account account (etc.)
no, 1 no, 2
(indentation shows hierarchy)
Figure 31, Account Number Tree

The search mask. Data eslement entries in the
search characteristics table may be set Iin such a
marner as to cause bits In the search mask to be tested.
"1 Thdicates that the user may name the element In a
search command; "0" indlcates that he may not.

The bulld mask. Data element entries In the
build characteristics table may he set in such a
manner as to cause blits in the build mask to be tested.
"1" irdicaies that the user may display records contain-
ing this data eiement (or this form of a data element); .
"0" indicat=2s that he may not. if the build flag is
on-. the user may build records containing the data
element.

The upd=te mask. Data element entries in the
build characteristics table may ' > set in such a
nanner as to cause bits in the update mask to be tested.
"1" indicates that the user may change the value of
the data element; '"0'" indicates that he may not.

5.5.b The Organization of the Account Number Tree

The account number tree is a system flle stored under the
system accrint number with the filename "ACCTREE." Besides a
master and a residual data set, it has a single record type, that
described in section 5.5.3. Tkis reconrd data set is tree
structured on the key data element "ACCOUNT NUMBER.' Removal of
data to the residual data set is unlikely, at least in the
beginning. Splitting will occur, however., in cases where the
max imum node size is exceeded by an account number with a large
number of profiles.

5.6 THE USER MASTER DATA SET FORMAY

The maoster data set contains record format, bulld, and
search characterlstics for ail the record types in the file.
The contents of the master data set may be .ategorized as follows
(see Figure 32).

The file master struciure, which contains some
general file i Formatiorn. as well as pointers to the
build «nd search characteristics.

The record format structure, which contalins a /
record format definition for each record tyne in the /
file.

The build and search characteristics, which contain
the definitions and ruies fFfor bullding, updating, out- /
putting, and searching each record type. /

!
!

iz24

5-18

185 eie@ J9usey Yy jo uonjeziuedsg ‘¢ 84ndl4

)3y ’s213s5t4eiodedpyo yodaeas pue pling

205y ‘S9:1514910R4RYD Yddapas pue piing

T T TN
i
(]
‘AJ
N
- 1
= Q
B ~
= O
AT e
Pt Al
52
W0

—
‘ \
1930 /SO{1S (421074060 yaeas pue pring \\
133y (SD11S1JDICIRYD pAIIL \b !
wv § IEEIREIPERELELIES _
i JAID5AY :
_— <
SENRRLEY =
Ty /SO11S149120404D F4000 i Aol -
IIqu‘I.I“A. . v —D
Uy CABpIRAY SIS LAY IEYD 40234 m - - i
S v, ! 8
I -
1530 ‘J0FUBY SI11§14D32040YD {4023 w%. o ¢
SANTONATS TLINI0, [40001 40 L3 01 JUIFADECGR W
POGLADST] SPI02IL JO ASGNU
U9 f§D115)49)00IBYD YIADIS puL -] 1Ny 01 491uLod :
2033 “SD1IS1AIIEALYD KIALBS PUT PN ul Jotutod _
Toid 52115 (4D10RITYD yIABuS puR pLIng 01 Jojujod o
) o NSIR SUFATS
(P3N 10U) (A3 | ST
PAT] S213811E | | e -
|BAPISaL LUL seysCll SIPLSAG 515 LIy JO JVGLNU |
3,US90p 11 J1 ,44,Y ‘SISI¥3 1S ©ILY (BNPISAL 4L 00,7 W
ewBU 8114 !0 yieudy ||
[g T

The record format, build, and search characteristics are
spread across an indeterminate number of blocks in the master data
set, starting at block 0. The following three sections describe
these collections of characteristics in sreater detail.

5.6.1 The Record Characteristics

FEach record, as well as each internal record structure, may
have up to three sections: the fixed required section, the
remaining required section, and the optional section. The record
characteristics (see Figure 33) consist of one set of
characterijstics describing all data elements at the record level
and one set of characteristics for each internal structure in the
record. The format rules for the characteristics themselves do
riot diff=r at the record and internal structure levels.

For each record (or internal structure) there will be a
series of counts giving the total numher of data elements in the
record (or in the structure), and for each data element there
will be a one-hyte code together with a data element length. The
code will show where in the record the element resides and what
data type 1t is (character string, internal structure, or record
pointer). The data element length applies only to fixed-length
data elements, and is left at zero if the element is variable.
Following the codes and lengths is a table of halfwords that
contain the displacements (from the beginning of the record) of
each fixed required data element.

5.6.2 The Build Characteristics

Build characteristics are used to transform a record from
external (user-readable) format to internal (machine-readable)
format during the file update process, and from internal to:
external format during the display process, These
characteristics are usually used in conjunction with the record
characteristics;:; there is one set of build characteristics per
record type. Figure 34 shows the layout of the build
characteristics; the components are described helow,

IMPUT MNEMONIC DICTIONARY., There are as many
entries in the input mnemonic dictionary as there are
unique data element mnemonics that may be used for
external format*t input records. The e are separate entriac
for alternative mnemonics. The lengsth of each mnemonic is
given (the 1imit+t is 16 bytes) and a disrlacement in the
packed charact .able showing where the actual mnemonic
string can be touund. Following the displacement is the
structure element number (see section 3.5) of the data
element that corresponds to the mnemonic.

PACKED CHARACTER TARLE. This is an amalgamation
of all the mnemonic character strings.

