
ED 057 806

AUTHOR
TITLE

INSTITUTION

SPONS AGENCY
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

DOCUMENT RESUME

LT 003 295

de Boer, Aeint
Center for Information Services, Phase II: Detailed
System Design and Programming, Part 1 - A Modular
Computer Program for Reference Retrieval, Phase hA
Final Report.
California Univ., Los Angeles. Inst. of Library
Research.
National Science Foundation, Washington, D.C.
1 Mar 71
45p.;(21 References)

MF-$0.65 HC-$3.29
*Cataloging; *Computer Programs; *Information
Centers; *Information Retrieval; *Information
Services; Library Acquisition
*Computer Software; University of California (Los
Angelcg)

ABSTRACT
A modular computer program for subject access to

multiple fixed-vocabulary bibliographic data bases has been
developed. It is written in PL/I and Assembler Language for operation
on the IBM 360 Model 91 computer at the University of California, Los
Angeles, and can run on a computer as small as an IBM 360 Model 50.
The program (MULFSCH) described represents an intermediate stage in
software development for the Center for Information Services (CIS).
As such, its principal value to the CIS project is in development of
the various procedures (acquisition, cataloging, retrieval, etc.)
attendant to the operation of the CIS. (Related docuAlents are
available as LI 003296 through LI 003301). (Author)



%X) U.S. DEPARTMENT OF HEALTH.
C:=) EDUCATION & WELFARE

OFFICE OF EDUCATION
CC) THIS DOCUMENT HAS BEEN REPRO-

DUCED EXACTLY AS RECEIVED FROMr-- THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-

111 IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POUCY.

CENTER FOR INFORMATION SERVICES

PHASE II: DETAILED SYSTEM DESIGN AND PROGRAMMING

NSF GRANT GN-827

PHASE IIA FINAL REPORT

PART 1

A MODELAR COMPUTER PROGRAM FOR REFERENCE RETRIEVAL

by

Aeint de Boer

1 March 1971

Institute of Library Research
University of California
Los Angeles, California

1



TABLE OF CONTENTS

PAGE

LIST OF ILLUSTRATIONS iii

ABSTRACT iv

I. BIBLIOGRAPHIC DATA BASES 1

II. APPROACHES TO REFERENCE RETRIEVAL SOFTWARE . . 8

III. A MODULAR PROGRAM FOR REFERENCE RETRIEVAL 16

IV. SUMMARY 37

BIBLIOGRAPHY ........... 38

2



LIST OF ILLUSTRATIONS

FIGURE PAGE

1 PROGRAM PROCEDURE CHART 18

2 ERIC FILE DATA FIELDS 25

3 SAMPLE OUTPUT 27-30



ABSTRACT

A modular computer program for subject access to

multiple fixed-vocabulary bibliographic data bases has

been developed. It is written in PL/I and Assembler

Language for operation on the IBM 360 Model 91 computer

at the University of California, Los Angeles, and can run DU

a computer as small as an IBM 360 Model 50. The program

(MULFSCH) described represents an intermediate stage in

software development for the Center for Information Services

(CIS). As such, its principal value to the CIS project is in

development of the various procedures (acquisition, cataloging,

retrieval, etc.) attendant to the r-}erat! _lie

4



I. BIBLIOGRAPHIC DATA BASES

GENERAL CHARACTERISTICS

The data bases available to the library, which include bibliographic
as well as statistical or natural language, are produced by various
federal agencies, professional societies and commercial organizations,
and the number grows each year. Often produced in hard copy or
recorded on film, these data bases also are available on magnetic
tape due not only to the low cost per character and high capacity
of the medium but to its use in facilitating computer based processing
operations.

For the most part, bibliographic data bases are offerd as by-
products of on-going cataloging, abstracting and indexing services.
As such, they were created primarily to support the on-going service
and fit its requirements. A major consequence of this situation is
that nearly every file is a unique case. Each file has its own for
data fields, coding schemes and processing requirements. Thus t
predominant feature of bibliographic files is variability, both in
the formats of individual files and in the composition of individual
entries within a given file. The importance and advantages of
standardization, at least in interchange formats (e.g. the MARC II
format), are beginning to be realized, but it will be a wi1e yet
before the effects become widespread. In the data base discussions
that follow:

a. record will refer to the information read from an
external medium in a single machine operation
(i.e. a physical record in common parlance)

b. entry will refer to the information for one
citation

c. item will refer to a recognizable data element
within an entry

d. group will refer to a set of related Items

e. delimiter will refer to an item which marks the
beginning or end of another item or g2oup

f. tag. will refer to an item whose value indicates
the presence of another item or group.



PROBLEM AREAS

The ,rntries for bibliographic files are universally of variable
length. Normally the only prior knowledge that is awdlable is the
maximum length of an entry or record. An entry may be part of a
single record, correspond exactly to a single record, or span a number
of records. In (...ny case, some means must be provided to allow the
--:omputer (program) to recognize a complete entry and to determine
its length.

In some cases a file may contain a number of different entry
or record types, each with its own format. Such files usually contain
a special tag (entry or record type code) in a fixed location to
indicate the nature of the current entry or record.

Often the presence of an item within a given entry is optional.
For example, an entry may not have an author or a report number.
This may be done by leaving the item blank, but the most common
approach is to delete it entirely. In either case, the compvc7er
must be able to determine the presence or absence of an optional item.

The majority of the items in an entry are inherently of variable
length. Although such items as author, title, and descriptor terms
could be forced into standard fixed length fields, this would result
in significant amounts of blank (wasted) space in an entry. In

practice, this is rarely done. Thus, for most items, some means
must be provided to allow the computer to determine the length of
the item, and, since following items will change location relative
to the beginning of an entry as the length uf a preceding item
changes, to determine the location of an item.

Some of the items in an entry may have multiple occurrences.
The most common examples are multiple authorship and multiple subject
access terms. Once again, space may be proviled for a fixed maximum
number of occurrences, but 1-his is not common. If the number of
occurrences is variable, the computer must be able to determine the
actual number for any given entry.

Another problem, of a slightly different nature, is the character
set used for a file. Current popular choices aru BCD (Binary Coded
Decimal), EBCDIC (Extended Binary Coded Decimal Interchange Code) and
ASCII (American Standard Code for Information Interchange). A superior
character set from the computer's viewpoint may, however, be inadequate
for a particular application. For instance, for its MARC tapes,
distriliuted on both 7-track and 9-track tapes, the Library of Congress

uses an 8-bit extension of ASCII (a 7-bit code) with numerous additional
diacritics and foreign letters on 9-track tapes. On 7-track tapes,
they utilize a 6-bit code derived from ASCII with non-locking shift
codes to indicate that the following character is from one of three



additional non-standard character sets.(10) In effect, this means
that certain single print characters are written and stored as
character pairs.

These then are some of the problems that must be faced by the
system analyst when he is charged with designing a format for a
bibliographic file. Unfortunately, it is in the nature of the beast
that each problem can be met by a number of solutions and that system
analysts have yet to agree on a best solution for any given problem.

PROCESSING

Three areas of processing must be provided by the CIS for biblio-
graphic data bases. These are:

1) File maintenance,

2) Index production, and

3) Reference retrieval.

The first two are primarily associated with the internal operation
of CIS, while the third is the major reason the library will acquire
r-nd process bibliographic data bases.

File Maintenance

This involves merging updated entries into a main file, deleting
out-of-date entries, making corrections by replacing entries or items,
etc. Also Included in this area is the maintenance of any supporting
files such as thesauri, or inverted files to be used for on-line
processing.

Index Production

This involves production of printed indexes for the use of both
the CIS analyst and the patron. Thesaurus listings with frequency of
term use would be helpful in formulating search strategies. Some
requests could be satisfactorily answered by referring to printed
author, KWIC title or other indexes.

If the researcher is making a comprehensive literature search,
the bibliography resulting from a machine search may number hundreds
of entries. In this case, printed indexes by author, originating
institution, index term, etc. or KWIC or KWOC title indexes would
make the result more useful.(14)



REFERENCE RETRIEVAL

The subject of reference retrieval has been of central interest

to the study of information science and documentation since its

Inception.. The relevant chapters of the Annual Review of Information

Science and Technology(l) provide excellent reviews of the topic with

selected bibliographies.

In its simplest form, reference retrieval may be defined as the

selection of a set of references from a larger collection according

to some known criterion. Although this definition does not exclude

manual systems, the following discussions deal primarily with computer

oriented reference retrieval systems.

