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ERRORS OF INFERENCE DUE TO ERRORS OF MEASUREMENT

Robert L. Linn and Charles E. Werts

Educational Testing Service

Abstract

Failure to consider errors of measurement when using partial correla-

tion or analysis of covariance techniques can result in erroneous conclu-

sions. Certain aspects of this problem are discussed and particular

attention is given to issues raised in a recent article by Brewer, Campbell,

and Crano.



ERRORS OF INFERENCE DUE TO ERRORS OF MEASUREMENT
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Robert L. Linn and Charles E. Werts

Educational Testing Service

Brewer, Campbell, and Crano (1970) have justifiably criticized the use

of partial correlation procedures in hypothesis testing research where errors

of measurement are not taken into consideration. Ignoring measurement errors

is much more serious when dealing with partial correlations than when dealing

with simple zero-order correlations. In the latter case we know that the

effect of errors of measurement, that are mutually uncorrelated and uncorre-

lated with true scores, is to reduce the absolute value of the zero-order

correlation between the fallible measures. As Lord (1963) has pointed out,

however, we cannot ordinarily know the effect of such errors of measurement

on a partial correlation. Errors of measurement can increase or decrease

the magnitude of a partial correlation and may even result in a partial corre-

lation of a different sign.

As an alternative, Brewer et al. (1970) have suggested that factor

analytic techniques be used to test a single-factor model before drawing

conclusions about the nature of underlying conceptual variables. The pur-

pose of the present paper is to reconsider the issues raised by these authors

and the reasoning that led to their conclusions. Attention also will be

given to some related arguments that were made in a recent attack on some

commonly used methods for the evaluation of compensatory educational programs

(Campbell & Erlebacher, 1970). Our thesis is that the basic problem is a

lack of relevant information--a problem that cannot be resolved by the choice

of a statistical procedure.
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Relationship between Factor and Partial Correlation Analyses

Ignoring errors of measurement, the relationship between the loadings on

a single common factor and the partial correlations in the case of three

variables is straightforward. The squared factor loadings on a single common

factor can be expressed:

2 Pij Pik
a. =

Pjk
(1)

for i,j,k = 1,2,3.; i/j/k, where ai is the factor loading on the

single common factor for variable i and the p 's are the intercorrelations

among the variables, i,j,k . When pjk = 0 , ai
2

is undefined. Assuming

none of the three zero-order correlations equal zero, the squared factor load-

ing can be written as a function of the partial correlation,
Pjk.i

where

2
a. = 1 - Cp.k.i

2
/1 - p.. /1 -

2

Pik
C -

Pjk

(2)

Provided that C is positive, it may be seen from (2) that when pjk.i = 0 ,

a.
2

= 1.0 and when p
jk.i

< 0 , a.
2
> 1.0 .

Frederic Lord (personal communication) suggested that the relationship

between the factor and partial correlation analyses could be clarified by an

example such as the cne depicted in Figure 1. Given a- = .50 , the
1
X
2

possible values of al_ and are contained in the ellipse in Figure 1.
1
X
3 2A3
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Regions of the figure that contain negative partial correlations are indicated.

Factor loadings are denoted by ai and regions that contain imaginary load-

ings or squared loadings greater than 1.0 are indicated.

Insert Figure 1 about here

On line segment ac P23.1 0 and al = 1.0 , on line segment bd

p13.2 = 0 and a2 = 1.0 , and on line segments aeb and cfd ' 12.3 0 and

a3 = 1.0 . Imaginary values of the a 's occur when one of the three zero-

order correlations is negative while the other two are positive.

Bias in Partial Correlation

Brewer et al. (1970) argue that errors of measurement introduce a

systematic bias into partial correlations. More specifically, they state:

". . . the assumption is made that the variable being partialled out contains

no unique components and is measured without error. Using partialling tech-

niques when these assumptions are not met introduces systematic bias toward

the unparsimonious conclusion that more conceptual factors are involved in a

phenomenon than may actually be the case" (Brewer et al., 1970, pp. 1-2).

Although it is true that this may be the effect of a violation of the assump-

tion of an error free measure, the bias may be in the opposite direction. It

is easy to construct an example where the direction of the bias is toward a

more parsimonious conclusion that fewer conceptual factors are involved in a

phenomenon than is actually the case. Suppose, for example, that three latent

variables ( Tl , T2 , and T3 ) had the following intercorrelations in the

population:



p
T T

= .6
2

p
T
1
T-

= .6

and PT2T3= .18 .

