
ED 053 585

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY
REPORT NO
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

ABSTRACT

DOCUMENT RESUME

FL 002 343

Alexander, Bill
A Questioning-Answering Program for Simple Kernel
Sentences (QUE2).
Texas Univ., Austin.
National Science Foundation, Washington, D.C.
NSF-GJ-509-X; TR-NL-5
Mar 71
29 p.

EDRS Price MF-S0.65 HC-S3.29
Applied Linguistics, *Computational Linguistics,
*Computer Assisted Instruction, Computer Graphics,
Computer Programs, Computer Science, Deep Structure,
*Educational Technology, Flow Charts, *Kernel
Sentences, *Language Research, Logic, Programing
Languages, Semantics, Sentence Diagraming,
Structural Analysis, Structural Linguistics, Syntax

QUE2 is a recently devised, natural language,
questioning-answering program written in LISP1-5. It deals in simple,
kernel sentences and employs the theory that the semantic content of
a sentence is the set of relationships between conceptual objects
(represented by the words in it), which the sentence and its
structure imply. The data base of the program is an arbitrary list of
simple kernel sentences. The lexicon is a list of pairs; the first
element is the word itself, and the second element is its
definition--the first elemetzt a relation and the second a list of all
things which are in the given relation to the word being defined. The
structure of the question is also a simple kernel sentence. Through a
hierarchical set of functions, the program is capable of taking a
kernel-sentence question and, based on its knowledge, providing a
one-word answer (true, false, or don't know) accompanied by a copy of
the internal semantic structure of the sentence, if any, from which
the answer was deduced. The program's capabilities are not infinite,
but further details could easily be added. Tables showing the data
base, func, ion truth tables, flow charts, and questions and answers
are included along with a list of references. (VM)

U.S. DEPARTMENT Of HEALTH, EDUCATION & WELFARE

OFFICE OF EDUCATION

CO THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE

PERSON OR ORGANIZATION ORIGINADIS IT. POINTS OF VIEW OR OPINIONS

ref STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION

POSITION OR POUCY.

CO
O

ris

pd

A QUESTIONING-ANSWERING PROGRAM FOR

SIMPLE KERNEL SENTENCES (QUE2)

Technical Report No. NL-5

Bill Alexander

March 1971

NATURAL LANGUAGE RESEARCH FOR COMPUTER-ASSISTED INSTRUCTION

Supported By:

THE NATIONAL SCIENCE FOUNDATION
Grant GJ 509 X

Department of Computer Sciences

and

Computer-Assisted Instruction Laboratory

The University of Texas
Austin, Texas

SECTION 1 :

INTRODUCTION

The program called QUE2 is a natural language questioning-answering

program written in LISP1.5. Its data base is an arbitrary list of simple

kernel sentences, and it can answer many questions based on these sentences,

as long as the structure of the question is also a simple kernel sentence.

The basic method employed is a template- or pattern-matching process

with transformations on the questions (described fully in Section III). The

purpose of this project was not to present a complete and immediately useful

question-answering system, but rather it was to demonstrate the power and

potential applicability of the methods used here to the problem of answering

questions based on a natural language text when the text has been broken down

into kernel sentences. Since kernel sentences tend to fall into a relatively

small number of rather simple semantic and structural patterns, these patterns

can be manipulated without too much difficulty, and questions can be rather

thoroughly compared with sentences having words in common and similar patterns.

It seems natural to view any natural language processor as consisting

of three main components:

(1) A component to translate the natural language input into the

representation used internally by the system. In the case of

question-answering systems, the natural language sentences would
have to be translated into a structure representing their seman-

tic content. The structures used by QUE2 are described in

Section III.

(2) A component to manipulate, transform, compare, etc., these

internal structures. In a question-answering tqfstem,

component tries to dedtwe tie answers to the question:: from

the structures representing the semantic content of the data

text.

(3) A component to generate natural language output from the

representation used internally.

The program QUE2 is only the middle component of a questioning-

answering system. It only accepts questions which are already in the form

used internally to represent their semantic content; its output is a one-

word answer accompanied by a copy of the internal semantic structure of

the sentence, if any, from which the answer was deduced.

The program QUE2 itself consists of three main parts:

(1) A list (list DATA) of list-structures representing the semantic

content of certain kernel English sentences. These sentences

are the data-text from which QUE2 tries to answer questions

given it. Sentences, in the proper list form, may be added
or deleted from list DATA from run to run without affecting

the performance of the program, provided only that pointers
to these sentences are added or deleted appropriately to the

lexical definitions of the words in the sentences. Thus,

QUE2 can answer questions based on any set of text sentences.

