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A General Method for Estimating a Linear Structural

Equation System

Karl. G. nreskog

Educational Testing Service

Abstract

A general method for estimating the unknown coefficients in a set

of linear structural eq,lations is described. In its most general form the

method allows for both errors in equations (residuals, disturbances) and

errors in variables (errors of measurement, observational errors) and yields

estimates of the residual variance-covariance matrix and the measurement error

variances as well t-,s estimates of the unknown coefficients in the structural

equations, provided all these parameters are identified. Two special

cases of this general method are discussed separately. One is when there

are errors in equations but no errors in variables. The other is when thei.s

are errors in variables bat no errors in equations. The methods are applied

and iliustratA using arUficial, economic and psychological data.



A General Method for Estimating a Linear Structural

Equation System*

1. Introduction

We shall describe a general method for estimating the unknown coefficients

in a set of linear structural enuations. In its most general form the method

will allow fcr both errors in equP.+ions (residuals, disturbances) and errors

in variables (errors of measurement, observational errors) and will :!]eld

estimates of the residual variance-covariance matrix and the measurement error

variances as well as estimates of the unknown coefficients in the structural

equations, provided all these parameters are identificd. After giving

the results for this general case, two special cases will be considered.

The first is the case when there are errors in equations but no errors in

variables. This case has been studied extensively by econonetricians (see

e.g., Goldberger, 1964, Chapter 7). The second case is when there are

errors in variables but no errors in equations. Models of this kind have

been studied under the name of path analysis by bionetricians (see e.g.,

Turner & St,ivens, 1959). sociologists (see e.g., Blalock, 1964) and psycholo-

gists (Werts & Linn, 1970).

It is assumed that the observed variables have a nultinorral distribu-

tion and the unknown parameters are estirated by the ra.:;imum likelihood method.

The estimates are computed numerically using a modification of the Fletcher-

Powell minimization algorithm (Fletcher & Powell, 1963; Gruvaeus & Areskog,

1970). Standard errors of the est'.nated parameters may be obtained by

computing the inverse of the information matrix. A computer program,

This research has been supported in part by grant NSF-GB-12959 from the
National Science Foundation. The author wishes to thank Professor Arthur
Goldberger for his cornents on hr. earlier draft of the paper and Marielle
van Thillo, who wrote the computer programs, checked the mathematical
derivations and gave other valuable assistance throughout the work.
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LISREL, in FORTRAN IV, that performs all the necessary computations has been

written and tested out on the IBM 560/65; a write-up of this is under

preparation (J8reskog & van Thillo, 1970).

In the first special case referred to above, where there are no error:'

of measurement in the observed variables the general method to be presented

is equivalent to the full information maximurr likelihood (FIML) method of

Koopmans, Rubin and Leipnik (1950) also called full information least

generalized residual variance (FILGRV) metnod (Goldberger, 1964, Chapter 7),

provided that no constraints are imposed on the residual ,,ariance-cova2iance

matrix and the variance-covariance matrix of the independent variables.

However, with the general method described here, it is possible to assign

fixed values to some elements of these matrices and also to have equality

constraints among the remaining elements.

2. Tne General Model

ConsiCer random vectors 1-1' = (ql,r12,...,im) and tl = (tl;t2;,tn)

of true dependent and independent variables, respectively, and the following

system of linear structural relations

where p(m x m) and P(JI x n) are coefficient matrices and

(
m

) is a random vector of residuals (errors in equations, random disturbance

terms). Without loss of generality it may be assumed that f(r) e(0- o

and e(',) = 0 . It is furthermore assumed that ( is uncorrelated with

and that B is nonsingular.
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The vectors Ti
and t are not observed but instead vectors y'

(y1,y2,...,ym) and x' , (x1,x2,...,xn) are observed, such that

y µ + + E

x = v + +

where 4 = e(y) , v = e(x) and E and 5 are vectors of errors of measure-
-

ment in y and x , respectively. It is convenient to refer to y and

as the observed variables and q and as the true variables. The errors

of measurement are assumed to be uncorrelated with the true variates and

among themselves.

Let (1)(n x n) and i(m x m) be the variance-covariance matricas of

t and , respectively, a
2

and 26 the diagonal matrices of error

variances for y and x , respectively. Then it follows, from the above

assumptions, that the variance-covariance matrix E[(n n) x (m + n)1 of

z = (y',x')' is

(
B
-1

INforIB,
-1

+ B
-1

1;flil

-1
+ 8

2
B
-1

Fq)

E =

Cr' Bi
-1

4) 4 8

The elements of E ale functions of the elements of B , r ,

26 and EA. . In applications some of these elements are fixed and equal

to assigned values. In particular this is so for elements in B and F

but we shall allow for fixed values even in the other matrices. 1,,r,r the

remaining nonfixed elements of the six parameter matrices one or more subs

may have identical but unknown values. Thus parameters in B , , ,

, 8
5

and 8
c

are of three kinds: (i) fixed parameters that have been



assigned given values, (ii) constrained parameters that are unknown but equal

to one or more other parameters and (iii) free parameters that are unknown and

not constrained to be equal to any other parameter.

Before an attempt is made to estimate a model of this kind, the identi-

fication problem must be examined. The identification problem depends on

the specification of fixed, constrained and free parameters. Under a given

specification, a .7;ven structure B , P , , * , S8 , `.3c generates

one and only one E but there may be several structures generating the

same E . If two or more structures generate the same E , the structures

are said to be equivalent. If a parameter has the same value in af.1 equiva-

lent structure; the parameter is said to be identified. Tf all parameters

of the model are identified, the whole model is said to be identified. When

a model is identified one can usually find consistent estimates of all its

parameters. Some rules for investigating the identification problem when

there are no errors in variables are given by Goldberger (1964, pp. 306-318).

