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Section 1: HYSTERICAL BACKGROUND

Qutline of Section 1

The goals of section one lie prinarily in the.following
areas:
l, An introduction and usage of such terms as algoritlhirr, partial
factoring, Math induction, recursiveness, tessaract,
parallelopiped, propitious and false position.
2. An investigation of the ideas of Algebriac-~Geonetrical
relatiomships, naking assunptions based on a finite nunber of,
pleces of informnation, producing a "why" for each relationship
given, dealing in the abstract using a.gebriac nodels and
expansion of a binomial to answer a specific question.
3. Experience and naturation in dealing with non-definite, non-
real nathematical concepts.
Note: Nunbers in parantheses refer to the numbered books in the

bibliography (Section 6.6)

Section 1.1 Introduction

On June 19, 1623, in the snall town of Clermont, in the
province of Auvergne, in Frgnce, one Blaise Pascal was born.
Monsieur Blaise Pascal was a sickly child and.ffon the age of
17 until his death at 39 hié wretched physigne was subjefted
to attaclks of acuté(xygbepgatﬁindigestion) and.chronic insonnia.
Yet this nan was responsible for such diverss wotical inventions
as the wheelbarrow, the first nechanical adding nachine and the
baroneter' he also wrote two of the greatesr works of early

French Literature, the "Pensees" and the "Prov1naial Lettres"'
Q
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®Rd he did inaginative and creative worlr in three diverse areas
of Mathenatics., It is two of these areas in which we shall be
working presently.
Pagcal's nathenatical efforts began at age 16, when he
discovered the "Mystic Hexagran” along with 400 corollaries to
the theoren which defined the hexagranj; he ttereby established.
$he essential basis for a new non-nétrical geonetry. At age
30, he published his "Traite du Triangle Arithmetique", which
enbellished at great length the original triangle published in _
1303 by the fanous Chinese algebraist, Chu-Shi-Kie. And at age
31, along with another great nathenmativikan, Pierre Fermat, he
established the basls of conmbinatorial analysis and probability .
theory.
Throughout niost of his life Pasgal was in constant pain
(a severe toothache caused hin once to work 8 straight days on
the theory of the cycloid curve, thefeby recreating nost of
what the ancient Greeks had done); in fact, it has been reported:--
that he had absolutely no sense of hurior and never srriled.
(Snall Wonder!) However, in the ensuing subject natter, cost of
which was first produced by®hPascal, you will find nuch naterial .- °
that will bring you great joy and happiness. -
But first, and after you wipe that smirk fromr your face, ~ ~
we will look at some Greek mathenmatics. Hopefully, we will be .-

able to relate this materiaml to Pascal's Work later one

Section 1.2 Sguare Root Algorithn

Most of you are faniliar with the proof of the irratlanalita*~

G 42, which is to smy, the fact that no natural nunbers

'E RIC . ”:”
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(positive integers) exist whose ratio will be equal to the‘VEi
When the ancient Greek Pythago;pus (who lived nost of his life
in Ttaly) and his group was apﬁrised of‘ﬁhis fact, they were
very rmuch shook-up! It seens they had péétulated that all observed
natural phenonnenon could be described by using dinple algebraic
(addition, nultiplication) conbinations of natural nunbers.
Well, clearly the diagoral of a square 1 ugit on a side provides
an innediate counter-example to their postulate!

As a result, sone of - the Pythagoreans are said to have
cormitted suicide, but the nore stable and pragnatic of then
had another out. They nerely geonetricized all their mathsnatics.
Numbers were not considered to have a pure existence (8se page 1@
Texri%he Test of thls paragraph.}

Now A.P(After Pythagorous), the Greeks would never talk
about raising a nunber to the 4# or 5% power, as that would
have no neaning. However, they would raise a nurber to the
2nd or 3rd power; ie., square the nunber, cube the nunber,
since'the 2nd power (the square) WOuld represent the area
of a (woudd you believe?) square and the 3rd powér(the cube)
would represent the voluge-of a (would you believe?) cube!!

Now, for the.conﬁersé question; what does it nmean to take
the gguare root of a nunber? (Why don't we ~esk for the 2nd root
of a nunber?) To nost of us it means getting a slide rule or 8
set of tallles or logs and obtaining sonre nunber,lsuch that
when the nurber is raised to the énd_power(squaréd?) the original
nunber results (or sonething close to it!). Well, to the Greeks,
taking a squere root neant to find the side of a square whose

%fea was given; likewise, a cube oot was congidered the length

=
4



lfme
of the side of a cube whose volune was given.

Their process for the former task(finding a gquare root)

(See page 10 for missing sentence)
went sonething like this:ﬂFirst, draw a picture of the given
square, and within that given square find a square of largest
area having for the length of its side a multiple of 10.
20

e

can 2 ""‘? N Since 10 x 10=100..729

X } 20 x 20=400L 720

30 x 30=900% 7239

The square in question is

20 x 20.

X+0T=p

a0
o ——

Place the square of kﬁown area in the lower left hand corner of

2C7
\

the given square, and divide the renaining area up into two
rectangles and one snall square, (as shown in the diagran).
Note that one of the dimensions of the rectangle is known
(nancly 20), whereas the snall wquare is conpletely unknowm.

Now, these two rectangles and the unknown sguare nust
account for the renaining area of the origianl square, nanely,
729-400=329 square units. The area of each rectangle is 20 tines
X, and there are two of then, and the area of the unlknown sgquare
is }1'2. Therefore;

2¢(20°x) + % must equal 329,

Now this equation, which is just a siiple quadratic, lends

itself to the following partial factoring:
(x) [2-20+x]= 329

The Greeks would now use the process of "false position" to

8
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solve this equation (educated guessing), or at least get the
best approxination to a solution. Of course, since wé& have already
taken the square whose gide was thte greatest nultiple of 10 out
of our original square, x rust satisfy the inequality 04x{10.
For instance, try =x=5. Then:
(5) (2°20+5) = (5)(40+5)
(5)(45) = 225K 329

Therefore, try x=6. Then:
(6) [#0+6)= (6)(46) = 2764 329
Try x=7
(D @0+ =(7)(47) = 329
o'e x=7, and the mguare root of 729 is 27! (ie., 20 +7).

- Have you ever noticed that 27= 20+7? Did you notice in the
rgckets above, that 40+7= 47? Uill there always be a sinilar
situation if this process is perforned again?Will there always

be a zero in the last place of the number being added to the
nuniber between O and 10? Of course, that's the way the process
was set-up! The 40 was mersly 220, where 20 was the nultiple
of 10! And since 20 was the greatest nultiple of 10 which we
could use, 0% <10 had to be so!In our decinal nunber systen, when
ybu add a rultiple of 10 to a units digit, you merely juxtapose
then(place then together , with the units digit covering the 0).
All thes observations were nade in the early 16t century

by the various Germnan algorithnists who were writing arithrietic

books. Their task was to un-geonetricize the Greelt process.
A process very sigilar vo that outlined abov: was first published
in 1513, and until a very few years ago, was a standard problen

O the Math 8 regents exan in New York State,( and therefore
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a part of the Math 8 curricudun)! '
What algorithn (set of rules) did these Gernman's corlie up

witht Let's take a look, It went like this:

2y X Btep a. Mark off, left and right,
'J 7 29 two places from the decirsl point.
4o 8 : .
4, Xe z 59 Step b. Estinate the square
-— root less than or equal to the

et

first digit or pair of digits
encountered.(ie., 2%7)

Step _c. Square your estimate

£ 1=gfro
(I\)

45 329 and subtract fron the first
digit encountered.
Step 4. Bring down the next

pair of digits (ie., 29)

At this point you should realize that you have subtracted out the
square whose area was 400 units, leaving 329 units to be accounted

for.

Step e. Double your estinate made in step b, and place on line.

(This represents 2 x 20)

Step f.Teke any digit x, such that 0(x¢1l0 and place it in the
two spots designated; note that when you juxtapose it to 4 you
are actually adding x to 40; and when you Jjuxtapose it to 2,

you are actually adding it to 20.

Step g.Multiply xe°4x; ie., (x)(40+x), so that the result is lgss
thar or equal to 329. Make certain you take the largest such i,
In the present case , 7 works ofit very well,amnd theré is no

renainder, However, if thew is sone area left unaccounted for,

10



Ly
the process can be continued (indefinitely) as long as you
desire (nany, nany decigal places) or until all the area is

accounted for.

o |&
| o
=

Here is an exapple. Find the square J

root of 2.

281 400
' 281

)

2824 11900
11296

And now you night try an exanple; say; find the square root
of 2237.29 (using the process, of course.) The answer is 47.3.

But you see, I'n not interested in the answer; that's why I
gave it to you. Yhat I'm interested in is whether or not you
know the process? Do you lmow what th: Greek geonetrical process
was all about? Do mou see how the German algoithmists (rule
nakers) translated the géometrical process into an essentially
algebraic one? This is what I want you to know!

And of course your rejoinder night be that you're not
interested in what ancient Greeks and Gernans did,and who needs
thig silly algorithn{or its explanation) when log tables are
available, or even dther neans. Which is a very good rejoinder
indeed. Why start off a chapter on the binomial expansion with
an extinwt algorithn for square roots?

Well, let me give you sone partial answbérs. First af all,
your parents have been feeling insecure ever since the advent of the

naw nath, and here is a topic which they have been on the nost

179
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intinate terns with in the past. I lkmow ny outline of the
algorithn given above is a bit sketchy, so take the problen

I just gave you hone to your lon and Dad ar let therl LHelp

you work owt the process. This should help rebuild their shattered
confidence to a cer’ 3n extent, and also be a start towards
building a bridge ov.. your own personal generation gap between
you and your parents. However, lest they get out of place, ask
then why the process works! As they funmble about for an ex-
Planation you can once again assert your clear cut intellectual
superiority over then, thereby arousing their undying ennity
towards you.

But enough of social application! There are indeed sone nath
lessons to be learned, and utilized, as well., We(gou!) are
subsequently going to develop a cube root algorithm ruch in the
sane fashion that the Gernans developed their square roct
algorithn. But to do this we have to go back to the natural
problen of breaking down the cube into different rectangular
parallelopiped or as Mr. Wagner says, "Boxes"), just as the
Greeks broke down the given sqitare into a square of known area,
two rectangles (1 dinension Ikmown, 1 unknown)“and 1 snall square
of unknown dinensions. In other words, for our specific zase
above, the Greek approash consisted of the following(algebraic
observation: _

729-400= 2-(20-x)+x2 is equivalent to

729= 400+2+(20+x)+x>, or

729= 20%+ 2+(20+x)+ x°, or

729=(2O+x)2. For our case where x=7. (20+7)2=729 was correct.
JZRjkfhat's the nane of the gane.

o 12



Section 1.2 [lore Algorithn

Now what about cube roots? How would we work on this? Let's
take a cube of known volune, say V= 12,167(0Obviously another
propitious choicé). Since 205=8OOO and 505= 27,000, it is apparent
that the largest cube with its side being a nultiple of 10 whose
volune is less than the given cube is a cuhe 20 units on a side
with a volunie of 8000 cubic units, leaving 12,167-8000=4167
cubic units unaccounted for. But ggain, there is some nunber x
such that O0¢x{10 and such that 20+x will be the length of the
side of the given subel And then 12,16'7:(2O+x)5 rmust be the case.

Which is to say, the given cube of voluiie 12,167 can be
looked at (algebraically) as: _

12,167=(20+x)2 = 202 + 3+(20%. x) + 3.(20°x°) + %2
12,167= 8000+3+(20%x) +3+(20x°) + 3

The Greeks would not have obtained this expression
algebraically as we have, but would have faked it by playing
with blocks. More pn this later.

At any rate, the Greeks would now use their profess of
"false position"(which is substitution using educsted guesses)
to obtain a solution; The Gernan algorithnists would have used

Partial factoring twice on the last three terms, and then have

set up -a spate of rules. Let's outline the evalutioh of the
elgorithn first, and then see how the breakdown of the given
cube would nake sense to fhe Greeks. Look at:
12,167 = 8000 +3(20%+x) +3(20+x7) +x°
4,167= 3+(20%.x) +3(20*%°) + =2
=(x) [3.20% +3°20+x+ x?-]

o - x[5-202 + x [3°20 +x]]
13
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Note: This idea of partial factoring is of extrene inportance

in giving a proof for the validicy of the process known as
Synthetic Division. Practically all texts foist off a denomstration
that is conplete hog-wash!

Now, if you still remember that 0«(x(l0 and that a nultiple
of 10 added %o x in our décinal systenm is nerely equivalent to
replacing the O with x, you should be able to outline an inter-
esting algorithm for teking cube roots. Rerhaps you night try tp
find the cube woot of 12,167 which we have already started!
(the answer is obviously 20+3=23; do you know why? Try cubing
all the digits from 1 to 9 and see what happens!)

And now for the geonetrical part! We have a given - cube
whose volune is 12,167 cubic units. 'Ye pltee a cube whose known
volune is 8000 cubic units in the lower left hand corner;
question: How do you break wp the remaihing space? Answer: The
algebra tells you how! The renaining space(containing 4,167
cubic units) is to be Wroken down into 3 flereal boxes, two of
whose dinensions f?ékhown and 1 unknown(ie., 3'202~x), 3
cigarette cartons, 1 of whose dinensions is known and 2 unlkmown
(ie., 3'20-x2) and 1 snall cube of unlknown dinensions(ie., x3).
You can readidy gee how the Greeks used varmbus boxes
(rectangular parallelopipeds) to fill up the left over space by
Inspecting the sketch below.

Sentence from Page 3:

eso In themselves anymore, but were to be associated only
wlth the measures of particular line segments: (Examples of
numbers having a pure existence are given in Sece 1e¢5:)
Sentence from page I:

Glven a square whose area is 729 units, find the length of
]:R\(} slde of this square.:

ooy G | /:“
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The cereal boxes are to be found one above the 20 by 20
cube, one to right and one behing this cube of known volune.

The cigarette cabtons ' are to be found in the upper-front

right hand cornef#, the upper back left hané corner and stand-~
ing on end in the lower back right hané corner. Tle cube of
unknown dinensions is in the upper back right hand corner.
Perhaps if I had coordinized my cube (in three space, of
course) I could have confused you nore. But I inagine that would

be inpossible. Let's surmarize these last results.

(see page 138 of (4) for another picture.)

o
(|
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The algebra we used to find a cube

root has led us to a

way of brealiing down the space inside a cube so that we can use

refined educated guesses for obtaining the length of one of its

sides. The Greeks, clever as they were,

undoubtedly faked this.

In fact, how do we Inow which cane first, the georietrical approach

of the Greeks, or the algebraic approach of the Gernan algorithn-

ists? Obviously, historically, the Greeks cane first .And that

answers that question. But they woudd necessarily stop with

finding cube roots, as the finding of =a

ie., 1t is not sense-ible,and therefore

4t root nakes no senses

has no neaning! I don't

Iknow how far the Gernan algorithnists went, but I doubt if tuey

went past the mguare root algorithn. If
fully wvorked out a cube root algorithn,
talking about.

I'n sure that at this point you're
let's take a step backwards and inspect
following ehart night help.

Era Problen Process

Greelk  Find the length of Break the

any of you have success—

you'll know what I'n

all still in a fog; but

what we've done. The

square down into 1 itmown

a side of a square - square, 2 partially known rectangles

of given area, and k unknown square. Continue this

process until "all" the area is

accounted fore.
Gernan Find the 2nd root Follow an algorithn blindly, the
(square root) of = algorithn having been obtained by
given nuriber. algebralcizing the Greek solution.

Greek Pind the length of Break the

16

cube down into 1 Xknown

an edge of a cube of cube, 3 partially known boxes,
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Zra  Problen Process
. 3 less partlially known boxes
Greek given volune. and 1 unknown cube. Contihue until

all space is accounted for.
Gernan Find the 3rd root 1., Algebraicize the Greek solution.
fcube root) of a
given nunber.
Greek Find the length of an Non-sensical
edge of a 4t diménéional'
cube of given content.
German Find the 4% root of a In renaissance Europe, if the
given nunber. Greeks couldn't dc it, it couldn't

be done.

The point to be understood here is that whereas historically
the geonetrical approach led to an algebraic approach, the
algebraic approach is nuch nore general and this partizular
algebraic approach was extensively significant in Isaac Newton's
developrient of the calculms. However, we'll mrerely use it to
develop‘a geonetrical approach to finding the edge of a tessaract,

the 4-dinensional perfect "cube®™., A tessaract is wha?

Section 1.3 The Tessaract

To the Greeks, a tessaract was non-~sensible; to the Gernans,
they had nothing to worlk fromn. To us, we can easily "visualize"
a tessaract and find the length of one of its edies because we
can reason, and we have algebra that the Greeks didn't have.
But first, what is a téssaract? |

We wili obtain the "picture" of a tessaract by developing
Q ‘ ‘

’&'
17
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it as an extension of the cube. To see how this is done,let's
see how a line segnent is the extension of a point, how a

square is an extension of a line segnent and how a cube is the
extension of 8 square. Here is how the process is acconplished.

First siert with a point P which is a zero-dinensional
figure. If the point P is noved in a fixed direction to a new
position P' a line segnent fis generated. A one-dinensional
line segment is generated frori a zero-demnensional point. The
segnent consists of the end points P and P' and the neasure
of the path between then which #s called length.

By noving ot projecting the line segmenté in a direcfion
perpendicular toégand the sane distance tb a new positioné?',
it locus will be a bwo-dinemsional square and its interior.
Point P of the line segnent{?noves to point P" generating
line segmentj?" and P' noves to P"'generating line segnent
ﬁ"'. The neasure of the path betweenéand g' we call area.

By continuing in the sane nmanner and projecting the square
to a new position in a direction nutually perpemdicular to the
sides of the square and the sane distance, one generates a
three-dinensional figure or cube. The neasure of the path
between the square's original and new position is called
volune. Note that each vertex of the square generated an edge
of the cube and each side of the square a faée of the cube.

To continue as before and project a cube into a new
position leads to several unavoidable problens. How can one
project a cube in a direction nmutually perpendicular to the

edges of the cube? In attenpting to construct an intuitive

Ritinodel of a four-dinensional figure in our linited three-

18
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dirensional envirorent one nust nal.ec use of perspective. One
is very aware that a cube can bé pictured in two dinensions.
The picture is not a cube but does serve as a répresentation of
it. One obtains this two-dimensional representation of a cube
by proJjecting the square witliin the plane of the sguare in an
arbitrary direction assuned to be perpendicular to the square's
sides., It 1s assumed that the dirtction is perpendicular instead
of actually projecting it perpendiculgr to itself for this is
inpossible in only two dinensions. Metric properties are dss-
troyed by such means but at least we do have a picture of a
nodel, Take the two-dinensional representation of the cube and
again project it within the plane in a directifin assuried to be
nutually perpendicular to the edges. This 2stablishes a two-
dinensional picture of a four-dinensional tessaract. One can
only rely on their igagination in having four lines nutually
perpendicular at a point or vertex within a plane, One could and
naybe in a nore beneficial nanner pictmre a tessaract by a
nodel in space. 1If the cube is projected in a direction assuned
to be mutually perpendicular to the edges of Hhe cube to a new
position in space and connecting the coreesponding vertices to
represent its path, then a nodel of a tessaract is formned in
three dinemsions. One could have projected the cube within the
cube in the samne ranner as one could project a sguare within
a sguare to represent a cube in two dimensions giving the effect
of looking into a boxe

In the analogue of projecting a cube into the fourth
dinension to obtain a tessaract one should observe the relation-
ships established thus far. In going fronm each figure to the

next higher dinensional figure the wmertices (called the point

19
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in the case of the zero-dinensional figure and the end points
in the case of the line segnent) became vertices in the higher
dinensional figur - generated. Hence, the nunber pf vertices af
any figure is Just twice {Fhe nunber of vertices of the figure
with one less dimension. The point has one vertex, the line
segnent has two vertices,the wquare has four vertilcas, the cube
has eight, and th2 tecsaract should have sixteen.

In projecting each figure one should note that each line
segnent (called side in the case of a square and edge in the case
of a cube) of a fizure projects to a line segnent and each
vertex generates c 2iff{zrent line segnent in the new figlire.
Hence the nunber of line segnentw in any figure is twice the
nunber of line sesments in its coreBsponding figure of one less
dinension plus the nunber of its vertiees. The nunber of sides
of a gquare is twice the one gerxating line segnent plus hhe
two vertices or four. The number of edges of a cube is twice
the four sides of a square plus the four vertices or twelve.
The number of edges of a tessaract should be twice the twelve
edges of a cube plus the eight vertices or thirty-two.

The measure of the path of a point we call length, the
neasure of the path of a line segnent the area, the neasure -
of the path of a plane region the golune, and nathenaticaans
call the neasure of the paeth of a solid the content. In
projecting a square to obtain a cube each of the four sides of
the sguare generates a face of the cube plus the two faces
forned by the square reproducing itself; the cube has six faces

mlasing sentence below
in all. In obtaining a tessarac@hglus the six faces of the cube's
original position and the dx faces kn its new position---or

Miﬂﬂing sentence; tessaract o
AR\KT a cube eesch of the twelve edges of the cube forms & face of the

2N
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twenty-four fuces in all,

In moving the cube in space to represent foubhh dinension
each of the cube's six faces will generate six solids in the
tessaract plus the two solids formed by the cube reproducing it-
sélf. The tessaract will have eight solids in all ..nd seeus quite
odd since we cannot comprehend a figure being bounded by eight
solids, However, it was found by the foregoing discussion that
the relationships of a figure and its corresponding figure o
one nore dinension are the sane nn natter what figure we shart
withe Each figure is bounded by the figures of one less dimension.
Even without a true four-dimensional tessaract we know it is

T “conposed ol sixteen verticesy thirty-twe edges, twenty-four..

faces and eight solids. (The previous 8 paragraphs are fron
(4), pp. 133-135.)

And now that we know what a tessaract looks 1like, we can
readily find the edge of a tessaract whose content C=279,841
tessa units. (obviously the content is obtained by rmultiplying the
four dinensions of any hyper-prisn, where the tessaract veraus
hyper-prisn relationship is analogous to the cube versus
rectangular parallelopiped or square versus rectangzle relation-~
ship).ell since 20" _ 160,000 and 504= 810,000 the edge has a
length between 20 and 30 linecr univs. Let's try to obtain a re~
fined educated guess for the O<§<}O nunber by visualizing th.
breakup of the tessaract, |

First, we'll put a tessaract with an edge of 20 in the lower

" 1left hand corner(wherever that night be) and a tessaract with an
edge of x in the upper right hand corner{(ditto). And of course

o *here will be a nunber of partially known hyperprisns (3 known,

‘unknown dinensions), less partially known hyperprisns(2 known,
i

—
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2 unknown dinensions) and sone least partially kmown hyperprisns
(1 known, 3 unknown dinensions). In this }ast case, the content
of each of thesc hyperprisns would be 20*x*x*X, or 20'x3; the
question, of course, is how many of then?

Now if you've followed the thinking of this dissertation
thus far, you should at this point be nmeking the suggestion that
I take 20+x ad raise it to the 4% power, which is what we'll do!
If you perform the operation correctly, you should obtain the
following results:

(204x) %= 20%+ 40200 30+ 60202, 5%+ 4020055+ 2
Therefore, it %s quite aprarent that the interior of the tessaract
should be b#oken up into 2 smaller tessaracts and 14 hyperprisns
(where 4+6+% = 14) of the various dinensiohs. And so, like the
Greeks, we could be off and running with our "false position”
process, substituting nunbers in ®r x so that the sun of the
contents of 41 the interior hyperprisns and tessaracts would be
less than or egual to C=279,841 tessa units; and if we were
German algorithnists we could imnnediately set up the following
$artlal factoring of the expansion and go on from there.
Nanely,
279,841= 20%+ 4°207x + 6+20%+%%+ 4ea20ex + X T
279,841-160,000= 4¢200sx + G*20%ex°+ 4e20° +x"
119,841= x [ 207, 61207 2+ 4e20x%+ %]

= x[4.2074x [6-20% x[4+20°x+ =

= 4207+ x{6:20% xfh.20 +}'C]]J

The algorithnists would then set up sorie rules and drive
e¥eryone insane. However, therei is a very neat way of setting

up an algorithn for nsking "false position"” guesses. See if

I')"")
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you can follow this. Notice that in the partial factoring, abovs
(I never have defined partial factoring, but I'nm assuning by
now you have figuréd out what I rean!) Af you substitute a number

in for x, say x5, and if you work your way out fpon the inside,

the fodlowing listing occurs; first you add a nunber(4+20) to
x=3%; then you pultiply that sum by x=3; next you add a nunber
(6-202) to your previous result, and then nultiply by x=3
once nore; you then add the nunber (4-203) to your previous
result and agnin pultiply that result by x=3.

