
DOCUMENT RESUME

ED 053 534 EM 009 056

AUTHOR Siklossy, Laurent
TITLE Topics in CAI: Information Transfers and Review.

Paper I; Control and Feedback in the Environment of
a Computer Tutor. Paper II; Review in CAI: The
Problem and an Implemented Solution.

INSTITUTION Texas Univ., Austin. Computer-Assisted Instruction
Lab.

SPONS AGENCY Texas Univ., Austin. Computation Center.; Texas
Univ., Austin. Electronics Research Center.

PUB DATE Mar 71
NOTE 45p.; Paper I, to be presented at the International

Symposium of the American Society for Cybernetics
(4th Annual, Washington, D.C., October, 1971)

EDRS PRICE
DESCRIPTORS

ABSTRACT

EDRS Price MF -$O.65 HC-$3.29
*Computer Assisted Instruction, Computer Science,
Educational Diagnosis, *Feedback, *Instructional
Design, *Interaction, Learning Processes, *Review
(Reexamination)

Two papers are included in this report. "Control and
Feedback in the Environment of a Computer Tutor" investigates some
control and feedback properties of a tutorial environment comprised
of a student, his computer tutor, and the designer of the computer
tutor. Three classes of computer tutor are described: rigid,
generative, and knowledgeable. These classes are distinguished by an
increase of the interactions among tutor and student and a decrease
of the control of the tutor over the tutorial environment. Full
partnership between tutor and student could be achieved with the help
of programs that understand natural language. "Review in CAI: The
Problem and an Implemented Solution" discusses review of material,
which is made necessary by human memory loss. The computer tutor that
incorporates review is built around performance programs that know
what the student is to learn, generator programs that generate
problems the student must learn to solve, and extensive diagnostic
programs that guide the tutor in his interaction with the student.
Borrowing compiler-writing techniques, a multi-level system for
review has been implemented that avoids extra coding and repetition
of material in identical form. (Author/JK)

cWtn,-S*.
th.144.,

U S DEPARTMENT Of HEALTH, EDUCATION 8 WELFARE

OFFICE Of EDUCATION

1HIS DOCUMENT HAS BEEN REPRODUCED [WHY AS RECEIVED FROM 1HE

PERSON OR ORGANIZAlION ORIGINATING 11 POIN1S Of VIEW OR OPINIONS

51 A1ED DO NO1 NECESSARILY REPRESENT OFFICIAL OFFICE Of EDUCATION

POSITION OR POLICY.

TOPICS IN CAI:

INFORMATION TRANSFERS AND REVIEW

Laurent SiklOssy

March 1971

Computer Sciences Department
and

Electronics Research Center
The University of Texas at Austin

Al..tin, Texas 78712

PREFACE

This report contains two papers. The first paper, entitled

"Control and Feedback in the Environment of a Computer Tutor," will be

published in the Proceedings of the Fourth International Symposium of

the American Society for Cybernetics. The inclusion of the paper in

this report is justified by the long delay in publication of the

Proceedings. The paper investigates the interrelationships between

a student, his computer tutor, and the designer of the computer tutor.

The second paper, entitled "Review in CAI: The Problem and

an Implemented Solution," describes a technique that we have developed

to treat the need for review in a tutorial environment. The paper also

compares two organizations of a computer tutor: as a single tutor or

as a multiplicity of tutors cooperating among themselves. Our approach

for review is best understood in the framework of a group approach to

teaching.

The interested reader may wish to consult other related publi-

cations by the author:

Computer Tutors That Know What They Teach. Proceedings of
the FaZZ Joint Computer Conference, 251-255, 1970.

Computer Information Structures Teaching by Computer (with
L. D. Shroyer). Proceedings of the Fifth Annual
Princeton Conference on Information Sciences and
Systems, 1971.

Let Us Build Intelligent Computer Tutors. Computers and
Automation, March, 1971.

The last two papers describe preliminary results in mechanizing the teaching

of computer data and storage structures. In the present curriculum, computer

structures are usually taught to advanced college undergraduates.

CONTROL AND FEEDBACK IN THE ENVIRONMENT

OF A COMPUTER TUTOR

Laurent Siklbssy

To be published in:

Proceedings of the Fourth International Symposium of the
4merican Society for Cybernetics

Spartan Books, 1971

Computer Sciences Department
The University of Texas at Austin

Austin, Texas 78712

1

TABLE OF CONTENTS

ABSTRACT

1 INTRODUCTION

1.1 Cybernetics and the Educational Process

Page

1

1

2 THE TUTORIAL ENVIRONMENT 3

2.1 The Student-Tutor System 3

2.2 The Teaching System and its Designer 4

3 RIGID COMPUTER TUTORS 6

3.1 Discussion 6

3.2 The Designer's Tools 7

4 GENERATIVE COMPUTER TUTORS 9

4.1 Discussion 11

4.2 Examples 11

5 KNOWLEDGEABLE COMPUTER TUTORS 13

5.1 Example 14

5.2 Discussion 20

6 CONCLUSIONS 21

7 ACKNOWLEDGEMENTS 21

8 REFERENCES 22

ABSTRACT

An essential ingredient of man's environment is ... man!

The training of man to interact harmoniously with his own human

environment will be an increasingly important problem. As

one means to solution, the role of computers as teaching agents

is increasing.

The present study investigates some control and feedback

properties of a tutorial environment comprised of a student,

his computer tutor and the designer of the computer tutor.

Three classes of computer tutors are described: rigid, generative,

and knowledgeable. These classes are distinguished by an increase

of the interactions among tutor and student and a decrease of the

control of the tutor aver the tutorial environment. Full partner-

ship between tutor and student could be achieved with the help

of programs that understand natural language.

