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MODELS FOR HIGHLY SPEEDED MENTAL TESTS'w
William E. Moore

Harvard University, Cambridge2

This paper discusses previous theoretical development of the Poisson

Process as a strong model for the true-score theory of mental tests. It

develops additional theoretical properties of the model from the standpoint

of individual examinees. The paper introduces the Erlang process as a family

of test theory models and shows, in the context of mental testing, that the

Poisson process is a particular case of the Erlang process. Probability density

functions define the parameters mathematically and lead to semantic inter-

pretations of parameters in terms of tests and examinee characteristics.

Experimental research gives the fit of observations to theoretically predicted

functional forms for individual examinees. In particular, experimental measure-

ments determine observed-score distributions for individuals and give estimates

of their true scores. The models apply to homogeneous, itemized tests of pure

speed.

The classical model for the true-score theory of mental tests (Lord and

Novick, 1968; Novick, 1966) relates observed, true and error scores for an

examinee, i , on a given test as

1
The initial impetus for this study developed while I was a Summer

Fellow at Educational Testing Servi-.:e in 1967. Professor William Meredith
of the University of California at Berkeley, who was then spending a year
at ETS, was my adviser in the Summer Program. Professor Meredith introduced
me to the Poisson process as a test theory model and I gratefully acknowledge
the conversation in which he suggested the Erlang process as a source of
further test theory models. Professor Frederick Mosteller was my adviser at
Harvard University and I thank him for invaluable advice and untiring interest
during this research project.

2Now, Chief of the Centre for Research in Measurement and Evaluation,
Department of Education, New South Wales, Australia.
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The observed test score, Xi , and the error test score, Ei , are random vari-

ables and the true score, Ti , is a constant defined by

(2) exi = Ti

where C is the operator expectation. To estimate expected values we require

repeated measures and unless these are available the classical model has

nothing to say in an operative sense about the true scores of individuals.

The classical true-score model is the simplest case of weak theory, meaning

the absence of specific assumptions concerning functional forms for observed

scores and error scores. The stochastic models are examples of strong theory

which specifies functional forms for random variables. We pay a price for the

increased mathematical r.chness of strong models. Whereas the weak classical

model is useful for any rigorously constructed mental test, the stochastic

models restrict themselves to homogeneous, itemized tests of pure speed. In

compensation for this restriction we are able to estimate the true scores of

individual examinees from a single administration of a test.

Pure speed implies that examinees are under time pressure and, in fact,

none should be able to complete all items within the imposed time limit. It

also implies that items be of such a nature that all examinees would obtain

correct answers if given sufficient time. Itemized means that responses are

scored as being either right or wrong and homogeneous means 'Ghat items are of

equal difficulty--that is, the probability of an examinee answering correctly

is the same for all items.
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The Poisson Process

The Poisson is a stochastic process in which equiprobable events occur

in continuous time. Visualizing each event as a point on the time axis and

considering the random placement of points, the Poisson process postulates

exponentially distributed time gaps (or latencies) separating points and pos-

tulates that the number of points recorded in a fixed time interval is the

realization of a Poisson random variable.

Following Rasch's (1960) initial explorations, Meredith (1968) developed

the Poisson process as a true-score model for speeded mental tests. The

probability density function for the random variable representing observed

score for examinee i on a test of duration v units in time is a form of

the Poisson, distribution. Letting Yiv rep.. -sent the observed-score random

variable for examinee i , we write

(3)

Y
e St.

iv
Pr(Y. = yli) -

iv

Equation (3) is conditional on i to emphasize reference to a fixed person.

From the first moments of equation (3),

(1) gY. =
iv iv

Thus, by definition from the classical model, Stiv is the constant representing

isthe true score for examinee i In terms of the Poisson process,
ry

the

mean value function and is related to the intensity function (or, the infini-

tesimal response rate) AI(t) by



(5) =
iv

,rAi(tjat

0
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(see Karlin, 1966; Meredith, 1968; Parzen, 1962).

