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‘Section 1, Summary

v Toeg e

".'.,\- e

T " The tnveatigaticn, reported here under-the
.title Block Format Instriction, was & pilot study
which' 8GUght to determine methods (and consequent -
problems for firther 1nveatigation and refinement)
of ' partitioning the freshman undergraduate mathe-
matics program into 1nstructional blocks which maxi-
mized the efficiency ‘of humen 'and bhysical resources
dsployed: for that purpose. The pilot study lasted
two acadenic years: 1968-1969 and 1969-1970.

During the 1968-1969 academic year differer.t
instructional blocks were used in & single course:
Freshman Finite Ilathematics. The instructional blocks
used were Large Lectures, Tutorials (6-10 students),
Programmed Materials, Help Sessions, Computer Labora-
toryo

During the 1969-1970 academic year different
instructional blocka were used in three courses:
Freshman Finite liathematics, Freshman lMathematics for
Elementary Teachers, and Preshman Mathematics for
General Education. The instructional blocks used
were Large Lectures, Tutorials (6-10 students),
Programmed liaterials, Help Sessions, Computer Labora-
toxry.

Evaluation of results was of two kinds.
Firstly, the staff cost of instruction per student
was considéered. This analysis showed a decrease in
the instructional cost per student as well as a de-
créase in fringe staff load. The latter resulted
primarily from an almost total drop-off of indivi-
dual students seeking help from staff outside of
class scheduled times. Secondly, the evaluation of
the effectiveness of the inatructional methods was
done subjectively. That is to say, that such evaluation
was based on judgments of students, mathematics staff
involved in teaching, and Jjudgments of other professional
persons including consultants. The consensus indicated
that varying instructional formats was beneficial to
the learning »nrocess. Particularly noteworthy elements
are variety of instructional format enhances the
learning process, individual differences and needs
were able to be considered more easily and effec-
tively, a greatexr variety of material was able to be
covered, and ad hoc changes in the course could be
made more eaaily increasing course flexibility.



Significant problems remain to be studied:
the matching of content material and instriictional
format, the mechanical organization of selection for
tutorial section, the more selective use of media to
nmake more effective the lactures, the role of com-
puter instruction in Freshman matvhematiocs programs,
the utilization of statt'WIth varying competenciea.

The. 1nstrnotional pattern will be coniinued
at Stephens college and in addition will be intro-
duced, experimentelly, at Northwest Missouri State
College fox the_lQ?O-lS?l_chdemic year.

o o



Section 2,5 Introduction

vaty . BRI D d }'-"

. . '.,J The centrdl concern of the original propoeal
. tor an ezperiment -4n Block ot

.

- changes leading to & more efficient “deployment of..
human apd pbysical resources in. the learning process.
A non-trivial side effect was.plso to be. a more effi-
cient use of time committed to apecific 1earning tasks
by stud@nts. o e y T ‘

L\.

initiate, as a pilot.study,: .

_ Tho constraints impoaed on the pilot etudy
were such as to insure a search. for means of varying
the learning patterns by using.different instructional

. formate which did not require the permancnt. commitment
ot aignificdni"amnunts of gdditional human or physical

~resources by the college. - That is to. say. that in-

;strnotion can, clearly be improved and individualiged

" 42 ‘an excepticnally competent staff medber is assigned

_to- each stugent: b learning to proeeed on a.ong=to=-
one basis. Tpo ef2ort here was fo develop an in-.

. structional methodology whergby--apart from tbo anitial
developmentsl phiases—-significant yeduction. in instruc-
tional gosts.could,pe obtained.while at ¢ha samg time
improvinc-fho 1eaxn1ng e;tuatiqn. ARV

b i- '
’ The problem 10, ot courae, a centrsl one in

_;all phaseaof higher education. Incpoaéing enroll-

mepts gecompaniod by .an 1nqreaqed reluc?anco of the

. pudlie to maintain even tlie sane (pu:chgﬁing power)

. cos} outlays per student demand ‘apigution to. ‘the dual

. problem.of. increasing ‘1earning ’ qrficiency while .de-
creasing. leurning:coate.per studerits The. treahman
mathematics course was rhosen as g basis for the pilot
study in. .pary. becauss of ila oqtaflishmnnt of both a
new. tourvyeap anq A new treshman mathematics course.
With no traditions of. instrugtioral patierns. ;or the
:hici ic course, it seemed plauaible to sssuie that

8.course might be a good point of departure |
fonrini atlng vgstigation Ante the ‘general problem,

" bl second cccmine pdvantgge ot “initiating
- tha inveatigation An’ the. context of a freshman mathe~
. matics; courss was, that, the\content o2 a mathematics
-, .pourse seéemed most.appropriate and ‘gccepsible to the
“task of pertitioning of maierial for different learn-

;; 1ng pattorns. Thns. tho gagy ability to focus on

&l I Y o . i;




problem solving end discovery and generalization.
in tutorial sections, or the easy ability to focus
on remedial skills in- help sessions or programmed
‘materials was utilized. .:This is not to' suggeet that
other subjecis -and/or inter-disciplinary courses do
not have similarly.definable chunks.' They are espe-
cially apparent in.the-expeeted- Outcomes of almost
) any freshman mathematics program.
. ) er ._ N
Given the reluctance to move toward the
utilization of any learning devices committing the
college to..long-range:cosis, minimum attention was
. given, in this pilot-study,: to the use of specialized
media. Thus, the-usersof elosed-circuit television,
for example, .while offering meany ostensible learning
advantages might clearly result-in mcreaaed, rather
‘than decreased costs. . Assuming-the costs of production
‘and the cost of continuwous updsting and changes whizh
.should be done ifox "the Waterial. 40 redisin both freeh
" and topical might well .be & -commitment to increased
comt. .As noted dniour ‘condlubich, this fsan area
.:deserving of consinued etudys ' Similar comments can
"be made .about- &.nitiatmg'now “the use of ‘computer=
. assisted instruction. - Again,’ with domputer-assisted
‘instruotion, there: appeads to-be significdnt cost
regquirement for experimentation in the development
of instructiongl ‘formats not now able 'to be realized
as. effecfivsly by othey lews éxpensive: patterns. The
basis for cost estimates mey: be' radieally altered
when: and if both: closed-cirduit televibion and computer=
_assisted instriietion bezome more: cemmoﬂly uged, Should
- such: & time Arids, tosts wolld ‘then be‘ bofne by more
1nstmct:l.ona. unite, ﬂe¢z~eauhg the" coat *o 9.11.
vl . YRR Y
. ‘!‘here ) an additional tac‘cor to be cone
.i;atdered 1n the “development of irnévétive ledrning

S . formats: which. relates.leéss to their cest than tn

.the likelihood 6L ‘their being adopted at all.
Whenéver. mstrﬁctibnal ‘formats differ-teo greatly
from acceptéd -instructional patterns, “their intégrity
<«=g8fid hence real value~~is often’undermined by stafs
unjrained ‘and/or unwilling,  ‘Educatithal innovation
which 4s to'be truly- permanent:must ‘také place slowly
ahid not disenfranchise ldrge -numbers of staff from
. partigipating in improved 1ea:éning' Bituations. Staff
directly’ 2nvolved m’novelomentf ‘dre far ‘more moti-
vated and exdited ahd,.as a ¥esult, spend-significant
amounts of their own timé on what to them becomes and
is an act of creation. Similar expectancies should
not be assumed from staff not so involved.



Thus, from the point of view of many
experiments now being carried on in the United States
“‘and elsewhers, ‘the pilot stully reported here is very
"modest. - 1t attempted to ‘make 'no demands on resources

- not already at hand nor easily and: maxponas.vely ob~

" tainable. - It attempted to utilizé those ekills and
rdsources available: verying degrees af mathematical
‘dompetencies of ‘the staff, :mteff ekills:'in lecturing,
‘staf? skills in working with small groups of students,
‘staff skills in determining abilities utid needs of
- individual students, staff -ability to develop prodlem
mtoruls, starff ability to select readinge, and the
- -abilifies .of. oxoopt:l.onalld' able otuden‘ts to help

otknn qtudontl. Lo imany co
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Section 3., Iiethods

_ - The. courae choaen to begin our ‘pilot’ study
in the £all of 1968 was the new freshman mathematics
course, Finite Mathematigs,, At that time the, mathe-
patics department. pffered three (3). courses available
to beginning mathematics: students: Hathematics 101
(for students unprepared for Pinite Mathematics, for
general education students, and for glementary edu=
cation majors), Mathematics, 111, Finite Mathematics
(for students who intended: either to major in mathe-
metics or allied f£ields, and for students who might
be using significant amounta of mathematics in their
future work, i.e., studenis intending to major in the
sociel sciences), and Mathematics 122, Celculus (ror
advanced students who planned to continue their work
in mathematics).

In August 1968, lir. Stonkton and Dr. Kenner
began work on developing a combination placement=
diagnostic test for incoming freshmen. The main
purpose of the test, at that time, was to discriminate
among students in placing them either in llathematics
101 or in lMathematics 1lll. A=z we note below, the use
of the test and its subsequent refinement was altered
for incoming freshmen for 1969-1970. Appendix I is a
copy of the final diagnostic test used. On the basis
of the first draft of the placement~diagnostic test,
College Board scores, and high school records, students
were enrolled.

In the fall of 1968, approximately 100
students were enrolled in llathematics 111, Finite
Mathematics. The 100 students were organigzed into
two basic sections of 50 each. (The lecture room
assigned had a maximum capacity of 60, As will be
noted in our conclusion, the number in each basic
section could have been 75=-100 without loss of
erfectiveness.) Each of the basic sections was
organized into 5 tutorials of 10 students each. The
tutorial time had not been pre-scheduled. Thus a
gquestionnaire was distributed to each student to
determine free periods and professional interest.

In addition, the diagnostic test and Ccllege Board
scores were used to attempt to define tutorial seo-
tions which as nearly as possiole were filled by
students of similar ability and professional interest.
One tutorial was specifically set aside for students

nd



displaying specific wealmegses on the diagnostic
tea&. Although the tutor:lal eection was not called
a remedial eeot:l.on, paxrt, of ite :mnct:.on was reme~

i dial in nature, The instructor. of each tutorial
: oection was given a copx -Qf -the. etudent'e teet..

S

The- baeic organizational tra.mework of
eeoh basic eegj:ion 'in “the :tall ,0f 1968 was .

3 lectures per week - requi.*ed
1 tutorial _per week -.required.

. ‘The course oarried Zour (4-) semepter hours of credit.
S A 1 ¥ill be pptpd that we adhered. to the traditional
tomula of one aredit, to.r each rpqu:l.red period. The

lectuzers were lir. Stockton and Dr. Kemer. The ..
tutorial. instructors were st, Kenner, Lir. thonaJ.d,
Mr. St.ookton, and Dr. Kem;em “ ) )

In add:l.t:l.on to the required periode, help
sessions~~both group and individual--were established.
Three 2-hour group help .sessiong were made available

- -and students were also able. to see a -student asaistant

: :l.gdividugl.).y on a regular basis. , That is, a student

did npt need to make an appointment to receive; indi-

.. vhkduel ‘help. from the student assistant. The. help

sesaiong wers. statfed Ly two, exoeptionally able under-
graduate. mp.thmt:.oq mg;lore, Hies Pamela comer and
Miee Deborah Dunphye ... ~ . NP

.. A twomweek psriod was set aeide (at dif-

. gerent . t:l.mee for the. two sections). to .concentrate

on; dgveloping & minimel. operatione.l acquainta.nco

-with oompqtorn ;angupge. Jirs.. El.pn Scheer, .of. oui-"

ete.:!.':c, assipted by Mr. Tony Evers .of:the Computing.
Center staﬂ ol the Univers;l.ty of Hissouri, supervised

-this. two-vgﬂek. pori,ed. . Stephens Gollege facilities.

cpnaist .of key pupohes. . Programs were. batch prooeeeed
at the pnive;'eitx of Miseouri Computing Center with
four (4) pickeups and deliveries each day, Programming
problema ers. ,ﬂ,otel,opod to aid the students during

this brief. 1ntroduot1gn to FORTRAN IV. (Appendices V,
Vi, VII are samples of the mqteria‘l developed for. .

. thia purpose-);aq_. it

Ll

*Probiem materiale were eleo develo;)ed in
connection with text materials, to be used with
special effectiveness in the tutorial sections. (See
Appendices 1I, IIY and IV for samples of these.)

There was, of course, great variation in the tutorial

10



sections since sorting had.been done in part on the
basis of ability.- In, some. :tutoriels, for example,
extra readinzs, such ae fountin ,Append:l.x X, were read
and discussed. These read:l.ngg may not. have been. suit-
able for all tutoria), groups. The lecturers for the
lecture sections coordinated their efforts arnd were
never more than one day .apart during the year, with
the exception, of -course, .of. the two-week alternated
time devoted to computer instruction.

