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INTRODUCTION

CHAPTER I

I.1. MODELS olfralLTINaLEDEZEEQEmAlwE

The idea that an educational experience is comprised

of two stages, learning and performance, is relatively new

and very little has been written about it. Conceptually,

the notion is quite simple. The learning stage takes place

as long as the subject continues to update his knowledge or

as long as there is a positive probability that the propor-

tion of his correct responses will increase. This stage

lasts until the subject reaches a threshold, or a steady

state, beyond which improvements may be only random fluc-

tuations. The performance stage takes place from this point

onward.

In Section I.1.1 we briefly review three models of the

learning process-- usually associated with Paired Associate

Learning (PAL). A simple performance model (Automaton) for

two rows addition problems is presented in 1.1.2.

1.1.1. Three Models of the Learning Process

The Single-Operator Linear Model (LM)

The model is represented by two equivalent equations

(Atkinson, Bower and Crothers, 1965):

The probability, pn, of a correct response on trial n

increases according to the equation

1



pn +l
= aP

n
+ (1- a)

where a denotes the learning rate. The initial probability

1
is assumed to be l/r, i.e., one over the number of re-

sponse alternatives. Equivalently, the probability, q
n

, of

an incorrect response on trial n decreases according to the

relation

n+1
= a

qn

The One-Element Model (OEM)

(1.2)

The OEM and its properties (Ibid) are derived from the

following assumptions. Each item starts in the unconditioned

state U. Subsequently the item may move with probability c

to state L, where it is conditioned, or stays unconditioned

with probability 1- c. Until the item is conditioned there

is a constant probability g that the subject will respond

correctly by guessing. Once the item becomes conditioned, i.e.

enters state L, the probability of a correct response is

unity. The transition matrix and the response probability

vector are usually presented in the following way:

L U Pr(correct)

L 0

U c 1 [g
(1.3)

g=1/r as in the LM case. Since both models have the same

mean learning curve

MLC = -
ql

c 1-a

2

8

(1.4)



it is convenient to interchange a with 1- c and with

1- g . If g is fixed as above the two models have only

one free parameter.

The Long- Short Model (LS-3)

This model was motivated, among other things, by PAL

studies which indicated that before conditioning immediate

recall of a-R pairs by a subject was nearly perfect while

the proportion of correct responses decreased with the time

before the next trial (Peterson, et al., 1962). The model

is described in Atkinson and Crothers; part of the descrip-

tion is quoted in the next lines.

"Encoding for a given stimulus item occurs at most

on one trial; the probability that encoding occurs

on trial n given that it has not occurred on

previous trial is c . If an item is presented

that has already been encoded (either on the present

trial or on an earlier trial), then with probability

a it goes into state L and with probability 1-a

it goes into state S . Thus, after each presen-

tation, an encoded item is in either state L or

S , and if the item were to be presented again

immediately the subject would make the correct

response with probability 1. However, other events

intervene from one presentation of an item to its

next presentation, and during this period we assume

there is a probability f that an item in state S

will move back to state F . We assume the value

of f depends upon the number and type of intervening

items; also, f depends upon the exposure time of

the given item, for this affects the repetition



rate and hence the slope of the forgetting function

(Peterson, et al., 1962).

"Given the above assumptions, it can be shown that

moves among the four states are described by the

following transition matrix and response probability

vector:

L
r.

S F U Pr(correct)

L 1 0 0 0 1

S a (1-a) (1-f) (1-a) f 0 1

(1.5)
F a (1-a) (1-f) (1-a)f 0 g

U ca c(1-a) (1-f) c(1-a)f 1 -c g
111.

where g= 1/r ; throughout the paper we shall use

g to denote the guessing probability."

A special case of the LS-3 model is reduced to a two

parameter version by letting c= 1 in Eq. (1.5). This special

case will be designated as the LS-2 model.

1.1.2. An Example of a Performance Model

As an example (Suppes, 1968), consider a stochastic

automaton for column addition of two integers:

The automaton is the structure

<A, I, 0,M,Q, so >

A = (0,1) - the set of internal states

I = ((m,n) : 0 <m, n<9) - the input alphabet

0 = (0,1,...,9) - the output alphabet

M(k, (m,n)) =
(0 if m+n+k<9

1 m+ n+k >9 for k = 0, 1

1 0



M is the transition function from A x I into A .

Q (k, ( m , n ) ) = (k + m + n ) mod 10 - is the transition function
from A x I into 0 .

S, = is the initial state.

Consider first the three parameter situation 0 < a ,b, c < 1

where

P(M(k, (m,n)) = 0 lk +m+ n < 9) = 1 -a E

P(M(k, (m,n)) = llk +m+ n > 9) = 1 -b b ,

i.e., if there is no "carry" the probability of a correct

response is 1-a . If there is a carry the probability of

such a transition is 1- b .

The third parameter is simply the output error

P(Q(k, (m,n)) = (k+m+n)mod 10) = 1- c = c .

If Ci and Di represent carries and digits in problem i

respectively, and if we ignore the probability of two errors

leading to a correct response, e.g., transition error followed

by an output error then

Di C .
1

D .1-C1-1
P (correct answer to problem i) = (1- c ) (J-b ) (1-a )

We can reduce this case to a two parameter situation, a and

b , by assuming c the output error to be fixed for all items.

Different statistics may be calculated for different

automata models, and provide an immediate analysis of digit

by digit response. An example of such statistics is the

11



likelihood of n digit responses derived by Suppes for the

automaton described above. Here, for illustration purposes,

the distribution of total error is derived:

Let IS denote the internal state;

X. if
correct response on digit i

otherwise

(

if a) 1 is ones column digit

P(xi=1) = 725- if b) not (a), IS = 0, i.e., no carry

cb if c) not (a), IS = 1, i.e., carry

n
a b
,n_,n

C
- are the number of digits under (a), (b) and (c).

Then the probability of A, B and C correct responses

under (a), (b) and (c) respectively is given by

(4)

n
c)rA+B+Ccna-

a
AB C - rib-B n -C

b (1-ca) (1-CS) c
(A (B (C

Suppes moved in general that given any (connected)

finite automaton, there is a stimulus response model that

asymptotically becomes isomorphic to it.



1.2. IDENTIFICATION OF THE PROBLEMATIC SITUATION

With the advance of computers, extensive work has been

undertaken in the field-of programmed instruction. Much

effort has been invested to devise schemes of optimal

instruction with respect to suitable criteria (e.g., Smallwood,

1967). Most of these efforts have not yielded much in the

way of unequivocal results (Silberman, 1962), a situation

which is symptomatic of a deeper problem that exists not only

in the field of programmed instruction but in other areas

of educational research. What is needed is a theory which

prescribes how learning can be improved. A theory of this

type has come to be called a theory of instruction (e.g.,

Hilgard, 1964; Bruner, 1964), as compared with a theory of

learning.

Typical questions that a theory of instruction concerns

itself with are: how to advance a student through a block

of teaching material, when to stop presenting teaching items,

what items are to be presented within a given time. Ideally

this kind of question can be answered with mathematical

rigour in a decision analysis frame of reference. It should

be remembered, however, that the criterion for optimization

is always determined subjectively beforehand.

In many works (e.g., Groen and Atkinson, 1966) an

instructional system is defined as the structure

< C,R,H,d,u,g > where

13



C - is the set of concepts to be presented

R - is a set of all possible responses made by the student

H - is a set of histories of the student's performance

d: H-,C is a decision function

u: CXRXEI-H is an updating function

g: is a fixed criterion for optimally given in advance

Historically, mathematical learning theory and optimi-

zation attempts have tended to ignore the structure of the

stimulus set C . Items of C have been assumed to be

independent and not to have a cumulative effect on the learning

and to be homogeneous and not of varying degree of difficulty.

Some recent attempts have been made to formally model certain

prototypal tasks which occur in elementary mathematics

(e.g., Suppes, et al., 1968; Offir, 1968).

In considering the response set R , most studies use

only dichotomous variables 0,1 to indicate correct or incorrect

responses. Many studies proceed to estimate the model's

parameters and to test the model's adequacy by averaging

(dichotomous responses) over ensemble of subjects in order

to explain the learning or the performance that has taken

place. By using quantal responses, i.e., 0,1 variables, and

the like, one ignores the relationship between the structure

of the stimulus set C and the full response structure of

R . By so doing, it is impossible, for instance,'to distin-

guish between relevant and irrelevant responses. There is

no substantial reference to this issue in the literature.

8
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A more serious inadequacy is the overlooking of indi-

vidual response protocols and their sequential dependencies.

There are few attempts to t,ckle this problem (see Sternberg,

1963 for references). In general, however, in most appli-

cations of learning models it is assumed that the same

parameter values characterize all the subjects in the

experimental group. This is further confounded by the

assumption of equal initial probabilities for all subjects.

Sternberg says, "it must be kept in mind when this tacit

assumption of individual homogeneity is made in the appli-

cation of model type, that what is tested by comparisons

between data and model is the conjunction of the assumption

and the model type and not the model type alone."

Glaser (1967) and particularly Sternberg, point to some

implications resulting when the homogeneity assumption is

not met. Many of these implications relate to the inter-

subject variance which seems to be smaller for the model than

for the data. Sternberg gives some references to a very few

studies trying to cope with this problem. Little work has

been done in which variation in the learning rate parameters

is allowed.

Now since the set of histories H depends on the

initial probability parameters, and since it is updated on

the basis of C and R , H lacks a complete description

due to the short-comings introduced in considering C and

R .



The present study is motivated by this absence of

adequate formalization of individual and item differences.

Heterogeneity of individuals and items (compounded) will be

introduced in the hope of achieving better estimation and

testing of the models, and eventually better instructional

procedures that may be differentially sensitive to deviations

from homogeneity.

It should be clear from the preceding paragraphs that

many applications could and should depend on individual and

item differences. One example (Matheson, 1964) points out,

in a one-parameter situation, how a teaching system based

on this kind of consideration improves its teaching perfor-

mance as successive students are taught by it.

The most recent example of allowing the parameters of

the model to vary with students and items in order to

develop an optimal teaching procedure is described by Laubsch

(1969). Laubsch partitioned the learning rate parameters of

the RTI learning model (a more general model than the LM and

the OEM) into subject and item components where the effects of

the components on the composite parameter were almost additive

(cf., fixed-effects ANOVA). Since the RTI has two parameters

(composite), for m items and s subjects, 2(m+s) parameter

estimates were needed to specify the learning parameters for

ms subject-items. Under the numerical maximum likelihood

procedure Laubsch suggested, the approach becomes unrealistic

for most practical situations-- even on the fastest computer.

10

1G



Nevertheless, his results indicate the importance of

incorporating heterogeneity assumptions into the learning

models in optimal teaching situations.



CHAPTER II

EFFECTS ON LEARNING PROPERTIES OF HAVING

CONTINUOUS DISTRIBUTIONS OVER THE LEARNING RATES

II.1 INTRODUCTION

The OEM with parameters c and g was introduced

in Chapter I. The LM with parameters a and q also was

presented. In this chapter we consider the effect on learning

properties, e.g., expected total errors E(T) or response

n-tuples probabilities {xj,xj+1,...,xn+j_1} when the

learning parameters are no longer exact numbers but rather

they have now become random variables.

The effect of such modification introduces hetero-

geneity of individuals and curriculum items into the models

expressed in terms of the distribution of the individuals

or items population. An individual or an item may then have

learning rate parameters which are random variables from

this distribution. Mathematically, the population's learning

properties are no longer conditional on given c or g

(a or q) . Thus if E(tIg,c) denotes the conditional

expectation then E
B
(E(T1g,c)) ,with respect to the distri-

bution B of g and c , is the expectation of T with

the effects due to the parameter differences integrated in

In the remainder of this introductory section (II.1),

we review the existing literature on stochastic models

with prior distribution assumption on the parameters (11.1.1)

and hence the reasons that compelled us to choose independent

tThe notation xr j'xj+1' xn+1-1/ represents the joint proba-

bility distribution of the random variables (xj,xj+1,...,xn_i+1)

12
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bivariate beta density as a prior for the learning

parameters, (11.1.1).

In Section 11.2, we describe the effects on total

error statistics for the OEM and the LM of having an independent

bivariate beta distribution over the learning rates.

The effects on Response 4-Tuple probabilities under

this prior is examined in Section 11.3. In Section 11.3.1

we derive the probabilities of response sequences over trials

2 to 5 for the OEM and the LM and propose the minimum x 2

procedure for estimating the four prior parameters using

16 response probabilities. The experimental data and the

results are tabulated in 11.3.2.

Finally the discussion and conclusions are presented

in Section 11.4.

11.1.1 General Remarks

Very little work has been done in which variation

in the learning rate parameters is allowed. One example

appears in Bush and Mosteller's (1959) analysis of the

Solomon-Wynne data: the LM was used with a beta distribution

of a values. in certain respects this generalization

improved the agreement between the model and the data.

Another example is Gregg and Simon's (1967) analysis

of the Bower-Trabasso data: the Concept Identification

model was used with a uniform prior distribution of c values

in a certain range [ c1, c2 ] , 0 < cl < c < c2 < 1 . Their

1.3
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conclusion was that for large individual differences

expressed by the range size [c c
2

] the increase in the

variance of total number of errors is barely detectable.

They go on further to say: "By similar arguments we can

show that almost all the 'fine grain' statistics reflect

mainly a random component...Hence the statistics are insen-

sitive to individual differences, or, for that matter, to

any other psychological aspects of the subjects' behavior

that might be expected to effect the statistics."

Birnbaum (1969) modified his previous work on a Logistic

Model for Mental Test (1968) by further assuming a logistic

prior distribution on the ability parameter 0 . Thus if

x = <x x
2' '..xm>

denotes the examinee's response pattern

where x.k. = 1 or 0 indicating respectively, correct or

incorrect response to item k , the probability of a correct

response on item k is W(Dak (0 - bk)) , for an examinee

with ability level e ; where T(D0). [1 + e-D8 ]-1 , bk

is a parameter indicating a difficulty-level of test item k,

a
k

is a parameter indicating the item's sensitivity or power

of discrimination among ability levels not far from bk and D

is a constant. The general Logistic Model is represented by

[x=x1e).
k=1

T{Dak(e-bk)1xk
, xk

[-Dak (e-bk -cc<0<co .

( 1 . 1 )

Under a logistic prior assumption on 8 , (1.1) is interpreted

as the conditional probability of the response pattern x ,

14
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given that an examinee, randomly selected from a population

with abilities distributed as indicated, has ability 6 .

The unconditional probability of response pattern

is

(X = x) = Di (X=x10)2,1/(D0)d0 (1.2)

The conditional density function of 0 , given X = x ,

f(0;x) is easily calculated and corresponding statistical

inference methods are developed (Birnbaum, 1969).

Finally, Silver (1963) considered general Markov

Chains (MC) situations with observable states where the

transition probabilities are r.v.'s themselves and are

Dirichlet distributed (111.2.2). Thus, for example, in a gen-

eral 3-state MC with transition probabilities (pij) the

Dirichlet prior on the ith state transition probabilities can

be written as

1
r
i
-1 s -1 t -1

(x. x. ,x. ) = [B(r.,s.,
i2

x.t.)] x. x x
3fpilpi2pi3 11' 12 13

where

and

F(ri)F(si) r(ti)
B(ri,si,ti) F(ri+si+ti)

3

x.. 1
j=1 13

0 x, . < 1 .

13 (1.3)

Silver considered under this setup the effect of the Dirichlet

prior on MC properties such as steady state probabilities,

first passage times and occupancy times. For example,

15
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consider the two-state situation where one probability is

known exactly while the other is beta distributed, the beta

density is the marginal of the Dirichlet distribution. We

are interested in the expected values of the steady state

probability for the MC with the following structure

P =

1

2

1-a a

b 1-b

(1.4)

where a is assumed exactly known but b has the beta

density fb(x) = fr3(xlm,n). For a given pair (a,b) the

steady state probability of being in state 2 is 7r2 =a+b ,

however, since b is beta distributed, then

1 1

a a 1

a+x
n- 1

xm-
1

(1... x) dx
E (72) L'(a+b

f (x) dx -
.B (m, n)) f a+x jr

0 0

(1.5)

Only in special cases can E(7r2) be exactly evaluated.

11.1.2 The Evolution of the Method

All of the studies mentioned in 11.1.1, except for

Silver's, considered only univariate situations where only

one parameter was allowed to vary. Gregg and Simon's approach

is a special case of the Bush and Mosteller one in the sense

that the uniform density is a special case of the univariate

Beta density fc(xim,n) with m=n=1 . The general

statements made therefore by Gregg and Simon on the basis

of a uniform prior are unwarranted. Were they to choose a

"richer" prior density and a different range of c values

lb
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the results would have probably been markedly different.

We shall later demonstrate a similar situation to the one

discussed in their study where the prior does change the

variance considerably.

Birnbaum's method is unsuitable in our context for

several reasons. It lacks the classical psychological

description of the learning process. His prior on ability

is distributed on the whole real line whereas our parameters

are distributed on the unit square. Finally it is computa-

tionally quite difficult.

In contrast, Silver's approach possesses a multivariate

prior distribution but it is restricted to MC situations

with observable states only. The LM is not a Markov Chain

and Silver's estimation procedures for the prior parameters

are inapplicable for the case of non-observable transition

probabilities as is the case with the OEM.

Our research goals included finding a general family of

bivariate distributions rich enough in parameters. Such

a family had to assume a variety of shapes and provide us

with posterior distribution of c and g and also a

measure of association between c and g.

Our first inclination was to consider transformations

from existing distributions on R 2 to the unit square.

