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BONDS BETWEEN ATOMS

FOREWORD

The field of inquiry into how atoms are bonded together to form mole-

cules and solids crosses the borderlines between physics and chemistry,

encompassing methods characteristic of both sciences. At one extreme,

the inquiry is pursued with care and rigor into the simplest cases; at

the other extreme, suggestions derived from the more careful inquiry

are pushed with daring to provide qualitative insights into the com-

plexities of chemical behavior.

This monograph provides an introduction to both points of view and

to the relationship between them. Dealing primarily with the physical

nature of the simplest chemical bonds, it nevertheless examines a few

molecules that are much more complicated, in order to point out the

wide qualitative relevance of the more rigorous approach.

In developing its subject the monograph makes extensive use of

simplified models. Indeed, taken as a whole, it constitutes an exer-

cise in model making. It offers the lesson that, in conducting such an

activity, a difficult balance must be achieved between a sense of ad-

venture on the one hand and a sense of responsibility on the other. The

adventure is found in inventing the models and employing them in wide

contexts. The responsibility resides in pursuing their implications

relentlessly, to the point of calculating numerical values with their

aid and comparing those values with the results of experimental meas-

urements.

Alan Holden
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1 THE NATURE OF INTERATOMIC BONDS

"The Parts of all homogeneal hard
Bodies which fully touch one another,
stick together very strongly. And for
explaining how this may be, some have
invented hooked Atoms, which is beg-
ging the Question . . I had rather
infer from their Cohesion, that their
Particles attract one another by some
Force, which in immediate Contact is
exceeding strong, at small distances
performs the chymical Operations above-
mentioned and reaches not far from the
Particles with any sensible Effect
. . . There are therefore Agents in
Nature able to make the Particles of
Bodies stick together by very strong
Attractions. And it is the Business
of experimental Philosophy to find
them out." So wrote Sir Isaac Newton
two hundred sixty years ago.

The pursuit of Sir Isaac's Busi-
ness over a quarter millenium has
progressively found them out, wholly
verifying the remarkable insight of
that remarkable man. In 1945 Erwin
Schroedinger, the principal architect
of the means for completing the veri-
fication, could write that "the atoms
forming a molecule, whether there be
few or many of them, are united by
forces of exactly the same nature as
the numerous atoms which build up a
true solid, a crystal." We know today
that those forces are primarily elec-
trostatic, the forces of attraction
between electrical charges of opposite
sign. The gravitational and magnetic
forces that also operate in these un-
ions are entirely negligible in com-
parison with the electrostatic.

In view of how little was known
about atoms in Newton's time, his
insight seems the more remarkable.
Speculative minds had promulgated
atomic theories of one sort and an-
other for two thousand years. But
Robert Boyle, Newton's contemporary,
had been the first to urge the view
that the world is made of compounds

1

that can be decomposed into elements.
The "elements" of earlier times were
not separate kinds of ultimate, un-
decomposable matter; they were aspects
of a single neutral substance of which
the world was made. Those different
aspects were produced by the combined
application of definite and disting-
uishable formative principles on the
neutral substance.

These ideas about the world arose
from a doctrine of Aristotle that em-
phasized the distinction between "sub-
stance" and "form."1 The doctrine
recognized four formative principles:
hotness and dryness and their oppo-
sites, coldness and wetness. By im-
pressing those qualities in pairs on
the single substance, the four primal
forms of matter are produced according
to the following scheme:

dryness + hotness fire
dryness + coldness earth
wetness + hotness air
wetness + coldness water

The many subsidiary differences be-
tween the forms in which these four
elements appear are reflections of the
differences in the proportions and
intensities with which the formative
principles are applied.

Of all the ancient speculations
about the construction of the world,
this doctrine of the Four Elements
gave an especially powerful impulse
and direction to early chemistry. The
Arabs absorbed the doctrine when they
conquered Egypt in the seventh cen-
tury, using it to interpret the ex-

'It has been suggested that Aristotle may have
arrived at his doctrine by reflecting upon the
activities of craftsmen and artists, who trans-
mnte formless matter into the objects that are
of interest and use to man. Notice in any case
that the Latin word materia meant wood-for-
building.



2 BONDS BETWEEN ATOMS

peiments stimulated by their active
spirit of enquiry. The alchemy that
developed at their hands rested on
their belief that they could change
any kind of matter into any other if
they could but discover what forma-
tive principle, applied in what man-
ner to the first kind, would produce
the second.

The winning and modification of
metals was an especially important
preoccupation of the early investiga-
tors. Outstanding among them was Jabir
ibn Hayyan (the "Geber" of certain
Latin texts) who added two more ele-
ments, mercury and sulfur, to the
primal four. "Mercury" was the princi-
ple giving metals their unalterable
property, and "sulfur" was the earthly
impurity from which they could be
cleansed. With increasing attention
to the preparation of substances for
medical use, a third element was
added to tie new list: "salt," the
residue that remained fixed after cal-
cination. Indeed these three formed
the tria prima of Paracelsus, the vi-
olent2 and peripatetic man whose ex-
ample inspired the reckless pharma-
cological expermentation of the six-
teenth century.

As has happened so often in the
history of science and as happens to-
day, without doubt, a body of theory
later overthrown stimulates and organ-
izes much valid observation of nature.
When Boyle undertook his experiments
in the middle of the seventeenth cen-
tury, he could profit from the re-
corded results of many centuries of
chemical work. Contemplating them, he
wrote the "Sceptical Chymist," pub-
lished in 1661, which raised serious
objections to the tria prima:

There are some bodies from which
it has not yet been made to appear
that any degree of fire can separ-

'Oh receiving the prolessorship of medicine at
Basle, Paracelsus' first public act was to burn
the great handbooks of medicine by Galen and
Avicenna.

ate either salt, or sulfur, or
mercury, much less all three. Gold
may be heated for months in a fur-
nace without losing weight or alter-
ing, and yet one of its supposed
constituents is volatile and an-
other combustible. Neither can
solvents separate any of the three
principles from gold; the metal
may be added to, and so brought
into solution . . . but the gold
particles are present all the
time; and the metal may be reduced
to the same weight, of yellow,
ponderous malleable substance it
was before.

After calling the tria prima in
question in this fashion, Boyle pro-
posed an alternative picture of chem-
ical occurrences. He remarked upon
t.le fact that many metals lead and
copper, for example - may be dissolved
in acids and their properties entirely
disguised in the resulting compound.
Meeting with corpuscles of another
kind, the corpuscles of metal may be
more disposed to unite with them, he
suggested, than to join with the par-
ticles forming the original metallic
cluster. Thus from the coalition of
two different corpuscles a new body
may be formed "as really one as either
of the corpuscles before they were
confounded."

It was bold to suggest that mer-
cury, a silvery metallic liquid, and
sulfur, a readily fusible yellow
solid, should combine to form the
red mineral cinnabar, rather than the
yellowish metal, gold. Indeed it seems
equally bold today to advance the idea
that the entire richness and diversity
of the matr,rial world is formed by
union of only a hundred kinds of
atomic particles. Our notion that
water is made from the particles of
two gases, hydrogen and oxygen, in
two- to- one proportion may seem no less
preposterous than Aristotle's notion
that water represents the impress of
wetness and coldness on a matter-stuff,
or than the notion of Thales of Mile-
tus that water is itself the sole ele-
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mentary source of the world.3 But we
have vastly more evidence to support
today's fantastic contention than did
the ancients. That evidence is the
major content of the chemical knowl-
edge acquired over the past three cen-
turies.

But Boyle had left unanswered -
in fact unstated - the question,
"Why and when do the particles join?"
It was appropriate that Newton, who
had made especially vivid use of the
idea of force in the mechanics of
visible objects, and who had fathered
the law of universal gravitation,
should appeal to the idea of force
again to explain the cohesion of in-
visible particles in solids and also
the interchanges of their allegiance
in chemical reactions. But some good
quantitative feeling, or perhaps some
rough calculation that he does not
describe, warned him that gravita-
tional forces between the particles
could not provide the explanation that
he sought.

The electrostatic explanation
that we accept today had to await the
experiments with electricity that form
a conspicuous scientific ornament of
t!ie nineteenth century. The previous
century had witnessed a few notable
discoveries, in particular that of the
two kinds of electricity, positive and
negative, by Charles Dufay in 1734.
Dufay's observation that bodies with
like electrification repel each other
while those with unlike electrifica-
tion attract each other had been made
quantitative by CharlesAugustin
Coulomb's brilliant use of his tor-
sion balance near the end of the
eighteenth century. But it was Ales-
sandro Volta's announcement in 1800
of his electric battery, "which in a

In a famous experiment the seventeenth century
Belgian physician and chemist, Jean Baptiste van
Belmont, believed that he had verified Thales'
doctrine by growing a willow shoot ia dried
earth and watering it regularly until it had
gained many pounds in weight without re,eiving
any other nutrient that van HelmonL could dis-
cern. Ironically, this was the man who also dis-
covered carbon dioxide, in other exp^rimenLs.

word provides an unlimited charge or
imposes a perpetual action or impul-
sion on the electric fluid," that made
possible the crucial chemical experi-
ments.

In that same year William Nichol-
son noticed the products of electroly-
sis of river water appearing at the
free ends of wires connected to a
voltaic pile. Hence one of the first
acts of Sir Humphry Davy, on becoming
director of the laboratory at the
Royal Institution in London the fol-
lowing year, was to construct a la' -go
battery of the sort Volta had de-
scribed. With it he followed up Nichol-
son's observation vigorously over the
next live years, with results that he
summarized in the following word:3.

Hydrogen, the alkaline substances,
the metals, and certain metallic
oxides are attracted by negatively
electrified metallic surfaces and
repelled by positively electrified
metallic surfaces; and contrari-
wise, oxygen and acid substances
are attracted by positively elec-
trified metallic surfaces and re-
pelled by negatively electrified
surfaces; and these attractive and
repulsive forces are sufficiently
energetic to destroy or suspend the
usual operation of elective affin-
ity.

It was then natural to assume
further that "the usual operation of
elective affinity" is itself electro-
static the attraction of oppositely
charged atoms of different species.
Davy in England, and Jails Berzelius in
Sweden, both soon came to this view,
and the latter formulated an electro-
chemical theory of the formation of
compounds, published in 1814, which
put forward this "dualistic hypothesis"
in explanation of all chemical action.
Berzelius even extended these ideas
into organic chemistry, proposing that
groups of atoms can form compound "radi-
cals," positive and negative, which
then join together as elements would.

But it is clear that, however
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well such a theory may fit the obser-
vations on substances that can be
brought into solution and electrolyzed,
it cannot explain all the interatomic
forces found in nature. From measure-
ments on gaseous hydrogen and oxygen
and their reaction to form water vapor
it was becoming increasingly clear in
Berzelius' own time that these gases
are both composed of molecules of
which each contains two atoms tightly
joined. Berzelius long opposed this
conclusion because he could not find
in his dualistic theory any binding
force between two identical atoms.
But the idea of diatomic molecules
was unavoidable - and binding force
there must be,

The origin of the forces between

identical atoms has been found only in
this century, with the identification
of the electron by J. J. Thomson in
1897 and the development of pictures
of the inner structure of atoms made
possible by that discovery, It turns
out that such seemingly diverse inter-
atomic attractions as those found in
hydrogen molecules, in metals, and in
crystalline argon can all be convinc-
ingly explained in electrostatic terms.
The next chapter will provide a quali-
tative discussion of the various ways
in which the electronic constitution
of atoms can operate to provide bonds
between them, and the rest of this
monograph will pursue the same ques-
tions more quantitatively and in
greater detail.



2 THE CLASSIFICATION OF BONDING

In talking about interatomic bonds,
and about the aggregations of atoms
assembled by them, it is helpful to
make classifications suggestive,
not hard and fast - of as many sorts
as conic to mind. The bonds might be
divided, for example, into two classes;
those between similar atoms, such as
the bond between two hydrogen atoms
which ties them together in a hydrogen
molecule, and those between dissimilar
atoms, such as the bond between sodi-
um and chlorine in sodium chloride.
And the world's solids might be di-
vided into two classes: those which
melt into electrically conducting
liquids, and those which melt into
electrically insulating liquids. The
proposed classification of interatomic
bonds is clearly exhaustive; the clas-
sification of solids is not, for many
solids decompose into new materials
at temperatures below their melting
point. But these classifications are
simple, and useful for a start.

If two atoms come close to each
other, they will not remain unaffected
by each other. If they belong to dif-
ferent atomic species, one may accom-
modate electronic charges somewhat
more readily than the other. Charge
may flow from the one to the other,
leaving the one with a net pcsitive
charge and giving the other a net
negative charge. Then the two partly
ionized atoms will attract each other
electrostatically, providing the bond
visualized by Davy and Berzelius as
the last chapter described. In the ex-
treme case each atom of one species
completely transfers one electron to
an atom of the other species, and the
ions can be expected to assemble about
one another in such a way that each
ion is as near as it can be to as many
ions of the other species as possible,
and as far as possible from the simi-
larly charged ions of its own species.

In such a case an ion has no

5

preference for a particular one of the
ions of the other species. Molecules,
formed by pairs of ions, cannot be
unambiguously identified in the solid.
In crystalline sodium chloride, for
example, the ions are arranged as
shown in Fig. 2.1 (see next page):
each ion is immediately surrounded by
six ions of the other species.

As that figure shows, the ions in
such a solid are packed together too
tightly to move past one another; they
can only vibrate about their average
positions. But when the solid is
melted, the ions will be able to drift
through the liquid as they could not
through the solid. If an electric
field is applied to the liquid, the
ions of the two species will drift in
opposite directions. When they reach
the electrodes that establish the
field, the negative ions will dis-
charge their extra electrons to the
positively charged electrode, and the
positive ions will acquire from the
negative electrode the electrons that
they lost when they became ions.

In this way neutral atoms of the
two species will accumulate at the op-
posite electrodes; and if they cannot
combine with the material of the elec-
trode, they will combine with one an-
other in whatever way is characteris-
tic of them. Molten sodium chloride,
for example, can be electrolyzed to
yield sodium metal and chlorine gas.
Since the drifting of the ions carries
a drift of charge, a current flows;
and the amounts of metal and gas pro-
duced are proportional to the product
of the current by the time during
which it has flowed. Thus, in princi-
ple at least, the fact that a solid
is ionically bonded can be ascertained
by observing that it is an electrical
insulator that melts to an electri-
cally conducting liquid whose conduc-
tion is accompanied by electrolysis.

If, on the other hand, two simi-
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a

Fig. 2.1 In solid sodium chloride, each
negative ion is immediately surrounded by
six positive ions, and each positive ion by
six negative ions, as shown at the left.
Diagrams 01 atomic arrangements in crystals
usually show just the locations of the cen-
ters of the atoms, so that the arrangements
can be seen more readily. The diagram at
the right shows more truly how the ions
pack together. It was drawn by William Bar-
low, who suggested more than seventy years

lar atoms come close to each other,
there is no reason to expect charge to
flow permanently from one to the other,
for the two atoms are indistinguish-
able in kind, and there is no evidence
that it does. Nevertheless they do
attract each other, and often that
fact can be explained by supposing
that electronic charges move back and
forth between the two atoms. Then in-
stantaneously each has a charge oppo-
site to that of the other. Moreover,
while the electrons are moving they
are instantaneously between the two
atoms, and there they provide a cloud
of negative charge that attracts both
the atoms because, having contributed
the negative charges in the cloud, the
atoms bear net positive charges.

When two similar atoms join in

b

ago that the atoms in sodium chloride might
take this arrangement in the solid. Objec-
tions were raised then that the structure
does not portray the atoms as associated in
diatomic molecules. But studies of sodium
chloride crystals by X-ray diffraction have
since shown that Barlow was right. In the

solid the molecules, not the structure,
had to be discarded. His diagram also shows
correctly that one species of ions is lar-
ger than the other.

this way, the attraction between them
is called a covalent bond. Their elec-
tronic charges bond them in both these
ways, as Chapters 5, 6, and 7 analyze
in more detail. The electrons try to
decrease their total energy: the sum
of their kinetic energy and their po-
tential energy. Their potential energy
is lower when they are close to one
or the other of the positively charged
nuclei. But their kinetic energy is
lower if they can range over a wider
space, because then their de Broglie
wavelength A is longer, and their
momentum p = h/A is smaller.4

'The connections between kinetic energy and the
de Broglie wavelength, and the exclusion princi-
ple, are described in Wave-Mechanical Properties
of Stationary States, a monograph in this series.
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Hence there is a competition
between the decrease of kinetic en-
ergy and the increase of potential
energy of the electrons when they make
wider excursions from the atoms. When
two atoms permit an electron to visit
them, and so to decrease the electron-
tronic kinetic energy, the electron
may find that its total energy is
lowered by visiting back and forth.
In order to make such visiting worth
while, each atom must offer to the
electron a permitted state whose
energy is low enough, and which is
not already occupied by another elec-
tron. The latter qualification, com-
ing from the exclusion principle, is
the more stringent: more than any
other single principle, it disting-
uishes the bonds that are possible
from those that are not.`

Thus in a covalent bond two sim-
ilar atoms are held together by elec-
trons that exchange places between
them. Part of the time that exchange
gives the atoms opposite net charges,
and the rest of the time it leaves
both of them with a net positive
charge that is attracted toward a
concentration of negative charge be-
tween them, as Fig. 2.2 suggests.
This is usually a localized phenome-
non. The electrons participating in
the bond are contributed by both of
the bonded atoms, and commonly they
extend their allegiance no further;
the bond is localized between the two
atoms. Each atom may be bonded to
other atoms also, by other electrons.
But each of these bonds can usually
be pictured quite separately, engag-
ing different electrons that lo not
move from one bond into another. In
many cases the covalent bonding that
links atom to atom comes to an end
with relatively few atoms, to form a
molecule; and then the bonding of
molecule to molecule, to form a liquid
or a solid, originates in forces whose
character is not covalent. In diatomic
molecules such as those composing hy-
drogen gas, there is only one covalent
bond per molecule. In a molecule of
the hydrocarbons of which paraffin

c e e
Fig. 2.2 Three formal arrangements 01 two
electrons in a hydrogen molecule. When both
electrons arc near one or the other nucleus
(a and b), there is a net negative charge
within the dotted line, and the two atoms
attract each other as two ions would. When
the electrons are between the nuclei (c),
they attract both nuclei toward them, and
thus toward each other.

Fig. 2.3 In a diamond, each carbon atom is
immediately surrounded by four others, held
to it by strong covalent bonds directed
toward the four corners of a regular tetra-
hedron. The resultin network 01 bonds
makes a diamond crystal a single giant
molecule, and the bonds' strength gives to
a diamond its extreme hardneL,s.
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consists, from twenty to fifty carbon
atoms are covalently linked in chains,
and hydrogen atoms are covalently
bonded to them. The modern plastic,
polythene, consists of similar mole-
cules, but each contains many hundred
atoms linked together. Finally, in a
crystal of diamond, the constituent
carbon atoms are all joined by coval-
ent bonds as Fig. 2.3 shows into a
single gigantic molecule.

Notice, however, that since the

DISPLACEMENT OF ELECTRONIC CHARGE

NET POSITIVE NET NEGATIVE

q -

d > 9
DIPOLE MOMENT p = qd

Fig. 2.4 If electronic charge is displaced
toward one of two bonded atoms, the pair
acquires a dipole moment.

a

< >u u > <_
Fig. 2.5 Two arrangements of two dipoles.
In arrangement a, the positive charge in
the dipole at left is slightly nearer to
the positive charge than to the negative
charge in the dipole at right, and hence
that charge repels the dipole slightly.
Similarly, the negative charge in the
dipole at left also repels the dipole at
right, and thus the two dipoles repel each
other. In arrangement b, the attractions
between the charges slightly outweigh the
repulsions, and the two dipoles attract
each other.

electrons participating in the bonding
of a molecule remain within the con-
fines of the molecule, they cannot
drift through the solid, and the solid
is an electrical insulator. Moreover
when the solid is heated it will usu-
ally melt into electrically neutral
molecules, not charged ions, and hence
the liquid will also be an insulator.
Yellow crystalline sulfur, for in-
stance, melts to a light-yellow in-
sulating liquid, each of whose mole-
cules contains eight sulfur atoms.

But there are exceptions to this
behavior, easily understood. When two
atoms of different species are bonded,
the bond may be chaned from the
purely covalent toward the ionic. If
the energy of the state offered by one
atom is slightly lower than that of
the state offered by the other, the
average electronic charge will be dis-
placed toward the atom offering the
state of lower energy. When the mate-
rial is melted, the thermal agitation
may dissociate some of the molecules
into ions, and the melt may therefore
show ionic conduction of electricity.

The displacement of charge to-
ward one of the two bonded atoms gives
to the pair of atoms a dipole moment.
as Fig. 2.4 points out. Such dipole
moments within molecules are important
contributors to the bonds between the
molecules in a liquid or solid. The
force between two dipoles varies not
only with their separation but also
with their relative orientation, as
Fig. 2.5 shows. Since favorable rela-
tive orientations will afford lower
electrostatic energies than unfavor-
able orientations, the molecules will
tend to assemble into a favorable
arrangement, held together by dipole -
dipole forces. If the molecules are
large and contain several species of
atoms, the stray fields from the in-
dividual dipole moments of the several
bonds can add together to give a force
whose spacial dependence is quite com-
plicated, and the total force holding
one molecule to another can be quite
large. Partly for this reason, large
and complicated organic molecules
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often form crystals that melt at mod-
erately high temperatures.

Even when the bonds have no
dipole moment, however, Lhc molecules
attract one another. The picture of the
covalent bond formalized in Fig. 2.2
offers two reasons for this attraction.
In the first place, the concentration
of negative charge midway between two
equal positive charges gives the bond
a "quadrupole moment" (Fig. 2.6).
Again favorable orientations permit an
attraction between two quadrupoles,
but that attraction is weaker and
falls off more rapidly with distance
than the attraction between two di-
poles.

In the second place, the flow of
charge back and forth between the two
atoms, so that each is alternately
positive and negative, gives the bond
an oscillating dipole moment. If such
oscillations arc properly phased in
neighboring molecules, the fluctuating
dipole moments will make the molecules
attract one another, much as do the
fixed dipole moments in some of the
arrangements of Fig. 2.5.

It turns out that this second
sort of contribution will always be
present, not only between molecules
but also between atoms. The analysis
carried out in Chapter 4 shows that
the force increases with the polariz-
ability of the molecules or atoms -
the ratio of the dipole moment induced
by an electric field to the magnitude
of the inducing field. Since the po-
larizability of an atom or molecule
increases in rough proportion to its
volume, as the next chapter shows,
these forces tend to be larger between
larger molecules.

The temperature at which a mate-
rial boils provides a rough quanta-
ti-re measure of the forces between

molecules: in order to boil the
material, enough energy must be sup-
plied to it to separate its molecules.
Table 2.1 shows how the properties of
some organic substances support the
preceding picture of how their mole-
cules interact. The hydrocarbons,
which have no dipole moment, boil at

a

Fig, 2.6 Two arrangements ot the quadru-
poles in two covalently bonded molecules:
(a) higher energy (less favorable), and
(b) lower energy (more favorable).

much lower temperatures than the cor-
responding alcohols, which are polar,
Furthermore, in both series of com-
pounds, the boiling points increase
as the size of the molecules increases.