Now, did you notice the recursiveness of the operations

adé-mltiply, add-nultiply, add-nultiply?”Recursiveness is a

.very.big mathenmatical word; it refers to the rep@dtiveness of a

process or set of processess{in this case upen working fron

the inside out); ie., before step 2 can be perforned, step 1

has to be performed first.(More, much nore, on this later.)
Meanwhile, back at the algorithm. In evaluating the

partially factored expression fron the inside out, we saw the

repeated use of the add-rmultiply process, where the nultiplication

was always done with x=3! Well, let's be clever and set up a

two line algorithn for this process. First take the educated

guess x=3% off on the right someplaée since we'll always be

nultiplying by it. Next, put down the nunbers 1, 4.20, 6~202,

40203 1 . 11s .. 4 ]
. in a row like so {(fthe coefficient of the x tern):

1 420  6°20° 4,207

x=3
.New,draw a line under this row, legving foon for another row
of nunbers; the plan is to perforn all addition operations
vertically and all multiplications by x=3 diagonally. Also, Jjust

\Tn—write the 1 down below.(why?- Befause we're being clever,

23
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that's why!)
1 4.20  6°20° 4202

231 !_}{:3-

1 83

Now rultiply the 1 by x=3 and placs the result diagonally
above 1t, namnely under the 4°20; then add that number (3+1=3)
To the 4°=0 and place the result vertically below the line.

Repeat the process as outlined above; it should look like thiss

1 4e20 6420° 4207

L9

2 249 72947 119,841 x=3

] (1
17 &3~ 2649 — 39,947//'

Notice two things here: 1. The final nunber conputed is the

difference between the content of the given tessaract and the
content of the tessaract of edge 20. How about that!(Obviously,
another set-up.)

2. You should have noted that the
algorithn I've outlined for evaluating educated guesses is
none othker than the infanous Synthetic Division; you night also

notice that no division ever took place., NONE WHAT~SO-EVEB!

(Synthetic Division ny left-eyebrow!)

Meanwhile, back at the problen. e have been attenpting to
find the length of the edge of a tessaract of content C=279,841
tessa units. We wanted to use the Greek techniqﬁe of breaking
down the interior of the given tessaract into sone nuﬁber of
hyperprisns and smaller tessaracts so that we could get better
and better refined educatéd guesses.(Because I've been using
“nice" nunbers for ny cubés and tessaracts, it has not been

1 apparent that the general processes outlined can be utilized
(S .
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again and again to get as good an app-oxination as desired for
a cube root or 4t root of any nunber, including those which

are not perfect cubes or 4i powers. To attempt a visual break-
down of the tessaract is absurd(in fact, I'n sure nos$ of you
don't believe that the Greeks broke down the cube without the
algebra; but I assure yon, they did,because they had ho symnbols
in their algebra and consequently it took two paragraphs Jjust
to’ tell someone to add x to x.)

So what do we do? Ve rely on the expansion of (20+x)4
to obtain both the hyper-prism breakdown and an algorithn to make
the "false position' process. But is this valid? We can't see
a Gtessaract; why should we believe that an algebraic expansion
totally unrelated to the physical object should have any
validity in describing how its interior should be broken down?

How do we lmow that there arén't 17 or 19 or 37 hyper-
prisns of the various dinmensions in the interior of the given
tessaract” Perhaps ybu are going to tell me that the algebraic

(20+x)2 and geonetrical (1 square, 2 rectangles, and 1 small
square) breakdowns should also coincide for the tessaract.
Since the expansion of (B0+x)™ did the job for n=1, 2 and 3
(1?) then certaihly it should so the job for n=4,5,6 and 7.
Is that what you'® going to tell ne?

NONSENSE. Sheer and utter nonsense. Tuat's sll assunption!
Sheer, unadulterated assumption! Ian fact, it's presunption.
You can't see tessaracts or S5-dinensional cubes, so how can
you purport Ho tell ne their internal breakdowns into hyper-
prisns? You are reasoning inductively, inducing the results of

o extensions of lmown resul®s, and foisting them off as truthl!

ERIC

IToxt Provided by ERI
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Oh how we love to generalize! It beats thinkiig anyday, right?

On the other hand, wasn't it true that for the specific
case of C= 279,841 the algebra led to an algorithm which gave
us a coreect value for the length of one of the edges of the
tessaract? (By the way, did you ever dheck out the answer of
23?) And certainly if it works for one case, it must work for
all possible cases, right?

Balogna. Let's take alook at Titterton's Theoren no. 1l:
in order to sinplify a fraction of the form %g, for instance

%2, it is only necessary to cancel out the b's, ie., %g = %,

13 _

Thersfore, an = % (The hard way: divide nunerator aad denoninator
by 16).

And ég = £ (common divisor af 13)

And 1g _ 1 (connon divisor of 19) \\

And even gg# g = % (comnon divisor of 49)

And so the theoren iw proved since I have produced 4 cases ''.ich
inmmediately verify the prenise.What more could you ask?

Plenty nore, that's what! If you accept Titterton's Theoren
No.l you're in bad shape. You know if it's Titterton's, it's got
to be wrong! But the reasoning of the proof is certainly wvalid
isn't if£? Just ebout any topic in all Math we've ever learned
has been put across ©Go us with 4 or even a less nunber of
examples. And what a lot of nonsense that's been. We truly and
really need a critefia for asedrtaining wlen a theoren or
assertion can be validated. And this we will obtain.

What can we say, therfore, at this point, since we obtained
the number 23 as the length of the edge of a tessaract of
content 279,841? Basically, we can only say, "that's nice'.

20
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because we nust first find a general validating principle and
then use it to validate our algebraic process. Of course the
interior breakdown of an n-dimensional cube can never visually
be verified, but after all the evidence is iy we'll be in a
nuch better position to accept our algebraic hypothesis for the
internal breakdown,

But before we inspewt a general principle for validating
inductive assertions we need sone tools. Withaut some handy tools

we night as well forget ite.

Section l.4 Number Rules

Charlieée Pythagorus, the ancient Greek nathematician, had a
favorite saying: "Nunber rules the universe." As a catchy phrase
it night not nake it on Madison Avenue today, but Charlie and his
crew used it as 2 reninder whenever they made any natiéire observa-
tions. For instance, it was cormon knowledge that the physical
world consisted offi only 4 elements; earth, fire, air and water.
You gight ask, "But how was this classification artived at?"

And Charlie would answer, "Number rules the universe." Which is to
say: There are 4 dinensions of all forn, nanely point, line,
surface and solid. And you night say "Which is which?" And the
answer is a bit different tham what you night expect. You see,
there are 4 perfect solids; the tetrahedron; the octahedron, the
icosahedron and the cube(hexahedron). And since the tetrahedron
has very sharp vertices, it corresponded to fire. The icosahedron
has very smooth vertices and therefore corresponk to water, Since
the cube was very solid, it corresponds to earth and the
octahedron(only one left) corresponds to dr, Don't you see, if the

‘;)"'1
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postulate that "number rules the universe" 1s accepted, we get
great insight into the structure of the 4 bvasic elenents,

Of course, then somebody went and diiscovered a 5t perfect solig,
the dodecahedron. But no sweat; it's inmediately obuous that the
dodecahedron nerely corresponds to the structure of the universe
as a whole.

And so it went, with all explanations ained at verifying the
sacred postulate., That is, untilVE'came along. At which point,
geonietry took over mnd nunber theory took a back sesmt.

But just in case you don't think that nunber rules the universs,
ponder these relationships. When Harry S. Dewey set up his decimal
system for the classification of books in libraries, he arbitrarily
acssigned the number 512.81 to books of Mathenatics written about
nunber theory (relationships of integers; ie., the integers 3,4,5
are related in a very fanous theoren).Little did he know that
29 512 and 9 = 81! Now, how about that?

Still not satiefied that nunber rules the universe? Try this.
What is 11+2-1? Of course, the sun is 12, Well, watchithis,

ELEVEN 4+ TWO-ONE = ELEVENTOW~ONE = LEVETW = TWELVE. And now
you're oonvinced, right? (oh, no, we need at least 4 examples to
prove a theoren. Sorry, I forgot.)

In the 11# verse of the 2lst and last chapter of John's
Gospel (New Testanent), 153 fish are pulled into a boat. Well,
since 153 = 13+53+33, we have an innediate nathenatical proof
of the doctrine of the PTrinity. (For those of you without e
background in the doctrine of the Trinity forget it; Jjust remenbar,
nunber rules the universel)

Of course, now that you have accepted the postulate, you night

O
(“)
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like to see soie exanples of the rule. Here's one such exanple:
Perfect nunbers are defined as any nunber which is the sun of its
proper divisors. For instance, the proper divisors of 6 are 1,2
and 3. Since 1+2+3 =6, six is a perfect nunber. (Did you ever
notice that you have 2 eyes, 2 ears, 1 nose and 1l nouth- a perfect
nuriber of sensors!) Through the ages, 28, 496 and nine rnore
perféct nunbers were foundj; Euclid had a formula for generating
perfect nunbers, nanely, if 2%-1 is prine, then 2n—l(2n_1) is a
perfect number. (Obviously even). In 1952, the conputer found 3
nore perfect nunbers for n=521,607 and 1279 in Euclids's fornula ;

(2520)(2521—1) is a perfect nunmber. Just check it oute

ie.,

There are no known odd perfect nurbers under 2 nillion. If
you'd like to make a big splash in nath circles, be the first on
your blawk to find an odd perfect number greater than 2 nillion.

Say, did you ever notice that God created the world in just
six days?

Now, the perfect numbers aren't too useful, unless you can
songhow represent yourself as being the nuhber 6 or 28 or such,
and thereby clain perfeftion. However the anicable or friendly
nunbers are very usefni.

Two nunbers are said to be friendly if each is the sun of the
proper divisors of the other. For instance, 284 and 220 are
friendly nunbems since 284 = 1+2+4+5+10+11+20+22+44+55+110, and
each of the numbers 21,2,4,5,10,11,20,22,44,55,1lofdivide 220;
while 220 = 1+2+4+71+142 where each of the nunber%;€l,2,4,7l,l4?§
divide 284, This pair of numbers was lmown to Pythagorus; they were
"useful" in the sense that if you had a crush on soneone, you

3 'merely showed her (hin) that your nane corresponded to the number

_ o
,<]ER¢(j22O (naking the letters of your nane correspond to sSone set of

)l iy
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natural nunbers) and her(his) nane corresponded to 284 (perhaps
fising a few fudge fioctors along the way),;ind therefore, instant
love.

This pair of friendly nunbers were the only pair known (in the
western world) up until Pierre Fernat (a contenporary of Pascal)
discovered another pair tn 16%6; nanely 17,296 and 18,416. Of
course puler, 1747, nade a systenatic search and cane up with
60 éuch pairs. There are now over 400 pairs known;

A very interesting story is that of the 16 year o.d Irish
lad Nicolo Paganini who in 1886 found the friendly pair of
nunbers 1184 and 1210, which had sonehow Been overlooked by nany
of the world's greatest mathematiclans. Perhaps ypu can find
another pair overlooked by everyone!(But don't hdd your breath).

One last exanple(there are nhny nore) of nunber ruling the
universe are the figurate nunbers which link natural nunbers to
geometry. The essense of these nunbers is that they can always
be written in a triangular, square, pentagonal, etc. array. For

instance, 1,%,6,10,... are triangular nunbers since

LA LQ) / <<§1\0\

13 6
and 1;4,9,16,25,... are square nunbers since - p
e . » 4
1 4 -9 16

And so nuch for "Number rules the uwniverse." Of course since

390
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the time of lascal, Pythagorus' natural nunber approach has been
replaced with a rather sophisticated probability-statistical an-
alysis which essentially says that "Number rules the uhiverse."

If you've been sniling at ry facetiowsness in this last section,
just keep on sniling; nothingkchanged. Only now the absurdities are

nore sophisticatzad.

Section 1.5 Problens, Answers and Hints

1. Make a second attenpt at whiting an algorithnm for finding cube
roots, but this time include the "Synthetic Division"procéss.

2. Conplete the following linmerick:

A nathenatician naned Jay

Says extracivion of cubes is childe pday

You doa't need equations

Or lorm calecvlations

-

e i7:31d a nodel of a cube that breaks down into the 2 smaller
cubes and © rectangular parallelopipeds dEscribed in section 1.3,
4, Since it is possible to bepresent a cube (3 dinensions) on

a 2-dinensional FEEle of paper; then it should be possible to
rppresent a tessargct (4-~dimensional) in 3 dinensional space. Build
a (balsa wood) nodel of such a representation. .

5, liake a chart showing the nunber of geometrical entities that

are foung in éach of the n~dimensional cubes. The geonetrical
entities td be considered are points(vertiées); line segnents
(edges), surfaces,solids; tessaracts, Wagners,Goudreaus, Van Horns,
Tittertons, Eldies, Spadas and Cheneveys. (A wagner is a 5~

Ainensional cube, & Goudreau is a 6-dinensional cube, a Van~Horn

31
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is a 7-dimensional cube( and you can believe that!), a Tittepton

is an 8-dinensiornal cube(ie., 23=8, or tlie square cubed-and you

can believe that!),and E1di is a 9-dinensioral cube,and so on.

Each of these m~dinensional cubes is generated ffon the (n-1)-
dinensional cube as in the prosess outlined for the generation of
the tessaract given in section 1.4.

6. An alternate seguence of genebations can be formed from a point
and line by considering the equilateral triangle as hhe third
figure generated instead of the square. This sequence then givew
rise to the gerration of & tetrahedron, a pentatope and various
elenents naned after npepbers of 3yosset's English Departnent. Make
up a chart for this swquence of generations.

7. Check to see if Nicolo Paganini's anicable numbers (1184 and
1210) are indeed friendly, and then "develop" a friendly Trelation-
ghip between sore two "objects" by an apuropriate use of apnplied
nurierology.

8. Sonetine during his lifetine( 826-901), the >ger popular Arabian
lathenatician gabit ibn Qorrawitz discovered and published the
following generating rule for anicable nunbers. If p= 3'2n—l,

q= 5-2n—l—l, and r= 9.2°0"1

-1 are all primes for a particular
value of n, then 2np'q and 2%r are a pair of amicable nunbers,
(?his is the first known exanple of original Arabian mathenatical
work.) Verify Qorrawitz's fornula for n=2 and n=4.

9. The figurates numbers§l,5,l2,22,..i3 are considered as
pentagonal nunbers. Gusss (if you can) three additi~nal nunbers in
the sequence and verify that the entire sequence consists of pen-

tagonal nunbers by drawing appropriate figures as done for

triangular and square nunbers in section 1.5. How would you verify
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your guesses otherwice?

fAnswers and or Hints for problens:
1. Read that part of Section 1.4 which clearly(?) explains the
process for the 4% root problen.
2. My candidate:

"Just hot water to run on the tray." Gotcha, didn't 1!
3. 1If your Dad has a table nodel or radial arn saw, this is not
a difficult task. Please try to retain all your fingers if you
attenpt it.
4, See page 125 of (5) or page 139 of (4).
5. In the Wagner ,there would be 32 vertices ,80 edges, 80 durfaces,
" 40 solids, 10 tessaracts anu of course, 1 Wagner. “‘hese results
night be represented in the following ordered sex-tuple (32, 80,
80, 40, 10,1), The Goudresu wculd be deseribed by the ordered
sept-tuple (64, 192, 240, 160, 60,12, 1), where the 7% entry
represeints a Goudreau. If you do make the chart, note the many
relations along the diagonal rows,
6. Refer to the symbolisn of "“Lord of the Flies" or "Catcher in
the Rye'". Also there is a discussion of this nroble:: op page
137 of (4).
7e¢ 1184= 1+2+5+10+11+22+55+110+121+242+605

1210= 142+4+8+16+32+37+74+148+296+592.

2-1 1

8. For n=2, p=3.2°-1 =11, q= 3:2°71-1 =5 and r= 9-2%"1-1= 71.

Therefore, 2%p+q = 22+11+5 =220 and 2% = 2°+71 = 284,

For n=4, p= 3+2'-1 = 47 q=3-2""12 23 ang r= 9°287'1 = 1151
‘Therefore, 2%p.q= 2¥+47+23= 17,296 and 2% = 2*.1151= 18416
Note: for n=3, p= 5-25-l= 23, Q= 5'25'l—l= 11 and r=9-26'l—l= 287,

u“*:398'7= 7+4]1 is not prime. Qerrawitz's formula does not pmrport
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to generate every pair of ariicable nunbers; it only presunes to
generabte pairs of arnicable nunbers.

9. The th#ee addithonal numbers in the swquence of penliagonal
nurbers would be 35,51 and 70. These nunbers are readily found
when it is recognized that the sequence 1,5,12,22,... is an
arithnetic sequence of 2nd order (see (3), page 487, nunber 5) or
by careful observation of the generation process visually

denonstrated on page 57 of (2).

Section 1.6 Student Test

I. In this question, nerely fill dr the blanks:

The Greeks of long ago were extrerely clever people when it
cane to synthesizing nunmerical solutions to georietrical problens.
For instance, in order to fing the edge of cube of a given wolune,
they developed a a) techinque which depended upon the
breaking up of the interipbr of a cube into b.) rectangular
parallelopipeds and one small cube after a cube of c.)
dinensions had been renoved fron the original. Sorie of these
rectangular paralleldpipeds had 2 known dinemsions and d.)
unknown dinensions, while the others had 1 known dinension and
e.) unknown dinensions.Using their process of f.) ’
they would find a valﬁe of the unknown dinension such that the
o) of tke volumes of all the h.) - and the
unknown cube would be i.) or equal to the unaccounted
for volune of the given cube. Of course if there was still sone
volune left vnaccounted for, they would now try to once again fill
in the renaining space with a rnore refinad set of parallelopipeds

and snall cube. This process would be carried on j.) until
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the entire volunie of t e cube was accounted for, or un:cil the

desired accuracy was achieved.

II. Define, in your own words, the following terns:
1. algorithn
2. recursivenesgs
5. Mathenatical induction
4. partial factoring

5. tessaract

ITI. Choose the correct answer in each of the following:

l. The nunber of vertides of any n~dinensional cube has exactly
a.) the same nunber b.) twice as many c.) three tines as many

d,) twice as rany plus the number of edges e.... as the (n-1)-
dinensional cube.

&« The nunber of edges of any n-dinensional cube has exactly a.)
the sane number b.) twice a nany c.) three fines as nany d.)
twice as nany plus the nunber of vertices .,.. as the (n-1)-
dinensioanl cuke,

3. The nunber of surfaces of any n-dirniensional cube has exactly
a.) the sane number ©b.) twice as nany c.) three tines as nany
d.) twice as nany plus the nunber of edges ...of the (n-1)mdinen-
sional cube.

4., The nunber of pt structural nenbers (vertices, edges, surfaces,
solids, etec), exclusi-e of vertices, of any n-dinensional cube

has exactly a.) the sane nunber b.) twice as nany c.) three
tines as meny d.) twice as nany plus the nunber of (p-1)-
structural nenbers... as the (n-l)-dinensional cube.

5. Blaise Pascal was born in

a.) Itvaly b.) Ireland c.) Fraznce d.)Israel
330
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6. The reason why there is ho geomnetrical word equivalent to 4
is because

a.) Pythagorus repressed the concept

b.) There is no fourth dinension

c.) You can't visudlize a 4b dirension

d.) WVho needs two words to say the sane thing.
7. The Gernan algorithnists were a.) an early Buropean folk-rock
sroup b.) fishernan sailing the Hggy Baltic Sea c¢.) men who nade
rules so that thinking was unnecessary d.) necessary to the
developnent of nathenatics.
8. The tessaracht a.) is inpossible to visualize b.) can be
represented in 3-dinensional space c.) is a fignent of the
inagination d.) has a precise nathenatical description.
9. The d.git which when cubed yields a units digit of % is a.) 3
t.) 5¢.) 7 4d.) 9.

10, The fact that the existence of a tessaract in nature is imposs-
ible does not phase the nathenatician; he merely describes the
figure in terns of previously defined figures. This description
process dépends upon the concept of a a.) recursiveness b.)partial
factoring c.) math induction d.) algorithn

11, After the tessaract has been constructed (conceptually, of
course), the interior breakdown is established a.) visually
by eaperinentation b.) by an algorithn c.) by the expansion
of a binomial d.) by teacher edict.

12, The objectives of this first section have been to a.) confuse
the student b.) teach world history better bhan in the Social
Studies Departnent c.) give a working lknowledge of some new,

unusual and abstrack concepts d.) indicate to the student how

36
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abject and comnplete his nathenatical ignorance is.

1%, The results of this first section have been to a.) confuse the
student b.) teach world historyx better than the Social Studies
Dgpartnent c.) give a working knowledge of sorie new, unusual
and abstract concepts d.) indicate to the student how abject and

conplete his mathenatical ignorance is. d.) none of these.

Answers to Student Test

I. a. recursive b. six c¢. Imown d. one e. two £f. false position
g. sunn h. rectangular parallelopipeds i. less than j.indetitdbsiy-
II. Since the definitioas are to be "im your own words", I can't
very well put an answer down for this.

III. 1. b 2. d 3. d 4.4 5.c 6. ¢ 7.c¢ 8. a,byc,d ¢

16. a 1l. ¢ 12 a,b,e,d 13. ?
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Section 2 ONE-TWO, BUCKLE YOUR SIOE

outline of Seeyion 2.
The goals of Section 2 fall ihfo the following categories:

1. Establish a raison d'étre for the existence of Pascal's
Triangle.

2. Establish a correspondence between counting :1bsets and
naking selections,

%+ Develop counting technigues.,

4, Attack once again the concept of slopvpy rath inuction,

. Section 2.1 Counting Subsets

Do you rerenber the definition of a set? 4 set is a collection
of well-defitned objects. How do we know when an object is well-
défined? When we can tell whether it ought to or ought not to be
in a given se6. Sets, of course, are described by either (or bvoth)
of two methods: a listing of the elerents (objectsj are given, or
the objects (elements) belonging to the set are caﬁefully defined.
Forlinstance, you night talk about fhe set consisfing of the
first four letters of the alphabet (English alpha?et, that is)
or you night just say {a,b,c,qz . |

t/ell, I assune you've noticed the change of pa?e. No tessaracts
or partial factoring herey just good ole sets. I w&nder if they're
all connected soriehow?

At any rate, let's get back to sets. Hurray for nodern Math!
(It's all so easy) One area the chapter in the Math 1l book Jjust
touched lightly on (and Glicksman and Rudernan, too) was a

discussion of subsets. The set A is a subset of the set B if every

elertent of A is also an elenent of B, This is symnbolized as AC B,
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and is read, 4 is contedined in B. Enough then of review.

Let's investigate the nunber, I say, the nunber of subsets and
the character of the subsets of a given set. For instance, look
at B=\a,b,c,d¢. You should renercber that and B are both subsets
of B. Also, zaf,zbi,ggj, and {é&gre single element subsets of B.
What are the 2~element subsets of B? Uhyfa,??,éa,g?,ié,q?,%P,f?,
{p,d&,{c,?} of course. There are six of them if I didn't niss any.
Did yoa notice ny technique for obPaining all possible 2-elenent
subsets of B? Pirst 1 figed a and exhausted all second possibil-
ities, then I fixed b and exhausted all second possibilities, etc.
This is not the only technique, but it's a good one (if I do say
so nyself),

Now you wse a sinilar technique to list the %-element subsets
(you should find 4 of thenw- obviously).