126

5-20

§3;151493004RY) PA0DAY "gf D4N3i4

pdcuad j0 Futuuidag wody
) JaquNU JuBWS|9 PALINDIL pIxi4 40 juawade|ds)p

mLon:::ucmEm_wumL_:cmLnox_wwo ucmsmuc_ammv
[49Qun. JudNa|d PaALinbad pIxiy 4O juswade {ds(p
ﬁ { 43qunu JUBW3|d BIBp 4Oj BPOD
'paxLy 1 ‘yi8ud|
ay1 san1g 83Aq Fu0DIS 3yl 2 JaQunu JUBWAL3 BIBP 404 BPOD
3041 ejep pue ‘uo)lewJOul ’ o
Su1559208 ‘3dA) 3ALB $3p0O) . 1 49qunu Judwd|d e3jep JOj 3pOd
sye(4 U011D2S JUdLB|I Ay
sjuswa(d ejep |eUO!ILO JO J3Gunu
5JuBwIa| @ RIBP PAsinbas Jo JIqunu (B30
squ-wo|? eIBp PAJINDaL Buluiewdd jo Jaqunu
<quawa|a BIBp Pat|nbdas paxij 4O J43qunu
U01309S PaJlnbad PaXL) ul SIIAG JO 43qunU

p4023d Ul 24Nn32Nn435 YoL39 40} Jagqunu JulWa |9 94n3on4l3s

X 4aqunu a4n3ona3s jo juswade|dsip

| 13Qunu 34n3dNJ3s 40 judWaIL (S|P
JUNOD 24N3INJIS

Jaqunu p4aodad

'—1::%...EEE{::]::}...{::]

.-

p40294 U}
24n10N435
L yoead 4oy
w paleadal
| .
| e
| QY
| Vi
S

IC

E

Aruitoxt provided by Eic:

record number
displacement to packed character tabie (PCT)

displacement to structure displacement table

displacement to auxiliary element table

displacement to end

length of mnemonic, its offset in the PCT,
' and its structure element number

Input - S
Mnemonic {7 </ .
Dictionary (one for each input mnemonic)

i

Packed
Character J<> %-
Table ->
Structure for calculating offsets into the auxiliary
Displacement y elemant table (orie entry for each
Table structure in the record)
A

Auxiliary
Element <
Table

Figure 34, Build Characteristics

| B

STRUCTURE DISPLACEMENT TABLE. There are as many
entries in the structure displacement table (SPT) as
there are unique internal structures in the record,
The table is accessed by usinz the structure numbher
as an index. The entries in the table consist of
displacements that are used to access the auxiliary
element table (AET) in the following way:

AET offset = contents of SDT (structure no.J
+ structure alement no.

AUXTLVARY ELEMENT TABLE. Contains one entry per
data element. The most important part of each entry
is the condition byte, which contains the bit number
in the profile bit masks that corresponds to the data
element. Fach entry also contains references to both
input and output processing rules, the length of the
data element mnemonic, and the mnemonic's displacement
in the packed character tahbhle.

5.6.3 The Search fCharacteristics

Szmarch characteristics are cnly meaninzful for goal records.
{Search characteristics for record types used only in accessing
are essentially null.) FEach roal record has one or more data
elements that may be ziven in search commands. These elements
may be classified in one of the following three ways:

The Aata element value is passerd to an accessing
recorrd,

The data element is a qualifier.

The data element value has not been passed, and it
is not the unigue key data element of the ecoal record,

For every such data element within a goal record, there is the
following corresponding data in the search characteristics (see
Firure 35).

MHEMONIC LEMGTH AND DISPLACEMENT. This is the
lensgth of the search mnemonic that corresponds to the
data element and its location in the packed character

tahle.

COMDITION BYTE, This byte refers to a hit in the
search bit mask of the pnrofile. 1¥ it is on, the user
may use the element to search. I¥ it is off, he may not.

TYPE. This byte classifies the search data
elerient into one of the three classifications already
mentioned. The contents of this byte vary with the
classification, and determine the contents of the
search descriptor.

129

Section 1 =>
' displacement to packed character table (PLT)

displacrment to section Z

length of mnemonic

displacement of mnemonic in PCT

orn= set for bit numhber in profile bit mask
every search- data type

able element ﬁ "

in the

trecord

precessing rule

structure element number for synonym key value
L V77 /7 rrowth

Section 2 >

lensth and displacement into the PCT of the goal record mnemonic

\ displacement to end

| one for each of the [structure element numbher, record numhar vhere

: pointer groups a pointer element may be found
; contained in the

access records
for this goal record

7,

Figure 35. Search Characteristics

O

ERIC

Aruitoxt provided by Eric

SEARCH DESCRIPTOR. If the search command data
element value is passed to an accessling record, then
these four hytes contain the record number of the
record to which the value has been passed, and the
structure element number of the polinter group within
the accessing record.

I1f the search command data element is a qualifier,
then the format is still the same.

I1f the search command data element has not been
passed to an accessing record and it is not the unique
key data element of the goal record, then these four
bytes contain two structure and element numbhers-~one
for the qualifier package In the goal record, and one
for the search data element in the goal record. The
data elements in this category are examined by a
linear search module.

PROCESS RULE. References the processing rule
used to place the data element into standard form
for storage. This field is zero If there is no rule.

SYNOMNYM REFERENCE. This structure element
number refers to the field in the accessing record
that contains a key data element value polinter to
the next record of the same tvype in a series of
synonymous Key data element valiues.

CHAPTER 6

IMPLEMENTATION OF THE SPIRES {1 ACCESS METHOD

6.1 INTRODUCTION

The concepts underlying the SPIRES file structure, the
crganization of the data, and the format of the Tile structure
have been treated at length in chapters 3, 4, and 5. This
chapter describes the modules that manipulate the structure., The
SPIRES |l access method is a collection of modules and '
subroutines that are used singly or in combination to add,
change, replace, or delete data in a SPIRES Il fitle.

I|f the access method routines are being used as part of the
on-line system, they reside in core just below SEMANT (see
section 2.5) and make calls on the ORVYL interface routines for
supervisor services like input and output, file attaching, and so
on. | ¥ the access method routines are being used by batch
programs running under 0/S, the calling sequence will still be
the same, but 1/0 requests will be directed to Virtual Access
Method (VAM) routines (see section 1.1.5.3) that allow 0/S batch
programs to access ORVYL files using the same routines as are used
on~line.

The first part of this chapter describes six large
task-oriented groups of subroutines: SRCHREC, ADDREC, DELREC,
RPLREC, ATCHFILE, and DTCHFILE. The second describes the various
building block subroutines that either are used alone or reside
in one of the large task-oriented modules. These building block
subroutines are called Basic File Services. Both the bhasic
subroutines and the task-oriented modules are documented in
greater detail in Appendix M. Appendix H, Dummy Sections,
may be referred to for more detaiied information on
the format of access method work areas in user virtual memory.