(2) A list (list LEX) of word-definition pairs which serves as the

lexicon of words used in the text.. In addition to pointers

to all sentences (if any), in which the word is used, the defi-

nitions include class, equivalence, and exclusion information.

(3) A set of functions. These functions are for (a) manipulating
the structure representing the question, (b) comparing it to
the text structures in list DATA using lexical information if

necessary, and (c) deducing answers.

(Descriptions of the lists DATA and LEX, as well as of the main

functions, are included in Section III.)

2

,.3

One unique aspect of QUE2 is that it is based on a three-valued logic

rather than on the two traditional logical values TRUE and FALSE. The third

value that QUE2 deals with is "don't know," which will subsequently be referred

to as DK or Nil. A great deal of care has been taken to insure that QUE2 does

not return a definite answer to a question when an answer cannot be rigorously

deduced from the data text. For examples, if one of the kernel sentences in the

data text is:

Mary gave Tom John's letter.

then QUE2 will answer TRUE to:

A woman gave Tom John's letter?

and FALSE to

A man gave Tam John's letter?

but DK to

Mary gave Tom John's letter Tuesday?

because the data text sentence does not strictly imply an answer to this

last question. Another unique feature of QUE2 is that it can return answers

to three distinct types of questions, with no special signal as to which type

of question is being asked. The first type of question is the TRUE-FALSE-DK

type illustrated in the examples above. The second type of question is Who-

What-When.

Mary gave John's letter to whom?

can be entered as

Mary gave Q John's letter?

with the atom Q as the indirect object. ;QUE2 will return the indirect

object of a sentence which would imply that the question was TRUE if

3

the indirect objects matched. In this example, QUE2 would answer "TOM" if

sentence (sl) were in its data text. The third type of question which QUE2 can

answer is a question based solely on its lexicon. If, for example, the defini-

tion of "dog" in the lexicon included the information that "dog" is a member

of the class "animal," then the question

Is a dog an animal?

would be answered "TRUE BY DEFINITION." This answer will be returned by QUE2,

whether or not there are any sentences in its data text containing the words

"dog" or "animal."

4

{

SECTION II:

BACKGROUND

Natural language question-answering systems have been worked on and

discussed by many people since about 1964. For a recent survey of the field

and an extensive bibliography, see Simmons (5).

Some researchers are developing special-purpose systems which operate

on a small subset of English and answer questions on only one or a few topics.

An example of this approach is Charniak's (1) calculus problem solver.

Researchers attempting to solve the more general problem of answering

questions based on general text are faced with two enormous problems. The first

is to develop a formal data structure general enough to represent the wide range

and complex structure of meanings typically found in general natural language

text. The second major problem is to develop a sufficiently powerful logic upon

which to base a general question-answering algorithm.

Semantic Structure. Several recent question-answering systems have

represented their data in some form of directed graph in which the nodes are

words, concepts, or phrases and the edges are relationships between the nodes.

This type of structure is motivated by psychological considerations as well as

by Chomsky's notion of deep structure. Possibly the first formal presentation

of this kind of structure in relation to question-answering systems was in

Quillian's early work, and he incorporates it in his recent Teachable Language

Comprehender (3). A similar structure is used by Schwartz et al. in their

Protosynthex III (4). Another isomorphic variant of this structure, developed

by Simmons (6 and 7), is used in QUE2 (described in detail in Section III).

i5
6

The other major approach to semantic structures is to translate the

text into first order predicate calculus (fopc) statements. This approach is

used by Green and Raphael in the QA2 (2). It has the tremendous advantage of

greatly simplifying the question-answering algorithm. Unfortunately, not all

English can be represented in the fopc. Either a higher order calculus will

have to be mechanized or new operators will have to be added to the fopc to

enable it to express a broader set of natural language.

In an attempt to make the semantic structures simpler and more manage-

able, many researchers have taken the approach of breaking the text down into

simple kernel sentences, and algorithms have been developed for generating a

meaning-preserving set of kernel sentences from text (8). This approach is also

taken in QUE2. It is assumed by QUE2 that both the text and the questions are

in relatively simple form.