1 INTRODUCTION

Man has changed profoundly his environment. Man has also

multiplied to the extent that further population growth poses

serious problems. Future generations will need to learn how

to interact harmoniously both with the physical world and with

the large populations that will constitute an essential part of

the human environment. Men and booka have been the traditional

teachers of man. In the past decade, however, considerable

interest has been raised by possible applications of computers

to teaching. A book does not carry on a dialogue with a

udent) and individualized teaching of man by man can be

afforded only by the wealthiest. Thus, truly individualized

instruction for the masses is conceivable only if some

mechanical device, such as a computer, becomes the teacher.

A recent compendium by Lekan (1970) lists 910 computer

assisted instruction (CAI) programs. This large number

indicates the interest that computer tutors already engender.

We shall see how a cybernetic approach to the description of

computer tutors helps us to understand their past and present

development.

1.1 Cybernetics and the Educational Process.

Couffignal (1964) discussed in general some contributions

that cybernetics could make to education. Batteau (1968) has

shown that feedback is essential to ascertain that information

has been transmitted. The importance of feedback, and its

utilization, is at the heart of some recent work in the uses of

computers in teaching (Bestougeff et. al., 1970). The

arithmetic capabilities of the computer are widely used for

the bookkeeping chores (record-keeping, etc.) that accompany

04

Sikl6ssy. Page 2.

the educational process. We shall not be interested here in

these activities of the computer but shall concentrate instead

on the tutorial interaction between a student and his computer

tutor. We shall show how various stages in the development of

computer tutors can be viewed as particularizations of a simple

system comprised of two interacting information-processing

systems: a student and a tutor.

4'1

SiklOSsy. Page 3.

2 THE TUTORIAL ENVIRONMENT

We shall be concerned primarily with the system comprised

of a student and his tutor, in our case a computer tutor. We

shall also talk briefly about a larger system in which the

designer of a computer tutor interacts with the previous

student-tutor system. The designer's task is the development

of a computer program with specific goals, namely the teaching

of some subject to certain categories of students.

2.1 The Student-Tutor System.

In Figure 1 we have a schematic outline of the paths

through which information flows in a system comprised of a

student and his tutor. We assume that the designer of the

system has stepped out: of the picture. The dynamic development

of the interaction between student and tutor would constitute

input data that the designer could utilize to modify the tutor.

Insert Figure 1 about here.

In Figure 1 we have labelled the information paths in th

system. The path T-S carries information from tutor to

student. The message carried may be a problem that the tutor

is submitting to the student. The path T-T is a feedback path on

the tutor. It could carry the same problem to the problem-

solving capabilities of the tutor. The student could send his

solution of the problem along the S-T path. Along the S-S

path the student could send some method that he discovered

while solving the problem. This method may be stored or

generalized, or it may lead to some questions from the student

to the tutor, again along the S-T path.

9

SiklOssy. Page 4.

When we consider actual computer tutors, we find that the

kinds of information that can be transmitted fruitfully along

the information paths of a tutorial environment are limited

to various degrees. For example, in some systems, the S-T path

can only carry numbers between one and four. These numbers

represent answers to multiple-choice questions transmitted from

the tutor along the T-S path. In sections 3, 4 and 5 we shall

describe three kinds of computer tutors which are increasingly

general in respect to the types of information that can be

transmitted, and appropriately interpreted, in the tutorial

environment. We shall focus in particular on paths T-S and S-T.

2.2 The Teaching System and its Designer.

At the level of generality of this section it is not

possible to be very explicit about the dynamic interactions

between a designer and his tutor. The design of a computer

tutor results from a long experimentation with a succession

of tutors. It is estimated that from fifty to two hundred

hours of designer time go into the preparation of a computer

tutor for each hour of student interaction with the tutor.

If the design involves some search for optimization of the

student's learning rate, the designer is faced with the

frustrating discovery that what should, logically, count

does not always do so. For example, if the designer builds up

his course of a logical sequence of units, he may find that

scrambling these units, and consequently presenting them to

the student in some "cart before the horse" order, does not

necessarily influence the learning rate of the student.

The evidence is not conclusive, however. (See for instance Roe,

1962 and Roe et. al., 1962). Some theoretical framework is,

however, emerging in which computer-aided instruction programs

can be designed (Bunderson, 1969).

11,0

Siklossy. Page 5.

We shall have more to say about the tools available to

a designer as we consider three classes of computer tutors.

11

SiklOssy. Page 6.

3 RIGID COMPUTER TUTORS

The first computer tutors have a structure very similar to

a scrambled textbook. The designer has divided the material to

be taught into a number of frames. The structure of a frame is

shown in the flow-diagram of Figure 2. In this figure, as in the

subsequent figures, a box labelled Tn, where n is an integer,

indicates an activity of the tutor, while a box labelled Sn

indicates an activity of the student.

Insert Figure 2 about here.

At the start of a frame the student will be exposed,

typically, to some statements by the tutor (box Tl). A question

then follows (T2). Control, which had until now rested with

the tutor, passes to the student who answers the question.

Control immediately returns to the tutor which compares the

student's answer to a finite number of stored items or schemata

(T3). For example, if the answer is the number 3 (the result

of some computation), the system may accept only 3 as an answer,

or it may also accept 3.0, or even any expression that the

tutor can evaluate to 3, such as 9/3. The tutor takes into

account the student's last answer, and possibly some function

of past performance, and decides to transfer to some particular

frame (T4).

3.1 Discussion.

We shall discuss rigid computer tutors in terms of our

schema in Figure 1. The main information path is T-S, carrying

statements by the tutor, its questions to the student and its

comments on the answers from the student. Uttal (1968)

distinguishes between two types of rigid computer tutors,

depending on the respective weights of statements and questions.