The correlation between T
2

and T
3

with T
1

partialed out is -.28125

and the corresponding conclusion is that more than one conceptual variable

is involved in this phenomenon. Suppose, however, that only a fallible

measure of the first variable, say Xi , was available, where

X1 Tl + El

and El is uncorrelated with T1 , T2 , or T3 . Further, assume that

the variance of X
1

is equal to twice the variance of T
1

(i.e., the

reliability of Xi is .50). Under these conditions the resulting intercor-

relations among T2 , T3 , and Xi would be:

Px1T2 = '6 vr:5
.424

PX T '6 /75 '424 '

1 3

p
T2T3

.18

The correlation between T2 and T3 with X1 partialed out would be 0.0

which would result in the more parsimonious, but erroneous conclusion that a

second conceptual variable is not required. There is no intention to imply

by this illustration that the bias of errors of measurement is typically, or

even frequently, in the direction of producing a partial correlation that is

closer to zero. Rather the point is that the direction of the bias cannot

be determined without imposing additional assumptions (e.g., all reliabilities
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and all zero-order and partial correlations among true scores are nonnegative)

and/or obtaining additional information such as the reliabilities of the

measures. Given classical test theory assumptions, an estimate of the partial

correlation among underlying true scores may be obtained by simply applying

standard corrections for attenuation to the zero-order correlations. As Lord

(1963) has noted, the need to make corrections for attenuation "...poses

somewhat of a dilemma, since, first, it is often hard to obtain the particular

kind of reliability coefficients that are required for making the appropriate

correction, and, further, the partial corrected for attenuation may be seri-

ously affected by sampling errors. These obstacles can hardly justify the

use of an uncorrected coefficient that may have the wrong sign, however"

(Lord, 1963, p. 36).

The Single Factor Model vs. Partial Correlations

As noted above, Brewer et al. (1970) have suggested that a single-factor

model be tested before conclusions are drawn about the nature of underlying

conceptual variables from partial correlations. We shall argue that partial

correlation analyses and factor analyses are based on different models and

pose different questions. Knowing that a single factor can reproduce the

intercorrelations among three observed fallible variables is not sufficient

to draw conclusions about the partial correlations among the underlying con-

ceptual variables or true scores that correspond to the observed scores.

Assuming that three infallible measures ( T1 , T2 , and T3 ) have a

multivariate normal distribution, the partial correlation between T2 and

T
3

with T
1

partialed out has a very simple interpretation. It is equal

to the zero-order correlation between T
2

and T
3

for any subpopulation
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defined by a particular value of Tl . Thus, it provides a means of investi-

gating the relationship between T2 and T3 with Tl held constant in the

above sense. The question of whether or not T2 and T3 are related when

T
1

is held constant is not the same.as the question answered by a test for

single factoredness for the observed scores. This is, in principle, acknowl-

edged by Brewer et al. (1970) in footnote number 3 where they discuss an

example in which the control variable (I.Q.) has a factor loading of .43.

They conclude that "...if one has 'factored out' a variable upon which I.Q.

loads only .43, one has not in any meaningful sense 'factored out I.Q.'"

(Brewer et al., 1970, p. 7). They go on to indicate that they are working

on a technique of "focused factoring," wherein the control variables are

used to define the factor. Hopefully this procedure would exclude from the

communality of a control variable only that variance that properly might be

considered error variance.

Iftheobservedvariables(X.1 )are related to their underlying true

scores (T.) by the model,

X.
1

Ti . + E. , i = 1,2,3 ,

1

where the errors (E.) are mutually uncorrelated and are uncorrelated with

the true scores, then (1) may be expressed in terms of the correlations among

the true scores, , and the reliabilities of the observed measures,
' PT

i
T

j

pii
i.e., the variance of T. divided by the variance of X. Thus

1 1

PT.T. T.T
2 3.3 ik
a. = p..
1 11 p

T.j T
k

(3)
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ThecorrelationbetweenT.ansiTkwithT.1 partialed out is proportional

to

P
Tj T

k
PT.T. PT.T

k
,

1 j 1

which, given equation (3), equals:

/ p..

- 1PTTPTT
1 j 1 k ai //

Considering cases where a single factor reproduces the intercorrelations

among Xi , X2 , and x3 and 0 < ai
2

< 1 (i = 1,2,3) , the above expression

can be seen to have the following implications:

hA. When
PT .T

and
PT. T

have the same sign,
1 1 k

1. a.
1

< n.
1i

implies p
T.T .T.

