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A General Method for Estimating & Linear Structural
Equation System
Karl G. J8reskog

Educational Testing Service
Abstract

A gerneral method Tor cvstimating the unknown coeificients in a set
of linear structural eqrations 1is described. In its ucst general form the
method allows for botn errors in equations (residuals, disturbances) and
errors in varisbles (errors of measurement, observational errors) and yields
estimates of the residual veriance-covariance matrix and the measurement error
variaences as well &s estimates of the unknown coefficients in the structurel
equations, provided all these parameterc are identified. Two special
cases of this general method are discussed sepasrately. One is when there
are errors in equations but no errors in veriables. The other is when theuz
are errors in variables but no errors in equations. The methods are applied

and illustrat:d using arcificisal, economic and psychological data.
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A General Method for Estimating a Linear Structural

Equation Systeu*

1. Introduction

We shall describe a general method for estimating the unknown coefficients
in & set of linear structural eouations. In its most general form the method
will allow for both errors in equeiions (residuals, disturbances) and errors
in variables {errors of measurenent, observational errors) and will yicld
estimates of £he residual variance-covarisnce matrix and the reasurement error
variances as well as estimates of the unknown coefficients in the structural
equacions, provided all these parameters are identificd. After giving
the results for this general case, two special cases will be considered.

The first is the case when there are errors in equations but no errors in
variables. This case has been studied extensively by econometricians (see
e.g., Coldberger, 1964, Chapter 7). The second case is when there are
arrors in varisbles but no errors in equations. Models of this xind have
been studied under the name of path analysis by biometricians (see e.g.,
Turner & Stevens, 1959). sociologists (see e.g., Blalock, 964) and psycholo-
gists (Werts & Linn, 1970).

It is assumed %that the observed variables have & multinorral distribu-
tion and the unknown parameters are estimated by the maximuwnm likelihood rethod.
The estimites are computed numerically using & nodification of the Fletcher-
Powell minimization algorithm (Fletcher & Powell, 1963; Gruvaeus & JHreskog,
1970). Standard errors of the est'mated pararelers nay be obtained by

computing the inverse of the information matrix. A computer program,

*This research has been supported in part by grant NSF-GB-12959 fron the
lational Science Foundation. The author wishes te thank Professor Arthur
Goldberger for his cnmments on ur. earlier draft of the paper and Marielle
van Thillo, who wrote the computer programs, checked the matheratical

\)ﬂerivations and gave other valuable assistance throughout the work.
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LISREL, in FORTRAN 1V, that performs all the necessery computations has been
written and tested out on the TBM 360/65; a write-up of this is under
preparation (J8reskog & van Thillo, 1970).

In the first special case referred to above, where there are no errore
of measurement in the observed variables the ycneral method to be presented

is equivalent to the full information maximur likelihood (FIML)} method of

Koopmans, Rubin end Leipnik (1950) also called full information least,

generalized residual variance (FILGRV) metnod (Goldberger, 1964, Chapter 7),

provided that no constraints are imposed on the residual variance-covariance
matrix and ihe variance-covariance matrix of the independent varisbles.
However, with the general methcd described here, it is possible fo assign
fixed values to cgome elements of these matrices and also to have equality

constraints among the remaining elecments.

2. Tne General Model

Consicer random vectors 1! = (ql,qe,---,qm) and ¢! = (gl,ge,...,gn)
of true dependent and indepeiadent variables, respectively, and the following

system of linear structural relations

Bp=T¢ + ¢ (1)

where B(m x m) ard I x n) are coefficient matrices and ¢t = (;l,gz,..“
;m) is 8 random vector of residuals {errors in equations, random disturbance
terms). Without loss of generality it may be assumed that e(n) = e(t) -0
and €(%) = 0 . It is furthermore assured that ! 1is uncorrelated with

£ and that B 1is nonsingular.

O
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The vectors 1 and £ are not cbserved but instead vectors ¥

(yl,y2,...,ym) and x' = (xl,xp,...,xn) are cbserved, such that
Y;E+T‘+E (2)
xoyried )

where n = €(y), v = &(x) and € and B are vectors of errors of measwre-

went in y and x , respectively. It is convenient to refer to y and x

as the observed varisbles and 17 and £ as the true variables. The errors

of measurement are assumed to be uncorrelated vith the true variates and
among themselves.

Iet o(n x n) and ¥(m x m) be the variance-covariance matrices of
E and S , respectively, @E and @2 the diagonal niatrices of error
variances for y and x , respectively. Then it follows, from the above

assurptions, that the variance-covariance matrix E[(n + n) x (m + n}] of

z = {y',x")" is

s lreriprt 4 gl @E 3 imy
L= (&)

The elements of & are functions of the elements of B, I, ¢, v,

2]

5, and @€ . In applications some of these elements are fixed ard equal

to assigned values. In particular this is so for elements in B and T,

but we shall allow for fixed values even in the other matrices. Yor the

remaining nonfixed elements of the six parameter matrices one or nore subse's

may have identical but unknown values. Thus parameters in B , ', ¢,

¥, © and ©  sre of three kinds: (i) fixed parateters that lave been
Q
oo i o
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assigned given values, (ii) constrained parameters that are unknown but equal

to one or more other parameters and (iil) free parameters that are unknown and
not constrained to be equal to any other parameter.

Before an attempt is made to estimate a model ot this kind, the identi-
fication problem must be examired. The identification problem depends on
the specification of fixed, constrained and free parameters. Under & given
specification, a ¢iven stractwre B, I', ¢, Y » By ?c generates
one and only one § but there may be several structures generating the
same I . If two or more Structures ;enerate the same £ , the structures
are said to be equivalent. If & parameter has the same value in &'l equiva-
lent structures, the parameter is said to be identified. T7Tf all parameters
of the model are identified, the whole mndel is said to be identified. When
& model is identified one can usually find consistent estimates of all its
parameters. Sone rules for investigating the identification problem when

shere are no errors in varisbles are given by Goldberger (1964, pp. 306-318).

3. Estimaticp of the Generasl Model

Let ZysZos v ey

be N observations of z = (y',x')' . Since no
constraints are imposed on the mean vector (g',yﬁ' the maximum likelihood

estirate of this is the usual sample mean vector 2z = (¥',X')' . Let
N
$=2 % (g, - 2)g, - 2)° (5)

be the usual sample variance-covariance matrix, partitioned as

§yy(m ~ m) §yx(m x n)
${(m+n)x(m+n) = . (€)
§xy(n X ) §xx(n X n)
Q
ERIC .