During the yeer, Professor Ralph Lee, Di-
rector of the Computer Center, University of lilssouri
at Rolla, and Profesaor A, I, Mark, Associate Chairman,
Department of Methemat:lca, Southern I1llinois University
at Carbondale,. served as coneulta.nte. Dr. Lee considered
and analyzed. our ‘work :Ln computer education and Dr. ldark
helped us define.and prepare our tutoripl section prob-
lem materials. Suggestions from both of these valuable
consultants (noted in results) were incorporated in
our planning for the 1969-1970 acedenic, year.

o AL the. end of the yeer we adminietered to
..-gach student & Teacher Evaluation Porm (Appendix VIII)
- and a Course Format Evaluation Form (Appendix IX)..
statigtical analysis was: med"e £rom these . eubjective
evaluation forms. They did provide, ‘howeyer, signifi-

'-"oent amounts -of mformation ebout etudent activitiee,

i

the students thought we were. s
... Jfollowing the 1966-1369 geadenic year,

eigniﬁoam revisions in. procedure were made for the
19691970 'academic yaar. On the baais of a. comparieon
of College Board.sdores, our.own placement test scores,
and high: echool, ‘r¢cords, we found little geined by

.+ y8ing oux Placement scores. In fact h:l.gh adhool
regord, g.lone, seemed to' be’ a :teiirly good indicator
‘of corrget level of . -entry 1nto the freshman me.the-
matics,program. We had Lo d, too, thet preparing
for Hathematies 111 by enrelling firgt in uethematice
101 was not usually necessary or eucceeetul As a
result, - the freshman mathematics entry ‘points were
changed. for the 1969-1970 year. To accommodate these
changes in entry points, some course revision was also
established. The courses and the beeie ror entry are
given on the next page. ° :

1F



Hathematiés '101: - Only:for:students (principally in
T4 i the Arte‘énd Humanities) who -plan
© 'no further’ study ‘of mathemiticsw-
it e oourse-in‘General Education,
" 4. - - Eatry: ‘dme and-one-half units of
s« ' -algebra‘oF- more, Nc placement

CoEe e teB‘ba - r ' :

" Yathematics-10les ‘-Only :l'cr studonts who plm to
: o0 e aatisfy fequirements for state
Co certification in-Elementary °
- Bdudatiolii ~Entry: ‘one and
one-half units of algebra or
T "'morc. No pla.ccment test.
Mathematics lllm For ctudents who plsn further work
Codb -in .or need -for mathematice (a remed:l.al
wt. 0 ..gection 'c“.t Pinite Mathematios).
Yo . Batryyr atscore bclow 15-2) on thc
Lot e aiagncstic tcst. A b
Mathematicvs 111: "Por studfnts who plan :l'urthar work
;7 '4n o nedd: for mathematics. Entry:
Phree or four years of ‘satisfactory
h:l.gh school mathematics.
-"Mathemat:l.cs 211:: "For students who plan turther work
‘in nathematics.  Entry: : Advanced
g u'g“:.ﬁﬂn= work in high school £or. 4 -yeéars-énd
P e -Collego Board ‘8saore greator than 650,

By a8 tctd partitioning of thevrrestman knathc-
ms.t:l.cs of:ter:l.ngs we were able ‘to move toward the- '
design of course curricula which were unicursal in
obJect:I.vs. ‘ghe- revision of -the placement=didgnostic
test (Bée Appendix<I) snabled us to identify studédts
wighing ' té- cntcr the non-terminal course’sequence: and
to determine oh what ‘mithematical topics their. speci-
fic weaknesses were. The remeligl sectionof Pinite
Mathematics had a limited enrollment--no more than 15«
and it met 5 periods a week, even though no additional
credit was given for the extra meeting. The conjecture~
vhich turned out to be true-~was that by intensive ate
tention to weaknesses, when needed, the same course
coverage might be obtained with the additional meete
ings and small class size. As we shall note in the
conclusion, after the firet semester of the 1969-1970
acadenic year, students from the remedial section
were able to join the regular sections tor the second
semester.

12



The. remedial section or the Pinite Mathe~
matics was taught as. a. rqgﬁlar clasa, with amall en-
rollient. It met da.ilyF We urchased a nunber of
diffe ~ent program téxts of” hi ‘school topics and
when and if the need arose ror 1nd1Vidual remedial
work on an individual- tepié, the instructor, ilr.

B. A. Chavies, was able to direct students to appro-
priate sections of apprOpriate texts. .The bagic. text
for the oourse, however, was. the same 4s that 'used in
the regular Finite Haihematics gection. The remedial
section had the time to be bqth more leisurely and to
stop when deficiencies 1n'cqmpetencies were discovered.

_ The other two sections ‘of Finite Liathe-
matics were organized as. during the previous year:
three lectures and one tutorial section required.
Tutorials were not, howéver, seciioned by ability
due to & severe schedulipg problem. (See comment in
recommendations.) We also did not repeat the experi-
ment in the introduotion to computer language s a

re ar part .of the course, .We commen* on this, too,
in our comclusion. Otharwise, the pattern followed
for 1969-1970 was the same as that folloved for
1968-1969 -in the Pinite Ma@pemqyics course.

As a -supplement to our earlier experience,
we sgheduled 1n 1969-1970 " ‘ohq degtion each of Nathe-
matics 101 ‘and Mathematice 10le {n the lecture=
tutorial format.. Both aections had enrollments of
about 50 .students. The intent here was to determine
the ability tq use the format as a regular pattern
without extra staff plannigg, develapment and mate-
rialé pre-prepaiation.]_ PR o L
3 f* e’ Have ' thua estahlished in” all 9£ ‘oRr;
‘treahman dathanatics’ prograus a lecfure-iutorial
- 'format, and have Jbegun %0 .gain the requisite ex- . .
. ‘perience to adapt it to specialized heeds and.
abiiitiqs S & qtudgnfs.(f’ - R

Lorad . . W ‘_’."f. vis

ool Wt . -
M . . .

o o
D
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Section 4. .'.,Resul’_c,‘su. . oo

R I L CT S I
“In. our originel proposel we divided the .
purpose o:t the pilot. study into two. main categories.
One. category dealt . with the. problem. of optimum deploy-
ment of competent staff, . The secom category dealt
with the problem of optimum use of available media,
In our disoussion, here, of. the. resultes of the de-
velopmenta) worlk, 1t is useful. #0 be faithful to .
these earlier defined.categorigs. .As. was noted. in
our Progress Report.of ilarch.1969, the initial delays
in starting have had the uaupectedly happy result of
yielding more experience.and. hopefully more ‘insight-
into these two problems than we.had originally ex=
pected.

roblem of 'o t wn dep +.of com efe'hf- staff:

- From a. purely cost baa:.e, the mstruntional
romat euggeeta si.gnificant .reduction in staff cost
_per student. . In the spring gemester 1968 there yvor's
185 students enrolled in mathematics courses with
Lour full-time etaff members, with a ratic, of ape~ -

| REPXimately. .46 students. per ataff member. . In the .

. .spring semester 1970, thare mere 324 students en- ..
- rolled in mthmat:!.c- gourses with five full=time .
equivalent gtaff members, @ ratic of approximately.
66 students per staff member -- the latter despite
increased offeringu by the department. Ve omit the
apring semester 1365 since part of -ths staff funding
was boz’mo*’iﬁiﬁf‘m Mtﬂpportmg'tne pilot rindy

mortod hom- o

Tho abovo .appmxj,mste dat,s doals w:l.th the
envuo Aopa;c‘hmpt enmmmqnts. % one point of
v:l.m this . is justifiable in a°small de’ﬁartmont since
8kl staff earry:part of .the load. af .all kinda of
_mntrucuoq.c -Duping the two-year .period all staff.
menbers pagticj.pqtod ixn thg dnstructional teanm. for
the Rinite liathematios program as.Jecturer or.
~tutopial imstrucpor. -The .gost efficiency, however,
-survives the test _af.& more. m.r:zowly concq.'wod aBm
mtpt patt.rn. -;‘:-1,_;,,“ oo

el

o I.p 136'(-1968 r'qgego werq ;;our aeoti,ong or
collesg ,Algobra.s 5 -houyrs ;cxedit, the course which . .
was replaced by Pinite liathematics. These four .
sections were at least a full load for cne stat?

1
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member. (We use here an estimate of load which is at
least weighted against favorable "omparison with the
format of the pilot study.) Despite an increase of
credit hours from 3 to 4, and despite an increase in
enrollment to approximately’ 106 in'1969-1970, the
staff time alloted o the twd” Bections was 2/3 of a
" preition. 'Aésuming a staff ¢ !hpennation level of
$12,000, this means that in 1967-1968, $12;000 was
committed by the college £or- the insti-uction ‘of 80
studente, In 1969-1970 the cbllege ‘comitted 48,000
staff compensation Tor- 25 perc&nt more ‘Studedts and’
.25 percent more earhed. tredit hiouYh.'* Even 1if one
includes the full cost of t¥o i!ephrtmental student
assigtants at {500 annua:l’l:r each, ‘the ‘comparison
becomes $12,000 vs. $9,000 with the-25 percent in-
crease in- both students ‘and’ student credit hours. '

It thus seems clear that, assuming edu-
cational feasibility and desirability, the lecture~
tutoridl format offero- proitbe  bF-aisigniticant de~
crease in cost pexr student per credit hour. To
retwan to the use; of" com’pe‘tent ptafs i%'a small de=
pertment, it ssems otear 'bha‘l: ohie %upecial’.ly compeé=
tent and a‘nle staff member can abBune direction’ of a
team ‘for such a courhe, be give some Teduced Yoad
for this ePfort; and still offer tite dolldge ‘Promise
of more p,tficifent usé of fundl. ' The o:tperience ‘géined
in the piiat’ study woild ‘seém to confiim’the possibi-
11ty and desiralbility, yielding as 1t does | the amnty
to be mgore ﬁ.ékible i stafr ass.tgumen'bs. e

) _‘ o B K Y B i

The 1 :Eo én ot"'o tmum use dt ava!:lable media: "

As was suggested :I.n our mtmduction, dui\
definition of available media is intended to be per-
suasive. That iE to say, wé have not, in this study
attemptdd ‘to' coneider media such as: compu'cebaesis‘ted
‘indtruction or cloéed-circuit televiesion ‘since both
of .thede dlearly Feqilire the ‘commitment ‘0f resources
which ‘would ‘exigble - cost efficiencies onky ‘£f used in
a ‘ldrge ‘variéty of Yearning situations ‘stretching
far heyohd the- ‘single ‘départmént in a-small college.
Por ‘this etudy. the préblem of optimin use cf evail-
able médfa meant moré realistically the discovery of
the kinds of topics, the specialized learninge, the
individual studeat needs, best served by large lec-
tures o¥ ‘best served by ‘emall tutorial sections or,
best ‘served by prograumed texts or beat ‘derved by -
maividual ltelp. It :I.s clear 'that we have only ’
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. -begun to study this problem.. :Yet certain features
begin to- emexge which suggest that it is correct to
assume that the best learning design for classes as
heterogeneous as entering freskman mathemnatics classes,
will be learning formats which'vary thelr patterns
and attempt to build-in flexibility. PFor the purposes

. of reporting here; we.shall, obviously, artificially
_treat the individmal components of: the 1oarn1ng for-
nats separately. -

. e
.L; Large Lectures

. It is clear that for material which an
1nstructor chooses to present.by lecture, there is
little difference - betwsen an audience of 25 and an
sudience of up to 109, Beyond 100, the room size. .
bcgina to. draw the lecturer totally away from hie

. ¢lasg. A classroom. capeble of holding up to 100
students prese. 7res the dimensions enabling an 1n- -

.-structor to "reach out" regularly to maintain con-
nections; It is-possible; too, that a class of at
least 50 mekes lneturing easier and more effective.
(We assume, hers;-of course, the opportunities for
teacher-pupil dialogue exist in other contexts.)
The larger class discourages interruption, thus
enabling &.lecturer=-who is. truly prepared==to
develop coRtiMUGUSLY s soeriario-=to maintain a
.continugus drame which is.often destroyed by in-
kerruption=«to allow and encourage identification
by:all students without interruption fLrom any. . The
task is.-not to dsstroy the: lecture but to revifify

.4t by determining what is besi developed in a cone

.- tinuons sweep: .That material which is not: acceasi=

:ble. to lecturing is generally not . suitable: to a

;okapy. oL 25, eithexr. Thus, in one very important .
senss; the Block Format helps return integrity to -
s$he prepared 1eoture,gs-an.gducat1onal experience.

ggtorial SQctionl

- - . Ir the large 1octnre 1- suitable ror B
_torial t0.be daveloped and presented continuoualy 1
and with, gxnma, Yhe tutorial is for material which:
mupt.come as .a result of dialogae apnd joipt. dise -
covary-naxorinl which, so to speak, misi be ieased
from the Qtuddnsfrather than rrcm the lecturo:.‘vwl

ﬂ*;..u- s
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Tutorial sections, when possible, were li-
mited to no more than ten students. 'Thls ena“led a
seminar-type atmosphere.::‘We’ tried, too, hot t¢ hold
-tutorials in classroocme.: (Remodéled facilities enable
us now to hold tutori&ls:in-a émall room with a few
large tables and.a very largd’ blackboard.) It was
possible to vary-the purpose  of given tutorials. For
particularly able studeénts, tutorials were'often the
occasion for going significantly beyond the regular
lecture topics. Optimally this was done without notes
or references and with leisure, Often supplemental
readings (see Appendix X). were distributed and reported
on. For many sections it was an opportunity to con-
sider carefully connections between the  lectures and
the problem materials.-- For- soile sections it was an
opportunity to detect specifid: weaimesses in dack-
ground, racilitating referral for extra study. For
8ll sections it was an opportunity for student’ and
Teacher 'to Interadct and engage in real dialogue with-
out fear of "holding-up  the-class." ' Thé success of
the-tutorial sections wds felt by both staff and stu-
dents. On the Zofmat evaluatidn instrument (see
Appendix IX) a majority -of the students called for
more than one tutorial section a weék.