3. Estimation of the General Model

Let zi,z2,...414 be N observations of z = (y',x')' . Since no

constraints are imposed on the mean vector 62.1,vT the maximum likelihood

estimate of this is the usual sample mean vector i = (yI,R1)/ . Let

N

S
1

E
(zCY

- gz - g)I
U-1

be the usual sample variance - covariance matrix, partitioned as

Syy(m .-. Syx(m x n)

S[ (m + n) x (m + n)) =

S
xy

(n x m) S (n x n)
-

(5)

(6)
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The logarithm of the likelihood function, omitting a function of the

observations, is given by

log L =
2
N[log 1E1 + tr(SE

-1
)] .

This is regarded as a function of the independent distinct parameters

in B , P , , , 8.5 and Of and is to be maximized with respect

to these, taking into account that some elements may be fixed and some

may be constrained to be equal to some others. Maximizing log L is equiva-

lent to minimizing

F = (N /2)[log 1E1 + tr(SE-1)] .

(8)

Such a minimization problem may be formalized as follows.

Let (1\1,t,2,...,X) be a vector of all the elements of B , P ,

45 , , 86 and arranged in a prescribed order. L F may be

regarded as a function F(?) of 21,X2,...,X13 , which is continuous and has

continuous derivatives 61.1
s

and 32F/A
s t

of first. F.nd second order,

except where E is singular. The totality of these derivatives is repre-

sented by a gradient vector O
2

FA\ and a symmetric matrix o Now

let some p - q of the ?'s be fixed and denote the remaining Ms by gl,

n,,...,n , q < p . The function F is now considered as a function G(g)

of %
2'

...
'

. Derivatives G/C)rt and 6 G/0117170 are obtained from

r,
1-PA and 3

2
Fio/..)20 by omitting rows and columns corresponding to the fixcd

Ms. Among ni,g2,...,r1 , let there be some r distinct parameters denoted

K1,K2,...,Kr , r < q , so that each ni is equal to one and only one K. .

7
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butpossiblyseverallOsequalthesarre a matrix of

order q x r with elements k. = 1 if g
i

= K. and k
ij

= 0 otherwise.
ij

The function F (or G ) is now a function H(k) of end we

have

3H/615 = KIOGN) (9)

)21-1/)0K, 1%,(6G/)010) (10

Thus, the derivatives of H are simple sums of the derivatives of G .

The minimization of H(K) is now a straihtforward application of

the Fletcher-Powell method for which a computer program is available

(Gruvaeus & J8reskog, 1970). This method makes use of a matrix E , which

is evaluated in each iteration. Initially E is any positive definite

.2 ,
matrix approximating the inverse of o Hialroe . In subsequent iterations

E is improved, using the information built up about ne function so that

ultimately E converges to an approximation of the inverse of a
2Hi6x1

at the minimum. If there are , parameters, the number cf iterations

may be excessive, but can be considerably decreased by the provision of a

good initial estimate of F Such an estimate may be obtained by invertine

the information matrix

E(3 Hido(60t') K'E(0-Gidg6g9K ,

,

where e()
2
Go;r6,o) is obtained from

e(32116>.)?1 pze()F/6?. _,F/3? o) (12)
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as described above. When the minimum of H has been found, the inverse

of the information matrix may be computed again to clJtain standard errors

of all the parameters in it . A general method for c,btainThg the elements

of e(6Fp6F/6m) is given in Appendix A2.

The application of the Fletcher-Powell method rc/uires formulas for

the derivatives

8 Lnd e .

Appendix Al.

St =

the derivatives

OF/OB

1-16r

6Fpl,

of F with

These may

Writing A

(ori

0 St

xy -xx

are

-NWP

= N(Arnyy124,

= N(D'n
yy-

respect to the elements of 2 , r , fi : y ,

be obtained by matrix differentiation as shown in

= B
-1

D = B
-1
r and

-
s)E-1 (23)

DOI 4 Ain A*A1 + (14)

(i5)
+ A'Qyx0

(16)
fl + D'P + c D + fl )-yx -xy-- -xx

6F/6* = NA'j A

3F/696 =

6:/68 n Nn
-c syy_c

In these expressions we have not taken into account that P and are

s:ozzLetric and that 96 and 9c are diagonal matrices. The off-diaconal

9



zero elements of 8
6

and 0 are treated as fixed parameters and the off-

diagonal elements of 1) and 4i as constrained parameters.

When the maximum likelihood estimates of the parameters have been obtained,

the goodness of fit of the model may be tested, in large samples, by the

likelihood ratio technique. Let Ho be the null hypothesis of the model

under the given specifications of fixed, constrained and free parameters.

The alternative hypothesis H
3.

may be that E is any positive definite

matrix.

3),

Under H
1

th, maximum of log L is (see e.g., Anderson, 19)8, Chapter

log L
1 2

N(leg IS m + n) .

Under H0 , the maximum of log L is equal to minus the minimum value

F
o

of F Thus minus 2 times the logarithm of the likelihood ratio

becomes

U = 2F N logISI - N(m + n) .

