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ABSTRACT

Scores on 12 aptitude and achievement tests for 11,743 subjects, sub-

divided into four groups according to intelligence and socioeconomic status,

were used. A technique, developed by J8reskog, for simultaneously factor

analyzing data from several populations was used to determine whether there

was factorial invariance over the four groups.

A model, in which the same factor pattern (matrix of factor loadings)

was assumed to hold for the four groups, was fitted to the data. Goodness

of fit indices suggested the model fitted satisfactorily. Differences in

the factor dispersion matrices and mean factor scores for the subpopulations

were then examined and discussed.



FACTORIAL INVARIANCE OF ABILITY MEASURES IN GROUPS DIFFERING IN

INTELLIGENCE AND SOCIOECONOMIC STATUS
1

Barry McGaw

University of Illinois

and

Karl G. J8reskog

Educational Testing Service

An important issue in the assessment of human abilities is whether,

over a range of ability levels (or levels of other variables), the pattern

of abilities remains constant. For example, over a range of levels of socio-

economic status, or intelligence, does the pattern of abilities vary or

remain essentially the same?

In this study a sample of 11,743 high school subjects was divided into

four groups formed as the four combinations of high and low intelligence and

high and low socioeconomic status. Ability measures were obtained for the

subjects on 21 different variables. The data used were collected in the

2
Project TPLENT study. The chief concern of the present study was to

determine whether the same factor pattern could be obtained for the four

groups.

Factorial invariance has been used in a number of studies to assess the

similarity of different groups. Johnson (1969) found factorial invariance

of educational abilities and aptitudes with data from subjects in Rhodesia

1This study was completed while the first author was working with the
second author during the Summer Program for Graduate Students at Educational
Testing Service during the summer of 1970.

2
The data used were kindly made available by Dr. L. G. Humphreys,

University of Illinois.
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and Zambia. Rock and Freeberg (1969) used a similar technique to examine

the factor stability of a student biographical information blank adminis-

tered at different grade levels. The technique used in both of these

studies was that suggested by Meredith (1964a,b). Meredith's procedure

involves an attempted rotation to factorial invariance. For each group

an orthogonal factor solution is first obtained, then an attempt is made to

rotate these to a common orthogonal solution. If this can be achieved

there remains some freedom for further transformation to a more readily

interpretable oblique solution.

In the present study, however, a general procedure, developed by

J8reskog (1971) for simultaneous factor analysis in several populations,

was used. This procedure is similar to that of Lawley and Maxwell (1963,

Chapter 8) but is more general. It provides for testing of the hypothesis

of factorial invariance. Rather than attempting to rotate independent solu-

tions to a common solution, the model to be tested may be specified E2a12,11,

and the computer program then estimates the model using the data from all the

populations simultaneously by the maximum likelihood method, and provides a

measure of goodness of fit.

The essential difference between these two approaches is that Meredith's

involves a search to determine whether there is a set of rotations which

can transform independent solutions to a common solution while J8reskog's

involves the direct fitting of an hypothesized model of factorial invari-

ance to the data.

Subjects and Data

The subsamples obtained by the subdivision of the sample described

above were low IQ-low SES, N1 = 4491 ; low IQ-high SES, N2 = 1336 ;
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high IQ-low SES, N3 = 939 ; high IQ-high SES, N4 = 4977 .

The variables used in the Project TALENT study are described in detail

elsewhere (e.g. Flanagan et al., 1962). The 21 measures used initially in

this study were the subscores from the Information Test (vocabulary, part I,

part II) and all of the remaining tests except Reading Comprehension and.

Abstract Reasoning.

Data Analysis

Dispersion (variance-covariance) matrices S
1

, S2 , S3 , and S

were computed for the four subsamples, respectively. Because differences in

the scales of different tests are arbitrary, it is usual, for the factor analy-

sis of data from a single population, to scale the dispersion matrix to a cor-

relation matrix. In the present study, however, scaling each of the four

dispersion matrices, S1 , S
2

, S
3

and S , to correlation matrices

would remove important differences among the groups on the tests. In

principle, the analysis should be performed on the dispersion matrices.