N N

Hel Seesions and Prd'“ammed Materials

In' many waya thib'was the 1east successfully
used instrietional facility -y the btudents. In part,
no dowbt, this was. due ‘to the faot tha%; unlike lec=-
tures and tutorialé whieh -were regquiréd, these were
optional,’ I%. séems ‘possiblé, hewevery that there is
a-more ‘profound reason since- help eeasione, in particu-
lar,: were very-wéll-attended ‘the week before a ‘test.
Superficially .this #ays that tests motivate stidents
to extra’ worki “But more -irportantly: ‘44-also says
that befora tests most students found-hélp sessions
useful but at other times most students did not finu
help sessions useful. It would thus seem to follow
that it is possible.tkiat-the.f£ocus of the help ses-
sions was only on preparaticn for learnings to be tested.
As a result there is dlearly hefs a challenge to un-
covey ‘wiys of motivating students touse all learning
facilities more readilyi’ -Ferhaps'a procedure worth
investigating is a deliberate assignmént of certain
toplea o the help sessions ahd-the 'décompanying
avoidance 6 them in either iutofial or lecture.

This procedure would be more useful early in the
course so that students could develop early satisfacw
tory learning relationships with the help session
assistants,

14
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Section_g. Conclusions apd.Rggommegdgtions
. C TN

$ince this pilot atudy had, ‘as one of its
central objectives, thé defining of problems tor -
further study and action, it it appropriate that we
_combine our concluaione and recommendatione mto &
single section.

It is important, howevgr, to assért first,
the collective judgments of the mathematics staff
that the pilot study was successful. It was success-
ful in $hat it enabled us to gree ourselves from °
establighed patterns of whq.t, inétiuction is and what
it 48 not.. It freed us. from arbitracsy and a-logical
equatione of credit and class timeé and homework time.
Establism.ng this freedonm may, in fact, be the s:Lngle
most :Lm.portant outcome of the pilot atudy.

.
.t

'J.‘ha ev:ul oe of 11:8 B\gcceae ensts, too, in
that we are expondihg the use of the format to other
classes and hope to begin exper;l.mgntation at a larger
:l,nstitution, Northwegt Uissouri State College, in 1970~
1971,  Stgff and ‘students’ have also ‘betoiie operation-
ally aware of the fact That an 1q'qrn1nga are not able
to be dealt with effectively by the sddé learning
methgdologlies. The gtaff has noted that student come
mitments to 1earn:l.ng are more. ‘easily sustaired and
.nourished by varying the leaxning formate. We think
noteworthy, ‘t00, the devolopmeht ‘of the diagnostic
test leading to the organization of a remedial section
of the same couxse, rather than, in the traditional
foxmat, mov:l.ng the student ode é‘tep down the ladder.

There was oné notablé ‘failure. 'THe attmpt
to, introduge. computer facility in a two-week block
during the "1968-1969 yoar was clearly far from suc~
cesaful despite the :I.maginat:l.ve development of quasi-
prograxmed programs (see Appendices Y, VI, Vii.) Dr.

.. Ralph I.oe cont:l.mod our evaluation ‘that two weeks is

not a lpng. enough tj.me Lor s:l.gni.ﬁ,cant learn:mgs by
.-811 students withayt ,}gnif';c t ‘follow up. The

... course..qutline . doea not.allow Yime for such signifi-

cant follow up. It is our TFecommendatich that o
short, but more prolonged, computer course be- offered,
on the side, and only then develop inputs for the

more elementary mathematica courses. This entire
problem needs significant study. We should like, too,
to see attention given to the utilization of a com-
puter as a simulater as a teacher aid, simulating such
patterns as & random welk as part of a lecture.

15
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In the context of the two main problems-of
our pilot study, as described in Section 4, we would
recommend that the following questions be given fur-
ther study and investigation. L avn

1. Aaeumj.ng that it ie paseible to define learnings
mors effectively handlsd by a lscture format, what
are the optimum lecture class sizes which pre-
serve the potential. for student identification
with the leoturer? - . o

2. How can etudents , themselvee, be brought more
fully into participating as gstaff in. the learn-
ing situation? :And how can their experiences by
students dbecome:themselves: eignii’icept learnings?

3. What are-promis;mg-.etra:;eeiee T 1dentii’yipg
material best suitsd to differing learning for-
nats? _And how can they be used to insure con-
t:l.nuoue feedback {to .course designere?

4. Whet are promieing etrateg;.ee for :Ln,corporating
mors varied instruetional media whoss cost re-
- quirements -diciate simultaneous :l.ntrodgction in
more the.n, one dieciplimy area?

5 How can one e:ttecti.vely determ.ine 11' optimum for-
‘mat for materisl may.also, be a: :mpction of dif=
- ferent learning responsee by dii’fepent studente
to such :tormate? DT e e e s

6. How :I.mportant is the :aqt of expoeure to a
variety of learning formats as contrasted with
:Lte lea::nmg effectiveneee‘? FUT TR

7 How efrecti,vely independent ot lea.ming fomete
are our instruments of evalu.ation"

It ehould be clear that th;e above set of
queetione recopmended .ror turther study give evidence
that our pilot e:tudy haa e:l. 1:t:!.cant1y ‘déepened our

_.awareness of the problems cénnected with courss for-
m:{ deeign-—problems, hOpe.f.ully, Aot . totelly intracte
abia. .
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Appendix |

Mathematics Diagnostic Test

(2.52) « (asb)3 = ()
1 a
(a) Py (b) ‘;‘5
) 2 () ——
ab?
(x3y) o (xey2) o (x"Ly=}H = (D)
(a) x"3y-6 (b) 0
(c) x?3 (d) y2
(m2.n)3 = (2)
(a) mén3 (b) mon*
(c) (men)® (d) md5n3
(3)e(2)°% = (D)
(a) -(6%) (b)
6-'4
(c) 1 @) 2
3'4.214 210
(2°H2 = ()
(a) 2-5 (b) 2-%
(c) 27 (d) 2

20



6. 31.7x10"3 = (7)

(@) 31700 (b)) 3.17 (c) .317
(d) .0317

7. (1.1(.02) = (?)
(a) 2.2 by .22 (c) .022
(d) 1.02

8. 2.17 x 102 = (7)
(a) 217 (b) .217 () .0217
(d) 21.7

9. (-3.2) x (.4) = (7)
(a) ~-1.28 (b) ~12.8 (c) ~-.128
(d)  -128

10.  (.001) x (.2) = (1)
(a) .002 (b)  .0002 (¢} .02
(d) .2

1. JI8+vVZ +3 = (1)
(a) /20 +3 () 9

() 3+4/2 (d) 7 /2

12. W= ()
(ay T YLV )y 36
(g) 1817

21



3 <
13. TTE5H ° (?)

3 (2 + 342)

(c) 12

14, k=B = (D)
(a) 2 (b) 3 (c)

(a) — (b — (c)

ININ)|

16. Which of the following relations does x satisfy
if =5+ 3 <x - 47

(a) x < = (b) X >

O\— O\~
N OV

(c) X < = (d) X <

17. Which of the following implies that 2x + 1 > 27
(a) x >~% (b) x >

(c) X > - (d) X <

N|— N

18. If 3x <7 and y < 0 then which of the following
statements Is always true?

(@) 3xy < 7y - (b) 3xy <0

(c) 3xy > 7y (d) 3xy >0

| 22
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19,

20.

21,

22.

20

I+ 3x2 > 2x then 3x > 2 provided which of
the following holcs?

(a) x=0 (b) x>0 (c) x<0
(d) x#0
The solutions set for the inequality y < x Is

represented by which of the following shaded
regions?

(a) (b

N
N
/\_ﬂ *.——-—d?
/_‘-—'—‘_'_X ﬂ—_—-———-—; AY
A == 7
/ - —
(e) (d)
7™
D
7/
N\
\

Under which of the followling conditions is the
quanttty |[x-- y| negative?

(a) x>y (b) x<vy (c) never
(d) always

If =1<x<0 then [x - 2x2| = (?)

(@) -x - 2x? (b) x + 2x2

(c) -x + 2x2 (d)  x - 2x2

23 .



23,

24.

25.

26.

27.

28.

if x<2 then |x -4|= (D

(a) - x+ 4 (b) -x -4

() x+ 4 (c) x - 4

If |2x -5 =1 then x = (?)

(a) 3 ® ) -2

(d) elther 2 or 3 .

Which of the following shaded regions is the
correct solution set for x if (x - 1)(x + 2)
< 07

(a) 1 L 'y l__Lg__;x (b) A [ i1 WX
-2 -1 0 1 2 -2 =1 0 1 2
(c) 3 ) L3 1 8 X (d) ) L g X
7 7
=2 -1 01 2 -2 -1 0 1 2
if A = {1, 2,3} and B = {2, 3, 4} then
ANB = ()
(a)y {1, 4} (b) {1, 2, 3, 4}
(c) )] (d) {2, 3}
If A = (x,y,2y and B = [z, w, v} then
AU B = (?)
(a)y {z} (b)Y {x, vy, z, w, v}
(c) {x, y, v} (d) {x; y, w, v}
If A = {1, 2, 3} , B={2, 3, 4} and
c = {3, 4, 51 +hen (AUBINC = (?)
(a) {3} (b) {1, 2, 3, 4}
(c) {3, 4} (d) {3. 4, 5}
2y

24 -
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29.

30.

Which of the following shaded reglons represents
the set A M (BLC)?

(a) (b)

(e) (d)

Which of the following shaded regions represents
the set (AVUB) N (ALIC)?

&
AN S

20
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31. in the following triangle sin a = (?) /g
(@) + b)Y 2 () —— (@ =
/5 /5
2 I 2 X - (9
32. sin 3 + cos 3 (?)
(@) 1 B + (&) 2 @) 27
2 2
33. cos (a+ B) = (?)

(a) cosa + cos g (b)) cos o cos B - sin a sin B
(c) cosa-cos B (d) sin {(a - B)

34, Which of the following represents a 7raph of one
period of y = sln x?

‘j\ /. {A
IRATT N

[N

y

y
(c) A (d) 1t
1

? x > x
o 3n\2n 3
2 2 -1 2
-l -




T ITEATAR SN T e —— e
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35.

36.

37.

38.

If sin g = -% then cos o = (?)

1 3 -
(a) Z (b) 5 (c) 3
(d) KL

A

Which of the following is a solution to the pair
of linear equations 2x = 3y + 1, y = ~dx + 27

1
3

(a} x=-2 and vy = (b x=1landy = -2

(c) x = %-and y=20 (d) no solution exists.

The curve y2 = 3x + 1 and the line x = 5 satisfy
which of the following?

{a) intersect at exactly 1 point

(b) do not intersect

(c) 1intersect at exactly 2 points
(d) intersect at Infinitely many points

Which of the following is a solutior to the pair
of iinear equations 3x + 2y - 1 =0 ,
2x -~ 3y + 1 =07

= 2
(a) x = 13 and y 13

= 1 = 2
(c) x = g and y = g

Nf—

1
(b) X = S-and y =

and y = —%%

i

(d) X

e



Aopendix |1

Tutorial Problems on Functions

1. Show that the following hol«s
<x, y, z> = <r, s, t> iff x=r,y=5,2=1t%

by identifying an ordered iriplet as a mapping
and then using the criterion for the equality of
two mappings.

2. Consider f: A-—B where A, B are finite sets
with a the number of elements in A and 8 the number
of elements in B. Which of +he following cases
are possible?

and f onto

and f one-to-one

and f onto and f one-to-oie

and f onto and f not one-to-one
and f one~-to-one and f not onto

o aQan0oco
R R Q ™K
i Y A A
DR D

3., Let f, g be defined for all x & IP by

3 - x

f(x) = 3 - 5x f(x) = E

Show that f(g(x)) = x for all x

Show that g(f(x)) = x for all x

c. What can you conclude about f and g from
the results of a., b?

o Q@

4, Which of the functions f of exercise 4, in the
previous section are one-to one? For each
such f, find 1

5. |f F:A— B is defined as fo!llows, determine
whether f is onto, whether f Is one-to-one and
determine the pre-image(x) of each y& B.

a. flx) =x%, A=R, B=PR
b, f(x) =x2, A=R, 3=R0
c. f(x) =x2, A=R0, B=RO
d. f(x) =2x, A=R, B=R
e. flx)=2x, A=1, B=2¢.

25
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10.

1.

Relate the following statements by implications.
(For example: ({(b) == (a) )

A—B

Rl

alds

AlZh g

6;?3

Show that the function f of example 3.1.14 in

+he text is one~tc-one and find its inverse
function.

a 0 o o
ek R eh

for x QJR+.

X =

Let f be defined by f(x) =

a. Find the range of f.
b. Show that f Is one-to-one
c. Find the inverse function f-1.

This problem is a continuation of example 3.1.12
in the text.

Let S = {a, b, ¢, d} and define the mapping Q by
Q(x) = P(P(x)) for x& S

a. Show that DQ = RQ =S

b. Show that Q is one-to-one

c. Determine the inverse function Q-l.

Under what conditions (if any) is the mapping P1

of example 3.1.20 in the text a one-to-one
mapping?

Let f be defined by f(x) = x2 + 1 for x¢ R
and g by o(x) = Vx - 1 for xe R, x 2 1.

a. Show that f(g(x)) = x for all xg Dg.
b. Disprove: g(f(x)) = x for all x€ [,.

