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i fn most areas of technology perhaps the best way to ferecast the operational

; applications in the coming decade is to look at the research and development

efforts in the preceding Gecade. I am not certain how true this generalization is,

- but it is the approach I would like teo use in considering the prospects for

i computer-assisted instruction during the seven-ies. I shall spend most of my time

h in discussing the history of our efforts at {tanford in this arez, and only at the
end of my lecture, will I attempt some specific forecasts of the future.

[Ees——
'

History of Lomputer-assisted Instruction at Stanford

§ In January 1963, the Institute for Mathematical Studies iu the Social Sciences

‘ at Stanford University began a program of research and development in computer-

- assisted instruction. The Institute's program in computer-assisted instruction

i is under my direction and that of Richard C. Atkinson. We are both members of the

Stanford faculty. In its initial inception, John McCarthy of the Department or

Computer Science at Stanford played an important role in the design and operation

; of the Institute's computer facilities. The various research projects have been

i supported by the National Science Foundation, thke United States Office of Education
and the Carnegie Corporation of New York.

The initial irstructional system in the Institute consisted of a medium-sized
computer (a PDP-1) ard six student stations placed within 100 feet of the computer.
_ Fach student booth contained two visual-display devices. The first was a random-

J access optical-display device developed for the lat.atvory by I Corporabicn that
e presented microfilmed source material on a 1l0-inch "y 13-inch ground-glass screecn.
It was possible to encode the equivalent of a 512-page book (8—1/2 inch by 1ll-inch
standard page) on microfilm and any bage, Or one-eighth of a page, could be

f_ displayed randomly within 1 second. The student responded to the display by using
a light pen on the face of the screen itself. As the pen was touched to the screen,
the coordinates of that position were sent to the computer for comparison with any
predesignated areas of the scrsen. The accuracy cf the light pen permitted
identification of a l/h—inch square on the screen. This device, which was the

pre lecessor of the IBM-1500 system wmentioned below, has been phased out and is no

longer in the Institute.

i e

The second display device, which is still in use, was developed for the

i, Institute by the Philco-Ford Corporation. It is a cathole-ray tube, commonly
called a "scope." It can display points of light in an area 10 inches high by
10 inches wide with 1,024 possible positions on both the horizontal and vertical

L *Work on this paper has been supported by two NSF Grants to Stanford, G-18709
and GJ-L4ZX. Tt was given orally at a corference on L'Homme et 1'Informatique
1 sponsored by the Institut de la Vie ir Bordeaux, France in June 1970.

1 .
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axes. In addition to individual poiats, 120 prearrav.:ed characters may be displayed
in five different sizes. It is also possible to display vectors by simply
identifying the end points. A typewriter reyboarc is attached to the scope and may
be used to send information from the student to the computer.

Until June 1968, the central computer was a PDP-1 designed by Digital Equipment
Corporaticen. It has a 32,000 word core and a 4,000 word core, which can be inter-
changed within the 32 bands of a magnetic drum on files stored on two IBM-1301 disks.
The two IBM-1301 disks were replaced by two IBM-231Lk disks in the fall of 1968, and
a PDP-10 became the main computer. although the PDP-1 is still in operation. The
computer configuration as of June 1969 is shown in Figure 1.

1963-64
The first operational instruction program available in any form at all was a
program in elementary mathematical logic. This program was first demonstrated on
December 12, 1963, and two lessons consisting of £% problems were run with four
sixth-grade students on December 2C, 1963. An additional two fifth graders were
run for demonstration purposes on January 7, 1964. An occasional demcnstration
was given every month or so during the spring. More importantly, some 20 l=ssons
giving a fairly detailed introduction to sentential logic were written and progreommed
during the spring. In the summer of 1964, these lessons, which were presented on bthe
scopes, were run with two fifth-grade boys. One boy had 32 sessions for a total of
more than 15 hours at the terminal, and the second boy had 38 sessions for a total of
more than 36 hours at the terminal.

Because the logic program is the oldcst and in many ways the most sophisticatad
of mur CAI programs, a brief description of its curriculum content from year to year
is included, beginning with 1964-65.