These matrices may be rescaled, provided they are kept on a common metric.

A convenient rescaling is one in which a weighted average of the rescaled

dispersion matrices is a correlation matrix.

Firstly, a pooled dispersion matrix S was calculated as

4

E (Ng - 1)Sg

S
g4

E (N 1)

g=1 g

Then, from the pooled dispersion matrix, a pooled correlation matrix R was

calculated as



R = DSD

where D = (Diag S)
-1/2

. Finally the original dispersion matrices Sg

g = 1,2,3,4 , were rescaled to

S* = DS D
g g

The S* matrices (Table 1) are dispersion matrices, but under this rescaling

their weighted average is a correlation matrix. In the analyses which follow

the pooled correlation matrix and the rescaled dispersion matrices will be used.

(Table 1 about here)

A preliminary test of the equality of the population dispersion matrices,

from which these four sample dispersion matrices were obtained, using a test

developed by Box (1949) revealed significant differences ( F.. = 38.8 ).

Preliminary Factor Analysis

A maximum likelihood factor analysis followed by a varimax rotation

was run on the pooled correlation matrix, extracting successively zero

through eight common factors. The purpose of this analysis was firstly

to determine the number of common factors which appeared to give a satis-

factory solution for the composite data and secondly to provide a basis for

selecting a reduced number of tests for subsequent analysis. This selection of

tests was necessitated by the limitations of the computer program to be used

in the simultaneous factor analysis of the four rescaled dispersion matrices.

This initial factor analysis was done using J8reskog's (1967a,b) un-

restricted maximum likelihood factor analysis (UMIFA) which gives a large
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sample X
2

test of goodness of fit of the factor model. When the sample

size is very large, however, as in this case with N = 11743 , the X2

statistic is very sensitive to minor departures from the model. With the

present data a X
2

of 403 with 70 degrees of freedom was obtained for a

solution with 8 common factors, indicating that some larger number of

common factors was required. This difficulty with the chi square test of

goodness of fit bias been discussed by Cochran (1952) and Gulliksen and

Tukey (1958). The latter authors, in considering the Law of Categorical

Judgments, used a variance components analysis in order to determine whether

the variance accounted for by the theory is large or small in relation to

the total variance in the data. Tucker and Lewis (1970) have developed a

similar approach for factor analysis. They have suggested a reliability

index p which may be estimated as

MO mk
Mo

where N0 = Xo/dfo and Mk= Xk/dfk the X2's and degrees of freedom being
2/ 2/

those obtained for maximum likelihood factor solutions with zero and k

common factors. The value of iS provides a measure of goodness of fit

for the particular factor model, with k common factors being fitted.

This index takes into account not only sampling error, as the X
2

does,

but also discrepancies between the population dispersion matrix and the

formal factor model (specification errors). The upper bound on this index,

obtained when the model perfectly fits the data, is unity.



-6-

(Table 2 about here)

For the models, with zero through eight common factors, tested on the

pooled correlation matrix of 21 variables, the indices of goodness of fit

are shown in Table 2. On the basis of these analyses it was decided that

a four factor solution appeared reasonable. Twelve of the original vari-

ables were then selected so that each of the factors would be identified

by at least three variables. An unre2tricted maximum likelihood factor

analysis of the pooled correlation matrix for these twelve variables

yielded the goodness of fit indices shown in Table 3, for solutions with

zero through four common factors.

(Table 3 about here)

Restricted Maximum Likelihood Factor Analysis

Restricted maximum likelihood factor analysis is a method described by

Mreskog and Lawley (1968) in which some parameters of the factor model may

be fixed, a priori. With this technique the appropriateness of variously

specified factor models can be investigated.

