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CHAPTER I

INTRODUCTION

I.1. MODELS DOF LEARNING AND PERFQRMANCE

The idea that an educational experience is comprised
of two stages, learning and performance, is relatively new
and very little has been written about it. Conceptually,
the notion is quite simple. The learning stage takes place
as long as the subject continues to update his knowledge or
as long as there is a positive probability that the propor-
tion of his correct responses will increase. This stage
lasts until the subject reaches a threshold, or a steady
state, beyond which improvements may be only random fluc-
tuations. The performance stage takes place from this point
onward.

In Section I.1.1 we briefly review three models of the
learning process -- usually associated with Paired Associate
Learning (PAL). A simple performance model (Automaton) for

two rows addition problems is presented in I.1.2.
I.1.1. Three Models of the Learning Process

The Single-Operator Linear Model (ILM)

The model is represented by two equivalent equations
(Atkinson, Bower and Crothers, 1965):
The probability, Pp s of a correct response on trial n

increases according to the equation




.

Py = P, + (1-«) (1.1)
where «a denotes the learning rate. The initial probability
Py is assumed to be 1l/r, 1i.e., one over the number of re-

sponse alternatives. Equivalently, the probability, qp e of
an incorrect response on trial n decreases according to the
relation

qn+l n

The One-Element Model (OEM)

The OEM and its properties (Ibid) are derived from the
following assumptions. Each item starts in the unconditioned
state U. Subsequently the item may move with probability c
to state L, where it is conditioned, or stays unconditioned
with probability 1- c. Until the item is conditioned there
is a constant probability g that the subject will respond
correctly by guessing. Once the item becomes conditioned, i.e.
enters state L, the probability of a correct response is
unity. The traﬁsition matrix and the response probability

vector are usually presented in the following way:

L U Pr (correct)
L }J1 0 1
(1.3)
U |c 1~-c : g

-

g=1/r as in the LM case. Since both models have the same

mean learning curve

1~ d1
e - 258 - L (1.4)

R




it is convenient to interchange @ with 1- ¢ and aq, with
l1-g . If g 1is fixed as above the two models have only

one free parameter.

The long-Short Model (LS-3)

This model was motivated, among other things, by PAL
studies which indicated that before conditioning immediate
recall of S~-R pairs by a subject was nearly perfect while
the proportion of correct responses decreased with the time
before the next trial (Peterson, et al., 1962). The model
is described in Atkinson and Crothers; part of the descrip-
tion is quoted in the next lines.

"Encoding for a given stimulus item occurs at most
on one trial; the probability that encoding occurs-
on trial n given that it has not occurred on
previous trial is ¢ . If an item is presented

that has already been encoded (either on the present
trial or on an earlier trial), then with probability
a it goes into state L and with probability Il-a
it goes into state S . Thus, after each presen-
tation, an encoded item is in either state I or

S , and if the item were to be presented again
immediately the subject would make the correct
response with probability 1. However, other events
intervene from one presentation of an item to its
next presentation, and during this period we assume
there is a probability £ that an item in state S
will move back to state F . We assume the value

of £ depends upon the number and type of intervening
items; also, f depends upon the exposure time of

the given item, for this affects the repetition

2
2
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rate and hence the slope of the forgetting function
(Peterson, et al., 1962).

"Given the above assumptions, it can be shown that
moves among the four states are described by the

following transition matrix and response probability

vector:
L S F U Pr (correct)
L[ 1 0 0 o ] 17
S a (1-a) (1-£) (1-a) £ 0 1
: (1.5)
F a (1-a) (1-£) (1-a) £ 0 g -
U |_ca c(l-a) (1-f) c(l-a)f 1-c | _ 9

where g=1/r ; throughout the paper we shall use
g to denote the guessing probability."

A special case of the LS~3 model is reduced to a two
parameter version by letting c¢=1 in Eq. (1.5). This special

case will be designated as the LS-2 model.

I.1.2. An Example of a Performance Model
As an example (Suppes, 1968), consider a stochastic
automaton for column addition of two integers:
The automaton is the structure

<Ar I, OerQrSO >

A = {0,1} ~ the set of internal states

=
I

{ (m,n) : OKm, n<9} - the input alphabet
o= {0,1,...,9] - the output alphabet
if m+n+k<9

M((k, (m,n)) =
1 m+n+k>9 for k=0,1

N




M 1is the transition function from AXI into A

Q(k, (m,n)) = (k+m+n)mod 10 - is the transition function
from AXI into O

s. =0 - is the initial state.

Consider first the three parameter situation 0<a,b,c<1

where

a

]

l1-a

PM(k, (m,n)) Ok+m+n<9)

b,

]

PM(k, (m,n)) = llk+m+n>9) =1-D

i.e., i1f there is no "carry" the probability of a correct
response is l-a . If there is a carry the probability of
such a transition is 1- b .

The third parameter is simply the output error c
P(Q(k, (m,n)) = (k+m+n)jmod 10) = 1- c = ¢

If C; and D; represent carries and digits in problem i
respectively, and if we ignore the probability of two errors
leading to a correct response, e.g., transition error followed

by an output error then

D

: C
. i
P (correct answer to problem 1) = (l-c) (3-b)

. D.-C.-1

l(l—a) i i

We can reduce this case to a two parameter situation, a and

b , by assuming c¢ the output error to be fixed for all items.
Different statistics may be calculated for different

automata models, and provide an immediate analysis of digit

by digit response. An example of such statistics is the

11




likelihood of n digit responses derived by Suppes for the

automaton described above. Here, for illustration purposes,
the distribution of total error is derived:

ILet IS denote the internal state;

1 correct response on digit 1
X, = if
i
0 otherwise
€ if a) 1 1is ones column digit
P(xi=l) = (™ ca if b) not (a), IS =0, 1i.e., no carry

Cb if c) not (a), IS =1, 1i.e., carry

na,nb,nC - are the number of digits under (a), (b) and (c).

Then the probability of A, B and C correct responses

under (a), (b) and (c) respectively is given by

n m\ /1
a c n-A_._. __ _ _nh-B n -¢
CA+B+CC a 3B bC (1-ca) (1-8b) ©

A B c

(4)

Suppes proved in general that given any (connected)

finite automaton, there is a stimulus response model that

agymptotically becomes isomorphic to it.
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I.2. IDENTIFICATION OF THE PROBLEMATIC SITUATION

With the advance of computers, extensive work has been
undertaken in the field of programmed instruction. Much

effort has been invested to devise schemes of optimal

instruction with respect to suitable criteria (e.g., Smallwood,
1967): Most of these efforts have not yielded much in the
way of unequivocal results (Silberman, 1962), a situation J

which is symptomatic of a deeper problem that exists not only
in the field of programmed instruction but in other areas

of educational research. What is needed is a theory which
prescribes how learning can be improved. A theory of this
type has come to be called a theory of instruction (e.qg.,
Hilgard, 1964; Bruner, 1964), as compared with a theory of

learning.

Typical questions that a theory of instruction concerns

LN

itself with are: how to advance a student through a block
of teaching material, when to stop presenting teaching items,
what items are to be presentéd within a given time. Ideally
this kind of gquestion can be answered with mathematical
rigour in a decision analysis frame of reference. It should

be remembered, however, that the criterion for optimiZation

igs always determined subjectively beforehand.
In many works (e.dg., Groen and Atkinson, 1966) an

instructional system is defined as the structure

<C,R,H,d,u,g > where



C - is the set of concepts to be presented

R -~ is a set of all possible responses made by the student
H - is a set of histories of the student's performance

d: H-C 1is a decision function

u: CXRXH-H is an updating function

g: 1is a fixed criterion for optimally given in advance

Historically, mathematical learning theory and optimi-
zation attempts have tended to ignore the structure of the
stimulus set C . Items of C Thave been assumed to be
independent and not to have a cumulative effect on the learning
and to be homogeneous and not of varying degree of difficulty.
Some recent attempts have been made to formally model certain
prototypal tasks which occur in elementary mathematics
(e.g., Suppes, et al., 1968; Offir, 1968).

In considering the response set R , most studies use
only dichotomous variables 0,1 to indicate correct or incorrect
responses. Many studies proceed to estimate the model's
parameters and to test the model's adequacy by averaging
(dichotomous responses) over ensemble of subjects in order
to explain the learning or the performance that has taken
place. By using gquantal responses, i.e., 0,1 variables, and
the 1like, one ignores the relationship between the structure
of the stimulus set C and the full response structure of
R . By so doing, it is impossible, for instance, to distin;
guish between relevant and irrelevant responses. There is

no substantial reference to this issue in the literature.

8
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A more serious inadequacy is the overlooking of indi-
vidual response protocols and their sequential dependencies.
There are few attempts to tuckle this problem (see Sternbefé,
1963 for references). In general, however, in most appli-
cations of learning models it is assumed that the same
parameter values characterize all the subjects in the
experimental group. This is further confounded by the
assumption of equal initial probabilities for all subjects.
Sternberg says, "it must be kept in mind when this tacit
assumption of individual homogeneity is made in the appli-
cation of model type, that what is tested by comparisons
between data and model is the conjunction of the assumption
and the model type and not the model type alone."

Glaser (1967) and particularly Sternberg, point to some
implications resulting when the homogeneity assumption is
not met. Many of these implications relate to the inter-
subject variance which seems to be smaller for the model than
for the data. Sternberg gives some references to a very few
studies trying to cope with this problem. Little work has |
been done in which variation in the learning rate parameters
is allowed.

Now since the set of histories H depends on the
initial probability parameters, and since it is updated on
the basis of € and R , H lacks a complete description
due to the short-comings introduced in considering C and

R .

9
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The present study is motivated by this absence of
adequate formalization of individual and item differences.
Heterogeneity of individuals and items (compounded) will be
introduced in the hope of achieving better estimation and
testing of the models, and eventually better instructional
procedures that may be differentially sensitive to deviations
from homogeneity.

It should be clear from the preceding paragraphs that
many applications could and should depend on individual and
item differences. One example (Matheson, 1964) points out,
in a one-parameter situation, how a teaching system based
on this kind of consideration improves its teaching perfor-
mance as successive students are taught by it.

The most recent example of allowing the parameters of
the model to vary with students and items in order to
develop an optimal teaching procedure is described by Laubsch
(1969). Laubsch partitioned the learning rate parameters of
the RTI learning model (a more general model than the IM and
the OEM) into subject and item components where the effects of
the components on the composite parameter were almost additive
(cf., fixed-effects ANOVA). Since the RTI has two parameters
(composite), for m items and s subjects, 2(mt+s) parameter
estimates were needed to specify the learning parameters for
ms subject-items. Under the numerical maximum likelihood
procedure Laubsch suggested, the approach becomes unrealistic

for most practical situations-- even on the fastest computer.
10




Nevertheless, his results indicate the importance of

incorporating heterogeneity assumptions into the learning

models in optimal teaching situations.

[
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CHAPTER II

EFFECTS ON LEARNING PROPERTIES OF HAVING
CONTINUCUS DISTRIBUTIONS OVER THE LEARNING RATES

II.1 INTRODUCTION

The OEM with parameters ¢ and g was introduced
in Chapter I. The IM with parameters & and g also was
presented. In this chapter we consider the effect on learning
properties, e.g., expected total errors E(T) or response

-T.
n-tuples probabilities (x., }' when the

5 Xj+l""'xn+j—l
learning parameters are no longer exact numbers but rather
they have now become random variables.

The effect of such modification introduces hetero-
geneity of individuals and curriculum items into the models
expressed in terms of the distribution of the individuais
or items population. An individual or an item may then have
learning rate parameters which are random variables from
this distribution. Mathematically, the population's learning
properties are no longer conditional on given ¢Cc or ¢
(@ or q) . Thus if E(t|g,c) denotes the conditional
expectation then EB(E(TIg,c)) , with respect to the distri-
bution B of g and c¢ , is the expectation of T with
the effects due to the parameter differences integrated in .

In the remainder of this introductory section (II.1l),
we review the existing literature on stochastic models
with prior distribution assumption on the parameters (II.1l.1)

and hence the reasons that compelled us to choose independent

+The notation {x"xj+l""’xn+l—l] represents the joint proba-
bility distribu%ion of the random variables (xj,

Xj+l"“'xn—j+l)

iz
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bivariate beta density as a prior for the learning
parameters, (II.1.1).

In Section II.2, we describe the effects on total
error statistics for the OEM and the IM of having an independent
bivariate beta distribution over the learning rates.

The effects on Response 4-Tuple probabilities under
this prior is examined in Section II.3. In Section II.3.1
we derive the probabilities of response sequences over trials
2 to 5 for the OEM and the IM and propose the minimum X2
procedure for estimating the four prior parameters using
16 response probabilities. The experimental data and the
results are tabulated in II.3.2.

Finally the discussion and conclusions are presented

in Section II.4.

IT.1.1 General Remarks
Very little work has been done in which variation

in the learning rate parameters is allowed. One example
appears in Bush and Mosteller's (1959) analysis of the
Solomon-Wynne data: the IM was used with a beta distribution
of a values. In certain respects this generalization
improved the agreement between the model and the data.

Another example is Gregg and Simon's (1967) analysis
of the Bower-Trabasso data: the Concept Identification
model was used with a uniform prior distribution of ¢ values
in a certain range [cl,cz] , O<cl_§ c< c, <1 . Their

13
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conclusion was that for large individual differences g

expressed by the range size [Cl’c2] the increase in the

_

variance of total number of errors is barely detectable.

They go on further to say: "By similar arguments we can

e

show that almost all the 'fine grain' statistics reflect
mainly a random component ... Hence the statistics are insen-

sitive to individual differences, or, for that matter, to

L] e

any other psychological aspects of the subjects' behavior
that might be expected to efféct the statistics."

Birnbaum (1969) modified his previous work on a Logistic
Model for Mental Test (1968) by further assuming a logistic

prior distribution on the ability parameter 6 . Thus if

x:=<xl,x2,...xm> denotes the examinee's response pattern
where xk==l or O indicating respectively, correct or
incorrect response to item k , the probability of a correct

response on item k is W(Dak(e-bk)) , for an examinee {

with ability level @ ; where ¥(pe)=[l+e~D97"1 , by
is a parameter indicating a difficulty-level of test item Xk, }
a is a parameter indicating the item's sensitivity or power ‘

of discrimination among ability levels not far from bk and D

is a constant. The general ILogistic Model is represented by {

n
(x=xlo) =k711‘1’[Dak(9—bk)]Xk ¥[-Da, (6-b )1 7K —wcg<e .
(1.1)

Under a logistic prior assumption on 8 , (l.1l) is interpreted

as the conditional probability of the response pattern x

’
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given that an examinee, randomly selected from a population
with abilities distributed as indicated, has ability &

The unconditional probability of response pattern X
is

{x=§}=[n[{x=§M)ww9mQ. (1.2)

The conditional density function of 6 , given A=x,
f(@]g) is easily calculated and corresponding statistical
inference methods are developed (Birnbaum, 1969).

Finally, Silver (1963) considered general Markov
Chains (MC) situations with observable states where the
transition probabilities are r.v.'s themselves and are
Dirichlet distributed (II1.2.2). Thus, for example, in a gen-
eral 3-state MC with transition probabilities (pij) the
Dirichlet prior on the ith state transition probabilities can

be written as

r.-1 s.-1 t.~1
-1 1 i i
'Si'ti)] X.

f (X, 1,X:0,X:5) = [B(xr, X, X.
P;1P;5P;3 1177127713 1 1l 12 13
where
B (r. 5., t.) = F(ri)P(si) F(ti)
i’7i’ "1 P(ri+si+ti)
and
3
X,. =1 0<x,, . .
PINSE i3 <1 (1.3)

Silver considered under this setup the effect of the Dirichlet
prior on MC properties such as steady state probabilities,

first passage times and occupancy times. For example,

15
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consider the two-state situation where one probability is
known exactly while the other is beta distributed, the beta
density is the marginal of the Dirichlet distribution. We
are interested in the expected values of the steady state
probability for the MC with the following structure

1 Hl—a a 7

P = (1.4)

2| b 'l—bJ

—

where a 1s assumed exactly known but b has the beta
density fb(x)zsz(xlm,n). For a given pair (a,b) the
steady state probability of being in state 2 is W2==£%E :

however, since b is beta distributed, then

1 1
a a _ 1 a m- 1 n-1
E(”z) —E<a+ > = _[a+x £, (x)dx " B(m,n) fa+x x (1-x) dx
0 0

(1.5)

Only in special cases can E(nz) be exactly evaluated.
IT.1.2 The Evolution of the Method

All of the studies mentioned in ITI.l.1, except for
Silver's, considered only univariate situations where only
one parameter was allowed to vary. Gregg and Simon's approach
is a special case of the Bush and Mosteller one in the sense
that the uniform density is a special case of the univariate
Beta density fc(x]m,n) with m=n=1 . The general
statements made therefore by Gregg and Simon on the basis
of a uniform prior are unwarranted. Were they to choose a
"richer" prior density and a different range of ¢ values

16
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the results would have probably been markedly different.
We shall later demonstrate a similar situation to the one
discussed in their study where the prior does change the
variance considerably.