6



E

-5-

The logarithm of the likelihood function, omitting a function of the

observations, is given by
log L = -% Nlog [Z] + tr(SZ_l)] . (7)

This is regarded as a function of the independent distinct parameters

in B, I', 9, ¥, g

and ®€ and is to be maximized with respect
to these, taking into account that some elements may be fixed and some
may be constrained to be equal to some others. Maximizing log L is equive-

lent to minimizing
F = (u/2)10g |Z} + tr(§§’l)] . (8)

Such a minimization problem may be formalized as follows.

let M = (%l,/b,...,kp) be & vector of all the elements of B, T,
? , Y , ?5 and @E arranged in a prescribed order. 1.:- F may bve
regarded as a function F(}) of hl,ke,...,lp , which is continuous and has
continuous derivatives aF/BAS end BQF/BASBAt of first fnd second order,
except where I {is singular. The totality of these derivatives is repre-
sented by a gradient vector aF/Bb and a symmetric matrix BQF/Bfﬁb' . dow
let some p - g of the A's be fixed and denote the remaining A's by s
ne,...,nq , 2<p . The function F 1s now considered as a fuiction G(g)
of YL SEIOL Derivatives 3G/dn and BQG/Bgag' are obtained from
JF/dA and BQF/Bzab' by omitting rows and columns corresponding to the rixed
A's. Arong nl,ne,...,ﬁq , let there be some r distinct paramelers denoted

KisKprerosK 5 T £Q, 8O that each n, 1s equal to one and only one Ki,

r i

o

O
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but possibly several n's equal the same k « Let K = (Plj) be a matrix of
order q X r with elements k,. =1 if x, = &, and k,, = O otherwise.
1 1 J 1d

The function F f{or G ) is now & function H(k) of RysKgsene, ki 2nd we

have

3ok = X' (36 /on) (9)
FHPRE = 51 (0B K (10)

Thus, *the derivatives of H are simple swns of the derivatives of G .
The minimization of H(g) is now a straichtforward application of
the Fletcher-Powell method for which a compuler program is availatle
(Gruvaeus & JBreskog, 1970). This method makes use of a matrix E , which
is evaluated in each iteration. TInitially F 1s any pcsitive definite
matrix approximating the inverse of beﬂ/Bfaf' . In subsequent iterations
E 1s improved, using the information built up about tlie function so that
ultimately E converges to arn approximation of the inverse of GQH/agaf'
at the minimum. If there are . 1y jarameters, the nurmber cl iterations
may be excessive, but can be considerably decreased by the provision of a

good initial estimate of E . Such an estimate ray be obtained by inverting

the informftion mabrix
2 2
€(3"H/oxdk") = K'€(d7G/omdn K (11)
where C(Bgc/axaﬂ’) is obtained from

e(2°F/O2301) = e(3F/) LF/OM) (12)

ERIC 8
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as described sbove. When the minimum of H has been found, the inverse
of the information matrix may ve computed again to <ltain standard errors
of all the parameters in x . A general method for cbtain’ng the elenents
of S(BF/G}GF/GB') {s given in Appendix AZ2.

The application of the Fletcher-Powell method rcauires formulas for

the derivatives of P with respect to the elements of 3, I', ¢, v,
9 tnd 9 These may be obtained by matrix differentiation as shown in
-1 -2

Appendix Al. Writing A =B ", D=B 1 and

ny QVX
Q= =t st (13)
Q
Xy ~XX

the derivatives are

3F/B = -N(A'Q_DiD' 4+ A'Q_AYA' + A'Q_¢D! (1)
OFfcB = -N(A'Q_DIDT 4 A'QAYA! « A'D $D')
SFfor = N(gvgyyp@ ) g'gyxg) (15)
OF/O¢ = 1{D'n D 1 (16)
PE =BT - 2 B2 8
SF/y = NA'L A (17)
3, = (18)
OF[39y = NO,_2g
(10)

ofds = N
/o3, = WO, o,

In these cxpressions we have not taken into account that ¢ and ¢ are

symretric and that @5 and 9( are diagonal ratrices. The off-diagonal

ERIC
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zero elements of Oy and @e are treated as fixed parameters and the off-
diagonal elements of ? and y as constrained parameters.

When the maximum likelihood estimates of the parameters have been obtained,
the goodness of fit of the model may be te;ted, in large samples, by the
likelihood ratic technique. Let HO be the null hypothesis of the model

under the given specifications of fixed, constrained and free parameters.

The alternative hypothesis HJ may be that X 1is any positive definite

matrix.

Under H, , th. maximum of log L 1is (see e.g., Anderson, 1958, Chapter

5))
log L. = -= N(lcg |gl + m + n) .
g 1 2 " 2 ~ 4

Under H. , the maximum of log L is equal to minus the minimum value
FO of F . Thus minus 2 times the logarithm of the likelihood ratio

becoues

U= 2F - N logls| - fi(m + n) . (20)

2
If the model holds, U 1is distributed, in large samples, as x  witr

d=3(m+n)(m+n+1)-rx (21)

degrees of freedom, where, as before, r is the total number of inderendent

parameters estimated under HO .

ERIC 10
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4. The Special case of No Errors of Measurement

If there are no errors of measurement in y and x , the model (1)

~

may be written
By:r?'(+u (22)

where we have written u instead of 5 . In (22) we have altered the mcdel
slightly, compared to (1), (2) and (3), in tha! the mean vectors have been
eliminated. This is no limitation, however. since constant terms in the
equations can be handled by using an x -variable that has the value 1 for
every observstion. TIn this case, of course, S§ should be the raw moment
matrix instead of the dispersion matrix.

This type of model has been studied for many years by econometricians

under the names of causal chains and interdependent systems (e.g., Wold &

Jureer, 1955)- The variables g and X are economic variables and in

the econometlric terminology, the variables are classified as exogenous

and endogenous variables, the idea beign that the exogenous variables

are given from the outside and the endogenous variables are accounted for

by the model. From a statistical point of vi w the distinction is rather
between the independent or predetermined variables x and the dependent
variables y - The residual u represents a random disturbance term assumed
to be uncorrelated with the predetermined variables. Observations Yo and

!