The basic factor analysis model is

x = Ai' + z

where x is a vector of order p of observed test scores, f is a vector

of order k< p of latent common factor scores, z is a vector of order

p of unique scores, and A is a p x k matrix of factor loadings (the

factor pattern). It is assumed that f and z are independent random

vectors with E(f) = 0 , E(z) = 0 , E(ff') = 0 , and E(zz') = *2 , a
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diagonal matrix. From these assumptions the dispersion matrix E of

can be shown to be

E = AAA' + *
2

where 0 is the factor dispersion matrix and IV

2
the diagonal matrix of

unique variances.

(Table 4 about here)

The rotated varimax solution from the unrestricted factor analysis

of the pooled correlation matrix for the 12 selected variables is shown

in Table 1.. This solution was the starting point for several trial solu-

tions with correlated factors obtained with the ACOVS program (J8reskog

et al., 1970). In order to achieve a unique solution with k common fac-

tors, it is necessary to have at least k
2

fixed elements in A and 0

(J8reskog, 1969) of which at least k - 1 must be in each column of A .

The further k restrictions may be imposed in A or 0 , for example, by

fixing the diagonal elements of 0 to unity and thus making 0 a cor-

relation matrix. As a first step this minimum number of restrictions was

imposed by constraining 0 to be a correlation matrix and fixing three

zeros in each column of A . Finally a relatively well fitting model was

achieved with as many zero elements in A as seemed theoretically meaning-

ful and indicated by the data. This solution is shown in Tables 5a-b.

(Tables 5a b about here)
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The goodness of fit test yielded a X
2

of 852.9 with 41 degrees of

freedom. The unrestricted solution with four factors yielded a X
2

of

202.15 with 24 degrees of freedom. Tucker and Lewis' reliability index

provides a more ready basis for comparison. For the unrestricted solution

13 was .987 and for the restricted solution .965. An unrestricted model,

in general, provides a better fit than a restricted model, but the restricted

model, with fewer parameters to be estimated, is more parsimonious. In the

present case the restricted model appears to fit satisfactorily.

The factors are readily interpretable. Factor I is a general knowl-

edge factor. Although in the mechanical reasoning test "every item can

be answered without training in physics, and without experience in wood-

working or other crafts, or in working with motors" past training and

experience could well have a facilitative effect (see Flanagan et al.,

1962, p. 109).

Factor II is a verbal mechanics factor. The loading of the clerical

checking test on this factor is interesting. On this test subjects are

required to determine quickly and accurately whether pairs of names are

the same, this restriction of items to words apparently introducing a

purely verbal component in addition to the perceptual speed.

Factor III is a spatial perception factor with, probably, a three-

dimensional component since the highest loadings are for those tests which

clearly require three-dimensional perception.

Factor IV involves speed in two-dimensional perception. The three

tests, Table Reading, Clerical Checking and Object Inspection, were designed

to measure speed and accuracy of perception and all are loaded on this

factor. The loading of Visualization I (two-dimensional) indicates the
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facilitative effect of rapid two-dimensional perception on the tasks re-

quired in that particular test. The loading of the Object Inspection test

on Factor III probably is a result of the use of three dimensions)in the

object diagrams; The differences can be perceived without three-dimensional

perception but they obviously would be perceived more readily if the full

dimensionality of the object were seen.

Simultaneous Factor Analysis in the Four Populations

J8reskog has developed a technique for simultaneously factor analyzing

data from several populations. The procedure is described in detail

elsewhere (J8reskog, 1971). The model for each population is

x = + Af + z
g g

where xg is a vector of order p of observed test scores from the g
th

population, u is the vector of order p of overall mean test scores

from all the populations involved, f is a vector of order k< p of
g

latent common factor scores, zg is a vector of order p of unique

scores, and A is a p x k matrix of factor loadings (factor pattern).

J8reskog's general model and the computer program SIFASP (van Thillo and

J8reskog, 1970) will accommodate the more general case where there is a

different factor pattern Ag for each population, but in the present

study we are concerned only with the case where the same factor pattern

can be fitted to all populations.