Birnbaum's method is unsuitable in our context for
several reasons. It lacks the classical psychological
description of the learning process. His prior on ability
is distributed on the whole real line whereas our parameters
are distributed on the unit square. Finally it is computa-
tionally quite difficult.

In contrast, Silver's approach possesses a multivariate
prior distribution but it is restricted to MC situations
with observable states only. The IM is not a Markov Chain
and Silver's estimation procedures for the prior parameters
are inapplicable for the case of non-observable transition
probabilities as is the case with the OEM.

Qur research goals included finding a general family of
bivariate distributions rich enough in parameters. Such
a family had to assume a variety of shapes and provide us
with posterior distribution of ¢ and g and also a
measure of association between ¢ and g.

Our first inclination was to consider transformations
from existing distributions on R2 to the unit square.

Thus if X and Y are r.v.'s from a Bivariate Normal

X
e

and

BVN (X,Y) with five parameters we may let c =




 1+eY
s=s(g,c) of the OEM or the IM, the integral

, i.e., c=f(x) and g=£f(y) . For any statistics

[o 0} o0

ff{slf(X)f(y)]fBVN(x.y)dxdy

-0 =— 00
could not be evaluated in a closed form and a fortiori esti-

mation procedures for the prior parameters would be impossible.

If X and Y are Bivariate Logistic the same problem
exists but now ¢ and g are c.d.f.'s and as such are
uniformly distributed.

If ¢ and g are Dirichlet distributed then they are
defined only on the simplex c+g<1 and we have inadequate
domain for both parameters. Finally, since the OEM can be

represented as a three-state Absorbing Markov Chain

L S BE

Lt 1l 0 0 € =1-c

S| ¢ Tg &g where . (1.6)
¢ cg cg f=1-g

we may suppose that ¢, (Tg) and (cg) are Dirichlet

distributed
t ]_lxr—lxs—l(l-—x _x )T ix =1
¢, og o5 = [B(,8,t) 1 %2 17 %2 P LT

(1.7)
But under this assumption it becomes immediately clear that

c and g are independently distributed with beta densities

fc(x!r,s+t) and fg(xls,t) respectively.

18
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To establish this, make the transformation x = X
D(xlx2) )
D(x,y) 1°°

Considerable effort was made by the present author and

l’
y = x2/(l— x;). The Jacobian is

= 1/(1~ x
others to find a more adequate prior bivariate distribution
with sufficient number of parameters. Unfortunately all
efforts were unsuccessful. Moreover, even for the simple

case of 2-state MC with one parameter, beta distributed, the 1

integral 1.5 is not evaluated in a closed form.




IT.2 EFFECTS ON TOTAL ERROR STATISTICS HAVING INDEPENDENT

‘ BETA DISTRIBUTIONS OVER THE LEARNING RATES
For the reasons enumerated in the preceding section
we will consider for the remainder of this chapter only the
case where ¢ and g are independent r.v.'s from beta

g

|
\
|
}
densities fc(x]m,n) and f_(y]r,s)
et T be the total nhumber of eérrors, in n learning trials,

where n - «. Atkinson, et al. (1965, ch. 3), derived the fol-

lowing total error properties for given ¢ and Jg.

OEM M
Distribution (T=0|g,c] bg _—
(=X |9, c) (1-1)%p (1-c) " ¢ -
Mean E(T|g,c) (1-9) |c ql1-a (-1
2
Variance V(Tlg,c) E(Tlg,C)[E(Tlg,c)(1—2c)+1] E (T)- q 5
1-a

b=[1- (l-c)g]

We now calculate the unconditional properties for the OEM:

EN(T) = Eg (E(T|g,c))

where

N
(]

Do
oy



o o

l

It is readily found that

¥ _B(xr,s+1)B(m-1,n) [_s m+n- 1
E (T) = B(r,s) B(m,n) *<F+s) <7;?I“) (2.3)

To calculate the variance,

vim) = 8'r?) - A1) = By (E(T?[g,e)) -p*AT) L (2.4)

we need to derive EQ(E(T%g,c))

29 (1-q) _ 1-g
C C

= E

2
2(1-9) +
2

C

B

il

D[(2B(x,s+2)B(m-2,n)

+ B(m-1,n)[2B(r+l,s+1)~ B(r,s+1)]]
(2.5)

where D 1is as above.

The unconditional mean for the IM is the same as the
OEM mean. Unfortunately the unconditional variance for the
IM cannot be evaluated in a closed form because of the (l—cx)2
term in the conditional variance.

For Atkinson and Crothers' data (1964) and our estimates
of the prior parameters, to be described in the next section,
we calculated the expected value of the total number of
errors, E*(T) , for experiments Ia andlIb and the variance
*

of the total number of errors, V (T) , for experiments

Ia, Ib, Ve, and Ve using Egs. 2.3 and 2.4.
2

3
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Table 2.7 presents our prior estimates for all four
experiments for the unconditional OEM (OEM*) and the "c"
estimates derived by Atkinson and Crothers for the conditional
model (OEM).

In Table 2.8 we report the E*(T) wvalues for OEM*
calculated by using Eg. 2.3. Also listed are E(T) values
for OEM calculated by using the equation E(T)==;%3 for
gw=% and "c" values as reported in Table 2.7. Atkinson's
predictions using the LS-3 Model are presented in the right-
hand column. These predictions may be compared with the
observed values listed in the left-hand column. Our estimate
for Ib is closer to the observed value than is the LS-3's
prediction; for Ia our prediction falls farther afield. The
conditional estimates, E(T) , deviate the most from the
observed values. The expected Qalue of the total number of
errors for the IM* is calculated from Eq. 2.3 as is the
value for OEM*, but generally for different estimates of the
prior parameters. Using these estimates, the IM* gave the
poorest predictions of the expected value: 2.015 for
experiment Ia and 1.0433 for experiment Ib. These predictions
were not included therefore in Table 2.8.

The variances for experiments Ia, Ib, Vc, and Ve were
calculated by using Eg. 2.4 and are presented in Table 2.9;
the conditional variances are calculated from the equation
V(T) = E(T)[E(T) (1-2¢) +1] . |

Table 2.9 demonstrates that the variance of total errors

is very sensitive indeed to individual differences. For

z2Z
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TABLE 2.7
EXPERIMENT PARAMETER
r m n c
Ia 53.938 53.595 15.444 27.094 .328
Ib 54.128 63.123 34.124 76.625 .328
Ve 3.0 3.0 2.0 12.250 .172
Ve 10.5 10.5 3.0 8.0 .289

*
Parameter Estimates for OEM and OEM.

TABLE 2.8

EXPERIMENT obs Pred (OEM ) Pred (OEM*) Pred (LS~3)
Ia 1.52 1.74 1.44 1.54

Ib 1.65 2.03 1.78 1.79

Observed and Predicted Expectations for Experiments Ia and Ib

TABLE 2.9
EXPERIMENT VARI ANCE

V(T) v¥ (T)

Ia 2.45 2.22

1b 3.45 3.22

Ve 16.83  47.91

Ve 5.44 17.16

Predicted Conditional and Unconditional Variances

23
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small differences it can usually be expecied that the uncon-
ditional variance V*(T) will be slightly larger than V(T) .
Experiments Ia and Ib were run with college students and
almost no errors were committed after the second trial as

can be seen from Table 3.5. In these two experiments the
V*(T) variances are actually slightly below the conditional
ones.'

On the other hand, experiments Vc and Ve were run with
four and five year old children and there was a large
difference in their performance. This difference is expressed
overwhelmingly in the magnitude of the difference between
the variances, i.e., V*(T) >>V(T) . It is clear therefore
that the model is sensitive enough to detect individual
differences if there are any. The reason that Gregg and
Simon detect only a slight difference may be attributed to
their choice of a uniform prior with a restricted range which
may not describe the differences in their data.

As indicated above in the case of integral (1.5), it is
not clear how to evaluate the unconditional quantity in a
closed form under a beta prior assumption when the quantity
of interest is a function of the steady state probabilities.
The conditional distributions of the total errors and of

the trial of last error depcnd on the probability of entering

TFor similar results for the Solomon-Wynne data see Bush

and Mosteller (Ibid).
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the learned state. As such these conditional distributions
possess a denominator which is a function of (1~ (l-c)g) .
Thus the distribution of total errors is

-k-1 1

P(T=X|g,c) = ((1-9g)(l-cN¥e@-gl-en™Ta-c)

k>1 (2.9)

and the distribution of the trial of last error is

P(L=k|g,c) = (1- )t (1-g)e@l-g(l-c))t

k>1  (2.10)

The magnitude of the above problem is described in the
following special case where it is possible to get a closed

form result.

Theorem. If ¢ and g are independently beta variables
with parameters (m,n) and (r,s) respectively and

s + ¥r =1, then the unconditional distribution
P(T=k) = (B(m,n)B(r,s)) "B(k+s,r)Bm+s,n+k-1) ,

(2.11)

where %k 1is a positive real number,

Proof of the Theorem.

Given

{T=klg.C]T =[(l-g) (1~ C)]kC(l—- )t~ gey k1

f ,
The notation ({X|@) represents the probability distribution

of a random variable X given the state of information @ .
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£.0x) = [B(m,n)] K T a-0™ mn>o
£,00) = B YT A-nTh rs>0
then
1 1
(T =%] =f f (T=XIx,y] £ (x)£5(y)a,d,
0 "
1 1
(T=%) = Dfxm+l—l(l_X)k+n—l—lfyr—l(l_y)k+s-l
0 0
[(1-x(1- y)]_k_ ldy (2.12)
where

D = [B(m,vn)B(r,s)]"l and 0 < [l-x(1~y)] <1

Consider the first integration with respect to vy :
1
-1 k+s-1. -k-1
Ig =[yr (1-vy) [1-x(1-y)l] dy (2.13)
0
Ig is known as the Euler-Integral and is defined in terms

of the Hypergeometric Function F(a,b;c;z) [see Erdélyi,

1953, vol. 1].

1
F(a,b;c;z) = F(IF))(;)(c-b) ftb‘l(l- t)c’b‘l(l— tz) 2
0

(Rc> Rb > 0) (2.14)

F(a,b;c;z) itself is defined in terms of infinite series.

Here it suffices to note the following recursive relation

(Ibid) :

[ ]

et




c-a-b

F(a,b;c;z) = (1- 2z) F(c-a,c-b;ciz) . (2.15)

From (2.14),

1 = D(x)T (k+s)
g I (k+s+r)

F(k+1l,r,k+s+xr,; (1 - x))

In our case s+r =1 and using (2.15) we now have

_LD@ID(kts) 1 _ g 451 et
Ig‘ T (k+1) (1- (1- x)] F(O,k+s;k+1;(1-x)). (2.16)
Again from (2.14),
1
1, = Xs_lfYk-'-S_l(l—y)r_ldy
0
I, = %5718 (k+s,r)

Now substituting Ig in (2.12)

(T=%]}

1
DB(k+s,r)fxm+S_l(l—x)n+k_l_ldx ,
0

from which

{(T=%k} DB (k+s,r)B (m+s,n+k-1) , (2.17)

and this 1is the desired eguation (2.11).

A closed form integration is possible for a similar
restric¢tion on m,n , i.e., m+n=1

The posterior probabilities of ¢6=(c,g) given T=%k

can now be derived using Bayes' theorem

(o|T =%} = LT=kLe%jei

T ok (2.18)
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From our estimation results for the four prior para-
meters m, n, r and s calculated for the Atkinson and
Crothers data to be described in the next section, it
became clear that a restriction r+s=1 or m+n=1 does
not in fact hold for the data. The reason for this is
obvious from the expressions for the prior variances of
c or g ; under such restriction these variances must be
quite large. Our results show that these variances are very
small indeed, which is typical for Paired-~Associate Learning
data.

In order to demonstrate the effect of any statistics
introduced by the prior assumption we would need an estimate
of the four prior parameters m,n,r and s . The mean
EﬁT) and the variance 'V?T) are clearly not enough to
estimate these four parameters. On the other hand, moments
for the other statistics, under an independent bivariate
beta prior, could not be derived. We could, however, esti-
mate the parameters by considering Response n-Tuple proba-

bilities and that we do in the following section.
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IT.3 _EFFECTS ON RESPONSE 4~TUPLE OF HAVING INDEPENDENT

BETA DISTRIBUTIONS OVER THE LEARNING RATES

IT.3.1 Probabilities of Response Seqguences Over Trials
2 to 5

Response 4-tuple is the sequence

Oi,n = <xn==jn,xn+l==jn+l,...,xn+3==jn+3> (3.1)
where i =1, 2, ..., 16 and 3j, =0 or 1 denoting a cor-

1

rect or an incorrect response on trial i, respectively.
Here we use only the response 4-tuple and only over trials
2 to 5:; these quantities are particularly useful in making
comparisons among the two models -OEM and the IM - with or
without the prior assumption. They are also useful in com-
paring the unconditional models, i.e., with priors, with
more elaborate conditional models, i.e., without p:iors.

In our case n = 2 1in Eq. (3.1).

We now present the arrays of prediction probabilities
over trials 2 to 5. We do not present here the derivations
for ?r(oi'z) since they are straightforward and involve
only elementary probability theory. (Readers not familiar
with the methods involved in such derivations can consult
Atkinson, et al., 1965.) Notation-wise we present the
probability of the 16 sequences as {jz,j3,j4,j5}' where

j; =0 orl indicating correct or incorrect response on

»
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trial i . Thus ({1,0,0,1} is the probability of errors on
trials 2 and 5 and correct responses on trials 3 and 4. To
derive our eguations in the form of Tables 3.1 to 3.4 we use
some elementary probability identities, for example,
(1,1,1,0}={1,1,1}~-¢1,1,1,1} or ({1,1,0,0)={1,1}- (1,1,0,1)-
(1,1,1,0}-{1,1,1,1} . When this procedure is used starting
with the sequence Ol6==<l,l,l,l> of four errors only one

new term involving c¢ and g is introduced in each subse-

31-9)°

quent equation. For example: O, = (l-c) - {016) as
seen from the first identity above. The derivations of
response 4-tuple for the LM are just as simple.

The next step is to find the unconditional probabilities
for the two models. The derivation here is straightforward.
Let D==[B(r,s)B(m,n)]—l . For the OEM probabilities we
integrate the conditional probabilities listed in Table 3.1.

For example

1 1
(0,¢) = Df f (1- 0% 1- 3 a- 0"y - )5 taxay
0O O

and we get

{016] = DB (m,n+4)B(r,s+4) .

The next sequence is Oy5 for which
g |
= 3 m- - - -
r (0,61 =D f (1-x)3 (1-v) 3™ L (1- ) " L™ L (1-y) 5 Laxay - (0,¢) -
0 0 .

Ty

and the result

{ols] = DB (m,n+3)B(r,s+3) - {016}
30
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and so on. The complete array for the OEM is given in
Table 3.3.

The derivations for the unconditional probabilities of
the IM are the same, using Table 3.2. Here for later
comparison purposes we let aw=1-c¢c and g=1-g .

In order to make predictions from Tables 3.3 and 3.4
estimates of the prior parameters are needed. Toward this
end we minimize the XZ associated with the Oi events
Let {Oi;m,n;r,s} denote the probability of the event O
where m, n, r and s have been listed to make explicit the
fact that the expression is a function of the four prior
parameters. Further, let N(Oi) denote the observed
frequency of outcome Oi over trials 2 to 5. Finally, let
T =N (0

) + N (O -b...-+N(Ol6) . Then we define the function

1 2)
16 [T(0;:m,n,r,s)- N(Oi)]z

mlnlrls) = Z (3.2)
i=1 T{Oi;m,n,r,s]

X2
and select our estimates of r,s,m, and n so they jointly
minimize the function (3.2). It ié difficult to carry

out this minimization analytically and consequently we
programmed a high-speed computer to carry out a numeri-

cal search over all possible parameters until a minimum

is obtained that is accurate up to one decimal place. If

we assume that all stimulus items are independent and identical,
then under the null hypothesis it can be shown that this

minimum xz has the usual limiting distribution with

3i
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TABLE 3.1

= {1,1,1,0}

= {0’1’0’0]

= {1,0,1,1)

= {1,0,0,1)

= {1,0,0,0)}

= {(0,1,0,0)

= {0,0,1,1)

= {0,0,0,1)

= (0,0,0,0)

= (1-]91’1} =

= {1’1’0’1] =

= {1,0,1,0} =

= (0,1,1,1) =
= {0,1,1,0) =

= {0,1,0,1] =

]

'= (0,0,1,0) =

1-oy -y ?