Thus if X and Y are r.v.'s from a Bivariate Normal

eBVN(X,Y) with five parameters we may let c - and
1+ex
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eYg-l+eY , i.e., c= f(x) and g=f(y) . For any statistics

s = s (g,c) of the OEM or the LM, the integral

CO 00

Jr f (sif(x)f(Y»fBVN(x,y)dxdy
-03 -00

could not be evaluated in a closed form and a fortiori esti-

mation procedures for the prior parameters would be impossible.

If X and Y are Bivariate Logistic the same problem

exists but now c and g are c.d.f.'s and as such are

uniformly distributed.

If c and g are Dirichlet distributed then they are

defined only on the simplex c + g < 1 and we have inadequate

domain for both parameters. Finally, since the OEM can be

represented as a three-state Absorbing Markov Chain

L S E

L 1 0 0 = 1 -c

S c 75g cg where (1.6)

E c cg cg f = 1- g

we may suppose that c, (5g) and (cg) are Dirichlet

distributed

r-1 s-1
f = [B(r,s,t).] xl x2 (1-xf-x2)

,t- l
7

23

: x.
c, cg, cg j1

(1.7)

But under this assumption it becomes immediately clear that

c and g are independently distributed with beta densities

f
c
(x1r,s+t) and fg (xls,t) respectively.

18
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To establish this, make the transformation x = xi,
D(xix2)

y = x
2
/(1- x

1
). The Jacobian is

D (x,y)
- 1/(1- x

1
).

Considerable effort was made by the present author and

others to find a more adequate prior bivariate distribution

with sufficient number of parameters. Unfortunately all

efforts were unsuccessful. Moreover, even for the simple

case of 2-state MC with one parameter, beta distributed, the

integral 1.5 is not evaluated in a closed form.
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11.2 EFFECTS ON TOTAL ERROR STATISTICS HAVING INDEPENDENT

BETA DISTRIBUTIONS OVER THE LEARNING RATES

For the reasons enumerated in the preceding section

we will consider for the remainder of this chapter only the

case where c and g are independent r.v. ' s from beta

densities fc (x lm, n) and fg (y I r, s) .

Let T be the total number of errors, irl h learning trials,

where n co. Atkinson, et al. (1965, ch. 3), derived the fol-

lowing total error properties for given c and g.

OEM LM

Distribution 1T=0 I g, c) bg

(T=kig,c) (1-b)klo (1-c)- 1

(2.1)
Mean E (T I g, c) (1-g) lc

ciii_ct

n2
Variance V (T i g , c ) E (T Ig,c) [E(T ig,c) (1-2c)+1] E (T)-

1-a2

b = [1- (1-c)g]
-1

We now calculate the unconditional properties for the OEM:

where

E*(T) = Ei3((E(T ig,c))

= Ep
cg))

= Df (-:=5) rfr- 1 (1-g) s- 1 cm-1 (1- c)n-ldgdcc
0 0

D = [B(m,n)B(r,$)]-1



It is readily found that

(

B(r,s+1)B(m-1,n) s_ m+n-1E T) - D(r,$)B(m,n) r+s m-1

To calculate the variance,

V*(T) = E * (T2
) E

*2(T)
= E, (E (T2 ig , c) ) E*2(T) ,

we need to derive ,

E,(E (Ta ig, c ) )

E (E(T
2 ig,c)) = ER 2bb

(2,(1-q)

2 2q(1-q) 1-q= ER
c2

(2.3)

(2.4)

= D[2B(r,s+2)B(m-2,n)

+ B(m-1,n)[2B(r+1,s+1)- B(r,s+1)]]

(2.5)

where D is as above.

The unconditional mean for the LM is the same as the

OEM mean. Unfortunately the unconditional variance for the

LM cannot be evaluated in a closed form because of the (1-a) 2

term in the conditional variance.

For Atkinson and Crothers' data (1964) and our estimates

of the prior parameters, to be described in the next section,

we calculated the expected value of the total number of
*

errors, E (T) , for experiments Ia and Ib and the variance

*
of the total number of errors, V (T) , for experiments

Ia, Ib, Vc, and Ve using Eqs. 2.3 and 2.4.
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Table 2.7 presents our prior estimates for all four

experiments for the unconditional OEM (OEM*) and the "c"

estimates derived by Atkinson and Crothers for the conditional

model (OEM).

In Table 2.8 we report the E*(T) values for OEM*

calculated by using Eq. 2.3. Also listed are E(T) values

for OEM calculated by using the equation E(T)-1- for

g =1 and "c" values as reported in Table 2.7. Atkinson's
3

predictions using the LS-3 Model are presented in the right-

hand column. These predictions may be compared with the

observed values listed in the left-hand column. Our estimate

for rb is closer to the observed value than is the LS-3's

prediction; for Ia our prediction falls farther afield. The

conditional estimates, E(T) , deviate the most from the

observed values. The expected value of the total number of

errors for the LM* is calculated from Eq. 2.3 as is the

value for OEM*, but generally for different estimates of the

prior parameters. Using these estimates, the LM* gave the

poorest predictions of the expected value: 2.015 for

experiment Ia and 1.0433 for experiment rb. These predictions

were not included therefore in Table 2.8.

The variances for experiments Ia, Ib, Vc, and Ve were

calculated by using Eq. 2.4 and are presented in Table 2.9;

the conditional variances are calculated from the equation

V(T) = E(T)[E(T)(1-2c)+ 1] .

Table 2.9 demonstrates that the variance of total errors

is very sensitive indeed to individual differences. For

22
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TABLE 2.7

EXPERIMENT PARAMETER

Ia 53.938 53.595 15.444 27.094 .328

Ib 54.128 63.123 34.124 76.625 .328

Vc 3.0 3.0 2.0 12.250 .172

Ve 10.5 10.5 3.0 8.0 .289

Parameter Estimates for OEM* and OEM.

TABLE 2.8

EXPERIMENT obs Pred(OEM ) Pred(OEM*) Pred(LS-3)

Ia 1.52 1.74 1.44 1.54

Ib 1.65 2.03 1.78 1.79

Observed and Predicted Expectations for Experiments Ia and Ib

TABLE 2.9

EXPERIMENT VARIANCE
V(T) V* (T)

Ia 2.45 2.22

Ib 3.45 3.22

Vc 16.83 47.91

Ve 5.44 17.16

Predicted Conditional and Unconditional Variances

23
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small differences it can usually be expected that the uncon-

ditional variance V*(T) will be slightly larger than V(T) .

Experiments Ia and Ib were run with college students and

almost no errors were committed after the second trial as

can be seen from Table 3.5. In these two experiments the

V
*
(T) variances are actually slightly below the conditional

ones. t

On the other hand, experiments Vc and Ve were run with

four and five year old children and there was a large

difference in their performance. This difference is expressed

overwhelmingly in the magnitude of the difference between

the variances, i.e., V*(T) >>V(T) . It is clear therefore

that the model is sensitive enough to detect individual

differences if there are any. The reason that Gregg and

Simon detect only a slight difference may be attributed to

their choice of a uniform prior with a restricted range which

may not describe the differences in their data.

As indicated above in the case of integral (1.5), it is

not clear how to evaluate the unconditional quantity in a

closed form under a beta prior assumption when the quantity

of interest is a function of the steady state probabilities.

The conditional distributions of the total errors and of

the trial of last error depend on the probability of entering

1For similar results for the Solomon-Wynne data see Bush

and Mosteller
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the learned state. As such these conditional distributions
possess a denominator which is a function of (1- (1-c)g) .

Thus the distribution of total errors is

P ( T = k 1 g , c ) = ((1- g) (1- c))kc (1- g (1 - c))-k-1 - c)-1

k >l (2.9)

and the distribution of the trial of last error is

P(L=kjg,c) (1- c)k-1 (1 g)c (1 - g(1- c))-1

k >1 (2.10)

The magnitude of the above problem is described in the
following special case where it is possible to get a closed
form result.

Theorem. If c and g are independently beta variables

with parameters (m, n) and (r, s ) respectively and

s + r = 1, then the unconditional distribution

P(T=k) = (B(m,n)B(r,$))-1B(k+s,r)B(m+s,n+k- 1) ,

(2.11)
where k is a positive real number,

Proof of the Theorem.

Given

{T=kig,c)f = (1- g) (1- c)]kC(l_ -1 1

The notation {X18) represents the probability distribution
of a random variable X given the state of information e .
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then

fc(x) = [E(m,n)]
-lxm-1

(1- x)n-1 m,n >0

f (y) = (r,$)]
-1

y
r-1

(1- y)
s-1

r,s >0

1 1

(T=k)
r

(T=k1x,y)f
c
(x)f

g
(y)d dx y

0 0

1

(T=k) = D xm+1-1(1- x)k+n-l-1

0

1

f
Yr-1 (1- y)k+s-1

0

[(1 x (1 - y ) ] idy

where

(2.12)

D = 113(m,n)E(r,$)]-1 and 0 < [1- x(1-y)] < 1

Consider the first integration with respect to y :

1

I =f yr-1(1- y)k+s-1[1- x(1- y)]
-k-ldy

g (2.13)
0

I is known as the Euler-Integral and is defined in terms

of the Hypergeometric Function F(a,b;c;z) [see Erdelyi,

1953, Vol. 1] .

F (a, b; c; z)
r (c)

-J- 1 (1 t)
c- 1

(1 - tz)-ar (b)r (c-b)
0

(Rc > Rb > 0 ) (2.14)

F(a,b;c;z) itself is defined in terms of infinite series.

Here it suffices to note the following recursive relation

(rbid):
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c-a-bF(a,b;c;z) = (1- z) F (c-a,c-b;c,z) .

From (2 .14 ) ,

r (r)r (k+s)
F (k+1,r;k+s+r; (1- x ) ) .

Ig r (k+s+r

In our case s + r = 1 and using (2.15) we now have

(2 .15 )

r (r)r (k+s)
I - [1- (1- x)]

s-1F(0,k+s;k+1;
(1- x) ) (2.16)g r (k+1)

Again from (2.14) ,

1

I =
1 f yk+s- 1

(1 - y )
r- 1

dy

0

Ig = Xs-
1B

(k+s,r) .

Now substituting Ig in (2.12)

1

{T = kj = DB (k+s,r) r xm+s- 1 n+k-_ 1dx ,

0
from which

(T = kJ = DB (k+s,r)B (m+s, n+k- 1) ,

and this is the desired equation (2.11) .

(2.17)

A closed form integration is possible for a similar

restriction on m,n , i.e. , m+n = 1 .

The posterior probabilities of e = (c, g) given T = k

can now be derived using Bayes' theorem

te =k) {T =k le) (e)
{T =kJ

27
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From our estimation results for the four prior para-

meters m, n , r and s calculated for the Atkinson and

Crothers data to be described in the next section, it

became clear that a restriction r + s = 1 or m+ n = 1 does

not in fact hold for the data. The reason for this is

obvious from the expressions for the prior variances of

c or g ; under such restriction these variances must be

quite large. Our results show that these variances are very

small indeed, which is typical for Paired-Associate Learning

data.

In order to demonstrate the effect of any statistics

introduced by the prior assumption we would need an estimate

of the four prior parameters m,n,r and s . The mean

E (T) and the variance V(T) are clearly not enough to

estimate these four parameters. On the other hand, moments

for the other statistics, under an independent bivariate

beta prior, could not be derived. We could, however, esti-

mate the parameters by considering Response n-Tuple proba-

bilities and that we do in the following section.
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11.3 EFFECTS ON RESPONSE 4-TUPLE OF HAVING INDEPENDENT

BETA DISTRIBUTIONS OVER THE LEARNING RATES

11.3.1 Probabilities of Response Sequences Over Trials

2 to 5

Response 4-tuple is the sequence

0.
n

= <xn=jn,xn_i__
I

1
1'1

= -+1' xn+3 =in+3> (3.1)
I,

where i = 1, 2, ..., 16 and ji = 0 or 1 denoting a cor-

rect or an incorrect response on trial i, respectively.

Here we use only the response 4-tuple and only over trials

2 to 5; these quantities are particularly useful in making

comparisons among the two models -OEM and the LM - with or

without the prior assumption. They are also useful in com-

paring the unconditional models, i.e., with priors, with

more elaborate conditional models, i.e., without ipiors.

In our case n = 2 in Eq. (3.1).

We now present the arrays of prediction probabilities

over trials 2 to 5. We do not present here the derivations

for Pr(O i,2) since they are straightforward and involve

only elementary probability theory. (Readers not familiar

with the methods involved in such derivations can consult

Atkinson, et al., 1965.) Notation-wise we present the

probability of the 16 sequences as (j2,j3,j4,j51 where

ji = 0 or 1 indicating correct or incorrect response on
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trial i . Thus (1,0,0,11 is the probability of errors on

trials 2 and 5 and correct responses on trials 3 and 4. To

derive our equations in the form of Tables 3.1 to 3.4 we use

some elementary probability identities, for example,

(1,1,1,0) = {1,1,1} - (1,1,1,11 or (1,1,0,01=11,11- (1,1,0,11-

(1,1,1,1) . When this procedure is used starting

with the sequence 016 = <1, 1, 1,1> of four errors only one

new term involving c and g is introduced in each subse-

quent equation. For example: 015= (I-c) 3
(I-g)

3
- {0 16} as

seen from the first identity above. The derivations of

response 4-tuple for the LM are just as simple.

The next step is to find the unconditional probabilities

for the two models. The derivation here is straightforward.

Let D = [B(r,$)B(m,n)]
-1

. For the OEM probabilities we

integrate the conditional probabilities listed in Table 3.1.

For example

1 1

(016) = Di f (1-x) 4(1-y) 4x
m-1(1-

x)
n-1

y
r-1

(1 - y)
s-1

dxdy

0 0

and we get

(016) = DB(m,n+4)B(r,s+4) .

The next sequence is 015 for which

1

(0 ) D f (1..x)3(1_y)3xm-1 1 (1-y) 1dxd- - f 0 115 I 16'
0 0

and the result

(0151 = DB(m,n+3)B(r,s+3) {0
16
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and so on. The complete array for the OEM is given in

Table 3.3.

The derivations for the unconditional probabilities of

the LM are the same, using Table 3.2. Here for later

comparison purposes we let ( = 1 c and q= 1- g .

In order to make predictions from Tables 3.3 and 3.4

estimates of the prior parameters are needed. Toward this

end we minimize the x
2 associated with the O. events

Let (0i;m,n,r,$) denote the probability of the event Oi

where m, n,r and s have been listed to make explicit the

fact that the expression is a function of the four prior

parameters. Further, let N(0i) denote the observed

frequency of outcome Oi over trials 2 to 5. Finally, let

T =N(01) +N(02) + ... + N (016) . Then we define the function

16 [T(0i7m,n,r,$)- N(0i)]2
x
2 (m,n,r,$) = (3.2)

i=1 T(0i;m,n,r,s1

and select our estimates of r, s , m , and n so they jointly

minimize the function (3.2). It is difficult to carry

out this minimization analytically and consequently we

programmed a high-speed computer to carry out a numeri-

cal search over all possible parameters until a minimum

is obtained that is accurate up to one decimal place. If

we assume that all stimulus items are independent and identical,

then under the null hypothesis it can be shown that this

minimum x 2 has the usual limiting distribution with

3 1



TABLE 3 . 1

(016) .]
,1, 1) =

(015) = (1,1,1,0) =

(014) = (1,1,0,1) =

(013) = (0,1,0,0) =

(012)
=

(1,0,1,1) =

(1311/ =
(1,0,1,0) =

(4310/ =
(1,0,0,1) =

(091 = (1,0,0,0) =

(08) = (0,1,1,1) =

(07) = (0,1,1,0) =

(06) = (0,1,0,1) =

(05) = (0,1,0,0) =

(04) = (0,0,1,1) =

(03) = (0,0,1,0) =

(02) = (0,0,0,1) =

(01) = (0,0,0,0) =

(1-c)4(1-g)4

(1-c)
3
(1-g)

3
-

(1-c)
4
(1-g)

3
g

(016

(1-c)2(1-g)
2

- (014) - (015 - )

16

(1-c)4(1-g)3g

(1-c)3(1-
g)2g (012)

(1-c)
4
(1-g)

2
g

16

(1-c) (1-g) - 2: (0i)
i=10

(014)

(011)

(ow)

(1-c)2(1-g)g (06)

(010)

(1-c)3(1-g)g2 - (04)

(1-c)4(1-g)g3

16

1 - E (0i)
i=2

OEM Probabilities of Response Sequences
Over Trials 2 to 5 given g and c .



TABLE 3.2

(016 )

(015 )

(014)

(013 )

(012)

(011)

(010)

(09)

=

=

=

=

=

=

=

(1,1,1,1)

(1,1,1,0)

(1,1,0,1)

(1,1,0,0)

(1,0,1,1)

(1,0,1,0 )

(1,0,0,1)

(1,0,0,0)

= a10 q
4

= a6q
3 - (016)

= a7q
3 - (016 )

= a3q
2 - (014) - (015)

= a8q3 - (016)

= a4q2 - (012) 1015)

= a5q2 - (012) (014)

16

= a q - 2: (0i)

=101=10

- (016)

1016)

(016)

.3:

LM Probabilities of Response Sequences
Over Trials 2 to 5 Given a and q.

0,1,0,1 ) = a6q2
(°8 ) (014) (016 )

(05) = (0,1,0,0) = a2q - (06) (07) - (08) (018) (0
14 )

(04) = (0,0,1,1) = a7q2 - (08) {012) (016)

(03) (0,0,1,0) = a3q
(04) (07) (08) (°11) (012) 1015) (016)

(02) = (0,0,0,1) = a4q
(04) (06) (08)

(010)
(012) (0143 (016 )

16
(Or ) = (0,0,0,0) = 1 - E (oi

i=2

33

LM Probabilities of Response Sequences
Over Trials 2 to 5 Given a and q.