A common, though rath_lr artificial, distinction is made between

a retrieval system and a &insemination system. In a retrieval system,

a biblio8raphic file is searched against a "query" to print a "bibli-

ography", while, in a dissemination system, it is searched against a

"user px.ofile" to print a "selective dissemination of information (SDI)

notice".(4) There is no logical difference between a "query" and a

/1user profile" or a "bibliography" and an "SDI notice". The former

both represent a request for Information, while the latter both

represent the end product satisfying that request. The real differenca

is In the nature of the file searched. For retrieval, the file

usually represents a relatively large historical collection (say, 2-3

years qf Chemical Abstracts used for a retrospective search, while

for dissemination, the file usually is a current addition (say, thr

last i:;sue of Chemical Abstracts) used for current awareness.

Obviously, the compt:ter makes no distinction between files of diffcrent

sizes or between possible uses for its output. Thus a single computer

program will perform retrieval or dissemination with equal facility.

Recognizing, then, the essential similarity between the two types

of systems, they are referred to in this report by the common term

reference retrieval. Also, the more meaningful terms query and

bibliography will be preferred.

It is worth-while, at this time, to consider whether there are

any advantages to the computerized searching of a bibliographic data

base as opposed to the manual searching of the original printed source.

First, in regard to user behavior, Berul(4) has rrwiewed an

evaluation of an on-line document retrieval system which ranks the

importance of access points to a collection as: subject, author,

report number, corporate source and contract number.

A printed indexing or abstracting journal will normally supply

subject and author indexes and may or may not supply report number,

corporate source, contract number or other indexes. With indepth



suhject indexing, it may not be feasible or economical to print a
-eomplete subject index, consequently a citatfon may only be entered
in the printed index under the two or three most important subjects
of the nine or ten assigned to a document (see, for example, Index
Medicus or Research in Education).

A subject search rarely involves a single index term but usually
requires a combination of index terms, either to narrow the subject
area or to Include closely related index terms in -che search. Such
a search can be performed using a printed index but may be difficult
and time consuming. Also, with only a partial printed index some
relevant citations are almost certain to be missed.

The principle advantages of searching a bibliographic file by
computer, then, occur in just thoee areas where a printed source is

weak. To the computer, the entire citation is accessible. In
principle, it is no more difficult for a computer to examine all index
terms than just the major ones, or to examine the author(s), corporate
source, publication date or any other access point contained in the
citation. The computer will also search tirelessly for complex
coordinations of index terms oc other access points, missing nothing
it has been asked for.

The ehove relatively abstract justification of computer searching
of bibliographic files is amply supported by both the increased
availability of bibliographic files in machine readable form and
the number of reference retrieval systems that are being used or
designed across the nation.(12)

1:rom the computer's viewpoint, there are at least five elements
to a query:

1) Identification,

2) File specification,

3) Selection specification,

4) Sequence specification, and

5) Output specification.

The query is normally presented to the computer in a precise
form specified by a "query language" (in a programming sense) for
matching against a file.

The identification information is used merely to enable people
to correlate the output with a query and to simplify further processing.
It may be as simple as a query number, or as complex as a sentence
summarizing the request plus the requester's name and address.

9



The file specification states the file to be searched. In a
system designed to search only one file, this is normally implied.
In some cases, a portion of a file may be specified as, say, certain
years or issues or as a range of accession numbers. Such a require-
ment may be handled by the program or implied by the file given to
the program to be searched in a particular run.

The selection specification is the heart of the matter.
Essentially, it is a statement of the conditions an entry in the
file must satisfy in order to be selected and output by this query.
Commonly used conditions include the presence of a given author,
the presence of given index terms or keywords in the title or abstract,
the presence of a citation to a given article, etc.

While the query languages for retrieval systems are no more
standardized than file formats, most have provisions for specifying
conditions of the form:

<Item> <Relation> <Value>

where Item is a field in an entry (e.g. author), Value is a potential
value that Itm can have (e.g. Smith, John), and Relation specifies
the particulc,r condition desired between the Item and Value (e.g. =,
,=, >, etc.). In addition, the Boolean operators (And, Or and Not)
are normally available for specifying logical combinations of condition
e.g.:

Condition l OR Condition_? AND NOT Condition_3.

The particular form, punctuation, spelling, etc. required by the query
language varies from system to system, depending on the capabilities
of the system and the ingenuity of the designer. An extremely simple
query language is given in Program Input Data (Section III).

The sequence specification states the order desired for the entrie
of the bibliociraphy. Some possibilities are: alphabetic order by the
first author, descending order by the publication date or descending
order by the degree of match (when selection conditions are weighted).
Often, a given retrieval system will allow only an implied sequence,
i.e. entries are printed in the sequence given in the file.

The output specification normally states the items that are to
be printed from each entry and how to print them. In many cases, a
given retrieval system will have a standard output format which is
used for all queries, or will allow a selection from a few standard
formats (e.g. with abstract or without abstract).



The complete query with all the above elements, either explicit
or implied, is then one set of input to a computer program for
reference retrieval, the other set being the bibliographic file.

Computer oriented reference retrieval systems come in two basic
types: batch-processing systems and interactive systems.

In a batch-processing system, a set of queries is collected into
a "batch" and processed as a group against the file(s) desired. The

file is normally stored as a sequential file on magnetic tape. As

each entry in the file is read, it is compared against the selection
specification for each query in th2 batch. If the entry satisfies the
conditions for a given query, it is written into a temporary file
together with an identification for the query. When the complete file
has been processed, the work file is sorted to bring the "hit"
references for a given query together. This sorted file is printed
as a bibliography for each query.

In an interactive system, there is a dialog between the patron
or analyst and the computer through a typewriter-like terminal or a
television-like (CRT) terminal. The computer can then provide assistat

in formulating a query, estimate the magnitude of the results, perform
the search, allow a review of retrieved references for relevance,
automatically modify the query on the basis of user relevance judgemen-
and print the resultant bibliography, all in a few minutes. Each

query is usually processed as a separate entity, even though several

queries may be processed simultaneously through different terminals.
The file is normally stored on magnetic disk or some other direct
access storage device in a file organization designed to provide
rapid response te queries.(15)

These descriptions of batch-processing and Interactive systems
are general. As is so often the case, there are many variations on

a basic theme. One interesting hybrid results when interaction is
used to formulate a query which is then saved for a scheduled batch

mode search. There are, of course, advantages and disadvantages to
each type of system, with probably the most important considerations
being cost, response time and feasibility within a particular
environment.



II. APPROACHES TO REFERENCE RETRIEVAL SOFTWARE

There are a number of alternatives available for the design of a
reference retrieval system for the Center for Information Services.
In examining some of these, the reader should keep in mind that any

system must be capable of processing a number of data bases in a wide

variety of formats, not necessarily at the same time or with the same
program.

CUSTOM PROGRAMMING

This approach involves writing or obtaining an individual program
for retrieval from each data base. Programs of this type are available

from the originating agencies, e.g. Chemical Abstracts Service or the
Library of Congress, or from other investigators, e.g. Syracuse Universi
School of Library Science.(3) Any programs obtained from other organi-
zations for a computer similar to the CIS computer would probably have

to be modified to some extent to resolve any differences in the config-

urations, operating systems or programming language translators. Many

programs would have to be written from scratch, either due to Insur-

mountable differences between existing programs and the CIS computer or

to a lack of any program suitable for the needs of the CIS.

A solution based only on these techniques would lead to a large

number of programs to be used and maintained. Worse yet, there would

be a number of different query languages that the CIS analyst would

have to be familiar with in order to properly formulate queries. In

creneral, this approach is almost certain to be too lengchy, too costly

and unresponsive to the needs of the CIS to be considered for anything

other than experimentation or very short term use.

DATA BASE CONVERSION

This approach involves defining a canonical format for bibliograph

files and converting each data base acquired into this format.

Individual programs would then have to be written, of course, to

convert each data base. However, a single reference retrieval program

could be used to search the canonical form of the data bases.

While the conversion programs would be relatively simple and
the CIS analyst would have only one query language to deal with,

12



the computer costs incurred and probable loss of information during
the conversion process argue strongly against this approach.

MODULAR PROGRAMMING

This approach depends upon the nature of a reference retrieval
program. Recall that there are two basic types of input: a set of
queries and n biblioraphic file. Certain parts of such a program
will have to "know" the structure of the query language either in
the external or in the internal form (e.g. a query translation
routine), other parts will have to "know" the format of the bibliograph.
file (e.g. a file read, routine), some parts must deal with both (e.g. a
matching routine), and some are concerned-with neither (e.g. a monitor
routine). The designer of a modular program would recognize these
essential differences and would isolate into separate procedures those
portions of the program which are concerned with a specific type of
information.