If v is the vector of order k of mean factor scores for the g
th

population, i.e.,
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E(fg) = vg

then, without loss of generality, the origin of the factor scores can be

fixed so that

EN
g
v
g

= 0

If it is assumed that the usual factor analysis model holds in each popula-

tion, with the same A, the respective population dispersion matrices can

be represented as

E AO A' + *2

The elements of A , 0
g

, and *
2

(g = 1,2,...,G) are the param-

eters to be estimated from the data. If, from each population, there is

a random sample of N = n + 1 observations of x the usual variance -
g g g

covariance estimates can be found as the matrices S . If x has a
g g

multivariate normal distribution in each population the likelihood func-

tion can be set up and numerically maximized, as J8reskog has shown, to

obtain the maximum likelihood estimates of the parameters.

The log-likelihood function for the g
th

group is given by

r 1

log L
g 2

=
l

n
g

1

LlogIE + tr(S
g
Eg1)] .

If the samples of subjects are independent, the likelihood function L for

all groups is given by

G
L = II L

g=1 g

and, thus, the log-likelihood function is



G
log L = E log Lg

g=1

The maximization of the likelihood function is achieved through the minimiza-

tion, for each population, of the function

1

F
g
(A,0

g
,*

g
) n

gL
rloglE 1 + tr(S

g
E
g

1
) - logiS - p]

For all G groups, the function to be minimized is

F(A,0 0 * * ) E F
G' ' G

g=1

This function F is a function of the free parameters in A , the free

parameters in the lower halves of the 0 matrices, including the diagonals,

and the free parameters in the diagonals of the *
2

matrices.

As it stands this function is unaffected by an arbitrary linear trans-

formation of A. If, for any nonsingular k x k matrix T , A is trans-

formed to A* by

A :m* =AT-1

and a complementary transformation of the factor axes is performed as

0* = TOT' for g = 1,2,...,G

the function F remains unaltered.

In order MI" the parameters to be defined uniquely there must he im-

posed at least k
2

conditions on the A and/or all the 0 's. These
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conditions are imposed by fixing elements in advance. The final solution

can be obtained in either of two ways. The equivalent of an unrestricted

solution may be obtained by imposing some k
2

arbitrary values and sub-

sequently rotating. On the other hand, if a particular model is being

tested the model may be specified by fixing at least k
2

particular param-

eters and obtaining the solution directly. If more than k2 conditions are

imposed the solution will be restricted and, therefore, could not be ob-

tained exactly by the transformation to similarity of unrestricted solutions.

With the data in the present study a restricted solution was obtained.

All the elements in A which had been fixed at zero in the restricted

solution with the pooled correlation matrix (Table 5a) were similarly

fixed for the simultaneous solution. A further four restrictions were im-

posed by requiring that the weighted mean of the 0g matrices be a cor-

relation matrix, viz,

diag 0 = I

where0= 1En0. These four restrictions were imposed indirectly by
g=1 g g

4

fixing the largest nonzero element in each of the four columns of A and

thus fixing an arbitrary scaling for both A and the four 0 matrices.

The solution was then rescaled by calculating 0 as shown above and then,

with D = (diag 0)
-1/2

scaling the factor dispersion matrices 0g so

that

0* = DO D
g g

for g = 1,2,3,4

and the common factor pattern matrix A so that
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11:x* =AD-1

There were, therefore, 15 free parameters in A , 40 free parameters

in the lower halves (including diagonals) of the four g matrices, and

48 free parameters in the diagonals of the four *
2

matrices, giving a

total of 103 free parameters in the function to be minimized.

To keep the number of iterations in the numerical minimization to a

minimum it was important to obtain good initial estimates of the unknown

parameters. The A obtained from the final analysis of the pooled cor-

relation matrix (Table 5a) was used as the starting value for A . Initial

estimates of the 0
g

and *
2

matrices were obtained by performing sepa-

rate restricted factor analyses for each of the S* matrices with A

entirely fixed with the values in Table 5a and the 0g and *
2

matrices

entirely free. The solutions for these independent analyses were used as

starting points for the simultaneous analysis. The scaled solution for

the simultaneous analysis is shown in Tables 6a-b.