There are still other electro-
static effects that will contribute to
the bonding between molecules. If
fixed ionic charges are present, they
will tend to polarize neighboring
atoms and molecules - to shift the
centers of charge in them slightly so
that they acquire dipole moments even
if they had none in the absence of the
ions, as Figure 2.7 (see next page)
suggests. These dipole moments then
exert forces on one another and on the
ions responsible for them. Similarly,
though less strongly, fixed dipole
moments in some bonds will induce
dipole moments elsewhere.

Collectively these electrostatic

HYDROCARBONS I ALCOHOLS

METHANE (CH4) -161 METHYL (CH3OH) + 67

ETHANE (C2H6) -73 ETHYL (C2H5OH) + 78

PROPANE (C3118) -45 PROPYL (C3H7OH) + 97

BUTANE (C4H10) +1 BUTYL (C,H6OH) +117

Table 2.1 Boiling points in degrees centi-
grade.
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a

I)

C
CO 00

Fig. 2.7 Two oppositely charged ions in-
duce dipoles in each other. The positive
ion attracts the negatively charged cloud
in the negative ion (a), and the negative
ion repels the negatively charged cloud in
the positive ion (b). The resultig dipoles
in the two ions arc so arranged that they
contribute an additional attractive force
to the force between the ionic charges.

forces from so-called stray fields are
usually termed van der Waals forces,'
and are distinguished from strictly
ionic forces, as well as from covalent
bonding forces. The particular sort
of van der Waals force that is due to
the correlation in the phases of
oscillating dipoles is often disting-
uished as the dispersion force. The
distinction is useful because the
dispersion force stands somewhat apart
from other van der Waals forces in
three respects. In the first place it
is the only attractive force that
operates between isolated neutral
atoms - atoms that are not ionized or
covalently bonded. In the second place
it is independent of the relative
orientations of the participants (ex-
cept insofar as their polarizabilities
depend on direction) and it is addi-
tive. Each atom or molecule can be
thought to contain a host of oscillat-

5The Dutch physical chemist, Johannes van der
Waals, was the iirst to take into account ex-
plicitly the eilect of these attractive lorces
on the properties of gases.

ing dipoles, each properly phased to
interact attractively with an oscil-
lating dipole in each companion atom
or molecule. In the third place the
force is always present, even between
ions and between the inner electronic
cores of atoms that arc covalently
bonded by their outer electrons.

But all the van der Waals forces
are significantly weaker than ionic
and covalent bonding forces. Moreover
they fall off more rapidly with dis-
tance. The force between two ions
separated by a distance r falls off
as 1/r2. Between two permanent dipoles,
with fixed relative orientations, the
force falls off as 1/rA; and between
two atoms interacting with toe dis-
persion force, it falls off as 1/r7.
Their smaller magnitude and more rapid
disappearance with distance permit a
solid bonded by these forces to melt
at a lower temperature than ionically
and covalently bonded materials. The
melting point of solid argon, whose
crystals are made of closepacked
neutral atoms, is -190'C, whereas
potassium chloride, the ionic crystal
formed from the two elements with
atomic numbers one greater and one
less than argon, melts at +776°C.

Return now to the picture of co-
valent bonding, and in particular to
the argument that an electron will re-
duce its kinetic energy by extending
its excursions as far as it can. Evi-
dently that argument will account for
the fact that the electrons in metals
roam throughout the material. The
roaming electrons provide a sea of neg-
ative charge in which swim the posi-
tive ions that have contributed those
electrons. The negatively charged sea
between the ions holds them together,
and the attraction of the ions in turn
prevents the sea from flowing away.

Then why are not all materials
metallic? Looking at the periodic
table, you will find that most of the
elements do solidify as metals, and
the solid metals melt into metallic
liquids. In nonmetallic materials the
roaming of the electrons would in-
crease their potential energy more
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Fig. 2.8 Memory aids for the four extreme types of bonding.

than it would decrease their kinetic
energy; it would require them to spend
too much time too far from the posi-
tively charged nuclei.

Whenever the electrons can make
those excursions, roaming from atom
to atom indiscriminately to give
the liquid or solid metallic proper-
ties, an electric field will make the
electrons drift. The resulting "elec-
tronic" conduction is distinguish-
able from ionic conduction by the fact
that the nuclei do not drift, and thus
no products of electrolysis are de-
posited at the electrodes. In such a
case, even in the liquid, the elec-
trons can drift so much more readily
than the nuclei and their surround-
ing cores of bond electrons that

METALLIC

the conductivity is still electronic.
There are some materials whose

molecules give some of their electrons
freedom to roam within the confines of
a molecule, but not to roam from mole-
cule to molecule. In a molecule of
benzene, for example, six electrons
are free to roam about a ring of six
carbon atoms. But the electrons cannot
escape from the molecule, and hence
benzene is an electrical insulator.

In summary, it is conventional to
distinguish four extreme types of
bonds: (1) ionic bonds, forming "ionic"
solids; (2) covalent bonds within
molecules, or within complex ions such
as SO4, and sometimes linking together
the atoms in an entire crystal to form
solids such as diamond; (3) van der

SOLID TYPE
CRYSTAL

UN ITS
BINDING

FORCE OPTICAL ELECTRICAL THERMAL MECHANICAL EXAMPLES

IONIC

-1--

SIMPLE AND
COMPLEX
IONS

ELECTROSTATIC
ATTRACTION OF
OPPOSITELY
CHARGED IONS

TRANSPARENT,
OR COLORED BY
CHARACTERISTIC
ABSORPTION OF
IONS

INSULATORS,
FORMING
CONDUCTING
SOLUTIONS IN
IONIZING
SOLVENTS

FAIRLY HIGH
MELTING, TO
FORM IONS

HARDNESS
INCREASES
WITH IONIC
CHARGE;
BREAK BY
CLEAVAGE

SODIUM
CHLORIDE,
CALCITE,
AMMONIUM
SULFATE

MOLECULAR RARE GAS
ATOMS;
MOLECULES

DISPERSION
AND MULTIPOLE
FORCES

TRANSPARENT,
AND LIKE ITS
MOLTEN FORM

INSULATORS;
DISSOLVE IN
NONIONIZING
SOLVENTS

FAIRLY LOW
MELTING

SOFT AND
PLASTICALLY
DEFORMA BLE

ARGON,
PARAFF INS,
CALOMEL

ADAMANT INE GROUP IV
ELEMENTS;
III-V AND
II-VI
COMPOUNDS

COVALENT,
SOMETIMES
PARTLY
IONIC

TRANSPARENT,
HIGH REFRAC-
TIVE INDEX;
OR OPAQUE

SEMICONDUC-
TORS EXCEPT
DIAMOND;
INSOLUBLE

VERY HIGH
MELTING

VERY HARD;
BREAK BY
CLEAVAGE

DIAMOND
CARBORUN-
DUM ZINC
BLENDE

METALLV.7 POSITIVE
IONS AND
"FREE"
ELECTRONS

ATTRACTION
BETWEEN IONS
AND ELECTRON
"GAS"

OPAQUE AND
REFLECTING

ELECTRONIC
CONDUCTORS;
SOLUBLE IN
ACIDS TO
FORM SALTS

MODERATELY
HIGH MELT-
ING; GOOD
HEAT CON-
DUCTORS

TOUGH AND
DUCTILE
EXCEPT

TUNGSTEN

COPPER
IRON
SODIUM

Table 2.2 Properties of the solid.
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Waals forces, forming "molecular" sol-
ids from neutral atoms and molecules;
and (4) the "metallic" bonds charac-
teristic of metals. With the under-
standing that its pictures must be
interpreted in terms of the preceding
discussion, Fig. 2.8 offers aids for
remembering the distinctions between
these four extreme types of bonds.
But any such classification is neces-
sarily rough. Thus a covalent bond be-
tween two different species of atoms
always has some ionic character. By
polarizing its partner, an ion will
usually give to an ionic bond a partly
covalent character. The accumulation
of charge density along lines between
adjacent atoms in a metal will often
give the metallic bond a partly local-
ized property. The weak dispersion
force, hard to discern in the pres-
ence of stronger forces, is always
present. And the origin of all these
forces is ultimately the same: the
electrostatic attraction between posi-
tively charged atomic nuclei and nega-
tively charged electrons.

Matter in the solid state exhib-
its especially clearly the distinc-
tions of the four classes of bonds out-
lined in this chapter. The form of
order adopted by the atoms when they

assemble into crystals is often diag-
nostic of many details in the charac-
ter of the interatomic bonding. Some
of the more conspicuous properties of
solids arc suggested in Table 2.2,
which lists the four classes.

PROBLEMS

2.1 Why do many molecular crystals
have low densities?

2.2 When a solid contains several
sorts of bonds:

(a) Would you expect its melting
point to be determined ordinarily
by its weakest bonds or its strong-
est bonds?

(b) Under what circumstances would
you expect to find exceptions to
your answers to (a)?

2.3 Discuss the quantitative change in
bonding that accounts for the fact
that the melting points of crys-
tals of the halogens increase in
the order F, Cl, < Br, <. I,.
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The dualistic theory of chemical com-
bination proposed by Davy and Borzoi-
ius, although it is not as simply and
widely applicable as they had hoped,
explains quite successfully in a qual-
itative way the formation of chemical
compounds by atomic species from op-
posite sides of the periodic table. At
the turn of the century, even before
Ernest Rutherford developed the pic-
ture of the planetary atom, J. J.
Thomson had suggested that the elec-
trons are arranged in groups or layers
in an atom, and that the number of
electrons in the outermost layer
largely determines the chemical proper-
ties of the species.

According to Thomson, the atoms
of the rare gases must contain especi-
ally stable arrangements of electrons.
An atom with one electron less than a
rare-gas atom - for example, chlorine

tends to acquire an extra electron
and so to form a negative ion. An
atom with one more electron for ex-
ample sodium - readily loses it, to
form a positive ion. Atoms that read-
ily lose electrons will combine chemi-
cally with atoms that tend to acquire
electrons - a picture now familiar to
all who have studied elementary chem-
istry.

It is interesting to examine
some aspects of this theory in a more
quantitative way. Consider, for exam-
ple, the alkali halides - the com-
pounds formed by the alkali metals Li,
Na, K, Rb, and Cs, with the halogens
F, Cl, Br, and I. The elementary pic-
ture portrays spherical ions having
opposite charges of +e and e (where
e is the magnitude of the electronic
charge, 4.8 x 10-10 electrostatic
units) attracting each other electro-
statically. It can be examined quite
successfully without recourse to quan-
tum mechanics, and by using a simple
electrostatic argument it can be made
to yield close quantitative agreement

13
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with experiment. But it needs some
modification nevertheless, as this
chapter will show.

In experimental fact, when a
solid alkali halide is vaporized, the
oppositely charged ions pair off into
diatomic molecules, and the data ob-
tained from the vapor can be used to
verify the picture. For several such
molecules, Table 3.1 shows the ob-
served distances r0 (in angstroms) be-
tween the centers of the ions, and
the experimentally determined energy
D (in electron volts) required to
separate the ions by an infinite dis-
tance.6 Electrostatic theory says that
each spherically symmetric distribu-
tion of charge should behave toward
charges outside it as if its total
charge were concentrated at its center.
Hence the picture predicts that
D = e2/r0, and the last column of the
table verifies the prediction.

Look now at the relationship be-
tween these measurements and some
others that bear upon them. For exam-
ple, measurements of the ionization
energy of sodium show that 5.1 eV of
energy is required to remove to an

'The units employed are described in the associ-
ated Discussion 3.1, Units. "Inlinite" means
here so far that they interact negligibly.

r0

(AN G-
STRUMS)

D

(ELECTRON
VOLTS) Dro/e2

KF 2.55 5.8 1.03

K CI 2.79 4.92 0.95

K Br 2.94 4.64 0.95

K I 3.23 4.51 1.01

Na CI I 2.51 5.54 0.96

NaBr 2.64 5.33 0.98

Na I 2.90 5.14 1.09

Table 3.1 Molecules of alkali Halides.
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Discussion 3.1

UNITS

By employing electrostatic units
of electrical charge, and one centi-
meter as the unit of length, our form-
ulas will yield energies in ergs, and
electric fields in dynes per unit
charge. For greater convenience in dif-
ferent physical and chemical contexts,
different units of distance and of
energy are often used, and it is help-
ful to become acquainted with some of
them. The angstrom unit of length is
widely used in quoting distances of
atomic size.

1 angstrom (1 A)

= 10-acentimeter (10-8 cm).

A unit of energy commonly used in
speaking of the behavior of matter on
an atomic scale is the electron volt -
the kinetic energy acquired by an elec-

infinite distance one electron from
each atom of sodium. Measurements of
the electron affinity of chlorine show
that 3.7 eV of energy is returned when
one electron is returned from an in-
finite distance to an atom of chlorine.
At first glance, passing one electron
from a sodium atom to a chlorine atom
may seem unfavorable, to the extent of
1.4 eV per molecule of sodium chloride.

You are rescued by noticing that,
if the sodium chloride molecule were
formed in this way, the two ions would

1

2

Na

0 0 i -5.1 eV

3.7 eV

5.5 eV

CI

00
CI-

Fig. 3.1 The bond between sodium and chlo-
rine is almost purely ionic because the
dissociation energy (3) is so much greater
than the difference between the ionization
potential (1) of sodium and the elef:tron
affinity (2) of chlorine. The energies are
given in electron volts.

tron accelerated through a poential
difference of one volt.

1 electron volt (1 eV)

= 1.6 x 10-12 erg.

In speaking of bulk matter, on
the other hand, chemists especially
use as a unit of energy the kilogram-
calorie per mole - the heat-equivalent
of the energy: reckoned for Avogadro's
number (6.03 x 1023) of molecules.

1 kilogram-calorie (1 kcal)

= 4.18 x 101° ergs.

It is convenient to bear in mind
the approximate conversion factor

1 eV per particle

= 23 kcal per mole of particles.

still be separated by a great distance.
For the purpose of quantitative argu-
ment the formation of the ionic bond
in sodium chloride could be imagined
to occur in the three stages shown in
Fig. 3.1. In the approach of the two
ions to their final separation (stage
3) there can be a gain of energy more
than compensating the net loss in the
first two stages. The energy in stage
3 is clearly the dissociation energy
in Table 3.1.

Now examine some simple modifica-
tions that must be introduced into the
preceding model of the ionic bond. For
example, the calculation summarized
in Table 3.1 assumes that the atoms
are infinitely hard, incompressible
balls, attracting each other until
they bump. Of course their structure
is not really as rigid as that; all
matter, even solid matter, is compres-
sible. Fig. 3.2 diagrams the differ-
ence between the picture lying behind
the calculation and the picture sug-
gested by the compressibility of atoms.
The attraction between the oppositely
charged ions pulls them together until
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Discussion 3.2

EQUILIBRIUM SEPARATION OF IONS

The energy of interaction of two
ions, at any separation r, is well

represented by the expression

E - -e2 /r + B/rn.

The equilibrium separation 1'0 is at-

tained when E reaches a minimum. This
fact enables the constant B to be de-

.

termined in terms or ro as follows.
The derivative of E with respect to
r is

dE e2

dl r2

nB
rn+1

Setting that derivative equal to zero
at r = ro gives

the repulsive force between them bal-
ances the attractive force, and the
energy of their interaction is a min-
imum.

The origins of this repulsive
force lie in the properties of elec-
trons that are summarized in the ex-

0

I)

a

0

nB

ron" 1'02'

or B .2L2L2=1,
n

The energy E when r = ro is the dis-
sociation energy of the molecule:

D=
1'0 ron.

Using the value of B just found,

D = -e2 (1 _ 1).
ro n/

In other words, at the equilibrium
separation, the repulsive. energy
is equal to the n'th part of the at-
tractive energy.

elusion principle. As the two ions
approach each other, the electrons in
each are more and more required to
occupy space already inhabited by the
electrons in its partner. In order to
do so, they must find states in that
space. But the states permitted to a

b

Fig. j.2 The assumption that two oppositely
charged ions arc hard spheres, attracting
each other until they bump, yields the en-
ergy diagram (a). But in fact the ions feel
a repulsive force, which increases rapidly

0

r.

REPULSIVE ENERGY_

as they approach each other (b). The truth
is better represented (c) as the sum 01 a

repulsive energy and an attractive energy,
which reaches a minimum at the actual sep-
aration of the ions.
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Na+ CI

Pig. 3.3 The net cha:ge on each ion polar-
izes the other ion, and the resulting
dipoles are so oriented that they attract
each other.

bound electron are discrete and defi-
nite, each with a def,inite energy;
and only two electrons, with their
spins opposed, can occupy any one of
them. Thus the electrons in the ap-
proaching ions are forced into states
whose energies increase rapidly as the
distance between the ions decreases.

Look now for a way to take this
repulsive interaction into quantita-
tive account. Although no theory so
simple as that of the electrostatic
attraction is available to guide you
in studying the repulsion, you can re-
sort to a device that is often em-
ployed in similar situations. Choose
a mathematical expression that has a
general behavior suitable for repre-
senting a repulsive force, and that
affords enough adjustability to accom-
modate some variation from one mole-
cule to another.

Discussion 3.3

In this case it is suitable to
add to the attractive potential energy,
e2 /r, a repulsive potential energy,
B/rn, where r, the distance between
the ions, is allowed to vary. The un-
determined coefficient B and exponent
n confer the desired adjustability:
the former measures the strength of
the repulsion and the latter measures
the sharpness with which the repulsive
force increases as the ions approach
each other. The energy of the pair of
ions at any separation, relative to
that of the infinitely separated ions,
then becomes

E e2/r B/rn. (3.1)

In order to make comparisons of
this expression with experiment, the
two constants B and n must be deter-
mined by resort to two properties of
the pair of ions, independently meas-
ured or calculated. One property avail-
able for this purpose is the experi-
mental interatomic separation 1'0
listed in Table 3.1. Since E must
reach a minimum when r = ro, B can be
put in terms of 1'0 in the way shown
in Discussion 3.2. Equation (3.1) then
yields an expected dissociation en-
ergy at the actual separation 1'0

DIPOLE MOMENTS

The dipole moment of the charges
+q and q, separated by a distance d,
is defined as µ = qd. Evidently in a
fixed coordinate system whose x axis
lies along the line determined by the
locations x, and x2 of the two charges,
the preceding definition is equivalent
to the expression A = q(xl x2), or

where
qix, + q2 x2

q, = q, = q.

;I)

1
D =

e
(1

ro

When there are many charges, of
different magnitudes and signs, q
q2. . . whose positions are (x1 yl,

z,), (x2, y2, z2), . . . the dipole
moment of the collection can be de-
fined in an analogous way as a vector
whose components are

A, = qi X, 42x2

= q13/1 + q2Y2 + . .

Ilz = q,z, + q2z2 + . .

(3.2)
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Clearly the repulsive energy, by
reducing the expected dissociation
energy, will damage the agreement with
experiment shown in Table 3.1, by an
amount depending on the value of n.
Suitable values of n have been found
by examining the compressibilities of
crystalline alkali halides; they lie
between 8 and 10. Hence the calculated
values of D will now be smaller than
the experimental values by about ten
per cent.

Fortunately there is a second
important modification of our model
of ionic bonding that will increase
the calculated attractive energy, and
so tend to compensate the repulsive
energy. As the preceding chapter
pointed out, each ion will polarize
its partner, and the dipole moments
so induced will be favorably oriented
to provide an additional attractive
force between them (Fig. 3.3).

In order to find the size of this
effect, it is necessary to examine
first the polarizability of atoms and
ions. The polarizability a of an atom,
an important quantity in many calcu-
lations, is the magnitude of the di-
pole moment 4 that an electric field
L will induce in an atom per unit elec-
tric field:

p. = (YE. (3.3)

The dipole moment of a pair of equal
and opposite charges is defined in
turn as the product of the separation
of the charges by the magnitude of the
charge on either, and the definition
can be extended, as in Discussion 3.3,
to apply to a collection of any number
of charges.

The picture to hold in mind while
using Eq. (3.3) in the present case is
that suggested in Fig. 3.4. The atomic
model consists of a nucleus with a
charge -1-Ze (where Z is the atomic num-
ber of the atom) which is embedded in
a spherically symmetrical cloud of
negative charge totaling -Ze contrib-
uted by the electrons. When the atom
is undisturbed, the nucleus is at the
center of the electronic cloud and

the atom has no dipole moment. When
an electric field E is applied to the
atom, the nucleus shifts within toe
cloud a distance a from its center.

To answer the question of how
large a dipole moment that shift pro-
duces is difficult if we try to take
into account how the density of
charge within the electron cloud var-
ies as one proceeds through it. But to
make a rough calculation, sufficient
for this purpose and many others, a
greatly simplified model of the elec-
tronic cloud will avail. Take the
charge -Ze as uniformly distributed
within a sphere of radius R.

Then you can reason as follows.
The force exerted on the nucleus by
the field is ZeE. That force will

Fig. 3.4 To estimate the polarizability of
an atom, approximate its structure by a
uniform cloud of negative charge of radius
R surrounding the positively charged nu-
cleus.

ION
0,1P

(ANGSTROMS)
RADIUS

(ANGSTROMS)

No+ 0.91 0.97

10- 1.10 1.33

mg++ 0.87 0.66

Ca++ 1.05 0.99

F- 1.02 1.36

CI- 1.21 1.81

0- 1.11 1.40
-

1.29 1.84

Table 3.2 Polarizabilities of ions.
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shift the nucleus until it is bal-
anced by a restoring force, which can
be taken as ka,a force proportional to
the displacement a, where k is some
force constant, soon to be estimated.7
But the dipole moment of the atom is
now u = Zea = (YE. When the displace-
ment a is eliminated between this
equation and the equation ZeE = ka,
the polnrizability is given in terms
of the force constant by

a -
k

(3.4)

In order to estimate the magni-
tude of the force constant, assume
that the restoring force on the nu-
cleus is simply the electrostatic
force exerted on it by the charge
cloud, which tries to move the nucleus
back to the center. It is a familiar
result of electrostatic theory that a
charge that is wholly inside a spheri-
cal shell of charge experiences no
force from the shell. Hence the elec-
trostatic restoring force is exerted
by the fraction of the negative charge
that is nearer to the center than a,
or in other words the charge Zea3/R2.
And that charge acts as if it were
concentrated at the center, according
to the electrostatic result used al-
ready at the beginning of this chapter.

Coulomb's law may now be used to
calculate the restoring force on the
nuclear charge +Ze: the force has the
magnitude ka = (Ze) (Zea3/112)

(1/a2). Hence k = (Ze)2/112, and a
comparison of this expression with
Eq. (3.4) yields the simple relation

a = 112. (3.5)

It is worthwhile to notice that the
equation gives to the polarizability
the dimensions of volume; and this is
in fact the correct dimensionality

7The assumption ul proportionality - of "linear-
ity" - is one of the must important and widely
applicable of simplifying assumptions used in
calculating the properties of physical models.