Meredith postulates that the intensity function is the product of two

inde:lendent components,

(6) Ai(t) = 2\iL(t)

Tiwith a positive constant for examinee i and L(t) a continuous and

positive function for t > o . The postulate asserts that the intensity func-

tion of different examinees has the same shape but different elevations. The

Poisson process requires latencies to be exponentially distributed random

variables. If t. is the latency associated with the jth response for exam-

inee i and if we writ-, the transformation L(t.) , then the proba-

bility density function for latencies is

(7)
-T.t*

fettl0"-el

Equation (7) completes the Rasch-Meredith formulation of the Poisson process

as a true-score model for individual examinees. In conclusion we note that if

an examinees number of responses is the realization-of a Poisson random vari-

able, it is a necessary and sufficient characterization of a Poisson process

that the latencies be exponentially distributed (Haight, 1967).
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Transforming Time

To find a suitable transformation function of time we adopt the Bush-

Mosteller procedure for analyzing the Weinstock data on timing rats in maze

trials (Bush and Mosteller, 1955). Transferring their approach to the present

situation we let the time for response j from examinee i be

(8) t. c. T.

where c. is a constant element of time particular to examinee i and T.
1

is, as the Poisson process requires, an exponentially distributed random

variable specified by equation (7). For mental testing, equation (8) implies

that an examinee requires a certain minimum (constant) length of time to respond

to any item and the time he takes beyond this limit is a random variable. As

t. is the manifest variable, equation (7) is more convenient in the form

(9)
-?\ .T

?\.(a 1 j= 1,2,... .

In speeded tests we assume examinees make their responses instantaneously

so that the time required for k responses is the sum of k latencies. Con-

sidering an examinee's latencies for k items relates the sequence of laten-

cies to the number of responses he records in fixed time. These latencies are

(10)
k

t
K

= E t.

j=1

Moment generating functions show the k -fold convolution of t. to be gamma

distributed with density function



where T
K

is
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k-1 -?\.T

g(tKii)
(k -

1
1)1 (?\ iTK) e 1 K

tK kc.TK =

The number of responses in fixed transformed time, T' , is k if and only

if T
K
< TT and T

K+1
> it Equivalently (Parzen, 1962, p. 132),

(13)
Pr(YiT, kli) Pr(TK < T'li) Pr(TK+1 < T'ii)

We have

k-1 -TiTK
(14) PT(TK > Tyli) Jr

co
Ti

(k 1)1
(TiTK) e dTK

which on integration by parts gives

k-1 m
(15) Pr(TK > T'li) = E e 1

m =o 111. 1

Simple manipulation of equation (15) and substitution into equation (13)

give

k
(16)

1
Pr(YiT, kli) = (?\iT') e

which is a form of the Poisson distribution.

toy
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From equations (3), (12) and (16) we get

y
(17) 2iv . ?\i [ E t. - yci]

j=1

Since Z. t. is the length of the test in ordinary time, we may write more
j.1

siwply

(18) 2 = yo.]
iv i

The probability of an examinee's response to the jth item falling in an

arbitrary interval (a,b] of ordinary time is from equation (9),

b
-Ti(t-ci) -a* -b*

(19) Pr(a < t. < b)i) . Li.'2\ie dt = e -e
J

a

where

(20) a* = -?\i (a - e.) and b* = ?\ (b - c.)

Transforming time by

(21) t* = Tilt - ci)

enables us to construct a table of theoretical probabilities which applies to

all examinees and leads to two important theoretical predictions. First,

summing equation (21) over the y latencies given by examinee i in a test

of length v units of ordinary time gives
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y
(22)

j
j=1

Equations (18) and (22) show that the mean value function of the Poisson

process,S/iv , equals the length of the test in transformed units. From

equation (4) we conclude that an examinee's true score is the length of the

test for him in transformed time although the test is fixed to a common length

in ordinary time for all examinees. Second, partitioning transformed time

into y equal parts produces realizations of y Poisson random variables

each of which has a mean value function of unity. Thus, we expect from theory

each examinee to produce one response in each unit of transformed time.