%, ©On Y and X are usually in the form of a time series.

Equation {22) is usually referred to as the structural form of the

model. When (22) is premultiplied by g-l one obtalns the reduced fornm

ERIC
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y = + u¥ (25)

and u* = B-lu . uw* 1is the vector of residuals in the

~

where 1 = B

1

reduced form.

In this case, 9y and @ in {4) are zero and therefore |§] and

Z-l in (7) can be written explicitly. It is reaaily verified that

sl = 12120l Iyl

and

Using these results, log L btecomes

1 -1 1 2
log L = -5 Mlog i¢| + tr (5 _¢7)] - 5 N{log vl - log {B]

=2
+ t S B' - BS I't - I'S B'+ IS Th)y ™~ .
r[(§2yy~ Sy Xy~ X )~ ”

If ¢ 1is unconstrained, maximizing log L with respect to ¢ gives

PO

= §xx » which is to be expected, since ™ in this case is the variance-
covariance matrix of X . After the likelihood has been maximized with

respect to ? , the reduced likelihood is equal to a constant plus
2
log * = -% N{log 'Y' - log }?I

-1.
1 [ I [ ] s )y ¢ R !
1 tl'[ (¥§:1(I} §§ny 'I:?Xy? * ~~)’{}:-l.. )Y J} <2 })

ElifC‘ 12
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If also V¥ 1is unconstrained, further simplification can be obtained,

for then (24) is maximized with respect to V¥, for given B and I,

when V¥ is equal to

¥=BS B! -BS 7. IS Bl 4IS T, (23)

so that the functios to be waximized with respect to B and T beacomes a

constant plus

log L¥* = -% N[ 1leog IYI - log lg!zl

= -% N log(l!l/[@'z)
= -% N log !§-1y§'-l|
= -% N log ‘Y*‘ ; (26)
where
oSy s8I - I v IS )

In deriving (26), we sterted from the likelihood function (7) “ased on
tte assumption of rultinormality of y and x . Such an assumpticn may be
very unrealistic in most economic applications. Koopmans, Rubin and Leipnik
(1950) derived (24) and (26) from the assumption of multinormal residuals.

u , which is probably a better assumption. However, the criterisn (26)
has intuitive appeal regardlese of distributional aessumptions and con-
nections with the maximum likelihood methed. The matrix ¥ in (£5) is the

veriance-covariance matrix of the residuals u in che structural form (22)

ERIC
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and the matrix ¢ in (27) is the variance-covariance matrix >f the residuals

u* in the reduced form (23). Maximizing (26A) is equivalent to minimizing

iw*| « Since iw*l is a generalizel varisaace, this method has been called

the full informaticn least generalized residual variance (FILGRV) method

(see, e.g., Goldberger, 1964, Chapter 7). Several other estimation criteria
based on VY* have been proposed. Brown (1960) suggested the minimization
of tr(y*) and Zellner (1962) proposed the minimization of tr(!nly*)
where W is proportional to §yy'x = §yy - §yx§;i§xy . Malinvaud (1966,
Chapter 9) considered the family of estimation criteria tr(gy*) with
arbitrary positive definite weighting matrices A .

Since the original article by Koopmans, Rubin and Leipnik (1950) several
authors have contributed to thc development of the FILGRV method (Chernoff
& Divinsky, 1953; Klein, 1953, 1963; Brown, 1959; Eisenpress, 1962, Eisenpress
& Greenstadt, 1964; Chow, 1968; Wegge, 1969). This paper will add another

conmputational algorithm to those already existing.

Minimizing lw*‘ is equivalent to miniunizing
2 o
F = log |yl - 10g IBl . (28)

Matrix derivatives of F with respect to B and f may be ottained by

mat~ix differentiation as shown in Aprendix A3. The results are

1

-l - ’
OFfB = 2y (ggw . {gn) - Bt {29)
-1
AFfor = 2y" (s, - §§ﬁ) . (20)

The function F is to be minimized with respect to the elemenis of
B and ? taking intc account that some elements ure fixed and others are

constrained in come way. As will be demonstrated in sections 5 and 0,
O
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allowing for equalities among the elements of B and I', is not sufficient
to handle scme ecoromic applications. Instead, more general. constraints way
be involved. Usuaslly these constraints are linear but even models with
nonlinear constraints have been studied (see, e.g., Klein, 1969). Suech
constraints can be handled as follovs.

Let x' = (ﬂl,ﬂz,.-.,ﬂq) be the vector of all nonfixed elements in
B and ? . Fach of these €¢lements may be a known linear o.- nonlinear

funclion of x' = (Kl,ne,...,nr) , the parameters to be estirated, i.e.,

o= fi(_‘f) ) i=12,...,q9. (31)

Then F 1is regarded as & function H(k) of K sKpyeeesk -« The derivatives
of H of first and second order are egain given by (9) and (10), but now

K is the matrix ¢of order g X r whose ijth element is afi/an - The
function H(k)} may be minimized by the Fletcher-Powell method as before.

The advantegz of this method compared to the more general one of the
preceding section is that the function now conteins many fewer parameters

and the minimization is therefore faster. The Fletcher-Powell algorithm

is relatively easy to apply even in the nonlincar case and the iterations
converge quadratically from an arbitrary starting pecint to & minimum of

the function, although there is no gusrantee that this is the absolute

minimum if several locel minima exist.

5. Anelysis of Artificial Data

The following hypothetical economic 1odel is taken from frown (1959),

C=8y+ alw + agﬂ oy (52n)

ERIC
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- 2b
W= by + b, Y + byY | + Uy (32b)
W+H+Tg=Y (32¢)
C+E=Y (32d)

where the dependent variables are

[t}

C consumer expenditures

W

]

wage-salary bill
Il = nonwige income
Y = total income, preduction and expenditure
and the predetermined variables are
Tg = gov:rnment net resvenue
E = all vonconsumer spending on newly produced final goods

Y , = value of Y lagged one time period

4
o

and where ul and u2 are random disturbance terme assumed to be uncor-

related with the predetermined variables. This hypothetical model will te
used to illustrate sowe of the ideas and methods of the previous se tions.