2
If the model holds, U is distributed, in large samples, as X with

1
(m + n)(m + n + 1) -r

(20)

(21)

degrees of freedom, where, es before, r is the total nurrber of independent

parameters estimated under H
0

10
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4. The Special Case of No Errors of Measurement

If there are no errors of measurement in y and x , the model (1)

may be written

By = Fx + u (22)

where we have written u instead of t . In (22) we have altered the model

slightly, compared to (1), (2) and (3), in that the mean vectors have been

eliminated. This is no limitation, however. since constant terms in the

equations can be handled by using an x -variable that has the value 1 for

every observation. In this case, of course, S should be the raw moment

matrix instead of the dispersion matrix.

This type of model has been studied for many years by econometricians

under the names of causal chains and interdependent systems (e.g., Wold

Jureen, 1953). The variables y and x are economic variables and in

the econometric terminology, the variables are classified as exogenous

and endogenous variables, the idea beign that the exogenous variables

are given from the outside and the endogenous variables are accounted for

by the model. From a statistical point of vi w the distinction is rather

between the independent or predetermined variables 25 and the dependent

variables y . The residual u represents a ralidom disturbance term assumed

to be uncorrelated with the predetermined variables. Observations ya and

xrX on y and x are usually in the form of a time series.

Equation (22) is usually referred to as the structural form of the

model. When (22) is premultiplied by B
-1

one obtains the reduced form

11
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y= + u*

where II = B
-1
r and u* = B

-1
u. u* is the vector of residuals in the

reduced form.

In this case, 8 and
-c
0 in (4) are zero and therefore lEi and

E
-1

in (7) can be written explicitly. It is readily verified that

and

'El = IBI-210114,1

'\Y 1B B';,-1r

( 0-1

Using these results, log L becomes

I

log L =
1

N[log i01 + tr (S 0
-1) 1

- Nilog - log IBI
2

2 -xx-

+ tr[(BS B1 - BS Pt - rs BI + PS r94/ -)/

If 0 is unconstrained, maximizing log L with respect to gives

= S , which is to be expected, since ' in this case is the variance-

covariance matrix of x After the likelihood has been maximized with

respect to 0 , the reduced likelihood is equal to a constant plus

1 1 ,

log T5= N$log - log 1B12

(23)

4 trE(BS B1 - BS Pr - rs Br + PS Pi)W-iji . (24)

12



If also V is unconstrained, further simplification can be obtained,

for then (2k) is maximized with respect to * , for given B and P ,

when * is equal to

* = BS B° - BS . FS 131 + PS rl

so that the functio.: to be maximized with respect to B and P becomes a

constant plus

where

log L**
1

N[log - log B12]
2

= -1 N log(I*1/rB12)
2

1
N log 1B-1*B1-11

2=
2

N log 1111411 ,

** = S - S - HS HS n'
_yy _yx_ __xy __xx_

(20

(26)

(27)

In deriving (26), we started from the likelihood function (7) based on

the assumption of multinormality of y and x . Such an assumptioA may be

very unrealistic in most economic applica,Lions. Koopmans, Rubin and Leipnik

(1950) derived (24) and (26) from the assumption of multinormal resich4a2s.

u , which is prob'sbly a better assumption. However, the criteri'n (26)

has intuitive appeal regardless of distributional assumptions and con-

nections with the maximum likelihood method. The matrix ' in (7) is the

variance-covariance matrix of the residuals u in the structural form (22)

13
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and the matrix lir* in (27) is the variance-covariance matrix the residuals

u* in the reduced form (23). Maximizing (26) is equivalent to minimizing

**1 . Since kIJ*1 is a generalized variance, this method has been called

the full informatir,n least generalized residual variance (FILGR7) method

(see, e.g., Goldberger, 1964, Chapter 7). Several other estimation criteria

based on ** havo been proposed. Brown (1960) suggested the minimization

of tr(**) and Zellner (1962) proposed the minimization of tr(W-1**)

where W is proportional to S = S S 8
-1

S . Malinvaud (1966,
-yy.x -yy -yx-xx-xy

Chapter 9) considered the family of estimation criteria tr(W) with

arbitrary positive definite weighting matrices A .

Since the original article by Koopmans, Rubin and Leipnik (1950) several

authors have contributed to the development of the FILGRV method (Ch.rnoff

& Divinsky, 1953; Klein, 1953, 1969; Brown, 1959; Eisenpress, 1962; Eisenpress

& Greenstadt, 1964; Chow, 1968; Wegge, 1969). This paper will add another

computational algorithm to those already existing.

Minimizing i**1 is equivalent to minimizing

F = log - log IpI2 . (28)

ME.trix derivatives of F with respect to B and F may be obtained by

matix differentiation as shown in Aprendix A3. The results are

61"013 = 2*-1(ps FS ) - p.-1__yy --xy

-0F/6I = 2*-1(FS - BS ) .

The function F is to be minimized with respect to the elements of

B and r taking into account that some elements are fixed and others are

constrained in some way. As will be demonstrated in sectionF 5 and 6,

14
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allowing for equalities among the elements of B and r , is not sufficient

to handle some economic applications. Instead, more general constraints may

be involved. Usually these constraints are linear but even models with

nonlinear constraints have been studied (see, e.g., Klein, 1969). Such

constraints can be handled as follows.

Let gl = (31.1,1r2,...,Itcl) be the vector of all nonfixed elements in

B and r . Each of these elements may be a known linear nonlinear

function of x' ==. (K K
2' '

K
r

) , the parameters to be estimated, i.e.,

1 -
:= f1(K) , i 1,2,...,q .

Then F is regarded as a function H(x) of KI,K2,...,K
r

. The derivatives

of H of first and second order are again given by (9) and (10), but now

K is the matrix of order q x r whose ijth element is 6f. K. . The

function H(K) may be minimized by the Fletcher - Powell method as before.