One possible segmentation of a reference retrieval program for
searching one file is as follows:

1) Main procedure - knows other principal procedures
and calls them in the proper order.

2) Query Input procedure - knows the gross external and
internal forms of the query, but does not know the
detailed structures of the selection, sequence, and
output specifications. Calls the query translation
procedure.

3) Query Translation procedure - knows the detailed ex-
ternal and internal forms of the selection, sequence
and output specifications. Performs translation from
external to internal form.

File Read procedure - knows the external format of
the bibliographic file. Reads the file entries and
extracts from them the information required for the
matching process. Is called by the matching procedure.

5) Matching procedure - knows the internal form of the
selection specification and the information extracted
from the file entries. Performs the matching of
the two and writes matched entries into a work file.

6) Sort procedure - knows the internal form of the
sequence specification. Sorts matched entries
into the proper sequence.

13



7) Print procedure - knows the external file format and interr
output specification. Reads the sorted f"2 of matched
entries and prints the bibliographies.

Some of the implicatibris of this organization are interesting.
First, let us assume that the output is to be in a standard format
for all queries. This means that there is no need for any form of
output specification. Now, notice that only the File Read and P7eint
procedures know the external format of the file. Under the above
assumption, both of these procedures are relatively straightforward.
It is an easy task, then, to write a File Read and a Print procedure
for a different file. Substituting these new procedures for the
e,rresnonding old ones, would allow essentially the same program to
search the second file.

The modular program presented in Section III is an elaboration
on the above outline. While it was designed with several purposes
in mind, it is an experimental procrram to evaluate the overall desig
approach. Those familiar with programming will recognize that it is

a giant step from a reference retrieval system discussed in general
terms, as in this paper, to an actual working program. Taking that
giant step Involves endless obstacles, evaluations of alternatives,
decisions, dead_ ends, reevaluations of objectives, etc. Much of the
value of this process is the knowledge gained in the actual doing.

Some decisions, however, must be backed up by experimentation a
measurement. To that purpose this program has been designed to enab
experimentation with different file organizations. In particular, I
can search a sequential or an inverted file, and a sequential file
can be searched for either a Boolean combination of "subject access"
terms or a list of "accession" numbers (where the definition of what
constitutes a subject access term or an accession number is implied
in the File Read procedure). This allows the testing of several
alternative modes of operation.

In one mode, the inverted file would be searched for a subject
to produce a list of potentially relevant accession numbers. This
list could then be used to refer to a printed form of the file.
Alternatively, this list could be used to search the sequential file
to produce a bibliography. Yet a third alternative would be to sear

for the subject against the sequential file to begin with. Very reE

questions need to be answered as to which mode or modes are cost/
effective and/or acceptable from the viewpoint of the users of the C

system. In the author's opinion, all or most possibilities should
optional. A part of the process of formulating a query would involN
deciding which search mode to use. The program is designed to enab:
other file organizations to be implemented in as painless a manner i
possible.



Since the Cis environment postulates the existence of many
bibliographic fi/es, this program is designed to search any number
of these files, either inverted or sequential, in a single computer
run. The program automatically determines which files and organizations
are requested by the queries and searches only those requested.
Although the primary purpose of the program has been as an operational
system on which to base the development of the various procedures
(acquisitions, cataloging, retrieval, etc.) attendant to the operation
of a CIS, it has proven useful as a classroom and demonstration
search tool.

GENERALIZED DATA BASE MANAGEMENT SYSTEMS

The computer industry, particularly those elements concerned
with business data irocessing, has realized for many years that much
of the work associated with creating and updating files, retrieving
information from files, sorting tha retrieved information (as needed),
and printing reports from it, is highly repetitious.

Modular programs on a par with the outline described above can
do much to help the situation but tend to be rather specific to the
problem at hand. With the goal of solving a class of problems rather
than just one member of the class, a large number of generalized
data base (or file) management systems have been developed.

The key concept of such a system is the separation of the external
format of the file from the program. To illustrate, for the modular
program outline, if the external format of the file can be presented
to the File Read and Print procedures as a third type of input, the
program becomes "generalized" in the sense that it can process any
file that can be described to it. The description of a file for the
program only needs to be done once (unless the file format changes)
and can then be saved and used as needed. The set of file descriptions
at an installation may be maintained in a central directory or
dictionary, providing the additional benefit of improved management
control, or, alternatively, they may be associated directly with the
file itelf making the file, in effect, self-describing.

A complete generalized data management system will also include
provisions for creating and maintaining the files and file descriptions
either through additional procedures or separate programs. The
information contained in a query, perhaps now better termed a processing
request, would of course be expanded to include provisions for controlling
these functions.

One indication of the success of this approach is the large
number of these systems that have been developed by individual computer
installations, the independent software firms and the computer manufacturer

15



In 1959, McGee(17) described a set of generalized file handlir routines
developed at General Electric. Today, there ale probably morc than
one hundred of these systems. Many of these have been dasign& for a
specific environment or with limited goals, e.g. QWICK QWEKY(7) which
is only a retrieval system, but the number of true general_zed systems
is still large.

The literature of generalized data base management systems falls
into several categories. Those items concerned with a specific system,
a technique or an application will be largely ignored here The
interested reader is referred to tha reviews and bibliographies in
the Annual Review.(1) However, a number of surveys do deserve mention
here.

The recent CODASYL report(6) presentinc; features of the ADAM, GIS,
IDS, ISL-1, MARK IV, NIPS/FFS, SC-1, TDMS and UL/1 systems is one of
the most important in the field, not only for its breadth and d nth
of coverage but also for its largely successful ati:empt to translate
the terminology used by the various systems into a standard terminology
(for instance, the terms Item, Property, Field and Element are all
used in at least one of the above systems for What is called an Item
by this paper). This effort should be expanded to other systems.

Sundeen(18) describes the evolution of general purpose software
and gives short summaries of the GIS, MANAGE, BEST, INRADS, INFOL, TDMS
and ASI-ST systems. Byrnes and Steig(5) present a list of features
useful for discriminating between systems and summarize the AEGIS,
ASI-ST, CDMS, GIM, INFORMS, GIS-BASIC, and MARK IV systems. One
feature, price, ranges from less than $15,000 for AEGIS to about
$100,000 for CDMS. Ziehe(21) describes the external and internal
data structuring and organization for the TDMS, RFNS, DM-1, GIS and
CATALOGS systems and compares these features for the various systems.

Rather than explicitly comparing features between systems, the
System Development Corporation(10) has defined a benchmark data base
management problem patterned after a business organization chart and
personnel file. Possible solutions to this problem are presented for
the COLINGO D, COLINGO C-10, ADAM, MARK III, and the Massachusetts
General Hospital systems, and approaches to the problem are given for
the BEST and IDS systems.

Reilly(19) has examined the CFSS, INFOL, MARK IV and GIS management
systems and compared them specifically from the viewpoint of processing
bibliographic files.

As part of a session on file management systems at the ASIS
(American Society for Information Science) annual meeting in October
1969, an exerciSe in computer file management was defined and
participants were invited to send solutions. The exercise was



patterened after a document retrieval system and was designed to
examine the functional capabilities of various systems. The exercise
and solutions using the TIP, UL/1, CAPRI and TEXT-PAC systems and
one using P1,11 together with three general purpose systems have been
published.(2)

In the face of this alphabet soup of generalized systems, what
can be said about their suitability for the CIS? As a class, these
systems are in the unfortunate position of being both too general
and not general enough for efficient searching of bibliographic files.

Recall that these systems are mainly designed for use in a
business environment. A business has control over the format of
its own files and can manipulate them to conform to the capabilities
of a given system; moreover, business files are composed largely of
fixed formats of fixed length items although variable length items
and repeating items are used to some extent.

The CIS has no control over the formats of the files it acquires
and, while most systems are capable of handling any file format that
can be described to them, none of them are capable of describing the
range of bibliographic files discussed earlier.

A normal part of these systems is the preparation of business
reports, particularly in responding to an ad hoe request. For this
purpose, they usually include extensive capabilities in the sequence
and output specification areas. These capabilities are wasted in
reference retrieval where a standard sequence and a standard output
format or a limited number of standard formats is perfectly adequate.
Moreover, a business report is normally a tabular arrangement of
short data items. A bibliographic citation with a thousand character
abstract hardly fits into this arrangement. Thus the generality of
the sequence and output specifications represents, on the one hand,
unnecessary inefficiency and, on the other, inadequate capability.

Also, while file maintenance, retrieval and reporting are normal
operations for a generalized data base management system, the remaining
CIS requirement, index production, is not a normal business operation
and is not within the capabilities of most, if not all, such systems.