.3:
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TABLE 3.3

(016)

(015)

(014)

(013)

(012)

=

=

=

=

(1,1,1,1)

(1,1,1,0)

(1,1,0,1)

(1,1,0,0)

(1,0,1,1)

= D[B(r,s+4)B(m,n+4) J

= D[B(r,s+3)B(m,n+3)] - (016

= D[B(r+1,s+3)B(m,n+4)]

= D[B(r,s+2)B(m,n+2)]
(014) (015) (016)

= D[B(r +l,s +3)B(m,n +4)] = (014)

(0
11

) = (1,0,1,0) = D[B(r+1,s+2)B(m,n+3)] - (0
12

)

(0
10

) = (1,0,0,1) = D[B(r+2,s+2)B(m,n+4)]
16

(99) = (1,0,0,0) = D[B(r,s+1)B(m,n+1)] - (0 )

i=10
(0

8
) = (0,1,1,1) = (0

14
)

(0
7

) = (0,1,1,0) = (0
11

)

(06) = (0,1,0,1) = (010)

(0
5

) = (0,1,0,0) = D[B(r+1,s+1)B(m,n+2)] - (0
6

) - (0
7

) - (0
8

)

(04) = (0,0,1,1) = (010)

(03) = (0,0,1,0) = D(B(r+2,s+1)B(m,n+3)] - (04)

(02) = (0,0,0,1) = D[B(r+3,s+1)B(m,n+4)]

16

= (0,0,0,0) = 1 - (0i)

i=2

OEM Probabilities of Response Sequences
Over Trials 2 to 5 in Terms of the Prior Parameters (r,$) and (m,n)
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TAB?

(016) = (1,1,1,1) = D[B(r,s+4)B(m,n+10) ]

(015) = (1,1,1,0) = D[B(r,s+3)B(m,n+6)]-(016)

(014
) = (1,1,0,1) = D[B(r,s+3)B(m,n+7)1-(016)

(013) = (1,1,0,0) = D[B(r,s+2)B(m,n+3)1- (014)-(015) -- (016)

(012) = (1,0,1,1) = D[B(r,s+3)B(m,n+8))-(016)

(011) = (1,0,1,0) = D[B(r,s+2)B(m,n+4) ]-(012)-(015)-(016)
(010 ) = (1 ,0,0,1 ) = D[B(r,s+2)B(m,n+5) ]- (012) -(014)-(016)

16
(0

9
) = (1,0,0,0) = D[B(r,s+1)B(m,n+1)1-- (0.)

1=10

(08) = (0,1,1,1) = D[B(r,s+3)B(m,n+9)j-(016)

(07) = (0,1,1,0) = D[B(r,s+2)8(m,n+5))-(08) -(015)-(016)

(06) = (0,1,0,1) = D[B(r,s+2)B(m,n+6)]-(08) -(014)-(016)

(05) = (0,1,0,0) = D[B(r,s+1)B(m,n+2) ]-(06) -(07) -(08)-(013 )-(014) (015 )-(0 16 )

(04) = (0,0,1,0) = D[B(r,s+2)B(m,n+7) ]-(08) -(012)-(016)

(03) = (0,0,1,0) = D[B(r,s +1)B(m,n +3)] -(04) -(07) -(08)-(011)-(012)- (0
15 )-(0 16 )

(02) = (0,0,0,1) = D[B(r,s+1)B(m,n+4)]-(04) -(06) -(08)- (010)- (012)- (0
14 )-(016 )

16
(01) = 1 2: (pi)

i=2

LM Probabilities of Response Sequences
Over Trials 2 to 5 in Terms of the Prior Parameters (r,$) and (m,n)
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16- 4- 1 = 11 degrees of freedom. In addition to having

desirable estimation propertiest theminimum 2
also provides

a measure of adequacy of any single model and a method for

comparing the fit of several models, if the degrees of freedom

are equal. If several models are being analyzed, each

involving a different number of free parameters then the

probability levels of the maymay be compared. The degrees

of freedom associated with a model that requires k parameters

to be estimated from the data are df= 16- k- 1 . The one

is subtracted because of the restriction that the 16 proba-

bilities sum to 1. There are other numerical estimation

procedures available, e.g., numerical maximum likelihood or

least-squares procedures, but since the data described in

this chapter was analyzed originally by means of minimum x2

procedures, we prefer this method in order to facilitate

later comparisons between the original analysis and ours.

11.3.2 Data Analysis

A summary and analysis of the data using seven

different conditional models is presented by Atkinson and

Crothers (1964). For the convenience of the reader we

restate the main features of the experimental procedure

and data.

t See Cramer (1951, pp. 424-441) for example.
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"The data was collected from eight paired-associate

learning experiments that all utilize the same general

experimental procedure. At the start of the experiment the

subject is told the responses available to him; each

alternative occurs equally often as the to-be-learned response.

A response is obtained from the subject on each presentation

of an item and he is informed of the correct answer following

his response.

TABLE 3.5

ATKINSON AND CROTHERS
FEATURES OF THE EXPERIMENTAL PROCEDURE

Number of Number of Number of
Experiment stimuli responses subjects Pr (c,)

Ia 9 3 26 .95

lb 18 3 16 .91

II 12 3 65 .83
III 12 4 40 .75
IV 16 4 20 .84
Va 12 4 40 .60
Vc 12 4 40 .71

Ve 12 4 40 .85

"Relevant details of each experiment are given in

Table 3.5. Experiments Ia and Ib were run with college

students. For both experiments the stimuli were Greek

letters and the responses were the low association trigrams

RIX, FUB, and GED; the experiments differed in that one used

a 9 item stimulus list and the other 18 item list. Experiment

II was also run with college students using 12 Greek letters
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as stimuli and the numbers 3, 4, 5 and 6 as the responses.

Experiment III was run with 3rd and 4th grade students using

12 Greek letters as stimuli and the numbers 2, 3, 4 and 5 as

the responses. Experiment IV was run with college students

using double digit numbers as stimuli and the letters A, B,

C and D as responses. For Experiment I-IV the experimental

procedure (method of stimulus display, presentation rate, etc.)

was the same as described by Bower (1961). In Experiment V,

a group of four and five year old children learned a list of

paired-associates each day for five consecutive days. The

lists were composed of double digit numbers as stimuli

and letters as reponses but the stimuli and responses were

different for each list. To simplify the discussion, only

results for days 1, 3, and 5 are presented (labeled Experi-

ments Va, Vc, and Ve respectively); however these data

are representative of the results for the full experiment."

Atkinson and Crothers carried the original analysis of

these eight experiments for seven different conditional

models, i.e., models for which the learning parameters are

fixed constants for the population of subject-items. The

reason for considering response sequences over trials 2 to

5 only is provided by the fact that a major portion of the

learning occurred during the first five trials. This fact

is indicated in the last column of Table 3.5 where Pr(x5 = 0)

is presented; in five of the eight experiments the subjects

have reached a correct response level of 0.83 or better on

trial 5. 3§



For the convenience of the reader Tables 3.6, 3.7, 3.8,

and 3.9 are reproduced directly from Atkinson and Crothers'

study.

The x
2 minimization procedure described in Eq. (3.2)

was applied to the data of observed frequencies presented

in Table 3.6.

Table 3.7 presents the parameter estimates associated

with the minimum x
2 values for the conditional models.

Table 3.7* presents on the other hand the estimates of the

four prior parameters r, s, m , and n that minimize the x2

function for the unconditional models OEM* and LM*. This table

summarizes some of the data presented in the appendix to

this chapter which describes two or usually three sets of

the best estimates for both models and for all eight experi-

ments. The estimates were calculated by the computer mini-

mization program mentioned before.t

Table 3.7** summarizes the estimated values of the

prior means and variances of the beta densities of g and

c . The prior means and variances are calculated by substi-

tuting the estimates of Table 3.7* in the following equations

for the mean and variance of the Beta density:

The (prior) mean of g is given by
r+s (3.10)

The (prior) variance of g is given by
rs

(r+s)
2
(r+s+1)

(3.11)

t See appendix to this chapter.
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ATKINSON AND CROTIIERS

TABLE3 .6
OBSERVED FREQUENCIES FOR TUE Or,2 EVENTS

lb II

Experiment
-_ ---_-

III IV Va Vc VeIa

N(01,2) 123 125 303 160 117 82. 144 216

N(02,:) 3 3 14 13 3 II 18 4

N(03,2) 6 10 19 16 10 14 23 17

N(04,2) 1 4 12 II I 13 9 6

N(06.2) 16 21 54 24 15 22 28 34

N(06,2) 3 0 17 6 .. 3 21 14 16

N(07.2) 5 6 32 18 9 20 12 12

N(02,2) 2 3 18 7. 6 31 13 12

N(02.2) 43 55 125 57 54 58 62 66

N(010.2) 1 5 15 9 7 13 14 4

N(011,2) 7 10 25 27 9 34 25 17

N(0,2,2) 2 2 17 14 10 IS 14 7

N(013,2) 15 30 61 33 34 34 28 29

N(011.2) 0 1 19 25 8 21 20 8

N(01,.,2) 6 6 30 24 22 26 21 19

N(016.2) 1 7 19 36 12 62 35 13

T 234 288 780 480 320 480 480 480

TABLE 3.7
PARAMETER ESTIMATES FOR THE VARIOUS MODELS

Model Parameter
Ia

Experiment

Ib II III IV Va Vc Ve

One-element c .3S3 .328 .273 .203 .281 .125 .172 .289

Linear 8 .414 .328 .289 .258 .297 .164 .250 .336

Two-phase c .563 .484 .352 .359 .398 .227 .406 .422
8 .664 .633 .695 .563 .648 .500 .477 .656

RTI c .531 .461 .344 .328 .367 .219 .359 .438
0 .820 .805 .867 .797 .859 .727 .711 .789

LS-2 a .352 .305 .250 .188 .266 .109 .156 .258
.719 .805 .805 .789 .836 .844 .727 .680

a .367 .352 .250 .188 .289 .109 .156 .266
LS-3 .648 .375 .805 .789 .789 .844 .72.7 .688

.844 .500 1.000 1.000 .789 1.000 1.000 .992

.883 .852 .922 .891 .922 .797 .859 .844
Two .element b .391 .398 .227 .078 .195 .133 .016 .227

a .539 .477 .344 .320 .359 .219 .352 .477
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TABLE 3.7*

Experiment

model perm

In+ lb I I IV Va Vc Ve

OFM* r 55.00 54.13 46.75 2.69 32.69 F.500 3.00 10.50

s 53.62 63.32 54.04 3.90 20.75 10.500 3.00 10.50

m 15.59 34.12 14.00 3.31 94.00- 2.900 2.00 3.00

n 27.12 76.62 4].99 16.79 67.69 21.590 12.25 2.00

LM* r 13.59 2.69 1.82 1.13 1.75 2.22 1.00 1.48

s 31.48 19.25 1.7° 1.14 51.75 2.20 1.75 1.37

m 3.91 3.00 2.40 2.06 3.31 1.20 1.00 2.42

n 1.75 3.00 3.P4 24.30 4.25 51.29 2.75 7.07

PARAMETER ESTIMATES FOR ALL EIGHT EXPERIMFMTS

For explanation see appendix
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TAQLE 3.7**

ExpPrimr,nt

model stat.

la+ Ih II IV Va Vc Ve

OEM* E(g) .502 .461 .463 .472 .379 .382 .50n .500
(.516)

F(c) .3F3 .308 .250 165 .262 .104 .140 .273
(.356)

100V(g) .230 .210 .244 3.730 .684 1,310 3.57 1.130
(.206)

100V(c) .531 .190 .329 .654 .208 .-i73 .791 1.650
(.237)

LM* E(g) .301 .122 .503 .498 .032 .502 .363 .521

E(c) .523 .500 .218 .078 .438 .024 .267 .255

10V(g) .046 .046 .542 .764 .005 .460 .617 .647

10V(c) .532 .357 .139 .026 .237 .004 .411 .131

ESTIMATES OF PRIOR MEANS AND VARIANCES

+
For explanation see appendix to this chapter.



ATKINSON AND CROTIIERS

TABLE 3.8
MINIMUM x2 VALUES

Experiment
One-

element
Linear
model

Two-
phase R'I'I LS-2 LS-3

Two-
element

Ia 30.30 50.92 17.51° 9.74" 6.75° 5.67° 9.30'
lb 39.31 95.86 18.25' 13.09° 19.69° 12.42° 12.74°
II 62.13 251.30 54.78 29.11 3.73° 3.73° 28.46
III 150.66 296.30 95.44 51.12 33.02 33.02 47.13
IV 44.48 146.95 22.39° 10.66° 12.32" 10.77" 10.32"
Va 102.02 201.98 59.20 40.17 24.41° 24.41° 39.47
Vc 246.96 236.15 99.97 46.43 27.12" 27.12 34.75
Ve 161.03 262.56 126.05 84.07 20.12" 20.12' 77.39

Total x2 836.89 1542.02 493.59 284.39 147.16 137.26 259.56

dJ 14 14 13 13 13 12 12

Not significant at .01 level.

TABLE 3.9
OnsERvrn AND PREDICTED RESPONSE SEQUENCE PROPORTIONS FOR EXPERINIENT 11

Outcomes
Observed

proportion
One-

element
Linear
model

Two-
phase RTI

Long-
short

Two-
clement

02 .389 .362 .220 .328 .354 .390 .357
02 .018 .007 .045 .008 .017 .017 .018
0, .024 .015 .069 .022 .028 .029 .029
0 , .015 .014 .014 .010 .011 .020 .011
0, .069 .047 .112 .066 .063 .064 .062
0, .022 .014 .023 .012 .013 .020 013
0, .041 .029 .035 .028 .026 .034 .026
08 .023 .028 .007 .02! .020 .023 .020
0,, .161 .178 .198 .210 .189 .164 .188
020 .019 .014 .041 .014 .018 .02C .018
OH .032 .029 .062 .035 .034 .034 .034
012 .022 .028 .013 .021 .020 .023 .020
023 .079 .093 .101 .102 .092 .074 .091

024 .024 .028 .021 .024 .024 .023 .024
022 .038 .059 .032 .055 ..051 .039 .050
0 .024 .055 .007 .042 .040 .026 .039
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TABLE 3, 8*

E XPER IM ENT OBI* LM*

I a 5.10a 10,31a
(7.15).

Ib 20.21a 21.75a

II 4.45
a

66,26

III 22.96a 66.56

Iv 12,54a 42,45

Va. 21.36a 65.8R

Vc
a

9.92 6,80Pt

Ve 17.69a 47, 05

Total 114.23 327.06

11 11

a Not significant at .01 level

MINIMUM )42 VALUES

For explanation see appendix to this chapter.
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TABLE 3.9*

Outcome s observed OEM* LM*

.11
0 1 .39 9 .391 .327

02 .018 .018 .047

03 .024 .029 .063

04 .015 -.020 .018

05 .069 .0F3 .08P

06 .022 .020 .023

07 .041 .033 .031

08 .023 .023 .014

09 .161 .1r1 .135

010 .019 .020 .034

011 .032 .033 .045

012 .022 .023 .020

0,,
_., .079 .073 .065

014 .024 .023 .027

015 .038 .039 .036

0I6 .024 .028 .025

OPSERVED AND 'PREDICTED RESPONSE SEQUE!CE PROPORTIONS

EXPER IMENT II



The mean and variance of the prior density of c are

calculated by replacing the values for r by the values

of m and the values of s by those of n .

Table 3.8* presents the minimum x2 values for the

OEM* and the LM* ; i.e., the values obtained by using the

parameter estimates of Table 3.7* in Eq. (3.2). The x2

value needed for significance at the 0.01 level is 24.7 for

11 degrees of freedom. All of the x
2 values for the OEM*

are not significant at this level. For the LM* the (2

values for experiments Ia, Ib, and Vc are not significant.

Finally, Table 3.9* gives the observed and predicted

response sequence probabilities for experiment II and may

be compared to Atkinson and Crothers' Table 3.9 of the same

proportions calculated for the conditional models.

The LM* parameter estimates in Table 3.7* tend to be

much smaller when compared with the same estimates for the

OEM*. This fact is reflected more clearly in Table 3.7**

where the prior variances for both g and c assume

larger magnitude of order greater than 10 for the LM* than

for the OEM*.

When comparing Tables 3.7 and 3.7**, it becomes apparent

that the between-experiment values for the prior mean of

c have the same relative magnitudes as the values estimated

for c in Table 3.7, with the exception of the LM* value for

experiment Ve. The monotonicity over the sets of experiment

V data, which is described by Atkinson and Crothers with

4h
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respect to Table 3.7 and is inferable from the nature of the

experiments, is maintained in Table 3.7**, again with the

exception noted above. It seems therefore that the para-

meter estimates remain relatively invariant under our prior

assumption.

We next observe in Table 3.7** that the variances of

c for the OEM* are larger for experiments III, Va, Vc and

Ve as compared to the same variances for the other four

experiments. And indeed we would have expected them to

be larger because the experiments noted were run with young

children; the other four experiments were run with college

students whose conditioning variances are expected to be

smaller. In addition, it seems that the accuracy of the

predictions, especially when compared to the LS-3 model, is

inversely related to the magnitude of the estimated prior

mean of c .