Luring the spring of 1S0%, prceliminary experiments using first-grade mathematics
material were 2lso conducted in the Institute with 29 kindergarten children.
Throughout 1964, staff members worked to write and code the computer CAI programs
for first-grade and fourth-grade mathematics and for mathematical logi-

196465
During the 1964 -65 school year, two groups of six first-grade children were
given & preliminary version of the first-grade arithmetic program during the regular
school year (September 14 to June 11, 1965'. Two kindergarten children were given a
revision of the first-grade program in the spring (March 15 to June 25, 1965).

By remote control, 41 fourth-grade children were given daily arithmetic drill-
and-practice lessons on a teletype machine in their classroom at Grant School in
the Cupertino Union School District (April 19 to June 4, 1965). This installation
constituted an important first step in moving terminals from the Stanford campus to
elementary schools, with direct connection from the computer to the terminals by
telephone lines.
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Two very capable second-grade boys /slightly under eight years in age) worked
through a portion of the logic program (March 15 to May 19, 1965). The two students
covered 29 lessons in sentential logic. A listing of the lessons is given in
Table 1.

The most important feature of the program in logic already exemplified in the
work beginning at the end of 1963 is that the computer program accepts any logically
valid response of the student. The student is not restricted to a few multiple-
choice answers, or more generally, there is not a unique constructed answer that
must be given. The student inputs on the keyboard the rule of inference he wishes
to apply to given premises, or to previous lines in a proof. He is not asked to
type out the line of the proof itself; this is done by +the computer upon command.
’ere are some examples of the program. In these examples., Rule AA--affirm the
antecedent--is the classical rule of modus ponendo ponens.

The first two examples emphasize working with English rather than with
mathematical sentences.

Example 1. Derive: We need good shoes.
Premise 1. If we buy sieeping bags, then we are warm at night.
Premise 2. If we are warm at night, then we feel good in the morning.
Premise 5. If we feel good in the morning, then we take a long walk.
Premise 4. 1If we take a long walk, then we need good shoes.
Premise 5. We buy sleeping bags.

In Example 1, the student would input "AA 1.5" to obtain as line (6):
6. We are warm at night.

He would next input "AA 2.6" to obtain:

£ 7. We feel good in the morning.

After this would follow "AA 3.7" to obtain:
8. We take a lorg walk.

and finally "AA 4.8" to obtain the derived conclusion:
9. We need good shoes.

Example 2. Derive: Jack and Bill are not the same height.

Prer.ise 1. If Jack is taller than Bob, then Sally is shorter than Mavis.
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TABLE 1

List of 29 Logic lessons, Spring of 1965

F W oo H

£

O & 3 OV W

=
= O

Rule AA (ponendo ponens). One-step procfs only.

Rule AA with two-step proofs.

Denials and Rule DC (tollendo tollens).

Rules AA and DC together in multi-step proofs.

Dominance and use of parentheses; law of double negation.
More on law of double negation.

Rule DD (tollendo ponens).

Truth and validity.

Truth and validity in relaticn to the law of double negation.
Analysis of inclusive "or" and validity of Rule DD.

Truth diagrams (analysis of the truth of compound sentences given the
truth of the atomic sentences).

Truth-functional analysis of conjunction.

Rules of corjunction and simplitfication for inferences about conjunctions.
Truth-functional analysis of conditionals.

Truth tables,

Tautologies.

Relation between conditionals and logical arguments.
Valid arguments and tautologies.

P the denial of not P,

DeMorgan's laws.

Using DeMorgan's laws in deriwvations.

Hypothetical syllogisms.

More on hypothetical syllogisms.

Cormutative laws for conjunctions and disjunctions.
Rule of addition (frecm P infer P or Q).

More on the rule of addition.

Disjunctive syllogisms.

More on disjunctive syllogisms.

Validity of disjunctive syllogisms.




Premise 2. Sally is not shorter than Mavis.

Premise 3. If Jack and Bill are the same height, then Jack is taller
than Bob.