(Problem 3,1), whether or not the

equation is accurate.
In order to decide how accurate

it is, experimentally measured polar-
izabilitics can be compared with ex-
perimentally measured sizes of ions.
The polarizabilities are obtainable
from interpretations of optical exper-
iments; the sizes are obtainable from
observations of how the ions pack to-
gether in crystals. As Table 3.2
shows, the rough calculation of polar-
izabilities turns out to be quite
good. Th' measured polarizabilitics of
the listed ions increase roughly with
the ionic volumes, but a little more
slowly. Hence the agreement is better
for small ions than for large,

These results can now be used to
estimate the contribution made by
polarization to the attractive energy
in the ionic bond. Since the radii of
the ions are of the order 1 X = 10-2
cm, the polarizabilitics are of the
order 1021 cc. An ion with one elec-
tronic charge (of magnitude
e = 4.8 x 10-10 esu) establishes an
electric field at a distance 2.5 A
(the typical interionic separation
shown in Table 3.1) of the order
E = e/r02 = 106 esu. Hence each ion in-
duces in its partner a dipole (Fig.
3.3) whose moment is of the order

= oE = x 10-21 = 10-13 esu."
As Discussion 3.4 shows, two di-

poles in the orientation shown in
Fig. 3.3 have an interaction energy
2g2/r2. Substituting the magnitude of
the dipole moment just calculated,
and a typical value of r from Table
3.1, yields an interaction energy of
about 0.13 eV. Thus the inclusion of
polarization energy can remove some of

8This order of magnitude is characteristic ul
atomic and molecular dipole moments not only
those induced by applied lields but also those
permanontly resident in molecules, described in
the last chapter. For this reason 10-18 esu is
()lien taken as a unit in the quantitative dis-
eUSSioll ul molecular dipoles. Su taken, it is

called the "Debyc unit," alter Peter Debye who
developed a classic theory uJ the behavior ol
molecular dipoles.
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Discussion 3.

DIPOLE-DIPOLE INTERACTION

In order to find the attractive
energy of two dipoles that point in
the same sense along their own direc-
tion, add the electrostatic energies
of interaction of all the charge pairs
within the dipoles:

1

E C11 C12 1 r + x2 xl

q1

r

1

xl r 41. x2)*

R

-Pc12 q2
O 0

I
X 2

the damage that the inclusion of re-
pulsive energy worked on the agreement
in Table 3.1. A third important con-
sideration in comparing these calcula-
tions with experimental results is
suggested in Problem 3.3.

The foregoing discussion of their
compreSsibility and distortability
suggests that ions appear to be rigid
only because the forces ordinarily en-
countered in our world are too feeble

Expand each fraction in series, taking
xi and x2 small compared with r, and
retaining only the first significant
term in small quantities:

q1 q2

x2 xl (x2 xl )2
+1 2

-1 x12r r2

,1 + x, x
+ "66

r 2

Thus E .= 2 (q1 x1 ) (q2 x2 )/r3 .= 241 p.2/1-3 .

to affect them much. For many practi-
cal purposes the rigid-sphere model
of an ion is remarkably useful. For
example, ascribing to ions effective
radii, which depend mostly on their
species and little on their environ-
ment, proves to be a valuable guide
in understanding the choice of crystal
structure adopted by a large collec-
tion of oppositely charged ions.

PROBLEMS

3.1 Check the fact that polarizability
has the dimensions of volume by
proceeding directly from Eq. (3.3),

which defines that quantity. For
this purpose notice (1) that a di-
pole moment has the dimensions of
charge times distance, (2) that an
electric field has the dimensions
of force per unit charge, and (3)
that Coulomb's law so defines the
dimensions of charge that force
must have the dimensions of charge-

squared divided by distance-
squared.

3.2 Thermal agitation causes an alkali
halide molecule to vibrate about
its equilibrium length 1'0. Since
it is then an oscillating dipole,
it can interact with electromag
netic radiation. Use Eq. (3.1) and
the results of Discussion 3.2 to
calculate the vibration frequency
of the sodium chloride molecule.
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In what range of the electromag-
netic spectrum does this frequency
lie?

3.3 Quantum mechanics has shown that
any harmonic oscillator retains a
minimum vibrational energy Lily,
where y is its frequency and h is
is Planck's constant (6.62 x 10-27
erg sec). Hence, even when it is
not thermally excited, an alkali
halide molecule must have an en-

./":

ergy higher (less negative) than
the energies calculated in this
chapter, by the amount of this
so- called "zero-point energy."
Calculate the magnitude of that
zero-point energy, using the fre-
quency calculated in Problem 3.2.
By taking it into account, do you
better or worsdb the agreement of
the calculated with the experi-
mental dissociation energy?



4 DISPERSION FORCES

The rare gases such as neon and argon
are remarkably inert: they do not form
ionic bonds, and they show little ten-
dency to share electrons with other
atoms to form covalent bonds. Hence at
first glance one might expect to find
no attractive force between the atoms,
but only a repulsive force when they
come close to one another. As a matter
of experimental fact, however, the
atoms do attract one another weakly
when they are near together, though
still far enough apart so that repul-
sive forces do not dominate the inter-
action.

In order to understand these
weak forces, it is well to remember
that the electrons are not actually
stationary charge clouds around the
nuclei but rapidly moving swarms of
negatively charged particles. On the
average the center of gravity, and
therefore the center of charge, of
the electrons is at the position of
the nucleus about which they swarm;
but instantaneously it is not, and
the atom has a rapidly fluctuating
dipole moment. It might seem at first
that this cannot lead to attraction

TIME

between the two atoms because the
average dipole moment of each is zero.
But if the oscillations of the dipole
moments of the two atoms are corre-
lated in phase, an attractive force
can arise, as Fig. 4.1 suggests.

That figure portrays the instan-
taneous dipole moments of two neigh-
boring atoms, varying with time and
perfectly correlated in phase, so that
they attract each other maximally at
all times. A glance at Discussion 2.4
makes clear that in that case the en-
ergy of the system would be lowered by
the amount 24142/r3 averaged over time.
It is tempting to argue that, since a
system tries to readjust itself into
a condition of minimum energy, the
correlation will be perfect. But the
electrons are subjected within the
atoms to other influences, and some
are much stronger than this weak in-
teraction between the two atoms.

Then how closely can these oscil-
lating dipoles correlate their phases?
There are s(veral ways of answering
this question, all of which give re-
sults that are at least qualitatively
consistent.

O 00 0 0 0
O 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

O 00 0 0 0
O 0 0 0 0 0 0 0 0 0 0 0 000000

Fig. 4.1 A pair of dipoles, oscillating in
phase in two atoms, could attract each

21

other at all times. But the dipoles in ad-
jacent atoms are not so closely correlated.
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Fig. 4.2 The electric field due to a
dipole, at a distance r along its direction,
is the field due to the two charges that
form the dipole. By a procedure like that
of Discussion 3.4, T = q11/r` 1/(r+d)23
+ 2 qd/r3 = 2 11. /r3. Notice that, by conven-

tion, the vector representing a dipole mo-
ment points from its negative toward its
positive charge.

The simplest way is to think of
the fluctuating dipole in one atom as
establishing a fluctuating electric
field at the second atom, Then, using
the results of the discussion of polar-
izability in the last chapter, one can
conclude that the magnitude of the
correlated dipole in the second atom
will be the product of the polarizabil-
ity of the second atom times the elec-
tric field due to the dipole in the
first atom.

To pursue this calculation, no-
tice that the field due to a dipole
of moment at a distance r, is

241/r3 (Fig. 4.2). If the polarizabil-
ity of the second atom is a, the in-
duced dipole has a moment given by
42 = 2041/1.3. Hence the potential en-

Fig. 4.3 In the coupled-oscillator model of
two atoms interacting with the dispersion
force, a portion of the negative charge
cloud in each atom is instantaneously dis-
placed from the nucleus, to give the atoms
instantaneous dipole moments of magnitudes
qx1 and qx2.

orgy of the combination of the induced
dipole and the original dipole is
2442/r3 = 4a41 2/rG. Although p, is

fluctuating, and its average value is
zero, 4,2 is positive: the value of
//12 averaged over time is the rele-
vant quantity to use in this expres-
sion for the potential energy.

Two results of this simple analy-
sis are important. In the first place,
the potential energy function for this
interaction varies as 1/rG. It falls
off very rapidly as the distance be-
tween the atoms increases; the force,
falling cff as 1/r7,9 is a short-
range for4:e in contrast with the at-
traction between two ions, which falls
off as 1/r2. In the second place, the
force is larger the larger the polar-
izability of the atom.

But it is hard to find any method
for calculating the average value of
p12, and so to find the order of mag-
nitude of the force. For this reason,
and in order to improve confidence in
the quantitative relations that the
model proposes between this force and
the polarizability and interatomic
separation, it is useful to look at
an alternative method of handling the
problem.

In the second method the fluctu-
ating dipoles of the two atoms are
treated as a pair of oscillators that
are weakly coupled by their interac-
tion. The method is more satisfying in
two respects. It deals with the two
atoms on the same footing at the out-
set, instead of focusing attention on
one of them. Furthermore it leads
more naturally to the interpretation
of its results in terms of measurable
properties of the atoms.

Imagine two atoms that are iden-
tical, and that possess oscillating
dipoles in each of which the center of
positive charge stays fixed. The cen-
ter of negative charge oscillates back

Necall that the force, tending to increase the
value of a coordinate in a mechanical system,
varies as the negative oi the derivative of the

potential energy of the system with respect to
the coordinate.
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and forth along the line joining the
positive charges so that the instan-
taneous displacements of each from
the centers of positive charge are
such as those denoted by x, and x, in

Fig. 4.3. As in the study of polariza-
bility in the last chapter, there is
a force, proportional to the displace-
ment, tending to restore the cloud of
negative charge in each atom to the
zero position; and again the force
constant k can be related to the
polarizability a of the atom.

Now simplify the picture of the
fluctuating dipole moment of each
atom into a simple harmonic oscillator
with the force constant k whose mass
m is the mass of the moving cloud of
electrons. The natual frequency of
the oscillator in each of the atoms
is then

1
irk

v = -277 m. (4.1)

But when the atoms approach each other,
the electrostatic interactions between
the dipoles provide a weak coupling be-
tween them. The dipoles then behave
like all other coupled oscillators:
the coupling endows them with two
distinct normal modes of vibration
whose frequencies differ from vo by
amounts that increase as the cou-
pling increases. In this case one
frequency is higher and the other is
lower than vo.

Assuming that each oscillator is
in its ground state before it is
coupled, you can take the energy of
the uncoupled system as 2(zhvo). Then
when the system is coupled, its en-
ergy can be taken as Zhv1 +
where vi and v, are the frequencies
associated with the two normal modes
of vibration. Since the average value
of vi and v, is slightly lower than
vn, the energy of the system is low-
ered by the coupling.

The details of the suggested cal-
culation are shown in an appendix to
this chapter. It leads to a calculated
frequency

v=
0

2i
ma'

(4.2)

and a binding energy

AE = (4.3)
871'8 m

where h is Planck's constant, and q
and m are the charge and mass of the
oscillating charge-cloud.

It remains to decide what are
reasonable values of q and m to use in
this expression - what charge moves in
the oscillator and what mass is asso-
ciated with that charge. The calcu-
lated energy turns out to agree best
with the observed energy when one as-
sumes that only those electrons in the
atom that are least tightly bound to
the nucleus - those in the outermost
shell will readily suffer distor-
tion of their states, and thus will
make the major contributions to the
oscillation. If ti;ere are N electrons
in the outermost shell, q = Ne0 and
in = Nmo, where eo and mo are the
charge and mass of the electron. Then
Eq. (4.3) can be written

3heol/Na8
AE (4.4)

87r6 mo

For convenience in practical calcula-
tion, it is helpful to rewrite this
equation by making use of the facts
that an atomic polarizability is of
the order 10-24cm8, and an inter-
atomic distance is of the order
10-8cm. Expressing r' and a' in these
units, the equation becomes

2.5 x 10-11

(r')6
1/N(a')8 ergs.

Now check this result by calcu-
lating the binding energy of solid
argon, and comparing the calculated
value with that determined by experi-
ments in which the heat required to
vaporize argon is measured. Such a
calculation proceeds by finding first
the energy in a single bond between
two argon atoms, and then multiplying
that energy by the number of bonds in
the solid. Since the dispersion force
falls off so rapidly with increasing
distance, only the bonds between the
nearest neighbors need be considered.

In solid argon the distance be-
tween nearest neighbors is 3.84 A.
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The polarizability of an argon atom
is 1.66 x 10-24cm2, and there are
eight electrons in its outer shell.
With N = 8, and a' = 1.66, and
r' = 3.84, the equation yields
AE = 4.76 x 10-14 erg, or 0.03 eV. It
is interesting to notice that the
ionic bond in a molecule of an alkali
halide, if the ions were separated by
the same distance, would have approxi-
mately the bonding energy eo2/r = 3.7
eV - more than a hundred times larger.

Argon crystallizes in a close-
packed structure (Fig. 4.4) giving
each atom twelve nearest neighbors at
the same distance. Since each nearest-
neighbor bond is shared between two
atoms, e number of bonds per atom
in the solid is six. Thus the binding
energy per atom of the solid is six
times the energy per bond. The calcu-
lated energy, 0.18 eV, is twice as
large as the experimental value,
0.09 eV.

In order to repair this dis-
crepancy between theory and experiment,
recall that our calculation has still
left out the repulsive energy - the
energy due to the repulsive force that
balances the attractive force between
the atoms and holds them at a fixed
distance. The preceding chapter showed
that the repulsive energy reduces the
calculated binding energy in the ionic
bond of an alkali halide molecule by
about ten per cent. In the ionic bond

Fig. 4.4 In solid argon each atom is sur-
rounded by twelve others at the same dis-
tance.

the attractive force has a long range,
whereas the repulsive force has a
short range. But in the present case
the two forces that balance each other
are both of short range, and it be-
comes even more important to include
the energies due to both, as Problem
4.4 suggests.

Another way to obtain an approxi-
mate relationship between the disper-
sion force and other properties of an
atom is to relate the frequency vo of
the oscillating dipole to some quan-
tity that can be determined experiment-
ally. The following crude argument,
for example, makes it seem reasonable
to relate that frequency to the first
ionization energy of the atom.

If the atomic dipole behaved in
a classical fashion, it could be
driven by an applied electromagnetic
force. If the applied force oscillated
with the frequency of the oscillating
dipole, the dipole would resonate. If
it resonated strongly, the amplitude
of its oscillation might increase suf-
ficiently to shake an electron out of
the atom.

Now in fact light can ionize
atoms, if each photon of the light has
sufficient energy to contribute the
ionization energy. Each photon of
light whose frequency is u carries the
energy hv, where h is Planck's con-
stant. These facts suggest that the
ionization energy I of an atom be set
equal to hvo, where vo is the fre-
quency of its oscillating dipole.

By substituting I for hvo in the
equation AE = 3hvoa2/4rG, derived in
the appendix, one obtains

AE =
3 a2

I
4 rG

(4.5)

It turns out that binding energies
calculated from this equation agree
quite well with experimental values,
not only for atoms but for neutral
molecules that have no fixed dipole
moments, such as nitrogen and methane.
Table 4.1 shows the relevant quanti-
ties for several solid substances.
These successes give confidence in
calculating the contributions of dis-
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IONIZATION ENERGY
(ELECTRON VOLTS)

POLARIZABILITY
( cm3 x 10" )

BINDING ENERGY
(ELECTRON VOLTS PER MOLECULE)

CALCULATED OBSERVED

Ne 21.5 0.40 0.017 0.026

A 15.7 1.66 P 078 0.088

Kr 14.0 2.54 0.135 0.122

N2 15.8 1.74 0.070 0.081

02 11.2 1.57 0.064 0.090

C12 18.2 4.60 0.312 0.323

CH4 14.5 2.58 0.107 0.117

Table 4.1 Binding Energies of Neutral Molecules

DIPOLE MOMENT
(ELECTROSTATIC

UNITS x 10'8)

POLARIZABILITY
(cm'; x 1.

BINDING ENERGY
(ELECTRON VOLTS PER MOLECULE)

CALCULATED OBSERVED

HCI 1.07 2.63 0.176 0.220

HBr 0.78 3.58 0.197 0.240

HI 0.38 5.39 0.291 0.270

Table 4.2 Binding Energies of Hydiogen Halides

persion forces to the binding energies
of materials in which the principal
binding forces have other origins.

Calculation of energies due to
dispersion forces explains also the
binding energies of the solid hydrogen
halides, shown in Table 4.2. The mole-
cules of HC1, HBr, and HI have per-
manent dipoles, and their dipole mo-
ments decrease in that order. If the
binding forces in crystals of these
compounds came primarily from the in-
teraction of the permanent dipole mo-
ments, the binding energies should
decrease also in that order, whereas
in fact they increase.

But other evidence has shown that,
above certain critical temperatures
characteristic for each compound, the
molecules in these solids are rotating
rapidly end for end. Time-average in-
teraction of their permanent dipole
moments can be no larger than the cor-
relation of these rotations permits.
As the temperature increases, that
correlation decreases; it is negli-
gible at their vaporization tempera-
tures. Their heats of vaporization
depend on the energies due to disper-
sion forces, which have the proper
sequence to explain the observations
on these materials.

Appendix A COUPLED OSCILLATOR MODEL FOR THE DISPERSION FORCE

A harmonic oscillator of force
constant k and mass m has potential
energy lkx2 and kinetic energy p2/2m,
where x and p are its instantaneous
displacement and momentum, and it

oscillates with a frequency vo =
1/27A/m. Thus the kinetic energy of
the svFtem of Fig. 4.1 is

1 (

Ukin 131
2

1322 ) (A4.1)
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and the potential energy is

Upot = Icxl 2 + Pcx22
r3

x2 (A4.2)

where the last term is the instantan-
eous energy of their coupling as Fig.
4.1 describes.

The study of this system is facil-
itated by an elementary application of
the method of normal coordinates.1° In
this case the normal coordinates xi
and x; are given by

x 1 --(x' + x') whence
V2 1

2

1
p1 7 (P1 PZ)

1
x, Ti.(xi xj), whence

1
P2 = 7-2 (1)1 Pj)

(A4.3)

(A4.3)

By substitution from (A4.3), Eq. (A4.1)
and (A4.2) become

=
Ukin

2111('l

W )

Upot 1(k 3 )
2

XI (k
2q2

)

(A4.4)

These correspond to the kinetic and
potential energies of two uncoupled
oscillato7 with the force constants

kl = k
2q

3 k2 = k + 2q2 (A4.5)
r 3

In many mechanical systems the potential en-
ergy is expressible as a quadratic form, con-
taining cross-products, in the coordinates;
and the kinetic energy is expressible as a sum
of squares of the conjugate momenta, It is then
always possible, and it is usually advantageous,
to make a linear transformation of the coordi-
nates, such that the potential energy becomes a
sum of the squares of the new coordinates and
the kinetic energy is still a sum of the squares
of the new conjugate momenta. Important exam-
ples appear in elastic theory and in the theory
of specific heats.

Hence the frequencies of these oscil-
lators are

3
_1_1

v,
21T V

2q2

m
2q2\

1 lia /lc 2q2)
2 277 V nt r3 (A4.6)

Now the zero-point energy of the
two uncoupled oscillators" is

E = + - !Iv (A4.7)

Similarly, the zero-point energy of
the two coupled oscillators is

E' = -11v + zhv2. (A4.8)

Since the coupling is weak, the quan-
tity 2q2/r3 must be small compared to
k. Then the value of (A4.8) can be
found by expanding the expressions
(A4.6) in power series in 2e/kr3.
Use of the series expansions

a a2 a

6

3

± a =
2 8

±
1

...,(A4.9)

yields the new zero-point energy

E' hy,(1 - C1

2k2rG
...). (A4.10)

Thus the energy of the coupled system
is less than that of the uncoupled
system by approximately the value of
the second term in the bracket:

6E = by
° 2k2r6.

q4
(A4.11)

A somewhat more careful analysis, in
which the oscillations are not re-
stricted to the line of centers of the
atoms but can occur in any direction
in space, changes the numerical fac-
tor in (A4.11) from 1 to f:

304
hy

° 4k2r6.
(A4.12)

"See Wave-Mechanical Properties of Stationary
States, a monograph in this series,
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The force constant k is related
to the polarizability by k = q2/a, as
the last chapter showed. Hence Eq.
(A4.12) becomes

AE
3h1,002

4r°
(A4.13)

Moreover that value of k can be used

in the expression for the frequency,
to give

° 217

and thus the dispersion energy

PROBLEMS

4.1 The tetrahedral molecules of me-
thane, CH are in rotation over
much of the temperature range in
which methane is solid, and you
can regard the solid as made of
spheres of radius 2.18 A, having
the same arrangement as that of
the atoms in solid argon.

(a) Verify approximately the cal-
culated value of the binding en-
ergy shown in Table 4.1.

(b) What "number of electrons"
in Eq. (4.4) would give the same
result?

4.2 The carbon monoxide molecule is
isoelectronic and isobaric with
the nitrogen molecule, and has a
very small dipole moment. The den-
sities of the solid forms of the
two are nearly the same. Assuming
that they have the same crystal
structure, calculate a value of
the binding energy of solid car-
bon monoxide from that of nitrogen
(Table 4.1) for comparison with
the experimental value 2.09 kcal
per mole. The polarizability of a
CO molecule is 1.99 x 10-24cm3,
and its ionization poten'..ial is
329 kcal per mole.

4.3 The density of solid argon is 1.7
and of solid krypton is 3.2, and
both adopt the same crystal struc-
ture. From these data, the atomic
weights, and the data for polar-
izabilities and ionization poten-

AE
87r° m

3h 1/q2a3

(A4.14)

(A4.15)

tials in Table 4.1 calculate the
binding energy of krypton from
that of argon shown in Table 4.1.

4.4 In a more refined calculation than
that of the text, the binding en-
ergy of crystals held together by
dispersion forces must include the
repulsive contribution which keeps
the atoms apart. For this purpose
an expression similar to that in
Chapter 3, Eq. (3.1), for ionic
crystals can be used. The most
convenient is the so-called "Len-
nard-Jones" or "6-12" potential:

A
U a6 + al 2 ;

where A and B a :'e constants and
a is some characteristic distance
in the crystal, such as the near-
est-neighbor distance.

(a) If U is the binding energy per
mole, what is A for a crystal of
atoms of polarizability a and ion-
ization potential I when you take
a as the nearest- neighbor distance,
consider only nearest-neighbor in-
teractions, and give each atom
twelve nearest neighbors.

(b) Find B in terms of A and the
equilibrium separation a, and
hence correct the calculated value
of 4.1 kcal per mole for the bind-
ing energy of argon obtained in
the text.
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So far the discussion of the attrac-
tions between atoms has been able to
proceed with little recourse to the
quantum mechanical description of the
behavior of the electrons forming the
bonds. By accepting the fact that a
sodium atom will tend to lose an elec-
tron, and a chlorine atom to gain one,
it was possible to examine the bond be-
tween the resulting ions by using clas-
sical electrostatic ideas. By accept-
ing the fact that the electrons in an
atom behave somewhat like a distort-
able charge-cloud around its nucleus,
similar ideas availed in examining the
dispersion force between two neutral
atoms.