(1-a)2(1-)° - (0

(l-c)4(1-g)3g
(1-c)2(1-g)?

1-o)ra-g g

-0y -g)% - (0

(1-0) 2 (1-g) 22
(1-c) (1-g) -
©0,,]

0,,)

©,,)

_{0

16]

12]

14] -

(1-)2(1-g)g - (0g) - (0;) - (0g)

{0,4)

a-o’a-ge’ - ©,)

-0 ta-ge’

16
1-) (,)
2

i=

OEM Probabilities of Response Sequences
c .

Over Trials

2 to 5 given
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TABLE 3.2

{016] = {1,1,1,1) = ozloq4
(0,5) = (1,1,1,0) = a®a® - (0]
(0,1 = (1,1,0,1) = a'a’ - (0]
0,5) = (1,1,0,0) = a’a® - (0,,) - (0, ) - (0]
(0,,) = (1,0,1,1) = a’q® - (0,,)
(0,,) = (1,0,1,0] = a’q” - (0,,] - (0,,) ~ (0,,)
(0,,) = (1,0,0,1) = a4 - (0,,) - (0,,] - (0,)

16
©g) = (1,0,0,0) =aa = ), (o)
(0g) = (0,1,1,1] = a’q’ - (0,,)
(0,} = (0,1,1,0) = a’a® - (04) - (0 ) ~ (0]
(0g) = (0,1,0,1) = a®a® - (0,] - (0,,) = (0,,)
(o) = (0,1,0,0) =’ - (o) - {0,] - {og) - (0,,) - (0,,] - (0,.) = (0,
0,) = (0,0,1,1) =a'q” - (0g) - (0,,) = (0,g)
(0,) = 0,0,1,0) =a’a - (0,) - (0,] = (0g) - (0,,) - (0,,) - (0, = {0,
(0,) = (0,0,0,1) =aa - (0,) - (0,) - (0,1 - (0,0) = (0,,) = fo,) = {0,
(0,) = (0,0,0,0} =1 - f (0,)

i=2
LM Probabilities of Response Sequences

Over Trials 2 to 5

Given (&

and (.




TABLE 3.3

(0,5) = (1,1,1,1]) =
(0,5) = (1,1,1,0) =
(0,,) = (1,1,0,1) =
(0,5) = (1,1,0,0] =
(0,,) = (1,0,1,1) =
[oll] = (1,0,1,0) =
(0,5) = 1,0,0,1] =
(04} = (1,0,0,0} =
[08] = {0,1,1,1]} =
(0,} = (0,1,1,0) =
(0] = (0,1,0,1} =
(0,) = (0,1,0,0) =
(0,) = (0,0,1,1) =
(0, = (0,0,1,0) =
(0,) = (0,0,0,1} =
(0,) = (0,0,0,0} =

D[B(r,s+4)B(m,n+4) |
D[B(r,s+3)B(m,n+3) ]
D[B(r+l,s+3)B(m,n+4) ]

D[B(r,s+2) B(m,n+2) ]

D[B(r+l,s+3)B(m,n+4) ] =

D[{B(r+l,s+2)B(m,n+3) ]
D[ B(r+2,s+2)B(m,n+4) ]
D[B(;,s+l)B(m,n+l)]

J

}

©14

011

(0,6

D[B(r+l,s+1)B(m,n+2) ]
D(B(r+2,s+1)B(m,n+3) ]

D[B(r+3,s+1)B(m,n+4) ]

1
<)

1
'©

OEM Probabilities of Response Sequences

Cver Trials 2 to 5 in Terms of the Prior Parameters (r,s) and (m,n)
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TABI € 3.4

= (1,1,1,1} = D[B(r,s+4)B(m,n+10) ]

= (1,1,1,0) = D[B(r,s+3)B(m,n+6)]—(016]

= {1,1,0,1) = D[B(r,s+3)B(m,n+7) ]-{ 16}

(1,1,0,0) = D[B(r,s+2)B(m,n+3) ]-{ o, _)~(0

14]'[ 15
)

}-(0

16]

= (1,0,1,1) = D[B(r,s+3)B(m,n+8) ]- (0 .

= {1,0,1,0) D[B(r,s+2)B(m,n+4) |-{ 12 15]—[016]

)

= (1,0,0,1) = D[B(r,s+2)B(m,n+5) ]~ { ]-(014]~[016

12
16

{1,0,0,0} = D[B(r,s+1)B(m,n+l) ]~

{0,1,1,1) = D[B(r,s+3)B(m,n+9) ]-{
{0,1,1,0) = D[B(r,s+2)B(m,n+5) ]-(0g
(0,1,0,1} = D[B(r,s+2)B(m,n+6) ]-(0,] -

(0,1,0,0} = D[B(r,s+1)B(m,n+2) J-{0.] - -[08}-[013]-[014]—[015}—[016}
{0,0,1,0) = D[B(r,s+2)B(m,n+7) |- 8] —[012]—[016]

(0,0,1,0} = D[B(r,s+1)B(m,n+3) ]~ 4] -(0,] -[08]—(011]—[012}—[015]-{016]

(0,0,0,1} = D[B(r,s+1)B(m,n+4) ]-{0,] -(0,] -{0g])-(0, 4]-(0,,)-(0, ,}-(0, ]

LM Probabilities of Response Sequences
Over Trials 2 to 5 in Terms of the Prior Parameters (r,s) and (m,n)




16~ 4~ 1=11 degrees of freedom. In addition to having
desirable estimation properties-r the minimum X2 also provides
a measure of adequacy of any single model and a method for

comparing the fit of several models, if the degrees of freedom

are equal. If several models are being analyzed, each
involving a different number of free parameters then the

probability levels of the 2

may be compared. The degrees

of freedom associated with a model that requires k parameters
to be estimated from the data are df=16-k-1 . The one

is subtracted because of the restriction that the 16 proba-
bilities sum to 1. There are other numerical estimation
procedures available, e.g., numerical maximum likelihood or
least-squares procedures, but since the data described in

this chapter was analyzed originally by means of minimum xz

procedures, we prefer this method in order to facilitate

later comparisons between the original analysis and ours.

I1.3.2 Data Analysis

A summary and analysis of the data using seven
different conditional models is presented by Atkinson and
Crothers (1964). For the convenience of the reader we

restate the main features of the experimental procedure

and data.

TSee Cramér (1951, pp. 424-441) for example.

36
ERIC | 42




"The data was collected from eight paired-associate
learning experiments that all utilize the same general
experimental procedure. At the start of the experiment the
subject is told the responses available to him: each
alternative occurs equally often as the to-be-learned response.
A response is obtained from the subject on each presentation
of an item and he is informed of the correct answer following

his response.

ATKINSON AND CROTHERS

FEATURES OF THE EXPERIMENTAL PROCEDURE

Number of Number of Number of
Experiment stimuli responses subjects Pr (cs)

Ia 9
Ib 18
II 12
111 12
v 16
Va 12
Ve 12
Ve 12

26 .95
16 91
65 .83
40 15
20 .84
40 .60
40 1
40 .85

P G - Y Y "

"Relevant details of each experiment are given in
Table 3.5. Experiments Ia and Ib were run with college
students. For both experiments the stimuli were Greek

letters and the responses were the low association trigrams

RIX, FUB, and GED; the experiments differed in that one used

a 9 item stimulus list and the other 18 item list. Experiment

IT was also run with college students using 12 Greek letters




as stimuli and the numbers 3, 4, 5 and 6 as the responses.
Experiment III was run with 3rd and 4th grade students using
12 Greek letters as stimuli and tHe numbers 2, 3, 4 and 5 as
the responses. Experiment IV was run with college students
using double digit numbers as stimuli and the letters A, B,
C and D as responses. For Experiment I-IV the experimental
procedure (method of stimulus display, presentation rate, etc.)
was the same as described by Bower (1961). In Experiment V,
a group of four and five year old children learned a list of
paired-associates each day for five consecutive days. The
lists were composed of double digit numbers as stimuli

and letters as reponses but the stimuli and responses were
different for each list. To simplify the discussion, only
results for days 1, 3, and 5 are presented (labeled Experi-
ments Va, Vc, and Ve respectively); however these data

are representative of the results for the full experiment."

Atkinson and Crothers carried the original analysis of
these eight experiments for seven different conditional
models, i.e., models for which the learning parameters are
fixed constants for the population of subject-items. The
reason for considering response sequences over trials 2 to
5 only is provided by the fact that a major portion of the

learning occurred during the first five trials. This fact

is indicated in the last column of Table 3.5 where Pr(x5==0)
is presented; in five of the eight experiments the subjects

‘ have reached a correct response level of 0.83 or better on

‘ trial 5. 3@ -
4




For the convenience of the reader Tables 3.6, 3.7, 3.8,
and 3.9 are reproduced directly from Atkinson and Ciothers'

study.

The X2 minimization procedure described in Eg. (3.2)

was applied to the data of observed freguencies presented
in Table 3.6.

Table 3.7 presents the parameter estimates associated
with the minimum xz values for the conditional models.

Table 3.7% presents on the other hand the estimates of the
four prior parameters r, s, m, and n that minimize the xz
function for the unconditional models OEM* and IM*. This table
summarizes some of the data presented in the appendix to
this chapter which describes two or usually three sets of
the best estimates for both models and for all eight experi-
ments. The estimates were calculated by the computer mini-
mization program mentioned before.'

Table 3.7** summarizes the estimated values of the
prior means and variances of the beta densities of g and
c . The prior means and variances are calculated by substi-
tuting the estimates of Table 3.7* in the following equations

for the mean and variance of the Beta density:

The (prior) mean of g is given by Eﬁ; (3.10)
The (prior) variance of g 1is given by ;S
(r+s)” (r+s+1)
(3.11)
TSee appendix to this chapter.
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ATKINSON AND CROTHERS

TABLE3.6

OBSERVED FREQUENCIES FOR THE Oy, EVENTS

Experiment
Ia Ib 11 111 1v Va Ve Ve
N(O,.») 123 125 303 160 117 82" 134 216
N(O,.,) 3 3 14 i3 3 11 18 4
N(O,,) 6 10 19 16 10 14 23 17
N(O,.») 1 4 12 1§ I 13 9 6
N(Oq.5) 16 21 54 24 15 22 28 34
N(Oq.s) 3 0 17 6 .. K 21 14 16
N(O,.;) 5 6 32 8 9 20 12 12
N(O,.,) 2 3 18 1 6 31 13 12
N(O,..) 43 55 125 57 54 58 62 66
N(Oy.2) 1 S 15 9 7 13 14 4
N(Oy1.0) 7 10 25 27 9 34 25 17
N(O,..,) 2 2 17 14 10 18 14 7
N(Oy3.2) 15 30 61 33 34 34 28 20
N(O,,.2) 0 1 19 25 8 21 20 8
N(O,..,) 6 6 30 24 22 26 21 19
‘N(O.2) 1 7 19 6 12 62 35 13
T 234 288 780 480 320 480 480 480
TABLE 3,"(
© PARAMETER ESTIMATES FOR THE VaRIoUs MoODELS
Experiment
Model Paramecter — - — —_
Ia Ib I1 111 v Va Ve Ve
Once-element ¢ .383 328 .273 .203 .281 125 A72 0 .289
Lincar (] 414 328 289 .258 .297 .164 250 .336
T'wo-phase c .563 484 352 359 398 227 406  .422
[} .66G4 633 .G95 .563 .648 .500 477 .656
RTI c .531 461 J344 328 .367 219 59 . 438
[} .§20 .805 .867 .797 .859 .727 711 .789
LS-2 a 352 .305 .250 188 .266 109 156  .258
f .719 .805 .805 .789 .836 844 27 .680
i a 367 352,250 .188 .289 109 156 .266
LS-3 S .648 .375 .805 789 .789 .844 27 .688
c .844 .500 1.000 1.000 7897 1.000  1.000 992
& 883 8352 922 .891 922 .797 .859 .844
Two-element b .391 398 227 .078 .195 133 016 227
a 339 277 344 320 359 .219 352 477
40
Ak




TABLFE 3.,T7%

model parm

Fxperiment

It b 1 1 RV Va Ve Ve

5 OFM* r 55.00 54,13 he.75 2.69 12.R9 R,500 3.00 10,50

§ s 53.62 63.12 54,04 3.00 20,75 10.500 3.00 10,50
m 15.50 34,12 14,00 3.31 24,000 2:500 0 2.00 3.00

' n 27.12  7€.62 41,99 16.75 67.69 21.500 12.25 2.00

J LM* r 13.59 2.69 1.82 1.13 1.75 2.22 1.00 1.48
s 31.4° 12,25 1.709 1.1n 51.75 2.20 1.75 1.37
m  1.93 3.0 2.46 2.06 3.31 1.20 1.00 2.42
n  1.75 3.00 8.84 24,30 h.25 51.29 2.75 7.07

+
For explanstion see asppendix

PARAMETFR ESTIMATES FOR ALL EIGHT EXPERIMENTS




TARLE 3.7%%

Fxperimrnnt

model stat,

lat b [ [ 1AY Va Ve Ve
OFM* E(g) .502 461 LBBR3 U772 370 .3R2 .500 .500
(.516)
F(e) J3F3 308 .250 165 L2R2 L10h .1h0 .273
(.356)
100vV(g) .230 .210 L2L4 3.730 .6RY 1.310 3.57 1.130
(.206)
100vV(c) .531 .190 329 LB54 .208 .373 .791 1.650
(+237)
LM+ E(g) .301 .122 .503 .b49ag 032 502 .363 521
F(c) .523 .500 218 .078 38 024 267 255
10v(g) .0LG6 046 542 LIGh .Nos R0 .617 .G4u7
10v(c) 532 .357 .139 L0206 .287 004 L4112 .181

ESTIMATES OF PRIOR MEANS AND VARIANCES

*For explanation gee appendix to this chapter.
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ATKINSON AND CROTHERS

TABLE 3.8

Minisum x* VALUES

One- Linear Two- Two-
Expuriment  element model phase RT1 LS-2 LS-3 clement
Ia 30.30 50.92 17.51e 9.74" 6.75° 5.67° 9.30¢
1L 39.31 95.86 18.25" 13.09° 19.69" 12.427 12.74¢
11 62.13 251.30 54.78 29.11 3.73¢ 3.73° 28.46
11 150.66 296.30 95.44 51.12 33.02 33.02 47.13
v 44.48 14¢.95 22,39 10.66° 12.32¢ 10,77« 10.32° .
Va 102.02 201.98 59.20 40.17 24.41¢ 24.41° 39.47 b
Ve 246.96 236.15 99.97 46.43 27.12° 27.12 34.75
Ve 161.03 262.56 126.05 84.07 20.12¢ 20.12¢ 77.39

Total x* 836.89 1542.02  493.59 284.39 147.16 137.26 259.56

df 14 14 13 13 13 12 12

® Not significant at .0l level,

TABLE 3.9

OBSERVED AND PREDICTED Responsg SEQUENCE PROPORTIONS FOR EXPERIMENT 11

Observed One- Lincar Two- Long- Two- )
Outcomes proportion element model phase RTI short element
R R A
0, .389 .362 .220 328 .354 390 357
0, .018 .007 .045 .008 .017 .017 .018
O, .024 015 .069 .022 .028 .029 .029
0, .015 014 .014 .010 .011 .020 .0t1
O, .069 047 12 .066 .063 .064 .062
O, .022 .014 .023 .012 .013 .020 .013
o, .041 .02 035 .028 .026 .034 026
Oy .023 .028 .0N7 .021 .020 .023 .020
O, 161 .178 198 .210 189 .164 .188
Oy .019 014 .041 .014 .018 .02¢ .018
O, .032 .029 .062 035 .034 .034 .04
Oy .022 .028 .013 .021 .020 .023 .020
O .079 .093 101 .102 .092 .074 .091
(O .024 .028 .02t .024 .024 023 .024
(0 .038 .059 .032 .055 051 .039 .050
Oy .024 055 007 .042 .040 .026 .039
| 43
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TABLE 3, 8%

E XPERIMENT OM* IM*
Ia 5,107, 10,31
(7.15)
Ib 20,21 21,75%
11 4,45" 66,26
111 22,96 66,56
IV 12 54 42,45
Va 21,36 65, 8
Ve 9.92% 6.8¢
Ve 17, 69" a7, 5
Total 114 .23 327,06
af 11 11

a Mot significant at .01 level

MINIMUM X* VALUES

For explanation see appendix to this chapter,
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] TABLE 3, 9%
Outcomes observed ORM* LM#*
0l .289 <391 327
02 .018 .018 .047
03 .024 .029 063 A
Oh 015 <020 018
O5 .069 LO0F3 . 088
06 022 . 020 023
07 041 033 L3B31
08 .023 . 023 014
09 .161 «1F1 . 135
00 .019 . 020 .034 ‘
Oll . 032 . 033 . 045
012 .022 . 023 020
013 . 079 073 065
015 .038 . 039 .36

OBSERVED AND PREDICTED RESPONSE SEQUENCE PROPORTIONS
{ EXPER IMENT I

-4 45
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The mean and variance of the prior density of ¢ are
calculated by replacing the values for r by the values
of m and the values of s Dby those of n

Table 3.8* presents the minimum XZ values for the
OEM* and the IM* ; i.e., the values obtained by using the
parameter estimates of Table 3.7* in Eq. (3.2). The XZ
value needed for significance at the 0.01 level is 24.7 for
11 degrees of freedom. All of the XZ values for the OEM*
are not significant at this level. For the IM* the KZ
values for experiments Ia, Ib, and Vc are not significant.