6.2 TASK=ORIENTED SUBROUTINE GROUPS

SRCHREC, ADDREC, DELREC, RPLREC, ATCHFILE, and DTCHFILE are
modules constructed as hierarchies of bhasic {ile services
subroutines. EFach compnnent subroutine is itself discussed in
section 6,3.

6.2.1 SRCHREC

This module is called to retrieve a particular record of a
ziven type. The record whose key data element value must be
found is located regardless of whether the record is in a tree~
or slot=-structured data set, or whether the record has been

132

removed to the residuai data set or not. Figure 36 shows the
structure of the SRCHREC subroutine hierarchy.

6.2.2 ADDREC

This module is called to add a2 new record of a given type.
ADDREC locates the key data element value in the new record and
creates the node or slot in the data set for the given record
type. If removai or splitting to the residual data set is
necessary, ADDREC will perform these functions. Figure 37 shows
the structure of the ADDREC subroutine hierarchy.

6.2.3 DELREC

This module is called to delete a record cf a givea type
from a user file. The module logically deletes the node or slot
in the record type data set, and physically deletes all removed
portions and split segments from the .user residual data set.
Figure 38 shows the structure of the DELREC subroutine hierarchy.

6.2.4 RPLREC

This module is called to replace a record of a given type
with a new record. RPLREC locates the existing record with the
given key data element value and replaces. the index node and &any
residual entries that may exist. Figure 39 shows the structure
of the RPLREC subroutine hierarchy. '

6.2.5 ATCHFILE

This module is called during the SELECT <profile name>
process in order to attach the data sets of the user file that
has been given that profile name and account number. The master
data set ls attached and accessed. The contents of the master
data set are used to initialize a portion of usei storage and to
set up the characteristics tables in core. ACSENTFY and DSATTACH
(see below) are among the subroutines called to assist in
performing these functions.

6.2.6 DTCHFILE

7
,.

This module is called to detach a user file, eitﬁer because

a new SFELECT command was issued or because the LOGOFF command was

issued. Data set updating and user table cleanup zre performed
before each attached data set is detached. DSDETACH (see below)
is the subroutine called to perform the actual detachling of file
data sets,

6.3 BASIC FiLE SERVICES SUBROUTINES
These subroutines are used elther as components of higher-

level task-oriented modules or alone to perform required file
services functions.

133

EREEDLED

3QCNSIV

Ayadeda |y auinoaqns JIYHIYS

*9¢ 94n3 |4

Ana4avay

d4NANOSY

AYLN3SIVY

44NgNOSY

HJYS13S

J3UYHIYUS

i34

O

Aruitoxt provided by Eic:

E

Ayoaedd|H BUIINOAGNS IIYAAY “L§ 94nFl4
s

S¥3134sa
¥3NANDSY SAVNEAON4 . ¥193L 1M
AY¥3S3¥sa ¥18NISY ¥.iNENISY | JQONSN | N1g40v3y

_
Y19NOSY AHINISNI 1941 19M
¥193avy3y JgoNaay %1940y3Y mw
7 ~
HOYS13S
AuiN30QV JA0NSIY
33¥0aY
O

O

A FullToxt Provided by ERIC

E

4

_;
AypJeidly aufinoiqns 93¥713q 8¢ 84n3 14

%1840y 3 H4NANISY
NTd4L UM NITINIDHD AYLIN3ISIV SvY3134Sd
Ad3s3usd
de}
; 0
N7940v3Y ™~
AYLNITd3N NITNIDHD NT1841 1 UM JAONSIV Ho4ys13is
w, ~-
|
“ommquo

Aruitoxt provided by Eic:

E\.

Ayodea9|H dU}INOJIQNS JUBWIDE|dIY PIOu3Y

"5¢ a4ngtyg

%¥1840Y3Y 44hENDSY
! X781 1UM NIINIDHD AYLIN3SOV
AYISIUSA|
¥14940Vv3yY ™
. v
300NSV NITNIDH) ¥1843L 1M AYLNTTdY HOUS13S
9341dY
=

E\.

Aruitoxt provided by Eic:

6.3.1 Data Set Attaching and Detaching Subroutines

These subroutines are called whenever it is necéssary to
attach or detach a data set within a user or system file set.

6.3.1.1 DSATTACH. This subroutine is called to attach a
data set of a2 user or system file set. The ORVYL interface
routine ATCHF is called (see section 2.1.7), and the contents of
the device identifier cell are stored in the DILIST entry (see
Appendix N) that corresponds to the data szt ID number.

6.3.1.2 DSDETACH., This subroutine is called to detach a
data set of a user file. After the proper DILIST entry for the
data set has been passed to the ORVYL interface routine DTCHF, the
entry in DILIST is set to zero to prevent further usage.

6.3.2 !lode Manipulation 3Subroutines

The subroutines described in this section are used to add
nodes to a tree-structured data set and to access nodes using
their unique key data element values.

6.3.2.1 ACSMNODE. This subroutine is called to scan a tree-
structured data set for a match of a given key data element

value. The located matching node is returned to the caller. 1f
a match was not fourd, the place in the tree where a node with
the given key data eler d he inserted is located.
READFBLK {see sectior is called to put the file block

involved into core s

6§.3.2.2 ADDNODE. This subroutine is called to add a new
node to a tree-structured data set. It is assumed that ACSNODE
has previously been called to locate the block and trailer posi-
tions where the new node is to be inserted. The basic
subroutines INSNODE, READFBLK, WRITFBLK, ASGNBLK, and
ASGNBUFR are called to assist in the procedure.

6.3.2.3 INSNODE., This subroutine, called by ADDNODE, is
used to insert a node into a tree data set block that is residing
in a core buffer.

6.3.3 Fntry Manipulation Subroutines

EFntries are records stored in blocks of a residual or a
slot-structured data set. Entry manipulation subroutines are
usualiy used for accessing removed or split data in the residual
data set, but they are not limited to this. These subroutines
may also be used to access records residing in special data sets,
such as the master data set or system data sets.

