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Bayesian estimation procedures derived by Owen (1969) were
summarized and numerically illustrated by means of simulation
methods. Procedures of data generation for simulation purposes were
also delineated and computationally demonstrated.

The logistic model basic to the Bayesian estimation procedures
was shown to be explicit with respect to the probability distribution
from which one is sampling. This feature of the model allows for an
assessment or evaluation of its capabilities sans empirical data.

The fit of the model to empirical data was discussed as an issue inde-
pendent of considerations as to model capabilities.

Three item banks were used to simulate Bayesian estimation
procedures. Two of the banks were idealized--though reasonably
possible--examples; whereas, the third consisted of items specified
according to parameter estimates reported by Lord (1968) for the VSAT.

With test validity held constant, Bayesian tailored testing of
the VSAT could result in a savings of 65% of testing time for the
average examinee. However, more savings in testing time was viewed
as possible through the use of item banks developed specifically for
the purpose of tailored testing.

The present investigation did not utilize prior information.
Further assessments of model capabilities should explore such usage.
While present results appear favorable, the full potentialities of
the model have yet to be assessed.
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Individualized Testing by Bayesian Istimation

Owen (1969) has derived Bayesian procedures for the talloring of tests
for the cases where chance success on the items is and is not effective.
Both cases will be discussed in the current report along with illustrative
data.” Computer programs which simulate the process are described and
included in the appendix for the separate cases. The programs can be modi-
fied for "live" taillored testing applications.

Under both cases, the procedures: (1) identify the most appropriate
item for presentation; (2) score the response to that item or, synonomously,
(re-) estimate the ability parameter for the individual; and (3) calculate
the standard error of the new estimate of ability. The process can be repeated
until all or a specified number of items have been used or an allovable value
of the standard error of estimate has been attained.

In the following, we assume that the item parameters are either known
or have been previously estimated. By way of review, the item parameters of
the logistic model are item discriminatory power (ai); item difficulty (bi);
and probability of chance success on the item (ci). Methods of estimating

the item parameters have been discussed by Birnbaum (1968).

Method
In both cases, one calculates é(p)’ the estimate of ability, and
8%p), the variance of the estimate, sequentially. The subscript p indexes
the number of items that have been presented to an individual during an evaula-
tion sequence. Yor example, if one lacks prior information on the individual
being examined, §(O) and 3%0) would be set at values of O and 1, respec-

tively. 1Initial values of this nature have the basic rationale that in the
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absence of individual information, the mean, O, is the most probable estimate
of ability, é(o) , while the standard error, 3(0), coincides with the
standard deviation. ldore concisely expressed, the prior distribution of
ability, © , is assumed to be N(O,1).

Case I: Chance success on the items éﬁ not effective

In order to detiermine the item most appropriate for immediate

presentation, we calculate ai for all (unused) items. The formula is

(1) o = [a;2 + Sﬁp)] exp(EDf)[l - (erf Di)2]
where
A “2 A2 q.-d
(2) Di = (bi - e(p))'[e[ai + U(p)]} =
and
Di
(3) erft Di -2 / exp(-te) dt

WV

More familiarly, we have

(&) erf D, = 20( Jeni) -1
where
2D,
] 1 1 £2.
(5) 2(Wep,) = = [ exp [-3]at

NER

is the well tabled normal probability function. For future reference and

convenience, we will designate the following:

32
(6) 5. = (P)

1
«/a?e + 32
i (p)
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(7) 6= e al®82 07
(8) u, = (1 - err Di)
(9) v, = (1L + erf Di)

Now the subscript, 1, of the smaliest a, given by equations (1)
identifies the optimal item for presentation. Upon presentation of the iEE
item, one of two outcomes is possible. The individual will get the item right,

or he will get the item wrong. Given that he responded correctly, his new

ability escimate is given by

A A 2 2 -1
4 e . . = e + \/—_ » - .
\10) (p+l)(‘f‘lght) (p) - exp( Dl) siui

The standard error of the estimate, conditional..upon a-.correct.response, is
given by the square root of
A2 ~ 2 2 -2
11 8 right) = & 1 - —=t, [exp (D] )u.] .
( ) (p+l)( gh (p){ \/n l[ P ( l) i

'[‘:%— - D, exp (D?)ui]] .

Should the individual miss the item, his new ability estimate is given by

(12) 8 (prny rromg) = 8y - [ exp(-D)s vyt

The standard error of the new estimate of ability, conditional upon an

incorrect response, is given by the square root of

- . 2 2 -2
){l - — ti [exp (Di)vi]

~2 A
(13) 0(p+l)(wrong) = O(p 7

2
== + D, exp(Di)vi]]

Jx




At this point, the number of item presentations (p) is updated by
one since the sequential use of equations (1) and equations (10) and (1l) or
equations (12) and (13) defines an item presentation cyéle. As a consequence,
the current g(p+l) and S?p+l) becoine the é(p) and G%p) when a new
item presentation cycle is initiated. When equations (1) are recalculated
for the (n -~ p) unused items, the iEE item is again identified by the
smallest a, - Again, depending on the propriety of the individual's response
either equations (10) and (11) or equations (12) and (13) are used. The
cycles may be repeated until a termination criterion has been attained.

