DOCUMENT RESUME

ED 053 156 TM 000 665

AUTHOR McGaw, Barrys; Joreskoqg, Karl G.

TITLE Factorial Invariance of Ability Measures in Groups ]
Differing in Intelligence and Socioeconomic Status.

INSTITUTION Educational Testing Service, Princeton, N.J.

REPORT NO RB~70-63

PUB DATE Nov 70

NOTE 31p.

EDRS PRICE EDRS Price MF-30.65 HC-$3.29

DESCRIPTORS *Ability Identification, Achievement Tests, Analysis

of Covariance, Analysis of Variance, Aptitude Tests,
Comparative Analysis, *Factor Analysis, Goodness c¢f
Fit, *Groups, High School Students, Intelligence
Differences, *Intelligence Level, Mathematical
Models, Scores, *Socioeconomic Status

IDENTIFIERS Project TALENT

ABSTRACT

This study attempts to determine whether the pattern
of humam abilities varies or remains constant over a range of ability
levels. Scores on 12 aptitude and achievement tests for 11,743
subjects, subdivided into four groups according to intelligence and
socioeconomic status, were used. A technique, developed by Joreskogq,
for simultaneously factor analyzing data from several populations was
used to determine whether there was factorial invariance over the
four groups. A model, in which the szme factor pattern (matrix of
factor loadings) was assumed to hold for the four groups, was fitted
to the data. Goodness of fit indices suggested the model fitted
satisfactorily. Differences in the factor dispersion matrices and
mean factor scores for the subpopulations were then examined and
discussed. Statistical data is incluvded in the accompanying tables.
(Author/LR}




RB-70-63

ALTH, EDUCATION

ARTMENT OF HE
u.s. DEPART Y WELFARE
OFFICE OF EDYU )
THIS DOCUMENT HAS BEEN REPP:F?S%UNCSR
AT RECEN;%?NF:%TJTTE POINTS OF
\ZATION OR :
8?&%%;! OPINIONS STATED DO NO)'ONFCF(.:;E
ARILY REPRESENT OFFICIAL OFFICE
CATION POSITION OR POLICY

ED053156

FACTORIAL INVARIANCE OF ABILITY MEASURES IN GROUPS DIFFERING

IN INTELLIGENCE AND SOCIOECONOMIC STATUS

Barry McGaw
University of Illinois

TOO>MOMD
& == v A CCD

and

Karl G. J'c;reskog
Educational Testing Service

This Bulletin is a draft for interoffice circulation.
Corrections and suggestions for revision are solicited.

The Bulletin should not be cited as a reference without

cally superseded upon formal publication of the material.

w
t\ QD the specific permission of the authors. It is automati-
)
P
-

Educational Testing Service

e Princeton, New Jersey
Eﬂ November 1970
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ABSTRACT

Scores on 12 aptitude and achievement tests for 11,743 subjects, sub-
divided into four groups according to intelligence and socioeconomic status,
were used. A technique, developed by J8reskog, for simultaneously factor
analyzing data from several populations was used to determine whether there
was faétorial invariance over the four groups.

A model, in which the same factor paftern (matrix of factor loadings)
was assumed to hold fér the four groups, was fitted to the data. Goodness
of fit indices suggested the model fitted satisfactorily. Differences in
the factor dispersion matrices and mean factor scores for the subpopulations

were then examined and discussed.




FACTORIAL INVARIANCE OF ABILITY MEASURES IN GROUPS DIFFERING IN
INTELLIGENCE AND SOCIOECONOMIC STATUSl
Barry McGaw
University of Illinois
and
Karl G. J8reskog

Educational Testing Service

An important issue in the asssssment of human abilities is whether,
over a range of ability levels (or levels of other variables), the pattern
of abilities remains constant. For example, over a range of levels of socio-
economic status, or intelligence, does the pattern of abilities vary or
remain essentially the same?

In this study a sample of 11,743 high school subjects was divided into
four groups formed as the four combinations of high and low intezlligence and
high and low socioeconomic status. Ability measures were obtained for the
subjects on 21 different variatles. The data used were collected in the
Project TALENT study? The chief concern of the present study was to
determine whethér the same factor pattern could be obtained for the four
groups .

Factorial invariance has been used in a number of studies to assess the
similarity of different groups. Johnson (1969) found factorial invariance

of educational abilities and aptitudes with data from subjects in Rhodesia

LThis study was completed while the first author was working with the
second author during the Summer Program for Graduate Students at Educational
Testing Service during the summer of 1970.