6.3.3.1 ACSENTRY. This subroutine is called to locate an
entry within a given data set of a file. Special options may be
: to specify whether additional record segments are to be read

138

into user memory along with the requested entry or whether
updating entries from the batch queue (see section 7.3.2) are to
be accessed instead. READERLK and ASGNBUFR are called by this
subroutine to asslist in assigning buffer space and initiating
reads, '

6.3.3.2 ADDENTRY, This subroutine is called to add a new
entry to a non-tree data set, The entry may be added either to
existing available space within a block or to an empty block that
must be assigned. If the entry data is too large for one block,
overflow entries are created in other blocks until all the data
has been stored. INSENTRY, READFBLK, WRITFBLK, DSRESERV,
DSRELFEAS, ASGNBLK, ASGN3BUFR, and FNDBKAVS, are called by this
subroutine to accomplish lower-level functions.

6.3.3.3 INSENTRY. This subroutine is called to insert an
entry into a non-tree data set block. The block must be residing
in user memory.

6.3.3.4 RPLENTRY. This subreocutine is called to replace an
entry in a non-tree data set, I1f the new entry differs in length
from the original, adjustments will be made. All entry overflow
prohlems associated with replacing an entry are handled by this
procedure.

5.3.h Data Element Access Subroutines

These subroutines serve to locate data elements within a
record either Ly their structure element number and their
occurrence numbers (which of several occurrences is being

referred to) or by their structure element number and their
values.

8.3.4.1 ACSELEM. This subroutine is called to access a
data element within a record structure, given the structure
element number. Optional data elements may be accessed in
various ways. If an option flag is set and the element does not
exist, a pointer will be set to the location of the element if it
had existed.

6.3.h_.2 INITVAL. This subroutine is called to initialize
certain values in user core (see Appendix M) for accessing a data
element by value. The input parameters are: the address of the
current structure, the structure element number in the current
structure, and the displacement of the start of =lement values in
the file block.

6.3.4.3 GETVALUE. This subroutine is called to locate a
data element value within the current structure. It s assumed
that both ACSELEM and INITVAL have been previously called, using
the read option flag.

ERIC 139

IToxt Provided by ERI

6-9

6.3.4.4 PUTVALUE. This subroutine is called to store a
particular value of the current data element within the current
structure. It is assumed that both ACSELEM and INITVAL have been
previously called, using the store option flag.

6.3.45.5 PUTVEND. This subroutine is called at the
conclusion of a sequence of PUTVALUE calls for a data element.
PUTVEND stores the total value length header and value count
fields, and ensures that the optional element bit is set if the
data element is optional (see section 5.77.

6.3.5 Input and Output Subroutines

6.3.5.1 READFBLK, This subroutine reads a hlock from a
user file data set. Basic error checking is done on the block
header to ensure validity. As input parameters, the subroutine
must be passed the data set number (record type--see section

4.3.2), the block number of the block teo be read, and a buffer
address.

6.3.5.2 WRITFBLK. This subroutine writes a block out to a
user file data set. As input parameters, the routine must be
passed the data set number (record type), the block number of the
block to be wiitten, and the buffer address.

6.3.56 Data Set Lockout

During the critical period after a record has been read in

. for update and before it is written back out, the data set

involved is put under exclusive control. When the sequence is
completed, the data set is released from exclusive control. In
both routines, DSRESERV and DSRELEAS, the data set -~ mh is
passed as an input parameter.

6.3.7 Allocation Functions

From time to time, as the system is operating, It is
necessary to locate available resources (such as virtual memory,
empty space in a disk data set, etc.) and to ailocate those
resources to the user then controlling the system. The following
routines are called to perform such functiocns.

6.3.7.1 ASGNBLK. This subroutine is called to assign and
initialize a new block of already allocated space in a data set.
The block is initialized as an empty bhlock for the type of data
set given., The celi NXTBLK (see section <fill in later>) is used
to assign the block number. NXTBLK Is incremented by ones. No
input or cutput takes place with this subroutine; the
initialization process occurs in the buffer only.

6.5.7.2 ASGNBUFR, Thls subroutine is called to assign a

buffer area in the user logical memory for use by other file
service procedures. The routine in turn calls GETCORE, an ORVYL

‘140

interface (see section 2.1.4), requesting a 2,048-hyte extension
to the user area.

6.3.7.3 FNDBKAVS., This subroutine is called to locate a
hlock within a data set with sufficient space to satisfy the user
request., In the case of residual data sets, the available space
block Is read into core and the appropriate available space
chains are examined for the smallest amount of space that wiill

satisfy the request. incorrect chain elements (see section
5.4.1) are moved to the correct chains if they are at the tops of
chains when found. In the case of data sets other than residual

data sets, the next available block is assigned if the current
biock cannot accomodate the request.

6.3.7.4 INITFILE, This subroutine is called when a new
file iIs to be created. All the data sets needed for the file are
created and initialized. The initial record in the master dats
set must be created and made available to INITFILE as an input
parameter, (This record holds the record charzcteristics for the
file.) DSATTACH, ADDENTRY, WRITFBLK, ASGNBLK, and ASGNBUFR are
all called by this subroutine.

6.3.83 Miscellaneous Subroutines

6.3.8.1 SETSRCH. This subroutine is called to set up the
addresses for a given record type in the record and data element
characteristics table in order to search a tree-structured or
slot-structured data set.

6.3.8.2. SETSTRCT. The set structure subroutine is called
to iniztialize the structure processing table entry (see Appendix
N) in order to prepare for accessing values within a given
structure, A required input parameter is the structure number of
the given structure. This parameter is zero if the structure is
at the top (i.e. record) level,

6.3.8.3 CLOSTRCT. This subroutine is called at the
conclusion of all data element processing within a given
structure, Clean=-up work is performed on the structure table
entries and the structure level is decremented back to the next
higher~level structure,

CHAPTER 7
SPIRES SYSTEM SUPPORT FUNCTIONS

7.1 INTRODUCTION

The modules and Programs described in this chapter are
crucial to the smooth functioning of the SPIRES II system-~indeed,
without them the on-1lhe system would cease to operate, These
routines perform file maintenance (updating), error diagnosis,
restarting and recovelry, and system administration functions.