Case II: Chance success on the items is effective

s

Equations analogous or even identical to those for Case I exist for the
present case; however, due to the effectiveness of guessing, some equations
increase in complexity. Let us designate

(1 - ci.)ui

(1) W, = [ci r—

for further refrrence. Now one begins by calculating
u u
-1 i 2 iy49-1
= - - —= ) - - -

(15) B, = [(1 - e)t, 17w, (1 - Fexp (D]} 1+ ¢, (1 - —5)] ,
for all (unused) items where equations (2) through (9) still obtain. Again
the subscript, i, of the smallest Bi identifies the optimal item for
immediate presentation.

One of two outcomes will occur when the iEE item is presented. If

the individual responds corrzctly, his new estimate of ability is given by

. . n (L -~ ci) o -1
(16) 9(p+l)(r1ght) = e(p) + ijgir———- exp(-Di)siwi




The standard error of the new estimate, conditional upon the appropriate
response, is given by the square root of

(l - ci)

2 2 = (w.u.)'lt. exp(-ED?)
/fn; 1 1 1 1

a1 of (i) = o2, |1 -

1 2 i -1
- (I 77;— ~ Dy exp(Di)ui] - ij; W ;]

Should the individual respond incorirectly to the iEE item, equations (12)
and (13) are still appropriate; however, for convenience the cquations are

repeated. His new estimate of ability is provided by
2 a 2 2 -1
e =0 - v/“‘“' -D)s.v. ™

(18) (p+l)(wrong) (0) - exp ( Dl)slvl

The standard error of thie neir ability estimate, given a wrong answer, is
obtained from the square root of

(19) 3%p+1)(wrong) = Gﬁp) {1 - j?; ti[GXP (Die)vi]—2

i —.l; + D, exp(05)v, 1)

The sequential process of item presentation cycles delineatel above is
also appropri~te here. The optimal item for immediate presentation from
among the (n - p) unured itens is determined for each cycle by the subscript
on the smallest B, as given bty equations (15). The i item is responded
to by the individual and the nature of his response determines whether
equations (16) and (17) or (18) and (19) are to be used in estimating ability
and the variance of the estimate of ability. As indicated above, termination
criteria may be specified on the basis of a maximum value for p and a

maximum allowable wvalue for S(p) .

~1
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Under both cases, the estimates © and o7 are the first
’ (pi1) * (p+1)

and second moments of the posterior distribution. When these same estimates

are used to determine the next item to be presented their status changes to

~ A2 . . . . .
e(p) and O(p) , the first and second moments of the prior distribution.

In Bayesian estimation procedures, the posterior distribution becomes the

prior distribution when a new item presentation cycle is initiated.

Generaticn of response vectors for simulated individualized testing

Given any set of n items having known item parameters, the probability
distribution, conditional upon ability, ©, can be determined for all pos-
sible response patterns or vectors. What this means is that if one has a
random sample of values of ©, one can then sample response vecters and
score these by the procedural manner he chooses. Later we will discuss how
one can evaluate the given procedure. In this instance, we choose to eval-
uate Bayesian estimation procedures, but the simulation technique has wicer
applicability. A case in point would be an evaluation of flexilevel testing
(Lora, 1971).

For purposes of concrete illustration, we will take a Y-item example.

Given four items, there are 2& or 16 possible patterns or response vectors,

vy - These are:
v, = [0 00 0]
v, =[000 1]
vy = [0 01 0]
v, = [0011]
v5 = [0 1 0 0]
vg = [0101]
v, = [0110]
vg = (0111]
vg = [1000]
Vi = {1 001]




vy ® (L0 1 0]
vip=1[101 1)
Vis = (1100},
vy (1101]
Vi (1110]
ve=1[111 1)

Now response vector v indicates that items 1, 2, 3, and 4 were responded
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to correctly, incorrectly, correctly and incorrectly, respectively. If,

further, the item parameters for the items of illustration are:

a..1 bi ci
Ttem 1 L.6 1.1 .05
Item 2 2.0 1.1 .05
Item 3 1.2 1.1 .05
Ttem L 1.0 1.1 .13

and, say, the value of © for which one is evaluating the probability

distribution of the Ve is 1.0, we would proceed as follows. The probability

of a correct response to an item, given ©, is provided by the model as

1
- 8 <
1 + expl Dai( bi)J

(20) Pi(e) =c; + (1 - ci)
where D is the constant 1.7. The probability of missing an item is merely

(21) 0, (8) = 1 - P, ()

As a consequence, the following probabilities obtain:

P,(6 = 1.0) = .k7
Ql(e =1.0) = .53
P2(e = 1.0) = .45
Q2(6 = 1.0) = .55
P3(6 = 1.0) = .48
Q3(6 = 1.0) = .52
Pu(e = 1.0) = .53
Qu(e = 1.0) = .47

()



Since ability is fixed, the probabilities are assumed independent across

items. This assumption is more familiarly known as that of local independence.