And so, for a four elenent set, there is one no-elenent subset,
4 l-elenent subsets, 6 2-elenent subsets, 4 3~elerient subsets and
1 4-elenent subset. You night notice that the total nunber of
subsets is 16.

Before you go on to theigggiion, stop! Find the breakdown of
the 1,2, and % elenent setsiinto appropriate subsets, List your
results, and nake sone guesses as to the general situation if you
can. Renenber, the key phrase for the rest of this chapter is

"Observe, Explore, Discover!"

Section 2.2 Symnetry Counting

Let's look at the set S= a,b,c,d,eg. We should innediately
note that there is 1 no-elenent subset and 5 l-elenent subsets.
TJ"\ngvrez:-, the nunber of 2-element subsets is a matter ofbcareful
ERIC
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counting. Let's use the exhau«tion technique: with“a?fixed we get
&?,bg,{a,cz,ia,q%,l?,?}; with b fixed we getip,g},ib,qi,gp,eg; with
¢ fixed we get{p,@fand{F,ég; and with 4 fixed we get{@,%}. There~
fore, there are 4+3+2+1 = 10 2-elenent subsets of set S.

Observe, explore, discover. Did you notice that using this

tecinique we get a sequence of nunbers 4,3,2,1 which when added

- together form mn arithnetic progressson. (Does anyone rerenber the
forrmla for the sun of an arithnetic progression?) It appears that
a generalization night be made here (if we only knew that silly
forrula! oh, shucks!)

And now back to the counting of the 3-elernent subsets of set
S. Reneriber that wise-guy "obviously" I threw in vhen I told you
that the nunber of 3%-elenent subsets of a 4-elenent set was 47
Well, it applies to the question of the nunber of 3-elenent subsets
of a 5~elenent set also; obviomsly the nunber is 10! Wha?

Didn't we Just spend a great deal of time counting bhe 2-
elenent subsets of a 5-element set? Well, check this. Let the
2-elenent subset a,bfcorrespond to the 3-elenent subset c,d,%z;
ie., let subset P=2§,?}correspond to its complenent, A'={psd,e .

missing sentence: s€e page 46
Let B=§§,clcorrespond to the 3-element subset /\there are exactly
10 conplenents of the 2-elenent subsets; and therefore, there are
exactly 10 3~elenent subsets of set S.

Pretty neat, eh? 1If you understood that, then you should be
able to’ tell how nany 4-elenent subsets of the 5-elenent set S
there are, witout counting. Since there are 5 l-elenent subsets,
there are 5 complenents to each of these l-elenent subsets, and
therefore 5 4-elenent subsets of the set S. List then if you don't

bFlieve ne!

"
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I call this technique syruietry counting. Of course it is ot
no value unless previous information is given (it's recursivel),
For instance, you can't tell ne the nunber of 7=-elenent subsets
of 8 9-elenent set unless you first know the number of 2-element
subsets of the 9-elenent get. Or in general, the nurber of r-
elenent subsets of an n-elenent set is the same as the nunber of
(n-r)-element subsets of the n-elemnent set.Does this generalization

agree with your observations, explorations ead discoveriss?

Section 2.3 lMore Technigues

We " now have (supposedly) a chart or listing of the nunber
of subsets of 1,2,3,4 ahd 5-elenent sets. We have seen that we
only need half of these nunbers to get the other half (for any
given set). Now let's obtain the subset breakdown of a six elenent
set T:fa,b,c,d,e,{z. Ve shall nake use of a purely recursive
technique. We first notice that T and S:Za,’m,c,d,?} (of the prev-
ious section) differ only in the letter f belonging to T. There-
fore all the (10) 2-elenent subsets of S are certainly 2-elenent
subsets of T, plus all those 2-elenent subsets forned by taking
all the elenents of S mad adjoining to then the element f of T;
nanely a,fz,ib,i?@,ig ,id,fz , andze,ff.

And we have again exhausted all the possible 2-elenent subsets
of T; any 2-elenent subset of T without an £ was counted in the
10 we took ffon S; any 2-elenent subset of T with an f was counted
in the 5 new subsets forned; therefore, the total number of 2~
eleinnent subsets of set T is 10+5 = 15,

Let's try it again. How nany 3-elenent subsets does set T
have? Set S has 10, all of which will be included in the count for

ERIC "
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T; also, set 3 has 10 2-elenent subsets; to each of these adjoin
the elenent f of T, thereby obtaining 10 3-elenent subsets of T.
The total is 10+10 = 20.

If you didn't follow all of the above, try one or all of these
three things: 1. Re~read the section very carefully, v“eing careful
to distinguish between the words set and subset.

2. Try to find a 3-elenent subset of T which has not
been included in the listing given above, (ie., either in the set
of %-elerent subsets of S or the 2-element subsets of S with an £
adjoined).

3. Read the next section.

Section 2.4 Pascal at Last

In the previous section I have ontlined a recursive technique
for counting subsets. Let's see what we've got and use the
a
technique to enunerate the number of r-elenent subsets ofﬁ? elenent

sét, where we'll let » vary fron O to 7. Inspe€t the following

table of results:

Nunber of Elements in the Set Nunber of r-element subsets

r: 0O 1 2 3 4 5 6 97

1 11

2 1.2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10105 1

6 1 6 1520156 1

” 17 7 1

ke
Al
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On the last row, I have already filled in the obvious; nanely,
1 no-elenent subset, 7 l-elenent subsets, 1 7-elenent subset and
(by the syrmetry concept) 7 6~elenent subsets. i/hat about the rest?

Fron the previous section, we saw that © obtain the number
of 2-elenent subsets of an n-elenent set when te nunber of 1-
elenent and 2-elenent subsets of the (n-l)-elenent set is lmown,
we nerely add the number of 1 elenent and 2-elenent subsets of the
(n-1)-elenent set together. Believe it or not, that's exactly what
we established by our observe, explore, discover nethods in
Section 2.%. Take another look if you daon't believe ne! And read
carefully.

So. The number of 2-elenent subsets of a 7-elenent set is
therefore equal to 6+15, or 21, Likewise, the nunber of 3-slenent
subsets of a 7-elenent set is nrrely 15+20, or 35. ~»s far as the
table is concérned, to find the nunber of r-element subsets of an
n-elerent set, you nerely go to the line above (the (n-1)% line)
and add the r and the (r-1)% nunber together. Simple, eh?

For those of you who have been around, you should have by now
recognized both Pascal's Triangle and the generation process
thereof! Alas, Pascal has finally arrived (or should I say
Chu~Shﬁ—Kié?)! The table does not give the triangle in its nost
popular form, but it is in the formn which Pascal used.

Entire paragraph missing: See page 46}
Stick around. Ye're going to put it all together yet.

Section 2.5 Problems and Answers

1. e noted in section 2.1 that the total nunber of subsets for
the 4-—elenent set was . What is the total number of subsets of
o~13ch of the n-elepent sets in the table of section 2.47 Fron this

ERIC
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information, can you generalize a rule for finding the nunber of
subsets of an n-elenent sei?
2. How nany 2-elemnent subsets does an 8~elenert set have? That
question's too easy; try finding the nunber of "-elenent subsets of
a 37 elenent set. Of a 49 elenent set? a 123 elenent set? A 150
elenent set?
5. If you can handlle #2, try this: How nany 3-element subsets does
& 37 elenent set have? If you're crazy enough to use the recursive
schene to obtain that answer, try finding the nunber of 3-elenent
subsets of a 49, 123 and 150 elenent set!
4, Anyone for finding the nunber of 4-elenent subsets of a 37
elenent set?
S. In section l,we investigated the tessaract. To get a (nathenat-
ical) idea of a possible interior structure of the tessaract we
took (2O+x)4 and expanded it, obtaining 1 known tessaract, 4 hyper-
prisns of one variety, © of another, 4 of a third variety and 1
unknown tessaract.

By now these numbers should have some significance to yous
but what does subsets have to do with the possible structures of

tessaracts?

Answers to Problens

1. I will give the answers as ordered pairs (a,b), where a will
equal the nunber of elements in the set and b the total nunber

of subsets of the set with n elenents. The set of answers therefore
would be:{(1,2), (2,4),(5,8),(4,16),(5,52),(6,64),(7,128{{

It night appear to you that there is indeed a gneral rule, nanely
(n,2n), but that's all hogwash., Just look at the following example:

[ﬂiﬁ:«Given a circle O with a point A on the circunference, we say

44
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that the interior of the circle is "divided" inito one region
(trivial case). Given circle O with two points A and B on the
circunferénce, the line segnent AB divides the interior of the
circle inbokregions. Given circle O with three distinct points
A,B and C on the circunference, the line segments AB,AC,BC divide
the interior of the circle into 4 regions.(Draw the picture and
see for yourself). Given circle O with four distinct points A,B,
¢ and D on the c¢ircunference, the line segnents AB,AC,AD,BC,BD

and CD divide the interior of the circle into 8 regions. Continue
this process. The set of relations (nunber of points on ciraun-
ference, nunber of regions in the circle) denoted by (p,r) consists
bf{(i;l);(é,?),(5;4);(4,8);(5,16); ;..;Where the dots can be
filled in as needed. Obviously the rule is (p, 2P-1y,

Obviously my left eye-brow! The actual rule is (p, 1+(V24)(p)e
(p-l)(p2-5p+18)>. Try it and see! For p=6, the nuriber of regions is
1+(Y24)(6)(5)(24) or 31l. Which is the first case for whidh the
purported case breaks down! Draw & circle, put 6 distinet points
on the circunference, draw all possible connecting line segnents
(how nany would that be?) and count the regions carefully. You
should get'El.

In other words, after 5 specific cases, the aprarent rule
breaks down to be replaced by a mocnstrosity (where did it cone
fron?) In the case for the total number 6f subsets we can guess
the rule as (n, Zn), but how do we know it doesn't break down for
the very next case? Our table only hacs the first seven values;
éan‘we'bé éuie thét the sun of éli the éubsets of an 8-elenent set
is 28? Not a6 all, based on the previous exanple.

. . n, .
o There is, of course, a constructive proof as to why (n,27) is

45
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indeed the correct relationship; but unless you can give it, you've
got no right to assune the reltationship is true.

2. Let's lock at the 37 element set. How many 2-element subsets?
Suppose we use the exhaustion technique; take sonme elenent, say

a, fron the set; natch it with eadh of the other %6 elemnents; then
thkoe She b elenent :and match it with each of the other 35 elements
(it's already been matched with the a). Continuing in this fashion
you will obtain a sequence of nunbers 36,35.34,...3%,2,1 whose sun
3.5 the total number of 2-element subscts of a 37 elenent set.

Zince you still haven't reneribered the forrula for the sum of
an arfthnetic progression, let's derive it. Forn the sun of 36+
35+34+...3+2+1; note that 36+1=3%7; 35+2=3%7; 34+3=37; etc. Theré
are obviougly 36/2 pairs of these suns; Therefore (36/2)(37)=666
is the nunber of 2-elenent subsets of a %7 elenent set.

The derivation of the formula for- the sum of the arithnetic
progression is obvioulsy "first plus last" (a;+a ) tines the
nunber of terns divided by 2(n/2-the nunber of pairs of suns).
Therefore, the sun equals (n/2)(al+an), where a; is the first
ternn of the sequence and a, is the nt or last.

sentence missing: page 46
For our case (the counting of 2-elenent subsets,consistlng of

a'addoined to all the other elements) and the value of a, is 1,
Avﬂﬁle there are (n-1) terns. Therefore, the sun is((n-l)/E)(n-l+l)=
(n)(n-1)/2.

For n=49, the nunber of 2-element subsets is 1176; n=123%,
2-elerient subsets nunber 750%; n=150, 2-element subsets nunber
11,175.

There are other clever- techniques which also give rise %o the

sane general expressione.

iy
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2. The general rule hesre is o ‘ihere'd I get if fron?

Read on.

4. The general rule for finding 4-c¢lerient subsets of an n-elenent

set is (n)(n;%%22-2)(ge5)u Check it out for n=4,5,6 and 7. 1If

you believe this constitutes a proof, you've nissed the whole
riessage in Problem 1 above.

5. Nothing at all. Counting subsets apparently has something to do
with the expansion of a binomial, but subsets and tessaracts have
nothing in corrmon. It's the expansion that we want to investigate,

so read on.

Section 2.6 Pre-Test
I. If 2 particular sequence of nunbers 3,7,9,13,9,7,3 give rise

to a gecond sequence of nuobers %3,10,16,22,22,16,10,3 where the

e
rule of genfation is that of a) ___ triangle, the sun of the
second sequence is exadtly Db) the surm of the first

sequence. This is quite c¢) so since each nienber of the

original sequence is used twife in the d) of the new

sequence. For instance, the first 9 is added to the 7 to get 16

and is added to the e) to get 22, and so the first 9 appears

twice in the new sequence. Lven the first 3 is used twicej; once

by itself and once with the 7 to yield f) .

Although the sequence 3,7,9,13,9,7,3 has nothing to do with

Pascal's Triangle (except perhaps that it is g) ), the

above discussion does provide the essence of the h) proof

alluded to in the solution of problen: 2.2. Of course the nore

i) stmdbnt will attenpt to develop this proof to fit the
Q ase in question(nanely, that the j) of the subsets of an

E119
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n-elerent set is 2°.)
I1I. Define in your own words:

a) English alphabet

b) Observe

c) Txplore

d) Discover

e) Arithnetic Frogression

f) Symmetry

g) FPascal's Triangle
IIT. 1. In the counterexauple given in the answer to question 2.1,
when 4 points were put on the circunference, they deternined
a) & line segnents b) 6 line segnents c) 8 line segnents d) 5 line
segnents.,
2. As in problen 1 imnediately above, 6 points on the circunference
would deternmine a) 15 line segnents b) 10 line segnents c¢) 20
line segnents d) 6 line semments
3. As in problen 1 and 2 immediately above, 12 points on the
circunference would debernine a) 12 line segnents b) 66 line
segnents c¢) 132 line segnents 4) 42 line segnents
4, The best technique for finding &he answer to question 3 ahove
is to a) use the exhaustive procedure for counting 2 elenent
subsets b) extend Pascal's triangle to the 12# row and read off
the answer c) guess &) apply the formila ﬂglﬁ%:Ll ag derived
fron the exhaustive technique,
5., The derivation of the forrmla found in povential answer 4 4
above depended upon a) teacher edict b) student conplaisance
c) knowledge of the formula for the sunn of &n arithmetic progres-’
QO n d) having a good text as resource naterial.

ot oo b 4 8
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6. The problen of finding how nany triangles are deternined by

5 points, no 3 of which are collinear, is equivalent to a) getting
up at 6 o'clock on lMonday norning ©b) finding all 3 element subsets
of a 5 elenent set c) trisecting any anzle with compass and
straight edge d) the football team beating Hicksville.

7. Eight points, no 3 of which are collinear, will deternine a) %
triangles b) 28 triangles c¢)15 triangles d) 35 triangles

8. The best nethod for amswering question 7 above is a) to extend
Pascgl's triangle to the 8% row and read off the answer b) to use
the formula given in the answer to question 2.3 c) to guess d4) to
wait until a sophisticated notation and fornulation is introduced
in Section 4.5.

9. Assuming 1 5 6 3 6 5 1 is the nt% row in Pascal's triangle
the (n+1)™ row would be &) 1 6119911 61 b)1 691111961
c) can't be found d) of no value; so why find it?
10, issuning 1 56 %2 6 5 1 is the nm row in.Pascal's Triangle the
(1:1-1)Lb row would be a) 1 4 21 24 1 b) can't be found because the
gensration process isn't cormutative c¢) can't be found because

the niddle term (3) is less than the value on 2ither side.

a) % 9/2 3/2 3/2 9/2 %

Answers to Pre-Test

1. a) Pascal's b) twice c) obviously d)gensration e) 13 f£)10
g) synnmetric h) comstructive i) clever?; inguistive?; mathe=
natically talented? brownnosing?;enterprising?; nasochistic?

J) sun
1ll. a) Definition would consist of a 2500 word paper discoursing
on the historical develo pment of the alphabet as we know itb.

b)IOuverez les yeux! c¢)Get your hands dirty! ®) Say, " ah, HAAA

LS
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e) Common difference betweew terns £) Mirror izage? g) an arpay
of cleverly generated numbers?

ITI. 1. % 2. a 3. b 4, d,a,b, in that order 5. ¢ 6. b 7. a
8. a or d, but not b. You have no right to use any forrmula unless
it has been validated for you. Said the blind man to his friend,
"S8o I picked up ny hanmer and saw.. " 9; a 10. ¢ b is incorrect

because the generation process is comnutative,

From page 36:
bydse & Well, do you get the pleture? There are exactly 10

2=element subsetss

From page 39:
And so 1f you're interested in knowing all about #Htsetsy, their

numerousness and cherescter, we have found an arrgy of numbers
which would indeed be very useful, Of course, the question

might stlll remain, "Who needs 1t7¢

From page 423
of an n-clsment set), the value of ay is (n=l} (for n = 37,

there ®mere 36 subsetg

A
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Section 3 LEIPANSIONS

Qutline of Section 3.
The contentsnof this section include:

l. The expansion of all binomials in a quick, efficient fashion.
2. More lessons in Observe, Explore, Discover techniques.

3. The built-in review of all algebraic rules.

4, Specifically learning the expansion of (a+b)2 so that no student

will ever get it wrong again. (Kecp dreaning!)

Section 3.1 Busy Work

Expand (a+b)¥, for = 1,2,%%,.0448,9. That's exactly what you
nust do. The le:ters "a" and "b" mereif represeﬁt duﬁﬁy variébies
(a very descriptive phrase, right?). Aetually, after about four
or five expansions, your observations and explorations should

lead you to a discovery. AH--HAlA!l

Section 3.2 Discoveries and Assunptions

So,Pascal's Triangle strikes again! Look at those nice
coefficients. I wonder if it would be a rash assugption to assune
that the coefficients of (a+b)™ will be found on the nt% row of
Pascal's Triangle? You bek it would! You've no right to assume that
the coefficients of (e.+b)12 will be found on tlie 12% row of
Pascal's Triangle. Only if you can present a counstructive proof
or establish a general criteria for proving out such questiong can
you assune that the ure of Pasczal's Triangle for.finding coeffic-
ients of binonial expansions is valid.

You night notice another difficulty also. Supposé you're

Eﬁked to find the 58 poefficient in the expansion of (a+b)12.

ERIC
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If you have validated the usage of Pascal's Triangle for this
purpose, you'll still have to extend the triangle to the 12 row;

a sonewhat tedious Job justtggnd one nunber. Fortunately, there
are two alternate procedures for obtaininga particular coefficient;
one is . ecursive and the other is direct. Ye'll discuss the

recursive procedure below snd the direct approach in Section 5.

Section 3.3 QCooke's Law

Let's use our observation, exploration and discovery technique
to establish a unique recursive relatliomship between the cheffic~
ients of an expansion. For instance, (a+b)6= a8+ 6a%b + 15alb2+
2067+ 15a°b*+ Gab?+ BE
Let's sunmarize our observations:

l. Every teym of the expansion consists of three factors; a
nunerical coefficient, sone power of a and a power of b 1 case
you're wondering, a6 can be written as 1°a6-b0, since 1 , the
multiplicative identity and b°=1)

2. The emponents on the a's run "downhidl" ron 6 to 0; the
exponents on the b's run "uphill" from O to 6.

5. The sun of the exponentgs of each end every term is six.

4. There are 7 terns in the expansion.

Enough of observations, Now, let's explore. I've already clued
you in that we're going to develop a recursive relationship
between coefficients, so keep that in nind. My second clue is
that the exponent on the a factor is going to be inwolved.

Take a look. THe second term has a co-~fficient of 6 and the
exponent on the a is 5; the 3rd tern has a coefficient of 15,

Q7> what? Well, 6°5=2.15, right? Quick, let's try the next case.
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As we just noted, the coefficient of the 3rd term is 15 while
the exponent on the a is 4; the coefficient of the 4% tern is 20.
Well, des 4°15 = 2°20? No, not quite, 4:15 =320, Hommm., First a
factor of 2, then a factor of 3. Let's try another: 20-coefficient
of 4t tern; 3-exponent on a j; 1l5-coefficient of 5% tern; 20+3=4.15.
And now a factor of 4, Chy now I seel:

If you don't see it yet, try ny third clue: The nunber of the
tern is involved.

And so we have discovered Cooke's Law (naned after Paul Martin
Cooke, forner teacher at Sycsset High School, who was the first
one to discover this rule--—~~--- in a text book, that is!) What is
the law? See if you can write it down in genepal; I'll bring it up

latexr on.

Section 3.4 Sunnary

The innediately preaeding paragraphs are again very foolish.
Once riore we have used just one exanple to discover a relationshipe.
e have absolutely no way of knowing whether this recursive schene
is valid for crses other than (a+b)6. We st find some way so
that all our observations, explorétions and discoveries will be
of general use.

Likewise, the big gqguestion in this section is, "Can we truly
and really use Pascal's Triangle - find coefficients of a binonial
expansion?" /hat is the nexus between the two? What do they have in
conon? Is there sone constructive proof that will validate a
relationship? In section 2.4, I have given an exanple of what I
consider a constructiwve proof relating subset counting to Pascal's

Sriangle._ﬂ sinilar approach can be used to relate the coefficients
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of the binomial expansion to Pascal's Triangle.

However, we still need a general apvroach. ‘e are getting there
but we still need to introduce one on¢ liey tool: the ability to
locate any number in Pascal's Trilangle without writing dovm any
lines of the triangle at all., ALAl%er wn've obtained that generaliza-

tion, we'll be able to tie everything together.

Section 3.5 Problens and Answers

1. Take (a+b)? for n= 2,%,4,5,6. Leave a alcne and let b=1 both
before and after thé expansion. Observe, explore, discover.

2. Take (a+b)® for n= 2,3,4,5,6. Let a=l and b=l both before and
after the expansion. Observe, explore,diiscover.

3. Take (a+b)? for n= 2,3,4,5,6, Let a=1 and b=-1 both before and
after the expamsion. Observe, explore, discover.(Jatch out for
corollaries to this one.)

4, Take (a+b)® for n=1,2,3,4,5,6. Let a=10 and b=1 both before and
after the expansion. Observe, explore, discover.

5. Obtain a copy of Courant and Robbins' Jhat is Mathenatics? (see

(3) of the bibliography). Turn to page 16: the constructive proof
(with diagran)for validating the use of nunbers fron Pascal's
Triangle as coefficients in the binonial empansion is right there
beivre you. Drink it all in. Live a litsle. (By the way, fron this
point on, I will assune we nave made a valid connection between
the nunerical coefficimnts of the binomial expansion and thé
nuribers of Pascal's Triangle.)

6. Write down a general rule for Cooke's Law.

Answers and or Hints fo problens

11. The overall effect of substituting b=l into the expansion of
v
ERIC
A ruText provided by Eric 5 4
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(a+b)n is to get an expression in a with numerical coefficients
only; i.e., the b fuctor in each of the terns of the expansion
"disappears". It's really still therc but I to any power is 1 and
the nultiplicative identity very nicely "disappears" under the
operation of nultiplication.
2. Now, both the a and b factoes "disappear'"from the expansion
leaving only the nunerical coefficients with plus signs between
then. Since (a+b)® becomes (1+1)®= 2, it is evident that the sun
of the nunbers of the nth row of Pascal's Triangle (the nunerical
coefficients of (a+b)™) is 2%, This is a valid proof of this
relationship only after you have done problen 3.5.5 above.
3. The result of letting a=1 and b=-1 in'the expan;ion ig to gét
the numerical coefficients connected by alternating signs; when
g bstituted into (a+b)n, (1-1)2= 0. The real discovery to nake here
however is that the sun of every other number from ... . row of
Pascal's Triangle is equal to the sun of th::e s’ .pped over. This
is obvious for n= odd nutber, but n= even nunber is a bit #ifferent
For instance, for n=6, the numerical coefficients of (a+b)® (the
nunbers fHom the nth row of Pascal's Triangle) are

1 6 15 6 1 ; and

1+15+15+1 = 32, while 6+20+6 = 32, How about that?
4, Since 10+1 = 11, (lO+l)n should give powers of 11, Therefore,
when the 4% row Pascal's Triangle is reg.urded not as a sequence of
nunbers 1,4,6,4,1, but as a nunber in decinal forn, 14,641, it

should equal 11%. Which it does since 14,641 equals 1°10%+ 4.10%+

2

6410+ 4°10 + 1 or (10 + 1)4.