The advantage of this method compared to the more general one of the

preceding section is that the function now contains many fewer parameters

and the minimization is therefore faster. The Fletcher-Powell algorithm

is relatively easy to apply even in the nonlinear case and the iterations

converge quadratically from an arbitrary starting point to a minimum of

the function, although there is no guarantee that this is the absolute

minimum if several local minima exist.

5. Analysis of Art Vicial Data

The following hypothetical economic model is taken from Trown (19M,

a0 4 a 1W 4 a2n 4 u1

:15

(52n)



W = b0 4 b1Y + b2Y
-1

+ u
2

W +1I+T = Y
g

C + E = Y

where the dependent variables are

(32b)

(32c)

(2d)

C = consumer expenditures

W = wage-salary bill

It = nonwlge income

Y = total income, production and expenditure

and the predetermined variables are

Tg = gov!rnment net revenue

E = all oonconsumer spending on newly produced final goods

Y = value of Y lagged one time period

and where ul and u2 are random disturbance terms assumed to be uncor-

related with the predetermined variables. This hypothetical model will be

used to illustrate sore of the Ideas and methods of the previous se tions.

To begin with we shall assume that the variables involved in this model

are not directly observed. Instead they ere assumed to represent true vari-

ables that can only be measured with errors. Such an assumption may not hp

unreasonable, as pointed out by Johnston (1963):

To be realistic we must recognize that most economic statistics
contain errors of measurement, so that they are only approximations
to the underlying "true" values. Such errors may arise because
totals are estimated oa a sample basis or, even if a complete
enumeration is attempted, errors and inaccuracies may creep in.
Often, too, the published statistics may represent en attempt to
measure concepts which are different from those postulated in the
theory (p. 118).

16
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Converting the variables to deviations from mean values and writing

= (C,W,R,Y) , t' = (T
g
,E,Y

-1
)

be written in the form of (1) as

/1 -al -02

(010
0 1 1

\1 0 0

-1

and = (u1,u2,0,0) , model (32) may

-1

0

\,0

0

0

-1

o\

0 t

b

0

(33)

There are 19 independent parameters in this model, namely 4 in B and r ,

6 in

3 in

4.!

aT

g
2

2

0
T E

cE

c
EY

2

T
g
Y
-1 -1

c

Y-1/

2
a
ul

1

0 0
2

u1u2 u2

0 o

0 0 0 0

(3h)

(35)

and 6 in .86 = di AOT ,OE,Oy ) and
c

= diag(0c,6w3R,C.1) Note that

g -1
since (32c) and (32d) t,re error-free equations, * has the form (35) with

zero variances and covariances for u
3

and uL . A1.5o since Y_1 is Y

lagged, we have assumed that the error variances in Y and Y
-1

are the

same. Therefore, 8 and 9E have only 6 independent elements.

17
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Data were generated from this model by assigning the following values

to each of the 19 purameters

a
1

= 0.8 a
2

= 0.4 b
1

0.3 b
2

= 0.2

u
T

2
= 1.0 u

2
= 2.0 u

2
= 3.0

g
Y
-1

c
T E

= 0.1 u
TgY-1

= 0,2 u
EY-1

= 0.1

g

u
2

= 0.2 u
2

= 0.3 u = 0.1u u
1 2

11,112

0
T

= 0.4 9E = 0.6 8Y = o.5
-1

0
c

0.5 0 = 0.6 0 = 0.9 = 0.5

The resulting E , obtained from (4) and rounded to 3 decimals, is

(36)

C

C

4.599
W II Y T

g
E Y

-1

W 2.481 2.069

II 4.659 2.159 7.514

Y 6.449 3.731 7.409 10.799 (37)
T
F

-0.692 -0.138 -1.454 -0.592 1.160

E 2.100 1.250 2.750 4.100 0.100 2.360

Y
-1

0.442 0.763 -0.421 0.542 0.200 0.100 3.250

For the purpose of illustrating the estimation method of section 3, the

above matrix is regarded as a sample dispersion matrix S to be analyzed.

The order of the vector )1 is 78, since there are 78 elements in B , P ,

, W , et, and 8 an together. Of these, 54 are fixed and 24 are

ncnfixed, so that t is of order 24. Because of the symmetry of C, and

and the imposed equality of 0 and 0 , there are 19 independent param-
Y
-1

eters, S3 that the order of s is 19.

18
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The minimi2.,Ation of H(K) started at the point

al = 0.6 , a2 = 0.3 , bl = 0.4 , b2 = 0.1

2 2
crT = 2.0 , crE = 2.0 , cry = 2.0

g -1

T E T Y Y aEY
g -1 -1

= 0.0

a
2

= 0.3 , a2 0.3 a
ulu2

= 0.0
u
2

T
= 0.4 0 = 0.6 0v = 0.5

g
E

'-1

= 0.5 ow = o.6 , on = 0.9 , ey = 0.5

From this point seven steepest descent iterations were performed. There-

after Fletcher-Powell iterations were used and it took 25 such iterations

to reach a point where all derivatives were less than 0.00005 in absolute

value. At this point, the solution was correct to four decimals and

the E in (37) was reproduced exactly. Twenty-three Fletcher - Powell

iterations required for convergence is not considered excessive since no

inforr,ation about second-order derivatives was used and it takes at least

19 Fletcher-Powell iterations to build yp an estimate of the matrix of

second )rder derivatives.