Finally, many of these systems tend to be relatively inefficient
in terms of the amount of computer time used. This is due to the fact
that they operate using a processing request and a file description
as data. This data must be interpreted each time an entry is examined
or compared with a selection specification or printed. Interpreting
the data each time it is needed is a duplication of effort in that
the same information is derived each time it is done. More advanced
systems such as ASI-ST (by Applications Software, Inc.) improve
efficiency by translating the processing requests and/or file



descripi:ions into machine instructions or subroutine linkages or by
generating source language code for subsequent translation into machine
instructions. In any case, executing the compiled instructions is
more efficient than interpretive execution.

The author is certainly not the possessor of any unique insights
into these problems with generalized data base management systems,
nor is the computer industry standing on its past performance.
Primarily in response to the more complex data base description
requirements posed by the burgeoning technology in business management
information systems, a Special Interest Committee on File Description
and Translation (SICFIDET) has been formed in the Association for
Computing Machinery and is actively investigating the problems and
some of their possible solutions. This group overlaps in membership
with the Ad Hoc Committee on Data Definition Languages (DDLTs) which
recently reported(ll) to the X3 Committee on Computers and Information
Processing of the American National Standards Institute (NMI, formerly
U.S.A. Standards Institute). This report briefly summarized the needs,
current state and future problems of Data Definition Languages and made
recommendations of what needs to be standardized and what actions X3
should take to insure orderly progress in the future.

A report(8) by the Data Base Task Group to the CODASYL Programming
Language Committee is probably the most complete and unified effort
in this area to date. This report defines a Data Description Language
(DUL) to be used for describing data bases and a Data Management
Language (DML) to be used for processing data bases. The DML is not
a complete programming language, but is proposed as an extension of
COBOL.

In addition to these formal efforts in data definition, the
originators of generalized data base management systems are constantly
at work improving their products and pushing back the boundaries of
the state-of-the-art. On balance, the future developments of generalized
data base management systems deserve to be watched with the idea of
applying these systems to the processing requirements of the Center
for Information Services. Indeed, the needs of the CIS can and should
influence the future capabilities of these systems.

CIS FILE MANAGEMENT SYSTEM(19)

This approach involves combining the best features of file
management systems with parameterized special purpose modules to
create a generalized system to meet the special requirements of the
Center for Information Services.

The heart of this system would be a fairly conventional generalized
file management system (dubbed the CISFMS for short). The major

18



features that distinguish the CISFMS from most of the other generalized
systems that have been discussed include:

1) A more general capability in the file description. All
of the file formatting techniques discussed earlier should
be accommodated plus any others found by examining additional
currently available files. The systems should be able to
accommodate new formatting techniques with a minimum of
difficulty as file designers come up with new solutions to
problems.

2) Execution from compiled machine instructions. This requirement
is necessary for efficient processing. In addition, the
system must be able to define, save and utilize standard
modules such as file read routines or print routines.

3) The ability to interface with special purpose subsystems
for more complex processing of files. There would be one
subsystem for processing bibliographic files, one for
statistical files and one for natural language files.

The usual file management operations including file maintenance,
simple entry selection, sorting and report generation would be
performed by the cIums. Operations like index production, analysis
of variance or concordance generation would be passed on to the
appropriate subsystem.

The overall design of the CISFMS would be modular to permit
interchangeable components such as file read procedures and to allow
the system to be implemented and expanded in rational stages.

is
-15-



III. A NODULAR PROGRAM FOR REFERENCE RETRIEVAL

GENERAL

This computer program is designed to provide subject access and/or
accession number access to a wide variety of the magnetic tape files
of indexing, abstracting and cataloging information created and
distributed by various agencies.

The files that can be searched are essentially limited to those
of the bibliographic type. Currently, the only file this program is
capable of using is the ERIC file produced as a by-product of the
Research in Education abstracting journal published by the Educational
Resources Information Center. This was chosen as the initial test
file because it was readily available to the author.

In its present form the program is suitable for retrospective and
selective dissemination searches of the ERIC file.

In broad terms the program can be divided into three phases:

1) Query processing,
2) File searching, and
3) Result printing.

A query contains an identification, the patron's name, and the
name and type of the file to be searched. The query statement can be
either a Boolean expression of the subject access terms representing
an area of interest or a list of the accession numbers of the specific
entries desired.

The file to be searched can be of either a sequential or an
inverted type. For the sequential type, each entry represents one
document (article, report, monograph, etc.). The accession number and
subject access terms are imbedded in the entry and are extracted by a
read routine for that file for matching against queries. For the
inverted type, each record represents one subject access term and
consists of a list of the accession numbers of all entries containing
that term. Selected records are processed to produce a list of
accession numbers satisfying a given query.

A file search is performed for each set of queries requesting a
given file name and type, thus more than one file and/or file type can
be searched in a single computer run.

20
-16-



The result of a search is either a set of hit entries, for a
search against a sequential file, or a list of accession numbers, for
a search against an inverted file. These are printed as a bibliography
or list of accession numbers fov each query by a print routine written
for the particular file searched.

In addition, task CPU time and elapsed time are generated and
printed for the following operations:

1) Reading and translating each query,
2) Searching an inverted file for each query,
3) Searching a sequential file for all queries requesting

that file, and
4) Printing the results of each query.

The program is written entirely in PL/I with the exception of
a short Assembler language procedure used to measure task CPU time
and elap-,ed time.

PROGRAM NARRATIVE

The program consists of eleven external procedures logically
organized as shown in the Program Procedure Chart (See Figure 1).
They are:

FILESCH MATCHS
READQ ERICRS
TRANSQE PRINTH
ERICTQL ERICPH
SEARCHF STIMER
MATCHI

FILESCH is the main procedure. It prints an opening message,
determines the maximum number of queries that can be processed for
this run and allocates storage for control information on each query.
It then calls in turn the READQ, SEARCHF and PRINTH procedures to
do the real work.

The READQ procedure reads the query deck, one query at a time,
determines the type of query, and calls either the TRANSQE procedure
to translate an expression form cruery or the ERICTQL procedure to
translate a list form query. If the translation was successful, READQ
will allocate storage for the query, store it and fill in the control
information for the query.

The TRANSQE procedure translates an expression form query f,..om
infix notation to Polish postfix notation for efficient processing
by the match procedures.



QUERY
DECK

VALUE
PARM1

[F ILE SCH

F I GURE

PROGRAM PROCEDURE CHART

RE AD Q

1111L1

STORED
QUERIES

STIMER

SEARCHF

HI TNDXF

TRANSQE

ERI CTQL
(F ILE TQL)

MAT CHI

PRINTH

8

ERI CIXF
ERIC IF

(F I LE IXF

( FILE IF )

11111.11

ERI C PH
(FILEPH )

ERI CRS
(FILERS)

ERICS;\
(F I LE SF ) I

PRINTED
OUTPUT



The ERICTQL procedure translates a list form query into an array
of binary accession numbers for use by the MATCHS procedure.

The SEARCHF procedure partitions the total set of queries into
subsets whose members all require the same file and file type. For
each subset, it will call either the MATCHI procedure to search an
inverted file, or the MATCHS procedure to search a sequential file.
After all files to be searched have been searched, the storage occupied
by the query expressions and lists is freed for reuse.

The MATCHI procedure processes queries from the current subset,
one by one, by reading accession number lists from an inverted file
(ERICIF and ERICIXF files) and matching or merging them as specified
by the query to produce the final list of hit accession numbers. This
list is then written into the HITNDXF file.

The MATCHS procedure obtains one entry at a time from the
sequential file by calling the ERICRS procedure. Each entry is
matched against all queries from the current subset. If a match
occurs with any query, the entry is copied into the HITF file. In
addition, a short entry is written into the HITNDXF file for each
query that entry matched.

The ERICRS procedure reads one entry from the sequential file
(ERICSF file) each time It is called, and extracts from the entry
a binary accession number (ED number) and an array of subject access
terms (Descriptors). These are then returned to the MATCHS procedure
for comparison against the queries.

The PRINTH procedure reads and stares the entries from the
HITNDXF file for use by the ERICPH procedure. It then calls the
ERICPH procedure once for each query to print the results far that
query.

The ERICPH procedure scans the stored hit index for the entries
belonging to the current query. It will then print either a biblio-
graphy from the entries located via the index and read from the HITF
file, or a list oE ED numbers directly from the index.

The STIMER procedure measures elapsed CPU time and real time.
It has been placed as shown in the chart to avoid unnecessary
complication of the chart. It is actually called by the READQ, MATCHI,
MATCHS and PRINTH procedures which use it to obtain the times printed
for the operations mentioned above.