Of course a bit of difficulty arises when you take (lO+l)5,

O :e our decinal systen has only 10 diglits .n it. however, if you

ERIC
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know what you'reﬁalking about, 1 510 10 5 1 can readily be
put into the decimal forn 16,051. Try finding 116 the "easy" way
(Answer: 1,771,561)
5. There are four copies of Courant and Robbins in ¥ e library and
the Math Departmnent has 15 copies. Get busy and get a copy.
6. If neaP+b ig the kit tern of the expansion (a+b)®, then the
coefficient of the (k+1)H term is (me+p)/k.

For instance, 21+3”b° is the 5rd tern of (a+b)7; therefore
n=21, p=5 and k=3. The (x+1)® coefficient is therefore (21°5)/3,
or 35.

Séction 3.6 Pre-Test
I. Pascal's Triangle is a mather unique grray of numbers which is
apparently very useful in a a) of applicatioms The b)

we have seen so far cohsist of finding r-elenent c) of

n-elenent sety finding the numerical coefficients of binonial
a) and prophesizing possible stdwctural breakdowns of
n-dinensional e) .

Or course there is one najor drawback in using Pascal's
"Priangle Arithmetique"., If your problen is sonewhere near the
top of the triangle, no f£) . But if n=16 or so, it is sone
ness (hecause of the g) nature of the gememebion process)

to arrive at a solution.

And therefore there is still a taslz before us. I would be

h) to have & ggreral non-recirsive method for ¢ saining
any entry in the i) of nunbers called j) Priangle.
II. Define: a) coefficient

b) ternm
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c) factor
d) Homnn.
e) Ah-haaa,
III. 1. In the expansion of (a+b)9, the eum of the coefficients is

part
a) 29 b) 512 c¢) the first of tle nunber in the Harry S. Dewey

library classification-systen for number theory 4) 2-162
2. The nunmerical coefficient of the 4t term frog the left in the
expansion (a+b)9 iz a) 8 b)) 126 c) 36 d) 5l2

2. In making up a 7% root algorithn, I want to make use of an
idealized 7-dimensional '"cube'. The brealidown of the interior of
this 7-dimensional "cube'" would include two smaller 7-dinensional
"cubes" and n hyper-prisns. The value of © would be a) 128 b)62
c) 32 4) 126,

4. In problen 3 above, how many of the 7-dimensional hyper-prisns
will have 4 known dinensions and 3 unlmnown dinensions? a) 7 D)2l
c) 35 4d) none

5. The sun of the nunerical coefficients of the expansion (a-—b)’7

is a)=14 b) O ¢) 14 d) 32 e) 128

6. If 49538bx is the 5% term of a binonial expansion, then the
nunerical coefficient of the next serm is a) 792 b) 792 ¢)792
d)792 e) none of thess.

7. If 495a°b% is the 5% tern of a binonial expansion, then the
nuneriéal coefficient of the prévious term is -~ a) 792 D) 495

c) 220 d) 676 e) none of these

8. If k is the coefficient of the p® tern of an expansion where the

exponent on the 1st factor is n, then the next coefficient is

ay (n.p)/k b)(k-n)/p
c) (kp)/n d) none of these

=™
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9. Eleven cubed equals
a) 121 b) 1331 ¢) 14,641 4d) 156,051

10, Every tern of a tinonial expansioh has exactly a‘ two factors
b) three factors ¢, four factors d) five factors

Answers to Fre-Test

I. a) variety ©b) three ¢) subsets d) expansions ¢) cubes
f) sweat g) recursive h) nice?, swekl?, lovely? 1) erray
j) Pascal's

II. a) Some people go hunting, sone people coefficient.

b) Separated fron obther terme by either plus or ninus signs.
c) Lvery product is nade up of at least two factors.

d) Sound nade while esploring.

e) Sound nade when discovering.

III. 1. a,b,c,d 2. a 3.4 4.c S5.b 6.d 7.c¢ 8. D
9. b 10. b

i
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Section 4 NEW NOTATION

Qutline of Section 4.

The contents of this section include:

1. The intrcduction of direct notation for finding the numbers
of Pascal's Trianzle, and all the necessary concepts leading to
the discovery.

2. Using the notation to solve previously encounted problewus.

Section 4.1 Fron Here to Vetson's to Hone

You're about to leave here and head fcr hore one afternoon,
but decide to stop off for sorie of the finer gournet delicacies
at one of the nost fanous eating spots on Long Island found right
here in Syosset. However, you realize you can't afford it and
head for Wetson's instead.

No's you have four possible choices of the neans of transporta-
tion for getting fron the Migh School to Wetson's: you could take
one of those big Yellow Dragons,go by Shanks llare, use your Roller
skates or Hop on your Skate Board(sincé it's downhill all the way).
After you've partaken of your earthly reward at YJetson's, you
have the possibility of getting a ride home in someone's car
(perhaps an ambulance), or perhaps vou night Fly, but more than
likely you'd end wp Gfawling hone.

Lt any rate, you've got the possibility of a dozen totally
different neans of arriving hore. Is that right? Let's couat'en
up.

Suppose yon take a Yellow Dragon to Wetson'sj; then you night
ride, fly or crawl on hone. That's three different possible

“)«proaches for getting home. &nd if you'd have used Shanks Mare

HA
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to get from'the High School to Jetson's, you would still have
three choices for the rest of the way home. In other words, for
each neans you use to tiravel the fiest part of the trip, there
are three ways of taking the second part of the trip. And since
there are four initial choices,there would be four tinmes three
totally different ways of gettins hone.

What I have done above is nmerely a romanticization(?) of a
concept called the rmultiplication principle; viz., 1f there are
n ways of getting forn A to B and n ways of getting foom B to C,
then there are m*n ways of getting fron Ato C. This principle

applies to more that just &aking trips as we will see inrediately

below.

Section 4.2 Counting Stripes on a Wall

I have a little office down the hall painted a rather drab
green and I thought I might 1like to spice it up a bit with a
bright paint job., I eventually located six different-color paiats
around %the departnent; nanely, Van Horn ¥anilla, agner White,
Chenevey Chartfeuse, Ralph Red, Bexnie Blue and Llegant Fldi.
(The latter is a pastel shade of sex-appeal. )

Well, I finally decided to use all six colors and paint
vertical stripes of equal width on one wall. In this way I
wouldn't offend anyone and every color would obtain an equal
coverage.

But now I had another dcision %o rnake; what order should I
choose? Which color should I use first? After all, with such a
sensitive group of colors I had best be careful how I coxd.ered
1" o rlors on the wall. Should I uée a political ordering (left

62
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to right, of course)? An intellectual ordering? !'n order based on
good looks? (Ifo good-not enoush roon on the ugly part of the wall!l)
A size ordering? A height ordering? A disposition ordering? How
should I order the colors? No natter what order I chose, sorneone
would nake an interpretation for it --~ and I'd be in hot water.
Maybe I could Jjust paint it Terrific Titterton and forge® the whole
project! (T;T?%ic Titterton is a bright shade of outburst.)

Well, let's not panic. Let's investigate the problen. The first
stripe could be painted any one of six colors, right? And then T
would still have five colors to choose fror for the second stripe;
by the nultiplication principle that's 30 choices right therel
For the third stripe there would still be four choicéé to choose
fror:, for the 4t stripe there would be three colors to choose fron,
for the fifth stripe there would be two colors to shoose fron and
for the sixth stripe there would be one possible color left; no
choice.

But by the recursive use of the nultiplication principle, that's
6+54+3°21 or 720 different possible orderings of those six colored
stripes on the wall. Certainly I could find one of those 720 that
could not be interpreted in'a derogatory fashion. Aund so I ended
up with Wagner White(a deep, dark shade of black) followed by
Van Horn V&nilla, Elegant E1ldi, Ralph Red, Chenevey Chgrtreuse and
Bernie Blue. A lovely display to say the least.

In nathenatical circles, an ordered lis*ing of any set of objects
is called a pernutation or arrangenent of these objects, If just any

OBJECTS
twoﬁare interchanged we have a new ordcred listing, which is to say,
a new pernutation. Of course, the nunber of perrnutations of six
obj?cts(where all six are to be utilized in the ordered list is

©
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6543221 or 720 as we have established in the above discussion.
By the way, rather than write out 6°5¢4°3%°2°1 each tine, let's
help ourselves (and the typist) by nmerely using the synbol 6!
(regd "six factorial") to mean the same thing. In general, n!=
(n)(n-1)(n-2)(n~3)eseeeee%3.2+1, and O!=1, while 1!=1 alsc. These
lzsh two définitions are very convenient (and non-contradictory)
to we later theory., Please note that (we3)!= (n+3)(n+2)(n+1)!
and that (n+r+2)1= (n+r+l)(n+r)(n+r-1)! are nerely applications of
the original 4c¢finition to special cases. Think them through and

urderstrid thon taoroughly. (Hint: try numbers for n and r and verify

" the hrealkdewm).

Meanwhile back &n ny kittle office. The one wall was such a
hit thet decided to go on to the :others. However , the two
side walls could only acconadate 4 of the samne size stripes agd the
back wall. I wasn't going to worry about which paints got left
out, but that $1d order question was still bugging me. How many
different orders could there be this time?

Certainly, there could still be six ch;ices of colors for the
first stripe, five cthers for the second stripe,’4 for the third
stripe and 3 for the 4% stripe. Thérefore, there woflld be &5-4.3
or 360 possible permutations (ordered 1listings) to choose fron.
No sweatb. |

Hey, I thought we were going to help out the typist and use
that factorial notation! But can we use it now? Six factorial
has two factors too many, nanely 2 and the i. If we wrote 6!, we'd
have to divide out the 2+1. Ve could write our answer of 350 as
61/21. But what connection does this have to our original problen

O __counting the nunmber of perimitations of, 6 objects when taken 4

» 6y
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at a tine?

Ah. Just take a look., Certainly tlie 2 in the denoninator is
equal to (6-4), since there were 4 stripes to fill in, and
therefore (6-4) left alone.lLet's use the - following notation
for the problemn: 6P4 will represent the nunber pf pernutations of
six objects talten fowx at a time, and FP,=(61)/(6-4)! is the
nanner used to conpube the nunber in question.

In general, therefore, ,P = (n!Y(n-r)! is the number of

permutaions of n objects taken r at a tine.

Section 4.3 Special Case

Another office was also to be painted, with the sane width
stripes on a same sized wall, but a problen ..&rose: the Bernie
Blue and Elegant Eldi were all used up. 4nd so there were now
six stripes to be painted with only four colors. Again the
question apwears: how nmany didtinct ordered listings of s6ripes
on this wall coukd there be?

‘Jell, let's look at this choice of paints. Since there is
three times as nuch Van Horn Vanilla as there is Ralph Red,
Chenevey Charteurse or Wagner Jhite, we'll use the Vanilla paint
for % stripes and the others for just one each. (Note: each pair
of stripes is separated by a thin blaclk line so that two Vanilla
stripes next to each other are distinpuishable.) Look at this
choice: V.H. Vanilla, Ralph Red, Chenevey Chartreuse, V.H. Vanilla,
Wagner Vhite and V.H. Vanilla. If all six colors were different,
there would be 6! or 720 different ordered listings of the stripses.

But for each of the permutations as listed above, there are 3!

Q rnutatvions of the V.H. Vanillas which don't change the overall

E119
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order of the arrgngenent at all.

In other words, the total nunber of possivle permutations (if
all colors were differment) nust equel the nunber of distinct
pernutations (all colors not different) times the number of
peroutations per set of sane colors. \ihich is to say, the nunmber of
distinet permnutations is equal to the number of all possible
pernutationg divided by the number of un-noticeable pernutations.
In the case above, there would be 6!/3! didtinct pernutations, or
120.

Let's try another exarnple to help(possibly) clarify the idea
gbove, but let's use words instead of paﬁnts. For instance, take
Bill.(Please!) There would be 4! or 24 arrangements of the letters
B,I;L and L; but jJalf of these would be indistinguishable fror ths
other half, because when you interchange the two L's, nothing
visible happensy no apparent change takes place. Therefore the

nunber of distincht permutakions is 4!/2! or 12.

Section 4.4 liore Stripes?

Back to stripes. I'm not afraid any more, I don't care about
the order of ny stripes. Nobody even noticed the order ui the
stripes on ny wall! But I still have a pro¥len; therc is still one
wall left in ny office but with only roon for three £’ -lpes. We've
been re-supplied with all six paints and now I have to nake a
(strictly aesthetic) choice of somc t wres nalpts £mon the six.

In other words, I must seleet threc nmaints ‘fxom the six; and ny
problen is that there are 20 ways oi doing this, and it's going to

be a tough decision because I have no aeithetic sense at all--—~-

QO ny taste is in nmy mouth. Such problens,eh?

64
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How 4id I figure that there were twenty possible deci:sions to
nake? Look at tiis ressoning! For pach of the selections I make
(you“re not suprosed Lo know how many there are altogether), there
are 5! pr 6 pernutations. For instance, if I were to choose Wagner
White, Bernie Blue and Ralph Red, there would be six ways of
rearranging these colors on the walkl; that is 3! permutations per
selection. Vell now, the number of selections times the nurber of
pernutations per selection would equal the nunber of peernutations
of 6 objects ¢aken % at a tine. Eut I know the nunmber of pernuta-
tions of 6 objects taken 3% at a time(6P5 =(6!)/(3!) = 120).
Hurray; now I can find the number of selections; nerély divide tne
nur:ber of perrmutations(known) by the number of pernut«tions per
selection (known) and bingo!You've got the nunber >f selections,
120/6=20, just like I said.

In case you hadn't noticed, the recaséning here is the sane as
in section 4.%. However, the type of probhlen proferred in section
4.3 has no definite descriptive fornula for computation of 2
solution. But the problen of counding the possible nunber of
selections does. Let ncr represent the number of choices (select-
ions--we've already used S to repressnt sets) of n things taken
r at & tinme. For each choice of r objects, there are r! pernuta-
tions per choice, and there are nPr pernutations of the n objects
taken r at a time. (Remenber, in a nernutaion the order .of the
listing is inportant; in nalzing a selection, the order of the
elenents has no significrace.) Therefore, by our reasoning above,
C_e*p! =nPr' Since nPr = n!/(n-r)!, then nCr-r! = n!/(n+r)!; and

nr

finally, C = n!/Br!)(n-r)i. Ue therefore now have forrmlae for

b?th perputation counting and selection counting.

ERIC
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Section 4,5 Let There be Light

Perhaps you've noticed (and perhaps you haven't) that the
question "How many selections of three paints from the six are
there?" might very readily be translated tc "How many 3-elenent
stbsets of the 6-elenent set of paints are there?" Indeed,
counting the number of selections im nothing more than counting
the number of subsets of a set. There is ahsolutely no difference
whatsoever! And what then have we acconphished?

We now have a fornula not only useful for counting particular
selections but also for cointing subs ts; bﬁt that neans our
formula should yield the nunbers to be found in Pascal's Triangle;
but that means we have a way of finding the ccefficients of any
binomial expansion without referring back to Pascal's Triangle
or Cooke's law! iWle have really nade a huge Jjump foreward! Let's
investigate our discovery a little bit!

As we saw above 605 = 61/313! = 20 can be considered as the
nunber of selections we ob%ain when we choose 3 elements from 6,
Or it can how be considered as the number of 3-element subsets of
8 6-elenent sef. Or it can be considered as the 4 nunber in the
6% row of the Fascal's Triangle as illustrated in section 2.4
(where n=6 and r=3%, how about that!) Or it can be considered as
the numerical coefficient of the 4t tern in the e®pansion of
(a+b)6‘.

In fact, the expression a!/r!(n~r)! is nuch too inportant a
nupber to be tied down to’ the expression .Cr’ Therefore, we'll
define a new notation; from heré on out,(®) = n!/r!(n-r)! will be
a nunber representing the following values:

[]{ﬁ:‘ 1. (B) equals the number of selections of r objects taken
A FuiText provided by Eric B 8
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from a set of n objects.

2e (9) equals the nunber of r-elemnent subsets of a n-elencnt
set,

3. () equals the (r+l)% nmnber in the nt row of Fascal's
Triangle (as defined in Section 2.4).

4, () equais the (r+1)® nunerical coefficient of the
exXpansion (a+b)n. And thus we have found a neat way of finding
and or loéating nunbers in each of the 4 cases above, a direct,
immediate kethod which in essence ties together several areas of
apparent diversity. We will.show how extensively the (¥)= n!}%glr)i
notation and conputaion can be used in the next section. Af

The roof of my office? I painted it Stupefying Student, a drab

calor of constant conplaint.

Section 4.6 Problems and Such

1. In painting ny office, I ended up with a ‘Jagner “hite, Van Horn
Vantlla, Zlegant E1di, Ralph Red, Chenevey Chartreuse and Beenie
Blue ordering of the stripes. Malie an interpretafiion for this
arrangemnent.,

2. One of thé orderings I thought of for the paints was an
intellectual ordering; of course, this immediately fixes Bernie
Blue in the first stripe and Van Horn Vanllla in the last stripe.
How nany possible pernutations are there under these conditions?
5. A second ordéring that I pondered was an excess-fat ordering.
Of course, this imnnediately fixes Van Horn Vunilla aud Wagner
White in the fiwrst two positions and Bernie Blue in the last
pPosivion, How nmany different arrangements are there under these
@~ nditions?

ERIC
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4, Another possible ordering occurred to rie on the basis of toupn-
ness. Right away the first three strives were fixed with Chenevey
Chartreuse, Ralph Red, and Bernie Blue respectively. How nany
arrangdnents are there under these conditions?
5. Evaluate each of the Hllowing:
a. 2! be 3! c. 4! 4. 5! e. 6! f. 7! g. 8! h., 8!-211+7!.2221
1, 61.231-71+221 3. O! [
6. How many distinct arrangenents of the letters of the word
"Titterton" are there? of the letters of the word "Chenevey"? OFf
the word "lMississippi?
7. How nany choices are there for selefting 5 people fromﬂgroup
of 10?7 How nany choices are there for selecting 4 people from 27007
In the later case, with so nany possible choices, how cone we end
up wihth such a collection of bombs for studert Governnent? (Maybe
this year will be different? !/anna give ne odds?)
8. More conputdional practice: You nust becone computationally
capable! @orpute (B) for n= 4,5,6 and r= 0,1,2,3,+..,0. (Note: T
can't be greater thah n, right? So that's a pretty shrewd way of
telling you to perforn 18 different problens. 187)
9. For the binomial expansion, we now have three ways of oBtaining
the nunerical coefficients: Pascal's Triangle, Cooke's Law and
the direct use of the notation (%). When is it nost propitious to
use a. Pascal's Triangle?

b. Cooke's Law?

ce The (B) formula?
Answers of Such to the Problensg
1. Obviously it's as sinple as two Dutchman being separated fron

you
O > Frenchnan by Alsace md Lorraine(Wouliabelieve Laurel and Hardy?
}
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Dick and Jane?), two "sumbahs" fron the ould sod.
#. There would be 4!=24 poscsible arrgngenents; there are only 4
slots open.
3. Just 3!=6; there are only 3 slots open, snd where they are
doesn't natter alt all.
4. Likewise, 3!=6. Three open slots anywhere on the wall yields an
answer of 3!
5. a. 2 b. 6 c. 24 4, 120 e. 720 f., 5040 g. 40,320
he 7!211(8+22) or 30°+7!+21! i, 61°:221(23-7) or 16°6!:22! j. 1
6. Titterton: (9!)/(4!)= 15,120. Chenevey: Just one; there is
only one Chene;;. Mississippi: (11!)/4i4i2! = 34,650
7. () = 2525 (PH9)= (575)(2299)(383)(2297); Lew of Natural
Selection.

e
8. See the 41,54 and 6t rowﬂPascal's Triangle (as defined in Section
2.4)
8. WYhen the expansion is raised to the 5% power or less, you'd
probably use Pascel's Trianglz: by now those numbers should be
very foriliar to you. For higher powers you'd probably use the
direct conputation approach, altliough Cooke's Law &s always the
way if only 3,4 or 5 of the first terms to appear are the terns

desired,

Section 4.7 Enrichnent?

Additional counting problens can be obtained fron any good
textbook. These counting pr8blens are atoung the most difficult
problens to do because of the@lverse interpretations we can
give to the questions. The English language gets involved; and

that's trouble!
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However, a specific list of problems follow:

1. For warn ups and relatively straight forward problens, try (10)
page 197,2-8, 11-13; page 203,,4-11,15,17,19; page 200, 1-3,6,11,1%
2. For additional warn ups, try (11); page 338, 1-19; page 340,
1-16,

3. In the ninor leagues we find these problems from (12); page 299,
1-10; page 304, 1.3-8; page 308, 1l-4, 6-10.

4, In the rojor leagues we have tlhe problens from(1l3); page 430,
1-30; page 43%, 1-30. (They're all nad!).

5. lMore nmajor leagues; fron (14); page 252, 2-4; pgge 254, 2-15;
page 259, 1~15.

This last nmentioned set of problems includes extensions of the
theory initiited in section 4.3. This theory yields nunbers which
are found to be coeffieients in a trinonial expansion.

In addition, for those of you who enjoy difficult challenges,
Sections 1 and 4, Chapter 3 of (9), giveAdlfferent, gsophisticated
and powerful approach te the derivatidn of the relationships we
found in the material above. It is not easy to interpret (9)'s

reasoning, but it is really and truly fantastic.

Section 4.8 Pre-Tesgt
I. In %he answer part of section 2.5, for problem 2.5.2, we used
worie clever techniques (sumnmation formula for an arithmetic
progression) to find that the nunber of 2-elenent subsets of an
n-elenent set was (n)(n-1)/2. In the answers to problems 2.5.3 ad
2.5.4, it was asserted that the number.of 3-element and 4-elenent
subsets of an n-~elenent set could be found by using the formuilae
]:R\ﬂ:n_l)\n_2)/3 2 and (n)(n-1)(n-2)(n-3)/4*3«2 respectively.
79
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Verify that all 3 fornulae are correct.(ind how you kmow why I'm
so sniart.) ‘
II. Define: a. Shanks Mare

b. Yellow Dragon

¢, Disposition

d. Derogatory

e. Conputationally capable
III. 1. The pnunber of distinet arrangenents of the word "distest-
incts" is a. 6,652,800 b. 2,371,280 c. 126 d. none of these.

2. Beventeen points in 3-~space, no three of which are collin-~
ear, deternine x lines, The value of x is a. 126 b. 136 c. 146
d. 156, h

3. Seventeen points in 3-space, no three of which are
collinear, deternine 7y triangles. The value of y is a. 720 b. 91l
c. 680 d. 961

4., If I choose 5 colors from 9@, I have the possibility of
naking any one of a. 136 decisions b. 70 decisions c¢. 84 decisians
d. 126 decisions.

5. If I were to count all possible selections of norw or nore
of 9 paints then I would have any one of x decisions 6o nake. Of
course, x equals a. 512 b. 285 c¢. 128 4. 1024

6. A comnnittee of 13 people is to be split into 4 subcomnit-
tees of 5,%%, and 2 nembers. The nunber of ways these subcommittee
assignnents can be nade is a. 2,367,200 b. 1441,440 a. 729
d. 367,212

7. A teacher is foing %o give A's to 6 of his 21 students and
F's to the others (Nice guy, eh!). The number of ways he can do

oMis is a. 1 b. 1327 c. 54,264 4. 64,268
ERIC ‘
S 71




=56

8, ‘Jhen the expression 6!.23!=-71.22! is we-written as a single
tern, it should look l.kxe a. 13! b, ~1*22! c¢. =1 d.lé'6!-22!

9. Another teacher is géing to give iA's to 6 of his 21
students, B's to 8 others and C's t the rest(all gifts!); he can
do this in x ways. x= a. 21!/6!8!7! b. 21!/617!8! c.21!/6!817!
d. if you coiipute this nunber your're nad!

