
DOCUMENT REsUME

ED 057 828 LI 003 325

AUTHOR Parker, Edwin B.
TITLE SPIRES (Stanford Public Information Retrieval System)

1970-71 Annual Report
INSTITUTION Stanford Univ. , Calif. Inst. for Communication

Research.
SPONS AGENCY National Science Foundation, Washington, D.C. Office

of Science Information Services.
PUB DATE Dec 71
NOTE 154p.;(23 References)

EDRS PRICE MF-$0.65 HC-$6.58
DESCRIPTORS *Computer Programs; *Information Retrieval;

*Information Storage; *Information Systems; *On Line
Systems

IDENTIFIERS Computer Software; SPIRES; *Stanford Public
Information Retrieval System

ABSTRACT
SPIRES (Stanford Public Information REtrieval System)

is a computer information storage and retrieval system being
developed at Stanford University with funding from the National
Science Foundation. SPIRES has two major goals: to provide a
user-oriented, interactive, on-line retrieval syste for a variety of
researchers at Stanford; and to support the automation efforts of the
university libraries by developing and implementing common software.
SPIRES I, a prototype system, was implemented at the Stanford Linear
Accelerator Center (SLAC) in 1969, from a design based on a 1967
information study involving physicists at SLAC. Its primary data base
is a high-energy-physics preprints file. Evaluation of SPIRES I
resulted in the definition of a production information storage and
retrieval system, SPIRES II. This system will be available -daily,
beginning in mid-1972, to faculty, staff, and students of the
University.- It is characterized by flexibility, simplicity, and
economy. _SPIRES II will operate on-line on an IBM 360/67 computer.
This report summarizes the uses of the SPIRES I system over the past
year and describes both the nature of SPIRES II and this system,s
development over the past year. (Author)

U,S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
OFFICE,OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM

THE PERSON on ORGANIZATION ORIG-

INATING IT. POINTS OF VIEW OM OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION Oh POLICY.

PIRES

(Stanford Public Information REtrieval System)

1970-71 Annual Reportt

to
LA)

National Science Foundation,
(Office of Science Information Servic

Edwin B. Parker
Principal Investigator

Insti-tute for Communication Research
rn.Stanford unive4sit t

ecember 1971

ABSTRACT

SPIRES (Stanford Public Information REtrieval System)
is a computer information storage and retrieval
system being developed at Stanford University with
funding from the National Science Foundation.
SPIRES has two major goals: to provide a
user-oriented, interactive, on-line retrieval
system for a variety of researchers at
Stanford; and to support the automation efforts of
the university libraries by developing and
implementing common software.

SPIRES I, a prototype system, was implemented
at the Stanford Linear Accelerator Center (SLAC)
in 1969, from a design based on a 1967 information
study involving physicists at SLAC. its primary data base
is a high-energy-physics preprints file.
Evaluation of SPIRES I resulted in the definition
of a production information storage and retrieval
system, SPIRES II. This system will be available
daily, beginning in mid-1972, to faculty, staff,
and students of the UnivPrsity. It is
characterized by flexibility, simplicity, and
economy. SPIRES II will operate on-line on an IBM
360/67 computer.- This report summarizes the uses
of the SPIRES I system over the past year and
describes both the nature of SPIRES II and this
systemis development over the past year.

1.0

CONTENTS

BACKGROUND

2.0 SPIRES I IN THE PAST YEAR

3.0 SPIRES II DEVELOPMENT .5-
3.1 The Computing Environment. - .5-3.2 Development Status

. 73.3 Capabilities and Services Planned. a # -103.4 Work in the Coming Year 2
4.0 SPIRES AND BALLOTS

.14

APPENDICES'

A. List of Selected Publications and Reports
Relating to SPIRES

B. Contents Pages for ReauLrenient
C. 2m5i_zn _of SP I Rk_S 11_, Volume 1

D. Preprints/Anti-preprints

iii

1

1.0 Background

This is the fourth annual report to the National Science

Foundation on Project SPIRES (Stanford Physics Information
BEtrieval System), now known as the atanford Public Information

BEtrieval aystem. The first, 1967 Annual Report <11>* described

the results of a behavioral information study of a target
population of physicists; the 1968 Annual Report <12> documented

the SPIRES I on-line programming; the 1969-70 Annual Report <13>
described the operation and evaluation of SPIRES I and the
development plan for SPIRES II, the production system. This

report describes the current operation of SPIRES I and the

progress made in developing 'SPIRES II during the period July 1,

1970, to June 30, 1971.

SPIRES has two long-range goals. The first is to provide a
user-oriented, interactive, production on-line information
storage and retrieval system for a variety of research groups in
the Stanford community. The second is to support the automation
efforts of university libraries (Project BALLOTS) <8, 15> by
contributing to common software development. An immediate
short-range goal has been to provide an on-line bibliographic
information service for Stanford physicists, particularly for
high-energy physicists. All of these goals must be achieved
within a framework of effective, efficient operations.
Effectiveness is ensured by carefully studying and constantly
interacting with users and the user environment. Efficiency is
ensured by evaluating costs and performance factors under
operating conditions.

In 1967, a comprehensive user study was conducted on a
target population of physicists. This study established
information needs and priorities as a basis for system design
(see the 1967 SPIRES Annual Report). In late 1967, a small,
one-terminal demonstration system was installed on the 360 model
75 computer (since replaced by a 360/91) at the Stanford Linear
Accelerator Center (SLAC), using an IBM 2250 display terminal.
Following the demonstration of the pilot system, most of 1968 wa
spent in creating the software necessary for a multiple-user
on-line system. This included the development of an on-line
supervisor program (see the 1968 SPIRES Annual Report), and of
search, retrieval, and update programs. By early 1969, SPIRES I

had been tested and was ready for service; in late February
operation began for an hour and a half a day, five days a week.
This service schedule continued through the summer of 1969. IBM
2741 typewriter terminals were placed in the Stanford University

*Number in brackets refer to Appendix A, a list of
publications and reports relating to SPIRES.

4

Libraries and In the SLAC Library. (The SPIRES system, ho eer,
can be used from any terminal on campus.)

After several months of operational experience, the last
quarter of 1969 vsas spent in evaluating the SPIRES I system (see
the 1969-70 SPIRES Annual Report). This evaluation was conducted
by members of the SPIRES staff with the assistance of an
independent computer consultant, Robert L. Patrick. It indicated
that with the successful operation of SPIRES I a major milestone
had been reached. Technical feasibility was clearly
demonstrated. The special target audience of high-energV
physlcists had found the SPIRES system useful. Another user
group (the Library staff), with almost no knowledge of computers
had been able to use the system after only a short training
period. Various data bases had been created and successfully
searched concurrently from different points on campus. The
evaluation revealed that the data bases used by the SPIRES
system, particularly the library files and special subject files
such as a physics preprint file, are characterized by continued
erowth and intensive updating. If the SPIRES system were in use
full time, its users would have to be assured of software and
hartiware reliability.

The experience with SPIRES I was the basis for a six-phase
development cycle defined for a SPIRES II production system. The
first phase of the SPIRES II system development process was
completed during the first quarter of 1970. This phase of
preliminary analysis produced a major document <15> that
characterized the users and the user environment and summarized
the limitations of SPIRES I; it then went on to outline a
long-range scope of retrieval and file management capabilities as
well as the first implementation of SPIRES II.

The second phase, detailed analysis, was a peripd of crucial
activity. System requirements (such as performance and output
documentation) were established and approved by project staff ane
system users. A variety of technical tasks were carried out: thi.
evaluation of existing programming languages and software, system
simulation, the writing of an on-line command language, the
designing of an analyzer to parse the language. This activity
was well underway in July 1970, the beginning of this reporting
year.

2.0 SPIRES I IN THE PAST YEAR

For most of the reporting year, 197G-71, SPIRES I continued
in operation on the Campus Facility 360/67, where it was used
primarily by S.LAC physicists and LIbrary staff. During this
period, however, work was begun to move SPIRES I to the IBM 360
model 91 computer at SLAC. By June 1971, the following
components of SPIRES I were successfully operating on the 360/91:

-- On-Line Retrieval
-- Batch Build (Data Base and Indexes)

SLAC Publication List production (by author, subject, and
number)

-- Weekly Preprint List (PPF) production
- - Anti-Preprint List Production
- - Data Base Checkpoint/Restore
- - Data Base Recovery/Reconstruct
-- Miscellaneous Diagnostic Routines

SPIRES I is presently accessible on the 360/91 from any SLAC
terminal and from terminals on campus and elsewhere that have
telephone dialup and entree to a SLAC account. Operation of the
system requires mounting one disk pack. A 15-minute search
utilized about .0004/min CPU time. It uses j 1st under 300,000
bytes of core storage. Searches typically bring the system up
for five- to twenty-minute periods and are coordinated through
the SLAC Library to minimize the use of system resources.

The SLAC Library's relation to SPIRES has continued to be
that of an experimental user group Since 1968, a SLAC
Librarian, L. Addis, has acted as liaison to SPIRES and as
coordinator of the Library's SPIRES-related activities Uncluding
on7line development of the principal SPIRES I database, a file cf
some 14,000 high energy physics prepriots. During 1970-71, the
library haS continued weekly maintenance and updating of the
preprint database (now on the 360/91), as well as weekly
publication of the bulletin "Preprints n Particles and Fields
(PPF)". PPF, with its companion ANTIPREPRINTS,which has been
published since 1969 (see SPURES Annual Report 1969-70 and
Appendix D), became self-supporting in July 1970 when the AEC
seed-money was -exhaustech By the end of FY71, PPF had more than
600 subscribers (not includieg those at SLAC) at

. the rates of
$10.00/year in the U.S., Canada, and Mexico, and $18.50 for
overseas airmail.

By June 1971, arrangements were underway to supply weekly
tapes of preprint information, In SPIRES input format, to the
Celifornia Institute of Technology, the Untversity of Texas, and
to the Deutsches -Elektronen-Synchrotron JO liaMburg. (R-. Parsons
at the UniversitY of Texas has planS, for'instanee., for studies

IL

utilizing the citation index feature). If experimental tape
distribution proves successful, it may be feasible to offer tapes
to the other high-energy physics facilities which have expressed
interest. Tapes are currently written either 7 track or 9 track,
800 BPI, end with or without citations. Users supply minitapes.

At the suggestion of the American Physical Society Division
of Particles and Fields, arrangements are now underway to include
data on current experimental high-energy physics proposals, in
the SPIRES database and periodically In PPF, The Lawrence
Berkeley Laboratory Particle Data Group utilizing SLAC Library
files (set up, by the way, in response to suggestions in the 1968
SPIRES interviews) is analyzing available experimental proposal
information for beam composition, detection method, number of
events, etc. The Particle Data Group also plans to use the
resulting SPIRES input tapes in their own compilations.

The building of a complete database utilizing the DESY High
Energy Physics Index tapes is underway. The size of previous
DESY files has been limited by the fact that two additional disk
packs are required for the operation, one for the 1968-69 files
and another for the more current flles. When the DESY file is
complete It will contain approximately 40,000 to 50,000 items
dated from 1968 to the present. It will be updated fortnightly
and searchable by author, title, date, and, most importantly,
keyword. In the meantime, other facilities are experimenting
with possible use of the DESY tapes in the SPIRES format. Dr. K.
Mellentin at DESY has given permission for such experimentation,
the SPIRES format being a particularly convenient one for users.

Together, the preprint and DESY databases are expected to
provide on-line access through SPIRES I to virtually all high
energy physics literature, published and unpublished, including
current experimental proposals, from 1968 to the present.

During the 1971-72 reporting period, SPIRES I activities are
expected to emphasize the completion of the DESY database,
consolidation and correction of the SPIRES ieput archive tapes
for possible use by other facilities, corrections to the current
preprint database, as well as continuation of current production
schedules. Alternative plans for the utilization of SPIRES II by
SLAC users will be developed.

5

3.0 SPIRES II DEVELOPMENT

3.1 The Computing Environment

SPIRES I was originally implemented on the Campus Facility
IBM 360 model 67. During 1969 and early 1970, the Campus
Facility machine was close to saturation. The installation
software at that time was workable and efficient, but had not yet
been fully optimized. Furthermore, there was a heavy batch
workload. Therefore, a decision was made to turn to a machine
(of the model 50 class) outside the Campus Facility in support of
campus information retrieval. But the restrictive economic
environment later caused that decision to be rescinded.
Meanwhile, two things occurred in the Campus Facility: a gain in
CPU cycle availability due to substantial software optimization,
and a decrease in the overall workload. In the past year,
reliability on the 360/67 has increased to the point where uptime
is around 96 percent. Throughput in the high-speed batch
partition has improved 40 percent. For example, the execution
time for an average job has been reduced from 4.3 seconds to 2.2
seconds and the minimum job cost has been reduced from fifty
cents to twenty-five cents. Text-editor (WYLBUR) throughput has
increased 100 percenti.e., it has doubled, effectively cutting
costs to the user by 50 percent. These improvements to the
operation of the 360/67 resulted in an average machine cycle
availability of 30 percent.

These facts, coupled with the University's desire to make
maximum use of its available computer resources, dictated a
SPIRES II implementation on the Campus Facility computer. The
technical staff of the Campus Facility agreed to make the

.necessary modifications to the Installation software to support a
reliable on-line system, and to aid the development and
installation;of the system, the SPIRES group became an integral
Part of the Campus Facility systems group.

In order to accommodate SPIRES, the following hardware is
being added to the Campus Facility configuration.

1. Disk Storage Drives. When the SPIRES II system becomes
available to the campus community, there will be additional
storage devices provided. These devices will provide adequate
and fast-access storage for data bases. Each drive will provide
storage space for approximately 28-million characters.

2. A PDP-11 Front-end Computer. All communications between
SPIRES and the CRT terminals will be via a PDP-11 "front-end"
machine. This will, among other things, provide faster
communications fot the terminals.

6

3. Terminal Equipment. SPIRES will be available via an
upper/lower-case CRT terminal (Sanders Associates 800 series)
and a less expensive upper-case only CRT Terminal (The Hazeltine
2000). These terminals provide fast, silent display of large
amounts of data. It is estimated that the proposed configuration
will be able to support up to 32 CRT terminals concurrentlY; if
that number is exceeded, a second PDP-11 can be added to the
configuration.

In the Campus Facility 360/67 system software there are six
major partitions: the operating system, high-speed batch/FUTIL,
large batch, the Stanford time-sharing monitor (ORVYL), the
WYLBUR text editor, the MILTEN terminal communicator, and the
HASP spooling processor. ORVYL operates in a 220,000-byte
partition. It enables a program to reside in segments on a drum,
and to share core memory with other executing programs. (luch
programs are called subprocessors. They are re-entrant; thus
many terminal users can use a subprocessor concurrently. ORVYL
is the time-sharing monitor performing such functions as reading
necessary program segments into core from the drum, and writing
user work areas out to the drum when another user is being
serviced. The monitor further decides which user should be
serviced next.

SPIRES II will operate as a subprocescir under ORVYL, as
LISP and BASIC do currently. A simple simulation has predicted
good response time, with little detrtmental effect on the rest of
the system.

MILTEN, the communications monitor, currently supports 88
2741 typewriter terminals. Modifications to meet the needs of
SPIRES include supporting CRT display terminals using the PDP-11
computer as a line-handling and intermediate buffering device.
MILTEN allows the user to connect to a time-sharing subprocessor
or to WYLBUR, the on-line Text Editor. One of the functions of
the terminal system is that the.user can use WYLBUR tekt-editing
commands transparently while connected to an ORVYL subprocessor
and vice versa just by typing the command verb required.

As indicated above, ,the project decided that to implement
SPIRES II as an ORVYLisubprocessor would require modifications to
the CamPus Facility software System. The Stanford CoMpUtatioe
Center has made the necessary expertise -.available et no cost to
the prpject to accoMplish the f011owTeg modifications <9.

1. ORVYL file System. The present file system under ORVYL
provides excellent sUpport for small User files, which are
transteht lh nature and are eatily re-created if a system failure
occurs,: But present Camput Facility requirements double the

7

Input-output load in handling large files. An extension is
therefore being provided to the ORVYL file system that will
permit rapld access to large files and that will ensure file
protection.

2. Subprocessor Communications Area. An ORVYL subprocessor
is re-entrant, and is written as if only one user existed. Thus
the subprocessor, while acting on behalf of one user, may not
have access to the workspace of any other user. It is therefore
not possible at present for the subprocessor to "remember"
anything as it goes_from user to user. To remedy this, a
resident area is being provided for each subprocessor in the
system. Here the subprocessor can store the work it Ts doing for
one user whenever It goes to another user. It will be impossible
for any material in this area to be simultaneously modified
(updated) by- more than one user.

3. Virtual Access Method (VAM). Provision is being made
for programs running in a batch partition to access any ORVYL
disk data sets, allowing on-line file access modules to be used
in batch mode with no source code modification. Furthermore, the
batch programs may be run whether ORVYL is executing at the time
or not. The only restriction (which turns out to be a benefit
with respect to security and reliability) is that no more than
one such batch program may be executed in the system at one time.

4 CRT Terminal Minicomputer Support. ORVYL and MILTEN
will be modified-to.allow CRT terminal support via the front-end
PDP- 1.

3.2 Development StatuS

The SPIRES 1969-70 Annual Report describes a six-phase
development process being followed. At that writing, the project
was involved in the second phase, detailed analysis. In the
reporting period 1970-71, detailed analysis was completed; phase
three, general system .design, was accomplished; and phase four,
detailed system design and programming, was begun. (The last two
Phases, implementation and installation, will be accomplished
during 1971-72.) The phases have shifted and overlapped in
actual practice, so that general and detailed design intermingled
and Aetailed design has involved some of the coding and testing
described as part of phase five, implementation.

In the _third .quarter of 1970, a general file structure
design for SPIRES Il was, prepared. This was refined and
documented in the following quarters. The design was for a
multiPleindexing structure that allows both full and partial
data records to,be stored and accessed. Access (index) records

and goal (data) records can be stored together or separately,
whichever method is most efficient. Redundancy is built into the
file to ensure reliability. Access record values are generated
from goal records, so that the access records can be re-created
if necessary. Input and output access time is minimized by
providing for frequently used tables and dictionaries to be held
in core storage. Information common to the records in a file Ts
stored in one spot for economy of space. Transaction logging
collects information for recovery procedures, if necessary, and
for resource accounting.

Reliability is a major goal of SPIRES II, and general
specifications for the recovery techniques needed to ensure
reliability were also written at the beginning of the reporting
year. Recovery is accomplished by reapplying copies of the,
deferred update queue, accumulated on tape since the last full
dump.

Early in the reporting period, the external specifications
for the SPIRES II on-line command language were completed. These
specifications described the language from the user's point of
view--for example, they contained descriptions of how individual
commands were to be used to perform required functions. The
on-line commands covered four areas: file definition, file update
and maintenance, search and retrieval, and display.

These four classes of commands were specified through the
use of the Action Analyzer, which was fully coded and debugged in
the third quarter of 1970. The Analyzer is a program that was
designed specifically to aid in producing a comprehensive and
unambiguous set of commands for using the on-line SPIRES 11
system. Command statements are written as they would appear to a
user. Then they are expressed in modified Backus Naur Form
(BNF), a formal metalanguage used to describe the form of other
languages. The equation-like BNF statements are called
"productions." A command to set the case for data input,
expressed in BNF, might look like this:

<case>::=upper7lower
luOrier
iuplow
Hower

Reading "1" as "or," this says that the case can be specified by
any of the phrases on the right side of the production. Commands
written in BNF-are input to the Action Analyzer; the Analyzer
Produces diagnostics indicating errors or ambiguities and
describes the type of ambiguity in each production. When all the
errors bave been corrected, the Analyzer produces an Action list
that ultimately will drive the SPIRES I! parser. This Action

9

list is a coded representation of the BNF productions and their
relations to each other.

The SPIRES II parser was implemented as one component of the
SPIRES II subprocessor operating under ORVYL. In conjunction
with the Action list, the parser scans commands from terminals,
identifies their component parts, and calls the appropriate
semantic modules to perform the on-line functions required:
search, update, display, etc. The semantic modules, in turn, do
this by calling file services routines that operate directly on
goal records and access records in user files.

The four components of the SPIRES II subprocessor are the
Action list, the parser, the semantic modules, and the ORVYL
interface. The interface consists of a series of assembler
language routines that permit the subprocessor to use various
services of the time-sharing monitor. These routines were
designed and implemented in the first quarter of 1971.

On the basis of evaluations completed in the fourth quarter
of 1970, the decision was made to write on-line system modules in
PL360 and to write application programs in PL/1. PL360 is a
variant of 360 assembler language that is designed especially for
applications requiring systems programming. PL360 gives the
programmer complete control of machine functions such as register
loading and also provides some of the logical_ capabilities of
higher-level languages, such as looping end "if...then"
statements. PL360 code is as efficient to use as assembler
language, and its similarities to higher-level languages make
writing and correcting programs easier.

The parser was rewritten in PL360, and several tests were
run, parsing command language strings for six simultaneous
terminal users. These runs indicated that core usage was reduced
from 400000 characters to 4,000.

Parsing rules in BNF were prepared for the entire SPIRES II
command language in the second quarter of 1971. These rules in
effect define the vocabulary of the command anguage, i.e., what
is a legal command.

By the end of this.reporting period, a first Nersion of all
the file.services routines' .had_been- defined, coded, and pui into
operation. Fjrst versienSof three of the on-line semantic
modules-search and:retrieVal, update and maintenance, end
dtSplay--had-been-defieed, Coded, aild 'checked out, and were
operation with-a small test file of :skeleton. records.

The: fOUrth segment of the SPIRES II or line command
lan Liege,' file definition, is handled by-the file definition

12

10

processor. File definition commands will be used by a "file
manager"--i.e., a person responsible for establishing and
maintaining a file of data. Through the commands, the file
manager provides the system with such information as the name of
the file he is creating; the types of users who have access to
the file; the operations they may perform (read only, read and
modify, etc.); the types of search requests that may be entered;
the types of information to be stored in the file; and the types
of information to be reteieved. Forms were designed to permit
file managers to describe input formats, data elements, internal
record contents, and output formats. By the end of the reporting
period, a prototype version of implementation of a final version
had been half completed. The file definition processor (or "file
characteristics processor") also had been coded and checked out.

Two major documents were written in the course of the
year. The first, Reouix&ingEaa_lgtr_JULLULJJ, gives complete
information on using the four areas of the on-line command
language described above. The contents pages for this document
are attached as Appendix B. The second, pAlign af SPIRES LI,
Volume I, describes the design for implementing SPIRES II
in the Campus Facility computer. It is attached as Appendix C.
DesIgn covers the computing environment, design goals, the
structure of the ORVYL interface and the SPIRES II subprocessor,
file structure and record structure concepts, and system
support functions. Volume Il is being prepared; it will
give further details of design.

This work in the areas of de ign, documentation,
programming, and testing was carried out in conjunction with (and
in part as a result of) the developments described in section
3.1, The Computing Environment. The decision to implement SPIRES
II on the Campus Facility computer; the study of interfacing
requirements for the Campus Facility software; the analysis of
video terminals leading to the selection of the Sanders model;
these were all part of the past year's effort.

Capabilities and Services Planned

The following is a brief summary of the planned scope of the
SPIRES II system, as evolved over the past year. The system is
here defined in terms of its software. Actual progress made in
developing this software, and further detail on some aspects of
SPIRES Il design, are given in section 3.2, Development Status.

The basic "building blocks" of SPIRES II are a series of
standard FILE SERVICES ROUTINES. These operate directly on
indexes, records, and data within records. For example, they
locate particular key values in indexes, locate particular data
element values in records, and transform records from internal

11

external format for user display and modification. File services
will also generate necessary information for recovery procedures.

The SEARCH SEMANTICS MODULES (18 in number), service the
on-line command FIND, which is used to enter search criteria
interactively. Intermediate search results are ANDed or ORed
with previous results, and qualifiers are applied. (A preliminary
version was implemented first, in advance of the file definition
processor. This version has not, of course, been able to use the
file characteristics output of the definition processor.
Instead, it used hand-coded characteristics tables. As the file
definition processor is completed, these modules will be
augmented to interface with its output. This will result In the
final version of the search semantics.)

The ten UPDATE SEMANTICS MODULES transform an update trans-
action entered on-line into external format and add the new or
updated record to the deferred update queue. (As with the search
semantics, a preliminary version has been implemented first,
using hand-coded file characteristics tables.)

In creating, for example, a locally keyed flle of data, the
externally readable information must be put in a format that
makes it accessible to the file services programs. The BATCH
BUILD PROGRAM is the batch analog of the update semantics
modules.

The DEFERRED UPDATE PROGRAM places the entries in the
deferred update queue into the file, building indexes and
transforming elements as ge:ded by file characteristics.

The FILE DEFINITION PROCESSOR permits the user to define his
files individually, using data element parameters such as length,
occurence, and content, and then to store this definition. He
may also define user access, input formats, output formats,
validity checks, and usage statistics. The user may modify his
file definition at a later time if his requirements change.

Rapid recoVery from system failure is essential whether the
error originated with the user, the software, or the hardware.
The recovery must be completed with the user's data in the same
condition it was ih at the time of failure,. In the event of
loss, data recently placed tn the'SyStem must be recoverable.
This requires RECpVERY ROUTINES for full and partial data base
dempa and for full and Partial data-base, restoration. In
additioe, programs must be written to reconstruct indexes, data,
set directories, anathe :available spade table, should these be
destroyed.

DISPLAY SEMANTICS MODULES service the TYPE, OUTPUT, and
DISPLAY commands. They transform search results to an external
fiarmat and place them on the device specified in the command.

1 2

There remain some thirty MISCELLANEOUS SEMANTICS MODULES
tha_ service ancillary commands such as TO SPIRES, EXPLAM,
EXAMPLE, etc. Also in this category are modules to gather usa-e
and data statistics and place them on disk storage at iogoff
time.

To carry out "housekeeping" functions that ensure efficient
daily operation, various UTILITY PROGRAMS are required. These
include a data set allocator, a disk space mapper, a file
velidator, and a program to list file records in external format.
A data 5et allocator organizes data sets for the maximum
utilization of space. A disk mapper displays the organization of
data sets on disk. A file valldator makes routine error checks
on files and produces diagnostics. A data base list program
organizes the output from a data base dump so that it is easily
rea0eble. In addition, system-monitoring routines will record
and report types and frequencies of errors and collect user's
suggestions.

DOCUMENTATION for both-development and production is
necessary. The Documents, Requirements_for SPIRES_Li <10> and
DeJofSP1RS <9> present, first from the user's, then
from the programmer's point of view, the system design being
implemented. For production, the system recovery, emergency,
and routine operating procedures will be written up for the
computer operators. SPIRES programs will be documented so that
they can be maintained and modified. Manuals will be provided
for users showing them how to create, maintain, and interrogate
files. Types of services and costs will be described so a
user can select services to meet his needs within the limits
of his budget.

3.4 Work in the Coming Year

In the reporting year. 1971-72, the SPIRES staff expects to
initiate, continue or complete work in seven areas.

1. The file definition processor. The final version of the
file definition processor should be completed around the
beginning of October 1971. This version will provide for the
automatic building of access records and for the generation of
record and build characteristics and also search and pass
characteristics (see Design fer SPIRES LI). The format of the
final version the processor differs from the first version in
that the final version will take processing rules into account.
This includes rules applied at the time of input, at the time a
search command is issued, and at the time of output or display.

2. The processing rules. By the end of the 1970-71
reporting year approximately 130 processing rules of sever l

types had been defined. Some rules serve double or triple du y

13

and apply to updating, searching, and passing. Output processing
rules generally serve only one purpose. By the end of the coming
reporting year all of the processing rules necessary in the

SPIRES II system will have been defined.

3. The On-line Semantic Modules. The final versions of the

search and retrieval, update and maintenance, and display

semantic modules will be implemented. The master terminal
semantics and remaining miscellaneous semantics will be put into

operation. Work necessary to implement the parameter commands --
e.g., CROSS, EXTRACT, etc. -- will be completed.

4 Documentation. Volumes II and III of Rellm_LaL_5_EUILL_LL
will be published. By the Time the SPIRES II system comes up --
the beginning of June 1971 -- a user's manual will be ready. All

the documentation should be completed by the tme the system Is

operational.

5. Software Optimization. Efforts will be made to optimize

the on-line system before putting it into production. A study

will be made of what ordering of various modules in the on-line

system will run optimally in a paging environment. Two of the
tools to accomplish this are a sum hardware monitor that will
ascertain where execution time is being spent in the on-line
processor and a capability called "VITAMINS". The latter is a

virtual terminal system for which a script can be written that,

when input, simulates many SPIRES users at many terminals, each
inputting the same script for several different runs, each time

changing parameters or reordering modules in SPIRES, we can
evaluate the throughput of the system without worrying about
whether or not the loads are the same.

6. Statistics Gathering. In the months to come, it will be

determined what kinds of statistics are wanted on the system.
Semantic routines will be built to gather statistics at the user
interface on such subjects as; what kinds of commands are being

used; what kinds of disk accesses are being caused by different
commands; what kinds of mistakes are users making; etc. These
statistics will help in determining how to alter the user
interface so that the SPIRES system is more convenient to use.

7. Policy and Procedures for Operating the System.
Procedures will have to be written up for the operators of SPIRES
II, so that they will know such things as: how to analyze
failure; how to bring up the system from a cold start; what
action to take in the case of a crash; how to bring up the system
from a warm start. Procedures will also have to be written up
for the people in user services. For example, telling how to
bring up a file that a user wants to define, and outlining ways
to get user feedback on problems with the system. All these
procedures will have to be carefully thought-out. Many of them

b

14

will involve policy decisions. (For example, what will the
pricing algorithm be for overnight processing?)

Decisions must also be made regarding the support of large
public files, such as Chemical Abstracts, Nucear Science
Abstracts, etc. Such decisions will be based upon subscription
and storage costs, demand, and available funds. Smaller, locally
shared and private files will be accommodated on a direct
charge-back basis to the ile users. fhey may also, at the file
owner's option, be made partially or fully accessible by the user
community at large.