2The data used were kindly made available by Dr. L. G. Humpnhreys,

University of Illinois.
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and Zambia. Rock and Freeberg (1969) used a similar technique to examine
the factor stability of a student biographical information blank adminis-
tered at different grade levels. The technique used in both of these
studies was that suggested by Meredith (196ka,b). Meredith's procedure
involves an attempted rotation to factorial invariance. For each group
an orthogonal factor solution is first obtained, then an attempt 1s made to
rotate these to a common orthogonal solution. If this can be achieved
there remains some freedom‘for further transformation to a more readily
interpretable oblique solution.
In the present study, however, a general procedurc, developed by
J8reskog (1971) for simultaneous factor analysis in several populations,
was used. This procedure is similar to that of Iawley and Maxwell (1963,
Chapter 8) but is more general. It provides for testing of the hypothesis
of factorial invariance. Rather than attempting to rotate independent solu-
tions to a common solution, the model to be tested may be specified a_priori,
and the computer program then estimates the model using the data from all the
populations simultaneously by the maximum likelihood method, and provides a
measure of goodness of fit.
The essential difference between these two approaches is that Meredith's

invelves a search to determine whether there is a set of rotations which

1 can transform independent solutions to a common solution while JBreskog's
involves the direct fitting of an hypothesized mndel of factorial invari-

ance to the data.

Subjects and Data

The subsamples obtained by the subdivision of the sample described

above were low IQ-low SES, N, = 4491 ; low IQ-high SES, N, = 1336 ;
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high IQ-low SES, = 939 ; high IQ-high SES, Ny, = Lo77 .

N
3
The variables used in the Project TALENT study are described in detail
elsewhere (e.g. Flonagan et al., 1962). The 21 measures used initially in
this study were the subscores from the Information Test (vocabulary, part I,

part II) and all of the remaining tests except Reading Comprehension and.

Abstract Reasoning.

Data Analysis

Dispersion (variance-covariance) matrices S S S, , and Su

1’ 2"’ 3

were computed for the four subsamples, respectively. Because differences in
the scales of different tests are arbitrery, it is usual, for the factor analy-
sis of data from a single population, to scale the dispersion matrix to a cor--
relation matrix. In the present study, however, scaling each of the four

dispersion matrices, Sl , S and S,+ , to correlation matrices

27 Sz
would remove important differences among the groups on the tests. 1In
principle, the analysis should be performed on the dispersion matrices.
These matrices may be rescaled, provided they are kept on a common metric.
A convenient rescaling is one in which a weighted average of the rescaled

dispersion matrices is a correlation matrix.

Pirstly, a pooled dispersion matrix S was calculated as

(N - 1)sg

Then, from the pooled dispersion matrix, a pooled correlation matrix R was

calculated as

A

-




R = DSD

where D = (Diag S)-l/2 . Pinally the original dispersion matrices Sg s

g = 1,2,3,4 , were rescaled to
S¥ = DS D .
g g

The SE matrices (Table 1) are dispersion matrices, but under this rescaling
their weighted average is a correlation matrix. In the analyses which follow

the pooled correlation matrix and the rescaled dispersion matrices will be used.
{Table 1 about here)

A preliminary test of the equality of the population dispersion matrices,
from which these four sample dispersion matrices were obtained, using a test

developed by Box (1949) revealed significant differences ( F_ _ = 38.8 ).
’

Preliminary Factor Analysis

A maximum likelihood facﬁor analysis followed by a varimax rotation
was run on the pooled correlation matrix, extracting successively zero
through eight common factors. The purpose of this analysis was firstly
to determine the aumber Qf common factors which appeared to give a satis-
factory solution for the composite data and secondly to provide a basis for

selecting a reduced number of tests for subsequent analysis. This selection of

tests was necessitated by the limitations of the computer program to be used
in the simultaneous factor analysis of the four rescaled dispersion matrices.
This initial factor analysis was done using J8reskog's (1967a,b) un-

restricted maximum likelihood factor analysis (UMLFA) which gives a large

op)
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sample X2 test of goodness of fit of the factor model. When the sample
size is very large, however, as in this case with N = 11743 , the X?
statistic is very sensitive to minor departures from the model. With the
present data a X2 of 403 with 70 degrees of freedom was obtained for a
solution with 8 comacn factors, indicating that some larger number of
common factors was required. This difficulty with the chi square test of
goodness of fit has been discussed by Cochran (1952) and Gulliksen and
Tukey (1958). The latter authors, in considering the Law of Categorical
Judgments, used a variance components analysis in order to determine whether
the variance accounted for by the theory is large or small in relation to
the total variance in the data. Tucker and Lewis (1970) have developed a
similar approach for factor analysis. They have suggested a reliability
index p which may be estimated as