The Erlang Process

The Erlang, like the Poisson, is a stochastic process in which equi-

probable events occur in continuous time. The Erlang process requires, for

its characterization, gamma distributed latencies and an Erlang distribution

for the random variable representing number of events in fixed time. An

exponential distribution of latencies is a foundation of the Poisson process,

and we have noted in connection with equation (11) that the k -fold con-

volution of an exponential distribution is a gamma distribution. An inter-

pretation of the Poisson model which is conceptually attractive to mental

testing is that examinees are responding to items which require one step to

solve. In pursuing this image we now develop the Erlang process as a family

of stochastic models in which examinees respond to items requiring 2, 3 or

more steps to complete.

9
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Let us assume that examinees require n unobservable subresponses to

complete each response. Let t0 be the time required for a subresl.onse and

assume, as we have for the Poisson process (equation 8), that t
0

is some

constant h. plus a random variable T . That is

(23) tO = hi + T

As with the Poisson model, we write

-A.T
(24) f(toli) = Aie 1 0 = 1,2,...,n

The total latency on the jth response by examinee i is nhi plus the

sum of n random variables T from equation (24). Letting the total latency

for the jth response be L.. gives

n-1 -Ai(Li.-nhi)
(25) 0(Lijli) = [A(Lij - nhi)] e for L. > nh.

n _11 ij

= 0 for L.. < nh.

k
The latencies for the examinee's responses to k items are E L. . , of

j=1 -J

k
whichtherandomvariablecomponentis By considering

j=1 1J

k
moment generating functions we find that the k -fold convolution of L

'j=1 ij

is the gamma function

1 9
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nk-1 4\i(LiK-knhi)
(26)

41(LiKli) (nk - 1):
p\(LiK - knhi)] e

= 0

where

k
(27) Li = E Li.

K j

for L. > knh.
1K

for < knh.L.

To derive the probability density function for the number of responses

in fixed time we repeat the argument involving equations (12) through (16).

Thus,

(28) Pr([LiK - knhi] > Till) = (LiKli) dLiK

which on integration by parts gives

nk-1 m
(29) PrUL.

M.
- knh.] > Ttli) = E (?\.Te) e 1

1K 1 1

Similarly,

(k+l)n-1 m -?\T1
(30) Ftrf[li

i(K+1)
- (k 1)nhi] > Tili) = E 7 CN.Tt) e

-TiT1

m=o

1i



which leads to

(k+l)n-1 m -?\.T1

(31) Pr(YiT, = kli) = E
m.

(2\.T') e

m=nk

For a test of length v units of ordinary time the probability of

examinee i giving y responses is

(32)

where

(33)

(y+l)n-1 m -nt
Pr(y.

m! ` i
yli) = E (at ) e iv

iv v/
m=ny

= Y1111-IV I

that is, Pr(Yiv = yli) is a summation of Poisson functions between the

limits ny and ny + (n - 1) . As a probability density function it is

known as the Erlang after the Danish statistician who first applied it to

problems in receiving calls at telephone exchanges.

If an examinee is responding to a speeded test with homogeneous items

each requiring n steps to complete, then the Erlang process predicts that

equation (25) is the probability density function for his distribution of

latencies and predicts that equation (32) is the probability density function

for his distribution of number of responses in fixed time. The transformation

function for time is the same as for the Poisson model (equation 21) with c,

being replaced by nhi . Equation (33) shows that the parameter of the Erlang

distribution, nit
v

, equals the length of the test in transformed time.
i

12
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The term n in equations (25), (30) and (33) is a parameter which did

not appear in the Poisson model. We discuss parameters in the next section,

but for present discussion we consider the special cases when n equals 1

or 2.

(34)

When n = 1 equation (25) becomes

0(LiiIi) = 7.e 1 IJ 1

Equation (34) is in the same exponential form as equation (7). For n = 1 ,

equation (32) reduces to equation (3). Because the gamma function has the

special property of collapsing to an exponential for n = 1 , and because the

Erlang function collapses to a Poisson function for n = 1 , we acknowledge

the Poisson process as being a special case of the Erlang process.

When n = 2 equation (25) becomes

-?\. (L. .-2h. )

(35) 0(Liili) = y?\i(Lij - 2111)]e 1 13 1

and equation (32) becomes

2 -Qt 2y+1 -ot
(36) Pr(y. =yi) ) Ye 1/T

1 lv
lv 2y! 1-v- (2y + 1): °Iv) e

Equations (35) and (36) are the specification equations for the simplest

Erlang model with gamma distributed latencies. As n takes higher integral

values, n = 3,4,... , we generate a family of Erlang models.

