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Section 1: HYSTERICAL BACKGROUND

Outline of Section 1

The goals of section one lie primarily in the following

areas:

1. An introduction and usage of such terns as algorithm, partial

factoring, Math induction, recursiveness, tessaract,

parallelopiped, propitious and false position.

2. An investigation of the ideas of Algebriac--Geonetrical

relationships, making assumptions based on a finite number of,

pieces of information, producing a "why" for each relationship

given, dealing in the abstract using aLgebriac models and

expansion of a binomial to answer a specific question.

3. Experience and maturation in dealing with non-definite, non-

real nathenatical concepts.

Notes Nunbers in parantheses refer to the numbered books in the

bibliography (Section 6.6)

Section:1.1 Introduction

On June 19, 1623, in the small town of Clermont, in the:

province of Auvergne, in Freince, one Blaise Pascal was born.

Monsieur Blaise Pascal was a sickly child and ffon the age of

17 until his death at 39 his wretched physiwze was subjected

to attacks of acute dv-siepeagindigestion) E,1)0. chronic insomnia.

Yet this man was responsible for such diverse pmatical inventions

as the wheelbarrows, the first mechanical adding machine and the

barometer; he also wrote two of the greatesr works of early

French Literature, the "Pensees" and the "Provincial Lettres";



W.111 he did imaginative and creative work in three diverse areas

of Mathematics. It is tw of these areas in which we shall be

working presently.

Pascal's mathematical efforts began at age 16, when he

Aiscovered the "Mystic Hexagram" along with 400 corollaries to

the theorem which defined the hexagram; he ttEreby established

the essential basis for a new non-mbtrical geometry. At age

30, he published his "Traite du Triangle Arithnetique", which

eubellished at great length the original triangle published in

1303 by the famous Chinese algebraist, Chu-Shi-Kie. And at age

31, along with another great mathematician, Pierre Fermat, he

established the basis of combinatorial analysis and probability

theory.

Throughout most of his life Pascal was in constant pain

(a severe toothache caused him once to work 8 straight days on

the theory of the cycloid curve, thereby recreating most of

what the ancient Greeks had done); in fact, it has been reported-

that he had absolutely no sense of humor and never smiled.

(Small Wonder!) However, in the ensuing subject matter, most of

which was first produced bytbPascal, you will find much material.

that will bring you great joy and happiness.

But first, and after you wipe that smirk fromcyour face,

we will look at some Greek mathematics. Hopefully, we will be -

able to relate this material to Pascal's Work later on..

Section 12 Square Root AlRorithn

Most of you are familiar with the proof of the ty---

of the'Vt which is to may, the fact that no natural numbers
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(positive integers) exist whose ratio will be equal to the 1/2.

When the ancient Greek Pythagorous (who lived most of his life

in Italy) and his group was apprised of this fact, they were

very much shook-up! It seems they had postulated that all observed

natural phenonnenon cduld be described by using dimple algebraic

(addition, multiplication) combinations of natural. numbers.

Well, clearly the diagonal of a square 1 u4it on a side provides

an immediate counter-example to their postulate!

As a result, sone of. the Pythagoreans are said to have

connitted suicide, but the more stable and pragmatic of then

had another out. They merely geometricized all their mathsmatics.

Numbers were not considered to have a pure existence (866166-ge /0

fer!liobil rest of this paragraphj

Now A,P(After Pythagorous), the Greeks would never talk

about raising a nunber to the 4th or 5th power, as that would

have no meaning. However, they would raise a number to the

2nd or 3rd power, ie., square the number, cube the number,

since the 2nd power (the square) would represent the area

of a (would you believe?) square and the 3rd power(the cube)

would represent the volu4e of a (would you believe?) cube!!

Now, for the converse question; what does it mean to take

the square root of a number? (Why don't we7ask for the 2nd root

of a number?) To nost of us it means getting a slide rule or a

set of tales or logs and obtaining some number, such that

when the nunber is raised to the 2nd power(squarbrd?) the original

number results (or something close to it!). Well, to the Greeks,

taking a square root meant to find the side of a square whose

area was given; likewise, a cube toot was considered the length
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of the side of a cube whose volune was given.

Their process for the former tash(finding a square root)
(See page 10 for missing sentence)

went sonethihig like thisWarst, draw a picture of the given

square, and within that given square find a square of largest

area having for the length of its side a multiple of 10.

;LO x

Since 10 x 10=1004729
7)X

/

20 x 20=4004'178

30 x 30=900)"749

asIIN
The square in question is

0 20 x 20.
4.

X

Place the square of known area in the lower left hand corner of

the given square, and divide the remaining area up into two

rectangles and one small square, (aa shown in the diagram).

Note that one of the dimensions of the rectangle is known

(namely 20), whereas the small square is completely unknown.

Now, these tIlo rectangles and the unknown square must

account for the remaining area of the origianl square, namely,

729-400=329 square units. The area of each rectangle is 20 times

x, and there are two of them, and the area of the unknown square

is x-, Therefore;

2(20x) + x2 must equal 329.

Now this equation, which is just a &pie quadratic, lends

itself to the following partial factoring:

(x)[2-20+x]= 329

The Greeks would now use the process of "false position" to

8
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solve tUis equation (educated guessing), or at least get the

best approximation to a solution. Of course, since we have already

taken the square whose side was -Elite greatest multiple of 10 out

Of our original square, x must satisfy the inequality (Dx<'10.

For instance, try x=5. Then:

(5) (2°20+5) = (5)(40+5)

= (5)(45) = 2254.329

Therefore, try x=6. Then:

(6)E-40+6). (6)(46) = 2764 329

Try x=7

(7)(0+7) = (7)(47) = 329

.'. x=7, and the square root of 729 is 27! (ie., 20 +7).

Have you ever noticed that 27= 20+7? Did you notice in the

breickets above, that 40+7= 47? Will there always be a similar

situation if this process is performed again?Will there always

be a zero in the last place of the number being added to the

number between 0 and 10? Of course, that's the way the process

was set-up! The 40 was merely 2.20, where 20 was the multiple

of 10! And since 20 was the greatest multiple of 10 which we

could use, 0<x10 had to be so!In our decimal number system, when

you add a multiple of 10 to a units digit, you merely juxtapose

them(place them together , with the units digit covering the 0).

All then: observations were made in the early 16% century

by the various German alarithmists who were writing arithmetic

books. Their task was to un-geometricize the Greek process.

A process very sidilar uo that outlined above was first published

in 1513, and until a very few years ago, was a standard problem

on the Math 8 regents exam in New York State,( and therefore

9
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a part of the Math 8 curriculum)!

What algorithm (set of rules) did these German's cone up

with(r Let's take a look. It went like this:

2, xf
Step a. Mark off, leftE.:nd right,

\/ 7 29 two places from the decimal point.

Step_b. Estimate the square

root less than or equal to the

first digit or pair of digits

2 encountered.(ie., 2
2
47)

2

4

329

_
225

4c
a

4 xj-5---2--e -f

Step c. Square your estimate

and subtract from the first

digit encountered.

Step_d. Bring down the next

pair of digits (ie., 29)

At this point you should reAlixe that you have subtracted out the

square whose area was 400 units, leaving 329 units to be accounted

for.

Step e. Double your estimate made in ttep b, and place on line.

(This represents 2 x 20)

Step f.Take any digit x, such that 04x410 and place it in the

tmo spots designated; note that when you juxtapose it to 4 you

are actually adding x to 40; and when you juxtapose it to 2,

you are actually adding it to 20.

anE.Multiply x4x; ie., (x)(401-x), so that the result is lyss

than or equal to 329. Make certain you take the largest such :c.

In the present case , 7 works otit very wellland there is no

remainder, However, if there is some area left unaccounted for,

1 0
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the process can be continued (indefinitely) as long as you

desire (many, many decidal places) or until all the area is

accounted for.

Here is an exawle. Find the square 1 4 1 4

root of 2. J 2. 00 00 00
%ow'

1

24 1 00

96

281 400

281

824 11900

11296

And now you might try an example; say; find th(:: square root

of 2237.29 (using the process, of course.) The answer is 47.3.

But you see, 1'n notinterested in the answer; that's why

gave it to you. i1iat I'm interested in is whbther or not you

know the process? Do you know what Greek geonetrical process

was all about? Do you see how the German algoithmists (rule

makers) translated the geometrical process into an essentially

algebraic one? This is what I want you to know!

And of course your rejoinder might be that you're not

interested in what ancient Greeks and Germans didland who needs

this silly algorithn(or its explanation) when log tables are

available, or even other means. Which is a very good rejoinder

indeed. Why start off a chapter on the binomial expansion with

an extinct algorithm for square roots?

Well, let me give you sone partial answers. First of all,

your parents have been feeling insecure ever since the advent of the

new math, and' here is a topic which they have been on the most

11
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intimate terns with in the past. I know my outline of the

algorithn given above is a bit sketchy, so take the problem

I just save you hone to your Mon and Dad az. let thed help

you work ovt the process. This should help rebuild their shattered

confidence to a cer' 4.n extent, and also be a start towards

building a bridge ov your own personal generation gap between

you and your parents. However, lest they get out of place, ask

them why the process works! As they fumble about for an ex-

planation you can once again assert your clear cut intellectual

superiority over them, thereby arousing their undying ennity

towards you.

But enough of social application! There are indeed sone math

lessons to be learned, and utilized, as well. We(you!) are

subsequently going to develop a cube root algorithm much in the

sane fashion that the Germans developed their square root

algorithm. But to do this we have to go back to the natural

problen of breaking down the cube into different rectangular

parallelopiped(or as hr. Wagner says, "Boxes"), just as the

Greeks broke down the given sqtare itto a square of known area,

bwo rectangles (1 dimension known, 1 unknown) and 1 small square

of unknown dimensions. In other words, for our specific ease

above, the Greek approaah consisted of the following(algebraic

observation:

729-400= 2(20x)+x2 is equivalent to

729= 400+2(20x)+x21 or

729= 202+ 2(20x)+ x2, or

729=(20+x)2. For our case where x =7. (20+7)2=729 was correct.

And that's the name of the game.

?2



Section 1.2 fore Algorithm

Now that about cube roots? How would we work on this? Let's

take a cube of known volume, say V= 12,167(Obviously another

propitious choice). Since 203=8000 and 303= 27,000, it is apparent

that the largest cube with its side being a multiple of 10 whose

volume is less than the given cube is a cube 20 units on a side

with a volume of 8000 cubic units, leaving 12,167-8000=4167

cubic units unaccounted for. But Egain, there is some number x

such that 0x(10 and such that 20+x will be the length of the

side of the given (gibe! And then 12,167=(20+x)3 must be the case.

Which is to say, the given cube of volume 12,167 can be

looked at (algebraically) as:

12,167=(20+x)3 = 203 + 3(202. x) + 3.(20x2) + x3

12,167= 80004.3.(202x) +3.(20x2) + x3

The Greeks would not have obtained this expression

algebraically as we have, but would have faked it by playing

with blocks. More pn this later.

At any rate, the Greeks would now use their prodess of

"false position"(whffich is substitution using eductted guesses)

to obtain a solution; The German algorithmists would have used

Partial factoring twice on the last threeierms, and then have

set up a spate of rules. Let's outline the evalutioh of the

algorithm first, and then see how the breakdown of the given

cube would make sense toihe Greeks. Look at:

12,167 = 8000 +3(202.x) +3(20.x2) +x3

4,167= 3(202.x) +3(20x2) + x3

=(x) [3.202 +320x+ x2]

= x[3.20 2 + x
[3.20

+x1

13
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Note: This idea of partial factoring is of extreme importance

in giving a proof for the validity of the process known as

Synthetic Division. Practically all texts foist off a demonstration

that is complete hog-wash!

Now, if you still remember theft 04x410 and that a multiple

of 10 added to x in our decimal system is merely equivalent to

replacing the 0 with x, you should be able to outline an inter-

esting algorithm fortaking cube roots. Perhaps you night try tp

find the cube root of 12,167 which we have already started!

(the answer is obviously 20 +3 =23; do you know why? Try cubing

all the digits from 1 to 9 and see what happens!)

And now for the geonetrical part! de have a given cube

whose volume is 12,167 cubic units. e plese a cube whose known

volume is 8000 cubic units ia the lower left hand corner;

question: How do you break up the remaining space? Answer: The

algebra tells you how! The remaining space(containing 4,167

cubic units) is to be lroken down into 3 dereal boxes, two of
are

whose dimensions known and R unknown(ie., 3°202x), 3

cigarette cartons, 1 od whose dimensions is known and 2 unknown

(ie., 3.20x2) and 1 small cube of unknown dimensions(ie., x3 ).

You can readily see how the Greeks used vartbus boxes

(rectangular parallelopipeds) to fill up the left over space by

inspecting the sketch below.

Sentence from Page 3:

at** in themselves anymore, but were to be associated only

with the measures of particular line segments. (Examples of

numbers having a pure existence are given in Sec. 1(.5'1

Sentence from page 4:
Given a square whose area is 729 units, find the length of

a side of this square:

14
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-
my....

The cereal boxes are to be found one above the 20 by 20

cube, one to right and one behind this cube of known volume.

The cigarette cartons are to be found in the upper-front

right hand cornea, the upper back left hand corner and stand-

ing on end in the lower back right hand corner. Thpcube of

unknown dimensions is in the upper back right hand corner.

Perhaps if I had coordinized my cube (in three space, of

course) I could have confused you more. But T imagine that would

be impossible. Let's sunnarize these last results.

(see page 138 of (4) for another picture.)

1
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The algebra we used to find a cube root has led us to a

way of breaking down the space inside a cube so that we can use

refined educated guesses for obtaining the length of one Of its

sides. The Greeks, clever as they were, undoubtedly faked this.

In fact, how do we know which cane first, the geometrical apprmoh

of the Greeks, or the algebraic approach of the Gernan algorithn-

ists? Obviously, historically, the Greeks came first .And that

answers that question. But they would necessarily stop with

finding cube roots, as the finding of a 4th root rakes no sense;

ie., it is not sense-ible,and therefore has no neaning! I don't

know how far the Gernan algorithnists went, but I doubt if they

went past tho square root algorithm. If any of you have success-

fully worked out a cube root algorithm, you'll know what I'm

talking about.

Ian sure that at this point you're all still in a fog; but

let's take a step backwards and inspect what we've done. The

following chart might help.

Era Problem Process

Greek Find tie length of Break the square down into 1 known

a side of a square square, 2 partially known rectangles

of given area. and 1 unknown square. Continue this

process until "all" the area is

accounted for.

German Find the 2nd root Follow an algorithrl blindly, the

(square root) of a algorithm having been obtained by

given number. algebraicizing the Greek solution.

Greek Find the length of Break the cube down into 1 known

an edge of a cube of cube, 3 partially known boxes,

16
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Era Problem Process
3 less partially known boxes

Greek given volume. and 1 unknown cube. Contihue until

German Find the 3rd root

(cube root) of a

given number.

Greek Find the length of an

edge of a 4th dimension

cube of given content.

German Find the 4th root of a

given number.

all space is accounted for.

1. Jlgebraicize the Greek solution.

Non-sensical

al

In renaissance Europe, if the

Greeks couldn't do it, it couldn't

be done.

The point to be understood here is that whereas historically

the geometrical approach led to an algebraic approach, the

algebraic approach is much more general and this particular

algebraic approach was extensively significant in Isaac Newton's

development of the calculus. However, we'll nerely use it to

develop a geometrical approach to finding the edge of a tessaract,

the 4-dimensional perfect "cube. A tessaract is wha?

Section 1.3 The Tessaract

To the Greeks, a tessaract was non-sensible; to the Germans,

they had nothing to work from. To us, we can easily "visualize"

a tessaract and find the length of one of its edges because we

can reason, and we have algebra tl-at the Greeks didn't have.

But first, what is a tessaract?

We will obtain the "picture" of a tessaract by developing



it as an extension of the cube. To see how this is donetlet's

see how a line segment is the extension of a point, how a

square is an extension of a line segment and how a cube is the

extension of a square. Here is how the process is accomplished.

First start with a point P which is a zero-dimensional

figure. If the point P is moved in a fixed direction to a new

position P' a line segment Tis generated. A one - dimensional

line segment is generated frori a zero-demensional point. The

segment consists of the end points P and P' and the measure

of the path between then which is called length.

By moving at projecting the line segmentein a direction

perpendicular to and the sane distance tb a new positions',

it locus will be a two-dinensional square and its interior.

Point P of the line segmentimoves to point P" generating

line segmentl" and P' moves to P"generating line segment

"'. The measure of the path betweeneande' we call area.

By continuing in the same manner and projecting the square

to a new position in a direction mutually perpendicular to the

sides of the square and the same distance, one generates a

three-dimensional figure or cube. The measure of the path

between the square's original and new position is called

volume. Note that each vertex of the square generated an edge

of the cube and each side of the square a face of the cube.

To continue as before and project a cube into a new

position leads to several unavoidable problem. How can one

project a cube in a direction mutually perpendicular to the

edges of the cube? In attempting to construct an intuitive

model of a four-dimensional figure in our lirited three-
18
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dimensional enviro7ent one must cal use of perspective. One

is very aware that a cube can be pictured in two dimensions.

The picture is not a cube but does serve as a representation of

it. One obtains this two-dimensional represen'cation of a cube

by projecting the square within the plane of the square in an

arbitrary direction assumed to be perpendicular to the square's

sides. It is assumed that the direction is perpendicular instead

of actually projecting it perpendicular to itself for this is

impossible in only two dimensions. Metric properties are des-

troyed by such means but at least we do have a picture of a

model. Take the two - dimensional representation of the cube and

again project it within the plane in a directiOn assumed to be

mutually perpendicular to the edges. This establishes a two -

diuensional picture of a four - dimensional tessaract. One can

only rely on their i4agination in having four lines nutually

perpendicular at a point or vertex within a plane, One could and

maybe in a more beneficial manner picture a tessaract by a

model in space. If the cube is projected ina direction assumed

to be mutually perpendicular to the edges of the cube to a new

position in space and connecting the corresponding vertices to

represent its path, then a model of a tessaract is formed in

three dimensions. One could have projected the cube within the

cube in the same manner as one could project a square within

a square to represent a cube in two dimensions giving the effect

of looking into a box.

In the analogue of projecting a cube into the fourth

dimension to obtain a tessaract one should observe the relation-

ships established thus far. In going from each figure to the

next higher dimensional figure the vertices (called the point
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in the case of the zero-dimensional figure and the end points

in the case of the line segment) became vertices in the higher

dimensional figur generated. Hence, the number pf vertices of

any figure is (just twice litrhe number of vertices of the figure

with one less climension. The point has one vertex, the line

segment has tw vnrtices,the square has four vertices, the cube

has eight, and th':? tessaract should have sixteen.

In projecting each figure one should note that each line

segment (called side in the case of a square and edge in the case

of a cube) of a fi:7-ae projects to a line segment and each

vertex generates a difftrent line segment in the new figUre.

Hence the number of line segments in any figure is twice the

number of line segments in its corBtsponding figure of one less

dimension plus the number of its vertices. The number of sides

of a square is twice the one genrating line segment plus bhe

two vertices or four. The number of edges of a cube is twice

the four sides of a square plus the four vertices or twelve.

The number of edges of alBssaract should be twice the twelve

edges of a cube plus the eight vertices or thirty-two.

The measure of the path of a point we call length, the

measure of the path of a line segment the area, the measure

of the path of a plane region the golume, and nathenaticians

call the measure of the path of a solid the content. In

projecting a square to obtain a cube each of the.four sides of

the square generates a face of the cube plus the two faces

formed by the square reproducing itself; the cube has six faces
missing sentence below

in all. In obtaining a tessaractus the six faces of the cube's

original position and thedx faces in its new position---or
Missing sentence; tessaract 4,
from a cube each of the twelve edges of the cube forms a fake of the

7 11



twenty-four faces in all.

In moving the cube in space to represent fourth dimension

each of the cube's six faced will generate six solids in the

tessaract plus the two solids formed by the cube reproducing it-

self. The tessaract will have eight solids in all ,nd-Seems quite

odd since we cannot comprehend a figure being bounded by eight

solids, However, it was found by the foregoing discussion that

the relationships of a gigure and its corresponding figure cf

one more dimension are the sane no natter what figure we start

with. Each figure is bounded by the figures of one less dimension.

Even without a true four-disensional tessaract we know it is

--composed -of sixteen vertices,.thirty-two edges, twenty- four_.

faces and eight solids. (The previous 8 paragraphs are fron

(4), pp. 133-135.)

And now that we know what a tessaract looks like, we can

readily find the edge of a tessaract whose content 0=229,641

tessa units. (obviously the content is obtained by multiplying the

four dimensions of any hyper-priamt where the tessaract versus

hyper-prism relationship is analogous to the cube versus

rectangular parallelopiped or square versus rectan3le relation -

ship3.Ie1l since 204 = 160,000 and 304= 810,000 the edge has a

length between 20 and 30 liner units. Let's try to obtain a re-

fined educated guess for the 0<:,c0.0 numoer by visualizing th,

breakup of the tessaract.

First, we'll put a tessaract Frith an edge of 20 in the lower

left- hand corner(wherever that might be) and a tessaract with an

edge of x in the upper right hand corner(ditto). And of course

there will be a number of partially known hyperprisms (3 known,

lianknown dimensions), less partially known hyperprisms(2 known,
21
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2 unknown dimensions) and some least partially known hyperprisms

(1 known, 3 unknown dimensions). In this last case, the content

of each of these hyperpriHns would be 20sx.xx, or 20x3; the

question of course, is ho?; many of them?

Now if you've followed the thinking of this dissertation

thus far, you should at this point be making the suggestion that

I take 20+xEnd raise it to the 4th power, which is what we'll do!

If you perform the operation correctly, you should obtain the

following results:

(20tx)4. 204+ 4.203.x+ 6.202.x2+ 420x3+ m41

Therefore, it is quite apparent that the interior of the tessaract

should be bboken up into 2 smaller tessaracts and 14 hyperprisns

(where 4 +6 +Z 14) of the various dImensiohs. And so, like the

Greeks, we could be off and running with our "false position"

process, substituting nunbers inibr x so that the sum of the

contents oftilihe interior hyperprisns and tessaracts would be

less than or equal to 0=279,841 tessa units; and if we were

German algorithnists we could immediately set up the following

'Oartial factoring of the expansion and 6o on from there.