Notice that ERICTQL, ERICRS and ERICPH are the only procedures
dependent upon the format of the ERIC file. A different file could
be searched by adding analogous procedures (FILETQL, FILERS and
FILEPH) -- shown on the chart. A FILETQL procedure would translate



list form queries for the file. An inverted file (FILEIF and FILEIXF)
can be searched by the MATCHI procedure once it has been created in
the proper format. A FILERS procedure would read a sequential file
(FILESF) and supply the proper information to the MATCHS procedure.
A FILEPH procedure would print either a bibliography, or an accession
number list as the results of a query. The FILETQL and FILERS
procedures are required only if tileir functions are desired. In
addition, the READQ, MATCHS and PRINTH procedures would have to undergo
minor changes to recognize the existence of the new file and procedures.

PROGRAM INPUT DATA

The program input is a card deck (hereafter termed query deck)
which is read from the standard PL/I SYSIN file.

The query deck is composed of a number of individual queries.
Each query consists of:

1) A query control card, and
2) A query statement.

The program will normally allow up to 25 queries to be processed
in a single run. This number can be modified, to a maximum of 150,
by supplying the appropriate PARM value to the program.

Query Control Card

The query control card provides information identifying the query,
and the name and type of the file to be searched. ,The format is as
follows:

Old QUERY name, file name, file type

1) $$ This must appear in columns 1 and 2 to identify
the card as a control card.

2) id This is an arbitrary identification for the
query. From 0 to 8 characters may be punched
in columns 3 to 10.

3) QUERY This must be punched in columns 12 to 16 to
identify the card as a query control card.

14) name This is the name of the person for uhom the
query is being prepared. Only the first 24
characters will be used. A comma separates
this field from the file name.

24



5) file name This is the U. character name of the fil3 to
be searched. Currently, the only valid file
name is "ERIC". If this field is in error or
omitted, the default file name "ERIC" will be
supplied.

6) file type This is the 4 character type of the file to be
searched. Allowable values are:

a) INVT - Inverted file, and
b) SEQN - Sequential file.

If this field is in error or omitted, "INVT"
will be supplied as a default for an expression
form query statement, or "SEQN" for a list
form query statement.

The query control card may not be continued to a second card and
may not contain significant information past column 72. Columns 73
to 80 may be used for sequence numbering.

Query Statement

The query statement can span as many as 50 cards. The statement
may be punched anywhere in columns 1 to 72. The first column of the
second or subsequent cards is considered to follow column 72 of the
previous card. Columns 73 to 80 may be used for sequence numbering.

The query statement itself may be in one of two forms:

1) Expression form, or
2) List form.

Expression Form Query Statement. The expression form of the
query statement is written as a Boolean combination of "subject access"
terms (subject headings, index terms, descriptors, etc.).

Subject access terms appear in the expression enclosed in single
quotation marks, e.g. 'DATA PROCESSING', and must be punched exactly
as they would appear in the file, including blanks, punctuation, etc.

The allowable Boolean operators are:

1) & (And),
2) 1 (Or) ,

3) (Not).

25



Parentheses may be used freely to group terms and the relation-
ships between them. Blanks may be used outside of terms to improve
readability.

If parentheses are not present to explicitly indicate grouping,
the priority of operators is identical to that of PL/I, i.e.

(highest), &, j (lowest). This would cause the following
expression:

'TERM AII.--I'TERM B'&'TERM C'

to be interpreted by the program as meaning:

'TERM A' I((--;'TERM B'WTERM CT)

All entries of the file whose subject access terms satisfy the
conditions of the query expression will be selected as hits.

This form of the query statement may be used with both file
types. For the INVT type, the output will be a list of matching
accession numbers. For the SEQN type, the output will be a biblio-
graphy of matching entries.

Sample expression form queries:

OQUERY1 QUERY DR. SMITH, ERIC, INVT

('INTELL1GENCE TESTS')&('TEST VALIDITY' I 'TEST RESULTS')

$$ENGINSTR QUERY MARK CASEY, ERIC, SEQN

'ENGLISH INSTRUCTION'&--eREMEDIAL PROGRAMS'

List Form Query Statement. The list form of the query statement
is written as a list of accession numbers (LC catalog card numbers,
ED report numbers, etc.) of the entries desired. Since the form of
an accession number depends on the file, the following discussion
applies to the ERIC file only.

For the ERIC file, the accession number is termed an ED number.
Each ED number is written as a six to eight character field, e.g.
ED014397. The first two characters must be "ED", the remaining
characters must be numeric. ED numbers must be separated by commas.
Blanks may be used to improve readability. ED numbers need not be in
ascending order.

This form of the query statement may only be used with the SEQN
file type. If the INVT type is specified, it will be changed to SEQN.
The output will be a bibliography of the specified entries.



Sample list form query:

OQUERY1 QUERY DR. SMITH, ERIC, SEQN

ED010372, ED010373, ED012292, ED013655, ED015273, ED010374

PROGRAM FILES

The major files of interest are identified as the Inverted ERIC
File, the Sequential ERIC File, and the Hit Files.

Inverted ERIC File

This file is in reality a pair of files. The first, the ERIC1F
file, is the actual inverted file. The second, the ERICIXF file, is
an index to the ERICIF file to provide rapid direct access to its
records.

The ERICIF file is a PL/I REGIONAL(3) keyed direct access file
of unblocked variable length records. The record key is the descriptor
term (subject access term). The record itself consists of a count
field followed by a list of all the ED numbers (accession numbers)
of the resumes containing that descriptor term. The count field
contains the number of entries in the list. Both the count field and
list entries are four byte binary integers. The first record of this
file has an all blank key and contains the ED numbers of all resumes
in the file. This record is used in processing Boolean ---1(Not)
operators. The remaining records are in ascending alphabetic order
by descriptor term. Within each record, the ED numbers are also in
ascending order.

A record is read from this file by specifying the key (descriptor
term) of the record desired and a relative track number of the file
to begin looking for the record. The specified track and successive
tracks will be searched until the record is found or until a specified
(LIMCT) number of tracks has been searched without finding the record.
Obviously, records are read most efficiently if the track specified
contains the record desired.

The ERICIXF file is designed to make this possible. This file is
a sequential file of blocked fixed length entries which operates as a
track index to the ERICIF file. Each entry is fifty bytes long. The
first ten bytes of the first entry contain, in character form, the
number of the last track in the ERICIF file. The remaining entries
of the file contain the last descriptor term written on each track
of the ERICIF file.

27
-23--



Thus, when a given term record is to be read from the ERICIF file,
the ERICIXF file (stored in core) is first examined to determine the
particular track of the ERICIF file to scan for the record.

The pair of files described above is directly analogous to an
IBM Indexed Sequential file organization with an in-core master index.
That organization, however, is designed to operate with fixed length
records only.

Mile this inverted file design is efficient to read, maintenance
is quite a different matter (and one not discussud in this report).
The interested reader is referred to Refrence 15.

Sequential ERIC File

This file is a sequential file of blocked variable length
entries. Each entry represents one report resume.

Each entry is composed of a number of variable length groups
and each group has the following structure:

LENGTH TAG ; DATA FIELD...

The LENGTH is two bytes long and contains the binary character
count for the entire group (including the LENGT.H and TAG).

The TAG is two bytes long and contains a binary number which
specifies the type of Information in the Data Field.

The Data Field is LENGTH-4 bytes long and contains the significant
information of the group, usually in character form.

Figure 2 contains the TAGs in use and the corresponding Data
Fields. The TAG values are given in decimal.

Not all fields are contained in each entry, although TAGs 0, 1,
and 2 appear to be mandatory. Many fields (e.g. DESC) have subfields
which are delimited by a semicolon (;). See reference 20 for additional
information.

Hi 1- Files

Two hit files are used to retain the results of the file search(es)
before they are printed. These files are very similar in logical
organization to the inverted file.

The HITF file is a PL/I REGIONAL(3) keyed direct access file of
unblocked variable length records.,. The record key is the accession



FIGURE 2

ERIC FILE DATA FIELDS

TAG Keyword Data field Name

none Sequence
1 none Add Date
2 none Change Date

16 ACC Accession Number
17 CH Clearinghouse Accession Number
18 OCH Other Clearinghouse Accession Number
20 PA Program Area
23 PDAT Publication Date
26 TITL Title
27 AUTH Personal Author
28 INST Institution Code
32 SPON Sponsoring Agency Code
35 DESC Descriptors
36 IDEN Identification
37 PRICE EDRS Price
38 NOTE Descriptive Note
43 ISS Issue
44 ABST Abstract
45 REPNO Report Number
46 CONT Contract Number
47 GR Grant Number
48 BN Bureau Number
49 AVAIL Availability
50 JNL Journal Citation

128 INSTNM Institution Name
132 SPONNM Sponsoring Agency Name

29
-25-



number (in character form) of the following hit entry, which is a
direct copy from the sequential file. Only one copy of the hit
entry is written in this file regardless of the number of queri2s
the entry matched. This file is written by the MATCHS procedure.