They Fall into three Operating categories: on-line functions
(master commands), 0/S batch functions, and ORVYL user program
functions.

7.2 THE THREE OPERATING CATEGORIES

Firure 40 lists the various system support functions hy
module or progiram nam€, and shows the category or categories they
fall into.

7.2.1 Master fommandS

This categorizes functions that can only ke <called through a
SPIRES master terminal. A master terminal is so designated when
it is logged on under the SPIRES system account number (SNNN),
which s programmed iNto *he system as a constant, At any given
time, two persons are responsible for the master terminal and the
system account number. The keyword should be changed often
(every day, preferablVY) to avoid weakening security.

\lhen the SPIRES System comes up, the subprocessor area (see
1.1.5.2) contains binary zeros. The master terminal operator
logs on into SPIRES and gives the command "MASTER." The system
checks to ensure that the user is logged on under the system
account number, 1¥ he is, then the master terminal flag is set
to X'30,' indicating that the system is not ready to receive
other users, IfT other users attempt to log cn while the master
terminal flag is set to this state, they are returned to WYLBUR
with the message "SPJIRES HOT IN SERVICE.," The master terminal
operator may now issu€ warmstart commands, disable commands, or
any of the other commands (see below) that can only be issued
when no other users are logged on the the system. When the
master terminal operator is satisfied, he issues a PROCEED
command, which changes the status of the master terminal flag to
X'FF' and unlocks the svystem for other users. HNo master terminal
is allowad to log on If another master terminal is already logged
on. .

142

Module or Master C/S STSM User
Program Name Command Batch Program

BATBUI LD X

DEFUPDT X

VALIDATE X X X
FILE LIST X X

DSZAP X
FULDUMP X
FULRES X
RECOVER X
WARMSTRT X
PASSREC X
DISABLE X
AVSPREC X X
Fi LEDEF X
IDXREBAL X
D1SKMAP
STAT
MESSAGE
ENABLE
INHIBIT
KILL

x X X X X X X

MAG!C WORD

Q. Figure 4, Utility Support for SPIRES II

143

7.2.2 0/S Batch Programs

The programs in this category are run in the 0/S batch
partition because they must have access to magnetic tape or
hecause they require 0/S disk data sets as input. They access
ORVYL data sets by using the virtual access method (VAM), which
permits SPIRES Il access method routines to be used in the batch
partition with tittle or no modification.

7.2.3 ORVYL User Programs

The programs in this category are run under ORVYL as user
programs for one of the following reasons:

economy;

availability (the 0/S batch partition may
not be available);

convenience of development there.

0f the programs that Figure 40 shows to be available in
more than one category, it may be that only one version will be
operational on day one of the system. In general, this version
will be the ORVYL user program.

7.3 THE FILE MAINTENANCE FUNCTIONS

These programs perform all regularly scheduled file updates,
They run exclusively in the 0/S batch because of their Ad=pendence
on magnetic tape. The batch build progrem hos the .l1ong !
requirement of needin, 0/5 ais. uata sets.

7.3.1 BATBUILD

The batch »uild program accepts a sequential stream of
additions, delezions, and replacements in user fiies. The zz-ate
stream for each file Is stored in an 0/S Input data set in = card
image. The data in these data sets conforms to the syntax rules
of the SPIREFS i external format. A user informs the system of
the existence of a BATBUILD data set by issulng the commard
"BATCH <dsrame> <bin number>,'" where the data set named conzzins
the build input. When this command is recognized, the syst=r
assembles a record consiszting of the user's account number, ~ame,
bin number, data set name, and the profile selected at the t 'me
the command was issued. The record is then written into ths
system flile set SNNN.BUPDT, which consists of a master data set
and one slot-structured data set.

when BATBUILD executes, it opens the system data set
SNMHM.BUPDT using VAM (see section 1.1.5.3), and reads a header
record. This header gives sufficient information for RATBLIILD to
select a user profile, to open the 0/S input data set, and =0
process the update using exactly the same update semantics as are

144

used on-~1line. A hard~copy listing for the entire program run is
produced that shows each data element value affected, the action
taken on each, and any error diagnostics, When the end of a Ffil
is reached, the next record from SNNM.RUPDT is read, and the
process is repeated for the next flle. The format of the
hard-copy listing Includes page separators glving user name and
bin number, to allow the listings to he Alistributed to the users
the next day. As each file is updated, the julian date is
entered in the appropriate day slot in the update table in block
two of the file's residual data set. -

e

As the build input for each file is read and processed, the
inout records are also written out on magnetic tape, with the
SNNN.BUPDT record. serving as a header for each file group. The
tape will have been initialized with the volume serial number
"BLDnnn," where nnn is the julian date of the build run. This
Jate is also entered in the update table in block two of the
file's residual data set. When recovery is necessary, a full
restoration is made, and RECOVER (see section 7.5.%) requires
mount messages on all tape volumes in which build input has heen
processed since the iast full dump. The volume serial numbers
are reconstructed from the julian dates in block two of the
file's residual data set.

7.3.2 DEFUPDT

The input for the deferred update program is the contents of
the deferred update queue data set 'SNHNN.DUOLl.'" This data set
contains the day's update transactions that were entered on-1ine,
translated into internal format. There are two identical copies
of the deferred update queue, SNNN,DUO1 and SNNN.DUC2, kept onh
different channels and devices. Should an input or output error
occur while SNNN.DUC1 is being read, DEFUPDT will switch to
SNNN.DUO?2 with no intervention. The prabability of both data
sets failing simultanecusly for the same record is very slight.

The provisions in DEFUPDT for recovery are almost identical
to those built into BATBUILD. The input is passed off to a
magnetic tape with a specially generated volume serfial number,
"DEFnnn," where nnn is the julian date. This number is also
entered in the day's slot in the update table in block two of
the file's residual data set .~ The pProgram RECOVER can reconstruct
the file in the same way as it}would using a BATRUILD rtape.