Finally, Table 3.9* gives the observed and predicted
response sequence probabilities for experiment II and may
be compared to Atkinson and Crothers' Table 3.9 of the same
proportions calculated for the conditional models.

The IM* parameter estimates in Table 3.7* tend to be
much smalier when compared with the same estimates for the
OEM*. This fact is reflected more clearly in Table 3.7%%.
where the prior variances for both g and c¢ assume
larger magnitude of order greater than 10 for the IM* than
for the OEM*.

When comparing Tables 3.7 and 3.7**, it becomes apparent
that the between-experiment values for the prior mean of
c have the same relative magnitudes as the values estimated
for ¢ in Table 3.7, with the exception of the IM* value for

experiment Ve. The monotonicity over the sets of experiment

V data, which is described by Atkinson and Crothers with

c
o E
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respect to Table 3.7 and is inferable from the nature of the

experiments, is maintained in Table 3.7**, again with the
exception noted above. It seems therefore that the para-
meter estimates remain relatively invariant under our prior
assumption.

We next observe in Table 3.7** that the variances of
c¢ for the OEM* are larger for experiments III, Va, Vc and
Ve as compared to the same variances for the other four
experiments. And indeed we would have expected them to
be larger because the experiments noted were run with young-
children: the other four experiments were run with college
students whose conditioning variances are expecited to be
smaller. In addition, it seems that the accuracy of the
predictions, especially when compared to the LS-3 model, is
inversely related to the magnitude of the estimated prior
mean of ¢ .

The IM* procedure tends to ascribe higher values for
both the variances of ¢ and g . The over-estimated
variances may be a consequence of the model inadequacy to
account for the data. Interestingly, the highest variances
in the IM* setup are for experiments Ia, Vc and Ib which
are,with the exception of V¢, unlike the results for the
OEM*., The accuracy of the predictions for the IM*, as may
be noted from Téble 3.8*%, is much better for experiments
Ia, Ib and Vc. A regression analysis indicated that the
variance of ¢ was the influential factor in the predictive

power of the model -- the Xz value being the dependént
47




variable--contributing a multiple R2 of .95. By adding

the prior mean of ¢ to the regression equation, the RZ
value improved by 15 per cent. In general, the X2 values
were highly and negatively correlated with the variance of
c and the prior mean of c.

Tables 3.8* and 3.9* compared with 3.8 and 3.9 demon-
strate the following facts. The OEM* is a better model than
the LS-3 model. This conclusion is further supported by
the pseudo- F statistics (Hollénd, 1965)T. fhe F value
in this case is the ratio of total K2/88 of the OEM*
divided by the total y2,/96 of the LS-3 model. The resulting
F value is .90787 which is less than 1.

The best impfovements in prediction for both the OEM*
and the IM* appeared for experiments possessing high prior
variances of c¢ , as was notedminwthe preceding paragraphs.
The most remarkable improvement was noted for experiment Vc
where the xz va%ues dropped from 246.96 to 9.92 for the
OEM* and from 236.15 to 6.80 for the IM*. The IM* value has
kept its relative lower magnitude With respect to the OEM*
as was the case with the conditional results.

T On the whole, between models invariance does in fact
hold. 1In other words, the xz values for the OEM* and the
IM* do maintain relative magnitudes which correspond to the

conditional models relative magnitudes. Thus the x2 for

TThe precise significant levels for the pseudo- F could not

be ascertained.
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all experiments with the exception of Vc are smaller for
the OEM* compared with the IM* as well as the OEM values

compared with the IM values.
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II.4 DISCUSSION AND CONCLUSIONS

IT.4.]1. General Remarks: Mathematical Methods for the

Analysis and Evaluation of Models.

Before we draw our final conclusions from the
results of the previous sections we present some of the
prevailing views on the mathematical methods used in the
analysis and the evaluation of stochastic learning models
(e.g., Sternberg, 1963). These remarks should put our
conclusions in a proper perspective on the one hand and imply
further areas of investigation on the other.

Many objections have been raised as to the statistical
soundness of the methods involved in the analysis and the
evaluation of s£ochastic learning models (Gregg and Simon,
1967). Unlike classical statistical inference the evaluation
of stochastic learning models is not a simple acceptance-
rejection problem. Neither do we satisfy the formal data
requirements needed by formal statistical decision making.
So, if we accept the unavailabiiity‘or.even the undesirability
of a formal evaluation procedure, we still need some tools
for informal evaluation or "plausible inference" (PSlya, 1954).

One approach of plausible inference concerns itself
with the assumptions that give rise to the model which is
capable of representing a theory about the learning process
at hand, anotﬁer with providing descripfive statistics of

the data. Both approaches require critical experiments or

¢
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discriminating statistics to be used in the model's evaluation.
Unfortunately again, no unified method of constructing
crucial experiments or analyzing discriminating statistics
existé. In principle, only the investigator's imagination
limits the number of different statistics that can be used

to evaluate the model. Examples of such statistics are the
mean learning curve, the mean trial of last error, the number
of runs of a particular length and the frequencies of
particular response n-tuples. Which statistics are more
pertinent and how many of them are needed in order to prefer
one model over another is an open gquestion.

Following Sternberg (Ibid), consider the n-dimensional
"property space" consisting of all values of the vector.
(sl,sz,...,sn) where sj denotes a property (the expectation
or variance of a statistic) of the model. Denote by ;j the
corresponding statistics for some observed data sequences.

In general, the properties depend on the parameter values,
and therefore sj==sj(®) , Where ® is a vector of
parameters corresponding to a point in the parameter space.

Using this terminology, most work that has been done
on fitting and testing models can be thought of as a two
stage process. First, estimation, in which the parameter
values are selected so that a subset of the s. agrees with
the theoretical values, and, the secdnd, testing, in which

the remaining sj are compared to their corresponding sj(®) .




Clearly, conclusions from this method are conditional on
the choice of properties used in each of the two stages.

The estimation procedures of the models' free parameters
can be classified into two categories. Global estimation,
such as maximum likelihood or minimum chi-square, usually
satisfies some overall optimal criteria and cannot usually
be obtained explicitly in terms of statistics of the data:
and fine-grain estimation, such as the distribution of error-
run lengths. Objections may be raised sometimes as to the
order of which property is used for estimation and which

property -is used for testing. Occasionally, as in our

study, the choice of which property is available for what

is restricted because of the small number of statistics

with analytic expressions. It has been noted also (Ibid) that
'usihg the same estimating statistics for all models to be
compared does not ensure equal "fairness" to them.

"Up to this point we have made some cautious statements
concerning the applicability of certain methods for comparing
the model and the data, and other statements concerning
comparative studies of models. These points were made to
warn the reader to consider past and future inferential
remarks in a proper perspective, especially with respect to
model comparisons. Our intention has not been to compare
or select models but rather to amend the inadequacies intro-

duced into simple learning models by ignoring the essential

.
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features of individual learning rates. Just as important
was our intention to use simple learning models as baselines
and aids to inference, i.e., to test whether or not the
homogeneity assumption has in fact a sizable effect on the
learning properties. Our method succeeded where a model- free
analysis might have failed.

Before *turning to discussion of our results consider
a final evaluation remark. It has long been held (e.g.,
Galanter and Bush, 1959) that when a model predicts how
behavior depends upon some experimental variable, the model
parameters should be invariant to changes in that variable.
This criterion when satisfied should indicate some general
descriptive ability of the model. This criterion is indeed
satisfied by our models' parameters as well as by many of

the models’ properties.

I1.4.2. The Important Features of the Results

The results of this study demonstrate unequivocally
that the OEM with the heterogeneity provision is still a
fairly accurate model, at least for the type of data consi-
dered. More significant is the observation that individual
differences have a first order effect on the predictive
power of simple stochastic models. These facts are demonstrated
by the large improvement in the XZ values as well as by

the accuracy of the prediction of the mean learning curve

for Experiments Ia and Ib.




Properties of the models become sensitive to individual
differences —- to the degree that such differences exist.

This fact is demonstrated by change in magnitude of thé
variances of total number of errors. It can be said therefore
that the first goal of plausikle inference, which is having

a model capable of representing the theory about the learning
process, is satisfied.

The second goal of having a model which can provide
descriptive statistics of the data is also fulfilled by
satisfying many of the criteria partially described in the
last section.

Parameter estimates remain relatively invariant under
the prior assumption as does the descriptive power of the
models. In addition, it can be shown that some important
properties of the models remain invariant under the prior
assumption, e.g., the stationarity property of presolution
trials in the OEM case remains invariant as exemplified by
Vincent curves or other tests.

The statistics of the prior mean and variance of the
conditioning and guessing parameters of the OEM*, presented
in Table 3.7** are most descriptive of the experimental data.
Higher means and smaller variances of conditioning characterize
the experiments run with college students. Smaller means
and larger variances describe the exberiments run with young
children. The discrepancies between the results of experiments

Ia and Ib have to be explained, again, as in Atkinson's




study, in terms of the different experimental procedures

used in the two experiments. This.latter fact, however, may
be now partially accounted for by the guessing prior mean for
experiment Ib which was lower than for experiment Ia.

The last point leads us to consider next the guessing
parameters and their relation to the conditioning parameters.
In the OEM* situation the prior guessing means assumed higher
values than are usually ascribed to them -- one over the
number of response alternatives. Moreover, in spite of the
independence assumption for the two prior densities, there
seems to be a definite relation between the guessing and‘the
conditioning parameters. Higher guessing parameters are
associated with lower conditioning parameters and vice versa.
This association is particularly strong between the mean of
the one parameter and the variance of the other, i.e., a
lower conditioning mean is associated with a higher guessing
variance. These observations, in addition to being

intuitively appealing, are supported by a large body of data

"on "short-term" recall (e.g., Murdock, 1961, 1963).

The studies referred to differentiate between short- and
long-term memory. Items in short-term memory can be retrieved
for immediate recall, but since the short—term store is of
limited capacity the probability of guessing depends on the
number of intervening items from one presentation of an item
to its next presentation. The limited buffer capacity may

be described by a forgetting parameter, the same parameter f
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of the LS model introduced in Chapter I. We also described
in Chapter I the LS-2 model which says that at the moment

an S-R pair is studied, with probability a it goes into
a long-term memory storage system and with probability 1l-a
the S-R pair goes into a short-term store, where it is
vulnerable to interference from intervening items. When we
compare the estimates of a for the LS-2 in Table 3.7 and
our estimates of ¢ for the CEM* in Table 3.7*%*, the
similarity of the results is more than striking. Furthermore
comparison of the XZ values for the two models, LS-2 and
OEM*, between Tables 3.8 and 3.8* demonstrate again extreme
closeness of the corresponding values. We have yet to
account for the high guessing probabilities. We do that by
rewriting the LS-2 model as a 3-state process: collapse
states S and F and make the response probability in the
single intermediate state (SF) a function of the forgetting
parameter. We now have the following transition matrix and

response probability vector:

_L SF U_  Pr(correct)
Ll 1 0 0 1
SF| a l-a 0] 1-£f+ fg (4.1)
Uyt a 1-a 0

The guessing probability for state SF. is 1- £+ fg which
is larger than the guessing probability of g alone and

may explain the high guessing estimates that we calculated.



Atkinson and Crothers actually tried this collapsing pro-
ced..re for the LS-3 model (Ibid, Eq. 25), but had allowed the
additional parameter c of the LS-3 model to be different from
1, i.e., there was a positive probability 1l-c of staying in the .
unlearned state U. When they applied this model to the four-
tuple response data, Atkinson and Crothers reached the smallest
X2 of all the models described in their paper. The estimates
for ¢ under this setup were all close to 1 which may indicate

that the model described by Eg. (4.1) is the most plausible

model yet.

IT.4.3. Further Research and Conclusions

The empirical results confirm the hypothesis
that the heterogeneity assumption increases the predictive
power of simple learning models and has a sizable effect on
their learning properties.

Further theoretical research should be directed toward
finding more satisfying prior bivariate (multivariate)
distributions on the unit square (n-dimensional space).
These distributions should be able to describe the relation-
ship between the learning, or performance, parameters. They
should provide fast and easy estimates for the prior
parameters of a variety of models and easily calculable
estimates for a variety of learning properties.

When it is done, posterior probabilities could be then

simply derived and would enable us to characterize the
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ability of individual students, the difficulty of individual

curriculum items and the interaction between ability and

difficulty with respect to the particular educational task.




CHAPTER III

PERFORMANCE MODELS FOR SIMPLE ARITHMETIC PROBLEMS

ITI.1 Introduction

In Chapter II, we confirmed the hypothesis that the
heterogeneity assumption increases the predictive power of
simple learning models and has a sizable effect on their
learning properties. In the present chapter, we consider
simple performance models for addition problems and propose
a method for describing the distribution of different per-
formance rates.

A performance model for simple addition was introduced
in Section I.1.2. In Section III.2 we give some basic re-
sults relating to the bivariate Dirichlet distribution. 1In
addition, maximum likelihood procedures are suggested for
estimating the models' parameters and a Dirichlet distribu-
tion is assumed for the performance rates.

Total error statistics are considered in III.3; we
derive the conditional and unconditional expectations and
variances of the total error statistic.

The empirical data are presented in Section III.4,
along with a method for evaluating the exact éistribution
of item performance rates with homogeneous individuals.

Finally, the discussion and conclusions are presented

in ITI.5.
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III.2 SOME BASIC RESULTS

III.2.1 The Likelihood Function and Maximum 1.iklihood
Estimates

Let IS denote the internal state of the two—-state

automaton introduced in Section I.1.2. Then IS = 0 or 1

indicating no carry or carry respectively. We consider

three alternatives:

a) digit i 1is a ones' column digit
b) not (a) and IS = 0

c) not (a) and IS = 1

Let <c,ca, and cb denote the probabilities of a correct
response to digit i for (a), (b) and (c) respectively.

n2, and n3 denote the number of

digits under the three alternatives above,

If, in addition, ni,
then the likeli—

hood of an n digit response is given by

—t ., = Mttty mpty Pyt

L = c (l-c) (1-ca) (1-cb) (2.1)

where tl' t2 and t3 are the number of correct responses

under (a), (b), and (c) respectively and t = tl + t2 + t3.
The maximum likelihood estimates of c, a, and b

were derived by Suppes (1968) and are given by

l1-c¢c= tl/nl

t./n
A 2 2
1-38-= (2.2)
tl/nl
~ t,/n
1-D = t3 13
171
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The estimates in Eg. (2.2) hold only if the proportion of
correct responses to the ou~s' column digit is greater than
the proportion of correct responses to the other digits.
The model presented in Eg.'s 2.1 and 2.2”will henceforth be
referred to as Performance Model I.

After analyzing the data presented in Tables 4.1 and
4.2 it became clear that the carry parameter, a, did not
contribute to improvement in the prediction of expected
total number of errors. Consequently, we tried a two-
parameter model by letting a = 1 this situation is desig-
nated:as Performance Model II. The predictions for this
model (in Table 4.2) improved the error predictions of cer-
tain items and had the opposite effect on other error pre-
dictions.. Since we did not improve the error predictions very
much using Per formance Model II, the only predictions listed
are those for Test 2 in Table 4.2.

It was finally decided to redefine the no-carry state.
With this new definition, a transition to a no-carry state
is possible only if the automaton was already in a carry
state. Equations 2.1 and 2.2 remain the same, but the num-
ber of digits n, and n, and the number of correct re-

1 2

sponses tl and t2 in the corresponding columns are now
different. More explicitly, only the problems 639 + 212 and
5267 + 283 have a no-carry column in the third and fourth col-

umns, respectively. This last situation is referred to as

Per formance Model III.