SiklOssy. Page 7.

He calls "degenerate computer teaching machine" a computer

tutor that has essentially the appearance of a scrambled

text book: long statements (typed out by the system or presented

on slides or microfiches) followed by multiple-choice questions,

answers to which determine the next frame to be considered. On

the other hand, in what he terms a "selective computer teaching

machine", statements and questions share more equitably the

T-S information path. In either case, the designer has had to

preprogram all statements, questions and problems that will be

presented to the student. The material is rigidly fixed, and

it is this rigidity that made us choose the classificatory name

of the tutors that can be described by Figure 2.

The S-T path is atrophied to various degrees. In many

cases only multiple-choice answers are allowed. The student may

have to choose among answers none of which he feels are accurate.

Moreover, the student may not ask any questions that had not

been offered by the tutor as possible questions.

3.2 The Designer's Tools.

Although unsatisfactory from many points of view, rigid

computer tutors have met with considerable success. Accompanying

and contributing to their success is the development of specialized

computer languages for CAI: such as COURSEWRITER (the most

widespread, IBM produced), PLATO, LYRIC, PLANIT, etc. Computer

systems have been developed with various "bells and whistles",

including slide or microfiche projectors, scope terminals,

film loops, sound tape loops, etc. The programming languages

facilitate the writing of text, questions and the diagnostic

functions and their resultant branching logic. The languages

also incorporate various bookkeeping facilities that allow the

designer to fine-tune his system.

SiklOsay. Page 8.

The limitations of these special languages are becoming

more and more apparent. Attempts have been made to give them

some of the facilities of general-purpose computer languages.

PLANIT (Feingold, 1967) has a function definition capability,

while some other CAI languages can include a compiler/interpreter

for a general-purpose algebraic language (see INTERFACE, 1970).

14

SiklOssy Page 9.

4 GENERATIVE COMPUTER TUTORS

The first attempts at removing the deficiencies of rigid

computer tutors were directed neither at the overwhelming control

exercised by the computer tutor during the tutorial "dialogue"

nor at the very limited informational transfer capabilities of

the S-T path; rather they aimed at facilitating the designer's

task. In a rigid computer tutor the designer must code explicitly

all questions or problems that will be presented to the student,

and he must predict all answers to which the tutor can answer

knowledgeably. All unpredicted answers are lumped together

and result in a typical response of "You are wrong. Try again."

by the tutor.

In a generative computer tutor, the questions or problems,

instead of being coded explicitly by the designer, are generated

by a program, the generator program. The designer now needs only

to code the generator program to assure the implicit coding of a

very large number of problems.

Insert Figure 3 about here.

Figure 3 is a flow-diagram for the frame of a generative

computer tutor as viewed by the author. Again the tutor may

present some statements to the student (not represented in the

flow-diagram). Then, depending on some input parameter (at

first determined by the designer, subsequently determined by

the strategy program: see below) the generator program (box T1)

generates a sample of some universe. This sample could be a

question, a problem)or data for some function that is to be

learned. For example, the generator program may have generated

a set with a given number of elements - the number depending

possibly on past student performance. The question is to

determine the number of elements in the set.

15

Siklossy. Page 10.

Control then branches in parallel both to the tutor (T2)

and to the student (S1). (This is the meaning of the parallel

horizontal lines in the flow-diagram. See Chapin, 1970). The

student attempts to manipulate the sample, i.e, answer the

question, solve the problem, or apply the function to the data

(box S1). The question also feeds back to the tutor along the

T-T path; and a program in the tutor, the performance program,

also tries to manipulate the sample (T2). To continue our

example, both student and program will try to determine the

number of elements in the given set, the tutor by applying some

algorithm, the student some method that he has learned.

The student communicates his result to the tutor which

compares it with the result that it computed. Both results are

then input to a diagnostic program (T3). This program may

determine that the student's result was not of the right kind

(not a number),was a correct number, or was an incorrect

number. The incorrect number may have been, in varying degree:,

either too long or too short, or may even have been nonsensical

(negative or fractional).

The results of the diagnostic program are kept by the tutor

and communicated to its strategy program (T4). The strategy

program may then communicate aspects of the diagnosis to the

student (T5). In our example, the tutor may choose to indicate

only that the answer is incorrect, or be more specific in why

it is incorrect. The tutor may terminate the frame (F2),

transfer to a new frame (F1), or return to the same frame.

In the last instance, the input to the generator routine may

be different, in which case a set with a different length

will be generated. If the set generator routine randomly selects

elements of a set from a pool of elements, then even an unchanged

length parameter may result in a different set.

16

SiklOssy. Page 11.

The advantages gained by the designer may be partially

upset by the difficulty in comparing the paths taken by various

students through a number of frames. In a rigid computer system,

the frames for various students are a rearrangement of a fairly

small, fixed number of frames. In a generative computer tutor,

only the frame schemata are fixed; the actual presentations may

vary widely from student to student.

4.1 Discussion.

If the designer can code generator and performance programs

for the subject matter that he tries to have the computer tutor

teach, then his task becomes significantly easier. Instead of

carefully precoding a large number of examples of various degrees

of difficulty, and their answers, he only needs to determine some

strategy for the generation of input parameters to the generator

routine.

In terms of our model (Figure 1), the tutor still has

overwhelming control of the tutorial dialogue. The S-T path

is more developed than before because now the tutor can process

meaningfully a wide variety of student responses since processing

is carried out by some evaluative computer program instead of

by a simple procedure that matches for identity.