4 0 SPIRES AND BALLOTS

Project BALLOTS is a production on-line and batch system
being developed to apply a time-sharing computer to bibliographic
management <19, 20> in a network of academic libraries In the San
Francisco Bay area. The network is called CLAN, the California
Library Automation Network, and presently involves Stanford and
four other colleges and universities. More members are expected.

The library automation system is expected to provide
efficient library technical processing and circulation of library
materials, as well as to promote the sharing of resources among
the network libraries. The bibliographic data to be used for
ordering, cataloging, and so on will be derived partly from the
Library of Congress MARC Distribution Services and partly from
the network libraries' own input. Ultimately BALLOTS will have
four on-line files: a MARC file of 6 to 12 months of the most
recent data; an In Process File of ell the titles in technical
Processing; a Catalog Data File of all titles cataloged; and a
Circulation Inventory File of all the titles in Stanford's Meyer
Undergraduate Library collection. Vi,._to terminals will be placed
in the various libraries for use by library staff and eventually
patrons, and the printed ovtputs -- purchase orders, catalog
cards, spine labels, etc. -- will be produced overnight at the
Stanford Computation Center.

SPIRES and BALLOTS have been closely related since their
inception <80 15>. When the first set of BALLOTS services (the
BALLOTS -MARC module) is implemented at Stanford in the spring of
-1972, it will use much of the softWare described In this rePort.
Ten more modules, each increasing the range pf BALLOTS, will be
impleMented. In the next two- Years. Generally speaking, the
relatiOnshiP between the-- twosystems, SPIRES and BALLOTS, IS the
same as what BALLOTould. have had with IMSJInformation
Management System)- -GIS (General -Information System), or any
.other Preexisting software it might-have choSen es a given for
clevelopment.....-:Simply -Stated,' the -geheral-purOoSe'SPIRES- Ii

software:PrOviAes anenvironmentJOr ihe--BALLOTS applieation.
BALLOTS.-:-PrOgraMmers'-Will- -augment.- and alter portions Of-SPARES
Seftware, .and coMblne_it.-.wjth'BALLOTS Software .(particularly
tatah--aPPlIcation-. prograMS).

A-1

APPENDIX A

(REFERENCES)

SPIRES
A BIBLIOGRAPHY OF REPORTS AND PUBLICATIONS

This list does not include quarterly progress reports
submitted to the National Science Foundation or
presentations before local professional associations.

ED numbered documents are available from LEASCO
Information Products, Inc., P. O. Drawer 0, Bethesda,
Maryland 20014.

PB numbered documents
Technical Information
Springfield, Virginia

I PUBLICATIONS

are available from the National
Service (NTIS) Operations Division,
22151.

1. Addis, Louise. "SLAC Library Monitors Underground Physics
Press." THE SLAC NEWS, no. 3 (June 2, 1971), pp. 2-3.

2. Martin, Thomas H., and Edwin B. Parker. "Designing for_User
Acceptance of an interactive Bibliographic Search Facility."
Paper prepared for discussion at the invitational workshoP, "The
User Interface for interactive Search of Bibliographic Data
Bases," sponsored by the AFIPS Information Systems Committee,
January 14-15, 1971, at Palo Alto, California. To be published
in the workshop Proceedings (AFIPS Press).

3. Parker, Edwin B. "Behavioral Research in Development of a
Computer-Based Information System." In Nelson, Carnot E., and
Donald K. Pollock, eds., COMMUNICATION AMONG SCIENTISTS AND
ENGINEERS-, Lexington, Mass: D. C. Heath A Co., 1970. Pp. 281792.

4. Parker, Edwin B. "Democracy and Information Processing."
EDUCOM (Bulletin of the Inter-University Communications Council)
no. 5 (1970), pp. 2-6.

5. Parker, Edwin B.
Retrieval System." In
COLLABORATIVE LIBRARY
University, Stanford,
University Libraries,
<ERIC document number
$11.50.>

"Developing a Campus Based Information
PROCEEDINGS, STANFORD CONFERENCE ON
SYSTEMS DEVELOPMENT (at Stanford
California, October 4-5, 1968). Stanford
Stanford, California, 1969. Pp. 213-30.
ED 031 281; microfiche $.65, hard coPY

18

A - Z

6. Parker, Edwin B. "Information Utilities and Mass
Communication." In Nie, N., and H. Sackman, eds., INFORMATION
UTILITIES AND SOCIAL CHOICE Montvale, New Jersey: AFIPS Press,
1970. Pp. 51-70,

II DOCUMENTS AND REPORTS

7. Ferguson, Douglas, ed. PROJECT CONTROL NOTEBOOK. 2nd ed.
rev. SPIRES/BALLOTS Project, Stanford University, Stanford,
California, December 1970. 180 pp.

8. Ferguson, Douglas. "Information Retrieval (SPIRES) and
Library Automation (BALLOTS) at Stanford University."
SPIRES/BALLOTS Project, Stanford University, Stanford,
California, November 1970. 12 pp. <ERIC document number ED 008
543; microfiche $.65, hard copy $3.29.>

9. DESIGN OF THE STANFORD PUBLIC INFORMATION RETRIEVAL SYSTEM
(SPIRES II). SPIRES/BALLOTS Project, Stanford University,
Stanford, California, July 1971. 385 pp.

10. REQUIREMENTS FOR SPIRES II. SPIRES /BALLOTS Project,
Stanford University, Stanford, California, April 1971. 58 pp.
<ERIC document number ED 048 747; microfiche $.65, hard copy
$3.29.>

11. SPIRES 1967 ANNUAL REPORT. SPIRES/BALLOTS Project, Stanford
University, Stanford, California, December 1967. 58 pp. <ERIC
document number ED 617 294; microfiche $.65, hard copy $3.29.>

12. SPIRES 1968 ANNUAL REPORT. SPIRES/BALLOTS Project, Stanford
University, Stanford, California, January 1968. 111 pp. <NTIS
document number PB184 960; microfiche $.95, hard copy $3.00.>

13. SPIRES 1969-70 ANNUAL REPORT. SPIRES/BALLOTS Project,
Stanford University, Stanford, California, June 1970. 129 pp.
<ERIC document number ED 042 481. The 1969-70 Report is
available without charge from the SPIRES/ BALLOTS Documentation
Office, Cypress Annex, Stanford, California 94305.>

-14 SPIRES REFERENCE MANUAL. 2nd ed., rev. SPIRES/BALLOTS
Project, Stanford University Stanford, California, January 1969.
63 pp.

15. SYSTEM SCOPE FOR LIBRARY AUTOMATION AND GENERALIZED
INFORMATION STORAGE AND RETRIEVAL AT STANFORD UNIVERSITY.
SPIRES/BALLOTS Project, Stanford University, Stanford,
California, 1970. <ERIC document number ED 038 153. Available
from the SPIRES/BALLOTS Documentation Office, Cypress Hall Annex,
Stanford California 94305, for $7.50 prepaid >

19

III MAJOR PRESENTATIONS

16. Epstein, A. H. "Information Flow." American Society for
Information Science, Los Angeles Chapter, Los Angeles,
California, December 1970.

17. Epstein, A. H. "Information Flow Analysis." Canadian
Society for Information Science, Ottawa, Canada, March 1971.

18. Parker, Edwin B. :"A System Theory Analysis of Feedback
Mechanisms for Information Systems." Paper read at the PIO
International Congress of Documentation, September 21-24, 1970,
at Buenos Aires, Argentina.

IV ARTICLES ABOUT SPIRES/BALLOTS

19. "Libraries Seek University-Wide Computer Information
Service." CAMPUS REPORT, January 14, 1970, p. 7.

20. "Library Goal: Computerized Information Retrieval System."
STANFORD OBSERVER, January 1970.

21. A report on automation plans (SPIRES and BALLOTS) at
Stanford. COLLEGE AND RESEARCH LIBRARIES NEWS, March 1970, p.
83.

22. Review of he system scope document. COLLEGE AND RESEARCH
LIBRARIES, May 1971, pp. 236-38.

V FILM

23, SPIRES/BALLOTS REPORT. Department of Communications,
Stanford University, Stanford, California, 1969. <A 15-minute,
color, 16mm film gtving an overview of the library automation and
information retrieval problem In general and of Stanford's
approach to it. Written and directed by D. B. Jones. Copies may
be rented from Extension Media Center, University of California,
Berkeley 94720. Rental charge, $15.00 for 24 hours; purchase
price, 1180.00.>

20

B-1

APPEND! X

Reaulremejits _f_o_r SP I RES_ I I

Table of Contents

REQUIREMENTS

FOR

SPIRES II

AN EXTERNAL SPECIFICATION FOR THE
STANFORD PUBLIC INFORMATION RETRIEVAL SYSTEM

_SPIRES
-project of

the Na Tonal-Science. Foundation
Edw n- B. Parker, -Principal Investigator

APRIL 1971

SPIRES/aALLPTS.PROJECT
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

9!4305

_QONTENT9

-ii
4/20/71

Pae

ACKNOWLEDGMENTS 1

INTRODUCTION 2

LhAPUAL

1.0 THE SPIRES USER

1.1 User Audience
1.2 The User Consultant
1.3 General Comments

2.0 THE SPIRES SYSTEM

2.1 File Definition
2.2 File Maintenance and Update
2.3 Search and Retrieval
2,4 Display

3.0 SOFTWARE, FACILITIES, AND CONCEPTS

2-1
2-1
2-1
2-1

3.1 The SPIRES Environment
3.1.1 MILTEN
3.1.2 WYLBUR
3.1.3 STSM

3-1
3-1
3-1
3-1

3.2 The SPIRES Facilities 3-3
3.2.1 The 2741 Terminal . . 3-3
3.2.2 The CRT Terminal . 3-4
3.2.3 SPIRES System Commands 3-5

3.3 STSM System Commands 3-8
3.4 Definitions and Concepts 3-8

3.4.1 Data Elements 3-8
3.4.2 Records 3-9
3.4.3 Indexes 3-13
3.4.4 Files 3-14

.0 FILE DEFINITION

4.1 Design
4.2 A Typical Session

FILE MAINTENANCE AND,UPDATE

5 1- Concepts and Definitions .. .

5.1-.1 General
5.1,2- External -.Data Format

5.2- On-7Line,Entry and Deferred Update ..
53 On7Line File.ManagementCommands'.

5.3.1 ..Update Execution Commands. ..

-Record and Data Element
Commands-.

3

4-1
4-1

5-1
5-1
5-1
5-3
5-3
5-3

5-4

5.4 Batch Services
5.4.1 Batch Update
5.4.2 Batch Conversions
5.4.3 Batch Utilities

.0 SEARCHING AND RETRIEVING

********O.

6.1 General
6.2 Search Language

6.2.1 Browse Commands
6.2.2 Retrieval Commands
6.2.3 Batch Searching

7.0 DISPLAYING OUTPUT

7.1 Output Formats
7.1.1 System Default Format
7.1.2 Formats Defined at File

Definition_Time
7.1.3 Formats Defined During

Session Time
7.2 Output Language

, 7.2.1 Type Command
7.2.2 Output Command
7.2.3 CRT Commands

2 4

4/20/71

5-7
5-7
5-8
5-8

6-1
6-2
6-2
6-4
6-16

7-1
7-1

7-1

7-2
7-2
7-3
7-4

APPENDIX C

Desjan o_f SPIRES H, Volume I

This material written for use_hy SPIRES programmers
is subject to continual revision as the design of
SPIRES II progresses. Anyone wishing to use or
quote this material should first contact John
Schroeder, SPIRES Systems Development Group Lead r,
for information about its current state.

DESIGN OF THE

STANFORD PUBLIC I !FORMATION RETRIEVAL SYSTEM

(SPIRES II)

Volume I

July 1971

SPIRES/BALLOTS Projec

Stanford University Stanf rd, California

PREFACE AND ACKNOWLEDGMENTS

This document is a technical paper describing the general
design and structure of the SPIRES II on-line processor and its
batch support programs. We assume that the reader is familiar
with time-sharing concepts and vocabulAry, and that he has some
acquaintance-with the software system at the Campus Facility
of the Stanford University Computation Center and with the
document REQUIREMENTS-FOR SPIRES 1_1 (SPIRES/BALLOTS Project,
Stanford University, Stanford, California, 1971).

The research and development necessary for this paper were
carried out by the members of the Information Systems Group of
the Campus Facility, Stanford Computation Center (SCC). They are:

Richard Guertin
William Kiefer
Herbert Ludwig
Thomas Martin
John Schroeder (Group Leader)
Cheryl Stevens
Jerrold West

Our appreciation is extended to T. David Phillips, Deputy
Director, .SCC; James Moore, Group Manager, Campus Facility;
Richard Levitt, Group Leader, Campus Facility Systems; John
Borgelt, Campus Facility Systems; and James Powell, Campus
Facility Systems. The successftfl implementation of SPIRES II up
to this point-would not have been possible without their encour-
agement and support.

Special thanks are due to Jennifer Hartzell, w o edited t-e
draft document.

CONTENTS

introduction 1-1

Chapter 1 Environment Goals- and Components

1.1 ENVIRONMENT

1.1.1 Existing Campus Facility Hardware
1.1.2 Hardware Additions for SPIRES II . 00 0 0

1.1.3 Existing Campus Facility Software
1.1.4 Advantages to SPIRES II of the

Campus Facility Environment
1.1.5 Modifications Required in the

Campus Facility System
1.1.6 The WYLBUR Interface
1.1.7 The Batch Interface
1.1.8 The Manual Interface 00

1-1

1.2 GENERAL DESIGN GOALS
. 1-110 O 0 00 0 0

1.2.1 Openness to Modification
1.2.2 Ease of Use
1.2.3 Generality .

1.2.4 Structural Simplicity
1.2.5 Modularity
1.2.6 Reliability and Recovery,

1.3 GENERAL COMPONENT OF PESIGN AND
IMPLEMENTATION

O 0*

1-13

1.3.1 Interspersion of Syntax and Semantics . . . 1-15
1.3.2 Use of ACTION BNF as a Flow Diagram . . 0 1-16
1.3.3 The Generalized Parser

1 1-16

1-181.4 IMPLEMENTATION CONVENTIONS .

C,tompiler Languages for Implementation
1.4,2 The Use of Starniard Routines -and

Structures

:11ap er 2 SPIRES Softwa e Structures

ORVYL INTERFACE ,O TINES

2.1.1 INIT
2.1.2 QUIT . .

2.1.3 GETCLOK .

2.1.4 GETCORE

.900 00

.1-18

1-19

2-1

2-1
.. . . 2-1

2-1
23-.

2 8
1 I t

9.. 9 0 0 0

2.1.5 RETCORE
2.1.6 SLEEP

.
2.1.7 ATCHF
2.1.8 ATCHNEW
2.1.9 SCRATCH
2.1.10 DTCHF
2.1.11 READF and WRITEF

.

a ...
2-3
2-3
2-3
2-3
2-3
2-4
2-4

2.1.12 RESERVE 2-4
2.1.13 RELEASE . .. aa a ... a aas 2-4
2.1.14 TPUT 2-4
2.1.15 TGET 2-4
2.1.16 TPROMPT 2-4
2.1.17 WYLBUR 2-5
2.1.18 WILSEN and WYLCON 2-5
2.1.19 READTXT 0 a*. 2-5
2.1.20 GETCOMZ 2-5
2.1.21 GETCOMZL 2-5
2.1.11 PUTCOMZ 2-5

2.2 ACTION LI T 2-5

2.2.1 Elements of ACTION WIF 2-6
2.2.2 The ACTION List Format 2-17

2.3 rHE PARSER 2-16

2.3.1 General Description 2-16
2.3.2 Changing Input Levels 2-18
2.3.3 Calling Semantic Modules 2-19
2.3.4 Input Bounding - , 2-19

2.4 SNAP 7-19

2.5 SEMANT 2-20

2.5.1 Declarations -2-20
2.5.2 Local PrOcedurs a ... 2-20
2.5.3 Group Router 2722
2,5.4 Semantic :Process Router : 2-22
2.5.5 Semantic P-rocess Group 2-22

2.6 THE SAVE STACK = .. . 2-22

2.7 THE MASTER TAB,LE 2-24

2.7.1 TSAVER , 2-24
2.7.2 Ti = = . a 2-24
2.7,3: PI * .. 0 0 0a 224
2,7,4 NXTSPACE: , . . 2-24
2=7,5 FLAGS . a a 2-24
2,7.6 :USACQT- 000 2-24
2.7.7 USPSWD .. a 2-24

-96.0-.171Nete Res 2-25

2.8 THE PARSER TABLE

2.9 THE FLOW OF CONTROL

2.9.1 Entry to SPIRES II
2.9.2 INITIAL
2.9.3 Call to SEM()
2.9.4 Call to the Parser
2.9.5 Calls to Semantic Processes
2.9.6 Call to the ORVYL Inter7ace
2.9.7 atilT

2.9.8 Branch to SNAP

Jlapter 3 Logical File Concepts

3.1 INTRODUCTION

3.2 FILE SYSTEM DESIGN PEQUIREMENTS

3.3 FILE STRUCTURE OVERVIEW

3.3.1 Record Types
3.3.2 Pointers
3.3.3 Goal Records
33.4 Access Records
3.3.5 Record Contents

3.3.6 Passing Data Element Values

3.4 PROFILES

3.5 THE HIERARCHICAL STRUCTURING OF DATA
ELEMENTS

3.6 FILE CHARACTERISTI.CR

;hapter 4 Organization of Data Sets for Access

4 1 INTRODUCTION

4 2 THE ORVYL ENVIRONMENT

4.2.1 Data Management Under ORVYL .

4.2.2 Contiguous Data Sets
4.2.3 Accessing ORVYL Fils

4.3 FILE SETS AND DATA SET

4.3 1 File Sets
4.3 2 Data Set Naming Conventions

*

2-25

2-28

2-28
2-28
,2-28
2-28
2-28
2-28
2-28
2-28

3-1

3-1

3-2

3-3
3-3
3-3
3-3

. . . 3-6
3-7

3-7

3-8

3-8

and Stora e

4-1

4-1

0 * 4-1
4-1
4-2

. . . 4-2

4-2
. 4-2

4.4 THE ORGANIZATION OF RECn DATA SETS

Slot-Structured Data Sets
Tree-Structured Data Sets
Tree Rebalancing

4-3

4-3
4-3
4-5

4.5 DATA REMOVAL .
. 4-10

4.5.1 Definition and Criteria 4-10.. 6 6
4..5.2 The Logical Effects of Removal 4-11

4.,6 RECORD SPLITTING 4-11

4.7 A SIMPLE ILLUSTRATION OF PASSING AND
REMOVAL a a 4-14

Chapter 5 Physical Formats

5.1 INTRODUCT:ON AND DEFINITIONS

5.2 RECORD FORMATS

5-1

5-1
5.3 FILE BLOCK FORMAT 5-2a

5.3.1 The Tree Data Set Block Format
5.3.2 The Non-Tree Data Set Block Format

a a 5-4
5-9

5.4 RESIDUAL BLOCK FORMATS 5-9

5.4.1 The Available Space Table 6 6 9 5-11
5.4.2 Supplemental Write Blocks 5-13
5.4.3 Status Information Block 5-13

5.5 THE ACCOUNT NUMBER TREF 5-13

5 5 1 Class Privileges 5-14
5.5.2 Sharing Profiles Among Accounts . . 0 6 5-14
5.-5.3 The Format of the Account -.Number

Record 5-14
5.5.4 The Organizati n of the Account Number

Tree 5-17

5.6. THE USER. MASTER DATA StT FORMAT 5-17

5 6.1 The Record Characteristics
5.6.2 The Build Characteristics
5.6.3 The Search Characteristics

Chapter 6 ImplementatIon -of. the PI ES II-AtcesS-

NtTiODUc410

5-19

5422

6 1

TASK-ORIENTED SUBROUTINE GROUPS 6-1

6.2.1 SRCHREC 6-1
6.2.2 ADDREC 6-2
6.2.3 DELREC 6-2
6.2.4 RPLREC 6-2
6.2.5 ATCHFILE 6-2
6.2.6 DTCHFILE 6-2

6.3 BASIC FILE SERVICES SUBROUTINES 6-2

,6.3.1 Data Set Attaching and Detaching
Subroutines 6-7

6.3.2 Node Manipulation Subroutines 6-7
6.3.3 Entry Manipulation Subroutines . 6-7
6.3.4 Data Element Access Subroutines -6-8
6.3.5 Input and Output Subroutines . 6-9
6.3.6 Data Set Lockout 6-9
6.3.7 Allocation Functions 6-9
6.3.8 Miscellaneous Subroutines 6-10

Chapter 7 SPiRES System Support Functions

7.1 INTRODUCTION .

7.2 THE THREE OPERATING CATEGORIES

7-1

7-1

7.2.1 Master Commands . 7-1
7.2.2 0/S Batch Commands 7-3
7.2.3 ORVYL User Programs 7-3

7.3 THE FILE MAINTENANCE FUNCTICwS

7.3.1 BATBUILD
7.3.2 DEFUPDT

7.4 .ERROR DIAGNOSTIC ROUTINES .

7.4.1 VALIDATE
7.4.2 FILELIST .

7.5 RESTART AND RECOyERY

7-3

7-3
7-4

7-4

.... 7-4

7-5

7.5.1 DSZAP . . . 7-5
7.5.2 FULDUMP 7-5
7.5.3 FULRES 7-6
7.5.4 RECOVER *90 7-6
7.5.5 WARMSTRT . . . 0999 7-6
7.5.6 PASSREC 7-7
7.5.7 DISABLE and ENABLE............ . 7-7
7.5.8 AVSPRECOS.. 7-7
7.5.9 MESSAGE 7-7

2
VT;

7.5.10 INHIBIT
7.5.11 KILL
7.5.12 MAGIC WORD

7.6 AIDS TO SYSTEM ADMINISTRATION .

7-7
7-8
7-8

7-8

7.6.1 TREREBAL '7-8
7.6.2 DISKMAP '7-8
7.6.3 STAT 7-8

1

Appendices

A Model 67 Scope Support for SPIRES Project . A-2

B Basic Operation of the otanford Time-Sharing
Monitor (ORVYL)

C ORVYL Users Guide

D Scope Support in ORVYL

E ACTION Controlled Translation: A New Approach
to BNF

Linkage Conventions for PL360

G Coding and Deseriotion Standdrds for PL360

H Standard SPIRES II Dummy Sections .

I ACTION- BNF Grammar, SPIR:S --II Command Language

J ACTION tist Macros, SPIRES II Command Language

K-' PL360 Predefined and -SPIRE,_ II Functions

L Removal Tradeoff-Fable

M __SPIRES I! File Servi.ceS Procedures

N E.rrer Codes -Re urned from -ORVINTF- in R1

A-17

A-23

A-124

A-1.4

A-153

.A-155

A-162

A-172

A-184

A-192,

k-193

A-197

A-260

LIST OF FIGURES

1- Campus Facility Hardware Configuration 0009000
2. Campus Facility Memory Partitions . . .

ubprocessor-User Relationship . OOOO OO 0

4, SPIRES System Make-up 00
5. Storage Layout, SPIRES II On-Line Subprocessor .

6. ACTION List Production

7, An Example of ACTION BNF . .

8. The ACTION List

9. Table of Correspondences in ACTION Lists

10. Parser Production Stack

11. SNAP--ACTION Parser Trace OO OOOO
12. An Example of Shared Semantic Processes

13. SPIRES Il File Structure O

_4. Relationships Between Reco d Types

15. pata Element Structures in External Format

16. Slot-Structured Data Set

17. An Example of a Tree-Structured Data Set .

18. Sample Tree . O O
19 Sample Tree After Rebalancing .

20. Sample Tree After Intense Local Growth

21, Sample Tree with Well-Distributed Growth

22 File Set Without Removal
. S

23 File Set with Removal -S 00009-0009
24. An Example of Passing and RemoVal

25. Control InformationAppended
Element Values .

VarIous Data
S S S S .. J-

1-17

2-2

2-7

2-10

2-13

2-15

2-17

2-21

2-23

3-4

3-5

3-9

4-4

4-6

4-7

4-7

4 9

4-9

4-12

4-12

4-13

26. File Block Formats .040 O.* OO 4;00 5-6

27. File Block Structures 5-7

28. Residual Data Set Organization . . 5-10

29. The Available Space Mechanism 5-12

30. Venn Diagram of Account Numbers and Psuedo-Account
Numbers 5-15

1. Account Number Record 5-15

32. Organization of the Master Data Set 5-18

33. Record Characteristics 5-20

34. Build Characteristics ..5-21

35. Search Characteristics 5-23

36. SRCHREC Subroutine Hierarchy 6-3

37. ADDREC Subroutine Hierarchy O .. . 6-4

38. DELREC Subroutine Hierarchy 6-5

39. -Record Replacement Subroutine Hierarchy . 6-6

40. Utility Support for SPIRES II 7-2

INTRODUCTION

'PURPOSE

I-1

This document was written to serve as a system programmers'
guide within the SPIRES II project. It reflects the project's
state of development as of May 1971. As the document now stands,
it serves as a means of project communication and control. In a

year from now, the document will have evolved into a sufficiently
accurate, organized, and detailed work to serve as an aid in
maintaining the implemented system.

FUTURE CHANGES

It is certain that there will be many additions to the
document during the next 12 months. ft is likely that some of
the material presented here will be changed. At least two kinds
of updates are certain:

the issuance of Volume II, and

the issuance of revised editions of chapters wh never
changes warrant.

CONTENTS OF VOLUMES I AND !I

Volume I describes the project's environment, the development
methodology, and the basic software concepts and components.
Volume II will describe in detail the design of the semantic
routines and support modules, and will enable the reader to study
the design and implementation of the individual commands
described in REQUIREMENTS.

1-1

CHAPTER 1

ENVIRONMENT, GOALS, AND COMPONENTS

1.1 ENVIRONMENT

The SPIRES Il system will operate as integral system soft-
ware of the Campus Facility, Stanford Computation Center. A major
portion of the SPIRES software will be used by Project BALLOTS
staff in implementing library automation at Stanford.

1.1.1 Existing Campus Facility Hardware

The Campus Facility machine configuration is shown in Figure
1 on the following page. It centers around a one-million-byte
IBM 360 Model 67 central processing unit, with high-speed drums
for operating system residence and virtual memory; 2314 direct
access facilities for medium-speed storage; seven-track and
nine-track magnetic tape drives; and appropriate unit record
peripherals. This system supports approximately ninety terminals
concurrently out of the two hundred IBM 2741 typewriter terminals
located on campus and nearby. Other features of the
configuration are a PDP-9 linked to the system via a 2701 data
adapter and the multiplexor channel, which supports foreign
computers, graphics devices, etc.

1.1.2 Hardware Additions for SPIRES II

The shaded components in Figure 1 represent the additions to
Campus Facility hardware for SPIRES II.

1.1.2.1 2319 Disk Storage Drives. When the SPIRES II
system becomes available to the campus community, there will be
nine 2319 drives in addition to the Present storage devices.
Addi.tional hardware-orders will be placed In advance to allow for
the addition of four more drives every six months. Each drive
will provide storage space for approximately 28 million
characters.

1.1.2.2 A PDP-11 Front-end Computer. All communications
between SPIRES II and cathode ray tube (CRT) terminals will be
Aria a PDP-11 '!froet-endl! machine. Appendix A Contains a discus-
sion of the PDP-11 detign.and hardware alternatives involved.
Also Li..s.ted is a bill of materials coveri.hg all items required
for the terminal - PDP11 communications 'Finks.

1.1.2.3 'Terminal Equipment. In addition to the 2741
typewriter terminals, SPIRES II will be available via two types
of PRT terminals--an inexpensive upper-case terminal (not yet
choSen) and a more expensive upper/lower-case terminal (Sanders-
Associates 800 series). Appendix A gives the hardware
configuration for terminal equipment in greater detail. It is

I
!

I
I
I

I
1

I
1

1
2
3
6
5
-
2

I
1
2
3
5
5
-
2

1
[
2
3
6
5
-
2

I
1
2
1
4
5
-
2

I

I
P
r
o
c
e
s
s
o
r

I
1
P
r
o
c
e
s
s
o
r

1

1
S
t
o
r
a
g
e

1
P
r
o
c
e
s
s
o
r

1

I

1
P
r
o
c
e
s
s
o
r

S
t
o
r
a
g
e

S
t
o
r
a
g
e

I

1

S
t
o
r
a
g
e

1
.

I
1
_
_

1
j

I
1

I

1
I

I
1

1
I

I
1

I

M
U
l
t
i
p
l
e
x
o
r

1

C
h
a
n
n
e
l
s

1

.
.
.

1
1

2
8
7
0
(
8
)

1
2
4
4
7
-
1

2
8
6
0
(
1
)

M
u
l
t
i
p
l
e
x
o
r

1
C
P
U

S
e
l
e
c
t
o
r

1
C
h
a
n
o
e
l

,

I

2
8
7
0
(
C
)

S
e
l
e
c
t
o
r

S
u
b
.
:
c
h
a
n
n
e
l

1
2
/
7
0
(
D
)

'
S
e
l
e
c
t
o
r

S
u
b
c
h
a
o
n
e
l

2
8
7
0
(
E
)

S
e
l
e
C
t
o
r

S
u
b
t
h
a
n
o
e
l

-
1
2
0
0
(
F
)

1
S
e
l
e
c
t
o
r

I
S
u
b
c
h
a
n
o
e
l

I

.1
1

/2
,4

0
1

V 1
P
D
P
-
9

I

1
I

I
1

1
2
4
0
3
,

1
2
4
4
1

1
1
2
4
0
2

[

1
T
a
p
e

C
o
n
t
r
o
l
!
.

!
T
a
p
e
,

D
r
i
v
e

I
I
T
a
p
e

D
r
i
v
e

1

1
1

7
-
t
r
k

d
r
y

I
.

U
L

7
-
t
r
k

d
r
v

1
1
2

9
-
t
r
k

d
r
v
s
1

I
I
L

1
I

1

1

2
8
6
0
(
2
)

S
e
l
e
c
t
o
r

C
h
a
n
n
e
l

2
6
6
0
(
3
)

S
e
l
e
c
t
o
r

C
h
a
n
n
e
l

2
S
5
4
(
4
)

S
e
l
e
c
t
o
r

C
h
a
n
n
e
l

2
8
6
4
(
5
)

S
e
l
e
z
t
o
r

C
h
a
n
n
e
l

I

1
2
1
0
1

1

"
D
r
u
m

S
t
o
r
a
g
e
!