To begin with we shall assume that the variables involved in this model
are not directly observed. Instead they ere assumed to represent true vari-
ables that can only be measured with errors. Such an assumption may not he
unreasonable, as pointed out by Johnston (1965):

To be realistic we must recognize that most economic statistics
contain errors of measurement, so that they are only approximations
to the underlying "trus" values. Such errors may arise because
totals are estimated oa & sample basis or, even if a complete
enumeration is attempted, errors and inaccuracies may creep in.
Often, ton, the published statistics may reprecant sn attempt to
measure concepts which are different from those postulated in the
theory {p. 148).

RIC 16
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Converting the variables to deviaticns from mean values and writing

n' = (C,W,L,Y), &'~ (Tg,E,Y_l) and ' = (ul,ug,0,0) , model (32) may

be written in the form of (1) as

1 -8 -a, O 0 0 O\
o -b 0O 0 b
1 2
0 1 a0 o fbttE o (23)
1 -1 0 -1 ©

There are 19 independent parameters in this model, namely Y in B and T,

6 in
02
T
g
o o2
o | "TE E
~ = 4 o ) (5!},)
o c o
T, R Y,
3 in
2
ﬁ,u il
1
2
Sy g
y=| 1% % , (35)
o} ¢ 0
0 0 G 0
| R

and 6 in B = di»é(ST ,GE,SY l) and @E = diag(ec’ew’3n’€u) « liote that
since {32c) and (32d) &re error-free equations, ¥ his the form (35) with

zero variances and covariances for u5 and u, . Also since Y_1 is Y
lagged, we have assumed that the error variances in Y eand Y_l are hhe
O same. Therefore, Qg and 2 have only 6 independent elements.

ERIC
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Data were generated from this model by assigning the following values

to each of the 19 purameters

al = 0.8 &, = 0.4 bl = 0.3 b2 = 0.2
of = 1.0 °§ = 2.0 oi = 3.0
g -1
ngE = 0.1 ngY-l = 0.2 UEY_l = 0.1 ‘ (36)
il = 0.2 032 = 0.3 0“1“2 = 0.1
GTF = 0.4 o, = 0.6 GY-l = 0.5

=0.9 9 =0.5

The resulting I , obtained from (4) end rounded to 3 decimals, is

c W n Y T E Y
c h.599 g -1
W 2.481 2,069
It B.659 2.159 T.514
Y 6,449 3731 7400 10.799 (57)
T -0.692 -0.138 -1.454  -0.592 1.160
E 2.100 1.250 2.750 4.100 0.100 2.3%0
Y O.4k2  0.763 -0.421  0.54%2 0.200 0.100 3.250

ror the purpose of illustrating the estimation method of section 3, the
above matrix is regarded as & sample dispersion metrix S to be Aanalyzed.
The order of the vector A 1is 78, since there are 73 elemente in B, T,

Y, ¥, 9 s8nd g all together. Of these, 54 are fixed and 24 are

~ ~

ncafixed, sc that n is of order 24. Becauce of the symmetry of ¢ sand V

ard the imposed equality of OY and GY , there are 19 independent param-
-1
eters, so that the order of x 1is 19.

ERIC
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The minimization of H(x) started at the point

1 2 1 2
2 2 o
on = 2.0 , Op = 2.0, Iy = 2.0

g -1
Sp g =%y =%y, =00

g -) -1

02 = 0.3, L= 0.3, T T 0.0

1 Yo Y2
b = 0., by = 0.6, by = 0.5

g -1

= 0. = 0. = 0. = 0.
ec 5, ew 0.6, 6 0.9, gY 0.5

From this point seven steepest descent iterations were performed. There-
after Fletcher-Powell iterations were used and it took 27 such iterations
to reach a point where all derivatives were less than 0.00005 in absoclute
value. At this point, the solution was correct to four decimals and

the £ in (37) was reproduced exactly. Twenty-three Fletcher-Powell
iterations reguired for convergence is not considered excessive since no
infornation about second-order derivatives was used and it takes at least
19 Fletcher-Powell iterations to build vp an estimate of the matrix of

second >rder derivatives.

We now consider nodel (32a-d) in the case when the varisbles are
observed without errors of meacurement. Then the method of section 3
cannot be applied directly since the two identities (32c) and (52d) implsr
that Z 1is singular. Therefore, two uf the endogenous variables must be
vliminated from the system. It seens most convenient to eliminate € ard
Y . When these variables have been elirinated, the structural equations
become

ERIC
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[Te
1 -a, 1-a W .11 o © v
1
1 2 ( - E i+ . (38)
1 -~-Db -D 1T b (0] b, u
1 1/\ 1 vl \"

This system may be estimated by the method of section 4.

To illustrate the application of the estimation procedure we use a
dispersion matrix S obtained from % in (37) by suotracting the error
variances from the diagonal elements and deleting rows and columns corres-

ponding to C and Y . There are 6 nonfixed elements in B and I,

namely Bll ) 612 » 621 » 622 ) 721 and 725 « These are the elements
of the vector T These elements are luncticns of ay s a., bl and
b, defined by {compare equaticn {31})]
B\ [2 o o o] \
Bl? 0O -1 0 o© &, 1
BQl - o O -1 O 851 4 1 . (59)
822 0O O -1 O bl 0]
72; o O 1 O b2 0
Vo3 I 0 0 o© lj 0

Thus the function P 1is & function of 4 indegfecudcnt parameters.
The function F was minimized using only Fletcher-Pr .21l iterations

starting from the poiat

1 2 1 2
Tre soluntion point, found after 8 iterations, was, as expected, a, = 0.8,
B, = O, by s 03, b, = 0.2 with '
Q

20
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0.1 .
;A =005

6. An Zconomic Application

In this section we apply methods SFILGRV and RFLGKV to a small eccnomic

model taken from the lileratire.

States economy presented in Klein (1950, pp. 58-66):

Consumption:
Investment:
Private wages:
Product:
Incoune:
Capital:
Wages:

Private product:

C==a, +a P+ aP + a,W + u

0 1 2" -1 b

I =5, + blP + bQP-l + bix-l + U,

0 )
Y+ T=C+1I+G
Y=P-+ W
K = K-l + I
W o= WX + W
E=Y + T - wex

where the endogenous variables are

I

C consumption

I investrent

1

W* = private wage bill

P = profits

3
n

-
n

!

e
1

O

ERIC
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national income
- end-of-year capital stock
total wage bill

= private preoduct

21

+ clE + CEE—I + ¢ A 4

The model is Klein's model of' United

1

\.\3

(40a)
(koD)
(Loe)
(404)
(Loe)
(kof)
(408)

(4on;
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and the predetermined variables are the lagged endogenous variacles P B
K—l and E_l and the exogenous variables

1 = unity

WeX = government wage bill

T

1

indirect taxes

G = government expenditures

A = time in years from 197*1.