The HITNDXF file is a sequential file of blocked fixed length
entries. Each entry has the following form:

! RE4 I TRAM- I QUERYO

where RECO is an accession number, TRACKO is a relative track number
in the HITF file, and QUERYO is a query number. RECO is a four byte
binary integer, while TRACK0 and QUERY0 are two byte binary integers.
There is one entry in this file for each query-entry match.

Entries are written by both the MATCHS and the MATCHI procedures.
The entries written bythe MATCHS procedure contain the track number
of the complete hit record in the HITF file, which is used with the
accession number (converted to character form) to read the hit record
itself. For those entries written by the MATCHI procedure, the track
number is not used (set to -1) and the accession number is printed
directly from the entry. The query number is used to select those
entries used to print the results for a given query. These files
are deleted after the program is completed.

PROGRAM OUTPUT

The program output Is written on the standard PL/I SYSPRINT file.
Figure 3 illustrates all nnrmal output. The following comments are
keyed to the numbers circled on this figure.

1) The program name, date run and maximum number of
queries are printed by FILESCH.

2) The query and related messages are printed by READQ.

3) These messages are printed by SEARCHF.

4) The trace for the inverted file search is printed
by MATCHI.

5) The trace for the sequential file search is printed
by MATCHS.

6) The search results are printed by ERICPH.

7) The print times are printed by PRINTH.

30
-26-



FIGURE 3

SAMPLE OUTPUT

(Part 1 of 4)

MULTIPLE FILE SEARCH PROGRAM DATE: 29 JUN 1970 0

MAXIMUM NUMBER OF QUERIES: 25

QUERY ID: EXPRINVT NAME: AEINT DE BOER

$$EXPRINVT QUERY AEINT DE BOER,ERIC,INVT

'LANGUAGE ARTS'&'SCHOOL IMPROVEMENT'&
(n'ENVIRONMENT')

QUERY TRANSLATION SUCCESSFUL.

CPU TIME:

ADB00100

ADB00120
ADB0014C

. 009 SECS. ELAPSED TIME: .011 SECS.

QUERY ID: EXPRSEQN NAME: AEINT DE BOER

$$EXPRSEQN QUERY AEINT DE BOER,ERIC,SEQN

'CURRICULUM PLANNINGWrLEMENTARY EDUCATION'

QUERY TRANSLATION SUCCESSFUL.

CPU TIME:

ADB00160

ADB00180

. 006 SECS. ELAPSED TIME: .008 SECS.

QUERY ID: LISTSEQN NAME: AEINT DE BOER

$$L1STSEQN QUERY AEIN1 DE BOER,ERIC,SEQN

ED001003, FD001017, ED001023

QUERY TRANSLATION SUCCESSFUL.

CPU TIME:

ADB00200

ADB00220

. 004 SECS. ELAPSED TIME: .006 SECS.

-27--

31



FIGURE 3 (Continued)

SAMPLE OUTPUT

(Part 2 of II)

FILE SEARCH TRACE.

FILE NAME: ERIC FILE TYPE: INVT

QUERY ID: EXPRINVT NAME: AEINT DE BOER

HITS: 3

CPU TIME: .008 SECS. ELAPSED TIME: .287 SECS.

FILE NAME: ERIC FILE TYPE: SEQN

24 RECORDS READ.

QUERY ID NAME HITS

EXPRSEQN AEINT DE BOER 2

LISTSEQN AE1NT DE BOER 3

CPU TIME: .071 SECS. ELAPSED TIME: .508 SECS.

END OF FILE SEARCH.

-28-

32



FIGURE 3 (Continued)

QUERY ID:

ED001006

CPU TIME:

SAMPLE OUTPUT

(Part 3 of 4)

EXPRTNVT NAME: AEINT DE BOER HITS: 3 PAGE 1 0
ED001018 ED001022

.003 SECS. ELAPSED TIME: .010 SECS.

QUERY ID: EXPRSEON NAME: AEINT DE BOER HITS: 2 PAGE 1

ED001007
FASAN, WALTER R. ; AND OTHERS
A UNIT FOR THE CLASSROOM TEACHER--THE NEWSPAPER, A LIVING
AND DYNAMIC TEXTBOOK. (TITLE SUPPLIED)
CHICAGO PUBLIC SCHOOLS, ILL.
PUB DATE: 60.
EDRS PRICE MF-$0.09 HC-$0.88, 21P.

DESCRIPTORS: CURRICULUM PLANNING: *ELEMENTARY EDUCATION;
*NEWS MEDIA; *SLOW LEARNERS; SUPPLEMENTARY EDUCATION;
*TEACHING GUIDES.

ED001013
BEACON PROGRAM.
FORD FOUNDATION, NEW YORK, N.Y.; PHILADELPHIA PUBLIC
SCHOOLS, PA.
PUB DATE: 60.
EDRS PRICE MF-$0.09 HC-$1.92, 45p.

DESCRIPTORS: *COMMUNITY INVOLVEMENT; *CULTURAL ENRICHMENT;
*CULTURALLY DISADVANTAGED; *CURRICULUM PLANNING; EDUCATIONAL
OBJECTIVES; ELEMENTARY EDUCATION; FAMILY SCHOOL
RELATIONSHIP; SCHOOL IMPROVEMENT.

CPU TIME: .020 SECS. ELAPSED TIME: .130 SECS.

-29-

33

0



FIGURE 3 ((ontinued)

SAMPLE OUTPUT

(P art 4 of 4)

QUERY ID: LISTSEQN NAME: AEINT DE BOER HITS: 3 PAGE 1

ED001003
KORNHAUSER, LOUIS H.
THE LANGUAGE ARTS PROJECT PROGRAM.
PUB DATE: SEP 63.
EDRS PRICE MF-$0.09 HC-$0.88, 22P.

DESCRIPTORS: *CULTURALLY DISADVANTAGED; ELEMENTARY
SCHOOLS; *KINDERGARTEN; *LANGUAGE ENRICHMENT; PARENT
ATTITUDES; *SPEECH EDUCATION; TEACHER WORKSHOPS.

ED001017
SOME UNIQUE FEATURES.
PUB DATE: 01 NOV 62.
EDRS PRICE MF-$0.09 HC-$0.12, 2P.

DESCRIrTORS: BILINGUALISM; *COMMUNITY PROGRAMS; CULTURAL
ENRICHMENT; CULTURALLY DISADVANTAGED ; *INSERVICE TEACHER
EDUCATION; *LANGUAGE ARTS; LITERATURE PROGRAMS; *REMEDIAL
PROGRAMS; TEACHER EDUCATION; *TUTORING.

ED001023
HOLMES, ELIZABETH ; AND OTHERS
POLICIES AND PROCEDURES FOR THE SELECTION OF TEXTBOOKS IN
GREAT CITIES.
PUB DATE: 15 NOV 63.
EDRS PRICE MF-$0.09 HC-$0.56, 12P.

DESCRIPTORS: *EDUCATIONAL NEEDS; *TEXTBOOK CONTENT;
*TEXTBOOK EVALUATION; *TEXTBOOKS; *TEXTBOOK SELECTION;
TEXTBOOK 2TANDARDS.

CPU TIME: .028 SECS. ELAPSED TIME: .090 SECS.

END OF PROCESSING.

34

-30-



The sequential file used for this illustration consists of 24entries with the abstracts deleted. The inverted file used wascreated from this sequential file.

PROGRAM EXECUTION COSTS

The following figures were derived from various tests run on theIBM 360 Model 91 at the Campus Computing Network at UCLA. The costfigures reflect the charging algorithm at CCN, which is:

$ COST = .15(T -I- .021) -:- .004R3

wLerc T is the CPU time used in seconds,
1 is the number of I/0 operations, and
R is the region requested in 1K units.

(rhe above formula is accurate only for programs requesting 250Kbytes or less.)

The test runs were all made against a sample file of 1202 ERICentries or the corresponding inverted file.