29



13.

14,

This problem is a continuation of example
3.1.13, in the text. Llet A and B be subsets
of U.

a. Sbow *that A =B 1Iff X, = X

A B
b. Show that XA,(T) =1 - XA(T)-XB(f) for
all +te€ U.
c. Show that XA/]B(T) = XA(T)-XB(T) for all
t+ & U.
d. Show that XA(JB(f) = XA(T) + XB(T) - XA(T)XB(T)
for all t&€ U.

e. Show that the association A---)XA for each subset

A of U defines a one-to-one mapping with domain

P,

a. Prove: |If f is a function and g<.f, then g is
a function,

b. Prove: |If f is one-to-one and g C f, then g Is
one-to-one.

Context: |If f is a function and g< f, we call

g a restriction of f and we call . an extension

of g. 1f Dy =C, we call g the resrriction of f to
C. (Note. +gnf we must have Dd: Df.) Alternatively

we may say .that g is the restriction of f to C iff
g has domaln C and g(x) = f(x) for all x€ C.

In examples 3.2.2 of the text we considered
functions f g such that g was the restriction
of f to R%. The example shows that we may
have g one~to-one, g f, and f not one-to-one.

This problem is a continuation of example 3.1,22
in the text.

If A= 12} fhen AT =

872

we call AT, A-Transpose. Now let @Tbe the mapping
with domain Y¥\ defined by 6 (A) = A .

27
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Appendix 111

Tutorlial Problems on Vectors

1. Leta=<1, =3>, g=<3, =25, Y =<0, -1>.

Find

a. 200 + 3B -~ Oy f. —+%+—

b. |20 + 38 - ¢ g. lﬁﬁ’-

c. (20 % (y) h. “—i‘l%+ B*B

d. (a) *(38 + 4Y) i. la+ 8| (axg)

e. (% -8%GBa-8) j. |la-8la-|a-2g{8

2. Let a = <=2, 1>, B =<5, -1>, y =<2, 7>. Find
a. o+ 28 - 2y f. (28)* (3y - a)

b. S5Ca+ 8) - 2(8 -Y) g. T
c. -B+y
o | h lala* 18]8 + |¥|v

q ol - 18l + Iyl
) o - B+y . (laja) * a
e. a x (B =-1v) Jo Ua + 8])(a + B)xta + 8)

3. Show that the following sets of vectors In V,(R) are

Iinearly Independent. 2
a. {<1, 3, <2, =15}
b. {«<1, 0>, <2, 3>}
c. {<4, -i>», <0, 25}
d. (<0, 2>, <3, 1>}

1 2
e. {<~§; 0>, <0, 3>}
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let a = <0, 2>, 8 = <~1, 1>, Find values of k1

and kz (possibly different for each problem) such
that

a. <2, 3 = k1a + kze
b. <=1, 2> = k1a + kZB
c. <3, =4> = k‘a + kZB

LI
d. <2, -3 = kja + k8

a. Llet a=<i, 0>,8 =<, -1>. Show that the set
{a, B} is a linearly independent set.

b. Show that VZ(R) = {k1a + k2 8: k1y k2 R}
a. tet a=<-1, 15,8 =«<~1, -1>, Show that the
set {a, B} is a linearly independent set.

b. Show that V2(R) = k

o + kZB : k ko, R

1, L

1

Show that the set {<!, 0>, <0, -1>, <2, 1>} is a
linearly dependent set.

Show that the following relationships hold:

a. |kafl = k| |a]
b o _dal 4
k Tkl
c. la+8i < |a] + 8|
d. Ja -8l > la} - |8]

32
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9. Give an Interpretation of the foltowing
operations or relationships in the representation
of vectors in E2’ a, Br ¥ VZ'
, 1 1. _ 1,
a. a+ 8 f. Fa-:ﬁ—g(a-e)k#o

b. o+ B =y

]
N
™
-
Q

|

g. a = kg k#0
Bl < lal + 18] he a*»B#£0

Bl 2 la| -8l

0O
°
+

1
a--‘z'8=-§(a"8) B=ky
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Answers for Problems on Vectors

1. a <11, =-7>
b. /170
c 6
d. 39
e. 49
f. /10 /130
= o 3
/13
a. 19 or V10
10
" B
V&1
1. 9/iT '
J <-2/5, ~/5>
2. a., <4, ~15>
b. <9, 16>
C. 106
d. V5 - /26 + /53
VY106
€ -14
40
g. ___31
5 + /26
h, <=2/5 + 5/26 + 2/53, /5 = /26 + 7/53>
i. 5/5
J. 27
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= 2 -
4. a k1 =3, k2 + ~2
b. ky =i, k=1
1720 %
co Kk, =-1, Kk =-3
17720 %
) - .
d. k, =3, ky= =2
az—a/
6. b. Hint: <a],a2> = —5— {1, D+
/7
(a1+az &1, -1
=2

9. Hints:

a. dlagonatls of parallelogram
¢c. lengths of sides of triangle

e. the length of the lline jolnlng midpolnts of
2 sides of a ftriangle equals one~hait the
3rd slde.

i. If 2 line segments are perpendicular to a

3rd line segment, they are parallel to each
other,
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Apperdix IV
Tutorial Probiems on Probability

Let S be a sample sgace of 4 elements:
S = {a1 » 8y, 83, 34},

a. Let P be a function of S—>R such that

=1 =1 =1
Pa)) = 3, Pla) = 3, Plag) = ¢,
P(a) = . Does P define a Probability
Function?

b. Let P be a probablility function. Find P(a1)

L play =

: . 1
if P(az) 3 3) T g

=1
, P(a4) =3 -

¢. Let P be a probability function. Find P(a1)

- -1 -
and P(az) If P(a3) = P(a4) =7 and P(a1) =
2P(a2).

d. Let P be a probaitity function. Find P(a1) i f

= 2

P({az, a3}) = 3

= 1

P({az, a3}) = 3
= 1
P(az) = 3

Two men m, and m, and three women Wiy Wy, Wy are

In a chess tournament. Those of the same sex have
equal probabllities of winning, but each man Is
likely to win as any woman.

a. Find the probability that a woman wins the
tournament.
b. 1If m, and w, are married, find the » obability

t+that one of them wins the tournament.
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Let a die be weighted so that the probabiiity of
a number appearing when the die is tossed is pro-
portional to the given number (e.g. & has twice
the probablliity of appearing as 3). Let A =
{even number} , 8 = {prime number}, C = {odd
number}.

a. Describe the probability space, i.e. find
the probability of each sample point.

b. Find P(A), P(B), and P(C).

c. Find the probability that

i. An even or prime number occurs.
ii. An odd prime number occurs.
iil. A but not B occurs.

Determine the probabllity of each event:

a. An even number appears in the toss of a fair
die.

b. A king appears In drawing a single card from
an ordinary deck of 52 cards.

¢c. At least one tall appears in the toss of three
fair coins.

d. A white marble appears in drawing a single
marble from an urn containing 4 wt'te, 3 red
and 5 blue marbles.

Let A and B be events with P(A) = 2, P(B) = =,
and P(ANB) = }. Find

a. P(AUB)

b. P(A') and P(B")

c. P(A'NB")

d. P(A'V/B¥)

e. P(AflIBY)

£, P(BNA")

Let A and B be events with P(AUB) = 2 ,

P(A") =-§—and P(ANB) = -l—. Find

a. P
b. P(B)
c. P(ANB"Y)
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7.

10.

A die Is tossed 100 times. The following table
[ists the six numbers and freguency with which
each number appcared:

Number i 2 3 4 5 6

Frequency 14 V174 20 18} 15 |16

Find the relative frequency of the event.

A 3 appears.

A 5 appears

An even number appears
A prime appears.

aonooco

Three 1ight bulbs are chosen at random from 15
bulbs of which 5 are defective. Find the probabitity
that:

a. None of the three chosen is defective.
b. Exactly one of the three chosen Is defective.
c. At least one of the three chosen .- defective.

Let A and B be events with P(AUB) = 7/8,
P(AAB) = 1/4 and P(A7) = 5/8. Find P(A), P(B),
and P(ANB').

Let A and B be events with P(A) = 1/2, P(AUB) = 3/4
and P(B') = 5/8. Find P(ANB), P(A'NB"), P(A'U B')
and P(BONA").
Llet S = {a1, 35 - - as} and T = {b1, b2,...,b+}
be finite probability spaces. Lét the number p‘j =
P(a])P(bJ) be assigned to the ordered pair (a‘, bj)
In the product set

sXT={ts,t): s€ S, teTl.

Show that the p‘J define a probability space on
SXT, i.e. that the le are non-negative and add up

to one.
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12.

13.

14.

15.

16.

17.

18.

A pair of fair dice is thrown. Find the
probability that the sum is 10 or greater if:

a. A 5 appears on the first die.
b. A 5 appears on at least one of the dice.

Three fair coias are tossed. Find the probability
that they are all heads if

a. The first coin is heads.
b. One of +he coins is heads.

A pair of fair dice is thrown. |f the two
numbers appearing are different, find the
probability p that

a. The sum Is six
b. An ace appears
¢. The sum is 4 or less

An urn contains 7 rec marbles and 3 white marbles.
Three marbles are drawn from the urn one after
+he other. Find the probability p that the first
+wo are red and the third is white.

The students in a class are se'ected at random,
one after the other, for an examinatlon. Find
the probability p that the boys and a'rls in the
class alternate If

a. +the class consists of 4 boys and 3 girls.
b. +he class consists of 3 boys and 3 girls.

An urn contains 3 red marbles and 7 white marbles.
A marble is drawn from the urn and a marble of
+he other color is then put into the urn. A second
marble . is drawn from the urn.
a. Find *he probability p that the second marble
"is red. : :
b. 1f both marbles were of the same color, what
is the probability p that they were both white.
We are given two urns as follows:
Urn A contains 3 red and 2 white marbles.

Urn B contains 2 red and 5 white marbles.
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20.

An urn is selected at random: a marble is
drawn and put into the other urn; then a
marble is drawn from the sscond urn. Find
the probability p that both rmarbles drawn are
of the same color.

The probability that a man will live 10 more
years is 1/4, and the probability that his wife
will live 10 more years is 1/3, Find the

probability that:

a. Both will be alive in 10 years.

b. At least one will be alive in 10 years.
c. Neither will be alive in 10 years.

d. Only the wife will be alive in 10 years.

We are given two urns as follows:

Urn A contains 5 red merbles, 3 white marbles
and 8 blue marbles.

Urn B contains 3 red marbles and 5 white marbles.

A fair die is tossed; if 3 or 6 appears, a
marble Is chosen from B, otherwise a marble

is chosen from A. Find the probability that
(a) a red marble is chosen, (b) a white marble
is chosen, (c) a blue marble is Chos=an.

40,
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10.
12.
13.

Answers to Probability Problems

(d)

1/6

2p, P(3) = 3p,
P(6) = 6p.

1
=

4

, Pl4) = —

7/8

1/4
1/12

.51

N
[e))

2

(c)

N
\e][ 0}
QIR

5

5

or

(d)
3/8

(d)

21

1/3

.52

(a) No (b) 7/18

() Pla)) = 1/3, P(a,) = 1/6

(a) 3/7 (b) 3/7

(a) Let P(1) = p. The P(2) =
P(4) = 4p, P(5) = 5p, and

P(1) = 2=, P(2) = 2=, P(3)

P(5) = 3=, P(6) = &

I

(c) %% ) -gT , l%

(a) 1/2, (b) 1/13 (c)

(a) 5/8 (b) 5/8 and 1/2

(d) 3/4 (e) 1/8 (f)

(a) 1/3 (b) 2/3 (c)

(a) .20 (b) .15 (c)

There are 455 ways to choose 3 bulbs from the

15 bulbs.

(a) %%% or Z%

(c) 1 - %% = %%

3/8, 3/4, 1/8

1/8, 1/4, 7/8, 1/4

(a) 1/3 {(b) 3/11

(a) 1/4 (b) 1/7



17.

18.

19,

20.

7/40

(2) 1/35 (b) 1/10 [Two mutually exclusive
cases--first student a boy
or first student a girl:]

(a) 17/50 (b) Probability that both were
white is 21/50.
Probability that poth were
same color is 12/25.
=21,z
P55/ ;5°

N
o}

Construct a tree dlagram. There are four paths
which lead to two marbles of the same color.

133 123 122 151 _ 90
P35 25 2732727 Teeo
(a) 1/12 (b) 1/2 (c) 1,2
(d) 1/4
(a) 1/3 (b) 1/3 (c) 1/3

42
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Appendix V

Sample of the Computer Segment Program

Write a program to calculate the average of the
fol lowing numbers.

9.6, 87.2, 33.49, .987, 8.34

(@

PROGRAM NUMBER 1 FINDS THE AVERAGE
c OF THE NUMBERS (9.6, 87.2, 33.49, ¢37, 8.34}
A=9.6
B=87.2
C=33.49
$=,987
P=3.34
AVE= (A+C+S+P+B)/5
WRITE (6,100) AVE
100 FORMAT (2X,BHAVERAGE=, E18.7)
STOP
END

40
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Appendix VI

Sample of the Computer Segment Program

Write a program which will compere two values, A and

B, and perform the following:

1f A>B then
If A <B then
l1f A=18B then

that

Construct the program so
above on n sets of A and

write A
write B
write a comment stating

they were equal.

that it witll perform the
B.

tn particular let n = and let the 5 sets of
A and B be:

A B

3 5

8 4

7 7

5 2

3 3
The program will first be written as if there were
only 1t set of A and B. When this has been
accomp!ished we will extend the program for n
sets of A and B.