1
2
8
2
0

I
_
J

1
1

1
0
r
u
m

C
o
n
t
r
o
l

1
_

1
1

1
2
3
0
1

1

.
1
.

!
D
r
u
m

S
t
o
r
a
g
e
1

1

1
2
8
1
0

1
.

1
0
r
o
m

C
o
n
t
r
o
l
!

I
1
2
3
1
1

1

1
1

1
1
D
r
u
m

S
t
o
r
a
g
e
!

1
2
3
1
4

1

!
D
i
s
k

S
t
o
r
a
g
e
!

1
2
3
1
4

1

_
_
J
D
i
s
k

S
t
o
r
a
g
e
]

1 1
2
3
1
4

1
0
i
s
k

S
t
o
r
a
g
e
1

1
1

e
i

1
2
3
1
4

I
1
D
i
s
k

S
t
o
r
a
g
e
s

II
.

I
1

11
,

1
II

i
1

1
1

i
1

I
.

1
I

I
I

I
I
.

1
1

1
1

1
I

1
0
5
2

1
1
2
7
4
3

1
1
2
6
2
1

1
2
6
2
1

1
1
2
6
2
1

1
1
2
5
0
1
.

1
1
1
4
4
3

P
r
i
n
t
e
r
'

T
y
p
e
w
r
i
t
e
r
.

1
'
T
r
a
n
s
m
i
s
s
i
o
n
!

[
U
n
i
t

R
e
c
o
r
d

l
U
n
i
t

R
e
c
o
r
d

1
!
U
n
i
t

R
e
c
o
r
d

1
[
C
a
r
d
r
e
a
d
e
r

1
1

I

1
'
C
o
n
t
r
o
l

1
1

I
$

1
1

1
1

I
1

i

(
S
h
a
d
e
d

a
r
e
a
s

1

I

1
1
2
5
4
4
P

P
u
n
c
h

1
6
0
-
2
7
4
1
'
s

I
1

1
8
-
T
T
Y
'
s

1
.

1
1

1

1

2
.
5
4
O
R

[
C
a
r
d
r
e
a
d
e
r

1

i
1

1
1
4
0
1

P
r
i
n
t
e
r
1

1
1
4
1
3

P
r
i
n
t
e
r
'

I
.

1
1

I
1

1
2
7
0
1

1
1
2
5
0
1

1
D
a
t
a

A
d
a
p
t
e
d

1
C
a
r
d
r
e
a
d
e
r

1

/
U
n
i
t

I
I

1
1
H
a
i
e
l
t
i
n
e

D
i
s
p
l
a
y

1

1
1
4
0
3

P
r
i
n
t
e
d

d
e
n
o
t
e

a
d
d
i
t
i
o
n
s

n
e
c
e
s
s
a
r
y

f
o
r

S
P
1
R
E
S

1
1
.
)

F
i
g
u
r
e

1
,

C
a
m
p
u
s

F
a
c
i
l
i
t
y
.

H
a
r
d
w
a
r
e

C
o
n
f
i
g
u
r
a
t
i
o
n
,

1-3

estimated. that the proposed configuration will be able to support
up to forty CRT terminals concurrently (any mixture of the two
types); if that number is exceeded, a second PDP-11 can be add d
to the configuration. Such an addition is unlikely in the
foreseeable future.

1.1.3 Existing Campus Facility Software

The Campus Facility 360/67 provides a broad range of
computational services, including text editing, remote job entry,
batch compilation and execution, interactive compilation and
execution (time sharing), and specialized partitions for short
jobs and utility programs. Three basic assumptions guided the
developient of the system.

The various parts of the system should interact
closely and complement one another.

Time sharing should be limited to those uses of
the system requiring it.

The overall system should be optimized continually
so as to execute the job load with maximal efficiency.

The following describes the major partitions of the Campus
Facility System. Reference may be made to Figure 2.

1.1.3.1 Operating System. This is presently release 18.6
of OS/360, MFT-II. It is conceivable that a shift could be made
to MVT in the future; this in no way affects the design of SPIRES

1.1.3.2 High- peed Batch/FUTIL. This partition runs in two
modes. (1) On first and second shifts, jobs of short duration
are run. (2) On third shift, file utility runs (IEHMOVE, etc.)
are run. In each case, a small partition monitor exercises
control to restrict execution to certain language processors and
utilities. In the case of high-speed jobs, the monitor also
performs the function of the 0/S Job Scheduler. Input and ouput
handled in the high-speed programs are limited to unit-record
peripherals and scratch data sets on disk. By substituting
limited but optimized functions in High-Speed Batch for those of
the operating system, the average job time in this partition has
been reduced to two seconds. The language processors supported
in this partition are SPASM (a single-pass assembler), WATFIV,
LISP, BASIC, ALGOLW, XALGOLW, PLC, and any 0/S load modules that
meet the I/0 requirements. ALGOLW accounts for the bulk of the
jobs run in this part:tion

1.1.3.3 Large Batch. This partition is available to users
of FORTRAN-G LISP, GPSS, FORTRAN-H, the G-level Assembler, PL/1,
COBOL, PL360, and others.

39

SCCCmiius
F360/67 Core_Ltg.X...a.-Q

fLax_tj_tj_ign

0/S NUCLEUS

HIGH-SPEED BATCH

LARGE BATCH

ORVYL

WYLBUR

MILTEN

0 S WRITER

HASP

Fi ue

Si4e

92,000 bytes

132,000 bytes

276,000 bytes

222,000 bytes

88,000 bYtes

66,000 bytes

10,000 bytes

138 pin bytes

ampus Facility Memory Partit ons

1-5

1.1.3.4 Stanford Time-Sharing Monitor (ORVYL). This
partition is the one in which SPIRES II will execute. It is the
only one in the system that uses the time-sharing hardware
peculiar to the model 67. The monitor itself resides (unpaged)
in 120,000 bytes of the partition. The remainder of the
partition is divided into 35 4,096-byte pages.

Programs reside on a 2301 drum, and are also segmented into
4,096-byte pages. The drum pages are termed "virtual memory":
only as they are required for execution must any of these pages
reside in real memory. If an executing program calls for a page
of itself not presently in real memory, it is interrupted and
relieved of control until the needed page has been transferred
from virtual to real memory. Because a program page may execute
in many locations in real memory, the address operands within the
program page conform to the address space of virtual, not real,
memory. It Ts necessary to translate these virtual addresses to
real addresses as instructions are fetched and effective
addresses generated. This process is done in the hardware, and
is known as "dynamic address translation." (See Appendix B for a
mare detailed explanation.)

The programs executed under ORVYL are divided into two
categories: subprocessors and user programs. Suprocessors are
bodies of code written by professional system programmers that
serve many users simultaneously. (see Figure 3). Current
examples are the Interactive LISP Processor and Stanford BASIC.
An outstanding design characteristic of subprocessors is
re-entrancy. A subprocessor never stcres within itself; each
ueer attached to a particular subproceSsor has his own work area,
which is logically appended to the subprocessor code whenever it
executes in his behalf. This area may be modified by the
subprocessor at will. ORVYL thus allows the designer to consider
a subprocessor as a single program divided into two parts: an
unmodifiable part (code) and workspace. The designer need not
consider the fact that there will be a number of concurrent
users, since ORVYL appends the appropriate user workspace and
restarts the code for the user at whatever point it may have been
interrupted. SPIRES II will execute as a subprocessor.

User programs need not be re-entrant, and may be written
only in FORTRAN, ALP, or P1360. Generally, they may only
interact with only one terminal. However, external devices such
as graphics scopes, foreign computers, paper tape I/0 devices,
and so on, may also be attached.

A restriction common to both subprocessors and user programs
is that they may not issue OS supervisor cells. All requests for
supervisor services must be made via a special-subset of ORVYL
supervisor calls. The required parameter setup and the actual
sopervisor calls are accomplished by coding from a special Set of
ORVYL macros. These macros are fully enumerated and described in
Appendix C, the User's Guide for ORVYL.

41

ORVYL 1

1

Subprocessor
1

1

Subprocessor Virtual Memory

User Virtual Memory

ORVYL

Subprocessor

fl

I I I I I I I I I I

1USER 1 IUSER I 1USER 1 USER 1 f USER I

I I 1 I ... 1 I I 1 I I

I 1 1 I 2 I I n
1 1 n+1 I 1 n+2 I

1 I I _ __I I I I_ I

Figure 3. Subprocessor-User RelationsniP

1-7

A disk file capability is provided as part of the ORVYL macro
set. To OS, the ORVYL disk file set appears to be one data set
extending over multiple disk packs. ORVYL subdivides the space
into 2,048-byte blocks, and user files consist of non-contiguous
collections of these blocks. Associated with each user file Is
one drum-resident directory entry, one disk-resident Master Index
Record (MIXR), and an indeterminate number of disk-resident
Secondary Index Records (SIXR's) that map user logical record
numbers into physical record numbers. These files may be
connected with a user by a subprocessor, or attached to a user
program.

1.1.3.5 WYLBUR. This partition contains the Stanford Text
Editor. A 2741 terminal user may call in an OS disk data set;
manipulate it using line-level or character-level editing
commands; replace the old copy on disk; submit a copy to the
batch job stream for execution; retrieve batch execution results;
and display them at his terminals. New data sets may be created
by copying from other data sets, or by collecting (keying) data
line by line at the terminal. Programs to be run interactively
under ORVYL (i.e. user programs) are submitted through WYLBUR.

1.1.3.6 MILTEN. MILTEN is the terminal communications
processor. Currently, it can service up to eighty 2741's and
eight teletypes at one time. The system allows any six of the
terminals to be dial-up; the rest come in via leased lines. It
works on an interrupt basis, assigning a buffer from a pool to
each terminal logged on to the system. The buffer and its
associated control blocks are termed Remote Terminal Blocks
(RTB's) and are the basis for interpartition communication. lf,
for example, a user is connected with WYLBUR, he has two RTB's
assigned to him--one in MILTEN and one in WYLBUR, with data
transfer via a "MOVE CHARACTER" instruction. The same situation
exists for usnrs connected with an ORVYL subprocessor.

1.1.3.7 HASP. HASP provides spooling of the unit record
input and output to and from the batch partitions. It also
interfaces with the remote job entry commands in WYLBUR, and with
the commands that enable a user to fetch batch execution results
at a terminal.

1.1.4 Advantages to SPIRES li of the Campus Facility Environment

SPIRES operating aS a subprocess r under ORVYL yields many
advantages:

ECONOMY. The user pays only f r time during which
the subprocessor serw.,s him.

EXISTING SOFTWARE The ORVYL time-she ing s---rtwa're aed
the 2741 termipal software are in operetion now. SPIRES
and WYLBUR tan be interfaced so closely that the diViding
line will hot be imMediately apparent to the uSer. This
is discussed further below.

1-8

QUICK RESPONSE TIME. Preliminary studies have shown
response time to be on the order of 1.5 to 2 seconds for
simple searches.

EASE OF DEVELOPMENT. ORVYL has a complete set of on-
line, interactive debugging aids that will materially
assist the implementation of SPIRES II.

The main alternative to developing SPIRES Il as an ORVYL
subprocessor is to develop or to find an already existing swap-
ping monitor, and to locate a 200,000-byte partition somewhere
at Stanford in which SPIRES could reside. During early and mid-
1970, it was considered economically feasible to develop an
independent data facility at Stanford. But this approach was
later ruled out owing to a constricting financial situation.
EXhaustive studies were made of every possible installation at
the University, with negative results.

If such a partition were suddenly t- be available, IBM
Time-Sharing Option (TSO) seems the most viable of existing
alternative packages. It has not yet been released, however, and
to commit ourselves to such a package would require hands-on
experimentation and study over a period of several months. From
a cursory study we feel that ISO would not equal ORVYL with
respect to either response time or ease of development. It
should be noted that a paging system using the hardware features
of the 360/67, especially if optimized (ORVYL), should be far
superior in performance to a swapping system that depends
entirely on software (TSO). The decision has therefore been
taken to implement SPIRES II as a subprocessor under ORVYL.

1.1.5 Modifications Required in the Campus Facility System

6fore the projeCt decided to implement SPIRES II as an ORVYL
suhprocessor, it was recognized that modifications to the Campus
Facility System would be necessary. Stanford Computation Center
:has made the necessary expertise available at no cost to the
project to accomplish these modifications, which are described
below.

1.1.5.1 ORVYL File System. The present file system under
ORVYL provides excellent support for small user files, which are
transient In nature and are easily re-created if a system failure
occurs. But the requirement that a table lookup be done (to
reach Master and Secondary index Records--MIXR's and SIXRIs) each
time a data block is called for doubles the input-output load on
a system handling large files'. Although the fact that the
records in any one file pre not contUguous optimizes the use of
disk space among all: users, it also doubles the number of seeks
reqUired to use 'one record. Furthermore, the impossibility of
isolatirig a file in one spot makes recoverY from failure
needlessly complex.

4

1-9

An extension will therefore be provided to the ORVYL file
system to permit files to be declared and maintained as
physically contiguous collections of records. The need for
MIXR's and SIXR'S with contiguous files will be eliminated,
allowing the indexes necessary for quick entry into SPIRES files
to exist as the top level of the access tree.

1.1.5.2 Subprocessor Communications Area. An ORVYL
subprocessor, as mentioned above, is re-entrant, and is written
as if only one user existed. Thus the subprocessor, while acting
on behalf of one user, may not have access to the workspace of
any other user. It is therefore not possible at present for the
subprocessor to "remember" anything as it goes from user to
user. A resident (unpaged) area, 256-bytes in length, will
therefore be provided for each subprocessor in the system. Read
and write access to this area will be via extensions to the ORVYL
macro set. An additional feature will be "READ WITH LOCKOUT" to
prevent simultaneous updating of the area.

1.1.5.3 Virtual Access Method (VAM). This facility will
allow programs running in a batch partition to access ORVYL disk
data sets, either contiguous or non-contiguous. The facilities
for file access will be identical externally. This mean_ that
the same macros and call sequences will be used, thus allowing
on-line file access modules to be used in batch mode with no
source code modification. The batch programs may be run whether
ORVYL is executing at the time or not. The only restriction (an
insignificant one) is that no more than one such batch program
may be executing in the system at one time.

1.1.5.4 CRT Terminal Small Computer Support ORVYL and
MILTEM must be modified to allow CRT terminal support via a
front-end PDP-11. Appendix A discusses the aiLcrnatives
considered prior to this design decision. It also gives the
cost and scheduling involved, and Appendix D contains the
proposed scope suppart addendum to the ORVYL User's Guide,

1.1.6 The WYLBUR Interface

ORVYL macros exist to pass commands to WYLBUR for execution,
-to read the contents of a user's working data set .(the data set
he is currently editUng), or to write into the data set. In this
manner, a user attached to SPIRES may enter WYLBUR collect mode
by issuing arL'ADD Or SUBSTiTUTE command to SPIRES; he maY then;
type in his file update, edit, it, and issUe another command tO
cPuse SPIRES to_.read the contents clf the worlang data set andl
apply them to the user'S file. In general,' SPIRES will pass any
comMand -that it Cannot recognize to WYLBUR4 (If WYLBUR doesn!t
recognize: the cOMmand either, it Passes it back with an errorfre"
turn code)

4 5

1.1.7 The Batch Interface

1-.1.7.1 System-Provided. The SPIRES user may choose not to
enter his file updates on-line. Instead, he may wish to collect
a large group of updates using WYLBUR, save the group in an OS
data set, and inform SPIRES of its existence via a BATCH UPDATE
command. The system will store the data set name in a special
system data set. The batch build program will use this data set
in order to find the location of data sets intended for input.
The batch build program, running under ORVYL as a user program,
will then takt3 the OS input data sets one at a time, using the
WYLBUR interface, convert their contents to internal format, and
link the results to the batch queue for processing by the
deferred update program.

The system will also provide a batch search capability via
the BATCH SEARCH command, When SPIRES recognizes this command,
the contents of the WYLBUR working dita set (assumed to contain
the search command) are read and pa ed; if no error diagnostics
occur, the command ;s written into , special system data set
which will be used by the batch sea ch processor as a command
stream. This processor runs under ORVYL as a user program, and is
nearly identical to the search routines in the on-line system.

1.1.7.2 User-Provided. By using the SPIRES command "OUTPUT
WYLBUR," the user may transfer search output (sorted if desired)
to his WYLBUR working data set. He may then Issue .the WYLBUR
command "SAVE <dsname> on <volume>." WYLBUR will then cause the
results to be placed in a sequential disk data set, where theY
may be reached and manipulated with a batch statistical package
of the user's choice.

1.1.8 The Manual Interface

It Ti1 be necessary to employ at least one full-time
equivalent to perform the task of monitoring SPIRES II and
administering it daily. The various functions could be carried
out by several part-time persons, or one full-time Person. The
following is a list of the necessary functions to he performed.

RECOVERY MANAGEMENT. In case of failure involving
loss, damage must be quickly assessed and a method prescribed
for making corrections. In complex cases, consultation
and assistance from the Information Systems Group will be
obtained.

STATISTICAL MONITORING. Statistics will be kept on
command usage (user behavior), file content (where allowable)
and system component usage. From these statistics,
conclusions must be drawn about command language adjustments,
file characteristiC adjustments, and promising areas for
optimization in the subprocessor.

46

SPACE MANAGEMENT. Since disk space will be limited,
file growth rates, the use of multiple extents, the dividing
up of available space, and future space requirements will
have to be monitored and coordinated. Recommendations to
Increase the disk storage capacity will originate here.

BATCH JOB SUBM!SSION AND MONITORING. Runs such as
batch build, deferred update, and so on, must be regularly
submitted for execution. The results of these runs must be
'Passed through a quality control check, and corrective
action taken where appropriate.

USER CONSULTING. When a prospective user approaches
the system for the first time, he should be given the back-
ground and materials to get him started. As he measures the
system against his requirements, he should be aided in
choosing the correct strategies for his data organization
and storage. Finally, he should be assisted through the
the file definition process. During the time he is using
the system, he may encounter problems; these should be
brought to the attention of the User Consultant (see
section 1.2 of REQUIREMENTS FOR SPIRES II, SPIRES/BALLOTS
Project, 1971).

1.2 GENERAL DESIGN GOALS

The subjects discussed below are all goals to be pursued in
the General Design phase of SPIRES II development.

1.2.1 Openness to Modification

The SPIRES II command language differs markedly from that of
SPIRES 1 in both destgn and scope. Therefore, despite the fact
that a great 4eal of experience was gained with SPIRES I, some of
the new command language will undoubtedly require modificatiOn
and improvement. And it must be possible to modify parts of the
language without overly affecting the rest of the system.
Furthermore, SPIRES II may in all probability he extended during
1972-73 to support types of applications not presently
envisioned. The system should be designed in an open-ended
fashion so that extensions can be accomplished with as little
disturbance to existing code as possible.

1.2.2 Ease of Use

In addition to such obvious aids as choosing simple command
verbs, the following points should be kept in mind as ways to
reduce the amount of information a user must remember.

1..2.2.1 Freedom of Movement. Minimum demands should be
made on the user's awareness of where he is in the system or
where he may go next. A user should be able to shift from one

4

1-12

function to another (e.g. _from searching to updating and back
again) without explicitly informing the system of these moves.

The SPIRES II command language allows combinations like the
one shown below, which illustrates the desired -lexibility.

(logon sequence)
-? select file preprint
-? find author Jones
23 DOCUMENTS FOUND
-? remove record 12345
RECORD 12345 REMOVED
-? and title aardvark
2 DOCUMENTS FOUND
-? type
(output displayed)

1.2.2.2 Prompting for Missing Information._ Some commands
'cannot be issued unless a prerequislte command has been given.
In those cases where it is possible the system should prompt
the user to issue the missing command.

(logon sequence)
-?find author Jones
- NO FI.LE SELECTED
SELECT? (user responds to prompt with filename)

(logon sequence)
- ?select file preprint
- ?and author Jones
- AND REQUIRES A PRECEDING FIND COMMAND

In the first example, the system was able to prompt for missing
information. In the second example, this was not possible, so an
error diagnostic was issued and the command ignored.

1.2.2.3 Consistency. Rules should rarely have exceptions.
An, example of a good rule in SPIRES II is the abbreviation of
command verbs--all abbreviations are formed u. :ng the first three
characters of the command -verb.

1.2.2.4 Minimum Prerequisite Knowledge. System users--
whether casual searchers, data input clerks, or file managers--
Should not be required to understand. (or use) technically
Oriented features such as job control language, recovery
procedures, etc.

1.2.3 Generality

The design will not be unduly slanted towards storing and
retrieving the data peculiar to one discipline rather than
another. SPIRES II, like SPIRES 1, will handle bibliographic
data, but not to the exclusion of clinical data, statistical

4 8

1-13

data, or full text material. Furthermore, the system must be
able to encompass extreme cases with minimal loss to overall ef-
ficiency and no programmer intervention.

1.2-4 Structural Simplicity

The system should be simple enough in structure to be
explainable in a few pages. The relationships between
its various components should be easily understood. It should
be possible to represent the flow of control in five pages or
less, given an understanding of some basic system concePts.

1.2.5 Modularity

Modularity is implicit in the, goals stated above, but ro
design document can be considered complete that does not mention
it explicitly.

1.2.6 Reliability and Recoverability

Reliability means that hardware and software errors do not
occur during the production execution of the system. Hardware
and software errors may never be completely eliminated; we
therefore limit ourselves to quick detection of any problems
resulting from such errors and prompt recovery of any data lost.
The programmatic detection of errors is largely accomplished
through redundancy of one kind or another. For example, two sets
of redundant data may be used to calculate a result; if the
results are different, an error has occurred. Redundancy also
plays a role in recovery. If data in one form is lost and it
exists in another, the lost data may be regenerated by
transformation. The SPIRES Il file design makes quick recovery
and programmatic validation possible by redundant storage of
critical control information.

During the execution of an on-lIne processor, there are
times when the system or a user file is vulnerable. A prime
example is the on-line update of a multiply indexed data base.
The update sequenee commonly involves twenty or more writes. If
the sequence is Interrupted by a system crash, the file being
updated loses its Integrity. By routing on-line updates to a
batch operation (while siMulating an on-line update for the user's
benefit), the SPIRES II design has reduced this vulnerability
to a point where it can be completely overcome by redundant
writing to disk.

1.3 GENERAL COMPONENTS OF DESIGN AND IMPLEMENTATION

The precise definition (and redefinition) of a uS r command
language is a problem of some magnitude. The litnguage must seem
natural to the user (so that he can go ahead on insn.ct if all
else fails), but it must also lend itself to simple recognition

9

1 -lb

and breakdown by the system. This process of r c gnition and
decomposition is usually ealled "parsing."* In order to be
parsed, a language must not contain circular definitions; the
elements of each of its commands must be distinguishable from
each other; and none of its commands can be open to more than one
interpretation.

To describe all possible combinations of language elements
clearly and concisely is a lengthy if not impossible process.
English is an unwieldy and ambiguous tool to use for command
language definition. A symbolic metalanguage (a formal language
used to describe the syntax of other formal languages) is
required to make such definition possible.

The most common metalanguage in use for defining computer
languages is BNF (Backus-Naur Form). An example follows:

1. <PROG>::m<paren>
2. <paren>::=(<expression>)
3. <expression>::=<non_paren_body>

Knon_paren_body><paren>
1<paren>
j<non_pareq_body><body><pa en>
1<non_paren_body><body>
i<body><paren>
I<body>

4. <body>::=<paren><non_paren_body>
I<body><paren><non_paren_body>

5. <non_paren_body>;:=<non_paren>
I<non_paren_body><non_paren>

This defines a formal language in which

(A4-(13+C)/2)

is allowable. The numbered expressions in the example are called
IIProductions." Production 1 defines a program as composed of one
Parenthetical expression. Production 2 defines a parenthetical
expression as an expression surrounded by parens. Production 3
defines an expresSion as "(1) a NON_PAREN body, or else (2) a

*Cemputational linguists refer to the rules used to parse
command language strings as "productions of a grammar." The
language is the set of all possible sentences that can be parsed.
Since most programmers do not make that distinction, we will call
grammars lariguages.

1-15

NON_PAREN body followed by a parenthetical expresson, or else
(3) a parenthetical expression...or else (7) a body." During
parsing, each time a string of symbols that constitutes a right
part is discovered, it is replaced by the left part. For
example, a <NON_PAREN_ BODY><PAREN> will be treated as an
(EXPRESSION>. A set of productions Written in BNF is called a
grammar, and is said to describe a formal language.

Over the last three years, McKeeman et al. <1> have
developed the XPL system at Stanford. One feature of this
system, the XPL Analyzer, takes a grammar written in BNF,
diagnoses it for errors, and writes out parsing tables for that
grammar. The McKeeman group have written SKELETON, the skeleton
of a parser that can be used with the tables. It is called a
skeleton since it must be filled out with what are called
semantEc modules if it is to do anything more than recognize
grammatically correct programs. Semantic modules are used to
produce machine code or to perform other operations. While the
syntax shows how everything fits together, the semantics do the
work.

XPL was studied by the SPIRES project du ing early 1970.
The overall approach met with approval: use BNF or somethig
like it to define the command language syntax; then use an analyzer
(meta-translator) of some sort to convert the definition into a
data structure, which when combined with a general:purpose parser
would constitute the implemented command language (minus, of
course, the semantics).

XPL and BNF, however, were found to have several drawbacks
when used to define interactive command languages. These
rirawbacks were corsidered serious enough to warrant develoeing a
modified FINE, a new analyzer, and a new parser, each tailored to
the prOblem of implementing an interactive language. Out of this
development came the ACTION Analyzer, ACTION BNF, ACTION LISTS,
and the SPIRES II parser. Appendix E explains the ACTION approach
In contrast to that of XPL.

1.3.1 Interspersion of Syntax and Semantics

When the XPL parsing methodology is used, the parsing
tables are proportional in size to the square of the number of
terminal symbols. (A terminal symbol is a self-defining term,
for example, "(" in <PAREN>). Each time a terminal symbol Is
added, the skeleton must be changed. With ACTION parsing,
the tables are proportional in size to the number of productions.
Since our formal language definition tends toward few productions
and many terminal symbols, space is thus saved.

With bottom-up parsing, semantics can be performed only
when replacing a right-part symbol string with its left-part
symbol. A.requirement in the SPIRES Il system is a close
integration of syntax and semantics.

1-16

Semantic module numbering is implicit in XPL, and explicit
in ACTION. Thus the XPL parser must be compiled when new
productions are added, whereas in ACTION, syntax may be changed
or new semantics added without having to modify either the parser
or the other semantic modules.

The metasymbol

<n> n = 1,2,3...

is used to number a semantic module explicitly and to indicate
the precise point in the parsing process at which it should
b executed.

Consider the ACTION BNF production

<COMMAND_LANGUAGE>::=<1>COMPiLE<ECKS>
IILOGOFFI
ISET<SP><SET_CASE>
IPAU(SE)<4><1>
l<5>(INPUT_LINE)
I<INPUT_LINE><3>

<SE>::=SE

Using the underscored right side as an example, one may translate
as f llows: "As soon as the string 'PAU,' followed optionally by

_the string 'SE,' is recognized in an input line, call semantic
processes 4 and 9." Semantic process 4 checks to be sure that
the input line is used up. Semantic process 9 calls the ORVYL
interface pause routine.

1.3.2 Use of ACTION BNF as a Flow Diagram

In the above example, one can trace the parsing process as
it proceeds from level to level In the language definition. It
is also possible, given a list of semantic module definitions in
numerical sequence, to determine the actions being performed at
any time in the process.

Since semantic processes vary from the obvious to the complex,
the more complex ones will require charting in greater detail
than the example here contains. The ACTION BNF, then, serves
as a first-level flow chart in a two- to three-level hie;archy.

1. The Generalized Parser

Figure 4 illustrates the process of command language
Implementation, combining the command laguage with other parts
of the system. The parser, which need never be modified, can be
combined with any desired ACTION list. This can-be done
dynamically'lf desired. There maY be multiple ACTION lists
within a system, each representing one node in a hierarchy of
languages. A semantic routine called by the parser using ACTION

ACTION
Analyzer

ACTION
list source

Figure 4.

parser
source

semantic
modules
source

ORVYL
interface
object

P1360
Complier

P1350 S 360
mbler

0/S 360
Assembler

ACTION
llst
object

semantic
modules
object

ORVYL
interface
source

SPIRES System Make-up

COMBINE

1-18

list 1 can initialize the parser to use ACTION list 2, which may
in turn cause another semantic routine to start the pa ser on
ACTION list 3 and so on.

The parser is re-entrant, and the ACTION lists are read-
only and require no relocation. Therefore, the lists may be
readily shared by a number of users, as long as the parser's
status (its location within the ACTION list, its position in the
input string, and so forth) is stored and maintained for each
user so that parsing may be resumed should it be interrupted.

1.4 IMPLEMENTATION CONVENTIONS

1.4.1 Compiler Languages for Implementation

1.4.1.1 Choosing a Language. The development staff of
SPIRES Il expended considerable effort attempting to find some
other implementation language than 360 Assembler Language.
Ninety percent of SPIRES I was coded In PL/1. On the basis of
that experience, P1/1 has been ruled out as thelprimary
implementation vehicle for SPIRES II. It was found that although
PL/1 supported the requisite functions, programs with a high
degree of modularity were penalized with considerable overhead.
Furthermore, Programs written In PL/1 depend on the ability to
request supervisory functions directly from OS; they could not be
executed under a time-sharing monitor. FORTRAN and COBOL were
ruled out on the basis of functions to be supported; it was felt
that to use either language to support the data struptures found
in SPIRES II would be difficult or impossible.

In 1966 Niklaus Wirth had defined and implemented a language
called P1360 <2. This language had, in addition to
machine-level functions, ALGOL-like features such as
"BEGIN...END," "DO...END," "GOTO...," assignment statements and
"IF" statements. The efficiency of the compiled code Is equal to
that of Assembler Language, and the PL360 compiler is small and
fast.

After some test implementations using PL360 (the parser was
transliterated from PL/1 to PL360) the language was adopted as a
project standard for SPIRES II Implementation. The compiler was
modified to include 'an equating capability and a cross-referencing
capability, and to compile interactively under
ORVYL.