10, T have a nickel, dine, qu;%er, fifty-cent piece ahd a
dollar bill in ny poéket(I wish). The numbsr of different (actuial)
suns I can make up with these is a. 16 b, 32 c. 23 d. 31

Answers to the Pre-Test

. ()= n! . (m(n-1)(n-2)! _ _(n)(n-1)
21 (n=-2)! 21(n~-2)! 2
- —i! . (m(n-1)(n-2)(n~3)! _ (n)(n-1)(n-2)
31 (n-3)! 31 (a-3)! 302
By —ni (n){n-1)(n-2)(n-3)(n~-4)! _ (n)(n-1)(n-3)
41 (n-4)! 41(n-4)! HoBe2

IT. a. Shanks !Mare neans Q'pieé.

b. Yellow Dragon.K+S variety.

c. Ed Kranepool would say "Sometines I play &isposition,
sonetines I play datposition, but nostly I sit on &a bench.”

d. Derogatory: See'Webster '

e. Conputationally capable: being able to add 1+1
ITII. 1. 2 2. b 3.c 4. d 5.a 6. P.c¢c 8 d 9. a l0. d
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Section 5 NOTABLE NOTATION

Outline of Bection 5

The goals of this seetion includet
l. The introduction of signa notation,
2. The generalized algebraic "proof” of utilizing the
(?) notation to describe the nuiibers of Pascal's Triangle and
related counting problens.

5. Finding the solutions of sophisticated-looking problens.

Section 5.1 Sophisticatién

Since (B) describes the (r+1)t nunerical coefficient of the
expznsion (a+b)n, we can use our new notatistn to describe the
expansion of (a+b)? in the folldwing fashion:

(a+1)B= (B)a®™° + (B)alIpl (%)an—zb2 +(g)an—5b5+.o.
(nlfg)agbn—2 + (gBp)apr L (B)a’p?
For n=6, the expansion of (a+b)? = (a+b)6 becones

(g)a6bo +(E15_)a5bl +(g)a4b2+ (%)aab5 + (g)aeb4 + (g)alb5+

(2)&Ob6 which, except for the uncomputed nunerical coefficients,
is exactly the sane as the expansion appemring in section 3.3%.
As we did in that section, let's once ag:in surmarize our
observations relative to the expansion: (I find that ‘.kese relation-
ships cannot be enphasiesed enough; please pay attention to then
this tine!)

1, Every tern in the expansion consists of three factors; a
nunierical coefficient denoted by (%), a raised to sone powér and
b raised tovsome power. Again, each tern is the product of three

factors. Learn it!
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2. The exponents on the a run "downhill" from n to O; the
exponents on the b run "upirill" fron O to n.

%e The sw: of the exponents of each afd every tern is n.

4. There are n+l terns in the expansion, each separated fromn
the other by a plus sign.

Now let's take a look at sore twe consecutive terns in the
edpansion of (a+b)®; inspect (%)an'zb2 and (%)an—BbB. How Jo they
differ? Obviously, the first has the nunher 2 written in three
positions, while the second has the nunber three written in those
sane three positions, If instead of . particular nunber I were %9
write an i in each of those three P« sitioms, (?)an_ibi, and let
i= 2,3, then I would haye two terms of ny expamsion all in one
swell foop! (Or is it one fell swoop?) At any rate, notice that
the sun of the exponents of the a and b fachors is n-i+i or n,
which it rniust be.

You see, if I now say let i vary from O to n, ie., let i=0,1,
254400, I would have all the terms of the expansion. But thére's

from enother
still a problen; each of these terns is seperatedﬁby a plus sign.
What I need therefore, if I'nm going to write out this entire
expansion in a neat notation (which is ny goal), is a plus sign
generator, #fd that's what I'n going to call the Zsign (read
"signa" sign) whiéh I am now introducing. Vith one additional
convention,I can now write the entire expansion of (a+b)" as
ﬁ%} (E)an_ibi. The additional convention is that instead of
;;gting "let i vary fron o to n¥ or "let i=0,1,2,...,n ", I now
have the sane understanding by writing i=0 below the signa sign
aad n above it. The convention means that you start with i=0 and
ERIC
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keep going until you reach i=r; substitute eavh of these values
for i into the thiree spots of the general (?)an'ibi tern, nakirg
certain that after each substitution of a value of i into all
three spots that the plus sign generator (the signa-sign) produces
a plus sign to separsite the terms. Now, that's quite a nouthful;
let's see sore action.

We'll expand (a+b)®. By our above definitiohs,

(a+b)6 = }g; (?)ae'ibjs (In other words, substitute 6 in for n),
Now, 1et's=gee if the expresgion on the right does indeed yield
the faniliar expansion (a+b)6.

The 1rirst thing you're supposed to do is let i= O; the first
tern therefore becones (8)a6h0; now the sigru-sign pr:;duces a
plus sign so that we hawve (S)aGbO + 3 next we let 1i=1, and the
second term becones (?)aBb1 ; then the sigra~sign produces a
plus sign, and away we gol! Yhat a neat device, eh?

Did I hear you say you don't care farit? Well, you asked for
it! For your defiance and impertinence you will expand (a+b)150
tonight for homework! And even if you don't conmpute the numerical
coefficients, that ought to kkep you busy for gulte a while,

But really I'm all heart. So if you'd like, mou can use the

signa-notation. That should take about 20 seconds of your tine;
150 .
watch: (a+b)150 = ¥ = (lio)alsO-lbi.
i=0
I don't Imow if you realize it or not, but I Juct &id your
horiowork for you! All 151 terms are neatly stacked one on top of
the other in thet expression on the Pight. That's right! As far
as I'n concerned I've got 150 plus signs and 151 terms all
written out on the fight hand side. Of course if you're still

Tctubbornly fighting the concept of that signo-sign,be ny guest,
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and write out all 151 terrs explicitly.

As we shall see in the problen secticn below, the signa notat-
ion is very useful in solving many problens. And in Chapter T2
we will use the signa notatifn for relationships other than the

binomial expansion.

Section 5.2 (ooke and Pascal in Generalization

Throughout the previous sections I've continually harped on
the necessity of a gmneral algebraic troof or a constructive proof
to validate our nany discoveries. For instance, we noted certain
relatiomships anong thé coefficien%s, exponents and nurber of the
tern in the binonial expansion and called it Coolkes's Law. Of
collrse aél our observations were made relative to the expansion
of (a+b) , just one exenple. HBut now we have the ability to express
the relationship for (a+b)™, Let's set it up.
?? (%)an—ibi, let's investigate two
i

e’

Since (a+b)® =

successive terms, nanely the (r+l1)#H and the (r+2)th, These terns

Il) aD.—I‘bI'

are equal to (% n-(r+l)br+l

and (rfl)a respectively. Renen-
ber that the (r+1)% tern has the nunerical coefficient (%) because
we start counting with r=0. Now Coolke's Law says that thé& exponent
of the a fac.ur nultiplied by the coefficient of the (r+l)t tern,
divided by (r+l), the nunber of the tern, yields the coefficient of
the (2+2)% tern, In our new notation this would be

—%%E%}" (%) = (%+l), where (n-r) is the exponent on the a,
(r+l1) is the nunber;of the tern, (B) is the nunerical coefficient
of the (r+1)t tern and ($+1) is the nunerical coefficient of the
(r+2)d tern (By the way, see how this description of Cooke's Law

conpares with your answer to Problen 3.5.6. ‘/iiich is nore concise,

Q
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yours or the one above?)
We'll work on the left hand side of the expression only and
see 1f we can't manipulate it to look like the right hand side.

Certainly

n-r) ., (h (n~r) nl s
1 () = o719 Tl(n-z)! by the definition of

(3. But (r+l)r! = (r+l)! (See that part of Section 4.2 where the
factorial notation was introduced if you don't follow the above

statenent; or try it with nunbers. If r=6, v+l = 7.) Therefore,

- - 4,
%%:%% ™) = gg+§%!?g—r71' But now we note that (n-r)!=(n-rXp-p-I
or (n-r)! = (n-r)(n-(r+1))! Now the expression
n-r) n! nt . ‘
ST ooy T becones (YT (a=(ziI))T  Sidce the factor

(n-r) is divided out. But the final expression is exactly what we

are looking for since (?+l) = (r+l§i (a=(TaIJ)! And Cooke's Law
d- ,s indeed work for all values of n.

If you didn't follow that bit of algebra you'd best go back
oveggtarefully, because there's nore to cone.

In section 2.3 I deronstrated what I called a constructive
proof to verify that the numbers of Pascal's Triangle (and the
generating process thereof) do indeed apply to the counting of
subset®., I went through it twice back there but it wasn't that
thorough a job. We did two cases and obviously the procedure could
be generalized to show the correspondence between the counting
of all subsets and the generation of all Pascal's Triangle.

But the procedure wasn't specifically genecalized; no general
terns were given, no general algebruic rules were nade up.
Constructive proofs contain just a little too much arm waving, even
when they are valid, as is the proof given in section 2.4 relating

subset coun¥ing to Pascal's Triangle and the proof given in

O
FRIC ourant and Robbins (Problen 3.5.5) relating the binonial

IText Provided by ERIC
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coefficimnts to Pascamé Triangle. liowvever, now we will provide

a clean, algebraic, concise, powerful and general argunent that will
validate in one fell swoop(or is it one swell foop?) the use of
nunbers from Pascad's Triangle (and the generation process thereof)
to count subsets, determine binonial coefficients and to walk the
dog.

Frorn definition 3 of section 4.5, we lknow that the (r+l)t
nuniber on the nt row of Pascal's Triangle is denoted by (g-l)'
Sinilarly, the (r+l)®% number of the (n+l)h row is denoted by
3Ly, (2£ this is unclear, see the Pascal's Triangle found in
section 2.4). The gencration rule for Pascal's Triangle would be
expressed as: (2_1) + (B) = (Bil). It is this statement which we
are to verify if the connection between Fascal's Triangle and
naking selections is to be generally validated.

Again I will work on the left side and hope to- end up with an-
expression equivalent to the nuizber (n;l) found on the right side.
Actually, this problen is just as easy as adding two fractions:

you nerely find a cormon denoninator - and add. 3inple, eh?
i

n! N n
(r-DT (n-(r-1))! r! (n-r)!

by definition of the (%) notation. Now, what is the cormon denonin-

Certainly (p.1) + (B) =

ator? Well, since r! = (r)(r-1)!, we nerely need a factor of r
introduced into the denoninator of the left hand fraction to

nake those two factors equivalent; and since (n~(r-1))! = (n-r+l)!=
((a-r)+1)1 = ((n=-r)+1)(n-r)! , we need only introduce the factor
(n-r+l) into the denoninator of the right hand fraction to nake

those two factors equivalent. That is,
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n! + ?_.«_p'_!_.__._.. = (%)_I.].L______\ —
(r-1) ' (n-(z-1)! r! (n-r)! (r-1)!(n- )%

n! (n-r+1)
r!(n-r)(n-r+l)

r'n! (n-r+1)°n!
r! (n~-r+l)! r! (n-r+l)!

Since the denoninators are now the sane, we ran add! But first, note
the cormion factor af n! in both numerators. If we factor it out

before we add, the sun will look like this:
n! fr+ n - v+ 3] , or n! (n+l)
r! (n-r+l)! r! (n-r+l)!

(n+1)!

r! (n+l-r)!

’ 1 1
(Fop) + (B =Bl s ovus (3D - el

Therefore, (B_7) + () = (%1). Q.E.D.

$ which is to say,

We have therefore shown that -——

And in case you‘ve never wondered, Q.E.D. neans Quod Erat
Denonstradum; whigh means 'Which was to he demonstrated.™
Of course, sone peoplc think it means Quite Enough Done.

I'11 concur at this point, Let's look at sorie problemse.

Section 5.3 Prohlens

l, Express as an ordered triple the 1lst, 3rd and 5% terns of the
expansion (% X2 + 5y)6.

2. What is the 19B tern in the expansion of (2xmy)ZC 2

3, I an very rusical; I play 7 differen’ instrunents (piano,
trunpet, harmonica, bongo drums, indian drun, conch shell and
bass fiddle). How many different combo's can I advertise if I can

nﬁpége to play all 7 one or nore at a tine?
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4, As I mentioned previously, the signa-sign has additional uses
other than the binonial expansion. Referring to the definition of
the sign-gign and related notation conpute:

a. 1§i 12 b-ig' (2112 .. 2, 13 4 552?1(51+5)5

=2 Cojzy i=

5« By now, nost of us are awgre that (a+b)6 can be written as

f;o (?)86-lbl , but very few if any of us are aware that
%50 (?)86—lbl = (a+b)®, Ve are so used to looking left to right
1=

in Mathenatizs that we find if nigh inpossible to loolr right to
left {(even those of us who have had Hebrewlessons!). That is why
you'l! have so nuch trouble doing tliese problemns:

Solve .Jor x:

9 P e s

&o) éo (2) 59 L xi = 0 b.) i%o (Z) 14.? 1}{1 =0
19 l | 8 . .

c) & (19 K%L | g 1) & (@&t (Bt -0
i=0 * i=0

e.) Simplify: (3) 3211

.f@Qn

1=0
& 6 i
f.) Find the integer equivalent to : () @
1=1
7 -
g.) Reauce o lowest terns: ?: (Z) y7-1 51
i=0
11

6
h.) Reduce to lowest terns: EE (?) 36-1.31
i=




!

i.) Reduce to lowest terms: ééb ()4

S (3 o>t

(=
i}
(@}

6. Problers #1 and #2 above are easy enough(?), but now try
these : a.) FPind the 5% tern of (x+l)15

b.) Find the 3rd tern of (x°/7~ )7

c.) Find the 4% tern of (2x5/2+ <~2/3y7

d.) Find the x° tern of (x° - %)7

e.) Find the x~2 tern of ( ). - )5
f.) Find the niddle term of (E - )6

7. I hawe a nillion problens to see if you undsrstood the algebraic
nasterpiece of section 5.2. For if (p21) + 3 = (n;l)’ then

certainly

a) (B) + (B, = GBI ana

by (B3 + (3L - (35
Verify these two relationships in general.
8. Even if vou can't do the algébra of i#7 above, certainly you
coiprehend the relatiomships, n'est- ce pas? In which case you

can scivs the following for x:

X 5V(E) vl 3M(38) - ()

(6
(VK= (20)  agd) (5 (B

An=w=t2 tn Problens
- 7D 10
1. ¢ «Pmog, 132 (8.2 3125 A%y ming: Take i=0,2,4. The rest

is algebra and arithnetic.
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2. Since we start counting with i=0, the 19t tern has i= 18.
The . fact is just a little bit inportant. Jus a little bit.

The 19% tern therefore is (%g)(2x)20718 (-y)ls, or 76Ox2y18.

5. £ D= g DD - -1z

2 2

+ 22 + 32 + 4
b.) 3% + 5% + 72 = 83
c.) 42 + 5% 4+ 6% = 405
a.) 112 + 147 + 172 & 207
5. a.) (3 + )7
b.) (4 + m)7

c.) (x + 4)19 =0 3 x= -4

q". a‘) l = 90

It

0 3 x= =5

It

0 3 x= =4

d.) (x + 2)8 =0 3 x= =2
e.) (3 + 2)? = 3125
£.) (1L + 2)° = 929

(Hint: Renember problenm 3.5.1)

. (4 + 527 - o4
ge) (2 s 5yll 7

h.) %2—3—222 - 672

2 + 4)5
A+ 4)
1.) (2 + 3)

6. a.) Take i=4, let a=x, b=l. Answer: 715x’

25

b.) Take i=2, let a = XE/Q, b= - ﬁ. Answer: 10
Cs) 560xg
d.) Be clever: 2835x2
e.) B3 clever: =-10x"°
(If you expanded the entire binomial to obtain the answers for
d,e and f, consider yourself a clod!)
O , Trivial probleﬁ. Just ask your teacher to & them. They should

ERIC
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only talze a few norients of his (her) tine! (Ho-ho-ho!).

8. a.) 30 b.) 17 c¢.,) 20 d.) 38

Sectincn 5.4 Pre~Test

m
1. ;gé i = a.) 16 b.) 30 c.) 55 d.) 29
1=
2. The 5B tern in bthe expansion of (2x-3)% is a.) Bl b.) -128x°
c.) 216x°  d.) 162x

3
3. The 4% ternm of the expansion ( % - %)6 is a.) - %x6
b.) 20+ 59- l} c.) - % d.) - 2 %2
. 8 x . 8 : 2

5
4. & (2i+3) is equal to the integer a.) 20 b.) 40
i=2
c.) 48 d.) 218

C %)5 is equal to

5. The x-tern of the expansion (x

a.) -27X bo) 9OX C.) “270}( do) —9OX

6. When all 132 termns of the expanded (a+b)151 are inplicitly

written down, you've got a.) sonie hcadache b.) a piece of paper

£4ll of terms c¢.) 3 general factors preceded by an shotated

signa=gign d.) a lot of nunbers, letters and exponents.

7. The constant tern of (x° + 12)2 is equal to a.) 1 b,) 2

c.) 3 4d.) 4 15 *

8. If the equation é{ (%;) Bi‘xa-i = 0 1is solved for x, the
i=o

answer will be a.) -3 b.) 3 ¢.) 15 d.) 12
6

9. When sinplified, the trivial fraction %?;o(g) 56“151

L4 4-i
. 7
géo(l>

8.) 16  Db.) 8/7 c.) 64 a.) (8/7)°

oo
¢
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2

10, If <12) + (52) = (2?) , then x equals a.) 13 b.) 14

c.) 30 d.) 29

Answers to Pre-Test
1.4 2. a 3. a 4, b
5.¢ 6. ¢c 7.b 8., a
9. ¢ 10. b




Section 6 MATH IS FUN

Section 6.1 Summary(?) of Chapter Tl

Not this kid? If you want a summary, just look over the
outlines of each section. Or do all the problems again.(Or try
doing them for the first time!) But chapter summaries are for
the birds; what I've done instead is put together this section
6. It's got a fréctured history, Pascal's own work, songs,

(which are indeed summaries) another pre-test and finally a
biblicgraphy from which I stole all my information (except for
a few sberrations and mental spasms).

. If this whole section isn't summary enough, then you'll just

have to summarily write your own.

Section 6.2 A Tragic Tale

On thé cold bright morning of November 23, 1654, Blaigs
Pascal was to be found in a four in hand(carriage pulled by two
horses) traveling along a road running parallel to the beautiful
SwfazeRiver justoumide of Paris. He was approaching the town of
Neuilly and the brisk air felt good on his féce, helping him to
forget the almost sleepless night he had just passed and mitigat-
ing the dull ache that he zonstanfly had in his ssomach. The
thirty-one year old bachelor was on his way to visit a friend in
Neuill - where tliey were going to look over the work that Blaise
had done the mear before utilizing his arithmetic triangle.

The bettér part of the previous year had been spent using the
arithmetic triangle to solve a problem posed to Pascal‘by a
gambler acquaintance of his, a fellow by the mame of Antoine

ERIC
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Gombaud, who was better known as the Chevalier de llere.

It seems that Gombaudi had had a bit of an altercation with
a fellow gambler when, in the middle of a particular game of some
sort, they were foreed to disperse. The argument centered around
the qigstion of who should get the better share of the pot—-=w--—-
and how much of the pot. Antoine took the protlem to Pascal, and
Blaise set wpon not only the problem givgn to him, but as is
typical with most good mathematicians, took on the task of
generalization as well. In this way he essentially laid all the
foundations of Probabiiity Theory.

Pascal wrote to Pierre Fermat and transmitted Gombaud's
problem to him,and they wrked the original problem out together.
Whereas Pierre (the founder of numbter theory as such) used some of
his sophisticated technigues to solve the problem, Pascal used
his arithmetic triangle and his version of the (?) notation
we introduced in section 5. (I say "his version" since the
factorial notation was not introduced until another Frenchman |
named Christian Kramp used it in 1808 in order to help the printer
out. Previous to 1808, the notation for n! was 1n/l_ How about
that?)' . They wrote to ‘each other throughout the year 1654 and
both their solutioms agreed in essentials,although rfascal had
made a few arithmetic errors. Which goes to prove something or
other!

At any rate, the}sequel to the story is that when Pascal
informed Gombaud of his solution,the ever gracious Chevalier was
anything but thankful. It seems the mathematical analysis of ihe
problem went against his intuitive notion of the solution (and
against his walllet too, I imagine), and he ended up writing «nd
)
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publishing a paper in which he discussed at great length the
worthlessness of science in general «nd ithmetic in particular.

At any rate, as Pascal was approaching Neuilly, something
startled the horses and aw.y they went-just as you've seen a
thousend times in a thousand western movies. But this time there
was no hero to jump onto the buckboard and rein in the horses.
In fact, in Pascal's case not only did the horses not stop but
aas they approached the @ridge across the Seine lexuding into
Neuilly, they failed to negotaite the last turn and vaulted over
and through the railing of the bridge, dropping into the cold,
cold Seine below. Pascal, however, remained above, precariously
perched in the tottering carriage, staring imto the cold,
treacheroud Seine far below. A persopn of his poor physique and
physical health would have had little chanee cf surwviving the
Seine-—--- assuming that he would have survived the fall in the
first place. Although a very carefull mathematician, Pascal had
almost "jumped to a conclusion.™

For the rest of his life Pasc.l was haunted by hallucinations
of a precipice before his feet; he carried a bible with him
congtently; he declared that he wuld retire from public iife and
spend his time "contemplating the weakness and misery of man";
and from then on "he regarded the pursuit of all sdience as a
vanity to be eschewed for its derogatory effects on .the soul."
You see, he could only conclude that his near demisal from this
earth had been a message from God; to wit, that he stop playing
with arithmetical triangie® and such things and that he should
shape up-—--otherwise he wuld be shipped out.

Now, most people of that age did not think in such terms,

8
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but Pascal had had some pretty tough problems to..cope with during
his lifetime. He was such a frail ehild that his father " Etienne
(who was an amateur mathemstician himself; thé limaaecon of Pascal
(which you should encounter when you study polar coordinates)

is named after the father Etienne and not after Blaise) decided
that he should not be subjected to the difficult study of
mathematics; it would be too hard on the poor lad. However 2t age
12, little Blaise was chafing at the bit; he demanded to know
what geometry was all about (just like all the students (?) at
Syosset High School). His father gave him a somewhat succinct
but complete explanation of the subject matter, and Pascal sat
down to play with all these matters. He soon had re-created much
of Euclid's geometry, including the thearem on the sum of the
angles of a triangle--—-without any previous knowledge of the
relationship's existence. At age 14, he was admitted to the weekly
meetings of an elite group of French mathematicians which event-
ually evolved into the French Acudemy of Scieunces. And at age 16
he made the discovery of his "mystic hexagram".

This "most beautiful theorem in the whole range of geometry"”
goes something like this: If a hexagon(convex or concave) is
inscribed in a conic (circle,ellipse,parabola, hyperbola) then
the points of intersection of the three pairs of opposite sides
are collinear and conversely. In other words, suppose we number
thé six points on an ellipse 1,2,3,4,5,6. Then Paszal's theorem
of the "mystic hexagram" says that the intersectioas of khe pairs
of lines 12,45;23,56;34,61 are collinear. Give it a try and see if
it works out,

Hote: if you don't choose your points propitiously, you'll need
)
ERIC
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a very large piece of paper to verify the theorem. Experiment and
you'll see what I mean.

In section 1.1 I mentioned that Pascal had worked .out some
400 corollaries to his theprem. Here are a couple you might try
to verify.

1. A pentagon 12345 is inscribed in a conic; the pairs of
lines 12,45;23%,51;34 and the tangent at 1 intersect in three
collinear points.'If you still haven't figured how to construct
this theorem, stop and think a moment; each pair of lines intersect
in one and only cne point; there are three such intérsections
and therefore three points; Pascal's theorem states that these
three points lie on one line!)

2. The pairs of opposite: sides of a quadrangle inseribed
in a conic, together with the pairs of tangents at opposite
vertices, intersect in four collinear points.

3. If a triangle is inscribed in conic, then the tangentSat
the wertices intersect the opposite sides in three collinear points.

4, Given three points on a conic and the sangents at tﬁo of
them, the third tangent can be zdnstructed.