(Tables 6a-b about here)

The X
2

measure of goodness of fit was 2038.2 with 209 degrees of

freedom. In order to compute Tucker and Lewis' reliability index, X
2

values

were obtained for a zero common factor solution with each of the S* ma-

trices, These X
2

and their corresponding degrees of freedom are additive

and the totals can be compared with that obtained for the simultaneous solu-

tion with 4 common factors. These totals were X
2

33741 and 264 degrees

of freedom. The reliability index 0 for the simultaneous solution was

.940.



As a further check on the goodness of fit of the simultaneous solution

independent restricted solutions were obtained for each of the S* matrices

with the same elements in A (I) , and *
2

free as in the simultaneous

solutions. The sums of the X
2

and degrees of freedom obtained in these

four analyses yielded a X
2

of 1857.0 with i64 degrees of freedom. The

index in this case was .929. It appears, therefore, that the model with the

common factor pattern A fits the data from the four samples reasonably

well.

Mean Factor Scores

In the general model used in the simultaneous factor analysis technique

described above factor scores are not standardized within each population.

The vector of mean factor scores for each population v can be estimated

using Lawley and Maxwell's (1963) modification, for the case of correlated

factors, of Thomson's regression method for determining factor scores, viz

$ riv-1(R a)
g g g g

AA A ^
where 'E = AO is! + *

2
is the estimate of the dispersion matrix for popula-

g

tion g xg is the vector of mean test scores for population g and rt

is the vector of overall mean test scores for all populations. The esti-

mates of the mean factor scores shown in Table 7 have been scaled so that

EN 'V = 0 .

g g

(Table 7 about here)

18
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Discussion

The goodness of fit of the model with A invariant over the four

populations indicates that there is factorial invariance, in the sense that

a solution can be obtained for all populations with the same pattern of

factor loadings on the same number of common factors. Whether the common

factors are the same in the four populations can not be determined without

consideration of the 0g matrices, in particular the 0* matrices obtained

in the final scaled solution.

In an extreme case complete equality of the 0* matrices could be

established, either by fitting a model with a common A and a common 0 ,

with all differences in the original S* matrices being accounted for in

the diagonal *
2

matrices, or by fitting a model with a common A and subse-
t

quently testing the hypothesis of equality of the 0* matrices obtained in the

solution. A model with a common A and a common 0 allows only for dif-

ferences in variance elements in the original dispersion matrices and, where

these dispersion matrices are demonstrably different as in the present case,

there is no point in testing such a model. It is necessary, however, to

test for equality of the 0* matrices obtained in the solution with the

common A .

The hypothesis of equality of the four factor dispersion matrices 0* ,

g = 1,2,3,4 shown in Table 6b was tested using the procedure, referred to

previously, developed by Box. This test yielded F, = 89.6 , showing

the 0* matrices to be significantly different. Examination of the matrices

reveals the differences to be in both variances and covariances.
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Whether, with a common A but significantly different matrices,

the four factors can be given the same substantive interpretation in each

population is an important question. It should be noted that there is no

mathematical basis for the inference of identity of common factors across

populations, even in the case where a common A and I can be fitted to

all populations. It is clearly possible, with different populations, that

identical dispersion matrices could be obtained from different test batteries

(with the same number of tests in each) applied to the populations. In such

a case mathematically identical factor solutions could be obtained.

Where the same test battery is used and the populations are, in fact,

subpopulations of some more inclusive population, the inference of identical

factors seems reasonable if the A and 0 matrices are the same for all

subpopulations. While it is probably still appropriate, because of the

common A , to give the same substantive interpretation of the factors

when the 0g matrices differ, the differences in the 0g matrices reveal

differences in the interrelations of the factors in the different sub-

populations.

To facilitate a comparison of the interrelations, each of the factor

dispersion matrices has been rescaled to a correlation matrix (Table 8).