The LM* procedure tends to ascribe higher values for

both the variances of c and g . The over-estimated

variances may be a consequence of the model inadequacy to

account for the data. Interestingly, the highest variances

in the LM* setup are for experiments Ia, Vc and Ib which

are,with the exception of Vc, unlike the results for the

OEM*. The accuracy of the predictions for the LM*, as may

be noted from Table 3.8*, is much better for experiments

Ia, rb and Vc. A regression analysis indicated that the

variance of c was the influential factor in the predictive

power of the model-- the x
2 value being the dependent
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variable--contributing a multiple R2 of .95. By adding

the prior mean of c to the regression equation, the R
2

value improved by 15 per cent. In general, the X
2

values

were highly and negatively correlated with the variance of

c and the prior mean of c.

Tables 3.8* and 3.9* compared with 3.8 and 3.9 demon-

strate the following facts. The OEM* is a better model than

the LS-3 model. This conclusion is further supported by

the pseudo- F statistics (Holland, 1965)1. The F value

in this case is the ratio of total of of the OEM*

divided by the total x
2/96 of the LS-3 model. The resulting

F value is .90787 which is less than 1.

The best improvements in prediction for both the OEM*

and the LM* appeared for experiments possessing high prior

variances of c , as was noted,in-the preceding paragraphs.

The most remarkable improvement was noted for experiment Vc

where the x
2

values dropped from 246.96 to 9.92 for the

OEM* and from 236.15 to 6.80 for the LM*. The LM* value has

kept its relative lower magnitude with respect to the OEM*

as was the case with the conditional results.

On the whole, between models invariance does in fact

hold. In other words, the x
2

values for the OEM* and the

LM* do maintain relative magnitudes which correspond to the

conditional models relative magnitudes. Thus the forfor

t The precise significant levels for the pseudo- F could not

be ascertained.
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I
all experiments with the exception of Vc are smaller for

the OEM* compared with the LM* as well as the OEM values

compared with the LM values.



11.4 DISCUSSION AND CONCLUSIONS

11.4.1. General Remarks: Mathematical Methods for the

Analysis and Evaluation of Models.

Before we draw our final conclusions from the

results of the previous sections we present some of the

prevailing views on the mathematical methods used in the

analysis and the evaluation of stochastic learning models

(e.g., Sternberg, 1963). These remarks should put our

conclusions in a proper perspective on the one hand and imply

further areas of investigation on the other.

Many objections have been raised as to the statistical

soundness of the methods involved in the analysis and the

evaluation of stochastic learning models (Gregg and Simon,

1967). Unlike classical statistical inference the evaluation

of stochastic learning models is not a simple acceptance-

rejection problem. Neither do we satisfy the formal data

requirements needed by formal statistical decision making.

So, if we accept the unavailability or even the undesirability

of a formal evaluation procedure, we still need some tools

for informal evaluation or "plausible inference" (Polya, 1954).

One approach of plausible inference concerns itself

with the assumptions that give rise to the model which is

capable of representing a theory about the learning process

at hand, another with providing descriptive statistics of

the data. Both approaches require critical experiments or
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discriminating statistics to be used in the model's evaluation.

Unfortunately again, no unified method of constructing

crucial experiments or analyzing discriminating statistics

exists. In principle, only the investigator's imagination

limits the number of different statistics that can be used

to evaluate the model. Examples of such statistics are the

mean learning curve, the mean trial of last error, the number

of runs of a particular length and the frequencies of

particular response n-tuples. Which statistics are more

pertinent and how many of them are needed in order to prefer

one model over another is an open question.

Following Sternberg (Ibid), consider the n-dimensional

"property space" consisting of all values of the vector

(si,s2,...,sr) wheres.denotes a property (the expectation

or variance of a statistic)of the model. Denote by s the

corresponding statistics for some observed data sequences.

In general, the properties depend on the parameter values,

and therefore si=si (8) , where 8 is a vector of

parameters corresponding to a point in the parameter space.

Using this terminology, most work that has been done

on fitting and testing models can be thought of as a two

stage process. First, estimation, in which the parameter

values are selected so that a subset of the s agrees with

the theoretical values, and, the second, testing, in which

the remaining s.
3

are compared to their corresponding s.3 (8) .
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Clearly, conclusions from this method are conditional on

the choice of properties used in each of the two stages.

The estimation procedures of the models' free parameters

(..:an be classified into two categories. Global estimation,

such as maximum likelihood or minimum chi-square, usually

satisfies some overall optimal criteria and cannot usually

be obtained explicitly in terms of statistics of the data

and fine-grain estimation, such as the distribution of error-

run lengths. Objections may be raised sometimes as to the

order of which property is used for estimation and which

property-is used for testing. Occasionally, as in our

study, the choice of which property is available for what

is restricted because of the small number of statistics

with analytic expressions. It has been noted also (Ibid) that

using the same estimating statistics for all models to be

compared does not ensure equal "fairness" to them.

-Up to this point we have made some cautious statements

concerning the applicability of certain methods for comparing

the model and the data, and other statements concerning

comparative studies of models. These points were made to

warn the reader to consider past and future inferential

remarks in a proper perspective, especially with respect to

model comparisons. Our intention has not been to compare

or select models but rather to amend the inadequacies intro-

duced into simple learning models by ignoring the essential



features of individual learning rates. Just as important

was our intention to use simple learning models as baselines

and aids to inference, i.e., to test whether or not the

homogeneity assumption has in fact a sizable effect on the

learning properties. Our method succeeded where a model-free

analysis might have failed.

Before turning to discussion of our results consider

a final evaluation remark. It has long been held (e.g.,

Galanter and Bush, 1959) that when a model predicts how

behavior depends upon some experimental variable, the model

parameters should be invariant to changes in that variable.

This criterion when satisfied should indicate some general

descriptive ability of the model. This criterion is indeed

satisfied by our models' parameters as well as by many of

the models' properties.

11.4.2. The Important Features of the Results

The results of this study demonstrate unequivocally

that the OEM with the heterogeneity provision is still a

fairly accurate model, at least for the type of data consi-

dered. More significant is the observation that individual

differences have a first order effect on the predictive

power of simple stochastic models. These facts are demonstrated

by the large improvement in the x
2

values as well as by

the accuracy of the prediction of the mean learning curve

for Experiments Ia and rb.
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Properties of the models become sensitive to individual

differences-- to the degree that such differences exist.

This fact is demonstrated by change in magnitude of the

variances of total number of errors. It can be said therefore

that the first goal of plausible inference, which is having

a model capable of representing the theory about the learning

process, is satisfied,.

The second goal of having a model which can provide

descriptive statistics of the data is also fulfilled by

satisfying many of the criteria partially described in the

last section.

Parameter estimates remain relatively invariant under

the prior assumption as does the descriptive power of the

models. In addition, it can be shown that some important

properties of the models remain invariant under the prior

assumption, e.g., the stationarity property of presolution

trials in the OEM case remains invariant as exemplified by

Vincent curves or other tests.

The statistics of the prior mean and variance of the

conditioning and guessing parameters of the OEM*, presented

in Table 3.7** are most descriptive of the experimental data.

Higher means and smaller variances of conditioning characterize

the experiments run with college students. Smaller means

and larger variances describe the experiments run with young

children. The discrepancies between the results of experiments

Ia and Ib have to be explained, again, as in Atkinson's



study, in terms of the different experimental procedures

used in the two experiments. This latter fact, however, may

be now partially accounted for by the guessing prior mean for

experiment Ib which was lower than for experiment Ia.

The last point leads us to consider next the guessing

parameters and their relation to the conditioning parameters.

In the OEM* situation the prior guessing means assumed higher

values than are usually ascribed to them -- one over the

number of response alternatives. Moreover, in spite of the

independence assumption for the two prior densities, there

seems to be a definite relation between the guessing and the

conditioning parameters. Higher guessing parameters are

associated with lower conditioning parameters and vice versa.

This association is particularly strong between the mean of

the one parameter and the variance of the other, i.e., a

lower conditioning mean is associated with a higher guessing

variance. These observations, in addition to being

intuitively appealing, are supported by a large body of data

on "short-term" recall (e.g., Murdock, 1961, 1963).

The studies referred to differentiate between short- and

long-term memory. Items in short-term memory can be retrieved

for immediate recall, but since the short-term store is of

limited capacity the probability of guessing depends on the

number of intervening items from one presentation of an item

to its next presentation. The limited buffer capacity may

be described by a forgetting parameter, the same parameter f



of the LS model introduced in Chapter I. We also described

in Chapter T the LS-2 model which says that at the moment

an S-R pair is studied, with probability a it goes into

a long-term memory storage system and with probability 1-a

the S-R pair goes into a short-term store, where it is

vulnerable to interference from intervening items. When we

compare the estimates of a for the LS-2 in Table 3.7 and

our estimates of c for the OEM* in Table 3.7**, the

similarity of the results is more than striking. Furthermore

comparison of the x
2 values for the two models, LS-2 and

OEM
*

, between Tables 3.8 and 3.8* demonstrate again extreme

closeness of the corresponding values. We have yet to

account for the high guessing probabilities. We do that by

rewriting the LS-2 model as a 3-state process: collapse

states S and F and make the response probability in the

single intermediate state (SF) a function of the forgetting

parameter. We now have the following transition matrix and

response probability vector:

.1

L

SF

U

L

1

a

a

SF

0

1-a

1-a

0

0

0
ma

Pr (correct)

1

1- f+ fg

g
.,/ am,*

(4.1)

The guessing probability for state SF. is 1- f+fg which

is larger than the guessing probability of g alone and

may explain the high guessing estimates that we calculated.
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Atkinson and Crothers actually tried this collapsing pro-

ced%Ire for the LS-3 model (Ibid, Eq. 25), but had allowed the

additional parameter c of the LS-3 model to be different from

1, i.e., there was a positive probability 1-c of staying in the

unlearned state U. When they applied this model to the four-

tuple response data, Atkinson and Crothers reached the smallest

2
X of all the models described in their paper. The estimates

for c under this setup were all close to 1 which may indicate

that the model described by Eq. (4.1) is the most plausible

model yet.

11.4.3. Further Research and Conclusions

The empirical results confirm the hypothesis

that the heterogeneity assumption increases the predictive

power of simple learning models and has a sizable effect on

their learning properties.

Further theoretical research should be directed toward

finding more satisfying prior bivariate (multivariate)

distributions on the unit square (n-dimensional space).

These distributions should be able to describe the relation-

ship between the learning, or performance, parameters. They

should provide fast and easy estimates for the prior

parameters of a variety of models and easily calculable

estimates for a variety of learning properties.

When it is done, posterior probabilities could be then

simply derived and would enable us to characterize the
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ability of individual students, the difficulty of individual

curriculum items and the interaction between ability and

difficulty with respect to the particular educational task.
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CHAPTER III

PERFORMANCE MODELS FOR SIMPLE ARITHMETIC PROBLEMS

III.1 Introduction

In Chapter II, we confirmed the hypothesis that the

heterogeneity assumption increases the predictive power of

simple learning models and has a sizable effect on their

learning properties. In the present chapter, we consider

simple performance models for addition problems and propose

a method for describing the distribution of different per-

formance rates.

A performance model for simple addition was introduced

in Section 1.1.2. In Section 111.2 we give some basic re-

sults relating to the bivariate Dirichlet distribution. In

addition, maximum likelihood procedures are suggested for

estimating the models' parameters and a Dirichlet distribu-

tion is assumed for the performance rates.

Total error statistics are considered in 111.37 we

derive the conditional and unconditional expectations and

variances of the total error statistic.

The empirical data are presented in Section 111.4,

along with a method for evaluating the exact distribution

of item performance rates with homogeneous individuals.

Finally, the discussion and conclusions are presented

in 111.5.



111.2 SOME BASIC RESULTS

111.2.1 The Likelihood Function and Maximum Liklihood

Estimates

Let IS denote the internal state of the two-state

automaton introduced in Section 1.1.2. Then IS . 0 or 1

indicating no carry or carry respectively. We consider

three alternatives:

a) digit i is a ones' column digit

b) not (a) and IS = 0.

c) not (a) and IS = 1

Let c,ca, and cb denote the probabilities of a correct

response to digit i for (a), (b) and (c) respectively.

If, in addition, nl, n2, and n3 denote the number of

digits under the three alternatives above, then the likeli-

hood of an n digit response is given by

tnlt I
"-a

2 5;
t
3

(1 -ca)

n
2
-t

2 n3 t3
L = c (1-c) (1-cb) (2.1)

where t
1,

t
2

and t
3

are the number of correct responses

under (a), (b), and (c) respectively and t = t1 + t2 + t3.

The maximum likelihood estimates of c, a, and 1S

were derived by Suppes (1968) and are given by

1 - c = t
1
/n

1

t
g 2

/n
2

tl /nl

t /n
1 - - 3 3

t
1
/Li

1

b0

(2.2)



The estimates in Eq. (2.2) hold only if the proportion of

correct responses to the column digit is greater than

the proportion of correct responses to the other digits.

The model presented in Eq.'s 2.1 and 2.2 will henceforth be

referred to as Performance Model I.

After analyzing the data presented in Tables 4.1 and

4.2 it became clear that the carry parameter, a, did not

contribute to improvement in the prediction of expected

total number of errors. Consequently, we tried a two-

parameter model by letting a = 1 this situation is desig-

nated ".as Performance Model II. The predictions for this

model (in Table 4.2) improved the error predictions of cer-

tain items and had the opposite effect on other error pre-

dictions_ Since we did not improve the error predictions very

much using Performance Model II, the only predictions listed

are those for Test 2 in Table 4.2.

It was finally decided to redefine the no-carry state.

With this new definition, a transition to a no-carry state

is possible only if the automaton was already in a carry

state. Equations 2.1 and 2.2 remain the same, but the num-

ber of digits n
1

and n
2

and the number of correct re-

sponses t1 and t2 in the corresponding columns are now

different. More explicitly, only the problems 639 + 212 and

5267 + 283 have a no-carry column in the third and fourth col-

umns, respectively. This last situation is referred to as

Performance Model III.



111.2.2 The Bivariate Dirichlet Distribution

The bivariate Dirichlet probability density function

of two r.v.'s, pl and

equation

fd(Pl'Ip2lal'a2'a3)

p2, is defined by the following

a
1
-1 a

2
-1 a

3
-1

Kpi p2 p3

3

where 0 5 P1. 5. 1 i = 1,2,3 , pi = 1
i=1

1
r(a1"3+a3)

and K = 13(aliaVa3)
(cyr (a2)r (a3)

(2.3)

The following properties can be established (Silver, 1963):

i) The marginal p.d.f. of a specific pi is a beta den-

sity given by

fp (Pi )
1

E (a a )
3

i5Lj

a - 1 Q 1
103 j

a - 1

ii) The expected value of pi is

0 5 p. 5 1

a. a.
3

E .) = _.2 A = ,)-' a,
(1)3 3 A where A- 1

1 a
1=1

i=1

iii) The variance of pi is

V(P.)-

a. a
iij

3

)2a (1+ a i)

i=1 1=1
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iv) The covariance of 103 and pm, m, is

a.am a. dam

Cov(P. P ) - - -
3' m 3 3 A2 (A+1)

( >., ai) (1+ 7 ai)

i=1 i=1

(2.7)

111.2.3 The Distribution of Item Performance Rates with
Homogeneous Individuals

In the following analysis we assume that individual

students perform equally well, but the items are heterogene-

ous and of different difficulty.

Since the error frequencies are very small in perform-

ance data, the sum of output and carry error rates is con-

siderably smaller than unity. We may assume, therefore,

that the output error rate, c = 1 c, and the product cb

are Dirichlet distributed. For convenience, let p1 E c,

p2 = cb and p3 E cb; b = 1 - b

With the assumption of a Dirichlet prior on p1 and p2

and using equations 2.4 to 2.7 we have the following

properties:

v) The error rates c, i.e., p1, and b are independent

beta r.v.'s with parameters (a1,a2+a3) and (a2,a3) re-

spectively. (2.8)

Conversely, the correct rates c and b are independent beta

r.v.'s with parameters (a
2
+a

3
,a

1
) and (a

3
,a

2
) respectively.

vi) The carry-output correct rate i.e., p
3'

is a

beta r.v. with parameters (a
3
,a

1
+a

2
).

Conversely, the carry-output error rate 1 - cb, i.e., 1- p3,

is a beta r.v. with parameters (a1 +a2,a3).

(2.9)

b.3

6



Properties (v) and (vi) are intuitively appealing.

First, they conform to our model assumption that carry and

output errors are indepen3ent. Secondly, each difficulty

may be indicated by the size of the prior parameters. Thus

the output error rate increases as a function of al, the

carry error rate increases as a function of a2, and final-

ly, the carry-output error rate increases as a function of

al 4-
a2.

From Eq:s(2.8) and (2.9) we have the following:

vii) The mean and the variance for the output error rate are

a a (a +a ) a (A-a )

E (pi ) =
l 1 1and V(pi) -

1 2 3

2A (A+1) A (A+1)
(2.10)

viii) The mean and variance of the carry-output error rate

are

and

Aa
1

+ a
2

- a
3

E(1-p3) = A A

(air -a2)a3 a3 (A-a3)
V(1- p ) - -

A (A+l) A2 (A+1)

(2.11)

Obviously, V(p3) = V(p3).

ix) The covariance between output and carry-output errors is

a
1
a
3

Cov (p p )
l' 3

= - Cov (pi, p3) =
A (A+1)

In order to estimate the prior parameters a1,a2, and

a
3

of the Dirichlet distribution we used the method of moments.

b4
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It is also possible to integrate the likelihood (2.1) with

respect to the Dirchlet prior and determine numerically the

estimators a
l'

a
2

and Z.Y.

3
which maximize the resulting

function.