3
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To deduce the theoretical relationship between number of responses and

length of transformed time we consider first moments of equation (36). The

expected value cf Yiv is (Parzen, 1962)

(37) Div 1 1 -2tv
e(Yiv) 2 4 4

Equation (33) establishes that qv equals the length of the test in tilae

transformed by equation (21). For 10 units of transformed time equation (37)

becomes

(38)
c(Yiv) 12

1
e
-20

As e
-20

0 , this model prediAs that an examinee will respond to 4.75

items in each ten units of transformed time.

We conclude that an examineels true score is 0.475 of length of the test

for him in transformed time although the test is fixed to a common length in

ordinary time for all examinees. Further, we expect each examinee to respond

to 0.475 items in each unit of transformed time.

The Parameters

The exponential distribution of latencies in the Poisson process is a

special case of the gamma distribution of latencies in the Erlang process.

We take advantage of this relationship to develop a single set of procedures

applying to parameters of both stochastic processes. The common equation for

latencies is

14
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Ti k-1 -T.(L..-c.)

(39) 4)(Lijli) (n -1)! [?\i(Lij ci)] e lj
j = 1,2, ...

L. > c.
1j

= 0 L. < c. .

1j 1

The term L.. is the latency measured in ordinary time for subject i on
ij

iteinjofatestinaloarticulartrial.Thetermsn,?\.and c. are

parameters.

The parameter n identifies a test with a member of the family of gamma

distributions and is the test parameter. In these models the test parameter

takes only positive integral values of one or greater. This restriction is

imposed to give necessary mathematical tractability to equation (31). The

structure of the models suggests that the gamma function, equation (39), is

formed by the convolution of n exponential distributions having the same

argument. A semantic interpretation of n which is conceptually attractive

to test theory is that the Poisson model (in which n = 1 ) applies to tests

in which each item requires a single step to solve. The simplest Erlang

model has n = 2 . This model applies to tests in which each item requires

two identical steps to solve. For example, in subtracting one 2-digit number

from a larger 2-digit number we could reasonably suppose that the subtraction

of the units' digits is one step and the subtraction of the tens' digits is a

second and equal step. Similarly, for n = 3,11.,... we have Erlang models

applying to tests with items that require 3,4,... steps to complete.

FromtheaxiomsofthePoissonprocess(Meredith,1968)weknowthat?\.dt

is the probability of an examinee producing a response in an instant of time.

The parameter Ti is particular to examinee i on a given trial and is the
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rate parameter. The parameter ci is the constant-time parameter and is the

nonrandom (constant) component of a latency. It is particular to subject i

for all responses on a given trial.

Bush and Mosteller (1955) devised methods for estimating n , 2\j. and

c. which make use of percentage points of the cumulative frequency distribu-

tion of latencies. When estimates of n for different examinees give a

common integral value we identify the Poisson model or the particular Erlang

model which may apply to this test. Estimates of 2\i and ci transform time

into units particular to each examinee. The frequency distributions of trans-

formed latencies are compared with the appropriate theoretical distribution

based equation (39). The probability table has class intervals initially of

0.25 units and as probabilities decrease, the class intervals increase to 0.50

units, to 1.00 units and finally to 2.00 units.

Experimentation

The subjects were ten Grade 10 boys aged 15 to 16 years from a Massachusetts

high school and they responded to six highly speeded tests from the Kit of

Reference Tests for Cognitive Factors (French, Ekstrom and Price, 1963). Three

of the tests measure speed of clerical or perceptual skill and three measure

speed of computational skill in arithmetic. Each test is in two parallel forms

of sufficient length, in some cases, to subdivide each form into two parts.

The subjects completed up to four trials on each test and trials lasted from

1 1/2 to 3 minutes each.

Tests were administered to one subject at a time. During testing, each

subject was tied in to an electronic system designed to compute latencies. At



-16-

Table 1

Expected Probabilities for the Distribution of

Latencies in Transformed Time

.Transformed
Time

Exponential Gamma (n =2)
Probabilities Probabilities

t*=Ai(t-ci)
b -X.(t-c.)