3

7.4 FRROR DIAGNOSTIC ROUTINES .
H

These routines will be used in locating file problems caused
by software errors and hardware failures,

7.4.1 VALIDATE

There are two versions of this program, VALIDATE 1 will
eventually exist in all of the three categories. It checks the

145

validity of all the file blocks of a given file, and all the
entries and nodes within those blocks. It does not check the
validity of record pointers that point across data set boundaries.
VALIDATE 11 performs the same checks that VALIRATE | dnes. In
addition, it verifies all pointers. Since such an operation
will doubtless involve sorting, an operation that cannot be
performed under ORVYL, VALIDATE Il will run under 0/S in batch
mode. From both versions of the program a listing will be
produced of all anomalies found in the specified file. Blocks
and nodes or entries found to be in error will be listed out in
hexadecimal format where appropriate.

7.4.,2 FILELIST

This program will list files or portions of files either

logically or physicaliy. If a logical listing is requested,

then all the records of a specified record type within a specified
key data element value range will be listed in external format,
along with all the access records that refer to them. Storage
information accompanies each record. 1f a physical listing fis
requested, then all the block numbers with!n a stated number range
in the specified data set will be listed in hexadecimal format.

7.5 RESTART AND RECOVERY

The routines that make up RESTART and RECOVER vary from
simple on~line master commands to special versions of large 0/S
hatch progsrams, which have been altered to perform recovery,

7.5.1 DSZAP

This module will eventually exist in all of the three
categories. it will accept as input parameters the file name,
a data set number (0 for residual, -1 for master, 1, 2, 3...n for
record type), a hlock number, an offset from th beginning
of the block, an optional hexadecimal sZring to bhe verified, and
a hexadecimal replacement siring., The program will execute a
NSRESERV (see section 6.%2.6), read the specified hlock, compare
the verification string (if there is one) to the string at the
#iven offset, and, if the two are equal, replace the string at
that offset with the replacement string.

7.5.2 FULDUMP

The FULNUMP program operates elther on single files, on a
specified subhset of SPIRES files definmed in SNNN.FILES, or on all
SPIRES files l1isted in SNNN,FILES. FULDUMP copies a specified
file, data set by data set, block by block, onto a magnetic tape
whose length (1,200 or 2,400 feet If a single reel Is used, 2,400
feet if more than one reel is used) is selected according to the
total number of blocks in the flle's data sets. Before block two
of the file's residual data set is dumped, the julian date will

146

he written into the "dump' slot of the update tabhle. The julian
date will also be used tce create a data set name in the data set
header on the magnetic tape: "pMPnnn.!" The volume serial numher
of the tape volume containing the dump will be the file name of
the file being dumped.

7.5.3 FULRES

This progiam operates on a single specified file. The
input, of course. is the magnetic tape produced in a previous run
of FULDUMP. The input parameters arz the julian date to be used
(the date of the file dump), the file name, and whether the file
still exists on disk and is to be cverwritten, or whether it is

to be completely reallocated. If the file is to be reallocated,
a growth space percentage must be provided as a parameter for
FULRES, If no julian date is provided and overwriting is

desired, a call is made for the last dump version using the
julian date stored in block two of the file's residual data set.
If no jullan date is provided and there is no version available
on disk, the operator will be prompted for a juliarn date.

7.5.4 RECOVER

This program is a special combination of BATRUILD and
DEFUPNT, designed to be run after FULRES has restored a file to
some previous correct version. RECOVER looks into a file's
update table to determine the days of update activity in the
period since the file was dumped. I¥f on a particular day either
build or deferred update activity occurred, mounts messages are
issued for the build or deferred update tape for that day. The
update information that applies to the file undergoing rzcovery
is located and copied. This process is repeated until the file
is current again. .

7.5.5 VWARMSTRT

Thisz routine is called by master command only; and it must be
called just after the system comes up after a crash, before any
users are 3allowed on the system. WARMSTRT accesses the data set
SMNH.FILES. For each SPIRES file listed therein, the residual
data set block 0 (the supplemental write block~-see section 5.4.2)
is read and the first and last words there are compared. 1f they
are equal, the corresponding data set record will be read, and
its first and last words compared. If these are unequal, then the
supplenental write block is used to overwrite the data set
block., 1¥ the data set record first and last words are equal,
then the supplemental write block is compared with the data set
hlock. ¥ these two are unequal, the supplemental write block is
used to overwrite the data set block. EFach time a data set block
is thus overwritten, a message IS written to the master terminal.

147

7.5.6 PASSREC

This program can be used to regenerate access records
consisting only of passed information. Output in the form of
nodes or slots is written on marnetic tape, which will then be
sorted into key data element value sequence and input to the
TREREBAL program (see section 7.6.1).

7.5.7 DISABLE and EMABLE

.-These routines are called by master command only. The file
name specified in the DISABLE command is placed in the
subprocessor communications area. Since all attempts to attach a
file are chaecked against this area, users are kept from gaining
access to a downed file during a recovery period. The ENABLE
command removes the specified file name from the disabled file
table.

7.5.8 AVSPREC

This progsrar regenerates block one (the available space
table) of a residual data set in a specified file or series of
files.. Block one is read into user memory, and blocks 3-=n are
read sequentially. As each bhlock is read, the available space
trailer is located, and the amount of available space is used
to determine which availahle space chain is appropriate for
the block. After a chain is chosen, the pointer in the availzble
space table is placed in the FBHDAB field of the block header
(see Figure 27). The block number of the block=--FBHDBK~--is moved
to the appropriate slot in the available space table. Counts are
maintained on the number of hlocks irn each chain. When the iast
block in the residual data set is read and chained, a listing of
counts is produced, and block two is rewritten to the residual
data set.

7.5.9 MESSAGE

This master terminal command causes the two-digit message
code specified in the master terminal command to be placed in
the subprocessor communications area. This area is checked
periodically, and if a new message code is found there, the data
set SMNMM.MESSAGE is accessed, and the appropriate predefined
message 1s put out at the user terminal. Corles 0-254 are for
predefined messages. Code 255 is for a nonpredefined message
placed by the master terminal operator in slot 255 of the SMNNN.
MESSAGE data set. Such a message would be used when it is
necessary to broardcast a message not covered by the predefined
set.

7.5.10 INHIBIT

This master terminal command prevents any nhew users from
logzing onto the system by setting the LOGON flag to Xx'no.?