44

41



C PROGRAM NUMBER 5 S1

READ(5,100) A,B 52
100 FORMAT(2F10.0) S3
IF(A-B)2,3,4 S4
3 WRITE(6,101) S5
101 FORMAT (14X, 21HTHE VALUES WERE EQUAL) S6
GO0 70 5 s7
4 WRITE(E,102) A $8
102 FORMAT (14X ,2HA=, E17.8) 59
GO T0 5 510
2 WRITE(6,103) B St
103 FORMAT(14X,2HB=,E17.8) S12
5 STOP S13
END S14
$ENTRY
Col. 1-10 Col. 11-20
3. 5.

The symbol Sn (n=1,Z,14) to the right of each state-
ment is not part of the language, but a method of label-
ing each statement for reference in the text that
follows.

For the values A=3. and B=5. only the statements S2,
S4, S11, and S13 would be executed. They were executed
In that order. This is what we wanted.

If A=8. and B=4. then statements S2, S4, S8, S10

and S13 would be the only ones executed. They would
be executed in that order. Exactly what is wanted.
If A=7. and B=7 what statements would be <. cuted?
Thus the program works properly for any sei of values
A and B.

a2
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The program will bc rowritien 10 work for

values

C

100

101

104

£

102

A and B.

PROGRAM NUMBER 5 (GENFRALIZED)
ICOUNT=0

READ(5,100) NSETS

FORMAT (110)

READ(5,101) A,EB

FORMAT (2F10.0)

IF(A-B)2,3,4

WRITE(6, 104)

FORMAT (14X, 21HTHE VALUES WERE EQUAL)
GO 70 5

WRITE(6,'02)

FORMAT (14X, 2HA=, [17.8)

GO TC 5

2 WRITE(6,103) B
103 FORMAT(14X,2HB=, E17.8)
5 ICOUNT=ICOUNT+1
IF(NSETS.EQ. ICOUNT) STOP
GO 10 6
END
SENTRY
Col. 10
5
Col. 1-10 Col, 11-20
3. 5.
8. 4.
7. 7..
5. 2
3.. 3.

46
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Appendix VI

Sample of the Computer Segment Program

Generallize program 9 Yo find the sum of the even
intecsrs starting with n and zxtending through m.
n 2nd m are even Integers.

f.c. MM =n+ (n+ 1)+ (n+2) > +m

From program 9 we know that
24456+ +k=%(k+2)

Applying this fact twice we nave

n+(n-1)+(n+2)++m (m+ 2) -

]
»i3

(n -~ 2)

) (n -~ 2+ 2)

(m+2)-£—(n-2)

Hi3

In particular find the following sums.

2+4+6+ + 100 n=2,m= 100
8+ 10+ 12+ + 20 n=23,m=20
42 + 4% + 46+ + 96 n=42, m = 9¢
100 + 102 + + 200 n= 100, m= 200

Let the varlable nstart be the value n.
Let the variable nfinal be the value m.
Let the variable numtim be the number of sums,

which we want the program to find
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C PROGRAM NUMBER 10
ICOUNT=0
. AD(5,100) NUMTIM
100 FORMAT (2110)
8 READ(5,100) NSTART, NFINAL
NSAVE=NSTART
NSUM=0
5 NSUM=HSUM+NSTART
NSTART=NST, RT+2
IF(NFINA{- ' TART)6,5,5
6 FNFINL=it L
FNSTRT=N. VYE
CHECK=(FNFINL/4. )% (FNFINL+2,) - (FNSTRT/4.)%(FNSTRT-2.)
WRITE(6, 104INSAVE, NFINAL, NSUM, CHECK
104 FORMAT (2X,2HN=,110,2X,2HM=110,2X, 8HSUMMING=, 110, 2X
| 10HBYFORMULA,E17.8
} COUNT= | COUNT+1
1F (NUMT IM-1COUNT)9,9,8

9 STOP
END
$ENTRY

Col. 10 Col. 20
100
20
42 -96
100 200
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48 -



46

Appendix VI

Teacher Evaluation Questionaire

Stephens Col lege

Ma jor Sex
Class Grade Point Average
Directions: |t is the desire of your instructor to

achieve the best possible lInstruction in this course.
To help acconplish the purpose, this evaluation sheet
was devised to obtain a systematic poll of student
opiniorn. Carefully consider each question, then
record your Jjudgment by encircling one of the letters
A, B, C, D, E for each item. A blank space has been
provided at thas end for adding comments you wish to
make.

1. Were important objectives met?

A B C D E
The course is an Contributes about This course
Important contri- as much as the doesn’t seem
bution to my average college worthwhile to
col lege education. course. me .

2. Does instructor's presentatlon of subject matter
enhance learning?

A B C D E
Presentation Presentation not Presentation
very meaning-  unusual'y good o~ often confusing;
ful and bad, about average. seldom helpful.
facllitates
learning.

3. Is instructor's speech effective?

A B C b E
Instructor's Speech sometimes Speech usually
speaking skill invites attention distracting,
concentrates my on speaker rather  concentration
attention on than subject. very difficult.
subject.
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E
| would avoid
asking this

How well does the instructor work with students?
A B C D

! feel welcome ! feel hesitant

to secek extra to ask for extra

help as often help.

instructor for

extra help unless
absolutely
necessary.

as needed.

5. Does the instructor stimulate independent thinking?

A B C D £
Instructor con- In general, | do ) seldom do more
tinually in- ° only the usual than rote memory
spires me to thinking in- work and cramming.

volved in the
assignments.

extra effort
and thought

beyond course
requirements.

6. Do grading procedures give valid results?
A B C L E

Instructor’s | feel that the
estimate of my instructor's
accompl Ishments estimate is quite
is of average inaccurate.
accuracy.

Instructor's
estimate of my
over all
accomp | i shments
has been quite
accurate to
date.

7. How does thits instructor rank with others you have
had?

¢t e of the
poorest instructors
I have ever had.

One of the best
instructors |
have ever had.

Satisfactory or
above average.

Comments;
(favorable)

(unfavorabtle)
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Appendix X

Format Evaluation Sheet

As you all know this course is In the stage of

development. We would therefore appreciate your
filllng out the followlna questionaire. You will
note that your response |s anonymous. You should
thus flnd little difficulty In belna quite frank.
In each guestion please check the appropriate box.

1.

As a final grade In this course | expect to -
receive an:

A 3] C D £
| found the text materials-

Very Useful C¥ Average llse

Of Little Value

I fourd the lectures:

Very Useful Of Average Use
Of Little value

| found the Tutorials:

Very Useful Of Average Use
Of Little Value

| use the Problem Sessions:

Frequently Occassionally

Not at all

Compared with other Mathematics Courses | have
had, | found the Course:

Challenging Of Average Difiriculty

Easy
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12.

Compared with other Mathematics Courses i have
had | found the Course"

Very Interesting Fairly Interesting
Dull

On the basis of my background in MMathematics,
I think the course was:

Too Hard About Fight Too Easy
| found the Computer Work

Very Interesting Fairly Interesting
Dul!

I found the Computer Work:

Too Hard About Right

Joo Easy

| found the notes on the use of Comp.ier:

Very Helpful Fairly Helpful

Not Helpful

Compared with other courses | am taking at
Stephens. | found the course:

Very Challenging Fairly Challenging
Mot Challenging

I+ Is my inteni to take:

Additional Mathematics Courses

No more Math Courses

o2

49



14, | felt that the lectures and tuterials were:
Suffieclently Co -ordinated
Insufficliently Co~-ordinated

15. | would suagest the following changes to Iimprove

the Course. (Please feel free to make any
sucgestion you wish.)

AppendIx X

Reprinted on the following pages are two
sample journal articles used for collateral readlng
and dlscusslon In the Tutorlal Sectlons of ths Finite

Mathematics Course.

50
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ERIC

Aruitoxt provided by Eic:

. [ -
Tessaffations
Al ARBVENTURE 4 i ATHAMATIOS

The greatest handicap a pupil can have
in the study of mathematics 1 the belief that
it s priveardy logicai. These are strong words
bt steong words are Breeseary.

What disuinguishes a matheratician?
Susely it is Ris insight. his intuitive grasp of
the matheratical aspects of situations. ard
L ability 1 choage and 1w use apprupriaie
techniques. Galy in the use of these technigues
are wr anquesticnabhy concerned . ith logic,

A surgeon teuds 10 e judyed by hay
masiesy ot technigue and bis skilt at maninpu-
{ation. But beforce he starts any operation he
must ktiow exacily what he is trying to du,
and he must decide how he is going w do .
The satc pattern is evident in any task yuu
care o consider ~in building an airliner,
in keeping hens, in teaciuny 2 class. There
is a great temptauon o ignore these two
essential preliminarics as they usually involve
ottty thought, Indeed, in repetitive work they
aie relegated ta the unconscious -we are
sa/d 1 have 'experience” and know what 10
do without thinking. But without the molita-
tion and directicn supplied by the first two
stages the third stage of action b:ecomes as
meaningless as a computer without an
operator.

Thriry a problem at a mathematician.
What does he do? He thiaks about it If
nreessary he will translate @1 into his own
language---and ¢his may cause him the
geearest uouble. Then he will lock tor o
gaucm and try to relate it to what he knows.

uddenly he jumps up with an exclamation,
grabs a pencil and scribbles furiously. If lus
ntuition was right and his manipulation is
seund he will soon produce an answer. Bt
ncle that the bulk of his work was done
before he started writing.

54

keprinted from: Mathemat.ct

Teachiag, susmer 1504,

GEQFFAEY &ILES
Stratballae: Sk d, Ferth,

Now luuk ai any exem paprr monathe-
matics. Junere the compuatation and what is
left? Possibly a couplie of ludisraas, siemeos
vped problens. Is this o devent preparaiten
for e ? Is the aliility to pasy such exains any
indication of ability to use methernaucs m
reat bie problems? What chunee do candi-
dates have o dovadop ke niathenatiaal
powstion)! What we 1each should mix inti-
Hon ard reeson ia guantiiic. aated ¢ the
age eud ability of thase huoyg  taughi,
Fhioughout the whole of schiool wsane-
tnaticy a primany aim should be 1 hightighe
the aid that ieasn cab give 1o Luuition.

The Quadrant Prehizm

Phe fallowing protiem which erose guie
natarally and vnespectedls soaied e off
01 an investigation which cen be hesc
descuibed as a.. adventare. Some Lays were
makiag wail huraps. These were w have
conical shades which would he made cur of
cuartee ciceles of varchment. How much
perchment stould 1 order? nee sizes and
nutabers were kncwn this was a stcagat
forwaid maner. But it hid a far more interest
ing, question: if a manufacturer had to suppt:
a large number nf quadiants all stamped out
of sheet parchmevt how small could he keep
his wastage ?

Clearly the relative sice of the sheets of
parchment and the required quadrants i
important. 1 the quadranis were larger than
the sheets the wastage would be 100, On
the other hand the larger U2 sheews the
smaller the edge effects will be. ‘Daes one
appreciste this by reasonp or by intuition?)
Let us avoid this difficulty by supposing a
conunuow sheet of parchment.
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ERIC

Aruitoxt provided by Eic:

Yig. 1 - Randun puihing

Now we have 1o consider how we should

-cut out the quadrants if we vish to minimis

waste. We could work empirically, packing
them 11 one by one like groceries in a box.
(Fig. 1) But it seerns reasonable to suppo:e
that the best rasthed vaill formn a regular
patiern. (At least it seems so (0 me, But 1
certainly vould aot like to prove that it is <)

Agsuming this regularicv, we au find the
percentage  wastage by considering  one
“unit™ of the pattern, as every other unijt
will be exactly the same. In other words:
e are laoking jor a hape which must circunneribe
he required quadrant with ev littic extra avea a
possidle -bul whick nust alco Se suitable for
fesstifoting a plane. For example the plane
could be tessellated with squares. and anc

wadrant could he cun out of earh square.
?Fig. 2). In this case the wastage is 21-37,,.
Mot very guod.

Fig. 2-=COrdered pockeny

Now, this restaetn=s.t of the problem is 2
big step forward. We know this by the
aumber of ideas and possibilities thai ae
now jumping intv our minds. There are many
weys of proceeding and it is diffcult to know
which to chnose. Let ur have a look at a
<oupls of them. (If you want the fun of
warking it out for yourself «top re. ding now
—ang con’t look at the dix,rams!).

43

Frid 2

L2t us wy fitting quadrants wopecher
methedically, hnowing that 1our quedeants
can make a circle we wy packing cirels
(¥is. O 4). macling in the hackgiouad
tessellation, That i as fac as we can po with
cuclen. Fur wait 2 mirute! Fic, 3 uwey the
sarnz exellation as Fig. 2. and wang the
sane one agam we could acrange thr quad-
rants as in big. 3 in whicl the waste can be
cbviowly decreased by “squeering’. This
raises a mice prublem of a mare iraditional
type: what is the perecntage wastuge now?
{Bat this still involves real thought and not
just manipulation).