> 0 ,

'
J k 1

2. a.
2

= p..
11

implies p
T.T .T.

0

J k 1

3. a
i
>

pii im plies p
T .T .T.

< 0

J k 1

B. When
T.T.

p and
1 j

have opposite signs,

1. a.
1

< p. implies p
T.T .T.

< 0 ,

J k 1

2. a.
2

p. implies op

.T .T.
0

I
,

T
j k 1

2
3. a.

1
> p. implies p

T.T .T.
> 0 .

J k 1

These results show that when the correlations among the observed scores

are reproduced by a single factor with squared loadings between 0 and 1, no

9
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conclusions are warranted regarding the partial correlations among the true

scores. Given positive reliabilities and nonzero intercorrelations among

observed scores, if the three observed variables do not fit the single

factor model, then the three partial correlations among true scores may be

positive or negative but not zero.

T.,e relationship between the observed loadings on a single common factoir,.

the partial correlations among observed scores, Rna the partial correlations

among true scores may be clarified by the example depicted in Figure 2. Fort

the case p
T1T2

= .50 and p
11

= p
22

= p
33

.50 , Figure 2 shows the pos-

sible values of o and p . A set of regions is defined within
'T

1
T
3

T
2
T
3

which the factor loadings on a single common factor, the partial correlations

among observed scores, and the partial correlations among true scores have

specified characteristics. The ellipse in Figure 2 contains the values for

Insert Figure 2 about here

which the determinant of the matrix containing the intercorrelations of T1 ,

T
2

, and T
3

is greater than or equal to zero. Larger values of PT
1
T
2

would define a thinner ellipse and smaller values a rounder ellipse. The

numbers inside the ellipse identify the various regions of the ellipse, and

the letters identify line segments separating regions. For the regions in

Figure 2, the factor loadings (ai) for a single common factor that will

reproduce the intercorrelations among the observed scores, the partial correla-

tions among the observed scores (pik.i) , and the partial correlations among

the true scores (PT.T
.T.

) are shown in Table 1. The values of a.
' Pjk.ik

10
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and p
T.T T.

for values of
T.T.

p nd p
T.T

on the boundaries between
j k j k

regions are shown in Table 2.

Insert Tables 1 and 2 about here

As was stated in implications A.2 and B.2 above, p
T.T .T,

equals

J k
zero when ai

2
= p11 . This occurs on line segments co, do, io, jo, cmd,

and inj. When 4. = 1 (line segments bo, eo, ho, and ko) the partial,

Pjk.i
, among observed scores is zero; however, p

T.T .T.
is nonzero. The

J k
location of line boh and line eok depends on the magnitude of p11 and p

22
:

boh is defined by points where o
P

and eok is defined by
'T2T P11PT 1 T 2 T1T3

2
points where pTT = p

22
2 3

pT
T

. A line where a3 = 1 does not exist

1 3
for this example because there are no possible values of p

TiT3
and p

T2T3

for which p
T1T2

equals p
33

p
T1T3

p
T2T3

. Regions 2a, 3a, 1l, 6a, 7a, and 8

are of interest since they define combinations of p
T.T

and p
T.T

for
i k

which a partial correlation for observed scores and a partial correlation for

true scores have opposite signs. Regions 1, 2a, 3a, 4, 5, 6a, 7a, and 8 are

where a satisfactory single-factor solution is obtained yet all three correla-

tions between pairs of true scores with the third true score partialed out are

nonzero. Different conclusions about the number of underlying conceptual

variables involved in the phenomenon presumably would be drawn for instances

in those regions.

This problem should not be dealt with by simply invoking the principle

of parsimony and thereby concluding that the fit of a single factor model

indicates that there is only one dimension underlying the phenomenon. Rather,

the problem should be dealt with by obtaining the additional information that
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is necessary to make inferences within a given model. A brief discussion of

the use of multiple measures to obtain the needed information is presented

below in the section on needed additional information.

Errors of Measurement in the Analysis of Covariance

Campbell and Erlebacher (1970) have provided a much needed criticism

of the common misuse of the analysis of covariance as a means of trying to

adjust for preexisting differences between experimental and control groups

for the evaluation of compensatory education programs. They argue that

"error" and "uniqueness" in the covariate result in bias when the groups

differ on the direction of underestimating the slope of the regression of

the dependent variable, on the covariate (for a good discussion see Cochran,

1968). Porter (1967) has illustrated the nature of the resulting bias for

various group differences in means on the covariate and on the dependent

variable. When using the analysis of covariance, bias due to errors of

measurement in the covariate might make a compensatory education program look

bad (or good).

