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On Approximation of Distribution and Density Fanctions
Hans Wolff
Abstract

Stochastic approximation algorithms for least square error approxime.-

tion to density and distribution functions are considered. The main results

are necessary and suflicient parameter conditions for the convargence of the
approximation processes and a generalization to some time-dependent density

and distribution functions.



On Approximaticn of Distribution and Density Functions
Hans Wolff

In this paper we deal with the special approach to the estimation of
an unknown density or distribution function of a real-valued random
variable ¢ as developsd in [1]-(8]. Using the same notation we briefly
describe this approach.

Consider the N -dimensional vector of functions &(x) = (¢1(x),...,®N(x))T .
The components °i(x) » i=1,...N, are assumed to be linearly indepenient,
square-integrable and bounded resl functions on an interval Q = [a, b) of
the real axlis. If a sequence of independent observations [xl,xe,...} from
£ is available, the problem is then to find an approximation

I\t

F(x) = = a0, (x) = a"o(x)
i=]1

in o for the wninown distribution function P(x) , such that 7{x) mini-

mizes the integral.-square-error criterion

1) i@ = [ 156 - @e0T” ax
0

with respect to the vector of coefficients @ = (al,ae,...,aN)T . The analo-
gous estimation problem for the unknown density function f(x) consists in

determining the estimator T(x) ,
A N T
f(x) = iz Di¢i(x) = E E(X) )
=1

such that again the integral-square-error criterion

(2) 6,(B) =J [£(x) - [;Tg(x)]2 dx
Q
O
IEIQJ!:‘is a minimum with respect to g .
o o

e



As can be easily shown (see e.g., {11), minimizing (1) and (2) is

equivalent tc solving the regression equations

(5) 5[ 2(s, v)a(v) oy - ag) - 0
a

and

() Elw(e) - agl =0

respectively, where A is a known N x N -matrix,

‘[‘
W

Q

A- e )y

and z(%, y) and w(t) are defined as

e il

da

The purpose of the mentioned papers consisted in solving the parameter-
dependent regression equations (3) and (&) by the application of the stochastic
approximaticn theory as an appropriate method. A further gosl was to give

an iterative solutioﬁ in order to avcid computer storage problems. But

because of the linear independence of the °i(x) , 1=1,...,N, é-l exists

and we can solve (3) and (4) directly:

(5) a - a7 o0 vy @)

it

(6) p* = A7MELw(s))
Therefore we have only to estimate the expectations of the parameter-independent
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random variables § = / z(&, ¥y)e(y) dy and &, = w() . So simplifying
Q

the statement of the problem we can expect stronger limiting theorems for
those procedures considered in [1]-[8]. In previous papers ([9], [10]) the
author has dealt with such iterative approximations of the cxpectation of
a random variable. The following process was considered.

Let [an} be any sequence of real numbers restricted to 0 < a <1l
for all n and let Y = (yl,...,yN)T denote the n -th observation
of a real-valued N -dimensional random variable 1 = (nl,---:ﬂN)T .
Then the approximation procedure [gn] is defined by the iteration formula

(7) X

Xper = - )X va Yy » n=0 1,2

with an arbitrary but fixed starting point 50 =ac€ RN . Theorem 1 gives

necessary and sufficient parameter conditions for the convergence of this

process,

Theorem l: The rrocess (7) converges under the assumption

0 < max Var n; <
1<i<N

with probability one and in the mean to the expectation M of 17,
X ->Mw.p.l E(X_ - M)2 -0 (n-w)
Zn 7= ’ 2 T =

if and only if

n
(8) an—vO » 5—.-‘. a

(9]
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The parsmeter condition (8) is only sufficient if we admit the degenerated
and trivial case Var ;= 0, 1=1,...,N . The proof of Theorem 1 is
given in {10].

The application of Theorem 1 to the random variables g-lgl and g_lge
yields at once those estimation procedures [gn] and [Qn] for the sought

vectors Oo* and f¥ considered in (1]-[87:

. 1 ) N
(9) Uy = (L-ap ) v 8 0A72) s G=beR wpl

-1 N
(10} Bo1 ™ (1- an+l)gn * an+lé EE,n+l ’ EO geR wpl

where Zip and 2z, n denote the n -th observation of the randem variables
- 3
51 and 52 , respectively: - .
-
/ ofy) ay x, <a
r -
2y n = 2% ¥)R(y) v b if
Q
ESES a<x <b
*n
>
. 0 X, b
E(Xn) x €0
Eo,n - i
o x 2

From Theorem 1 follows immediately,
Theorem 2: The stochastic process defined by (9) and (10) converges with
probability one and in the mean to o* and p* , respectively, if and only

if the sequence of parameters [an] fulfills condition (8).
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We mention that the following modifications of (9) and (10) suggested,

for example in [1], [6], [7],

-1 1 1+l

e = (- fne1) N S R | iﬁl 21,1
a1 1 n+1l

Boar = (L - an) By v a7 oo o

do not have a faster rate of convergerce than (9) and (10) themselves as was

erroneously asserted in [6] and [7]. The error consisted essentially in

1 . n+1

n+ 1 i?l 2,1 (or g, and 7 i§1 Zo g0 respectively)
as indepenlent, random variables (e.z. [6], p. 133, equation (7)).