It merely states that if several variables covary with one another due to a
distinct variable, holding the latter constant results in independence among
the several. We may now compute the joint probability of the independent
events indicated by each vy for © equal to 1.0. This is merely the

product of the probabilities of the events recorded by the zeros and ones

in each Vi - For convenience, the probabilities conditional upon © are

calculated in Table 1. For example, response vector vy recorded that:
Item 1 was correct with probability equal to Pl(e = 1.0), or .47; Item 2
was incorrect with probability equal to Q2(9 = 1.0), or .55; Item 3 was
correct with probability equal to P5(6 = 1.0), or .48; and Item 4 was
incorrect with probability equal to Qﬁ(e = 1.0) or .47. The probability éf
the joint events conditional upon © = 1.0 is, then, (.47)(.55)(.48)(.4T)
or .0583. In Table 1, the cumulative conditional probabilities are also
given. Handily, as well as properly, these sum to unity. As a consequence,
one can obtain a randomly selected response vector for a given value of ©
by cbtaining a random number from a distribution which is vniform on the
interval from zero to unity and comparing this to the attendant probability

intervals. For the sake of clarification, let us say that a random number

thusly selected was .6254. Since the value occurs in the provability inter-

val of .5933 to .6644 corresponding to response vector v o » ‘the said

1

vector would have been randomly selected in proportion to its probable

occurrence given the stated conditions. Clearly, the nature of the sampling

remains unchanged even with an arbitrary ordering of the response vectors.




Table 1

Conditional Probabilities, Cumulative Conditional Probabilities,

and Probability Intervals for Possible Response Vectors

Cumulative

Conditional Probabilities Conditional

Probabilities
Prob(vl [6 = 1.0) = (.53)(.55)(.52)(.47) = .0712 .0712
Prob(v, |6 = 1.0) = (.53)(.55)(.52)(.53) = .0803 .1515
Prob(vy |6 = 1.0) = (.53)(-55)(-48)(-47) = .0658 L2173
Prob(v, |6 = 1.0) = (.53)(.55)(.18)(.53) = .O7h2 .2915
Prob(vy [0 = 1.0) = (.55)(-45)(.52)(.47) = .0583 3498
Prob(vg [6 = 1.0) = (.53)(.45)(.52)(-53) = .0657 4155
Prob(v7 [6=1.0) = (.53)(.45)(.48)(.47) = .0538 .4693
Prob(v8 |6 = 1.0) = (.53)(.45)(.48)(.53) = .0607 .5300
P_:_rob(v9 |©=1.0) = (.47)(.55)(.52)(.17) = .0632 5932
Prob(vlole = 1.0) = (.47)(.55)(.52)(.53) = .0712 L6644
Prob(vllle = 1.0) = (.47)(.55)(.48)(.47) = .058% . 7227
Prob(vl2le =1.0) = (.47)(.55)(-48)(.53) = .0658 . 7885
Prob(leIe = 1.0) = (.47)(.45)(.52)(.47) = .0517 .8L02
Prob(vy, [6 = 1.0) = (.47)(.45)(.52)(.53) = .0583 8985
Prob(vlsle = 1.0) = (.47)(.45)(-48)(.47) = .OWTT .9k62
Prob(v |6 = 1.0) = (.47)(.45)(.48)(.53) = .0538 1.0000

Y
[

Probability

Intervals

. 0000
.0713
1516
.217h
.2916
3499
L4156
-L69k
.5301
-5933
L6645
. 7228
. 7836
.8403
.8986
.9463

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

.0712
.1515
2173
.2915
-3498
.L4155
4693
.5300
-5952
664
. 7227
. 7885
.8Lk02
.8985
.9u62

to0 1.0000
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The‘principles developed above generalize directly to situations where
there are a large number of items; however, it is then usually more conven-
ient to work with repeated samplings from subsets of items with © fixed.
Notice that with 100 items the calculation of 2100 conditional probabili-
ties for fixed © would present severe computational problems.

A computer program that accomplishes the sampling of response vectors
has been presented elsewhere (Urry, 1970). llore specifically, the program
samples response vectors for a random sample from the assumed distribution
of 6, N(0,1). Cbviously, gaussian random numbers will fulfill the imposed
sampling requirements with respect to underlying ability.

Notice that only a subset of items from any response vector of length
n are actually used by the Bayesian procedures to obtain an estimate of
abiLiFy, g(p) . The item sequence, as noted above, is determined by prior
inforﬁaﬁign and/br responses as well as the item parameters. Given the model,
the temporai&@y of responses, as far as the n-length response vector is con-
cerned, is incéggéquential. In other words, one may (re-) estimate ability
on any sequence or subset of items from the response vector as determined by
a procedure while ignoring tha\§vailable responses to the remaining items.

The simulated or after-the-fact fgiiQ{ing of empirically obtained response

vectors is also possible.

Evaluation 92 the Bayesian Procedures

To evaluate the procedures, one merely correlates the g(p) against
the © for the randomly sampled "cases" or simulated individuals for a
particular termination criterion. Underlying ability, © , is the perfect

criterion for the computation of this validity coefficient.

pb
W)




Regarding valid evaluation, the specifications for the item parameters
of an item bank are critical. For example, high item discriminatory powers
and a rectangular distribution of item difficulties have in other tailored
testing contexts led to quite satisfactory validities. Here we will consider
three item banks, two of which are idealized while the third i1s taken from an
empirical source.

Item Bank A consisted of 100 items. The item discriminatory powers,

a; equalled 1.6 for all i, i = 1, 2, ... n or 100, while 20 items each had
item difficulties, bi’ at one of five levels, i.e., -1.50, -.75, .00, .75,
and 1.50, respectively. The probability of chance success on the items, C:

was .2 for all items.