From this table it can be seen that, in the two subpopulations with low

SES, Factor IV is more highly correlated with each of the other factors than

in the subpopulations with high SES. That is, it appears that perceptual

speed is more clearly an independent factor for high SES groups. It is con-

founded most with the spatial and verbal mechanics factors in the low SES

groups. In the two high IQ subpopulations Factors I and II are more highly
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correlated than in the low IQ groups, with the confounding more marked in

the high IQ-low SES population.

(Table 8 about here)

The only other notable difference among the subpopulations is in the cor-

relation between Factors I and III. This correlation is relatively high for

the high IQ-high SES subpopulation. Differences in the estimated mean fac-

tor scores on the spatial factor indicate that IQ is a more potent variable

than SES on this factor. The higher correlation between Factors I and III

when SES is higher suggests that the influence of SES on performance on the

spatial factor might be mediated through greater general knowledge.

Interpretation of differences in variances on the factors (Table 6b)

can be facilitated by simultaneous consideration of differences in mean

factor scores (Table 7). The estimates of the mean factor scores given in

Table 7 are quite stable, because of the large sample sizes involved. Con-

fidence intervals can be established around each mean since estimates of the

variances of the subpopulations on each of the factors are available. The

standard error of the estimate of the mean of subpopulation g on factor

is given by

SVg (0 /N )1/2
gii g

where 0 is the i
th

diagonal element in the factor dispersion matrix 0* .

gll

Confidence intervals (99%) were established for each of the estimated

means shown in Table 7 and, except in the case of the third and fourth sub-

populations on the fourth factor, where the estimated means were equal, none

19
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of the intervals on any of the factors overlapped. Thus there are real dif-

ferences in mean factor scores for the groups. This, in itself, is not

surprising but what is more interesting are the relationships between

these differences and differences in the corresponding variances.

In the following discussion differences in mean factor scores between

levels of IQ and SES are compared. Unfortunately, information about the

means and variances of the subpopulations on the composite IQ and SES cri-

teria were not available. If, for example, there were greater differences

in mean SES at low IQ level than high IQ some of the conclusions that

follow might need to be modified. The discussion is based on the presump-

tion that differences between means on one variable (IQ or SES) are the

same at both levels of the other variable.

On the general knowledge factor, subpopulation 1 (low IQ-low SES) is

well below the other three subpopulations in mean factor score. The gap

between low and high SES groups is much wider for low IQ than high IQ. The

variances of all but subpopulation 2 (low IQ-high SES) are virtually the

same, however. For this subpopulation the dispersion of factor scores is

much wider (1.502) suggesting that the interaction of IQ and SES is different

at different levels of IQ, the facilitative effect of high SES being much

less uniform at low IQ levels.

The IQ variable, as might be expected) appears to be more strongly

related than SES to performance on the verbal factor (Table 7), but the

facilitative effect of high SES is greater for low IQ (or alternatively, the

debilitative effect of low SES is greater for high IQ). The factor scores

of all subpopulations are similarly dispersed.
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A similar pattern was found on the spatial factor, with IQ being more

strongly related than SES to differences in mean factor scores. Again, there

was little difference in homogeneity of factor scores among the subpopulations.

On the perceptual speed factor there were differences, related to dif-

ferences in SES, only at the low IQ level. The mean factor scores of the two

high IQ subpopulations were identical and their variances virtually the same and

relatively small. Both low IQ groups were widely dispersed with the effect most

marked for the high SES group. In the discussion of the intercorrelation of

factors it was noted that the perceptual speed factor was relatively more

independent of the other factors for the two high SES subpopulations. In the

high IQ-low SES subpopulation, for example, it was more highly correlated with

the verbal mechanics factor, a factor with which IQ is a more highly related

variable than SES. On the perceptual speed factor, more than any of the

other three, care needs to be taken in applying the same substantive inter-

pretation for all subpopulations. Although both high IQ groups have similar

dispersions and the same mean factor scores, this factor does not appear to

be the same. There appears to be a higher verbal component for the low SES

group. There is a similar confounding of this factor in the two low IQ

groups.