Pr=1 X.e 1

a

2
-X.(t-c.)

dt
Pr.7-1)"(t-c.)e

1 1
dt

a

0.00 - 0.25 0.221 0.0284

0.25 - 0.50 0.172 0.0611

0.50 - 0.75 0.135 0.0839

0.75 - 1.00 0.104 0.0923

1.00 1.25 0.081 0.0876

1.25 - 1.50 0.064 0.0883

1.50 - 1.75 0.049 0.0813

1.75 - 2.00 0.039 0.0693

2.00 - 2.50 0.053 0.1208

2.50 - 3.00 0.032 0.0873

3.00 - 3.50 0.020 0.0644

3.50 - 4.00 0.012 0.0437

4.00 - 5.00 0.0116 0.0512

5.00 6.00 0.0043 0.0229

6.00 - 8.00 0.0021 0.0144

8.00 -10.00 0.0003 0.0025

Note: The term
1 1

and C. refer to estimated values of parameters
T. and c. .

1
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the moment a subject recorded a response a print-counter recorded the elapsed

time from the previous response correct to one-tenth of a second. The printed

records of each trial told the exact length of the trial in seconds correct to

one-tenth of a second, the number of responses given, and the latencies. Each

subject's test sheets told which items he had answered and which ones were

correct. Moore (1969) gives a complete description of experimental equipment

and the organization of trials. The subjects completed 194 trials and

recorded 5,952 latencies.

Results

The Poisson process applies with varying degrees of success to three of

the six highly speeded tests in the battery and the Erlang process applies to

one test. For two tests (Maze Tracing and Addition) the stochastic models

had no application. We first discuss the results of the most successful of

the Poisson model tests.

Finding A's is a clerical speed test of two minutes' duration. In each

column of 41 words the task is to check the five words having the letter "a."

The score is the number of words correctly checked. Exponential distributions

fit the latencies of individual subjects and each subject's number of responses

is a realization of a Poisson random variable. Finding A's satisfies the

necessary and sufficient conditions for a Poisson process.

Each subject completed four trials in Finding A's. Six of the ten subjects

have estimates of one for the test parameter, n , in three or four of their

trials and over the four trials combined estimates of n equalled one for

nine subjects. For each of the four parts of the test, estimates of n
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equalled one and for the performance of all ten subjects on the whole test

the estimate of n was again one.

Table 2 shows observed frequencies of latencies in transformed time

(equation 21) anra the theoretical frequencies computed from the exponential

column of Table 1. The class intervals of Table 2 are the same as those of

Table 1. When observed frequencies for the ten subjects are combined inf.° a

single distribution and expected frequencies are likewise combined, the X
2

goodness-of-fit accepts the null hypothesis at the 10% level.

The test of Poisson distributiveness of each subject's observed score

requires a well-known theorem in Poisson variables: If Xn are independent

Poisson random variables with parameters On then EX
n

has a Poisson dis-

tribution with parameter EQn (Lord and Novick, 1968, p. 483); and, con-

versely in the stochastic context of a Poisson process, EXn partitions

into n independent Poisson random variables with parameters proportional

to the length of the time intervals. Let (o,t1],(t1,T,...,(I._1,t4140

be n equal partitions of the total transformed time for subject i and

assume the Poisson mean value functions of random variables in these intervals

to be

(40 = a(0,t41) 0(t41,-1) = R(t1-1-1,tV .

The relationship between equations (3) and (40) is
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Let the number of responses given by subject i in the interval (tx:
j-1 j

be X. for j = 1,2,...,n and assume the X to be Poisson distributed
ij ij

with common mean value function w . The test of this assumption uses the

Poisson index of dispersion,

j

%

n (Xi - 2.)
2

(42) =
P A.

which is distributed as X
2

(Snedecor and Cochran, 1967, p. 232).

Table 3 shows the number of responses given by each subject.in consecutive

intervals of 10 units of transformed time. The X
2

tests (Table 4) reveal

that we may accept the observed scores of nine subjects as being realizations

of Poisson random variables.