Now, the best way to see what these cortllaries say is to
draw a circle, read carefully, and try to drgw in the given
information. Just remember that they were first disorered by a
16 year old boy in 17th century France, and you're a big deal
17 year old in 20th century U.S.A.

Aside from the set of 4 examples I've given above, there =
hage been other numerous and attractive consequences discowered
through an almost unbelievable amount of reseaich. For instance,

[}{ﬁ:re are 60 possible ways of forming a hexagon from 6 points on

89
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a conic (see if you can verify that!) and, by Pascal's theorem,
to each hexapon corresponds o Pasc.l line. Furthermore,these 60
Pascal lines pass three by three through 20 points, called Steiner
points which in turn lie four by four on 15 lines, called Plucher
lines. The Pascal lines also concur three by three in another seét
pf points, called Kirkman points, of which there are 60. Corres-
ponding to each Steiner point there are three Kirkman points

such that all four lie dpon a line, called Cayley %: line. There
are 20 Cayley lines,and they pass four by four through 15 points,
called Salmon points. There are also muny other extensions and
properties of the.configuration, but at this point I'm sure we'd
all be too dizzy to even read them! I can't even prove Pascal's
Theorem, although I have read 'that the number of such préefs is
legicn,

0f course,any projective geometry book had a proof ((7),p66),
but my excuse is that‘the proof is non-metrical; there are no
numbers inydlved énd no algebraic manipmlations to be made.

(a 1ie;(7),‘page 14}). That, as a matter of a fact, is the real
beent:of Pascal's Theorem; it deals only in points, lines and
conics. No algebra heed4be utilized. _

And how I'm certain you know why at the agz cf 17 Blaise
Pascal developed acute dyspepsia (say, now I know where they got
the name Pepsia Cola—==—= especially ﬁhf diet variety). In fact,
his digestive tract gave him so much trouble fhat when he was
working in his father’s office a year later (his father was
assentially a tax collector; Blaise used to help him keep the
books straight) he found it difficult to keep his mind on the
b*jg additions that had ®© be done. Té get the job done he . -
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therefore invented the first adding nachine.

The instrument was able to handle nunbers not exceeding six
digits. It contained a sequence of engaging dials, each inarked
from O to 9, so designed that when one dial of the sequence turned
from 9 to O the preceding dial of the sequence automatiically
turned one unit. Thus the "cayrying" ppocess of addition was
nechanically accorplished. Pascal eventually had over 50 of these
nachines nanufactured, and a couple of then can still be found in
a Paris nmuseun nore tham 300 years later. Apparently "Built to
Last" was Pascal's tradenark.

But Pascal wasn't built to last; at age 23 his digestive track
was in such bad shape that he suffered temporapy paralysis. it
this sane tine a brand of religious fervor was sweeping France
(called Jansenisr) which required * the rejection of the corrupt
naterial world and a "conversion" to the spiritual. Pascal figured
that the tenporary paralysis was a sure sign that he had been
dabbling in the devil's own backyard; he therefore converted to
thinkting of his soul instead of the nystic hexagram and such.
During this period he wrote his farnous "Pensees" which were suppos-
ed to be introspective excursions into the depths of his =oul.
Whatever they were, they were foundations of nmodern French
literature.

Of course six or seven years later Pascal slipped baé¢k into
"sin" and did his work on the arithnetic triangle and probability
theory. But the near initiation into the Polar Bear's club changed
all that! He only fell fron grace once noré; that was when g-¢
toothache drove him to work eight straight days on the cycloid.

((The cycloid is Ghe curve traced out by the motign of a fixed
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point on the eircuriference of a wheel rblling along a straight
line on a flat pavenent). This was the last work that Pascal did;
he fell grievously sick and died four years later.

In the work on the cycloid he deterriined the areas and voluries
of sections and rotatidnd of sevtions about various axes which
depended on surmation fprmulas (which he derived by using his
arithnetic triangle). He published many of the results of his
cycloid work in the form of challenge problens for other mathenati-
cisns. However, he didn't sign then as Blaise Pascal as he had
supposedly eschewed the pursuit of such nonsenae; he therefore
signed then as Anos Dettonville or its anagran (letters re-arrangad)
Le- is de Montalte. Clever fox, eh?

The sumnation fornulas alluded to above were very usefud and
nacessary in the discovery of the Calculus by Isaac Newton and
Leitnizt. We'll see some of these derivations in the next chapter,
afi~» we investigate in depth the principle of Math Induction.

Needless to say, the principle of Math Induction was first
presented in an incidental way in (would you believe?) Pascal's
paper on the arithnetic trianglel

Ive included this little treatise on the life of Blaise Paseal
for a couple of reasons., Firwmb, his work and discoveries run
throughout the naterial in these two chapters, all analysis and all
nathenatics; and we should have sone feeling for the humanity
of the man responsible for all of this. Secondly, I hope gll you
Math geniuses will leern a lwsson from this tragic figure and
live your lives with nore direction and neaning,

In particular, lay off the pepsi amd potato chips, or you'll

O . o .
-up with paralysis of the brain too!
[ MC P P J
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Section 6.3 The Arithmetic Triangle,

At this point, we've talked about Pascal's Triangle so nuch
that it's incunbent upon us to see just exactly what he did.
Below you will find ny translaticn of the French found on page
67 of (8), which in turn was a translation of the Labin in which all
inportant Mathematics and other disciplines were written up to the
15t century (so that all nathematicians could read a given work
without sonie weak translation gettingin the way.)

Speaking of weak translations, what I've tried th do is nerely
gather all the pertinent felationships; they are presented here
for yourperusal. wome af them require a great deal of attention be-
fore they yield any neaning.

But now, the "Praité du Triahgle Arithmetique", by Blaise

"the Smiling Frenchman" Pascal.
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Definitions:

1. Each cell has a nane,cij, where 1 is the appropriate index
fron the parallel rank and J is the appropriate index fron the
perpendi.ular rank, (il.e., 043 is the cell in the 4% parallel rank
(row) =21d %»rd perpendicular rank (column)).

2. Celils of the sane base: (Base 4) Cy1s Czpy Cyye

3. 4riis of the dividend: Cqq4 Coos Czzy CtC. (the nmain diagtnal).
4. "o c2lls of the sane base equally distant from its ends are
cali~d re:ilvocalsk as cypy Cpy. 80d Czpy Cpg, because the index
of t::» narsllel rank of the one is the same as the index of the
perpandicular rank of the other, as is apparent in the example
Just ziven. It is quite easy to show that those cells which have
thei» indices réciprocally equal are in the same base and equglly
d.=*ant  fronm its extrenities.

<V 1s also quite easy to show that the index of the perpendic-~
ula. vank ef any cell whatsoever, added to the index of its
parailiel rank, exceeds by unity the index of its base.

For example, cell c43 is in the third perpendicular rank, and
in the fourth parallel rank, and in the sixth base; and the two
indices of the ranks 3+4 exceed by unity the index of the bawe 6,
which arises fron the fact that the ®wo sides of the triangle are
divided into an equal nunber of parts; but this is rather under-
stood than denionstrated.”

Rule
"Now the nunbers which are placed in each cell are found by this
nethod:

The nunber of the first cell, which is in the right angle, is

[ﬂiﬁ:rbitrary; but when that has been décided upon, all the others
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necessarily follow; and for ‘t.is reason, it..is cal’.ed the generator
of the triangle. Each of the others is determined by this rule:

The number of each cell is equal to that of the cell which
precedes it in its perpendicular rank, added 6o that of the cell
which precedes it in its parallel fank.

From thess facts there arise several conseguences. Below are
the principal ones, in which I coh#ider those triangles whose
generator is unity; but wbat is daid of them will apply to all
others."

Corollaxry 2. In every arithnetic triangle, each cell is equal to
the sunr of 411 those of the preceding parallel rank, comprising
the cells from ilis perpendiculuar rank to the first, inclusively.

Consider any mell c54 : I agssert that it is equal to Coyt Coot
025+ Coys which are cells of the parallel rgnk above, fron the
perpendicular rank of c54 to the firs?s perpendivular ranke.

This is evident by defiining the ceils, merely , in tkrms of the

cells from which they are formed.

For Czy = Czz+ Cpoy
Czz =Cz, + 025
Czp * CBi + Coo
°31 = %21

Therefore, )
Cy = Cpp * Cpp + Cpz * Cpy (Obviously!)

Corollary 3. In every arithnetic triangle, each cell is equal to
the sun of all those of the preceding perpendicular rank, compris-

ing the cells from its parallel rank to the first, inclusively.

Corollary 4. In every arithnetic triangle, each cell diminished by

QO nity is ®qual to the sum of all those which are included between
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its perpendicular rank and its parallel rank, exclusively.

Corollary 5.~ In every arithmetic triangle, each céll is equal to

its reciprocal.

Corollary 6. In every arithmétic triangle, a parallel rank and a
perpendicular one which have the sane index are composed of cells

which are respectively equal to each other.

Corollary 7.- In every arithmetic triangle,the sun of the cells

of each base is twice those of the preceding base.

Corollary 8. -In every arithmetic triangle, the sum of the cells
of each base is a number of the geometric progression which begins

with unity, and whose order is the same as the index of the base.

Corollary 9.~ In every arithmetic triangle (the sun of), each base

dininished by unity is equal to the sun of all preceding bases.

Corollary 10. In every arithnietic triangle, the sur of as many
continuous cells as desired of a base, beginning at one end, is
equal to (the sun of) as many cells of the preceding base,(plus)

taking as many again less one.

Corollary ll.-Every cell of the dividend is twice that which
precedes it in its parallel or perpendicular rank.

AND NOW FOR THE REALLY BIG SHOW:

Corollary 1l2.-In every arithmetic triangle, if two-cells are
contiguag in the same base, the upper is to the lower as the
number of cells from the upper to the top of the base is to the

nunber of those fron the lower to the botton, inclusive,

: which is self-evident, that this proportion is net with

in the second basej for it is apparent that Coy is to Cy1o




."as 1 is to.1,

Lemma 2: that if this proportion is found in any base, it will
necessarily be found in the following vase.
(THIS IS THE FIRST FORMAL PRESENTATION OF THE PRINCIPAL OF MATH
INDUCTION IN THE HISTORY OF MATHEMATICS!!!)

Corollary 1%. =~ In every arithmetic triangle, if two cells are
continuous in the sane perpendicular rank, the lower is to the

upper as the index of the base of the upper is to the index of its

parallel ranl,

Corollary 1l4. - In every arithmetic triangle, if two cells are
continuous in the sane parallel rank, the greater is to the
preceding one as the index of the base of the preceding is to the

index of its'.perpendicular rank,

Corollary 15. - In every arithnetic triangle, the sun of the cells
of any perallel rank is 6o the last cell of the rank as the index
of the triangle (of the base of the triangle) is to the index of
the rank,

Corollary 16. - In every arithmetic triangle, (the sun of) any

Papallel »ank is to the rank below as the index of the rank below

is to the nunber of its cells.

Corollary 17. - In egery arithmetic triangle, any cell whatever
added to all those of its perpendicular rank ist the sane cell
added to all those of its parallel rank as the nunmber of cells

taken in each ranl,

Corollary 18. - In every arithnetic triangle, Pwo paraillel ranks

aqually distant from the ends are to each other as the number of

oy
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their cells.

Corollary Final. In every arithmetic triangle, if two cells in
the dividend are continuous, the lower is th the upper taken four
times as the index of the base of the upper is to a nunber greater

(than the base) by unity.

"Thence many other proportions mnay be drawn that I have passed
over, because they nay be easily deduced, and those who would like
to apply thenselwves to it will perhaps find some, noré&-.elegant

than these which I could present”.

Other Discoveries (To be lade):
1. Add the thirfy-six numbers displayed in the square (heavy dark
lines). Try to locate their sun in the Pascal briangle,and then
fornmulate a general theorern.
2. Try to recognize and locate in the Fascal triangle the nurbers
involved in the following relation:

11 + 58 + 106 + 104 + 5.1 = 126
5« Try to recognize and locate in the Pascal triangle the numbers
involved in the following relstion:

Gel + 53 + 4°6 + 3410 + 2+15 + 121 = 126 -

Observe (or remember) analogous cases, generalize.
(This is taken from (8), page 67. The problems are fron (6),
page 87.)

Section 6.4 T's Sihg Along

Say, how about sone entertainment? Didn't I tell you back in

o =ction 1.1 that youfd be all full of joy and happiness after
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going through this chapteep? Well, here it .is! Instant joy and
happiness!We have sohgs to sing!

The first is sung to the tune of Bye-Bye-Blackbird (here
again is where your parents will come in handy; they know the song
very well even if you have never heard of it!) The song is certainly
just as good as anything Mad nagazine has put out---but then again,
maybe that 's ntt saying too much.

But here it i&s: the #ntire first chapter summarized in oo

"Blaises's Blues in B-flat.”

Counting stripes on a wall, and subsets, one ahd all

You can use the Binomial Expansion.

Finding roots, both cube and square, Pascal's numbers everywhere
And in the Binomial Expansion.

Everywhere you look you're bound to find'en

One-- Two---Qne and all the rest behind'emn.

When in doubt and you must guess

Use these numbers and their recursivenes: ~..

And in the Binomial Egpansion.

Another set of lyrics which I have penned depends upon the
tune of "Spoonful of Sugar" from the ever-lovin' Mary Poppins
story. As a Math teadher here at Syosset it has been my woeful task
to witness again and agdidm. she complete ineptness of most students
in their guest for obtaining the r®H tern of an (a+b)™ expansion.
Despite the 1list of careful observations given in both sections
3.3 and 5.1, most students persist in putting plus signs between
factors, in having the sum of the- exponents unequal to n and in

hard core cases, some have even forgotten to include the numerical
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copfficient. In an attenpt to correct these absurdities and
disgraces (they are really sins), I herewith pressnt ny song
entitled, "Spoonful of Helpfulness",

Verse 1

In every test you'll ever take, It is quite probable you'll hake
Perhaps, perchance or naybe a mistake
But if you 1i-" .. to this song,You'll likely not go wrong

So just relax perk up and sing along.

Chorus

Just a ténshun to thd details and you'll get the problen rig.t
You'll get- the problem right, My -~-what a delight

Just a tenshun to the details and you'll get the problem right

And have less homework every night,

Verse 2

There is a problem that we know, I haven't any doubts
We're all familiar with its in's and out's

But getting it right we cannot do, Or at nost a very few

The results - by and large - are strictly Pee U.

Verse 3

And -et the problem of which we speak. That has us up the creek
Is simple as any problen we night seek

And if we wish to be more. jovial, llake P. less patrinonial

Then we nust - we must - learn the ex- pansion binonilal

Verse 4

In every term you'wve got to see. Three factors - one, two,three
Q
[]{U:four or nore or less yo: must agree
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The firsth a factor numerical, forget .it, T'll get hysterical

You'll fluhk -~ you'll flunk - your mnark will be quite sperical.

Verse 5

If you would keep your teacher sane. And smve yourself great pain
Then leairn the rules for powers, signs and such

Know how to use the signa sign

Think TWICE~--~ there'll be sunshine

And T - guite surely - will love you very nuch.

Sectiton 6.5 llore Entertainment, or History Pre-Test

The following is a sample exan which you can use to ascertain
whether you have absorbed the concepts and facts of section 6.2.
1. Pascal's version of Roger's and Hamnersteins's "Surrey with the
Fringe on the Top" (from the rnusiacal "Oklahoma") a. is in % horse
time b. never made the top ten c¢. has a pBecipitous ending
d. gets carried away by excessive enthusiasy of some of the
principles inwolved,
2. Pascal was called "The Sniling Rrenchnan" because a. he was a
pepsi cola salesman b. people in pain alweys snile; it only hurts
when they laugh. c¢. he was a "blaise" of fire. d. Was a picture
of robust he#alth end earthy hunmor.
5+ Descarte, a iontemporary of Pascal, was the founder of coordinate
geonetry, morgKf:rectly called Des Cartesian coordinate systen.
There is a stogy told, howevers about how Descarte brought nuch
grief to a circus performer whose horse was computationally gifted.
This horse could add, multiply, subtract, divide and extract roofs

(Sassafras was extremely tasty that year). But when soneone gave the

O
[]{U:bse a coordinate geonetry problem to &, he balked and had a
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nervous brealkdown. The reagon Hr this was obviovsly because a. he
chafed at the bit b. the amount of worl to be done was in~ordinate
c. the horse was cross—eyed and couldn't handle an ordered pair

d. you don't put Descarte befor the horse.

4. Padcal did not join his horses in the river because of a. Gene
futry b. Roy Rogers c. B.F. Goodrich non-skid tires d. an
aversion to cold water.

5. When Padcal solved the Chevalier de llere's problen, the Chevalier
was a. not oo sweet Db. easstatic c. gave up ganbling d. wrote
letters of praise to his ffiends, Anos and Dettonville.

6. hen Pascal said that "The vanity of earthly pursuits were to be
eschevwed,! he meant that a. Pierre Fe-nat could do his own Math
horiework from then on b he would have to masticate (or Elitcherize) -
h°.c food more thoroughly c. he was going to antique his sister's
¥Yznity with a new color called "Eschew" d. earthly pursuits were
olzay, but e-width shoes were necessary.

7. Pascal's father, Sfienne, was also a famous mathmmaticain, and °
hisr nane was given to a. & special type of lemon, the limason

b. a curve described by revolving tops called lima%ons C. tge
French equivalent of leprechaun, lema%on d. curvevco—discovered
by a Chines mathematician's son, Li-mé.

8. The nystic hexagran that Pascal discovered concerned itself

with a. conics, corollaries, collinearfty and cosmic confusion

b. with an 8-letter word containing an x useable in & gane:of
Scrabble if your opposition letsyou cheat c. a six word teliegran
discussing hcavenly happenings d. a six-8ided ship noored in the
Connecticutt River.

)
]ERi(j The corollaries to Pascal's Theorem are all very a. obvious
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b. trivial c¢. enervating d, hard to understand.
10. The story of Pascal clearly indicates that if ' you drink enough

pepsi, you will suffer a. tenporary paralysis b. permanent paralss

¢. stonach paralysis d. brain paralysis

Answers to Historwm Pre-Test

l. obviously c, although 4 comes galloping: .close.

2. Yau're on the ball if you chose c.

5. d; and don't change horses in the niddle ef a stregm, either.

4, a. I. asieur Eugene Autry had left his umbrella at the part

of the bridge where the horses went throwgh the railing; it stuck
in one of the wheels of the carriage and prevented it from going
any further.

5. a) i.e., he worked mp a sweat over Pascal's sodbution.

6. b) Dr. Fletcher wrote a great many articles and books during the
period from 1910 to 1920. It is believed that the quéote from Pascal
derved as the basis of his theory for conmplete digestion of food-
stuffs.

7. ¢) the Irish didn't invent egerything!

8. a) obviously

9. c) because you don't know how to interpret that word eitheri!

10. b) try it and see.

Section 6.6 Bibliography
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O
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]ERitfs. Each section im designed along a discovery approach; with
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an extensive solution bection to help those who get bofiged down.
This is another author whtt brings a wvast amount of background
knowledge into play when he discusses a particular subject.

7+ Fundamental Concepts of Geometry,by Bruce E. Meserve, Addison-
Wesley, 1959.

This book has been used to teach projective geometry to bstudents
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{paperback), 1959. Two Volunes.
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notation.

9. Introduction to Finite Mathematics,by Kemeny, ,Snell and Thompson.

Prentice Hall, 1966. Second Edition.

This is a college level text containing simply beautiful .~
problems., The authors are wise guys, and serve up many, many curve
balls.,

10. Advancel 41fRebra, by Myron White. Allyn and Bacon, 1961.

This ks our old idvanced Algebra text. It is a revision of the
book that I used in high school and that's how old it is!

11. Modern Algebra and Trigonometry,by J. Vincent Robéson. McGraw
Hiil, 1966.
This;gur 11% year Math témt. It contains nmore thal book (10).

12, inveprated slgebra and Trigonometry,by Fisher and Zeibur,

Prenticd d:x1l, 1958.

This is a college level text with nany unigue developments.
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Cooke's Law can be found in it.
13. Principles of lMathewmatics, by Allendoerfe# and Oakley. McGraw-
Hill1,1963.

What a book! Our normal 12x bbok, it is loaded. Most teachers
and students are too simphe to handle it though.

14, FMundamentals for Advanced Mathematics,by Glicksman and Rudernan.

Holt, Rinehart, '‘nston. 1964.

This bool: nekes illendoerfer eand Oalki.ey (known as Carl and
Cletus to the initiated) look like Dick and Jane. Our 12x Junior
book, it utilizes sophisticated rnotation far above the call of
dutylor coumon sense, f .- thagt matter).

15. Elementary Mathematical Analy is, by Herbig-Bristol. D.C. Heath,
1967.

The !Math 12% book of the future, If any of the previous ones

confuse you, get ahold of Herbiz-Bristol. They believe in writing <o

so that you can read it (Nobt like me.)
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gection 6.6, of Chapter Tl.

Section 1: Pascal Revisitad

Outline &6f Section 1

T IR

In this section the goals consist of:
1. Familiarization and comprehension(?) of the
Principle of Math Induction
2. Verification, utilizing the Principle of Math Induction,

of a multitude of forrnulae and divisibility relationships

Section 1.1 The Spoiler

. prime number is a positive integex which is divisible only by
itself and 1. The opposite of "prime" is "composite". The number

1 is neither, but stands alone.

I mention these definitions because one of the many discoveriés
yet to be made in pathematics is that of a prime number generator,
By generator: I mean a function whose range will cohsibt only of
prine nunmbers (although not necessarily each and every prine nunber)
for sone specific domain.
ForeInstance, for n& Integers, 2n is an even integer;likewise,
\)9n—l is an odd integer. These are trivial exanples of even integer
ERIC o .
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and-.odd integer generators. We have run into a rather sophisticated

generator ib probleri 1.6.8 of Chapter Tl; renernber Tabit Ibn

Qorrawitxz's anicable nunber generators? We also found that

Qorrawitz's formulae did not yield each and every pair.of amicable
nunbers; but it "did yield only anicable nunbers.

Now I%a1 discussing all this here bécause I've been doing a
little work looking for a priume nunber generator,end ¥ do believe
I've found one! Unlike Qorrawitz's conplicated ness, I found a very

' _ BELONGING TO 5 .
simple exmpressicn: For n.§p051t1ve integers, n© - n + 41 will
always be prine!

Pretty neat, eh® Let's chedk it out. For n = 1, p(n) =nCen+l1
equals p(l) =1 = 1 + 41 = 47, a prime nunmber. if:ikewise9 p(2) =
4 - 2 + 41 = 43, a prine nunber; p(3) = 47 (jumnped right over 45---
great, right?); p(4) = 53% (slkipped the 49 and 51); p(5) = 61
(s0 I skipped 59; didn't say 1'd get each md every prine numbér;
just said all ny outputs are prine); p(6) = 71, p(?7) = 83, p(8) =97,
p(9) = 123, p(10) = 131, etec.

I haven't had too much free tine lately, but I 'did check the
generator function using value. foe n up to 23. p(23) = 547 is
prine, but it takes 8 divisions to verify that fact. And who needs
all that grief?

I learned the lesson of Chapter Tl though, and I'm not ahout to

Aruitoxt provided by Eic:
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general approach to verify my formula. In delng my research for that
short hisbory of Pascal I wrote in section 6.2 of Chapter T1 I

carle across the following curiocus guote which game me a couple of
ideas:

"Although this propostion contains infinitely mamy cases, I
shall give for it a very short proof, supposing two lgunas.

The first lemma asserts that the proposition holds for the
first egse of n = 1, which has been checked.

The second lemma asserts this: if the propostién happens to be
valid for any case, Bay n, it is necessarily valid for the next
case, nanely n + 1,

We see hence that the propodbtion holds necessarily for all
cases, for all values of n. For it is validdbr n = 1 by virtue of
the first lemma; therefore, for n = 2 by virtue of the 2nd lemna;
therefore, for n = 3 by virtue of the second lemma, for n= 4
likewise, and so on -gd infinitun.

And so nothing remains but to proove the second lemna."

How.-. my proposition fits this case very well; for an
unlinmited nunmber of choices for n, my generator will always
produce prize numbe#s. In case you're faked out by the word "lemma"y
Just think of it as a srall trivial theoren.