21
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Table 1

Resealed Dispersion Matrices

1 2

Group 1
Group 2

3 4

Low IQ-Low SES
Low IQ-High SES

5 6 7

Above Diagonal
Below Diagonal

8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

1.095
1.380

1.038

.788

.261

.282

.368

.320

.080

.160

-.013

.0711

.033

743

.904

1.410

.974

.286

.359

.356

.42o

.149

.236

-.029

.091

.018

.493

,y4.z

.u"'l

.76
1.3274

.300

.280

.363

.252

.081

.124

.002

.147

.034

.228

.284

.216

.904

.385

.295

-.036

.010

-.048

.004

.255

-.o41

.298

.351

.283

.348

1'969.127

.389

.162

.112

.103

.020

.172

-.025

.381

.414

.318

.386

.508

1.303
1.465

.186

.072

.114

.007

.131

-.062

.294

.306

.214

.039

.197

.205

971.272

.302

.4 98

.050

.048

.1L2

.128

.144

.095

.003

.113

.131

.396

1.128
1.255

.385

.271

.357

.379

.o6o

.063

.424

-.023

.138

.091

.359

.377

.26
1.9162

.063

.082

.215

.150

.178

.148

.139

.254

.258

.138

.224

.210

1.614
2.021

.384

.696

.137

.135

.128

.213

.179

.228

.102

.146

.097

.427

1.450
1.737

.425

.099

.110

.113

.041

.157

.175

.276

.338

.291

.483

.470

1.336
1.787
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Table 1 (continued)

Group 3 High IQ-Low SES Above Diagonal
Group 4 High IQ-High SES Below Diagonal

1 2 3 4 5 6 7 8 9 10 11 12

947
1

.

.761 .641 .273 .316 .296 .192 .099 .003 .079 .070 .029
.882

.968
818 .359 .4082 .659 .359 .232 .134 .010 .108 .108 .054

,..

.982

129
3 .562 .750

1.
.334 .382 .331 .174 .117 .003 .106 .135 .080

1.091

4 .270 .303
.348 1.048

.409 .289 -.023 .015 -.062 .086 .151 .027
1.095

.986
5 .283 .390 .368 .461

.997
.378 .092 .103 .034 .130 .130 .07o

6 .193 .238 .247 .242 .303
.667

.656
.127 .081 .035 .085 .123 .061

895
7 .252 .424 .281 -.026 .160 .088

. .411 .44o .069 .095 .204

.972

.goo
8 .077 .139 .134 .035 .087 .049 .316

.835
.383 .075 .115 .222

.96
9 .157 .304 .192 -.021 .196 .079 .4

1.030
7

90 .321 .071 .061 .191

284
10 .013 .018 .042 .060 .04

.

3o72 .011 .015 .078 .030 .143 .169
.

11 .042 .041 .090 .177 .093 .040 -.024 .117 .014 .123
.524
.486

12 -.001 .014 .045 .028 .025 .002 .084 .170 .108 .143 .153

.201

.586

.564



Table 2

Goodness of Fit of Various Unrestricted Factor Models to Data

(21 Variables)

No. of Common
Factors X

2
df Prob.

0 57915 210 0.00
1 21597 189 0.00 .588

2 13079 169 0.00 .722

3 6846 15o o.00 .838

4 3548 132 0.00 .906

2118 115 0.00 .937

6 1145 99 0.00 .962

7 627 84 0.00 .977

8 40 7o o.00 .983

Table 3

Goodness of Fit of Various Unrestricted Factor Models to Data

(12 Variables)

No. of Common
Factors X

2
df Prob.