Algorithms. The question-answering algorithms used by most of the

recent question-answering systems fall into two major classes. The first type

are formal theorem-proving techniques, typified by the Robinson resolution

principle for proving theorems in the fopc. This algorithm is used by Green and

Raphael in QA2 (2). It has several advantages:

(1) It is a relatively short and very elegant algorithm.

(2) It is general and logically complete: If an answer to a

question can be deduced from the text, this algorithm, without

fail, will eventually produce the answer.

(3) There is a known algorithm mentioned in (2) for translating a

subset of English into fop' statements.

6

One disadvantage of this algorithm is that the fops is not capable

of expressing the semantic content of all English sentences, particularly the

semantic distinctions between various determiners and quantifiers. In some cases,

it can also be very slow. This is partly because it can look for only one

answer at a time; that it, it can either try to prove that the question, expressed

as a theorem is true or that it is false, but not both simultaneously. By con-

trast, QUE2 searches for both answers at once.

Most of the other algorithms used in question-answering, although

varying in many respects, all use some form of structure- and word-matching

technique. They usually involve some logical inference, and many perform

transformations on either the question or the text sentences in their attempt

to find matches. One of the earliest of these systems was Raphael's SIR.

More representative of recent research along this line is Protosynthex III

(4). The algorithm employed by QUE2 also falls in this class. The author

knows of no proof concerning the logical completeness of any of these algorithms,

but it is unlikely that any of the present ones are complete. Their rather

ad hoc character discourages formal mathematical treatment, and they lack the

elegance of the resolution principle. however, they do seem better adapted to

the problem at hand than do techniques borrowed from other fields, such as fcrmal

logic, and they at least show promise of being expanded or refined to handle the

problems of equivalence and quantification peculiar to natural languages.

Furthermore, they are fast enough and, for simple kernel sentences, short enough

for practical implementation on current computer systems, at least for small

data bases.

7/8

8

SECTION III:

DESCRIPTION

Semantic Structures

As mentioned in Section II, the philosopv behind the representation

of semantic content used in QUE2 is that the semantic content of a sentence is

the set of relationships between conceptual objects (represented by the words

in it), which the sentence and its structure imply. Sentences or phrases can

be thought of as directed graphs. The nodes of the graph are conceptual objects

denoted by words, and the edges of the graph are the relationships between the

words or conceptual objects. Thus, the phrase "a brown puppy" can be represented

by:

PuPPY

DET MOD

a brown 11
FIGURE 1

where the edge labels, DET and MOD, signify that a and brown are in the

relationships determiner and modifier, respectively, to puppy. It is usually

more convenient to represent such graphs in tabular form.

9

relation node

TOK puppy
MOD brown

DET a

FIGURE 2

In Figure 2, TOK indicates that puppy is the main word, or head, of the graph.

The structures represented in Figures 1 and 2 are entirely equivalent. Whole

sentences can be represented by such graphs. The sentence:

John gave Mary a brown puppy Tuesday.

is represented by:

G7 TOK give
TENSE past
AGT John
IO Mary

OBJ (0)
TIME Tuesday

G8 TOK puppy

MOD brown

DET a

OBJ-1 (G7)

FIGURE 3

The parentheses around G8 indicate that what stands in the direct object

relationship to give is another whole structure rather than just one word. The

verb is always the head of a sentence in this representation.

Since QUE2 is written in LISP1.5, which works only with lists, the

graph of Figure 3 must be transformed into list notation. The actual repre-

sentation used in QUE2 is given in Figure 4. Tenses are not distinguished by

QUE2. In addition, there is no distinction between the agent and subject

relations, although one could easily be implemented.

(G7(4TOK GIVE) (SUBJ JOHN) OBJ (G8)) (I0 MARY) (TIME TUESDAY)))

(G8((TOK PUPPY) (MOD BROWN) (DET A)(OBJ-1(G7))))

FIGURE 4

In Figure 4, the order of the lists or of the elements in each list is arbitrary.

The functions in QUE2 are, at present, set up to handle kernel ques-

tions and kernel sentences which conform to any one of three paradigms:

1. (subject) "is"

2. (subject) "is"

3. (subject) verb

(predicate adjective).

(predicate nominative).

(direct object)(indirect object)(time).

Elements enclosed in parentheses may be either single words or noun phrases.

The last three elements in Paradigm 3 are all optional, so that, for example,

John hit Tom and John sing are legal kernel sentences.* The ten sentences which

currently make up list DATA are given in Table 1.