We now consider model (32a-d) in the case when the variables are

observed without errors of meacurement. Then the method of section 3

cannot be applied directly since the two identities (32c) and (32d)

that E is singular. Therefore, two of the endogenous variables must be

eliminated from the system. It seems most convenient to eliminate C and

Y . When these variables have been eliminated, the structural equations

become

19
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1 - al

1 -b
1

1 -

-b
1 \

b
1

1

0

/T

O

b u
2

(58)

This system may be estimated by the method of section 4.

To illustrate the application of the estimation prwedure we use a

dispersion matrix S obtained from E in (37) by subtracting the error

variances from the diagonal elements and deleting rows and columns corres-

ponding to C and Y . There are 6 nonfixed elements in B and P ,

namely all
(312 ' (321 ' (322 ' 721 and 723

These are the elements

of the vector It These elements are functicns of al , a: , b1 and

b
2

defined by (compare equation (31))

1
i°11\

-1 o o 0

(312
0 -1 0 0

D21 .
0 0 -1 0

1322
0 0 -1 0

.y21 0 0 1 0

723
0 0 0 1

Thu,., the function F is a function of 4 indepc.,icnt parameters.

The function F was minimized using only Fletcher-Pr-Al iterations

starting from the point

a
1

0.6 a
2

- 0.3 b
1

= 0.4 b
2

= 0.1

(39)

The solution point, found after 8 iterations, was, as expected, a
1

= 0.8 ,

0.4 , 111 = 0.3 . b2 = 0.2 with

20
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V = = 0.05
0.1 0.5

6. An Economic Application

In this section we apply methods SFLGRV and RFLGRV to a small economic

model taken from the literatire. The model is Klein's. model of United

States economy presented in Klein (1950, pp. 58-66):

Consumption:
C a0 alP 4- a2P-] a3W ul

(f:0a)

Investment: I = bo + biP + b2P..1 + b314...1 + u2 (4-0b)

Private wages: W* c0
c1E

c2E-1 c3A u3
(40c)

Product: Y + T = C 4- I G (40d)

IncoL.e: Y = P W (We)

Capital: K = IK_1 + (40f)

Wages: W = V* + W** (LOg)

Private product: E = Y + T - W** (40h)

wlv,re the endogenous variables are

C = consumption

I = investment

W* = private wage bill

P = profits

Y = national income

K = end-of-year capital stock

W = total wage bill

E = private product

21
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and the predetermined variables are the lagged endogenous variables P_1 ,

K
-1

and E
-1

and the exogenous variables

1 = unity

W** = government wage bill

T = indirect taxes

G , government expenditures

A = time in years from 191.

All variables except 1 and A are in billions of 1954 dollars.

This model contains eight dependent variables and eight predetermined

variables. There are three equations Jiving residual terms. The other

five equatioi,s are identities. Using the five identities (40d) (40h),

P , Y, K, W and E may be solved for and substituted into (40a) -

(40c). This gives a model with following structural form

1 al

1
1 - b

1

- al al -

- b bl I

c1 - c1 1 W*

7
,1
i

a
0

(
= b0

c
0

a
5

- a
1

b
1

el

-al

-b
1

0

al

b
1

c1

C

0

c3c.5

a
2

b
2

0

b
3

0 c2/

T

G

A

1

K
-1

There are 24 r.onfixed eicr,ents in B and r 'these are all li_eas

functions of the 12 unknown ecefficients in (40a-c) as follows
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P12

P.
13

f22

23

P,31

f332

711

712

13

714

716

721

22

723

724

726

C.1

31

732

734

735

0

0

0
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o
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0

0
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0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

-1

0

0

0

0

.)

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0
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0 0

0 0

0 0

0 -1

0 -1

0 1

0 0

0 0

0 .0
0 0

0 0

0 0

0 0

0

0 -1

0 -1

0 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

C

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

'0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

-1

-1

0

0

0

0

0

0

0

0

0

0

0

0

-1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

raj

a1

a,

a
5

b
1

b,

b3

Co

c
1

c 2

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

C

0

From annual observations, United States, 1921-1941 the followinF, raw

moment matrices are obtained:

c

S = I
-yY

w*

C

62166.6;

1679,0i

42076.78

I

286.02

1217.92

w*

28560.86

23
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1

w**

1133.90

5977.35

26.6o

103.80

w*

763.60

4044.07

T 7858.86 160.40 5315.62

1'633.68 243.19 7922.46
S =
xy A 577.70 -105.60 460.90

P
-1

18929.37 655.33 12871.73

K1 227767.38 5073.25 153470.56

E
-1

1 66815.25 1831.13 45288.51/

1

1

21.00
'.%'** T A

-1
K

W** 107.50 626.87

T 142.90 789.27 1054.95

G 208.20 1200.19 1546.11 2369.94
S =
xx A 0.00 238.00 176.00 421.70 770.00

-1
343.90 1746.22 2348.46 3451.86 -11.90 5956.29

-1
4210.40 21683.18 28(66.23 42026.14 590.60 69073.54 846132.70

-1
1217.70 6364.43 8436.53 12473.50 495.60 20542.22 244984.77 722004

The following estimated model was obtained

C = 18.318 - 0.229P + 0.3841,_1 4 0.802W ul

I = 27.278 - 0.797P + 1.051P1 - 0.148K_1 + u2

TPt- = 5.766 4- 0.235E + 0.284E..1 4 0.234A + u

(1,3)

with

(

43.775
',,, = 801.456 265.856

9.854 80.247 37.540

24
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The standard errors of the estimated parameters may be obtained from a

formdla for the asymptotic variance-covariance matrix developed by Rothenberg

and Leenders (1964).