III.2.2 The Bivariate Dirichlet Distribution

The bivariate Dirichlet probability density function

of two r.v.'s, pg and Py is defined by the following

equation f
al—l az—l a3—l
fd(PerZ ,G,l,(lz,(l3) = Kpl p2 p3 (2.3)
3—
where 0=P, =1 i=1,2,3 ., S p. =1
i = i
i=1
1 ~ F(al+a3+a3)_

and K = B (al,az,a3

The following properties can be established (Silver, 1963):
i) The marginal p.d.f. of a specific Py is a beta den-

sity given by

The expected value of pj

a .
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iv) The covariance of P; and p_, J £ m, is
a -G:m a .O,m
Cov(Pj,Pm) = - 3 % 3 = - —7?1———— (2.7)
< 2: a.> <l+ D) a.> A" (A+1)
1 L 1
i=1 i=1

IIT.2.3 The Distribution of Item Performance Rates with
Homogeneous Individuals

In the following analysis we assume that individual
students perform equally well, but the items are heterogene-
ous and of different difficulty.

Since the error frequencies are Qery small in perform-
ance data, the sum of output and carry error rates is con-
siderably smaller than unity. We may assume, therefore,
that the output error rate, c = 1 —'E, and the product cb
are Dirichlet distributed. For convenience, let py = c;

p, = cb and p3EEE; b=1-D
With fhe assumption of a Dirichlet prior on Py and pé

and using equations 2.4 to 2.7 we have the following

properties:

v) The error rates ¢, i.e., Py and b are independent
beta r.v.'s with parameters (al,a2+a3) and (az,a3) re-
spectively. (2.8)

Conversely, the correct rates T and b are independent beta

r.v.'s with parameters (a2+a3,al) and (a3,a2) respectively.
vi) The carry-output correct rate (EE), i.e., Py "is a
beta r.v. with parameters (a3,al+a2).' (2.9)
Conversely, the carry-output error rate 1 - cﬁ, i.e., 1- P3.

is a beta r.v. with parameters (al+a

63
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(v) and

Properties

(vi) are intuitively appealing.

First, they conform to our model assumption that carry and

output errors are independent. Secondly, each difficulty
may be indicated by the size of the prior parameters. Thus
the output error rate increases as a function of «a the

carry error rate increases as a

ly, the carry-output error rate

ll

function of q and final-

2'

increases as a function of

From Eq.s (2.8)and (2.9) we have the following:

vii) The mean and the variance for the output error rate are

1 (@ptas)

A2(A+l)

a _ al(A—a

l)
2(A+1)

a
E (p; ) =-7% and  V(p,) (2.10)

viii) The mean and variance of the carry-output error rate

are
a, + a A - qQ
~ _ _ 1 2 _ 3
Blpg) = BE(l=p3) = =" =—3
and (2.11)
(alkaz)a3 a3(A—a3)
Vi-py) =—3 =2
' A (A+1) AT (A+1)
Obviously, V(E3) = V(p3). ;
ix) The covariance between output and carry-output errors is
Q405 ;
COV(pl, 1"P3) = - COV(‘pl,‘p3) =_2—_‘—_' ’
r A (A+1)
In order to estimate the prior parameters 0140y, and :
a, of the Dirichlet distribution we used the method of moments. I

04
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It is also possible to integrate the likelihood (2.1) with
respect to the Dirchlet prior and determine numerically the

. P Xy . . . . .
estimators « a and a3 which maximize the resulting

1’ 2

function.

In Section III.3 we calculate the estimates of the

prior means E(pl) and E(p3) and the prior variances
v(pl) and V(p3). Using these estimates we proceed to
determine al, &2 and &3 by the following procedure:
al = AE (pl) (2.12)
a A(1-E E
0, = A(1-E(py) - E(p;3))
Gy = AIE(p3) (2.13)

A itself is determined from (2.10) and (2.11), substituting

A = aiE(pi) in the expression for the prior variance

AE(p,) [1-E (p,)]
Vip,) = 5 (2.14)
AT (A+1)

E(p;)[1-E(p.)]
A = 1 ) = ~ 1 (2.15)

V(pi

As E(pi)[l—E(pi)] —av(pi), A - 0, which implies in
return that o - 0.

This situation is noted in Raiffa and Schlaifer (1961,
pp. 263-264). In their section "Limiting Behavior of the
Prior Distribution”, they prove that as the parameters o,

and A Dboth approach zero in such a way that the ratio %%
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‘unity the density concentrates on one side. We also recall

remains fixed, a fraction E(pi) of the total probability
becomes more and more concentrated toward p; = 1, the
remainder toward p;, = 0; the variance v(pi) approaches
E(pi)[l—E(pi)]. It is interesting to note that the graph
of the beta density with parameters (r,s) is U-shaped when

r + s =1. If only one of the parameters is smaller than

that for our learning data, in Chapter II, the parameters

were much larger than one and the graph was bell-shaped.

ITI.3 TOTAL ERROR STATISTICS

Let X X and X be independently distributed,

1’ 2 3
each having a binomial distribution with parameters (ni,ql),

(n2,q2) and (n3,q3) respectively. nl, n2 and n3 are

the total output, no carry-output and carry-output digits.

Py = ¢ denotes the output error rate, dq, = 1-ca

Also q;
denotes the no carry-output error rate, and dy = 53 = 1-cb
denotes the carry-output error rate. Then, the r.v. desig-

nating the total number of errors in n. + n. + n. digits

1 2 3
is T' =X, + X, + X,. The conditional expectation of T'
given Q = (ql’q2’q3) is
3
E(T'[Q) = i; niq; (1-q;) (3.1)"
and
3
vV(T'|Q) = Z niq, (1-q;) (3.2)"




Let Ii denote the number of items having type i digit

(i=1,2,3) and n, = ni/Ii, i.e., the average digits per
item of type 1i. Then, the mean total errors per item is
3\
E(T|Q) = 21 n,q; (3.1)
i=1
3
V(TfQ) = izl niqi(l_qi) (3.2)

In order to simplify the expressions for the uncondi-
tional properties we consider only the situation described
by the two-parameter Performance Model I1I. In this case

* ' *
T = Xl + X3 where Xl and X2 are binomial random varia-

bles with parameters (n;,ql) and (n3,q3) respectively;

*

n

= n., + n

1 2°

Then, the conditional mean total errors per item is

*

E(Tlq,a,) = njq; + nga, (3.3)
and the conditional variance is
*
V(qulq3) = nlql(l-ql) + n3q3(l—q3) (3.4)

The unconditional mean is given by integrating
E(qulq3) with respect to the Dirichlet prior density of

d =Py =¢ and 1 - 3 = Py = (cb)

E¥(T) = E4(E(T]a;,d3)] = niE(aq) + n E(q,) (3.5)

o7
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The unconditional variance is given by

) - E*(T) + Eq(T%la;,a,)] - B*Z(T)

which reduces to

v¥(T) = njE(a;) [1-E(q;)] + nyE(dy) [1-E(qy)]

+ 0] (n}-1)V(a;) + ny(ny-1) Viay) (3.6)

It is clear that when the output error rate d; and the ,
carry~-output error rate q3 are exact numbers the uncon-

. * . c
ditional variance V (T) in (3.6) becomes the conditional

variance V(qul,q3) in (3.4).

III.4 DATA ANALYSIS

III.4.1 Description of the Data

The data described in Tables 4.1 and 4.2 were col-

lected as part of the computer-assisted instruction program
in elementary mathematics at the Institute for Mathematical
Studies in the Social Sciences, Stanford University.

Two row addition problems were given to 80 third graders
in local California schools as a pretest before five drill-
and-practice sessions; the data for this group are presented
in Table 4.1. The same problems were given to a different grou z

of 62 third graders after five drill-and-practice sessions;

these data are presented in Table 4.2. (Although the groups !

were not the same, one may infer that some learning has taken

-yt
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place in the second group since there were only 144/62 errors

per student in Test 2 and 196/80 errors per student in Test 1.)

The left-hand columns present the observed error fre-
quencies for each item listed and for all students. The nho-
carry column represents the no carry-output errors for Per-
formance Model I. The numbers in that column are added to
the corresponding entries of the output column for Per for-
mance Model II. For Performance Model III all entries are
added to the corresponding entries of the first column ex-
cept for the items 639 + 212 and 5267 + 283: there are
only 17 no carry-output errors for Model III.

Consider, for example, the data given for the problem

14 + 15 in Table 4.2. For Performance Model I: n, =n.=62,

1 2
n3 = 0, nj - tl = 3 and n2— t2 = 3: for Performance Model
II and III nl = 124, n2 = 0 and nl— tl = 6. The data

given for the problem 639 + 212 in the same table are, for

Per formance Models I and III: n; =n, = nj = 62, ny - tl==3,
n, - t2 =8 and n3— t3 = 4+ for Performance Model II:
n, = 124, n2 = 0, n3 = 62, nl— tl = 11 and n3— t3 = 4.

The predicted values for the three models are calcu-
lated by using the maximum likelihood estimates (2.2) and
Eg. (3.1) for Performance Models I and III, and Eg. (3.3)
for Performance Model II. The maximum likelihood estimates
and the variances of total errors due to each error type

for all three models are given in Table 4.3. Note that the

estimates are for the q;'s; these are simply the ratio of
errors per all digits cf a given type. For example
~9
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A A t n - t
s, - 0% = (2 -
3 3

the variance estimates in Table 4.3 were calculated using

Eq. (3.2) for Models I and III and Eg. (3.4) for Model II.
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TARLE 4.1
ERRORS PR2DICTID
item output no carrv carry total I 111
17
+ 2 = 1 0 6 6.7 5.9
14
+15 1 4 0 S 6.7 8.5
6
+13 1 2 0 3 €.7 5.5
2€3
+214 1 2 0 3 10,1 8,3
418
+212 2 2 0 4 10.1 8.3
27
+4 3 0 4 7 10.9 10,3
8
+32 4 0 7 11 10,9 i0.3
€6
+14 1 0 3 4 10,9 10,3
639
+212 4 8 6 1R 14,3 18.8
5267
+283 3 9 18 30 21.9 26.4
378
+125 £ 0 11 17 18,5 17.9
557
+256 6 0 18 24 1R, & 17,9
3086
+4735 3 0 25 28 2F, 1 25,5
7697
+1875 7 0 29 6 26,1 25,5
total 47 28 121 196 196 1%

PERFORMANCE MODEL TEST 1

——
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TARLY 4,2

PREDICTED

item

17
+ 2

14
+19
+13

€3
+714

41F
+212

27
+4

633
+212

S2R7
+283

378
+1 25

557
+256

Kol
+4735

7657
+1 878

total

ERRORC
ountmut ne carrv carrv  total
2 0 0 2
3 0 6
S 2 0 2
0 & 0 S
1 2 0 3
5 0 3 e
1 0 4 5
0 0 4 4
3 8 4 15
2 3 21 32
4 0 8 12
2 0 S 11
2 0 21 23
3 0 15 18
28 27 89 144

I 11 111
5.0 4,9 3.6
8.0 4,8 3.6
5.0 4,8 Z.F
8.0 7.1 5.4
8.0 7.1 .4
7.6 7.5 7.4
7, R 7.9 7.4
7.6 7.9 7.4
10.6 10,3 15,8
16.1 18,9  26.4
12,1 13,5 12.2
13,1 13,5 12,9
18.6 19.1 18,5
18.6 19.1 18,5
144 344 144

PERFORMANCE MODETL TEST 2
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TABLE 4.3
Model output no carry carry output no carry carry Total
A [ A A N [ A
a a ViX,) V(X)) V(X.,) V(T/Q)
1 9 3 1 o 3 Eq.(5.2)
Test 1
T .0k2 .0%8 .09 3,21 3.84 12.17 19.22 )
I1I 034 .106 .09%4 3.99 7.59 12.17 23.76
Test 2
I .0%2 .048 .09 1.93 3.6 9.0 14.6
IT .039 -- .09 3.77 - 9.0 12.78
III .029 137 .09 2.6 7.3 9.0 18.97

PERFORMANCE MODELS

Error estimates and total error variances due to each error type




III.4.2 The Distribution of Item Performance Rates with
Homogeneous Individuals

Using the estimators Qi's, calculated in the
last section, we are now able to determine the distribution

of the prior performance rates. For Performance Model II

this is done by rewriting (3.5) in the following manner:

*

n

(n;—l)v(ql) + n3(n3—1ﬂ7@3) = V*(T) - V(qul,q3) (4.1)

We replace V*(T) by the observed total variance, V(T)
and V(T[ql,q3) by its estimate (Table 4.3). 1In order to
solve for V(ql) and V(q3) we let ﬁ(qi) = ai and apply

Eg. (2.14). We now have,
V() - V(Tlagq,) =

E (q;) [1-E(q))] E(q4) [1-E (q5)]

* ok ' - (4.2)
nl(nl 1) 1 + n3(n3 1) 1
The resulting equation solving for A is
* , % A ' ~ A ~
5 n; (n=1)E(q;) [1~E(q;)] . n3(n3-l)E(q3)[l—E(q3)]._ )
V(T) ~ V(Tla;,q,) v(T) - V(T|q;q;)
(4.3)

The estimators &l, &2 and &3 are finally calculated by

Egs. (2.12) and (2.13)

al.= AE(ql) = Aql

(o)
Il

5 = A[-B(qy)] = A(1-§;)

Q>
Il

o = B(-E(ap)-1+8(qy)) = AE(gy)-B(a)) = A(Gy-Gy)  (4.4)
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As an example, consider the distribution of item perfor-

mance rates for Test 2 Model II. The observed variance

ﬁ(T) = 75.20 and the estimate of the conditional variance
V(qul,q3) = 12.78. Using (4.3), A& = 21.04, al = .820,
A A A )

a3 = 19.14, a, = 1.07, V(ql) = .007 and V(q3) = .037.

That is, there is not too much variance in items due to the

output factor, but a noticeable variance due to carry.

III.5 DISCUSSION AND CONCLUSIONS

II1.5.1 The Conditional Models

The results of this study demonstrate that asymp-
totic performance data, in the context of computer-assisted
instruction in elementary mathematics, can successfully be
accounted for by probabilistic automaton models with few
parameters.

Educationally more important is the fact that these
models serve as excellent tools for determining the struc-
tural features of items. There is no doubt that being able
to identify these features is a prerequisite if one is to
use difficulty factors in order to develop a sound theory
of instruction as well as sensible testing procedures.

The main conceptual strength of these models is their
ability to provide explicit temporal analysis of the steps
being taken by the student in solving a problem. The anal-
ysis which led to Performance Model III is a case in point;

we were easily able to determine that a no-carry difficulty

is raised only if a carry was previously encountered. The

75




advantage provided here in identifying the latent structure
of the data seems to be more impressive than the gain pro-
vided, say, from a Factor Analytic approach.

From the point of view of an analysis of variance, a

second advantage of Performance models is immediate descrip-

tion of the models' adequacy. Let the total error statistics
T Dbe a linear combination of the errors due to n variables
X

n
X .» X and an error variable ¢, i.e., T=§:Xi-+€.
=~

ll 2'
If the Xi’s and ¢ are mutually independent, then

E(T) = E(X.) + E(e¢) (5.1)

and n
V(T) = D V(X;) + V(e) (5.2)
i=1

The additivity and independence assumption may now be tested

bynanalyzing the observed discrepancy between V(T) and

i=1 v (Xi) :
This procedure was actually used in our data, where Xl
was the total errors due to output, X was the total errors

2
due to carry-output. The magnitude of the observed V(¢)

was less than 20 per cent of the total variance, V(T).

III.5.2 The Unconditional Models

One gquestion remains to be answered: can we im-
prove the predictions when item differences are considered?
- The unconditional predictions, (3.5), depend on the expec-

tations E(ql) and E(q3). We can always do as well as

bl

the conditional predictions by letting ﬁ(qi) = ai‘ How—

ever, as long as our estimation procedures are based on the

first moment estimates we cannot improve the prediction.
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The obvious question now is: can we estimate E(qi)
by some other method. Toward this end, we tried to estimate
Oy az, and a3 by maximizing the unconditional likeli-
hood, i.e., the-integral of (2.1) with respect to the Dirich-
let prior, and had exactly the same results that we arrived
at by the moment estimation procedure. The reason we arrive
at the same results using the two estimation methods is due
to the fact that the estimators are a function of the mean
total errors only.

Theoretically, item differences should have an effect

on the predictive power of the models. This is so in view

of Eq. (2.14) which can be written as

E(q;) [-E(q;)] = (A+1)V(q;).

In other words, unless the variance V(qi) = 0, E(qi) does
depend on item differences, since the E(qi)'s are a func-
tion of V(qi)'s.

In general, we may conclude that the properties of the
models are sensitive to item differences - to the degree that
such differences exist. This fact is demonstrated by noticing
the weight attached to the V(qi)'s in the expression for
the variance of total errors, V¥*(T), in Eq. (3.6).