All variables except 1 and A are in billions of 1934 dollars.

This model contains eight dependent variables and eight predetermined
variablcs. There are three ejuations : Jlving residual terms. The other
five equatious are identities. Using the five identities (40d) - (40h),
P, Y, K, W and E may be solved for and substituted into (h40a) -

(40c). This gives a model with ilie following structural form

1 - ay - a a, - a C
- bl 1 - bl b1
- =t 1 W
/
{ e
T
2, aj sa -2 1 s 0 G
= bO -bl -bl bl 0 be b§ 0 ‘A . (h1)
% - ¢ ¢ c Cj 0 0 s i P_l

-~

There are ¢l ronfixed eierents in B  and I' « These are all 1i..ear

functions of the 12 unknown ecefficients in (LCa-c) as follows

ERIC
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(42)

1
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From annual observations, United States, 1921-1941 the following raw

morer® matrices are obtained:

“I‘

Z
P

621656

23
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C I W 3\
1 1133.90 26.60 763 .60

Wex 5977.35 103.80 bobk.o7

T 7858.86 160.40 5315.62
G 12633.68 243,19 7922.45
Sev T A 577.70  -105.60 h60.90 |

P, 18929.,37 655.%3 12871.73

Ky 227767.38  5073.25  153470.56

E_; | 66815.25 1831.13 45288.51
) ei.oo i T G;? A P K| N
WH¥ 107.50 626.87 \\
T 12,90 789.27  1054.95
G 208.20 1200.19 1546.11 2369.94

Sxx 7 A 0.00  238.00  176.00  L21.70 [70.00

P 343,90 1746.22  2348.46  3451.86 -11.90 5956.29 |
Ky 4210.40 21683.18 28766.23 L42026.14 590.60 69073.54 B8LA132.70 /
B, \l217.70 6364.43  8436.53 12L73.50 L95.60 205h2.22  24Lg8L4.77 72200.0;/

The following estimated model was obtained

C = 18.318 - 0.229P + o.58bp_l + 0.802W + uy 1
\

I=27.278 - 0.797P + 1.051P_ ) - 014K | +u, (13)

%
N

5.766 + 0.235F + 0.23LE _ + 0.23LA + 4 f
-1 3 /

with

. b3.775
0 80.456  265.856 . (1)
~ 9.834 80.247  37.5h0

<
»
n

24
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The standard errors of the estimated parameters may be obtained from a

formnala for the asymptotic variance-covariance matrix developed by Rothenberg

and leenders (1964).

7. The Special Case of No Residuals

When there are no residuals ir (l), the relations hetween 17 and ¢§

are exact. The joint distribution of n and ¢ is singular and of rank

no.

In the equation {4) for £ , the second term in zyy vanishes. 1In general,

when there are fixed and constrained elements in B and T or in ¢ ,

may be done by choosing ¥ = O and specifying the fixed elements and the

constraints as described in that section.

The matrix § can also be written

$ o= MAY o+ S
where
Br % 2
.{\ = I and @ = )
I Q 9

from which 1t is seen that the mode) is jdentical to a certain restricted
fector snalysis model. Several special cases will now be considerei.

If B=1 ani P is unconstrained, i.e., all elewents of [ are
regerded as free parametzrs, model (L5) is formally equivalent to an un-
restricted fact-r wodel (J8reskog, 1969). The matrix 4 in (46) ray bve

obtained f.>m any ‘% of order (m + n) x n satisfying

78
And O€ , this model has to be estimated by the method of section 3. This

(45)

(4¢)
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ol -
L= o+ @2 (47)

by a transformation of /¥ to a reference variables solut.on where the x's

and @

Maximum likelihood estimates of

are used as reference variables. 1%

may be obtained by the method of J8reskog (1967a,b) which also yields =

largc

2
sample X~ test of goodness of fit. Let the estimate of /¥ be partitioned
as -
¥
e (x8)

~ , ~ .
where Q{ is of order mxn and A% of order n x n . Thea the maximum
-~

likelihood estimatcs of ' and © are

P Rany , (49)
&= hangr . (50)
If B=1 and ' is constrained to have some fixed elements while the

remaining elements in I are free parameters, model (45) is formally equiva-

lent to a restricted fector model in the sense of J8reskog (1969). This rodel
may be estirated by tre procedure described in the same paper and, in larye
samples, standard errors of the estirates and a goodness of fit test can alsc
be ortained. A computer program for this procedure iz available (J8reskog &
Gruveeus, 1967).

A more general care is when B is lower triangular. The structural
equation system for the true variates is then a causal chain. 1In general

such a causal chain ray be estirmated by the rethod described in section 3

26
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of the paper, though there may be simpler methods. One exawple occurs when
the system is normalized by fixing one element ‘n each row of ? to unity

and B has the form

0
B, ©

p={Po1 Poo-?
P, P Bl

where all the B's ave free parameters. Then there is & one-to-one trans-
formaticn between the free parameters of B and the free elements of
A = B-l . One may therefore estimate A 1instead of B . In this case,

the variance-covarisnce matrix £ is of the forn

L = PYGATBY' 4 6 (51)

where

x r o 0
?* = - s {‘ = s 2= . (52)
0 I 1 0 2

Model (51) is a special case of a general model for covariance structunes

developed by Jbreskog (1970) and may be estimated using the corputer progran

ACOVS (J8reskog, Gruvaeus & van Thillo, 1270). In this redel T, ¢, Tg

and @e may contain fixed parameters and even parareters constrained to e
equal in grcups. The computer program gives raximwr likelihood estirates of
the free parameters in é , Ty ? y B and Qe and, in large sarples,
standerd errors of these estlrmates and a tec! of overall gcodness or fit ¢f
the rodel can also be obtained.

O
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More generally, the above mentioned method may be used whenever £
can be written in the form (51) such that there is a one-to-one correspondernce
between the free parameters in B sand [ and the distinct free elewents in

B* and A . TFor a less trivial example, see Jdreskog (1%70, section 2.6).