Namely,

279,841= 204+ 4°203x + 6202x2+ 4.204+

2791841-160,000= 4.203.x+ 6202x2+ 4.203 +x4

119,841= x&'203+ 6.202x+ 4.20x2+ x3.1

= x[4.203+x(6.202+ 14420.x+ x21]

= 44.203+ xf6.202+ x4.20 +411

The algorithmists would then set up some rules and drive

eteryone insane. However, therei is a very neat way of setting

up an algorithm for making "false position" guesses. See if

92,
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you can follow this. Notice that in the partial factoring, above,

(I never have defined partial factoring, but I'm assuming by

now you have figurdd out what I mean!) if you substitute a number

in for x, say and if you work your way out fp= the inside,

the following listing occurs; first you add a number(4.20) to

x=3; then you multiply that sun by x=3; next you add a number

(6.202) to your previous result, and then multiply by x=3

once more; you then add the number (4'203) to your previous

result and agEltn multiply that result by x=3.

Now, did you notice the recursiveness of the operations

add-multiply, add-multiply, add-multiply?fRecursiveness is a

.very.big mathamatical word; it refers to the repativeness of q_

process or set of processes,(in this case upon working from

the inside out); ie., before step 2 can be performed, step 1

has to be performed first.(More, such more, on this later.)

Meanwhile, back at the algorithm. In evaluating the

partially factored expression from the inside out, we saw the

repeated use of the add-multiply process, where the multiplication

was always done with zt-.! Well, let's be clever. and set up a

two line algorithm for this process. First take the educated

guess x=3 off on the right someplace since we'll always be

multiplying by it. Next, put down the numbers 1, 4.20, 6.202,
is

4203 in a row like so the coefficient of the x4term):

1 4.20 6'202 1 4,203

x=3

Ncw,draw a line under this row, leqving room for another row

of numbers; the plan is to perform all addition operations

vertically and all multiplications by x=3 diagonally. Also, just

re-write the 1 down below.(why?- Bedause we're being clever,

2
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that's why!)

1 4.20 6.202 4.203

1
1 83

Now multiply the 1 by x=3 and place the result diagonally

above it, namely under the 4020; then add that number (3.1=3)

to the 4,';.:() and place the result vertically below the line.

Repeat the -process as outlined abov,e; it should look like this:

1 4.20 6.202 4.203

249 7947 11% 841

E15 39, 947---

Notice two things here: 1. The final number computed is the

difference 'between the content of the given tessaract and the

content of the tessaract of edge 20. How about that !(Obviously,

another set-up.)

2. You should have noted that the

algorithm I've outlined for evaluating educated guesses is

none otter than the infanous Synthetic Division; you night also

notice that no division ever took place. NONE WHAT-SO-EVER!

(Synthetic Division ray left-eyebrow!)

Meanwhile, back at the problem. We have been attempting to

find the length of the edge of a tessaract of content C=2791841

tessa units. We wanted to use the Greek technique of breaking

down the interior of the given tessaract into some number of

hyperprisms and smaller tessaracts so that we could get better

and better refined educated. guesses.(Because I've been using

"nice" numbers for my cubds and tessaracts, it has not been

apparent that the general processes outlined can be utilized

9
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again and again to get as good an appoxination as desired gor

a cube root or 40 root of am number, including those which

are not perfect cubes or 4th powers. To attempt a visual break-

down of the tessaract is absurd(in fact, I'm sure most of you

don't believe that the Greeks broke down the cube without the

algebra; but I assure yort, they did,liecause they had ho symbols

in their algebra and consequently it took two paragraphs just

to tell someone to add x to x.)

So what do we do? We rely on the expansion of (20+x) 4

to obtain both the hyper-prism breakdown and an algorithm to make

the "false position" process. But is this valid? We can't see

a tessaract; why should we believe that an algebraic expansion

totally unrelated to the physical object should have any

validity in describing how its interior should be broken down?

How do we know that there aren't 17 or 19 or 37 hyper-

prisms of the various dimensions in the interior of the given

tessaract' Perhaps ytu are going to tell me that the algebraic

(20+x) 2 and geometrical (1 square, 2 rectangles, and 1 mall

square) breakdowns should also coincide for the tessaract.

Since the expansion of (a0+x)n did the job for n=1, 2 and 3

(1?) then certainly it should so the job for n=415,6 and 7.

Is that what you'z going to tell me?

NONSENSE. Sheer and utter nonsense. That's all assumption!

Sheer, unadulterated assumption! In fact, it's presumption.

You can't see tessaracts or 5-dimensional cubes, so how can

you purport t,o tell me their internal breakdowns into hyper-

prisms? You are reasoning inductively, inducing the results of

extensions of known results, and foisting then)off as truth!
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Oh how we love to generalize!. It beats thinkiig anyday, right?

On the other hand, wasn't it true that for the specific

case of C= 279,841 the algebra led to an algorithm which gave

us a correct value for the length of one of the edges of the

tessaract? (By the way, did you ever dheck out the answer of

23?) And certainly if it works for one case, it must work for

all possible cases, right?

Balogna. Let's take a look at Titterton's Theorem no. 1:

in order to simplify a fraction of the form a, for instance

16 . .

64, it is only necessary to cancel out the b's, i.e., FE =

Therefore, g = (The hard way: divide numerator aid denominator

by 16).

2
And 05

20
5 (common divisor tbf 13)

And 10 1 (common divisor of 19)

°5 5 4 IAnd even 4g
s 2 (common divisor of 49)

And so the theorem ito. proved since I have produced 4 cases Lich

immediately verify the premise.What morn could you ask?

Plenty more, that's what! If you accept Titterton's Theorem

No.1 you're in bad shape. You know if it's Titterton's, it's got

to be wrong! But the reasoning of the proof is certainly valid

isn't if? Just about any topic in all Math we've ever learned

has been put across to us with 4 or even a less number of

examples. And what a lot of nonsense that's been. We truly and

really need a criteria for asedrtaining Alen a theorem or

assertion can be validated. And this we will obtain.

What can we say, therfore, at this point, since we obtained

the number 23 as the length of the edge of a tessaract of

content 279,841? Basically, we can only say, "that's nice"44

9
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because we must first find a general validating principle and

then use it to validate our algebraic process. Of course the

interior breakdown of an n-dimensional cube can never visually

be verified, but alter all the evidence is i4 we'll be in a

much better position to accept our algebraic hypothesis for the

internal breakdown.

But before we inspect a general principle for validating

inductive assertions we need some tools. Oithcbut some handy tools

we might as well forget it.

Section 1.4 Number Rules

Charlie Pythagorus, the ancient Greek mathematician, had a

favorite saying: "Number rules the universe." As a catchy phrase

it night not make it on Madison Avenue today, but Charlie and his

crew used it as a reminder whenever they made any nattre observa-

tions. For instance, it was common knowledge that the physical

world consisted of only 4 elements; earth, fire, air and water.

You ;light ask, "But how was this classification ariived at?"

And Charlie would answer, "Number rules the universe." Which is to

say: There are 4 dimensions of all form, namely point, line,

surface and solid. And you might say "Which is which?" And the

answer is a bit different than what you might expect. You see,

there are 4 perfect solids; the tetrahedron, the octahedron, the

icosahedron and the cube(hexahedron). And since the tetrahedron

has very sharp vertices, it corresponded to fire. The icosahedron

has very smooth vertices and thei.efore corresporib to water, Since

the cube was very solid,' it corresponds to earth and the

octahedron(only one left) corresponds totir. Don't you see, if the

9P11



postulate that "number rules the universe" is accepted, we get

great insight into the structure of the 4 basic elenents.

Of course, then somebody went and discovered a 5th perfect solid,

the dodecahedron. But no sweat; it's immediately obltous that the

dodecahedron merely corresponds to the structure of the universe

as a whole.

And so it went, with all explanations aimed at verifying the

sacred postulate. That is, untilATcame along. At which point,

geometry took over and number theory took a back seat.

But just in case you don't think that number rules the universe,

ponder these relationships. When Harry S. Dewey set up his decimal

system for the classification of books in libraries, he arbitrarily

assigned the number 512.81 to books of Mathematics written about

number theory (relationships of integers; ie., the integers 3,4,5

are related in a very famous theoren).Little did he know that

29= 512 and 92= 811 Now, how about that?

Still not satisfied that number rules the universe? Try this

What is 11+2-1? Of course, the sun is 12. Well, watchtthis.

ELEVEN + TWO-ONE . ELEVENTOW-ONE = LEVETW um TWELVE. And now

you're oonvinced, right? (oh, no, we need at least 4 examples to

prove a theorem. Sorry, I forgot.)

In the 11th verse of the 21st and last chapter of John's

Gospel (New Testament), 153 fish are pulled into a boat. Well,

since 153 = 13+53+33t we have an immediate mathematical proof

of the doctrine of the Trinity. (For those of you without a

background in the doctrine of the Trinity forget it; just remember,

number rules the universe!)

Of course, now that you have accepted the postulate, you might

98
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like to see sol:e examples of the rule. Here's one such example;

Perfect numbers are defined as any number which is the sun of its

proper divisors. For instance, the proper divisors of 6 are 1,2

and 3. Since 1+2+3 =6, six is a pe. fect nunber. (Did you ever

notice that you have 2 eyes, 2 ears, I nose and 1 mouth- a perfect

nunber of sensors!) Through the ages, 28, 496 and nine nore

perfect nunbers were found; Euclid had a formula for generating

perfect numbers, namely, if 2n-1 is prime, then 2n-1(2n -1)

perfect number. (Obviously even). In 1952, the computer found 3

r.iore perfect numbers for n= 521,607 and 1279 in Euclids's formula ;

ie., (2520)(2521_1) is a perfect number. Just check it out.

There are no known odd perfect numbers under 2 million. If

you'd like to make a big splash in math circles, be the first on

your bldIgh to find an odd perfect number greater than 2 million.

Say, did you ever notice that God created the world in just

six days?

Now, the perfect numbers aren't too useful., unless you can

somehow represent yourself as being the number 6 or 28 or such,

and thereby claim perfection. However the amicable or friendly

numbers are very useful.

Two numberswe said to be friendly if each is the sum of the

proper divisors of the other. For instance, 284 and 220 arr

friendly numbeut Since 284 = 1+2+4+5+10+11+20+22+44+55+1101 and

each of the numbers 1,2,4,5,10,11,20,22,44,55,110] divide 220;

while 220 = 112+4+71+142 where each of the numbers ill2,4171,14q

divide 284. This pair of numbers was known to :Pythagorus; they were

"useful" in the sense that if you had a crush on someone, you

merely showed her (him) that your name corresponded to the number

220 (making the letters of your name correspond to some set of
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natural numbers) and her(his) name corresponded to 284 (perhaps

sin a few fudge f,'ctors along the way) ;.find therefore, instant

love.

This pair of friendly numbers were the only pair known (in the

western world) up until Pierre Fermat (a contemporary of Pascal)

discovered another pair In 1636; namely 17,296 and 18,416. Of

course Euler, 1747, made a systematic search and cane up with

60 duch pairs. There are now over 400 pairs known;

k very interesting story is that of the 16 year o.11 Irish

lad Nicolo Paganini who in 1886 found the friendly pair of

numbers 1184 and 1210, which had somehow seen overlooked by many

of the world's greatest mathematicians. Perhaps ypu can find

another pair overlooked by everyone!(But don't hdd your breath).

One last example(there are nany nore) of number ruling the

universe are the figurate numbers which link natural nunbers to

geometry. The essense of these numbers is that they can always

be written in a triangular, square, pentagonal, etc. array. For

instance, 1,3,6,10,... are triangular numbers since

1 3 6
A

and 1,4,9,16,25,... are square numbers since

. u -1
it

1 14. 9 16

And so much for "Number rules the universe." Of course since

3n
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the time of rascal, Pythagorus' natural number approach has been

replaced with a rather sophisticated probability-statistical an-

alysis which essentially says that "Number rules the universe."

If you've been smiling at ny faceticasness in this last section,

just keep on smiling; nothing§changed. Only now the absurdities are

more sophisticated.

Section 1.5 Problems, Answers and Hints

1. Make a second attempt at w5,iting an algorithm for finding cube

roots, but this time include the "Synthetic Division"procdss.

2. Complete the following limerick:

A mathematdcian naned Jay

Says extraction of cubes is child$ play

You don't need equations

Or (Dr 7: calculations

3. :7,-;.1fl_eL a model of a cube that breaks down into the 2 smaller

cubes and 6 rectangular parallelopipeds &scribed in section 1.3.

4. Since it is possible to represent a cube (3 dimensions) on.

a 2- dimensional IIE.te of paper, then it should be possible to

represent a tessaract (4-dimensional) in 3 dimensional space. Build

a (balsa wood) model of such a representation.

5. Make a chart showing the number of geometrical entities that

are foung in each of the nk-dimensional cubes. The geometrical

entities to be considered are points(vertides), line segments

(edges), surfaces, solids, tessaracts, Wagners,Goudreaus, Van Horns,

Tittertons, Eldies, Spades and Cheneveys. (A wagner is a 5-

dinensional cube, a Goudreau is a 6- d.inensional cube, a Van-Horn

31
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is a 7-dimensional cube( and you can believe that!), a Tittetton

is an 8- dimensional cube(ie., 23.8, or tie square cubed-and you

can believe that!),and Eldi is a 9- dimensional cube,and eo on.

Each of these la-dimensional cubes is generated ffom the (n -1)-

dimensional cube as in the process outlined for the generation of

the tessaract given in section 1.4.

6. An alternate sequence of genBbations can be formed from a poiht

and line by considering the equilateral triangle as hhe third

figure generated instead of the square. This sequence then gives

rise toihe gerwation of 6 tetrahedron, a pentatope and various

elements named after 3,1elytbers of Eyosset's English Department. Make

up a chart for this sequence of generations.

7. Check to see if Nicolo Paganini's amicable numbers (1184 and

1210) are indeed friendly, and then "develop" a friendly 'relation -

ship between some two "objects" by an appropriate use of applied

numerology.

8. Sometime during his lifetime( 826-901), the Eger popular Arabian

Mathematician Tabit ibn Qorrawitz discove7ed and published the

following generating rule for amicable numbers. If p= 3.2n-1,

q= 3.2
n-1

-1, d r= 9.22n -1-1 are all prines for a particular

value of n, then 2npq and 2ar are a pair of amicable numbers.

(This is the first known example of original Arabian mathematical

work.) Verigy Qorrawitz's formula for n =2 and n=4.

9. The figurates numbersi115,12,22,...3 are considered as

pentagonal numbers. Guess (if you can) three additional numbers in

the sequence and verify that the entire sequence consists of pen-

tagonal numbers by drarging appropriate figures as done for

triangular and square numbers in section 1.5. How would you verify

3"
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your guesses otherwise?

Answers and or Hints for problems:

1. Read that part of Section 1.4 which clearly(?) explains the

process for the 4th root problem.

2. My candidate:

"Just hot water to run on the tray." Gcbtcha, didn't I!

3. If your Dad has a table model or radial aril saw, this is not

a difficult task. Please try to retain all your fingers if you

attempt it.

4. See page 125 of (5) or page 139 of (4).

5. In the Wagner ,there would be 32 vertices ,80 edges, 80 durfaces,

-40 solids, 10 tessaracts am,. of course, 1 Wagner. These results

might be represented in the following ordered sex-tuple (32, 80,

80, 40, 10,1), The Goudresu wtuld be described by the ordered

sept-tuple (64, 192, 240, 160, 60,12, 1), where the 7th entry

represents a Goudreau. If you do make the chart, note the many

relations along the diagonal rows,

6. Refer to the symbolism of "`Lord of the Flies" or "Catcher in

the Rye".A.Iso there is a. discussion of this problel. on page

137 of (4).

7. 1184= 1+2+5+10+11+22+55+110+121+242+605

1210= 142+4+8+16+32+37+74+148+296+592.

8. For n=2, p=3.2 2-1 =11, q. 3.22-1-1 =5 and r= 9.24-1-1= 71.

Therefore, 2n = 22,11.5 .220 and 2nr = 2`71 = 284.

For n=4, p= 3.2
4-1 = 47 (1=3°2

4-1= 23 and r= 9'28-1-1 . 1151

Therefore, 2np.q= 24.47.23= 17,296 and 2nr = 24.1151= 18416

Note: for n=3, p= 3.23-1= 23, q= 3.23-1-1= 11 and r=9.26-1-1= 287.

But 287= 7.41 is not prime. Qorrawitz's formula does not purport
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to generate every pair of amicable nunbers; it only presumes to

generate pairs of amicable numbers.

9. The thINee additional numbers in the swquence of pentagonal

numbers would be 35,51 and 70. These numbers are readily found

when it is recognized that the sequence 1,5,12,22, is an

arithmetic sequence of 2nd order (see (3), page 487, number 5) or

by careful observation of the generation process visually

demonstrated on page 57 of (2).

Section 1.6 Student Test

I. In this question, nerely fill din the blanks:

The Greeks of long ago were extrenely clever people when it

came to synthesizing numerical solutions to geometrical problens.

For instance, in order to find the edge of cube of a given volume,

they developed a a) techinque which depended upon the

breaking up of the interior of a cube into b.) rectangular

parallelopipeds and one small cube after a cube of c.)

dimensions had been removed Cron the original. Some of these

rectangular paralleltlpipeds had 2 known dimensions and d.)

unknown dimensions, while the others had 1 known dimension and

e.) unknown dinensions.Using their process of f.)

they would find a value of the unknown dimension such that the

g.) of the volumes of all the h.) and the

unknown cube would be i.) or equal to the unaccounted

for volume of the given cube. Of course if there was still sone

volume left unaccounted for, they would now try to once again fill

In the remaining space with a more refinfad set of parallelopipeds

and small cube. This process would be carried on j.) until

34
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the entire volume of t e cube was accounted for, or unAl the

desired accuracy was achieved.

II. Define, in your own words, the following terms:

1. algorithm

2. recursiveness

3. Mathematical induction

4. partial factoring

5. tessaract

III. Choose the correct answer in each of the following:

1. The number of vertides of any n-dimensional cube has exactly

a.) the sane number b.) twice as many c.) three tines as many

d,) twice as nany plus the number of edges as the (n -1)-

dimensional cube.

2. The number of edges of any n-dinensional cube has exactly a.)

the same number b.) twice as many c.) three times as nany d.)

twice as many plus the number of vertices .... as the (n-1)-

dimensioanl cute*

3. The number of surfaces of any n-dimensional cube has exactly

a.) the sane number b.) twice as nany c.) three tines as many

d.) twice as many plus the number of edges ...of the (n-l)dimen-

sional cube.

4. The number of log] structural nembers (vertices, edges, surfaces,

solids, etc), exclusi-e of vertices, of any n-dimensional cube

has exactly a.) the same number b.) twice as nany c.) three

tines as many d.) twice as many plus the number of (p-1)-

structural members... as the (n-1)-dimensional cube.

5. Blaise Pascal was born in

a.) Italy b.) Ireland c.) France d.)Israel
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6. The reason why there is ho geometrical word equivalent to 4th

is because

a.) Pythagorus repressed the concept

b.) There is no fourth dimension

c.) You can't visualize a 4% dimension

d.) 1/ho needs two words to say the sane thing.

7. The German algorithmists were a.) an early European folk-rock

Troup b.) fishernan sailiTtheibggy Baltic Sea c.) men who nade

rules so that thinking was unnecessary d.) necessary to the

development of mathematics.

3. The tessaract a.) is impossible to visualize b.) can be

represented in 3-dimensional space c.) is a figment of the

imagination d.) lies a precise mathematical description.

9. The d zit which when cubed yields a units digit of 3 is a.) 3

1) 5 c.) 7 d.) 9.

10. Tile fact that the existence of a tessaract in nature is imposs-

ible does not phase the mathematician; he merely describes the

figure in terms of previously defined figures. This description

process depends upon tie concept of a a.) recursiveness b.)partial

factoring c.) math induction d.) algorithn

11. After the tessaract has been constructed (conceptually, of

course), the interior breakdown is established a.) visually

by experimentation b.) by an algorithm c.) by the expansion

of a binomial d.) by teacher edict.

12. The objectives of this first section have been to a.) confuse

the student b.) teach world history better than in the Social

Studies Department c.) give a working knowledge of some new,

unusual and abstract concepts d.) indicate to the student how
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abject and complete his mathematical ignorance is.

13. The results of this first section have been to a.) confuse the

student b.) teach world history better than the Social Studies

Department c.) give a working knowledge of sone new, unusual

and abstract concepts d.) indicate to the student how abject and

complete his mathematical ignorance is. d.) none of these.

Answers to Student Test

I. a. recursive b. six c. known d. one e. two f. false position

g. sun h. rectangular parallelopipeds i. less than j.indanailbOkr

II. Since the definitioas are to be "in your own words", I can't

very well put an answer down for this.

III. 1. b 2. d 3. d 4. d 5. c 6. c 7. c 8. alb,c,d 9. c

10. a 11. c 12 a,b,c,d 13. ?
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Section 2 ONE-TWO_, BUCKLE YOUR SHOE

Outline of Sesliqn 2.

The goals of Section 2 fall into the following categories:

1. Establish a raison d'être for the existence of Pascal's

Triangle.

2. Establish a correspondence between counting ..bsets and

making selections.

3. Develop counting techniques.

4. Attack once again the concept of sloppy Path inuction.

. Section 2.1 Countingl.Subsets

Do you remember the definition of a set? A set is a collection

of well - defined objects. How do we know when an object is well-

defined? When we can tell whether it ought to or ought not to be

in a given see. Sets, of course, are described by either (or both)

of two methods: a listing of the eleLents (objects) are given, or

the objects (elements) belonging to the set are carefully defined.

For instance, you right talk about the set consisting of the

first four letters of the alphabet (English alphabet, that is)

or you night just say ,alblcid.? .

Well, I assume you've noticed the change of pace. No tessaracts

or partial factoring here, just good ole sets. I wLder if they're

all connected somehow?

At any rate, let's get back to sets. Hurray for modern Math!

(It's all so easy) One area the chapter in the Math 11 book just

touched lightly on (and Glicksuan and Ruderman, too) was a

discussion of subsets, The set A is a subset of the set B if every

element of A is also an element of B. This is symbolized as ACB,

n`fin
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and is read, A is contained in B. .enough then of review.

Let's investigate the number, I say, the number of subsets and

the character of the subsets of a given set. For instance, look

at B+,b,cld . You should remember that[ and B are both subsets

of B. Also, ia?,ib.( tici, and td are single element subsets of B.

What are the 2-element subsets of B? Wh3lalb",/p,c?,ia,liblc,

.?,dSlic,d..3 of course. There are six of them if I didn't miss any.