TABLE 1

Knowledge (list DATA)

John's house is green.
John's house is- south -of Mary's house.

Tom is a student.
John give* Mary a brown puppy.
Parry hit Tom Tuesday.
John's mother give a student John's new car.

A man give John his promotion Tuesday.

John's boss give John a letter.
John's girlfriend is Mary.
Susan is Mary's girlfriend.

Am,

"No conjugation of verbs is done, and no attempt is made to

distinguish tenses.

The lexicon (list LEX) is a list of pairs; the first element of each

pair is a word, and the second element is its definition. The definition is

itself a list of pairs; the first element of each pair is a relation, and the

second is a list of all things which are in the given relation to the word being

defined. The relations currently implemented in LEX include TOK, SUP, SUP-1,

EQV, EXCL, and CONY. The lists that follow each of these relations in the defini-

tion of a word are, respectively, pointers to sentences in DATA in which the word

appears, words which are superclasses of the word, words it is a superclass of,

words to which it is equivalent, words which are in sets disjoint from it, and,

for verbs, verbs which are converses. For example, the lexical entry for

woman is:

(WOMAN ((TOK (G19)) (SUP (PERSON)) (SUP-1 (GIRL MOTHER)) (EXCL (MAN))))

which indicates:

--that woman is used in one sentence, G19,

--that it is a member of the class person,

--that girl and mother are subclasses of it, and

--that nothing which is a man or a subclass of man is a woman.

In logical notation:

woman ' person, girl 4' woman, woman 4- - man, woman + - boy, etc.

These logical relations are used by function WORDMATCH, which is discussed

in the following subsection.

1:212

QuestionAnswering Algorithm

A hierarchical set of functions is employed by QUE2. The top function

merely reads the next question, passes it to function QUERY1, and prints the

answer returned by QUERYl. The question is passed by QUERY1 to function RELEVANT,

which returns an ordered list of pointers to some of the sentences in the text

that are ordered according to their probable relevancy to the question. QUERY1

then passes the elements of this list (one by one in order) along with the ques-

tion to function MATCH. MATCH divides the question and the sentence into clauses

and passes these clauses to function CLAUSEMATCH, which further divides the

clauses into words and passes pairs of words to function WORDMATCH. Each of these

last three functions returns to the function preceding it, one of the three logical

values: TRUE, FALSE, or DK. CLAUSEMATCH and MATCH place entries in a truth-table

with the answers returned by lower functions until they are themselves able to

return a value to the next higher, function.

If MATCH discovers that the verb of the question is is, it transfers

the complete answering job to function ISMATCH, which has a different truth-table.

ISMATCH also uses CLAUSEMATCH and WORDMATCH to fill-in its table. First, however,

ISMATCH attempts to answer the question from lexical information alone. DETMATCH

is a specialized version of WORDMATCH which compares determiners. The truth-

tables for these functions are given in Tables 2 through 6. In each of these

tables, if the item for a column is missing in the question, that item in the

table is set to TRUE. If, for example, a question has no indirect object, TRUE

is entered in that column in function MATCH. The truth-tables, as they are shown

here, do not actually appear in the functions; instead, they are incorporated in

the nested conditionals to be found at the end of each function. Flowcharts for

functions QUERY1 and MATCH are given in Figures 5 and 6.

lilt a

TABLE 2

Truth-Table for Function -11iLWATCH

Condition Value

D missing,
or Q = D,

or Q EQV D,
or Q D

TRUE

Q D FALSE

otherwise Nil

TABLE 3

Truth-Table for Function DETMATCII

Condition Value

D missing,

or Q = a,

or Q = D,

or D Q

TRUE

D = a,

or Q D Nil

otherwise FALSE

In Tables 2 and 3, Q is the word in the question, and D is the

corresponding word in the text sentence.

TABLE 4

Truth -Table for Function CLAUSEMATCH

MOD
DETMATCH WORDMATCH

TOK
WORDMATCH Value*

TRUE TRUE TRUE TRUE
FALSE FALSEMOol OM .0,

111 Oa

FALSE
FALSE

all other combinations

FALSE
FALSE
Nil

*In addition to a value of TRUE, FALSE, or Nil (DK), CLAUSEMATCH
also returns a second value: definite (d); or indefinite (i).
It returns i if either determiner is a, and d otherwise.