Any examination of the covalent
bond, however, comes face to face with
the detailed behavior of the electrons
that form the bond, and thus with the
wave mechanics necessary to describe
that behavior. There is much flexibil-
ity in the behavior, as the chemical
diversity of our world mutely testi-
fies. Chemists have found many rules
to help predict and describe the occur-
rence and character of covalent bonds
between the various atomic species, and
their science continues to make new
discoveries and new formulations.

Instead of detailing their methods
and results, the next few chapters
will search more physically for the
dynamical behavior that enables elec-
trons to form covalent bonds uetween
atoms. We inquire when nuclei and elec-
trons form a stable system in which
the nuclei lie close to one another.
The cases chosen for examination are
the simplest, and they are made even
simpler by representing them with
plausible models. This chapter in
particular will carry that procedure
almost to absurdity: its models,
though plausible, will be wrong. Often
an examination of a plausible idea,
which turns out to be wrong, helps to
make clear what is right.

28

1

M O L E C U L E

Characteristically a covalent bond
between two atoms is an electron-pair
bond; two electrons of opposite spin
are in states described by wave func-
tions that have the same shape. But a
bond formed by only one electron has
most of the same physical characteris-
tics. Look first, therefore, at a one-
electron bond - in particular at the
simplest instance of it, the hydrogen
molecule- ion, H,'.

The hydrogen molecule-ion com-
posed of two protons, each with charge
+e, and one electron with charge e,
is an observable species of matter.
There are good experimental values of
the average separation of the two
protons in the ground state of the
molecule - the bond length R0 - and of
the (negative) energy of the molecule
in that state relative to a zero of
energy in which the two protons and
the electron are all far from one an-
other and at rest - the binding en-

u0.12

It is easy to guess roughly what
the behavior of this system will be.
If the protons are anywhere near each
other, the electron will be attracted
by both protons and will describe
some orbit about them. The protons,
each with a mass 1840 times the mass
of the electron, will be relatively
sluggish in responding to the pull of
the rapidly moving electron. But if
the electron spends more time between
than away from them, it will pull them
toward each other on the average. As
they approach each other, their posi-
tive charges will repel each other
more and more, and furthermore the

12"Binding energy" is a term used somewhat
loosely, and this monograph is no exception. In
this chapter it will mean the energy required
to disperse the electrons and nuclei to great
distances, and will be distinguished from the
"dissociation energy" required to disperse the
ingredients of a molecule or a crystal into
widely separated atoms or ions.
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electron will have less ar'i less space
between them in which to spend time
For both these reasons the protons
will find some separation R, at which
these competing effects balance.

To examine this system exactly,
however, offers a problem in the dy-
namics of three charged particles, in-
teracting according to Coulomb's law
(Fig. 5.1) - an instance of the famous
three-body problem. Even in classical
mechanics, to say nothing of wave me-
chanics, it has not been solved ana-
lytically. The first approximation to
introduce is suggested by the expecta-
tou that the relatively heavy protons
will move so much less rapidly than
the electron that they will be respond-
ing primarily to a cloud of electronic
charge.

In pursuing this suggestion, one
would first determine what the total
energy of the system would be if the
protons were somehow held fixed at an
arbitrary separation R. That energy
will have three parts: tiAe electrosta-
tic repulsive energy of the fixed nu-
clei, the average kinetic energy of
the moving electron, and the average
potential energy of the electron in
the electrostatic field of the fixed
nuclei. Their sum will be U(R), a func-
tion of R,

Then U(R) can be used to deter-
mine the motions of the protons by
thinking of it as furnishing the po-
tential energy of the proton pair at
the separation R. If U(R) has a mini-
mum at some value of R, that value of

SHAPE
OF WELL

SHAPE
OF WAVE
FUNCTION

a

4 e 0

-e

0

R/2 R/2

e

>0

Fig. 5.1 The hydrogen molecule-ion contains
two protons and one electron. In a coor-
dinate system whose origin is at the mid-
point between the nuclei, the instantaneous
potential energy of the electron at any
point r, in the field of the nuclei at
±R /2, is expressed by

VG) = 02/17: V21 e2/I7 + a/21

R is the R0 sought, and that value of
U is U0, and the system can be ex-
pected to oscillate about the separa-
tion R0.13

Thus the electronic part of the
present three-body problem is reduced
to a one-body problem. But the func-
tion U(R) for the hydrogen molecule-
ion still cannot be expressed in
closed form in terms of well-known
tabulated functions: its values must
be obtained by numerical integration
of a differential equation. More in-
sight into the three contributions to
U(R) comes from examining simplified
models.

The first contribution the po-

"This method of dividing up problems in the be-
havior of systems of electrons and nuclei,
called the "Born-Oppenheimer approximation,"
was introduced by Max Born and J. R. Oppenheimer,
working together in Gottingen in 1927.

Fig. 5.2 In a potential well with a single
minimum, the wave function for the ground
state has a single maximum. The wells above

\ I c

are for (a) the one-dimensional box, (b)
the one-dimensional harmonic oscillator,
and (c) an atom, in cross section.



30 BONDS BETWEEN ATOMS

h

C

(
I< >1

IERc> 1

Fig. 5.3 The potential well, shown in cross
section for the electron in the hydrogen
molecule-ion, has two minima. As the dis-
tance R between the nuclei decreases, the
well approaches more nearly the single well
offered by a single nucleus.

+e e 4- e

a ® <R/2> 0 <R/2> 0

b

Fig. 5.4 A suggested approximation (a) for
the average potential energy of the elec-
tron in a hydrogen molecule-ion places the
electron midway between the nuclei, and
(b) for the average kinetic energy uses
a de Broglie wavelength of twice the dis-
tance between the nuclei.
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Fig. 5.5 Using the one-dimensional model
of the hydrogen molecule-ion shown in Fig.
5.4 is equivalent to thinking of the elec-
tron as in a box Whose width R is the same
as the separation of the protons.

tential energy of the nuclei is

clearly

e
U nu C =

R
(5.1)

To find the contributions of the kine-
tic and potential energies of the elec-
tron, begin by lumping them together.
The electron is assumed to be bound
by a potential well. Its state is as-
sumed to be the ground state described
by solving Schroedinger's equation.
The energy E(R) of that state is the
total energy - kinetic plus potential
of the electron, and hence

U(R) = E(R) +
e

(5.2)

In order to picture what the
ground state might look like, compare
this potential well with some others,
shown in Figure 5.2 (see preceding
page), that are simple: (a) the
square well, (b) the parabolic well,
and (c) the well offered to an elec-
tron by a single nucleus. The wave
functions for the ground state of a
particle in all these wells have a
roughly similar form: all reach a max-
imum at the middle of the wel1.14

The shape of the potential well
offered to an electron by two nuclei
depends, of course, on the distance
between the nuclei. As Figure 5.3
shows, the nuclei offer two wells,
each quite like Figure 5.2c when they
are far apart (a), and one well of
the same sort when they are very close
together (c). At an intermediate dis-
tance (b) the well looks roughly like
a box with walls of finite height.

That comparison suggests the fol-
lowing crude approximation to the
facts. Assume that the average poten-
tial energy of the electron will be
roughly that of an electron at rest
midway between the nuclei; and assume
that the average kinetic energy of the
electron will be roughly that of a
free particle whose de Broglie wave-

14The wave functions for some of these wells are
discussed in Wave-Mechanical Properties of Sta-
tionary States, a monograph in this series.
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Discussion 5.1

A SIMPLE MODEL OF A ONE-ELECTRON BOND

If the wavelength of the electron
is A = 2R (Fig. 5.4b), the de Broglie
relation for the momentum, p = h/A,
gives p = h/2R and thus the kinetic
energy

h2U kin = .

2m 8mR2.
(D5.1)

Ii the electronic potential energy is
represented in Fig. 5.4a,

U pot
e2 e2 4e2
R/2 R/2 R

(D5.2)

Hence the total electronic energy is

h2 4e2
E(R) = Ukin + U pot =

8m R2 R
,(D5.3)

and the total energy of the system
(neglecting any kinetic energy of vi-
bration of the nuclei) is

U(R) =
h2

8mR2

3e2

R
(D5.4)

length A is twice the distance be-
tween the nuclei. Figure 5.4 pictures
the two ingredients of this guess. As
Figure 5.5 shows, the guess corre-
sponds to a one-dimensional model. In
that model the electron is in a one-
dimensional box whose bottom repre-
sents the electron's potential energy
when it is midway between the nuclei,
and whose sides confine the electron
to the line between the nuclei.

The appropriate calculations for
this model are carried out in Discus-
sion 5.1. The electronic potential en-
ergy goes down as 1/R, just as the
ionic potential energy does in the
calculations for the ionic bond in
Chapter 3. The electronic kinetic
energy goes up as 1/R2, behaving some-
what like the repulsive energy in
Chapter 3. Thus, as in that earlier
work, the energy passes through a min-
imum as R varies. In this case the
minimum yields the values Ro = 1.74 A

By differentiatin 114,R) with respect
to R, a minimum is found at

R02 12me'

2 3e2 h2

4MR
0, or Ro . (D5.5)

At this value of R0, Eq. (D5.4) yields

18me4
U0 h2

When the values

h = 6.62 x 10-27 erg-sec,

e = 4.80 x 10-1° esu,

m = 9.11 x 10-28 g,

(D5.6)

are put into (D5.5) and (D5.6), they
yield the values R, = 1.74 A,
U0 = 12.3 eV, to be compared with the
experimental values, 1.06 A and
16.3 eV.

and U0 = --12.3 eV. Since the experi-
mental values for the hydrogen
molecule-ion are Re = 1.06 A and
U0 = 16.3 eV, the agreement is rather
good for so crude a mode1.15

But you can easily get from this
model a misconception of the roles
which the three ingredients of U(R)
play in the actual case. In the model
there is a minimum in U(R) only be-
cause the electronic kinetic energy
increases more rapidly at small R than
the total potential energy of the elec-
tron and the nuclei decreases. Hence
in the model the factor that keeps
the nuclei apart is the electronic
kinetic energy.

In the real case, Figure 5.3

"The agreement becomes less impressive on com-
paring the dissociation energies - the energy
of the molecule-ion relative to the energy of a

hydrogen atom and a proton separated from each
other - as Problem 5.1 shows.



32 BONDS BETWEEN ATOMS

shows that the electronic kinetic en-
ergy cannot increase in that way. As
the nuclei get very close to each
other, the electron sees a pair of
charges which more and more closely
resembles the double charge on a hel-
ium nucleus. The only reason that the
electronic kinetic energy increases
indefinitely in the model is because
the model requires the electron to
stay in a box (Figure 5.5) which be-
comes indefinitely small.

In the real molecule the electron
is not in such a box. As the nuclei ap-
proach each other, the electron spends
more and more time to the left of the
nucleus on the left and to the right
of the nucleus on the right. Thus as
the internuclear distance shortens,

a

POTENTIAL ENERGY =0

POTENTIAL
_ ENERGY= V (NEGATIVE)

Fig. 5.6 In the "delta well" (a) the po-
tential energy falls abruptly to a large
negative value of V over a tiny distance f;
and V is allowed to become infinite and
to vanish in such a way that the product
VD has the finite value of The well af-
fords one bound state for a particle, whose
wave function (b) has the shape of a cross
section of the wave function for the ground
state of an electron in an atom. Increasing
the value of the single parameter i that
characterizes the well is equivalent to in-
creasing the positive charge of the nucleus
of an atom.

the wavelength of the electron does
not decrease as much, and its kinetic
energy does not increase as much, as
the model suggests. And since the
electron spends more and more time
away from the position midway between
the nuclei, its potential energy does
not go down as fast in the fact as in
the model.

Indeed examining the two extremes
shown in Fig. 5.3a and c makes clear
that, when the nuclei are far apart
(a), the total electronic energy will
be that of the hydrogen atom, for the
electron will be on one nucleus or the
other; and when the nuclei coincide
(c), the total electronic energy will
be that of the helium ion, He+

. Since
the energy of an electron in the
ground state of a one-electron atom
varies as Z2, where Z is the atomic
number of the atom, the total elec-
tronic energy E(R) must go down
smoothly by a factor of 4 as R de-
creases from R = 00 to R = 0. Clearly
what finally keeps the nuclei apart
in the hydrogen molecule-ion must be
their electrostatic repulsion Unuc
not the electronic kinetic energy. The
calculated model yields an approxima-
tion to the correct internuclear dis-
tance and binding energy only by good
fortune.

Since this model has the major
defect of confining the electron too
closely to the space between the nu-
clei, consider another one-dimensional
model which avoids this defect a

"delta-well model." A "delta well" a

well that is infinitesimally wide but
infinitely deep - affords one bound
state for a particle." As the width
L of the well approaches zero, and
the potential energy V of a particle
in the well becomes negatively infi-
nite, in such a way that the product
Vi = 77 remains finite, then the en-
ergy of the electron in the bound
state takes the form E = 772/4, and

"The properties of a particle in the presence
of a delta well are examined in The Nature of
Atoms, a monograph in this series.
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its wave function to the left and the
right of the well is

dr = Ae71x/2, zbr = Ae-77N/2. (5.3)

Thus the wave function for an
electron in the presence of the well
looks like Fig. 5.6: it has the same
form as a one-dimensional cross sec-
tion of the wave function for the
ground state of the hydrogen atom.
This correspondence suggests using
two such wells to make a one-dimen-
sional model for examining the ground
state of the hydrogen molecule-ion.

The model is simple enough for
exact calculation: an appendix to this
chapter carries out the formalities,
finding two different possible states
for the electron. In one state the
wave function is symmetrical about the
midpoint between the two wells, and
in the other state the wave function
is antisymmetrical, as Fig. 5.7 shows.
The energy of a particle in either of
these states approaches the same value
as the distance between the nuclei be-
comes very large. For an electron
whose wave function has the symmetri-
cal form, the energy decreases in the
expected way from that of the hydro-
gen atom to that of the helium atom
as the nuclei come together. For the
antisymmetrical wave function, how-
ever, the corresponding energy in-
creases as the separation between the
nuclei is reduced. These energies are
plotted as functions of R in Fig. 5.8.

Notice a rough analogy between
what is happening here andwhat hap-
pens to two harmonic oscillators that
are coupled by a weak spring, de-
scribed in the last chapter. When the
nuclei are far apart, the two elec-
tronic states are analogous to two
identical oscillators that are un-
coupled. Each nucleus affords a bound
state for the electron; the two states
are identical except that they are
located in two different places, and
both wave functions give the electron
an even chance of being at either nu-
cleus. When the nuclei are infinitely
separated, the squares of the symmetri-
cal and antisymmetrical wave functions

will be the same, and thus give the
same probability distribution for the
electron. As the nuclei come closer
to each other, the energy level is
split, in a way similar to the split-
ting described in the last chapter for

Fig. 5.7 A pair of delta wells, separated
by a distance R, affords two bound states
for a particle, whose wave functions are,
respectively, symmetri.al and antisymmetri-
cal about the midpoint between the wells.
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Fig. 5.8 The energies of an electron in
the two states afforded by two delta wells,
as functions of the distance between the
wells.
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the frequencies of the two identical
oscillators when they are coupled. You
may find it helpful to think of the
two identical states, afforded by the
nuclei, as coupled and thus providing
two states with properties that differ
increasingly as the coupling is in-
creased by decreasing the nuclear
separation.

Clearly an electron whose wave
function has the antisymmetrical form
cannot provide a stable bond for the
molecule, for both the electronic and
the nuclear repulsive energies in-
crease monotonically with decreasing
nuclear separation. An electron in the
symmetical wave function might give
bonding since E(R) decreases mono-
tonically with the nuclear separation
R - if the sum U(R) of E(R) and the
nuclear repulsive energy, goes through
a minimum. As the appendix shows, that
sum does not go through a minimum for
this model, but increases monotoni-
cally, though of course the sum is
less than the corresponding sum for
the antisymmetrical case.

Thus again the model is a poor
one, and hindsight shows why. The two
delta wells provide potentials with-
out any "range": the electron experi-
ences a negative potential energy only
when it is precisely at one or another

2

Fig. 5.9 According to the probability in-
terpretation of wave functions, the squares
of the two functions shown in Fig. 5.7
measure the relative probability of finding
the electron at various places, when It is
in a state described by one or the otner
wave function.

of the "nuclei," no matter what the
separation R of the "nuclei" may be.
At the same time the model retains,
for the nuclear repulsive energy, the
long range of the Coulomb potential.
In the real case, the potential energy
of the electron when it is between the
nuclei keeps going down as the nuclei
come toward each other (Figure 5.3).
Hence in reality it is increasingly
favorable for the electron to take a
position between the nuclei, where it
will attract both nuclei toward itself
and thus toward each other. That in-
creasing tendency is resisted only by
the tendency of the electron to reduce
its kinetic energy by increasing its
de Broglie wavelength.

But even though the model does
not provide a stable bond, it illus-
trates faithfully two important fea-
tures of a real molecule: (1) the
formation, from the atomic states of
the two atoms, of a symmetrical aLid
an antisymmetrical state, and (2) the
fact that the symmetrical state is
the one that might afford a bond. The
symmetrical stte is often called a
"bonding state" of the electron, and
the antisymmetrical state is called
an "antibonding state." Squaring the
wave functions of Fig. 5.7 for the
two states shows (Fig. 5.9) that the
bonding state gives a higher probabil-
ity of finding the electron between
the nuclei, in agreement with the pic-
ture that bonding is acomplished by
the electrostatic attraction of the
electron for the nuclei while it is
between them.

Indeed that picture is rig-rously
correct. It has been shown' that the
forces that the electrons in a mole-
cule exert on the nuclei are just
those that would be exerted according
to classical electrostatic theory by
a cloud of negative charge distributed
according to the probability interpre-
tation of the square of the wave func-
tion for the electrons. The equilib-
rium lengths of the bonds are deter-

I7R. P. Feyrman, Pnys. Rev. 56, :.:40 (J9:;9).
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mined by the point at which the at-
tractive forces, which this cloud of
negative charge exerts on the nuclei,
are exactly balanced by the electrosta-
tic repulsive forces of the nuclei on
one another. From this point of view,
the duty of wave mechanics is to de-
termine the density of electronic
charge as a function of the space co-
ordinates, for various separations of
the nuclei. Then the rest of the cal-
culation can be carried out by using
classical electrostatic ideas. But at
present the importance of the "force
way" of looking at the problem is con-
ceptual rather than practical. None of
the presently available methods for
calculating bond energies and inter-
atomic distances uses this procedure:
all the methods are "energy methods."

Even though the search in this
chapter for a simple one-dimensional
model for the hydrogen molecule-ion
has yielded none, these trials have
clarified the problem. In the light of
the preceding discussion, you could
easily construct a model that would
embody those ingredients, but you
might have difficulty finding one
that comes usefully close to the facts
and at the same time can be easily
calculated.

What does this study of the hy-
drogen molecule-ion lead you to ex-
pect when the system acquires another
electron and so makes a hydrogen mole-
cule in which the two protons and two
electrons form a stable system? The
two electrons will both be in the
spacially symmetrical state and will
have opposite spins. Then, ignoring
the electrostatic repulsion between
the two electrons for the moment, you
can expct that the electronic energy
will be twice as great as before at
each value of R. Since the nuclear re-
pulsion will be the same as before at
each value of R, the minimum total
energy will lie at a shorter separa-
tion of the nuclei. Thinking in terms
of the forces in the system, you can
expect to find roughly twice as much
negative charge between the nuclei,
tending to pull them together. But you

el

cannot easily guess what separation
of the nuclei will provide the new
force balance, nor what the total en-
ergy will be at that separation.

Adding the electrostatic repul-
sion between the two electrons will
make additional corrections in your
guess. That interaction will add a
repulsive term to the electronic po-
tential energy. Moreover, by making
the electrons tend to stay out of
each other's way, it will reduce the
electronic density between the nuclei
and thus reduce the attractive terms
in the electronic potential energy.

In experimental fact, the bond
length in the hydrogen molecule is
0.74 A, to be compared with 1.06 A
in the molecule-ion. The total energy
of the molecule is 31.7 eV, to be
compared with 16.3 eV in the mole-
cule-ion. At first it may seem sur-
prising how nearly the energy is
doubled by adding the second elec-
tron. The addition of a second elec-
tron to the helium ion, to form the
neutral helium atom, releases less
than half the energy that is released
by the first electron when it joins
the helium nucleus to form the ion.

There is a great quantitative
difference between atoms and mole-
cules in this respect. The effect of
the repulsion between electrons is
more important in an atom because
there a single nucleus is attracting
several electrons to it. In a mole-
cule the separation of the centers of
positive charge gives the several elec-
trons space to move about in a region
of low potential energy, without get-
ting in the way of one another.

In one important way, however,
both the hydrogen molecule and the
molecule-ion fail to typify the be-
havior of other molecules. Only in
these two molecules are the atoms held
apart entirely by the electrostatic
repulsion between their nuclei. In all
other molecules the repulsive force
arises primarily from the behavior of
the electrons that are not engaged in
bonding. As the atoms come closer to
each other, those disengaged electrons
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are forced into states of higher en-
ergy, and so offer a strong repulsion
to closer approach. As you saw in
Chapter 3, that repulsion grows in
strength much more rapidly with de-
creasing separation than the electro-

static repulsion that keeps the pro-
tons apart in the hydrogen molecule.
Pursuing in the next two chapters a
more penetrating analysis of the elec-
tron-pair bond, you will see the ori-
gin of that repulsion more clearly.

PROBLEMS

5.1 The energy of the hydrogen atom
in its ground state is minus one
atomic unit, or 13.58 eV. That is
the energy of the atom relative
to a proton and an electron in-
finitely separated and at rest.
What is the difference in energy
between le, and H + le? In other
words, is the hydrogen molecule-
ion stable or unstable relative to
one hydrogen atom and one proton
infinitely separated, and by how
much energy? This quantity is
called the "dissociation energy"
of the molecule. Compare the ex-
perimental value with the value
calculated in Discussion 5.1.

5.2 The virial theorem asserts that,
in a system of charged mass-points
interacting by Coulomb's law, the
kinetic energy will be one half
the absolute value of the (nega-
tive) potential energy when the
system is behaving stably. Does
the approximation of Discussion
5.1 obey this theorem at the equi-
librium separation?

5.3 By looking at the general form of
the true wave function for the
electron in 14 (for example, Fig.
5.7), you can see that you have
been able to get as good an approx-
imation as you have by the crude
model of Figs. 5.4 and 5.5 in con-
sequence of making two errors that
partially compensate each other.
What is the nature of these errors?

5.4 It might occur to you that the
delta-well model for le, contains a
conceptual inconsistency (in using
the short-range potential of the
delta well for the electron-proton
interactions, and the long-range
Coulomb potential for the proton-
proton interactions) which could
be removed by representing the
proton-proton interaction as a
delta spike. Conclude without cal-
culation what internuclear dis-
tance, and what total energy, you
would obtain as equilibrium val-
ues.