Did you notice uy technique for obtaining all possible 2-element

subsets of B? First I fixed a and exhausted all second possibil- .

ities, then I fixed b and exhausted all second possibilities, etc.

This is not the only technique, but it's a good one (if I do say

so myself).

Now you use a similar technique to list the 3-element subsets

(you should find 4 of then--- obviously).

And so, for a four elenent set, there is one no-element subset,

4 1-element subsets, 6 2-element subsets, 4 3-element subsets and

1 4-element subset. You might notice that the total number of

subsets is 16.
next

Before you go on to thepsection, stop! Find the breakdown of
4

the 1,2, and 3 element sets into appropriate subsets. List your

results, and make some guesses as to the general situation if you

can. Remember, the key phrase for the rest of this chapter is

"Observe, Explore, Discover!"

Section 2.2 Symmetry Counting

Let's look at the set S=&,b1c,d,e3. We should immediately

note that there is 1 no-element subset and 5 1-element subsets.

However, the number of 2-element subsets is a matter of careful

30
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counting. Let's use the exhau,,tion technique: with"a*fixed we get

.5,134.alq,ia,d.1,a,i; with b fixed we getiblcilib,q1ible; with

c fixed we gettcldpnqc,e3; and with d fixed we geqdlq. There-

fore, there are 4+3+2+1 = 10 2-elenent subsets of set S.

Observe, explore, discover. Did you notice that using this

tecLnique we get a sequence of numbers 4,3,2,1 which when added

together forn an arithmetic progression. (Does anyone reu_ember the

formula for the sun of an arithmetic progression?) It appears that

a generalization might be rade here (if we only knew that silly

formula! oh, shucks!)

And now back to the counting of the 3- element subsets of set

S. Remember that wise-guy "obviously" I threw in then I told you

that the number of 3-element subsets of a 4-elenent set was 4?

Well, it applies to the question of the number of 3-element subsets

of a 5-elenent set also; obviously the nunber is 10! Wha?

Didn't we just spend a great deal of time counting bhe 2-

elenent subsets of a 5- element set? \Jell, check this. Let the

2-element subse4a,b3correspond to the 3-element subsetfc,dlei;

ie., let subset A.qa,bicorrespond to its complement, A'4,dle
missing sentence: see pa 46

Let 31=a, +orrespond to the 3-element subset Athere are exactly

10 complements of the 2- element subsets; and therefore, there are

exactly 10 3-elenent subsets of set S.

Pretty neat, eh? If you understood that, then you should be

able to'tell how nany 4-elenent subsets of the 3-element set S

there are, wit'iout counting. Since there are 5 1-elenent subsets,

there are 5 aomplements to each of these 1-elenent subsets, and

therefore 5 4-elenent subsets of the set S. List then if you don't

believe me!
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I call this technique symmetry counting. Of course it is of

no value unless previous information is given (it's recursive°,

For instance, you can't tell me the number of 7-elenent subsets

of a 9-element set unless you first know the number of 2-elenent

subsets of the 9-element set. Or in general, the nunber of r-

elenent subsets of an n-elenent set is the sane as the number of

(n-r)-element subsets of the n-elenent set.Does this generalization

agree with your observations, explorations aid discoveribs?

Section 2.3 More Techniques

We 'now have (supposedly) a chart or listing of the number

of subsets of 1,2,3,4 and 5-element sets. We have seen that we

only need half of these numbers to get the other half (for any

given set). Now let's obtain the subset breakdown of a six elenent

set Tqa,b1c,dlelq. We shall make use of a purely recursive

technique. We first notice that T and S=b1b,cldle(of the prev-

ious section) differ only in the letter f belonging to T. There-

fore all the (10) 2-elenent subsets of S are certainly 2-elenent

subsets of T, plus all those 2-element subsets formed by taking

all the elerients of S aid adjoining to then the element f of T;

{b,fitclq , 1 andielf?.

And we have agaim exhausted all the possible 2-element subsets

of T; any 2-elenent subset of T without an f was counted in the

10 we took ffan S; any 2-element subset of T with an f was counted

in the 5 new subsets formed; therefore, the total number of 2-

elenent subsets of set T is 10+5 = 15.

Let's try it again. How nany 3-elenent subsets does set T

have? Set S has 10, all of which will be included in the count for
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T; also, set S has 10 2-element subsets; to each of these adjoin

the element f of T, thereby obtaining 10 3-element subsets of T.

The total is 10+10 = 20.

If you didn't follow all of the above, try one or all of these

three things: 1. Re-read the section very carefully, being careful

to disfinguish between the words set and subset.

2. Try to find a 3-element subset of T which has not

been included in the listing given above, (ie., either in the set

of 3-element subsets of S or the 2-element subsets of S with an f

adjoined).

3. Read the next section.

Section 2.4 Pascal at Last

In the previous section I have crItlined a recursive technique

for counting subsets. Let's see what we've got and use the
a

technique to enumerate the number of r- elenent subsets ofi7 element

sot, where we'll let r vary from 0 to 7. Inspedt the following

table of results:

Number of Elements in the Set Number of r-element subsets

r: 0 1 2 3 4 5 6 7

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 _ _ _ 7 1
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On the last row, I have already filled in the obvious; namely,

1 no-element subset, 7 1-elenent subsets, 1 7- elerient subset and

(by the symmetry concept) 7 6-element subsets. Jhat about the rest?

From the previous section, we saw that to obtain the number

of 2-element subsets of an n-element set when t',e number of 1-

elenent and 2-elenent subsets of the (n- 1)- element set is known,

we merely add the number of 1 element and 2-element subsets of the

(n-1)-element set together. Believe it or not, that's exactly what

we established by our observe, explore, discover methods in

Section 2.3. Take another look if you dcbn't believe me! And read

carefully.

So. The number of 2-eleuent subsets of a 7-element set is

therefore equal to 6+15, or 21. Likewise, the number of 3-element

subsets of a 7-element set is mPrely. 15+20, or 35. )%.s far as the

table is concd :ned, to find the number of r-element subsets of an

n-element set, you merely go to the line above (the (n-1)t line)

and add the r and the (r -1)lh nunber together. Simple, eh?

For those of you who have been around, you should have by now

recognized both Pascal's Triangle and the generation process

thereof! Alas, Pascal has finally arrived (or should I say

Chu-Shl-Kie'?)! The table does not give the triangle in its most

popular form, but it is in the form which Pascal used.
Entire paragraph missing: See page 461
Stick around. We're going to put it all together yet.

Section 2.5 Problems and AnsWers

1. We noted in section 2.1 that the total number of subsets for

the 4-element set was 26. What is the total nunber of subsets of

each of the n-ele7;ent sets in the table of section 2,4? From this
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information, can you generalize a rule for finding the number of

subsets of an n- eienent

2. How many 2-element subsets does an 8- element set have? That

question's too easy; try finding the number oP 2-element subsets of

a 37 element set. Of a 49 element set? a 123 element set? A 150

element set?

3. If you can hanale #2, try this: How many 3-element subsets does

a 37 element set have? If you're crazy enough to use the recursive

scheme to obtain that answer, try finding the nuraber of 3-element

subsets of a 49, 123 and 150 element set!

4. Anyone for finding the nunber of 4-element subsets of a 37

element set?

5. In section l,we investigated the tessaract. To get a (mathemat-

ical) idea of a possible interior structure of the tessaract we

took (20+x)
4

and expanded it, obtaining 1 known tessaract, 4 hyper-

prisms of one variety, 6 of another, 4 of a third variety and 1

unknown tessaract.

By now these numbers should have sone significance to you;

but what does subsets have to do with the possible structures of

tessaracts?

Lnswers to Problems

1. I will give the answers as ordered pairs (alb), where a will

equal the number of elements in the set and b the total number

of subsets of the set with n elements. The set of answers therefore

would be:{(112), (2,4),(318),(4,16),(5132),(6,64),(7,128)?

It night appear to you that there is indeed a onrral rule, namely

(n12n), but that's all hogwash. Just look at the following example:

Given a circle 0 with a point A on the circumference, we say
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that the interior of the circle is "divided" itto one region

(trivial case). Given circle 0 with two points A and B on the

circumferbnce, the line segment AB divides the interior of the

circle int,olAregions. Given circle 0 with three distinct points

A,B and C on the circumference, the line segments AB,AC,BC divide

the interior of the circle into 4 regions.(Draw the picture and

see for yourself). Given circle 0 with four distinct points A,B,

c and D on the circumference, the line segments AB,AC,AD,BC,BD

and CD divide the interior of the circle into 8 regions. Continue

thIs process. The set of relations (number of points on ciraum-

ference, number of regions in the circle) denoted by (p,r) consists

of i(1,1),(212),(3,4),(4,6),(5116), ....?where the dots can be

filled in as needed. Obviously the rule is (p, 2P-1).

Obviously my left eye-brow! The actual rule is (p, 1.4-(1/24)(p)

(p-1)(p2-5p+18)). Try it and see! For p=6, the number of regions is

1+(V24)(6)(5)(24) or 31. Which is the first case for whidh the

Purported case breaks down! Draw a circle, put 6 distinct points

on the circumference, draw all possible connecting line segments

(how many would that be?) and count the regions carefully. You

shou1d get 31.

In other words, after 5 specific cases, the apparent rule

breaks down to be replaced by a monstrosity (where did it cone

from?) In the case for the total number Of subsets we can guess

the rule as (n, 2n), but how do we know it doesn't break down for

the very next case? Our table only has the first seven values;

can we be sure that the sun of all the subsets of an 8-element set

is 2
8
? Not eat all, based on the previous example.

There is, of course, a constructive proof as to why (n,2n) is
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indeed the correct relationship; but unless you can give it, you've

got no right to asiurie the relationship is true.

2. Let's look at the 37 element set. How any 2-element subsets?

Suppose we use the exhaustion technique; take some element, say

a, from the set; match it with each of the other 36 elements; then

t'als.,) the b element :and match it with each of the other 35 elements

(it's already been matched with the a). Continuing in this fashion

you will obtain a sequence of numbers 36,35,34,...3,2,1 whose sum

4.3 the total number of 2-element subsets of a 37 element set.

Since you still hayen't remembered the formula for the sun of

an arithmetic progression, let's derive it. Form the sun of 36+

35+34+...3+2+1; note that 36+1=37; 35+2=37; 34+3=37; etc. Ther4

are obviously 36/2 pairs of these sums; Therefore (36/2)(37)=666

is the number of 2-element subsets of a 37 elenent set.

The derivation of the formula for the sum of the arithmetic

progression is obvioulsy "first plus last" (a1 +an) times the

number of terms divided by 2(n/2-the number of pairs of suns).

Therefore, the sun equals (n/2)(a1 +an), where al is the first

term of the sequence and an is the nth or last.
sentence missing: page 46

For our case (the counting of 2-element subsets/'consisting of

Iadjoined to all the other elements) and the value of an is 1,

while there are (n-1) terms. Therefore, the sun is((n-1)/2)(n-1+1)=

(n)(n-1)/2.

For n=49, the number of 2-element subsets is 1176; n=123,

2-element subsets number 7503; n=150, 2-element subsets number

11,175.

There are other clever-techniques which also give rise .,;() the

same general expression.

4 E)
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3. The general rule here is (n)(n-l)n-2)

Read on.

3.2 Hhere'd I get if from?

4. The general rule for finding 4-elenent subsets of an n-element

set is
(n)(n-1)(n-2)(n-3)

. Check it out for n=4,5,6 and 7. If4.342

you believe this constitutes a proof, you've missed the whole

message in Problem 1 above.

5. Nothing at all. Counting subsets apparently has something to do

with the expansion of a binomial, but subsets and tessaracts have

nothing in common. It's the expansion that we want to investigate,

so read on.

Section 2.6 Pre-Test

I. If e particular sequence of numbers 3,7,9,13,9,7,3 give rise

to a second sequence of numbers 3,10,16,22,22,16,10,3 where the

rule of gelation is that of a) triangle, the sun of the

second sequence is exadtly b) the sum of the first

sequence. This is quite c) so since each member of the

original sequence is used twice in the d) of the new

sequence. For instance, the first 9 is added to the 7 to get 16

and is added to the e) to get e2, and so the first 9 appears

twice in the new sequence. Even the first 3 is used twice; once

by itself and once with the 7 to yield f)

Although the sequence 3,7,9,13,9,7,3 has nothing to do with

Pascal's Triangle (except perhaps that it is g) ), the

above discussion does provide the essence of the h) proof

alluded to in the solution of problei 2.2. Of course the more

i) studtnt will attempt to develop this proof to fit the

case in question(namely, that the j) of the subsets of an



n-elenent set is 2n.)

II. Define in your own words.:

a) English alphabet

b) Observe

c) 7.xplore

d) Discover

e) Arithmetic Progression

f) Symmetry

g) Pascal's Triangle

III. 1. In the counterexample given in the answer to question 2.1,

when 4 points were put on the circumference, they determined

a) 4 line segments b) 6 line segments c) 8 line segments d) 5 line

segments,

2. As in problem 1 innediately above, 6 points on the circumference

would determira a) 15 line segments b) 10 line segments

line segments d) 6 line sepswents

3. As in problem 1 and 2 immediately above, 12 points on the

circumference would determine a) 12 line segments b) 66 line

segments c) 132 line segments d) 42 line segments

4. The best technique for finding the answer to question 3 above

is to a) use the exhaustive procedure for counting 2 element

subsets b) extend Pascal's triangle to the 12th row and read off

n-11the answer c) guess d) apply the formula .cn)(
2

as derived

from the exhaustive technique.

5. The derivation of the formula found in potential answer 4 d

above depended upon a) teacher edict b) student complaisance

c) knowledge of the formula for the sum of to arithmetic progres-.

sion d) having a good text as resource material.

c) 20

4 0



-45-

6. The problem of finding how many triangles are determined by

5 points, no 3 of which are collinear, is equivalent to a) getting

up at 6 o'clock on Monday morning b) finding all 3 element subsets

of a 5 element set c) trisecting any an-Ale with compass and

straight edge d) the football team beating Hicksville.

7. Eight points, no 3 of which are collinear, will determine a)

triangles b) 28 triangles c)15 triangles d) 35 triangles

8. The best method for answering question above is a) to extend

Pascal's triangle to the 8th row and read off the answer b) to use

the formula given in the answer to question 2.3 c) to guess d) to

wait until a sophisticated notation and formulation is introduced

in Section 4.5.

9. Assuming 1 5 6 3 6 5 1 is the nth row in Pascal's triangle

the (n+1)1 row would be a) 1 6 11 9 9 11 6 1 b)1 6 9 11 11 9 6 1

c) can't be found d) of no value; so why find it?

10. )1ssuming 1 5 6 3 6 5 1 is the nth row in Pascal's Triangle the

(n-1)
t
row would be a) 1 4 2 1 2 4 1 b) can't be found because the

generation process isn't commutative c) can't be found because

the middle terra (3) is less than the value on either side.

d) Y4 9/2 3/2 3/2 9/2 1/4

Answers to Pre-Test

1. a) Pascal's b) twice c) obviously d)genaration e) 13 f)10

g) symmetric h) constructive i) clever?; inquistive?; mathei-

natically talented? brownnosing?;enterprising?; masochistic?

j) sun

11. a) Definition would consist of a 2500 word paper discoursing

on the historical develop went of the alphabet as we know it

b) Ouverez les yeux! c)Get your hands dirty! a) Say, " ahlHAAA'
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e) Common difference between terms f) Mirror image? g) an array

of cleverly generated numbers?

III. 1. b 2. a 3. b 4. d,a,b, in that order 5. c 6. b 7. a

8. a or d, but not b. You have no right to use any formula unless
it has been validated for you. Said the blind man. to his friend,
"So I picked up my hammer and saw.. " 9. a 10. c b is incorrect

because the generation process is commutative.

From page 36:

b,d,e Well, do you get the picture? There are exactly 10

2-element subsets;

From page 39:

And so if you're interested in knowing all about tObsets, their

numerousness and character, we have found an array of numbers
which would indeed be very useful: Of course, the question

might still remain, "Mho needs it ?"

From page k2:

of an 11--element set),- the value of al Is (n-1) (for n = 37,

there mere 36 subsets
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Section 3 EXPANSIONS

Outline of Section

The contentsof this section include:

1. The expansion of all binomials in a quick, efficient fashion.

2. More lessons in Observe, Explore, Discover techniques.

3. The built-in review of all algebraic rules.

4. Specifically learning the expansion of (a+b) 2 so that no student

will ever get itvwrong again. (Keep dreaming!)

Section 3.1 Busy Work

Expand (a+b)k, for k= 1,2,301.18,9. That's exactly what you

must do. The leters "a" and "b" merely represent dummy variables

(a very descriptive phrase, right?). Actually, after about four

or five expansions, your observations and explorations should

lead you to a discovery. AH--HA iLM

Section 3.2 Discoveries and. Assumptions

So,Pascal's Triangle strikes again! Look at those nice

coefficients. I wonder if it would be a rash assuription to assurie

that the coefficients of (a+b)n will be found an the nth row of

Pascal's Triangle? You bit would! You've no right to assume that

the coefficients of (a+b) 12 will be found on te 12th row of

Pascal's Triangle. Only if you can present a constructive proof

or establish a general criteria for proving out such questiond can

you assume that the uFe of Pascal's Triangle for finding coeffic-

ients of btnonial expansions is valid.

You night notice another difficulty also. Suppose you're

asked to find the 5th coefficient in the expansion of (a+b)
12

.

51



-48-

If you have validated the usage of Pascal's Triangle for this

purpose, you'll still have to ettend the triangle to the 12th row;
ten

a somewhat tedious job just find one number. Fortunately, there

are two alternate procedures for obtaininga particular coefficient;

one is ecursive and the other isarect. We'll discuss the

recursive procedure below and the direct approach in Section 5.

Section 3.3 Cooke's Law

Let's use our observation, exploration and discovery technique

to establish a unique recursive relationship between the cleffic-

ients of an expansion. For instance, (a+b)6= a6+ 6a5b + 15a1b2+

20E150+ 15a2b4+ 6ab5+ b6

Let's summarize our observations:

1. Every term of the expansion consists of three factors; a

numerical coefficient,, some power of a and a power of b i case

you're wondering, a6 can be written as 1.a6 .1)°, since 1 , the

multiplicative identity and b0=1)

2. The exponents on the a's run "downhill" ron 6 to 0; the

exponents on the b's run "uphill" from 0 to 6.

3. The sum of the exponents of each and every term is six.

4. There are 7 terns in the expansion.

Enough of observations. Now, let's explore. I've already clued

you in that we're going to develop a recursive relationship

between coefficients, so keep that in mind. My second clue is

that the exponent on the a factor is going to be involved.

Take a look. THe second term has a coefficient of 6 and the

exponent on the a is 5; the 3rd tern has a coefficient of 15.

So what? Well, 6'5 =2.15, right? quick, let's try the next case.
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As we just noted, the coefficient of the 3rd term is 15 while

the exponent on the a is 4; the coefficient of tl-e 4th term is 20.

Well, des 4.15 = 2.20? No, not quite. 4.15 =3.20. Hmmmm. First a

factor of 2, then a factor of 3. Let's try another: 20-coefficient

of 4th term; 3-exponent on a ; 15-coefficient of 5th term; 20.3=4.15.

And now a factor of 4. 0114 now I see!

If you don't see it yet, try ny third clue: The nunber of the

term is involved.

And so we have discovered Cooke's Law (named after Paul Martin

Cooke, former teacher at SyosGet High School, who was the first

one to discover this rule in a text book, that is!) What is

the law? See if you can write it down in genebal; I'll bring it up

later on.

Section 3.4 Sunnary

The immediately preaeding paragraphs are again very foolish.

Once more we have used just one example to discover a relationship.

We have absolutely no way of knowing qhether this recursive scheme

is valid for c-ses other than (a+b)6. We must find some way so

that all our observations, explorations and discoveries will be

of general use,

Likewise, the big question in this section is, "Can me truly

and really use Pascal's Triangle *') find coefficients of a binomial

expansion?" What is the nexus between the two? What do they have in

common? Is there some constructive proof that will validate a

relationship? In section 2.4, I have given an example of what I

consider a constructi7e proof relating subset counting to Pascal's

Triangle. A similar approach can be used to relate the coefficients

r-
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of the binomial expansion to Pascal's Triangle.

However, we still need a general apl7reach. ITe are getting there,

but we still need to intro one 'C',71 hey tool: the ability to

locate any number in Pascal' without writing down any

lines of the triangle at all, .Lftc,v wl've obtained that generaliza-

tion, we'll be able to tie everything together.

Section 3.5 Problems and Answers

1. Take (a+b)n for n= 2,3,4,5,6. Leave a alone and let b=1 both

before and after the expansion. Observe, explore, discover.

2. Take (a+b)n for n= 2,3,4,5,6. Let a=1 and b=1 both before and

after the expansion. Observe, explore,discover.

3. Tal=e (aTb)n for n= 2,3,415,6, Let a=1 and b=-1 both before and

after the expansion. Observe, explore, discover.(Watch out for

corollaries to this one.)

4. Take (a+b)n for n=1,2,314,5,6. Let a=10 and b=1 both before and

after the expansion. Observe, explore, discover.

5. Obtain a copy of Courant and Robbins' What is Mathematics? (see

(3) of the bibliography). Turn to page 16: the constructive proof

(with diagram)for validating the use of numbers fron Pascal's

Triangle as coefficients in the binomial expansion is right there

beiure you. Drink it all in. Live a litae. (By the way, fron this

point on, I will assume we nave made a valid connection between

the nunvrical coefficients of the binomial expansion and thb

numbers of Pascal's Triangle.)

6. Write down a general rule for Cooke's Law.

Answers and or Hints to problems

1. The overall effect of substituting b=1 into the expansion of
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(a+b)n is to get an expression in a with numerical coefficients

only; i.e., the b factor in each of the terns of the expansion

"disappears". It's really still there but I to any power is 1 and

the multiplicative identity very nicely "disappears" under the

operation of multiplication.

2. Now, both the a and b factors "disappear"from the expansion

leaving only the numerical coefficients with plus signs between

them. Since (a+b)n becomes (1+1)n= 2n, it is evident that the sun

of the numbers of the nth row of Pascal's Triangle (the numerical

coefficients of (a+b)n) is 2n . This is a valid proof of this

relationship only after you have done problem 3.5.5 above.