Implementation using PL360 appears to progress at least
100 percent fasterAhan it would using Assembly Language; the
code is much more easily read, and may be learned in a week or
less by a competent Assembly Language programmer.

The PL360 compiler is now distributed by the SHARE organize-
on and Is maintained locally by the Language Support Group of

1-19

the Stanford Computation Center. Use of the compiler at Stanford
is increasing and we suspect that industry-wide use would
increase markedly were PL360's value as a system programming
language well-known.

1.4.1.2 Language Conventions. All modules or routines
that call ORVYL for supervisory services will be written in G-
Level Assembler Language (OS/360), using ORVYL macros. These
will be gathered together into a multiple-entry-point control
section named ORVINTF.

The parser, the dummy sections, and all the semantic routines
will be coded in PL360.

The standard linkage conventions between modules are given
in Appendix F. Appendix 0 details the coding conventions for
PL360.

1.4.2 The Use of Standard Routines and Structures

To permit naming standardization, standard dummy sections
will be used to gain access to elements within system data
structures. Any code sequences required in more than one
location will be standardized. ApPendix H enumerates standard
dummy sections.

2 -

CHAPTER

SPIRES SOFTWARE STRUCTURE

This chapter describes in detail each major component of the

SPIRES II subprocessor, except the SPIRES access method. Figure

5 provides an overview, showing each component in storage

sequence. The ORVYL interface, the ACTION lists, the PARSER,
SNAP, SEMANT, and the nsEcTs within user memory will all be dealt

with. The last section of this chapter discusses the
subprocessor flow of control hy rlescrIhine the numbered arrows in

Figure 5. The discussion of the SPIRES access method modules is
sufficiently complex and important to warrant devoting a chapter

to it (Chapter 5).

2.1 OPVYL INTERFACE ROUTINES

These routines are contained in a multiple entry point
control section. Corresponding to each entry point Ts an ORVYL

macro surrounded by interface code; all interfaces with ORVYL
are done via calls to one of these routines. nf particular
importance are INIT and QUIT, which are the entry and exit
routines for the entire subprocessor.

2.1.1 INIT

This routine handles entry to the subprocessor. It locates

the beginning of user memory, attaches the aser's terminal, sets
to upper case, makes the timer and attention routines operable
and initializes the Parser. The interface routine "GETCOMZ"
is called to bring the 256-byte common area (see section 1,1.5.2).
The master terminal and logon flags are checked to make sure the
subprocessor is enabled to receive users. If so, semantic process
0 is called and upon return the parser is called, starting with
Production 1.

2.1.2 QUIT

This routine gains control by being called from a semantic

/
eiprceSs because of an error condition or because the parser

executes a return using R14; QUIT is the label on the next
/

,
sequential instruction after the BALR in MIT that transferred to
the parser at start-up time, A message is emitted, "returned to
WYLBUR"; the terminal is detached; and the user is passed back to
WYLBUR with his working data set cleared.

2.1.3 OFTCLOK

This routine returns the real-time clock value in milli-
seconds in Rl.

ORVYL INTERFACE ROUTINES

(section 2.1)

PARSER
isection 2. 3)

SNAP
(sect on 2. 4)

SEMANT

(section 2.9)

ACT ION. LIST

i section 2. 2)

SAVE STACK ,

(sectior P. 0)

7 INITIAL

Qua 7)

ENTRY
DEcLARATIONs

LOCAL pROCEDUREs

ROUTER
SELl PROC 0

SEL1pROC_

SEM PROC 2

SEC) PR OC

SPIRES ACCESS .,riTHOD
RouTi%Es

([OpFSET LAST NONTERRbD-
orrsur TO AL

z OFFSLT To PROD TOL
7, (OFFsET To PCT

LAST NONTER'., PROD,

_

ACTION LIST

pRODucTION.TACLE
RACKED CHAR TABLE

TES

120 CYTES

1ASTER TABLE'.
ECT cyTEs`RESERvED

(section B.

ORO

i

1 I

[

PARSER TABLE ' f

tseCtior 2. 3) I

TEMPORARY 'VORi< SPACE

SE-. ANTIC

Tv
Av
pv
Cy

etc.

SE:JANTIc PORTION

NEXT SP

SUBPROCESSOR ENTRY POINT

SUBPROCESSOR EXIT POINT

SUBPROCESSOR MEMORY

USER MEMORY

Ficjure S. S forage Layout, SPIRES II On-Line Subprocessor

2-3

2.1.4 GETCORE

This routine keeps track of requests for virtual memory made
in behalf of each user. A pointer, NXTSPACE, exists in the
master table DSECT (see section 2.7). When this routine is
called, R1 contains the number of bytes of core Hesired.
Nxtspace is incremented by that amount, rounded up to the next
doubleword boundary, and restored in the table. If a page
boundary has been crossed, a load is done from the new page to
place it in keep status. When the caller gets control back, R1
points to the core just allocated. If no core is available, RI
contains zero. If R1 contains zero at entry to this routine, RI
is returned pointing to the start of the next area t'r-, be allocated.

2.1.5 RFTCORF

This routine deallocates core using the reverse of GETCORE.
When the ro,,tine is called, R1 contains the address hnyond which
core is to be deallocated. if a page boundary is crossed, a set
macro is issued to free that page and make it available to other
users.

2.1.6 SLEEP

When this routine is called, R1 contains a count in milli-
seconds. If R1 is equal to or less than zero, one second is
assumed. The user in whose behalf the call was issued is
placed in the wait state for the stated interval.

2.1.7 ATCHF

This routine attaches an ORVYL file to a user. R1 contains a
pointer to the filename. R2 contains the length of the filename,
R3 contains zero or nonzero, according to whether or not the file
is old or new. R2 is returned with zero if the attach was
successful, and nonzero if it was not. RI contains the device'
identifier, which is stored in the user's master table.

2.1.8 ATCHMFW

This routine is used to attach a new file for unshared use.
If the file already exists, it is scratched. At entry to this
routine, R1 contains a pointer to the filename; R2 contains the
length of the filename. At exit, R1 is zero (successful attach)
or nonzero (unsuccessful attach).

2.1.9 SCRATCH

This routine deletes an attached file. At entry to this
routine, R1 contains the device ID (DI). At exit, R1 is zero
or nonzero, depending on success or failure. DI is zeroed.

2-4

2.1.10 DTCHF

This routine detaches a file from a particular user. R1

contains the device identifier.

2.1.11 READF ane WRITEF

These routines read and write a specified block from and to
the file whose identifier is stored in DI. At entry to either
routine, R1 contains the block size, R2 contains the record
number, and R3 contains the core address where the input or
output is to take place. At exit, R1 contains the record size
and R2 contains the next block number; or, R1 contains an error
code (see the ORVYL Guide) and R2 contains zero.

2,1.12 RESERVE

Reserves a file for exclusive control. The file is
determined by the contents of DI.

2.1.13 RELEASE

Releases a file from exclusive control. The file is determined
by the contents of DI.

2.1.14 TPUT

This routine causes a message to be written to the user's
terminal. At entry to this routine, R1 contains a pointer to
the message to be written. R2 contains the length, a number
equal to or less than 132.- Nothing is returned.

2.1.15 TGET

This routine causes a message to be read from the user's
terminal. At entry to this routine, R1 contains a pointer to an
area tc receive upper-case input and R2 points at an area to
receive upper/lower-case input; if R1 and R2 are equal, then
upper-case input only is assumed. At exit, R2 contains the
length of the message received. It should be noted that if the
user types "<blank>...<carriage re urn>" or "<hlank>,..<attn>,"
he is reprompted. If the user just types ATTN, he is placed in
collect mode unless he was already in collect mode, in which
case he is returned to command mode.

2.1.16 TPROMPT

This routine causes a prompt to be written to the user's
terminal, and a message to be read back. At entry to this
routine, R1 points to an area to receive upper-case input.
R2 points to a prompt message block (aligned on a full-word
boundary) that contains a full-word length of prompt, foliowed
by the prompt message. At exit, R2 contains the length of

2-5

the message received back. It should be noted that if the ElSer

types "<blank>...<carriage return>" or "<blank>...<attn>," he is
reprompted. If the user just types ATTN, he is placed in collect

mode.

2.1.17 WYLBUR

This routine is called whenever it is necessary to cause
a WYLBUR command to be executed in the user's behalf. At

entry to this routine, Ri points to the command string to
be passed to WYLBUR, and R2 contains the length of the string.
At exit, R1 will contain zero if the command execution was
successful.

2.1.18 WILSEN and WYLCON

These routines issue either SENSE or CONTROL macros to de-
termine the user account number, password, terminal ID, number
of lines in the WYLBUR working data set, etc.

2.1.19 READTXT

This routine is used to read text from the WYLBUR working
data set. At entry to this routine, R1 points to the area in
user core to receive the text, R3 contains length information,
and R2 points to a block of control information (aligned on
a full-word boundary) that contains a code (see the ORVYL Guide),
the number of lines to be read, the first line number, and
the last line number.

2.1.20 GETCOMZ

This routine obtains the 256-byte communications area and
places it into a designated area of user virtual memory.

2.1.21 GETCOMZL

This routine is identical to the above, except
the lockout feature is invoked. This means that the copy being
obtained is for update, and other users may not obtain copies
until a PUTCOMZ has been executed (see below).

2.1.22 PUTCOMZ

This routine causes a 256-byte area of user virtual memory
to replace the current contents of the communication area.

2.2 ACTION LIST

To discuss the ACTION list and its format, it is first
necessary to explain ACTION BNE and its elements; the ACTION
list is nothing more than a compact list representation of

60

2 -6

the RNF grammar that defines the SPIRES command language.
As indicated in section 1.3.1, the ACTION list is generated by
Passing an ACTION Bilr grammar through the Analyzer (see Figure
6). The Analyzer produces a source deck, composed almost
entirely of ACTION macro statements. When the source deck is

prefixed by the ACTION macro definition deck and they are
assembled, a data structure composed of absolute constants is

created. Appendix I contains the ACTION BNF grammar for the

SPIRES II command language. Appendix J contains the
corresponding ACTION list source.

2.2.1 Elements of ACTION BNF

ACTION BNF is composed of a series of expressions called

Productions. A series of productions is called a grammar and

defines a formal language--in the case of SPIRES II, an
interactive, on-line command language.

Productions comprise two parts, the left part and the right

part, written:

LEFT_PART::=RIGHT_PART

There may be alternate right parts, written:

LEFT_PART::=RIGHT_PART1
IRIGHT_PART2
IRIGHT_PART3
IRIGHT_PARTn

Left parts may contain only one term, ch defines the produc-
tion, whereas right parts may contain veral terms:

Term 1::=term 2 term 3
Item 4
Iterm 5

Term 2::=term 6
Term 3::=term 7 term 8

ACTION BNF can be considered a programming language, with the

terms as the language elements. The right-part terms can be

thought of as calls to a closed subroutine, and the left-part

terms as subroutines names. There are several different types of

left parts, ,and these may be thought of as several categories of

subroutines, with a different behavior assigned to each category.
There are also several kinds of right-part terms. A central

point is whether or not a return to the caller reports success or

failure; the difference between various types of calls lies in

whether they must succeed or fail, and whether or not they are to

be repetitive.

A BNF grammar thus maY be thought of as a set of nested

subroutine calls or, alternatively, a hierarchy of subroutines.

61

ACTION
macro
definitions

Figure 6 . ACTION List Production

ACTION
list
object

2-8

ften, no action is performed by a "subroutine" save the calling
f other "subroutines." Eventually, a call will be made to a
uhroutine that actually performs some function, such as scanning
or legal or illegal characters or making comparisons to find a
pecified character string.

The following sections discuss the different types of
Iroductions (left-part terms) and the different kinds of
iroduction calls (right-part terms).

2.2.1.1 Production Types. A grammar written in ACTION BiNIF
s composed of four types of productions. These productions,
lescribed below, differ in format and interpretation.

The Comment. The comment may be inserted anywhere in the
;et of productions except between alternate right parts. In
'ormat, this statement simply requires an asterisk in position
one of the input record.

The Standard Production, The :.,tandard production is
dentifiable by "<name>" in the left part. "name" must appear in
right part of another production. Standard productions are

ised to show alternative ways command language elements fit
:ogether. During parsing, the first right part is used. If it
'ails, then the next right part is taken. If none of the alter-
sate right parts succeeds, then the production fails.

The Terminal Production. The Terminal Production is used to
lefine some subset of the 256 eight-bit codes that is allowable
n a command element string. A minimum and maximum length must
)e specified. The terminal production is identifieole by
'(name)" in the left part. When a terminal production is called
:he byte code subsets are reserved in a TRT table, and the input
itring is scanned for illegal characters. The occurence of such
) character stops the scan. The length of the scanned string is
:hen compared with the minimum and maximum lengths to ensure that
it falls within the allowable range.

The Basic Production. The basic production is identifiable
)y "Inamel" in the left part. Unlike the standard production
requirement, it is not necessary for "name" to appear
in a right part of any other productions. Basic productions are
ised in the same way as standard productions during parsing.
rhere are three kinds of basic production:

Nonreferenced. In this case, "name" does not
appear as a term in any right part of any other
production. Every ACTION BNF grammar contains at
least one basic nonreferenced production, the goal
symbol. Basic nonreferenced productions may only
be entered semantically, i.e., by setting the P
register to the production number and calling the

6 3

2-q

parser. This always happens where the user enters
the system, because the parser is called from INIT
with P=1; hence the goal symbol production is a
basic nonreferenced production.

Referenced. In this case, "name" appears as
a term in the right part of another production.
Using the symbol "Inamel" as a left part serves to
place the following restriction on the "Inamel"
production: none of the prGductions called by
the right parts of "Inamel" may in turn call

"Inamel." The following example contains recursion,
which contradicts the use of vertical bars in the
left part.

(example) Ixl::...<y><z>

The use of vertical bars in this case serves as a
precaution against inadvertent recursion.

Redefined. In this case, "name" is used as
the left part of a previous standard or basic production.

(example) Ix1::=<a>

Ix1:::<y>

(example) <x>::=<e>00

lx1::1<y>

in these two examples, if the right part "<a>"
parses the Input substring successfully, the redefining
production is entered to reparse the same input
substring. if the redefinition fails, the original
right part also fails.

2.2.1.2 Formation of: Right Parts. Right parts may be
composed of several kinds of terms, with some restrictions
as to which terms may occur together, and which terms may be
in the right parts of certain types of production.

Required Link. This term is the most common Ond of
right-part term. In Figure 7, "<BUILD_LANGUAGE>" is a required

link. The presence of this term in a right part means, "call the

ICOMMAND LANGUAGE1::=CO,MASTER_LANGUAGE)<LOGOFF>
<MASTER_LANGUAGE>::=<BUILD_OMMAND><BUILD_LANGUAGE>

I ILOGOi'ri
I <EXTRA COMMANDS>

<BWLD_LANGUAGE>::= <1> BUILD (SP) <4>

<LOGOFF>::= LOG(OFF)
<OFF>::.= OFF

(SP)::= 0,1,1,40

Figure 7. An Example of ACTION BNF

6 5

2-11

production whose left part is <BUILD_ LANGUAGE>." If che called

production fails to parse, the right part of the calling
production fails and the next alternate right part is tried. If

the required link is in the last alternate right part of tile

calling production, the calling production fails.

If the called production succeeds, the parser continues with
the next term in the right part containing the required link. If

there are no other terms, the calling production succeeds.

Lookahead link, This term must appear by itself in a right

part, and it cannot be the last alternate right part in a

Production. in Figure 7, "ILOGOFFI" is a lookahead link. It

means, "call the production whose left part is <LOGOFF>." If the

<LOGOFF> production rePorts failure, the right part of the
calling production fails. If the <LOGOFF> production reports
success, then the entire calling production fails immediately.

Character string. The oc,:urrence of a character string
without surrounding brackets, parentheses, or vertical bars in a
right part causes the parser to compare a substring of the input

line with the character string. In Figure 7, the string "BUILD"

is a call to the character scanner. The success or failure of
character strings follows the same pattern as that of required
1;nks.

Semantic link. The occurrence of "<n>" as a right-part term

means, "at this point in the parsing call semantic process n."

In Figure 7, the <BUILD_LANGUAGE> production, when called, will
call semantic process 1 to read a line from the terminal before
it calls the character scanner to look for the string "BUILD."

Optional link, standard. The occurrence of the symbols
"(name)" or "(1, name)" (the two symbols are equivalent) in a

right part means, "call the production <name>, lnamel, or

(namel." The parser continues to the next term in the right part
containing the standard optional link, regardless of whether the
called production succeeds or fails. If there are no other
terms, the calling production succeeds. Figure 7 contains uses
of the standard optional link: the call for optional spaces,
"(SP)," in the <BUILD_LANGUAGE> production and the call for
optional occurrence of the string "OFF" in the <LOGOFF>

Production. The latter case also shows how command abbrevintlens
may be handled.

Optional link, call until failure (CUE). The occurrence of
the symbol "(0, name)" as a right-part term means, "keep callini;
the production <name>, Inamel, or (name) until that production
fails." Upon failure, the parser continues to the next term in
the right part containing the cuflink. If there are no other
terms, the calling production succeeds. The term "(0,
MASTER-LANGUAGE)" in Figure 7 is a CUFLINK: it calls

6 6

2-17

"MASTER_LANGUAGE>" until it fails; a call is then made to the
<LOGOFF> production.

Optional link, pseudo-recursive. The occurrence of the
symbol "(2, name)" indicates that a transfer to the <name> or
Inamel production should occur, but that the action level is not
incremented. This amounts to a transfer from cne part of the
ACTION list to another without the parser's "remembering" where
the transfer came from. Such a call must be the last term of any
right part in which it is used.

Class scan terms. Class scan terms can only be right-part
terms in terminal productions. The right part of the (SP)
production in Figure 7 contains class scan terms, and it may be
interpreted, "look for a string, minimum length = 1, no maximum
length, consisting of hex - 40-s (blanks)." If non-blank
strings were to be looked for, a production could be written
such as

(NON_BLANK)::=0,1,0,40

The usual class scan terms are max, min, unlike/like, hexstring,
and charstring. Hexstring and charstring are sparate entities,
so if charstring occurs a comma must follow hexstring, even if

hexstring is missing. Permissible combinations are:

, hexstring
, hexstring,charstring

charstring

One example that defines a numeric string not longer than ten
characters is

..cligits)::=10,1,10123456789

or, alternatively,

(digits)::=10,1,1,F0F1F2F3F4F5F6F7F8F9

A non-numeric string could be represented as

(alpha_special)::=10,1,0,,0123456789

2.2.2 The ACTION List Format

The following is a discussion of the different parts of the
ACTION list. Figure 8 shows the layout graphically.

2.2.2.1 LINK#TB. This is a four-element vector containing
the offsets, relative to zero, of the other parts of the ACTION
list. These offsets must be made permanent before the ACTION
list can be used by the parser; this is accomplished by adding

6 7

ACTION List
Source Labels

TERM#TB
WORK#TB

PROD#TB

CHAP1TB

LAST NONTERM PROD#

> ACTION LIST

----H> PROD TABLE

PACKED CHAR TABLE

LAST NONTERM PROD#

A

0

NONTERMINAL
PRODUCTIONS

TERMINAL PRODUCTIONS
(CLASS SCANS)

PRODUCTION TABLE

PACKED CHARACTER
TABLE

Figure 8. The ACTION List

6 8

2-13

Relative Zero

2-14

each element of the vector along with the origin address of the
ACTION list and storing the result in the parser table.

2.2.2.2 TERM#TB. This is the last nonterminal production
number in the ACTION list. (The parser has a separate routine
to handle calls to terminal productions. Production numbers are
numbered sequentially by the Analyzer, as are right parts.) The
parser compares each production number to the value of TERM#TB
to ascertain if the production is terminal or nonterminal.

2.2.2.3 WORK#TB. This constitutes the ACTION list proper.
Figure 9 shows the correspondence between the BNF left- and
right-part terms, the ACTION list source code, and the ACTION
list object code. it is the object code that drives the parser.

Each right part of a nonterminal production has the follow-
ing parts:

PROLOG
MACRO1
MACRO2

MACROn

where MACR01...n are any of REQ#LINK, LAH#LINK, .RDF#LINK,
CHR#SCAN, SEM#LINK, OPT#LINK. If machine code is to be included
in an ACTION list, it must be hand-inserted by surrounding the
Assembly Language statements with INS#LINK and INS#TERM macros.
RDF#LINK is unconventional in that it appears as the last term in
each right part of the production being redefined, not of the
redefining production itself, and is automatically generated by
the Analyzer.

macro
Each right part of a terminal production consists of the

CLS#SCAN

This assembles into a five-byte ACTION list object element.
Nonterminal production macros produce either two- or three-byte
object elements, with an ACTION code from 1 to 9. CLS#SCAN
produces an ACTION code of 0 or 1, depending on whether the
string given in the BNF was "like" or "unlike." The "1" with
REQ#LINK is not ambiguous because nonterminal productions are
handled sparately and distinctly from terminal productions.

2.2.2.4 PROD#TB. This is a table of halfwords, each of
which contains the offsets, relative to the beginning of the
ACTION list proper, of each production. A production number
whose location is to be found is simply doubled and used as an
index based on a register containing the address of PROD#TB. The

6 9

P
R
O
D
U
C
E
D

F
R
O
M

A
C
T
J
O
N

B
Y
T
E

2

L
I
S
T

B
Y
T
E

3

O
J
E
C
T

B
Y
T
E

4

B
Y
T
E

5

B
N
F

L
E
F
T

P
A
R
T

B
N
F

R
I
G
H
T

P
A
R
T

H
A
M
)

I
.
-

S
i
'
R
T
E
D

A
C
T
I
O
N

L
I
S
T

M
A
C
R
O
S

B
Y
T
E

1

<
n
a
n
e
>

R
E
O
L
I
N
K

P

1
.

P

I
n
a
m
e
I
*
*

L
A
H
I
L
I
N
K

P

2
P

I
n
a
m
e
l
*

R
O
F
I
L
I
N
K

P

3
P

s
y
m
b
o
l

C
H
R
#
S
C
A
N

X
,

N

4
X

N

<
s
>

S
E
#
L
I
N
K

S

5
S

L
N
S
V
L
I
N
K

6
D

I
I
U
S
T
E
R
M

0
7

F
E

(
0
,

n
a
m
e
)

O
P
T
#
L
I
N
K

P
,

R
C
P
=
0

7
P

(
n
a
m
e
)

o
r

(
1
,
n
a
m
e
)

O
P
T
#
L
I
N
K

P
,

R
E
P
=
1

8

(
1
,
n
o
m
e
)
*
*
*

O
P
T
I
L
I
N
K

P
,

R
E
P
=
2

9
P

(
n
a
m
e
)

H
,
L
,
T
,
h
e
x
,
c
h
a
r

C
L
S
1
S
C
A
N

T
,
X
,
N
,
H
,
L

T
X

N
H

L

b
e
g
,

o
f

r
i
g
h
t

p
a
r
t

P
R
O
L
O
G

R
,

1

Y
j

A

S
g
s
t
r
I
c
t
i
o
j
a
.

*
P
r
e
c
e
d
e
d

b
y

<
n
a
m
e
>

o
r

I
n
a
m
e
l

a
s

a

l
e
f
t

p
a
r
t

*
=

M
u
s
t

b
e

o
n
l
y

t
e
r
m

i
n

a

r
i
g
h
t

p
a
r
t

a
n
d

m
u
s
t

b
e

f
o
l
l
o
w
e
d

b
y

a
n
o
t
h
e
r

r
i
g
h
t

p
a
r
t

*
*
*

M
u
s
t

b
e

l
a
s
t

t
e
r
m

I
n

a

r
i
g
h
t

p
a
r
t

*
*
*
*

S
h
o
u
l
d

c
o
n
t
a
i
n

n
o

r
e
l
o
c
a
t
a
b
l
e

e
n
t
i
t
i
e
s
;

b
a
s
e

r
e
g
i
s
t
e
r

1
0

s
e
t

t
o

a
d
d
r
e
s
s

o
f

f
'
r
s
t

i
n
s
t
r
u
c
t
i
o
n

f
o
l
l
o
w
i
n
g

I
N
S
I
L
I
N
K

L
e
g
e
n
d

P

-

P
r
o
d
u
c
t
i
o
n

n
u
m
b
e
r

X

-

D
i
s
p
l
a
c
e
m
e
n
t

i
n

t
h
e

p
a
c
k
e
d

c
h
a
r
a
c
t
e
r

t
a
b
l
e

N

-

L
e
n
g
t
h

o
f

s
t
r
i
n
g

i
n

t
h
e

p
a
c
k
e
d

c
h
a
r
a
c
t
e
r

t
a
b
l
e

S

-

S
e
m
a
n
t
i
c

m
o
d
u
l
e

n
u
m
b
e
r

0

-

O
f
f
s
e
t

t
o

b
e
y
o
n
d

t
h
e

B
R

1
4

g
e
n
e
r
a
t
e
d

b
y

I
N
S
/
T
E
R
M

T

-

0

o
r

1
,

d
e
p
e
n
d
i
n
g

o
n

w
h
e
t
h
e
r

u
n
l
i
k
e

o
r

l
i
k
e

H

-

M
a
x
i
m
u
m

s
t
r
i
n
g

l
e
n
g
t
h

L

-

M
i
n
i
m
u
m

s
t
r
i
n
g

l
e
n
g
t
h

Y

-

R
i
g
h
t
-
h
a
n
d

p
a
r
t

l
e
n
g
t
h

A

-

O
f
f
s
e
t

t
o

a
m
b
l
g
u
l
t
y

e
n
d

R

-

C
u
r
r
e
n
t

r
i
g
h
t

p
a
r
t

n
u
m
b
e
r

-

L
e
x
t

r
i
g
h
t

p
a
r
t

n
u
m
b
e
r

F
i
g
u
r
e

9
.

T
a
b
l
e

o
f

C
o
r
r
e
s
p
o
n
d
e
n
c
e
s

i
n

A
C
T
I
O
N

L
i
s
t
s

2-16

contents of the halfword loaded in a register from that location
then serve as an index based on a register pointing to the ACTION
list proper (WORK#TB).

2.2.2.5 CHAR#TB. The packed character table (PCT) is a

string of bytes, substrings of which form comparison arguments
and TRT table arguments. The PCT is entirely derived from
character string symbols given as right-part terms in the BNF
and from the hexstring and charstring parameters of terminal
productions, the two ACTION list macros that refer to the PCT
are

and

CHR#SCAN X,N

CLS#SCAN T,X,N,H,L

where X is the displacement into the PCT and N is the byte length
of the PCT substring.

The PCT derives its name from the fact that attempts are
made to keep substrings within sutstrings to save space. (For
example, "USET" yields the strings "USE" and "SET.")

2.3 THE PARSER

2.3.1 General Description

This parser is a re-entrant, 1,350-byte routine written in
PLD60. The parser's function is to break down the input stream
into its component parts (decomposition and recognition) using
the ACTION list as a guide, and to delineate the input for
semantic routines whenever processieig is to be done. The parser
can be thought of as an interpretive driver (mainline module) for
the SPIRES II subprocessor.

Central to the operation of the parser is the parser table,
in which is stored the status information requried by the
parser; each user has his own parser table in user memory (see
section 2.8). A basic component of the parser table is the pro-
duction stack. This LIFO stack is a twenty-element array, with
stack elements consisting of six haifwords. The current stack
element is referenced using the AL (ACTION level) register, Each
time a right-part term calls another production, the AL register
As incremented by 1. Figure 10 is a representation of the
production stack.

Before the parser is started up for a user, semantic pro-
cess 0 (SEMO) is called by INIT. TIPA, S0(0), TIPB, ST(0), IL,
ES(0), LAH(0), AL, SS(0), and SE(0) must be set to initial

values. (See section 2.8, THE PARSER TABLE, for an explanation

71

2-17

AL=1 AL=2 AL=20

Current production
number

Current right-part
number

Current right-part
term number

Input pointer at
entry to
production

Relative address oi
currently active
prolog

Relative address of
current ACTION list
position

Figure 10. Parser Production Stack

72

2-18

of these terms.) Also, INIT must make absolute the pointer terms
of LINK#TB and store them in TV, AV, PV, and CV, respectively, of
the Parser table. SEMANTIC, the first word of the parser table,
must contain the address of SEMANT, the collection of semantic
processes (see section 2.4).

When the parser is first entered, R8 (called P) contains the
production number of the first production to receive control. If

a user has just logged on through INITIAL, P will contain 1.
The parser begins by initializing IL2 and register zero.
Register usage is as follows:

ZERO (RO) Contains 0.
TIP (R1) Temporary input pointer used for

based variables.
PTR (R2) Pointer register for based variables.
TEMP (R3) General purpose.
AL (R4) Maintains action level. PROD, PLOG,

POS, IS, PLEV, and XLEV are
controlled by AL.

IL (R5) Maintains input level. Input level
varlec as parsing switches from one
imput edium to aoother. Controls
SS, SE, and LAH.

!L2 (R6) Contains IL+IL. Controls ES aod SIP.
SO referenced by IL2+IL2.

X (R7) Maintains relative location within
the ACTION list for the currently
active production.

(R8) Contains current production number,
PCT displacement, or
semantic number.

FIP (R9) Maintains the current relative
position in the input ng
parsed. For any particular produc-
tion, FIP's value lies within the
range defined by IS(AL) through
ES(IL2).

2.3.2 Changing Input Levels

It may be desirable during the parsing process to change
"input channels"; that is, to switch to a new source of input.
An example in the SPIRES II command language is the ADD, SUBSTI-
TUTE, TRANSFER,...UPDATE sequence, where on recognition of the
string UPD(ATE) the input pointer is switched to the WYLBUR
working date set. This process is controlled by the semantics.
The following demonstrates the process.

Assume that all registers are saved on entry to
the semantic module and are accessible; I.e., that
SFIP is where FIP was saved, etc.