The Poisson model predicts for each subject that each unit of trans-

formed time should contain one response. Forty per cent of the entries in

Table 3 are 9, 10 or 11 and from Table 4 we find that 6 of the 10 subjects

have means in the range 9.5 to 10.5. The grand mean for the ten subjects is

9.7. The model also predicts that the length of the test in transformed time

is an estimate of an examinee's true score, Q. . From the properties of the
iv

Poisson function, Y. is an estimate of a. (equation 4). Table 5 lists
iv

these two estimates for each subject. The t-test for differences between

matched pairs enables us to retain the null hypothesis of no difference

between the estimates.

Two other speeded tests to which the Poisson process has some application

are Hidden Patterns and Division. Hidden Patterns is a perceptual speed test

91.
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Table 3

Number of Responses Recorded by Ten Subjects in Each Ten Unit

Interval of Transformed Time of Finding A's

Class
Intervals
(transform-
ed time)

1 2 3

Subjects
4 5 6 7 8

(Number of responses)

9 10

Total

0-10 13 14 11 12 16 11 13 11 13 12 126

10-20 10 9 10 13 8 13 11 5 8 9 96

20-30 12 9 5 4 9 7 10 9 10 12 87

30-40 8 13 12 8 7 8 9 9 11 9 94

40-50 12 10 12 7 11 9 15 9 11 14 110

50-60 10 10 8 10 12 7 9 13 12 8 99

60-70 9 14 12 14 16 8 18 11 8 12 122

70-80 16 9 11 1 8 7 10 15 7 10 94

80-90 8 11 5 14 11 4 5 6 4 7 75

90-100 7 11 15 5 10 11 9 8 7 83

100-110 11 13 4 10 11 12 61

,147120 7 10 11 7 12 11 58

120-130 11 11 7 8 13 9 59

130-140 8 9 15 8 9 6 55

140-150 6 8 5 19

150-160 7 9 7 23

160-170 9 10 19

170-180 8 10 18

180-190 5 5

190-200 10 10

200-210 7 7

210-220 5

-

Note: Each subject's four trials are combined into one continuous
trial.
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Table 5

Significance Test for the Differences between Two Independent Estimates of the

Mean Value Function for the Poisson Distribution of Responses on Finding As

Subject
Number

First estimate
of O.

iv
(Sum of latencies in

transformed time)

Second estimate
of Q.

iv
(Number of Difference
responses)

1 98.5 105 -6.5

2 145.0 150 -5.0

3 178.3 174 +4.3

4 225.3 191 +34.3

5 163.6 156 +7.6

6 92.8 78 +14.8

7 141.3 156 -14.7

8 142.8 138 +4.8

9 105.3 97 +8.3

10 99.7 100 -0.3

Totals 1392.6 1345 ID = +47.6

D = *4.76

S
D

t

d.f.

t.05

4.25

= 1.120

9.

2.262
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of two minutes' duration. Each item consists of a geometrical pattern and

in some items a given configuration,. T , is embedded. The task is to select

the items having the given configuration. Six subjects have latency distribu-

tions showing only minor departures from exponential distributions. However,

the combined latency distribution of all subjects differs significantly on

a X
2

test from the theoretical distribution. The Poisson index of disper-

sion shows that the observed scores of eight subjects are realizations of

Poisson random variables.

The partitions of transformed time into 10 unit intervals do not yield

numbers of responses in Hidden Patterns clustering about 10 to the same

extent as they do for Finding A's. Only 26% of partitions have 9, 10 or 11

responses and the means of cell entries range from 8.6 to 9.8. The t-test

for differences between the length of the test in transformed time and the

number of responses for the ten subjects is significant at the 0.1% level.

That is, the two estimates of true score differ significantly. The Poisson

model does not fit Hidden Patterns with the same precision it does for

Finaing A's. The notion of a latency being the sum of a random variable

and a constant may be inadequate (equation 8). To retain the simplicity of

a linear model we could suppose that the latency for item j is the sum of

two random variables and a constant,

(43) t. = C. T. -I- Tr.

3

If an additional random variable, , exists then our model would

introduceerrorsintotneestimatesofT.andc.which would bias the

transformation of time. Moore (1969) has done some work on latencies

25
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structured as equation (43), but the problem of biased estimates of Ti and

c. remains.