In Section 111.3 we calculate the estimates of the

prior means E(pi) and E(p3) and the prior variances

v(pi) and v(p3). Using these estimates we proceed to

determine
l'

a
2

and a
3

by the following procedure:

= (
1

(p l)

L'62 = Z(1-2 (p1) (p3 ))

= AE (p3)

(2.12)

(2.13)

A itself is determined from (2.10) and (2.11), substituting

A = a.E(p.) in the expression for the prior variance

V (p ) -

A -

A2E (pi) [1.-E (pi)]

A 2
(A+1)

E (pi) [1-E (pi)]

V (pi)

As E (pi) 11-E (pi)] v (pi) ,

returrithata.-)C).1

(2.14)

A -) 0, which implies in

This situation is noted in Raiffa and Schlaifer (1961,

pp. 263-264). In their section "Limiting Behavior of the

Prior Distribution", they prove that as the parameters a.

and A both approach zero in such a way that the ratio a
A



remains fixed, a fraction E(pi) of the total probability

becomes more and more concentrated toward pi = 1, the

remainder toward pi = 0; the variance v(pi) approaches

E(pi)[1-E(pi)]. It is interesting to note that the graph

of the beta density with parameters (r,$) is U-shaped when

r + s = 1. If only one of the parameters is smaller than

unity the density concentrates on one side. We also recall

that for our learning data, in Chapter II, the parameters

were much larger than one and the graph was' bell-shaped.

111.3 TOTAL ERROR STATISTICS

Let X
1,

X
2

and X
3

be independently distributed,

each having a binomial distribution with parameters (n1,q1),

(n2' q
2 3

) and (n'
' 3
q,) respectively. nl, n

2
and n

3
are

the total output, no carry-output and carry-output digits.

Also ql a p1 a c denotes the output error rate, q2 a 1- ca

denotes the no carry-output error rate, and q3 a p3 E 1- cb

denotes the carry-output error rate. Then, the r.v. desig-

nating the total number of errors in ni + n2 + n3 digits

is T' = X1 + X2 + X3. The conditional expectation of T'

given Q E (q1,q2,q3) is

and

3

E(T' IQ) = nlqi(1-qi)
1=1

V(T' IQ) = nl1 q.1 (1-qi)

=1

bb

(3.1)'

(3.2)'



Let I. denote the number of items having type i digit

(i=1,2,3) and ni = ni /I
i'

i.e., the average digits per

item of type i. Then, the mean total errors per item is

3

E(TIQ) = / n.q.
i =l " (3.1)

(3.2)
1=1

In order to simplify the expressions for the uncondi-

tional properties we consider only the situation described

by the two-parameter Performance Model II. In this case

T = X
1
+ X

3
where X

1
and X

2
are binomial random varia-

*
bles with parameters (n1,q1) and (n3,q3) respectively;

n1 = n1 + n2.

Then, the conditional mean total errors per item is

E(Thiq3) = nlqi + n3q3

and the conditional variance is

V(Tiqlq3) = 451(1-q1) + n3q3(1-q3)

The unconditional mean is given by integrating

(3.3)

(3.4)

E(T1q353) with respect to the Dirichlet prior density of

q1 ' p1 E c
and 1 - q3 E p3 ( ci3)

E*(T) E Ed[E(Tlqi,q3)] = nIE(qi) + n3E(q3) (3.5)



The unconditional variance is given by

V*(T) = E* (T2) E* (T) = Ed[T21q1,q3)] - E*2(T)

which reduces to

V* (T) = n
1
E (q 1) [1-E (q 1) ] + n 3E (q 3) [1-E (q 3) ]

* *
+ n1 (n1-1 )V (q1) + n3 (n3- 1) V (q3 ) (3.6)

It is clear that when the output error rate q1 and the

carry-output error rate q3 are exact numbers the uncon-

ditional variance V
*

(T) in (3.6) becomes the conditional

variance V(Tlqi,q3) in (3.4).

111.4 DATA ANALYSIS

111.4.1 Description of the Data

The data described in Tables 4.1 and 4.2 were col-

lected as part of the computer-assisted instruction program

in elementary mathematics at the Institute for Mathematical

Studies in the Social Sciences, Stanford University.

Two row addition problems were given to 80 third graders

in local California schools as a pretest before five drill-

and-practice sessions; the data for this group are presented

in Table 4.1. The same problems were given to a different grou.

of 62 third graders after five drill-and-practice sessions;

these data are presented in Table 4.2. (Although the groups

were not the same, one may infer that some learning has taken

b8
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place in the second group since there were only 144/62 errors

per student in Test 2 and 196/80 errors per student in Test 1.)

The left-hand columns present the observed error fre-

quencies for each item listed and for all students. The no-

carry column represents the no carry-output errors for Per-

formance Model I. The numbers in that column are added to

the corresponding entries of the output column for Perfor-

mance Model II. For Performance Model III all entries are

added to the corresponding entries of the first column ex-

cept for the items 639 + 212 and 5267 + 283; there are

only 17 no carry-output errors for Model III.

Consider, for example, the data given for the problem

14 + 15 in Table 4.2. For Performance Model I: n1= n2 =62,

n3 = 0, n1- t1 = 3 and n2- t2 = 3; for Performance Model

II and III n
1

= 124, n
2
= 0 and n

1
- t

1
= 6. The data

given for the problem 639 + 212 in the same table are, for

Performance Models I and III: nl = n2 = n3 = 62, n1- t1= 3,

n t
2

= 8 and n
3
- t

3
= 4; for Performance Model II:

n
1

= 124, n
2

= 0, n3 = 62, n
1
- t

1
= 11 and n

3
- t

3
= 4.

The predicted values for the three models are calcu-

lated by using the maximum likelihood estimates (2.2) and

Eq. (3.1) for Performance Models I and III, and Eq. (3.3)

for Performance Model II. The maximum likelihood estimates

and the variances of total errors due to each error type

for all three models are given in Table 4.3. Note that the

estimates are for the qi's; these are simply the ratio of

errors per all digits cf a given type. For example

h9



q
3

(1-ci;) = (1- n
') -

n
,,

...._
A A t2 113 - t3

3

the variance estimates in Table 4.3 were calculated using

Eq. (3.2) for Models I and III and Eq. (3.4) for Model II.

.



TABLE 4.1

ERRORS P3.}..DI CT 1.11)

item

17

output no ca rry carry total I I I I

+ 2 1 0 6 6.7 5.5

14
+15 1 4 0 6.7 5.5

6
+13 1 2 0 F .7 5.5

7E3
+214 1 2 0 3 10,1 8.3

416
+212 2 2 0 4 10.1 8.3

27
+4. 3 0 4 7 10.9 10.3

8
+32 4 0 7 11 10.9 10.3

66
+14 1 0 3 4 10.9 10.3

639
+21 2 4 8 6 18 14.3 18.8

5267
+283 3 9 18 30 21.9 26.4

378
+125 F 0 11 17 18.5 17.9

557
+256 6 0 18 24 19,5 17.9

3986
+4735 3 0 25 28 2P.1 25.5

7657
+1975 7 0 29 36 26.1 25.5

tota I 4? 28 121 196 196) 1%

PER FORMA NC E MODEL TEST 1



TA BTY 4.2

ERRORF PP.E; IC TED

item

17

01) t r1) t no carry carry total I II I I I

+ 2 2 0 0 2 5.0 4.9 3.6

14
+15 3 0 6 5.0 4.5 3.6

6
+13 0 2 0 2 5.0 4.B 3.F

3f
+ 21 4 0 3 0 3 8.0 7.1 5.4

41F
+21 2 1 2 0 3 8.0 7. 1 5.4

27
+4 5 -z 8 7.6 '7.9 7.4

+32 1 0 4 5 7, F 7.9 7.4

F6
+14 0 0 4 4 7.6 7.9 7.4

639
+212. 3 8 4 15 10.6 10.3 15.8

52F7
+283 2 9 21 32 16.1 15.9 26.4

3 78
+1 2.5 4 0 8 12 13.1 13.5. 12.9

557
+256 2 0 9 11 13.1 13.5 12.9

39 Hr
+4735 2 0 21 23 18.6 19.1 18.5

76b7
+1875 3 0 15 18 18.6 19.1 1R.5

tota 1 28 2? 89 144 144 144 144

PERFORMA tC E MODE I, TEST 2

7 2
'18



TABLE 4.3

Model

Test 1

output

A
ql

no carry

A

ci2

carry

A
q
3

output

A
V(X

1
)

no carry

A
V(X

2
)

carry

A
V(X

3
)

Total

A
V(T/
Eq.(Q5)

I .042 .033 .09 3.21 5.34 12.17 19.22

III .034 .106 .094 3.99 7.59 12.17 23.76

Test 2

I .032 .o48 .09 1.93 3.6 9.o 14.6

II .039 .09 3.77 9.o 12.78

III .029 .137 .09 2.6 7.3 9.0 18.97

2)

PERFORMANCE MODELS

Error estimates and total error variances due to each error type
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111.4.2 The Distribution of Item Performance Rates with
Homogeneous Individuals

Using the estimators Eli's, calculated in the

last section, we are now able to determine the distribution

of the prior performance rates. For Performance Model II

this is done by rewriting (3.5) in the following manner:

n-
1
(n

1
- 1)V (q 1) + n3 (n 3-1)V (q

3
) = V (T) - V (T jql' q

3
) (4.1)

We replace V*(T) by the observed total variance, V (T)

and V(Tlqi,q3) by its estimate (Table 4.3). In order to

solve for V(qi) and V(q3) we let E (qi) = Eli and apply

Eq. (2.14). We now have,

(T) - (T ) =

* * (c11)[1-(q1)]
(q

3)
[1-E (q

3
)]

n(n -1) + n 1) (4.2)
1 1 + 1 3

(n
3 + 1

The resulting equation solving for isis

A -
n*
1

( n *
1
- 1 ) (q

1)
[1-Es (q1 ) n3 (n3-1 )E (q3 ) [1-Es (q

V(T) - "\-i(Tlq1,q3) V (T) - (T1q353 )
1

(4.3)

The estimators a1, a
2

and a.
3

are finally calculated by

Eqs. (2.12) and (2.13)

AE
(q1)

a3 = A[1.--(q3)] = A(1--q3)

a2 A(I-(q1)-14(q3)) A((c13)-Es(c11)) A(i3-i )
(4.4)
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As an example, consider the distribution of item perfor-

mance rates for Test 2 Model II. The observed variance

*(T) = 75.20 and the estimate of the conditional variance

v(T1(41,q3) = 12.78. Using (4.3), R = 21.04, al ... .820,

a
3

19.14, a
2
= 1.07, 17(q

1
) .007 and 0(q

3
) = .037.

That is, there is not too much variance in items due to the

output factor, but a noticeable variance due to carry.

111.5 DISCUSSION AND CONCLUSIONS

111.5.1 The Conditional Models

The results of this study demonstrate that asymp-

totic performance data, in the context of computer-assisted

instruction in, elementary mathematics, can successfully be

accounted for by probabilistic automaton models with few

parameters.

Educationally more important is the fact that these

models serve as excellent tools for determining the struc-

tural features of items. There is no doubt that being able

to identify these features is a prerequisite if one is to

use difficulty factors in order to develop a sound theory

of instruction as well as sensible testing procedures.

The main conceptual strength of these models is their

ability to provide explicit temporal analysis of the steps

being taken by the student in solving a problem. The anal-

ysis which led to Performance Model III is a case in point;

we were easily able to determine that a no-carry difficulty

is raised only if a carry was previously encountered. The

75



advantage provided here in identifying the latent structure

of the data seems to be more impressive than the gain pro-

vided, say, from a Factor Analytic approach.

From the point of view of an analysis of variance, a

second advantage of Performance models is immediate descrip-

tion of the models' adequacy. Let the total error statistics

T be a linear combination of the errors due to n variables
n

X1, X
2

... X
n

and an error variable E , i . e . , T =EX .
1

+E.
i=1.

If the Xi's and c are mutually independent, then

and

E (T) = 1- E (X. ) + E(E)
i=1 1

V (T) = / V (X. ) + V (E
i=1 1

(5.1)

(5.2)

The additivity and independence assumption may now be tested

by
h
analyzing the observed discrepancy between V(T) and

X,1.1V(*)*

This procedure was actually used in our data, where X1

was the total errors due to output, X2 was the total errors

due to carry-output. The magnitude of the observed V(c)

was less than 20 per cent of the total variance, V(T).

111.5.2 The Unconditional Models

One question remains to be answered: can we im-

prove the predictions when item differences are considered?

The unconditional predictions, (3.5), depend on the expec-

tations E(q1) and E(q3). We can always do as well as

the conditional predictions by letting Es(qi) = ai. How-

ever, as long as our estimation procedures are based on the

first moment estimates we cannot improve the prediction.
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The obvious question now is: can we estimate E(qi)

by some other method. Toward this end, we tried to estimate

al, a2, and a3 by maximizing the unconditional likeli-

hood, i.e., the'integral of (2.1) with respect to the Dirich-

let prior, and had exactly the same results that we arrived

at by the moment estimation procedure. The reason we arrive

at the same results using the two estimation methods is due

to the fact that the estimators are a function of the mean

total errors only.

Theoretically, item differences should have an effect

on the predictive power of the models. This is so in view

of Eq. (2.14) which can be written as

E(qi)[1-E(qi)] = (A+1)V(qi).

In other words, unless the variance V(qi) = 0, E(qi) does

depend on item differences, since the E(qi)'s are a func-

tion of V(qi) ` s.

In general, we may conclude that the properties of the

models are sensitive to item differences - to the degree that

such differences exist. This fact is demonstrated by noticing

the weight attached to the V(qi)'s in the expression for

the variance of total errors, V*(T), in Eq.. (3.6).

The aggregate of item differences is expressed as the

sum of differences in each performance category. By observ-

ing the discrepancy between the conditional variance of total

77



errors for each factor V(X.fq.) and the observed variance

of total errors due to each factor, we may decide the source

of differences between items.

It is true that as qi-> 0 this difference for factor

e.g., carry, is small. The converse is not true however; qi

may approach unity and V(qi) may still approach zero. Item

differences may, therefore, be viewed as a convex function

of correct and incorrect responses summed over performance

factors. For either extreme of the function, all responses

correct or all responses incorrect, there are no item dif-

ferences for that factor. We had exactly this situation in

mind when we discussed the limiting behavior of the prior

distribution in Section 111.2.3.

The output performance factor serves as a good example.

It has a Beta prior distribution with parameters (.8,20.2).

The total probability is concentrated toward ql = 0. In

addition, the discrepancy between the observed output vari-

ance and the conditional output variance, V(Xliql) is very

small. The same discrepancy between the output-carry vari-

ances was ten times as large.

Having the exact prior distribution on performance rates

will enable us to derive the posterior distribution of these

rates after a new presentation of items. Future extensions

may include, therefore, sequential instruction strategies

based on Bayesian procedures.



REFERENCES

1. Atkinson, R. C., Bower, G. H. and Crothers, E. J., An
Introduction to Mathematical Learnin Theory, New York:
Wiley, 1965.

2. Atkinson, R. C. and Crothers, E. J., A comparison of
paired associate learning models having different acqui-
sition and retention axioms, Journal of Mathematical
Psychology, 1964, 1, 285-315.

3. Birnbaum, A., Statistical theory of logistic mental test
models with a prior distribution of ability, Journal of
Mathematical Psychology, 1969, 6, 258-276.

4. Some latent trait models and their use in infer-
ring an examinee's ability, in F. M. Lord and N. R. Novick
(Eds.), Statistical Theories of Mental Test Scores, Reading,
Mass.: Addison-Wesley, 1968, Chapters 17-20.

5. Bower, G. H., Application of a model to paired-associate
learning, Psychometrika, 1961, 26, 255-280.

6. Bruner, J. S., Some theorems on instruction stated with
reference to Mathematics, in E. R. Hilgard (Ed.) Theories
of Learning and Theories of Instruction, 63rd NSSE year-
book, Part 1, 1964, pp. 306-335.

7. Bush. R. R. and Mosteller, F., A comparison of eight models,
in R. R. Bush and W. K. Estes (Ed.) Studies in Mathematical
Learning Theory: Stanford University Press, 1959, pp. 293-
307.

8. Erdelyi, A., et al., Higher Transcendental Function, Vol.
1, New York: McGraw Hill Book Co., 1953.

9. Galanter, E., and Bush, R. R., Some T-maze experiments, in
R. R. Bush and W. K. Estes (Eds.) Studies in Mathematical
Learning Theory, Stanford University Press, 1959, pp. 265-
289.

10. Glaser, R., Some implications of previous work on learning
and individual differences, in R. E. Gagne (Ed.), Learning
and Individual Differences, Columbus, Ohio: Charles E.
Merrill, 1967, pp. 1-18.

11. Gregg, L. W and Simon, H. A., Process models and stochas-
tic theories of simple concept formation, Journal of Mathe-
matical Psychology, 1967, 4, 246-276.

12. Groen, G. J. and Atkinson, R. C., Models of optimizing the
learning process, Tech Rep. 92, Inst. for Mathematical Stud-
ies in the Soc. Sciences, Stanford University, 1965.

7.9



13. Hilgard, E. R. (Ed.) Theories of Learning and Theories
of Instruction, 63rd NSSE yearbook, Part 1, 1964.

14. Holland, P W., Minimum chi-square procedures; unpub-
lished doctoral dissertation, Stanford University, 1965.

15. Laubsch, J. H., An adaptive teaching system for optimal
item allocation, Tech. Rep. 151, Institute for Mathema-
tical Studies in the Social Sciences, Stanford University,
1969.

16. Lindgren, B. W., Statistical Theory, New York, The Mac-
millan Company, 1962.

17. Matheson, J., Optimum teaching procedures derived from
mathematical learning models, Report CC51, Institute in
Engineering-Economic Systems, Stanford University, 1964.