The aggregate of item differences is expressed as the

sum of differences in each performance category. By observ—

ing the discrepancy between the conditional variance of total




errors for each factor V(Xifqi) and the observed variance
of total errors due to each factor, we may decide the source
of differences between items.

It is true that as qi~aO this difference for factor i,
e.g., carry, is small. The converse is not true however: q;
may approach unity and V(qi) may still approach zero. Item
differences may, therefore, be viewed as a convex function
of correct and incorrect responses summed over performance
factors. For either extreme of the function, all responses
correct or all responses incorrect, there are no item dif-
ferences for that factor. We had exactly this situation in
mind when we discussed the limiting behavior of the prior
distribution in Section III.2.3.

The output performance factor serves as a good example.
It has a Beta prior distribution with parameters (.8,20.2).
The total probability is concentrated toward dq;, = 0. 1In
addition, the discrepancy between the observed output vari-
ance and the conditional output variance, V(Xl]ql) is very
small. The same discrepancy between the output-carry vari-
ances was ten times as large.

Having the exact prior distribution on performance rates
will enable us to derive the posterior distribution of these
rates after a new presentation of items. Future extensions
may include, therefore, sequential instruction strategies

based on Bayesian procedures.
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APPENDIX

THE XZ MINIMIZATION PROGRAM

The tables included in the appendix present two or
usually three of the best sets of prior parameter estimates
for both the OEM* and the IM* for all eight experiments.

For each model—experiment compbination, 16 in all, each table
of the appendixfdescribes also the predicted frequencies

of the O, events based on the first set of the "refined point"
listed, which is not necessarily the best set of estimates

of r,s,mand n in that table. Also listed are the prior
means and variances of ¢ and g associated with this

set of estimates.

The numerical computations were written in Fortran IV.
The program was adapted to be run on the PDP 10 at the
Institute for Mathematical Studies in the Social Sciences,
Stanford University.

The program itself consists of two subprograms. The
first, named Paraest and written by Tom WickensT, is
a routine which utilizes general hill-climbing procedures
to find the minima of an arbitrary function over a multi-
dimensional space. Values of the function are provided by
the second subprogram, Stat, which was written by the
present author. Stat calculates the XZ values (Eg. 3.2)

associated with the predicted O, values which are

TDepartment of Psychology, UCLA
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calculated in turn by the equations of Tables 3.3 or 3.4 —--
for given values of r, s, m and n. The author provided
the range of the search space for each parameter. It was
determined from a few pilot runs that the range of 0.5 to 70
was wide enough. The range of the search is tabled under
the heading of Minimum and Maximum. The precision was
controlled to 0.5, i.e., the worst estimate would be accurate
up to 0.5.

Paraest takes over by first calling for function values
at points in a rectangular grid over the relevant portion
of the parameter space. From this scan a number of points
are selected which give the smallest x2 values, supplied
in turn by Stat. The best points are denoted as Scan Points.
A second routine, Refine, works from the previously given
estimates of the minimum. Function values are called at
points around the estimate, along each of the parameter axes,
and from these values the gradient of the function is esti-
mated at the original point, and a “"downhill" direction
found. Proceeding along the gradient a minimum is approached.
The points calculated by the refine procedure are denoted
as refine points.

Since Paraest calls on Stat for each new parameter
value on the grid from 0.5 to 70 with increments of size l,_
Stat is called about (70)4 times by the Scan procedure alone.
Each of the 16 O predictions calls for a product of two

Betas, i.e., 6 products and ratios of the Gamma function.
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Thus, the number of subroutine calls for the Scan procedure
alone is about 2.5 million. This rough calculation should
serve as an indication of the amount of time that was required
to run each and every experiment.

Finally we would like to make a rémark associated with
the results for OEM* experiment Ia. In this appendix there
are two tables given for the OEM* experiment Ia. The result
of 5.10 for the minimum XZ given in the first table seems
out of place with respect to the Scan value of 40.766 for
almost the same parameter estimates. The same experiment
was run, therefore, a few more times and the xz value reached
usually as low as 7.15, the value listed in the second
table of experiment Ia. The parameter estimated in both

tables are almost the same but the value of the prior variance

of ¢ went down from .00531 to .00237 as noted in Table 3.7**,
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JEM PRIBABILITIES

TNPUT DATA:
1.230007+02
3, 00000E+00
7.00000E+00
1. 20000E+00

POINT
nEF

RIS
ok
n
]
"
Y
CHI-SCUARES.

POINT NO.:
DEFN

2N

CYWI-SOGUARE.

POINT NO.:
DEFN
R

o
2

¥
N
CHI-SQUARE:

3,.,00000E+00
5.NCN00Z+00
2.00000%+02

]
SCAN POINT
6. 250N0F+01
5.45000E+0]
3.35000FE+01
5.95000E+0]
N, TIRINZE+D]

o

SCAN POINT
6.25000E+01
5.85000E+31
3.35000E+01
6. 15000E+01
J.71223E+0]1

3.
SCAN POIN
5.85000E+01
5.45000E+01
3.35000E+01
§.15000E+01
0.71863E+0]

PROGRAM WILL FIND A

6.30000E+00
2 .00000E+00
1.5C000%+01

PEFIMNE POINT
§.152207+0]
5.75000E+0 1
3.35000E+ 7
6.00000E+01
0.71673E+0]

REFINE POINT
6.18706E+0]
[ ¥ ] +

L+01

. 149 1

. + l
S ———
REFINE POINT
5.82500E+01
5.47500E+C 1
3+.40000E+0}
6. 10000E+01
0.71675E+01

FLOATING CONSTANTS: . 0,23400E+03
THE OPTIMAL EXPECTED FREQUENCIES ARE:

3¢ b=
978 E+00
0¢ 5)=
F22E+00
D¢ Q)=
e2E+00
o¢13)=
QrR2E+N0

THE PRTNR MEANS ARE:

THE VARIANCES ARE:

1.39493E+01

1e31444E+01

1.26656E+02 0¢ 2)=

0C 6)=

3.967T04E+01 0C10)=

aCl4)=

\UG=

2.73512E+00 0¢(
2.5197€E+00 0C T)=
2.51978E+00 0O(l1)=
2.359782E+00 0(i5)=

A1 NT UM,

| L00000E+00 1.600C0E+C |

4.30000F+01 1.50000E+0Q

0.00000E-01 6.30050E+00
MINIMUYM  9AXIMUD  PRECISIGi
5.25E+01 7,00E+01 5.00&-01
5.25E+0] 6§.53E+21 5,00Z-0l
2J05E+01  3.40E+01 5.00c-0l
4.05E+01 6.50E+01 5.00&-0l
MINIMUN  MAXIMUM  PRECISION
5.25E+01 7.00E+01 5.00E-ul
5.25E+01 6.50E+0] 5.00E-0l
2.05E+01 3,40E+01 5.00E-01
4.05E+0] 6.5CE+01 5.00E-0I
MINIMUM  MAXIMUM PRECISION
5.256+01 7.006+01 3.00£-01
5.25E+3]1  6.50E+01  3.00 -0l
2.05E+01 3.40Z+01 5.00E-01
4.05E+01  6.50E+01 5.00E-0]

3)=

Gz.,51681E+00 C=,35829E+00

L08I0E-02 VCz ,24330E~-02

5.52943E+00 O( 4)=
5.13522E+00 0C €) .
5.13522E+00 0(l2)=

4,92923E+00 J(1&8)H=

[\N]
L]
wr

2¢39
2438

2435




OEM EXPERIMENT la

input datac
1.23000e+02
3.00000e+00
7.00000e+00
1 ,00000e+00

noint no.¢
defn
r
"8
1
n

chi-squares

point no.$
defn

S B8 wY

chi-square?

o(.1)
ol 5
o( 9
' o(13

i onou

— e

floating constantse

program will find a minimum,

3.00000e+00 6,00000e+00 1.00000e+00 1.60000e+01
5.00000e+00 2,00000e+00 4,30000e+01 1,00000e+00
2.00000e+00 1,50000e+01 0,00000e-01 6,00000e+00

1
scan vint refine point minimum
5.40000e+01 5.39378e+01 5, 05e+01
5.35000e+01 5.35953e+01 4,85e+01
1.56000e+01 1.54437e+01 1,45e+01
2.75000e+01 2.70939e+01 2,.65e+01
0.4075% 402 0.53174e+01
- 2
scan point refine point: minimun
5.50000e+01 5,50000e+0 5,05e+01
5.35000e+01 @gs__sazﬁ 4.85e+01
1.55000e+01 1.,45e+01
2.75000e+01 2,71251e401 2.65e+01
e — .

0.40766e+02 0.51044e+01 %%
0., 23400e403

the optimal exvected frequencies are:
1.25499+02 o 2)=
1.4250ie+01 o{ 6)
4,06220e+01 o(10)
1.43716e+01 o(14)

1.90450e+00 o 3
1,86986e+00 o 7
1.86986e+00 of11
1.90449e+00 o(15

no
— e e

nweonn

the prior means are: g=,50159e+00 c=.36306e+00

the variamces ares vg= .23034e-02 vc=.53114e-02

(o¢]
o.

w
Do

maximum precision
5.00e+01 5.00e-01
5,50e+01 5,00e-01
2,00e+01 5,00e-01
3,00e+01 5, 00e-01

maximam
5.50e+01
5, He+01
2.00e+01
3, 00e+01

precision
5.00e-01
5, 00e-01
5,00e-01
5, 00e-01

5.98323e+00 o 4)= 1, 86986e+00
5.94860e+00 o( 8)= 1,90448e+00
5.94860e+00 0(12)= 1.90449e+00
6.13716e+00 0(16)= 2,01230e+00




eARER

irnut dats s
1 25000e+02
3.,00000e-01
1.00000e+01
7.00000e+00

~0int no.:

e fn
r

S
1
n

chi-sruares

point no.:

defn
r

S
1
n

chi-square:

roint no.:

de fh

=S 3 ;S

chi-square:

floatine constantss

ARM BYPERIMFNT 1%

nroeran will find a minimam,

1,00000e+01 4,00000e+00 2,10000e+01
8,5000e+01 5,00000e+00

maximum

6.50e+01
7.,00e+01
4.00e+01
8.00e401

" max imum

€.50e+01
7.00e+01
4,00e+01
8.00e+01

maximum
6,50e+01
7.00e+01
4 00e+01

rrecisior
5.00e-01
5, 00e~-01
5.00e-01
5, 00e-0.

precision
5.00e-01
5,00e-01

5, 00e-01
5,00e-01

nrecisior
5.00e-01
5, 00e-01
5.00e-01

3.60070e +20
£,00000e+00 3,00000e+00
2.00n00e+00 3,00000e+01 1,00000e+00 6,00000e+00
1
scan mint refine moint minimum
5.60000e+01 5,56R75e+01 5,35e+01
£.,50000e+01 E.50000e+01 6,25e+01
3.10000e+01 3,10000e+01° 2,85e+01
7.,10000e+01 €,97500e+01 6.35e+01
0.20289e+02 0, 20263e+02
2
scan noint refine point min imum
5.60000e+01 5,47500e+01 5,.35e+01
6.50000e+01 6,37500e+01 6.25e+01
3.10000e+01 2,97500e+01 2.85e+01
6.,80000e+01 6,72500e+01 6 ,35e+01
0.20607e+02 0,20291e+02
3
scan voint refine point minimum
5.60000e+01._5,4127%e+01  5,35+01
E.50000e+01 6,31230e+ 6.25e+01
3.60000e+01 3,412 e+Ur" 2.85e+01
7.60000e+01 7.6625%6+01 6.35e+01

0.20681e+02 O, 20210e+02*

0.28800e+03

the ontimal exvected frequencies are:

o(1)=
o( 9)=
o( 9)=
0(13)=

the nrior means aret g=

1.21815e402 o 2)=
1.72090e+01 of 8)=
4.99261e+01 o(10)=
2.017a7e+01 0(14)=

3.60557e+00
4,12511e+00
4,12511e+00
4 ,87583e+00

nnoan

)
)
o(11)
)

+4F142e+00 c=,30769e+00

the variances ares: ve= .20422e-02 vc=.20935e-02

3,00e+01

6.89969e+00 o 4
7.9603%e+00 o 8
7. R 038e+00 o(12
9.4R901e+00 o(16

5.00e~-01

i

innnn

4,12511e+00
4,87553e+00
4,87553e400
5.95351 e+00




OF EXPFRIMENT

inmt data
Z.0300%e+02
1,70000e+01
2.,50000=s+01
1 90" Ne+01
roint no.t
defn
r
s
m
n .
chi-souare ¢

~oint no.:
defn
r
S
m
n
chi-squares

roint no.?
defn

r

s

m

n
chi-square:

floating constants:

1.,40000e+01
3.,200002+01
1.700002+401

IT

rroeram will find a minimum.

1.90000e+01
€,10000e+01

1
sc2n noirt refine moint
5,00000e+01 4,92939%+01
5.50000e+01 5,50000e+01
1.40000e+01 1 ,4FA8Re+01
4,50000e+01 4,43011e+01
0.i2724r+401 0,4518%2e+01

2
scan nint refire wint
4,50000e+01 4,45442e+01
5,00000e+01 5,00894e+01
1,40000e+01 1,44051e+01:
4,50000e+01 4,36130e+01
0,53055e+01 0, 44951e+01

3

scan noint refine vroint
4,50000e+01. 4

5.50000e+01 5,40384e+01
1.40000e+01 40 028e+
Z.IﬁBgaUT
C.83330e+01 44541 e+

4.00000e+01
0,78000e+03

the optimal exvected frequencies are:

o( 1)= 3,08104e+02 o( 2)= 1.43289e+01 o
o( 5)= 4,99162e+01 o 6)= 1.56436e+01 o
o 9)= 1.25502e+02 0(10)= 1.56436e+01 o
o(13)= 5,58626e+01 o0(14)= 1,77294e+01 o

1,20000e+01 5,40000e+01

min imum
3,75e+01
4,25e+01
1, 15e+01
3,75e+01

minimuam

3,75%+01
4,25e+01
1,15e+01
3,75e+01

min imum
3, 75e+01
4,25e+01
1 .15e+01
3,75e+01

+

(3
(7
(11
(15

N at? S e
nmwnn

the prior means are: g=.47264e+00 c=,24875e+00

the variances aré: = , 23672e-02 vc=,31181e-{2

88

94

2.00000e+01

1.90000e+01 1,235000e+02 1,500N0e+01
1,9000ne+01

maximum vprecision
5, 00e-01
5,00e~01
5, 00e-01
5.00e-01

5,00e+01
5,50e+01
2,00e+01
5,00e+01

" maximum

&,00e+01
5, 50e+01
2,00e+01
5,00e+01

max imum
5, 00e+01
5, 50e+01
2.,00e+01
5,00e+01

2,3R237e+01 of.
2.,50%30e+01 of

2,59930e+01 o1
2. %% 7e+01 o 16

vrecision
5,00e-01
S, 00e-01
£.00e-01
3. 00e-01

nrecision
5, 00e-01
5.,00e-01
5,00e-01
5.00e-01

4
8
2

R

i

1.5643€e+01
1,77294e+01

1,77294e+01

2,08606e+01

e r——




input datas

1 ,80000e+02

£ ,00000e+00

2.70000e401

3,60000e+01
roint no.t

noint nn.s

chi saquare:

chi square?