0 37018 66 0.00 --

1 11753 54 0.00 .613

2 6070 43 0.00 .750

3 2272 33 0.00 .879

4 202 24 0.00 .987
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Table 4

Varimax Rotated Solution for Pooled Correlation Matrix

Tests I

Common Factors

IV
Unique
VarianceII III

Vocabulary .728 .216 .108 .032 .410

Information I .916 .251 .189 .017 .062

Information II .687 .271 .094 .079 .440

Spelling .193 .560 -.113 .125 .620

Punctuation .190 .671 .145 .074 .487

English Usage .206 .493 .089 .089 .698

Mechanical Reasoning .250 .042 .654 .030 .507

Visualization I .041 .026 .500 .249 .685

Visualization II .046 .049 .650 .083 .566

Table Reading .036 .086 .080 .504 .730

Clerical Checking .040 .164 .008 .515 .707

Object Inspection .007 -.023 .230 .615 .568

V
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Table 5a

Restricted Correlated Solution for Pooled Correlation Matrix

Tests I

Common Factors

II III IV

Unique
Variance

Vocabulary .652 .220 0 0 .425
Information I .874 .231 0 0 .038
Information II .585 .290 0 0 .453
Spelling 0* .579 0 0 .664

Punctuation 0 .682 0 0 .536
English Usage 0 .571 0 0 .674
Mechanical Reasoning .216 0 .602 0 .540
Visualization I 0 0 .499 .195 .676

Visualization II 0 0 .666 0 .557
Table Reading 0 0 0 .51i7 .701
Clerical Checking 0 .143 0 .473 .726

Object Inspection 0 0 .173 .577 .599

*All zero elements fixed by hypothesis.

Table 5b

Intercorrelation of Factors

I II III IV

I

II

III
Iv

1.000

.357

.252

.016

1.000
.159
.213

1.000
.189 1.000
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Table 6a

Simultaneous Solution for Four Pbpulations

Tests I

Common Factors

IV Pop.

Unique Variances

Pop. 4II III 1 Pop. 2 Pop. 3

Vocabulary .642 .231 0 0 .476 .569 .349 .350

Information I .865 .253 0 0 .022 .078 .000 .056
Information II .576 .300 0 0 .387 .598 .437 .476

Spelling 0 .575 0 0 .608 .602 .719 .723

Punctuation 0 .683 0 0 .497 .679 .526 .530
English Usage 0 .536 0 0 .863 1.149 .362 .464
Mechanical Reasoning .233 0 .600 0 .549 .790 .423 .458
Visualization I 0 0 .477 .212 .771 .882 .567 .575

Visualization II 0 0 .676 0 .517 .640 .487 .548
Table Reading 0 0 0 .512 1.199 1.488 .151 .187
Clerical Checking 0 .125 0 .481 1.067 1.320 .361 .342
Object Inspection 0 0 .148 .588 .748 1.090 .338 .371

Table 6b

I

Estimated Factor

Low SES

Dispersions

IV I

High SES

IVII III II III

Low IQ

I

II
III
iv

.904

.316

.111

.122

1.045
.188
.401

.934

.415 1.415

1.502
.339

.293
-.036

1.018
.108
.068

1.068
.208 1.857

High IQ

I

III
Iv

.949

.443

.045

.098

1.004
.051
.260

1.127
.203 .516

.961

.329

.379

-.047

954
.163
.085

1.017
.039 .487
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Table 7

Estimated Factor Means

I II III IV

General Verbal Speed of
Knowledge Mechanics Spatial Perception

1 Low IQ - Low SES -1.78 -1.51 -.91 -.57
2 Low IQ - High SES .58 -.31 -.75 -.4o
3 High IQ - Low SES 1.00 .90 .58 .52

4 High IQ, - High SES 1.27 1.27 .91 .52
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Table 8

Estimated Factor Correlations

I

Low SES

TV I

High SES

II III II III

Low IQ

I

III
IV

1.000
334
.131
.095

1.000
.193

.271
1.000
.314 1.000

1.000
.222

.183
-.013

1.000
.099
.036

1.000
.105 1.000

High IQ

I

III
IV

1.000
465
.042
.200

1,000
.045
.502

1.000
.349 1.000

1.000

.359

.388

-.100

1.000
.168
.183

1.000
.079 1.000

31