3. The result of letting a=1 and b=-1 in the expansion is to get

the numerical coefficients connected b7 alternating signs; when

s-lbstituted into (a+b)n, (1-1)n= 0. The real discovery to make here

however is that the sum of every other number fror 0= row of

Pascal's Triangle is equal to the sum of s: _pped over, This

is obvious for n= odd number, but n= even number is a bit different.

For instance, for n=6, the numerical coefficients of (a+b)6 (the

numbers fori the nth row of Pascal's Triangle) are

1 6 15 6 1 ; and

1+15+15+1 = 32, while 6+20+6 = 32. How about that?

4. Since 10+1 = 11, (10+1)n should give powers of 11. Therefore,

when the 4th row Pascal's Triangle is reg-irded not as a sequence of

numbers 1,4,6,4,1, but as a number in decimal form, 14,641, it

should equal 114. Which it does since 14,641 equals 1°104+ 4-103+

6.102+ 4°10 + 1 or (10 + 1)
4

,

Of course a bit of difficulty arises when you take (10+1)5,

since our decimal system has only 10 digits J.n it. however, if you
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know what you'reltalking about, 1 5 10 10 5 1 can readily be

put into the decimal form 16,051. Try finding 116 the "easy" way

(Answer: 1,771,561)

5. There are four copies de Courant and Robbins in t e library and

the Math Department has 15 copies. Get busy and get a copy.

6. If ma.P'b is the kill term of the expansion (a+b)n, then the

coefficient of the (k +1)1 term is (m.p)/k.

For instance, 21'a5b2 is the 3rd tern of (a+b)7; therefore

n=21, p=5 and k=3. The (z:+1)th coefficient is therefore (21'5)/3,

or 35.

Suction 3.6 Pre-Test

I. Pascal's Triangle is a Bather unique qrray of numbers which is

apparently vwuseful in a a) of applicationa The b)

we have seen so far consist of finding r-elenent c) of

n-elenent sett finding the numerical coefficients of binomial

d) and prophesizing possible stMctural breakdowns of

n- dimensional e)

Or course there is one major drawback in using Pascal's

"Triangle Arithnetique". If your problem is somewhere near the

top of the triangle, no f) . But if n=16 or so, it is some

mess (because of the g) nature of the lion process)

to arrive at a solution.

And therefore there is still a task before us. It would be

h) to have aggaerEtl. non-reoLtrsive method for , 5aining

any entry in the i) of numbers called, j)

II. Define: a) coefficient

b) tern

Triangle.
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c) factor

d) Hnnnn.

e) Ah-haaa.

III. 1. In the expansion of (a+b)9, the BUM of the coefficients is
part

a) 29 b) 512 c) the first of t' .e number in the Harry S. Dewey

library classification-systen for number theory d) 2.162

2. The numerical coefficient of the 20,1) term froti the left in the

expansion (a+b)9 i3 a) 84 b) 126 c) 36 d) 512

3. In making up a 711) root algorithm, I want to make use of an

idealized 7-dimensional "cube". The breakdown of the interior of

this 7-dimensional "cube" would include two smaller 7-dimensional

"cubes" and m hyper-prisms. The value of n would be a) 128 b)62

c) 32 d) 126.

4. In problem 3 above, how many of the 7- dimensional hyper-prisms

will have 4 known dimensions and 3 unknown dimensions? a) 7 b)21

c) 35 d) none

5. The sun of the numerical coefficients of the expansion (a-b)7

is a)-14 b) 0 c) 14 d) 32 e) 128

6. If 495a8bx is the 5th tern of a binomial expansion, then the

numerical coefficient of the next tr.= is a) 792 b) 792 c)792

d)792 e) none of these.

7. If 495a
8
b
x

is the 5th tern of a binomial expansion, then the

numerical coefficient of the pr6vious tern is a) 792 b) 495

c) 220 d) 676 e) none of these

8. If k is the coefficient of the ph tern of an expansion where the

exponent on the 1st factor is u, then the next coefficient is

4 (Ll.p) /k

c) (kp)/m

b)(km)/P

d) none of these
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9. Eleven cubed equals

a) 121 b) 1331 c) 14,641 d) 156,051

10. Every term of a binomial expansion has exactly a' two factors

b) three factors c; four factors d) five factors

Answers to Fre-Test

I. a) variety b) three c) subsets d) expansions e) cubes

f) sweat g) recursive h) nice?, swell?, lovely? i) array

j) Pascal's

a) Some people go hunting, some people coefficient.

b) Separated from other terms by either plus or sinus signs.

c) Every product is made up of at least two factors.

d) Sound made while exploring.

e) Sound made when discovering.

III. 1. a,b,c,O. 2. a 3. d 4.c 5. b 6. d 7. c 8. b

9. b 10. b
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Section 4 NEW NOTATION

Outline of Section 4.

The contents of this section include:'

1. The introduction of direct notation for finding the numbers

of Pascal's Trian:sle, and all the necessary concepts leading to

the discovery.

2. Using the notation to solve previously encounted problems.

Section 4.1 From Here to Wetson's to Hone

You're about to leave here and head fcr hone one afternoon,

but decide to stop off for some of the finer gourmet delicacies

at one of the post famous eating spots on Long Island found right

here in Syosset. However, you realize you can't afford it and

head for Wetson's instead.

No ,,r you have four possible choices of the means of transporta-

tion for getting from the High Gchool to Wetson's: you could take

one of those big Yellow Dragonsigo by Shanks Mare, use your Roller

Skates or Hop on your Skate Board(sincd it's downhill all the way).

After you've partaken of your earthly reward at Wetson's, you

have the possibility of getting a ride hone in someone's car

(perhaps an ambulance), or perhaps you might Fly, but more than

likely you'd end -gip drawling hone.

At any rate, you've got the possibility of a dozen totally

different means of arriving hone. Is that right? Let's countlen

up.

Suppose yogi take a. Yellow Dragon to 'wetson's; then you might

ride, fly or crawl on hone. That's three different possible

approaches for getting hone. rnd if ycpc'd have used Shanks Mare

Fin
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to get from the High School to Jetson's, you would still have

three choices for the rest of the way home. In other words, for

each means you use to travel the first part of the trip, there

are three ways of taking the second part of the trip. And since

there are four initial choicesithere would be four tines three

totally different ways of gettin,-; hone.

What I have done above is merely a romanticization(?) of a

concept called the multiplication principle; viz., if there are

n ways of getting form A to B and n ways of getting from B to C,

then there are mn ways of.getting from Ato C. This principle

applies to more that just taking trips as we will see immediately

below.

Section 4.2 Counting Stripes on a Wall

I have a little office down the hall painted a rather drab

green and I thoqght I might like to spice it up a bit with a

bright paint job. I eventually located six different-color paints

around the department; namely, Van Horn Vanilla, Wagner White,

Chenevey Chartreuse, Ralph Red, Bernie Blue and Elegant Eldi.

(The latter is a pastel shade of sex-appeal.)

Well, I finally decided to use all six colors and paint

vertical stripes of equal width on one wall. In this way I

wouldn't offend anyone and every color would obtain an equal

coverage.

But now I had another decision to make; what order should I

choose? Which color should I use first? After all, with such a

sensitive group of colors I had best be careful how I rartered

the colors on the wall. Should I use a political ordering (left

60
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to right, of course)? An intellectual ordering? order based on

good looks? (No good-not enou.:;h roon on the ugly part of the wall!)

A size ordering? A height ordering? A disposition ordering? How

should I order the colors? No matter what order I chose, someone

would make an interpretation for It --- and I'd be in hot water.

Maybe I could just paint it Te7-rific Titterton and forge6 the whole
errl

project! (Ttiiffic Titterton is a bright shade of outburst.)

Well, let's not panic. Let's investigate the problem. The first

stripe could be painted any one of six colors, right? And then

would still have five colors to choose from for the second stripe;

by the multiplication principle that's 30 choices right there!

For the third stripe there would still be our choices to choose

from, for the 4g2 stripe there would be three colors to choose from,

for the fifth stripe there would be two colors to ehoose from and

for the sixth stripe there would be one possible color left; no

choice.

But by the recursive use of the multiplication principle, that's

6.5.43'2.1 or 720 different possible orderings of those six colored

stripes on the wall. Certainly I could find one of those 720 that

could not be interpreted in'a derogatory fashion. And so I ended

up with 'Wagner White(a deep, dark shade o2 black) followed by

Van Horn Vanilla, Elegant Eldi, Ralph Red, Chenevey Chartreuse and

Bernie Blue. A lovely display to say the least.

In mathematical circles, an ordered listing of any set of objects

is called a permutation or arrangement of these objects. If just any
Og'JECTS

two are interchanged we have a new ordered listing, which is to say,

a new permutatiOn. Of course, the number of permutations of six

objects(where all six are to be utilized in the ordered list is
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6-5'4.3°2.1 or 720 as we have established in the above discussion.

By the way, rather than write out 605.4632'1 each time, let's

help ourselves (and the typist) by merely ueing the synbol 6!

(reqd "six factorial") to mean the same thing. In general, n!=

(n)(n-1)(n-2)(n 3) 3.2.1, and 0!=li while 1!-1 also. These

1F,st two definitions are very convenient (and non-contradictory)

to Mter theory. Please note that (10113)!= (n+3)(n+2)(n+1)!

and (3-17.+2.)!= (n+r+1)(n+r)(n+r.1)1 are rierely applications of

the 07;E:i7)51 ,fLc,flnition to special cases. Think them through and

urderstc.L,1 thcmthoroughly.(Hint: try numbers for n and r and verify

the h:reakdown).

Meanwhile back in my little office. The one wall was such a

hit that I decf.ded to go on to the others. However , the two

side walls could only accomodate 4 of the sane size stripes ad the

back wall. I wasn't going to worry about which paints got left

out, but t.iat told order question was still bugging me. How many

different orders could there be this tine?

Certainly, there could still be six choices of colors for the

first stripe, five others for the second. stripe, 4 for the third

stripe and 3 for the 4th stripe. Therefore, there woV1d be &5.4.3

or 360 possible permutations (ordered listings) to choose from.

No sweat.

Hey, I thought we were going to help out the typist and use

that factorial notation! But can we use it now? Six factorial

has two factors too many, namely 2 and the 1. If we wrote 6!, we'd

have to divide out the 2'1. We could write our answer of 360 as

61/21. But what connection does this have to our original problem

of counting 'bhp, number of pernntations of.,6 objects when to1Ten 4
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at a time?

Ah. Just take a look. Certainly the 2 in the denominator is

equal to (6-4), since there were 4 stripes to fill in, and

therefore (6-4) left alone.Let's Lie the ! following notation

for the problem: 6P4 will represent the number pf permutations of

six objects taken fam at a tine, and 6P4.(6!)/(6-4)! is the

manner used to compute the number in question.

In general, therefore, (n!)/(n-r)! is the number of

permutaions of n objects taken r at a tine.

Section 4.3 Special. Case

Another office was also to be painted, with the sane width

stripes on a same sized wall, but a problem ...arose: the Bernie

Blue and Elegant Eldi were all used up. .And so there were now

six stripes to be painted with only 'four colors. Again the

question ap)ears: how many didtinct ordered listings of stripes

on this wall could there be?

Well, let's look at this choice of paints. Since there is

three times as much Van Horn Vanilla as there is Ralph Red,

Chenevey Charteurse or Wagner 13hite,' we'll use the Vanilla paint

gor 3 stripes and the others for just one each. (Note: each pair

of stripes is separated by a thin black line so that two Vanilla

stripes next to each other are distinguishable.) Look at this

choice: V.H. Vanilla, Ralph Red, Chenevey Chartreuse, V.H. Vanilla,

Wagner White and V.H. Vanilla. If all six colors were different,

there would be 6! or 720 different ordered listings of the stripes.

But for each of the permutations as listed above, there are 3!

permutations of the V.H. Vanillas which don't change the overall

E3
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order of the arreingement at all.

In other words, the total number of possible permutations (if

all colors were different) must equal the number of distinct

permutations (all colors not different) times the number of

permutations per set of sane coJors. Which is to say, the number of

distinct permutations is equal to the number of all possible

permutations divided by the number of un-noticeable permutations.

In the case above, there would be 6!/3! didtinct permutations, or

120.

Let's try another example to help(possibly) clarify the idea

gbove, but let's use words instead of paints. For instance, take

Bill.(Please!) There would be 4! or 24 arrangements of the letters

BII,L and L; but 4alf of these would be indistinguishable fron the

other half, because when you interchange the two L's, nothing

visible happens; no apparent change takes place. Therefore the

nunber of distinct permutations is 41/2! or 12.

Section 4.4 Vlore Strives?

Back to stripes. I'm not afraid any more, I don't care about

the order of my stripes. Nobody even noticed the order uf the

stripes on my wall! But I still have a problem; there. 1.s still one

wall left in ray office but with only room for three s.?ipes. We've

been re-supplied with .all six paints and now I have to make a

(strictly aesthetic) choice of some tree paints from the six.

In other words, I must select three naints.fvom the six; ant'l my

problem is that there are 20 ways of doing this, and it's going to

be a tough decision because I have no ae.thetic sense at all

all my taste is in my mouth. Such problensveh?
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How did I figure that there were twenty possible deaLsions to

make? Look at this reasoning! For Each of the selections I make

(you're not sup')osed to know how many there are altogether), there

are 3! pr 6 permutations. For instance, if I were to choose Wagner

White, Bernie Blue and Ralph Red, there would be six ways of

rearranging these colors on the wall; that is 3! permutations per

selection. Jell now, the number of selections times the number of

permutations per selection would equal the number of permutations

of 6 objects 6aken 3 at a time. But I know the number of permuta-

tions of 6 objects taken 3 at a time(6P3 =(6!)/(3!) = 120).

Hurray; now I can find the number of selections; merely divide tne

number of pernutations(known) by the number of permutations per

selection (known) and bingolYou've got the number )f selections,

120/20, just like I said.

In case you hadn't noticed, the reasoning here is the same as

in section 4.3. However, the type of problem prof erred in section

4.3 has no definite descriptive formula for computation of a

solution. But the problem of counting the possible number of

selections does. Let nCr represent the number of choices (select-

ions--we've already used S to represent sots) of n things taken

r at a time. For each choice of r objects, there are r! permuta-

tions per choice, and there are nPr permutations of the n objects

taken r at a time. (Remember, in a permutaion the order.of the

listing is important; in making a selection, the order of the

elements has no significrnce.) Therefore, by our reasoning above,

n
C
r
,r!

r Since P
r

n!/(n-r)!, then
la r

r! = n!/(n+r)1; and

finally, n0r= n!Ar!)(n-r)i. We therefore now have formulae for

both permutation counting and selection counting.

6J
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Section 4.5 Let There be Light

Perhaps you've noticed (and perhaps you haven't) that the

question "How many selections of three paints from the six are

there?" might very readily be translated to "How many 3- element

subsets of the 6-element set of paints are there?" Indeed,

counting the number of selections is nothing more than. counting

the number of subsets of a set. There is absolutely no difference

whatsoever! And what then have we accomplished?

We nbw have a formula not only useful for counting particular

selections but also for ccvInting subsets; but that means our

formula should yield the numbers to be found in Pascal's Triangle;

but that means we have a way of finding the coefficients of any

binomial expansion without referring back to Pascal's Triangle

or Cooke's law! 4e have really nade a huge jump foreward! Let's

investigate our discovery a little bit!

As we saw above
6C 3 = 61/313! = 20 can be considered as the

number of selections we obtain when we choose 3 elements from 6.

Or it can how be considered as the number of 3-element subsets of

a 6-element sets. Or it can be considered as the 4th number in the

6th row of the Pascal's Triangle as illustrated in section 2.4

(where n=6 and r=3, how about that!) Or it can be considered as

the numerical coefficient of the 4th term in the expansion of

(a+b)6.

In fact, the expression n!/r!(n-r)! is much too important a

number to be tied down to 'the expression .Cr. Therefore, we'll

define a new notation; from herb on outl(P) = nl/r!(n-r)! will be

a number representing the following values:

1. (2) equals the number of selections of r objects taken
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from a set of n objects.

2. () equals the nunher of r-elenent subsets of a n-element

set.

3. (P) equals the (r+1)11) number in the nib row of Iascalis

Triangle (as defined in Section 2.4).

4. (B) equals the (r+l)th numerical coefficient of the

expansion (a+b)n. And thus we have found a neat way of finding

and or locating numbers in each of the 4 cases above, a direct,

immediate tethod which in essence ties together several areas of
(rt )

apparent diversity. We will,,show how extensively the (41.)= ni/ n--r):

notation and conputaion can be used in the next section.

The roof of my office? I painted it Stupefying Student, a drab

color of constant complaint.

Section 4.6 Problems and Such

1. In painting my office, I ended up with a jagner White, Van Horn

Vanilla, Elegant Eldi, Ralph Red, Chenevey Chartreuse and Bernie

Blue ordering of the stripes. Mahe an interpretation for this

arrangement.

2. One of the orderings I thought of for the paints was an

intellectual ordering; of course, this immediately fixes Bernie

Blue in the first stripe and Van Horn Vanilla in the last stripe.

How many possf,ble permutations are there under these conditions?

3. A second ordering that I pondered was an excess-flt ordering.

Of course, this immediately fixes Van Horn Vanilla mid Wagner

White in the first two positions and Bernie Blue in the last

position. How many different arrangements are there under these

conditions?

F;
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4. Another possible ordering; occurred to me on the basis of tou 1-

ness. Right away the first three stripes were fixed with Chenevey

Chartreuse, Ralph Red, and Bernie Blue respectively. How many

arranaments are there under these conditions?

5. Evaluate each of theibllowing:

a. 2! b. 3! c. 4! a. 5! e. 6! f. 7! g. 8! h. 8!°2114-7!.21

i. 6!.25!-7!22! j. 0!

6. How many distinct arrangements of the letters of the word

"Titterton" are there? of the letters of the word "Chenevey"? Of

the word "Mississippi"?

7. How many choices are there for seledting 5 people frolgroup

of 10? How many choices are there for selecting 4 people from 2".;!,00?

In the later case, with so many possible choices, how come we end

up with such a collection of bombs for student Government? (Maybe

this year will be different? canna give me odds?)

8. More conputdional practice: You must'become computationally

capable! aompute (P) for n= 4,516 and r= 011,213,...,n. (Note: r

can't be greater that n, right? So that's a pretty shrewd way of

telling you to perfo'rm 18 different problems. 18?)

9. For the binomial expansion, we now have three ways of obtaining

the numerical coefficients: Pascal's Triangle, Cooke's Law and

the direct use of the notation (). When is it most propitious to

use a. Pascal's Triangle?

b. Cooke's Law?

c. The () formula?

Answers of Such to the Problems

1. Obviously it's as simple as two Dutchman being separated from
you

two Frenchman by Alsace aid. Lorraine(Would

1

believe Laurel and Hardy?

68
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Dick and Jane?), two l'.:;umbahs" fron the ould sod.

2. There would be 4!=24 possible arrqngements; there are only 4

slots open.

3. Just 3! =6; there are only 3 slots open, and where they are

doesn't matter at all.

4. Likewise, 31=6. Three open slots anywhere on the wall yields an

answer of 3!

5. a. 2 b. 6 c. 24 d. 120 e. 720 f. 5040 g. 40,320

h. 71211(8+22) or 30.71211 i. 61221(23-7) or 16'6122! j. 1

6. Titterton: (9!)/(4!)= 15,120. Chenevey: Just one; there is

only one Chenevr. Mississippi: (111)/41412! = 34,650

(50) (2 0)= (575)(2299)(383)(2297); Law of Natural

Selection.
tot

8. See the 411115t and 6th row Pascal's Triangle (as defined in Section

2.4)

9. When the expansion is raisedto the 5th power or 1ss, you'd

proly use Pastel's Tr71.61::: by now those numbers should be

very familiar to you. For higher powers you'd probably-use the

direct computation approach, although Cooke's Law is always the

way if only or or 5 of the first terms to appear are the terms

desired.

Section 4.7 Enrichment?

Additional counting problems can be obtained from any good

textbook. These counting prOblems are anoung the most difficult

problems to do because of thediverse interpretations we can

give to the questions. The English language gets involved; sand

that's trouble!
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However, a specific list of problems follow:

1. For warn ups and relatively straight forward problems, try (10)

page 197,2-8, 11-13; page 2034-11,15,17119; page 200, 1-3,6,11114.

2. For additional warm ups, try (11); page 338, 1-19; page 340,

1-16.

3. In the minor leagues we find these problems from (12); page 299,

1-10; page 304, 1.3-8; page 308, 1-4, 6-10.

4. In the mojor leagues 're have the problems from(13); page 430,

1-30; page 433, 1-30. (They're all mad!).

5. More major leagues; from (14); page 252, 2-4; pgge 254, 2-15;

page 259, 1-15.

This last mentioned set of problens includes extensions of the

theory initiated in section 4.3. This theory yields numbers which

are found to be coefficients in a trinomial expansion.

In addition, for those of you who enjoy difficult challenges,
a

Sections 1 and 4, Chapter 3 of (9), give4different, sophisticated

and powerful approach to the derivation of the relationships we

found in the material above. It is not easy to interpret C9) s

reasoning, but it is really and truly fantastic.

Section 4.8 Pre-Test

I. In the answer part of section 2.5, for problem 2.5.2, we used

cone clever techniques (summation formula for an arithmetic

progression) to find that the number of a-element subsets of an

n- element set was (n)(n-1)/2. In the answers to problems 2.5.3 aid

2.5.4, it was asserted that the number of 3-element and 4-element

subsets of an n-elenent set could be found by using the formulae

(n)(n-1)(n-2)/3.2 and (n)(n-1)(n-2)(n-3)/4#3.2 respectively.

7n
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Verify that all 3 formulae are correct.(And how you know why I'm

so smart.)

II. Define: a. Shanks Mare

b. Yellow Dragon

c, Disposition

d. Derogatory

e. Computationally capable

III. 1. The number of distinct arrangements of the word "distest-

incts" is a. 6,652,800 b. 2,371,280 c. 126 d. none of these.

2. :seventeen points in 3-space, no three of which are collin-

eari deterriine x lines. nce value of x is a. 126 b. 136 c. 146

d. 156.

3. Seventeen points in 3-space, no three of which are

collinear, deterriine y triangles. The value of y is a. 720 b. 91

c. 680 d. 961

4. If I choose 5 colors from 9, I have the possibility of

making any one of a. 136 decisions b. 70 decisions c. 84 decisithns

d. 126 decisions.