7. The Special Case of Np Residuals

When there are no residuals in (1), the relations between ri and

are exact. The joint distribution of ri and is singular and of rank n

In the equation (4) for E , the second term in E
YY

vanishes. In general,

when there are fixed and constrained elements in B and f or in T , Js

And 0 , this model has to be estimated by the method of section 3. This

may be done by choosing y = 0 and specifying the fixed elements and the

constraints as described in that section.

where

The matrix E can also be written

E AM' 82

9
-E Q

and 0=
o 35)

from which it is seen that the mode. is identical_ to a certain restricted

factor analysis model. Several special cases will now be considered.

If B = I and P is unconstrained, i.e., all elements of r are

regerded as free parameters, model (i,5) is formally equivalent to an un-

restricted factor. (JSreskog, 1969). The matrix A in (46) ray be

obtained f. )m any /4, of order (m n) x n satisfying

25
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E A* A* r + o2

by a transformation of M" to a reference variables solutLon where the x's

are used as reference variables. Maximum likelihood estimates of A* and a

may be obtained by the method of Areskog (1967a,b) which also yields a large

sample X
2

test of goodness of fit. Let the estimate of be partitioned

as

where 71*
1

is of order m x n and 2 of order n x n . Then the maximum

likelihood estimates of P and 0 are

P = 712-1 (49)

. (50)

If E = I and P is constrained to have some fixed elements while the

remaining elements in r are free parameters, model (45) is formally equiva-

lent to a restricted factor model in the sense of J8reskog (1969). This nodel

may be estimated by the procedure described in the same paper and, in large

samples, standard errors of the estimates and a goodness of fit test can also

be obtained. A computer program for this procedure is available (,Treskog

Gruvaeu3. 1967).

A more general care is when B i3 lower triangular. The structural

equation system for the true variates is then a causal chain. In general

such a causal chain may he estimated by the rethod described in section 3
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of the paper, though there may be simpler methods. One example occurs when

the system is normalized by fixing one element 'n each row of to unity

and B has the form

[

11
0 0

13_ . 1321 1322 °

/:\m2
f3]

where all the Ws are free .parameters. Then there is a one-to-one trans-

formation between the free parameters of B and the free elements of

A = B
-1

. One may therefore estimate A instead of B . In this case,

the variance-covarience matrix I is of the form

where

= P*A(DA'8*1 4 32

tA 0
=

B*

0

=

0 3 )

(51)

(52)

Model (51) is a special case of a general model for covariance structures

developed by JOreskog (1970) and may be estimated using the comi,uter program

ACOVS (J8reskog, Gruvaeus & van Thine), 1970). In this model r , ,

and a may contain fixed parameters and even parameters constrained to be

equal in grcaps. The computer program gives maximum likelihood estimates of

the free, parameters in A , , (I) , OF and Oc and, in large samples,

standtrd errors of these estimates and a test of overall gcodn..?ss o" fit cf

the model can also be obtained.
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More generally, the above mentioned method may be used whenever E

can be written in the form (51) such that there is a one-to-one correspondence

between the free parameters in B and f and the distinct free elements in

B* and A . For a less trivial example, see JOreskog (1570, section 2.6).

8. A Psychological Application

In this section we consider a simplified model for the prediction of

achievements in mathematics (M) and science (S) at different grade levels.

To estimate the model we make use of longitudinal data from a growth study

conducted at Educational Teting Service (Anderson & Maier, 1965; Hilton,

1969). In this study a nationwide sample of fifth graders was tested in

1961 and then again in 1963, 1965 and 1967 as seventh, ninth and eleventh

graders, respectively. The test scores emplolred in this model are the

verbal (V) and quantitative (Q) parts of SCAT (Scholastic Aptitude

Test) obtained in 1961 and the achievement tests in mathematics (M5,6477119,

M
11

) and science (S
5
,S

7
7S

5
7S

11
) obtained in 1961, 1963, 1965, and 15677

respectively. The achiever:tat tests have been scaled so that the unit of

measurement is approximately the same at all grade levels.

The model is depicted in Figure 1, where V , Q , 1.15 , V77 '9 7

Mil S5 S7 , 39 and S
11

denote the true scores of the tests and

the corresponding residuals. The noiel for the true scores

is

115 alV 4 ag- 4 1

S5 = b1V 4 132Q 4

28
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m7 c1m5

s7 = dls5 + d2M7 + (4

M9 = elM7 + t5

S9 f1S7 f2M9

M
11

= g
1
M
9

+
7

s
11

= h1S9 + h2/.1
11 8

(53c)

(55d)

(530

(530

(53g)

(53h)

This model postulates the major influences of a student's achievement in

mathematics and science at various grade levels. At grad?. 5 the main

determinants of a student's achievew.ints are his verbal and quantitative

abilities at that stage. At higher grade levels, however, the achievements

are mainly determined by his achievements ir. the earlier grade'.. Thus,

achievements in mathematics in grade i determined mainly by the

achievements in mathematics in grade i 2 , whereas achievements in sci-

ence in grade i is determined mainly by the achievements in science in

grade i - 2 and in mathematics in grad? i , i . 7,9,11 .

The structural form of this model is

1

0

-c

0

o

0

o

0

0

1

0

-d
1

o

0

o

0

0

0

1

-d
2

-e
1

0

0

0

0 0

0 0

0 0

1 0

0 1

-f
1

-f
2

0 -gl

0 0

0 0

0 0

0 0

0 0

0 0

i 0

0 1

-h1 -h2

0

0

0

0

0

0

0

Mr

S5

m7

S
7

M
9

S9

Mll

al a2I

b
1

b21

0 0

o o

o 0

o

0 0

0 0

(:)

l\2

c5

6

I 7

(

29
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It is seen that this model is a causal chain. The model can be e:Aimated by

the method described in section 3, provided some assumption is made about the

intercorrelations of residuals . Without such an assumption

the model is not identified. We have chosen to make the assumption that

all, residuals are uncorrelated except and . This assumption does

not seem to be too unrealistic.