Division is a speeded computation test of dividing 2- or 3-digit numbers

by single digit numbers. For five subjects distribution of latencies fit

theoretical exponential distributions very well. The X
2 tests on Poisson

indices of dispersion accept the observed score of each subject as the

realization of a Poisson random variable. The t-test for differences between

two independent estimates of Stiv is not significant, but the standard error

of the difference was relatively large--it exceeded four times the magnitude

of the standard error for Finding A's (Table 5).

The Poisson model fits Division at a level of precision less than it

did for Finding A's but greater than for Hidden Patterns. However, to be

an adequate theory for the Division test, the model needs modification. As

with Hidden Patterns, the assumed structure of latencies, equation (8), does

not accommodate all the systematic variation in latencies.

The speeded test of Subtraction and Multiplication met the requirements

of the Erlang process as a model for the performance of individual examinees.

This test alternates 10 items of subtracting 2-digit numbers from 2-digit

numbers and 10 items of multiplying 2-digit numbers by single-digit numbers.

The two parallel forms each have 60 items and subjects completed 3-minute

trials on each form. For 11 of the 20 trials the estimates of the test param-

eter were n = 2 . For 3 trials in which n = 3 , exact estimates slightly

exceeded 2.5; and for one trial in which n = 1 , the exact estimate is

slightly less than 1.5. Forms 1 and 2 each have overall estimates of n = 2 .

Seven of the ten subjects have n = 2 for the combination of both forms of

the test.

2 r2f
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By substituting n = 2 into equation (39), the theoretical density for

latencies in this test has the gamma form,

(44) 0(Lij(i) = - ci)e 1 1J 1 L.. > c.
3.3

= 0 L
ij

< c
i

The third column of Table 1 displays probabilities calculated from equation

(44). Table 6 shows observed frequencies of latencies in transformed time

and theoretical frequencies computed from Table 1. Class intervals are the

same as for Table 1. When observed frequencies are combined into a single

distribution and expected frequencies likewise combined, the X
2

goodness-

of-fit test accepts the null hypothesis at the 40% level.

To test the Erlang distributiveness of each subject's observed score

requires a slightly more complicated version of the strategy developed for

the Poisson process. The theoretical Erlang distribution is equation (36).

The two terms on the right of equation (36) are each a form of the Poisson
_ .

function. Rewritten entirely as Poisson probabilities equation (36) becomes

(45)
Pr(Yiv Ykqv) Pr(Yiv 2Y1°1v) Pr(Yiv

2y
lIqv)

As before, we partition the total transformed time for a trial into n equal

intervals (o,ttj,(til,t2j,...,(tt_i,t1(0 . Let the random variables repre-

senting numbers of responses in these intervals be Yil,Yi2,...,Yin . The

randomvariablesare mutually independent and Poisson

distributed with mean value function ntvin in each case. The random

variables(an+1),(2Y1.24-1),...,(2Yin4-1) are mutually independent

9 7
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and Poisson distributed with mean value function Qtvin in each case.

Letting Xij be the realization of random variables Yij , the Poisson

index of dispersion for each subject is

(46)
I

(x.. - R)
2

.

P

16
417 1 j=1 iJ

TheentriesinthebodyofTable7areX..ij with transformed time partitioned

into intervals of 10 units. The X
2

tests in Table 8 indicate that 8 sub-

jects have observed scores acceptable as realizations of Erlang random

variables.

The Erlang model predicts for each subject that each ten units of trans-

formed time should contain 4.75 items (equation 38). Sixty three per cent

of entries in Table 7 are 4, 5 or 6. Eight of the ten subjects have means

within the range 4.75 + 0.5 and the remaining two subjects have means of

4.1 and 5.3. The unweighted mean for the ten subjects is 4.86.

The model als6predicts that from the Erlang distribution equals

the length of the test in transformed time. From observed scores, the

estimate of Set is
ry

n
(47) c = (4 E Xi . + n)/2

iv .

J=-1-

where n is, as before, the number of partitions of transformed time.