The feedback pathT-T is barely used in a rigid computer

tutor; here it carries samples to be manipulated from T1 to

T2, diagnoses that can be explicated to the student at various

levels of detail and diagnoses that help determine the next

move by the tutor. The S-S path is not used explicitly in this

computer tutor.

4.2 Examples.

As illustrations we shall briefly describe some generative

computer tutors. Uhr (1965 or 1969) has described a very

SiklOssy. Page 12.

elementary program, written in SNOBOL, to teach addition and

word-for-word translation from one language into another. The

program generates numbers, gives them to the student, sums them

and, upon comparison with the student's response, will print a

diagnosis like "your answer is too large." Wexler's system

(1968) is a more developed program that teaches the four

elementary arithmetic operations. Wexler's program is written

in ALGOL, as is Peplinski's (1968), a computer tutor to teach

the solution of quadratic equations in one variable. Peplinski's

program generates random quadratic equations which are constrained

to remain of a certain type and of a certain level of difficulty.

Uttal et. al. (1969) describe a system to teach analytic geometry;

and their computer tutor is coded in assembly language. Outside

of mathematics, but still in a strongly structured domain,

Spolsky (1966) has described a program to teach some elementary

aspects (such as agreement) of a language to a foreign learner

of the language. (Details about an implementation are lacking).

The special-purpose CAI languages mentioned in section

3.2 are not particualrly suitable for the coding of algorithms,

and it is no surprise that none of the generative computer

tutors mentioned is programmed in one of them. On the other hand,

general-purpose programming languages are often harder to learn

than CAI languages and are consequently less accessible to some

curriculum designers.

18

SiklOssy. Page 13.

5 KNOWLEDGEABLE COMPUTER TUTORS

Generative computer tutors are less tedious to design

than rigid computer tutors. They also offer a larger variety

of frames and significantly improved diagnostic capabilities.

Nevertheless, in both types of tutors, control rests mostly

in the tutor. We can extend the capabilities of a generative

computer tutor, and thereby diminish the imbalance between

tutor and student, if instead of concentrating on the

generative capabilities, we focus attention on the performance

program that manipulates the samples generated by the generative

program.

The performance program of a generative computer tutor

can solve problems in some universe. The program may not know

the subject matter (and it is not clear what "know" means),

but it certainly performs as if it knew: the program "can do."

Just as it can answer questions generated by the generative

program, the performance program can answer questions generated

by the student. The performance program embodies some method

to solve some problems and this method can be made explicit

by the tutor. The tutor can show the student a trace of its

problem-solving behavior. The student can then learn by

imitating the methods of the tutor.

Insert Figure 4 about here.

Figure 4 describes a frame of such an extended generative

computer tutor. We call such a tutor, in which the know-how

of the performance program is fully put to contribution, a

knowledgeable computer tutor. The corresponding tutor boxes

in Figures 3 and 4 are labelled identically. We have already

discussed the path Fl, Tl, T2, S2, T3, T4, and T5. The tutor

also has the option to explain the processes utilized by the

performance program (T6).

19

SiklOssy. Page 14.

Initially, control can also be relinquished to the student,

who can generate some sample of the universe under consideration

(S1). We can justify this process from two points of view: a

sample generated by the student could be the equivalent of a

question addressed to the tutor, or it could be a quiz given

by the student to the tutor.

In the first case, both tutor and student manipulate the

sample generated by the student (T2'and S2', S3 is bypassed).

The previous path is reentered at T3. At T4, the program may,

if the student so desires (not indicated in the flow-diagram),

branch to T6 where the introspection program will explain how

the tutor computed its answer. Box S2' could also be bypassed

and the tutor would simply manipulate the student's sample and,

possibly, explain the obtained result.

In an effort to equalize both the tutor's and the student's

roles, and to introduce an element of fun, we allow the student

to quiz the tutor. The tutor can go into a "dumb" mode (T7),

and in this mode it will sometimes make mistakes. The student

can catch the tutor in error (S3), and we could conceivably

give back to the tutor its knowledge, at which time the tutor

could ascertain that the student's diagnosis was correct.

5.1 Example.

We shall postpone general discussion of knowledgeable

computer tutors until section 5.2. Presently we shall introduce

aspects of a knowledgeable computer tutor that teaches some

elementary set theory. This program is presently under

development by the author. The subject matter was chosen for

its fundamental interest and for the ease with which appropriate

performance and diagnostic programs could be programmed.

The tutor tries to teach some elementary concepts about

sets, such as set union, intersection, difference, complement,

20

SiklOssy. Page 15,

etc. The student learns by performing, under the guidance of

the computer tutor, operations that embody these Concepts; he

learns by imitation and practice.

Sets are represented as unordered lists. A set can have

sets as elements: the set ((HI S7) DOG 32) has three elements

one of which is itself a set of two elements. Atomic elements

(not sets themselves) are alphanumeric identifiers. Multiple

copies of the same element are not permitted in the representa-

tion of a set: for example, ((A B) (B A)) is not an

acceptable representation of a set since the element (A B)

occurs twice. (Remember that the sets (A B) and (B A) are

equal). The empty set is represented as (). The program is

coded in LISP.

Assume that the student has just been introduced to the

notions of a set and of the elements of a set. The following

conversation occurs.

Tutor: Here is a set (DOG (HI S7) 32). Is S7 an element

of the set?

Student: Yes.

The set was generated by a random set generator. The atomic

elements are randomly drawn from a pool of such elements. The

length (3) and depth (1) of the set are given to the set

generator. These numbers could in turn be random numbers in

a certain range, and could be generated by a standard random

number generator. The depth should be at least one, and the

tutor selects an atom which is not in the set but in one of the

subsets of the set.