18. Murdock, B. B., Jr., Short term retention of single paired-
associates, Psychol. Rep., 1961, 8, 280.

19. Short-term memory and paired-associate learning, J.
Verb. Learn. and Verb. Behay., 1963, 2, 320-328.

20. Offir, J. D., Adaptive computer tutorial; unpublished
manuscript, 1968.

21. Peterson, L. R., Saltzman, Dorothy, Hillner, K., and Land,
Vera, Recency and Frequency in paired-associate learning,
J. Exp. Psychology, 1962, 63, 396-402.

22. Polya, G., Patterns of Plausible Inference, (Vol. 2 of
Mathematics and Plausible Reasoning) Princeton: Princeton
University Press, 1954.

23. Raiffa, H. and Schlaifer, R., Applied Statistical Decision
Theory, Cambridge, Massachusetts: The MIT Press, 1961.

24. Silberman, H. F., Characteristics of some recent studies
of instructional methods, in E. J. Coulson (Ed.) Programmed
Learning and Computer-Based Instruction, New York: Wiley,
1962, pp. 13-24.

25. Silver, E., Markovian decision process with uncertain tran-
sition probabilities or reward, Tech. Rept. 1, O. R. Center,
MIT, 1963.

26. Smallwood, R. D., Quantitative methods in computer-directed
teaching system, Final Report, Institute in Engineering-
Economic Systems, Stanford University, 1967.

80

EC".



27. Sternberg, S. H., Stochastic learning theory, in R. D.
Luce, R. R. Bush and E. Galanter (Eds.) Handbook of
ivithematicaovol.2 New York: Wiley, 1963,
pp. 1-120.

28. Suppes, P., Stimulus response theory of finite automata,
Tech. Rep. 133, Institute for Mathematical Studies in
the Social Sciences, Stanford University, 1968.

29. Suppes, P., Hyman, L. and Jerman, M., Linear structural
modules for response and latency performance on computer
controlled terminals, in J. P. Hill (Ed.) Minnesota
Symposia of Child Psychology, Minneapolis: University
of Minnesota Press, 1967, pp. 160-200.

81



APPENDIX

THE x
2 MINIMIZATION PROGRAM

The tables included in the appendix present two or

usually three of the best sets of prior parameter estimates

for both the OEM* and the LM* for all eight experiments.

For each model-experiment combination, 16 in all, each table

of the appendix, describes also the predicted frequencies

of the 0i events based on the first set of the "refined point"

listed, which is not necessarily the best set of estimates

of r, s,m and n in that table. Also listed are the prior

means and variances of c and g associated with this

set of estimates.

The numerical computations were written in Fortran IV.

The program was adapted to be run on the PDP 10 at the

Institute for Mathematical Studies in the Social Sciences,

Stanford University.

The program itself consists of two subprograms. The

first, named Paraest and written by Tom Wickenst, is

a routine which utilizes general hill-climbing procedures

to find the minima of an arbitrary function over a multi-

dimensional space. Values of the function are provided by

the second subprogram, Stat, which was written by the

present author. Stat calculates the x
2 values (Eq. 3.2)

associated with the predicted Oi values which are

Department of Psychology, UCLA
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calculated in turn by the equations of Tables 3.3 or 3.4 --

for given values of r, s , m and n. The author provided

the range of the search space for each parameter. It was

determined from a few pilot runs that the range of 0.5 to 70

was wide enough. The range of the search is tabled under

the heading of Minimum and Maximum. The precision was

controlled to 0.5, i.e., the worst estimate would be accurate

up to 0.5.

Paraest takes over by first calling for function values

at points in a rectangular grid over the relevant portion

of the parameter space. From this scan a number of points

are selected which give the smallest x
2 values, supplied

in turn by Stat. The best points are denoted as Scan Points.

A second routine, Refine, works from the previously given

estimates of the minimum. Function values are called at

points around the estimate, along each of the parameter axes,

and from these values the gradient of the function is esti-

mated at the original point, and a "downhill" direction

found. Proceeding along the gradient a minimum is approached.

The points calculated by the refine procedure are denoted

as refine points.

Since Paraest calls on Stat for each new parameter

value on the grid from 0.5 to 70 with increments of size 1,

Stat is called about (70)
4 times by the Scan procedure alone.

Each of the 16 Oi predictions calls for a product of two

Betas, i.e., 6 products and ratios of the Gamma function.
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Thus, the number of subroutine calls for the Scan procedure

alone is about 2.5 million. This rough calculation should

serve as an indication of the amount of time that was required

to run each and every experiment.

Finally we would like to make a remark associated with

the results for OEM* experiment Ia. In this appendix there

are two tables given for the OEM* experiment Ia. The result

of 5.10 for the minimum x
2 given in the first table seems

out of place with respect to the Scan value of 40.766 for

almost the same parameter estimates. The same experiment

was run, therefore, a few more times and the x
2 value reached

usually as low as 7.15, the value listed in the second

table of experiment Ia. The parameter estimated in both

tables are almost the same but the value of the prior variance

of c went down from .00531 to .00237 as noted in Table 3.7**.
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.)Em P!3:311:3I LIT I E`.-; EX PERI M 'ENT I A

PROGRAM LL FIND A NI NUM.

INPUT DATA
1.23000E+02
3.00000E+00
7.00000E+00
1.00000E+00

POINT lo.:
0EFN

3,00000E+00
5.00000z-1-0o
2.00000E+03

1

SCAN PO I T

6.00000E+00
2.00000E +00
1.50000E+01

REFINE POINT

1.00000E+00
4.30000E+01
0.00000E -01

MINIMUM

1.600coa+01
1 .00000E +00
6.33000E+00

.1A XI MU:1 PRECI SI 3N
. 25000 E+01 6.15010E+01 5.25E+01 7.00E+01 5.00E-01

c 5.c:5000E+01 5.75000E +01 5.25E+01 6. 50E+01 5.00E-01
3.35000E+01 3 .35onnE401 :05E+01 3 .40 E+01 5 .00 E-01
5.95000E+01 6.00000E+01 4.05E+01 6.50E +01 5.00E-01

CHI -SPMRE: 0.71 P 02E+0 i 0.71673E+01

POI NT NO.: 2
DEFN SCAN POINT REFINE POINT MI NI MUD; MAXIMUM PRECI SI JN

R 6.25000E+01 6.1E706E+01 5.25E+01 7.00E+01 5 .00 E-u
S 5.E5000E+01 5.25E+01 6.50E+01 5.00 E-01

3.35000E+01 1 2.05E+01 3.40E+01 5.00E-01
"1 6.15000E+01 1.49 1 4. 05E+01 6. 50 E+01 5.00 E- 01

CHI -SOUARE 0.71E23E+01 3trfrrrIt- 1=.
POINT NO.: 3

DEFN SCAN POINT REFINE POINT MI NI MUM MAXI MUM PRECI SI ON
R 5.85003E+01 5.82500E+01 5.25E+01 7.00E+01 5.03E-01
,3 5,45000E+01 5. 47500 E.+01 5.25E+31 6.50E+01 5,30E-31

3.35000E+01 3 .40000E+01 2 .05E+01 3.40E+01 5.00E-01
6.15000E+01 6.10000E+01 4.05E+01 6.50 E+01 5, 00 E- 01

CHI-SOUARE: 0, 71E63E+01 0.71675E+01

FLOATING CONSTANTS: 0.23400E+03
THE OPTIMAL EXPECTED FREQUENCIES ARE:

0( 1):: 1.26656E+02 0( 2): 2.73512E+00 0( 3)= 5.52943E+00 3( 4)= 2.51
_q7gE+00
0( 5):: 1.39493E+01 0( 6): 2, 5197EE+00 0( 7): 5,13522E+00 0( 6), 2.39
9,°2E+00
( 3.96704E+01 0(10): 2. 5197EE+00 0 (11): 5.13522E+00 0( 12 )= 2.39

qq2E+00
0(13)- 1.31444E+01 0(14):: 2.39F.E2E+00 0(15)= 4.92923E+00 0(16): 2.35
9E2E+00

THE PRIOR MEANS ARE G.: .516E1 E+00 C= .35829 E+00

THE VARIANCES ARE: VG:: .20E10E-02 VC= .24330 E-02
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OEM EXPERIMENT I a

program will find a minimum.

input data:
1 .23000e+02 3.00000e +00 6. 00 00 Oe+0 0 1.00000e+00 1. 6000 Oe+0 1
3 .000 00 e+00 5.00000e +00 2 .000 00e+ 00 4. 30 000e+01 1. 00000 e+00
7.00000e+00 2.00000e+00 1.50000e+01 0.00000e-01 6.00000e+00
1 .00000e+00

rain t no. :
de fn

1

scan point refine point minimum maximum precision
r 5.40 00 Oe+01 5.39378e+01 5.05e+01 5.50e+01 5.00e-01

5.35000e+01 5.35953e+01 4.85e+01 5.5Ue+01 5.00e-01
1.55000e +01 1.54437e+01 1:45e+01 ,2.00e +01 5. 00e-01

Y.1 2.750 00e+01 2.70939e+01 2.65e+01 3.00e+01 5.00e-01

chi-square: 0.40759e+02 0.53174e+01

point no. :
de fn

2
scan point refine point minimum maximum precision

r 5.50000e+01 5 5tiamr.1,0e+0 5.05e +01 5. 50 e+01 5. 00e-01
5.35000e+01 4. 85e+ 01 5. 50 e+01 5. 00e-01

m 1.55000e+01 1.p5960e+ 1.45e+01 2 .0 Oe+01 5. 00e-01
n 2.75000e+01 2.71251e+01 2.65e+01 3. 00e+01 5. 00e-01

chi-square: 0.40766e+02 0.51044e+01**
floating constants: 0.23400e+03

the optimal exec ted frequencies are:
o(. 1)= 1.25499e+02 o( 2)= 1.90450e+00 o( )= 5.98323e+00 0( 4)= 1.86986e+00
o( 5)= 1.42501e +01 o( 6)= 1.86986e+00 o( 7)= 5.94860e+00 0( 8)= 1.90449e+00
o ( 9 )= 4.06220e +01 o( 10 )= 1.86986e+00 o( 11 )= 5.94860e +00 o( 12 )= 1.90449e +00
o(13)= 1.43716e+01 o(14)= 1.90449e+00 o(15)= 6.13716e+00 0(16)= 2,01230e+00

the priOr means are: g=.50159e+00 c=.36306e+00

the variances are: vg= .23034e-02 vc=.53114e-02
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op,m EPFRIMFWT I "t

nrut data :
1 .250009+02
0.00000e-01
1 .00000e+01
7.00000e+00

-Dint no.:

3.00010 e +00
F.00000e+00
2 .00000 e+00

1

rroP ram will find a , minimum.

1 . 0000 Oe+01 4.000 00 e+ 00 2.10000 e+01
3.00000e+00 5. 53000e+01 5.00000e +00
3.00000e +01 1.00000e+00 6, 00000e +00

fn scan mint refine roin t minimum maximum rrecisior
r 5 .6000 Oe+01 5.56975e+ 01 5.35e +01 6.50 e+01 5.00e-01

6 .50000e+01 6.50 000e+01 6 25e+01 7. 00e+01 5. 00e-01

n

3 .1000 Oe+01
7.10000 e+ 01

3.10000e+01-
6.9750 0e +01

2.85e +01,
6.35e+01

4.00e+01
8.00e-01

5.00e-01
5, 00e-01

chi-sr7uare:
poi nt no. :

0.20289e+02
2

0. 202F3e+02

de fn scan point refine point min imum maximum precis ion
r 5.60000e+01 5.47500e+01 5 .35e+01 6.50 e+01 5. 00e-01

6.50000e +01 6 .3'7500e+01 6.25e +01 7.00e +01 5.00e-01
3 .10000 e+01 2.9750 0e +01 2.85e+01 4.00e4-01 5. 00e-01

n 6 .90000e+01 6 .72500 e+01 6.35e +01 8.00 e+01 5. 00e-0 1

chi-square:
point no. :

0. 2060'7e+02
3

0.20291e+02

scan Point refine point minimum maximum 'precision
r 5 .60000e+01 5..41279e+01

6 50000e+01 6.312-1-
5.35e
6.25e

+01 6.50e +01 5. 00e-01
+01 7, 00 e+01 5. 00e-01
+01 4, 00e+01 5,00e-01
+01 B.00 e+01 5.00e-01

3.60000e +01 WA 2.85e
6.35en 7 .60000e+01 7.66253e +0t

chi-square : O.20651 e+02 0. 20210e+0
float inE constants: 0.28800e+03
the optimal expected frequencies are:

2

o ( 1)= 1 .31815e+02 0 ( 2 )=- 3.63355'7e+00 o( 3 )=- 6.90969e+00 0( 4)= 4.12511e +00
o( 5)= 1.72090e+01 0( 6)= 4.12511e+00 0( 7)= 7 .96039 e+00 of 8)= 4 .87553e+00
0( 9)= 4. 992Fle+01 0( 10 )= 4.12511e+00 0( 11 )= 7. 03tzle+00 o(12 )= 4.87553e +00
o(13)= 2.01787e+01 o(14)= 4.87553e+00 0 (15)= 9. 49991 e+00 0(16 )= 5. 95351 e+00

the rrior means are: F=.46142e+00 c=.30769e+00

the variances are: v?= .20422e-02 vc=. 20935e-02
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OEM ?)037F.ImF:711 II

inrut data :

rroPram will fir0 a min imum.

7 .03000,40? 1 .40000e+01 1 .90000e+ 01 1 .20000e+01 5.40000e+01
1.70000e +01 3.20000e+01 1 . eo 00 Oe+01 1. 25000 e+02 1. 50000e+01
2.50000e +01 1 .'70000e+01 F .10000e+01 1.90000e +01 3.00000e +01

.900,104-01
roirt no. 1

efr sc.?. roirt refine Point minimum maximum precision
r 5.00000e+01 4.92939e+01 3.75e+01 5.00 e+01 5. 00e-01

5 .50000e+01 5 .50000e+ 01 4.25e+01 5.50e +01 5.00e-01
m 1.40000 e+01 1 .4F688e+01 1.15e+01 2.00 e+01 5.00e-01

4 . 50000e+01 4.43011 e+ 01 3.75e +01 5. 00e+01 5.00e-01
chi - square: 0. 2724e+01 0 .45189.e+01

*point no. 2
de fn scan noin t ref ine mint minimum maximum precision

r 4.50 000e+01 4 .45442e+ 01 3.75e +01 5.00e +01 5.00e-01
5.00000e+01 5. 00894e+01 4. 25e+01 5. 53 e+01 5. 00e-01
1.40000e +01 1 .44051 e+01 1.15e+01 2 .00e+01 5.00e-01

n 4 .50000 e+01 4. 3130e+01 3 .75e+01 5.00 e+01 .5. 00e-01
chi-square :

roint no.

0. 53055e+01

3

0.44951e +01

de fn
r

scan Point
4 .50000 e+01.

refine zw.irni
6750

minimum maximum pr5.egiiise_1(o)rii.

n
chi-square :

5.50000e+01
1 .40000 e+01

.6.0050033004e +0011

r:40028e-
4.25e+01
1 .15e+01
3.75e +01

5.50e +01
2.00 e+01
5. 00 e+01

5.00e-01
5.00e -01
5.00e-014.61.493458 4.21e+e+-0101

floating constants: 0 .78000 e+03
the optimal erected frequencies are:

o( 1)= 3.08104e+02 o( 2)= 1.43289es-01
o( 5)= 4.99162e+01 o( 6)= 1.56436e+01
o( 9)= 1.25502e+02 o(10)= 1.56436e4-01
o(13)= 5.58626e+01 o(14)= 1.'77294e+01

o( 3)= 2.36237 e+01 o ( 4)= 1.56436e +01
o( 7)= 2 .59930e+01 o( )= 1.77294e +01
o(11)= 2 .59930 e+01 o ( 12 )= 1.77294e +01
o(15)= 2.9S967e+01 o(16)= 2.08606e +01

the prior means are: g=.47264e+00 c=.24875e+00

the variances are: vg= .23672e-02 vc=. 31161e-02
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0J 4 EXPERIMENT III

input data:
1 .P000 0e +02
e .00000 e+00
2. 7000 Oe +01
3 .60000 e+01

Point no. :

r

chi souare: 0.

point no. :
de fn

r

1 .3 0000 e+01
1 .80000e+01
1 .40000e+ 01

1

scan point
3, 0000 Oe+00
3 00000 e+00

. 00000e+00
4.800005 +01

25432e+02 0

2
scan roir.t
3.00000e+00
3. 00000e+00
3 .00000 e+00

n 1 .80000e+01

nrogram will find a minimum.