73

2-19

SEMon: TEMP :=IL2 + 11.2;
ES(IL2+2):=ZERO;
SIP(IL2):=FIP;
IS(AL):=ZERO; SFIP:=ZERO;
TIP:=@NEWINPUT;
SO(TEMP+4):=TIP;
PTR:=@ST+BL; SET(CODE(1));
PTR:=@SS+(IL); SET(CODE(l));
PTR:=@SE+(IL); RESET(CODE(1));
PTR:=@LAH(IL); RESET(CODE(1));
TEMP:=BL+1; BL:=TEMP;
IF ZERO < PROD(AL) THEN BEGIN

TEMP:=NEG PROD(AL); PROD(AL):=TEMP; END;
IL:=IL+1; IL2:=IL+IL;
SIL:=IL+1; SIL2:=IL2;
GOTO EXIT; COMMENT EXIT BACK TO PARSER;

COMMEMT CODE is defined BYTE CODE SYN MEM(PTR),
FIP,IL, and IL2 are changed on exit.

2.3.3 Calling Semantic Modules

The parser calls semantic modules by loading register P with
the semantic process number S contained within the ACTION list
element SEM#LINK and then issuing the call. The sequence is:

TIP:=ZERO;
R10:=SEMANTIC;
CALLS (R14,R10); <note: this is equivalent to a BALR>

2.3.4 Input Bounding

When a command input has parsed successfully and all
necessary processing has been performed, the command strrng may
be "throw-, away." The semantic module that is called to re-E.1 a
command input line will not physically read anything except
unparsed input. When an input line is read, the productran that
calls the "read input" semantic module is marked in a certain
way; the nroduction is then said to be "bounded." If the
bounded production succeeds, then the line just parsed is thrown
awaj. If it does not succeed, the line is retained. The "-ead
input" Fe,.-lantic module bounds the production that called it: by
negating P(AL).

2.4 SNAP

Within the parser there are calls to SNAP that can bka
turned on by the system programmer who issues the command

PATCH CORE SNAP+9 00

2-20

That person then receives at his terminal a term-by-term tracing
of the parsing process. Figure 11 contains an example of the
tracing, As with a conventional programming language, BNF
grammars must be debugged and optimized. The former is of course
assumed, but the latter is extremely important, especially with a
"top-down" parser like ACTION. With this sort of parser it is
possible to write grammars that are horrendously inefficient to
parse; but it is also possible, by using some of the ACTION
extensions, to write a semantically assisted grammar that
parses with very little backtracking. It is necessary,
however, to be able to "see" the parsing in progress, and to be
able to compare command parsing that is done with two or more
variants of a grammar. These requirements are met by SNAP.

2.5 SEMANT

SEMANT is a PL360 global procedure that is composed of
n parts:

Declarations
Local Procedures
Group Router
Semantic Process Router, Group#1
Semantic Process Group#1

Semantic Process Router, Group#n
Semantic Process Group#n

Each part is discussed below.

2.5.1 Declarations

The names of external procedures called from SEMANT are de-
clared first. These procedures are the various entry points
within the ORVYL interface group, i.e., TGET, TPUT, QUIT, etc.
After them, the PL360 SPIRES functions (see APpendix K) are de-
clared. Also, the standard register names for the parser (set?
section 2.3.1) are declared, a dummy section for the parser table
is declared based on RII, and a dummy section for the master
table is declared based on R12. (These last two items are ex-
plained in more detail in sections 2.7 and 2.8.)

2.5.2 Local Procedures

These are procedures that are used by several semantic pro-
cesses, such as MOVECORE (a generalized move routine); SHELSORT
(an in-core sort routine); and BCSRCH (a routine to search
the mnemonic dictionary). These and other local procedures are
to be found in Appendix H.

7 5

=
1
7
1
n
,
c
+
0
0
0
c
,
0
0
.
0
0
0
0
0
c
0

,

0
0
0
0

0
0
0
0
0
0
0
0
=
0
0
0
0
0
0
0
0

0

0
0
0
0
0
0
0
,
,

0
0
0
0
0
0
0

0
.
0
0
0
0
.
0
0
0
0
0
0
0
.
0
0
0
0
,
0
0
0

o
o
m
o
n
o
c
c
o
m
.
0
0
0
0
m
o
m
o
o
m
0
0
0
n
s
m
0
0
0

o
c
p
o
o
.
.
.
c
0
0
0
s
m
o
c
0
0
0
0
0
0
c
C
o
o
.
o
.
0
0

4
4
4
,

4
,
4

C
a
/
1

r
p
;
a
r
n

lis
t

co
la

i
f

C
o
l

I
f

C
O
I

m

=
-

.
"

f
a
i
l
,

r
i
)
-

s
u
c
c
e
s
s

n
a
k
i
n
r

c

'
f

(
-
I
,

g
i
L
)
C
t
I
l
e
i
n
r
:
s

8
R
i
r
;
h
t
-
a
r
t

i
o

o
f

c
o
l
.

(
4
.
)

a
T
e
r
,
1

n
u
m
:
e
-
r
o
f
-
c
o
1
.
6
)

S
a
v
e
d

v
a
l
u

-
-

0
f
o
r

c
o
l
.
(
1
)
°

o
f

I
n
P
u
t

P
o
i
n
t
e
r

-
7
-

(
'

I

n
n
l
i
t

n
o
i
n
t
e
r

c
u
r
r
e
n
t

v
a
l
u
e

e
t
.
O
A
N
U
A

l
a
y

a
s
s
:
a
l
"

t
h
a
t

v
o
r
i
e
s
.

P
l
a
V

v

M
i
n

a
s

a
r
y

t
e
r

c
o
l
.

0

(
;
)

.
1
Z
n
i
t
e
r
I
n
Z
c
i
O
r
r
i
f
"

n
n

t
a
a
h
a
h
a
a
l

(
E
)

R
o
u
n
d
i
n

co
t

b
o
u
n
d
e
n
;
n
a
r
T
U
g
O
t
:
h
:
:

w
,
p
g

7
"
e
l
;

v
a
r
.

A
C
T
I
o
y '

P
.
0
,
u
c
t
e
y
4
)
.

IO
fl

C
U

rr
nn

4
c
a
l
l
,
.

W
i
t
h
i
n

R
o
u
n
d
i
n
g

s
t
a
t
e

7
S
t
r
i
n
g

s
t
a
r
t

t
l
a
g

S
t
r
i
n
g
e
n
l

-
-

L
O
O
k
a
h
W

f
l
a
g

u
r
a
p
h
i
c

s
e
n
c
a
t
i
o
n

4
c
1
.
1
.
0
N

le
ve

l

2-22

2.5.3 Group Router

It will be convenient during implementation to categorize
semantic processes according to function (search, update, miscel-
laneous, etc.). The semantic process numbers will be arranged
in such a way that the semantic processes for each function occupy
a subset of contiguous process numbers. Such a subset Is called
a 111 group.

The group router is simply a series of "if" statements that
route control
range that P

IF

IP
IF

nROUP1:

to the appropriate
falls into:

P > 14 GOTO GROUP4;
P > 27 GOTO GROUP3;
P > 49 GOTO GROUP2;

2.5.4 Semantic Process Router

process router, depending on the

For any group of semantic processes, the semantic process
router routes control to the process whose number i!; in P.

This is done using a simple branch table:

GROUP?:
P-.13 - 14 SPLL 2
BRANCH (SWITCH(P));
GOTO SEM14;
GOTO SEM15;

2.5.5 Semantic Process Group

Each semantic process can either he unique or can share por-
tions of other semantic processes within a group or a set of
cr,roups. All returns to the parser are effected by the statement
"GOTO EXIT;". Figure 12 shows shared semantic processes. The

vertical lines represent cede between specified statement labels,

and the horizontal lines represent transfers ("GOTO's").

2.5 THE SAVE STACK

(The discussion shifts in this section to a consideration of
the user memory area. This and the following two sections
describe the save stack, the master table, and the parser table.)

A stack of 15 register save areas that consist of 16 full-
words per area is set aside In each user memory workspace. Each

time a PL360 global procedure is called, or an Assembly Language

7 7

<5> <77> <88>

SEM5: SEM77: SEM88:

SEM5A: <-- SEM77A.

EXIT:
<27>

SEM27: <

<28>

SEM28:

Figure 12: An Example of Shared Semantic Processes

7 8

9-24

entry point, the following PL360 code (or its Assembly Language
equivalent) is executed:

STM(R1,RO,B13);
R13:=R13++#01000040

The "++" indicates a logical addition of 64 to the current value
of R13, thus pointing it at the next save area in the stack. R13
is reduced by the same amount on exiting.

2.7 THE MASTER TABLE

By convention, R12 always points to the master table. This
table contains user identification information, the user's
terminal ID, the ID of the file currently attached, and so on.

2.7.1 TSAVER

Thirteen doublewords used by the timer and attention inter-
rupt routines.

2.7.2 TI

A fullword containing the user's terminal ID.

2.7.3 DI

A fuliword containing the user's file ID.

2.7.4 NXTSPACE

A fullword containing the address of the next space
available for use in the user memory area. This cell is added to
by the ORVYL interface routine "GETCORE," and reduced by the
routine "RETCORE."

2.7.5 FLAGS

A fullword whose four bytes are used for various flag
conditions, such as "ATTN has occurred at the terminal," or
"time-out has occurred."

2.7.6 USACCT

A fullword containing the account number given by the user
when he logged on.

2.7.7 USPSWD

A fulluord containing the terminal identification name
(e.g. P24) that corresponds to the terMinal at which the user is
logged on.

7 9

2-25

2.7.8 960-Byte Reserved Area

An area reserved for the growth of the master table. It is

probable that a large portion will be devoted to files devices
work space and to counters in which on-line statistics will be

accumulated.

2.8 THE PARSER TABLE

This table contains the constants and variables required by
the parser during its execution on behalf of a particular user.
The following is a list of table elements and their lengths and
descriptions.

PARSER TABLE:

VARIABLE NAME

VARIABLE

SIZE

NAMES + FORMAT (R11-BASED)

DESCRIPTION

1. SEMANTIC (4) Absolute address of the
semantic module associated
with the ACTION list being
parsed.

2. TV (4) Absolute address of the
terminal productions in the
ACTION list.

3. AV (4) Absolute address of the
nonterminal productions in
the ACTION list.

4 PV (4) Absolute address of the
production table.

5. CV (4) Absolute address of the
character table.

<The preceding five terms must be pre-set before
calling the parser. The method of establishing TV, AV,

PV, and CV is described in section 2.9.2. The
remaining terms of the parser table may be in any
order, hut ab-e currently defined as follows:>

6. TIPA (4)

7. TIPB (4)

8 0

Absolute address of the input
data being parsed (upper
case only).

Absolute address of upper/
lower-case input data. Mot
used by the parser.

2-26

8. CHARSTART (4) Pointer to the beginning
of the character string most
recently parsed by a
terminal production.

10. CHARPOS (2) Number of bytes last parsed
by a terminal production.

11. PLOGX (2) Relative address of the cur-
rent production prolog.

11. BL (2) Bounding level counter--
initialized to 0 by parser.

12. WS2 (2) Work space for parser.

13. LNTIl (2) Used by terminal production
process to hold size infor-
mation.

14. MAXC (2) Used by terminal production
process to hold H.

15. MINC (2) Used by terminal production
process to hold L.

16. CONF (2) Used by terminal production
process to hold function
code.

17. PROD (20*2) Array that maintains pro-
duction numbers currently
in process. If a number in
this array is negative, the
corresponding production is
bounded, and BL was incre-
mented when bounding occurred.

18. PLOG (20*2) Array that maintains re-
lrtive address of prologs
currently active.

19. POS (20*2) Array that maintains re-
lative address in the
ACTION list of productions
in process.

20. IS (20*2) Array that saves relattve
input pointer at entry to
each production.

21. PLFV (20*2) Array that maintains right-
part number within a pro-
duction (may be eliminated).

22. XLEV

23. SO

24. FS

25. SIP

26. SS

27. SE

28. LAH

29. ST

2-27

(20*2) Array that maintains term
number within a right part
(may he eliminated).

(4*4) Array that maintains T1PA
as input levels vary.

(14*1)

(8*1)

Array that maintains length
of input data being parsed
at the various input levels.

Array that maintains rela-
tive input pointer as input
levels vary.

Array of flags that speci-
fies if start of input data
is static (00) or flexible (FF).

Array of flags that speci-
fies if end of input data is
static (00) or flexible (FF).

Array of flags that
specifies if a lookahead
is in progress (FF) or not (00).

Array of flags thaZ main-
tains bounding state: (00) =
normal bounding; (FF) =
bounding input level
change.

30. CAOF (256*1) Array of (00) used IDY
terminal production pro-
cess.

31. CAON (256*1) Array of (FF) used by
terminal production pro-
cess.

32. CHAR1 (1) Flag byte used by terminal
production process.

33. CHAR2 (1) Flag byte used by terminal
production process.

34 RS (1) Return Switch flag.
(00) = production success-
ful; (FF) = production
failed.

8 2

2-28

2.9 THE FLOW OF CONTROL

The following sections refer back to Figure 5. The last
number of each section corresponds to a numbered arrow in

Figure 5,

2.9.1 Fntry to SPIRES II

The user has logged on to the system through MILTEN, and
issued the command "SPIRES."

2.9.1 INITIAL

INITIAL then initializes the master table, finds the address
of the first page of user memory, and initializes for communica-
tion with WYLBUR. It also initializes the parsing table by adding
the ACTION list origin address to the LINK#TB vector to get TV,
AV, PV, and CV.

2.9.3 Call to SEMO

SEMO is a semantic process that initializes the Parser.
After doing so, it returns to INITIAL.

2.9.4 Call to the Parser

The P register is set to 1 and the parser is called. The
first right part of production 2 has a call to SEMI, which, by
convention, reads a line of input. The parser remains in primary
control until a LOGOFF command is recognized.

2.9.5 Calls to Semantic Processes

Each time the parser finds a semantic link call, it loads
the P register with the production number from the ACTION list
and calls SEMANT.

2.9.6 Calls to the ORVYL Interface

Semantic modules issue calls to ORVYL interface entry pOints
whenever supervisor services, such as Hisk or terminal input
or output, or WYLBUR communication, are required.

2.9.7 QUIT

The parser has recognized LOGOFF and therefore does a return
(BR 14); or, an error has occurred and the parser gives the user
back to WYLBUR by calling QUIT.

2.9.8 Branch to SNAP

Whenever the branch-condition-15 instruction at SNAP + 9 has
been altered to branch condition 0, a trace line is printed by
SNAP each time a production is called or a return is made to
a calling production. 8 3

CHAPTER 3

LOGICAL FILE CONCEPTS

3.1 INTRODUCTIO

3-1

This chapter and the tnree following describe the SPIRES II
file structure. This chapter introduces the concepts anH ter-
minology required for a basic understanding of the general
structure. it does not attempt to outline the structure in all its
Physical detail, but rather attempts a logical presentation. The
concepts "record," "record type," "profile," and "record
characteristics" are emphasized.

Chapter 4 explains how data are organized to facilitate econ-
omic storage and easy access. A wide range of storage strategies
has been provided to accomodate both simple and sophisticated
applications.

Chapter 5 deals with the physical formats of the entire data
structure: records, blocks, characteristics tables, and so forth.
This chapter is not required reading for an interested observer
of the system, but it is vital for anyone wishing to write pro-
grams, modules, or subroutines that manipulate SPIRES II files.

Chapter 6 presents the structure of the Basic Files Ser-
vices software. This software, used in conjunction with ORVYL
macros (see Appendix D) or the virtual access method (see
section 1.1.5.3) constltutes an access method for locating,
adding, replacing, or deleting records within a SPIRES II file.

3.2 FILE SYSTEM DESIGN REQUIREMENTS

In order to provide SPIRES Il with the functional capabilities
deemed necessary by its designers, a file structure capable of
handling a wide variety of applications was conceived. Following
are some of the major requirements for such a file structure.

It must be possible to search the file through a
number of access paths. Where files are too large for
sequential searching, it must be possible to build
quick access paths using any data elements desired.
Desired data should be locatable through such paths
in an average of three to four disk accesses,
depending on file size.

The file must be able to accomodate data elements
of indeterminate length with reasonably efficient use
of space.

8 4

3-2

The file must be able to accomodate optional
and multiple occurrences of data elements within records.

The file owner must be able to define the
characteristics and contents of his file, within
practical limits, without the intervention of programming
Personnel.

It must be possible to modify a record at the most
basic level, i.e. by character.

The file structure must interface easily with
special data element transformation algorithms and
tables.

The structure must be able to encompass large,
growing files. Documented requirements include a catalog
data file, which will grow at the rate of 50,000 records
per year to an ultimate size of 250,000 records.

It must be possible to provide file security at the
data element level.

The system must attempt to provide absolute integrity
among data entering the system. No user data should be
Permanently lost by the system.

The structure must allow for a varfety of recovery
techniques, ranging from the simple overwriting of one
byte in a file to the complete reconstitution of the file
from previously gathered information.

Response time, which is tied to the number of disk
accesses required to service a request, must be minimized.

There must be sufficient areas of.redundancy
built in to permit programmatic file verification
and reconstruction of certain parts of user files.

Time intervals during which a file's integrity is
unprotected must be eliminated or significantly reduced.

To reduce the number of accessing routines necessary,
data structures must be as few and as general as possible,

There must be options for holding frequently
used tables and dictionaries in user virtual memory
in order to reduce accesses to disk.

3.3 FILE STRUCTURE OVERVIEW

To someone familiar with classic computer file organizations
that feature "indexes, "prime data records," "invertpd lists,"

and so on, the terminology used to describe the SPIRES file

structure may seem strange. Nowhere is the word "index'
mentioned; nowhere is the phrase "prime data record" use The

reason for these omissions Is simple. SucF terminology uggests
the narrower consideration of a two-level file structure; a
series of prime data records pointed to by one or mcree irldexes of

data element values. SPIRES II, although it is designer to ef-
ficiently accomodate one level of indexing, is not limit2d to
this. (See Figure 13.) The concepts that are presented here
relate to files composed of n-level hierarchies of record types,
and to "profiles" that define the "window" on a file open to a
Particular set of users. These profiles not only define the
levels of the hierarchy to which the set of users is allowed
access, but also the portions of each record type that the users
are allowed to access or modify. Also presented in this chapter
are brief introductions to the concepts of data element structure
within a record type and file characteristics that enable the
generalized system software to operate on different files, each
having a different structure and format.

3.3.1 Record Types

A file is defined as a collection of one or more record
types, stored with characteristics information that describes
those record types, how they may be searched, and how data are
passed between them. All the records of one type are stored
together In a single data set. Within the system, each record
type is assigned a number from an integer code 1, 2, ...n, and is
referred to as REC1, REC2, etc.

3.3.2 Pointers

Records of one type may refer to records of another type
by means of pointers (see Figure 14). Records of one type
may not point to records of more than one other type, but,

as shown in Figure 14, one type of record may be pointed to by
more than one other type. In one method of record organization,
it is possible to form hierarchies of record types that point
to one another, with no theoretical limit to the number of levels

Possible.

3.3.3 rloal Records

If a certain type of record is to he retrieved, the records
of that type are called "goal records." A record that is pointed
to by records of another type is also called a goal record. Goal

records are usually the basis for creating access records.

3.3.4 Access Records

Types of records that point to goal records are called "ac-

cess records." However, an access record may also contain data

U
S
E
R

F
I
L
E
S

O
T
H
E
R

F
I
L
E

S
E
T
S

S
Y
S
T
E
M

F
I
L
E
S

A
C
C
T
.

=

A
N
N
N

F
I
L
E
N
t
w
E

=

Y
Y
Y
T
Y
Y
Y
Y

M
A
S
T
E
R

D
A
T
A

S
E
T

A
N
N
N
.

Y
Y
P
Y
I
Y
Y
Y
,

M
S
T
R

u
s
s
n
u
m
.

P
A
I
R

S
L
T

(
D
P
T
I
O
N
A
L
)

.
0
1
1
1
1
1
.

Y
Y
Y
Y
Y
Y
Y
Y
.

D
E
S

1
U
H
I
Q
U
E

K
E
Y

D
A
T
A

S
E
T

P
.
N
A
.

M
O
Y
Y
Y
.

Y
r
.
C
I

i

,
9
1
'
g
A

D
I
R
E
C
T
O
R
Y

!

1

D
S
O
!

R

1
E
T
H
E
R

1
1
(
C
O
R
D

T
Y
P
E

D
A
T
A

S
E
T
S

V
E
Y
Y
V
Y
Y
Y
.

P
E
E
N

T
T

h_

P
A
T
C
H

Y
A
R
C
H

C
O
V
M
A
'
I
P
S

F
i
7
m
r
s

1
5
.

S
P
I
R
E
S

I
I

F
i
l
e

S
t
r
u
c
t
u
r
e

T
o
s
r
g
r
.
s

D
E
F
E
F
R
E
D

U
P
P
A
T
E

P
N
E
U
E

S
1
:
1
1
1
1
.

D
U
N

S
Y
S
T
E
M

S
T
A
T
I
S
T
I
C
S

F
I
L
E

S
N
U
U
.

S
S
E

R
A
T
E
M

O
R
A
T
E

D
A
T
A

S
E
T

H
A
V
E
S

S
1
P
1
H
,

=
H
I
T
T

-
-
-
1

M
I
1
1
'
1
A
C
J
E

r
i
t
7

E
A
H
N
.

V
E
S
S
A
C
J

E
-
.
4
0
I
P
L
E

F
I
L
E

S
U
N
.

E
X
A
I
I
P

s
y
s
T
c

L
Y
.

.

I
D
=

la
w

P
r
o
f
i
l
e

1

r
e
c
o
r
d

t
y
p
e

r
e
c
o
r
d

t
y
p
e

1
2

11
11

01
1

=
0

r
e
c
o
r
d

t
y
p
e

4

r
e
c
o
r
d

t
y
p
e

3

PP
-

=
1.

M
.

P
r
o
f
i
l
e

4

r
e
c
o
r
d

t
y
p
e

5

A

r
e
c
o
r
d

t
y
p
e

,

7

P
r
o
f
i
l
e

5

F
i
g
u
r
e

1
4
.

R
e
l
a
t
i
o
n
s
h
i
p
s

B
e
t
w
e
e
n

R
e
c
o
r
d

T
y
p
e
s

P
r
o
f
i
l
e

2

&

3

3-6

to be retrieved; in such cases the access record is also a goal
record.

3.3.5 Record Contents

Within a record of a particular type, the following components
may exist.

THE KEY DATA '..L.EMENT. Each record of a specific
type must contain a key data element whose value is
unique among the records of that type. This key data
element value distinguishes one record from another
and it is the basis for or0;anizing record data sets for
quick access (see section 4.4). It is common practice
to refer to a particular record type hy the name of its
key data elemente.g., the Puthor record type.

THE POINTER GPOUP. If a record data set consists
of access records, then the records in that data set
may contain pointer groups. Pn access record pointer
group is a set of pointers to the goal records that
contain, or have some association with, the key data
element values of the access record. (These pointer
groups are furnished by the goal records--see section
3.3.6.) Each pointer may he accompanied by quali-
fying information that identifies the goal record
pointed to as a member of some class, range, or set.
Pointers may consist of block number (see section
4.2.3) or node or entry number references (see section
5.2) or of key data element values. Pointer groups
are maintained in ascending order according to the
collating sequence.

DATA. This important component consists of all
the values of data elements that are associated with a
particular key data element value. A record does not al-
ways contain data; it could be absent, for example, from
a record type like number 1 in F19,-ure 14. Records of
this type only refer to records of another type; they
are not themselves the goal records of any other record
type.

Of these three components, the key data element must always
he present. The pointer group must exist if the record type is

an access record and refers to a goal record outside itself. The
data portion should exist in all goal records, and may exist in
access records as well.

3-7

3.3.6 Passing Data Element Values

Key data element values and pointer groups are added to
access records by means of "passing." Each goal record passes
over to the appropriate access record a data element value that
will be the key data element in the access record. Also passed
is a pointer back to the goal record and any data element
values to be used as qualifiers.

The algorithm for passing from goal record to access record
is as follows. If among the access records to receive the
passed" data element value there is none that has as its key

data element value the value that is being passed by the goal
record, a new access record is created. This new access record
includes a single pointer back to the goal record (together with
any qualifying information, this will be the pointer group). If

an access record already exists with the key data element
required, then the pointer passed upward from the goal record
(along with qualifying information) is merged into the pointer
group in the existing access record; the collating sequence
within the pointer group is maintained throughout.

3.4 PROFILES

When a user wishes to search or update a file, he is dealing
with a goal record type and zero or more access record types. The
requirements of one or more users with respect to certain
sections of a file are called a Profile. This word is more
clearly defined to mean a subset of the record types (a goal
record type and one or more access record types); a set of
restrictions on searching and updating records in this suhset;
and a set of account numbers of the users that are allowed to use
the file in the way the profile permits. Figure 14 shows a
hiPrarchy of record types. In profile 1, record type 4 is the
goal record and record types 1, 2, and 3 are the access records.
in profiles 2 and 3, record type 7 is the goal record and record
types 4, 5, and 6 are the access records. The difference between
profile 2 and profile 3 lies in the update and search privileges
rranted to the two corrPsponding user eroups. Profile 4 is

interesting in that there record type 6 is hoth a goal and an
access record. Profile 5 is even more interesting: record type 7
is the access record, and record type 5 is the goal record. This
is a reversal of the relationship between these two records in

erofiles 2 and 3. The double arrow indicates the second set of
pointers. An implicit limitation in defining profiles is that no
more than one goal record and two levels can be included within
one profile.

A user must select the profile in which he wishes to work
by issuing a SELECT <name> command. Until he overrides this
with a LOCOFF or another SELECT command, he may only operate
under the record type subset and accessing restrictions dic-

9 017

3-8

tated fly his profile. If he should select a profile that does
not exist under his account number, he receives an error
Hiagnostic.

3.5 THE HIERARCHICAL STRUCTURINn OF DATA ELEMENTS

Up to this point, hierarchies of record types have been the
only ones discussed. It is also possible, however, to have
lierarchies of Hata elements within a record type.

Each record type may be considered the top level of an n-level
data element hierarchy. In a hierarchy of only one level, none
of the elements at that (record) level break down into subelements.
In a hierarchy of several levels, there are data elements at the
record level that can be broken down into other data elements.
(For example, "date" may resolve into "month," "day," and "year,"
,Ilthough st-uctures are usually more complex than this.) Such
data elements are called "structures." Data elements in a
structure may themselves he structures.

Data element structures are treated as records within
records. Figure 15 shows at the larger record level the record
types "Author," "Title," and "Date." The Author structure is
made up of "Name" and "Affiliation," and the Date structure of
"Puhlication (Date)" and "(Date of) Receipt." The latter two are
themselves composed of "Month" and "Year."

Ilithin a record type, each structure is assigned a unique
internal structure number. Each data element is referred to in-
ternally by its "structure element number," which uniquely iden-
tifies the data element and the internal structure of which it
is a part.

Although the implementation limit on the depth of structuring
is ten levels, it is felt that a depth exceeding three levels
Places a processing burden on the system that should he avoided if
possible.

5.6 FILE CHARACTERISTICS

For each record type there are three tables that together
describe its format, content, searchability, and upHateability.
The characteristics tables are store(' in the master data set as
the search, build, and record format characteristics. ft is
impossible to access or manipulate records Iiithout using these
characteristics tables.

The search characteristics table lists all the access records
and any other means (such as sequential scanning using something
other than the key data element) for locating goal records.
These characteristics also describe qualifying information

>
w I

1 i
o I

Q)

'AUTHOR;

AUTHOR;

NAME = JONES,1 JOHN R.;

AFFILIATION =I STANFORD UNIVERSITY;

NAME = SMITH,1 ROBERT L.;

AFFILIATION = RAND CORPORATION;

TITLE = RElICTOR-POWERED

'DATES;

PUBLICATION;

RECEIPT;

DELLINIZATION:

MONTH = JUNE;
YEAR = 1970;

MONTH = OCTOBER;

YEAR = 1970;

Figure 15. Data Element Structures in External Format

9 2.

3-10

contained in access records that may restrict the goal records
located. :f search characteristics do not exist for a record
type, the records can be located only- by their key data element.

The build characteristics table contains the information
needed to construct the record type from data input in external
format.

The record characteristics table contains information for
each data element in the record type, including its location
in the record, its length (if fixed), occurrence, its type, etc.

9 3

4-1

CHAPTER 4

ORGANIZATION OF DATA SETS FOR ACCESS ,AND STORAGE

1L.1 iNTRODUCTION

The preceding chapter discusseH logical file entities:
record types, profiles, data structurPs, and record
characteristics. This chapter begins by describine the data
management features provided by ORVYL. It then touches briefly on
the various data sets that make up a SPIRES Il file and the Hata
set namin conventions. It describes how record type data sets
are organized for access, and how that organization is
maintained. Finally, it give an example of a typical arrangement
in a bihliographic file.

4.2 THF ORVYL ENVIRONMENT

4.2.1 Data Management Under ORVYL

ORVYL the Stanford Time-Sharing Monitor, provides basic reaH
and write capabilities to 2314 disk in a paging environment.
Logical data sets are composed of a collection of 2,048-byte
blocks. Such data sets may be organized either so that their
blocks are contiguous, or so that the blocks lre noncontiguous.
In the noncontiguous arrangement, allocations of new blocks to
a user's file are made from a common pool; blocks for one logical
file are stored noncontiguously, and are perhaps spread across
several volumes. Although this is the most efficient use of
space, it creates the need for additional access paths to relate
a logical record number to a block number. For large data sets,
this arrangement adds significantly to the number of accesses
required to retrieve a record. It also complicates recovery
sequences. For these reasons, file contents will be organized
contiguously for SPIRES II.

4.2.2 Contiguous Data Sets

Data sets with contiguous blocks (hereafter called
contiguous data sets) are declared using the CONTROL 21 and
CONTROL 22 macros (see Appendix C). Up to 15 secondary
contiguous extents (not necessarily contiguous with previous
extents) may be allocated after the primary extent has been
allocated. Initially, SPIRES volumes will be allocated
completely as one large common data set to prevent other ORVYL
users from gaining space for noncontiguous data sets. All
allocations for SPIRES files will take place under ORVYL during
second or third shift, at a time when no users are on-line, and
no batch activity is in progress. The sequence of events will he

9 4

4-2

(1) Heallocate a group of blocks from the "pool" data set; (2)
allocate that group of blocks to the new data set primary extent
or the old data set secondary extent.