Item Bank B consisted of 105 items. Again, the item discriminatory

powers, a. , equalled 1.6 for all items, while 5 items each had item diffi-
culties at one of twenty-one levels, i.e., -2.50, -2.25, -2.00 ... 2.50,
respectively. The probability of chance success on the items, ¢, , was,

again, .2 for all itews.

The item parameters for Item Bank U were taken from estimates provided
by Lord (1968) for the Verbal Scholastic Achievement Test (VSAT). The
estimation sample was comprised of 2,862 cases. The interested reader will
find the specifications for this item bank enumerated in that source.

With these specifications, simulated response vectors were generated,
as previously outlined, for samples of 50 each for Item Banks A and B. For

Ttem Bank C, 100 "cases" were generated. Termination criteria for Item Banks

A and B were set at .32 and .25 as maximum allowable values for 8(p) . Under

-~ T the terminationrules, —p—wWill—vary across-simulated examinees. For Item

Bank C, the compound termination criterion was p = 30 or 3(p) equal to or

less than a maximum value of .25.

Y
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Results

In order to illustrate what an individual evaluation sequence would look
like, Table 2 is provided. The data aré for a simulated "case" who was eval-
uated with Item Bank A. At the beginnggéﬂgf evaluation, nothing was assumed
known about Examinee 1046; therefore, our prior information admits to this

state of ignorance by setting 6( and 8(0) to .00 and 1.00, respectively.

0)
In other words, the mean is, then, the most probable value or the best esti-
mate of © while the standaré error of the estimate corresponds to the

standard deviation of the prior distribution. Given this initial information,

Item 3 from Item Bank A was found via equations (15) to be the most appropriate

for the first presentation. 'The examinee answered Item 3 incorrectly, so that
equations (18) and (19) were used to calculate the specific values of -.6766
and .73%63, respectively for é(l) and 3(1) . Using these estimates, equations
(15) were evaluated for the (n - 1) or remaining 99 items. Item 2 from Item
Bank A was, thereby, identified as the most appropriate item for the second
presentation. The examinee answered Item 2 correctly; cohsequently, equations
(16) and (17) were used to calculate §(2) and 3(2) , or -.3904 and .669.4,
specifically and respectively. The cyclic processing continues, as indicated
earlier, until a termination criterion is reached. At a termination criterion
of G(p) less than or esqual to .32, é(lo) or -.9937 was the Bayesian esti-
mate of ability for Examinee 1046, Given the termination criterion of G(p)
less than or equal to .25, 6(1@) or ~1.2104 was the Bayesian estimate of
ability. Now the "true" valuve of © was -1.2180 for the particular examinee.

Notice that if we establish confidence intervals for © with an approximate

provabiTity of ~95, we nave:r '

Prob [-.99 - (1.96)(.32) < ©® < -.99 + (1.96)(.32)] = .95

bk
e
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Table 2
An Example of an Individual Evaluation Sequence by

Bayesian Estimation Procedures

Examinee Number 10L6

Prior Information
§(o) = .00
G(O) ="1.00
Item Ttem Bank  Item Ability Standard Error
Presentation (p) Number ‘Response  Estimate [é(p)] of Estimate [8(p)]

1 3 0 (wrong) -.6766 . 7363
2 2 1 (right) -.390k .669L-
3 7 1 (right) -.1902 .6079
| L 8 0 (wrong) :;.4718 .5140
; 5 12 1 (right) ~.33%0 4789
g 6 17 0 (wrong) ;.6717 . 4085
7 22 1 (right) -.5597 3895
8 27 9 (wrong) ~.T594 -3500
§ 9 32 0 (wrong) - . 894k L3224
10 57 O (wong)  -.9957 3018
? 11 1 0 (wroig) -1.1660 .2791
g 12 6 1 (right) -1.1230 L2714
C 13 1 0 (wrong)  -1.2506 .2549
g - 1k 16 1 (right) -1.2104 .2489

15
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I
or

} Prob [-1.62 <6 < - .36] = .95
and

' Prob [-1.21 - (1.96)(.25) < © < - L.21+ (1.96)(.25)] = .95
or

Prob [-1.70 < ©® < - .72] £ .95
where © 1is well within the indicated intervals. The probabilities are
approximate since the 8<p) are unbiased only when p is large.

We now turn to results in samples where the individualized testing
delineated above was applied to each 'case." Validity coefficients for the

three item banks are presented in Table 3. For example, using Item Bank A

with a termination criterion of 3<p) equal to or less than .32, the validity
k coefficient for a sample size of 50 was .928. 1In attaining the termination
\ criterion, the minimum, average, and maximum number of items used in evalua-
tion were 8, 12.2, and 16, respectively. Analogous interpretations apply to
the remaining rows of data in the table. In the simulation of the tailoring
of the VSAT, Item Bank C, it was found that the validity coefficient for the
80-item raw total score was .949, which was the same as that reported in Table
3 for tailored tests of an average length of 27.6 items. On the average, 65%
of the original test may be considered unnecessary for examinees to take, since
comparable validity in Bayesian tailored tests can be obtained with this sub-

stantial reduction in test length or items used.