N Mo T M

MO -1

2 R 2, .
Xo/dfo and N%f- Xk/dfk , the X 's and degrees of freedom being

1l

where MO

those obtained for maximum likelihood factor solutions with zero and k
common factors. The valqe of P provides a measure of goodness of fit
for the particular factor model, with k common factors being fitted.
This index takes into account not only sampling error, as the X? does,
but also discrepancies between the population dispersion matrix and the

formal factor model (specification errors). The upper bound on this index,

obtaired when the model perfectly fits the data, is unity.
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(Table 2 about here)

For the models, with zero through eight common factors, tested on the
pooled correlation matrix of 21 variables, the indices of goodness of fit
are shown in Table 2. On thne basis of these analyses it was decided that
a four factor solution appeared reasonable. Twelve of the original vari-
ables were then selected so that each of the factors would be identified .
by at least three variables. An unrectricted maximum likelihood factor
analysis of the pooled correlation matrix for these twelive variables
yielded the goodness of fit indices shown in Table 3, for solutions with

zero through four common factors.

(Table 3 about here)

Restricted Maximum Likelihood Factor Analysis

Restricted maximum likelihood factor analysis is a method described by /
J8reskog and Lawley (1968) in which some parameters of the factor model may
be fixed, a priori. With this technique the appropriateness of variously
specified factor models can be investigated.

The basic factor analysis model is

Xx =N + 2z

where X is & vector of order p of observed test scores, f 1is a vector
of order k< p of latent common factor scores, 2z 1is & vector of order

p of unique scores, and A is a p x k matrix of factor loadings (the
factor pattern). It is assumed that f and z are independent random

vectors with E(f) = 0, E(z) =0, E(ff') =0 , and E(zz') = ¥ , a

03]
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diagonal matrix. From vhese assumptions the dispersion matrix £ of x

can be shown to be
S = /\(I)A' + \If2

2 .
where ©® 1is the factor dispersion matrix and V¥  the diagonal matrix of

unique variances.
(Table 4 about herve)

The rotated varimax solution from the unrestricted factor analysis
of the pooled correlation matrix for the 12 selected variables is shown
in Table 4. This solution was the starting point for several trial solu-
tions with correlated factors obtained with the ACOVS program (J8reskog
et al., 1970). 1In order to achieve a unique solution with k common fac-
tors, it is necessary to have at least k? fixed elements in A and @
(J8reskog, 1969) of which at least k - 1 must be in each column of A .
The further k restrictions may be imposed in A or ¢ , for example, by
fixing the diagonal elements of & to unity and thus making & a cor-
relation matrix. As a first step this minimum number of restrictions was
imposed by constraining ¢ to be a correlation matrix and fixing three
zeros in each columnh of A . Finally a relatively well fitting model was
achieved with as many zero elements in A as seemed theoretically meaning-

ful and indicated by the data. This solution is shown in Tables 5Sa-b.

(Tables 5a-b about here)
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The goodness of fit test yielded a x2 of 852.9 with 41 degrees of
freedom. The unrestricted solution with four factors yielded a X2 of
202.15 with 24 degrees of freedom. Tucker and Lewis' reliability index
provides a more ready basis for comparison. For the unrestricted solution
8 was .987 and for the restricted solution .965. An unrestricted model,
in general, provides a better fit than a restricted model, but the restricted
model, with fewer parameters to be estimated, is more parsimohious. In the
present case the restricted model appears to fit satisfactorily.

The factofs are readily interpretable. Factor I is a general knowl-
edge factor. Although in the mechanical reasoning test "every item can
be answered without training in physics, and without experience in wood-
working or other crafts, or in working with motors" past training and
experience could well have a facilitative effect (see Flanagan et al.,

1962, p. 109).