TABLE 5

Truth-Table for Function ISMATCH

Subj Pred Adj
CLAUSEMATCH WORDMATCH Value

TRUE TRUE TRUE*
TRUE, d FALSE FALSE
all other combinations Nil

Subj Pred Nom
CLAUSEMATCH CLAUSEMATCH Value

TRUE TRUE TRUE*
TRUE, d FALSE FALSE
FALSE TRUE, d FALSE
all other combinations Nil

*Unless the atom Q appeared in the question, in which case the
corresponding element in the text sentence is returned.

15

TABLE 6

Truth-Table for Function MATCH

Subj
CLAUSEMATCH

Obj
CLAUSEMATCH

I0
CLAUSEMATCH

Time
WORDMATCH Value

TRUE
TRUE, d
TRUE

TRUE
FALSE

all other

TRUE
TRUE, d
TRUE, d
FALSE
TRUE, d
TRUE, d

combinations

TRUE
TRUE
TRUE, d

FALSE
TRUE

TRUE
FALSE
FALSE

TRUE

TRUE

TRUE*
FALSE
FALSE
Nil

, FALSE
FALSE
Nil

*Unless the atom Q appeared in the question, in which case the
corresponding element in the text sentence is returned as the

answer.

,1g6

Call RELEVANT
which returns

Try
1

. . . Tryn

Call MATCH
(question, Tryi)

(I MATCH = "TR" or "FL" ?

(MATCH = Nil ?

no

Nif

yes

yes

RETURN: MATCH +
sentence pointed to
by Try i

i + 1

no

i = n ?

lyes

RETURN:

DONTKNOW

RETURN:

TRUE BY DEFINITION
or

FALSE BY DEFINITTON

FIGURE 5. -- Flowchart for Function QUERY1.

c 17

Verb1 = Verb]) ?

no

yes

Verb, CONVERSE Verb]) ?

no

RETURN:
Nil

44es
Rewrite
question
as its

converse

2)
Verb = is ?

no J, yes

RETURN:

ISMATCH
(question, Tryi)

Fill-in Truth-Table
with values from

CLAUSEMATCH

no

Look-up value in
Truth-Table

RETURN: = TRUE ?

no

(Value

Value

yes

RETURN:
appear
the

TRUE

Did Q
in

question?

yes

RETURN:

Corresponding element
in text sentence

FIGURE 6.--Flowchart for Function MATCH

18

I 18

If functions MATCH and ISMATCH cannot arrive at an answer of TRUE or

FALSE, they try transformations on the questions before giving up and returning

a value of Nil (DK). ISMATCH rewrites the question, reversing the subject and

predicate nominative, and then tries to answer this new question as before. If

MATCH discovers that the verbs in the question and text sentence currently under

consideration are converses, it switches the subject with the indirect object,

or with the object if there is no indirect object in the question. It can also

rewrite the question leaving the verbs as converses, in which case it returns

TRUE if the truth-table indicates FALSE, and vice-versa. Having the question

rewritten in any of these ways does not impair QUE2's ability to answer Who-

What-When questions correctly.

Function RELEVANT, which produces an ordered list of probably-relevant

text sentences for a given question, assigns points to text sentences by locating

in the lexicon each word in the question. Taking the words in the question (one

by one), one point is assigned to a sentence if there is a pointer to that sen-

tence in the lexical entry for the word. A sentence also gets one point for every

word EQV to, EXCL to, SUP to, or SUP-1 to the question word which has pointers to

that sentence. The sentences are then ordered according to their point total. If

there are sentences with three or more points, sentences with two or less points

are deleted from the list of sentences to be considered. This heuristic greatly

reduces running time for questions to which the correct answer is DONTKNOW,

and it has never caused QUE2 to overlook a definite answer. A better heuristic

would probably improve running time even more. A complete listing of the questions

answered by QUE2 is given in Table 7.

TABLE?

Questions (read in) QUE2's Answers

Based on: John's house is green.

1 John's house is green?
2 Johh's home is brown?

3 John's home is what? -
4 Whose home is green?
5 John's car is green?
6 Tom's home is green?
7 A house is a home?

Based on: John's house is-south-of Mary's house.

TRUE*
FALSE
GREEN
JOHN
DONTKNOW
DONTKNOW
TRUE BY DEFINITION

8 John's house is-south-of Mary's house? TRUE

9 Mary's house is-south-of John's house? FALSE

10 Whose house is-south-of Mary's house? JOHN

11 John's house is-north-of Mary's house? FALSE

12 MhXy's house is-north-of John's house? TRUE

13 Whose house isrmorth-of Mary's house? DONTKNOW

14 Whose house is-north-of John's house? MARY

Based on: Tom is a student.