148

The flag is checked by the subprocessor each time a new user
attempts to log on.

7.5.11 KILL

This master terminal command places an X'80' in the LOGON
flag of the communications area. The subprocessor pericdically
checks this flag; if it contains an X'80', the user is summarily
returned to WYLBUR, with profound apologies put out at his
terminal.

7.5,12 MAGIC WORD ,

This master terminal command places an X'AC' in the LOGON
flag. The parameter that accompanies the command verb is moved
to the "magic word" field of the communications area. All users
attempting to log on when the flag contains an X'AD' are prompted
for a magic word, which must match the one in the communications
area, If it does not, the user is returned to WYLBUR.

7.6 AIDS TO SYSTEM ADMINISTRATION

The following programs and routines are necessary for the
day-to-day administration of the system. They include a tree
data set rebalancing program, a disk mapper, and a statistics
report generation program,

7.6.1 TREREBAL

Thie program reads node input from one of two sources: a
sorted magnetic tape from PASSREC (see 7.5.6), or one from the
tree data set itself. The tree is rebalanced in the way described
in section L.,u4.35.

7.6.2 DISKMAP

This prosgram produces two types of output. The first, siven
a disk volume 1D or a series of ID's, is a map of the contents of
the volume(s) by ascending disk address. The second consists of
a listing by specified file name of the physical locations of all
data sets and their extents.

7.6.3 STAT

This program will cause a listing to be produced of the
day's accumulation of statistics., These statistics will contain
information ahout the frequency of file accesses, module usage, '
command usage, etc. Another listing will be a tabulation of all
error diagnostics issued by the system. At the end of the week, !
month, and quarter, summary reports will also be produced.

149 |

cj.
1
]

APPENDIX D

Preprints/Anti-Preprints:
SLAC Library Monitors Underground Physics Press

Louise Addis
(Reprinted from The SLAC News, 20, June 2, 1971, 2-3.)

Preprints are the underground press of the particle- physics
world. For the past three years, the SLAC Library's weekly
newsletter "Preprints in Particles and Fields (PPF)" has been
providing that world with a popular and reliable master key to
its preprint press rooms.

But what are these s]ightiy clandestine preprints? What
indeed are anti-preprints? Why is a PPF needed to keep track of
them all?

Preprints look innocent enough, a modest sheaf of
mimeographed, dittoed, or multilithed sheets locked together by a
staple or two. Despite titillating undergound=-sounding titles
about '"Degenerate Daughters,'" '"Ghosts and Gotterdaemmerungen,"
Two- and Thre2~Body Problems", reading reveals uniformly benign
texts uninteiligible to anyone but particle physicists. A few
sport fancy covers (like the Lemonade and Orangeade series from
Cal Tech) but most are as plain as the hundreds of other
documents in the bulging boxes and bags of mail delivered daily
to the SLAC Library. But to Rita Tayler, SLAC Preprint
Librarian, 50 to 100 items in each week's heap are special.
Using, one suspects, ESP or other exotic devices, Rita quickly
sorts them from the piles of other material, checks to see that
they are not repeats, then launches them on the way to
announcement in the next PPF,

These are the preprints. They report the latest
experimental and theoretical brain flashes in particle physics,
and are being precirculated by their authors at the same time
that a manuscript is being submitted for more formal but dilatory
publication in a journal. |If after months or even years, such a
paper finally achieves immortality in the pages of a journal or
book, it will be transformed into an "ANTI-PREPRINT", proclaimed
in a speclial green section of PPF, and the original preprint
discarded. (A reprint or offprint, by the way, is the exact
opposite of a preprint, since it is a copy of an article after it
has been published.)

Like many other products of underground presses, preprints
are not for sale, but are obtained by being on mailing lists, by
knowing somebody else who is, by having a library that makes a
real effort to collect them, or by finding out about a particular
item in time to write the author for a copy.

'130

Until recently most ilibraries scorned preprints and most
preprint authors made up mailing lists that included people they
knew and famous physicists in large laboratories, Less known
physicists in out of the way places complained bitterly they
couldn't keep up because they didn't get preprints and couldn't
even find out about them. Well known physicists complained that
their mail boxes were jammed with worthless papers they didn't
have time to read. Journal editors worried abocut the threat of
the preprint free-press to the integrity and circulation of their
journals, and wasted time and temper trying to run down published
versions of preprint references. The work of chronicling the
weekly influx of preprints was expensively and imperfectly
duplicated by preprint secretaries in countless physics
departments. Everyone cried out against the burgeoning
circulation of "junk." Preprints, though obviocusly a vital
communication link among physicists, seemed by their very natu
defective in the role.

This perplexing preprint paradox (the preprint perplex) was
discussed a lot during the 1960s and some elaborate proposals
made. Several preprints dealt at length with the question of how
to deal with preprints, and a socmewhat acrimonious debate
developed about the merits of trying to centralized preprint
distribution, a proposal which many thought would lead straight to
preprints of preprints, to proliferation rather than containment
of "junk." Nothing, however, was actually done.

Finally, in 1968, SLAC's Director W.K.H, Panofsky and LRL's
Art Rosenfeld were elected Chairman and Secretary of the new
Division of Farticles and Fields (DPF) of the American Physical
Society. Under their leadership DPF formed an alliance with
three SLAC Librarians, louise Addis, Bob Gex, and Rita Taylor, to
do something about preprint communication for the whole particle
physics community.

The SLAC Library, since its foundation in 1962 on a stack of
dusty preprints and some coaching from a CERM Librarian, had been
aggressively collecting new preprints and publishing a popular
authoritative weekly list of them for SLAC physicists. As years
passed, more and more SLAC alumni reqgquested that the SLAC
Preprint List be mailed to them at their new institutions. It
seemed evident that the simplest, cheapest, and most practical
palliative for the preprint perplex was to publish such a list in
condensed format, rush it by air to anyone who wanted it, and let
him/her or a library acquire the few preprints which were of real
interest., Experience had shown that even at SLAC which shelters
large numbers of particle physicists, 50-60% of the current crop
of preprints are never requested by anyone and that most
preprints requested are of interest to just two or three
specialists. (At the other extreme, a few important preprints
may be of interest to almost everyone.) All preprints must be
announced, of course, to enable selection to take place.