teking o and
—n

Time-dependent Density and Distribution Iunctions

Instead of identically distributed values X i=1,2,... from % we
deal now with a sample {Xl’xP""} corresponding to a sequence of random
variables {El,Eg,--.? where Ei is distributed with Fi(x) , 1 =1,2,... ,
representing, e.g. successive time periods. Since we want to derive an analo-
gous limiting theorem to that given in Thecrem 2 we restrict ourselves to the
case where {Fi(x)} converges to a limiting distribution F(x) and {fi(x)}
converges to a limiting density function f(x) . For thiz situation we have
the following corollary tc Theorem 2,

Corollary: Theorem 2 holds even in the case where the observations Xg
i=1,2,... , are drawn from & pcpulation with a distribution function

Fi(x) and a density function fi(x) , if we assume
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Fo() o F(x) o 1) - £(x) (o) 1

[F(x) distribution function, f(x) density function].

This corollary follows immediately from (5) and (6) and from a generalized
version of Theorem 1 given below.

Let {Xi = (yi,l’yi,2""’yi,N)T] be a sequence of independent N
-dimensional real-valued observations distributed with {Fi(yl,...,yN)} ,
respectively, and where Fi(yl""’yN) converges to a nondegenerated limiting
distribution F(yl,...,yN) . Th n we have

Theorem 3: The process (7)

X

Srvl T (1-

an+l) Eﬂ M SEA] ' EO
converges under the axsumption

max Vary, .<C<ew , i=1,2,...
1<3<H bd T

with probability one and in the mean to the expectation M of F(yl,...,yN) ,

)_(.n —)M W.p.l ’ E()_(_n - M)g 50 (n —)m)

if and only if {an] fulfills condition (8).

Because of the length of the proof of this theorem, the reader is
referred to [9] or [lO]. Some problems arise if we consider the case where
0 1is the whole probability space, especially the entire real axis. In this
case it is natural to require that the approximation ?(x) should satisfy

the normalization condition

Lihe assumption fi(x) - f{x) , where f(x)} 1is a density function, is

sufficient for Fi(x) - P(x) , and F(x) distrizution function (see e.g.,
{11]).

ERIC
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\
\/ Sx)yax =1
Q
Unfortunately this is not true in general. To avoid this we can use Lagranse's
coefficients method as was done for orthonormal functions ¢i(x) by

Laski [5) and for a similar problem by Nikolic and Fu [6].

Instead of (2) we now minimize the criterion

N N
2
G5 :L/Ef(x) - if‘ ei®i(x)] ax - eA(i§l By - 1),
Q - -

where A is a Lagrange coefficient and

fal

d =\/ o (x) ax , 0<|d] <o, i=1,2...,0
Q

The minimization conditions
yield the system of linear equations

N
X a

+dA=E(®), k=1,...,N ,
i1 Kk k

1xP1
where A = (aik) means the same N x N -matrix as given in (4).

From this we obtain the solution

O
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N N
Al - Z Be (5 Yy dA
. lal - = B (x) B dA
(11) g - L5 oA [me(x) 4 a, —— 2 =1
d Al jop B3 1 N N ’
L d Z a4
k=1 k9.=l QA}(Q.
where A,. 1is the adjunct of a,.
i3 1)
With the abbreviations
N N N
L d4d.A %X 4, A Z d.A,.
gl P Mg K N B
ij = N N ’ J 7 ON N ’
L d L a 2o d nod
k=1 F a1 e he1 K o R

From Theorem 1 it follows at once that the stochastic processes defined by

N
(12) Y = {1 - a )Y, + an+l[Dj + _g

e, .. (x )],
i1 ij iY'n

converge to 85* » J = 1,...,N, with probability one and in the mean if and
only if the parameter condition (8) is fulfilled. To avoid unnecessary compu-

tations we estimate the purameters EB = B;* - D, . The final form of the

b
O
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sequential estimation of the unknown vector of parameters

T _ faxx _ _ T .
B _(al D DN) is then

* %
l) R ,BN

(13) Y, = (1 - a )Y, +a celx) , Y =DbekR )

where C is the N x N -matrix C = (Cij) .

Theorem 4: The process (13) converges to the vector ET with probability
one and in the quadratic mean iff the parameter sequence {an} satisfies
condition (8).

We give a simple application. Co.sider a mixture

of density functions °i(x) , i=1,...,N . The set of functions ®i(x)

is assumed to be known and to be linearly independent on @ . Furthermore a
sequence of independent observations {xl,...,xn}-—identically distribv*+
with p(x)--may be available from which we want to estimate the parameters
Bi , 1i=1,...,N . This decomposition of a mixture can be done by ow

sequential estimation procedure (12) or (13). Because d; equals 1,

i=1...,N, we get simpler formulas for the Dij and D,

3
N N N
Z oA 2 A A
D,, = &5 = D, = —oe 1,5 =1 N
15 N W v Dy =y > L EERY
£ 5 £ 5
k=1 2=1 Pxq k=1 2-1 At

The stochastic processes (12) and (13) converge to the unkncwn parameters Bi ,
“ kY
j=1,...,N, and Bj = Bj - Dj’ respectively.

HiS 11
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