It shoul be noted that whereas ORVYL noncontiguous data sets
may consist of logical records that are greater or less than
2,048 bytes, contiguous data sets must consist of logical records
that are precisely 2,048 bytes. The term "logical" is used here
with reference to ORVYL. SP1RES/BALLOTS will subdivide ORVYL
blocks into i : own logical records.

4.2.3 Accessing ORVYL Files

Accessing contiguous data s.ets iAthin ORVYL is done via the
standard ORVYL macros ATTACI4, READ, WRITE, etc. A directory of
contiguous data sets will be maintained on disk by ORVYL and kept
up-to-date via the allocation mechanism mertioned above. The
directory will contain information about extent limits and
whether a particular file is divided into extents. The fact that
files may have several extents is not apparent to the programmer;
it is necessary only to provide a block number, and ORVYL
%All convert it to the appropriate physical record number by
subtracting the number of records in previous extents and adding
the result to the block number that begins the extent.

4.3 FILE SETS AND DATA SETS

4.3.1 FilP Sets

What the user thinks of as a "file" is, in reality, several
data sets (refer to Figure 13). The file is composed of the
following data sets.

A master data set that contains the charac-
teristics of the file.

One data set for each record type in the file.

An optional residual data set, to he used in
cases where it is considered economic to remove or split
data away from accessing information (see sections
4.5 and 4.6).

4.3.2 Data Set !!aming Conventions

System data sets are individually nameH on the basis of
the system account number and a mnemonic that suggests the con-
tents. These mnemonics will be discussed in further detail be-
low.

User data sets within a file set are named with the user
account number (AMNN) and the file name (up to eight alphanumeric
characters) in the format

9 5

4-3

ANNN.FILENAME.DSNAME,

where DSNAME will be one of the followinR:

MSTR - the master data set.

RES - the residual data set if one exists.

REC1 - the data set containing all records
of type number 1.

REC2...n - the data sets containing the other
record types in the file.

4.4 THE ORGANIZATION OF RECn DATA SETS

The records in the data sets ANNN.FILENAME.RECN are
organized either as a series of simple, fixed-length slots or in
a tree structure. In either case, the organization is based on
the unique key data element value in each record. Since all
physical data blocks under ORVYL are 2,048-bytes long, each
physical block will probably contain a number of records.

4.4.1 Slot-Structured nate Sets

Figure 16 is a graphic representation of a slot structure.
The slot structure may only be used for fixed-length consecutive
integer key data element values. If the records are not removed
to the residual data set, the records must he fixeH length.
generated by the system. The primary advantage to this structurP
is the quick access it permits to any record. Given a key data
Plement value and the number of records that will fit into a
2,043-byte block, one can compute the block number of the
physical record that contains the desired valne.

4.4.2 Tree-Structured Data Sets

When records are organized in a tree structure, they are
called "nodes." Nodes are accessed by their key Hata element
values. The "tree" refers to the logical pattern of the blocks
making up the data set. One enters at a common block (the trunk)
and the nodes in this block point to other hlocks (branches).
(The tree is in effect uprooted, being represented upside-down.)
The nodes are so arranged In the tree that an examination of a
trunk block determines which hranch block (if any) needs to be
examined next.

Consider the thumb index on the edge of a dictionary: it
contains about twenty nodes that determine on which pages to
hegin a morn discriminating search. Then the words at the tops
of the pages can be used as nodes in order to determine which
page to examine in detail. This example illustrates two rules

9 6

record
1 .

record
2

record
3

T=Elfr=EL

record
8

record
9

etc.

1

Physical
Block
1

Physical
Block
2

Physical
Block
3

etc.

Figure 16. Slot-Structured Data Set
'7

4-5

governing tree structures: (1) a any level of the tree the
nodes in a branch alphabetically surround terms contained in
branches emanating from that branch, or trunk; (2) a branch
contains only terms that fall between alphabetically adjacent
terms in its trunk.

But the tree structure used in SPIRES II data sets differs
from that of the dictionary in a number of ways. First, the
physical layout of a dictionary is quite different from the
physical layout of the SPIRES blocks. Second, the thumb index
and running head words are incomplete dictionary entries and have
to be repeated on the pages; each of the SPIRES nodes is complete
and so occurs only once in a structure. Third, in the dictionary
example there are a fixed number of levels; in the SPIRES tree
sructures there may be any number of levels, and some branches
nay contain more levels than others (their branches may have
branches). The SPIRES tree structure grows when a terminal
branch has become filled and has to start pointing to additional
branches. Since growth may be uneven, it is likely that the tree
will occasionally need rebalancing. This means that the tree
will be reconstructed so that each branch in the tree contains
about the same number of nodes. Figure 17 shows a simplified
tree. A line of words makes up a hlock. The words are nodes and
the arrows are branch pointers. Each word preceded by an
extended arrow is "nonterminal"; i.e., it points to another
branch (block).

4.4.3 Tree Rebalancing

The processes of rebalancing and constructing record data
set trees are similar. If an old tree is being rebalanced, the
old nodes are written out on tape in alphabetical order. If a
new tree is being constructed, the nodes to be placed in it are
sorted alphabetically. If the initial nodes are carefully chosen
so that they form a balanced subset of what will probably be the
ultimate node set, the tree is more likely to grow in a balanced
manner. During construction or rebalancing, the nodes are Placed
in the tree starting at the tips of the branches (bottom-level)
and working toward the trunk (top-level). Figure 18 shows the
relative positions of nodes in a samplP tree. For the sake of
simplicity it is assumed that four nodes fit in a branch (i.e.,
four records in a block). Unless the tree is lit<ely to grow
heavily near the end of the sort order, the tree can be improved
hy bringing nodes close to the trunk. This minimizes the
accesses needed to find a node. Nodes are brou7ht toward an
unfilled top level in the following v;avs: (1) if the farthest-
left branch in the level just helovy the top contains nonterminal
nodes, these nodes and their 'Iranch pointers are extracted,
starting at the end of that block and working toward the
beginning, until the higher lPvel of the tree has been filled; or
(2) if the farthest-right branch contains terminal nodes, then
these nodes are extracted starting at end of that block and
working toward the beginning, until either the higher level-has

9 8

Idon

commit herb

basil cyst element

concave

attach, bank

idiot, igloo

never

ate, many, mumble

damage, data

zero, z

jumble, jungle, label

jousting

Figure 17. An Example of a Tree-Structured Data Set

Sr3

/
4

Y"

Iif
8

NI'

1 5 9

2 6 10

3 7 11

12

13

14

15

20

4-7

16

17

18

19

124

ki/
21

22

23

28

1
25

26

27

\

29

30

31

Figure 18. Sample Tree

8 12 16 20

13 14 1514 5 6 7 9 10 11 17 18 19 24 28 30 31

21 25 29

22 26

23 27

F7444-7-e 19. Sample Tree After Rebalanc;ng

100

4-R

been filled or the lower level block has been emptied. This
Process fills nearly all the top level blocks. Figure 19 shows
the final position of the nodes of Figure 18.

TrnPs are rebalanced infrequently. Between rehalancings,
nodes may he deleted, modified, or Inserted. neleting is the
simelest function, since all that Is done Is to set a status
switch indicating that the node has heen deleted. The actual
node itself will not be removed from the tree until the next re-
balancing. This allows the value of the key data element to he
used for branching but precludes actual retrieval of the node.
If the updating of a node involves changing the value of a key
Hata element, then the node is set to "deleted" and an updated
version of the node is inserted into the tree. If the key data
element value is not changed and the updated node will occupy
less space than before, then the old node is written over. (If
the updated node would occupy more space, then the old node is
written over with a portion of the updated node and the remainder
is stored in the file's residual data set--see Figure 13.)

Ween a node is to be inserted in the tree, the tree is
examined until a block is encountered where there is no branch
pointer between the two nodes alphabetically bounding the new
node. Then an attempt is made to insert the node into this
block. It will sometimes happen that there is not enough
reserved space left in a block for the new node. If this
happens, then the contents of the block must be divided and a new
block must be added to the tree. If all of the terminal nodes
(including the new one) will fit into one block leaving growth
space, then they are put into the new block with a hranch pointer
left in the old block. If they do not all fit into one terminal
block, then they must be split between the old and new blocks.
It is at this point that a lopsided growth factor (a file
characteristics parameter entered when the file is defined) is
referred to in dividing the terminal nodes between blocks. If
the factor is .5, half the nodes are assigned to each block. If
the :=actor is close to 1 (new key values are monotonically
increasing), almost all the old nodes are put in the new block
with little space reserved for growth. (The supposition here is
that the tree will be growing horizontally and not vertically;
hence there is not a requirement to provide growth space.) At
this point, the first terminal node renaining in the old block
has become nonterminal, since it points to the new block. If the
old block has no other nonterminal nodes and if there is space in
the block above this one in the tree, then the new nonterminal
node is passed up to it for insertion. ntherwise it remains in
the old block.

Althouph the algorithm as presented may appear complicated,
it is relatively easy to program and has the advantage of
ensuring balanced local growth. Fipure 20 shows the tree
Dresented in Figure 19 after a period of intense growth in ono
area. The letters were addr,4 in alphabetical order and all fall

101

2

4 5 6

12 16 20

7 cg,1
def kosw

-

13 14 15 17 18 19

21

24 28 30 31

1
25 29

Figure 20.

hlptx
imquy
j n r v z

22 26

23 27

Sample Tree After Intense Local Growth

20 40

4 8 11 16 24 28 32 36 44 48 52 56

1

2

3

5

6

7

9

10

11

13

14

15

17

18

19

21

22

23

25

26

27

29

30

31

33

34

35

37

38

39

41

42

43

4:

46

47

49

50

51

53

54

55

57

Figure 21. Sample Tree with Well-distributed Growth

it-in

between 9 and 10. It is anticipated that most trees, if

constructed properly, will grow equally in all areas. If this is

so, then trees will rarely need rebalancing.

If we had assumed Figure 18 to he a monotonically growine

tree, and we had added 32-57 onto that tree, the resulting tree

would have looked like the one in Figure 21. Figure 19, however,

would not then represent the tree after rebalancing, since

monotonically growing trees are not rebalanced in the manner

shown here.

4.5 DATA REMOVAL

4.5.1 Definition and Criteria

Data removal means moving data that had been stored with an

associated key data element value to another place of storage,

and leaving hehind a pointer to the datals new location. The

residual data set ACCTN.FILENAME.RES exists to receive all such

data removed From the record type data sets.

The reasons for removal are due to the fact that in a tree-

structured data set (which the majority of data sets are),

efficient access is produced by maximizing the number of nodes

per block. In certain cases, it is most efficient to keep key

data element values in a tree structure and to remove the

relatively larger body of data, to be retrieved in one separate

access after the correct key data element value and residual

pointer have been located.

The decision algorithm for removal is based on the

following:

There are N occurrences of the record in the record type

data set; in order to locate a particular occurrence, some number

of key data elements needs to be examined. K is the length of

the key data element as a percentage of a typical record. On the

averacre M records fit into a block; the blocks Form a balanced

tree structure; and it is equally likely that any record will be

requested. That there are two storage strategies leads to

different formulas for the expected number of accesses needed to

find a record. Where the record is stored as a whole, there is a

probability of M/N that only one access will he needed, a

probability of (M + 1)M/N that exactly two accesses will he

needed, and so on. Where only the nortion needed for access is

stored, with a pointer to the rest, there is a probability of

(M/K)/N that only two accesses will he needed to retrieve the

whole record, a probability of (M/K + 1)(M/K)/N that exactly three

accesses will be needed, and so on. As N, K, and M vary, the

expected number of accesses will vary.

103

4-11

In the table in Appendix L, the breakpoints are given at
which both storage strategies lead to the same expected number of
accesses. The top row contains the values of K, the column
farthest to the left contains values of M, and the remaining
columns contain values of N. Keeping K and M fixed, if N is less
than the value in the table, then the whole-record storage
strategy requires fewer accesses; if N is greater than the value
in the matrix, then the residual-record storage strategy requires
fewer accesses. It can be seen that, for a given number of
occurrences of a record, the larger the record and the smaller
the key data element the more advisable it is to store only the
accessing information in the record type data set.

An initial implementation restriction in SPIRES II will be
that the data of any record type that passes data element values
to another record type will be removed to the residual data set.

4.5.2 The Logical Fffects of Removal

Fieure 22 shows a file set consisting of four record type
rlata sets. Type 1 is the ID records, which are also the goal
records. Types 2, 3, and 4 are access records. It should be
noted that all access record pointer groups are hased on key data
element values; in general, whenever access records point to Proal
records with unremoved data, the pointers are of thil sort.

it should also be noted that although Figure 23 shows the
data portion of the ID records stored in the residual data set,
the removal decision may be made on any or all record types
within a file. The decision is, of course, always made accordine
to the algorithm given in section 4.5.1.

4.6 RECORD SPLITTING

It is possible that even though a node pointer group begins
in a tree-structured data set it may continue and end in the
residual data set. The reason for this is that the numher of
tree levels is directly proportional to the node size, given some
fixed number of nodes. Thus a tree-structured data set may
become inefficient to access if large nodes are stored there in
their entirety. A maximum node size (a file characteristic) is

used to determine whether or not splitting should occur. As much
of the record value as possible is stored in the node, and the
rest is stored in a residual entry. The node points to the
residual data set.

Even if removal has occurred and record values are stored
directly as entries in the residual data sets, there are times
when more than one residual entry will be needed to store the
value. This occurs when the record value is larger than the
maximum residual data set entry sIze. Then the first part of the

.104

- - tree or slot - -

I

1

Record Type
2

Record Type
3

Key Value Pointers -

[-

Record Type
4

Record Type "
ID Record Ke

&
Pointer

Record Type
1

ID Record

(tree or slot)

Figure 22. File Set Without Removal

- tree or slot - -

Block Numb

Record Type
3

r/Entry Num er Pointers

Record Type
1

ID Record
Data

Residual Data Set

Figure 23. File Set with Removal

105

T
o
p
i
c

R
e
c
o
r
d
s

>

F
A
T
i
n
e
,

Q
u
e
e
n

o
f

E
n
g
l
a
n
d

-
-
-
>

O
u
d
e
n
a
a
r
d
e
,

B
a
t
t
l
e

o
f

R
a
m
i
l
l
e
s
,

B
a
t
t
l
e

o
f

r
B
l
e
n
h
e
i
m
,

B
a
t
t
l
e

o
f

p
o
i
n
t
e
r

0

(
t
r
e
e
-
s
t
r
u
c
t
u
r
e
d
)

T
i
t
l
e
w
o
r
d

R
e
c
o
r
d
s

F
i
m
e
s

L
i
f
e

g
a
r
i
e
b
o
r
o
u
g
h

p
o
i
n
t
e
r

\

\
\
\

(
t
r
e
e
-
s
t
r
u
c
t
u
r
e
d
)
7
1

I
i

0
1

I
l
i

p
a
s
s
e
d

S
t
a
n
d
a
r
d

B
o
o
k

N
u
m
b
e
r

=

6
8
4
-
1
2
4
0
9
-
2

p
a
s
s
e
d

p
a
s
s
e
d

A
u
t
h
o
r

R
e
c
o
r
d

C
h
u
r
c
h
i
l
l
,

W
i
n
s
t
o
n

p
o
i
n
t
e
r

A
u
t
h
o
r

=

W
i
n
s
t
o
n

S
.

C
h
u
r
c
h
i
l
l
;

T
i
t
l
e

=

M
a
r
l
e
b
o
r
o
u
g
h
,

H
i
s

L
i
f
e

a
n
d

T
i
m
e
s
;

P
u
b
l
i
s
h
e
r

=

C
h
a
r
l
e
s

S
c
r
i
b
n
e
r

&

S
o
n
s
;

T
o
p
i
c

=

B
l
e
n
h
e
i
m
,

B
a
t
t
l
e

o
f
;

T
o
p
i
c

=

R
a
m
i
l
l
e
s
,

B
a
t
t
l
e

o
f
;

T
o
p
i
c

=

O
u
d
e
n
a
a
r
d
e
,

R
a
t
t
l
e

o
f
;

T
o
p
i
c

=

A
n
n
e
,

Q
u
e
e
n

o
f

E
n
g
l
a
n
d
;

R
e
s
i
d
u
a
l

D
a
t
a

S
e
t

R
e
c
o
r
d

F
l
p
:
u
r
m

2
4
.

A
n

E
x
a
m
p
l
p

o
f

P
a
s
s
i
n
7

a
n
d

R
e
n
n
v
a
l

P
a
s
s
e
d

I
D

R
e
c
o
r
d

6
8
4
-
1
2
4
0
9
-
2

P
o
i
n
t
e
r

(
t
r
e
e
-
s
t
r
u
c
t
u
r
e
d
)

4-14

record value is stored in one entry with a pointer to another
residual entry that contains the rest.

4.7 A SI,IPLE ILLUSTRATION OF PASSINn AND REMOVAL

In Figure 24 there are four record type data sets: an ID

record type, an Author record type, a Titleword record type, and
a Topic record type. The data within the ID records is to be
removed to the residual data sPt. The key data element values
for the Author, Titleword, and Topic records will be passed from
the ID record Hata in the residual data set.

5 - 1

CHAPTER 5

PHYSICAL FORMATS

5.1 INTRODUCTION AND DEFINITIONS

This chapter describes the formats of the various kinds of user
Hata sets in SPIRES II. The records in tree-structured data sets
are called nodes; the records in non-tree-structured data sets
are called entries. The record format common to both nodes and
Pet7ries is given. A system data set of crucial importance, the
account number tree, is described. The format of the user master
data set is also outlined. From these last two descriptions one
learns how the profile is implemented.

5.2 RECORD FORMATS

When the user defines his file he specifies either
implicitly or explicitly the record types within the file and any
structures within a record type. Internal structures are
governed by the same rules governing record types and are, In
fact, treated as records within records. Therefore, records and
their internal structures are formatted similarly.

A record or an internal record structure is made up of one
to three different sections. These are the FIXED REQUIRED
section, the REMAININQ REQUIRED section, and the OPTIONAL section
--in that order.

The FIXED REQUIRED section contains elements of fixed length
and fixed occurrence. If there is a fixed-length key data
element, it must be the first element of the FIXED REQUIRED
section. (Note: A record must have a key data element, but an
internal record structure need not havP a key data element.
Also, a key data element must occur only once.)

Following the FIXED REQUIRED section is the REMAININQ
REQUIRED section. If there is a variable-length key data element,
it must be the first element of the PEMAININn REQUIRED section.
If there is a possibility of optional elements, an optional
element hit mask comes next. Then come the remaining required
elements that are either variable in length, variable in

occurrence, or both.

Following the REMAININQ REQUIRED section comes the OPTIONAL
section. Within this section are those Plements that need not
occur, but which, when they do, may he fixed or variable in length
and occurrence. The hits in the optional element bit mask are
used to determine if an optional element occurs and, if so, how
many other optional elements occurred before it.

108

Each element in the REMAININn REQUIRED and OPTIONAL sections
begins with a TOTAL VALUE LENGTH HEADER (TVLH), as does the
optional element bit mask when it occurs.

This format has been chosen because of its simplicity.
There is no need for data element pointers; the total lengths
preceding elements provide values to be used during record value
validity tests. The design favors records that are updated
infrequently hut accessed often, and that are accessed for all
their data element values rather than for a few.

From the above, it is seen that each data element value is
either fixed or variable in length; the element may either occur
singly or multiply, and tt may be required to appear at least
once, or may be optional. Figure 25 shows the total value length

headers and other control information that must prefix data
elements whose occurrence or length is variable.

If the record contains only fixed-length, fixed-occurrence,
required data elements, then the record will contain only a fixed
required section. If the record contains only required data
elements, but some elements may have variable lengths or some
elements may occur a variable number of times, then UP record
will have a remaining required section. If the record can
contain optional elements, then the record will have a remaining
required section, and an optional section.

Users will be encouraged to define AS fixed in length and
occurrence the data elements they plan to access and update
heavily. They will also be encouraged to define their required
elements so that the most heavily accessed are physically stored
first and the most heavily modified are stored last. If optional
data elements need to be accessed frequently, then they can be
defined as required data elements and given some default value
when they do not occur. If merely the fact of the occurrence or
absence of an optional element is all that is needed, then that
information is stored in the easily accessed optional data
element hit mask. The optional data elements section should be
used for the data elements in a record that fluctuate the most
radically.

5.3 FILE BLOCK FORMAT

All physical file blocks are 2,048 hytes in length. Most
nodes and entries will be a fraction of that size; a few entries
'lay exceed that size. Therefore, a block management scheme
is necessary that accommodates nodes and entries within a block
as well as nodes and entries that span blocks. Since physical
blocks constitute the basic unit of storage and transfer, they
must contain the control information that enables validity
checking, damage lockout, and other reliability mechanisms to
operate.

109

Data Element Values

1------Value 1

avalue 5 value 6 value 7

5-3

DescripIlgn_q

singular, fixed occurrence,
fixed 'length

multiple, fixed occurrence,
fixed length

multiple, varying
occurrence, fixed length

singular, variable length

value 10 multiple, variahle length

a = total value length header (TVLH)
b = occurrence count header
c = particular value length header (PVLH)

Figure 25. 'Control information Appended to
Various Data Element Values

110

5-4

The basic file block format for tree data sets is almost the
same as the format for non-tree data sets. The two are treated
separately below, however, and their few differences are pointed
out.

5.3.1 The Tree Data Set Block Format

Regardless of record format, the blocks of all tree data
sets have the same format. Block size and maximum node size are
system constants. No tree can contain more than 32,767 blocks.
Each block begins with a header followed by nodes that build
toward the end of the block, and trailers that start from the end
of the block and build toward the header information. When there
is no more available space between the nodes and the trailers,
then the block is full.

There are five data elements in the BLOCK HEADER. The first
is four bytes long and contains the date and sequence number of
the last transaction that modified the block. The second is the
two-byte block number--this is the number of the block relative
to the beginning of the tree data set.

The third data element in the header is two bytes long and
contains the number of trailers in the block. There is exactly
one more trailer than there are nodes in the block, so this data
element can also be used to calculate the number of nodes. (One
trailer is reserved to locate available space.)

The fourth data element contains the number of branch
pointers in the block. Recall from the explanation of tree
growth that nonterminal nodes are those that are preceded by a
branch pointer, and that all nonterminal nodes in a block
alphabetically precede all terminal nodes. When a block is being
searched for a key data element value, the branch pointers do not
7et in the way. When it is found that the key data element value
falls between nodes n1 ar n2, then the fourth data element of
the header is used to determine whether or not node n2 is
preceded by a branch pointer. If it is, then that branch pointer
is used to access the nct block of the tree; if it Is not, then
there is no node in the ree with this key data element value.

The fifth data element in the header is a two-byte block
number. Instead of being the number of this block, it is the
numher of the preceding block in the tree, i.e., the block that
contains the branch pointPr to this block. When a block in the
tree is examined, this number is matched against the previous
block's number to ensure that the tree is functioning properly.
If a block of the tree is damaged, the sicrn bit of the second
data element is set to on (-1). This causes the reliability test
to fail and prevents the block from being used.

At the very end of each block is a duplicate image of
the first data element that contains the date and sequence

111

5-5

number of the last transaction that modified the block. Storing
duplicate information at the beginning and end of each block
makes !t possible to identify a half-written block simply by
comparing the first and last words of the block.

The TRAILFRS, which point to the nodes in the block, hull/
towards the header Information in alphabetical order. For
example, if the three nodes in the block have key data element
values of hot, cold, and warm, then the trailer at the end of the
block points to the second node. The trailer before that points
to the first node, and the trailer before that points to the
third node. Every trailer is four bytes long. The first three
bits contain status information about the node pointed to. If
the first bit (the "sign bit") of the trailer is set to off
(+0), then all of the status bits are set to off. Otherwise, at
least one of the remaining status bits is in use. The second bit
is set to on when a node has been so damaged that it should
not be used. The third bit is set to on when a node has been
logically, although not physically, deleted from the tree. The
fifth through the sixteenth bits of the trailer contain the size
(in number of bytes) of the node. The seventeenth hit is set to
on when the node contains only the first segment of the record
value. The last 12 pits of the trailer, bits 21 through 32,
contain the displacement of the node within the block (i.e., the
byte address of the node, where the first byte of the block has a
displacement of zero). Bits 4, 18, 19, 20 are not currently
used for nodes.

There is always one more trailer than there are nodes. The
trailer closest to the nodes contains the location and length of
the available space In the block, its first and third bit are
set to on even though all its other status bits are set to off.
This is to distinguish it from all other trailers.

Little has to be said about the NODES and BRANCH (block)
POINTERS in a block. If the node is nonterminal, it is preceded
by a two-hyte branch pointer that is the block number of the next
block down in the tree. Trailers point to the beginning of the
nodes rather than to the beginning of branch pointers,-and the
node length given in a trailer does not include the length of the
branch pointer. If a trailer indicates that a node does not
contain the entire record value, then the last four bytes of the
node contain the residual block number and the relative trailer
location within that block where the next segment can he found.
If there is one more branch pointer in the block than there are
nodes, then the final branch pointer is stored before the
available space. Figure 26 is a graphic representation of the
tree block format, and Figure 27 is a table showing the lengths
and displacements of the various data elements in a tree block,
as well as a non-tree block.

112

header

node
and
branch
pointer
$ nace

available
space
trailer

trailers

Tree-Structured Data Set Block

ID of transaction that last
modified this block (same
as laSt four bytes)

dam-
aged
block
bit

block
number
(of this
block)

number of
trailers
in this
block

number of branch
pointers that
Point to blocks
in next lower
level in tree

blrck number
of block in
next higher
l evel of tree
that points to

////////
// // / // /

' //./ / /,-/.///// . ,

.. / //' /,

branch pointer
that Points
to block in
next lower
level of tree

node

./
.

. /'
,7 7 / ',,/

/ ...-

.

.

-,

4

bits
4
bits (

IID of transaction that last
modified this block (same
as first four bytes)

5 - 6

Non-Tree-(Siot-) Structured Data Set Block

hit 0 - if = 0, then all bits 0,

bit 1 - if 1, then node/entry is damaged

hit 2 if = 1, then node/entry is logically
deleted

bit 3 if 1, then node/entry has additional
header information

ID of transaction that last
modified this block (same
as last four bytes)

dam-
aged
block
bit

block
number
(of this
block)

number of
trailers
in this
block

available space chain
block link

../ /
/./.

.
,

entry

/ ,/ , //
/
/// // /

I 1 1

1

1 1

1 _l_

4

bits
length
of
entry

4

bits
entry
pointer
(displace-
ment)

ID of transaction that last
modified this block (same
as first four bytes)

0

4 > header

a

12

bit 0 - if = 1, then node/entry is the
first segment of the record

entry
space

available
space

available
sPace

available
space
trailer

trailers

bit 1 if = 1, then update for this node/
entry exists in batch queue

hit 2 if = 1, then entry is a continuation
segment

bit 3 not used

rleurr 2*. File Block Formats

113

(FITRED)

Residual and Non-Tree
Data Cet 'flock

0 1 2 3

FBHDTI

FBHDBK FBLIDNT

FBHDAB

(FBTREL)
4/

entry

r

STU2 I F3TPEL2 STL2 FRTRED2

51131 FSTREL1 STL1 FRTREn1

PBOUTI

PRLInF
(header)

(FRTPEn)

-->

1I

r.ciTnto.

> (trailers)

Tree nata Cet llock

n
I 1 I I

FIWITI

n1 FRI-KIRK PRPnNT
FRi-InNR PRHnAK

FRPDTR

1\
(FRTPFL)

4/

node

STn9 FITPFt. CTI_ CCITTI.V11

STII1 rcrrnFL1 sTI. rvrprn

FBDUTI

Finn NAME

FRHDR
--FRHDTI

0 -fw
0

LEN(.TH

12
4

FIELD DESCRIPTION

Block Header
Last transaction ID which
modified this block.

7-FRHDD 4 1 Damaged Block indicator
--FRHDRK 4 2 This field holds the block

number of this block (mod
32768)

--FRPONT-(nt) 6 2 Number of trailers in the block
--FRmnAn 8 4 Available space block linkage
--FRHDMB 8 2 Index Block - Number of

branch pointers.
--FRPDAK 10 2 Inclex block - The block number

through which this block is
c.ccpssed,

Figure 27. File Block Structures

114

FIELD NAME

FBDUT1

FRTRAL

- -FBTRSTU

- -FBTREL

IM IDISP. IR IiENrTHlB ID 1

1- -1
1 I

1--1--1

1

blksiz
1-4

nt Rlksiz
-4-n*4

X

--FRTRSTL I 116 IX

- -FRTRED I 120 IX

FBENPT

- -FRERLK

--FRENUM

FRRPTR

3

14 IX
1

2
3

12 IX

4 IX
1

2

3

12 IX

2

3

3

1

2

5 - 8

FIELD DESCRIPTION

Duplicate transaction ID for
damaged block checking
Trailer - n=trailer number

(references block entry)
Upper status bits
0000; Indicates normal entry

(sign bit= 0, Then all are
zero)

11XX, the entry is damaged
1X1X, the entry is logically

deleted.
(If length field Is zero, the
entry is physically deleted)
1XX1, the entry has header in-
formation which further defines
the Pritry contents.
Length (bytes) of entry
(Inclunes segment pointer)
Lower status hits
1XXX, the entry is an initial
segment. (within this data set)

X1XX, the entry has bPen
updated anH now exists in
the Batch Queue. (if
FBTRSTU = 1X00)
Or the entry has been logi-
cally deleted and is
referenced in the Delete
Queue (if FBSRSTU = 1X1).

XXIX, the entry is a contin-
uation serment (Residual
Only)

note: if entry is a segment
there will always he an
fhenpt. The last serment In the
chain locatPs the initial seg.
Displacement (bytes) of

entry within the block.
Entry Pointer
Index overflow - Locate
overflow segment in
residual.

Residual overflow - Locates
overflow segment in residual.

Batch Oueue - Delete OUPLIP
Locator. Locates entry
in RATrP or DELETE nuEtiE.

Block number of the Data
Set holdin.- the entry.

Trailer numker in block
which locates the entry.

Branch Plock Pointer in
an Index Flock.