Discussion

oo —... In_the parlance of the factor analyst, the validity coefficient used here
is similar to a factor structure coefficient or the correlation between the

variable and the factor of ability. In the present context, the novel usage

bd
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Table 3

Validity Coefficients and Pertinent Data for Bayesian

Tailored Testing with Three Item Banks

Item Termination
Bank Criterion
Groy < 32
G
G < .2
(p) <2
G

< .32

. (p) < 2

G < .2

(py S %

G < .2

o (p) S %
or p = 30

Minimum Average Maximum

12

1

Number of Items

12.2

18.4

11.5

17.%

27.6

16

22

1L

21

30

Validity

Coefficient

.928
. 956

.927
.948

- 949

15

Sample

Size

50

50

50

100

-
~1
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of the word "variable" shou’d not obscure the direct analogy. However, there
is an important methodological distinction to be made. The logistic model
allows one to avoid difficulty factors. For example, if we were to intercorre-
late the items from any of the item eanks-—A, B, or C--the correlation matrix
wonld form a simplex. In a simplex, the magnitudes of the correlations between

/s
pairs of items iéZEiZ:::) as the disparities in the item difficulties

/aecrease

| increase In factor analyzing a matrix of this nature, a plurality of
\

factors is possible even though the basic source of the data is explicitly
unidimensional. The model, then, circumvents a problem in factor analysis
that has been viewed by several investigators (Ferguson, 1941; Gibson, 1960;
Green, 1952) with some concern.

If the logistic model fits empirical data, the inferences made from
simulation studies are applicable to those empirical situations where the
constituent items of an item bank correspond in terms of their parameters to
those that have been simulated. As seen above, one may fix ability by choosing
a person at random or by selecting a gaussian random number. As far as the
model is concerned, the operations are identical since unaerlying ability is
assumed to be N(0,1). Thereafter, the model maxes explicit the probability
distributions from which one samples the response vectors for items of speci-
fied parameters. The upshot is that, if the model obtains for empirical data,
simulated random samples do not differ in any critical way from empirical
random samples.

Obviously, one can assess model capabilities independent of the

determination of the fit of the model to empirical data. The aquestion of

model capabllltlesmis; therefore, the more bas1c s1nce, 1f the model does not

i show sufficient promise, tests of empirical fit are superfluous. Given

15
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sufficient promise, the question of empirical fit, then, becomes important.
Methods of assessing the fit of the model to empirical data are discussed by
Birnbaum (1968). While the results of this investigation would underscore
ﬁhe importance of the methods, no attempt will be made here to examine them.

-Now Item Banks A and B were presentec as idealized examples; but, if
one has the specific objective of tailoring tests, reasonably similar banks
might be achieved in practice. On the other hand, Item Bank C has (admitting
to minimal errors in estimation due to the large sample size) its counterpart
in the form of an extant conventional test, the VSAT. The findings with
regard to Item Bank C indicated that if the VSAT were used in Bayesian
tailored testing applications, 65% of the test would be unnecessary for the
average examinee to take. However, if we look at the results for Item Banks
A and B, an average of 27.6 items in relation to 18.4 and 17.4 items for
evaluation with comparable validity shows that there is room for improvement.
The improvement would be realized by designing item banks for the specific
purpose of tailored testing.

The VSAT was designed for the specific purpose of univariate selection
where the selection ratio is low. In other words, the test was constructed to
minimize the errors of measurement in the range of high scores. To accomplish
this purpose, items of higher than average difficulty were more frequently
selected to comprise the test. In a tailored testing context, however, it is
advisable to have a distribution of item difficulties which extends uniformly

through the full range of difficulty (Urry, 1970). The specific purpose of

tailored testing, then, is best served by a different item selection technique

than that used in the construction of the VSAT.
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Notice, further, that we have not utilized the Bayesian estimation
procedures to the fullest extent. 1In most testing applications we begin
under the tacit assumption that we know nothing about the examinees. In the

majority of cases, this state of ignorance need not be assumed. Further

r
P oy -~

assessments of model capabilities in regard to Béyesian eslimation procedures
should explore this attractive feature. The possibility exists that evalua-
tion sequences could be further reduced in terms of average number of items

while a satisfactory levzl of valiidity is maintained.
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Appendix

The order and preparation of the input specific to the computer programs
are described here. Also, source listings are provided for both programs.
Case I, where chance success is not effective, corresponds to program BAZES2.
The particular designation is used to indicate that the items used in the
Bayesian estimation of ability have but two parameters since the ci are null.
Similarly, program BAZES? corresponds to Case IT where chance success on the
items is effective or the c, are non-null.

The author wishes to acknowledge the able assistance of Jerry W. Edwards
of the Bureau of Testing. :dis programming of FUNCTION ERF, which is used in

both programs, was of considerable aid.

’
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Order and Preparation of Cards Specific to the Programs
{1) Title Card (Format 7#200)
TITLE Col. 1-70 Any alphanumeric title for the identification
of individual evaluation sequences. ‘
NVF Col. 73-76 Number of variable format cards.
Maximum: 5
NCASES Col. 77-80 Number of individuals to be evaluated.

(2) Protlem Card (Format #74)

NAME Col. 1-40 Name of the item bank.
ITERM Col. 6k Specification of termination of criteria.
Indicate:

1 If the evaluation sequences are to be
terminated after a given number of item
presentations.

2 If the evaluation sequences are to be
terminated after an allowable value of the
standard error of estimate has been attained.

3 If either of the conditions stated for
1 or 2 obtain.

IUSE Col. 67-68 Maximum nurber of items to be presented.
Must be specified if Col. 64 contains a 1 or 3.
Cannot exceed the number of items in the bank.
EPSIION Col. 69-76 Maximum allowable value for the standard error of
estimate. Use F8.4. Must be specified if Col. 6k
contains a 2 or 3. Suggested range: .4 to .2.