8. A Psychological Application

In this section we consider a simplified nodel for the prediction of
achievements in mathematics (M) and science (S) at different grade levels.
To estimate the model we make use of lungitudinal data from a growth study
conducted at Educational Tesuting Service (Anderson & Maier, 1963; Hilton,
1969). 1In this study a nationwide sample of fifth graders was tested in
1651 and then again in 1963, 1965 and 1967 as sevenil, ninth and eleventh
greders, respectively. The test scores emploved in this riodel are the
verbal (V) and quantitative (Q) parts of SCAT (Scholastic Aptitude
Test) obtained in 1961 and the achievewent tests in mathematics (MS’L%’M9’
11) obtained in 1961, 1963, 1965, and 1567,

respectively. The achievermeat tests have been scaled so that the unit of

Mll) and science (ss,s7,s9,s

measurement is epproximately the same at all grade levels.

The model is depicted in Figure 1, where V , Q, M5 , L% , HQ ,
Mll s S5 s 87 s 89 and Sll denote the true scores of the tests and
;l,gg,...,c8 the corresponding residuals. The wodel for the true scores
is
€ Zn
”5 : alV 4 aeQ + Cl (v32)
3 = ST
8, = bV 4 b+ L, (=50)

h)
o o]
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M= oMy L

s( = dlSS + dEM,_( + gh
Mg = ety + &g

89 = 1,5, + g +
M11 = glM9 + §7

S11 7 BySg T Bty * Gy

This model postulates the major influences of a student's achievement in

mathematics and science &t various grade levels.

determinants of & student!s achievenents are his verbal aad quantitative

abilities at that stage.

are mainly determined by his achievewents ir the earlier grades.

achievements in mathematics in grade 1
achievements in mathematics in grade
ence in grade i
i - 2 and in mathematics in grad:

grade

The structural form of this model is

1

1 0 0 0 0o O 0 ©

© 1 0 0 0O 0O 0 O

e, 0 1 0 0 0 0 0
0 4 -4, 1 0 0 0 0

© 0 -, 0 1 0 0 ©

© 0 0 -r -f, 1 0 0

0 0 0 0 - 0 1 0

0 0 0 0 0 -h -h,

ERIC
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o O O O ©O O o W

N

jav}

L

is determined mainly by the

At gradz 5 the main

‘Thus,

is deternined mainly by the achievements in science in

]
—

" BERY s
NN

At higher grade levels, however, thc achievements

i - 2, whereas achievements in sci-

(ch)
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It is seen that this model is & causal chain.

The model can be estirated by

the method described in section 3, provided some assumption is made about the

intercorrelations of residuals ;l,CE,...,§8 + Without such an assuwnption
the model is nol identified.

all residuals are uncorrelated except

We have chosen to mske the assumption that

not seem to be too unrealistic.

Ql and g? .

This assumption does

The data that we use consist of a randoun sample of 730 boys taken fron

all the boys that tock all tests &t all occasions.

The variance-covariance

matrices are
M5 s5 147 s7 1-19 S g z-tu 8,4
M5 130,690
SS 115.645 179.617
M.? 116,162 123.838 193.557
s7 90.709 11k.36L 120,426 148, .48
~yy=M9 19.564% 125.22; 155.883 120.h492 215.894
s9 104430 135,074 137.627 133.231 159.783 218.0467
My, | 119.712 126470 149.9%0 112.218 175.497 149.045 264,071
$11 90,916 116.950 117.439 109.187 133.839 147,115 143,218 190.753
My 5 H 7 H 9 " 1
s -V 97.54h 122,919 106.837 96.252 108,748 107.750 107.042 94,613
Y q\78.527  82.389  87.85y 65.703  91.502  72.53h  B89.617 64.L53
Y 0
s .V 133.014 .
TR\ 73.518 *i-‘o.vslj
The estirated rodel is
M = 0.(LOV + 0.415Q + “;l (55%)
S 1.296Y - 0.175Q + 22 (551 )
Q .
: M, = LO9T + L, 5 (=
EMC f 5 5 30 be)

Aruitoxt provided by Eic:
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5, = 032555 + 0.kg3, + g, (554)
My = 1.027, + ES (55€)
S = 0-7038, + 0.383M, + Eé (55¢)
My = 0.950Mg + L (55¢)
5,y = 06585 + 0.184M, | + 28 (55n)

The estimated variance-covarisnce matrix of the true scores V and € 1is

v
v (105.&8 )
~ 7\ 73.95 76.68

o>

Estimated residual variances and error variances for each measure are given

below

Measure Residual Variance Error Variance
v -- 33.1
Q -- L.y
M5 10.0 25.4
S5 22.5 11.8
M7 26.4 40.3
s7 29.5 24.3
M9 25.2 29.%
sg 28.5 36.1
My 9.7 18.8
811 20.0 7.7

31
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The estimated correlation between ¢, and ¢, 1is 0.17.
1 2

The estimated reduced form for the true scores is

Mg = 0.640V + 0.415Q + E§ (562)
5, = 1.296V - 0.1753 + EE (56b)
M, = 0.TO2V + 0.h55Q + E; (562)
8, = 0.7T6TV + 0.167Q + Eﬁ (564)
My = 0720 + 0.467Q + E; (56¢)
5y = 0.815V + 0.2962 + Zg (561)
My, = 0.686V + 0.lkq + Ei‘( (56¢)
S1, = 0+663V + 0.277Q + 25 (56h)

The relstive variance contributions of V 2and @ , the residual ¢*¥ and

the error, to each test's total veriance are shown below:

Measure V and @ Residual Error
My 0.73 0.03 0.19
S5 0.78 0.15 0.07
H? 0.59 0.20 0.21
5., 0.56 0.28 0.16
M9 0.56 0.30 0.1k
39 0.52 0.32 0.16
My 0.42 0.51 0.07
S 0.42 0.33 0.25

ERIC
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It is not easy to give a clear-cut interpretation of these results.
Inspecting fisst the equations (55c), (55e) and (55g,, it is scen that a
unit increase in Mi—? tends to have a gmaller effect on Mi the larger
i is. This agrees with the fact that the growth curves in rathemztics
"flattens" out st the higher grade levels. One vwould expect that the co-
efficient g 1in (55g), like ¢, in (55¢) and e, in (55e). would te
greater than one, since, in general, for these data, the correlation of status,
Mi—2 , and gain, Mi - Mi-? , are positive although nsually very swall.
However, the large residual variance EY suggests that M9 alone is rot
sufficient to account for Mll . This is probably due to the fact that
mathematics courses at the higher grades change character frcu being
mainly "erithemetic computation” to involving uore "elgebraic reasoning.”