Given the incorrect result, the program could decide to

go into the introspection mode and exhibit its method to

determine whether something is an element of a set.

Tutor: ...Let us examine one by one the elements of the

set (DOG (HI S7) 32) to determine whether any of

21

SiklOssy. Page 16.

the elements is equal to S7. Choose an element

of the set.

Student: (HT S7).

Tutor: (HT S7) is an element of the set. Is equal

to S7?...

The tutor checked that the student did give a correct element

of the set. At this point the student may see his error,

interrupt the tutor and request another chance to solve the

original problem.

Using a rigid computer tutor, all of the above could have

been obtained except for the variety of sets that the generator

program can produce. However, the following similar dialogue

could not occur in the framework of a rigid tutor.

Tutor: Give me a set with at least one subset as

element.

Student: ((CAT RAT) DOG).

Tutor: Correct. Is RAT an element of the set

((CAT RAT) DOG)?

Student: Yes...

If the student has made enough progress, he is allowed to

quiz the tutor which can then go into the "dumb" mode.

Tutor: Give me a set and I shall give you an element of

the set. Then you can tell me whether I am right

or wrong.

Student: ()

Tutor:)

Student: Wrong.

Tutor: Oops, how right you are.

There is nothing like giving impossible problems to the tutor

(or for that matter to the student):

The possible diagnostic capabilities are not very evident

from these examples. Tables 1 and 2 show the more extensive

22

SiklOssy. Page 17.

diagnostic capabilities of the tutor when teaching set union

and intersection. For both tables, inputs are two sets S
1
and

S
2
and the student's answer A has been checked to be a set.

Insert Table 1 about here.

Insert Table 2 about here.

Cases Determined by

Diagnostic Program

1. A = S 1U S2 (set equality)

2. A ¢ Sill S2

2-1. (S
1 US 2)-A

2-1-1. ((siu s2)-A)r1 S1()

2-1-2. ((Sit., S2)-A)(1 S?()

2-2. A-(S1t.)S2)()

Sikl6ssy. Page 18.

Possible Partial Comments

to Student

Your answer is correct.

Your answer is incorrect.

You left out some element(s).

You left out some element(s)

of the first set.

You left out some element(s)

of the second set.

Some element(s) in your answer

are neither in S1 nor in S2.

Table 1. Diagnostic Program for Set Union

and Some Possible Comments.

24

'Cases Determined by

Diagnostic Program

1. A = S
1
r1 s

2
(set equality)

2. A 0 Sin S2

2-1. (sirls2)A#0

2-2. A-(Sin S2)00

2-2-1. (A-Si)fIS 0 ()

(A-S2)()S10()

2-2-3. A-(SiVS2)0()

Siklsay. Page 19..

Possible Partial Comments

to Student

Your answer is correct.

Your answer is incorrect.

You left out some element(s)

which belong to both S1 and S2.

Some elements in your answer do'

not belong to both S1 and S2.

Some element(s) in your answer

belong to S2 but not to S1.

Some element(s) in your answer

belong to S1 but not to S2.

Some elements in your answer are

neither in S1 nor in S
2

.

Table 2. Diagnostic Program for Set Intersection

and Some Possible Comments.

2:)

SiklOssy. Page 20.

5.2 Discussion.

In a knowledgeable computer tutor, the information path

S-T can carry not only the student's responses to questions

of the tutor but also his questions to the tutor. The feed-

back path S-S carries the same questions. The S-T path also

can carry the student's diagnosis of the performance of the

tutor.

Although the roles of the tutor and student are more

symmetrical, total symmetry has not been reached yet. The

tutor still has overall control of the tutorial environment.

The student cannot communicate the reasons for his diagnoses,

nor can he explain his procedures to the tutor. These

deficiencies in the dialogue between tutor and student are

to a large extent due to the inadequacy of programs that

understand natural language. Since we do not wish to tackle

the problems of natural language in our work, we restrict

the English vocabulary that the student may use to a few

words such as : yes, no, right, wrong, enough, impossible,

etc. Progress is being made in the design of programs that

can accept students' responses much freer in nature (Simmons,

1968).

Another lack of symmetry stems from the fact that while

the student learns during the tutorial dialogue, the tutor

does not. We would like the tutor to learn both about the

student and about the subject matter. The scarcity of programs

that learn in a manner comparable to human learning (SiklOssy,

1968) does not bode well for the future of learning computer tutors.

It is pedagogically sound to allow students to generate

their own problems and examples. Not only is it impossible to

preprogram a universally sufficient set of examples to teach

some concept, but some experimental evidence (Hunt, 1965;

Crothers and Suppes 1967, Ch. 7) indicates that the rate of

learning is greater when students generate their own examples.

Siklossy. Page 21.

6 CONCLUSIONS

We have considered a tutorial environment consisting of

three interacting information-processing systems: a student,

a computer tutor and a designer of the computer tutor. In

a rigid computer tutor, control lies almost exclusively with

the tutor, and the communication paths initiating from the

student are hardly ever used. The designer has many special-

purpose programming languages to help him design and test the

tutor, but his work is often very tedious.

In a generative computer tutor, programs have taken over

some of the chores of the designer. The tutor still has major

control over the tutorial environment but can accept and process

a much larger class of student's responses. In a knowledgeable

computer tutor, the student can ask questions from the tutor

and the tutor can explain the methods that it uses to answer

questions that it, or the student, generated. The inability

of the computer to understand natural language does not make

it meaningful for the student to explain his methods to the

tutor and prevents, at this stage, the tutorial environment to

become a partnership of equals.

7 ACKNOWLEDGEMENTS

J. Peterson, S. Slykhous and A. Duke have contributed

to the design and programming of the set theory teacher.