Appendix A DELTA-WELL MODEL OF THE HYDROGEN MOLECULE-ION

To find the wave functions for an
electron moving in one dimension, in
the presence of two delta wells separ-
ated by the distance R (Fig. 5.10),
write Schroedinger's equation. When
written in atomic units,18 it is

"'This method of simplifying the appearance of
Schroedinger's equation is described in Wave-
Mechanical Properties of Stationary States, a
monograph in this Series.

d` it

dx
+ [E V(x)1z! = O. (A5.1)

Everywhere outside the wells V(x) = 0,
and thus for the three ranges of Fig.
5.10 the appropriate solutions are of
the form

th, = Aekx, i3 = Be',-k

= A2ekx + (A5.2)
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where k = 17E, and E is negative when
the electron is bound to the wells.
Matching to zP2 at x = -R/2, and 62
to z./2 at x - +R/2, gives

A = A9 + B,ekR

B = B9 + A,ekR. (A5.3)

At each well the function will have a
discontinuity of slope, obtainable by
integrating Eq. (A5.1) across the
well, and taking the well so narrow
that Z./ is constant over its width
C, and so deep that E is negligible in
comparison with V. With the use of
theEe assumptions, Eq. (A5.1) becomes

dzP
d

dx
= Vz./Ax.

Then at the left well

dx x. -R/2 dx

(A5.4)

= tr(-R/2)Vf,
-R/2

(A5.5)

and at the right well

dz.'2

dx X = R/2

dz./2

dx
= d,(R/2)17k.

x= R/2

(A5.6)

Evaluating (A5.5) and (A5.6), and de-
noting Vf = -77 (where n is positive
Since V is negative), yields

A2k B2kekR Ak = -77A,

B2k A2kekR Bk = -77B.

When A and B are eliminated from
(A5.7) by using (A5.3),

77A2 = (2k n) B2okR,

77i32 = (2k n) A2ekR,

whose consistency requires

ekR
2k

±

n

(A5.7)

(A5.8)

(A5.9)

When ekR = +71/(2k 7/), Eqs.

POTENTIAL
ENERGY = 0

POTENTIAL
ENERGY = V
(NEGATIVE)

1 1

2L R/2 0 + RP

REGION 1 REGION 2 REGION 3

Fig. 5.10 In the delta-well model for the
hydrogen molecule-ion, the potential for
the electron due to the two protons is
simulated by two square potential wells in
which f 0 and V in-such a way that

= 71, a positive constant.
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Fig. 5.11 The total energy, and its compo-
nents, in the delta-wall model of the hy-
drogen molecule-ion, when the electron is
in the symmetric and antisymmetric bound
states, plotted in atomic units.
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(A5.8) give A2 = B2, and hence by
(A5.3) A = B. In this case, therefore,
d. is symmetric about x = 0. When
ekR = 77/(2k n), Eqs. (A5.8) give
A2 - -B2, and hence by (A5.3) A = -B.
In this case d is antisymmetric about
x = 0. In the symmetric case, when
R = 0, k = 77, or E = -772. As R in-
creases, k aecreases, remaining
greater than 77/2, and as R - 00,

k 77/2, or E -7)2/4.

In the antisymmetric case k < 77/2
for large R, and thus as R - 00,
k 77/2 again. As R decreases, so does
k, and at the point where k goes
through zero and becomes negative, the
exponential forms of solution (A5.2)
are no longer acceptable, since they
would cause the wave function to in-
crease indefinitely for large posi-
tive and negative values of x. Thus
for small separations, E will be posi-
tive, and Eq. (A5.1) will have trigo-
nometric solutions, describing an
electron that is not bound to the
wells but suffers a change in phase
in its wave function as it traverses
the wells. The value of R at which
this transition occurs can be found by

expanding both side. of (A5.9) for the
antisymmetric case powers of k,

1 + kR +
2k

= 1 + + (A5.10)
7/

and finding

R - 2/n as k -0.

In order to specialize the prob-
lem to the hydrogen molecule-ion, take
n = 2, since the energy of the ground
state of the hydrogen atom is -1
atomic unit, and -E = k2 = 772/4 for
the infinitely separated wells. The
value of R obtained from (A5.9) is

R =
1

log
k

1

1.
(A5.11)

The plots of Fig. 5.8 can now be made
by using this value of R and the value
E(R) = -k2. Since the nuclear repul-
sive energy is e2/R, or 2/R in atomic
units, U(R) can now be plotted against
R (Fig. 5.11) (see preceding page) in
atomic units, to find that the delta
wells fail to provide a true bonding
state, for the reasons the text dis-
cusses.
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The covalent bond between two atoms
can be understood quite well by exam-
ining the behavior of a single elec-
tron in the prescmce of two attracting
nuclei, as the last chapter pointed
out But the covalent bond is usually
formed by two electrons, not one; and
the end of the last chapter suggested
a way of thinking about how those two
electrons behave. It pictured the two
electrons in states described by wave
functions that show the same spacial
dependence, and in which the electrons
have opposite spins.

Now this is a rather loose way
of thinking about two electrons: it
says both more and less than can prop-
erly be said about them. For example,
by putting each electron separately
into a one-electron state, this way of
thinking offers no way of estimating
the effect of their mutual repulsion,
and thus it provides less information
than you have a right to ask. On the
other hand, by putting both electrons
into states with the siime spacial de-
pendence, and retaining the exclusion
principle, it forces th,a conclusion
that the two electrons must have op-
posite spins. They usually do, to be
sure, but in many important cases -
the oxygen molecule, for example -
they do not.

These difficulties have arisen
out of a mistake that ma,.ks this way
of thinking about the pair of elec-
trons. We have considered the elec-
trons too much as two, and too little
as ,a pair. Electrons are indistinguish-
able oarticles. One can say how many
there are, but one can find do labels
that will identify which is which. In
consequence, one must examine wave
functions that describe states for
both electrons together, and one must
require that such a wave function
should give the same description of a
state if the two electrons are inter-
changed.
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It is not difficult to embody
this idea in a mathematical program;
it is difficult only to carry through
the calculations that the program
prescribes. Schroedinger's equation
again provides the necessary mathema-
tical apparatus.1 9 In the present con-
text it is a partial differential equa-
tion whose single dependent variable
is the desired wave function a func-
tion of the coordinates of both elec-
trons. The part of the equation that
contains the potential energy of the
electrons includes the instantaneous
potential energy of each in the pres-
ence of the two nuclei, and also the
instantaneous repulsion between them.
The solutions that are picked out as
physically meaningful are those whose
squares retain the same value when
the coordinates of the electrons are
interchanged.

In order to see what the product
of such a program might be, look for
a moment at the result it would yield
when applied to the simple one-dimen-
sional model of the last chapter.
Again the two electrons are confined
to a line, and two delta wells simu-
late the attraction of the two nuclei.
Representing the positions of each
delta well along the line by C) , Fig.
6.1 (see next page) repeats the forms
of the two wave functions of lowest
energy that were found for one elec-
tron in the last chapter. For two elec-
trons the wave function now becomes a
function of two variables - the in-
stantaneous positions of the two elec-
trons along the line - and must there-
fore be plotted as hills and valleys
above and below the plane shown in Fig.
6.2 (see next page). The square of its
value at any point in the plane meas-
ures the relative probability that the

19The prucodure is describes in Wave-Mechanical
Properties of Stationary Sates, a monograph .n
this series.
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two electrons will be simultaneously
at the places represented by the point.
The dashed line marks the points that
represent the coincidence of the two
electrons at one and tho same place.

One of the wave functions for
this system is shown in Fig. 6.3. The

0 I

Fig. 6.1 For the delta-well model of the
hydrogen molecule-ion in Chapter 5, the
two one-electron wave functi3ns are spaci-
ally symmetrical (a) and antisymmetrical(b).
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Fig. 6.2 Specifying the positions of the
two electrons in the one-dimensional delta-
well model of the hydrogen molecule re-
quires a plane instead of a line. The re-
gions marked + show the positions of the
wells, and the dashed line shows the points
at which the two electrons are coincident.

electronic probablity is highest near
the attracting wells, and some of
that probability is rushed away from
the places where the electrons are
near each other. The wave function is
symmetric to a reflection across the
dashed line, in obedience to the re-
quirement that the square of its value
will not change if the electrons are
interchanged.

Another wave function, satisfy-
ing all the requirements mentioned so
far, is shown in Fig. 6.4. Unlike that
shown it Figure 6.3, it is antisym-
metric to reflection across the dashed
line: interchanging the electrons
changes its sign. But since its square
is symmetric, it still makes the same
predictions of probability when the
two electrons are interchanged, and
therefore it is entirely acceptable.

Entering the argument at this
point: however, is the behavior of
electrons that is codified in the ex-
clusion principle. Clearly the prin-
ciple cannot be taken here in the
simple form that it has taken in ea:-.-
lier arguments about how two electrons
occupy two one-electron wave functions.
In this context the exclusion princi-
ple must be given its more general
form the form from which the more
familiar form can be derived as a con-
sequence in cases where one-electron
wave functions provide an adequate ap-
proximation.2° As Discussion 6.1 (see
page 42) describes, the exclusion prin-
ciple asserts for the case now at hand
that the two electrons in the spa-
tially symmetrical wave function (Fig.
6.3) will have opposite spins, and in
the spatially antisymmetric wave func-
tion (Fig. 6.4) will have spins in the
same direction.

From this point of view, there-
fore, the fact that the electrons in
an electron-pair borhi usually have op-
posite spins is due to the fact that
in most real cases the state with the
spacially symmetrical wave function

2°The general form of the exclusion principle
is discussed in Wave-Mechanical Properties of
Stationary States.



THE HYDROGEN MOLECULE 41

Fig. 6.3 The spacially symmetrical wave
function for the two electrons in the delta-

well model of the hydrogen molecule has two
peaks, for electrons at different wells.

Fig. 6.4 The spacially antisymmetrical
wave function for the two electrons in the

has the lower energy. But there are
cases, such as oxygen, in which the
spacially antisymmetrical wave func-
tion corresponds with the lower energy.
And in any case, the electrons in
some bond in a molecule may be excited
by outside influences into a state of
higher energy that is spacially anti-
symmetrical, and thus a pair of elec-
trons may exhibit parallel instead of
antiparallel spins."

In order to make qualitative cal-
culations, an electron-pair bond is of-
ten approximated by thinking of it as

21Fol. ,..pectroscopic reasons, such a state is us-

ually called a "triplet Shale."

delta -u,11 model of the hydrogen molecule has
two "peaks" that are of opposite 2.enses.

a suitable combination of the states
that the two electrons would have on
the two bonded atoms if the atoms
w're entirely separate. There are two
ways of constructing such an approxi-
mation. The first method proceeds by
taking an atomic wave function on each
of the two atoms, placing an electron
in each, and then bringing the atoms
closer together. The second method
makes linear combinations of the two
atomic wave functions, each approxi-
mating a wave function for the bond
such as the last chapter depicted,
and then puts in the electrons one
after the other. The rest of this
chapter examines the application of
both these methods to the electron-
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Discussion 6.1

THE PRINCIPLE OF ANT?SYMMETRY

The two-electron wave pictured in
Fig. 6.3 is "symmetric to the inter-
change of the electrons," because the
picture is unaffected by imagining
that the electrons have exchanged
places. When the pair of electrons is
in that state, the exclusion principle
asserts that their spins will be op-
posite. On the other hand, if the two
electrons in the wave of Fig. 6.4 ex-
change places, thr wave is turned up-
side down: every positive number de-
scribing the height of its hills and
valleys is made negative, and every
negative number is made positive. Such
a wave is said to be "antisymmetric
to the interchange of the electrons."
And in that case the exclusion prin-
ciple asserts that their spins will be
parallel.

A single rule will cover both
cases. Put a number - say, the number
one - to the spin of an electron.
Then the spin of another electron re-
ceives the same number if it is in the
same direction, and the number minus
one if it is in the opposite direc-
tion. Multiplying the two numbers for
the spins of the two electrons gives

Fig. 6.5 Coordinates for the problem of
the electron-pair bond in the hydrogen
molecule.

+1 if the spins are parallel, 1 if
the spans are opposed. Now include, as
part of the operation of interchanging
the electrons, the operation of multi-
plying their wave by +1 or 1 (+1 if
their spins are the same, 1 if their
spins are opposed). Then the inter-
change turns the waves of both Figs.
6.3 and 6.4 upside down. In both cases
the wave can be called antisymmetric
to the interchange of the electrons.

In a fashion such as this, the
exclusion principle can be extended to
waves for many electrons. The more
general form of the principle contin-
ues to assert that electrons are found
only in antisymmetrical states, when
their spins are included in the de-
scription of their states.

The theory of this property of
electrons predicts that no event, of
any sort familiar to us, could ever
remove electrons from antisymmetric
states and put them into symmetric
states. But the theory also shows that,
if instead the electrons had started
life in symmetric states, no event
could put them into antisymmetric
states.

pair bond between the two protons in
the hydrogen molecule.

In preparation for pursuing the
first method, diagram and label a pic-
ture of the contents of the hydrogen
molecule as in Fig. 6.5. The electrons,
No. 1 and No. 2, will have states
whose wave functions are combinations
of the ls wave functions for two separ-
ate hydrogen atoms.

Two such two- election states can
be made out of the two ls functions of
the two atoms. One is symmetric in the
spins and antisymmetric in the space-
dependent part of the function. Call
that space-dependent part anti in-
terchanging the numbers designating
the elections in anti will reverse
its sign. The other two- election state
is antisymmetric in the spins and

11"
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Discussion 6.2

TRIAL FUNCTIONS FOR THE HYDROGEN MOLECULE

When the atoms are so far apart
that their interaction is negligible,
and one electron is on each proton,
you can write the Schroedinger equa-
tions in atomic units,

[HAB 'LAB 7-

= 2EHi1 AB)

C., 2

L

LA

4 Er 2 r 2
BA ',, BA 1 2

r r 2B

1 I,1

1 1
,BA

rtB r2A

= 2E4i! BA)

depending on which electron is at
which proton. Here EH is one of the
energy levels for the hydrogen atom.
When they are in their lowest-energy
states, both electrons will be in ls
wave functions on their appropriate
atoms.

When the atoms interact, you can
write, using the coordinates of Fig.
6.5,

Hi., a [v12 1 1 1

r1A r2B riB

r2A 1'12

+ =
1 1

symmetric (isym) in the space-depend-
ent part. "Antisymmetric in the spins"
means that the spins are opposite:
interchanging the numbers designating
the electrons in the wave function
reverses the spins of both. As Dis-
cussion 6.2 shows, the desired wave
functions might be written:

= A(1) B(2) + A(2) B(1),

thanti = A(1) B(2) A(2) B(1))(6.1)

where A(1), for example, means the
wave function for hydrogen atom A,
written for the coordinates of elec-
tron No. 1.

Suppose for the moment that these
functions do approximate two possible

Recalling the method of solving such
equations by separation of variables,
you know that a solution of the first
of these equations is A(1) B(2), and
a solution of the second is
A(2) B(1). Here A(1), for example,
denotes the ls wave function for hy-
drogen atom A, written for the coor-
dinates of electron number 1. Since
the ls wave function for hydrogen
drops off exponentially with r, the
wave function A(1), in the coordinate
system of Fig. 6.5, and with distances
expressed in atomic units, is

A(1) = er1A

iA
=1/x12 y12 (z1

2)

Out of such solutions the trial func-
t ions

sym A(1) B(2) + A(2) B(1),

A(1) B(2) A(2) B(1),

are constructed with a view to examin-
ing how well they approximate true
solutions of the third of the Schroe-
dinger equations shown above.

electronic wave functions for the hy-
drogen molecule. Then some of the
physical differences between them can
be examined by looking at their
squares, which will measure the prob-
ability that electron No. 1 is in the
regio around xl , y1 , zi, and electron
No. 2 is in ti:e region around x2., y.,

z2. For example, as Discussion 6.3
(see page 45) shows, the probability
that the two electrons are both midway
bctween the protons, in their strong-
est bonding positions, is finite when
they are in the state described by
itsym and increases with decreasing
separation of the protons. On the other
other hand the wave function 4a114; van-
ishes for that position of the elec-
trons. When this kind of job is done
throughout the space around the pro-
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FOR ti) anti

FOR s

Fig. 6.6 Contours of equal electron den-
sity, in a plane containing the two nuclei,
for the spacially antisymmetric and the
spacially symmetric wave function for the
hydrogen molecule in the approximation of
Eq. (6.1).

tons, the contours of equal electron
density turn out to look like Fig. 6.6.

Thus it seems possible, from Fig.
6.6, that Os", will be a state that
bonds the two protons by piling up
negative charge between them. Looking
back at the expression for probability
density in Discussion 6.3, you see why
this piling up takes place. The first
two terms in that expression are
merely the terms coming from the two
separate atoms. The last term appears
because the electrons can exchange
places: it is an exchange term.
Clearly this term has its largest ab-
solute value where the is wave func-
tion for the two atoms overlap. In the
case of thsym this term brings more
electron density into that region Than
the overlapping of the atoms would pro-
vide by way of the first two terms.
In the case of thranti the overlap tends
to push electron density away from the
overlapping region - again more than

the mutual repulsion of the electrons
would accomplish by itself.

Notice that this effect is a re-
sult of a very general feature of wave
mechanics. A state made up by adding
together two component states will not
usually have properties that are sim-
ply the sums of the corresponding
properties of those two componeht
states, That is because observable
properties of a state all depend on
the square of the wave function, in
one guise or another. The expression
in Discussion 6.3 for the probability
density shows the result of this
clearly in its last term, for the
first two terms are simply the squares
of the wave functions for the compo-
nent states.

Now of course the validity of
these trial functions still swims in a
sea of physical intuition. The func-
tions thsym and thanti are certainly not

exact solutions of Schroedinger's equa-
tion for the hydrogen molecule, and
nothing up to this point has shown
whether they are good or bad approxi-
mations. The only way to find out is
to calculate some observable proper-
ties with the aid of these wave func-
tions and check the calculated values
against experimental results.

The most important single prop-
erty to calculate is the energy as a
function of the separation of the pro-
tons the E(R) discussed in the last
chapter. Then you can see whether the
sum of E(R) and the repulsive energy
of the two protons goes through a
minimum at some value of R. Using the
reasoning of the last chapter, you
-would check that value Ro against the
known interatomic distance in the hy-
drogen molecule, and the corresponding
energy U0 against the known binding
energy of the molecule.

It turns out that the check, car-
ried out in the appendix to this
chapter, gives a very satisfying
answer. Such a check does not rigor-
ously show whether the wave functions
themselves are good approximations,
but only whether they are capable of
yielding good approximations to the
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Discussion 6.3

DISTRIBUTION OF ELECTRONS

The squares of the wave functions
given by the expressions (6.1) are

= A2(1) B2(2) + A2(2) B2(1)

1 2 A(1) - B(2) A(2) B(1),

where + applies to d'sym and applies
to Llanti In order to examine the
prediction that this makes along the
line connecting the two protons, sub-
stitute the values of the atomic wave
functions shown in Discussion 6.2,
and let xl = yl = x2 = y2 = 0. Then

42line = exp 2[Iz1 R/2I + Iz2 + R/2I]

+ exp 2[Ix2 R/2I + Iz1 + R/211

energy. Sonic additional faith in the
form of the wave functions, however,
comes from the physically sensible
reasoning used in constructing them.

It is convenient to have a word
for the space-dependent part of a wave
function for one electron, to disting-
uish it from the whole wave function
which includes reference to the spin.
"Orbital" is the customary word. Such
a function as the is wave function,
obtained by solving Schroedinger's
equation for an atom, is called an
"atomic orbital." Such functions as
the wave functions used in the last
chapter for the hydrogen molecule-ion
are called "molecular orbitals." The
foregoing method of approximation in a
many-electron problem is therefore
often called the "atomic orbital meth-
od."

Look now at the other way of
picturing the hydrogen molecule - a

"molecular orbital method," in which
the orbitals for the hydrogen mole-
cule-ion are filled with two electrons
in succession. As the last chapter
remarked, Schroedinger's equation can
be solved for an electron in the pres-
ence of two protons separated by the

± 2exp [Iz1 R/2I + 1z2 R/21

IZI + R/21 + 1z2 + R/21].

At the middle of the line between the
two protons z1 = z2 = O. Substituting
these values of the z's in the pre-
ceding expression s'aows that the prob-
ability that the two electrons are
both midway between the protons, in
their strongest boniing positions, is
proportional:

for sym to 4e-2R,

for d anti to 0.

distance R, but the solutions cannot
be expressed in closed form in terms
of tabulated functions. Of the two so-
lutions corresponding to the lowest
er..!rgies in the interesting region of
R, one is spatially symmetric, the
other antisymmetric, with respect to
the perpendicular plane bisecting the
line between the two protons. Fig. 6.7
shows roughly the character of the

R

Fig. 6.7 The general form of cross-sec-
tions of the spatially symmetric ("gerade")
and spazially antisymmetric ("ungerade")
wave functions for the hydrogen molecule.
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pg.(1)*(7(1(2) SPINS OPPOSITE

au(1) 0 A2) SPINS OPPOSITE

3 g,,(1) a (2) + a(1) ay (2) SPINS OPPOSITE

4 crg(1) au(2) - a(1) ag (2) SPINS PARALLEL

Table 6.1

1 [A(1) + B(1)) [A(2) + B(2))

2 [A(1) - B(1)1 !A(2) - B(2))

3 [AM + B(1)) [A(2) B(2))

+ [A(1) BM) IA(2) + B(2)1

4 [AM + BM} [A(2) - B(2))
- [AM - B(1)) [A(2) + B(2)]

Table 6.2

1 A(1) A(2) + B(1) B(2) + IP Sym

2 A(1; A(2) + B(1) B(2) IP

3 21A(1) A(2) B(1) B(2))

4 -24'arlt,

Table 6.3

wave functions along the line of the
protons.

Now consider the ways in which
two electrons can occupy these mole-
cular orbitals. To follow convention,
call the spacially symmetric orbital
gg(g = "gerade" = "even") and the
spacially antisymmetric orbital

"A"=Is ON ATOM A

Ap
"B"---Is ON ATOM B

Fig. 6.8 Cross sections of the atomic ls
wave functions on two hydrogen atoms, whose
sum and differe.ce approximate the two
molecular wave functions of Fig. 6.7.

gu(u = "ungerade" = "odd"). The two
electrons will obey the exclusion prin-
ciple if they are in any of the wave
functions shown in Table 6.1.

The question now arises, why does
the molecular orbital method afford
four possibilities, three with spins
paired, whereas the atomic orbital
method seemed to yield only two pos-
sibilities, one with spins paired?
The answer comes from looking at a way
of approximating gg and gu in terms of
"A" and "B": the ls wave functions on
the two atoms, which you used before.
This way of approximating molecular
orbitals is often called the "LCAO
approximation": the linear combina-
tion of atomic orbitals. Fig. 6.8
shows cross sections of A and B.
Clearly A + B looks like gg. (Figure
6.7) and A B looks like gu. By using
these approximations, the four func-
tions of Table 6.1 can be rewritten
into the forms shown in Table 6.2.
When the products in Table 6.2 are ex-
panded, and the results are compared
with Eq. (6.1), the four functions
take the forms shown in Table 6.3.