OFM EXPERIMENT I1I
vrogram will find a minimum,

1.3M000e+C1  1,80000e+01
1.80000e+01 7,00000e+00
1.40000e+01 3,30000e+01

1
scan voint refine voint
3.00000e+00 2 ,68750e+00
3.00000e+00 3,31250e400
8,00000e+00 2.31250e+00
4,80000~+01 4,67500e+01

0.28432+02 0,23181e+02

z
scan noint refine point
3.00000e+00 2682800400
~3,00000e+00
3.000002+00 3125
1.20000e+01 1,675

0.28699%e+02 0,229€3e+02 v

3
scan moint refine wint
3.00000e+00 2 ,68750e+00
3.00000e+00 3. 00000e+C0
8.00000e+00 £,00000e+00
4,30000e+01 4,42500e+01

0.25951e+02 0, 230€7e+02
floating constantss 0,48000e+03

the optimal exnected freauercies are:
3.083096-01 o 2)= 2,5411Re-02
5.78657e~-02 of 6)
1.32075e-01 0(10)
7.155/R4e-02 o(14)

2,33788e-02
2,33788e-02
3, %813e-02

o

89

1,10000e+01 2,40000e+01
5.70000e+01 9, 00000e+00
2,50000e+01

minimum

5.00e-01
5.00e-01
5, 00e-01

minimum
5,00e-01
5,00e-01
5, 0Ne-01
5,00e-01

minimun

. 5.00e-01

5, Me-01
5, 00e-01
5, 00e-01

Natt? Nt Nt “vat?
o

the rriormeans ares £=,44792e+00 ¢=.15096e+00

variapces ares ve= ,35327e~01 ve=,228R3e-02

)

2,40000e+01

nrecision
5.00e-01 6,00e+01 5,00e-01

vrecision

nrecision

2,3378%e-02
3.36813e-02
3.,36813e~-02
7.91120e~02

3, 43733e-02 ol 4
3,3850%e-02 o 8
3.385%%e-02 o(12
5, 4305e-02 o(16

T TR
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O™ PROBABILITIES EXPRRIMENT IV
rroeram will find a mirimum,

inmut data:
1.,17000e+02
3.,00000e+00
2.79000=2+00
1.,200007+401
noint no. ¢

3.00N00e+00
1,0000ne+01
1

1.,00000e+01

3,40000e+01

1,00000~+00 1.50000e+01
9.000NNe+00 6,00000e+00 5,40000e+01 7.00000e+0C
8,00000e+00  2,20000e+01

Aafn scar roint refine voint minimum
r 1.,30000e+01 2687%e+01 1, 05e+01 2,20e+01
3 2.20000e+01 | 1,95+01 3,00e+01
m 2,40000e+01 ,40000e+01 1,65e+01 3,00e+01
n 2,80000e+01 6 JZ827Z6es01  4.55e+01 7.00e+01
chi-snuaret 0,12647e+02 0,12532e+02 "
moint no.:? 2
defn scan mint refine wint minimum maximum
T 1.,.0000e+01 1,33125e+01 1,05+01 2,20e+01
s 2,2000Ne+01 2,16975+01 1,95e+01 3, 00e+01
m 1.920000e+01 1.50Nn00e+01 1,65e+01 3,00e+01
n 5.30000e+01  5,33125e+01 4,85e+01 7,00e+01
rhi-sanare: 0.127%4e+02 0,12F32e+02
roint no.? 3
jefn scan noint refine voint  nmirimum maximum
r 1,30000e+01 1.33125e+01 1,05e+01 2,20e+01
s 2.20000e+01 2,168975e+01 1,95%+01 3,00e+01
m 2,40000e+01 2,27500e+01 1.65e+01 3,00e+01
n 3,30000e+01 € ,33125e+01 4,85e+01 7,00e+01
chi-sauare? 0,12993e+02 0,1256Fe+02
floating constants: 0.32000e+03
the ontimal exvected frequencies are:
o( 1)= 1.18415e+02 o 2)= 3.4R032e+00 o( 3)= 6.,37500e+00 o
o( 5)= 1.r283e+01 o €)= 5.12421e+00 o 7)= 9,75577e+00 o
o( 9)= 5.45882e+01 0(10)= 5,12421e+00 o(11)= 9,75577e+00 o
o{13)= 2,73329e+01 o{14)= 8.51698e+00 0o(15)= 1,68218e+01 o
the »rior meamns are: ~=,37944e+00 c=, 2617Fe+00

the variances are?! ve= ,68375e-02 ve=, 20849e-02

maximum nmrecision

5, 00e-01
~5.,00e-01
5.00e-01
5.,00e-01

precision
5.00e-01
5. 00e-01
5.00e-C1
5,00e-01

vrecision
5. 00e-01
5. 00e~01
E.00e-01
5,00e-01

i nn

5.12421e+00
8,5162€e+00
q,51R96e+00
1.950431e+01




of 1)=
o &)=
o 9)=
0(13)=

i nrut Aatas
2.20000e+01
2.10000e+01

OrM EXPERIMENT Va

1.10000a+01
2.000n0e+01

nroeram will find a minimum,

1,40000e+01
35.10000e+01

3.40000e+01 1,8000n0e+01 3,40000e+01

€.20000e+01

mint no.t
Ae fn
r
s
o
n

chi-souare?

roint no. ¢

de fn
r

S
i
n

chi-square?

voint no.t

de fn
r

s
m
n

chi-snuares

floatine constantst

1
scan rvoint
6.50000e+00
1.050002+01
?2.90000e+00
2.25000e+01

refine moint

£.50000e+00
e+

2.50000e+00
« 15000e+

—————

1.30000e+01

2,20000e+01

5.80000e+01 1.30000e+01
2.10000e+01 2,60000e+01

minimum
5.00e-01
5, 00e-01
&,.00e-01
S, 00e-01

0.21670e+02 0,21360e+J2

2
“scan voint
€ .50000e+00
1.05000e+01
2 .50000e+00
1.85000e+01

refine voint:

6.50000e+00
1.02500e+01
2.,25000e+00
1.98000e+01

minimum
5,00e-01
5.00e-01
5,00e-01
5.00e-01

0.23149e+02 0.21430e+02

3
scan noint
-1.05000e+01
1 .85000e+01
2.50000e+00
21.88000e+01

refine point
1.07304e+01
1.,76411e+01
2 474 48e+00
1.99786e+01

minimum
5,00e-01
5, 00e-01
5.00e-01
5. 00e-01

0.2321€e+02 0,21920e+02

0. 48000e+03

the optimal exnegted freouencies are:

the

8.54230e+01 o 2)=
2.3027e+01 of 6)=
4,950864e+01 0(10)=
3.51244e+01 0(14)

1.18764e+01 o 3
1.60681e+01 o 7
1.60681e+01 o(11
2.67802e+01 o(15

N e e o

1
2
2
-3

rrior means are: £=,38235e+00 c=,10417e+00

the variarces are: ve= ,13120e-01 vc=.37326e-(2

91

97

5.00e+01
5. 00e+01
2,00e+01
5. 00e+01

max imum
5, 00e+01
5,00e+01
2,00e+01
5.00e+01

maximum

5.00e+01
5,00e+01
2.00e+01
5,00e+01

47279401 of
04404401 of
.04404e+01 of
51884 e+01 of

maximum vrecision

5,00e-01
5, 00e-01
5.00e-01
5, 00e-01

nrecision
5,00e-01
5.00e-01
5.00e-01
5,00e-01

nrecision
5.00e~-01
5,00e-01
5,00e-01
5,00e-01

1
1

4
8
2
6

N N e Nt

1.60681e+01
2.67802e+01
2,67802e+01
5.5€204e+01




oem experiment '7s ve

input data:

vroecram will find & minimum,

1.44000e+02 1,.80000e+01 2,30000e+01 9S,00000e+00 2,80000e+01
1.,40000e+01 1,20000e+01 1,30000e+01 6,20000e+01 1,40000e+01
2.,50000e+01 1.40000e+01 2.80000e+01 2,00000e+01 2,10000e+01
3.50000e+01
point no,. 1
defn scan voint refine point  minimum maximum precision
r 3.00000e+00 3,00000e+00 5,00e-01 4,00e+00 5,00e-01
s 3.,00000e+00 3,00000e+00 5,00e~01 4,00e+00 5,00e-01
m 2.00000e+00 2.00000e+00 5,00e-01 5,00e+00 5,00e-01
n 1,30000e+01 1.,27500e+01 9,50e+00 1.40e+01 5,00e-01
chi-square: 0.10002e+02 0,99184e+Ul
point no. ¢ 2
defn <can voint refine point minimum meximum precision
r 3,00000e+00 3,00000e+00 5,00e~01 4,00e+00 5,00e~-01
s 3.00000e+00 3,00000e+00 5.00e-01 4,00e+00 5,00e-01
m 2.00000e+00 2,00000e+00 5.00e-01 5,00e+00 5,00e-01
n 1.20000e+01 1,22500e+01 9,.50e+00 1,40e+01 5,00e-01
chi-square? 0.10010e+02 0,909176e+01 x
Ofloatine constants: 0.480006+03 — —
0 the optimal exmected frequencies are:
o( 1)= 1,43899e+02 o 2)= 1.68473e+01 o 3)= 2,06982e+01 o 4)= 1.34779e+01
of 5)= 2,99663e+01 o 6)= 1,38779e+01 o 7)= 1.73287e+01 o( 8)= 1.68473e+01
o{ 9)= 5.63100e+01 0(10)= 1,34779e+01 o(11)= 1,73287e+01 o(12)= 1.68473e+01
0(13)= 2,96861e+01 o(14)= 1,M8473e+01 o(15)= 2,32654e+01 o(16)= 3,36947e+01

the rrior means -are: ==,50000e+00 ¢=.13559e+00

the variances are: ve= ,35714e-01 vc=,74418e-02
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O

inrut data:

EXPERIME Ve

oroeram will find a min

imun.

2.1900e402 4.07000e+00 1.,70000e+01 £,00000e+00 3,40000e+01
1 £0000e+01 1.,20000e401 1,20000e+01 6,60000e4+01 4,00000e+00
1.70000e4+01 7.00000=+00 2.90000e+01 8,00000e+00 1,90000e+01
1 .30000e+01
vwint no,t 1
de fn scen mint refine voint mirimum maximum vrecision
r 1.0%000e+01 1,05000e401 5, 00e-01 5. 00e+01 5, 00e-01
s 1.05000e+01 1 00 e+ 5.00e-01 6,00e+01 5,00e-01
n 3 .00000e+00 3, 00000e 5,00e~-01 3,00e+01 5, 00e-01
n 8.00000e+00 8&.000006+00 5.00e-01 5.00e+01 5,00e-01
.d——
chi-sauare:  0.17691e+02 0.17691e+02%
—“.—~
noint no.: 2
de ®n scan roint refine point - minimum maximum vorecision
r 1.45000e+01 1,45000e+01 5,00e-01. 5,00e+01 5,00e-01
S 1 A5000e+01 1.45000e+01 5,00e-01 €,00e+01 5, 00e-01
m 3.00QOOe+00 3, 00000e+00 5.00e-01 3,00e+01 5,00e-01
n 8,00000e+0C 8,00000e+00 5,00e-01 5,00e+01 5,00e-01
chi-sauares 0,17737e+02  0,17737e+02
mint no.? 3 .
de fn scan oint refine wint mipimum maximum nrecision
r 1 .85000e+01 1.82500e+01 5,00e-01 5.00e+01 5, 00e-01
S 1 .85000e+01 1.85000e+01 5,00e-01 6,00e+01 5,00e~01
m 3.00000e+00 3,00000e+00 5,00e-01 3.00e+01 5, 00e-01
n 8,00000e+00 8,00000e+00 5,00e-01 5,00e+01 5,00e-01
chi-square:  0,17849e+02 0.17832e402
floati v constantss 0.48000e+03
the ootimal exnected frequencies ares
o 1)= 2.00111e+02. o 2)= 9,.83391e+00 o 3)= 1.4963 e+01 of 4)= 9,04720e+00
of 8)= 2,9401€e+01 o{ 6)= 9,04720e+00 o}( )= 1,41966e+01 o( 8)= 9.83391e+00
ol 9)= 7 250380e+01 o(lO)= 9,04720e+00 o(11)= 1.4196Fe+01 o(12)= 9, 83331e+00
0(13)= 2.99881e+01 o(14)= 9,.83391e+00 o(15)= 1,59641e+01 0(18)= 1,26436e+01

the rrior mears ar & ==,50000e+00 c=, 27273e+00

the variances ares ve= ,11364e-01 vc=.,18529e-01

93
99




LINZAR MODZL

INPUT DATA:
}.23000 02
3,00000£+00
7.00000 00
1.00000E+00

POINT NO.:

DEFN

< =X W0

CHI-SAQUARS:

POINT
DEFN
R

~
2

M
N

CHI-SQUARZ:

POINT Y0.:

DEFN
R
)
M
N

CHI-SQUARE:
FLOATING

THE
oC 1)=
495 E+00
3¢ 5)=
91654+00
(¢ 9=
675 £+00
0(13)=
316 E+00

THE PRIDJR MEZANS ART:

THE VARIANZES ARE:

NO.:

CONSTANTS:

OPTIMAL
1.12466E+02

1.31023E+01
4,43742
1.26921

EXPERIMENT IA

3.00030E+00
5.00000E&+00
2.00000E5+00

1
SCAN PJINT
6.50000 E+00
1.450008+01
2,50000 E+00
2.,50000E+00

0.12091 =02

2
STAN POINT
1.05000E+01
2.25000&+01
2.500030 =00
2.500300 %00

0,121 77E+02

3
3CAN POINT
1.45000Z01
3.05000e+01
2.50000E+00
2.500008&+00

0.12250e+02

nC 2)=
0C 6)=
=0l 0Ciod=

01 0Cl4)=

V6= ,10425E-01

PROGRAM WILL FIYD 4 MINIMUM.

6.00000 E+00
2.00000%+00
1.500005%+01

REFINE POINT
6.25000E+00
1.35000E+0!
2.25000E+00
2.25000E+00

0.11632502

REFINE POINT
%.32240E+00
2.23350E+01
2.09324L+00
1.965405+00

0.10717E+02

REFINIE POINT
1.,35913EL
o LA
. 93143E+00

7583 7E+00

1.00000E+00
4,30000E+01
0.00000E-01

0.10317E+02

0.23400%+03

ZXPECTED FREQUENCIES ARE:

5.1 734T7E+00
2.49325E4+00
4,43735E4+00

2.3553!1 E+00

MINIMUM  MAXIMUM PRECISION
5.00E-01 6.005+01 5.00%-01
5.00F-01 6.005+01 5.00%-01
5.005-01 3.50f+01 5.008-01
5,00E=01 5.00F+31 5.00E-0I
MINIMUM  YAXIHUM PRECISION
5.005-01 6.00E+0] 5.00%-01
5.00E-01 6.007+0] 5.00E-01
5.00E-01 3.508+01 5.00E-01
5,008-01 5.005+01 5,00%-01
MINIMUM  MAXIMUM  PRECISION
5.00E-01 6.00&+01 5.00E-01
5.003-01 6.005+01 5.00%-01
5.00E-01 3.50701 5.00%-01
5.00Z-01 5.005+01 5.00%-01
0C 3)= 9.110355+400 9C 4)= 1.60
0( 7)= 3.23023E+00 0C 2)=  1.23
O(11)= 7.1435TE+00 9(12)= 1.92
N15)z 4.15112E+00 2(16)= 1.89

5z.31646%5+00 £=,500002+00

VC=,45455E-01

1.60000F+01
1.00000%+00
§.00000%+00




LINZAR MODzL EXPERIMENT

INPUT DATA:
1.25000 %02
0.00000%-01
1.00000E+01
7.00000E+00

POINT NO.:
DEFN
R
S
M
'
CHI-SQUARE:

POINT NO.:
DEFN
R

S
L

“
CHI-SQUARE:

POINT NO.:
DEFN
R

S

M
N

CHI~SQUAR

[*]

FLOATING CONSTANTS:

I3

3.00000%+00
6.00000E+00
2.000002+00

1
SCAN POINT
3,00000E+00
2.30000%01
3.000002+00
3.000005+00
0.21814E£+02

2
SCAN POINT
8.00000 &+00
5.20000E+01
3.00000T+00
3.00000E+00
0.21838E+02

3
SCAN POINT
3.00000&+00
1 .30000E+01
3.000005+00
3.00000 00
0.21927E+02

PROGRAM WILL FIND A -MINIMUM.