'i31
[Kc

wll Toxt Provided by ERIC

The problems of finding preprints later, referencing them
‘after publication, clearing space on desks or library shelves
could be solved by including a section called "ANTI-PREPRINTS"
listing published preprints with journal, volume, and page
references. The SLAC Preprint Librarian had been doing this for
years for SLAC and for a few other friendly preprint librartians.

A lightning-fast preprint announcement list coupled with
anti-preprint information would complement rather than compete
with other physics publications and would not upset the delicate
ecology of preprints by slowing them down or overstimulating the
distribution of junk. The idea was consistent with a philosophy
of preprints as ephemeral documents, rough but speedy. .

Master copy for the lists could be produced quickly, easily
and elegantly by comptuter. Stnce the SLAC Library and its
preprints were already participants in a large computerized
experimental information system, SPIRES (Stanford Physics
Information REtrieval System), very little extra programming
would be required.

A proposal was written. in those more affluent days, SLAC
soon obtained a special seed-money grant from the AEC to finance
printing and mailing such a preprint list to the physicists of
the DPF for an 18~month trial period. Computerization was
undertaken by Prof. E. Parker's SPIRES group with financing from
the National Science Foundation. PPF was on its way.

Since the whole point of preprints is speed, evervthing
about PPF was designed to promote it: speed in production, speed
in distribution, and speed in use. A printer was found who could
handle the job from repro-ready copy to mailbox within 24 hours.
A1l time-consuming refinements such as elaborate subject
classifications, indexes, etc. were rejected. Not quick and
dirty, but quick, clean, simple and complete is the motto for
PPF.

.
i
+

(&

The first issue of PPF hit the mails in January 1969, and in
April all subscribers were queried to see whether the experiment
was wortn continuing.

The response was overwhelming. More than a thousand
subscribers positively wanted to continue getting PPF and
hundreds took time to write sometimes lengthy comments and
suggestions. Though the PPF staff may have tended to dwell
unduly on remarks like '"Best thing to happen in physics
information in 50 vears!" "I have already found one reference
which was worth the year's subscription' "Most Valuable
publication | get'" "PPF is a necessity" " | read it religiousliy!"
and "it's a stroke of genius'", clearly PPF met a real need and
its future was assured. Several laboratories, including the

152

giant drookhaven iational Laboratory had ceased publishing their
own preprint lists and were rezlying on PPF. Cne physics departnent
reported reproducing 50-60 copies each week for distribution to
faculty and graduate students. Several overseas laboratories

made arrangements to reproduce PPF for secondary distribution in
their own countries. Even journal editors were enthusiastic

about the Anti-Preprints list on practicai as well as

philosophical grounds. They were using it to exterminate
references to old preprints in papers submitted to them for
publication.

In July 1970 when the seed-money for printing and mallnng
ran out, PPF easily became self-supporting. Curently a year's
subscription to PPF costs $10/year in the U.S., Canada, and
Mexico, $18.50 overseas, 1t has 53%1 domestic and 104 overseas
subscribers (not counting SLAC), is not copyrighted and is
extensively reproduced at its various destinations for further
distribution. PPF lists an averaze of 67 new preprints each week

and 100 Anti-Preprints every other week. Each quarter there s a
special feature called "PPF Conference Previews and Reviews"
which announces future particle physics conferences an-d explains
how to get the proceedings of past conferences. As space
permits, various physics events are publicized. DPF notices
appear as needed. Subscribers also receive the '"Preprint Source
Address List" which makes it easier to write to authors for
preprint copies. (The third edition dated December 1970 listed
510 addresses), and they may" request copies of quarterly
cunulations of the Anti-Preprint lists.

A1l preprints received up to late Wednesday afternoon (an
sometimes early Thursday morning) are announced on the week's
PPF. (Recently an author phoned to won.ler when PPF would get
arcund to listing his preprint which he had sent three weeks ago.
It turned out to have been listed the same week he sent it, but
it hadn't occurred to him that such was possible.} Coded
bibliographic information {(authors, titles, report numbers,
ianguage, date, number of pages, source) is typed directly into a

computer from a time-sharing terminal!. The computer sorts,
reformats the information and produces the upper~lower case
repro-ready copy at the same terminal. On Thursday, the copy is

proofed, corrections typed into the computer and final master
copy listed for paste-up. The prlnter picks up the result at
2:00 p.m. PPF goes into the next day's mail and arrives early
Monday or Tuesday on physicists' desks all over the world.

The Anti-Preprint list is produced in a similar way after
the tables of contents of ali new phvsics journals have been
comPared with the current preprint collection and publqshﬂd
articles matched with corresponding preprints. This is a tricky
process since titles change from preprint to article, and
sometimes a shortened version of a paper is published in a fast

' Pt

i3

acting "letters" journal while the longzer preprinted version
awaits full publication in the slower "physical Review." It's
important not to throw away the extensive data in the longer
version until it is truly published.

PPF has been managed, edited, and cherished for the three
years of its existence by the same team of SLAC Librarians,
Louise Addis, Bob Gex, and Rita Taylor, with the indisg :nsible
help of Ruth Consolo, lay-out, Rita Glover, computer input, and
Sarbara Rupp, descriptive cataloging. Bennie Hicks compiles the
quarterly section "PPF Conference Previews and Reviews' from her
own more complete SLAC publication “"conference Previews."

At SLAC, physicists not only receive a weekly copy of PPF
automatically (until recently a special expandesd version was
published for home consumption), but they have immediate access
to all the preprints listed on it. The weeks' preprints are
displayed in the Library reading room iionday through Friday where
readers may sign up for them or make their own Xerox copies.
Cards are also filed in the SLAC Library catalog for all the
authors of each preprint, so if the recollected author is the
twenty-third and his name begins with Z, the preprint can still
be located. Subject searching of the preprint collection is
available through an on-line information retireval system,
SPIRES. A future SLAC NEWS article will describe SPIRES and how
it may be used for personally tailored literature searches of the
underground press of particle physics.