The effect of "uniqueness" depends on its sources. If uniqueness is due

to errors of validity (e.g., a perfectly reliable symptom of the underlying

variable), then bias will result in the same way that it does from unreliabil-

ity. On the other hand, if uniqueness merely refers to unshared variance

between the covariate and the dependent variable as in Campbell and Erlebacher's

(1970) treatment of covariance adjustments, then the question of bias is

ambiguous. Given independent errors, unshared variance may be due to unrelia-

bility, invalidity or a lack of perfect correlation between underlying varia-

bles. The latter is not a source of bias and should not be corrected for as

is done by Campbell and Erlebacher's adjustment procedure.



This problem needs to be viewed from the perspective of Lord's (1967)

paradox. Lord has shown that the comparison of preexisting groups by means

of an analysis of covariance (statistician 2) and by means of an analysis of

difference scores (statistician 1) can result in paradoxically different

results, both of which are manifestly correct. In his hypothetical illustra-

tive example, Lord depicted an experiment in which girls received one diet

and boys another. For each group the mean and variance of the final weight

was identical to the mean and variance of the initial weight. There were

preexisting differences between the groups in mean weight, and for each

group the within-group correlation between initial and final weight was .50.

Assuming that the weight measures are error free, the above correlation

would be the correlation between true initial weight and true final weight.

In the absence of measurement errors the analysis of mean change would

indicate no "treatment" effect, whereas the analysis of covariance would

indicate a "treatment" effect.

Campbell and Erlebacher (1970) have suggested that in pretest-posttest

designs a "common-factor coefficient" might be used to correct for errors of

measurement and uniqueness in the covariate. Using the proper common factor

coefficients for both pretest and posttest in the standard correction for

attenuation formula would result in a "corrected" pretest-posttest correla-

tion of 1.00. Assuming equal coefficients for the pretest and the posttest,

the common factor coefficient for Lord's example would be .50. Applying this

"correction" would increase the slope of the within-group regression lines to

1.00 and result in identical intercepts for the two groups. In essence,

Campbell and Erlebacher have devised a roundabout way of siding with Lord's

first statistician. However, they have not resolved Lord's paradox. Rather



-12-

than impose a restriction, such as the one that the "corrected" correlation

between pretest and posttest be 1.00 (which, in our opinion, is unjustified),

it would seem far better to conclude with Lord (1967) that ". . . there

simply is no logical or statistical procedure that can be counted on to make

proper allowances for uncontrolled preexisting differences between groups"

(p. 305).

Needed Additional Information for Fallible Measures

Dealing with fallible measures will generally require additional assump-

tions and additional information. In some instances, using parallel forms

of one or more of the measures may provide the needed additional information.

One difficulty with this procedure is that most observed measures are really

symptoms or indirect measures of the variable or influence to be measured,

which is to say that even if the symptoms were measured with perfect reliabil-

ity, they would be imperfectly correlated with the "true" variable. The

researcher must decide which symptoms are reflections of the relevant under-

lying variable. This question is crucial since different sets of symptoms

will typically define different "true" factors depending on the particular

statistical procedure employed. The multitrait-multimethod approach intro-

duced by Campbell and Fiske (1959) attempts to deal with this validity problem

by using different methods of measuring the same variable. Correlations between

different method measures of the same trait typically will correlate less than

equivalent measures, i.e., in this model the classical psychometric approach

using parallel forms is apt to underestimate correlations among underlying

conceptual variables. An alternative way of stating this problem is to assume

that part of the correlation between the two measures Xi and XI of Ti is

14
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due to correlated errors of measurement and that factors causing this correla-

tion are uncorrelated with the true scores. In this case, the square root of

the correlation between X
1

and X*
1

no longer provides a reasonable estimate

of the correlation between Xi and Ti . Assuming that the errors are posi-

tively correlated, the correlation between X
1

and X*
1

will overestimate

the squared correlation between Xi and Ti and using this inflated coeffi-

cient to correct for attenuation will result in the kind of undercorrection

that Brewer et al. (1970) warned. against.. Correlated errors may, in fact, be

one of the reasons that Brewer et al. wanted to correct for "uniqueness."