NITEMS Col. T77-80 Number of items in the item bank. Maximum: 200.

3N

¢



(3) Item Parameter Cards (Format #31)

Y

(a) Item discriminatory powers (ai)

Ten per card:

Col. 1-8 a, F8.L
Col. 9-16 a, F8. 4
Col. 73-80 214 F8.4L

Repeat on the required number of cards. Maximum:

or 20 cards.

(b) TItem difficulties (bi)

P

Ten per card:

Col. 1-8 oy F8.L4
Col. 9-16 b, F8.4
Col. 73-80 LIPS F8.L4

Repeat on the required number of cards. Maximum:

or 20 cards.

Necessary only for program BAZES3?

(c)

Probability of chance success on the items (ci)

Ten per card:

Col. 1-8 ¢, F8.4
Col. 9-16 ¢, F8.4
Col. T73-80 10 F8.4

Repeat on the required number of cards. Maximum:

or 20 cards.

D

’l

200 parameters

200 parameters

200 barameters
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Variable Format Card(s)

A maximum of five cards can be used to describe the data.

Use columns
1-80.

Funch a regular FORTRAN format statement omitting the word
"FORMAT. "

Begin with "(I4," to accommodate an individual identifica-

tion number, and use "Il" to input each binary response.

(5) .Input Data (Variable Format)
E

i

The input data consist

'
¢
i
'

of an identification number and binary

responses for each case as described on the variable format card(s).

4
|




200
201

301
70

h)
&

72

13

75

16

77

78

79
80

31

84

100

101
28

81

82

PROGRAM BAZES2(INPUTy OUTPUTs TAPES=INPUTs TAPE6=0UTPUT)
DIMENSION A(200)8(200)+s0(200) sALPHAL20D) »IR1200)IELIM(200)
X [SUBL200)+R{200)sER(200)sFMTL100) o TITLE(T)sNAME (&)
PI=3,141592653589793

Cl = 1,0/SGRT(PI)

c2 2.0/8QRTUPT)

C3 SQRT(2.,0/P1)

SIGN = =10

READ(5y201) (TITLE(L)sI=1s7)9NVF«NCASES

FORMAT (TA10+2X2214)

IF(EOFsHhY 3005301

WRITE(6470)

FORMAY (IR s/ / /117177717 77)

WRITC(G6s71)

FORMAT(IHU 4 TX»35HBAYESTAN ABILITY ESTIMATION PROGRAM/54XH
X23HTWQ ITEM PARAMETER CASE///7/777)
WRITE(6272)

FCRMAT (1HU»56X s 17THBUREAU OF TESTING
WRITE(6473)

FORMAT( 1HW 52X 24HUNIVERSITY OF WASHINGION /777771717
READ(5¢ 74 INAME s ITERMy IUSESEPSTLONSNITEMS
FORMAT(4AL0422Y 0129 143F8eksl4)
WRITEl(6s TS INAMESNITENMS
FORMAT(1HU 25X, 10HITEM BANK
XLars/777%
IF{ITERM=2)
EPSILON=eU
GO 10 79
TUSF=NTTEMS
CONTINUE
WRITE(6:8U) TUSESEPSILON

FORMAT(1HY +25% s 20HTERMINATION CRITERTIA//30Xs16HNUMBER OF ITEMS
XI110//30Xs15HSTANDARD ERROR #3X3F1064)

READ (5431) (A(I)esI=1sNITEMS)

READ (5431) (Bil)sI=1-NITEMS)

FORMAT(10F844)

WRITE(6484)

FORMAT (1H1}

| {1}

l1/1707)

95X 4A10/77/726X+s12HTOTAL [TEMS s4X»

76377378

CALL VARFMT (NVFsFMT}

NK = 0

NK = NK + 1

IPRES = O

IF (NK=NCASES) 101510145200
WRITE (6928) (TITLE(I}s1=157)

FORMAT(1H1+30Xs7A10///7)

READ(SsFMT) ID9(IR(I)eI=1sNITEMS)

ABLE=0.0

VAR=140

SEE=SQRT(VAR)

WRITE(&,81) IDsABLESsVAR

FORMAT(1HZ»10Xs 15HEXAMINEE NUMBERS110//16X»15HPRIOR ESTIMATES/ /21X
XsBHABILITY »F1045/21Xs9HVARIANCE sF9.5//)

WRITE(6+82)

FORMAT (1HUs 15X s4HITEM»24X»9HITEM BANK 24X THABILITY 22X
X14HSTANDARD ERRCR/12X»12HPRESENTATION 21X s6HNUMBER 26X+ 8HESTIMATE s
X22Xs11HOF ESTIMATE//)

(1)

»
[
(’\




DO 20 I=1»NITEMS
20 IELIM(I) =0
50  NLEFT = 0
IF{1PRESSGETUSE) GO TO 100
. IF(EPSTLONGGELSFFY GO TO 100
DO 13 T=1,HITEMS
IF (1-TELIM(I)) 12513412
12 NLEFT = NLEFT + 1 |
TSUB(NLEFT] = I | J
13 CONTINUE
IF(NLEFT) 1005100574
14 DO 19 I1=1:NLEFT