5. If I were to count all possible selections of none or more

of 9 paints then I would have any one of x decisions to make. Of

course, x equals a. 512 b. 255 c. 128 d. 1024

6. A connittee of 13 people is to be split into 4 subcommit-

tees of 5,3,3, and 2 members. The number of ways these subcommittee.

assignments can be aade is a. 2,367,200 b. 1441,440 a. 729

d. 367,212

7. A teacher is going to give A's to 6 of his 21 students and

F's to the others (Nice guy, eh!). The number of ways he can do

this is a. 1 b. 1327 c. 54,264 d. 64,268
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8. the expression 61.231-71.22! is re-written as a sinE:le

term, it should look l',ke a. 13! b. -1221 c. -1 d.1661221

9. Another teacher is gOing to give A's to 6 of his 21

students, B's to 8 others and C's to the resb(all gifts!); he can

do this in x ways. x= a. 21!/6!8!7! b. 211/6!7!8! c.211/618171

d. if you compute this nuriber your're nad!

10. I have a nickel, dime, qualter, fifty-cent piece and a

dollar bill in my podket(I wish). The nunbar of different (acttal)

sums I can make up with these is a. 16 b. 32 c. 23 d. 31

Answers to the Pre-Test

I. (). (n)(n-1)(n-2)! (n)(n-1)

21(n-2)! 2!(n -2)! 2

(3)_ n!
= .22.212.=1)(n-2)(n-3)! (n)(n-1)(n-2)

31(n-3)1 3!01-3)! 3.2

(4)_ n! (n)(n-1)(n-2)(n-3)(n-4)! (n)(n-1)(n-3)

41(n-)! 41(n-4)1 4.3.2

II. a. Sharks Mare means A'pied.

b. Yellow Dragon g+S variety.

c. Ed Kranepool would say "Sometimes I play disposition,

sometimes I play datpasition, but mostly I sit on da bench."

d. Derogatory: Seeliebster

e. Computationally capable: being able to add 1+1

III. 1. a 2. b 3.c 4. d 5. a 6. b 7. c 8. d 9. a 10. d

'72
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Section 5 NOTABLE NOTATION

Outline of 'Section

The goals of this section incluctat

1. The introduction of sigma notation.

2. The generalized algebraic "proof" of utilizing the

(P) notation to describe the nunbers of Pascal's Triangle and

related counting problens.

3. Finding the solutions of sophisticated-looking problens.

Section 5.1 Sophisticatiien

Since (') describes the (r+l)th numerical coefficient of the

eTT)-.n2ion (a+b)n, we can use our new notation to describe the

e1;7,-crision of (a+b)n in the followin; fashion:

(a+b)n= obanbo a)an-lbl ()an-2132
u

(nn2)a2bn-2 (nn1 )abn-14. (2)aobn

For n.61 the expansion of (a+b)n = (a+b) becones

(6)&6130 4.(ba5b1 4.(5)a4b24. (3)a3b3 ()a2b4 6 1 5(5)a b +

(6)()e, o which, except for the uncouputed numerical coefficients,

is exactly the same as the expansion appearing in section 3.3.

As we did in that section, let's once ag :in sunnarize our

observations relative to the expansion: (I find that these relation-

ships cannot be enphasieed enough; please pay attention to them

this tine!)

1. Every tern in the expansion consists of three factors; a

numerical coefficient denoted by (DI a raised to some power and

b raised to sorie power. Again, each tern is the product of three

factors. Learn it!
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2. The exponents on the a run "downhill" from n to 0; the

exponents on the b run "uphill" from 0 to n.

3. The sur of the exponents of each and every term is n.

4. There are n+1 terms in the expansion, each separated from

the other by a plus sign.

Now let's take a look at sone two consecutive terns in the

expansion of (a+b)n; inspect (5)an -2b2 and (3)an-30. How do they

differ? Obviously, the first has the nuuber 2 written in three

positions, while the second has the number three written in those

sane three positions. If instead of
.

particular nuriber I were t9

write an i in each of those three Pcsitions (n)an-ibi, and let

2,3, then I would haye two terms of ny expansion all in one

swell foop! (Or is it one fell swoop?) 1Lt any rate, notice that

the sum of the exponents of the a and b factors is n-i+i or n,

which it must be.

You see, if I now say let i vary fron 0 to n, ie., let i=0,11

2,...,n, I would have all the terms of the expansion. But thre's
from another

still a problem; each of these tarns is seperatelkby a plus sign.

What I need therefore, if Iln going to write out this entire

expansion in a neat notation (which is my goal), is a plus sign

generator. Aid that's whqt I'm going to call the Lign (read

"sigma" sign) whiCh I an now introducing. With one additional

convention,' can now write the entire expansion of (a+b)
n

as

()an-ibi . The additional convention is that instead of
i=0
writing "let i vary from o to n4 or "let i=0,1,21...In ", I now

have the sane understanding by writing i=0 below the sigma sign

aad n above it. The convention means that you start with i=0 and
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keep going until you reach i=r; substitute eavh of these values

for i into the three spots of the general (12:1.)an-ibi term, making

certain that after each substitution of a value of i into all

three spots that the plus sign generator (the sigma-sign) produces

a plus sign to separtte the terns. Now, that's quite a mouthful;

let's see sone action.

We'll e xpand (a+b)6. By our above definitiohs,

(a+b)6 = (T)a6-ibil (In other words, substitute 6 in for n),
i.0

Now, let's see if the expresbion on the right does indeed yield

the fariliar Expansion (a+b) 6
.

Thc first thing you're supposed to do is let i= 0; the first

term therefore becomes (8)a60; now the sign:. -sign produces a

plus sign so that we have 0)a6b° + ; next we let i=1, and the

second tern becomes (T)a5b1 ; then the sigca-sign produces a

plus sign, and away we gol What a neat device, eh?

Did I hear you say you don't care far it? Well, you asked for

it! For your defiance and impertinence you will expand (a+b)
150

tonight for homework! And even if you don't compute the numerical

coefficients, that ought to kbep you busy for quite a whi'e.

But really I'm all heart. So if you'd like, you can use the

sigma-notation. That should take about 20 seconds of your time;

watch: (a+b)150
150

(150)" 150-tbi.

i.0

I don't know if you realize it or not, but I Itt_t did your

honework for you! All 151 terms are neatly stacked one on top of

the other in that expression on the tight. That's right! As far

as In concerned I've got 150 plus signs and 151 terms all

written out on the tight hand side. Of course if you're still

stubbornly fighting the concept of that sign-signlbe ny guest,
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and write out all 151 terns explicitly.

As we shall see in the problem section below, the sigma notat-

ion is very useful in solving many problems. And in Chapter T2

we will use the signa notation for relationships other than the

binomial expansion.

Section 5.2 Cooke and Pascal in Generalization

Throughout the previous sections I've continually harped on

the necessity of a general algebraic -..roof or a constructive proof

to validate our many discoveries. For instance, we noted certain

relationships among tht coefficients, exponents and number of the

term in the binomial expansion and called it Coohes's Law. Of

cofrse all our observations were made relative to the expansion
6

of (a+b) just one example. But now we have the ability to express

the relationship for (a+b)n. Let's set it up.

Since (a+b)n = 7 (3Dan-ibil let's investigate two

successive terns, namely the (r+1)th and the (r+2)th. These terms

are equell to (I1)an-rbr and (r-14)
an-(r+l)br+1 respectively. Remem-

ber that the (r+1)th term has the numerical coefficient (r) because

we start counting with r.O. Now Cooke's Law says that tht exponent

of the a fac,osir nultiplied by the coefficient of the (r+1)th term,

divided by (r+1), the number of the term, yields the coefficient of

the (m+2)th tern. In our new notation this would be

4.11- (i) = (M), where (n-r) is the exponent on the a,

(r+1) is the number:,:f the tern, 0) is the numerical coefficient

of the (r+1)th term and (M) is the numerical coefficient of the

(r+2)th term (By the way, see how this description of Cooke's Law

compares with your answer to Problem 3.5.6. '.?Mich is more concise,

?P,
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yours or the one above?)

We'll work on the left hand side of the expression only and

see if we can't manipulate it to look like the right hand side.

(n-r) (p) (r+1) )

rnl!(n-r)!
Certainly

r+1) (
by tire definition of

(

(3.1.!!). But (r+l)r! (r+1)! (See that part of Section 4.2 where the

factorial notation was introduced if you don't follow the above

statement; or trylit with numbers. If r=6, r+1 = 7.) Therefore,

(n-Fl (nN (n-r) nl
(r+1)- `ri (r+1)!(n-r)!° But now we note that (n-r)!.(n-r)62-11,-1)1

or (n-r)! (n-r)(n-(r+1))! Now the expression

(-113:1)? (ina!r)!
becomes -(nrit.1)! (n-(r-11))!

since the factor

(n-r) is divided out. But the final expression is exactly what we

are looking for since (1.14.1) (1,4.1)1 (n414.1))! And Cooke's Law

d ,s indeed work for all values of n.

If you didn't follow that bit of algebra you'd best go back

over carefully, because there's more to cone.

In section 2.3 I demonstrated what I called a constructive

proof to verify that the numbers of Pascal's Triangle (and the

generating process thereof) do indeed apply to the counting of

subsets. I went through it twice back there but it wasn't that

thorough a job.ile did two cases and obviously the procedure could

be generalized to show the correspondence between the counting

of all subsets and the generation of all Pascal's Triangle.

But the procedure wasn't specifically generalized; no general

terms were given, no general algebraic rules were made up.

Constructive proofs contain just a little too much arm waving, even

when they are valid, as is the proof given in section 2.4 relating

subset counting to Pascal's Triangle and the proof given in

Courant and Robbins (Problem 3.5.5) relating the binomial

7)7
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coefficients to Pascals
0

Triangle. however, now we will provide

a clean, algebraic, concise, powerful and general argument that will

validate in one fell swoop(or is it one swell foop?) the use of

numbers froca Pascal's Triangle (and the generation process thereof)

to count subsets, determine binomial coefficients and to walk the

dog.

From definition 3 of section 4.5, we know that the (r+1)th

number on the nth row of Pascal's Triangle is denoted by

Similarly, the (r+l)t number of the (n+l)t row is denoted by

) (If this is unclear, see the Pascal's Triangle found in

section 2.4). The generation rule for Pascal's Triangle would be

expressed as:
-r

(p) ). It is this statement which we

are to verify if the connection between Pascal's Triangle and

making selections is to be generally validated.

Again I w41 work on the left side and hope to end up with an

expression equivalent to the number (131.1) found on the right side.

Actually, this problem is just as easy as adding two fractions:

you merely find, a common denominator and add. Simple, eh?

Certainly + (r) (

n!
r-1)! (n-(r-1))1

n!
7TE-77--

by definition of the (g) notation. Now, what is the common denomin-

ator? Well, since r! (r)(r-1)1, we merely need a factor of r

introduced into the denominator of the left hand fraction to

make those two factors equivalent; and since (n-(r-1))1 (n-r+1)!.

((n-r)-1-1)1 = ((n-r)+1)(n-r)! , we need only introduce the factor

(n-r-1-1) into the denominator of the right hand fraction to make

those two factors equivalent. That is,

r6
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n! n!
- n1

(r-1)!(n-(r-1)! (n -r)1 (r-1)1(n-

rn!
r! (n-r+1)!

n!

r!(n-r)!(n-r+1)

(n-r+1)221

r! (n-r+1)1

Since the denominatomsare now the sane, we oan add! But first, note

the con non factor of n! in both numerators. If we factor it out

before we add, the sum will look like this:

_Rijr+ n r+ 1)
$

n! (n+1) ; which is to say,
r! (n -r +l)! r! (n-r+1)1

n ! We have thereore shown that
rl (n +1 -r)!

Ole ,Nol.

r)! ; but ( r ) _
(n+1)!

(32.-i) + (p)
n+1,nn l +''

r! CnTa-r)!

Therefore, (g) (221.1). Q.E.D.

And in case you've never wondered, Q.E.D. means Quod Erat

Demonstradum; which meansgWhiCh. was to be demonstrated."

Of course, some people think it means Quite Enough Done.

I'll concur at this point, Let's look at some problems.

Section 5.3 Problems

1. Express as an ordered triple the 1st, 3rd and 5th terns of the

expansion (; x2 + 5y)6.

2. What is the 19th tern in the expansion of (2xiwy)2° ?

3. I an very musical; I play 7 differen instruments (piano,

trumpet, harmonica, bongo drums, indian drum, conch shell and

bass fiddle). How many different combo's can I advertise if I can

nanage to play all 7 one or more at a tine?
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4. As I mentioned previously, the sigma-sign has additional uses

other than the binomial expansion. Referring to the definition of

the sigm-sign and related notaL-ion compute:

a. 1
2

1 2 (21-1) 2
c.1.41 i3 d. (3i+5)3.

. .

5. By now, most of us are aware that (a+b)6 can be written as

c .6._6-i,i
1/4i)a o , but very few if any of us are aware that

= (a+b)6. We are so used to looking left to right
i7-10

in Nathemati3s that we find if nigh impossible to look right tO

left (even those of us who have had Hebrewlessons!). That is why

you'17 have so much trouble doing these problems:

Solve .:or x:
9

a.) a) 39-i xi = 0
i=0

19
(12) x197i4i

= 0
i=0 1

e0) Simplify: (i) 35-i2i

b.) (7) 47-ixi = 0

8

d.) (2)8-i(baxi = 0
i=0

1.0
6

f.) Find the integer equivalent to : (I) (2)1
1.1

(7) 47-i 3i

17.0

11 (11) 211-i 5i

g.) Reauce to lowest terms:

6

h.) Reduce to lowest terms: E (T) 36-i-3i
i=0

8
(T) 2i48-i

i=0

8 `)



i.) Reduce to lowest terms:

a.=0

6. Problems W-2. and W2 above are easy enough(?), but now try

these : a.) Find the 5th tra of (x+l)13

b.) Find the 3rd term of (x2/3- 1)5

c.) Find the 4th term of (2x3/2+ x-2/3)7

d.) Find the x2 tern of (x2 - -3)7

e.) Find the x3 tern of ( J. - 1)5
2

f.) Find the middle tern of (1 - )-

7. I have a pillion problens to see if you understood the algebraic

masterpiece of section 5.2. For if (r1:11) (P) = 01:1%) )
then

certainly

a.) 1" +(11 - (1141) . (12,:1) and

b.) (pIl) (r !,1) (111I)

Verify these two relationships in general.

8. Even if you can't do the algbbra of -,;07 above, certainly you

conprehend the relationships, ce pas? In which case you

can the following for x;

2c), ''!c)
a.X

/
b.)(1371)4a61) =0x

2

7/4.7 \ 4/LI7 /4-8 \

c f (19 x ) 201 ÷(1;) =l ?.?)

An-,J1,T to Problems

Y)/,--20 125 8 2 3125 4 4. .

1. \ , ;-- J9 -74 ;-:- X y 9 x y ) Hint: Take i=0,214. The rest

is algebra and arithmetic.
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2. Since we start counting with i=0, the 19th term has i= 18.

ThE, fact is just a little bit important. JuS;a little bit.

The 19% term therefore is (N)/ N) 20-2x 18 / N18
or 760x

2
y
18

.

3.
1 I
() = (?) - = 27 - 1 = 127

=

12 22 32 42
4. a.)

b.
) 32 52 72

c.) 43 + 53 + 63 = 405

d.) 113 + 143 + 173 4. 203

5. a.) (3 + x)9 = 0 ; x= -3

b.) (4 + g)7 = 0 ; x= -4

c.) (x + 4)19 = 0 ; x= -4

d.) (x + 2)8 = 0 ; x= -2

e.) (3 2)5 3125

f.) (1 + 2)6 = 729
(Hint: Remember problem 3.5.1)

g.)
(4 + 3)7 7-4
(2 5)11

6
h.)

62
(2 + 4)

i.)
1 + 4'5

= 25
(2 3)

6. a.) Take 1=4, let a=x, b=1. Answer: 715x9

b.) Take i=2, let a = x2/31 b= - t. Answer: 10

c.) 560x4

d.) Be clever: 2835x2

e.) B-6 clever: -10x-3

(If you expanded the entire binomial to obtain the answers for

d,e and 1, consider yourself a clod!)

?. Trivial problem. Just ask your teacher todo them. They should

8 2



only take a few moments of his (her) tine! (Ho- ho -ho!).

8. a.) 30 b.) 17 c.) 20 d.) 38

Section 5.4 Pre-Test
4

1. i2 a.) 16 b.) 30 c.) 55 d.) 29
i =2

2. The 5th tern in the expansion of (ax-3)4 is a.) 81 b.) -128x3

c.) 216x2 d.) 162x

x3 1
3. The 4th

-8-
9

term of the expansion 2 - 6
is a.) - ;x6

x 1
6

(

b.) 20+ - R3 c.) g d.) ; x3

4.
5,
2: (2i+3) is equal to the integer a.) 20 b.) 40
i=2

c.) 48 d.) 218

5. The x-tern of the expansion (x2- i)5 is equal to

a.) -27x b.) 90x c.) -270x d.) -90x

6. 4hen all 132 terms of the expanded (a+b)131 are implicitly

written down, you've got a.) sore headache b.) a piece of paper

fall of terms c.) 3 general factors preceded by en anotated

sigma -sign d.) a lot of numbers, letters and exponents.

7. The constant tern of (L2 + 1
2
)2 is equal to a.) 1 b.) 2

c.) 3 d) 4
15

8. If the equation (1.5) 31x3-1 = 0 is solved for x, the
i=o 1

anew= will be a.) -3 b.) 3 c.) 15 d.) 12

6,
6/,9. When simplified, the trivial fraction

i =0
(i 6) 36-i5

i

(4) 4-i

a.) 16 b.) 8/7 c.) 64 d.) (8/7)2

R .73
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10. If (29) + (29) (3°) then x equals

c.) 30 d.) 29

Answers to Pre-Test

1. d 2. a 3. a 4. b

5. c 6. c 7. b 8. a

9. c 10. b

8Y

a.) 13 b.) 14
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Section 6 MATH IS FUN

Section 6.1 Summary(?) of Chapter Ti

Not this kid? If you want a summary, just look over the

outlines of each section. Or do all the problems again.(Or try

doing them for the first time:) But chapter summaries are for

the birds; what I've done instead is put together this section

6. It's got a fractured history, Pascal's own work, songs,

(which are indeed summaries) another pre-test and finally a

bibliography from which I stoic all my information (except for

a few aberrations and mental spasms).

If this whole section isn't summary enough, then you'll just

have to summarily write your own.

Section 6.2 A Tra*ic Tale

On the cold bright morning of November 23, 1654, Blaine

Pascal was to be found in a four in hand(carriage pulled by two

horses) traveling along a road running parallel to -the beautiful

80ameRiver just outside of Paris. He was approaching the town of

Neuilly and the brisk air felt good on his face, helping h1.m to

forget the almost sleepless night he had just passed and mitigat-

ing the dull ache that he monstantly had in his stomach. The

thirty-one year old bachelor was on his way to visit a friend in

where they were going to look over the work that Blaise

had done the year before utilizing his arithmetic triangle.

The better part of tie previous year had been spent using the

arithmetic triangle to solve a problem posed to Pascal by a

gambler acquaintance of his, a fellow by the name of Antoine
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Gombaud, who was better known as the Chevalier de Here.

It seems that Gombaud had had a bit of an altercation with

a fellow gambler when, in the middle of a particular game of some

sort, they were forced to disperse. The atgument centered around

thecpcstion of who should get the better share of the pot----

and how much of the pot. Antoine took the problem to Pascal, and

Blaise set upon not only the problem given to him, but as is

typical with most good mathematicians, took on the task of

generalization as well. In this way he essentially laid all the

foundations of Probability Zheory.

Pascal wrote to Pierre Fermat and transmitted Gombaud's

problem to him,and theyvorked the original problem out together.

Whereas Pierre (the founder of number theory as such) used some of

his sophisticated techniques to -solve the problem, Pascal used

his arithmetic triangle and his version of the (I1) notation

we introduced in section 5. (I say "his version" since the

factorial notation was not introduced until another Frenchman

named Christian Kramp used it in 1808 in order to help the printer

out. Previous to 1808, the notation for n! was ln/l. How about

that?) . They wrote to each other throughout the year 1654: .and

both their solutions agreed in essentials,although Pascal had

made a few arithmetic errors. Which goes to prove something or

other!

At any rate, the sequel to the story is that when Pascal

informed Gombaud of his sOlution,the ever gracious Chevalier was

anything but thankful. It seems the mathematical analysis of hhe

problem went against his intuitive notion of the solution (and

against his wallet too, I imagine), and he ended up writing ,Laid

8
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publishing a paper in which he discussed at great length the

worthlessness of science in general and asitbnetic in particular.

At any rate, as Pascal was approaching Neuilly, something

startled the horses and awiy they went-just as you've seen a

thousand times in a thousand western movies. But this time there

was no hero to jump onto the buckboard and rein in the horses.

In fact, in Pascal's case not only did the horses not stop but

as they approached the tiridge across the Seine leading into

Neuilly, they failed to negotaite the last turn and vaulted over

and through the railing of the bridge, dropping into the cold,

cold Seine below. Pascal, however, remained above, precariously

perched in the tottering carriage, staring into the cold,

treacheroud Seine far below. A person of his poor physique and

physical health would have had little chance of surviving the

Seine---- assuming that he would have survived the fall in the

first place. Although a very carefull mathematician, Pascal had

almost "jumped to a conclusion.'"

For the rest of his life Pascal was haunted by hallucinations

of a precipice before his feet; he carried a bible with him

constantly; he declared that hevould retire from public life and

spend his time "contemplating the weakness and misery of man";

and from then on "he regarded the pursuit of all sdience as a

vanity to be eschewed for its derogatory effects on ,,the soul."

You see, he could only conclude that his near demisal from this

earth had been a message from God; to wit, that he stop playing

with arithmetical triangles and such things and that he should

shape up---otherwise hevould be shipped out.

Now, most people of that age did not Link in such terms,
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but Pascal had had some pretty tough problems to,.cope with during

his lifetime. He was such a frail child that his father 'Etienne

(who was, an amateur mathematician himself; thd limaecon of Pascal

(which you should encounter when you study polar coordinates)

is named after the father Etienne and not after Blaise) decided

that he should not be subjected to the difficult study of

mathematics; it would be too hard on the poor lad. However at age

12, little Blaise was chafing at the bit; he demanded to know

what geometry was all about (just like all the students (?) at

Syooset High School). His father gave him a somewhat succinct

but complete explanation of the subject matter, and Pascal aat

down to play with all these matters. He soon had re-created much

of Euclid's geometry, including the theorem on the sum of the

angles of a triangle ---- without any previous knowledge of the

relationship's existence. At age 14, he was admitted to the weekly

meetings of an elite group of French mathematicians which event-

ually evolved into the French Academy of Sciences. And at age 16

he made the discovery of his "mystic hexagram".