Test Parameters:

Terms/Test Queries Query Type riiaLryna AccOs Nits

1 11 Expression INVT 33 1732 11 Expression SEQN 33 173
3 11 List SEQN 174 173

Test Cost Statistics:

Region RegionTest CPU Time I/0 Count Requested Used $ Cost

99s 284 130K 118K $ 1.52
2 11.5s 1015 150K 138K $ 7.623 8.61s 1021 150K 138K 0 6.97

CONTINUED PROGRAM DEVELOPMENT

While this documentation represents a complete, operational,and useful program, it must be recognized that a program of thisnature is a dynamic entity. Continued use and review will suggestdesirable additions, new techniques to improve efficiency or

35
-31-



generality, or unueed features. It is useful to consider some of the
changes and/or extensions the program may undergo in the future.

Improving Efficiency

Let us adopt cost as a measare of efficiency. Reducing the cost
then becomes synonymous with improving efficiency. Now, in view of
the charging formula at CCN, there are three factors determining the
cost:

1) Region size requested,
2) Total I/0 count, and
3) Total CPU seconds.

Reducing any one of these three, without an offsetting increase in the
others will result in a reduction of cost.

One simple method of reducing the region size is to make more
efficient use of core storage by creating an overlay program structur2.
In this manner, procedures which do not need to be present in storage
at the same time can reuse the same areas of storage.

Examination of the program structure and tle procedure lengths
indicates that a qr: to 50% reduction in region size can be accomplished
by this means, se.th a resulting program size of, say, 70K to 801.
Offsetting inefficiency can result if the :;ame procedure has to be
loaded into storage for execution more than once. This situation can
be avoided by suitable arrangement of the query deck and/or automatic
optimization of the order of procedure use. It is interesting to
note that an overlay structure would allow the program to be used on
a computer as small as a 128K IBM 360 Model 40.

A point where region size and I/0 count come into conflict is
the area of file blocking. Increasing the blocking factor of a file

will generally reduce the I/0 count and simultaneously increase the
region used by the file. The number of I/0 buffers assigned to a file

will also affect the amount of storage used. To minimize cost, the
proper balance must be maintained between these factors.

In order to reduce the CPU time it is instructive to examine the
times measured by the STIMER procedure for the test runs presented
under Program Execution Costs.



Procedure Test 1 Test 2 Test 3

CPU Real CPU Real CPU Real

READQ .071 .129 .077 .318 .157 .737

MATCHI .192 3.297
MATCHS 7004 30.347 4.238 27.358
PRINTH .095 .242 3.774 33.649 3.557 26.664
Overhead .63s .59s .66s

Totals .99s 11.45s 8.61s

It is obvious that the greatest benefits are to be realized in
reducing the time spent searching the sequential file with expression
form queries (this used about 23% of the Model 91 CPU in Test 2).

Relatively large amounts of CPU time are also spent searching the
sequential file with list form queries and in printing the biblio-
graphies. These activities involve the MATCHS, ERICRS and ERICPH
procedures.

It is a well known fact that higher level programming languages,
such as PL/I, rarely produce machine code comparable i efficiency
to that which can be written in Assembler language. To illustrate
this point, the innermost loop of the MATCHS procedure was written
first in "good" PL/I, with an eye on minimizing the number of PL/I
statements executed. With this code Test 2 used over 61% of the
Model 91 CPU in the matching phase (24.340 seconds of CPU time and
40.354 seconds of real time). Projecting tiese timing values to a

smaller computer produced enormous search times. A look at the machin2
code produced by PL/I revealed glaring inefficiencies due both to
inadequate optimization on the part of the compiler (Version 5) and
the use of language features requiring extensive code and/or numerous
PL/I library procedure calls.

Experimentation with different means of restating the same
computations produced dramatic reductions in the amount of processing.
As a benchmark a query of the form:

('A' I I'C'I'Dr)&('E'l
and an entry containing ten descriptors (none of which match any term

in the query) was used. To match one query against one entry, a
reduction In processing from 4,757 machine instructions including
193 subroutine calls to 1,415 machine instructions including 10
subroutine calls was noted. This is in the neighborhood of a 70

to 90% reduction. The interested reader is invited to make assumptions

for a number of queries, number of entries, and average subroutine
length and compute a figure for the number of instructions avoided.



Then consider the time 3t would require a given computer to execute
them. Then consider that the same match could be performed in about
550 machine instructions in Assembler language.

Thus, it is easy to see that further tuning of the program can
be expected to decrease both CPU time and region size, a double
benefit. Rewriting any given procedure in Assembler language can
be expected to save 50% or more in both CPU time and region size.
Rewriting the entire program in Assembler language should make it
possible to run on a 65K or perhaps even a 32K IBM 360 Model 30.

Even in PIA/I a significant reduction in cost might be achieved
by reodifying the matching algorithm. Three possibilities come to
mind.

The first depends on the nature of the Boolean "And" and "Or"
operators. Take for example, an expression like 'AWB'. If 'A'
is known to he false (i.e. 'A' does not appear in the current entry),
there is no need to check for 'B', for the entire expression is false.
Similarly, in the expression 'A'OB', if IA' is true, then the entire
expression is true. Eliminating redundant comparisons of subject
access terms against the entry vill reduce expense to the extent that
a comparison costs more than recognizing that it is redundant.

The second possibility could reduce the cost by rapidly eliminating
a large percentage of the entries as not matching any query. The
approach would be to build a master list, in alphabetical order, of
all the terms in the queries. Tbe index terms for a given entry, also
in alphabetical order, would be matched against this list. If there
is no match, the entry could be rejected for all queries. If there
is a match, each query would be matched individually against the
entry. If the result of the "prematch" were saved in the master
term list, this approach would have the added advantage of checking
the entry for a given term only once even if it appears in more than
one query.

The third possibility lies in superimposed coding.(13) In this
approach, all the terms of a query would be combined into a single
coded term with some loss of information. The same would be done to
the index terms of an entry. If the single comparison of these coded
terms for a query and an entry Indicated a possible match, a more
detailed comparison would be performed as before. Extending this
idea further, a single master coded term could be created by combining
the coded terms for the individual queries.

It is entirely possible to visualize the matching process as a
succession of screens, of finer and ftner grade. The first screen
would compare the master coded term for all queries against the
coded term for the entry. The second would compare the master term

38



list against the index terms for the entry. The third would compare
the coded terms for each query against the coded term for the entry.
Finally, the fourth would evaluate the expression for a query.

Of course, each screen will have an associated cost in terms of
CPU time and storage. But each will also reject from further consideration
an entry or query which does not pass its test, and eliminate the cost
of more detailed processing. Just which screens are economically
justifiable is not intuitively obvious.

If sufficient disk space were available, a sequential file search
could be avoided altogether by using the inverted file as an entry to
a direct access copy of the complete file.

Another alternative would be to automatically use the output from
an inverted file search, an accession number list, as the input for a
search of the sequential file.

Both of these last two approaches run into the offsetting costs
of creating, storing and maintaining the various disk fliles. The
inverted file deserves particular mention here. Currently, this file
is stored at about 35% efficiency in terms of the actual amount of
information stored compared to tha disk space required to store it.
In addition, this file is limited to about 1300 entries by the length
of the "Not"-list and the length of a 2316 disk track. Both of these
conditions are undesirable, and should be eliminat I by redesign. Any
redesign of this file should also take into consiaaration the need to
maintain the file.

Extensions

There are potential capabilities for improvement other than
efficiency that might prove desirable.

One possibility for extension is the matching process. Currently,
an exact match is required between a query term and any entry subject
access term. The exact match conditSon could be augmented by various
types of term truncation, term weights and threshold logic, or
additional relational operators. The matching process could also
be extended to other fields of the entry, e.g. :author, publisher,
publication date, etc.

Another suitable area for extension Is the output. At this time,
each file has its own print procedure with a fixed print format. This
might be extended to allow selection from a number of print formats or
to allow a new file of hit entries to be written. Further extension
might enable the requester tp specify his own print formats, possibly



by the use of a generalized print procedure for all files. In a
similar vein, the same concept could be carried over to a generalized
read routine for all files.

It goes without saying that -9-le form and processing of the queries
would hav2 to undergo modificatior o provide for additional information
specified by the requester; and it must also be recognized that each
additional measure of generality will add its own penalty in terms of
efficiency and cost. If the program as a whole is rewritten into
Assembler language, features that improve operating system limitations
should almost certainly be incorporated at the same time.