These forms now call attention to
two combinations of the otomic orbi-
tals that were neglecter's in the ear-
lier pursuit of the atomic orbital
method: the combinations A(1) A(2)
and B(1) B(2). Clearly the states
that these combinations represent are
those in which both electrons with
spins paired, ,o.re on one or the other
proton: the "ionic states" H11+ and
11+11- (Fig. 6.9). It is altogether
probable that an approximation to the
true wave function for the hydrogen
molecule would be better if it in-
cluded a little of these combinations
along with dsym. They cannot be used
with Janti because in the ionic com-
binations the spins are antiparallel,
and in anti the spins are parallel.

The way to effect this improve-
ment in the approximation is to add to
msym proportions CA of A(1) A(2) and
Ca of B(1) B(2). For the hydrogen
molecule, whose two atoms are identi-
cal, you can take CA = CB == C. When
the bonded atoms differ, CA may not
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equal CB, and their inequality will
betoken a mixture of ionic and coval-
ent bonding. In order to determine the
best value of C, you can use the fact
that the molecule will surely choose
that value that gives it the lowest
energy. 22

Alternatively, a similar proce-
dure could be followed with the first
three molecular orbitals in Table 6.1.
Either procedure will lead finally to
two molecular states, constructed
either from the two atomic orbitals
A and B or the two molecular orbitals
u and uu. In one of these states, a
bonding state, the spins of the elec-
trons will be opposed, and the energy
will pass through a minimum as R var-
ies. In the other state, an antibond-
ing state, the spins will be parallel,
and the state will repel the protons
at all values of R. This sort of analy-
sis has been applied to other atoms
as well as hydrogen, and its results
can be summarized in a few useful gen-
eralizations.

In the first place, when molecu-
lar orbitals are made by taking
"linear combinations of atomic orbi-
tals," the number of finally independ-
ent molecular orbitals is always the
same as the number of atomic orbitals
employed. In the example of this chap-
ter, the number is two. Usually half
the molecular orbitals are bonding
orbitals and half are antibonding.
Since each orbital will hold only two
electrons, the number of electrons
involved in bonding will not exceed
the number of atomic orbitals that
have been invoked. When these numbers
are equal, the molecule shows "satur-
ated valency" on the part of all it,
atoms. When there are fewer electros
available for bonding than the number
of atomic orbitals involved in the
bonding, the bonds are called "elec-
tron-deficient bonds." The metallic
bond in particular can be regarded as
an electron - deficient bond.

=This idea can be embodied in a calc.:ulation by
using the variational method describ,ad in Wave-
Mechanical Properties of Stationary States.

A(1) B(2)

A(2) B(1)

A(1) A(2)

B(1) B(2)

Fig. 6.9 Four combinations of atomic
states that can contribute to the bonding
of two atoms by a pair of electrons. The
upper two are those used in the approxima-
tions of Eq. (6.1); the lover two are
"ionic' or "polar" states.

Usually the bonding orbitals
that lie lowest in the energy scale
are orbitals for states in which the
spins are opposed. Most of the mole-
cules in nature are bonded by pairs
of electrons with opposed spins; but
there are exceptions, of which mole-
cular oxygen is the most familiar. In
oxygen two of the four bonding elec-
trons have parallel spins because
there is an "orbital degeneracy"; two
bonding orbitals have the same energy.
Of the resulting bonding states, one
is a state with spins opposed, the
other with spins parallel.

Most importantly, however, the
analysis reemphasizes the picture of
bonding as an accumulation of nega-
tive charge bett%,,,n the positive nu-
clei - the picture already presented
in t:ie last chapter. You can see two
opposing tendencies at work. The
electrons tend to push each other
away. But this is outweighed by the
fact that the potential energy of all
of them is lowest when they are be-
teen the nuclei. They would all rush
there, and everything would form bonds
with everything else, were it not for
the behavior described by the exclu-
sion principle. In accordance with
that principle they find states that
are antisymmecric to their interchange.
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As in atoms, so in molecules, that law
of antisymmetry limits the occupancy
of each orbital. Only some of the
states will give electron densities
favorable for bonding.

The bonding states, having energy
minima with respect to variations of
the nuclear arrangement, are those
that permit the electronic charge to

accumulate between the nuclei. When
those bonding states are viewed as
constructed out of atomic orbitals,
the accumulation of charge is greatest
where the atomic orbitals would over-
lap the most. And the accumulation is
greater than that overlap alone would
provide, in consequence of an exchange
effect that augments the simple sum.

Appendix BINDING ENERGY OF HYDROGEN BY THE METHOD OF ATOMIC ORBITALS

The expectation value of the true
energy" will be E(R) = fthlithdT, where
H is the Hamiltonian operator used in
Schroedinger's equation for the true
case (Discussion 6.2) and zt is the
true wave function, properly normal-
ized. The same method can be used here
to calculate approximate energies, by
employing the true Hamiltonian and the
approximate wave functions dsvm and
L' anti (Eqs. 6.1), taking care of nor-
malization by dividing by fth2dT:

fthladT
E(R) (A6,1)

fi1,2dT

Look first at the normalization
integral in the denominator: it is
the integral, over all the coordi-
nates, of the expression in Discussion
6,3. Its first two terms are

fA2(1)dT1 fB2(2)dT2

+ fA2(2)dT2 fB2(1)dT1 .

If A(1) etc. are chosen as the normal-
ized solutions to the hydrogen-atom
problem, each integral equals unity
by the definition of normalization.
The last term breaks into the product

±2fA(1) B(1)dT1 fA(2) -'13(2)dT2.

Since both the integrals in this prod-
uct have the same mathematical form,

23The calculation of wave-mechanical e:cpecla-
tion values is described in Wave-Mechanical
Properties of Stationary States, a monograph in
this series.

the product is a square, and there-
fore essentially positive. Often de-
noted by S, it has the value

S = e-2R R + -13R2) . (A6.2)

Thus the denominator is

f02dT = 2(1 ± S) . (A6.3)

The integral in the numerator can
be broken up also. From the first two
equations of Discussion 6.2,

H HAB

HBA

1 1 1

1 1B r 2A r 12

1 1 1

r IA r 28 r 12 (A6,4)

Since each of the two parts of the
approximate solutions is a solution
to one of those equations,

HAB[A(1) B(2)] = 2EB[A(1) B(2)],

HBA[A(2) B(1)] = 2EH[A(2) B(1)] .

(A6.5)

By the use o (A6.4) and (A6.5) the
integrand in the numerator of Eq.
(A6.1) becomes

OHO = [A(1) B(2) ± A(2) B(1)]

{2LB[A(1)-B(2) ± A(2) B(1)]

( 1 1

r 12 r 18

1 )
A(1).B(2)

r 2A
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1

r 12

( 1

r 12

1 2)A(2).B(1)/
1.2B

1 1
11A2 A- (1) B2 (2)

12 riB r 2A

)
A2(2).B2(1)

1 A r2 B

1 1 1 ).4_ 1 1 1

ri2 r IB r2A 1 1 2 r2A 1 1B

A(1).B(2).A(2).B(1).

(A6.6)

The terms in the integral of the
expression (A6.6) can again be identi-
fied as equivalent in pairs because
they have the same mathematical form:
they merely have the labels 1 and 2
interchanged on their variables of
integration. The integral can there-
fore be written in the form

fthli4dr = 4EH(1 f S) + 2(11 ± I2),

(A6.7)
where

I 1 =
1

and

1 )
A2(2).B2(1)dT,

r IA r 2B/

(A6.8)

12 = f(-. 1 1
A(1).B(1)

12 r IA r 2B

.A(2).B(2)dr.

Hence finally

E(R) = 2EH +
I
1

12

I f S

(A6.9)

(A6,10)

where + applies to the state i;cym and
applies to the state thanti

The integral I, is easily eval
uated, but the integral 12 is not. In-
stead of going into mathematical de-
tail, accept the results shown graph-

.hl

ically in Fig. 6.10. By adding to them
the repulsive energy e2/R of the two
protons, Fig. 6.11 can be drawn for
the energy U(R) of the molecule. The
values of Ro and Umin obtained for the
molecule in the state Zilsym are 0.8 A,
and 3.16 eV, to be compared with the
experimental values of 0.74 A and
4.75 eV.

In comparing the value of
Umin = 4.74 eV with the value of
U0 = 31.7 eV cited at the end of the
last chapter, notice that U0 refers
to a zero of energy in which the mole-
cule is entirely dispersed into pro-
tons and electrons that are all far
from one another, whereas Umin refers
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Fig. 6.10 Integrals, as functions of in-
ternuclear separation, for an approximation
to the electronic part of the binding en-
ergy of the hydrogen molecule.
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Fig. 6.11 Total energy (E(R) + e2/R) of
the hydrogen molecule, calculated by the
method of approximation embodied in, Eqs.
(6.1).
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to a zero of energy in which two hy-
drogen atoms are separated. Hence the
difference corresponds to twice the
ionization potential of hydrogen:
2 x 13.5 eVUmin is called the dis-
sociation energy of the molecule.

Figures 6.10 and 6.11 show that
the major contribution to the differ-
ence between the energies of the sym-
metric and antisymmetric states of the
molecule, in the interesting region
of R, has come from the integral 12.
Equation (A6.9) shows that this inte-
gral contains the combination of the
component one-electron wave functions
that was found responsible for piling

up or pushing away the electron den-
sity between the protons (Discussion
6.3). This integral is called the "ex-
change integral." The fact that it is
negative makes th.t state tlisym, with
the spins of the two electrons anti-
parallel or "paired," the state with
the lower energy. Since that state
shows a minimum as R varies, it is
able to provide a bond between the
protons: it is a "bonding state" of
the molecule. The other state, which
is repulsive for all values of R, and
in which the two spins are parallel,
is an "antibonding state."
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The discussion of the last chapter has
constructed a picture of covalent
bonding that can be codified for many
purposes into the following rules. A
covalent bond forms when (1) the
atomic orbitals of two atoms overlap,
(2) an electron in each atom can ex-
change with an electron in its partner
atom without violating the exclusion
principle, and (3) the resulting ex-
change leads to an increased elec-
tronic density between the atoms. And
that last condition is usually ful-
filled only when the two exchanging
electrons have opposite spins.

Examine a schematic way of study-
ing the operation of these rules in
Fig. 7.1, where the electrons and
their spins - up and down - are num-
bered and shown by arrows associated
with symi)ols for the atoms whose bond-
ing is in question. For example, in
the attempt of the helium atom, with
two ls electrons, to form a bond with
the hydrogen atom with one ls elec-
tron (Fig. 7.1a), two alternative ex-
changes among the three electrons can
be visualized. If No. 1 exchanges with
No. 3, the helium atom will have No. 2
and No. 3 in the same atomic orbital,
which the exclusion principle forbids
because their spins are the same. On
the other hand, if No. 2 exchanges
with No. 3, the exchange will be anti-
bonding because the exchanging spins
are the same. Hence no HeH molecule is
to be expected, and In fact that spe-
cies has not been found in nature.
Similarly, of the possible exchanges
between the two helium atoms (Fig.
7.1b), the exchanges of No. 1 and No.
4, and of No. 2 and No. 3, would vio-
late the exclusion principle, and the
exchanges of No. 1 and No. 3, and of
No. 2 and No. 4, would be antibonding.

Notice as you go that the only
behavior of these electrons not pro-
hibited by the exclusion principle
finds them in antibonding orbitals.
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The last chapter showed (Fig. 6.6)
that in such an orbital electron den-
sity is pushed away from the space
between the nuclei, and also (Fig.
6.11) that the electronic energy in-
creases rapidly as the distance be-
tween the nuclei shortens. Ho.re is the
principal origin of the repulsive
force between atoms. When the atoms
approach each other they bounce away,
as if they were balls that are only
slightly compressible, because their
electrons are forced into antibonding
orbitals.

In order to extend the reasoning,
begun with hydrogen and helium, to
atoms that contain more than two
electrons, recall the ways in which
electrons occupy the one-electron
states that an atom presents. In build-
ing up the periodic table of the ele-
ments by the aufbauprinzip, each suc-
cessive atom receives one more elec-
tron, whose negative charge is com-
pensated by an increased positive
charge on the nucleus. That electron
enters the state of lowest energy not
already fully occupied. According to

He

a

2 3

He He

b

4

Fig. 7.1 A helium atom does not form a
covalent bond with a hydrogen atom (a), or
with another helium atom (b).
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the exclusion principle each state is
fully occupied when it has been adop-
ted by two electrons, and then those
electrons necessarily have opposed
spins. The relative energies of the
one-electron states can be qualita-
tively shown in a diagram like Fig.
7.2, where boxes symbolize the states,
and their relative energies are sug-
gested by the height at which the
boxes appear.

For the first ten elements in the
periodic table the occupancies of
these atomic states are shown in Fig.
7.3. Each occupying electron is repre-
sented by an arrow, and the fact that
the spins of two electrons in the same
one-electron state are opposed is sym-
bolized by directing the arrows oppo-
sitely. In general only the electrons
in the occupied states of highest en-
ergy will participate in bonding;
electrons in states of lower energy
are too tightly bound within their
parent atom to visit another. When
atoms are pulled toward one another
by bonding forces of any sort, the
electrons that completely occupy the
states of lower energy in them are
forced into antibonding orbitals and
so hold the atoms apart, giving to
each atom an effective size and to
each bond an effective length.

Such diagrams as those in Fig.
7.3 can now be used to symbolize how
the proposed rules for covalent bond-
ing operate with the higher-energy
electrons in these atoms. The oxygen
atom has two is electrons, two 2s
electrons, and four 2p electrons, of
which the last six are shown in Fig.
7.4a. In forming the water molecule,
H2O, each hydrogen atom exchanges its
electron with one of the 2p electrons
in the oxygen atom. In the ammonia
molecule, NH3 (Fig. 7.4b), three hy-
drogen atoms exchange an electron in
a similar way with a nitrogen atom.
Figure 7.4c diagrams the diatomic
fluorine molecule according to the
present scheme.

The single electron in a hydrogen
atom is in a state that has spherical
symmetry about the proton. But the

7s

6s

T1
6p

Fl5P

5s

4s

3s

1

2s

1s

4p

3p

2p

6d

5d

4d

3d
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4f

Fig. 7.2 Boxes, each of which can
accommodate at most two electrons
of opposite spin, symbolize quali-
tatively the energy sequence of
the one-electron states in a many-
electron atom.

electrons in the oxygen atom and the
nitrogen atom that participate in the
bonding formalized in Fig. 7.4 are in
p states, which are not spherically
symmetrical. In any one such atom the
different p states give electronic
densities whose maxima project in dif-
ferent directions, as Fig. 7.5 shows.
Hence if covalent bonding is strongest
when the wave functions of the parti-
cipating atoms can overlap the most,
as the last chapter suggested, one
would expect to find that the angles
between the bonds to the several hy-
drogen atoms in water and ammonia

H H

a

0

1\1,

/11, 1

H H H

b

N

/1\1,

F

F

Ty

Fig. 7.4 The exchanges which make possible
the bonds in (a) H20, (b) NH3, and (c) F2.
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11,
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INI,

F

t4,

Ne

Fig. 7.3 Electron configurations in the
ground states of atoms of the first ten

would correspond with the angles be-
tween the maxima in Fig. 7.5, as shown
in Fig. 7.6 (see next page).

The experimentally determined an-
gles are actually not 90°, but 105° in
water and 109° in ammonia. The differ-
ences are probably due to the fact
that the bonds are not purely covalent
but are partly ionic. The last chapter
showed that the states H+H- and H-11+
might contribute appreciably to the
completed atomic-orbital picture of
the hydrogen molecule. When the two
bonded atoms are not of the same spe-
cies, the two ionic states will usually

z

y
7

z z

elements in the periodic table, diagramed
by the method of Fig. 7.2.

not contribute equally. Which one will
predominate depends on atomic details
of participating atoms summarized as
their "relative electronegativity." In
the cases of water and ammonia, there
are appreciable contributions from
ionic states of the type H+O-H and
HO H +, diagramed in Fig. 7.7 (see next
page). Hence the hydrogen atoms tend
to repel one another, and the configur-
ation of lowest energy shows a larger
bond angle than the p bond angle.

This idea can be checked by com-
paring the measured bond angles and
dipole moments of water (H20) and hy-

y

x

Pz orbital py orbital px orbital

appropriate when there are 3 perpendicular

axes (e.g. NH3)

y

z

pz orbital
P"i PY orbitals
px-i py

appropriate when there is one

axis (e.g. N2)

Fig. 7.5 The angular dependence of the the squares of the radial dependences to

squares of the p orbitals. These multiply yield the squares of the orbitals.
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H

0
H

Fig. 7.6 The bond angles in 1-I20 and NH3
that Fig. 7.5 would suggest.

0-

t4,

H

T4, T4,

H H'

0- I li I
I VI 41 I !itWI

Fig. 7.7 The ionic contributions to the
bonding in H20.

MOMENT & ANGLE
BOND
ANGLE

DIPOLE
MOMENT
x 1018iasu

H2 0

H2S

NH3
PH3

105° 1.84

92° 0.9:3

109°

93°

1.16

0 55

Fig. 7.8 Evidence that the departure of ac-
tual bond angles from those which Fig. 7.5
would suggest is caused by ionic contribu-
tions.to the bonding.

N

T4,

N

T4,
4, 4,

Fig. 7.9 The exchanges in the triply
bonded nitrogen molecule.

drogen sulfide (H2S), and of ammonia
(NH3) and phosphine (PH3), tabulated
in Fig. 7.8. Here sulfur and phospho-
rus are also bonding by electrons that
are in atomic p orbitals. But from
other evidence sulfur and phosphorus
are known to be less electronegative
than oxygen and nitrogen.

Look now at the character of the
bonds between two atoms that are ex-
changing more than one pair of elec-
trons. The nitrogen molecule, for
example, consists of two nitrogen
atoms, and the exchanges could be
schematized as in Fig. 7.9. As Fig.
7.5 shows, the three 2p atomic orbi-
tals of the two atoms cannot all over-
lap to their maximum. The line between
the two atoms establishes a z axis;
one can expect that the pz orbitals
will be directed along that line and
will exhibit maximum overlap, and the
p, and py orbitals, directed at right
angles to z, will overlap less. Bonds
formed by the overlapping of atomic s
orbitals, and of atomic p orbitals
directed along the line of the bond,
are often called a bonds; and bonds
formed by the overlapping of porbi-
tals that are directed at right an-
gles to the bond are called 7 bonds.

At first glance one would expect
that the triple bond in nitrogen would
be stronger than a single bond, but
not three times as strong. Actually
the multiplicity of the bond tends to
strengthen each of its components
somewhat. The increased number of com-
ponents to the bond pulls the atoms
closer together; and by thus increas-
ing the overlap in each component, it
increases the strength of each. Table
7.1 shows how this effect is reflected
in the measured properties of the dia-
tomic molecules formed by the atoms in
the first period of the periodic table.

In showing boron and carbon as
having valencies of one and two, and
beryllium as zero-valent like the rare
gases, Table 7.1 accurately reflects
their behavior in these diatomic
molecules but in almost no other chem-
ical respect. The normal valencies of
beryllium, boron, and carbon are two,
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Li-Li B-B C =C N =N 0 =0 F-F

INTERATOMIC DISTANCE
(ANGSTROMS)

2.67 1.31 1.09 1.21 1.45

DISSOCIATION ENERGY
(ELECTRON VOLTS PER MOLECULE)

1.13 3,00 3.61 S.78 5.09 3.13

Table 7.1 Properties of Diatomic Molecules.

three and four respectively, as their
positions in the periodic table sug-
gest. The reason for their higher val-
ency lies in the relatively low energy
required to excite one of their 2s
electrons to a 2p state. If the energy
gained by forming additional bonds
more than compensates for the excita-
tion energy, the atom will form those
bonds. Thus the fact that the two
outermost electrons in beryllium com-
pletely fill the 2s orbital does nut
exclude bonding, as does the filling
of the is state in helium. The energy
required to excite one electron from
the 2s to the 2p orbital in beryllium
is only 2.7 eV, whereas the energy
required to excite one of the ls elec-
truns of helium to the 2s orbital is
10 eV. For most bonding purposes,
therefore, the states of beryllium,
boron, and carbon can be imagined to
be the excited states schematized in
Fig. 7.10.

Be

B

4,

Fig. 7.10. Readily ex-
cited states of the
beryllium, boron, and
carbon atoms account
for their valencies.

ONE sp3
ORBITAL

An interesting problem now arises
in examining the bonds formed by car-
bon. According to the scheme of the
excited state shown in Fig. 7.10, car-
bon should form single bonds of two
sorts, one bond using its 2s orbital
and three using its 2p orbitals. In
fact, however, methane (CHO and other
such molecules have properties,that
can be explained only by supposing
that all four hydrogens are bonded in
the same way, with the same strength,
at tetrahedral angles. This tact can
best be explained.by the hypothesis
that hybrid orbitals are formed from
combinations of the s and p orbitals,
as described in Discussion 7.1 (see
next page).

The angular dependence of any
one of these orbitals is shown in
cross section in Figure 7.11; they dif-
fer only in the direction of maximum
density. The four directions are those
from the center toward the four cor-

Fig. 7.11 Cross section of
the angular factor in one of
the four sp3 hybrid orbitals
directed toward the corners
of a tetrahedron.

THREE sp2
ORBITALS

Fig. 7.12 Cross section of
the squares of the three sp2
hybrid orbitals, directed at
120° to one another in the
plane of the paper.
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Discussion 7.1

sp3 HYBRIDIZATION

In the formation of hybrid or-
bitals it is assumed that the prox-
imity of other atoms so modifies the
character of the one 2s and the three
2p orbitals of an atom that their en-
ergies are sufficiently close to make
them degenerate (see Wave-Mechanical
Properties of Stationary States).
Then any linear combination of them
is also a possible orbital. In parti-
cular, you can make the combinations

01 = -(s + Px + py + Pz),

62 = i(s Px py + Pz),

63 Px py Pz),

ners of a regular tetrahedron, and
each is cylindrically symmetrical
about its direction. The bonds formed
by these orbitals are called sp3 hy-
brids.

Carbon can also form double bonds,
and here a different hybridization ap-

a

04 = 1(s + Px py
The constituent atomic orbitals are
orthogonal; and if they are also nor-
malized, these hybrid orbitals can be
seen to be normal and orthogonal by
forming their squares and prodncts.
Since the s function is spherically
symmetrical, and since the angular de-
pendence of px, py, and px is propor-
tional to x/r, y/r, and z/r, respec-
tively, the four sp3 hybrids can be
seen to have their maxima directed re-
spectively toward the four corners of
a tetrahedron centered at the origin
of coordinates.

pears. Only two of the p orbitals are
combined with the s orbital, in a way
that produces three orbitals whose max-
imum densities are directed at 120° to
one another in the (x,y) plane. Figure
7.12 (see preceding page) shows in
cross section the angular dependence of

C C BOND: 1.55 A 2.74 eV

ETHYLENE

C =C BOND: 1.34 A 4.40 eV

Fig. 7.13 The a and 7 bonds in (a) ethane
(H3CCH3), (b) ethylene (H2C=CH2), and
(c) acetylene (HCECH) molecules. The planes

ACETYLENE

C 7=: C BOND: 1.20 A 5.56 eV

marked 7; are the planes determined by the
axes of the p-orbitals in the atoms that
overlap to form a bond.
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their electron density. The double
bond then consists of one a bond,
formed by one of these sn2 orbitals
and a 7 bond formed by the remaining
pz orbital, whose maximum density is
perpendicular to the plane of the
sp2 bonds.