This "most beautiful theorem in the whole range of geometry"

goes something like this: If a hexagon(convex or concave) is

inscribed in a conic (circle,ellipselparabola, hyperbola) then

the points of intersection of the three pairs of opposite sides

are collinear and conversely. In other words, suppose we number

the six points on an ellipse 1,2,3,4,5,6. Then Pascal's theorem

of the "mystic hexagram" says that the intersections of hhe pairs

of lines 12,45;23,56;34,61 are collinear. Give it a try and see if

it works out.

Note: if you don't choose your points propitiously, you'll need
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a very large piece of paper to verify the theorem. Experiment and

you'll see what I mean.

In section 1.1 I mentioned that Pascal had worked.out some

400 corollaries to his theorem. Here are a couple you might try

to verify.

1. A pentagon 12345 is inscribed in a conic; the pairs of

lines 12,45;23,51;34 and the tangent at 1 intersect in three

collinear points.'If you still haven't figured how to construct

this theorem, stop and think a moment; each pair of lines intersect

in one and only one point; there are three such intdrsections

and therefore three points; Pascal's theorem states that these

three points lie on one line!)

2. The pairs of opposite. sides of a quadrangle inscribed

in a conic, together with the pairs of tangents at opposite

vertices, intersect in four collinear boints.

3. If a triangle is inscribed in conic, then the tangenVat

the vertices intersect the opposite sides in three collinear points.

4. Given three points on a conic and the tangents at two of

them, the third tangent can be constructed.

Now, the best way to see what these corollaries say is to

draw a circle, read carefully, and try to draw in the given

information. Just remember that they were first diEcarered by a

16 year old boy in 17th century France, and you're a big deal

17 year old in 20th century U.S.A.

Aside from the set of 4 examples I've given above, there

have been other numerous and attractive consequences disocivered

through an almost unbelievable amount of research. For instance,

there are 60 possible ways of forming a hexagon from 6 points on
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a conic (see if you can verify that!) and, by Pascal's theorem,

to each hexagon corresponds a Pascal line. Furthermore,these 60

Pascal lines pass three by three through 20 points, called Steiner

points which in turn lie four by four on 15 lines, called Plucher

lines. The Pascal lines also concur three by three in another set

pf points, called Kirkman points, of which there are 60. Corres-

ponding to each Steiner point there are three Kirkman points

such that all four lie dpon a line, called Cayley line. There

are 20 Cayley lines,and they pass four by four through 15 points,

called Salmon points. There are also mny other extensions and

properties of theconfiguration, but at this point I'm sure we'd

all be too dizzy to even read them! I can't even prove Pascal's

Theorem, although I have read'that the number of such pxtiati, is

1e n

Of course,any projective geometry book had a proof ((7),p66),

but my excuse is that the proof is non-metrical; there are no

numbers inv6lved and no algebraic maniptlations to be made.

(a lie;(7), page 143). That, as a matter of a fact, is the real

becut,,,,of Pascal's Theorem; it deals only in points, lines and

conics. No algebra heed be utilized.

And how I'm certain you know why at the age of 17 Blaise

Pascal developed acute dyspepsia (say, now I know where they got

the name Pepsia Cola especially the diet variety). In fact,

his digestive tract gave him so much trouble that when he was

working in his father's office a year later (his father was

essentially a tax collector; Blaise used to hell!) him keep the

books straight) he found it difficult to keep his mind on the

long additions that had to be done. To get the job done he



therefore invented the first adding machine.

The instrument was able to handle nuribers not exceeding six

digits. It contained a sequence of engaging dials, each narked

from 0 to 9, so designed that when one dial of the sequence turned

from 9 to 0 the preceding dial of the sequence automatically

turned one unit. Thus the "cayrying" pvocess of addition was

mechanically accorTlished. Pascal eventually had over 5o of these

machines manufactured, and a couple of then can still be found in

a Paris museum nore than 300 years later. Apparently "Built to

Last" was Pascal's trademark.

But Pascal wasn't built to last; at age 23 his digestive track

was in such bad shape that he suffered temporary paralysis. At

this same tine a breind of religious fervor was sweeping France

(called Jansenism) which required' the rejection of the corrupt

material world and a "conversion" to the spiritual. Pascal figured

that the temporary paralysis was a sure sign that he had been

dabbling in the devil's awn backyard; he therefore converted to

thinking of his soul instead of the mystic hexagram and such.

During this period he wrote his famous "Pensees" which were suppos-

ed to be introspective excursions into the depths of his zoul.

Whatever they were, they were foundations of modern French

literature.

Of course six or seven years later Pascal slipped back into

"sin" and did hisllork on the arithmetic triangle and. probability

theory. But the near initiation into the Polar Bear's club changed

all that! He only fell from grace once no/4; that was when a.:

toothache drove him to work eight straight days on the cycloid.

(The cycloid is the curve traced out by the motiQn of a fixed
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point on the eircolference of a wheel rolling along a straight

line on a flat pavement). This was the last work that Pascal did;

he fell grievouSly sick and died four years later.

In the work on the cycloid he determined the areas and volumes

of sections and rotationd of sections about various axes which

depended on summation flormulas (which he derived by using his

arithmetic triangle). He published many of the results of his

cycloid work in the form of challenge problems for Other mathemati-

cians. However, he didn't sign then as Blaise Pascal as he had

supposedly eschewed the pursuit of such nonsense; he therefore

signed then as Amos Dettonville or its anagram (letters re-arrang)d)

La-. is de Montalte. Clever fox, eh?

The summation formulas alluded to above were very useful and

necessary in the discovery of the Calculus by Isaac Newton and

Ilibnizt. We'll see some of these derivations in tha next chapter,

aft we investigate in depth the principle of Math Induction.

Needless to say, the principle of Math Induction was first

presented in an incidental way in (would you believe?) Pascal's

paper on the arithmetic triangle!

I've included this little treatise on the life of Blaise Pasual

for a couple of reasons. Fireb, his work and discoveries run

throughout the material in these two chapters, all analysis and. all

mathematics; and we should have some feeling for the humanity

of the man responsible for all of this. Secondly, I hope all you

Math geniuses will leE.rn a lesson from this tragic figure and

live your lives with more direction and meaning.

In particular, lay off the pepsi and potato chips, or you'll

end up with paralysis of the brain too!

4 2
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Section 6.3 The Arithmetic Triangle,

At this point, we've talked about Pascal's Triangle so much

that it's incumbent upon us to see just exactly what he did.

Below you will find my translation of the French found on page

67 of (8), which in turn was a translation of the Latin in which all

important Mathematics and other disciplines were written up to the

19th century (so that all mathematicians could read a given work

without some weak translation getting in the way.)

Speaking of weak translations, what I've tried tb do is merely

gather all the pertinent felationships; they are presented here

for you perusal. some of them require a great deal of attention be-

fore they yield any meaning.

But now, the ''Traitg' du Triahgle Arithmetique", by Blaise

"the Smiling Frenchman" Pascal.
IbLQACES

CELL

(L.101.

3
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Definitions:

1. Each cell has a name,cla. .1 where i is the appropriate index

from the parallel rank and j is the appropriate index fron the

perpendular rank, (i.e., c43 is the cell in the 4th parallel rank

perpendicular rank (column))

2. ells of the same base: (Base 4) c41, c32, c14.

3. (JM; of the dividend: c11,
c221 c33,

etc. (the main diagbnal).

4. ":..ne c...Ms of the same base equally distant from its ends are

call-a rerocals4: as c,121 c24. and c32, c23, because the index

of oarallel rank of the one is the same as the index of the

perpnaicular rank of the other, as is apparent in the example

jut iven. It is quite easy to show that those cells which have

their indices rbciprocally equal are in the same base and equally

from its extremities.

It is also quite easy to show that the index of the perpendic-

u1a2 rank of any cell whatsoever, added to the index of its

parallel rank, exceeds by unity the index of its base.

For example, cell c43 is in the third perpendicular rank, and

in the fourth parallel rank, and in the sixth base; and the two

indices of the ranks 3+4 exceed by unity the index of the base 6,

which arises from the fact that the two sides of the triangle are

divided into an equal number of parts; but this is rather under-

stood than demonstrated.''

Rule.

"Now the numbers which are placed .in each cell are found by this

method:

The number of the first cell, which is in the right angle, is

arbitrary; but when that has been d6cided upon, all the others
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necessarily follow; and for't,lis reason, it_is ca)'.ed the generator

of the triangle. Each of the others is determined by this rule:

The number of each cell is equal to that of the cell which

precede3it in its perpendicular rank, added 6o that of the cell

which precedes it in its parallel Tank.

From these facts there arise several consequences. Below are

the principal ones, in which I cohtider those triangles whose

generator is unity; but what is daid of them will apply to all

others."

Corollary 2. In every arithmetic triangle, each cell is equal to

the sun of all those of the preceding parallel rank, comprising

the cells fron .lis perpendicular rank to the first, inclusively.

Cop.sider any nell c34
: I assert that it is equal to c21+ c22+

c23+ c24, which are cells of the parallel rank above, fron the

perpendicular rank of c34 to the first perpendicular rank.

This is evident by defining the cells, merely , in thrms of the

cells from which they are formed.

For c34 c33+ c24

Therefore,

c33 ""c32 c23

c32 * c31 c22

c31 c21

c34 c21 c22 c23 c24 (Obviously!)

Corollary 3. In every arithmetic triangle, each cell is equal to

the sum of all those of the preceding perpendicular .rank, compris-

ing the cells from its parallel rank to the first, inclusively.

Corollary 4. In every arithmetic triangle, each cell diminished by

unity is equal to the sum of all those which are included between
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its perpendicular rank and its parallel rank, exclusively.

Corollary 5._ In every arithmetic triangle, each call is equal to

its reciprocal.

Corollary 6.- In every arithmetic triangle, a parallel rank and a

perpendicular one which have the same index are composed of cells

which are respectively equal to each other.

Corollary 7.- In every arithmetic triangle,the sun of the cells

of each base is twice those of the preceding base.

Corollary 8. -In every arithmetic triangle, the sum of the cells

of each base is a number of the geometric progression which begins

with unity, and whose order is the same as the index of the base.

Corollary 9.- In every arithmetic triangle (the sun of), each base

diminished by unity is equal to the sum of all preceding bases.

Corollary 10. In every arithmetic triangle, the sum of as many

continuous cells as desired of a base, beginning at one end, is

equal to (the sun of) as many cells of the preceding base,(plus)

taking as many again less one.

Corollary 11.-Every cell of the dividend is twice that which

precedes it in its parallel or perpendicular rank.

AND NOW FOR THE REALLY BIG SHOW:

Corollary 12.-In every arithmetic triangle, if two,cells are

contiguous in the same base, the upper is to the lower as the

number of cells from the upper to the top of the base is to the

number of those from the lower to the bottom, inclusite.

Lemma 1: which is self-evident, that this proportion is met with

in the second base; for it is apparent that c21 is to c12

C16
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.-as 1 is ta.l.

Lemma 2: that if this proportion is found in any base, it will

necessarily be found in the following base.

(THIS IS THE FIRST FORMAL PREUNT4TION OF THE PRINCIPAL OF MATH

INDUCTION IN THE HISTORY OF MATHEMATICS!!!)

Corollary 13. - In every arithmetic triangle, if two cells are

continuous in the same perpendicular rank, the lower is to the

upper as the index Of the base of the upper is to the index of its

parallel rank.

Corollary 14. - In every arithmetic triangle, if two cells are

continuous in the sane parallel rank, the greater is to the

preceding one as the index of the base of the preceding is to the

index of its.,perpendicular rank.

Corollary 15. - In every arithmetic triangle, the sum of the cells

of any parallel rank is 6o the last cell of the rank as the index

of the triangle (of the base of the triangle) is to the index of

the rank.

Corollary 16. - In every arithmetic triangle, (the sun of) any

Parallel rank is to the rank below as the index of the rank below

is to the number of its cells.

Corollary 1?. - In every arithmetic triangle, any cell whatever

added to all those of its perpendicular rank isiD the same cell

added to all those of its parallel rank as the number of cells

taken in each rank.

Corollary 18. - In every arithmetic triangle, two parallel ranks

Equally distant from the ends are to each other as the number of

9 71
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their cells.

Corollary Final. In every arithmetic triangle, if two cells in

the dividend are continuous, the lower is th the upper taken four

tines as the index of the base of the upper is to a number greater

(than the base) by unity.

"Thence many other proportions may be drawn that I have passed

over, because they may be easily deduced, and those who would like

to apply themselves to it will perhaps find some, mort:r.elegant

than these which I could present".

Other Discoveries (To be Nade):

1. Add the thirYy-six numbers displayed in the square (heavy dark

lines). Try to locate their sum in the Pascal triangleland then

formulate a general theorem.

2. Try to recognize and locate in the Pascal triangle the numbers

involved in the following relation:

1°1 + + 10.6 + 10.4 + 5.1 = 126

3. Try to recognize and locate in the Pascal triangle the numbers

involved in the following relation:

6.1 + 5.3 + 4.6 + 3.10 + 2.15 + 1.21 = 126

Observe (or remember) analogous cases, generalize.

(This is taken from (8), page 67. The problems are from (6),

page 87.)

Section 6.4 T's Sing Along

Say, how about some entertainment? Didn't I tell you back in

section 1.1 that yould be of joy and happiness after
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going through this chapter? Well, here it:As! Instant joy and

happiness!We have sohgs to sing!

The first is sung to the tune of Bye-Bye-Blackbird (here

again is where your parents will come in handy; they know the song

very well even if you have never heard of it!) The song is certainly

just as good as anything Mad magazine has put out---but then again,

maybe that 's nbt saying too much.

But here it is: the entire first chapter summarized in

"Blaises's Blues in B-flat."

Counting stripes on a wall, and subsets, one and all

You can use the Binomial Expansion.

Finding roots, both cube and square, Pascal's numbers everywhere

And in the Binomial Expansion.

Everywhere you look you're bound to find'em

One-- Two - - -one and all the rest behind'em.

When in doubt and you must guess

Use these numbers and their recursivenes--

And in the Binomial EDtpansion.

Another set of lyrics which I have penned depends upon the

tune of "Spoonful of Sugar" from the ever-lovin' Mary Poppins

story. As a Math teadher here at Syosset it has been my woeful task

to witness again and aggitn. the complete ineptness of most students

in their quest for obtaining the rth tern of an (a+b)n expansion.

Despite the list of careful observations given in both sections

3.3 and 5.1, most students persist in putting plus signs between

factors, in halting the sum of the-exponents unequal to n and in

hard core cases, some have even forgotten to include the numerical
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coefficient. In an attempt to correct these absurdities and

disgraces (they are really sins), I herewith premnt my song

entitled, "Spoonful of Helpfulness".

Verse 1

In every test you'll ever take, It is quite probable you'll take

Perhaps, perchance or maybe a mistake

But if you 11-* sl to this song,You'll likely not go wrong

So just relax perk up and sing along.

Chorus

Just a t4nOgun to thd details and you'll get the problem rigLt

You'll get-the problem right, My --what a delight

Just a tenshun to the details and you'll get the problem right

And have less homework every night.

Verse 2

There is a problem that we know, I haven't any doubts

We're all familiar_ with its in's and out's

But getting it right we cannot do, Or at most a very few

The results - by and large - are strictly Pee U.

Verse 3

And -et the problem of which we speak. That has us up the creek

Is simple as any problem we might seek

And if zee wish to be more.joviall Make T. less patrimonial

Then we must - we must - learn the ex- pansion binoMial

Verse 4

In every term you've got to see. Three factors - one, two,three

Not four or more or less yo..) must agree

1
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The firsta factor numerical, forget it, T'll get hysterical

You'll fluhk - you'll flunk - your nark will be quite sperical.

Verse 5

If you would keep your teacher sane. And save yourself great pain

Then learn the rules for powers, signs and such

Know how to use the sigma sign

Think TWICE--- there'll be sunshine

And T - quite surely - will love you very much.

Section 6.5 More Entertainment, or History Pre-Test

The following is a sample exam which you can use to ascertain

whether you have absorbed the concepts and facts of section 6.2.

1. Pascal's version of Rogees and Hammersteins's "Surrey with the

Fringe on the Top" (from the musical "Oklahoma") a. is in A horse

time b. never made the top ten c. has a pfie.cipitous ending

d. gets carried away by excessive enthusiami of sone of the

principles involved.

2. Pascal was called The Smiling Frenchman" because a. he was a

pepsi cola salesman b. people in pain always smile; it only hurts

when they laugh. c. he was a "blaise" of fire. d. Was a picture

of robust health end earthy humor.

3. Descarte, a contemporary of Pascal, was the founder of coordinate
co",'

geometry, more\ rectly called Des Cartesian coordinate system.
I.

There is a story told, howevert about how Descarte brought much

grief to a circus performer whose horse was computationally gifted.

This horse could add, multiply, subtract, divide and extract roods

(Sasoafrqs was extremely tasty that year). But when someone gave the

horse a coordinate geometry problem todo, he balked and had a
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nervous breakdown. The reason far this was obviously because a. he

chafed at the bit b. the amount of work to be done was in-ordinate

c. the horse was cross-eyed and couldn't handle an ordered pair

d. you don't put Descarte before the horse.

4. Pascal did not join his horses in the river because of a. Gene

Autry b. Roy Rogers c. B.F. Goodrich non-skid tires d. an

aversion to cold water.

5. qhen Padcal solved the Chevalier de Mere's problem, the Chevalier

was a. not too sweet b. ecstatic c. gave up gambling d. wrote

letters of praise to his friends, Amos and Dettonville.

6. when Pascal said that The vanity of earthly pursuits were to be

eschewed,!! he meant that a. Pierre Fe-mat could do his own Math

homework from then on b. he would have to masticate (orFat-therize).

1-1:_z food more thoroughly c. he was going to antique hit sister's

fr,=:.nity with a new color called "Eschew" d. earthly pursuits were

okay, but e-width shoes were necessary.

7. Pascal's father, Etienne, was also a famou6 mathzmaticain, and

name was given to a. a special type of lemon, the limacon

b. a curve described by revolving tops called limacons c. the

French equivalent of leprechaun, lemacon d. curve co-discovered

by a Chine%mathematician's son, Li-ma.

8. The mystic hexagram that Pascal discovered concerned itself

with a. conics, corollaries, collinearity and cosmic confusion

b. with an 8- letter-word containing an x useable in a gameof

Scrabble if your opposition lets you cheat c. a six word telegram

discussing 11c:evenly happenings d. a six-tided ship moored in the

Connecticutt River.

9. The corollaries to Pascal's Theorem are all very a. obvious
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b. trivial c. enervating d, hard to tinderstand.

10. The story of Pascal clearly indicates that if you drink enough

pepsi, you will suffer a. temporary paralysis b. permanent paral3s

c. stomach paralysis d. brain paralysis

Answers to History Pre-Test

1. obviously c, although d cones galloping ,close.

2. You're on the ball if you chose c.

3. d; and don't change horses in the middle of a streqm, either.

4. a. I. asieur Eugene Autry had left his umbrella at the part

of the bridge where the horses went thro,,gh the railing; it stuck

in one of the wheels of the carriage and prevented it fx0m going

any further.

5. a) i.e., he worked np a sweat over Pascal's solution.

6. b) Dr. Fletcher wrote a great many articles and books during the

period from 1910 to 1920. It is believed that the quOte from Pascal

derved as the basis of his theory for complete digestion of food-

stuffs.

7. c) the Irish didn't invent everything!

8. a) obviously

9. c) because you don't know how to interpret that word either)A

10. b) try it and see.
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Note: all numbers in parentheses refer to the bibliography,

section 6.6, of Chapter Ti.

Section 1: Pascal Revisited

Outline Of Section 1

In this section the goals consist of:

1. Familiarization and comprehension(?) of the

Principle of Math Induction

2. Verification, utilizing the Principle of Math Induction,

of a multitude of formulae and divisibility relationships.

Section 1.1 The Spoiler

L. prime number is a positive integer which is divisible only by

itself and 1. The opposite of "prime" is "composite". The number

1 is neither, but stands alone.

I mention these definitions because one of the many discoveries

yet to be made in mathematics is that of a prime number generator.

By generator. I mean a function whose range will cohsitt only of

prime numbers (although not necessarily each and every prime nurabe

for some specific domain.

Fon:Instance, for ntIntegers, 2n is an even integer;likewise,

2n-1 is an odd integer. These are trivial examples of even integer
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and odd integer generators. We have run into a rather sophisticated

generator ih problem 1.6.8 of Chapter Ti; remember Tabit Ibn

gorrawitx's anicable number generators? ae also found that

Qorrawitz'd formulae did not yield each and every pail of amicable

numbers; but it 'Aid yield only anicable numbers.

Now discussing all this here because I've been doing a

little work looking for a prime number generator,and t do believe

I've found one! Unlike Qorrawitz's complicated mess, I found a very

BELONGING TO
simple expression: For n. positive integers, n2 - n + 41 will

always be prime!

Pretty neat, Let's cheek it out. For n = 1, p(n) =n2-n+41

equals p(1) = 1 - 1 + 41 = 41, a prime number. Likewise, p(2)

4 - 2 + 41 = 43, a prime nun11.,_=r; p(3) . 47 (jumped right over 45 - --

great, right?); p(4) = 53 (shipped the 49 and 51); p(5) = 61

(s0 I skipped 59; didn't say I'd get each aid every prirJe number;

just said all my outputs are prime); p(6) = 71, p(7) = 83, p(8) =97,

p(9) 123, p(10) = 131, etc.

I haven't had too much free tine lately, but I did check the

generator function using value_ for n up to 23. p(23) = 547 is

prime, but it takes 8 divisions to verify that fact. And who needs

all that grief?

I learned the lesson of Chapter T1 though, and I'm not about to

announce my discovery to tie, liox1ld until I can come gip with some
I _1 -
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general approach to verify my formula. In deing ray research for that

short history of Pascal I wrote in section 6.2 of 'Chapter T1 I

cane across the following curioas ;Vote which game me a couple of

ideas:

"Although this propostion contains infinitely magy cases, I

shall give for it a very short proof, supposing two 16mmas.