Factor II is a verbal mechanics factor. The loading of the élerical
checking test on this factor is interesting. On this test subjects are
required to determine quickly and accurately whether pairs of names are
the same, this restriction of items to words apparently introducing a
purely verbal component in addition to the perceptual speed.

Factor IIT is a spatial perception factor with, probably, a three-

.dimensional component since the highest loadings are for those tests whbich
clearly require three-dimensional perception.

Factor IV involves speed in two-dimensional perception. The three
tests, Table Reading, Clerical Checking and Object Inspection, were designed
to measure speed and accuracy of perception énd all are loaded on this

factor. The loading of Visualization I (two-dimensional) indicates the

12
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facilitative effect of rapid two-dimensional perception on the tasks re-

quired in that particular test. The loading of the Object Inspection test

on Factor III probably is a result of the use of three dimensions )in the

object diagrams. The differences can be perceived without three-dimensional
N perception but they obviously would be perceived more readily if the full

dimensionality of the object were seen.

v

Simultaneous Factor Analysis in the Four Populations

J8reskog has developed a technique for simultaneously factor analyzing
data from several populations. The procedure is described in detail

elsewhere (JBreskog, 1971). The model for each population is
X =p,+/\'f' + Z
g g g

where xg is a vector of order p of observed test scores from the gth

population, p 1is the vector of order p of overall mean test scores
from all the populations involved, fg is a vector of order k< p of
latent common factor scores, zg is a vector of order P of unique
scores, and A is a p x k matrix of factor loadings (factor pattern).
» J8reskog's general model and the computer program SIFASP (van Thillo and

J8reskog, 1970) will accommodate the more general case where there is a

different factor pattern Ag for each population, but in the present
E study we are concerned only with the case where the same factor pattern

can be fitted to all populations.

: If vg is the vector of order k of mean factor scores for the gth_

population, i.e.,
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E(f_ ) =v
( g) g

then, without loss of generality, the origin of the factor scores can be

fixed so that

A\l

If it 1s assumed that the usual factor analysis model holds in each popula-
tion, with the same A , the respective population dispersion matrices can

be represented as
Z = A@ A t + 1If2 .
g g g

The elements of A , @g , and WZ (g = 1,2,...,G) are the param-
eters to be estimated from the data. If, from each population, there is
a random sample of Ng = ng + 1 observations of xg the usual variance-
covariance estimates can be found as the matrices Sg . If xg has a
multivariate normal distribution in each population the likelihood func-
tion can be set up and numerically meximized, as J8reskog has shown, to
obtain the maximum likelihood estimates of the parameters.

The log-likelihood fvaction for the gth group is given by
log L= =n tloglz | + tr(s z:'l)] .
g 28 g ge

If the samples of subjects are independent, the likelihood function L for
all groups is given by

G
L= 1

g=1l &

and, thus, the log-likelihood function is




G
log L = X log L .
g=1 €
The maximization of the likelihood function is achieved through the minimiza-

tion, for each population, of the function

-

..]_\
A = - - ]
Fo(&0,¥,) = n [loglz | + tr(s,2,7) 1oglsg| |

For all G groups, the function to be minimized is

™M &

F(A,(Dl’....i(DG"‘kl; ...,\IIG) = F ]

g=1 &

]

This function F 1is a function of the free parameters in A , the free
parameters in the lower halves of the Qg matrices, including the diagonals,
and the free parameters in the diagonals of the We matrices.

As 1t stands this function is unaffected by an arbitrary linear trans-
formation of A. If, for any nonsingular k x k matrix T , A 1is trans-

formed to AN*¢ by

¢ =nr T

and a complementary transformation of the factor axes is performed as
(D—)é = T(DT' fO.r‘ g = 1,2,'4.0,G

the function I remains unaltered.
In order for the parameters to be defined unigquely there must be im-

posed at least k- conditions on the A and/or all the 9 's. These
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conditions are imposed by fixing elements in advance. The final solution
can be obtained in either of two ways. The equivalent of an unrestricted
solution may be obtained by imposing some k2 arbitrary values and sub-
sequently rotating. On the other hand, if a particular model is being
tested the model may be specified by fixing at least k2 particular param-
eters and obtaining the solution directly. If more than k2 conditions are
imposed the solution will be restricted and, therefore, could not be ob-
tained exactly by the transformation to similarity of unrestricted solutions.
With the data in the present study a restricted solution was obtained.
All the elements in A which had been fixed at zero in the restricted
solution with the pooled correlation matrix (Table 5a) were similarly
fixed for the simultaneous solution. A further four restrictions were im-
posed by requiring that the weighted mean of the Qg matrices be a cor-