"ITE# = TSUB(TD)
R{1I) = 1oC/{ACITEMI®ALTITEM)) + VAR
DUIY = (BUITEM)-ABLE}/SQRT(2-0%R(1))
ER(IN=ERFI(D{I))
10 ALPHA(IY = RUTIDIHFEXPUL2,0%¥DUITy*DII) ¥ (1. 0-ER(I)I*ER(I))
RMIN = ALPHA{(L1) :
J5UB 1

DO 1 J=1sNLEFT
IF(RMIN =~ ALPHA{JY)} 15182

2 RMIN = ALPHA(J)
JSUB = J

1 ICOMT INUE
ITEM = TSUB(JSUB)
RITEM = R{J5UB)
DITEM = D(J3UB)
IELIM (TITEM) = ITEM
IPRES = IPRES + 1

; TEM = DITEM¥DITEM
! F1 = C2%{1s0/7(1e04+(1e0/(ACITEMI*ACITEM)I®(10/VARYI I}
? IFLIRCITEMY) 34394 )

é 3 PER = 1.0+ER(JSUB)
! _ ABLE = ABLE-C3*%{VAR/SQRT(RITEM} }*EXP(SIGN#TEM)/PER
; F2 = 1.,0/{{EXP(TEM)*PER)*#2
! F3 = Cl+DITEM¥*EXP(TEM)*PER
GO TO 5
4 SER = 1.0~FR{JSUB?
ABLE = ABLE+C3*(VAR/SQRTIRITEM) )*EXP(SIGN*TEM)/SER
F2 10/ {{EXP{TEM)*®SER}®%2
F3 Cl1~DITEM*¥EXP{TEM)*SER
VAR = VAR #(]1.0-F1#F2%F3;
y SEE=SQRT{VAR)
: WRITE(6s83)IPRES ITEMs ABLE »SEE
8 83 FORMAT(1HO 515X 14026Xs14925XsF854925XsFBaé)
¢ GO TO 5n
£ 300 STOP
' END
FUNCTION ERF(X)
ERROR FUNCTION FOR)Y O I X = 3.95, MACCLAURIN SERIES
£ FOR X * 105 ERF(X)=1.0
I * ACCURACY PARAMETER 1S «1E-10
F ERFz000%1F(XeEGs0eN)RETURNSES=SIGN( 120X} EXX=E=Y=ABSIX)BJ=1SIF(Yel
XTa3e96)GOTOLSERF=140SRETURN
1 S=F=13D021=126085=5% (=1 )3F=F*ISJ=J+2BXX=XXHY*Y
Tk /7 (I¥FISIF TaLTes LE~-LCYGOTORSE=E®THS

(&
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CONTINUE
ERF=ABS(E)#240/1477245385090552%ESSRETURNSEND
SUBROUTINE VARFMT (NVFsFMT)

NVF= NUMBER OF VARTABLE FORMAT CARDS
DIMENSTION FMT(1)

NVF=NVF¥20

READ(59479) (FMT(1)sI=1sNVF)

FORMAT {20A4)
WRITE(G6»aTLY(FMT(I)sI=1sNVF)

FORMAT (1HUs 7H FORMAT/(10X+20A4))
RETURN

END

N
V)

{

)
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PROGRAM BAZES3(INPUTs OUTPUT» TAPES=INPUTy TAPE6=OUTPUT)
DIMENSION A(200)5B1200)C(20C})+D(200)+BETAL200)+IR{200)»
X ISUBI2001»R(200)9ERIZ00) +FMTLLI00)»TITLE(T7)>NAME{G])
X TELIM(200)

PI1=341415926535%589793

Cl = 1.0/SQRV(PI)
C2 = 2.0/5QRT(PI}
C3 = 50RT(2.,0/P1)
C4 = 140/SQRT(20%P1)

SIGN = =10
200 READ(552G1) (TITLE(TIY»L=1-T)yNVF,NCASES
201 FORMAT (TAl10:,2X2214)

IF{EOF+5) 300,301
301 WRITE(6,TU)

70 FORMAT UMY/ S 127772777 777)
WRITE{(6+¢71)
71 FORMAT{1HO ;47X 5 35HBAYESIAN ABILITY SSTIMATION PROGRAM/53Xs

X25HTHREE ITEM PARAMETER CASE///7777)
WRITE(6»72)

12 FORMAT{1HU» 56X 1THBUREAU OF TESTING /7///})
WRITE(6473)
73 FORMAT( 1HI»52X s 26HUNIVERSITY OF WASHINGTON ////7/777)

READ(Ss 74 ) NAME S ITERMy IUSESEPSTLONSMITEMS
T4 FORMAT(4410322X312914sF8Bebsl4)

WRITE(O6s TOINAME yNITEMS
75 FORMAT(1HU 325X s IOHTITEM BANK s5X»4A10///7726X»12HTOTAL ITEMS 64X

xlaz/777)

IF{ITERM=~2) T76+77+78
76 EPSILON=aU

GO TO 79
77 IUSE=NITEMS
78 CONTINUE
79 WRITE(6+80U) [USE»EPSILON
80 FORMAT(1HU 925X s 20HTERMINATION CRITERIA//30Xs16HNUMBER OF ITEMS o

X110//730%X515HSTANDARD ERROR 23XsF10e4)