2

SiklOssy. Page 22.

8 REFERENCES

Batteau, D. W., "Feedback and knowledge," Proceedings of the

5th International Congress on Cybernetics, Association

Internationale de Cybernetique, Namur, Belgium, 672-675,

1968.

Bestougeff, H., Fargette, J. -P. and Jacoud, R., "Computer-

aided control of learning," IEEE Trans. on Education,

12, 1, 4-7, 1970.

Bunderson, C. V., "Ability by treatment interactions in design-

ing instruction for a hierarchical learning task," Paper

presented at the annual meeting of the American Educational

Research Association, Los Angeles, Calif., February 1969.

Chapin, N., "Flowcharting with the ANSI standard: a tutorial,"

Computing Surveys, 2, 2, 119-146, 1970.

Couffignal, L., "Que pent apporter la cybernetique a la

pedagogie?" Cybernetica, 7, 1, 11-18, 1964.

Crothers, E. and Suppes, P., Experiments in second-language

learning, Academic Press, New York, 1967.

Feingold, S. L., "PLANIT - a flexible language designed for

computer-human interaction," Proceedings of the Fall

Joint Computer Conference, 545-552, 1967.

Hunt, E. B., "Selection and reception conditions in grammar

and concept learning," J. Verbal Learn. Verbal Behay., 4,

211-215, 1965.

INTERFACE, Bulletin of the ACM Special Interest Group on

Computer Uses in Education, 4, 3, p. 17, June 1970.

Lekan, H. A., Index to computer assisted instruction, Sterling

Institute, Boston, Mass., 1970.

Peplinski, C., "A generating system for CAI teaching of simple

algebra problems," Computer Sciences Technical Report #24)

University of Wisconsin, 1968.

28

Siklossy. Page 23.

Roe, A., "A comparison of branching methods for programmed

learning," Journal of Educational Research, 55, 407-416, 1962.

Roe, V. K., Case, H. W. and Roe, A., "Scrambled vs. ordered

sequence in auto-instructional programs," Journal of

Educational Psychology, 53, 2, 101-104, 1962.

Siklossy, L., "Natural language learning by computer,"

doctoral dissertation, Carnegie-Mellon University,

Pittsburgh, Pa., 1968.

Simmons, R. F., "Linguistic analysis of constructed student

responses in CAI," Report TNN-86, The University of

Texas at Austin, Computation Center, 1968.

Spolsky, B., "Some problems of computer-based instruction,"

Behavioral Science, 11, 6, 487-496, 1966.

Uhr, L., "The automatic generation of teaching machine programs,"

Center for Teaching and Learning Technical Report,

University of Michigan, August 1965.

Uhr, L., "Teaching machine programs that generate problems as

a function of interaction with students," Proceedings of

the 24th ACM National Conference, 125-134, 1969.

Uttal, W. R., Pasich, T., Rogers, M. and Hieronymus, R.,

"Generative computer assisted instruction," Communication

#243, University of Michigan, M.mtal Health Research

Institute, 1969.

Wexler,J. D., "A self-directing teaching program that generates

simple arithmetic problems," Computer Science Technical

Report #19, University of Wisconsin, 1968.

23

. l zigc L'.14

S-T

FIGURE I. TRANSFER OF INFORMATION IN A TUTORIAL
ENVIRONMENT

30

F l(START
OF FRAME

TI

STATEMENT(S) BY TUTOR

T2
QUESTION BY TUTOR

TO STUDENT

SI

IANSWER BY STUDENT

T3
DIAGNOSTIC: COMPARE
STUDENT ANSWER TO A
FINITE NUMBER OF
STORED ITEMS (OR
SCHEMATA)

T4
(-STRATEGY PROGRAM:
DETERMINE NEXT MOVE

1

F2(HALT
OF FRAME

Sikidssy. Page 25.

FIGURE 2. FRAME OF A RIGID COMPUTER TUTOR

31

T2

Fl

START
OF FRAME

TI

iGENERATOR PROGRAM :
GENERATE SAMPLE /

)PERFORMANCE PROGRAM:
MANIPULATE SAMPLE

Si

T3
DIAGNOSTIC PROGRAM:

ANALYSE DIFFERENCES

T4 4,

DETERMINE NEXT MOVE
STRATEGY PROGRAM :

T5
1

COMMUNICATE ASPECTS OF
DIAGNOSIS TO STUDENT

F2 v

COF FRAME
HALT

FIGURE 3. FRAME OF A GENERATIVE COMPUTER TUTOR

32

TI

F I

START
OF FRAME

J,
GENERATOR PROGRAM'

GENERATE SAMPLE

Sik;Ossy. Page 27.

SI

STUDENT
GENERATE SAMPLE

T2 4/ S2 v
KPERFORMANCE STUDENT:

PROGRAM: MANIPULATEMANIPULATE
SAMPLE

SAMPLE

T3 sil v
(DIAGNOSTIC PROGRAM:
ANALYSE DIFFERENCES

T4

PERFOMANCE
PROGRAM PLAYS DUMB

T2'
KPERFORMANCE

PROGRAM:
MANIPULATE
SAMPLE

STATEGY PROGRAM:
DETERMINE NEXT MOVE

T5

*

F2

HALT
OF FRAME

A

COMMUNICATE ASPECTS
OF DIAGNOSIS TO
STUDENT

DIAGNOSIS
STUDENT

T6 .11
INTROSPECTION PROGRAM :)

EXHIBIT PERFOMANCE

FIGURE 4. FRAME OF A KNOWLEDGEABLE COMPUTER TUTOR

33

REVIEW IN CAI:

THE PROBLEM AND AN IMPLEMENTED SOLUTION

Laurent Siklossy

Computer Sciences Department
The University of Texas at Austin

Austin, Texas 78712

34

ABSTRACT

Review is made necessary by human memory loss. The computer tutor

that incorporates our implementation of review is built around: perfor-

mance programs that know what the student is to learn, generator programs

that generate problems that the student must learn to solve, and exten-

sive diagnostic programs that guide the tutor in his interaction with

the student.