And here's why I found this aacte to be apropos my problem;

O
]ERi()nt through the task of checking out 23 cases, Now I'nm pretiy

e 111
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sure that the next case, n = 24, is goinz to produce a prime
nunber too-~-but that 's because I believe in ny gmerator
function; and I've had 23 sucessful trials, which is certainly nore
than erough for certainty! But Pascal says that if we can prove the
n = 24 case not by going through all the necessary divisions but by
nerely referring bask to the previous case, the n = 23 case,
then we've got it made. 'Becasue if every case can be proven by
nerely working (ini%éneral way) fronm the previous case, then we
Itnow the rule - will be valid for all n ¢ positive integers.

Ket's be nore specific; I have a function p(n) = n® _n + 41
p(23) was prine¢ let 23 = K; then n = 24 will bg represented by
K +1, right? I want to use the X's for wo reasons: first, numbers
tend to get in the way and obscure what's happ#ning; second, if I
use the geﬁ%al term. K, it need not represent the number 23, but
night just as wsll represent 1 cr 5 or 11 or 19 or 37. (In which
case k¥ + 1 will:represent 2 or 6 or 12 or 20 or 38.). Since
p(23) = (25)2— 23 + 4] = 547 was prime, we will now consider
p(K) = K K + 41 a prime number i.e., K2 - K + 41 = rib 1, where
rib 1 is prine. Now, if we can show that p(K . 1) - (K+1)2—(K+l)
+ 41 1is another prime, and if our verification depends only on the
previous or K% case, then we will have established a general
nrocedure for verifying the prime-ness of all numbers of the form

ERIC
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(K + )% = (K + 1) + 21,

Let's see if" we can establish this procedure: remewber, we
are assuning that p(X) = K2 K + 41 = rib 1, a prime number. We
inspect the n =K + 1 case; namely,p(K+1) =(K+1)% - (K+1) + 41.
By algebraic manipulation, p(K + 1) K2 4 2k 41 -K =1 + 41 =
(K2 - K + 41) + 2K, Notice that I have not cormbined the -K and the
2K; this is because I know soniething about the expression

K2

~ K + 41, nanely thetit is equal to rib 1, a prime nunber.
Therefore replace the expressicn (K2 - XK + 41) by rib 1; we nedd
only show them that (rib 1) + 2X is always anggher prime number,
say rib 2, and by Pascal's observatifns we will have proved that
the =xpression n2 - n + 41 is irdeed a prime nunber gererator!
We'll have made history!!

It is true, isn't it, that.any even number (2K is always even)
added to a prime number gives a prime? Ut oh, I think maybe not.

I know of a case; 7 + 2 = 9, .and 9 sin't quite prime. Ch well,
back to the drawing board.

Do you reanlize what we've done{M e've shown that somewhere along
the line ny generator is Pound to break dwn; it hecones obvious
that: when we give:our attentidn to the previous casé and use it Ho
prove the ne¥t+ ~ase, that the production of only prime numbers is

not assured.

© nd now 6hat I look at ny generator, p(n) = na -n + 41, it
115




-6

becones immediately obvious that I don't have a prime nunber

generator, How silly of mnel!
On the other hand, what atout the expression n2 +n + 17?7 Cp
naybe n2 -~ 79n + 16017 They look pretty good! I'll have to check

then out later, Maybe I've really got sommthing this tinme!

Section 1.2 Math Induction

Pascal's observation as guoted above is commonly referred to
as the "Principle of Math Induction" (abbreviated PMI). It is hdt
riagic, it doesm't produce anything and it's never saved anyone's
life; it nerely pmrports to verify conjectures about an infinify
nunber of cases, The PMI is divided into twc steps: 1. Verify that
the n = 1 case holds, then |

2. hssure that the n = I case is true, and using
this informa®ion, show thgt the n = K + 1 case holds.

This procedure does indeed verify the given conjecture because
K is general; and for K = 1, the K + 1 case réfers to n = 2; but
then K can be considered to be equal to 2 and the K + liczpa refers
ton = %, And this continues, as ®ascal says, "afd infinitun.
Therefore verifying the conjecture for all cases.

Here's another conjecture: a little nan told rme that

;il i =1+ B+ 3+ eoe + 10 = (n) (n+1) (See the answer to problen
O - 2

ERIC 2.5.2 of Chapter T1.)

Full Tt Provided by ERIC.
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We'll use the PMI to verigy it'i truth or non~-truth. Lemna 1 says
check out the n = 1 case,., Does Eéii = Lll%;iil ?
i.e., substitute n = 1 into hoth sides of the conjecture. Vell,
%Eli =1, and Sllélill = 1, so the conjecture is true for the
n=1 case.

Note: to get a fepling for the problem you night try chetking

out a few nore caseg, say n = 2 or 3. Llso, I'll use LHS,and RHS

to nean Left Hand 3ide and Right Hand Side respectively. For

e
<,
n = 2, the LHS becones izi i=1+2 =3 %nd the RHS becones
g
Lgl%gill = 3, For n = 3, the LHS berzones f;i i=1+24+3=26

=6o

and the RHS becomnes é +L

ow we investigate lerma 2: Lhsmume the n = K case is true; il.e.,
k

géi i =1+ 240+ K = (EQL%ill_ Utilizing only this information we
must show that the n = K + 1 case is true; i.e.,

E+1 _
Fri=1+2 400 + K +(EsD) = (5+1>(gK+1)+1)

There are several approaches to this problenj; Jere are two
procedures. The first works more or less backwards, using a najer
substitution. The second nerely requires that you have the gift
of prophecy. Here's the first.

Lerma 2: ¥e have assuned that
jid

& . 5 KI)K+1)
1) & 1~ D

We must show that

\




£

=t

2.) & i = (Bel)(K+1+1)
iz1 + < P

vt

K+1 K
We will work on the LHS of 2). Now, féi = (géi i) + (K+1); But

e

li = AR éK+l) by our assunption 1). Therefore, substitute

£~Q§Kill into the IHS of 2) getting EXEXL) | (g,qy,

2.

[m
i

These two terms have a common factor of (K+1); after we factor it

out and aud the remaining two terms, we have (K+1)CE%g). But that

is exactly the RHS of 2).

The second procedure is as follows: /e have assuned 1); namely,

N
that 77 1 = Sgl%éill . Fron out of thin (or even fat, for that

natter) air we pick the expression K+l and add it to both sides of

K
1). This gives us(fééi i) + (K+1) = gglé@ill + (K+1) which is true

of course by one of the nost basic axions of geonmetry. Now,

K+1
%‘i + (E+1) = ; while .(.Eﬁ%_tl)_ + (K+1) = (w

— i
i=1 =1 Zal 2

< ,
and we have shown that {Z%i = K+l §K+2-. Let'a look at anather

conjecture, and verifyy it without any of the verbal interference

as in the above cases.

3 N
Conjecture: %&Iig = 1% 2% ..+ 0f

_ () (n+1)(2n+l)
- 6

Verification Number 1.

Io Let n = lo
1
&~ .2

et

, (AW
Therefore, the n = ]} case is true,

116



II., Le6 n E K cas: be true:
i.e. :
1.) ‘14"1 12 LK)LI&%)(zxm
T Kgl
2.) Show: éi i2 - (K+1)(K+lg1)(2(K+-1)+1)

Jorking on LHS of 2):

X+1 K
- . 2 :
ffi i© = féiig + (K+1)2

K
r Py
Substitute (K>GK+1%(2K+L) for ffi 12

Then IHS of 2) becones: )

using assumption 1l.).

K+
fé%' 2 . ;K)(K+é)(2K+l) + (K+1)° Factoring out (K+1), we get
(x:1) (B 5 & @41) or ED (%2 4 % 4 @)
or -Q%D-(2K+§)(K+2)
But (K+l)§K+2%(2(K+1)+m) is'the RH3 of 2), and the verification

is conplete.

Vemification Nunber 2.
I. Let n= 1. Then

Zle_ 1 ana g1)g1+1)g2g12+1)

igl

Therefore lemnma 1 is satisfied.
I1l. Assune tne n = K case is teue;

ice., a 2 R Now (R+1)2.

-fron thin air,

Ldd: 2112 . (Ka1)2 = (K)£K+1)(2k+1) . (E+1)2

Uging algebra - 2 K+J 2
and notation: 131 i ===( 2K “+K+6K+6)
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If you still don't folluw this procedure, 'do the following:
1. Re-read the entire section.
2. See the Flow-Chart which makes up Section 1.4
3. Re-read the entire section. Very carefully, this tine!
snd then you can practice on the following:
Conjecture Group I (CGI):
1. Problenl, page 92. of {13).
2. Problen 2, page 92 of (13).

5. na(iki—})
i=1

l+ 5 +-..+(4’L’l"‘§) = 21‘12—1’1

1 +6+,..+(5n=4) = %(5n2—§n)

4, é (5i-4)
i

\’\'.3

5. a__ (6i=5) = 1+ 7 +...+(6n=5) = . #n°- 2n

]_:

o
‘\/\'.:S

(8i~7) 4n2—5ﬁ

i=1

B

2
7 é(ai-(a-l)) = an - (a —2)n
i=l 2

where a is any .integer greater than 1l.

n

8. é_ (3i+2) = #(3n%+ 7n)
n )

9. %1(51—2) = %(5n%+n)
n.

10. 2;1(71-5) = %7+ n)

n

11, ff_(ud.+l) = 2n2+5n
i=1

n

12. & (12i-11) = 6n°- 5n
ie1
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$(5n°-n)

|—J
N
a9
W
|—J
~
\Jl
'—l
)
N
-/
n

%(7n2—5n)

|—J
=
. B

(W
V)
~J
'—l

i
Ul
v

I

1. Z 5.3l 5 4 154...5-3%7 1 w(5-30-5)
e !
5.5 (5871 a5t Ly C 2 4 8 a3k +...e(3PTD 4 5PTD) K203 57-3)

n
4, 2 (2l~l+51'—l) = %(21‘1-%2_’_51‘1 _5)

i=1
n . n

5, (ar=l‘l) = 2(l-r ) , where a,r:are constants, v 1
i=1 l1-r

6. Problen 12, page 9% of (13).
C G I11:

1. Problen 7,on page 98 of (13).
5, Problen 8, page 92 of (13).

n,—
2. f;i %0 - (VBO)(6n5 + 15n4 + 10n2 -n)

n
4 2
4, ('5) = (V12) (2n6 + 6n°+ 5n° -n-)
£,

n

5.5 (2i-1)2 = (¥13)(4n%-n)
i=1

n
%S (2i-1)7= 2n* - 7

RIC*

IToxt Provided by ERI
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7. %i (3i-1)%= %(6n°+3n°-n)

. 5-1
1. éf.j-(lﬁ; i) = 2¢1 + 3°(1+2) +4(1+2+43)+,, e+n(1+2+...+(n-1))=

(Ve4)((n-1)(n)(n+1)(3n+2))
: N :
(146 & (i-1)) = {m)GHtl)
1=

n
4+

(1)(1+l) n+ 1

(L) (i+1)(i+2) = Ln)(n+li(n+2)(n:§)

N
BRSNS a N\B

-

(1)(i+1) = (¥3)((n)(n+l)(n+2))

(i-i!) = (n+1)! ~ 1

-fV\b EZIV\E

Q
Q2
»
<3 u
=

Section 1.3 Divisgbility

The PII can also be used to verify the divisibilty of certain
expressions by given integers. This section will dwell on the
procedures which you night use to verify sone of these conjectures.

Once agaln, I'11 not tell you where these conjectures haye cone
fron: at this point we'll nerely verify then. Also, to facilitate
natters, I will introduce the following notation: the phrase

" divides a2" will symbollically be written a ]a?. The vertical

122
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line is not a division line but is merely translated as the
word "divides"., Also, if a'l p(n), I will assume that there exists
some integer q such that a-g = p(n). Now for a few verifiacations,
Example 1.

Show that 2! (n)(3n-1).

I. Let n=1; then (1)(3(1)-1) 2. Certainly for q =1, 2+q =2.

1]

II. Assume that 2 | (n)(3n-1) for n=K; i.e., 2 | (K)(3K-1).
Therefore, by my convention stated above there exists some
integer g; such that 1l.) (K)(3K-1) = 2¢q, We must show that

2‘ (n)(3n-1) for n = K+1; i.e., we must find some intéger a5

~1
such that 2.) (K+l)(5(K+l)£= 2q2 , utilizing oénly
assumption 1.); namely, (K){(3K~1l) = qq -

Working &n the LHS of 2) we obtain (E+1)(3K+2) =3K°+5K+2
When re-grouped this expression hecomes (3K2-K) +(6K+2)
(i.e., add the propitious zero K-K). But 3K°-K = 2g;, by 1),
and therffore by substitution the LHS of 2) becomes

29, + 6K + 2 = 2(ql+ 3K +1). And go = q;+3K+1l is certainly
an integer. Q.E.D.

The alternate procedure is to take 1), (R)(3K-1) = 2'ql ,
and add the '"out of thin air" expression 6K+2 to both sides.
Then (K)(3K~1) +6K+2 = 2q) +BK+2 or

(K+1)(3K+2) = 2(ql+3K+l) or
(K+1)(3(K+1)-1) = 205 ¢ 5 p.

Example 2.

Show that 5 7% -2,

i.e., Find an integer q such that 7" - 2% = 5q for all n{I'.
Now in the previous example fhe real crux of the matter was to

© »duce a propitious zero (we used K~K) that enabled us to use

IC
S 123



~14-

our previous information. This of course was also true in the
"out of thin air" procedure, because although no pwopitious
zeros appeared in the exposition, yet we certainly utilized one
in the experimentgql stage of the verification (that part of the
problem which we di4 on the side to come up with the loveky
expression 6K +2).

And now we will show that 5 |77 =28, or 7% -28 = 5q.

I. Let n=1 7-2 = 5 . Certainly for q = 1, 5= 5°1
II. Assume that 7% - 2© =5q; for n = K. Therefore,

1.) 7K— 2K = 5ql We must show that
2.) ’7K+l-2K+l = 5q2, where ap is some integer.
well, 75*1- 2.0K ang 2%*l. 2.0K | Tne key to this entire
exposition, however, is ® introduce a propitious zero consisting
of eithér of two "mixes":
Ay 7.28 2 g0k

or B.) 2:7% - 2.7%,

Using 4. ), the LHS of 2) becomes 7X*1+ p.2Kp.oK _ oK+l
If we now giye our undivided attention to the first and third
terms mand then to the mecond and foubth terms we can make the
féllowing partial factorings:

7K
The LHS of 2) bedomes therefore 7(7

+1 _7.2K - 7(7K_2K) and 7.2K _2K+l - 2K(7 ~2).
K —2K) + 2K(7 -2); upon
the substitution of 5q; for 7°- 2 (usimg 1.)) and simpiificatim
of the expression 7 - 2, the LHS of 2) becomes
7+5q;+ 5.2% op 5(7q, + oKy . 5a,, since 7q; + 2K i certainly
an integer., Q.E.D.
If instead of A.) we had used B.) , the LHS of 2) would become
7K+l -2-7K + 2-7K - 2K+l; after partial factoring and
[]{ﬁ:‘simplification this becomes 7K(7 -2) + 2(7K - éK)

IToxt Provided by ERI
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After the substitution of 1) we obtain 5(7°) + 2(5q,) or

5(7% + 241) = 54+ g .g.p.

Of course if we had done all this preliminary work on ihe side
gsomewhere, the "out of thin air" procedure would look like this:
Given 1), 7K -2k . 5ql, first multiply both sides by 2, obtaining
2'7K - 2K+1 = 2-5ql. Then édd the term 5-7K' to both gides,
obtaining 2-7%- 2K+l 4 5.0K 2:5q, + 5.9%,  Then rearrange and
gimplify thusly:

2.7% - 21 4 (7-2)7% - 5(2q; + 75

2.75 - 2.9% L gk _ 2K L5,
2) 7K+l K+l

knd now for some more problems to kedp you out of mischief.

Conjecture Group I (C G I):

1. Preblem 3, page 92 of (13).
2. Problem 4, page 92 of (13).
3, Problem 9, page 92 of (13).
4, Problem 17, page 93 of (13).
5 Show that 6 | (n)(n+1)(2n+l)
| én’ + 5n2-n

! 5n2 -3n

| n* + 62 + 11n° + 6n

6. Show that
7. Show that
8. Show that
9. Show that 3 | 4n% - n
10. Show that + 6n *2n
11. Show that + 3n + 5n
12. Show that

+ 2n0 =15p° -10n

n?
n’

i n 5 Bn? + 8n
15. Show that nt
n’

Vi £ W W W W B

"4 Show that - 50° + 4n

123
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15. Show that 3 | n5 —6n2 + 17n
16. Show that 5 i ns + 9n
17. Show that 5 + n° + 15n° - 6n
18. Show that 6 | (~n)(~n+1){(-n+a)
19. Show that 6 | (n)(n+1)(n+2)
20. Show that 24 | (n)(n—;)(n2—5n+18)
21. Show that 9 | (n5 + (n+l)5+ (n+2)5)

C G III:

1. Problem 10, page 92 of (13).
2. Show: 4 { (5% - 1)

3. Show: 7 | (8% -1)

4. Show: 3 1 (377 -~ 34%)

5. Show 7 | (628-1)

6. Show: & 1 (3°8.1)

7. Show: 6 | (52n—l)

8. Show: 13 1 (8°1 _52m)

9. Show: 7 1 (520 . 2m,

=
O

Show: 15 | (11°% - 420

11. Show: 4 1 (22*2, 5B L )

12, Shews 8 | (5°3*1, g2n+ly

1%. Show: 7 | (22n+l+ 52n+l)

14, Skaw: 133 1 (11042, 1p28+1y
15. ohow: S7 1 (pR*2, g2n+ly

1G. Show: 31 i (52%2, 62n+1) /
17. Show: 13 | (32+2, y2n+ly

18. Show: 91 1 (9P*2, 1020+l

19. Show: (x + y) 1 (x2n+l4'y2n+l)
20. Show: (x + y) 1(x°% -~ yomy

@ . Show: (x - y) t (xP - 7o) Note: For 20 and 21, x>y. For .
EMC 124 all three(19,20 and 21),x,y¢ I".
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Section 1.4 The Iris Schoenberg Flow Chart

Start with an Eqguation

(in terms of n) or identity

to be verified

y

N

Write I ]
4
{
B ‘Let n=1 \
Does n=1 i
fit the
equation? | yes —rnae.
no

}

ithe equation is. ;
‘mot valid+isn't i

if you are now,

jwe can assume
n=k case is valid

w
jthe teacher who totally onfise { Fa
go to 7, other< (2
ggave it a fink?? wise,contin vl
2 ne | RANK
T — t0 (7) ouT
o o bt — | .
this next step
"""‘”’""‘"‘"‘l WRITE (——— is a real tougl, .}
Lo 1t {Back to wor U512§,ail *th
plug in K+1 | paraen ...ca
- ’ f s intelligence you
Ly et a drink | tgr n, in .]ﬁ POSSESS,ose
> (nonzalchohdic € equation try to prove
if youjre |——>| the n= k+1
case using only
Y N the fact that
[WONDERFUL: i -—- | the n =K case
iYou're a works (which we
genius (or ‘1f the preceling assumed before--
else a good ]step was pssble if I lost you-
liar) lgypq ifor you go to tough)
- - 'yeo, if notgo tonot =
! l ¥ no go to 51
| | you're not — Try agaln_] if you
g | lrying hard enough + again 4 can fin
| you Just can't see “Pjagain. If l_df.
iCongratulations!You : i %ha_ah¥192§" J it works ! - e\
have reached the end' S go to 4, | If it world
of the line + have | “Its 7 otherwse Jcontinue
sucessfully omnpgeted “Yourrz T °© probably ] cont:‘nuerotherWlsé gol
a Math Induction mro ialmost arith- 37 to Slfthat's
O rerified an wthere! ! etlc errory “try ' above this
1111
]:KCatlon, 15 ™ ceszgain, hoxl
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Section 2: Conauerinz the Conlectures

Qutline of Sectlon 2

The contents of thls section include:

l, Indicationsy both specific and general, of
where all the formulae, conjectures and other
relationships found in Sectlon 1 came from,

2. Factorization galore,

3 Other inSightSo

Sectlon 2,1  Where Did Those Blankety-~Blenk Summation Formulae

Come From ?

The lmmediste answer to the above questlion for many of
the examples glven in Section 1.2 is "Out of a text book, dopey!"
Howevery, 1t is not the intent of this section to merely llst
a set of textbooks (that®s been done already in Section 6.6 of
Chapter Tl; one bibliography should be encugh), The actual
gquestion 1s, "Where did the authors of these text books get
thelr problems?"; and 1f you answer that they stole them from
somebody else's textbook, you're probably right. Of course
this process can't go on ad infinitum; it had to start somewhere,
If you guess that the originals were found on the back of the
tablets on which the Ten Commandments were written, you're
probebly right!

Actually,; Chapter 3 of (6) is loaded with schemes which
mathematiclens have used over the centurles to "Observe, Explore
and Discover®™ some of these relations., In fact Polya (author
of (6)) does an extensive treatment on how Pascal obtained the
formulae of CG III, Section 1.2. These formulae were used by
Pascal to compute the areas of sections of his cyclold curve

lzRitpmember the tootheche?), and later on by Newton to discover

IText Provided by ERIC 1 ;J ;;
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the Calculus, Howevery I will give you a more general ap-
proach than Pascel's {as found in Polya's book).

But first let's look at the conjectures of CGI, Section 1.2,
All 14 of these formulae are derived from the same basls:
they are a2ll arithmetic progressionsi If you expend the LHS
of gny of these expressions you wlll have an arithmetic pro~
gressiony the RHS 1s merely the formula for the sum of an
arithmetic progression for the specific case involved. (Re~
member we derlved that formuia in the answer to problem 2,5.2
of Chapter Tl; first plus last times number of terms divided
by two).

n For 1lnstance, problem 12 of CGI, section l1l:2, s2ys that
Z (121 =~ 11) = 6n° = 51! The first term of the summation
oz 11 or 1 while the last term is 12n = 11s Since
there are n terms, the summation formula gives (1 + 12n - 11)(n/2),
or (12n ~ 10){(n/2) = 6n2 = 5n; Simple, eh? Check out a few
moOTre, _

The problems found in CGII of section 1,2 have a very
similar background: ConjJectures 1y 2 asnd 5 are merely the sum
of a geometric progressionj conjectures 3,4 and 6 are merely
doubles; That is to say, 3,% end 6 were manufactured by teking
two geometrlc progressions and summing them together; If
you've forgotten the formula for the summation of a geometric
progression, Just look at problem 5 of CGII, section 1l.2¢ OFf
course I know you've forgotten (who ever learned it?) the
derivation of the formula, but I've got a sophisticated deri-
vation coming up in section 2,2 of this chapter; Not only will
you forget the formula now but you®li have a derivation you

't understend either,
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And now on to CGIII; these are benuties! A1l seven con=-
Jectures in this groun can be found from the same general
procezss (as con all the conjectures of CG I, section 1.,2),
Let®s look a2t a specific case and work it out. But remember,
the nrocedure 1s general,

The first thing to do is to form a sequence of pertial
sums; a wWwha?