The data that we use consist of a randoTA sample of 730 boys taken from

all the boys that took all tests at all occasions. The variance-covariance

matrices are

M
5

m5 150.690

s
5
m7s 1 sI9

9
,.

11
s
13

s
5

115.645 179.617

116.162 123.833 193.557

. s

s
7.

90.709 114.361; 120.426 148-48

-1.:1J' M
9

119.564 125.22) 155.883 320.492 215.894

S9 104.430 135.074 137.L27 133.231 159.783 218.067

M 119.712 126.470 149.950 112.218 175.497 149.045 L64.071

S
11

90.916 116.950 117.439 109.187 135.839 147.115 143.218 190.-(6)

m
5 S5

I. I7

S7
19s 1 s9 "

11
s
11

S =
v 97.544 122.919 106.837 96.252 108.748 107.750 107.042 94.613

-xy
Q 78.527 82.389 87.859 65.703 91.502 72.534 89.617 64.453

V

S =
V 138.014

-xx
Q 75.518 iO.7511

The estimated yodel is

M, = 0.140V 4 0415Q

s
5

1.296v - 0.175Q

rl - 1.09T5 4 ?,

4 S1

4 t,

30

(5'/-1)
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s
7

= 0.325s5 + 0.493m7 +
4

M9 = 1.027K +
I t5

s
9

= 0.703s
7

+ 0.383m
9

+ f
6

M11 = 0.951m +
il 9 7

s
11

- 0.658s
9

+ 0.184m
11

+ f
8

The estimated variance-covariance matrix of the true scores V and Q is

v (105.48

Q 73.95 76.68)

(55d)

(55e)

(55f)

(55g)

(55h)

Estimated residual variances and error variances for each measure are given

below

Measure Residual Variance Error Variance

V 33.1

4.4

M5 10.0 25.4

s5 22.5 11.8

m
7

26.4 40.3

s_ 29.5 24.3

M
9

25.2 29.3

s
9

28.5 36.1

M11 75.7 18.8

sil
20.0 47.7
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The estimated correlation between and
2

is 0.17.

The estimated reduced form for the true scores is

M5 = 0.640v

S
5
= 1.296V

+ 0.415Q +

0.175Q +

(56a)

(56b)

M = 0.702v
7

+ 0.455Q 4-
3

(56'2)

s
7

= 0.767v + 0.167Q 4 (56d)

N9 = 0.721V + 0.467Q (*
5

(56e)

s
9

= 0.815v + 0.296g, 4 tt (560

m
11

= 0.686v + 0.444Q + t7 (56g)

s
11

= 0.663v 0.277Q (56h)

The relative variance contributions of V and Q , the residual and

the error, to each test's total variance are shown below:

I,leasure V and Q Residual Error

M
5

0.73 0.03 0.19

s
5

0.78 0.15 0.07

t !7 0.59 0.20 0.21

S7
0.56 0.28 0.16

M
9

0.56 0.30 0.14

s
9

0.52 0.32 0.16

N11
q
S11

0.112

0.112

0.51

0.35

0.0(

0.25
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It is not easy to give a clear-cut interpretation of these results.

Inspecting first the equations (55c), (55e) and (55g), it is seen that a

unitincreaseinM42tendstohaveasmallareffectorthe larger
1

i is. This agrees with the fact that the growth curves in nathematics

"flattens" out at the higher grade levels. One would expect that the co-

efficient gi in (55g), like c1 in (5)c) and el in (55e). -,;ould be

greater than one, since, in general, for these data, the correlation of status,

iii-2
, and pin, M. - M.

1-2 '
are positive although usually very strall.

However, the large residual variance suggests that M alone is hot

sufficient to account for Mil This is probably aue to the fact that

mathematics courses at the higher grades chance character from being

mainly "arithemetic computation" to involving ..ore "algebraic reasoning."

Inspecting next the equations (55d), (550 and (55h) describing

scien-:e achievem,ents, it is seen that the influence of mathematics on

science tends to decrease at the higher grades. This is natural since

science courses in the lo-,:er grades are based mainly on "Logical reasoning"

whereas in the higher grades they are based on "memorizing of facts." The

effect of science achiever.ents on science two ::ears later first increases

and then decreases his is probably because the fcience courses s;ccial-

i2:e into different ceursos Physics, etc.) at grade 11 wnereas

the science test at the lcs,.er gtales ,casures some kind of overall "science

knowledge."

Whatever r,ay be the Lest interpretatior; of the results, the exa-.ple.

:eaves to illustrate that it is pcssille to have Loth errors in equations

and errors in variables and still have an cstit.abl.e model.
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A. Appendices of Mathematical Derivations

Al. Matrix Derivatives of Function F in Section 5

The function is

F = log lE1 4 tr(SE-1) (Al)

which is regarded as a function of B , P , , v , 28 , ,2E defined by

(4). To derive the matrix derivatives we shall make use of matrix dif-

ferentials.Ingeneral,dwill denote a matrix of differentials

and if F is a function of X and dF = tr(CdX') then 6FPX = C .