Table 9 lists the two independent estimates of Olv for each subject and

the resulting t-test retains the null hypothesis of no difference between

the pairs of estimates. The difference column in Table 9 shows that the

29
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Table 7

Number of Responses Recorded by Ten Subjects in Each Ten Unit Interval

of Transformed Time of Subtraction and Multiplication

Class Intervals
(transformed

time)
1 2

Subjects
3 4 5 6 7

(number of responses)
8 9 10

Total

0-10 5 7 7 8 7 9 8 7 3 68

10-20 4 6 6 6 5 3 4 5 7 51

20-30 5 7 4 6 5 6 4 3 5 4 49

30-40 3 4 4 3 2 4 3 5 4 6 38

40-50 5 4 5 5 4 6 7 2 5 3 46

50-60 4 4 4 4 3 2 5 6 4 3 39

60-70 5 5 5 4 3 6 4 5 6 4 47

70-80 7 3 5 3 7 5 5 7 7 5 54

80-90 4 4 1 9 6 6 10 4 4 6 54

90-100 4 8 .4 3 4 3 3 5 5 6 45

100-110 7 4 5 4 7 4 9 3 4 5 52

110-120 3 4 5 5 6 7 5 6 7 7 55

120-130 6 3 6 7 4 5 5 5 5 7 53

130-140 4 8 4 5 6 3 5 4 2 41

140-150 5 4 6 5 7 3 8 38

150-160 4 5 5 5 5 6 4 34

160-170 3 4 3 5 3 6 3 27

170-180 6 5 5 5 4 8 6 39

180-190 5 3 5 7 6 2 6 34

190-200 6 4 5 3 6 6 6 36

200-210 3 4 9 8 7 4 35

210-220 5 2 4 6 7 24

220-230 6 5 2 3 15

230-240 3 5 1 5 14

240-250 5 4 9

Note: Each subject's two trials are combined into one continuous trial.
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Table 9

Significance Test for the Differences between Two Independent

Estimates of the Parameter of the Erlang Distribution

of Responses for Subtraction and Multiplication

First estimate
of Div

Second estimate
of 0

iv
(Summed linear

Subject
Number

(Sum of latencies in
transformed time)

function of
responses)

Difference

1 216.9 212.5 +4.4

2 139.3 141.0 -1.7

3 251.5 236.5 +15.0

4 240.0 252.0 -12.0

5 219.1 235.0 -25.9

6 137.2 138.5 -1.3

7 207.6 220.0 -12.4

8 252.5 248.5 +4.0

9 143.5 151.0 -7.5

10 239.6 244.0 -4.4

Totals 2047.2 2079.0 ID= -41.8

D= -4.18

S = 3.55

t= 1.177

t
.05

= 2.262

3n
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greatest difference is approximately 10% of the magnitude of the two estimates,

and that all remaining differences are 5% or less of the magnitude of their

two respective estimates. By theory of the Erlang model, each subject's true

score is 0.4750-11-
v

.

The case study of the performances of ten subjects in Subtraction and

Multiplication shows that latencies are gamma distributed; that for 8 sub-

jects the number of responses recorded in fixed time are realizations of

Erlang random variables; and that the convolution of latencies over the full

test time has as its argument the parameter of the Erlang distribution.

The failure of two subjects to survive the X
2

tests in Table 8 is the

only blemish preventing complete acceptance of the Erlang model as a vali-

dated theory for these ten subjects on Subtraction and Multiplication.

Conclusions

The stochastic models have met with varying degrees of success for the

six highly speeded tests used in this sturlv, Maze Tracing and Addit.;.,n

reject the models coulaetely. Hidden Patterns and Division accept the Poisson

model partially. Finding A's accepts the Poisson model fully, and Subtraction

and Multiplication accepts an Erlang model with only minor reservation.

The relationships of the models to the three speeded arithmetic tests

are interesting. The research does not clarify whether the relationship

results from the particular tests, or from mental processes, but we suspect

the latter. The design of the tests is careful and expert, and they are

valid instruments for measuring the skills and abilities they intend to

measure.
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The partial failure of the models for Hidden Patterns and Division is

probably the result of an inadequate transformation function for time. Many

options exist for transformation functions for time. Further research may

well produce a function which will enable the models to act successfully for

Hidden Patterns and Division.
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