Well, let's look at conjecture 6 which says:
:gﬁ? (24 - 1)3 = 2n%* - n2, Now a sequence is Jjust a listing
= of numbers; partial sums refers to the fact that I am

going to let n on the sigma-sign get progressively larger, and

I em golnz to take a sum iach time I change the na. 2
<
Wotch, Form = 1, = (20-1)3 = 13 for n = 2, =& (21-1}7=
1;1 i=1
13 « 33 = 28; for n = 3,:§:: (21-1)3 =13 + 33 + 53 = 153 (my
i=1

favorite number)s; likewise, for n = 4, the partial sum is 496;
n = 5 ylelds the number 1225; n = 6 ylelds 2556 (you need 113
toobtaln that number; anybody know how to get 113 the easy way?);
n="9yields 4753 and n = 8 ylelds 8128, The sequence of
partisl sums that I trled to define above 1s the set of numbers
{;, 28, 153, 496, 1225, 2556, 4753, 8128, ;...} . This
seguence can extend indefinitely since n can increase wlthout
bound,

Okey. Thus far we have completed Step 1: we have formed
the first few terms of'a sequence of partlél sums Btilizing

the LHS of our conjlecture, Now, teke differences of these

numbers untll you get é sequence of constents ~-~= that 1ls,
a sequence made up of 2ll the same numbers, Watch: the glven
“equence is 1 28 153 496 1225 2556 4753 8128 cee

LS 125
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The first "difference” seguence 1ls
27 125 343 729 1331 2197 3375  ebs

Thet 18, 28 = 1 = 27, 153 =~ 28 = 125, 496 ~ 153 = 343, etc|
The fect that the "difference Sequence" consists of perfect
cubes should not be surprising simce that's how we formed the
sequence of partial sums in the first placel

Now, the second "difference® sequence 1s

98 218 386 602 866 1178 ses
The third "difference” sgequence 1s
120 168 216 264 312 e é
The fourth "difference® sequence is
e 48 48 48 44

Hurray, the constant sequence flnelly arrived! And since
it took us four trlss to obtaln the constant difference sequence,
we know that the sequence of partlal sums 1s an arithmetic
sequence of order 4, The definltion of an srithmetic sequence
of order 4 1s glven in what we did above; we had to form 4 dife
ference sequences before we ceme up with the constant sequences
we therefore call the orlglnal sequence of partial sums an
erithmetic sequence of order 4, (A slight wariation of this
definltlon, where a recursive scheme 1s used, is glven on
page 4874 number 5 of (3}, as was mentioned in the answer tu
problem l.5¢9, Chapter Tl,) By the way, plesse notice that the
scheme of tekling differences cen be reversed so that addltlonal
terms of the original sequence cem bhe obtained without cubing
2 numberes TITry 1t and see,

Meanwhlle; back at the conjecturei 1In step 1 we formed a
sequence of partlal sums; Ain step 2 we formed "difference" sequene

§°% in order to find out that our sequence of pertiel sums is

1

-
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an arlthmetlc sequence of order 4, WE cen pow assume (and
be certuin of its existence) that there is a polynomisl cof
degree 4 which will produce the numbers of the sequence of
partial sums when it 1s evaluated at the various n's{ In other
words, We now know that

n
v:--.
; (21—1)3 = anu + n3 + cn? +dn + e

for some particuler values of a,b,c,d and e,

At this polnt you've got to be saying, "Where'd that
polynomlal in n come from?" Well, my answer is that I was
all elong golng to assume the exlstence of some polynomial
function that would glve me a means for computing elements in
the sequencz of partlal sums, but I Just dldn't know what
degree to choosel After all, why not?

Now the proof thest zn arithmetic sequence of partlal sums
of order 4 cen be Ydescribed® by a polynomisl of degree ¥ depends
upon e theorem of the Calculus which says that "If the deriva-
tives of any two functlons are equal, then the functions differ
by at most a constant®, Actually what we'lve used in the above
example 1s =n extension of this theoremt if the 4th derivatives
are equal, then the 3rd deriv~tives differ by at most a constant;
For those of you who have not studled calculus, thls means nothe
ings For those of you who have, the above is not meant %o be a
clear cut proofs let!s see you observe, expore and discover,
One hint: ©ry the converse firsti

At any rate, since Pascal preceded the Calculus, we can
see why he dldn®t use these techniques that we'reideveloping
here, N -

Now in step 3 we have assumed that

‘2 C21u1)3 = anu +bnd +en +dn+ e o If we do indeed
130
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believe the validity of the above outlined proof, we only
have one task left. And that's to find the values for a, b,
cy d and e{ That's all, | '

Trivial, Absolutely trivial, Just watchy Since the re-
iationship is to hold for ell n, certainly it will hold for
two "specifics", say k end k+l, Plug k+l in first and then k,
obtaining the following two conditional relationshlps:

1.) £ (21-—1)3 = a(k+1)b + b(k+l)3 + c(k+1)2 + d(k+1l) + e

2.) g (20-1)3 = aic® + bkd + cx? + Ak + €

Now, 1f we subtrect 2,) from 1l.), the LHS becomes (2(k+1)~1)3
{pleeeease check 1t out ==~ cerefully), while the RHS becomes
o messs First simplify end expend the LHS getting (2k+1)3 =
8k3 + 12k% + 6k + 1; end then teke a closer look at the HHS:
Because We sre so femillier wlth the blnomial expansion, there
is really no mess at all, For instance we lmmediately see
alk+l)¥ as a(t + 4K3 + 6x2 + bk + 1}, or ok + bekx3 + 6ok? 4
ek + a) Iikewise, b(k+1)3 = bk + 3bk? + 3bk + b, c(k¥1)? =
ck? + 2ck + 6 end d(k+#l) = dk + d; If as you perform the
subtrection on the RHS you elso gather like terms, the RHS will
look 1like this:t

bekd + (6a + 3b)k% + (4a + 3b + 2c)k + (e + b + 0 +d),
Therefore, when 2{) 1s subtracted from l.), the result iss

3.} 8k3 + 12k2 + 6k + 1 = bakd + (6a+3b)k? + (Yet+3bi20)k + (a¥b+).
T o+d)e

Tt 1s extremely necessary to keep in mind that this 1s a
conditlonal statementi We are trying to find values for a,bsC
and d such that 3§ will be true for all k, end therefore 2;)
and 1l,) also, We must now manufactﬁre values for a,bsc and d
]}Rjkjo meke 3{) truey and in case you havén'% noticed, we have the
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perfect seteupe.

Let Ya = 83 1,e!, set the coefficients of the ki=terms
equal. Thls means that e must have a value of 2, Now what
happens 1f we equate the coefflclents of the K2aterms? We
would have 12 = 6a + 3b; but we already have a = 23 and thererfore
we should choose b = 0 so that equality will hold. Do you
see the recursiveness involved? It's beautiful!

For instance, to find c we mereiy equate the coefficlents
of the kwterms; 6 = Ja + 3b + 2cs Since we already know a and
by, ¢ = «1 pops right out, And ecuating the constant terms,
we obteln d = C since 1 = a +b +¢c +d, and a = 2, b = 0 and
¢ = «»l are already knowni, We have therefore manufactured
values for a,b,c and 4 which make 3.) truei but these values
wlll meke 2{) true also, and we therefore have obtalned an
expression for the LH3 of conjecture 6t

7 3 4
(24«1}’ = en” + bn3 + onz 4 dn + e can be specifically writ=

n ‘
ten as S (21~1)3 = 2n# «- n?; You have slready verified

-

this, so you know it is correct, (What happened to the e? It
didn't bother you, so you don't bother 1ti)

Thls process, outlined below, was used to find all of the
seven relationships of CG III, section 1i2{ Make sure you try
thls process or you wlll have wasted all the time you spent
reading thisi{ Here's what I did:

Step 1t 8Set up a sequence of partiel sums,

Step 2¢ Find the order m of the sequence of partial sums;
Step 3t Assume the exlstence of =2 polynomial of degree m,
Step 43 BEvaluate the conditional relstionship between the

summation formula and the polynomial at k+l and kg

12
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Step 5t Subtracts simplify, expend and gather llke terms,

Step 6t Equate coefficients of like terms and solve for the
coastants recursively,

Step 7t Substitute the manufactured values of Step 6 into
the assumed polynomial of Step 3 and check out the
relationship,

"The above process 1s very general end cen be used agaln and

aReln in many areas! Did you notice the use of the binomlial
expension end the recursiveness concept? It's a good thing we

Imow all ebout them, right?

The next conjecture group (CG IV) of section 1li2 1s made
up of all unique relationshipss Number 3 merely depends on
the fect that 1/((1){1+1l)) = 1/1 « 1/(1+1l); with that hint the
HHS 1s easy to find. The basis for number 5 is found on page
522 of (15), and is pretty unique: Polya does some work on
number 1 in Chapter 3 of his book; but I haven't got the
faintest 1dea how to attack #2 or #6., But I'm working on them,

Of course the relationshlip exhibited in the one problem
that constitutes CG V 1s not derivaeble because it 1s 1lncorrectiil
If you verified that 1t does hold, 1t®s because you falled to
check out the n = 1 case, No, 2 does not equal by the n =k
case does indeed imply the n = k+l case, but you'lve got "no leg
toc stend on" {the n = 1 case), 80 the entire verification

crashes to the groundl
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Section 2,2 From Divislbllity Lo Factoring

In the previous section I showed you some techniques
which enable you to find suﬁmation formulae for any arithmetic
sequence of order mi¢ Now we are going to find out where those
L2 divisibility conjectures of section 143 sprung froms

The conlectures maeking up CG I, section 1:3, have two
gourcess the one is trivial, the other 1ls unique, For the
trivlial cases all I've done is go to the summation problems
of section 1.2 on the RHS of these relstionships are found
polynomials 1n n being divided by integers. Now certainly
since the LH3 of these expressions_were merely sums and products
of integers, and therefore themselves some integer, so the
RHS had to be an integer for all values of n, And so any
number found in the denominator must divide the numerator,

Exemples of this type include number 7, which is Just
number 4 of CG I, section 1.2, revisited, ILikewise, number 9
is Just number 5 of CG III, section 1.2, revislted. And other
problems of sectlon 1.2 have been revisited in section 1.3 too,

Problem 20 of CG I, section 1,3, is an ald friend too,
but wasﬁnot,encountered 1n Section 1.2+ The expression
(n)(n—l)(n2—5n+18) was encountered in the answer to problem
2.5.1 of Chapter Tls (That was where I gave the exemple of
"too qulck® induction; the number of points p on the circumfer-
ence of a circle seemed to yleld 2P~Ll reglons inslde the
circlei The derivation of the iormula 1+(p(p-1)(p2-5p+18)}(l/24)
can be done by following the steps outlined in section 2.1,
Chepter T2, sbove:)

You were asked to verify that 24 (n)(n—l}(n2~5n+18); a
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very difficult problem to say the leasts There are a couple of
ways (at least) of doing that problem, but I use what I call
the Principle of Triple Meth Inductlon; you Jjust keep goling
untll you get where you want to get,
¥ow I Ymow that whet I just sald is more then a blt
nystifying (1t's maddening, I'm sure), but see what you can
do with those hints snyway.
There is enother clever way of showlng that
24 '(n)(nul)(n2m5n+18) however, This procedure is due to the
initiative exhibited by the father of Gary Squlre, a Syosset
student, Look at the expresslon n? . 5n + 18 ¢ 1t doesn't
factor (over the integral domain). But suppose we re-wiite 1t
as n° = 5n + 6 + 12 end now loock at only the flrst three terms
~ which do fectors nemely, (n-2)(n-3) + 12{ Now multiply the
revised.n2-5n+18 expression by n and n~l¢ The result will con~
sist of two terms, the first consisting of 4 factors, the
second of 3t (n}{n-l)(n-2)(n«3) + (n){n~=1)(12} s PFor n =1,
293 and 4, thls exovression 1s obviously divisible by 24
(check it out!), but what happens after thét? Well,vthe first

term consists of the product of 4 consecutive integers; and

L4 consecutive integers always cohtain factors of 2, 3 end 4,
(This cen be readily proven by the division elgorithm within
the toplc called congruences of numbers;) Iikewlse, the first
two factors of the second term are consecutive integers and
therefore one of them ﬁust be even, And an even number times
12 must be divisible by 24, Thus the entire expression is
divisible by 24

This technique by the wey was what I essentially used
Q 1 meking up most of the conjectures of CG I,béecﬁlpn 136
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For instence, the product of any 3 consecutive integers, say
(n=1){n){n+l), must be divisidble t¥ 3, Therefore nlen is
divisible by 3. But so also is nJun+3n® divisible by 3,
since the term 3n? will alweys be divisible by 3. And so
also will nl=n+3n = nd+2n be divisible by 33 the fir-. two
terms are divisible by three and the 1sc* a.so, and therefore
when comblned the expression will stlll be divlslble by 3.
As you can see I could have made up more than a milllon
such problems lnstead of Jjust 21, but as you already know
I'm a very nice guys But look at problems 15, 16 and 17 of
CG I, sectlon 1i3. They are "divisibillity by 5% problems,
Problem 15 was obtained by multiplying (n-2)(n-1l){(n}{(n+l}(n+2)
together; do you see how the problems 16 and 17 were found?
If you do, mske up one of your own and verify 1t using the PMI{
in CG II, section 1,3, problems 1 ~ 13 (exclusive of
#11 whlch is a steal from problem 4, CG II, section 1i2) and
19 « 21 are all based on the same principle, And that princi.
Ple 1s essentlally the fazctorization of the expression
¥ = ¥y and related factorizatlonss
Look at x5 = y5 8 thls can be factored into
Ad) (x-y)(H + By + 2292 + xy3 + ¥*) . To verlfy thls factor-
lzatlon we'll use the hiccup distributive lawi Referring to
Aéi), 1t goes 1like thist |
1é PFilrst multiply x times xy getting x5, and that takes care
of thate
2. Now for the hiccupst mnultiply x tlmes x3y getting x“y, end
then hiccup becik to the =y and mulciply 1t times the x¥ term;
this glves ~x“y end the sum total of before and after the

hiccup 1s zero. 1;16
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3é Multiply x times xzyzzgetting x3y2; hiccup beck and multie -
ply -y times x3y settlng -x3y2; sum totel 1s zero.
4} Every x multiplication followed by a hiccup =y multiplicaw
tion glves a zero except for the last hlccup; that would be

ug glving a product of -y5, and Q.E,D. (Or lemde-da,

-y times ¥y
take your cholce,)

Ilkewlse, the feciorization of - yn can succlnctly be
defined ast X® « 7" = (x=y)( 2k ¥=1131y:  (Boy, that sigme~
I=c.

slgn notation is hendy to have arouwndi)

Problem 2 of CG II, section 13, says that & 5 w1 §

Well if x = 5 and y = 1 in the above factorlzation, then
certeinly (5-1) (5018} Ilkewlse, 3 (37" = 34™) eince
x =37y =3 and x-y = 3 4

Now the above factorlization holds for ali n, end therew
fore we might expect the expression 6°% = I to be divisible
by 5 even though the exponent has been restricted to even ine.
tegersy And indeed 1t 1s by previous observations, But
furthermore, 6°° = 1 1s divisible by 7, as you've slresdy
verifled in problem 5 of CG IX, seé%igﬁ«£;5$ Thls would seem
to indicate that x*® « y°! has e fector of x+y as well as a
factor of x«yi¢ Let's check thls out,

First let's look at the case where n 1s odd and observe,
explore end discoveri For lnstence, x5-y5 = (x~y)(xb+x3y+x2y2+
xy3+y4); The second factor has 5 terms, end that's that as
far =3 factorlzation over the rationals 1s concernedt (There
is an extremely complex (?) technique for factoring the
second ractor over the complex fleld.,) If the second factor
had en even number of terms (when will this occur?), then it

ERic«lld be faotored due to the symmetry of the exponents! Let's
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6

look at ones x -y6 = (x«--y)(:r.'5u9-:tl!’;v+x3y2+x2:,r3+x3r‘!+

+377),
Lurking within those six terms i1s a common (binomial) factor;
we wlll use the key idea of partial fsctcring (again it mekes
en appearancel) to ferret out the lurking (binomiel) factori
Inspect the first two terms, the mlddie two and the last two
terms; zo+xty + xoy24xyd + zyi+yS. Pertlsl fector, gettings
14(x+¥) + IZYZCX*Y) + F4Cx+y)$ Mind now we can see the binoms
12l factor that had been lurking there all the tlme; namely,
(x+y)é Finally, x6~y6 can be factored thuslyt

14) Byl = (z-y) (mey) (2 + 292 4 3H)

Did I sey finally? Wwhy there's nothing final about that
factorization at slli By the use of a propltlous zero we can
readlly factor xu + xzyz + yng Just introduce the terms
xzyz - x?yz;' Then xn + x2y2 + yu becomes
24) x# + 2x%y2 + yu - x2y2) But what do you recognize about
the first three terms of that expresslon? See the 1, 2, 1°?
Therefore 2;) cen be written as (x° + y2)° = {(xy)2., But now
we have the difference of two squaresj and 2.) can be factored
into (x?+y2~xy)(x?+y2+xy)} And finelly (over the rationals,
anyway) 2 = 3% = (x=y) x4y ) (Prayy?) (xPoxyy2) |

Of course 1if you try the propltlous zero stunt on elther
of the last two factors you'll run into quick trouble (even
though they do indeed look ripeil)., However, by all means glve
it a try! In case you haven't figured it out yet, the prow
pltious zero stunt consists of introducing a zero such that the
glven expression can be "made into™ the difference of two
perfect squares, 'Here's}anbther example? factor x#+10x2+49$
Merely edd the propitious zero bzzuhxz, obtalning the expression

lijkj§+1ux?+u9 - bx2, gince W+14xP4l9 = (x247)2, the factorization
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1s immediates, Nemely, (x2e2x+7)(x*#2x+7);

Ttve introduced two ideas heret lurking factors and
propltious zeross How good a lurker are you (1t usually takes
minutes of hard tralnlng)? Let's go beck end look et 1)
2B - Y6 = (x-y)(x0 + X v 4 2352 + 2Py3 + ™ + y2), Above we
found the factor (x+y) lurking within those 6 termse But
there 1s snother larger factor {trienomisl) lurking within those
six terms; to find 1t we need only change our point of view.

fook at the first three terms and the second three terms
of x5+y+edy? + 2ydexyey5) Use partial factoring on each
of these sets of 3 terms; you should get xﬁcx?+xy+y2)+w3(x?+xy+w2)L
But this ylelds the common (tri-nomial) factor xX°+xy+y*{ end
® - 16 = (xny)(x?+xy+y2)(13+y3)$ But we know from above thet
x+y must be a factor of x§~Y6; end from what we Jjust found 1t
must be a fector of x3+y3; But we don't know how to factor
the sum of two termst

Let's not panic, however, as we do have some experience 1in
thlis area¢ Suppose we glve a loéknsee at the hiccup distributive
laws 1t could help us¢ We know that x}+w3 has a factor of X4y
by virtue of 21l that we did ebove; We also know 1its second
factor; namely, x?~xy+y2A Does the hiccup distributive law
verify this fastorization? Does (xty)(x2exy+y?) = T4y ?

(It must! ww= or I'm in dire trouble:) Well, x times x°
ylelds the x3 term; now for the hiccupss X times -xy glves
«12y, end right behind thet we have y times X* or x°yj the sum
i1s zerol Likewise, x times yz glves xy2 but this is hiccupmed
by the product of y end -xyi And then y times y2 ylelds the
y3 termi Beautifull
The above 1s a short outline of when xP + y® will have.
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e factor of z+y; you should observe thet x + y* will only.
have a factor of x+y when n 1s an odd positive integeri
(You should be gble to verify why thils 1s so upon inspection of

x2n+1 + y2n+1;

the number of terms in the second factor of
remember, 2n+l represents an odd integer)s, Therefore, we
wrlte the factorization thuslys

xRl 32n+1 = (x+y)(-2§§ (-ljixzn“lyl);- Please verify this
also. 1?

And now we cen see why 8 (3 problem 12,

2n+1.+ 52nf1) (
CG IIy section 1i¢3)3 since (x+y) x?n+1 + y24+1 s for x =3
end ¥ = 5, the problem 1s immediates

I have therefore Justifled all the conjectures of CG II,
section 1.3, except problems 14 « 18, Two of these were found
in (15), but no reason was givens I've guessed the generating
process end you've verifled all 5; so we know thet the exe
pression % 4 (x+1)2n+1 has a fsctor of x%+x+l, but I
don't know how to Justlfy or produce that factorization,

But I°m working on it! .Care to join me?

Before I glve you some fectoring problems to look at, I.
went to investigate two additional uses for the fastorization
of x* wyBi .

The standard deriwvatlon. found in all the tezxtbooks for .
the sum of the terms of a geometric progression can be replaced
by a simple observation relative to. the factorizatlion of
D « 7B, The sum of o-.geometric progression 1s expressed as.
arartar?iss et Far™l or alltrsrPeg a2l The ex-
pression in. parentheses however is npthing more then, the second
factor of X =yl with x =1 end y = r} 1;e.,,xﬂ-y9-=.(19y)(xp‘1+

o zp'zy'+#.L+xyn“2-+-ynfl)_becomesgnppn:substitution‘or'l for x
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and r for y, ler” = (1~r)(1+r+$$£+rn“2+rn"l); Therefore,

the sum of a geometrlc progression 1s readlly seen to be
(e){{1=x?)/{1-r)}} , end where the a 1s thrown in Just for good
lucky

And now the second uset suppose I'd like to factor (x=y)
into two factors which will heve retional exponents:! (The re-
verse problem 1s of primary lmportance in finding a derlvative
formula for rational exponents in the cgleulusi} For instance,
I want (x=y) = (xé - yij times "something vlse®, The nature of‘
the "something else" is lmmediate; namely, x3/4+ xz/uyl/n +
/2% 4§ ymat Ttve done 1s fector A¥ « BY where
A=/ ana B =y 15,
(/4w Y = B L P EA R GTY -
(M2 4 7%)3)0 Neat, en?

And now for some factoring problems; See your local Math

teacher for answers to all of these problems,

Lurkers Plus More X® - ¥R

1i 22 + 3x + ax + 3Ja b, n3 (n-l-l)3

2 = + 3x3 +8x + 32 5, £ o yb

3, 3er + 3br - &= 6. =+ 38

Li xm - I + ym - yN 78 x7 -y

50 92 + 9 mx -1 8: x¥ + y9

6i 92 = 3% - x2 + 1 9s _::::'-2--151"2

Hintt Keep going in #2 and #5.

- ' Propitious ZERO

251:;!2 ;. he? = b2 + 128c + 9c2
1. -t 2i 22+ y% .25 + 2xy

2: (z=y)¥ = (xey)" T e T
[1{ﬂ313‘+ (x-1)° b, x® = Uy? + &2 - 9b? w2ax-l2by
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More Propltlous Zexro
5, o = 5222 + WP
64 - 14x® + 49
7¢ X' + 12%° + 64
: - 18%2 + U9

= M

i
4:.-

Challenges

14 o - 27x
2 x” - 3y +64x - 6Ly
3e ll*(x?‘w":)) - 2F2 w 5% 4 3

by a(nc)? e Blomald + cla~b)d

o ., P -
By 287aT » Zahme’ ol Z2bm ce 2b?
Sectine T4L Swmmer: ud Enrlchment

ey g, Tew commsttsq gections 251 and 2,2 are loaded
whtl 2lgebraly menlpule’sions end a number of very sophisticated
idesas If yom cen msw*e%‘+hé calculations end concepts in-
thosce geeticrnu, thovs 1s very little algebra that will ‘ever
glve you v Liounle in the future; Those two sections contain
the tool~ f-1 hendling meny, meny topics of mathematical
enalyslss —edlar them end you will enjoy much of the mathema~
tics in your future, On the contrary, you can't learn concepts
1f you keep tripplng over the toolsi R

Two suggested enrichment. toplost Liebnitz, the co-disu.
coverer of the calculns, invented another arithmetic triangle
about rifty:ysafs'after Pascal's deathi It contains only
fractions and’ has a "9peverse” seneretion process relative to

wcal's Triangle. This triangle 1s presented in Polya's book

14”
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(book (6) of the T1 bibliogrephy) on pege 88yalong with many
questlons and observations. Polya glves hlis answers to these
questions on page 1853 they will ameze youl
In this chapter we learned about the PMI. The processes
we used were pretty stendard; however, for a unique, clever
and exclting vurlation of the usage of the FPMI see Edwin

Beckenbach and Blchard Bellmen's An Introduction to Inegualities,

Bandom House ~ New Mathemetical Iibrary, 1961, pages 54 =~ 61,
The authors name part of theilr varlation of the PMI "Beckward
Induction®, which they utilize to prove that the arithmetic
mean 1ls greotelr UGkan or equal to the geometric mean for any
number of ¥:xlu2c: Since most of you are quite backward, you

should enjoy the topic very much,

Section 4.1 Blbliography

Seme as that of Chapter Tl, found on pages 101 and 102
of that chapter,
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