Inspecting next the equations (55d), (55f) and {55h) describing
sciente achievewents, it is seen that the influence of rathevatics on
science tends to decrease at the hirher grades. This is natural since
science courses in the lower prades are based vainly on ".ogical reasoning”

! r

whereas in the higher grades they are based on “rerorizing of facts.” fThe

iy
effcet of science achieverents on science two Lears later first incresses
and then dec.seases. Tnis is probably btreause the science courses special-

ize into different ccurses (bioloyy, Physics, ctc.) at prade 11 wheresas

the science test at the lover grades oecasuares sove kind of overall "sciecnce

haowledge. "
Vhatever nay be the Lest interpretatiors of these resulis, the evaple
i~ illustrate that it is pessible to have Loth errors in cquniions

ferves

and errors in variablesz and still have an estirable model.

Aruitoxt provided by Eic:



References

Anderson, T. W. An introduction %o multivariate statistical analysis.

York: Wilzy, 1958.

Arderson, S. B., & Maier, M. H. 34,000 pupils and how they grew. Journal

of Teacher Education, 1963, 14, 212-216.

Blalock, He M. Causal inferences in nonexperimental research. Chapel Hill,

N. C.: University of North Carolina Press, 196k,

Prown, T. M. Simplified full ::aximum likelihood and comparative structural

estimates. Econometrica, 1959, 27, 638-633.
Brown, T. M. Simultaneous least squares: a distribution free method ¢~

equation system structure estimation. International Econumic Rev’

1660, 1, 175-191.
Chernoff, H., & Divinsky, N. The corputation oi maximum~-likelihood esti
of linear structural equations. In W. C. Hoca & T. C. Koopmans (

Studies in econometric method, Cowles Commission Monograph 4. Il=

Wiley, 1953. Pp. 236-269.
Chow, G. C. Twu metnods of computing full-information maximam likeli® .

estimates in simultaneous stocrastic equations. International Fe -

Review, 1963, 9, 100-112.
Eisenpress, H. Note on the computation of full-information maximum=-li:
estimates of coefficients of & simultaneous system. Econormetrioer,

2! 5‘*5 '514’8 .

Eisenpress, H.. & Greenstadt, J. The estination of non-lines» econor«’

svstors.  Feonoretriea, 10966, 34, 851-261.

ERIC

34



_3’,3_

Fletcher, R., & Powell, M. J. D. A rapidly convergent descent rethod for

minimization. The Computer Journal, 1963, 6, 163-168.

Goldberger, A. S. Econometric theory. New York: Wiley, 1964.

Gruvaeus, G., & J¥reskog, K. G. A computer prograr for minimizing a function
of several variables. Research Bulletin 70-1k. Princeton, N. J.:
Educational Testing Service, 1970.

Hilton, T. L. Growth study annotated bibliography. Progress Report €9-11.
Princeton, N. J.: Educational Testing Service, 1969.

Johnston, J. Econometric methods. New York: McGraw-Hill, 1963.

J8reskog, K. G. Some contributions to maximuwn likelihood factor analysis.
Psychometrika, 1967, 32, L43-482. (a)

J8reskog, K. G. UMLFA--A computer program for unrestricted maxirum likelihood
factor analysis. Research Memorandum 66-20. Princeton, N. J.: Fducational
Testing Service, revised edition, 1967. (b)

J8reskog, K. G. A general approach to confinmatory maximum likelihcoed factor
analysis. Psychometrika, 1969, 34, 183-202.

J8reskog, K. G. A general rcthod for analysis of covariance structures.
Biometrika, 1970, 57, 239-251.

J8reskog, K. G., & Gruveeus, G. RMIFA--A computer program for restricted
raximum likelihcod factor analysis. Research Merorandum 67-21. Princeton:
N. J.: Fdueational Testing Service. 1967.

J8reskog, K. G., Gruvaeus, G. T., & van Thillo, M. ACOVS--A general cormputer
program for analysis of covariance striucturcs. Research EBulletin 70-15.

Princeteon, I, 7.: ¥dicational Tes'ing Service, 1070.

El{l‘C 35

Aruitoxt provided by Eic:



O

ERIC

Aruitoxt provided by Eic:

34

J8reskog, K. G., & van Thillo, M. LISREL--A general computer program for
estimating linear structural relationships. Research Bulletia 70-00.
Princeton, N. J.: Educational Testing Service, in preparatios.

Klein, L. R. Economic fluctuations in the United States, 1521-1941, Cowles

Commission Monograph 1l. New York: Wiley, 1950.

Klein, L. R. A textbook of econometrics. Evanston: Row, Peterson, 1953.

Klein, L. R. Estimation of interdependent systems in macroeconometrics.
Econometrica, 1969, 37, 171-192.
Koopmans, T. C., Rubin, H., & Leipnik, k. B. Measuring the equation systems

of dynamic economics. In T. C. Koopmans (Ed.), Statistical inference

in dynamic economic models, Cowles Commission Monogreph 10. New York:
Wiley, 1950. Pp. 55-237.
talinvaud, E. Statistical methods of econometrics. C(Cnhicago: Rand-tliclially,

1966.

Fothenberg, T. G., & Leerders, C. T. Ef.sicient estimation of simultareous

equation systems. Fconometrica, 1964, 32, 57-76.

Turner, M. E., % Stevens, C. D. The regression analysis of causal paths.
Biometrics, 1920, 1), 236-258.

Wegge, L. L. A family of functional iterations and the solution of raxirum
likelihood estimation equations. Econormetrica, 1969, 27, 122-130.

Werts, L. E., & Linn, R, L, Patnh analysis: Psychological exsriples.

Psychological Bulletin, 1970, 74 (3), 193-212,

Wold, H., % Jureen, L. Demand analysis. Uew York: Wiley, 1953,

Zellrner, A. A&n efficient metnicd of estimating seemirgly unrelsted
regrassions and tests for apgregaticon biws, Journal of the

Areriean Otatisticnl Association, 1962, 57, 348-368.