15 Tom is a student? TRUE

16 Tom is the student? DONTKNOW

17 Is Tom a old student? DONTKNOW

18 Is Susan a student? DONTKNOW

19 Is Harry a student? DONTKNOW

20 Is Tom a man? TRUE BY DEFINITION

21 Is Tom the man? -E. DONTKNOW

22 Is Tom a girl? FALSE BY DEFINITION

Based on: John give Mary a brown puppy.

23 John give Mary a dog? TRUE

24 Mary give John a puppy? FALSE

25 John give Mary a what puppy? BROWN

26 John give Mary what? A BROWN PUPPY

27 J o h n give who a dog? MARY

28 John give Susan a dog? DONTKNOW

29 Tom give Mary a dog? DONTKNOW

30 John give Mary the dog? DONTKNOW

*For all answers except DONTKNOW and TRUE- and FALSE BY DEFINITION, QUE2 also
returns a copy of the text sentence from which it deduced the answer.

TABLE 7 (continued)

Questions (read in) QUE2's Answerc

31 John give Mary a red dog?
32 John give Mary a car?
33 Mary get a puppy from John?
34 Mary get a red dog from John?
35 John get a puppy from Mary?
36 Mary get what from John?
37 Mary get a puppy from whom?
38 Mary get a dog?
39 Boy give girl dog?
40 Mary is John's puppy?

Based on: Harry hit Tom Tuesday.

41 Harry hit Tom Tuesday?
42 Harry hit Tom?
43 Harry hit Tom Wednesday?
44 Harry hit John?
4r Harry hit John Tuesday?
46 John hit Tom Wednesday?
47 A man hit Tom Tuesday?
48 The man hit Tom Tuesday?
49 A man hit Tom Wednesday?

Based on: John's mother give a student John's new car.

50 John's mother give a student John's new car?
51 A mother give a student John's new car?
52 A man give a student John's new car?
53 John's mother give Tom John's new car?
54 John's mother give the student John's new car?
55 John's mother give a animal John's new car?
56 John's mother give a student Tom's new car?
57 John's mother give a student John's old car?
58 John's mother give John's new car to whom?
59 Susan's mother give a student John's new car?
60 A woman give a person whose car?

Based on: A man give John John's promotion Tuesday.

61 A man give John John's promotion Tuesday?
62 John's boss give John John's promotion Tuesday?
63 A woman give John John's promotion Tuesday?
64 A man give John John's promotion?
65 A woman give John John's promotion?

DONTKNOW
DONTKNOW
TRUE

DONTKNOW
FALSE
A BROWN PUPPY
JOHN
TRUE

TRUE
FALSE BY DEFINITION

TRUE
TRUE
FALSE

DONTKNOW
DONTKNOW
DONTKNOW
TRUE
DONTKNOW
DONTKNOW

TRUE

TRUE
FALSE
DONTKNOW
DONTKNOW
FALSE
DONTKNOW
DONTKNOW
A STUDENT
FALSE

JOHN

TRUE
DONTKNOW
FALSE
TRUE
FALSE

TABLE 7 (continued)

Questions (read in) QUE2's Answers

66 A man give John John's promotion Wednesday? FALSE

67 A man give Tom John s promotion Tuesday? FALSE

68 A man give Tom Tom's promotion Tuesday? DONTKNOW

69 A man give John John's promotion when? TUESDAY

70 John get John's promotion from a man? TRUE

71 John get a promotion from a woman? DONTKNOW

72 John get John's promotion from a woman? FALSE

73 John get John's promotion Wednesday? FALSE

74 John get a promotion?
TRUE

Based on: John's boss give John a letter.

75 John's boss give John a letter? TRUE

76 Tom's boss give John a letter?
DONTKNOW

77 Susan's boss give John a letter? DONTKNOW

78 John's boss give John the letter? DONTKNOW

79 Susan's boss give Tom a letter? DONTKNOW

80 John's boss give Tom a letter? DONTKNOW

Based on: John's girlfriend is Mary.

81 John's girlfriend is Mary? TRUE

82 John's girlfriend is a girl? TRUE BY DEFINITION

83 Mary is a girlfriend?
TRUE

84 Mary is John's girlfriend?
TRUE

85 Mary is Tom's girlfriend?
FALSE

86 Susan is John's girlfriend?
FALSE

Based on: Susan is Mary's girlfriend.