Conceptually, a tutor that has diagnosed the need for review sends

the student to another tutor. Borrowing compiler-writing techniques,

wc have implemented a multi-level system for review that avoids both

the extra coding that has been used for review in other computer teach-

ing systems and the repetition of material that had already been presented

in an identical form.

-1-

I. INTRODUCTION

Humans forget. In a tutorial environment, it happens eventually

that the student has forgotten some material that he needs for further-

ing his learning. The student must review the forgotten material if he

is to progress. Any tutorial system must incorporate provisions for

the
allowing review to occur, whether it is/student or the tutor who diagnoses

the need for review.

In section 2 we describe how, when trying to solve the problem of

review, our view of the computer tutor shifted from an emphasis on

material to an emphasis on the teacher who interacts with the student

on conceptual material that can be particularized by either the teacher

or the student. We were led, further, to consider a computer tutor as

the team effort of a multiplicity of tutors, mini-tutors , who are each

responsible for communicating some material to the student. In section

3 we describe briefly the paths that a mini-tutor can take. The frame-

work of a mini-tutor has been described elsewhere 1'2. In reference

1 we have shown how such a framework significantly amplifies communica-

tion between student and tutor. In reference 2, it was shown that if

the mini-tutor does not act quite intelligently, it does act knowledge-

ably, i.e. it knows what it teaches.

In section 4 we describe the interaction of the mini-tutors and

the implementation of review in a program. Examples drawn from a

course to teach set theory are given in section 5.

36

-2-

II. TWO VIEWS OF THE TUTORIAL ENVIRONMENT

The goal of a teaching system, whether man or machine, is usually

viewed as the transmission of some information to a student. Two

different views, and two different implementations, of computer tutors

result depending on whether emphasis is placed on the material to be

communicated or on the tutor who interacts with the student.

2.1 Emphasis on the Material.

If the material is emphasized, the main concern of the designer of

a computer tutor is the organization of the material and its presenta-

tion to the student. Typically, most CAI efforts can be viewed as

emphasizing material. CAI languages provide multiple ways to break the

subject matter to be communicated into fragments of various sizes

(frames, chapters, sections, etc.). A CAI system often provides the

designer with several media (teletype, audio-equipment, CRT, film, etc.)

through which fragments can be presented. CAI languages also facilitate

the transfer of attention of the computer teacher from one fragment to

another. Implicitly, only one teacher is assumed.

When emphasis in on material, the need for review is diagnosed as

the forgetting of some subject matter SM. A student who needs to

review SM is presented some review material. This material may be old,

having been coded for the original presentation of SM, in which case

it may often happen that the student remembers the answers (for example,

to multiple-choice questions) without, in fact, understanding SM. The

review material may also be new, having been designed specially to

provide review at a particular diagnostic, point. If? during the total

course, the student may need to review the same segment of material

-3-

several limol;, the additional prom.amming chore could be considerable.

For each such potential review, separate code must be written.

2.2 Emphasis on the Teacher.

If we shift the emphasis from material to teacher in the tutorial

process, the transmission of information to the student can be viewed

as the result of the student's interaction with a multiplicity of tutors.

We consider each tutor as responsible for communicating some fragment

of information. Each tutor is individually responsible for adapting

his teaching strategy to the student and, in particular, to the student's

previous experience. When a student comes to review some material that

is the responsibility of a particular tutor, this tutor is made aware

of the fact.

The designer of a computer tutor viewed with this different emphasis

must still be concerned about how each individual tutor presents mater-

ial. But he is also concerned with the interactions of the tutors among

themselves. We have solved, programmatically, the interaction of the

mini-tutors among themselves by creating a monitor that can call individ-

ual mini-tutors into action or fire them! We shall see how such an

organization solves, in a very natural way, the problem of review. But

we must first describe the tutorial paths that a mini-tutor can take.

38

-4-

III. THE PATHS OF A MINI-TUTOR

A mini-tutor is responsible for transmitting to the student some

fragment of information. In figure 1 we have superimposed various

paths that a mini-tutor may take during his interaction with a student.

Which particular path is actually taken at any particular time may be

the result of some decision of the mini-tutor, based on the student's

previous performance, for example. The decision may also be left with

the student.

Insert Figure 1
about here.

At the heart of a mini-tutor we find performance programs. These

are programs that can solve the problems that the mini-tutor is teaching

the student how to solve. Along one particular path, the generator

program of the tutor generates some problem (box T1 in figure 1). For

example, let us assume that our mini-tutor is trying to teach a student

about the concept "element of a set".

Tutor: Here is a set (BY HAPPY). Please type an element of this
set.

Student: B.

Tutor: No, B is not an element of (BY HAPPY). The elements are:
BY HAPPY.*

The set (BY HAPPY) was generated using a guided random set genera-

tor. The student has obtained an answer (box S2) which is diagnosed by

* Outputs are taken verbatim from runs of the program. Editorial
changes in the form of punctuation and lower-case letters have been
made to improve legibility.

39

-5-

the tutor (T3). The tutor calls in an algorithm that checks whether

the student's answer, B, is an element of the set (BY HAPPY). The stra-

tegy program (T4) branches to T5 and some specific commentary is given

to the student. The tutor decides, this time, to go back to Fl and

present another randomly generated set to the student.