The first lemma asserts that the proposition holds for the

ease of n = 1, which has been checked.

The second lemma asserts this: if the propostiOn happens to be

valid for any case, say n, it is necessarily valid for the next

case, namely n 1.

We see hence that the proposition holds necessarily for all

cases, for all values of n. For it is valid br n = 1 by virtue of

the first lemma; therefore, for n = 2 by virtue of the 2nd lemma;

therefore, for n = 3 by virtue of the second lemma, for n= 4

likewise, and so on .ael infinitum.

And so nothing remains but to proove the second lemma."

Now my proposition fits this case very well; for an

unlimited number of choices for n, my generator will fi.ways

produce pri4e numbeJi,s. In case you!re faked out by the word "lenma";

just think of it as a small trivial theorem.

And here's why I found thiscpote to be apropos my problem;

I went through the task of checking out 23 cases, Now I'm pretty
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sure that the next case, n = 24, is goin to produce a prime

nunbc)r too---but that 's because I believe in my generator

function; and I've had 23 sucessful trials, ,:hick is certainly more

than enough for certainty! But Pascal says that if we can prove the

n = 24 case not by going through all the necessary divisions but by

merely referring bask to the previous case, the n = 23 case,

then we've got it nade. yBecasue if every case can be proven by

a
merely working (ini\Oneral way) from the previous case, then we

know the rule will be valid for all ncpositive integers.

Let's be more specific; I have a function p(n) = n2 -n + 41;

p(23) was primes let 23 = K; then n = 24 will be represented by

K + 14 right? I want to usee the K's for taro reasons: first, numbers

tend to get in the way and obscure what's happbning; second, if I

use the Be al ter,. LI it need not represent the number 23, but

might just as well represent 1 or 5 or 11 or 19 or 37. (In which

case k + 1 will:Tepresent 2 or 6 or 12 or 20 or 38.). Since

p(23) (23)2- 23 + 41 = 547 was prime, we will now consider

p(K) = K2 -K + 41 a prime number i.e., K2 - K + 41 = rib 1, where

rib 1 is prime. Now, if we can show that p(K + 1) = (K+1)2-(K+1)

+ 41 is another prime, and if our verification depends only on the

previous or Kt case, then we will tave established a general

procedure for verifying the prime-ness of all numbers of the form
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(K + 1)n - (K +1) +41

Let's see it" we can establish this procedure: remember, we

are assuming that p(K) = K2 -K + 41 = rib 1, a prime number. We

inspect the n =IC + 1 case; namely,p(K+1) .(K+1)2 - (K+1) + 41.

By algeb.r..aic manipulation, p(K + 1) =K2 + 2k + 1 - K - 1 + 41 .

(K2 K + 41) + 2E. Notice that I have not conbined the -K and the

2K; this is because I know something about the expression

K2 - K + 41, namely that it is equal to rib 1, a prime number.

Therefore replace the expression (K2 - K + 41) by rib 1; we nedd

only show them, that (rib 1) + 2K is always anfihher prime number,

say rib 2, and 137 Pascal's observatins we will have proved that

the expression n2 - n + 41 is indeed a prime number gererator!

We'll have made history!!

It is true, isn't it, that. any even number (2K is always even)

added to a prime number gives a prime? Ut oh, I think maybe not.

I know of a case; 7 + 2 = 9, and 9 ain't quite prime. Ch well,

back to the drawing board.

Do you reize that we've doneVe've shown that somewhere along

the line my genprator is bound to breakdown; it becomes obvious

that..whpn we give. our attentiin to the previous casd and use it to

prove the ne7± -ase, that the production of only prime numbers is

not assured.

And now that I look at ny genprator, p(n) = n2 - n + 411 it

1 1 5
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becomes immediately obviouL' that I don't have a prime number

generator, How silly of me!

On the other hand, what about the expression n2 + n + 17? Cm

maybe n2 79n + 1601? They look pretty good! I'll have to check

them out later, Maybe I've really got sonnthing this time!

Section 1.2 Math Induction

Pascal's observation as quoted above is connonly referred to

as the "Principle of Math Induction" (abbreviated PMI). It is htht

magic, it doetnn't produce anything and it's never saved anyone's

life; it merely purports to verify conjectures about an infint-ei

number of cases. The PMI is divided into two steps: 1. Verify that

the n = 1 case holds, then

2. Lssune that the n = 1: case is true, and using

this information, show thqt the n = K + 1 case holds.

This procedure does irrleed verify the given conjecture because

K is general; and for K = 1, the K + 1 case rbfers to n = 2; but

then K can be considered to be equal to 2 and the K + 1:0;n refers

to n = 3.1nd this continues, as Pascal says, itul infinitum.

Therefore verifying the conjecture for all cases.

n Here's another conjecture: a little man told me that

= 1 a 3 (n) (n+1) (See the answer to problemL1
2

2.5.2 of Chapter Tl.)
114



We'll use the PMI to verigy it's truth or non-truth. Lemma 1 says

check out the n = 1 case. Does 1
1=1: 2

i.e., substitute n = 1 into both sides of the conjecture. Well,

i=1
(1)2 1+1a(= 1 and = 1, so the conjecture is true for the

n=1 case.

Note: to get a febling for the problem you night try che6king

out a few more cases, say n = 2 or .3. L.lso, I'll use LHS.and RHS

to mean Left Hand side and Right Hand Side respectively. For

n = 2, the LHS becomes i = 1 + 2 = 3 and the )HS becomes

(2)(2+1)
i=12

3. For n = 3, the LHS bedones = 1 + 2 + 3 = 6

3+1)(and the RHS becomes (3)2 - 6.

row we investigate lemma 2: /Lsuume the n = K case is true; i.e.,
4,

1 2
= 1+ 2+...+ K = (K+1) . Utilizing only this information we

must show that the n = K + 1 case is true; i.e.,
E.-171

(K+1)((K+1)+1)i=i 2

There are several approaches to this problem; Ilere are two

procedures. The first works more or less backwards, using a major

substitution. The second merely requires that you have the gift

of prophecy. Here's the first.

Lemma 2: We have assumed that

1.) i
K+1)

We must show that

1 5
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2.) . (K*1)(K+1+1)
i=1 1 2

K+1

We will work on the ;,HS of 2). Now, j!Zi = + (K+1); But

(K)(K+1)
1=1 2

by our assumption 1). Therefore, substitute

(K)(K+1)
2 into the LHS of 2) getting (K)2K 1-1) + (K+1).

These two terms have a common factor of (K+1); after ue factor it

.+out and a:id the remaining two terms, we have (K+1)(KT2 ). But that

is exactly the RHS of 2) .

The second procedure is as follows: have assumed 1); namely,

that .

(K)(X+1)i _ From out of thin (or even fat, for that
1=1. 2

matter) air we pick the expression L+1 and add itip both sides of

/1). This gives
i

+ (K+1) (E)(K+1) (K +l) which is true
i= 2

course by one of the most basic axioms of geometry. Now,
K+1

(K+1) = i while
(K)(K+1) + (K+1) - (K-1-1)(K+2)

K+1 2 2

and we have shown that -
(K+1)4K+2) Let's look at another

2

conjecture, and verify it without any of the verbal interference

as in the above cases.

7- 2 (n)(n+1)(2n+1)Conjecture: = 1
2+ 22+ ...+ n

1=1. 6

Verification Number 1.

I. Let n = 1.

5P- .2
= 1 ;

(1)(1+1)(2(1)+1)
6

Therefore, the n = ], case is true.

11



-9-

II. Le6 n X casi be true:
i.e i
1.)

.,

i2 -
1.1 6

2.) Show:
K1
ft- 42 = (K+1)(K+1+1)(2(K1)+1)
1.1 6

Dorking on LHS of 2):

K +1
.2 2

(

2
i= 1 1 1.1i 11+1)

6
f,,,, i2 using assumption 1.) .

(K)(X+1)(2K+)Substitute 1
1=1

Then LHS of 2) becomes:
K+

42 ilLii±iliaall
01;2,A(

6
+ (K+1)2 Factoring out (K+1), we geti=1 '

Eti)/,-).T2-(K+1) ('"6-" 4: e (,4.1) or ke.-. + 7X + 6)

or K+1 (2K+3) (X+2)

But (X+1)(K+2)(2(K+1)+1)
6 is the RH of 2), and the verification

is complete.

Vemification Number 2.

I. Let n= 1. Then

.-Li 2. 1 and (1)(1+1)(2(1)+1)
- 1iR1 6

Therefore lemma 1 is satisfied.

II. Assume the n = 1: case is true;,i.e.,
i2 (K)(K+3-) (2(K)+1) 1141i=1 thin air, (K1-1)2.K

Ldd: 12 + (K+1)2 = (K)(K+1)(2K+1)
6 + (K+1)2

Using algebra 42 K+1,--
+K+6K+6)
2

kels.and notation: i= 6

K+1
i2 (K+1)(E+2)(2K+3)

1=1 6

which was to be proven. Q.E.D.

1 1 7
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If you still don't folltw this procedure, 'do the following:

1. Re-read the entire section.

2. See the Flow-Chart which makes up Section 1.4

3. Re-read the entire section. Very carefully, this time!

:aid then you can practice on the following:

Conjecture Grotp I (CGI):

1. Probleml page 92. of (13).

2. Problem 2, page 92 of (13).

3.

i.1

4.
i =1

(4i-3) = 1+ 5 +...1-(4n-3) = 2n
2
-n

(5i-4) . 1 +6+...+(5117.4) 1(5n2-3n)

(6i -5) = 1+ 7 +...+(6n-5) = 3n2- 2n

6.i._ (8i-7) = 4n2-3n

n

7. 1(ai-(a-1)) = an2 - (a -2)n

1=1 2

where a is any j_nteger greater than 1.

8. (3i+2) = W3n2+ 7n)

9.

1.1

1.1
(5i-2) = h(5n2+n)

10.
i.1

(7i-3) = 1/4(7112+ n)

. , n

11.
i =1

(41 +1) = 2n
2
+5n

12. * (12i-11) = 6n2- 5n

118



130 (5i-3) = W5n2-n)
1=1

n

14. (7i-5) = 5(7n2 -3n)
i=1

CG

n

1. ,L5.3i-1= 5 + 15+...5!3n-1= 1X5.3n-5)

i =1

n
2. 15: Pt-1 = 1 + 2 ...+2n-

1 2n_1

1=1

1- (3i-1 +5i-1) 2 + 8 +34
on-1 5n-1)=3/ (2.3n+ 5n_3)

1=1

4. (
2i-1+5i-1) A(2n+2+5n _5)

i=1

ni-1) t1(1-r)
8. r ) ,

where a,r are aonstaats, r/ 1

i=1 1-r

6. Problem 12, pa;--;e 93 of (13).

C G III:

1. Problem 7,on page 9a of (13).

2. Problem 8, page 92 of (13).

n_

3' ki40 e (1/30)(6115 + 15n4 + 10113 -n)
1=1

4.

n
i5) = (1/12) (2n6 + 6n5+ 5n4 -n2)

(2i-1)2 = (I/13)(40-n)

i=1

6. (2i-1)3= 2n4 - n2
i=1

110



i=1

(3i-1)2. 14(6n3+3n2-n)

-12-

C G IV:

n j-1

1. £ j. i = 2.1 + 3(1+2) +4.(1+2+3)+...+n(1+2+...+(n-1))=
j=2

2. Z.

j=1

n

i=1

n

i=1

(1/24)((n-1)(n)(n+1)(3n+2))

j_,

5-(1+6 (i-1)) -
.11

1

(n)(2 n+1) 2

(h)(n+1)(n+2)(n+-3)

(i)(1+1) n + 1

4

5. i4 (i)(i+1) = (1/3)((n)(n+1)(n+2))

1=1

6. (i'i!) = (n+1)! - 1

i=1

C G V:

1. z (2i) = n2 + n + 2
i=1

Section 1.3 Divistbility

The PHI can also be used to verify the divisibilty of certain

expressions by given integers. This section will dwell on the

procedures which you might use to verity sore of these conjectures.

Once again, I'll not tell you where these conjectures haye cone

from: at this point we'll merely verify them. Also, to facilitate

matters, I will introduce the following notation: the phrase

"a divides a2" will synbollically be written a la2. The vertical
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line is not a division line but is merely translated as the

word "divides". Also, if a'l p(n), I will assume that there exists

some integer q such that aq = p(n). Now for a few verifications.

Example 1.

Show that 21 (n)(3n-1).

I. Let 21.1; then (1)(3(1)-1) = 2. Certainly for q =1, 2q =2.

II, Assume that 2 I (n)(3n-1) for n=K; i.e., 2 (K)(3K-1).

Therefore, by my convention stated above there exists some

integer ql such that 1.) (K)(3K-1) = 2q1 We must show that

21 (n)(3n-1) for n = K+1; i.e., we must find some intdger q2
.1

such that 2.) (K+1)(3(K+1)4(= 2q2 , utilizing Only

assumption 1.); namely, (K)(3K-1) =

Working On the LHS of 2) we obtain (K+1)(3K+2) =3K2+5K+2

When re-grouped this expression hecomes (3K2-K) +(6K+2)

(i.e., add the propitious zero K-K). But 3K2-K = 2q1 by 1),

and therefore by substitution the LHS of 2) becomes

2q1 + 6K + 2 = 2(q1+ 3K +1). And q2 = q1+3K+1 is certainly

an integer. Q.E.D.

The alternate procedure is to take 1), (K)(3K-1) = 2'q1 ,

and add the "out of thin air" expression 6K+2 to both sides.

Then (K)(3K-1) +6K+2 = 2ql +6K+2 or

(K+1)(3K+2) 2(q1+3K+1) or

(K+1)(3(K+1)-1) = 2q2
Q.E.D.

Example 2.

Show that 17n _2n.

n 2n
=i.e., Find an integer q such that 5q for all nCI+.

Now in the previous example the real crux of the matter was to

produce a propitious zero (we used L-K) that enabled us to use

121
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our previous information. This of course was also true in the

"out of thin air" procedure, because although no propitious

zeros appeared in the exposition, yet we certainly utilized one

in the experimentql stage of the verification (that part of the

problem which we di-1 on the side to come up with the lovely

expression 6K +2).

And now we will show that 5 I7n _2n, 7n _2n

I. Let n=1 7-2 = 5 . Certainly for q = 1, 5= 5.1

II. Assume that 7n - 2n =5q1 for n = K. Therefore,

1.) 7K- 2K = 5q
1

Wo must show that

2.) 7K+1-2K+1 = where q
2
is some integer.

Well, 7K+1= 7.7K and 2
K+1 = 2.2K . Thkey to this entire

exposition, however, is -to introduce a propitious zero consisting

of eithtr of two "mixes":

7.2K
-
7,2K

or B.) 2.7K - 2.7K.

Using A.), the LHS of 2) becomes 7K+14. 7-2K-7.2K - 2
K+1

If we now give our undivided attention to the first and third

terms and then to the second and foubth terms we can inake the

following partial factorings:

7
K+1 -7.2K = 7(7K-2K ) d 702K -2K+1 = 2K (7 -2).

K _2K) 2K,-The LHS of 2) bedomes therefore y/ -2); upon

K_ 2Kthe substitution of 5q1 for 7K- and simplification

of the expression 7 - 2, the LHS of 2) becomes

7.5q1+ 5.2K or 5(7q1 + 2K) = 5q2, since 7q1 + 2K is certainly

an integer. Q.E.D.

If instead of A.) we had used B.) , the LHS of 2) would become

7
K+1 -2.7K + 27K - 2K+1 ; after partial factoring and

7K(7 2(7K 2K)simplification this becomes

. s-,



After the substitution of 1) we obtain 5(7K) + 2(5q1) or

5(7K + 2q1) = 5q2.
Q.E.D.

Of course if we had done all this preliminary work on hhe side

somewhere, the "out of thin air" procedure would look like this:

Given 1), 7K - 2K = 5q1, first multiply both sides by 2, obtaining

2.7K - 2K+1 = 2.5q1. Then add the term 5-7K. to both sides,

obtaining 2.7K- 2
K+1 + 5.7K = 2-5q1 + 5.7K . Then rearrange and

simplify thusly:

2.7K 2K+1 +
(7_2)7K 7K)

2.7K - 2.7K + 7.7K - 2
K+1 = 5q2

7K+1
2
K+1

5(12 Q.E.D.

:ind how for some more problems to kedp you out of mischief.

Conjecture Group I (C G I):

1. Problem 3, page 92 of (13).

2. Problem 4, page 92 of (13).

3, Problem 9, page 92 of (13).

4. Problem 17, page 93 of (13).

5, Show that 6 1 (n)(n+1)(2n+1)

6. Show that 2 16n3 + 3n2-n

7. Show that 2 15n2 -an

8. Show that 4 j n4 + 6125 + 11n2 + 6n

9. Show that 3 I 4n3 - n

10. Show that 3 I n3 + 6n2 +2n

11. Show that 3 I n3 + 3n2 + 5n

12. Show that 3 1 n3 -3n2 + 8n

13. Show that 4 I 24" + 2n3 =15n2 -10n

14. Show that 5 I n5 - 5n5 -1- 4n

12 3'
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15. Show that 3 I n3 -6n2 + 17n

16. Show that 5 1 n5 + 9n

17. Show that 5 1 n5 + 15n2 - 6n

18. Show that 6 1 (-n)(-n+1)(-n+a)

19. Show that 6 1 (n)(n+1)(n+2)

20. Show that 24 1 (n)(n-1)(n2-5n+18)

21. Show that 9 1 (n5 + (n+1)5+ (n +2)3)

C G III:

1. Problem 10, page 92 of (13).

2. Show: 4 I (511 - 1)

3. Show: 7 I (8n -1)

4. Show: 3 1 (37' - 34n)

5. Show 7 1 (62n-1)

6. Show: 4 1

(32n_1)

7. Show: 6 1

(52n_i)

8. Show: 13 1

(82n _52n)

9. Show: 7 i

(52n 22n)

10. Shov: 15 I (112n - 4211)

11. Shc: 4 I

(2n+2+ 5n

12. Show 8 I

(32n+1 52n+1)

13. Show. 7 i

(22n+14. 52n+1)

14. 133 1 (11n+24. 122n+1)

n +2

16, Show: (5n+24. 82n+1)

17. Show: 13 1

(3n+24. 42n4-1)

18. Show: 91 1

(9n+24.
102n+1 )

19. Show: (x
1
(x2n+14. y2n+1)

20. Show: (x y) 1(x2n y2n)

21. Show:.(x - y) 1 (xn yn) Note: For 20 and 21, x>y. For
all three(19,20 and 21),x,yG
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Section 2: Conauerin the Conjectures

Outline of Section 2

The contents of this section include:

1. Indications, both specific and general, of

where all the formulae, conjectures and other

relationships found in Section 1 came from.

2. Factorization galore.

3. Other insights.

Section 2;1 Where Did. Those BlanketyBlank Summation Formulae

Come From ?

The immediate answer to the above question for many of

the examples given in Section 1.2 is "Out of a text book, dopey!"

However, it is not the intent of this section to merely list

a set of textbooks (that °s been done already in Section 6.6 of

Chapter Ti; one bibliography should be enough). The actual

question is, "Where did the authors of these text books get

their problems?"; and if you answer that they stole them from

somebody else's textbook, you/re probably right. Of course

this process can/t go on ad infinitum; it had to start somewhere.

If you guess that the originals were found on the back of the

tablets on which the Ten Commandments were written, you/re

probably right!

Actually, Chapter 3 of (6) is loaded with schemes which

mathematicians have used over the centuries to "Observe, Explore

and Discover" some of these relations. In fact Polya (author

of (6)) does an extensive treatment on how Pascal obtained the

formulae of CG III, Section 102. These formulae were used by

Pascal to compute the areas of sections of his cycloid curve

(remember the toothache?), and later on by Newton to discover

1
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the Calculus. However' I will give you a more general ap-

proach than Pascal's (as found in Polya's book).

But first let's look at the conjectures of CGI, Section 1.2,

All 14 of these formulae are derived from the same basis:

they are all arithmetic progressions. If you expand the LHS

of any of these expressions you will have an arithmetic pro-

gression; the RHS is merely the formula for the sum of an

arithmetic progression for the specific case involved. (Re

member we derived that formula in the answer to problem 2.5.2

of Chapter Ti; first plus last times number of terms divided

by two).

For instance, problem 12 of CGI, section 1,2, says that

(12i - 11)1 = 6n2 5n; The first term of the summation
i=1

is 12 - 11 or 1 while the last term is 12n - 11. Since

there are n terms, the summation formula gives (1 + 12n - 11)(n/2),

or (12n - 10)(n/2) = 6n2 51. Simple, eh? Check out a few

more.

The problems found in CGII of section 1,2 have a very

similar background: Conjectures 1, 2 and 5 are merely the sum

of a geometric progression; conjectures 3,4 and 6 are merely

doubles: That is to say, 394 and 6 were manufactured by taking

two geometric progressions and summing them together. If

you've forgotten the formula for the summation of a geometric

progression, just look at problem 5 of CGII, section 1.2. Of

course I know you've forgotten (who ever learned it?) the

derivation of the formula, but I've got a sophisticated deri-

vation coming up in section 2.2 of this chapter: Not only will

you forget the formula now but you°11 have a derivation you

won't understand either:

1
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And now on to CGIII; these are beri.utiest All seven con-

jectures in this group can be found from the same general

process (Rs cnn all the conjectures of CG 19 section 12).

Let's look st a specific case and work it out. But remember,

the procedure is general.

The first thing to do is to form a sequence of partial

sums; a wha?

Well, let's look at conjecture 6 which says:

(2i - 1)3 = 2n4 - NowNow a sequence is just a listing
1=1

of numbers; partial sums refers to the fact that I am

going to let n on the sigma-sign get progressively larger,

I am goinG to take a sum each time I change the n 2

S--

and

Watch. For n = 19 :E (2i-1)3 = 1; for n = 2, Z (21-1)3=
1=1 i=1

13 + 33 = 28; for n = 3, (2i-1)3 = 13 + 33 + 53 = 153 (my
1=1

favorite number); likewise, for n = 49 the partial sum is 496;

n = 5 yields the number 1225; n = 6 yields 2556 (you need 113

toobtain that number; anybody know how to get 113 the easy way?);

n = 7 yields 4753 and n = 8 yields 8128. The sequence of

partial sums that I tried to define above is the set of numbers

28, 153, 496, 1225, 2556, 4753, 8128, :...1 This

sequence can extend indefinitely since n can increase without

bound:

Okay. Thus far we have completed Step 1: we have formed

the first few terms of a sequence of partial sums utilizing

the LAS of out conjecture. Now, take differences of these

numbers until you get a sequence of constants --- that is,

a sequence made up of all the same numbers, Watch: the given

sequence is 1 28 153 496 1225 2556 4753 8128

1?
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The first 'difference" sequence is

27 125 343 729 1331 2197 3375 :44

That is, 28 » 1 = 27, 153 28 = 125, 496 153 = 343, etc;

The fact that the "difference Sequence" consists of perfect

cubes should not be surprising since that's how we formed the

sequence of partial sums in the first place!