87 Susan is Mary's girlfriend? TRUE

88 Susan is a girlfriend?
TRUE

89 Susan is a girl?
TRUE BY DEFINITION

90 Sally is Mary's girlfriend? FALSE

91 Mary's girlfriend is Susan? TRUE

92 Mary's girlfriend is Sally? FALSE

SECTION IV:

EXPERIMENTS

QUE2 is currently provided with a data text of the 10 sentences

listed in Table 1. Its lexicon contains 42 words; it was given the set of

92 questions listed in Table 7; and it returned the answers also listed in

that table. The program was run under the LISP1.5 interpreter on a CDC6600

computer. It required about 3 seconds to set up and about 50 seconds of

central processing time to answer all of the 92 questions. This represents

an average of about 0.54 seconds per question. This figure can be reduced

slightly by either providing more memory or by reducing the number of ques-

tions per run so that no "garbage collections" are necessary. It was provided

with 550008 words of memory, and there were three "garbage collections" during

the run. A more significant reduction in the average time per question could

be achieved by a more sophisticated cut-off heuristic to limit the number of

text sentences QUE2 looks at before giving up and returning DONTKNOW, since

QUE2 generally spends less than 0.5 seconds for answering questions to which

it can find a definite answer and, in some cases, a full second or more for

arriving at DONTKNOW. In a few places, more efficient code could probably

be written. Some of the questions in Table 7, as well as QUE2's answers,

are in the following discussion.

Questions 3 and 4 illustrate QUE2's ability to answer "what" and

"who" questions. It is not limited to returning one-word answers, as is

illustrated by Questions 26, 36, and 58. Question 36 also demonstrates that

QUE2's ability to answer such questions is not impaired by having first to

transform the question.

Questions 7, 20, 22, 40, 82, and 89 were all answered on the basis of

lexical information alone. Notice that the form of such questions is identical

to the form of all other questions. Also, compare Question 20 with 21: The

distinction resulting in the two different answers is based solely on the

determiner preceding "man." While the determiner of the predicate nominative

must be "a" for QUE2 to answer TRUE BY DEFINITION, this is not necessary for

deriving FALSE BY DEFINITION, as is shown in Question 40. The answer to 40

is based on a rather long chain of lexical information: Mary is SUPed to girl-

person, girl-person to girl-class, girl-class to woman, and woman to person;

person excludes animal, animal is SUP-led to dog, and dog to puppy.

Questions 11-14, 33-38, 70-74, 83-86, and 91-92 all required QUE2

to make some transformation on the question before an answer could be given.

As demonstrated by Questions 34 and 71, QUE2's ability to avoid unwarranted

answers is not impaired by having to make such transformations.

Text Sentences 4, 6, 7, and 8 all have the same basic structure, and

all involve the verb "give." In 6 and 7, a definite object is given, while the

direct objects in 4 and 8 are indefinite. Questions on these sentences demon-

strate the use of the definite-indefinite value returned by CLAUSEMATCH which

appears in lines 2, 3, 5, and 6 of the truth-table of function MATCH (Table 6).

The direct objects of both the text sentence and of the question must be definite

before QUE2 will return an answer of FALSE. This provision is based on observa-

tion of common usage in English: John gives Mary a puppy does not preclude John

giving Mary anything else, John giving anyone else anything, or anyone else

giving Mary anything. But A man gives John John's promotion Tuesday precludes

practically any other event described by a change in only one element of the

text sentence. For example, compare Question 28 with 67, or 29 with 65. In

these examples, the intent was to reflect ordinary usage of language. In some

cases, decisions were made rather arbitrarily. For example, Questions 24 and

35 illustrate the fact that QUE2 assumes that X giving Y to Z precludes Z giving

Y to X. This is, of course, not logically the case and is not always the case

in ordinary usage, as is obvious if Y is a "kiss." To distinguish the very dif-

ferent logical implications of John give a kiss to Mary and John give a puppy

to Mary, QUE2 would need a great deal of additional lexical information.