What zbout other ways of Htting quadranu
togribrr methodically ? Now it i not ¢ casy
to visualise pessible arrangenients. The best
way to proceed would be to cut some ont and
try ... A Semo - il eolleet g fer cirevdar bee
mals on next visit ta pub )

Paté 2

What wssellodons are thete! Can we
adapt them (0 suit our guadrant pioblem!?
Let us go through some of them: sguure
iwe've considered this zlready!). 1ertangle
thave a look at Vig. %' perallelograra 1oy
sdeas? 1 havenri) wiangle (Fig. 6 —this can
bre adapted as shown later to give a solution).

What ahout the guadrilateral® We iy it
doghdfully. v works! (Fig 7; Let uy uxe
But how du we circumseribe a quadrilateral
ol minimum area rovad oar quadeant?
g 8, Ts i, Boor G? Aler some thoughi
our intuttion tells us that v will Le a ke
compoud of o isouceles nwngles. (Ov do
we arrtve at this conclusiva logically 1 Co
Bazing ar it a few minutes Jupyger we realise
that 1 i a quarter of a reguler octagoa.
Inreresting! On looking Lack at Fig. 4 ve see
that the basic quadrilateral iy a quarter of a
regular hexagon. More ueresting!

Fig. 9 shows part of the tessellation we gzt
Might we not decrease the wasiage by
squenzing it 2 bit more so that the right aogles
came through to meet the citcumforeaces?
What dues that maks the wastage now?

Where do we go after quadrilaterls?
Pentagons? The regular pentsger will not
tessellate. Whet nentagons will - This is mors
difficult. It is part of the grneral problwm
that we must now tackie: wia loper are
suitaghle for forming tesselle.inzs?



Fig. 3~ Square packing of civeles
\ /

Fig, 6—Triangle-based tessellation

Fig, 7—Quadrila :ral-based iessellation

Fig, 4—Triangular packirg of circles

AN N\

Pal

Fig. o—~.1nother square packing cf quodranis
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ERIC

Aruitoxt provided by Eic:

Before starting this let us review our
progress so far. Having tidied up our
problemn we used vur experience and intuwstion
(o express it in a diffe cent way. We knew that
the new form was heuer because of the
thoughts and ideas it provoked. Now, apast
from having found a number of ways of
cessellating the parchment, we have gained
experience with tesseflations on which we
will draw lata.

But 1s this mathematies? Although it looks
like geometry we have not invoked Fucdlid,
and no standard techniques have been used —
except in calculating the poycentage waste.
Does this type of work benefit & pupii in any
way ? Or weuld he e beter oiT dving another
Hifty examples on factorisation ?

1 suggest that this kind of investigation
helps tn develop an attitude of n 'd which
incorporates (a, critical awareness of the
problem: bV a directed inuution, () a
fiexibility of approach. What better prepara-
tion can we give 10 pupils who will have w
face *0 many unforeweabie problems in the
last quarter of this century? This attitude of
mind is of far greater importance even than
mathematics itsclf.

Nor is it only the minority who require
this preparation. No one can expect to be
by-rassed by the rapid advance of technoloyy.
Tl centuries-old demand for unskilied
lahour is rapidly diminishing. Few of our
pupils will find themselves in johs where they
are not expected to think. The vast majority
will be invalved in new techniques and
modern developments whatever career they
choose. And there will be a premium on
clear thinking.

Tosselations

For convenience let us cell any shape
which can form a plane tewseliation a tess.
Let us approach the problem of what shapes
arc esses by considering how a tessellation
is formed. Look at one of the quadrilaterals
in Fig, 7. How is it related 1o its neighnours?
Sooner or later we see that a rotation of
180° is involved about the mid-point of a
side. This explains how a tessellation is buu
uvn,

The same s true of the iriangular tesscila-
tion. But here ¢ experince and reasoning
help as to see further. We can think of a
riangle as & quadsilateral with oae side of
negligible Jengh. As a rotation of the quad-

g7

riateral about the raid-point of thi side is
equivalent to the miavon of the triangle
about a vertex, we see that the rotation of
any triangle in the tewellauon thiough 180
abuud thte mid-point of any side or ahout any
veriex gives the position of another triangle
of the tessclation. Indeed the whole tesscifa-
tion is symmetrical ahout these points.

Leisurely pondering these ideas. we
suddenly rec an impourtant advance we can
make. The sidea of the irtangle o guadri-
lateral do not bave to be straigh jur it 1o be
a tess- -30 lang av they are symmebrical abunet thewr
mid-points.  ¥ig. 10} Let uy cali these madifed
triangles and quadrilatevals trisider anu
gaadrizides.

g et

Fig. 10—A trinde and a quadriscde

We can now give a sutticiest condition lor
a shape to be a tess, .Iny figure will be a less if
its perimeler can be divided by three 00 four
“rertices’ it sides each of whick i wutietrical
abeut its mid-point. ‘This unlolds an enormous
range of pessibilities. ‘Lo avoid the danger
of hewilderment amongt such proliferation
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let us take refuge in squarev paper. Fig. 11
shows sowe straightforward rjuadrisides.

On trving to draw a triside in this way we
make a most interesting discovery. The
vertices of a tess need not lie on the edge of
its area (Fig. 12). This increaces once more
the range of shapes we can show to be
teszes. Tig. 13 shows the twelve ways in which
a shape can be made by simply joining five
squares. 5. W. Golomb calls them “pentom-
inoes” (“polyomino” being the completc
geaeratisation of domiino).* All the pentom-
tnoes can be shown to be trisiles. And if you
find that straightforward could you check
that the same is true of the 35 hexominoes?

7 Se¢ Liardner: blathematical Puzzics and Diversions
from Secientific American (Bell,.

Fig, 13— These pentormnoes ere all insvles

Where does all this ger us? Let us go back
to our quadvant problem and see how we
<an apply what we have found out -~espeaially
the idea of “virtual” vervtices. Thinking
again of the pentagon, we soon 1calise that
we can stale: any penfagon is a less if iwo of s
sides ara {aamllel (Fig. 14). Thiz leads 10 a
better solution. But once agaiu how do we
draw the pentagon round the yueadrant?
I amsatisfied that the area wili be 2 miamsum

D ]

Fig. 15

when the pentagon is a quarter of a regular
decagon (Fig. 177, I you wish to prove it
go ahead. ¥or me a frmal proof would be
irrelevam as it would not add 10 my con-
viction.

at
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A21-5% B925Y% C436%  D215v L5200  F 4560, O 3ter
Figs. Fig, & ¥ig. 5 ¥ig. 6 Fig. 9 Fie, & 7o 13
2.3.5 sqquashed squashed

.F!‘.g'. ra

What about the percentage wastage? Fig.
16 shows the seven solutions in the order in
which we found them. The decrease in

. wantage between A and G is quite remarkable

and could represert a big saving ia cost of
materinl in Iarpe scale production. The
actual calcvlation of these wistages is of
intercst itze:f as it stresszs the need for Gnding
a rout~ to the gozl rather then the application
of a technique. .

Now we £t back and heave a sigh. We
have reached what is sureiy the best solution.
We cannot imagiae anyons improving on
3-37,. What is more, we think smugly, ve
know all about tessellations. At a time like
this it is fitting tha( one’s complacency should
be shaken, We vy putting two of onr final

Fig, 17—Distocated tesscllation

Fig. 18 is reproduced Jrom the book * The Grap

pentagons back 1o back (v 13, Idly we
draw 1w a diagnoai-—and finc (hat what we
have is cssenuaily two quadniaterals! 1€ we
had kvown whai © look ot we could havs
seen this solution right back at Fig. 7 !

Then 1~ get ancther vude awakening
when we realise, pussibly on studyving solution
G, thac we can dislocate cur pasic quadri-
lateral tessellation and get aunother type of
tessellation {(Fig. 17). .

Finally, 1t was at aboui this siage that 1
received Mathematics Teaching No. 21 cune
taining some fascinatng cxaeples ol the
work of M. C. Escher, mcluding tke one
below. Quite clrarly it waz about time I
studied tessellations.

hic Work wf AL C. Fscher? by periussion of the

publishers, Gldbourne Press.

52
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THE MARCHITECTURE OF MATHAMATICS®
NITII0LAS BOURBARTY

1. Mathematic or mathemetics? To present a view of the entire field of
mathematical scieace as it exisis,~this is an enterpsise which presents, at first
sight, almost insurmountable difficulties, on account of the extent and the varied
character of the subject. As is the case in all other sciences, the aumber of
mathematicians and the number of works devoted to mathematics huve greatly
increased since the end of the 19th century. The memoirs iz pure mathematics
published in the world during a normal year cover several thousands of pages.
Of ccurse, nat all of this material is of equal value; but, after full allowance has
been mads for the unavoidable tarcs, it remains true nevertheless that matho.
matical science is anriched each year by a mass of new results, that it spreads

- and branches out steadily into theories, which are subjected to modifications
based on new foundauom. compared and combined with one another. No
mathematician, even were he to devote all his time to the task, would be able to
follow all the detqls of this development. Many mathematicians take up
quarters in a corner of the domain of mathematics, which they do not intend to
leave; not only do they ignore almoat complatsly what does not concern their

. apecial field, but they are unable to understand the language and the terminology

: used by colleagues who are working in a curner remote from tsir own. Even
among those who have the widest training, there are none who 6 not feel lost
in certain rogions of the immense world of mathematics; thoze who, like Poin-
caré or Hilbert, put the seal of their genius on almost every domain, constitute
a very great exception even among the men of greatest accomplishment.

It must therefore be out of the question to give to the uninitiated an exact
picture of that which the gathematicians themoelves can not conceive in its
totality. Nevertheless it isfegitimate to ask whether this exuberant prolifera-
tion maires for the development of a strongly coastructed orgauwm, acquiring
evis greater cohesion and unity with its new growths, or whether it is the ex-
teenal manifestation of a tendency tuwards & progressive splintering, inherent
in the very nature of mathematics, whether the domain of mathematics is not
becoming a tower of Babel, in vhick autonomous disciplines arc being more and
more widely separated from one another, not only in their aims, but also in their
methods and even in their language. In other words, do we have today & mathe-
matic or do we have several mathematics?

Although this question is perhaps of greater urgency now than ever before,
it ia by no means a new one; it has been asked almost from the very beginning of
matl.ematical science. Indeed, quite apart from applied mathematics, there has

* Authorised transiation by Arnold Dresden of & chapter in “Les grands cournnts de I pensle
oathémetique,” odited by F. Le Lionnals (Cahiers du Sud, 1943).

1 *Professor N. Bourbald, formerly of the Royal Peldavisa Academy, now residing in Naacy.
Prance, is the author of & compeehensive treatiss of modern mathematics, in course of publication
muu«mammmmmuucumxm- ), of which tem volumes

bave WD far®

m
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aiways existed o duatisz between the origine of gecometry and of arithmetic
(certainly in their elementary aspecis), sinca the latter was at the start a science
of discrete magnitude, while the former has always besn a science cf continuous
extent; these two aspects have brought abcut twd noints of view which have
been in opposition to each other since the discovery of irrativnais. kndzed, it is
exactly this discdvery which dcieated the first attemipt to unify the science, vis.,
the arithmetization of the Pythagoreans (“everything is number®),

It would carry us too far if we were to attempt to follow the vicissitudes of
the unitary conception of matbematics from the peried of Pythagnras to the
present time. Moreover this task would suit a philosopher better than ¢ mathe-
matician; for it is a common charscteriatic of the various attempts to integrate
the -vhcle cf mathematics into a coherent whole—whether we think of Flato,
of Descartzs or of Leibnits, of arit!.metization, c: of the logistics of the 19th
centusy—-that thiey have 2il been madc in connection with a philesophical
syatern, more or leas wide in scope; atways starting Iom @ priors views concern-
ing the relations of mathematics with the twofold universe of the external
world and the wor!d of thought. We can do no better on this point than to refer
the reader to the kistorical and critica! study of L. Brunschvicg [1}. Our task
is a mote modest and 4 less extensive one; we shall not undertake to examiine the
relations of mathematics to reality or to the great categnries nf thought: we
intend to remain within hq fieid of mathematics and we shail look: for an answer
to the question which welnve raised, by analyzing the procedures of mathe-
matics themeeives, - L

7. Yoglse! formaelism and sxlomatic method, After the more or lecs evident
bankruptcy of the different systems, to which we have raferred abovs, it looked,
at the beginning of the pressnt century ov if the attempt hod just about heen
abzndoned to conceive of mathematica an o acience characterized by a dafinitely
specified purpose and method ; instead there was a tendency to look upon mathe-

"matics as *a collection of disciplines bascd on particular, exactly specified con-
cepts,” interrelated. by *a- thousand roacis of communication,” allowing the
methods of any one of thése disciplines-to fortilize one or more of the others
{1, page 447]. Today, we believe however that the internal evolution of mathe-
matical science has, in spite.of appearance, brought about a closer unity among
its different parte, 80 a8 to create somsthing like a central nucleus that is more

‘coherent than it has ever been. The essential agpsact of this evolution has been
the systematic study of the relations existing between different mathematical
theories, ‘and which ‘tian. led to what is generally known as the “axiomatic