relation matrix, viz,

diag & = I

M

where ¢ = % . These four restrictions were imposed indirectly by

n ®
g=1 g 8
fixing the largest nonzero element in each of the four columns of A and
thus fixing an arbitrary scaling for both A and the four @ matrices.
The solution was then rescaled by calculating @ as shown above and then,

with D = (diag ®)~l/2 scaling the factor dispersion matrices @g 50

that
rlﬁé = D<I>gD for g = 1,2,3,4

and the common factor pattern matrix A so that

o
o
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A* =AD—l .

There were, therefore, 15 free parameters in A , 4O free parameters
in the lower halves (including diagonals) of the four @g matrices, and
48 free parameters in the diagonals of the four W: matrices, giving a
total of 103 free parameters in the function to be minimized.

To keep the number of iterations in the numerical minimization to a

minimum it was important to obtain good initial estimates of the unknown
parameters. The A obtained from the final analysls of the pooled cor-
relation matrix (Table 5a) was used as the starting value for A . Initial
estimates of the ®g and W: matrices were obtained by performing sepa-
rate restricted factor analyses for each of the Sg matrices with A
entirely fixed with the wvalues in Table 5a and the ¢g and W: matrices
entirely free. The solutions for these independent analyses were used as
starting points for the simultaneous analysis. The scaled solution for

the simultaneous analysis is shown in Tables 6a-b.
(Tables 6a-b about here)

The X2 measure of goodness of fit was 2038.2 with 209 degrees of
freedom. In order to compute Tucker and Lewis' reliability index, X2 values
were obtained for a zero common factor solution with each of the Sg ma.-~
trices. These X? and their corresponding degrees of freedom are additive
and the totals can be compared with that obtained for the simultaneous solu-

ith I common factors. These totals were N 33741 and 264 degrees

-

A2
LLiLLL

of freedom. The reliability index 6 for the simultaneous solution was

.940.
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As a further check on the goodneés of fit of the simultaneous solution
independent restricted solutions were obtained for each of the SZ matrices
with the same elements in A, ¢g , and W: free as in the simultaneous
solutions. The sums of the X2 and degrees of freedom obtained in these
four analyses yielded a X2 of 1857.0 with 164 degrees of freedom. The
index in this case was .929. It appears, therefore, that the model with the
common factor pattern A fits the data from the four samples reasonably

well.

Mean Factor Scores

In the general model used 1in the simultaneous factor analysis technique
described above factor scores are not standardized within each population.
The vector of mean factor scores for each popuiation vg can be estimated
using Lawley and Maxwell's (1963) modification, for the case of correlated

factors, of Thomson's regression method for determining factor scores, viz

1]
o0

v At Nz - )

~

where %g = Aagxf + we is the estimate of the dispersion matrix for popula-
tion g, ig is the vector of mean test scores for population g and {1
is the vector of overall mean test scores for all populations. The esti-

mates of the mean factor scores shown in Table T have been scaled so that

ELN{D =Oo
g 8

(Table T about here)

16




-15-

Discussion

The goodness of fit of the model with A invariant over the four
populations indicates that there i1s factorial invariance, in the sense that
a solution can be obtained for all populations with the same pattern of
factor loadings on the same number of common factors. Whether the common
factors are the same in the four populations can not be determined without
consideration of the @g matrices, in particular the ®g matrices obtained
in the final scaled solution.

In an extreme case complete equality of the QZ matrices could be
established, either by fitting a model with & common A and a common ¢ ,
with all differences in the original SZ matrices being accounted for in
the diagonal Wi matrices, or by fitting a model with a common A and subse-
quently testing the hypothesis of equality of the ¢g matrices obtained in the
sclution. A model with a common A and a common & allows only for dif-
ferences in variance elements in the original dispersion matrices and, where
these dispersion matrices are demonstrably different as in the Present case,
there is no point in testing such a model. It is necessary, however, to
test for equality ol the @g matrices obtained in the solution with the

common A .