1.60000e +01 1.10000e+01 2.40000e +01
7. 00000e+ 00 5. 70000e+01 9. 00000 e+00
3. 30000e+01 2 .50000 e+01 2.40000e+01

refine noint minimum maximum precision
2 .6(4750 e+00
3.31250e+00
°..31250e+00
4. 6750 Oe+01

23181e+02

refine poin t
_6875n +_CI

1_.67500e+01
chi square: O. 25699e+02 0 . 22963e+ 02

IF

point no. :
fn
r

3
scan Poin t
3, 0000 0e+00
3.00000e+00
8.00000e +00

refine noint
2.62750e+00
3.00000e+00
8.00000e+00

n 4.30000e+01 4. 42500e+01
chi square : O.25951 e+02 0. 23067e+02
floating constants: 0.48000e+03

the optimal e xnected frequencies are:

5. 00e-01 6 .00e+01 5.00e-01
5. 00e-01 6.00e+01 5.00e-01
5. 00e-01 6.00e +01 5,00e-01
5, 00e-01 6.00 e+01 5, 00e-01

min imum maximum precision
5. 00e-01 6. 00e+01 5. 0Ce-01
5. 00e-01 6 .00e+01 5.00e-01
5, 00e-01 6. 00e+01 5. 00e-01
5.00e-01 F.00e +O1 5.00e-01

minimum maximum precision
. 5. 00e-01 6 .00e+01 5.00e.-01

5, Or.le-01 6. 00e+01 5. 00e-01.
5, 00e-01 .6 .00e+01 5.00e-01
5, 00e-01 e+01 5. 00e-01

o( 1)= 3.06309e -01 o( 2)= 2 .5411Re-02 o( 3)= 3.43733e-02 o( 4)= 2.33722e -02
o( 5)= 5.79657e-02 o( 6)= 2.33788e-02 o( 7)= 3.313593e-02 o( 8)= 3.36813e -02
o( 9)= 1.32075e -01 o (10 )= 2.33782e-02 0( 11)= 3. 325Te-02 o (12 )= .3.36813e-02
o( 13 )= 7.15564e-02 o( 14 )= 3. Pne-02 of 15)= 5. 439R5e-02 o( 16 )= 7.91120e-02

the priormears are: g=.4A. 792e+00 c=.15096 e+00

variances are: va.= .35327e-01 vc=. 22263 e-02



0114 PROBABILITIES EXPT,113 I1 +EN T IV
program will fine a min imum.

i.n.nut e.at.at
1.170000+02
3.00000e+00
9.00000 e+ on
1.20000e+01

oir t no. :

3.000000+00
9.000000+00
1.00000E+01

1

1.00000e+01
6.000000+00
3.400000+01

1.00000e+00
5.400000+01
8.000000+00

1.50000e+01
7.000000+00
2.200000+01

efn scan roint refine noint min imum maximum precision
r 1.300000+01 26 875e +01 1.050+01 2.200+01 b. 00e-01

2.200000+01 1.95e +01 3.000+01 5.000-01
2.40000e+01 4Za012Z2s1,01 1.650+01 3.000+01 5.000-01
6.800000+01 6,76975e401 1.550+01 7.000+01 5.000-01

chi-s. nuarE :

noi nt no. :

0.126470+02

2

0.1253E10+02

de fn scan noir. t ref in e n0ir. t minimum maximum Precision.
r 1 .7.0000e +01 1.33125e+01 1.050+01 2.200+01 5.000-01

2.200000+01 2.160,750+01 1.950+01 3.000+01 5.000-01
1.90000e+01 .9oonoe+01 1.650+01 3.000+01 5.00e-01

n b .30000 F,H-oi F. 331250+01 4.550+01 7.000+01 5.000-01
rh i-snua r0:

roint no. :
e fn

0.127040+02

3
scan point

0.12.F320 +02

refine :Point min imum max imum Precision
r 1.300000+01 1.3312 50+01 1.05e+01 2.200+01 5.00e-01

2.200000+01 2.169750+01 1.95e +01 3.000+01 5. 00e-O 1
2.400000+01 2.275000+01 1.650+01 3.000+01 5.000-01
:-"3.30000e+01 e .33125e+01 4.55e +01 7.000+01 5.000-01

chi-square: 0.129930+02 0.125660+02

floating constants: 0.320000+03
the or ti mal eX Peet ed. frequencies are:

o( 1)= 1.18415e+02.0'( 2)= 3.460320+00 of 3)= 6.375000+00 o( 4)= 5.124210+00
o( 5)= 1.662R3e+01 o( F)= 5.124210+00 o( 7)= 9.755770+00 o( 8)= P.516960+00
o( 9)= 5.45,9R2e+01 o (10 )= 5.124210+00 o (11 )= 9.75577 e+00 o(12)= 8.51960+00
o ( 13 )= 2.733290+01 o( 14 )= 8.516960+00 o( 15 )= 1.61921E10+01 o( )= 1.594310+01

the rrior means arE: P.=. 379440+00 c= .261760+00

the variances are: v,0.!= 683750-02 vc=. 20R49e-02
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N

01714 F, X PE RI ME III V a

inrut (ate:
20000e+01

2 .10000e+01
3.40000e +01
f .20000e+01

1.10000N-01
2. 0000 Oe+01
1.80000N-01

program will f in 1. a minimum.

1. 40000e+01 1.30000e+01 2.2000 Oe+01
3.10000e+01 5.80000e +01 1. 30000 e+01
3.40000e +01 2 .10000e+01 2. 6000 Oe+01

point no. : 1

fr scan coin t refine mint minimum maximum Precision
r 6 . 5000 Oe+00 6.50000e+00 5. 00e-01 5. 00e+01 5. 00e-01

1.05000e +01 5. 00e-01 5. 00 e+01 5. 00e-01
2. 5000 0e+00 2.50000N- 0 5.00e-01 2.00e +01 5.00e-01

n. 2.250 00e+01 2 .15000e+01 5. 00e-01 5. 00e+01 5. 00e-01

chi-so uare : 0. 21570 e+02 0. 21:4,6,0e+32

Point no. : 2
fh scan Point refine point min imum maximum Precision
r 6.50000e+00 6.50000e +00 5.00e -01 5. 00e +01 5.00e -01

1 .0500 0e+01 1. 02500e+01 5.00e-01 5.00e +01 5.00e-01
ta 2.50000e+00 2.25000e +00 5.00e-01 2.00e+01 5.00e -01
n 1 .85000e+01 1.95000e+01 5.00e-01 5.00e +01 5.00e-01

chi-square: 0. 23149e+02 0 . 21430 e+02

point no.: 3
de fn scan Po in_ t refine poin t minimum maximum precision

r 1.05000e +01 1.07304e+01 5.00e-01 5.00e +01 5.00e-01
1 .850 00e+01 1. 76411 e+01 5. 00e-01 5.00 e+01 5.00 e-01
2 .5000 0e+00 2.47448e+00 5.00e-01 2.00e +01 5.00e-01

n ,1 .850 00 e+01 1.99786e +01 5. 00e-01 5.00 e+01 5. 00e-01

chi-souare: 0.23216 e+02 O. 21920e+02

f loatinP: constants: 0.48000e +03

the optimal expected freouencies are:
o( 1)= 8.51230e+01 o( 2 )= 1.18764e+01 o( 3)= 1. 47279e+01 o( 4)= 1. 60681e+01
o( 5)= 2 .302'76 e+01 of 6)= 1.60681e+01 of ?)= 2 .04404 e+01 of 8)= 2 .67802 e+01
o( 9)= 4.95864+01 o( 10 )= 1.60681e +01 o( 11 )-= 2. 04404e+01 o( 12 )= 2. 67802e+01
o(13)= 3.51244e+01 o(14)= 2.67802e+01 o(15)= 3.51884e+01 o(16)= 5 .56204 e+01

the prior means are: PF.38235e+00 c=. 10417e+00

the variances are: vR= .13120e-01 37326e-02
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oem experiment '?: vc

input data:

program will find a min imum.

1 .44000e+02 1 .80000e+01 2.300 00e+01 9. 00000e+00 2.800 00e+01
1.40000e +01 .200006401 1.30000e +01 6.20000e +01 1.40000e +01
2.50000e+01 40000e+01 2.80000e+01 2.00000e +01 2.10000e +01
3.50000e +01

point no. : 1

de fn scan point refine point min imum maximum precision
r 3 . 00000 e+00 3. C000 Oe+00 5.00e-01 4.00e+00 5.00e-01

3. 0000 Oe+00 3 .00000e+00 5.00e-01 4.00e+00 5.00e-01
m 2 .00000 e+00 2.00000e +00 5. 00e-01 5.00e+00 5.00e-01
n 1 .30 000e+01 1 . 27500e+01 9.50e+00 1.40e+01 5.00e-01

chi-square: 0 .10002 e+02 0. 99194e+01

poi nt no. :
de fn

2
'.:.can Point refine point min imum maximum precision:

r 3.00000e+00 3.00000e+00 5.00e-01 4.00e +00 5. 00e-01
3. 00000e+00 1,00Ele_+00 5.00e-01 4.00e+00 5.00e-01

m 2.00000e+00 2 ._001)00e+00 5.00e-01 5. 00e+00 5.00e-01
n 1 . 20000e+01 1.22500e+01 9.50e+00 1.40e +01 5. 00e-01

chi-square: 0 .10010 e+02 0,99176e+01 x
Ofloatine constants : 0.48000e+03
0 the optimal expected frequencies are:
o( i)= 1.43899e+02 o( 2)= 1 .69473 e+01 o( 3)= 2.06982e+01 o( 4)= 1 .34779e+ 01
o( 5 )= 2. 996F3e+01 o( 6 )= 1.34'779e +01 o( 7 )= 1.73287e +01 o( 8 )=. 1.68473e +01
o( 9)= 5.63100e+01 o(10)= 1.34779e+01 o(11)= 1 .73287 e+01 o ( 12 )= 1 .68473 e+01
o(13)= 2.96A61e+01 o(14)= 1.69473e+01 o(15)= 2.32654e+01 o( 16 )= 3.36947e+01

the Prior means are: g----.50000e+00 c=. 13559e+OU

the variances are: vg= .35714e -01 vc=. 74418e-02
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ORA EXPE N1 ME 1F V P

inrut data.:

rr °Pre m will final. a minimum.

2.1 r00(le +0 2 4 .01000 e+00 1 .70 000e+01 6.00000e+00 3.40000e +01
1 f0000e+01 1 .2000 Oe+01 1 . 20000e+ 01 6.60000e +01 4 .00000e+ 00
1 .70000e+01 7 . 0000(1 X00 2.90000e +01 8.00000e+00 1.90000e +01
1 .30000e+01

Poi nt no 1

re f)". scan Mint refine roint minimum maximum precision
r 1 .05000 e+01 1.0600 Oe+01 5. 00e-01 5. 00 e+01 5. 00e-01
S 1 ,05000e+01 1 00 5.00e-01 6.00e +01 5.00e-01

3 .00000e+00 3. 00000e 5.00e-01 3. 00 e+01 5. 00e-01
8 . 0000 0e+00 8.00000e+06 5.00e-0 1 5.00e+01 5. 00e-01

chi-square : 0 .17691 e+ 02 O. 17691e+02*

Poi nt no. :
fn

2
scan roint ref ine poin t minimum max imum Precision

r 1.4500 0e+01 1.45000e +01 5.00e-01 5.00e +01 5. 00e-01
1 A5000 e+01 1 .45000e+01 5. 00e-01 6.00 e+01 5. 00e-01
3 .00000e+00 3, 00000e+00 5.00e-01 3.00e +01 5. 00e-01
8.00000e +00 8 . 0000 Oe+00 5, 00e-01 5. 00 e+01 5. 00e-01

chi-square : O. 17737e+0 2 0 .17737e+ 02

Poi nt no .:
de fn

3
s can o in t refine TX) in t min imum max imum nrec is io n

r 1 .85000 e+01 1.825 0 Oe + 0 1 5, 00e-01 5. 00 e+01 5. 00e-01
1 .85000e+01 1 . 85000 e+01 5.00e-01 6.00e +01 5. 00e-01

m 3.00000e+00 3.00000e +00 5. 00e-01 3. 00e+01 5. 00e-01
8.00 00 0e+00 8.00000e +00 5.00e -01 5.00e +01 5.00e-01

chi-square: 0 .17349 e+02 0. 17832e+02

floa ti Tr constants : 0 .48000e+03

the optimal expected frequencie s are:
o( t )= 2.09111e+02. o( 2 )=. 9.83391e +00 o( 3 )=-- 1.4983 e+01 o( 4 )= 9. 04720e+00
of 5)= 2 .940lee+ 01 o( 6)= 9. 04720e+ 00 of 1.41966e+01 of 8)= 9. 83391 e+ 00
o( 9)= .30380e+01 o( 10 )= 9. 0472 Oe+00 o (11 )= 1.419E re+01 o( 12 )= 9. 83391e+00
o (13 )= 2.99881e+01 o(14)= 9.83391e +00 0 (15 )= 1.59641e+01 o (16 )= 1 . 26436 e+ 01

the prior means ar e: P=.50000e+00 c=. 21273e+00

the variances are : vv= .11364e-01 vc=. 16529e-01
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LI NEAR MODEL EXPE.,-.R IMENT I A

INPUT DATA:
1.23000E+02 3
3.00000E+00 5

7.00000E+00 2
1.00000E+00

POINT NO.:
DEFN

R

S

M

PROGRAM WILL FI ND A MINIMUM.

.00000E+00 6.00000 E+00

.00000E+00 2.00000E+00

.00000E+00 1.50000E+01

1

SCAN POINT REFINE POINT
6.50000 E+00 6.25000E+00
1.45000E +0! 1,35000E+01
2.50000E+00 2.25000E+00
2.50000E +00 2 .25000E+0'0

CHI-SQUARE: 0.12091 E+02 0.11632 E+02

POI VT ',M.:

DEFN
R

j

2
SCAI POINT REFINE POINT
1.05000E+01 .32240E+00
2.25000E+01 2.23950E+01
2.50000E+00 2.09324E +00
2.50000E-1-00 1.96540E+00

CHI-SQUARE: 0.12177E+02 0.10717E +02

POINT NO.:
DEFN

R

S

3
SCAM POINT REFINE POINT
1.45000E+01 1.-35913E+
3.05000E+01
2.50000E+00 I. 93143E+00
2.50000E+00 rin6r37E+00

CHI-SQUARE: 0.12250E +02 0.10317E+02

FLOATING CONSTANTS: 0.23400E +03

THE OPTIMAL EXPECTED FREQUENCIES ARE:
5.17947E+00 0( 3)=

2.49325E+00 0( 7):

0( 1): 1.12466E+02 0( 2):
495 E+00
0( 5): 1.31023E +01 0( 6):
916E-1-00
0( 1): 4.43742 E+01 0(10):
6 75 E +00
0(13 )= 1.26921 E+01 0(14):
3 16E+00

1.00000E+00 1.60000E+01
4.30000 E+01 1.00000E+00
0,00000E-01 6.00000'E+00

MINIMUM MAXIMUM PRECISION
5.00E-01 6.00E+01 5.00E-01
5.00E-01 6.00E+01 5.00E-01
5.00 E-01 3.50E+01 5.00E-01
5:00E7..01 5.00E+01 5.00E-01

MINIMUM MAXIMUM PRECISION
5.00 E-01 6.00 E:+01 5.00E-01
5.00E-01 600a01 5.00E-01
5.00 E-01 3.50E+01 5.00E-01
5,00 E-01 5.00E+01 5,00E-01

MINIMUM
5.00E-01
5.00E-01
5.00E-01
5.00E-01

4.43735E +00 0(11):

2.35591 E+00 0(15):

THE PRI 3R MEANS ARE: 3=.31646E +00 C=.50000E-1-00

THE VARIANCES ARE: VG= .10425E-01 VC=.45455E-01
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10'1

MAXIMUM PRECISION
6.00E+01 5.00E-01
6.00E+01 5.00E-01
3.50E +01 5.00E-01
5.00E+01 5.00E-01

9.11035E+00 O( 11):: 1.60

3.33023 E+00 0( 1): 1.23

7.14357E+00 0(12): 1.92

4.15112E+00 0(16): 1.89



LINEAR MODEL EXPERIMENT 13
PROGRAM' ',JILL FIND A -MINIMUM.

INPUT DATA:
1.25000 1+02 3.00000 E+00 1.00000E+01 4.00000E +00 2.10000E+01
0.00000 E-01 6.00000E+00 3,00000E+00 5.50000E+01 5.00000 a00
1.00000E+01 2.00000E+00 3.00300E+01 1.00000E+00 6.03000E+03
7..00000E+00

POINT NO.:
DUN

R

S

1

SCAN POINT REFINE POINT
3.00000E+00 3.00000E+00
2.30000E+01 2.17500E+01
3.00000E+00 3.00000E+00
3.00000E+00 3.00000E+03

CHI-SQUARE: 0.21314E+02 0.21773E+02

POINT NO.:
DEFN

R

S

N

CHI-SQUARE:

POINT NO.:
DEFN

R

S

M

2
SCAN POINT REFINE POINT
9.00000E+00 9.00000E-1-00
5.30000E+01 5.76175E+01
3.00003E+00 3.00000E+00
3,00000E+00 3.00000E+00

0.21 g93E+02 0.21338F_:+02

3
SCAN POINT REFINE POINT
3.00000E+00 2.68750E+00
1.30000E+01 I .92500E+01
3.00000E+00 3.00000E+00

MINIMUM MAXIMUM PRECISION
5.00E-01 6.50E+01 5.00E-01
5.00E-01 6.50E+01 5.00E-01
5.00E-01 6.50E+01 5.00E-01

00E-01 6.50E+01 5.00E-01

MINIMUM MAXIMUM PRECISION
5.00E-01 6.50E+01 5.00E-01
5.00E-01 6.50E+01 5.00E-01
5.00E -01 6.50E+01 5.00E-01
5.00E-01 6.50E+01 5.00E-01

MINIMUM MAXIMUM PRECISI
5.00E-01 6.50E+01 5.00E-01
5.00E-01 6.50E+01 5.00E-01
5.00E-01 6.5.0E+01 5.03E-01

3.00000E+30 3.00000E+00 5.00E-01 6.50 E+01 5.00E-01
CHI-SQUARE: 0.21927E+02 0.21746E+02 3y.