Finally, carbon can form a triple
bond. Here two orbitals, in opposite
directions along the z axis, are
formed by hybridizing the s and pz or-
bitals. One of the hybrid orbitals
forms the a bond and the p, and py or-
bitals form the two 7 bonds, in much
the same way that the three p orbitals
of nitrogen form the triple bond in
the nitrogen molecule. The remaining
sp orbital forms a a bond to another
atom, to saturate the valency of car-
bon.

Figure 7.13 shows examples of the
three bonding schemes in ethane
(H3C-CH3), ethylene (112C=CH2), and
acetylene (HC-.=-CH), in schematic form.
Notice an interesting result of the
double bond in ethylene; the hydrogen

atoms are constrained to lie in the
same plane, perpendicular to the
plane of the 7 bond. Molecular spec-
troscopy shows that in fact ethylene
has a high torsional stiffness. In
ethane the only interference with the
free rotation of one CH3 group rela-
tive to the other about their common
axis is caused by the slight repul-
sive forces between the hydrogen
atoms.

In these ways the pictures used
by chemists for nearly a century, in
which ^cvalent bonds are analogized
to sticks projecting from holes in
the bonded atoms, are remarkably well
justified. Like sticks, the bonds
have determinable lengths. Like sticks,
they project from the atoms at deter-
minable angles. A single bond permits
groups of atoms to rotate fairly
freely about it. -much as a stick would
permit them. And atoms that are con-
nected by several bonds are restrained
from rotating about them, much as
sticks would restrain them.

PROBLEMS

7.1 From the most recent calculations,
it appears probable that the
helium hydride ion (HeH)+ is a
stable species with dissociation
energy between 1.75 and 2.05 eV.
Use the method of the discussion
at the beginning of this chapter
to show why this ion might be a
stable species whereas the neutral
HeH molecule would not.

7.2 (a) Picture the bonding in the
Be0 molecule by a diagram like
Fig. 7.2(c) and Fig. 7.7, on the
assumption that the bond is purely
covalent.

(b) Using the argument that atoms
in molecules attempt to adopt the
electronic configurations of the
rare gases, do you expect to find
an important ionic ingredient in
the Be0 bond, and if so, in which

direction will the dipole moment
point?

7.3 (a) Picture the bonding in the
carbon dioxide molecule in the
manner of problem 7.2(a).

(b) Since the CO2 molecule is in
fact linear, picture the bonding
in the manner of Fig. 7.11, on
the assumption that the carbon
atom bonds each oxygen atom by a
a bond which is an spz hybrid and
by a 7 bond which is apx orbital
for one oxygen atom and a py
orbital for the other.

7.4 From the considerations in prob-
lems 7.2 and 7.3, give a reason
why at ordinary temperatures car-
bon dioxide is a gas and beryl-
lium oxide is a solid.



8 MESOMERISM AND ELECTRON-
DEFICIENT BONDS

The discussions of ionic bonding
forces in Chapter 3 and of dispersion
forces in Chapter 4 pointed out that
those forces can form bonds between in-
definite numbers of atoms. They are
indiscriminate in their operation and
find their only limitation in the fact
that the sizes of atoms limit the num-
ber that can cluster about any one atom.
Since those forces all fall of with
increasing distance, their bonds are
strongest between nearest neighbors.

On the other hand, the discussion
of covalent bonds in the last three
chapters has emphasized the bonding
of atoms in pairs. The covalent bond-
ing of more than two atoms into a
polyatomic molecule has been pictured
as occurring by the formation of links
between adjacent atoms, each welded by
the localized behavior of electrons
that remain associated with no more
than two atoms.

For most molecules this is a use-
ful habit of thought. As the last
chapter has shown, it provides a way
of thinking that can give a good ac-
count of many of the facts of chemis-
try. The structural diagrams drawn by
chemists formalize this way of think-
ing, and organic chemistry has prof-
ited from it especially. By such dia-
grams chemists can symbolize the re-
sults of their analyses of many very
complicated organic compounds, and
can use them to direct synthetic pro-
cedures for preparing the compounds in
the laboratory, linking one atom or
group of atoms to another in a predict-
able way, step by step.

But sometimes the picture of
localized bonding fails. Sometimes the
chemical composition of a molecule
and the spacial arrangement of its
atoms do not dictate an unambiguous
choice between two or more possible
bonding schemes. In such a case there
are two ways of modifying the picture
of localized bonding.
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One way is to examine molecular
orbitals for the elections that take
all the atoms into account at once
and not just in pairs. Then the bond-
ing electrons can be pictured in
states that are delocalized from any
particular pair of atoms in the mole-
cule. Such delocalization merely car-
ries further the delocalization al-
ready visualized in forming the bond
between two atoms. There the electrons
are already removed from strict alle-
giance to the atoms and are shared be-
tween them.

This observation points to an
analogy that suggests the second way
of modifying the picture of localized
bonding. As the last two chapters have
shown, a good picture of the bond be-
tween two atoms can be made by examin-
ing the properties of the individual
atoms. In a somewhat analogous way, a
good picture can be made of the be-
havior of the ambiguously constructed
molecules by thinking of their struc-
tures as combinations of alternative
schemes of bonding, all taken at once

as mesomers of several simply linked
structures. This device has the great
advantage of preserving as well as
possible the structural schemes that
have proved to be so. useful through-
out chemistry.

The classic example of a molecule
with an ambiguous structure is benzene,
C6HG. All six carbon atoms, and all
six hydrogen atoms, behave alike in
chemical reactions, and any proposed
bonding scheme must be consistent with
that fact. In 1865 Friedrich Kekule
guessed that the carbon atoms are
bonded together in a regular hexagonal
ring, and that one hydrogen atom is
bonded to each of them (Fig. 8.1a).
The guess has since been confirmed:
the ring is planar, and the hydrogen
atoms are coplanar with the ring.

Since hydrogen has the valency
one and carbon the valency four, a sat-
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isfactory bonding scheme might be that
shown in Fig, 8.1b. But the scheme is
inconsistent with many chemical obser-
vations on benzene - with its chemical
derivatives, for example, in which
some of the hydrogen atoms are re-
placed by other atoms or groups of
atoms. Three dichlorobenzenes can be
prepared, which are distinguishable in
melting point, boiling point, and the
like. Their structures can be identi-
fied with those of Fig, 8.2a, But two
different orthodichlorobenzenes have
never been observed; and Fig, 8.2b
shows that there should be two dis-
tinguishable compounds if the double
bond were distinguishable from the
single bond. In other sorts of com-
pounds, double bonds are readily dis-
tinguishable from single bonds - they
differ in length, for example (Fig.
7.13). Much evidence has conspired to
force the conclusion that the bonds
between the carbon atoms are all alike.

The only way to make these bonds
look alike, and yet satisfy the
valency of four for carbon, is to
draw the structure shown in Fig. 8.3a,
in which each carbon atom is singly
bonded to a carbon atom across the
ring. Interpreted literally, such a
scheme is odd, for the distance across

0
the ring is 2.8 A and the usual single-
bond distance between two carbon atoms
is only 1.54 A. The scheme is equally
odd if it is interpreted as symboliz-
ing a concentration of six bonding
electrons near the middle of the ring,
for the mutual repulsions in such an
electronic concentration would assist
the attractions of the carbon nuclei
to spread the concentration out from
the middle. The molecule is therefore
regarded as a mesomer of a group of
structures, of which the principal
members are the two structures shown
in Fig. 8.3b.

Sometimes chemists refer to such
a combination as a "resonance combina-
tion." It is a poorly chosen term, but
it has become deeply lodged in their
speech about compounds like benzene.
They mean that the wave functions for
the electrons can be approximated by

a sum of the wave functions for those
structures, in the way that Chapter 6
pictured the wave function for the
hydrogen molecule as a sum of atomic
wave functions.

Alternatively, the bonding can
be pictured in terms of wave functions
for an electron traversing all six
carbon atoms, in the way that Chapter
5 displayed wave functions for an

a

I I

NH

b H

II
C

Fig. 8.1 In the molecule of benzene (a) all
hydrogen atoms and all carbbn atoms are
coplanar. A bonding structure that satis-
fies the valency requirements is (b).

ORTHO
CI

a

b

CI

CI

META
CI

CI

PARA
CI

CI

CI CI

CI

Fig. 8.2 Three distinguishable molecules
(a) are ortho-, meta-, and paradichloro-
benzene. Two distinguishable orthodichloro-
benzenes (b) with the bonding sequences
Cl-C-C-C1 and Cl-C=C-C1 have never been ob-
served. Carbon atoms are at all corners of
the hexagons.

a

Fig. 8.3 The "Bamberger structure" (a) for
benzene is less reasonable than a combina-
tion of two participating "Kekule struc-
tures" (b).

r
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electron in the presence of two attrac-
tive centers. For this purpose the
benzene molecule would be visualized
as in Fig. 8.4. Localized single bonds,
between hydrogen atoms and carbon at-
oms, and between adjacent pairs of
carbon atoms, employ three of the four
bonding electrons of each carbon atom,
and leave a total of six electrons to
occupy the spacially extended orbitals.

Again a one-dimensional model,
using delta wells to represent the
atoms, provides a simple illustration
of how the inquiry might proceed. The
appendix to this chapter finds six
independeat wave functions, three
"bonding" and three "antibonding,"
for the problem. The six electrons can
occupy, by spin-opposed pairs, the
three bonding orbitals. It turns out
that the resulting collection of elec-
tronic states can have a lower energy
than a collection of spacially local-
ized bonds would have.

It is not surprising that the
participation of different bonding
structures is a common o,,:currence in
molecules. When more than two nuclei
are available to the electrons, it
would be more surprising if the elec-
trons did not use the additional space
in which their potential energy is low
to reduce their kinetic energy. The
extent to which this happens, however,
is restricted by the electronic be-
havior summarized in the exclusion
principle. That behavior does not
prevent all the electrons from occupy-

H

H., .../NN
C. C

C.
H H

H

Fig. 8.4 The extended wave functions of
the molecule of benzene must accommodate
one electron from each carbon atom, left
over after the other three electrons of
principal quantum number 2 have been used
to form localized bonds.

ing wave functions that are identical
but in different positions in space.
Insofar as the wave functions overlap,
however, they will seldom be identical;
some will have higher energy and some
will have lower energy than localized
wave functions would have. Thus it is
not easy to predict what molecules
will delocalize their electrons to a
significant extent.

The experimental evidence for de-
localized bonding comes from many prop-
erties of molecules of which perhaps
the most important are (1) the geomet-
rical arrangements of their component
atoms, (2) their total energies, and
(3) their dipole moments. The regular
hexagonal configuration of benzene il-
lustrates the first of these sorts of
evidence. The second sort of evidence
comes from thermochemical measure-
ments - measurements of the heats ab-
sorbed and evolved in chemical reac-
tions with other sorts of molecules.
By suitable addition of those heats,
the energies of the molecules can of-
ten be calculated. When delocalization
is unimportant, it turns out that the
energy of a molecule can be calculated
as a sum of energies ascribed to its
component localized bonds. Conversely,
when the energy is lower than that,
the difference can usually be ascribed
to delocalization.

In the case of benzene the ther-
mochemical value of the energy re-
quired to disperse the molecule into
its component atoms is 1041.12 kcal
per mole.=4 The energies required to
break localized bonds, determined
from experimental work on many mole-
cules in which delocalization is negli-
gible, are ED-11 = 85.56, Ec-c = 62.77,
and Ec=c = 101.16 kcal per mole. If
the benzene molecule had one of the
Kekule structures (Fig. 8.3b), the
calculated energy would be
3Ec-c + 3Ec=e + 6Ec-H = 1005.15 kcal
per mole. The difference of 35.97 kcal
per mole is called the "experimental
value of the resonance energy" of ben-
zene.

2n See Discussion 3.1, Units.
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Notice that the idea of "reson-
ance energy" is somewhat loose. It is
the amount by which the true energy
of the molecule is less than the en-
el.gy that you think it would have if
its electronic structure corresponded
with some arrangement of localized
bonds. The arrangement cf localized
bonds that you pick for comparison is
a best guess based on a knowledge of
chemistry, and usually chemistry
severely restricts the range of rea-
sonable guessing. The "resonance en-
ergy" remains as the difference be-
tween the true energy and that of
your best guess.

To see how the dipole moment can
give evidence of the importance of
delocalization in a molecule, turn to
a molecule very different from ben-
zene: nitrous oxide, N20, the "laugh-
ing gas" of anesthetic practice. Pay-
ing attention only to the valency
three of nitrogen and the valency two
of oxygen, one can propose for this
molecule the arrangement of bonds
shown in Fig. 8.5a. But the atoms in
the molecule are not triangularly ar-
ranged in fact; they are arranged in
a straight line in the order NNO. This
fact poses a problem in bonding that
offers a splendid opportunity to play
a game, dear to many chemical theor-
ists, in which electrons are pushed
about on paper to portray reasonable
bonding arrangements.

One possible arrangement is sug-
gested by the fact that the molecule
looks like a molecule of nitrogen
that has attached an atom of oxygen
at one end. In the nitrogen molecule
(Fig. 7.9) three of the five electrons
of principal quantum number 2 in each
nitrogen atom are exchanging places,
to form a triple bond, leaving two
electrons in each atom unexploited in
bonding. And an oxygen atom has an
unexploited 2p orbital that could ac-
commodate two electrons.

Suppose then that the so-called
nonbonding pair of electrons from a
nitrogen atom spend half their time
on the oxygen atom, and thus form a
bond. To assist its analysis, the
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Fig. 8.5 For nitrous oxide, the structure
(a) is impossible because the molecule is
linear, and the structures (b) and (c) may
both participate because the dipole moment
of the molecule is almost zero.

formation of this bond could be re-
garded as taking place in two stages.
In stage No. 1 a nitrogen atom in the
molecule loses one electron to the ox-
ygen atom, and in stage No. 2 the re-
maining unpaired electron on the nitro-
gen atom exchanges with the new un-
paired electron on the oxygen atom to
form a single covalent bond. Stage No.
1 makes the nitrogen molecule into a
nitrogen molecule-ion of charge +e
and the oxygen atom into an oxygen ion
of charge e. Stage No. 2 leaves these
net charges unchanged, and thus the
molecule would have a large dipole mo-
ment. Nitrogen atoms very frequently
form such "donor-acceptor" or "dative"
bonds. The proposed structure is dia-
gramed in Fig. 8.5b,

Now in fact, nitrous oxide has a
vanishingly small dipole moment. Hence
the proposed structure becomes credi-
ble only by supposing that it is ac-
companied by a participating structure
that cancels the dipole moment. It is
easy to believe that an equally im-
portant arrangement might be that dia-
grammed in Fig. 8.5c. There an elec-
tron is visualized as moving from the
central nitrogen atom to the other
nitrogen atom rather than the oxygen
atom. This structure can be regarded
as using one of the polar forms of
the nitrogen molecule to provide a
bond in which the oxygen atom has its
usual valency of two. In fact nitrous
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a

b

C

H H H H

Fig. 8.6 The molecules of (a) naphthalene,
(b) anthracene, (c) phenanthrene, and
(d) perylene. Carbon atoms are at all cor-
ners and intersections in the diagrams.

Fig. 8.7 Graphite contains sheets of
"fused" benzene rings.

J

oxide is often described today as a
"resonance hybrid" of the structures
shown in Fig. 8.5b, c, with no net
dipole moment.25

There are many organic molecules
that resemble benzene in the type of
bonding that links their carbon atoms.
In the molecules (Fig. 8.6) of naphtha-
lene, anthracene, phenanthrene, and
perylene, for example, the electrons
not engaged in localized single bonds
are able to range over the entire
molecule. If benzene rings are fused
together in such a fashion as this in-
definitely, the structure in Fig. 8.7
arises; it is one plane of atoms in a
crystal of graphite. The electrons can
now range throughout the plane, and
indeed a single crystal of graphite
shows a relatively high electrical
conductivity in directions parallel to
the planes, and a relatively low con-
ductivity perpendicular to the planes.
These electrons, and those others that
form the localized single bonds, are
binding the carbon atoms together
tightly in the planes; the carbon-
carbon distance (1.42 A) is like that
in benzene. Between the planes the
binding is largely by dispersion
forces, and the shortest carbon-
carbon distance is 3.4 A.

Thus one can think of graphite as
a material that has gone part of the
way toward a metal. And there is an-
other way of looking at the behavior
of the relatively free electrons in
graphite that helps in visualizing
the bonding in metals. Consider the
free electrons in graphite - one
electron per atom - as trying to form
localized electron-pair bonds between
neighboring pairs of atoms. Count the
bonds per atom that the electrons try
to form, and compare that number with
the number of electrons per atom that
are available to form the bonds.

25Here the term "resonance" is especially inap-
propriate. The term refers to an analogy between,
on the one hand two similar oscillators that are
weakly coupled, and on the other hand two simi-
lar electronic states whose wave functions over-
lap. Here, however, the two states are not simi-
lar.
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As Fig. 8.7 shows, each carbon
atom has three nearest neighbors.
Since each of the attempted bonds
would connect two atoms, the number
of such bonds per atom would be 3/2.
If the bonds were localized electron-
pair bonds, each would accommodate two
electrons, and thus saturated bonding
would use 2 x 3/2 = 3 electrons per
atom. But there is only one of the
free electrons available per atom.
Hence these bonds are electron-defi-
cient: the demand for electrons ex-
ceeds the supply.

Now make a similar count for an
alkali metal, such as sodium. The
alkali metals crystallize in a struc-
ture that gives to each atom eight
nearest neighbors, and thus the number
of bonds per atom is four. Since an
alkali metal atom has only one elec-
tron in its outermost shell, the num-

of electrons available per atom is
one, whereas eight would be needed to
supply each bond with a pair of elec-
trons. The large electron deficiency
gives the electrons much freedom.

But the ideas of resonance and of
electron-deficient bonding are not
equivalent ideas: nitrous oxide is a
good example of resonance without de-
ficiency. The outermost electronic
shell of each nitrogen atom - the
shell with principal quantum number 2
- contains five electrons, and that of
the oxygen atom contains six. In order
to check the molecule for electron de-
ficiency, these electrons can be
paired off jn the way shown in Fig.
8.8a, to suggest that some electrons
stay on the atoms and some participate
in localized electron-pair bonds.
This scheme of pairing leaves two
electrons, one on each extreme atom,
to participate in a nonlocalized bond.

But if this were the true bonding
structure, the system could make no
distinction between one N-0 bond and
the other. It would pull the nuclei
into a configuration symmetrical with
respect to those two bonds, and there
would be no electron deficiency in
either. In short, the molecule would
take the form of Fig. 8.5a.

Since the three atoms have in
fact the linear arrangement NNO, the
two electrons of the "nonbonding
pair" on the central atom must partici-
pate in the bonding. This provides
four electrons and two nearest-neighbor
bonds for them to form, and again the
counting scheme leaves no electron
deficiency. But the electrons still
cannot be paired in localized bonds,
by such a scheme as that in Fig. 8.8b,
because the scheme would require five
electron pairs to find suitable or-
bitals on the central nitrogen atom.
Four pairs of electrons use up the
states with principal quantum number
2, and the fifth pair would be forced
into a state of much higher energy,
with principal quantum number 3.

Thus in the case of nitrous oxide
either the idea of several pa,ticipat-
ing states, or the idea of delocalized
bonding such as Discussion 8.1 (see
next page) describes, is essential to
explain the properties of the molecule.
As the properties of other molecules
are measured in increasing diversity
and with greater refinement, it is
steadily becoming more evident that
the idea of strictly localized coval-
ent bonding is only a first approxima-
tion to the facts. When it is removed
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Fig. 8.8 In the electron-pairing scheme (a)
for nitrous oxide, the two electrons left
over would form a bond that would pull the
molecule into the configuration of Fig.
8.5a. Scheme (b) would invoke a high-energy
state on the central nitrogen atom.
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Discussion 8.1

DELOCALIZED BONDS IN NITROUS OXIDE

In order to examine the states of
delocalized electrons that participate
in the bonding of nitrous oxide, seek
wave functions that are appropriate to
three attractive centers in a line.

Visualize removing four electrons,
one from each of the extreme atoms and
two from the central atom; then find
wave functions in the field of the re-
sulting ions; and finally put back the
electrons one by one

Thinking of the problem in one
dimension, and approximating the ions
by delta wells, you would look at the
picture in Fig. 8.9. The two end wells
are identical - an approximation sug-
gested by the fact that the molecule
has no dipole moment - and the central
well is twice as deep as the end wells,
because two electrons have been re-
moved from the central atom.

You expect to find three wave
functions, much as you found two for
the case of two wells in Chapter 5.
One of the functions will have no
nodes, one will have one node, and one
will have two nodes; and you expect
that the corresponding energies will
increase, becoming less negative, in

N N 0

Fig. 8.9 A scheme of delta wells to form a
one-dimensional approximation for the wave
functions of four bonding electrons in ni-
trous oxide.

that order. Since the problem is sym-
metrical about the central well, you
can sketch the expected forms of the
wave functions as in Fig. 8.10.

Now put back the four electrons.
Two can go into the lowest-energy
wave function and two into the func-
tion of next higher energy, leaving
the highest-energy function unoccupied.

In the second of these functions you
can see quite clearly a reflection of
the picture that the idea of reson-
ance also produced - the picture of
polar states with extra electrons on
the two extreme atoms. Squaring that

Fig. 8.10 Expected form of wave functions
for the wells of Fig. 8.9, with energies

E0 < El < E2.

function makes clear that it repre-
sents a state in which the electron
density is greatest at the extreme
wells and vanishes at the central well.
Of course the total electron-density
distribution of the four electrons
will be proportional to the sum of
the squares of this function and the
function (4 lowest energy, since those
two represent the spacial dependence
of T,he four occupied states. To answer
whether that sum still reflects the
special importance o; polar states
would require more detailed calcula-
tion.
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from one atom, to participate in bond-
ing with another, an electron has some
probability, if only a small one, of
finding itself anywhere within the
molecule of which those atoms form a
part.

PROBLEMS

8.1 Write the Kekule structures of the
molecules (Fig. 8.6) of naphtha-
lene (three structures), anthra-
cone (four structures), and phen-
anthrene (five structures).

8.2 Why can you not in principle de-

termine the resonance energy of
nitrous oxide relative to the
structure of Fig. 8.5b by compar-
ing a measured energy of nitrous
oxide with the sum of the energy
of the nitrogen molecule EN=N and
the energy EN-o of the usual sin-
gle bond between nitrogen and ox-
ygen as found for example in such
molecules as hydroxylamine,
H2 NOH?

8.3 Use tie electron-deficient bonding
picture to explain qualitatively
why the closest carbon-carbon dis-
tance in benzene is shorter than
in graphite.