One problem that must be considered in an operatInnal context
is reliability. No matter how well written a program is, there is
always a chance that a system disturbance, malfunction, or deficiency
can force a run to be terminated prematurely. A run with several
hundred queries and several thousand entries to be searched may
represent an expense of hundreds of dollars and hours of computer
time. Thus it is highly desirable to be able to recover from an
abnormal termination and continue from a point at or near where the
program left off. To do this, the operating system can provide
assistance in obtaining program checkpoints (periodically saving
program status' and restarting a program from a checkpoint. Alternatively,
special procedures may be built into the program to restart execution
in the middle of a file search or before or during the printing of the
bibliographies (the most costly points for a failure). However, it
may .be more practical to create special versions of the program for
restart purposes.

In summary, there are many possible directions in which program
development can proceed. Some are complementary, some are contradictory,
but all require careful consideration and possibly experimentation
before they become a reality,

40



IV. SUMMARY

Bibliographic, statistical and natural language macine readable
data bases are becoming a recognized source of information.

Just as the library has adapted its operations in tha past from
clay tablets, to scrolls, to books and to films, records, maps,
microfiche and other non-book materials, it must adapt to this
new type of material.

The Center for Information Services is proposed as a unit
within a university research library to provide the necessary
administrative, technical and public services to handle these
data bases. The degree of success of the CIS will depend to a
large extent on the computerized services that it can provide.
These services depend, in turn, upon the capabilities of the
computer systems, both hardware and software.

The final software system for the CIS can only be defined in
rather gross functional terms currcntly. As the CIS passes through
the successive stages of planning, design, programming, implementation
and operation, its software will most likely evolve from experimental
custom programming products to modular programs for specific functions
to a special purpose file management system.

The modular program for reference retrieval as developed for CIS
experimentation and as described in this report is one more step in
what could be a long, hard iourney, but a journey that must be
completed if the library is to adequately meet users' needs.

41



BIBLIOGRAPHY

1. American Documentation Institute, Annual Review of Information
Science and Technology.. Carlos A. Cuadra, ed., New York,
Interscience, 1966-.

Individual chapters provide state-of-the-art reviews
in specific areas oE information science. Includes
extensive bibliographies. In 1968, the ADI 'zilanged
its name to the Ar-arican Society for Information
Science.

Beginning with Volume 3 (1968) publication was
under the new name by Encyclopaedia Britannica.
Ann tL Luke became the assistant editor for
Volume 4 (1969).

2. ASIS: Journal of the American Society for Information Science,
Vol. 21, No. 3, May-June 1970.

The six articles of interest in this issue are:

1) Climenson, W. Douglass, "An Exercise in Computer
File Management", p. 201-203.

2) Mathews, William D., "Using the TIP System in
the ASIS File Management Exercise", p. 204-208.

3) Higgins, Timothy and Mays, Robert, "A Solution
to the ASIS File Management System Exercise
Using PL/I and Three General Purpose Systems",
p. 204-213.

LI) 011e, T. William and Gagnoud, Andre M., "A
Solution to the ASIS File Management Exercise
Using RCA's 131,/1", p. 214-218.

5) Bloom, P.W., "Application of CAPRI to the ASIS
File Management Exercise", p. 219-223.

6) Lindsley, Thomas E, "Anplication of IBM TEXT-
PAC to the ASIS File Management Exercise",
p. 224-227.

3. Atherton, Pauline and Miller, KaTen B. "LC/MARC on MOLDS:
An Experiment in Computer-Based, Interactive Bibliographic
Storage, Search, Retrieval and Processing", Journal of
Library_Automation, Vol. 3, No. 2, June 1970, p. 142-165.

42



Describes the Management On-Line Data Systems (MOLDS)
as used to process MARC data. The system is written
in FORTRAN for the IBM 360 in both batch and inter-
active versions. MARC file is reformatted into
fixed format entries. The file is apparently
searched sequentially.

Berul, Lawrence H. "Document Retrieval", Annual Review of
Information Science and Technolosm, Vol. 4, Chicago,
Encyclopaedia Britanniea, 1969, p. 203-227.

Reviews recent developments in document retrieval,
in particular computerized retrieval systems. Notes
the shift in the lit2rature from batch processing
to interactive systems. 80 references.

5. Byrnes, Carolyn J. and Steig, Donald B. "File Management Systems:
A Current Summary", Datamation, Vol. 15, No. 11, November 1969,
p. 138-1142.

6. CODASYL Systems Committee, A Survey of Generalized Data Base
Management Systems, New York, ACM, May 1969, 393 p.

7. Consolidated Analysis Centers, Inc. QWICK QWERY User's Manual,
Santa Monica, Calif., 1958, paged by part.

Covers processing requests for the QWICK QWERY
system from the user's point of view.

3. Data Base Task Group Report to the CODASYL Programming Language
Committee, New York, ACM, October 1969, 191 p.

9. de Boer, Aeint H. A Modular Program for Reference Retrieval from
Biblionraphic Data Bases in a Universit Research Librar
University of California, Los Angeles, 1970, 174 p. (MS1S Thesis)

10. "rive Approaches to the Same Data Base Problem", Proceedings of
the Second Sym osium on Computer-Centered Data Base Systems,
Santa Monica, Calif., System Development Corp., 1 December
1965, p. 3-3 to 3-275. (TM-2624/100/00).

11. Gosden, John A. "Report to X3 on Data Definition Languages", FDT:
Journal of the ACM SICFIDET, Vol. 1, No. 2, December 1969,
p. 14-25.

12. Housman, Edward M. "Survey of Current Systems for Selective
D5.ssemination of Information (SDI)", Proceedings of the
American Soeiet for Information Science, Vol. 6, Westport,
Conn., Greenwood, 1969, p. 57-61.

43



Briefly tabulates the results of a survey of 100 SDI
operations. The "typical" operation serves 50-500 users
from externally supplied bibliographic files. Profiles
are "typically" prepar2d by a professional analyst using
a thesaurus and Boolean logic.

13. Hutton, Fred C. "PEEKABIT, Computer Offspring of Punched Card
PEEKABOO, for Natural Language Searching", Communications
of the ACM. Vol. 11, No. 9, September 1968, p. 595-598.

Describes the use of superimposed codes in searching
natural language text obtained from the subject
indexes of Nuclear Science Abstracts. The tech-
nique is also applicable to fixed vocabularies.

14. Jordan, John R. and Watkins, W. J. "KWOC Index as an Automatic
By-Product of SDI", Proceedings of the American Society for
Information Science, Vol. 5, New York, Greenwood, 1968,
p. 211-215.

SDI notices judged as "of interest" by the user
are automatically accumulated to produce a biblio-
graphy, author index and KWOC title index every
thirteen weeks.

15. Lefkovitz, David. File Structures for On-Line Systems, New York
Spartan, 1969, 215 p.

Discusses the role of file structure in on-line inter-
active systems with particular attention to search
and maintenance. Covers multilist, inverted,
controlled length multilist and cellular file
organizations.

16. Library of Congress, Information Systems Office, MAL.:7 Manuals

Used by the Library of Congress, Chicago, American Library
Association, 1969, paged by part.

This publication combines four MARC system manuals,
The first, "Subscriber's Guide to the MARC Distri-
bution Services", is the manual of specifications
for magnetic tapes in the MARC II format.

17. McGee, William C. "Generalization: Key to Successful Data
Processing", Journal of the ACM, Vol. 6, No. 1, January
1959. p. 1-23.

Describes an early system for the IBM 702 consisting of
generalized sort, file maintenance and report generator
routines.

44
-40-



18. Sundeen, Donald H. "General Purpose Software", Datamation,
Vol. 14, No. 1, January 1968, p. 22-27.

19. University of California, Institute of Library Research, Mechanized
Information Services_in_thelkii=LIDLIAlmLm, Phase I:
Planning, Los Angeles, 15 December 1967, paged by part.
(PB-178 441, PB-178 442).

This thirteen part study is the final report to the
National Science Foundation on Phase I of the CIS
project. The parts referenced in the body of this
paper are:

Part 3, Troutman, Joan C. "Inventory of Available
Data Bases", 57p.

Part 5. Reilly, Kevin D. "Nature of Typical Data
Bases", 51p.

Part 6. Reilly, Kevin D. "Evaluation of Generalized
File Management Systems", 45p.

Part 10. "Preliminary Specifications (Hardware and
Software) for a Center for Information
Services", 43p.

20. Worth, J. M. et.al. ERIC Information Processing, Storage and
Retrieval: System and Program Documentation, Anaheim,
California, North American Rockwell Corp., August 1968,
paged by part.

This is a report to the U.S. Office of Education with
the documentation of the computer system designed for
che Educational Resources Information Center.

21. Ziehe, Theodore W. Data Management: A Comparison of System
Features, Austin, Texas, TRACOR, October 1967, 43p.
(AD-661 861).

45