There are advantages, however, to formulating the problem in terms of corre-

lated errors rather than simply saying that we should correct for uniqueness.

The former makes it possible to devise procedures for estimating the desired

coefficient (the correlation between X
1

and T
1

) given the possibility of

either positively or negatively correlated errors, whereas the latter only

allows the conclusion that the correlation between X
1

and X*
1

overestimates

the desired coefficient if the errors are in fact positively correlated.

Conclusion

From our perspective, "focusing on the conceptual problem of choosing a

one-factor vs. a two-factor model" (Brewer et al., 1970, p. 3) distracts the

researcher's attention from the task of constructing a model which is consis-

tent with everything we know or hypothesize about the phenomena under study.

Any inferences will necessarily be no more valid than the assumptions made

about reality. For heuristic purposes we have assumed that the linear addi-

tive model was relevant; however, there is no rule of nature that effects are

either linear or additive. No provision was made, e.g., for catalytic,

5



feedback, or interactional type influences. it is important for the research

design to be set up to study the question of which of the plausible alternative

models more closely simulates reality. Rather than focus on the conceptual

problem of choosing a one-factor vs. a two-factor model, it seems to us far

more worthwhile to spend time in designing the study to explore the relevant

alternate models, ensuring collection of the information necessary to test

which is the best simulation of reality. Depending on the problem, the factor

model may be one of the alternatives. The assumption that the factor model is

a priori relevant appears to us to be unjustified given the current state of

the art.
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Footnotes

1
The research reported herein was performed pursuant to Grant No.

OEG-2-700053 (509) with the United States Department of Health, Education,

and Welfare and the Office of Education.

We are grateful to Frederic M. Lord for suggesting the idea that was

used for the illustrative example in Figure 1.
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Table 1

Values of Factor Loadings and Partial Correlations

for Regions of Figure 2

Factor Loadings

Partial Correlations

Among Observed Scores

Partial Correlations

Among True Scores

Region a
1

a
2

a
3

P23.1 P13.2 P
12.3

p
T2T3.T1

P
TiT3.T2

P
T1T2.T5

1 + + + + + + + + +

2a + + + + + + - + +

2b G
a

+ + - + + - + 4

3a + + + + + + + - +

3b + G + + - + + - +

L. + + + + + + + +

5 - - + + - - +

6a - - + + + - +

6b G + + - + + - +

7a - - + - - + - + +

7b G + - + + - + +

8 - + - - + - - -

9 i i i - + + - + +

10 i i i + - + + - +

a
G denotes that the factor loading is greater than 1.0 in absolute value.
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Table 2

Values of Factor Loadings and Partial Correlations

for Lines Separating Regions in Figure 1

Line
Factor Loadings

Partial Correlations

Among Observed Scores

Partial Correlations

Among True Scores

Segment a
1

a
2 P23.1 p13.2 p12.3 PT T Pm m m p

TT2 3- 1 1113'2 1T2'T3

ao Ua 0 0 - + + - + +

bo 1 + + 0 + + + +

co Fill + + + + + 0 + +

do
4- Ji62-1 4-

+ + + + 0 +

eo + 1 + + 0 + + - +

fo 0 U 0 + - + + - +

go U 0 0 + - + + - +

ho -1 - + 0 - + + - +

io
-%F.17.17

- + - - + 0 - +

jo -11-72- + - - + - 0 +

ko - -1 + - 0 + - + +

eo 0 U 0 - + + - + +

cmd + +
Jr33.

+ + + + + 0

inj - ff)-3; - - + - - 0

aU denotes that the factor loading is undefined.
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Figure Captions

Fig. 1. Regions which define values of factor loading and partial

correlations for possible values of la- and given

3 3 PK 1K 2 50

Fig. 2. Regions which define values of factor loadings and partial

correlations for possible values of p
T1T3

and p
T2T3

given p
T1T2

.50 ,

and p11 = p22 .33 = 50 .

21



A 1.0

pxl x3
0.0

1.0
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a's all imaginary

P 23.1<0

one common
factor

a? >1

P12.3<0
e

a 2a > 1

p13 .2<0

Cl>1
<0

2

P13.2<0
P23.1<0

2 >1

i°123<°n
P13.2<-0

/012.3

one
common
factor

a
2>

P13.2<°

a's all imaginary

p
13.2

<0

0.0 1.0

4 Px x
2 3

"2
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