The hypothesis of equality of the four factor dispersion matrices @Z s
g = 1,2,3,4 , shown in Table 6b was tested using the procedure, referred to
previously, developed by Box. This test yielded F(BO,w) = 89.6 , showing
the QZ matrices to be significantly different. Examination of the matrices

reveals the differences to be in both variances and covariances.
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Whether, with a common A but significantly different ®g matrices,
the four factors can be given the same substantive interpretation in each
population is an important question. It should be noted that there is no
mathematical basis for the inference of identity of common factors across
populations, even in the case where a common A and ® can be fitted to
all populations. It is clearly possible, with different populations, that
identical dicpersion matrices could be obtained from different test batteries
(with the same number of tests in each) applied to the populations. In such
a case mathematically identical factor solutions could be obtained.

Where the same test battery is used and the populations are, in fact,
subpopulations of some more inclusive population, the inference of identical
factors seems reasonable if the A and ¢ wmatrices are the same for all
subpopulations. Wnile it is probably still appropriate, because of the
common A , to give the same substantive interpéé;;;;;h of the factors
when the ®g matrices differ, the differences in the ®g matrices reveal
differences in the interrelations of the factors in the different sub-
populations.

To facilitate a comparison of the interrelations, each of the factor
dispersion matrices has been rescaled to a correlation matrix (Table 8).
From this table it can be seen that, in the two subpopulations with low
SES, Pactor IV is more highly correlated with each of the other factors than
in the subpopulations with high SES. That is, it appears that perceptual

speed is more clearly an independent factor for high SES groups. It 1s con-

founded most with the spatial and verbal mechanics factors in the low SES

groups. In the two high IQ subpopulations Factors I and II are more highly

Y
oD
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correlated than in the low IQ groups, with the confounding more marked in

the high IQ-low SES population.
(Teble 8 about here)

The only other notable difference among the subpopulations is in the cor-
relation between Factors I and III. This correlation is relatively high for
the high IQ-high SES subpopulation. Differences in the estimated mean fac-
tor scores on the spatial factor indicate that IQ is a more potent variable
than SES on this factor. The higher correlation between Factors I and IIT
when SES 1s higher suggests that the influence of SES on performance on the
spatial factor might be mediated through greater general knowledge.

Interpretation of differences in variances on the factors (Table 6b)
can be facilitated by simultaneous consideration of differences in mean
factor scores (Teble 7). The estimates of the mean factor scores given in
Table T are quite stable, because of the large sample sizes involved. Con-
fidence intervals can be established around eath mean since estimates of the
variances of the subpopulations on each of the factors are available. The
standard error of the estimate of the mean of subpopulation g on factor i

is given by

Sy = (¢gii
g

/N )1/2v
g
where ¢gii 1ls the ith diagonal element in the factor dispersion matrix @g .
Confidence intervals (99%) were established for each of the estimated

means shown in Table 7 and, except in the case of the third and fourth sub-

populations on the fourth factor, where the estinlated means were equal, none

i
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of the intervals on any of the factors overlapped. Thus there are real 4dif-
ferences in mean factor scores for the groups. This, in itself, 1s not
surprising but what is more interesting are the relationships between

these differences and differences in the corresponding variances.

In the following discussion differences in mean factor scores between
levels of IQ and SES are compared. Unfortunately, information about the
means and variances of the subpopulations on the composite IQ and SES cri-
teria were not available. If, for example, there were greater differences
in mean SES at low IQ level than high IQ some of the conclusions that
follow might need to be modified. The discussion is based on the presump-
tion that differences between means on one variable (IQ or SES) are the
same at both levels of the other variable.

On the general knowledge factor, subpopulation 1 (low IQ-low SES) is
well below the other three subpopulations in mean factor score. The gap
between low and high SES groups is much wider for low IQ than high IQ. The
variances of all but subpopulation 2 (low IQ-high SES) are virtually the
same, however. For this subpopulation the dispersion of factor scores is
much wider (1.502) suggesting that the interaction of IQ and SES is different
at different levels of IQ, the facilitative effect of high SES being much
less uniform at low IQ\le§els.

The IQ variable, as might be expected, appears to be more strongly
related than SES to performance on the verbal factor (Table T), but the
facilitative effect of high SES is greater for low IQ (or alternatively, the
debilitative effect of low SES is greater for high IQ)- The factor scores

of all subpopulations are similarly dispersed.

2D
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A similar pattern was found on the spatial factor, with IQ being more
strongly related than SES to differences in mean factor scores. Again, there
was little difference in homogeneity of factor scores among the subpopulations.