‘method”> ) . o

The words *formalism” and *formalistic method” are also often used; but it
is important to be on one’s guard from the start against the confusion which
may be caused by the use of these ill-defined words, and which is but too fre-
quently made use of by the opponents cf the axiomatic method, Everyone -
lnows that superficially mathematics appears as this “long chain of reasons” of
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which Descartcs spoke; evary mothematical iherry i a concatenation of
prepositions, each one desived {rom the precediug once in conformity with the
rules of a icpical sysier, vhich iz eseeniclly th one codified, since the time of
Aristotle, under the same of “formel legic,” conveniently adapted to the par-
ticuiar aime of the mathematician, ¥¢ is therafore a meaningless truist: to say
thzt this “deductive reasoning” s a nnifying prirciple for mathematica. fo
supﬂ'ﬁrial a remark can certainly rot account for the avident complexity of
different mather:atical theories, not aav more than cue oould, for crample,
unite pityeics a1 biology into a single science on the ground that hoth uee the
experimental mechod. The methed of reasoning hy means of chains of sylisgicmia
is nethins but a transforming mechanisin, anplicable just as well to one et of
prendices as to anothar; it could mat serve themafore t9 charatterize these
presvises, In other wozds, it is the external form which the matlemiatician pives
to hig thought, the vehicle which makes it accessible to others,* iz shor, the
Ianguzge ..um-r‘ 1 wmathematics; this is all, no further sigrificance sirould He
attached to it, To lay down +he rules of this language, to set up its vosahulory
aad to clarify its syntax, all that is indeed extreniehy ugeful; indend “his corsti-
tvtes cne aspest of the axiomatic methed, ike onz that can praperly bo called
togicel formalism (or “fogistics” as it iy sometiraes cailed). Eut we emphasize
that it is Lut one aspect of this imethed, indeed the [east interesting oce,
“What the axiomatic method scts as its essential nim, is axa Jy that wiich
logizal formaliam by itself can not suppiy, namely the profound intelligibility of
mathematics. Just as the experimental method starts from the o priors belief
in the permanence of natural Jaws, so the aziomatic methad has its cornemtone

‘in the conviction that, not only is mathematics not 2 randewmiy developing con-

catenation of sylingisms, but ncither is it a collection of mere o less “astute”
tricks, arrivad at By lucky combinations, in which puraly techrical clevarness
wins the day, Where the superficicl obwerver gees only two, o seversl, (uile
distinct cheovies, lending cae another “unexpected support” {3, page 44 33
througl: the interventicn of a mathematician af geaing, the axiomatic methed
teaches ua to Jouk for the deep-lying reasonc for such a discovery, to find the
commen ideas of these theori~z, buried under thz accumulation of details prop-
erly belonging to each of them, to bring these idess forward and o put themn in
their proper light. '

3. The notion of structuze, In what form can thiz be done? It is haore that
the axiamatic metaod conics closest to the experimental method. Like the latter
drawing its strongth from the source of Cartesianiem, it vill “divide the difi-
culties in order to oveércome them better.” It will try, in the demonstrationanf a
theory, to separate out the principal mainspringo of its arguments; then, taking
‘edch of these separataly and formulating it in abstract form, it will develop

* Indeed every mathematician knows that = proof has not really been "undr:wod’ # onc bac

e(-!acxen-.rt!n.zg m:nthmvenf'ung stop. by step the corvestoesy of the doduetions of which it i

compoased, and kas not trisd o gain 2 clear mngkt into the idcas which huve Jed ¢ the constries
ton cf this particular chain of deducbous i preference t2 every ather one.
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the consequences which follow from it alone. Returning ufter that to the theory
under consideration, it wilt recombine the component elements, which had previ-
ously been separated out, and it will inguire how these different components in-
fluence one anothier. There is indeed nothing new in this classical going to-and.
fro between analysis and synthesis; the originality of the method lies entirely in
the way in which it is applied.

In order to illustrate the procedure which we have just skerched. by an
exainple, we shall take one of the oldest (aud also one of the simplest) of axio-
matic theories, vis. that of the “abstract Rroups.” Let us consider for example,
the three following operativas: 1. the addition of real numbers, their sum (posi-
tive negative or zero) being defined in the usual manner; 2. the multiphication of
integers “modulo a pritne number p,* (where the elcinents under consideration
are the whole numbers 3, 2, ¢, £--1} and the “product” of two of these
numbers is, by agreement, defined as the remainder of the division of their usual
product hy p; 3 the “compusition” of displacements in threc-dimensional
Euclidean space, the “resultant” (or “product™) of rwo displacements S, T
(taken in this order) being defined as the displacement obtained by carrying
out first the displacement T" and then the displacement S. In each of these three
theories, one makes correspond, by means of a procedure defined for each theory,
to two elements x, ¥ (taken in that order) of the set under consideration (in the
firat case the set of real numbers, in rhe second the sct of ~umbers 1, 2, - - -,
£-1, in the third the sey of all displacements) a well-determined third element;

~ we shall agree to designate this third clement in all three cases by xry (thie will

be the sum of x and y if x and ¥ are real numbers, their product “modulo p” if
they are integers S —1, their resultant if they are displacements). If we now
examine the various properties of this *operation” in each of the three theories,
we discover a remarkable parallelism; but, in each of the separate theories, the
properties are interconnected, and an analysis of their logical connections leads
us to select a small number of them which are independent (f.c., none of them i« a
logical consequance of all the others). For example.* dne can take the three
following. which we shall express by mcans of our symbolic notation, common
to the three theories, but which it would be very easy to translate into the par-
ticular language of each of them:

(a) For all elements x, y, 3, one has x7(yrs) = (xry)7e (“associativity” of the
operation x7y);

{b) There exists in element ¢, such that for cvery eletnent x, one has erx
= xremx (t0r the addition of ceal numbers, it is the number 0; for multiplica.
tion “modulo p." it is the number 1; for the composition of displacements, it is
the “identical” displacement, which leaves every point of space fixed);

{c) Corresponding to every element x, there exists an ¢lement x' such that

- xex'mx’yxme (for the addition of real numbers x’ is the number ~x; for the

_ % Theve is nothing atwolute in this choice; sevezal sy of axioms are known which are

““equivalent” to the one which we are stating explicitly, the axions of each of these systems being

logica! consaquences of the axioms of any other one.
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composition of displacements, » ie L1 “invarse” displacesncrt of x. .. theldie-
placertent which replaces each poirt that had been dispiaced by ¢ to its original

position; for multiplication “modely 9, the existence of x fniiowe fmm a very

simple arithmetic arquinent

It follows then that the properties which ean be expressed in the same way in

the three theories, by means of the common notaticn, are consequeéncss of the
thres preceding ones. Let us try to show, for sxample that from dry=xrz fol-
lows y= 2; one could do this in cach of the theories by a réasening pecubiar to it

But, we car proceed as fallows by a method that is ‘.;:phcable in atl cages .

from thc relation zry=xrz we deriv. x* having tie mumrsg which was defined
above) ¥7(xry) =x’7(xre); theuce by anplyviag (a), {xrx j7y= {x'rx)rs; by means

of \.), this relation tckes the {orm ery =ere, and finally, by applymg ), y==u.

whict: was to be preved. In thvis reasaning the aature of r‘w ckme’xts x, ¥, s tndar
consideraticn kag been left compietely out of account; we hive not been con-
cerned to know wheilher they are real numbers, or mtegcrs L1, or digplace-
ments; the only premise thar was of i importance was that tha operation xry on
these clements has ths propemcs (2}, (b). and (c). Even if it were anly to avoid

irkuecme repenitions, it is readily seen that it wonid be co'wc\nvnt 1o develon.

once and for 21l the logiral consequences of the thrae properties (a), {b), ()
enly. ©nr linguimic econvenience, it ie of course dmuabie o adopt a cormon
terminology for the thren sets. (pa ays that a set in which an operation ary has
been definéd which has-the three. propcrt;'a {aj, (), (c)is provide:' witl. a grony

structure (of, Briefly, that it is a-gmup): the firopsrties {21, (b), () are called
the sxiots of ™ the group striictures, = and the development of the:r consequ-w.rw
'-or.»mutw settmg up the axicinatic theory of group:.. .

¥t cen a0w be made ciear what #s %o be uiderstood, in g7 nerel , by a fathe-
matiesi st:ucmra The common cha'actcr of he different cone apty desigrinted
by this geasri¢ name, is. that thev can be. applmd to sats of clements whose
rptm‘ef hae not bwn specxﬁed' o defime g siructure, “ne tahes 7+ given one or

* We ebsw.'r dn' the r:.mmrdera ifs when the pumbeon A N T (1) q:u fuedd
by #, can pot ali, be d)ﬁﬁnct., By expeessing the fect that ‘wo of these remainders grs equal, cas
ahwue:nﬂy tbata power = of 'x exists which has a remainder aqual.to.1; if sow x’ is the refnainder
of the divikior of 2ot by p,'weiconcinne that the product "aodule p’ ‘of % and %' v equal to 1.

B (T sithione saying thak there ie no lenger any connestion brmern t!re mte:memunr-

: pﬂhe wiord Yakiom” and its teaditional meaaing of Ysyident truth.™

TW: take here-n naive- -point of view and dd 1g¢ dadt with the thordy riescions, ,mil philo-
sophicat, Ball mathefiaical, ralsed by, the mhtamd The, *rature” of the-me thematical "bcmg;"
or “object.” Sulfico it to-ssy: that.the sxiomatic studies of the nimeietnth and twentiéth centories

. have’ graduaﬂy teplaced. the initial pluralism. of; tie fental vaprescitation of - these “beingn”—

thought of at first as {den? “abstruvtions® of enge_experiences nd’ retsindig. )l ‘their hetarn.
geneny-—by ng ‘unbuiry : toncept, gradually, redncpxg ull the mathémasical notions; first te the
conctpt of e fA tiral number 2nd then, in- u;mm! stage, to ‘the notiun o sst. This Jatrer coneepi,

. consadcqed f orl um, me‘a-; Pprimi tivglpnd ! undeﬁqahle." fus| biésh the nh;etto! endless pofericy,
. ';a.a a rsu!; of Y65 ekiremely genaral: chamciar andd eapccaunt of the very‘viague type'of men:s!
. npreseantfeu ‘wrhich itedlle forth; che dificultios lth not disappesr unni the notien' of set itaelf

msappmred (and with' i oll the metaphysical, P‘endu-woblenn canéerning mathematicsl “beings”

in Lhe light of the recens wark on logical formalsr, From this new pofat at vhw mtbenama!

it
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several relations, into which these elements ent s (in the case of groups, this
was the relation z=xry between three arbitrary elements); then one postulates
that the given relation, or relaticns, satisfy certair conditions (which are ex-
plicitly stated and which are the axioms of the structure under consideration.) {
To set up the axiomatic theory of a given structure, amovnts to the deduction
of the logical consequences of the axioms of the structure, excluding every other
hypothesis on the elements under consideration (in particular, every hypotheses
as to their own nature). _ . , ) .

4. The groat types of structures. The relations which form the starting
point for the definition of a structure can be of very different characters. The
one which occurs in the group structure is what one calis ¢ “law of composi-
tion,” i.¢., a relation between three elements which determines the third uniquely-
as a function of the first two. When the relations which enter the definition of a
structure are “laws of compositinn,” the cnrresponding structure is called an
algebraic structure (for examuple, a field structure is defined by two laws of com-
position, with suitable axioms: the addition and multiplication of real numbers
define a field structure on the set of these numbers). :

Another important type is furnished bLy.the structures defined by an order
relation; this is a relation between two elements x, y which is expressed most
frequently in the form “x is at most cqual to 3,” and which we shall represent in

" general by ¥Ry. 1t is not at all supposed herz that t detern ines one of the two

elements x, y uniquely as a function of the vther: the axloms to which it is sub-
jected are the following. (a) for every x we have xRzx; (b) from the refations xRy
anG yRx follows x=y; (¢) the relations xRy ar:d 7Rz have as a consequence xRs.
An obvious example of a set with a structure of this kind s the set of integers
(or that of real numbers), when the symbol R is replaced by the symbol <. But
it must be observed that we have not included among the axioms the following
property, which eeemy to be inseparable from the popular ‘notion of “order,”

. “for every pair of elements ¥ and y, either xRy or yRx holds.” In other words,
-the case in which x and y are incomparable is not excluded. This may seem
- paradoxical at first sight, but it is easy to give examples of very important order

structures, in which such a phenomenon appears. This is what happens when X
and ¥ denote parts of the same sct and the relation XRY is interpreted to mean
“X is contained in ¥"; again when x and y are positive integers and xRy means

structures become, properly speaking. the only “objects” of mathematics. The reader will find futler
developments of: this point in articles by J, Dietidcnné ‘(2)and H Cartan [3]. - ..