1. 00000E+01
3.00000:z+00
3.00000E+01 "

0.23300 E+03

THE OPTIMAL EXPECTED FREQUENCIES ARE:

0C 1)=
982 =00
Q¢ 5)=
251 00
0C 9=
997E+00
0C13)=
154E+00

THE PRIOR MEANS ARE:

THE VARIANCES ARE:

2.23152 =01
§.54637E+01

2.27650E+01

1«11790E+02 2 2)=

I 8)=
C10)=

0o(l14)>=

VG=

REFINE POINT  MINIMUM  MAXIMUM PRZCISION
3.00000%+00 5.008-01 6.50E+01 5.007-01
2.175008+01 5.00E~01 " 6.50%01 5.00%-01
3.00000%+00 5.00E-01 6.50E+01 5,00%-0]
3.000008+00° 5,005-01 6.50%01 5,00%-0]

0.21773E+02

REFINE POINT  MINIMUM  ¥AXIMUM PRECISIOV
2.0000058+00 5.00E-0! 6.50%01 5,00%-0l
5.,76375E+01  5.00E-01 6,50E+01 5,00E-01l
3.00000E+00 5.00E-01 6.50FE+01 5,00E-0]
3.00000E+00 5.00E-01 6.50E+01 5.003-01

0.21338FE+02

REFINE POINT  MINIMUM  MAXIMUM PRECISIOY

- 2,68750E+00 5.00E-01 6.50E+01 5,00%-01
1.92500E+01 5.00E-01 6,50%01 5.,00E-0l
3.00000E+00 5.00%-01 6.50%01 5,003-01
3.00000E+00 5.00E-01 6.50E+01 5,00E-0l

0.21746E+02 a¢

5.30350E+00 OC 3)= 1.03136E+01 0C 4)= 1,65

2.96531 E00 O T)= 5,039258+00 9 3)=  1.56
6.55977E+00 0C11)= 1.15377E+01 0C12)= 3,04

5.13243E+00 0C15)= 3.140425+00 0C16)= 3,39

95
101

4,00000E+00
5.50000E+01
1 .000005+00

G=.12121E+00 C=,50000%+00

«41367E~02 VC=,35714E-0]

2.10000%+31
5.00000:=00
6.000007+03




livear model experiment II

Iinput datas
3 ,03000e+02
1 70000e+01
2,50000e+01
1 950000e+01
m'i nt no. H
defn
r
8
]

n
c¢hi-square?

roint no.t
defn
r
s
]
n
chi-squares:

roint no,$
defn
r
s
R
n
ch-squaret

rrogran will fimd & minisun,

1.40000e+01 1,90000e+01 1,20000e+01 &, 40000e+01
3,20000e+01 1.800006+01 1,25000e+02 1.50000e+01
1.,70000e+01 6.10000e+01 1,900008+01 3.000008+01

1
scan point refime point
3, 000000+00

1812448400
3,00000e+00 L.200418300
3.00000e+00

8.00000e+00 8
0.86053e+02 "t'i,eaaszmzt'

2
scan point refime poimt
3.000000+00 1,57223e400
3.00000e+00 1,6639¢6+00
8.00000e+00 6,569896+00
2.800000+01 2,685710e+01
0.102246+03 0,87666¢+02

3
scan point refime poimt
1.,30000e+01 1,204256+01
1.800000+01 1,63966e401
3. 00000e4+00 2.74300e+00
8.00000e4+00 7.108848+00

0.108306+03 0,996140+02

floating constants: 0,78000e+03
the optinal exvected frequencies are:

3.68286e401 o 3)=

ainizun

5,000-01
85,000~-01
5,00e~01
b, 00e~01

ainimun

5,000-~01
5,00e-01
5, 00e-01
5.00e-01

ninimam

5,00e-01
5,00e-01
5,00e-01
5,00e-01

maxizun

6.50e+01
6.50e+01
6.00e+01
6.50e+01

pax imum

6.500+01
6.508+01
6.006+01
6.50e+401

maximum

€ .50e+01
6,506+01
6.00e+01
6,.50e+01

o( 1)= 2.54012e402 o 2)=
o 5)= 6.887476+01 o{ 6)=
o 9)= 1,08577e+02 o(10)=
o(13)= 5,06643e+01 0(14)=

vrecision
5,00e-01
5.000-01
65.00e-01
5. 00001

precision
5.00e-01
5,00e-01
5. 00e--01
5.00e-01

pracision
5.008e-01
5. 00e-01
5.00e-01
5.000-01

4,913450401 o 4)= 1,38630e+01

1.840140401 of 7)= 2,415156401 o 8)= 1,117236+01
2.64311e+01 o(11)= 3,55757e+01 o{12)= 1.56793e+01
2,117286+01 o(15)= 2,79491e+01 0(16)= 1,95063e+01

the prior means are: g=,50375e+00 c=, 21813e+00

the variances ares vg= ,54252e-01 vc=,13853e-01




LINEAR MODEL EXPERIMENT III

inmt data:

1.60000e+02 1,30000e+01

program wil

1.60000e+01

6,00000e+00
2.70000e+01 1 ,40000e+01 3.30000e+01
3.60000e+01
noint no. ¢ 1
defn scan voint refine point
r 3.50000e+00 1.96468e+00
S 3.50000e+00 2.,01270e+00
m 3.50000e+00 2.06802e+00
n 2.15000e+01 1,99581e+01
chi-square: 0.10350e+03 0,35005e+02
voint no. 2
defn scan point refine point
r 3.50000e+00 1.13152e+00
S 3.50000e+00 1,14048e+00
m 3.50000e+00 2,06454e+00
n 2.75000e+01 2 ,43052e+01
chi-squares 0.11009e+03 0,66556e+02
voint no.t 3
defn scan voint refine point
r 3.50000e+00 9.61171e-01
S 3.50000e+00 1,12603e+00
m 9.50000e+00 6.35903e+00
n 6.35000e+01 6,30905e+01
chi-square: 0.11520e+03 0,67366e+02
floating constants: 0,48000e+03
the optimal expected frequencies are:
o( 1)= 9.,76817e+01 o( 2)= 2.68590e+01
ol 5)= 3.65672e+01 o 6)= 1.73762e+01
o 9)= 4.45329e+01 o(10)= 2,10997e+01
o(13)= 3,02255e+01 o(14)= 2,25753e+01

g

1 find & minimum.

1,10000e+01 2,40000e+01

1.80000e+01 7.00000e+00 5,70000e+01 9.00000e+00

2,50000e+01 2,40000e+01

minimum
5, 00e~-01
5.,00e-01
5. 00e-01
5.00e-01

maximum

6.60e+01
6.60e+01
6.60e+01
6.60e+01

max imum
6.60e+01
6.60e+01
6.60e+01
6.60e+01

min imum
5,00e-01
5.00e-01
5.00e-01
5,00e-01

X

max imum

6.60e+01
6 .60e+01
6.60e+01
6 .60e+01

min imum
5.00e-01
5,00e-01
5.00e-01
5,00e-01

o 3)=
of 7)=
o(11)=
o(15)=

3.10303e+01 of 4)=
2,025 1e+01 of 8)=
2.,48066e+01 o(12)=
2.68532e+01 0(16)=

the prior means are: #=,49396e+00 c=,338390e-01

the variances ares ve= .50220e-01 vc=,36947e-02
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nrecision
5, 00e-01
5.,00e-01
5, 00e-01
5.,00e-01

vrecision
5, 00e-01
5.,00e-01
5.00e-01
5.00e-01

precision
5, 00e-01
5.00e-01
5.00e-01
5.00e-01

1,48277e+01
1.53097e+01
1,874702+01
3.11588e+01




LI NEAR MODEL EXPERIMENT IV

program will

inmt data:
1.17000e+02 3,00000e+00 1.00000e+01
3,00000e+00 9,00000e+00
9.,00000e+00 1,00000e+01
1,20000e+01
voint no. 1
defn scan point refine voint
T 3.,00000e+00 1, 75000e+00
S 6.30000e+01 €,17500e+01
m 3.00000e+00 3,31250e+00
n 3.00000e+00 4.25000e+00
chi-squares 0.52%54e+02 0,42517e+02
point no.: 2
defn scan noint refine pint
T 3.00000e+00 1,75000e+00
s 5.80000e+01 5,67500e+01
n 3.00000e+00 3,31250e+00
n 3.,00000e+00 4,25000e+00

chi-scuare:
noint no, ¢

defn

r

S

m

n
chi-squares

floating constantst

-3, 00000e+00

0.53720e+02 0,424R3e+02
3

refine point
1,75000e+00
5.17500e+01
3, 31250e+00
4.,25000e+00
0.5465%+02 0,424556€+02

scan ooint
3.00000e+00
5.30000e+01
3,00000e+00

0.32000e+03

the optimal expected frequencies are:

o 1)=
o B)=
o( 9)=
o(13)=

8.62222e+01 of 2)=
2,55126e+01 of 6)=
7.39288e+01 0(10)=
3.,47323e401 o(14 )=

6.03138e+00 o
4,J7053e+00 o
9,90143e+00 o
g, 51865e+00 o

find a minimum,

1,00000e+00 1.50000e+01

6.00000e+00 5,40000e+01 7,00000e+00
3.40000e+01 8,00000e+00 2,20000e+01

minimum

5, 00e-01
5,00e-01
5, 00e-01
5,00e-01

6.,50e+01
6.50e+01
6.90e+01
6.50e+01

maximum

6.50e+01
6,50e+01
6.,50e+01
6,50e+01

minimum
5,00e-01
5, 00e~-01
5,00e-01

5. W0e-01

max imum

6.50e+01
6.50e+01
6.50e+01
6.50e+01

. ninimum
5, 00e-01
5,00e-01
5,00e-01
5,00e-01

A

1.16425e+01 o 4
7.03065e+00 o 8
1,74640e+01 0(12
1, 53633e+01 o( 16

( 3)=
(7)=
(11)=
(15)=

et e S N’

the nrior means are: e=,27559-01 c=,43802e+00

the variances are: ve= ,41550e-03 vc=, 28748e-01
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max imum vprecision
5,00e-01
5,00e-01
5,00e-01
5.00e-01

precision
5,00e-01
5,00e-01
5,00e-01
5,00e-01

vrecision
5.00e-01
5,00e-01
5,00e~01
5,00e-01

2.17928e+00
2,43101e400
5,40485e+00
8.56657e+00




LINEAR MODEL EXPERIMENT Va

inmut data:
8,20000e+01 1,10000e+01
2.,10000e+01 2,00000e+01
3,40000e+01 1.80000e+01
6,20000e+01
roint no. ¢ 1
1efn scan point
r 3.,00000e+00
s 3, 00000e+00
m 3.00000e+00
n €,30000e+01

chi-sausre:?

voint no.: -

e fn

r

s

m

n
chi-square?

roint no.:

defn
r
s
m
n
¢hi-square:

floating constants:

0.73757e+02 0,71624e+02

~

4
scan noint
3. 00000e+00
3.00000e+00
3,00000e+00
5.80000e+01

0.7506%e+02 0,70999e+02

3
scan point
3,00000e+00
3,00000e+00
3.00000e+00
5,30000e+01

program will find & minimum.

1,40000e+01

3.10000e+01 5,80000e+01

3,40000e+01

refine point
2.87151e+00
2.92304e+00
1.55779e+00
6.,15544e+01

refine point
2.84140e+00
2.93644e+00
1.56624e+00
5.66637e+01

refine point
2.22292e+00
2,20378e+00
1,28702e+00
5.12866e+01

1,30000e+01 2,20000e+01
1. 30000e+01
2,10000e+01 2.60000e+01

max imum

6.50e+01
6.50e+01
6.90e+01
6.50e+01

minimum

5. 00e-01
5,00e-01
5, 00e-01
5.,00e-01

maximum

6.50e+01
6,50e+01
6.50e+01
6.50e+01

minimum
5,00e-01
5, 00e-01
5, 00e-01
5, 00e-01

max imum
6.50e+01
6.50e+01
6.,90e+01
6.,50e+01

minimum
5. 00e-01
5,00e-01
5, 00e-01
5, 00e-01

0.77067e+02 0.6588le+02 »,-

0.48000e+03

the optimal exvected frequencies are:

1

the

6.40072e+01 o 2)=
3.12109+01 of 6)=
3.27737e+01 0(10)=
2,57891e+01 o(14)=

2.859775e+01 o 3)=
2,19%69%+01 o 7)=
2.31680e+01 o(11)=
2,76302e+01 o(15)=

2.433%6e+01 0(12)

mrior means ares ==,49555e+00 c=.24653e~01

the variances are: ve= .36791e-01 vc=, 3754903

99
1035

2.98238e+01 o 4)=

2,33531e+01 o(16)=

vrecision
5, 00e-01
5,00e-01
5.00e-01
5.,00e-01

precision
5,00e~01
5,00e-01
5,00e-01
5,00e-01

orecision
5,.00e-01
5,00e-01
5,00e-01
5,%0e-01

2.,08692e+01
2.,43700e+01
2.559701e+01
4,70836e+01




LI WAR MODEL EXPERIMENT Ve

program will find a minimum.

inmt data?
1 44000e+02 1.80000e+01 2.30000e+01 9, 00000e+00 2.80000e+01
1 .,40000e+01 1.20000e+01 1,300008+01 6.,200008+01 1,40000e+01
2,50000e+01 1.40000e+01 2,80000e+01 2.00000e+01 2.10000e+01
3.50000e+01
point no.? 1
de fn scan point refine point  minimum  maximum precision
r 1.00000e+00 1,00000e+00 5,00e-01 6,00e+00 5,00e-01
s 1.00000e+00 1,00000e+00 5,00e-01 6,00e+00 5,00e-01
n 1.,00000e+00 1,00000e+00 5,00e-01 6,00e+00 5,00e-01
n 5.00000e+00 5,00000e+00 5,00e-01 1.50e+01 5,00e-01
chi-squares 0.85497e+01 0,85497e+01
noint no.? 2
de fn scan point refine point pminimum maximum vprecision
r 1.00000e+00 1,00000e+00 5, 00e~01 6,00e+00 5.00e-01
8 1.00000e+00 1,00000e+00 5,00e-01 6,00e+00 5,00e-01
m 1.00000e+00 1,00000e+00 5,00e-01 6.00e+00 5,00e-01
n 6.00000e+00 5,75000e+00 5,00e-01 1.508+01 5,00e-01
chi-sauares 0.10069e+02 0,93614e+01
roint no. 3
de fn - scan point refine point minimwn maximum precision
r 1.00000e+00 00000e+00 5,000-01 6,00e+00 5,00e-01
s 2.00000e+00 Mgo 5.00e-01 6.006+00 5,00e-01
m 1 .00000e+00 L.mo 5.00e-01 6,00e+00 5,00e-01
n 3.00000e+00 Q,70000e+00 5,00e-01 1,50e+01 5,00e-01
chi-square: 0.11405e+02 0.68001e+01 Ly
floating constants: 0,48000e+03
the optimal expected frequencies are: i
o 1)= 1 51964e+02 o 2)= 2,09504e+01 o 3)= 2,60009e+01 o 4)= 9,65567e+00
ol 5)= 3.41039e+01 o{ 6)= 1.18701e+01 o 7)= 1.45974e+01 o 8)= 1.08572e+01
o 9)= 4.98104e+01 0(10)= 1,58462e+01 o{l1)= 2.01895e+01 o(12)= 1,41538e+01
o{13)= 2.74545e+01 o{14)= 1,80000e+01 o(15)= 2,25455e+01 o(16)= 3.20000e+01
the prior means are: &=,50000e+00 c=,16657e+00
the variances are: vg= ,83333e-01 vc=,19841e-01
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linear model exreriment Ve

inrut Aatas
2,16000e+402
1 .60070e+01
1 700000401
1 30000e+01
voint no.:
de fir
r
S
n
chi-square:

noint no.
defn
T
S
T
n
chi~square?

voint no.t
defn
T

S
m
n

chi-saquare:

floating constants:

4.,00000=4-00
1,200009401
7.00000e+00

1
scan point
3.00000e+00
3,00000e+00
3.00000e+00
8,00000e+00
0.72003e+02

2
scan noint
£.00000e+0N
8,00000e+00
3, 00000e+00
8,00000e+00
0.95963e+02

3
scan voint
3.00000e+00
3, 00000e+00
8,00000e+00
2,80000e+01

0.98463e+02

rocram will find & minimum,

1.70000e+01
1,20000e+01
2.90000e+01

refine wint

;.488268+OO
1, Le+ 00

2.22085e+00

0,4/046e+02

ESSEE—————

refine vpoint
€.75000e+00
€,75000e+00
2, E750e+00
7.P8750e+00
0,835024e+02

refine moint
2,90184e+00
2.,23053e+00
€,92337e+00
2 ,80307e+01

0,78800e+02

0.48000e+03

the optimal exnected frequencies are:

o( 1

ol 5
o( ©
3

o
—
=
N et et N

1.96020e+02 o 2)=
4,0765e+01 of 6)=
6.64048e+01 o(10)=
2.86660e+01 o(14)=

2.02032e+01 of
9.27299e+00 of
1.,389%79+01 of1
1,07777e+01 o(1

6,00000e+00 3.40000e+01
£.60000e+01 4,00000e+00

8.00000e+00

minimum
5, 00e~-01
5.00e-01
5, 00e-01
5,00e-01

ninimun

5,00e-01
5, 00e-01
5,00e-01
5, 00e-01

minimum
5, 00e-01
2,00e-01
5, 00e-01
5,00e-01

- gW»
Nt Nt St S
nunn

the mrior means are: #=,52123e+00 c=,25495e+00

the veriarices are: vg= ,64729e-01 vc=,1R09%e-01

2.78737e+01 of 4)=
1,25155e+01 o &)=
1. B1835e+01 o(12)=
1,45R99%e+01 o(17)=

1, 90000e+01

maximum vrecision
5,00e+01 5,00e-01
6.00e+01 5,00e-01
6.00e+01 5, 00e-01
6.00e+01 5,00e-01

maximum vprecision
6.00e+01 5,00e-01
6.00e+01 5, 00e~-01
6.00e+01 5,00e~-01
6.,00e+01 5, 00e-01

maximum vnrecision
€.00e+01 5,00e-01
£.00e+01 5,00e-01
£,00e+01 5, 00e-01
£.00e+01 5,00e-01

€.79735e+00
5,3251Ze+00C
7.75593e+00
3.81159e+00

.
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