On the perceptual speed factor there were differences, related to dif-
ferences in SES, only at the low IQ level.  The mean factor scores of the two
high IQ subpopulations were identical and their variances virtually the same and
relatively small. Both low IQ groups were widely dispersed with the effect most

marked for the high SES group. In the discussion of the intercorrelation of

factors it was noted that the perceptual speed factor was relatively more
independent of the other factors for the two high SES subpopulations. In the
high IQ-low SES subpopulation, for example, it was more highly correlated with
the verbal mechanics factor, a factor with which IQ is a more highly related
variable than SES. On the perceptual speed factor, more than any of the

other three, care needs to be taken in applying the same substantive inter-
pretation for all subpopulations. Although both high IQ groups have similar
dispersions and the same mean factor scores, this factor does not appear to
be the same. There appears to be a higher verbal component for the low SES

group. There is a similar confounding of this factor in the two low IQ

groups.

L
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Table 1

Rescaled Dispersion Matrices

Group 1 Low IQ-low SES Above Diagonal
Group 2 Low IQ-High SES Below Diagonal

1 2 3 L 5 6 7 8 9 10 11 12
i:ggg 743 .h93  .228  .298  .381 .20k  .128 .060 .150 .137  .099
1.038 1:222 585 .284 L350 W41k .306  .1kh .063  .178  .135  .110
788 .97k :;ZS .216  .283 .318 .21k  .095 .42k  .148  .128  .113
261 .286  .300 :ggﬂ 348  .386 .039 .003 -.023 .139 .213 .04kl
282 .359  .280  .385 1:223 .508  .197  .113  .138 .25k  .179  .157
368 .356  .365  .295 389 i:ig; .205  .131  .091 .258 .228  .175
320 420 .252 -.03%36 162 .186 1:2$§ 2396 359  .138  .102  .276

1.128
.080 .14%9 .081 .010 .112 .072 .302 1.255 377 .224h 146,338
160  .236  .124 -.048 L1033  .114 L4988 .385 'igg .210  .097 .291
L, 1l.61k4 |

-.013 -.029 .002 .OO4 .020 .007 .050 .271 .063 - 021 L2783

o7k .091 .1k 2 - 1.450 -
. . A7 255 .172 0 131 W08 .357 .082 .38k 1.757 70
_ ~ - | 1.336
.033 .018 .034 -.041 --.025 -.062 122 379  .215 .696 425 1.787
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Table 1 (continued)

Group 3 High IQ-Low SES Above Diagonal
Group k4 High IQ-High SES  Below Diagonal
1 2 3 i 5 6 7 8 9 10 11 12

jggé 761 Skl 273 .316 296 .192 .099 .003 .079 .070 .029

.659 :ggg 818 .359 .08 .359 .232 .134+ .00 .108 .108 .05k

|_l

ro

3 .562 750 i:égi 3L .382 L3317k 117 .003 106 .135  .080
o .270 303 38 1O 09 1289 -.023 015 -.062 086 .151  .027

1.095
5 .85 .30 .368 .61 9% 558 092 .05 .03k .130 .130 .70

<997
6 .193 .238 .247  .2hk2  .303 :22? .127  .08L .035 .085 .123 .061

7 .52 ok 281 -.026 160 .088 S 11 .o .069 .095 .20k

972
8 .077 .139 .13% .035 .087 .0k9  .316 :ggg 383  .075  .115 .222
9 .157 .30k .192 -.021 .196 .079 .h9O  .321 l:ggg 071 .061 .191
10 .013 .018 .0k2 060 .Ok2 .011 .015 .078 .030 :§S$ Qb3 169
524

11 .02 .0k1  .090 .177 .093 .OkO -.024 .117 .01k  .123 :h86 .201

12 -.001 .O14+ .045 .028 .025 .002 .084 .170 .108  .143  .153 :ggf
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Table 2
Goodness of Fit of Various Unrestricted Factor Models to Data

(21 Variables)

No. of Common 5
Factors X af Prob. p
0 57915 210 0.00 --
1 21597 189 0.00 .588
2 13079 169 0.00 722
3 6846 150 0.00 .838
L 3548 132 0.00 .906
5 2118 115 0.00 «937
6 1145 99 0.00 .962
7 627 8L 0.00 977
8 403 70 0.00 .983
Table 3