READ (5431) (Al1)sl=1sMITEMS)

READ (5531) (B{I)sI=1sNITEMS)

READ (5531} (C(IYeI=1sNITEMS)
31 FORMAT(10F3a4)

WRITE(6a:8%)
84 FORMAT({1H1)

CALL VARFMT (NVFsFMT)

NK = 0
100 NK = NK + 1
IPRES = O

TF (NK=NCASES}) 101,101,200
101 WRITE (65283 (TITLE(I)sI=147)

' 28 FORMAT(1HL1s3NXsTAL0//77)
READ(5sFMT) INs(IR(1)sI=1sNITEMS)
- ABLE—""0.0
VAR=1,.0

SEE=SGRT (VAR)
WRITE(6581) IDsABLE»VAR
81  FORMAT(1HU»s10X»15HEXAMINEE NUMBER»110//16X,15HPRIOR ESTIMATES//21X
XsBHABILITY :F10e5/21XsOHVARIANCE sF9u5//)
WRITE(6,82) ()

29




FORMAT { 1HU» 15X s 6HITEMs 24X QHITEM BANK» 24X s THABILITY» 22X »
X14HSTANDARD ERROR/12Xs12HPRESENTATIONS21Xs6HNUMBER 26X 8HESTIMATE,
X22Xs11HOF ESTIMATE//)

DO 20 I=1sNITEMS

IELIM(IY = O

NLEFT = 0

IF(IPRESGE.TUSE) GO TO 100

IF(EPSILONSGESEE) GO TO 100

DO 13 I=1+NITEMS

IF (1=TELIM{T)) 12513512

NLEFT = NLEFT + 1

ISUB(NLEFT) = 1

CONTINUE

IF(NLEFT) 100510014

DO 10 I=1:+NLEFT

ITEM = T8UB(IT)
RUIY = 1.U/Z(ACITEMI®ACITEM)) + VAR
DII} = (BIITEM)I-ABLE)/SQRT(240%R( 1)}

ER(INV=ERF(D(I))
SER = 1.0~ER(1)
CITEM = C{ITEM)

C5 = 1.0-CITEM
Fl1 = 10~(SER/240)
F2 =(CITEM+(C5/240)*3SERF*¥EXP(2.0%¥DII)*D(1))

BETA(I) = (1.0/C5)1%(RI1)/VARIV¥FL¥F2%¥({1.0/(10+CITEM*¥F11})
RMIN = BETA(1}

Jsus = 1

DO 1 J=1sNLEFT

IF{RMIN - BETA(JY) 19192

RMIN = BETA(J}

Jsup = J
CONTINUE

ITEM = 15UB{JsSUB)
RITEM = R({JSUR)
DITEM = DtJsUB)

TELIM (ITEM) = ITEM
[PRES = [PRES + 1
TEM = DITEM*¥DITEM
IF(IR{ITEM)) 35354
- PER = 1.0+ER{JSUB)
ABLE = ABLE-C3%¥(VAR/SQRT(RITEM))¥EXP(SIGN¥TEM)/PER

F1l = C2%(1a0/(1a0+{1eC/(ACITEM)X*ACITEM)I*(1e0/VAR})))
F2 = 1.0/C{EXP{TEM)*PER)*%#2)
F3 = Cl+DITEM¥EXP{TEM)*PER
GO TO 5
‘ SER = 1,0-ERtJSUB)
CITEM = CUITEM)
C5 = 14.0~CITEM
F4 = (1.0/{(CITEM+(CS5/2«0)*SERY})
ABLE=ABLE+C4*CH%¥F4*¥EXPISIGN*TEM ) *¥ {VAR/SQRT(RITEM)})
F1 = C5%Cl¥%F4
F2 = (VAR/RITEM)®EXP(2.0%*S5IGN*TEM)/SER
F3 = ((Cl- DITEM*EXP(TEM)*SER)—(CITEM*CI*F#))

g VAR = VAR #(1e0~F 1%F2%F3}
SEE=SQRT(VAR)
WRITE(6+s83) IPRES»> ITEMsABLE s SEE

31 (s)
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FORMAT(1HUa15X916926X314926X9F8:e4925X9F8e4)

GO TO 5N

STOP

END -

FUNCTION ERF(X)

ERROR FUNCTION FOR) O I X - 3495y MACCLAURIN SERIES
FOR X % 10y ERFI{X)=1.0

ACCURACY PARAMETER IS »1E~-10
ERF=040FIF(XeEQeO«O)RETURNSES=SIGN(1e0sX)SNX=ESY=ABS(X)SJ
XTe3e96)1GO0TC12ERF=10SRETURN
S=F=1%0021=1+36035=S#(~1)3F=F*I3J=J+2XX=XX#YH*Y
T XX/ (J¥F IS IF (TolTeselE~10)GOTO3SE=E+T*S
CONTINUE
ERF=ABS(E)*2,0/1477245385090552#ESSRETURNSEND
SUBROUTINE VARFMTINVF sFMT) '
NVF= NUMBER OF VARIABLE FORMAT CARDS

DIMENSION FMT(1)

NVF=NVF%20

READ(54470) (FMT(1)sI=1sNVF)

FORMAT {20A4)

WRITE(G6s4T71)Y(FMT(I)»I=19NVF)

FORMAT (1HUy 7TH FORMAT/{10X»2GA4))

RETURN

END

%
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