Loc3tes lower level block
in this data set.

Figure 27 continued

-L IL 5

5-9

5.3.2 The Non-Tree Data Set Block Format

"Non-tree data sets" is a term that may be applied to
siot-structured data sets, residual data sets, the master data
set, and some system data sets.

A block of the non-tree set is almost identical to a tree
block. Every non-tree block begins with header information,
entries that build toward the end of the block, and trailers that
start near the end of the block and build towards the header
information. When the entries and trailer meet, the block is
full. The first data element of the non-tree block header is a
four-byte transaction ID; the second data element is the block
number; the third data element is the number of trailers--all the
same as in the tree record. The fourth data element is different
from the one in the tree block header; it is the available space
chain pointer. For a detailed explanation of this data element,
see the discussion of the available space scheme in section
5.4.1.

The non-tre ,iock trailers are almost identical to the tree
block trailers except for the order in which they are arranged.
When an entry is assigned to a residual block, trailers are
scanned starting from the end of the block until a "free" trailer
is found. A free trailer is one that corresponds to some
previously deleted entry, whose s7gn bit deleted entry status bit
are set to on, and whose length field is zero. lf the available
space trailer is the first free trailer found, then a new
available space trailer is created. Once a trailer has been
assigned to an entry, it cannot be released until the entry has
either been physically deleted-or else moved to another block
during cleanup.

The first three status b1*7s function in exactly the same way
as do the tree block status bits. The fifth through sixteenth
bits contain the size of the entry. If either bit 17 or bit 19
is on, then the last four bytes of the entry contain a pointer to
the block and the relative trailer location of the next segment
of the entry. When bit 19 is set to on, the entry Is a
continuation of either a node or another entry. Bits 21 through
32 contain the displacement of the entry within the block

Figure 26 may be studied for a pictorial representation of
the non-tree block format, and Figure 27 for the lengths and
displacements of the various elements.

5.4 RESIDUAL BLOCK FORMATS

The components of a residual data set are shown in Figure
28. The data content block format has already been described In
section 5.3.2 (The non-tree data set block format). Blocks 0, 1,
and 2, however, have special uses and are described below.

Block 0

Block 1

Block 2

Blocks 3-n

Supplemen-
tal Write
Block

Available
Space
Table

[-

Status
Informa-
tion Block

Residual
Data
Content

Figure 28. Residual Data Set Organization

117

5-11

5.4.1 The Available Space Table

There are two kinds of empty space in the residual data set:
the contiguous set of empty blocks at the end, which have never
contained data, and the "holes" in the blocks that do contain

These holes result from the imprecise fitting of entries
into blocks during file building, from the deletion of whole
blocks, and from the rePlacement of records by updated versions
shorter in length.

When a requirement for space arises during an update run,
the strategy will always be to find the smallest segment of
available space that fulfills the requirement. Such a strategy
minimizes the amount of space broken down into segments too small
for use.

Figure 29 is a graphic representation of the mechansm for
locating a required amount of space; it includes the
format of the available space table. Block 1 in the figure
consists of the standard non-tree block header and trailer and a
single record consisting of an array of four-byte record
Pointers, 506 data elements in all. These pointers form the
heads of a series of available space chains. These chains are
lists of residual blocks; all the blocks listed on a particular
chain (usually) have the same amount of available space.

Requests for available space for record additions are
handled in the following way. The number of bytes required Is
rounded up to the next multiple of four. The resulting
number is used as an index to the proper pointer in the av, 'lable
_pace table. This pointer either contains the block number of
the first block in a logical chain of blocks, all supposedly (the
equivocation is explained below) containing the required amount
of available space, or it is set to off. If the pointer is set
to off, then no blocks exist that contain the required amount of
space, and pointers to increasingly larger amouhts of space are
examined until a nonzero pointer Is found. Once a nonzero
pointer is located, the first hlock in the chain is accessed. A

check Is made to see if the available space in the block equals
the amount assumed for the chain, if not, the block is placed at
the head oF the correct block chain, and the next block in the
chain is redd and similarly examined. When a block is
encountered in the chain that contains the correct amount, the
space is allocatecI and used. If there is still space available
in the block, the block is still pointed to a-3 part of the same
chain, unless it happens to he the first hlock in the chain. In

that case, the block is "relocated" in tbe correct chain

Oeletions and replacements in the spat:e chain are handled
similarly. Even though the available space In the block has
1T;rown larger or smaller, the block is left on the same chain,
unless it happens to be the first block of the chain. The
reasoning behind this algorithm is as follows. To make

118

4 8

1
2

1
6

2
0

4
0
0

4
0
4

2
,
0
2
4

'
!
,
2
0

1
E
-
-

4

B
y
t
e
s

77
7/

//,
///

i
,
a

`
I
1
1
,
6
c
W
i
f
e
a
r
I
f

'

.
/

/
/
/
/
/

/

'

Z
e
r
o
s

P
o
i
n
t
e
r

t
o

B
l
o
c
k

,

P
o
i
n
t
e
r

t
o

(
r
o
c
k

"
X
"

P
o
i
n
t
e
r

t
o

B
l
o
c
k

r
,

.
e

B
l
o
c
k

"
A
"

B
l
o
c
k

"
R
"

B
l
o
c
k

"
V
"

Z
e
r
o
s

B
l
o
c
k

"
X
"

B
l
o
c
k

"
T
"

B
l
o
c
k

"
C
"

l
o
c
k

I

-

R
e
s
i
d
u
a
l

U
e
t
a

S
e
t

F
i
g
u
r
e

2
9
.

T
h
e

A
v
a
i
l
a
b
l
e

S
p
a
c
e

M
e
c
h
a
n
i
s
m

5-13

on-the-spot chain corrections, one must have access to the
preceding block In the chain. Since two-way pointers cannot be
maintained easily, this means beginning at the head of the chain
and following it down until the preceding block is reached. In
contrast, chain cor'rections at the head of the chain can be made
without accessing. Therefore, blocks with incorrect amounts of
space for their chain will be left to "pop up" to the head before
they are switched to a new chain.

5.4.2 Supplemental Write Blocks

Any on-line writes to the file will be done twice: once t)
the supplemental write block, and once to the block being workid
with. When the system is restarted after a crash, but before
users are allowed to log on, a small module will be called to
perform the following check on every supp7?emental write block in
the system.

Does the first word of the block match the
last word of the block? If not, the supplemental
write was not successfully completed, and the update
sequence (reserve, read, update in core, write,
release) failed during a critical phase
but cannot be restarted. If the first and
last word agree, then perform the next check.

Does the content of the supplemental write
block equal that of the block being double-
written? If so, the last update operation was
completed successfully. If not, re-initiate
the update sequence using the contents of the
supplemental write block.

5.4.3 Status Information Block

This block contains a ponter to the beginning of contiguous
empty blocks at the end of the data set, and the file update table.
This table contains the julian date of the last dump made
and an array contening the last seven Julian dates on which
either a batch update run ov a deferred epdate transaction
occurred. The remainder of block two is unused at present.

5.5 THE ACCOUNT NUMBER TREE

The account number tree is the primary mechanism for
governing access to SPIRES files. When a user logs onto
the system, his account number Is used as a search key to locate
a node in the account number tree. The node that corresponds to
his account number contains a series of profiles that may be
used only by holders of that account number. During his sessio
at the terminal, the user may only work within one of these
Permissible profiles. A profile (see section 3.4) outlines a set

of access data sets and a goal data set, and defines the data
elements that may be used as search arguments, that may be
changed, and that may be displayed.

5.5.1 Class Privileges

Users who have the same privileges in accessing and updating
certain files belong to the same user class (it may happen that a
user class consists of only one user). Each class is identified
by a unique account number. Each user class is entitled to use a
file in the ways defined by some preyfile. A profile (see section
3.4) defines a set of access data sets and a goal data set, and

lists the data elements that may be used as search arguments,
that may be changed, or that may be displayed. A class may work
within one or several profile sets, and these profile sets may
apply to more than one file set and more than one user class.

5.5.2 Sharing Profiles Among Accounts

As Figure/30 illustrates, more than one account number may
be given access to the same profile. Only profiles restricted
to a single account number are actually stored with that number.

All other profiles are divided into discrete sets, with each set
assigned a "pseudo-account number." These pseudo-account numbers
-are stored with each account number that has access to the set of

p-ofiles. In Figure 30, both accounts 3001 and B002 have access
t profile XYZ, but only B001 has access to profile WW1.

5.5.3 The Format of the Account Number Record

Figure 31 shows the format of the account number record.
This record contains definitions for all the profiles that a user
class may operate under and pointers to pseudo-account records
that contain definitions for the profiles the user class shares
with other user classes.

A profile definition consists of the following elements.

The record number of the goal record for this
profile.

The password algorithm code, which at the present
stage of SPIRES system design is not being used.

The build flag, e one-byte field that indicates
whether the build mesk is used only for displaying
records or for both building and displaying records.

The profile name, a field that most be matched
with the name given in the SELECT <name> command.

The file eeme of the file to which the profile

applies.

ACCOUNT
B001
PROFILE
WW1

PSEUDO-ACCOUNT
"A"

PROFILE XYZ

ACCOUNT
B002
PROFILE
WW2

Figure 30. Venn Diagram of Account Numbers
and Psuedo-Account Numbers

122

node

4 bytes

lAcct. No.]

profile
profile count
ancii;h

length o
p;ofile
no. 1

goal record
n mber
password
flagl
PVLH profiljtaiiie
PVLH file name

se arch maskPY_LH
PVLH

length of
profile
no. 2

PVLH

(more profiles)

5 1 6

build mask
update mask

TVLH
psuedo-
account
no. 1

Psuedo-
account
no- 2_

(etc.)
I

)
I

L i

(Indentation shows hierarchy)

Figure 31. Account Number Tree

1 2 3

5-17

The search mask. Data element entries in the
search characteristics table may be set in such a
manner as to cause bits in the search mask to be tested.
"1" indicates that the user may name the element in a
search command; "0" indicates that he may not.

The build mask. Data element entries in the
build characteristIcs table may be set in sucb a
manner as to eaJse bits in the build mask to be tested.
"1" irdicaLes that the user may display records contain-
ing this data element (or this form of a data element);
"0" indicates that he may not. If the build flag is
on, the user may build records containing the data
element.

The update mask. Data element entries in the
build characteristics table may !" set in such a
Jianner as to cause bits in the update mask to be tested.
"1" indicates that the user may change the value of
the data element; "0" indicates that he may not.

5.5.4 The Organization of the Account NuMber Tree

The account number tree is a system file stored under the
system acceeint number with the filename "ACCTREE." Besides a
master and a residual data set, it has a single record type, that
described in section 5.5,3. This record data set is tree
structured on the key data element "ACCOUNT NUMBER." Removal of
data to the residual data set is unlikely, at least in the
beginning. Splitting will occur, however, in cases where the
maximum node size is exceeded by an account number with a large
number of profiles.

5.6 rHE USER MASTER DATA SET FORMAT

The master data set contains record format, build, and
search characteristics for all the record types in the file.
The contents of the master data set may be eategorized as follows
(see Figure 32).

The file master structure, which contains some
general file ir7ormation, as well as pointers to the
build i_nd search chEiracteristics.

The record format structure, which contains a
record format definition .cor each record type in the
file.

The build and search characteristic5, which contain,
the definitions and rules for building, updating, out- /

Putting, and searching each record type.

:
,
t
r
o
c
i
,
;
r
0

S
t
r
c
t
u
r
c
.

(
c
h
:
I
r
a
c
t
e
r
i
s
t
i
c
s
)

J
w
.
.
1

s
e
r
c
h

O
l
d
r
c
t
e
r
i
5
t
i
c
s

(S

T
id

-;
..

(1
6

h
y
t
c
t
s
)

1

l
e
n
r
t
h

u

f
i
l
e

c
l
a
m
.
.

i
;

4
n
e
r

i
f

r
e
s
i
d
u
a
l

d
a
t
a

s
e
t

e
x
i
s
t
s
,

X
"
F
F
"

i
f

i
t

d
o
e
s
n
'
t

1
n
u
,
l
b
f
2
1
-

o
f

.
4
a
t
o

:
e
t
s

b
e
s
i
d
e
s

m
a
,
-
J
e
r

1
n
1

r
e
s
i
d
u
a
l

!
s
t
a
t
i
s
t
i
c
s

l
e
v
e
l

c
c
h
0
6
:

l
e
v
e
l

(
n
o
t

u
s
e
d
)

p
a
i
n
t
e
r

t
o

h
u
i
l
d

a
n
d

s
e
a
r
c
h

c
h
a
r
a
c
t
e
r
i
s
t
i
c
s
,

P
'
C
l

p
o
i
n
t
e
r

t
o

h
u
i
l
d

a
n
d

s
e
a
r
c
h

c
h
a
r
a
c
t
e
r
i
s
t
i
c
s
,

k
r
:
r
2

Lt
.

P
o
i
n
t
e
r

t
o

h
t
:
i
l
d

a
n
d

s
e
a
r
:
h

c
h
a
r
a
c
t
e
r
i
s
t
i
c
s
,

i
t
E
C
n

n
u
:

)
e
r

o
f

r
e
c
o
r
d
s

l
e
s
c
r
i
h
e
d

d
i
s
a
l
a
c
e
d
e
n
t

t
o

e
n
d

o
f

r
e
c
o
r
d

'
o
r
f
d
a
t

s
t
r
u
c
t
u
r
e

r
e
c
o
r
d

c
h
a
r
a
c
t
e
r
i
s
:
i
c
s

h
e
a
d
e
r
,

R
E
C
1

r
e
c
o
r
d

c
h
a
t
,
_
t
o
r
i
s
t
i
c
s

h
e
a
d
e
r
,

R
E
C
n

(
(
2
7

b
u
i
l
d

a
n
d

s
e
a
r
c
h

c
h
J
r
c
L
.
r
i
s
t
i
c
s
,

R
E
C
1

r
e
c
o
r
d

c
h
a
r
a
c
t
e
r
i
s
t
i
c
s
,

R
f
i
l

r
e
c
o

r
d

c
h
a
r
a
c
t
e
r
i
s
t
i
c
s
,

R
E
C
n

b
u
i
l
d

a
n
d

s
e
a
r
c
h

c
h
a
r
a
c
t
e
r
i
s
t
c
s
,

R
F
C
2

/
)

b
u
i
l
d

a
n
d

s
e
a
r
c
h

c
h
a
r
a
c
t
e
r
i
s
t
i
c
s
,

R
E
C
n

F
i
g
u
r
e

3
,
,

O
r
g
a
n
i
z
a
t
i
o
n

o
f

t
h
e

H
a
s
e
r

D
a
t
a

S
e
t

5-1r,

The record format, build, and search characteristics are
spread across an indeterminate number of blocks in the master data
set, starting at block 0. The following three sections describe
these collections of characteristics in greater detail.

5.6.1 The Record Characteristics

Each record, as well as each internal record structure, may
have up to three sections: the fixed required section, the
remaining required section, and the optional section. The record
characteristics (see Figure 33) consist of one set of
characteristics describing all data elements at the record level
ane one set of characteristics for each internal structure in the
record. The format rules for the characteristics themselves do
not difr at the record and internal structure levels.

For each record (or internal structure) there will be a
series of counts giving the total number of data elements in the
record (or in the structure), and for each data element there
will be a one-byte code together with a data element leneth. The
code will show where in the record the element resides and what
data type it is (character string, internal structure, or record
pointer). The data element length applies only to fixed-length
data elements, and is left at zero if the element is variable.
Following the codes and lengths is a table of halfwords that
contain the displacements (from the beginning of the record) of
each fixed required data element.

5.6.2 The Build Characteristics

Build characteristics are used to transform a record from
external (user-readable) format to internal (machine-readable)
format during the file update process, and from internal to.
external format during the display process. These
characteristics are usually used in conjunction with the record
characteristics; there is one set of build characteristics per
record type. Figure 34 shows the layout of the build
characteristics; the components are described below.

INPUT MNEMONIC DICTIONARY. There are as many
entries in the input mnemonic dictionary as there are
unique data element mnemon!cs that may be used for
external forma*. input records. The.e are separate entries
for alternative mnemonics. The leegth of each mnemonic is
given (the limit is 16 bytes) and a Hisrlacement in the
packed charact _eble showing where the ac:tual mnemonic
string can be teund. Following the displacement is the
structure element number (see section 3.5) of the data
element that corresponds to the mnemonc.

PACKED CHARACTER TABLE. This is an amalgamation
of all the mnemonic character strings.

L2G

r
e
p
e
a
t
e
d

f
o
r

e
a
c
h

s
t
r
u
c
t
u
r
e

i
n

r
e
c
o
r
d

r
e
c
o
r
d

n
u
m
b
e
r

s
t
r
u
c
t
t
i
r
e

c
o
u
n
t

d
i
s
p
l
a
c
e
m
e
n
t

o
f

s
t
r
u
c
t
u
r
e

n
u
m
b
e
r

1

1

d
i
s
p
l
a
c
e
m
e
n
t

o
f

s
t
r
u
c
t
u
r
e

n
u
m
b
e
r

x

L
_
_
_
_

s
t
r
u
c
t
u
r
e

e
l
e
m
e
n
t

n
u
m
b
e
r

f
o
r

e
a
c
h

s
t
r
u
c
t
u
r
e

i
n

r
e
c
o
r
d

n
u
m
b
e
r

o
f

b
y
t
e
s

i
n

f
i
x
e
d

r
e
q
u
i
r
e
d

s
e
c
t
i
o
n

n
u
m
b
e
r

o
f

f
i
x
e
d

r
e
q
u
i
r
e
d

d
a
t
a

e
l
e
m
e
n
t
s

n
u
m
b
e
r

o
f

r
e
m
a
i
n
i
n
g

r
e
q
u
i
r
e
d

d
a
t
a

e
l
e
m
:
n
t
s

t
o
t
a
l

n
u
m
b
e
r

o
f

r
e
q
u
i
r
e
d

d
a
t
a

e
l
e
m
e
n
t
s

n
u
m
b
e
r

o
f

o
p
t
i
o
n
a
l

d
a
t
a

e
l
e
m
e
n
t
s

k
e
y

e
l
e
m
e
n
t

s
e
c
t
i
o
n

f
l
a
g
s

c
o
d
e

f
o
r

d
a
t
a

e
l
e
m
e
n
t

n
u
m
b
e
r

1

c
o
d
e

f
o
r

d
a
t
a

e
l
e
m
e
n
t

n
u
m
b
e
r

2

c
o
d
e

f
o
r

d
a
t
a

e
l
e
m
e
n
t

n
u
m
b
e
r

i
j

d
i
s
p
l
a
c
e
m
e
n
t

o
f

f
i
x
e
d

r
e
q
u
i
r
e
d

e
l
e
i
i
.
e
n
t

q
_
i
m
b
e
r

1

d
i
s
p
l
a
c
e
m
e
n
t

o
f

f
i
x
e
d

r
e
q
u
i
r
e
d

e
l
e
m
e
n
t

n
u
m
b
e
r

2

d
i
s
p
l
a
c
e
m
e
n
t

o
f

f
i
x
e
d

r
e
q
u
i
r
e
d

e
l
e
m
e
n
t

n
u
m
b
e
r

i

f
r
o
m

b
e
g
i
n
n
i
n
g

o
f

r
e
c
o
r
d

F
i
g
u
r
e

3
3
.

R
e
c
o
r
d

C
h
a
r
a
c
t
e
r
i
s
t
:
c
s

C
o
d
e
s

g
i
v
e

t
y
p
e
,

a
c
c
e
s
s
i
n
g

i
n
f
o
r
m
a
t
i
o
n
,

a
n
d

d
a
t
a

t
y
p
e
.

T
h
e

s
e
c
o
n
d

b
y
t
e

g
i
v
e
s

t
h
e

l
e
n
g
t
h
,

i
f

f
i
x
e
d
.

Input
Mnemonic
Dictione-iry

Packed
Character
Table

Structure
Displacement
Table

Auxiliary
Element
Table

5-21

record number

displacement .to packed character table (PCT)
displacement to structure displacement table
displacement to auxiliary element table
displacement to end

[
length of mnemonic, its offset in the PCT,
and its structure element number

(one for each input mnemonic)

for calculating offsets into the auxiliary
element table (one entry for each
structure in the record)

Figure 34. Litiild Characteristics

128

r

STRUCTURE DISPLACEMENT TABLE". There are as many
entries in the structure displacement table (sr1T) as
there are unique internal structures in the record.
The table is accessed by usine the structure number
as an index. The entries in the table consist of
displacements that are used to access the auxiliary
element table (AET) in the following way:

AET offset = contents of SDT (structure no.)
structure element no.

AUXILIARY ELEMENT TABLE. Contains one entry per
data element. The most important part of each entry
is the condition byce, which contains the bit number
in the profile bit masks that corresponds to the data
element. Each entry also contains references to both
input anH output processing rules, the length of the
data element mnemonic, and the mnemonic's displacement
in thP packed character table.

5,6.3 The Search Characteristics

Search characteristics are only meaninrful for goal records.
(Search characteristics for record types used only in accessing

are essentially null.) Each Roal record has one or ',lore data
elements that may he given in search commands. These elements

may be classiFied in one of the following three ways:

The data element value is passed to an accessin2
record.

The data element is a qualifier.

The data element value has not been passed, and it
is not the unique key data element of the goal record.

For every such data element within a goal record, there is the

following corresponding data in the search characteristics (see

Figure 35).

MEMONIC LENGTH AND DISPLACEMENT. This is the
length of the search mnemonic that corresponds to the
data element and its location in the packed character
tahle.

cONDITION BYTE. This byte refers to a bit in the

search bit mask of the nrofile. If it is on, the user
may use the element to search. If it is off, he may not.

TYPE. This byte classifies the search data
element into one of the three classifications already
mentioned. The contents of this byte vary with the
classification, and determine the contents of the
search descriptor.

129

Section 1

one set for
every search-
able element
in te
record

Section 2 ->

one for each of the f

pointer groups
contained in the
access records
for this goal record

displacement to packed character table (PCT)

displacement to section 2

length.of mnemonic

displacement of mnemonic in PCT

bit numher in profile bit mask
data type

Processing rule
structure element number for synonym keY value

rowth

length and displacement into the PCT of the goal record mnemonic

displacement to end

structure element numher, record ntriher where
a pointer element may be found

Figure 35. Search Charncteristics

SEARCH DESCRIPTOR. If the search command data
element value is passed to an accessing record, then
these four bytes contain the record number of the
record to which the value has been passed, and the
structure element number of the pointer group within
the accessing record.

If the search command data element is a qualifier,
then the format is still the same.

If the search command data element has not been
passed to an accessing record and it is not the unique
key data element of the goal record, then these four
bytes contain two structure and element numbers--one
for the qualifier package in the goal record, and one
for the search data element in the goal record. The
data elements in this category are examined by a
linear search module.

PROCESS RULE. References the processing rule
used to place the data element into standard form
for storage. This field is zero If there is no rule.

SYNONYM REFERENCE. This structure element
number refers to the field in the accessing record
that contains a key data element value pointer to
the next record of the same type in a series of
synonymous key data element values.

133.

6-1

CHAPTER 6

IMPLEMENTATION OF THE SPIRES II ACCESS METHOD

6.1 INTRODUCTION

The concepts underlying the SPIRES file structure, the
organization of the data, and the format of the file structure
have been treated at length in chapters 3, 4, and 5. This
chapter describes the modules that manipulate the structure. The
SPIRES II access method is a collection of modules and
subloutines that are used singly or in combination to add,
change, replace, or delete data in a SPIRES II file,

If the access method routines are being used as part of the
on-line system, they reside in core just below SEMANT (see
section 2.5) and make calls on the ORVYL interface routines for
supervisor services like input and output, file attaching, and so
on. If the access method routines are being used by batch
programs running under 0/S, the calling sequence will still be
the same, but I/0 requests will be directed to Virtual Access
Method (VAM) routines (see section 1.1.5.3) that allow 0/S batch
programs to access ORVYL files using the same routines as are used
on-line.

The first part of this chapter describes six large
task-oriented groups of subroutines: SRCHREC, ADDREC, DELREC,
RPLREC, ATCHFILE, and DTCHFILE. The second describes the various
building block subroutines that either are used alone or reside
in one of the large task-oriented modules. These building block
subroutines are called Basic File Services. Both the basic
subroutines and the task-orIented modules are documented in

greater detail in Appendix M. Appendix H, Dummy Sections,
may be referred to for more detaiied information on
the format of access method work areas in user virtual memory.

6.2 TASK-ORIENTED SUBROUTINE GROUPS

SRCHREC, ADDREC, DELREC, RPLREC, ATCHFILE, and DTCHFILE are
modules constructed as hierarchies of basic C.le services
subroutines. Each component subroutine is itself discussed in
section 6.3.

6.2.1 SRCHREC

This module is called to retrieve a particular record of a
given type. The record whose key data element value must be
found is located regardless of whether the record Is in a tree-
or slot-structured data set, or whether the record has been

132

6-2

removed to the: residual data set or not. Figure 36 shows the
structure of the SRCHREC subroutine hierarchy.

6.2.2 ADDREC

This module is called to add a new record of a given type.
ADDREC locates the key data element value in the new record and
creates the node or slot in the data set for the given record
type. If removai or splitting to the residual data set is
necessary, ADDREC will perform these functions. Figure 37 shows
the structure of the ADDREC subroutine hierarchy.

6.2.3 DELREC

This module is called to delete a record of a given type
from a user file. The module logically deletes the node or slot
in the record type data set, and physically deletes all removed
portions and split segments from theuser residual date set.
Figure 38 shows the structure of the DELREC subroutine hierarchy.

6.2.4 RPLREC

This module is called to replace a record of a given type
with a new record. RPLREC locates the existing record with the
given key data element value and replaces,the index node and afny
residual entries that may exist. Figure 39 shows the structue
of the RPLREC subroutine hierarchy.

6.2.5 ATCHFILE

This module is called during the SELECT <profile name>
process in order to attach the data sets of the user file that
has been given that profile name and account number. The matiter
data set is attached and accessed. The contents of the master
data set are used to initialize a portion of user storage and to
set up the characteristics tables in core. ACSENTFY and DFATTACH
(see below) are among the subroutines called to assist in
performing these functions.

6.2.6 DTCHFILE

This module is called to detach a user file, either because
a new SELECT command was issued or because the LOGOFF command was
issued. Data set updating and user table cleanup are performed
before each attached data set is detached. DSDETACH (see below)
is the subroutine called to perform the actual detaching of file
data sets.

6.3 BASIC FILE SERVICES SUBROUTINES

These subroutines are used either as components of higher-
level task-oriented modules or alone to perform required file
services functions.

at cr)
.100

S
E
T
S
R
C
H

S
R
C
H
R
E
C

g
;
=
,

A
S
G
N
B
U
F
R

A
C
S
E
N
T
R
Y

A
S
G
N
B
U
F
R

R
E
A
D
F
B
L
K

F
i
g
u
r
e

3
6
.

S
R
C
H
R
E
C

S
u
b
r
o
u
t
i
n
e

H
i
e
r
a
r
c
h
y

M
D

.

A
C
S
N
O
D
E

R
E
A
D
F
B
L
K

C
u

A
D
D
R
E
C

A
D
D
N
O
D
E

S
E
T
S
R
C
H

R
E
A
D
F
B
L
K

W
R
1
T
F
B
L
K

1
N
S
N
O
D
E

I
A
S
G
N
B
U
Y
R

A
S
G
N
B
L
K

[
R
E
A
D
F
B
L
K

W
R
1
T
F
B
L
K

A
D
D
E
N
T
R
Y

F
N
D
B
K
A
V
S

F
i
g
u
r
e

3
7
.

A
D
D
R
E
C

S
u
b
r
o
u
t
i
n
e

H
i
e
r
a
r
c
h
y

A
S
G
N
B
U
F
R

A
S
G
N
B
L
K

D
S
R
E
S
E
R
V

D
S
R
E
L
E
A
S

D
E
L
R
E
C

S
E
T
S
R
C
h

A
C
S
N
O
D
E

R
E
A
D
F
B
L
K -
-
]

D
S
R
E
S
E
R
V

D
S
R
E
L
E
A
S

W
R
I
T
F
B
L
K

C
H
G
E
N
L
E
N

R
E
P
L
E
N
T
R
Y

A
C
S
E
N
T
R
Y

A
S
G
N
B
U
F
R

F
i
g
u
r
e

3
8
.

C
H
G
E
N
L
E
N

R
E
A
D
F
B
L
K

E
L
R
E
C

S
u
b
r
o
u
t
i
n
e

H
i
e
r
a
r
c
h
y

W
R
I
T
F
B
L
K

R
P
L
R
E
C

S
E
T
S
R
C
H

R
P
L
E
N
T
R
Y

W
R
I
T
E
F
B
L
K

C
H
G
E
N
L
E
N

A
C
S
N
O
D
E

D
S
R
E
S
E
R
V

A
C
S
E
N
T
R
Y

C
H
G
E
N
L
E
N

W
R
I
T
F
B
L
K

R
E
A
D
F
B
I
K

F
i
g
u
r
e

3
9
.

R
e
r
:
o
r
d

R
e
p
l
a
c
e
m
e
n
t

S
u
b
r
o
u
t
i
n
e

H
i
e
r
a
r
c
h
y

6-7

6.3.1 Data Set Attaching and Detaching Subroutines

These subroutines are called whenever it is necessary to
attach or detach a data set within a user or system file set.

6.3.1.1 DSATTACH. This subroutine is called to attach a
data set of a user or system file set. The ORVYL interface
routine ATCHF is called (see section 2,.1.7), and the contents of
the device identifier cell are stored in the DILIST entry (see
Appendix N) that corresponds to the data set ID number.

6.3.1.2 DSDETACH. This subroutine is called to detach a
data set of a user file. After the proper DILIST entry for the
data set has been passed to the ORVYL interface routine DTCHF, the
entry in DILIST is set to zero to prevent further usage.

6.3.2 Node Manipulation Subroutines

The subroutines described in this section are used to add
nodes to a tree-structured data set and to access nodes using
their unique key data element values.