The tutor could have chosen to exemplify the algorithm it uses to

check whether some given item is an element of a set. The algorithm

both considers one-by-one the elements of the set, here BY and HAPPY;

and tests whether any of these elements is equal (as atom or set) to

the given item (T6).

Along another path, the student could generate a set (box S1). The

tutor could then calculate some or all of the elements of this set (T2').

This way, the tutor answers a question from the student.

Tutor: Now you give me an example of a set.

Student: (S W E R (T)).

Tutor: That's right. You gave me a set with 5 elements. The

elements are: S W E R (T).

If the tutor pretends to make a mistake, by first going into a

dumb mode (T1'), then the student can correct the tutor (S3), which is

always a satisfaction!

In our implementation, a mini-tutor consists of consecutive elements

of an array COURSE. Each element is a LISP expression that is evaluated

by the LISP function EVAL. Each element can be a complex program but,

in practice, the element is fairly elementary. In this way, the program

for a tutor is quite modular and easy to modify. (Modularity is en-

hanced by designing a tutor in a free-field format; a loader is called

to load the array COURSE.) In the next section we shall see.how the

monitor controls the interaction between the student and the various

mini-tutors.

6.0

-6-

IV. IMPLEMENTATION OF REVIEW

Let us assume that, on some day, a student starts his interaction

with the teaching system by meeting the mini-tutor who teaches part of

the concept of a subset. The mini-tutor begins, for example, at

COURSE(60). The index 60 is pushed on a stack, called STACK, that

starts empty. The monitor calls for (EVAL (COURSE 60)), the evalua-

tion of the contents of COURSE(60). After evaluation, control passes

back to the monitor who checks the top of STACK.

If the top of STACK is unchanged, it is replaced by the next index

(here, 61), and evaluation continues. If the top of STACK has been

altered, for example to 25, then monitor calls for the evaluation of

COURSE(25). A mini-tutor can change the top of STACK in any of three

different ways:

1) by evaluating a transfer function G01. (G01 25) would result in
changing the top of STACK to 25. This case corresponds to the usual

transfer of control in a program.

2) by calling for a mini-tutor to perform review.

3) by terminating review if the tutor is now in charge of providing
review.

Let us consider a mini-tutor teaching about subsets:

Tutor: Here is another set (G HI DOG). Type a subset of this
set.

Student: G.

Tutor: No, a subset is a set, not an element. You have typed
an element of the set (G HI DOG). (G) would be a
a subset of (G HI DOG).

After several questions, the mini-tutor decides to send the student

to review some material with another mini-tutor teaching about elements

of a set. The monitor determines that the reviewing tutor is located

at COURSE(25). 25 is pushed down on STACK and COURSE(25) is evaluated.

41

-7-

The above dialogue continues:

Tutor: Here is a set ((FOOT) ()). Piease type an element of
this set.

Student: (FOOT).

A mini-tutor can establish whether it is in reviewing mode by

testing whether the stack has more than one element! When the mini-

tutor has terminated its task, the monitor checks whether the tutor was

providing review. If so, STACK is popped, the new top of STACK is in-

creased by one and the mini-tutor who asked for review continues teach-

ing with the hope that the student is now better prepared to continue.

The reader will have noticed that the mechanism is similar to the

one used to implement recursion in programming languages. The gener-

ality of the mechanism implies that a tutor who is helping the student

to review can, in turn, call another mini-tutor to perform review on

some material, etc. The reader will have noticed also that the mini-

tutor teaching about elements uses the same code originally and in

review. Hwever, the random set generator will produce new sets, so

that the tutor's parts in the dialogue are not identical.

42

-S-

V. CONCLUSION

We have shown how compiler writing techniques could be used to

call, "recursively", members of a team of mini-tutors who, together,

consitute a computer tutor. A student who needs to review past infor-

mation is sent to a reviewing mini-tutor who can, if necessary, call

other reviewing mini-tutors.

The mini-tutors are written as knowledgeable computer tutors and

can perform both initial and review teaching of a concept. As imple-

mented, no significant additional code is needed to give a computer

tutor general reviewing capabilities.

-9-

VI. ACKNOWLEDGMENT

The computer tutor owes much to the programming help of J. Peterson.

VII. REFERENCES

1. SiklOssy, L., "Control and Feedback in the Environment of a Computer
Tutor," Proceedings of the Fourth Annual International Symposium
of the American Society frr Cybernetics, Washington, D.C., 1970
(in press).

2. SiklOssy, L., "Computer Tutors that Know what They Teach," Proceed-

ings of the Fall Joint Computer Conference, 1970, p. 251-255.

44

T2 4/

F I

-10-

START

TI N.1

GENERATOR PROGRAM:
GENERATE SAMPLE

S2 v
(PERFORMANCE STUDENT:

PROGRAM' MANIPULATEMANIPULATE
SAMPLE SAMPLE

T3 v vf

DIAGNOSTIC PROGRAM:
ANALYSE DIFFERENCES

14

STATEGY PROGRAM:
DETERMINE NE XT MOVE

T5

* 4,

F2(HALT)
T 4,

SI

STUDENT:
GENERATE SAMPLE

slf

PERFOMANCE
PROGRAM PLAYS DUMB11

1

T2' v S2
PERFORMANCE
PROGRAMS

SAMPLE
MANIPULATE

S3if
STUDENT

DIAGNOSIS

T6

(INTROSPECT ION PROGRAM
EXHIBIT PERFOMANCE

COMMUNICATE ASPECTS
OF DIAGNOSIS TO
STUDENT

Figure 1. Paths of a Mini-Tutor

115