36



O

ERIC

Aruitoxt provided by Eic:

_55-

A. Appendices ol Mathematical Derivations

Al. Matrix Derivatives of Function P in Section 3

The function is
| -1
F=log [Z] + tr(sT77) (A1)

which is regarded as a functionof B, I', ¢, v, 86 , ?e defined by

(#). To derive the matrix derivatives we shall make use of matrix dif-
ferentials. 1In general, dX = (dxij) will denote a matrix of differentials

and if ¥ 1is & function of X and dF = tr(CdX') then OFf3X = C .

Writing A =20 and D= BT = Al we have

W - -BTams T - -pan (42)
dD = B "dl' + dAT
= QL - AGEAT
= AdD - zaED (43)
Furth mrooce, since in general,
Hop %l = tr(¥-1d¥)
and
W)« e

tr(ag e h)

= (7 an)

37



we obtain frem (A1),

dar dlog

i

£l + aer(szh)

W

tr(Z _ld§) - tr(Z 'lsZ'le)

R (R A )

[t}

tr(Qd%)

i}

tr(Q a5+ dr Q _ar_ o+ Al
PRy O BT ) ()

where @ 1s defined by {(12) and 4 is partitioned the sase way as {0 in
(12).

From {4) and the definiti~ns of A and D we have

S, = DD+ AW - o (5)

r - B - 02 ()
2

Tax T LY (a7)

from vhich we obtain

4% = DidD' 4 DAID' 4+ 4DiD!
Y -~ ~o ~

+ AVdAY 4 AQVAY + dAVA!

nEdl, (1)
b o= apt e A )
d{:’:x - d:. ’ 2‘:"‘6\&:& ' (+:0)
Q s

ERIC v
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Substitution of dA and dD from [A2) and (A3) int> (A8) and (AY)

gives

dz__ = DIaIr''A' - DPD'AB’A?
‘yy e~ e - -~

- AVA'dB'A' - AdBAVA!

~ ~ o~ - e~

spam ¢ Aant < 23, (s12)
d¥ = ¢d['A' - ¢D'dB'A' + aoD! (A12)

~KY
Substitution of (Al1l), (Al2) and (A.0) into (Ak), not:.ng ihat tr{ctax)
= tr(a£'C) - tr(cdX') and collecting terms, shows fhat The matrices :ultiplying
aB', ar', ab, av, a7
equations (14), (15), (17), (18} and (19} respectively. Tlese are therefcre

and d@c ave the ratric 3 <n the right sices of

the corresponding matrix derivatives.

AP, Iuforrsation Matrix for the Gereral lNodel of Sextion 3

I this section we shall prove a general theorem concerring the exjpected
second-order derivatives of any function of the tyre (8) and‘show now this
theoren cen be zpplied to comrute all the elemwents of the inforzaticn ratvix
(12).

We first prove the following

!
Lersar Let & = (1/H) o (ga - z)(gO - )Y, where z,,Z,.e+..7. are

indey endently distrivuted accerding to L(u.%) . Tien the as;rptotic

ERIC
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distribution of th: elements of Q = §-l(2 - S)Z—l is wultivariate

normal with means zero and variances and covariaices given by

we(agam,,) = PV (513)

s s . s g nes
Proof: The proof follows immediately by multiplying Qs = T Lo 5(0 N sﬁ¥)c
1 i " ogn £ =
and v o £ %o (oii - sij)oJV and using the fzct that the asywptotic viri-
i j L= <
ances and covariances of § are given by

NE E(agh - sgh)(o.. -5, )]

=0 0 , t 0 0O,
14 id gl hj gj ni

(see e.g., Anderson, Theoren 4.2,4).
We can now prove the fcliowing general theorem.

Theorem: Under the conditions of the above lemma let the elements of &£ he

functions of two parareter matrices M = (u ) and 1 = (viﬂ) and
let F(,H) = 5 Hlloglz| + tr(st’ Y1 witn oP/am = UATB and

oF/ul = NCOD . Then we have esymptotically

: - -1 I
(1/1)e (QEﬂJl WV s (a5 o )gi(B'E lD)hi (D) (X 1c')

and OFfdv,, = lle, « 4, , where it

N . writi ” -
Proof: UWriting LF/CuEh “a{ffbﬁbsh 1 ST

i1s assumed that cvery vepeated subscript is Lo be suimed over, we have
(/) (FF) e ov, ) o (faylosfon ov/ew, )
IS B T gh ij

- (a m Rh in uvde)

=da_b. e d 2w )

g Eh i v oy

SASEEL"] 1y
=a b e d (¢’ o ")
P Al Lavi
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O41 Bv Gv b e
= (agﬁo Ci“)(bgho’ va) + (aégc va)( Bh c

-30-

-1 -1 -1
= (AT ) (B'E D), , + (A2 D) (B'Z
(o) o), e (i)

-1

"
i]u. )

'
¢ )hi

It should be noted that the theorem is quite general in that both

and g

identical in which case,

may be row or colurin vectors or scalars and M and

and B

of course, A I ¢ D.

N may be

1

We noWw show how the abov: theorem can be applied repcatedly to corpute

all the elements of the information matrix (12).

derivatives (14) - (19) in the form required by the theorer.

Let A = B-l

I[m x {(m+ n)l
f[(m + 1) % ml
9[(m 4+ n) % nl

El(r + n) ¥ n)

and D = BT , 88 before, and

= A 0]
DC\DI + Aw"rA t
S

()

0

H

Then it is readily verified that

OFfOB =

orfol = WTQ0

OF /ot o NR'CR
orfoy = LD

41

To do so ve write the

(A10)

{AL0)

{AL7)

(A1R)



L0~

o/

F/39 = N0 (a23)

In the last equation we have combined (18) and (19) using 3 ={~

A%, Matrix Derivatives of Function F in Secticn U

The function is defined by

2
F = log |y| - icg [B]T (s21.)
‘here
¥ = ES B - BS D - ISR Bl (n29)

One Tinds immcdiately that
-1 -1
aF = tr(y Tdy) - 2tr(B 4B)

= oeteeans [ i 1 . §n .S '
= trly (dgfyy? + S ABY - dps T o- 1B 4B )]

- 2tr(§'ld§)

+ tr[?—l(—BS art - ars »t o+ 4rs_
~ Y%~ ~Says <y

TS ol
= evrflyTHEs, - T8, ) - Bt iany

ceuly I, - s Jart)

so that the derivatives uF/BR and 5F/DF are those given oy () and

{30).
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