6.3.2.1 ACSNODE. This subroutine is called to scan a tree-
structured data set for a match of a given key data element
value. The located matching node is returned to the caller. If
a match was not found, the place in the tree where a node with
the given key data eler d be inserted is located.
READFBLK (see sectior is called to put the file block
involved into core s

6.3.2.2 ADDNODE. This subroutine is called to add a new
node to a tree-structured data set. It is assumed that ACSNODE
has previously been called to locate the block and trailer posi-
tions where the new node is to be inserted. The basic
subroutines INSNODE, READFBLK, WRITFBLK, ASGNBLK, and
ASGNBUFR are called to assist in the procedure.

6.3.2.3 INSNODE. This subroutine, called by ADDNODE, is
used to insert a node into a tree data set block that is residing
in a core buffer.

6.3.3 Fntry Manipulation Subroutines

Entries are records stored in blocks of a residual or a
slot-structured data set. Entry manipulation subroutines are
usually used for accessing removed or split data in the residual
data set, but they are not limited to this. These subroutines
may also be used to access records residing in special data sets,
such as the master data set or system data sets.

6.3.3.1 ACSENTRY. This subroutine is called to locate an
entry within a given data set of a file. Special options may be
used to specify whether additional record segments are to be read

138

into user memory along with the requested entry or whether
updating entries from the batch queue (see section 7.3.2) are to
be accessed instead. READFBLK and ASGNBUFR are called by this
subroutine to assist in assigning buffer space and initiating
reads.

6.3.3.2 ADDENTRY. This subroutine is called to add a new
entry to a non-tree data set. The entry may be added either to
existing available space within a block or to an empty block that
must be assigned. If the entry data is too large for one block,
overflow entries are created in other blocks until all the data
has been stored. INSENTRY, READFBLK, WRITFBLK, DSRESERV,
DSRELEAS, ASGNBLK, ASGN3UFR, and FNDBKAVS, are called by this
subroutine to accomplish lower-level functions.

6.3.3.3 INSENTRY. This subroutine is called to insert an
entry into a non-tree data set block. The block must be residing
in user memory.

6.3.3.4 RPLENTRY. This subroutine is called to replace an
entry in a non-tree data set. If the new entry differs in length
from the original, adjustments will he made. All entry overflow
Problems associated with replacing an entry are handled by this
procedure.

5.3.4 Data Element Access Subroutines

These subroutines serve to locate data elements within a
record either Ly their structure element number and their
occurrence numbers (which of several occurrences is being
referred to) or by their structure element number and their
values.

6.3.4.1 ACSELEM. This subroutine is called to access a
data element within a record structure, given the structure
element number. Optional data elements may be accessed in
various ways. If an option flag is set and the element does not
exist, a pointer will be set to the location of the element if it
had existed.

6.3.4.2 INITVAL. This subroutine is called to initialize
certain values in user core (see Appendix H) for accessing a data
element by value. The input parameters are: the address of the
current structure, the structure element number in the current
structure, and the displacement of the start of element values in
the file block.

6.3.4.3 GETVALUE. This subroutine is called to locate a
data element value within the current structure. It is assumed
that both ACSELEM and INITVAL have been previously called, using
the read option flag.

1.730

r - q

6.3.44 PUTVALUE. This subroutine is called o store a
particular value of the current data element within the current
structure. It is assumed that both ACSELEM and INITVAL have been
previously called, using the store option flag.

6.3.4.5 PUTVEND. This subroutine is called at the
conclusion of a sequence of PUTVALUE calls for a data element.
PUTVEND stores the total value length header and value count
fields, and ensures that the optional element hit is set if the
data element is optional (see section 5.7).

6.3.5 Input and Output Suhroutines

6.3.5.1 READFBLK. This subroutine reads a block from a
user file data set. Basic error checking is done on the block
header to ensure validity. As input parameters, the subroutine
must be passed the data ,set number (record type--see section
4.3.2), the block number of the block to be read, and a buffer
address.

6.3.5.2 WRITFBLK. This subroutine writes 6 block out to a
user file data set. As input parameters, the routine must be
passed the data set number (record type), the block number of the
block to be written, and the buffer address.

6.3.6 Data Set Lockout

During the critical period after a record has been read in
for update and before it is written back out, the data set
involved is put under exclusive control. When the sequence is
completed, the data set is released from exclusive control. In
both routines, DSRESERV and DSRELEAS, the data set ---,lb is
passed as an input parameter.

6.3.7 Allocation Functions

From time to time, as the system is operating, It is
necessary to locate availahle resources (such as virtual memory,
empty space in a disk data set, etc.) and to allocate those
resources to the user then controlling the system. The following
routines are called to perform such functions.

6.3.7.1 ASGMBLK. This subroutine is called to assign and
initialize a new block of already allocated space in a data set.
The block is initialized as an empty block for the type of data
set given. The cell NXTRLK (see section <fill in later>) is used
to assign the block number. NXTBLK is incremented by ones. No
input or output takes place with this subroutine; the
initialization process occurs in the buffer only.

6.3.7.2 ASGNBUFR. This subroutine is called to assign a
buffer area in the user logical memory for use by other file
service procedures. The routine in turn calls nETCORE, an ORVYL

6-10

interface (see section 2.1.4), requesting a 2,048-byte extension
to the user area.

6.3.7.3 FND8KAVS. This subroutine is called to locate a
block within a data set with sufficient space to satisfy the user
request. In the case of residual data sets, the available space
f)lock is read into core and the appropriate available space
chains are examined for the smallest amount of space that will
satisfy the request. Incorrect chain elements (see section
5.4.1) are moved to the correct chains if they are at the tops of
chains when found. In the case of data sets other than residual
data sets, the next available block is assigned if the current
block cannot accomodate the request.

6.3.7.4 INITFILE. This subroutine is called when a new
file is to be created. All the data sets needed for the file are
created and initialized. The initial record in the master data
set must be created and made available to INITFILE as an input
Parameter. (This record holds the record characteristics for the
file.) DSATTACH, ADDENTRY, WRITFBLK, ASGNBLK, and ASGNBUFR are
all called by this subroutine.

6.3.8 Miscellaneous Subroutines

6.3.8.1 SETSRCH. This subroutine is called to set up the
addresses for a given record type in the record and data element
characteristics table in order to search a tree-structured or
slot-structured data set.

6.3.8.2. SETSTRCT. The set structure subroutine is called
to initialize the structure processing table entry (see AnpPndix
N) in order to prepare for accessing values within a given
structure. A required input parameter is the structure number of
the given structure. This parameter is zero if the structure is
at the top (i.e. record) level.

6.3.8.3 CLOSTRCT. This subroutine is called at the
conclusion of all data element processing within a given
structure. Clean-up work is performed on the structure table
entries and the structure level is decremented back to the next
higher-level structure.

141

7-1

CHAPTER 7

SPIRES SYSTEM SUPPORT FUNCTIONS

7.1 INTRODUCTION

The modules and Programs described in thEs chapter are
crucial to the smooth.functioning of the SPIRES II system--indeed,
without them the on-1Ihe system would cease to operate. These
routines perform file maintenance (updating), error diagnosis,
restarting and recovery, and system administration functions.
They Fall into three 00erating categories: on-line functions
(master commands), 0/S batch Functions, and ORVYL user program
functions.

7.2 THE THREE OPERATING CATEGORIES

Figure 40 lists the various system support functions by
module or program name, and shows the category or categories they
fall into.

7.2.1 Master Commands

This categorizes functions that can only be ,:alled through a
SPIRES master terminal. A master terminal Is so designated when
it is logged on under the SPIRES system account number (SNNN),
which is programmed into the system as a constant. At any given
time, two persons are responsible for the master terminal and the
system account number. The keyword should be changed often
(every day, preferablY) to avoid weakening security.

When the SPIRES system comes up, the subprocessor area (see
1.1.5.2) contains binary zeros. The master terminal operator
logs on into SPIRES and gives the command "MASTER." The system
checks to ensure that the user is logged on under the system
account number. If he is, then the master terminal flag is set
to X'80,1 indicating that the system is not ready to receive
other users. If other users attempt to log on while the master
terminal flag is set to this state, they are returncd to WYLBUR
with the message "SPIRES NOT IN SERVICE." The master terminal
operator may now issue warmstart commands, disable commands, or
any of the other commands (see below) that can only be issued
when no other users are logged on the the system. When the
master terminal operator is satisfied, he issues a PROCEED
command, which changes the status of the master terminal flag to
X/FF' and unlocks ths.system for other users. No master terminal
is allowed to log on If another master terminal is already logged
on.

142

Module or
Program Name

Master
Command

0/S
Batch

STSM User
Program

BATBUILD X

DEFUPDT X

VALIDATE X X X

FILE LIST X X X

DSZAP X

FULDUMP X

FULRES X

RECOVER X

WARMSTRT X

PASSREC X

DISABLE X

AVSPREC X X

FiLEDEF X

IDXREBAL X

DISKMAP X X

STAT X X

MESSAGE X

ENABLE X

INHIBIT X

KILL X

MAGIC WORD X

Figure 40. Utility Support for SPIRES II

'143

7-3

7.2.2 0/S Batch Programs

The programs in this category are run in the 0/S batch
Partition because they must have access to magnetic tape or
because they require 0/S disk data sets as input. They access
ORVYL data sets by using the virtual access method (yAM), which
Permits SPIRES II access method routines to be used in the batch
partition with little or no modification.

7.2.3 ORVYL User Programs

The programs in this category are run under ORVYL as user
programs for one of the following reasons:

economy;
availability (the 0/S batch partition may

not be available);
convenience of development there.

Of the programs that Figure 40 shows to be available in
more than one category, it may be that only one version will be

operational on day one of the system. In general, this version
will be the ORVYL user program.

7.3 THE FILE MAINTENANCE FUNCTIONS

These programs perform all regularly scheduled file updates.
They run exclusively in the 0/S batch because of their (4ependence
on magnetic tape. The batch build progrem Ls thf_ lona.
requirement of needin 0/S (III, ,lata sets.

7.3.1 BATBUILD

The batch ,-)uild program accepts a sequential stream of
additions, dele=ions, and replacements in user files. The ----ate

stream for each file Is stored in an 0/S input data set in a card
image. Th data in these data sets conforms to the syntax -ules
of the SPIRcS Ii external format. A user informs the system rf

the existence o-f a BATBUILD data set by issuing the commard
"BATCH <dsname> <bin number>," where the data set named conr:ains
the build input. When this command is recognized, the syste,--

assembles a record consEing of the user's account number, -lame,
bin number, data set name, and the profile selected at the t me
the command was issued. The record is then written into the

system file set SNNN.BUPDT, which consists of a master data 3et
and one slot-structured data set.

When BA-I-BUILD executes, it opens the system data set
SNNN.BUPDT using VAM (see section 1.1.5.3), and reads a header
record. This header gives sufficient information for BATBUILD to
select a user profile, to open the 0/S input data set, and to
process the update using exactly the same update semantics as are

44

7-4

used on-line. A hard-copy listing for the entire program run is

produced that shows each data element value affected, the action
taken on each, and any error diagnostics. When the end of a file
is reached, the next record from SNNN.BUPDT is read, and the
process is repeated for the next file. The format of the
hard-copy listing includes pare separators giving user name and
bin number, to allow the listings to be distributed to thP users
the next day. As each file is updated, the julian date is
entered in the appropriate day slot in the update table in block
two of the file's residual data set.

As the build input for each file is read anH processed, the
inout records are also written out on magnetic tape, with the
SNNN.BUPDT record serving as a header for each file group. The
tape will have been initialized with the volume serial number
"BLDnnn," where nnn is the julian date of the build run. This
late is also entered in the update table in block two of the
file's residual data set. When recovery is necessary, a full
restoration is made, and RECOVER (see section 7.5.4) requires
mount messages on all tape volumes in which build input has been
processed since the last full dump. The volume serial numbers
are reconstructed from the julian dates in block two of the
file's residual data set.

7.3.2 DEFUPDT

The input for the deferred update program is the contents of
the deferred update queue data set "SNNN.DU01." This data set
contains the day's update transactions that were entered on-line,
translated into internal format. There are two identica/ copies
of the deferred update queue, SNNN.nU01 and SNNN.DU02, kept on
different channels and devices. Should an input or output error
occur while SNNN.0U01 is being read, DEFUPDT will switch to
SNNN.DU02 with no intervention. The probability of both data
sets failing simultaneously for the same record is very slight.

The provisions in DEFUPDT for recovery are almost identical
to those built into BATBUILD. The input is passed off to a
magnetic tape with a specially generated volume serial number,
"DEFrinn," where nnn is the julian Hate. This number is also
entered in the day'q slot in the update table in block two of
the file's residual data set,;-, The program RECOVER can reconstruct
the file in the same way as itlwould using a BATBUILD tape.

7.4 ERROR DIAGNOSTIC ROUTINES,
7

These routines will be used in locating file problems caused
by software errors and hardware failures.

7.4.1 VALIDATE

There are two versions of this program. VALIDATE I will
eventually exist in all of the three categories. It checks the

145

7-5

validity of all the file blocks of a given file, and all the
entries and nodes within those blocks. It does not check the
validity of record pointers that point across data set boundaries.
VALIDATE II performs the same checks that VALIDATE I does. In

addition, it verifies all pointers. Since such an operation
will doubtless involve sorting, an operation that cannot be
performed under ORVYL, VALIDATE II will run under 0/S in batch
mode. From both versions of the program a listing w:11 be
produced of all anomalies found in the specified file. Blocks
and nodes or entries found to be in error will be listed out in

hexadecimal format where appropriate.

7.4,2 FILELIST

This program will list files or portions of files either
logically or physically. If a logical listing is requested,
then all the records of a specified record type within a specified
key data element value range will be listed in external format,
along with all the access records that refer to then. Storage
information accompanies each record. If a physical listing is
requested, then all the block numbers with'n a stated number range
in the specified data set will be listed in hexadecimal format.

7.5 RESTART AND RECOVERY

The routines that make up RESTART and RECOVER vary from
simple on-line master commands to special versions of large 0/S
batch programs, which have been altered to perform recovery.

7.5.1 DSZAP

This module will eventually exist in all of the three
categories. It will accept as input parameters the file name,
a data set number (0 for residual, -1 for master, 1, 2, 3...n for
record type), a block number, an offset from th beginning
of the block, an optional hexadecimal string to he verified, and
a hexadecimal replacement string. The program will execute a
DSRESERV (see section 6.3.6), read the specified block, compare
the verification string (if there is one) to the string at the
given offset, and, if the two are equal, replace the string at
that offset with the replacement string.

7.5.2 FULDUMP

The FuLnumP program operates either on single files, on a
specified subset of SPIRES files defined in SNNN.FILES, or on all
SPIRES files listed in SNNN.FILES. FULDUMP copies a specified
file, data set by data set, block by block, onto a magnetic tape
whose length (1,200 or 2,400 feet if a single reel is used, 2,400
feet if more than one reel is used) is selected according to the
total number of blocks in the file's data sets. Before block two
of the file's residual data set is dumped, the Julian date will

146

7-6

be written into the "dump" slot of the update table. The julian

date will also be used to create a data set name in the data set

header on the magnetic tape: "DMPnnn." The volume serial number

of the tape volume containing the dump will he the file name of

the file being dumped.

7.5.3 FULRFS

This program operates on a single sper:Ified file. The

input, of course, is the magnetic tape produced in a previous run

of FULDUMP. The input parameters are the julian date to be used
(the date of the file dump), the file name, and whether the fil

still exists on disk and is to be overwritten, or whether it is

to be completely reallocated. If the file is to be reallocated,

a growth space percentage must be provided as a parameter for

FULRES. IF no julian date is provided and overwriting is
desired, a call is made for the last dump version using the
julian date stored in block two of the file's residual data set.
If no jul:an date is provided and there is no version available

on disk, the operator will he prompted for a juliar late.

7.5.4 RECOVER

This program is a special combination of BATBUILD and
DEFUPDT, designed to be run after FULRES has restored a file to

some previous correct version. RECOVER looks into a file's

update table to determine the days of update activity in the

Period since the file was dumped. If on a particular day either

build or deferred update activity occurred, mounts messages are
issued for the build or deferred update tape for that day. The

update information that applies to the file undergoing recovery
is located and copied. This process is repeated until the file

is current again.

7.5.5 WARMSTRT

This routine is called by master command only; and it must be
called just after the system comes up after a crash, before any
users are allowed on the system. WARMSTRT accesses the data set

SNNN.FILES. For each SPIRES file listed therein, the residual
data set block 0 (the supplemental write block--see section 5.4.2)

is read and the first and last words there are compared. If they

are equal, the corresponding data set record will be read, and
its first and last words compared. If these are unequal, then tFe

supplemental write block is used to overwrite the data set
block. IF the data set record first and last words are equal,
then the supplemental write block is compared with the data set
block. If these two are unequal, the supplemental write block is
used to overwrite the data set block. Each time a data set block
is thus overwritten, a message is written to the master terminal.

7-7

7.5.6 PASSRFC

This program can be used to regenerate access records
consisting only of passed information. Output in the form of
nodes or slots is written on magnetic tape, which will then be

sorted into key data element value sequence and input to the
TREREBAL program (see section 7.6.1).

7.5.7 DISABLE and Et0ABLE

-These routines are called by master command only. The file

name specified in the DISABLE command is placed in the
subprocessor communications area. Since all attempts to attach a
file are checked against this area, users are kept from gaining
access to a downed file during a recovery period. The ENABLE
command removes the specified frile name from the disabled file

table.

7.5.8 AVSPREC

This prograr, regenerates block one (the available space
table) of a residual data set in a specified file or series of
files. Block one is read into user memory, and blocks 3-n are
read sequentially. As each b7ock is read, the available space
trailer is located, and the amount of available space is used
to determine which available space chain is appropriate for
the block. After a chain is chosen, the pointer in the available
space table is placed in the FBLIDAB field of the block header

(see Figure 27). The block number of the block--FBHDBK--is moved
to the appropriate slot in the available space table. Counts are
maintained on the number of blocks in each chain. When the last
block in the residual data set is read and chained, a listing of
counts is produced, and block two is rewritten to the residual
data set.

7.5.9 MESSAGE

This master terminal command causes the two-digit message
code specified in the master terminal command to be placed in
the subprocessor communications area. This area is checked
periodically, and if a new message code is found there, the data
set SNNM.MESSAGE is accessed, and the appropriate predefined
message is put out at the user terminal. Codes 0-254 are for
Predefined messages. Code 255 is for a nonpredefined message
Placed by the master terminal operator in slot 255 of the SNNN.
MESSAGE data set. Such a message would be used when it is

necessary to broadcast a message not covered by the predefined
set.

7.5.10 INHIBIT

This master terminal command prevents any new users from
logging onto the system by setting the LOGON flag to X00.1

148

7-8

The flag is checked by the subprocessor each time a new user
attempts to log on.

7.5.11 KILL

This master terminal command places an X'80' in the LOQON
flag of the communications area. The subprocessor periodically
checks this flag; if it contains an X'80', the user is summarily
returned to WYLBUR, with profound apologies put out at his
terminal.

7.5,12 MAGIC WORD

This master terminal command placf-ls an VAC' in the LOGON
'clag. The parameter that accompanies the command verb is moved
to the "magic word" field of the communications area. All users
attempting to log on when the flag coutains an X'AO' are prompted
for a magic word, which must match the one in the communications
area. If it does not, the user is returned to WYLBUR.

7.6 AIDS TO SYSTEM ADMINISTRATION

The following programs and routines are necessary for the
day-to-day administration of the system. They include a tree
data set rehalam-Ang program, a disk mapper, and a statistics
report generation program.

7.6.1 TREREBAL

This program reads node input from one of two sources: a
sorted magnetic tape from PASSREC (see 7.5.6), or one from the
tree data set ;tself. The tree is rebalanced in the way described
in section 4.4.3.

7.6.2 DISKMAP

This program produces two types of output. The first, given
a disk volume ID or a series of ID's, is a map of the contents of
the volume(s) by ascending disk address. The second consists of
a listing by specified file name of the physical locations of all

data sets and their extents.

7.6.3 STAT

This program will cause a listing to be produced of the
day's accumulation of statistics. These statistics will contain
information ahout the frequency of file accesses, module usage,
command usage, etc. Another listing will he a tabulation of all

error diagnostics issued by the system. At the end of the week,
month, and quarter, summary reports will also be produced.

149

D-1

APPENDIX D

Preprints/Anti-Preprints:
SLAC Library Monitors Underground Physics Press

Louise Addis
(Reprinted from The SLAC News, 20, June 2, 1971, 2-3.)

Preprints are the underground press of the particle- physics
world. For the past three years, the SLAC Library's weekly
newsletter "Preprints in Particles and Fields (PPF)" has been
providing that world with a popular and reliable master key to
its preprint press rooms.

But what are these slighty clandestine preprints? What
indeed are anti-preprints? Why is a PPF needed to keep track of
them all?

Preprints look hinocent enough, a modest sheaf of
mimeographed, dittoed, or multilithed sheets locked together by a
staple or two. Despite titillating undergound-sounding titles
about "Degenerate Daughters," "Ghosts and Gotterdaemmerungen,"
Two- and Thr,da-Body Problems", reading reveals uniformly benign
texts unintelligible to anyone but particle physicists. A few
sport fancy covers (like the Lemonade and Orangeade series from
Cal Tech) but most are as plain as the hundreds of other
documents in the bulging boxes and bags of mail delivered daily
to the SLAC Library. But to Rita Taylor, SLAC Preprint
Librarian, 50 to 100 Items in each week's heap are special.
Using, one suspects, ESP or other exotic devices, Rita quickly
sorts them from the piles of other material, checks to see that
they are not repeats, then launches them on the way to
announcement in the next PPF.

These are the preprints. They report the latest
experimental and theoretical brain flashes in particle physics,
and are being precirculated by their authors at the same time
that a manuscript is being submitted for more formal but dilatory
publication in a journal. If after months or even years, such a
paper finally achieves immortality in the pages of a journal or
book, it will be transformed into an "ANTI-PREPRINT", proclaimed
in a special green section of PPF, and the original preprint
discarded. (A reprint or offprint, by the way, is the exact
opposite of a preprint, since it is a copy of an article after it
has been published.)

Like many other products of underground presses, preprints
are not for sale, but are obtained by being on mailing lists, hy
knowing somebody else who is, by having a library that makes a
real effort to collect them, or hy finding out about a particular
item in time to write the author for a copy.

D-2

Until recently most libraries scorned preprints and most
preprint authors made up mailing lists that included people they
knew and famous physicists in large laboratories. Less known
physicists in out of the way places complained bitterly they
couldn't keep up because they didn't get preprints and couldn't
even find out about them. Well known physicists complained that
their mail boxes were jammed with worthless papers they didn't
have time to read. Journal editors worried about the threat of
the preprint free-press to the integrity and circulation of their
journals, and wasted time and temper trying to run down published
versions of preprint references. The work of chronicling the
weekly influx of prepr!nts was expensively and imperfectly
duplicated by preprint secretaries in countless physics
departments. Everyone cried out against the burgeoning
circulation of "junk." Preprints, though obviously a vital
communication link among physicists, seemed by their very nature
defective in the role.

This perplexing preprint paradox (the preprint perplex) was
discussed a lot during the 1960s and some elaborate proposals
made. Several preprints dealt at length with the question of how
to deal with preprints, and a somewhat acrimonious debate
developed about the merits of trying to centralized preprint
distribution, a proposal which many thought would lead straight to
preprints of preprints, to proliferation rather than containment
of "junk." Nothing, however, was actually done.

Finally, in 1968, SLAC's Director W.K.H. Panofsky and LRL's
Art Rosenfeld were elected Chairman and Secretary of the new
Division of Particles and Fields (DPF) of the American Physical
Society. Under their leadership DPF formed an alliance with
three SLAC Librarians, Louise Addis, Bob Gex, and Rita Taylor, to
do something about preprint communication for the whole particle
physics community.

The SLAC Library, since its foundation in 1962 on a stack of
dusty preprints and some coaching from a CERN Librarian, had been
aggressively collecting new preprints and publishing a popular
authoritative weekly list of them for SLAC physicists. As years
passed, more and more SLAC alumni requested that the SLAC
Preprint List be mailed to them at their new institutions. It
seemed evident that the simplest, cheapest, and most practical
palliative for the preprint perplex was to publish such a list in
condensed format, rush it by air to anyone who wanted it, and let
him/her or a library acquire the few preprints which were of real
interest. Experience had shown that even at SLAC which shelters
large numbers of particle physicists, 50-60% of the current crop
of preprints are never requested by anyone and that most
preprints requested are of interest to just two or three
specialists. (At the other extreme, a few important preprints
may be of interest to almost everyone.) All preprints must be
announced, of course, to enable selection to take place.

151

D-3

The problems of finding preprints later, referencing them
after publication, clearing space on desks or library shelves
could be solved by including a section called "ANTI-PREPRINTS"
listing published preprints +/ith journal, volume, and page
references. The SLAC Preprint Librarian had been doing this for
years for SLAC and for a few other friendly preprint librarians.

A lightning-fast preprint announcement list coupled with
anti-preprint information would complement rather than compete
with other physics publications and would not upset the delicate
ecology of preprints by slowing them down or overstimulating the
distribution of junk. The idea was consistent with a philosophy
of preprints as ephemeral documents, rough but speedy..

Master copy for the lists could be produced quickly, easily
and elegantly by computer. Since the SLAC Library and its
preprints were already participants in a large computerized
experimental information system, SPIRES (Stanford Physics
Information REtrieval System), very little extra programming
would be required.

A proposal was written. IN those more affluent days, SLAC
soon obtained a special seed-money grant from the AEC to finance
printing and mailing such a preprint list to the physicists of
the DPF for an 18-month trial period. Computerization was
undertaken by Prof. E. Parker's SPIRES group with financing from
the National Science Foundation. PPF was on its way.

Since the whole point of preprints is speed, everything
about PPF was designed to promote it: speed in production, speed
in distribution, and speed in use. A printer was found who could
handle the job from repro-ready copy to mailbox within 24 hours.
All time-consuming refinements such as elaborate subject
classifications, indexes, etc. were rejected. Not quick and
dirty, but quick, clean, simple and complete is the motto for
PPF.

The first issue of PPF hit the mails in January 1969, and in
April all subscribers were queried to see whether the experiment
was worth continuing.

The response was overwhelming. More than a thousand
subscribers positively wanted to continue getting PPF and
hundreds took time to write sometimes lengthy comments and
suggestions. Though the PPF staff may have tended to dwell
unduly on remarks like "Best thing to happen in physics
information in 50 years!" "I have already found one reference
which was worth the year's subscription" "Most Valuable
publication I get" "PPF is a necessity" u

I read it religiously!"
and "It's a stroke of genius", clearly PPF met a real need and
its future was assured. Several laboratories, including the

to2

D-4

giant drookhaven 14ational Laboratory had ceased publishing their
own preprint lists and were relying on PPF. One physics department
reported reproducing 50-60 copies each week for distribution to
faculty and graduate students. Several overseas laboratories
made arrangements to reproduce PPF for secondary distribution in
their own countries. Even journal editorq were enthusiastic
about the Anti-Preprints list on practicat ds well as
philosophical grounds. They were using it to exterminate
references to old preprints in papers submitted to them for
publication.

In July 1(..)70 when the seed-money for printing and mailing
ran out, PPF easily became self-supporting. Curently a year's
subscription to PPF costs $10/year in the U.S., Canada, and
Mexico, $18.50 overseas. It has 531 domestic and 104 overseas
subscribers (not counting SLAC), is not copyrighted and is
extensively reproduced at its various Jestinations for further
distribution. PPF lists an average of 67 new preprints each week
and 100 Anti-Preprints every other week. Each quarter there's a
special feature called "PPF Conference Previews and Reviews"
which announces future particle physics conferences and explains
how to get the proceedings of past conferences. As space
permits, various physics events are publicized. DPF notices
appear as needed. Subscribers also receive the "Preprint Source
Address List" which makes it easier to write to authors for
preprint copies. (The third edition dated December 1970 listed
510 addresses), and they may request copies of quarterly
cumulations of the Anti-Preprint lists.

All preprints received up to late Wednesday afternoon (and
sometimes early Thursday morning) are announced on the week's
PPF. (Recently an author phoned to wonder when PPF would get
arcund to listing his preprint which he had sent three weeks ago.
It turned out to have been listed the same week he sent it, but
it hadn't occurred to him that such was 'possible.) Coded
bibliographic information (authors, titles, report numbers,
language, date, number of pages, source) is typed directly Into a
computer from a time-sharing terminal. The computer sorts,
reformats the information and produces the upper-lower case
repro-ready copy at the same terminal. On Thursday, the copy is
proofed, corrections typed into the computer and final master
copy listed for paste-up. The printer picks up the result at
2:00 p.m. PPF goes into the next day's mail and arrives early
Monday or Tuesday on physicists' desks all over the world.

The Anti-Preprint list is produced in a similar way after
the tables of contents of all new physics journals have been
comPared with the current preprint collection and published
articles matched with corresponding preprints. This is a tricky
process since titles change from preprint to article, and
sometimes a shortened version of a paper is published in a fast

D-5

acting "letters" journal while the longer preprinted version

awaits full publication in the slower "Physical Review." It's
important not to throw away the extensive data in the longer

version until it is truly published.

PPF has been managed, edited, and cherished for the three

years of its existence by the same tearl of SLAC Librarians,
Louise Addis, Bob Gex, and Rita Taylor, with the indis nsible

help of Ruth Consolo, lay-out, Rita Glover, computer input, and

Barbara Rupp, descriptive cataloging. Bennie Hicks compiles the
quarterly section "PPF Conference Previews and Reviews" from her

own more complete SLAC publication "Conference Previews."

At SLAG, physicists not only receive a weekly copy of PPF

automatically (until recently a special expanded version was
published for home consumption), but they have immediate access

to all the preprints listed on it. The weeks' preprints are
displayed in the Library reading room Monday through Friday where

readers may sign up for them or make their own xerox copies.

Cards are also filed in the SLAG Library catalog for all the

authors of each preprint, so if the recollected author is the

twenty-third and his name begins with Z, the preprint can still

be located. Subject searching of the preprint collection is
available through an on-line information retireval system,

SPIRES. A future SLAC NEWS article will describe SPIRES and how

it may be used for personally tailored literature searches of the

underground press of particle physics.