Writing A =
-1

and D = B
-1
r = AP we have

and

dA = - B- 1dBB -1 = -AdBA

dD = B
1
dP + dAP

AdP AdBAP

AdD - idBD

Furth,. 114,)4e, since in general,

ilor tr(xlclx)

%dt,r(AX -1 ) , tr(AdX
-1)

..tr(4x-'1d) ..1)

-tr(X-1AX-1dX)

37
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we obtain from (Al),

dF = dlog 1E1 + dtr(SE
-1

)

tr(E-idE) tr(E-1SE-idE)

- trr(E71 E-1SE-1)d7

= tr(fldE)

= tr(Pyydn, + flyxdExy PxydF:,,yx
9xx6xx) I

(A4)

where SI is defined by (12) and dE is partitioned the sar.e way as S1 in

(12).

From (4) and the definiti,:ns of A and D we have

E D:DI + +
rye-YY

E = E/
-yx

= 4 4 'z)2

-xx

from which we obtain

dE = D:c1D/ 4 Dd:D' 4 dD:1)/
_--

+ AAA/ 4 Adik/ dA.,A/

2prd)e

dE = 4dDI + d:D/
-Yy

=
XX ,
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Substitution of dA and dD from (A2) and (A3) int) (A8) and (A9)

gives

dE = Md1"Al - MD'dBIAI

+ AdDn' - AdBMD1

- - AdRA,,,fA1

+ DeD + AcWAI 23 41-':), (All)
c 0

,

OE = (TAPIA' - (IDc1B'A' + cd15.D' (Al2)

Substitution of (All), (Al2) and (A10) into (A4), not:.ng .oat tr(CIOX)

= tr(eAlC) - tr(CdX2) and collecting terms, shows that the matrices multiplyins

(1131 , d^ , dW , cl2t acid d.:7c are the Tatric 3 en the right sines of

equations (14), (15), (11, (18) and (19) respectively. Tlese are therefcre

the corresponding matrix derivatives.

A?. Inf !.?.atfix for the General I:odel of Setion 5

In this section we shall prove a general theorem concerning the exyected

second-order derivatives of any function of the type (0 and show hew this

theorem can be applicei to compute all the elements of the infor7.ation matrix

(12).

We first Prove the following

Lem a: Let S = (l/N)
(7cY

- Mza L)' , where 71,2:c are

indelendently distributed according to N(,) . Then the asy:q
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distribution of the elements of Q = E (7, - S)E
-1

is multivariate

normal with means zero and variances and covaria,Ices given by

w ) 0.040,0v

uv
(A15)

Proof: The proof follows immediately by multiplying w - E cr
gg

(or - )c.r

i

cw gn ',==,:ng h
and co = 1: F. ?i(cri,,1 - s. )(Tiv and using the fact that the asymptotic vit

p.

i-
v

i j
ii

ances and covariances of S are given by

NG[(cr
gh

s
gh

)(o- - s, )] - a .a . a a
ij gi hj gj hi

(see e.g., Anderson, Theorem 4.2.4).

We can now prove the following general theorem.

Theorem: Under the conditions of the above lemma let the elements of 2: he

functions of two parameter matrices p = and d vi( ) and

let F(I ,"J,Ii) = N[loglE1 + tr(SE
-1

)] with oF/o:.; = :7AQB and

OF/o:1 = ITC21) . Then we have asymptotically

(1/N)G(o2 Fic,o.
gh i

r)v .)
-1CI -1D)h

+ (AE-1D D'E . (AlL)

Proof: Writing OF/eu = Nadocolbrm and oF/6v. Nciirivdv: , where it
an ij

is assu77.ed that every repeated subscript is to be si-r cd over, we have

(1./:1)(_,2F/ , ,ov. .) (1/(LcF/00
gh6Y0v. .)

N G(a b c. co d )

004 Cqi 10 kv v j

io CO Hy'

=abcd.(0.(41,1, royo)
(:(4
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-39-

= (a 0.C41c. )(b (3.3 .) + (a cravd .)(b crr34c )

J1 vj ga vj (3h i4

(AClc'l (B'iD\ (ACID\ .(B'E-Ic"igi%
(hj Ig,j /hi

It should be noted that the theorem is quite general in that both M

and N may be row or column vectors or scalars and M and N may be

identical in which case, of course, A C and B = D .

We now show how the abov, theorem can be applied repeatedl:f to eomp,Jte

all the elements of the information matrix (12). To do so we write the

derivatives (14) - (19) in the

Let A = T3-1 and D =

T[m x (m + n)J = [Al

14(m + n) x mi =

form required by the theorem.

B-1P , as before, and

0] (A15)

(A16)

+

r°

O.[(m 4 n) x (-- (A17)

D)I

(A1P,)

Then it is readily verified that

OF/OD = -11T1 1) (Aly)

OF/oF = NTMQ (VO)

=

41
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6F/63 = N29

In the last equation we have Lombined (18) :Ind (19) using

where

o
3

so

0
c

A3. Matrix Derivatives of Function F in Section 4

The function is defined by

F = log lid - _Log IBI
2

2

= BS B1 BS PI - rs Bs + rs P'

One finds immediately that

dF = trG-idl:r) - 2tr(B-1dB)

= tf[i1(dB3 B1 4 BS y
- dPS PI PS dB')]

_yy --x

2tr(B-1dB)

-+ trk -1(-PS arl - ars dFS PI 4 i'3 dP9]
--yx xy --xx

2trit,; 1(PS
-YY

rs )

--xy

4 2tx[,:1(rs - ES )c1Pl] 2

so that the derivatives cFPB and 1,PF are those given and

(50).
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