Another rather arbitrary decision was made in the second and third

lines of Table 6 concerning the logical implications of time. Notice that

QUE2 answered FALSE to both Questions 43 and 66. Most people would agree that

the answer to 66 is reasonable, but there might be some question about 43. If

Harry is a bully, he might well hit Tom every day. The problem is even more

obvious for verbs like "sleep" and "eat," which are generally done by people

every day. Obviously, the verbs in the lexicon should be classified according

to repeatability, as well as by many other classifications.

The preceding discussion does not attempt to defend any of these

choices. The important point is that if QUE2 does not perform according to a

particular user's notion of usage, the truth-tables can be changed, and/or

additional information can be included in the lexicon.

SECTION V:

CONCLUSIONS

From the results presented in Section IV, it can be seen that QUE2

returns reasonable answers to a wide variety of simple questions based on the

given text. In fact, the author has been unable to construct a question to

which QUE2 does not give a reasonable answer. As stated in the introduction,

the purpose of this project is to demonstrate that the matching and truth-table

methods employed in QUE2 are sufficiently powerful to make this a reasonable

approach to answering questions based on kernel sentences. It is not claimed

that the present QUE2 can answer all questions based on arbitrary kernel sen-

tences. For instance, there is the problem discussed in Section IV in connec-

tion with Question 43. The lexicon of QUE2 obviously needs to include more

sophisticated definitions, at least for verbs. Although the term "kernel

sentence" is not rigidly defined, it would surely include simple sentence

patterns or paradigms other than the three that QUE2 is presently able to handle.

But different additional patterns could be recognized either by the presence

or absence of elements or by the class of the verb, and then it is simply a

matter of including additional truth-tables. Since a given algorithm for

generating a set of meaning-preserving kernel sentences from natural language

text can generate only a finite, presumably small, number of such patterns, the

problem of expanding QUE2 to handle them should not be overwhelming. Adding

certain relations would merely be a matter of adding columns to existing truth-

tables. For example, the relation LOC, for "location," could be added to

Paradigm 3 simply by adding a column to Table 6; the entrics in the column

would correspond exactly to those in the "Time" column.

One obviously desirable addition to QUE2 would be the ability to

answer a question based on two or more sentences. For example, in the present

implementation, Sentences 3 and 5 are

Tom is a student.

Harry hit Tom Tuesday.

A good question-answerer should be able to Pmswer

Harry hit a student Tuesday?

Actually, it would be easy to enable QUE2 to handle this particular question.

Upon discovering that the question matches Sentence 5 perfectly, except for a

DK value in the object position, QUE2 could generate a secondary question:

Tom is a otudent?

using the question-building techniques of function REWRITE. It would then pass

this new question to itself recursively as a subgoal. The strategy would be

excactly the subgoal strategy of Newell, Shaw, and Simon's GPS. The problem,

as in GPS, would be to develop heuristics for determining when to generate new

subgoals and when to give up. This is a difficult problem, but essentially the

same problem arises in any question-answering system.

Due to the number of sentence patterns occuring in natural languages,

it is doubtful that the methods employed in QUE2 represent the best basis for

a completely general question-answerer based on arbitrary text. Furthermore,

it is not at all clear that the semantic content of any arbitrary text can

adequately be represented by a set of simple kernel sentences. For example, it

is difficult to produce a set of simple kernel sentences for:

One of the first plants to appear on newly-formed
tropical islands is the stately and graceful coacoa-
nut palm.

The author does believe, however, that for text which can be represented as a

set of kernel sentences, QUE2 illustrates a promising approach to question-

answering.

1* (/8

REFERENCES

(1) E Charniak. Computer Solution of Calculus Word Problems.

Proc. Int. Jt. Conf. Art. Int., Washington D. C, 1969, 303-316.

(2) C C Green & B Raphael. The Use of Theorem Proving Techniques

in Question-Answering Systems. Proc. 1968 ACM Nat. Conf., 169-181.

(3) M R Quillian. The Teachable Language Comprehender. Comm ACM,

Aug. 1969, 459-476.

(4) R M Schwartz, J F Burger, and R F Simmons. A Deductive Question-

Answerer for Natural Language Inference. Comm. ACM, March 1970,

167-183.

(5) R F Simmons. Natural Language Question-Answering Systems: 1969.

Comm. ACM, January 1970, 15-30.

(6) . Class notes, CS387K. Spring 1970.

(7) . Notes on Semantic and Discourse Structures.

Design Note, Dec. 20, 1969.

(8) , J F Burger, and R E Long. An Approach Toward

Answering English Questions from Text. Proc. FJCC, 1966, 357-363.

30

k29