FLOATING CONSTANTS: 0.28300E +03
THE OPTIMAL EXPECTED FREQUENCIES ARE:

0( 1): 1.11790E+02 3( 2): 5.30350E+00 3( 3)= 1.03136E+01 0( 4)= 1.65
982 1+00
Q( 5)= 2.231523 +01 3( 6)= 2.96531 E+00 0( 7)= 5.03925E+00 0( 3) = 1.56
251 E+00
0( 9): 6.54637E+01 0(10): 6.55977E+00 0(11 )= 1.15377E+01 0(12): 3.04
997E+00
0(13): 2.27650E+01 0(14) = 5.13243E+00 0(15): 3.14042E+00 0(16): 3.239
154E+00

THE PRIOR MEANS ARE: G=.12121 E+00 C=.50000E+00

THE VARIANCES ARE: VG= .41367E-02 VC=.35714E-01
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linear model experiment

1 npu t data:

II q;.

progran will find a minimum.

3.03000e+02
1 ,70000e+01
2.500006+01
1 ,90000e+01

1.40000e+01
3.20000e+01
1.70000e+01

1.9000013+01
1.800006+01
6,10000e+01

1.200006+01
1. 25700e+0 2
1.90000e+01

5.400006+01
1.50000e+01
3.000006+01

point no.:
de fn scan point refine point minimum maximum precision

r 3.000006+00 1. (t12w+00 5.00e-01 6,506+01 5.00e-01
3.00000e+00 2.9.700daajia. 5.008-01 6.50e+01 5.008-01

a 3.00000e+00 tagEZZALM 5.00e-01 6,0049+01 5,006-01
8.000008+4)0 5.00e-01 6.5046+01 5.00e-01

chi square I 0.86053e+02-0.662628+02

point no.: 2
defn scan point refine point minimus minus precision

r 3,000008+00 1.57223e+00 5,008-01 6.508+01 5.006-01
3.00000e+00 1.66394e+00 5,00e-01 6,508+01 5.00e-01
8.00000e+00 6.569896+00 5, 00e-01 6.00e+01 5.00. -01
2.800006+01 2.657196+01 5.00e-01 6.50e+01 5.00e-01

chi-square: 0.102246+03 0.876666+02

Point no.:
dein

3
scan point refine point Ida taxa maximum precision
1.30000e+01 1.204256+01 5,00e-01 6.50e+01 5.006-01
1.800006+01 1.639666+01 5.00e-01 6,508+01 5.00e-01

a 3.00000e+00 2.7430003+00 5.006-01 6.006+01 5.006-01
a 8.000000+00 7.108846+00 5,006-01 6.50e+01 5.006-01

chi-square s 0.108008+03 0,996146+02

floating constants: 0.78000e+03
the optimal expected frequencies are:

o( 1)= 2.54912e+02 0( 2)= 3.682868+31 o( 3)21 4.91345e+01 o( 4)22 1.38690e+01
o( 5)42 6.887476+01 o( 6)= 1.84014e+01 o( 7)- 2,416166+01 o( 8)= 1.11723e+01
o( 9)- 1.05677e+02 o(10 )= 2.64311e+01 o(11)2I 3.557576+01 o (12 )22 1.567938+0'1
o(13)is 5.066436+01 o(14)*: 2.117268+01 o(15)- 2.791910+01 0(16)22 1.95963e+01

the prior means are: gs+.50375e+00 c=.21813e+00

the variances are: vg= .542528-01 vc=.13653e-01
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LINEAR MODEL EXPERIMENT III

i you t data:

program will find a minimum.

1 .60000 e+ 02 1 .30 00 0e+01 1 .60000 e+01 1.10 00 0e+01 2 .40000 e+01
6. 00000e+00 1 .80000e+ 01 7. 00000e+00 5.70000e+01 9. 00000e+00
2 .70000e+01 1 .40000e+01 3 .30000e+01 2,53000e+01 2.40000e+01

60000e+01

noint no. : 1

defy) scan point refine point minimum maximum Precision
r 3 .50000e+ 00 1 .96468e+00 5, 00e-01 6.60e+01 5. 00e-01

3.50 00 0e+00 2.01270e+00 5.00e-01 6.60e +01 5.00e-01
3.50000e+00 2.06802e +00 5, 00e-01 6. 60 e+01 5. 00e-01

n 2. 1500 Oe+01 1 .99581e+01 5.00e -01 6.60e +01 5. 00e-01
chi-square: 0.10350 e+ 03 0. ESOR5e +02

Point no. : 2
de fn scan point refine point min imum maximum precision

r 3.50000e+00 1. 13152e+00 5. 00e-01 6.60 e+01 5. 00e-01
3.50000e +00 1 . 14048e+00 5.00e-01 6.60e +01 5.00e-01
3,50000e+00 2. 06454e+00 5. 00e-01 6.60 e+01 5. 00e-01
2.75000e +01 2 .43052 e+01 5. 00e-01 6.60e +01 5. 00e-01

chi-square: 0.11009e+03 0.66556e +02*

roint no. : 3
defn scan point refine point min imum max imum precis ion

r 3.50000e+00 9. 6117 1e-01 5, 00e-01 6. 60e+01 5, 00e-01
3.50000e +00 1.12603 e+00 5.00e-01 6.60e+01 5.00e-0 1
9.50000e+00 6.95903e+00 5. 00e-01 6.60e+01 5. 00e-01

n 6. 3500 Oe+01 6.30905e+01 5.00e-01 6.60e +01 5.00e-01
chi-square: 0.11520e+03 0. ET7W 6e+02

floating constants: 0.48000e+03
the optimal expected frequencies are:

o( 1)= 9 .76817 e+01 o( 2)= 2 .68590 e+01 o( 3)= 3.10303e+01 of 4)= 1.48277e +01
o( 5 )= 3.65672e +01 o( 6 )= 1.73'762e+01 o( 7 )= 2. 021e+01 o( 8 )= 1.53097e +01
o( 9)= 4.45329e+01 o( 10 )= 2.10997e+01 o(11)= 2.48966e+01 o( 12 )= 1 . 87470 e+01
o( 13 )=- 3 . 02255e+01 o( 14 )= 2 . 25753e+01 o( 15 )= 2.6856 2e+01 o( 16 )= 3. 11589e+01

the prior means are: g.--.49396e+00 c=. 93890e-01

the variances are: vii= .50220e-01 vc=. 947e-02
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LI NEAR MODEL EXPERIMENT IV

program will find a minimum.

input data :
1 .17000 e+02 3. 0000 Oe+00 1. 00000e+ 01 1 . 00 000e+00 1. 50000 e+01
3.00000e+00 9.00000e+00 6.00000e +00 5.40000e+01 7.00000e +00
9.00000e+00 1 .00 000e+01 3.40000e+01 8.00000e +00 2,20000e +01
1 .20 000e+01

point no.
d efn

r

n

chi-square:

point no.
defn

r

n

chi-square:
noint no.

de fn

1

scan point refine point minimum max imum precision
3.00000e+00 1.75000e +00 5. 00e-01 6.50e+01 5,00e-01
6.30 00 0e+01 6.1750 0 e+ 01 5, 00e-01 6.50 e+01 5.00e-01
3.00000e+00 3.31250e+00 5. 00e-01 6.50e+01 5,00e-01
3. 00 000e+0 0 4 .250 00e+ 00 5.00e-01 6.50e +01 5,00e-01

0, 52954e+0 2 0 .42517 e+02

2
scan point
3.00000e +00
5.80000e+01
3.00000e +00
3.00000e+00

0 .53720e+ 02
3

scan point

refine point minimum maximum precision
1.750 00 e+ 00 5,00e-01 6.50e+01 5,00e-01
5. 5750 0e+01 5. 00e-01 6.50e+01 5. 00e-01
3.31250e+00 5,00e -01 6.50e +01 5. 00e-01
4,25000e +00 5,00e -01 6.50e+01 5.00e-01

0. 42483e+02

refine point minimum maximum precision
3,000 00 e+00 1. 75000e+00 5. 00e-01 6.50e+01 5, 00e-01

S 5.30000e+01 5.17500e+01 5, 00e-01 6.50e +01 5,00e-01
m 3.00000e+00 3.31250e +00 5. 00e-01 6.50e+01 5,00e-01
n 3. 00 000e+0 0 4.25300e+00 5,00e-01 6.50e +01 5.00e-01

chi-square: 0.54659e+02 0.42455e+02 4

floating constants: 0.32000e+03
the optimal expected frequencies are:

o( 1)= 8.62222e+01 o( 2)= 6.03138e+00 o( 3)= 1.15425e+01 o( 4)= 2.17928e +00
o( 5)= 2.55126e+01 o( 6)= 07053e+00 o( 7)= 7, 03065e+00 o( 8 )= 2.43101e +00
o( 9)= 7.39288e+01 o(10)= 9.90143e+00 o(11)= 1.74640e+01 o (12 )= 5.40485e +00
o( 13 )= 3 .47323e+0 1 o( 14 )= 9.51865e +0 0 o ( 15 )= 1. 53633e +01 o ( 16 )= 8,56657e +00

the prior means are: p=.Z7559e-01 43902e+00

the variances are: vg-=- .41550e-03 vc=. 28748e-01
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LI NEAR MODEL EXPERIMENT Va

input data:

Program will find a minimum.

8.200 00e+01 1.10 000e+01 1.40000 e+01 1.30 000e+01 2.20000e+01
2.10 000e+01 2 .000 00e+01 3.10 000e +01 5 . 80000 e+01 1.30 000e+01
3.40000e+01 1.800000+01 3.40000e+01 2.10 000e+01 2.60000e+01
6. 2000 Oe+01

roint no. : 1

,efn scan point refine point minimum maximum precision
r 3.00000e+00 2.87151e +00 5. 00e-01 6.50e+01 5. 00e-01

3.00000e +00 2.92304e+00 5.00e-01 6.50e +01 5.00e-01
3 . 00000e+00 1.55779e +00 5. 00e-01 6.50e +01 5.00e-01

n 6.30 00 0e+01 6.15544e+01 5.00e-01 6.50e +01 5.00e -01
chi-square: O. '73757e+02 0 .716 24e+ 02

Point no. : 2

de fn scan 'Point refine point minimum maximum precision
r 3. 00 000e+00 2.84140e +00 5.00e-01 6.50e+01 5.00e-01

3 .00000e+ 00 2.93644e+00 5. 00e-01 6.50e+01 5.00e-01
m 3. 00 00 Oe+0 0 1.56624e+00 5. 00e-01 6.50e +01 5.00e-01
n. 5.800000+01 5.65637e +01 5. 00e-01 6.50 e+01 5. 00e-01

ch i-square: 0.75069e+02 O. 70999e+02

point no. : 3
defn scan point refine point minimum maximum precision

r 3 . 00000 e+ 00 2. 22292e+0 0 5. 03e-01 6.50e+01 5.00e -01
3.00000e +00 2.20378e+00 5. 00e-01 6.50e +01 5. 00e-01

m 3.00000e+00 1. 2870 2e+0 0 5. 00e-01 6.50e+01 5.00e-01
n 5.300000+01 5.12866e+ 01 5. 00e-01 6.500+01 5.00e-01

chi-square: 0.77067e +02 0.65881e+02

floating constants: 0.48000e+03
the optimal expected frequencies are:

of 1)= 6,40072e+01 of 2)= 2.88775e +01 o( 3)= 2.982380 +01 of 4)= 2.086922 +01
o( 5)= 3.12109e+01 o( 6 )= 2,19369e +01 o( 7 )= 2.30461e+01 o( 8)= 2.4370 Oe+0 1
o( 9)= 3.27737e+01 o (10 )= 2.31689e+01 o(11)= 2 .43896e+01 o (12 )= 2.59701e +01
o ( 13 )= 2.578910+01 o( 14 )= 2. 7630 2e+0 1 o( )= 2.93531e+01 o ( 16 )= 4.70836e +01

the prior means are: P=. 49555e+0 0 c=. 24683e-01

the variances are: vg= .36791e-01 vc=. 37519e-03
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LI WAR MODEL EXPERIMENT Vc

i nput data:
1 .44000e+02
1 .40000e +01
2.50000e+01
3.50000e +01

point no. :
de fn

r

n
chi-square:

1 .80000e+01
1.20000e+01
1.40000e +01

1

scan point
1 .00000 e+00
1 .00 000e+00
1 .00000 e+00
5 .0000 Oe+00
0.85497e+01

point no. :
de fn

2
scan point

r 1 .00000e+00
1 .0000 0e+00

m 1 .00000e+00
n 6 . 0000 Oe+00

chi - square: 0 .10069e+ 02

poi nt no. :
de fn

r

m

n
chi- square:

3
scan point
1 .00000 e+00
2.00000e +00
1 .00000e.i-oo
3. 0000 Oe+00
0.11405e+02

Program will find a minimum.

2 ,30000 e+ 01
1. 30000e+01
2.80000e+01

refine point
1. 00000e+00
1 . 00000 e+ 00
1. 00000e+00
5. 00000e+ 00
0.85497e +01

refine poi nt
1. 0000 0e+00
1.00000e+00
1.00000e +00
5. 75000e+ 00
0.93614e +01

refine point
0000 Oe+00

e+00
0

.750 Qae+
O. 68001e+01

floating constants : 0.48000e+03

9. 00000e+00
6 .20000 e+01
2.00000e +01

2 .80000 e+01
1. 4000 Oe+01
2 .10000 e+01

min imum max imum precis ion
5. 00e-01 6, 00e+ 00 5. 00e-01
5, 00e-01 6.00e +00 5,00e-01
5. 00e-01 e+00 5.00e -01
5.00e-01 1.50e +01 5,00e-01

min imum maximum precision
5, 00e-01 6. 00 e+00 5.00e-01
5.00e-01 6.00e +00 5.00e-01
5. 00e-01 6. 00e+ 00 5. 00e-01
5, 00e-01 1.50' +01 5.00e-01

min imum
5. 00e-01
5. 00e-01
5. 00e-01
5. 00e-01

4*

maximum precision
6.00 e+00 5, 00e-01
6.00e +00 5. 00e-01
6. 00 e+00 5. 00e-01
1.50e+01 5, 00e-01

the optimal expected frequencies are:
o( 1)= 1 ,51964e+02 o( 2)= 2.09504e+01 o( 3)= 2 .60009 e+01 o( 4)= 9.65567e +00
o( 5 )= 3.41039e +01 o( 6 )= 1.18701e+01 o( 7 ):.-- 1, 45974e+01 o( 8 )= 1.08572e+01
o( 9)= 4.98104e+01 o ( 10 )= 1.58462e+01 o(11)= 2,01896e+01 o ( 12 )= 1.41538e+01
o( 13 )= 2.74515e+01 o( 14 )= 1.80000e +01 o( 15 )= 2.25455e+01 o( )= 3.20000e+01

the prior means are: ir---.50000e+00 c=. 16 657e+00

the variances are vg= .83333e-01 vc=. 19841e-01



li near model exreriment V e

T co ram will find a mi n i mum.

inrut data:
2.16000e+02 4.000000+00 1 .70000e+01 6.00000e+00 3.40000e +01
1 .60000 e+01 1 . 20000e+01 1 .20000e+01 F. 60000e+01 4.00000 e+00
1 .7000 Oe+01 7.00000e+00 2.90000e+01 8.00000e+00 1. 90000e+01
1 .30000e+01

mint no. : 1

fr scan po in t refine min t minimum maximum Precision

n

3.00000e+00
3. 0000 Oe+00
3.000 00 e+00
8. 0000 Oe+00

1,08826e+00 5. 00e-01
5.00e-01
5. 01,e-01
5.00e-01

6.00e+01
6.00e +01
6.00e+01
6.00e +01

5.00e -01
5.00e-01
5. 00e-01
5.00e-01

1 Z67(74e+00
2.42083e+00
'r .1174 FsF e+

chi-square : 0.72003e+02 0. 47046e+02

Point no. : 2
darn scan point refine point minimum maximum precision

r A. 0000 Oe+00 6.750 OCe+00 5.00e-01 6.00e+01 5.00e-01
S 8 .00000e+00 6.75000e+00 5. 00e-01 6.00e+01 5.00e-01

3. 0000 Oe+00 2 .6(77, 50 e+00 5.00e-01 6.00e+01 5.00e-01
n .00000 e+ 00 7.68750 e+00 5. 00e-01 6.00 e+01 5. 00e-01

chi-square : 0, 959F 3e+02 0. 89024 e+02

mint no. :
defn

3
scan point refine pain t minimum maximum precision

r 3 .00000e+00 2.901E.A4e+00 5.00e -01 6.00e+01 5.00e-01
3.00000e +00 2 .23059 e+00 5. 00e-01 F.00e+01 5.00e-01
8.00000e+00 6 .92337e+00 5, 00e-01 6.00e+01 5. 00e-01

n 2. 8000 Oe+01 2 .90307e+01 5. 00e-01 F.00e+01 5.00e-01

chi-square: 0 .984F3e+ 02 0. 7seo Oe+02

floating constants: 0 .48000 e+03
the optimal expected frequencies are:

o( 1)= 1 .Ef020e+02 o( 2)= 2.02038e +01 o( 3)= 2.78737e +01 o( 4)= 6 .79'735e+C 0
o( 5)= 4.07695e+01 o( 6)= 9 . 27299 e+00 o( 7)= 1.25155e +01 o( 8)=7. 5.32513e+00
o( 9)= 6 . 64048e+01 o( 10 )= 1 .389%9e+01 o( 11 )= 1.93185e +01 o( )= 7.75598e +00
o (13 )= 2 .86F60e+01 o (14)= 1.07777e+01 o(15)= 1. 4a,i99e+01 o (16 )= 9.81199e +00

the rrior means are: P.=.52123e+00 c=.25195e+00

the variances are: vg= .64729e-01 v 19098e -01
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