Now, the second "difference" sequence is

98 218 386 602 866 1178

The third "difference" sequence is

120 168 216 264 312 01 04 .

The fourth "difference" sequence is

48 48 48 48

Hurray, the constant sequence finally arrived! And since

it took us four tries to obtain the constant difference sequence,

we know that the sequence of partial sums is an arithmetic

sequence of order 4: The definition of an arithmetic sequence

of order 4 is given in what we did above; we had to form 4 dif»

ference sequences before we came up with, the constant sequence;

we therefore call the original sequence of partial sums an

arithmetic sequence of order 4; (A slight variation of this

definition, where a recursive scheme is used is given on

page 487, number 5 of (3), as was mentioned in the answer to

problem 1450, Chapter Ti.) By the way, please notice that the

scheme of taking differences can be reversed so that additional

terms of the original sequence can be obtained without cubing

a number: Try it and see:

Meanwhile1 back at the conjecture: In step 1 we formed a

sequence of partial sums; in step 2 we formed "difference" sequen..

ces in order to find out that our sequence of partial sums is

1 9.9
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an arithmetic sequence of order 4. WE can now assume (and

be certain of its existence) that there is a polynomial of

degree 4 which will produce the numbers of the sequence of

partial sums when it is evaluated at the various n's: In other

words, we now know
n

that

171_
(21.1) 3 = ann' + bn3 + cn2 +dn + e

for some particular values of a,b,cld and ei

At this point you've got to be saying, "Where'd that

polynomial in n come from?" Well, my answer is that I was

all along going to assume the existence of some polynomial

function that would give me a means for computing elements in

the sequence of partial sums, but I just didn't know what

degree to choose! After all, why not?

Now the proof that an arithmetic sequence of partial sums

of order 4 can be "described° by a polynomial of degree 4 depends

upon a theorem of the Calculus which says that "If the deriva-

tives of any two functions are equal, then the functions differ

by at most a constant": Actually what we've used in the above

example is en extension of this theorem: if the 4th derivatives

are equal, then the 3rd derivatives differ by at most a constant:

For those of you who have not studied calculus, this means noth-

ing: For those of you who have, the above is not meant to be a

clear cut proof; let's see you observe, expDrere and discover:

One hint: try the converse first:

At any rate, since Pascal preceded the Calculus, we can

see why he didn't use these techniques that we're developing

here:

Now in step 3 we have assumed that

C21.1)3 = and' + bn3 + cn2 + do + e If we do indeed
1=1

1 X.)
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believe the validity of the above outlined proof; we only

have one task left. And that's to find the values for a, b,

c, d and e: That's all

Trivial: Absolutely trivial. Just watch. Since the re

lationship is to hold for all n$ certatnly it will hold for

two "specifics", say k and k+1; Plug k+1 in first and then k,

obtaining the following two conditional relationshipst

1.) ;L. (2i-1)3 a(k+1)4 + b(k+l)3 + c(k+1)2 + d(k+1) + e
i =1

2;) >717. (2i-1)3 . 9.:k4 + bk3 + 01E2 + dk + e
i=

Now$ if we subtract 2.) from 1:) , the LES becomes (2(k+1)..1)3

('pleeeease check it out carefully), while the BHS becomes

a mess: First simplify and expand the LES getting (2k+1)3 =

8k3 + 12k2 + 6k + 1; and then take a closer look at the RES:

Because we are so familiar withrthe binomial expansion, there

is really no mess at all: For instance we. immediatelx see

a(k+1)4 as a(k4 + 4k3 + 6k2 + 4k + 1), or ak4 + 4ak3 + 6ak2 +

Oak. + a: Likewise, b(k+l)3 = bk3 + 3bk2 + 3bk + b, c(k#1)2 =

ck2 + 20k + 0 and d(k +l) = dk + d. If as you perform the

subtraction on the ARS you also. gather like terms; the RHS will

look like this:

46k3 + ('6a + 3b)k2 + (4a + 3b + 2c)k + (a + b + 0 + d);

Therefore, when 2.) is subtracted from 1.), the result is:

3;) 8k3 + 12k2 + 6k + 1 = 460 + (6a+3b)k2 + (4a+3b+2o)k + (a+b+
0+d).

It is extremely necessary to keep in mind that this is a

conditional statement: We are trying to find values for albs°

and d such that 3.) will be true for all k, and therefore 2;)

and 1.) also: We must now manufacture values for apb$0 and d

to make 31) true; and in case you haven't noticed, we have the
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perfect set»up:

Let 4a = 8; i.e., set the coefficients of the 0-terms

equal. This means that a must have a value of 2. Now what

happens if we equate the coefficients of the k2'- terms? We

would have 12 = 6a + 3b; but we already have a = 2; and therefore

we should choose b = 0 so that equality will hold, Do you

see the recursiveness involved? It's beautiful!

For instances to find c we merely equate the coefficilattts

of the k-terms; 6 = 4a + 3b + 2c. Since we already know a and

b, 0 = -1 pops right out. And equating the constant terms,

we obtain d = 0 since 1 = a + b + c + d, anda= 2, b = 0 and

c = .1 are already known. We have therefore manufaotured

values for a9bsc and d which make 3.) true; but these values

will make 20 true also and we therefore have obtained an

expression for the LHS of conjecture 6t

(21.1)3 = an + bn3 + on2 + do + e can be specifically writ.
1=1

n
ten as (21.01)3 = 2n!l. - n2: You have already verified

i=1

this, so you know it is correct: (What happened to the e? It

didn't bother you, so you don't bother its)

This process, outlined below, was used to find all of the

seven relationships of CG III, section 1.2. Make sure you try

this process or you will have wasted all the time you spent

reading thisi Here's what I dide

Step It Set up a sequence of partial sums:

Step 21 Find the order m of the sequence of partial sums:

Step 31 Assume the existence of a polynomial of degree /11:

Step 4: Evaluate the conditional relationship between the

summation formula and the polynomial at k+1 and k.

1 '4,9
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Step 5: Subtracts simplify, expand and gather like terms:

Step 6s Equate coefficients of like terms and solve for the

constants recursively;

Step 7: Substitute the manufactured values of Step 6 into

the assumed polynomial of Step 3 and check out the

relationship.

The above process is very general and can be used again and

again in many areas! Did you notice the use of the binomial

expansion and the recursiveness concept? It's a good thing we

1-now all about them, right?

The next conjecture group (CG IV) of section 1;2 is made

up of all unique relationships; Number 3 merely depends on

the fact that 1/((i)(1+1)) = 1/1 y 1/(1+1); with that hint the

HES is easy to find. The basis for number 5 is found on page

522 of (15), and is pretty unique; Polya does some work on

number 1 in Chapter 3 of his book; but I haven't got the

faintest idea how to attack #2 or #6. But I'm working on them:

Of course the relationship exhibited in the one problem

that constitutes CG V is not derivable because it is incorrect!!!

If you verified that it does hold, it's because you failed to

check out the n = 1 case. No, 2 does not equal 4; the n = k

case does indeed imply the n = k+1 case, but you've got "no leg

to stand on" (the n = 1 case), so the entire verification

crashes to the ground!

133
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Section 2,2 From Divisibility to Factoring

In the previous section I showed you some techniques

which enable you to find summation formulae for any arithmetic

sequence of order m1 Now we are going to find out where those

42 divisibility conjectures of section 113 sprung from:

The conjectures making up CG I, section 113, have two

sourcest the one is trivial, the other is unique. For the

trivial cases all I've done is go to the summation problems

of section la; on the MS of these relationships are found

polynomials in n being divided by integers. Now certainly

since the LES of these expressions were merely sums and products

of integers, and therefore themselves some integer, so the

RHS had to be an integer for all values of n, And so any

number found in the denominator must divide the numerator.

Examples of this type include number 7, which is just

number 4 of CG I, section 1.2, revisited, Likewise, number 9

is just number 5 of CG section 1.2, revisited. And other

problems of section 102 have been revisited in section 113 too:

2roblem 20 of CG 19 section 1,3, is an ald friend too,

but was not encountered in Section 1.2, The expression

(n)(n-1)(n25n+18) was encountered in the answer to problem

2.5.1 of Chapter Tl. Mat was where I gpve the example of

"too quick° induction; the number of points p on the circumfer-

ence of a circle seemed to yield 2p-1 regions inside the

circle, The derivation of the iormula 1+(p(p-1)(p2-5p+18))(1/24)

can be done by following the steps outlined in section 2,1,

Chapter T2, above0

You were asked to verify that 24 (n)(n-1)(n2-5n+18); a

134
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very difficult problem to say the least; There are a couple of

ways (at least) of doing that problem, but I use what I call

the Principle of Triple Math Induction; you just keep going

until you get where you want to get.

Now I know that what I just said is more than a bit

mystifying (it's maddening, I'm sure), but see what you can

do with those hints anywaY:

There is another clever way of showing that

2L (n)(n-1)(n2.5n+18) however; This procedure is due to the

initiative exhibited by the fether of Gary Squire, a Syosset

student: Look at the expression n2 . 5n + 18 t it doesn't

factor (over the integral domain); But suppose we re -w4tte it

as n2 5n + 6 + 12 and now look at only the first three terms

which do factor; namely, (n..2)(n-3) + 12; Now multiply the

revised n2-5n+18 expression by n and n-1; The result will con-

sist of two terms, the first consisting of 4 factors, the

second of 3, (n)(n-1)(n..2)(n.3) + (n)(n-1)(12) For n = 1,

2,3 and 4, this expression is obviously divisible by 24

(check it outt), but what happens after that? Well, the first

term consists of the product of 4 consecutive integers; and

4 consecutive integers always contain factors of 2, 3 and 4:

(This can be readily proven by the division algorithm within

the topic called congruences of numbers.) Likewise, the first

two factors of the second term are consecutive integers and

therefore one of them must be even: And an even number times

12 must be divisible by 24; Thus the entire expression is

divisible by 24;

This technique by the way was what I essentially used

in making up most of the conjectures of CG 19 section 1-3;

13
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For instance, the product of any 3 consecutive integers, say

(n-1)(n)(n+1), must be divisible ty 3. Therefore n3-n is

divisible by 3. But so also is n3.n+3n2 divisible by 3,

since the term 3n2 will always be divisible by 3. And so

also will n3-n+3n = n3+2n be divisible by 3; the fir.-7.;, two

terms are divisible by three and the 1P.,4- also, and therefore

when combined the expression will still be divisible by 3;

As you can see I could have made up more than a million

such problems instead of just 21, but as you already know

I'm a very nice guy; But look at problems 15, 16 and 17 of

CG I, section 1:3: They are "divisibility by 5" problems;

Problem 15 was obtained by multiplying (n-2)(n-1)(n)(n+1)(n+2)

together; do you see how the problems 16 and 17 were found?

If you do, make up one of your own and verify it using the PNI;

In CG II, section 1;3, problems 1 . 13 (exclusive of

#11 which is a steal from problem 4, CG II, section 1;2) and

19 - 21 are all based on the same principle; And that princi-

ple is essentially the factorization of the expression

yn and related factorizations;

took at x5 . y5 : this can be factored into

A ) (x_y)(x4 x3y x2y2 xy3 + y4) To verify this factor.

ization we'll use the hiccup distributive law; Referring to

AO, it goes like thist

1; First multiply x times x?4, getting x5, and that takes care

of that;

2; Now for the hicoupSt multiply x times x3y getting x4y, and

then hiccup back to the and multiply it times the 2+ term;

this gives y and the sum total of before and after the

hiccup is zero; 13E
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Multiply x times x2y2: getting i3y2; hiccup back and multi.

ply -y times x3y getting .x3i2; sum total is zero:

41 Every x multiplication followed by a hiccup y multiplica-

tion gives a zero except for the last hiccup; that would be

..y times yi/., giving a product of .y5, and Q.E.D. (Or la.de-da,

take your choice0

Likewise, the factorization of Xn w yn can succinctly be
n1 4 4

defined as9 in - in = (x..5) ( 3r"'"'Y'): (Boy, that sigma.

sign notation is handy to have around!)

Problem 2 of CG /I, section 1:39 says that 4 511.1 1

Well if x = 5 and y = 1 in the above factorization, then

certainly (5-1) (5n-ln): Likewise, 3 (37n . 34n) since

x = 37ty . 34 and xemy = 3

Now the above factorization holds for all n, and there.

fore we might expect the expression 62n - 1 to be divisible

by 5 even though the exponent has been restricted to even in.

tegers1 And indeed it is by previous observations: But

furthermore? 62n 1 is divisible by 7, as. you've already

verified in problem 5 of CG fl, section 1:3: This would seem

to indicate that x2n y2n. has a factor of x+y as well as a

factor of x.y: Let's check this out;

First let's look at the case where n is odd and observe,

explore and discover: For instance? = (x.y)(x+x,y+x2y2+

xy34-y141 a The second factor has 5 terms, and that es that as

far es factorization over the rationale is concerned! (There

is an extremely complex (?) tIchnique for factoring the

second factor over the complex field.) If the second factor

had an even number of terms (when will this occur?), then it

could be factored due to the symmetry of the exponents: Let's

R
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look at ones x6.-Y6 = ( xe.7)(75+xy+x3y2+x2y3+xy4+Y5):

Lurking within those six terms is a common (binomial) factor;

we will use the key idea of partial factoring (again it makes

an appearance!) to ferret out the lurking (binomial) factor.

Inspect the first two terms, the middle two and the last two

terms; aL-21x + x3Y24x!e + xY4+04 Partial factor, settings

x4(x+y) x2y2(x+y) y4( x+y). And now we can see the binom»

ial factor that had been lurking there all the time; namely,

(x+Y)e Finally, x6.y6 can be factored thuslys

11) x6.y6 (x.y)(x+y)(x4 x2y2 y4)

Did I say finally? Why there's nothing final about that

factorization at alit By the use of a propitious zero we can

readily factor x4 + x2y2 + y4; just introduce the terms

x2y2 x2y2. Then g4 + x2y2 + y4 becomes

20 x4 + 2x2y2 Y4 .1.1 2x-2 y- But what do you recognize about

the first three terms of that expreseion? See the 1, 2, 1?

Therefore 2.) can be written as (x2 + Y2)2 (2Y)2: But now

we have the difference of two squares; and 2.) can be factored

into (12 +12...xy)(x+Y2+x5r)i And finally (over the rationals,

anyway) x6 y6 (x.y)(x+y)(x24.xy.112)(x2.xy472);

Of course if you try the propitious zero stunt on either

of the last two factors you'll run into quick trouble (even

though they do indeed look ripe!): However, 'by all means give

it a try: In case you haven't figured it out yet, the pro.

pitious'zero stunt consists of introducing a zero such that the

given expression can be ,ftide into" the difference of two

perfect squares. Here's another example: factor xl*+10x?.1.49:

Merely add the propitious' zero 4x2...4x, obtaining the expression

x+14x2+49 « 41: Since x4 +14±2+49 = (x2+7)21 the factorization

138
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is immediate: Namely, (x2m2x+7)(x2+2x+7);

I've introduced two ideas here' lurking factors and

propitious zeros: How good a lurker are you (it usually takes

minutes of hard training)? Let's go back and look at 101

x6 y6
( ( X5 14Y X3 72 + X2 Y. 3 XY4 Y5 ij: Above we

found the factor (x+y) lurking within those 6 terms: But

there is another larger factor (trinomial) lurking within those

six terms; to find it we need only change our point of view:

Look at the first three terms and the second three terms

of x5+x4y+x3y2 + x23r3+XY4+54: Use partial factoring on each

of these sets of 3 terms; you should get x3('x2+xy+y2)+y3(x2+xy+y2):

But this yields the common (tri nomial) factor x2+xy+y2; and

x6 m 76 us (x-1)(x24aY+Y2)(x3+73): But we know from above that

x+y must be a factor of x6.r61 and from what we just found it

must be a factor of 0+0i But we don't know how to factor

the sum of two termst

Let's not panic, however, as we do hate some experience in

this area Suppose we give a look--see at the hiccup distributive

law; it could help us: We know that x3+0 has a factor of x+y

by virtue of all that we did above: We also know its second

factor; namely, x2mXY+72: Does the hiccup distributive law

verify this faotorizatIln? Does (x+y)(x2mxy+y2) = x3+y3 ?

(It mustt mmm or I'm in dire trouble0 Well, x times x2

yields the x3 term; now for the hiccups: x times sxy gives

mx2y, and right behind that we have y times x2 or x2y; the sum

is zero: Likewise, x times y2 gives xy2 but tbis is hiccuped

by the product of y and And then y times y2 yields the

y3 term: Beautiful!

The above is a short outline of when xn + yn will have

1339
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a factor of x+y; you should 'observe that in + yn will only.

have a factor of x+y when n is an odd positive integer;

(7,Bou should be able to verify why this is so upon inspection of

the number of terms in the second factor of x2114.1
y2n+1;

remember, 2n+1 represents an odd integer):. Therefore, we

write the factorization thusly'

x2n+1 +
2n4 2n1

= (x +y)( (-1)ixn"iyi):. Please verify this.

also:

And now we can see why 8
(32n+1. 52n+1

) (problem 12,

CG II, section 1:3)1 since 0010 x211 +14 y2n+1 for x = 3

and y = 5, the problem is immediate;

I have therefore justified all the conjectures of CG II,

section 1.39 except problems 14.m 18; Two of these were found

in ti15), but no reason was given: I've guessed the generating

process and you've verified all 5r so we know that the ex.
20.1)2n+1

pression 21+2 + has a factor of x4x+1, but I

don't know how to justify or produce that factorization;

But I °m working on iti _Care to loin me?

.Before I give you some factoring problems- to look at9:I

want to investigate two additional uses for_the factorization

of in,--y11:.

The-standard derivationfound in all thetrbbooks for

the sum of the. terms'of a geometric progression pan.be replaced

by a simple observation relative to the- factorization of

in " y11d T51* star o.f aA;e0metric progression is expressed as,

a+ar+ar2+...4+172+axr71or a(l+r+ig+;.::+22111 111):L= The ex

pression in.parentheses however nothing -more than, the second

factor of 21 . yn with x = 1 and y = r; i:e.,4nmyn.=.(x;.y)(21r7-+

in"2Y+:41.+xill1"2-+.7n4). becomee7,14911substitution-of'1 for x

149
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and r for y, = (1..r)(1+r+4:1+r11"2+rn-1)* Therefore,

the sum of a geometric progression is readily seen to be

(a)((1 -rn)/(1-r)) , and where the a is thrown in just for good

luck:

And now the second uset suppose I'd like to factor (x-y)

into two factors which will have rational exponents: (The re-

verse problem is of primary importance in finding a derivative

formula for rational exponents in the calculus4) For instance,

I want (x-y) = (x* Y*) times "something ylsOi The nature of

the "something else" is immediate; namely,
x3/4. x2/471/4 +

Xl/472/4 73/4;
What 'ye done is factor A4 4 where

A = x1/4 and E = y1/4; i*e4,

(x1/4)4 (71/4)4 (x1/4 y1/4) ((x1/4)3 (x1/4)2(71/4)
+

(x1/4)(71/4)2 + (71/4)3): Neat, eh?

And now for some factoring problems* See your local Math

teacher for answers to all of these problems*

Lurkers Plus

1: x? + 3x + ax + 3a

2; x4 + 3x3 +8x + 32

3; 3ar + 3br . a b

44 xm xn + ym yn

5; 9x3 + 9x x 1

6: x2y2 - y2 - x2 + 1

More 1!1 . el

4; n3 . (n+1)3

5: x6 - Y6

6. x6 + Y6

74 x9 - Y9

8: x9 + y9

9.
x12 y12

Hintz Keep going in #2 and #5

xn

Propitious ZERO

1. 482 b2 + 12ao +9c2

1; x4 y4
2* x2 + y2 .25 + 2xy

2* (x-iy)4 (x61-3r) 3: x4.+ x2 + 1

3: x3+ (x.1)3 4; x2 472 + a2 . 9b2 .2ax«12by

141



More Propitious Zero

51 a4 5a2b2 4b2

61 x4 14x2 + 49

7: x4 + 12x2 + 64

8; x4 18x2 + 49

Challenges

1; x - 27x

2; x
4 . 3c37 +64x .

3; 4(x2-9) . 2x2 .

4; a(b,c.):)..!-

5 1
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64y

5x + 3

3 gam-b)3

2,Abm 2b2

SmayAR-r"! ..rad. Enrichment

'1; a few 00373Pla Sections 2:1 and 22 are loaded

111 manipue:tDns and a number of very sophisticated

ide.! If yo,1 (n mster: the calculations and concepts in

thosc 17coV,n, t;1-;re is very little algebra that will ever

give irou. in the future: Those two sections contain

the tool- hcmdling many, many topics of mathematical

analysis; 7r them and you will enjoy much of the mathemam.

ties in your future: On the contrary, you can't learn concepts

if you keep tripping over the tools:

Two suggested enrichment. topioss Liebnitz, the 00dis.

coverer of the calculus, invented another arithmetic triangle

about fifty years after Pascal's death: It contains only

fractions and'has a."reverse" generetion process relative to

Pascal's Triangle: This triangle is presented in Polya's book

1 42
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(book (6) of the Tl bibliography) on page 889along with many

questions and observations: Polya gives his answers to these

questions on page 185; they will amaze you

In this chapter we learned about the PMI: The processes

we used were pretty standard; however, for a unique, clever

and exciting variation of the usage of the PM see Edwin

Beckenbach and Richard Bellman's An Introduction to Inequalities,

Random House - New Mathematical Library, 1961, pages 54 - 61:

The authors name part of their variation of the PMI "Backward

Induction's 9 which they utilize to prove that the arithmetic

mean is 8.7itt: 1;1021 or equal to the geometric mean for any

number of v-2.1.s Since most of you are quite backward, you

should enjoy the topic very much:

Section 4:1 Bibliography.

Same as that of Chapter Tl, found on pages 101 and 102

of that chapter:
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