.® In effect, this definition of structures is-not sufficientty general for thi needs of mathe.
matics: it is also necessary to consider the case in which tharelations which detine a strueture hold
not beteeen elements of the set under cunsidération, but also between parts of this set and even,

" more generaily; between elements of sets of still higher “degree” i the terminology of the hier.
" ‘archy.of-types.” For further details on this point, sée 14} e -

“$ Strictly speaking, one ahould, in the case of groups, count among the axioms, besides proper-

" ties (2). b}, (C) stated above, the fact that the relation ¥ yry determines on¢ and only one 8 when
" xard yare given; one uspally considers this property as tacithy imp_lie'd by the form in which the

relation is written.
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“x divides . y"; also if f(x) and p{:)-are récl-valued fun-tions defined on an-in-
terval @ Sx $0, while f(x)Rg(») ic interpreted 1o mear “or every x; f(x) Sg(x).”
These examples aiso give an indication of 2 great vanety of domains.in which
order structures appsar and Lbus point to the interest attached to their study-

-We "vant to say-afew words about a third large type of structures, sis. topo-
logical strucrires {or,topologies) * ey furnish an abstract wathematical tcrmu-
lation of the intuitive concepts of neighborhood; lixait and contanuity. to:which
we are led by our idea of spaca, The degién-of abstraction. roquired-for the
fermulation of the ax’oms of such a-dtructure is decidedly preater than it wasin
the preceding examples; the character. of the present article makes it necessary
o refer interested readers to =pcf. ial treatisea. Sec, for :zxample. (5]

5. x‘m stundvtdizaﬁon of ma‘hemahca! techni mo. w--, huve probab& v mu!~
encugh to enabie the-¢eader to form: a fairly accurate idea of “he axiomatic
method. It should be clear frem what precedes that its most striking feature is.
ro effect & considérable economy of thought. The “steuctures™ are-vools for the:
mathematician; as soon as he has recopnized among the-elements, which he is
studying, relations which satisfy the axioms of a known type. he-has at his:
cisposal inunediately the entirfe a: senal-of general theoroms which hetong to the:
atructures of that type. Previously. on the other hand, he way obliged to forge
for bimself the means of attavk-on his problemsitheir power deperded on his
personal talents end they were often-loaded doivn with restrice. ve. bypothases,
reaulting from the. pecu!iari(ia'of the problem thit was being studiéd. One could
say that the ax:omanc metbod is 1oth|ng hut the “Tayior svstem" for m..the-
ma_t“-p L . o0 o

- Thig is however. a wry poor :malozy zh-* mathemam,xun does not w ork ’me

2 machine, nor as the workingman on a moving belt awe can ot over-emphasize
the fundamental role played.in his resedrcl; by a.special-intuition,® which is not.
the popular sense-iatuition, but rather-a kind of direct divina“ion (ahead’ of
all reasoning) of the normal behavior, which he seoms to have the mzht to expact
of mathemztical beings, with whom a long acquaintance bas made him as
familiar as with the beings of the réal world.-Now. each structure carries with it
its own Janguage, froighted with special intuitive references derived: from- the
theories from. which the axiomatic analveis described above has-derived:the
structure, And; for the research worker whao sudderily discovérs this structorein’
the pheromene which he is studyiny, it is like ‘a stdden modulatien which
orients at one strcke in an nunexpected direction the.intuitive course nf his
thotight: and which illumines with-a new light. the mathematical landscape in
which he is moving about. - Lex :us- think+-ta. take an vld -example—nf the
progress made at the beginning ot “the :muneteenth. century by the geometric
representation of imaginaries.. From our point of view, this amounted to dis-
covering:in the st of contpléx nunbers-» well:known ropological structure, that.

s

of the E\tclxdean planm \mh aﬂ the: possllnhtms for anphcantms whxch th:s in-

L

. L’ke all intmtinns, 'hm one also is trequemly \mmg
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volved; in the hands of Gaves, Abel, Caucky and Riemann, it gave new life to
analysis in lezs than a century. Such examples have eccurred repeatedly during.
the fast fifty years; Hilbort space, and mose geaerally, fuictional spaces, estab- -
lishing topological structures in sets whose elements «re no lunger points, but
functions; the thecry of the Hensal p-adic numbers, where, in a stil! more
astcunding way, topology invades a r.gioa which had besn unii! then the
domain par excellcacs of the discrete, of the discontinuous, viz. the set of whole
numbers; Haar measure, which enlorged enoriiously the field of application of
the concept of integral "and made possible a very profound analysie of the
propemea of continuous groups;—all of these are decisive instances of mathe.
matical progress, of turning points at which a stroke of genius brought about a
new orientation of a theory, by revealing the cxistence if it of a structure which
did not a priors seem to play a part in it.

What all this amounts to is that mathﬂmaurs hasg Jess than ever been re-
duced to a purely mechanical game of isolatedt formalas; more than ever does
intuition dominate in the gencsis of dizcoveries. But henceforth, it possesscs the
powerful tools turnished by the theory of the great types of structures; in 2 single '
view, it sweeps over immense domains, now uniGed by the axiomati¢ method,
but which vere formerly in a completely chactic state.

6. A gen~ral survey. Let us now try, guided by the axiomatic concent, to
look over the whole of the mathematical vniverse. It is rleir that we shalt an
longer recognize the traditional order of things, which, just tike the first nomen-
clatures of animai cpecies, restricted itself to placing ride hy side the theories
which showed greatest. external simifarity. In place of the sharnly bounds! coni- -
partments of algebrs, of analysis, cf the theory of uumbers, aad of geomztry, we
shall sec, for example, thrt tae theory of prime numbers is a-close neighbor of the
theory of algebraic curves, or, that Eoclidean geometry borders on the theary
of integral equations. The orgrnizing principle will be the ~nncept oi a hier-
archy of struntures, going from the simple to the complex, frcm the: general to
the particular.

At the centr of our universe are found the great types of structnres, of
which the principal ones were mentioned above; tlieyv might be called the
mother-strictures. A considerable diversity exists in each of these types; one
has to distinguish between the mest gereral structure of the type under con-
sideration, with the smallest number of axioms, anc: those which are obtaired by
enriching the type with supplementary axioms, from each of which coues a
harvest of new consequences. Thus, the theory of groups contains, beyond tie
general conclusions valid for all groups and depending only on the axioms
enunciated above, = pacticular theory of finite grouns (ohtained hv adding the
exiom that the number of eicraents of the group is finite), a particular theory of
ebelian groups (in which xry=yrx for every x and ), as well as a theory of
finite abelian groups (where these two axioms are suppased to hold simultane-
ously). Similarly, in the theory of ordered sets, one notices in particular those sets
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(as for example, the set of integers, or of real numbers) in which any two ele-
ments are comparable, and which are called totally ordered. Among the latter,
further atteation is given to the sets which are called well-ordered. (in which, as
in the set of intégers greater than 0, every subset has a “least element”). There
is an analogous grada:ion among topological structures.

‘Béyond this fifst nucleus, appear the structures which might be called multi-
ple stmictureés, They involve two cr more of the great mother-structures simul-
tan~ously not in simple juxtaposition (which would not produce anything new),
but combined organically by one or more axioms which set up a conuection
bétwesn them. Thus, one has topological alzebra. This is a study of structures
in which occur at the same time, one or mort: laws of composition and a topology,
connected by the condition that the algebraic operations be (for the topology

- under vonsideration) continuous functicrs of the elemeats on which they

operate. Not less important is algebraic topelogy, in which certain sets of points
in space, defiusd by topological properties (simplexes, cycles, etc.) are them-
selves taken as elements on which laws of composition operate. The combination
of order structures and algebruic structures is also fertile in results, lezding, in
one direstion to the theory of divisibility and of ideals, a1d in another to integra-
tion and to the *spectral theory” or operatcts, in which topology also joins in.

" Farther along:we come finally to the theories properly called particular. In

these the elements of the scts under consideration, which, i1 the general struc-

tures have remainzd eatirely indeterminate, obtain a more definitely character-
ized individuality. At this point we merge with the theories of ciassical mathe-
matics, the analyais of functions of a real or complex variable, differential geom-
etry, algebraic geometry, theory of numbers. But they have no longer their
former autonomy; they have become crossroads, where several more general
mathematical structures meet and react upor: one another.

To maintain a correct perspective, we muet at cace add to this rapid sketch,
the rémark that it has to be Jookad upon as only a very rough approximation of
the actual state of mathematics, as it exists; the sketch is schemstic, and ideal
ized as well as frozen. ' : .

Schematic—~because in the actual procedures, things do not happen in as
simple and as systematic a manner as has been described above. There occur,
among other things, unexpected reverse ‘movemerts, in which a specialized
theery, such as the theory of real aumbers, lends indispensable aid in the coa-
struction of a general theor; like topology or integration. .

Idsalised—because it is far from true that in all fields of mathematics, the
role of each of the great structures is clearly recognized and marked off; in
certain theories (for example in the theory of numbérs), there rémain numerous
isolated results, which it :asthus far not been possible to classify, nor to connect
in » satisfactory way with known structures. ' o

Finally frosen,~for nothing ia farther from the axiomatic method than a
static conception of the sciénce. We do not want to lead the reader to think
that we claim to have traced out a definitive state of the science. The structures
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are not immutable, neither in number nor in their vssential contents. It is quite
possible that tie future development of mathematics may increase the number
of fundamental structurss, revealing the fruitfulness of new axioms, or of new
combinations of axioms. We can Iook forward to important progress from the
inveation of structures, by considering the progrzss which has resulted from
actually known structures. On the other hand, these are by no means finished
edifices; it would indced be very surprising if ail the essence had already been
extracted from tbeir principles. Thus, with these indispensable qualificaiions, we
can become better aware of thie internal life of mathematics, of its unity as well
as of its diversity. It is like 2 big city, whose out!ying districts and suburbs en-
croach incessantiy, and in a somewhat chactic manner, on the surrounding
country, while the center is rebuilt from time to time, each time in accordance
with a more ciearly conceived plan and a more majestic order, tearing down the
old sections with their labyrinths of alleys, and projecting towards the periphery
new avenues, more direct, broader and more commodious.

7. Rotura to the past and conclusion, The concept which we have tried to
present in the above paragraphs, wes not formed all ot once; rather ic it a stage
in an evolution, wiiich has been in progress for more than a half-ceatury, and
which has not escaped serious oppositica, among philcsophers as weil as among
mathematicians themselves. Many of the latter have bcen unwilling for a long
time to see in axinmatics anything e!se than futile Iczic:l hairsplitting not
capable of fructifying any theory whatever. This critical attitude can probably
be accounted for by a purely historical accident. The first axiomatic treatments
and those which caused the greatest stir (those of arithmztic by Dedekind and
Peano, those of Euclidean geometry by Hilbert) dealt with univalent theories,
i.e., theories which are entirely determiaed by their complete system of zxioms;
for thie reason they could not. be applied to any theory except the one from which
they Lad been extracted (quite contrary to what we have son, for instance, or
the theory of groups). If the sanie had been true for all other structures, the
reproach of sterility brought against the axiomatic method, would hove been
{ully. justified.* But the further development of the method has ravealed its
power; and the repugnance which it still mzets here and there, can only be ex-
plained by the natural difficulty cf the mind to admit, in dealing with & con-
crete problem, that 2 form of intuition, which is not suggested directly by the
given elements (and which often can be arrived at only by a higher and fre-
quently difficult stage of abstraction), can turn ont to be equally fruitful.

As concerns the objections of the philosophers, they are related to a demain,
on which for reasone of inadequate competence we must guard oursclves from

* There also occurred, especially at the beginning. of axioti.tics, 8 whole crop of mosster-
structures, entirely witkout applications; their eole morit was that of showing the wxact bearing
of cach axiom, by ohecrving what happened if one cmitted or charged it. There was of course a

tmn;;ﬁon to conclude that thess were the only resuits that conld be axpected from the axiomatic
msthod. ' ' X
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entering; the great problem of the relations between the empmcal world and
the mathematical world.® That there is an intimate connection between experi-
mental phenomena and mathematical structures, seesns to be fully confirmed
in the most unexpected manner by the recent discoveries of contemporary
physics. But we are completely ignorant as to the underlying reasons for this
fact (supposing that one could indeed attribute 2 meaning to these words) and
we] shall perhaps always remain ignmorant of them. There certainly is one
observation which might lead the philosophers to greater circumspection on this
point in the future: before the revelutionary developments of modern physics, a
great deal of effort was spent on trying to derive mathematics from experi-
mental truths, especially from immediate space intuitions. But, on the one hand,
quantum physics has shown that this macroacopic intuition of reality covered
microscopic phenomena of a totally different nature, connected with fields of
mathematics which had certainly not been thought of for the purpose of appli-
cations to experimental science. And, on the other hand, the axiomatic method
has shown that the *truths” fram which it was hoped to develop mathematics,
were but special aspects of general concepts, whose significance.was not limited
to these domains. Hence it turned out, after all was said and done, that this
intimate connection, of which we were asked to admire the harmonious inner
necessity, was nothing more than a fortuitous contact of two disciplines whose
real connections are much more deeply hidden than could have been supposed
a priori,

From the axiomatic point of view, mathematics appears thus asa etorehouse
of abstract forms—the mathematical structures; and it so happens-—without
our knowing why-~that certain aspects of empirical reality fit themselves into
these forms, as if through a kind of preadaptation. Of course, it can ot be de-
nied that most of these forms had originally a very definite intuitive content;
but, it is exactly by deliberately throwing out this content, that it has been

- possible to give theae forms all the power which they were capable of displaying

and to prepare them for aew interpretations and for the develcpment of their
full power.

It is only in this sense of the word Sform” that ona can call the axiomatic
method a *formalism.” The unity which it gives to mathematics is not the armor
of formal logic, the unity of a lifeless skeletan; it is the nutritive fluid of an
organism at the height of its development, the supple and fertile research instru-
ment to which all the great mathematical thinkers since Gauss have contributed,
all these who, in the words of Lejeune-Dirichlet, have always labored to *sub-
stitute ideas for calculations.”

* We do not consider hera the objections which have arisen from the application of the rules
of format logic to the reasoning in axiomatic theories; these are connected with logical difficulties
encountered in the theory of sets. Suffice it to point out that these difticulties can be overcome ina

which leaves nefther the slightest qualms nor any doubt as to the carrectness of the reasoning;
lzly [3] are valuable refercaces for this polat.
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