Goodness of Fit of Various Unrestricted Pactor Models to Data

(12 Variables)

No. of Common 5
Factors X arf Prob. 3
0 37018 66 0.00 -
1 11753 54 0.00 613
2 6070 43 0.00 «750
3 2272 33 0.00 .879
L 202 2k 0.00 .987
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Table 4

Varimax Rotated Solution for Pooled Correlation Matrix

Common Factors

Unique
Tests I II ITT Iv Variance

Vocabulary .728 216 .108 .032 110
Information I .916 .251 .189 .017 .062
Information II .687 271 .094 .079 <440
Spelling .193 <560 .113 .125 .620
Punctuation .190 671 <145 07k 487
English Usage .206 1493 .089 .089 .698
Mechanical Reasoning .250 042 654 .030 .507
Visualization I 0Ll .026 . 500 .2h9 .685
Visualization II 046 .049 .650 .083 .566
Table Reading .036 .086 .080 . 504 .730
Clerical Checking .040 164 008 .515 <707
Object Inspection .007 -.023 .230 615 .568
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Table 5a

Restricted Correlated Solution for Pooled Correlation Matrix

Common Factors

Unique
N Tests I II ITT IV Variance
Vocabulary 652 .220 0 0 L25
. Information I 87k 231 0 0 .038
Information II .585 «290 0 0 L1153
Spelling o% 579 0 0 664
Punctuation 0 .682 0 0 <536
English Usage 0 571 0 0 674
Mechanical Reasoning .216 0 .602 0 .540
Visualization I 0 0 499 .195 676
Visualization II 0 0 666 0 .557
Table Reading 0 0 0 547 .701
Clerical Checking 0 <143 0 A73 726
Object Inspection 0 0 175 STT .599
*All zero elements fixed by hypothesis.
Table 5b
Intercorrelation of Factors
T II IIT v
I 1.000
II <357 1.000
IIT .252 .159 1.000
v .016 213 .189 1.000
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Table ba

Simultaneous Solution for Four Populations

Common Factors Unique Variances

Tests I II IIT IV Pop. 1 Pop. 2 Pop. 3 Pop. 4
Vocabulary Hbh2 231 0 0 L76 .569 349 +350
Information I 865  .253 0 0 .022 .078 .000 .056
Information II 576 300 0 0 387 «598 U437 JL76
Spelling 0 575 0 0 608 .602 .719 .723
Punctuation 0 .683 0 0 Wiiers 679 .526 «530 )
English Usage 0 536 0 0 .863 1.149 362 L6k
Mechanical Reasoning  .233 0 .600 0 549 «790 123 458
Visualization I 0 0 L7700 212 SI71 .882 567 575
Visualization II 0 0 676 0 «517 640 487 .548
Table Reading 0 0 0 512  1.199 1.488 .151 .187
Clerical Checking 0 .125 0 L81  1.067 1.320 .361 .3h2
Object Inspection 0 0 A48 588 748 1.090 .338 371

Table 6b

Estimated Factor Dispersions

Low SES High SES
I IT IIT vV I II IIT IV
I .902 1.502
II .31 1.045 <339  1.018
Low 1@ 177 111 .188 .93k .29%  .108 1.068
v .122 401 k15 1.k15 -.036 .068 208 1.857
| I .929 .961
. IT ALz 1,004 : 329 +954
High I8 117 o5 .05 1.127 379 .163  1.017

-y v .098 260 203 .516 -.0h7 .085 .039 JL87
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Table 7

I IT ITI v
General Verbal Speed of
Population Knowledge Mechanics Spatial Perception
l IIOW IQ - IIOW SES "’]_078 -]_05]_ -09]_ "057
2 Iow IQ - High SES .58 -.31 -75 -.ko
3 High IQ - Low SES 1.00 .90 .58 .52
4 High IQ - High SES 1.27 1.27 .91 .52
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Table 8

Estimated Factor Correlations

Iow SES High SES
I IT ITI IV I IT ITT v
I 1..000 1.000
Low IQ IT 334 1.000 222  1.000
III 131 .19%  1.000 .183 .099 1.000 ]
v 095 271 314 1.000 -.013 036 .105 1.000
I 1.000 1.000
. IT L65 1,000 .359  1.000
High IQ 77 .0L2 045 1.000 388  .168  1.000
IV L] 200 . 502 03)"'9 l.OOO “a loo 0183 0079 loooo
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