Appendix A DELTA-WELL MODEL FOR BENZENE

A one-dimensional delta-well model
for benzene can be constructed and
studied in much the same way that the
similar model for the hydrogen mole-
cule-ion was studied in Chapter 5.
Imagine six delta wells evenly spaced
along one coordinate. In this case
the system is cyclic, but if you
imagine it to be cut at one point and
spread out along a line, you can pre-
serve its cyclic character in the cal-
culation by matching the wave function
at the end of the line to that at the
beginning of the line.

It is helpful to use "local co-
ordinates" in the problem, describing
the wave function between each pair
of wells by a coordinate whose origin
is midway between the wells (Fig.
8.11). As in Chapter 5, the wave func-
tion for the coordinate xj everywhere
between its bounding wells will be

6. = A.e-kxj B.ekx,
, j a, (A8.1)

where A.. and B. are constants and
k2 = -E is the energy. Matching Oj and
Oi+1 at the point where xj = R/2 and
x j+1 = -R/2, you obtain

Aje -k11/2 Bj eka/2 = A i+lekR/2

+ Bp.le-kR/2. (A8.2)

The discontinuity in derivatives
across the delta well at the same
point can be evaluated by the rela-
tions

d0 .1

dxj+1 I

-R /2 dxj1xj = +11/2

770j(R/2) (A8.3)
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X 1 = 0 X2 = 0 X3 = 0 X4 = 0 X5 = 0 X 6 =

... .--. -

0

Fig. 8.11 A scheme of six similar delta
wells, and local coordinates, to calculate
the nonlocalized wave funct.tons for a one-
dimensional model of benzene.
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where 77 is the parameter specifying
the well:

kA J. kR/2 1..T1

jfi
u-kR/2 k ,,A.-kR/2

--

kBje kR/2 = _...77(Aje-kR/2 BjekR/2).

(A8.4)

Equations (A8.2) and (A8.4) are a
pair which determine Aj+, and Bj+1 in
terms of Aj and Bj; they can be re-
arranged to read

A34.1 = (0+1)c-"A+0.8

= aA (a --1)ekR (A8.5)Bjfi Bj,

where a denotes 77/2k.

Rewrite Eqs. (A8.5), substituting

riR

2
0

1

2

3

4

5

1

1

j 1 for j throughout, and then elim-
inate Bp.]. , Bj and Bj.., from the four
equations, to obtain a relation involv-
ing only the A's:

Aj +1 + (a 1)clER (a + 1)e-kRi A.

+ 3-1 = 0. (A8.6)

This is a linear finite-difference
equation in the independent variable
j. Its solutions can be found by com-
paring it with the trigonometric
identity,

cos (j +1)0 + cos (j--l)0

= 2 cos j0 cos 0. (A8.7)
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Fig. 8.12 Energy (vertically) versus bond
length (horizontally) in the six wave func-
tions of the one-dimensional cyclic delta-

well model for benzene. Dotted lines are
the energies of the wave functions for two
delta wells (Fig. 5.8).
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Clearly its solutions can be taken as

Ai = A cos j0, (A8.8)

where

cos 0 = z L (a+1)e-kR (a-1)ekR]

E cosh kR a sinh kR. (A8.9)

The cyclic condition must now be
applied to this solution. ThaL condi-
tion requires that the A's and B's
repeat themselves at the seventh set
(A7 = 211, B7 = B1) and this is accom-
plished in the solution (A8.8) by re-
quiring

n
0 =

7

7 2

(A8.10)

where n is any integer. All the dis-
tinct solutions are provided by n = 1,
2,3,4,5,6; the solutions for larger
values of n only duplicate these. Thus
there are six independent wave func-
tions for the system of six wells,
just as there are two the symmetric
and antisymmetric functions for the
two wells used in discussing the hy-
drogen molecule-ion.

The energy corresponding to each
of these wave functions can be ob-
tlined from Eq. (A8.9). For each value
of n in Eq. (A8.10) for 0, Eq. (A8.9)
gives k, and thus the energy E = k2,
as a function of the interatomic
separation R and the nature of the
atom, n. Fig. 8.12 plots the roots of
this equation, and shows as dotted
lines the roots of the corresponding
equation (Chapter 5, Eq. (A5.9) for
the wave functions for two wells.

Notice that, alike in the two-
well and the six-well cases, half the
wave functions have energies that de-
crease and half have energies that
increase with decreasing separation
of the wells: half are "bonding" func-
tions and half are "antibonding" func-
tions. The fact that all the energies
in the six-well case become infinite
for very small R reflects an artifi-
ciality of the model. Since the model
is cyclical and one dimensional, it
shrinks the space available to the

Fig. 8.13 The "resonance energy" of benzene
is the difference between the energies of
the molecule when six of its electrons are
engaged (a) in localized and (b) in non-
localized bonding.

electrons as R decreases, There is no
way for an electron to increase its
de Broglie wavelength and thus de-
crease its kinetic energy by spending
more time away from the space between
the wells, as there is in the open-
ended model of two wells. The real
three-dimensional case would not af-
ford such minima in the electronic
energy as this model exhibits.

The actual interatomic spacing
R in molecules like benzene, however,
is sufficiently large to make this
defect of the model negligible. Thus
it is significant to compare the en-
ergy of six electrons in the cyclical
model with the energy they would have
if they were in localized bonds of the
same length. You can think, for ex-
ample, of comparing the energies of
the two structures of Fig. 8.13 for
benzene.

Since the scale in Fig. 8.12 is
in atomic units, using the reduced
variables 77R/2 and (2k/77)2, it gives
energies and distances directly in
atomic units for hydrogen, whose is
state can be represented by a well
with n = 2. You can determine a
suitable value for a well to represent
a 2p state of carbon by taking
n = 2,fIc/IH, where Ic/IH is the ratio
of the first ionization potentials of
carbon and hydrogen: IH = 13.59 eV,
Ic = 11.27 eV, ic/IH = 0.828. Neglect-
ing the electrostatic interactions of
the electrons with one another but
bearing in mind the exclusion princi-
ple, you can calculate for various
values of R the energy of two elec-
trons (of opposite spin) in each of
the three lowest-energy six-well wave
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functions, add them, and compare the
result with six times the energy in
the symmetric two-well function of
Chapter 5, plotted again in Fig. 8.12.
Over a large range of R the difference
turns out for carbon to be about 0.1
atomic unit = 1.35 eV = 31 kcal per

8.4 Show that the wave functions for
the cyclical set of six delta
wells have n 1 zeros.

mole in favor of the cyclical bonding.
This difference corresponds well with
the difference of 34.4 kcal per mole
that has been found by inference from
the heats of combustion of organic
compounds. Chemists call it the
"resonance energy" of benzene.

PROBLEMS

8.5 Show that the solid curves in Fig.
8.12:

(a) have their zeros of energy at
7R/2 = 1 cos (ng/7);

(b) pass through the value
(2k/77)2 = 1 (the value of the
asymptotic line) at 77R/2 = log
sec (ng/7);

(c) have minima whose values are
(2k/77)2 = cosec2 (ng/7) for the
first three values of n.

8.6 There is a way to think about Eqs.

(A8.5) that has attractive mathe-
matical elegance. Think of Ai and
Bj as the Cartesian components of
a v(,ctor Rj in a two-dimensional
"space." Then think of Eqs. (A8.5)
as embodying an "operation" T that
transforms the vector Rj into the
vector Rj . Finally think of the
cyclic property of the system un-
der study as requiring that six
successive performances of the
operation carry the vector to
identity with the initial vector;
in other words, T6 = I, where
is the identity operation. Embody
these ideas in a program that de-
rives the results obtained by the
use of finite-difference equations
in the appendix.
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Our study of bonding could continue
indefinitely, refining our calcula-
tions, specializing them to interest-
ing cases, and examining the results
of applying increasingly sophisticated
tools for studying molecules experi-
mentally. Instead of pursuing that
route, stand back to consider the in-
sights gained by this brief inquiry
into the nature and variety of the
bonds between atoms.

Surely the most important insight
is the realization that a quarter mil-
lenium of experiment and reflection
has accomplished Sir Isaac Newton's
Business. By ascribing to interatomic
bonds an electrostatic explanation, a
good account can be given of the bonds
so far encountered, in all their var-
iety. To encompass by a single explan-
ation so great a span as that separat-
ing the vapor of salt and a crystal of
diamond is a remarkable vindication of
Occam's razor, "Let not hypotheses be
multiplied beyond the necessity to ex-
plain the facts."

Behind this unity is still hidden
some diversity, of course. We have
taken for granted the existence of
many sorts of massive nuclei with dif-
fering amounts of positive charge, and
the existence of a single sort of
relatively light electrons. We have
taken for granted that the positive
charge comes in units equal in size,
though opposite in sign, to the charge
on the electron. Moreover, by finding
that in interatomic bonding the grav-
itational forces are negligible com-
pared with the electrostatic forces,
we have suppressed the disunity im-
plicit in our present inability to
find a relationship between these two
sorts of forces. Nevertheless there
can be much satisfaction in having
found a common explanation for so wide
a variety of occurrences as that of
the bonds between atoms.

Despite their common origin, how-
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ever, their variety is sufficient to
suggest the convenience of classifying
bonds in the way developed in Chapter
2. Subsequent chapters have amplified
the meanings of those classifications,
and quantified their terms, suffici-
ently to make profitable another
survey of how the materials of the
world fit into them.

It is interesting, for example,
to compare the bonding of atoms in
the worlds of the living and the in-
animate. Living matter is made of
"organic compounds," and their great
diversity is accountable to the unique
ability of carbon atoms to bond coval-
ently to one another. Each molecule of
an organic compound is built upon a
skeleton of carbon atoms tightly
bonded in rings and branching chains.
Most of the links in these chains are
localized electron-pair bonds, hy-
bridized in the ways described at the
end of Chapter 7. The hydrogen atoms,
and occasionally also atoms of oxygen
and nitrogen, are tied to the skeleton,
again by covalent bonds. The chainlike
structure of the hydrocarbon n-octane
(Fig. 9.1) exemplifies the simplest
sort of organic compound.

CARBON == HYDROGEN

Fig. 9.1 The chain of carbon atoms in the
hydrocarbon, n-octane (CO"), linked by
spa bonds, exemplifies the simplest type of
organic compounds. This and the succeeding
diagrams of molecules are not drawn to
scale. They are intended only to show the
bonding connections between the atoms, and
some of the spacial relations which those
connections imply.
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Fig, 9.2 Even though the bond angles and
bond '.engths are fixed in n-octane, groups
of atoms can rotate freely about any CC
bond, as long as they do not get in one
another's way.

Fig. 9.3 In the hydrocarbon, adamantane
(CloH,c), the pattern of sp3 bonding re-
strains the atoms quite rigidly.

Since oxygen and nitrogen atoms
are more electronegative than carbon,
their bonds to carbon atoms have an
ionic ingredient. That ingredient
gives the molecules local dipole mo-
ments, whose interaction with the sim-
ilar dipole moments in neighboring
molecules makes the molecules cohere.

The links in such a chain as that
shown in Fig. 9.1 are made of sp3 hy-
brid bonds; and since such a bond is
cylindrically symmetrical about its
axis, groups of atoms can rotate about
any of those bonds. Hence, even though
the bond holds its two atoms quite
tightly at a fixed distance, and
stands quite rigidly at the tetrahe-
dral angle to the other three bonds

formed by the same atom, the molecule
as a whole has considerable flexibil-
ity (Fig. 9.2). Certainly in a vapor
of such a material, and probably even
in its liquid form or in solution, the
molecules are constantly flexing and
coiling with internal thermal motions.
In the solid form of such a substance,
the molecules will adopt the positions
and shapes that enable them to pack
together most closely under the in-
fluence of the weak van der Waals
forces that bond them to one another.
But since the molecules remain flexi-
ble, solid organic materials are of-
ten soft and pliant.

In some organic compounds, how-
ever, the linking within each molecule
is so patterned that no flexibility is
left the requirements that the bonds
have constant lengths and stand at
tetrahedral angles constrain all the
atoms to fixed relative positions
about which they can only quiver. Dia-
mond (Fig. 2.3), in which carbon
atoms are bonded by spa bonds, is a
conspicuous example of the resulting
rigidity. For the same reason the
molecules of the hydrocarbon, adaman-
tine (Fig. 9.3), behave much like in-
flexible spheres.

In making the modern plastics
this principle is used to provide the
desired degree of stiffness. Many
plastics are based upon molecules
whose skeleton is an extremely long
chain of carbon atoms. Polythene, for
example, consists of hydrocarbon mole-
cules like those of n-octane in which
the chain (Fig. 9.4) contains several
hundred carbon atoms instead of eight.
Rubber, though a more complicated
structure, is essentially similar.
The art of vulcanizing rubber is in
large part the art of cross-linking
these chains (Fig. 9.5) in order to
decrease their flexibility. Th' links,
made by introducing sulfur atoms, can
be multiplied to the number producing
"hard rubber," in which the flexibil-
ity of the original rubber has nearly
vanished. The vulcanizing art appeared
long before an explanatory theory of
cross-linking, but now that theory can
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be used to provide directives for the
design of molecules that can be de-
liberately cross-linked to any desired
extent.

In another important class of
plastics, including nylon, the skele-
tal chain is made partly of nitrogen
atoms, and one of the carbon atoms
adjacent to each nitrogen atom bears
an oxygen atom closely bonded to it,
as Fig. 9.6 shows. Because of the dif-
ferences in the electronegativities of
carbon, nitrogen, and oxygen, the co-
valent bonds in this part of the mole-
cule have large ionic ingredients that
produce a local dipole moment. The
isolated dipole moments along the
chain interact with the dipole moments
in adjacent chains to provide cross-
linkings which, though weaker than
those of covalent bonds, are stronger

than the dispersion forces that hold
tog-ethcr the molecules of a hydrocar-
bon. The total strength of the force
holding molecule to molecule can be
controlled by spacing the dipolar
atomic groups suitably along the chain.

There is another way of control-
ling the strength of the intermolecu-
lar forces in these nitrogen-bearing
plastics - a way that gives insight
into some of the properties of the
proteins that compose the flesh and
muscle of animals. The forces can be
weakened by attaching short sj.cle
chains to the principal chain of the
molecular skeleton and so holding the
dipoles in adjacent skeletons further
apart.

In the skeletal chain of the
proteins, each pair of units that
contribute a local dipole-moment - the

Fig. 9.4 A molecule of the modern plastic, that shown in Fig. 9.1, continued through
polythene (012)n, consists of a chain like several hundred atoms.

L

Fig.9.5 Cposs-linking long molecular chains by covalent bonds increases rigidity of a plastic.

Fig. 9.6 In plastics of the polyamide type,
the skeletal chain acquires local dipole

moments at the points where the (NH) (CO)

configuration occurs.
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Fig. 9.7 A protein is a polyamide with
closely spaced (NH) - (CO) configurations
and with side groups that vary in nature
and size. Typical groups are H-,
(CH3)2CHCH2-, and HO.CsH4-CH2-.

NH and CO units - is separated from
the next pair by only one carbon atom.
But each of those carbon atoms car-
ries a relatively large side group
(Fig. 9.7). The side groups vary in
nature from one protein to another,
and they also vary from point to point
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Fig. 9.8 The Sig, group takes a central po-
sition, as a structural base in the inor-
ganic world, that is somewhat analogous to
the position of the carbon atom in. the or-
ganic world. In some minerals (for example,
zircon) it stands as a tetravalerA ion,
here shown as a tetrahedron with corner
oxygens.
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along the principal chain of any one
molecule. Some of these side groups
are simple chains, others are rings.
Thus the strong attractions between
the numerous dipoles are weakened in
ways that have much subtle variety,
and the varying shapes of the side

. groups impose additional variety on
the ways in which any of the molecules
can coil within itself and can pack
together with its fellow molecules.

Turning from the organic world,
dominated by compounds of carbon, we
find the inorganic world dominated by
compounds of silicon. At first one
might expect to find silicon playing
precisely the part of carbon. It falls
directly beneath carbon in the same
column of the periodic table, and It
has four bonding electrons that could
form hybrid bonds. In fact, however,
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Fig. 9.9 In most organic compounds, the
carbon skeletons (a) are clothed by coval-
ently bonded atoms, so that the molecules
are held to one anothe22 by van der Waals
forces. In most minerals, the silica skel-
etons (b) bear a net negative charge, and
the minerals are held together by the ionic
forces between skeletons and positive ions.
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two silicon atoms never bond to each
other directly in a mineral. Each
silicon atom is bonded directly to
four oxygen atoms by spa bonds. One
can picture each silicon atom at the
center of a tetrahedron whose corners
are occupied by oxygen atoms.

In isolation such a tetrahedron
has a strong electron affinity. Since
the bond to the silicon atom employs
only one of the bonding electrons of
an oxygen atom, there is room in each
for one more electron in an atomic
orbital of principal quantum number 2.
Hence an isolated SiO4 group readily
forms the negative orthosilicate ion,
Si044 (Fig. 9.8).

More often, however, one finds
silicon atoms bonding to one another
through oxygen bridges: a bridging
oxygen atom forms covalent bonds with
two silicon atoms. In the resulting
structures one can find interesting
analogies to organic compounds. For
example, a chain of the form

bears some resemblance to
a chain of the form -C-C-.

But as Fig. 9.9 points out, the
carbon skeleton, by clothing itself
with covalently bonded atoms, becomes
electrostatically neutral. In the sili-
cate skeleton, on the other hand, the
oxygen atoms that are not engaged in
bridging, acquire electrons so that
the entire skeleton becomes a negative
ion. In a mineral those electrons are
contributed by metal atoms which thus
become positive ions. In the mineral
diopside equal numbers of calcium and
magnesium atoms furnish the metal ions.
The entire. miner:1 is held together,
therefore, by luAic bonds whose
strength greatly exceeds that of the
van der Waals forces holding the or-
ganic solids together. The positively
charged metal ions distribute them-
selves among the negatively charged
silicate skeletons in whatever manner
their sizes and the ionic forces make
most favorable.

Often the Si-- O -Si -O- links form

rings or sheets instead of chains. In
the mineral benitoite, rings are
closed by three SiO groups, and each

8

Fig. 9.10 In cristobalite (a) oxygen atoms
form bridges between silicon atoms that are
arranged in the same way as the carbon
atoms in diamond (b).

ring is accompanied by a barium ion
and a titanium ion. In beryl a ring of
six SiO groups accommodates three
beryllium ions and two aluminum ions.
Just as in sodium chloride, it is im-
possible to identify molecular units
in these minerals; one can identify
only ionic units.

But, just as among the compounds
of carbon, one can find among the
minerals instances in which the skele-
ton is tightly cross-linked. Compare,
for example, the crystal structure of
diamond with that of cristobalite, one
of the many structures adopted by sil-
icon dioxide whose more usual struc-
ture is quartz. As Fig. 9.10 showl.,
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the silicon atoms occupy sites that
form a diamondlike structure opened
out by the bridging oxygen atoms.

From the complicated structures
of the proteins and the minerals,
turn finally to look at one of the
simplest molecules, H2O - a molecule
that covers deeply three quarters of
the earth's surface and moistens much
of the rest. Despite its apparent
simplicity, it behaves in many mys-

b

Fig. 9.11 A positive ion induces a dipole
moment (a) in a neutral atom, oriented in
an attractive sense. Since a proton is the
smallest positive ion, it can come closest
to the electron cloud of another atom (b),
and stick fairly tightly to it.

Fig. 9,12 Along the line between each
neighboring pair of oxygen atoms in ice is
one hydrogen atom. Most of the time it is
nearer to one or the other of the oxygen
atoms, and most of the time each oxygen
atom has two hydrogen atoms near it.

8 '2

terious ways. But its behavior can be
partly understood in terms of bonds
discussed in the foregoing chapters.

One of the most conspicuous
properties of water is that it wets:
in other words, water molecules stick
to most other molecules quite tightly.
For helping to explain this property,
we can make with our bonding pictures
an argument running as follows. Since
oxygen atoms are electronegative,
their bonds to hydrogen atoms have a
large ionic ingredient, as you noticed

in Figs. 7.7 and 7.8. Since the two
bonds are not collinear but stand at
an angle of 105°, their ionic ingred-
ients give the water molecule a large
dipole moment. When a water molecule
comes close to a molecule of another
sort, the electric field due to its
dipole moment (Fig. 4.2) induces a
dipole moment in the neighboring mole-
cule, oriented in an attractive direc-
tion.

But in the magnitude of its wet-
ting affinity, water shows a larger
variation that this argument can ex-
plain. It shows an especially strong
affinity for oxygen-bearing molecules.
Indeed it wets wood and paper, whose
cellulose molecules expose many oxy-
gen atoms at their surfaces, almost
irresistibly.

Here the especially strong polar-
izing force of protons is at work.
Recall, with the aid of Fig. 9.11,
that a positive ion will induce in a
neighboring neutral atom a dipole
moment that is oriented in an attrac-
tive sense. The smaller the positive
ion is, the nearer it can get to the
electron cloud of the neutral atom,
and hence the stronger will be the
attraction it establishes. A proton
is much the smallest of positive ions,
and it can get stuck quite tightly to
neutral atoms. When those are atoms
of oxygen, and the proton forms part
of a water molecule in which it is al-
ready attached to another oxygen atom,
the proton can pull the two oxygen
atoms together and bond itself almost
even-handedly to both,

Not quite even-handedly, of
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course, since the oxygen atom in its
parent water molecule is negatively
charged and attracts it more strongly
than a neutral atom. In molecules such
as cellulose, however, the exposed
oxygen atoms are also negatively
charged. Bonds of the type exemplified
by water and cellulose are often
called hydrogen bonds. Sometimes it
requires as much as 0.3 eV to break
such a bond.

Clearly ice is the perfect candi-
date for hydrogen bonding: the protons
should find its oxygen atoms indis-
tinguishable. Actually the atomic ar-
rangement in ordinary ice - other
forms of ice can be produced at high
pressures - is the cage-like structure
whose oxygen ions are shown in Fig.
9.12. One proton is located somewhere

along each of the bonding connections,
and at any one time each oxygen ion
has two protons near it. But each
oxygen ion has four equivalent bond-
ing connections, and the protons
switch their allegiance from one oxy-
gen ion to another along those con-
nections. No wonder a glacier can
slowly flow!

But much of the behavior of ice
still remains unexplained. Consider
a snowflake, its branches replicating
one another in six-fold symmetry -
differently in each flake. How does
it communicate, at each instant,
through millions of interatomic dis-
tances, its next instant's growth
plan? We do not know; the flake is one
of the world's tiny beauties, and one
of its large mysteries.

PROBLEMS

9.1 If there is an "organic" world
where silicon atoms (not SiO,
groups) replace carbon atoms in
proliferating "organic compounds,"
would you expect to find it in a
hotter or a colder environment
than that provided by the Earth?

9.2 Would you attach any significance
to the fact that almost all the
carcenogenic (cancer-producing)
hydrocarbons known at present are
"benzenoid," or in other words
have bonding schemes in which the
electrons are delocalized in the

8,

ways described in Chapter 8?

9.3 Protons differ from electrons pri-
marily in having an opposite
charge, and a mass about 2000
times greater; but their "sizes"
are nearly the same. Discuss the
problems, arising from the bonding
properties of hydrogen atoms, that
would afflict the development of
a "protonics industry," comparable
with the electronics industry, in
which these tiny charged particles
are exploited to perform compar-
ably useful duties.