Tn this exemple, the student must use modus tollendo tollens, which we call
Rule DC. 'pe!  stands for the fact that we deny the consequent of the conditional
premise. Thug 1n Example 2, the student who is responding correctly would input
rirst "DC 1.2" to obtain:

. Jack is not taller than Bob.
and then "DC 5.4" to obtain the derived conclusion:
5., Jack and Bill are not the same height.
Exasple 3. Derive: ¥ +8 < 12
Premise 1. x + 8 =12 or x #k
Premise 2. x =4 and y< x
Premise 3. If x+ 8 =12 and y< X then y + 8< 12.
Tn this example, the student must use modus tollendo ponens, which we call
Rule DD--deny a disjunct, as well as two rules dealing with conjunctions--the
rule of conjunction (FC) for putting two sentences together to form a conjunchion,
and the rule of simplification for deriving one member of a conjunction, Rule LC
to derive the left conjunct and Rulc RC to derive the right conjunct. We show

the steps of the aerivation in one bilock, but it is to be emphasized that the
shudent inputs only the rule .bbreviations and the numbers at tne left of each line.

ICc 2 b, x =214

DC 1.k 5. x+8=12

PC 2 6. yv<

AS5.6 7. x+8 =12 eand y< X
Ad 3.7 8. y+8«< 12

Tn these simple examples the possibilities for different proofs by different
students are restricted, but already in this last example, the order of the lines
can be changed, and the possibilities of variaticn increase rapidly as the com-
plexity of the problems increases.



It should te mentioned that when the student makes sn error, which means he
attempts to take a logically invalid step, the computer program prints out the
reason the step is in error and waits for him to make another move. For example,
if the student attempts to apply Rule AA to a sentence in which the major connective
is "and" rather than "if...then the computer program simply prints out the message
"line n is not a conditional sentence.' The ability to analyze mistakes unerringly
is an unusual teature of the logic program and rests upon the well-understood
character of logical inference. Tn more diverse and open-ended subjects, the same
unerring analysis of student errors i1s considerably more difficult.

Tn the spring of 1965, the second version of the logic program was prepared.
This program was designed ror an experimental class of 26 second graders run in the
summer of 1965. Two variants of the program were written. One utilized English
sentences throughout, while the other introduced logical symbolism. In both cases
each new topic was introducec intuitively in English sentences. The purpose of
writing two separate tracks was to determine whether the use of English sentences
or abbreviated logical symbolism was easier for the students. In all, 20 lessons
were prepared in both the English and symbolic tracks for the summer session. In
addition, remedial lessons were prepared for =acn of the above lessons. The number
of responses per lesson ranged from 10 for the inftroductory multiple-choice questions
to 60 (including line numbers) for later les:sons.

1965 -66

During the 1965-66 schyol ycar, drill-and-practice teletype programs werc
conducted in three schools. In September, the arithmetic drill program at Grant
School was expanded, with two teletypes for each of Grades 4, 5 and 6. On February 2,
1966, two mors teletypes were added for third-grade classes. By the end of the year,
of the 270 participating students, 62 were third graders, 76 were fourth graders,

70 were fiftk graders and 62 were sixth graders. A detailed description of this
first year of relatively large-scale operation of the drill-and-practice teletype
program is to be found in Suvpes, Jerman and Brian (1968).

On March 7, 1966, ope teletype was “nstalled at Ravenswood High School ir
+he Seqguoia Union High Schocl District. The machine was used by seven arithmetic
classes. About 60 students used the machine on alternate days.

During the¢ spring of 1966, four teletypes were used for drill-and-practice work
in spelling at Costano School in Raver.swood City School District. Audio was provided
from the Institute's central computer facilities by a second telephone line and ear-
phones. For an account of the research in spelling, see Knutson (1967) and Fishman,
Keller and Atkiunson (1968).

During 1965-66, work cn tutorial programs was continued in both the mathematics
and the mathematical logic programs. Two groups of four kindergarten children were
given a revised version of the first-grade program during the regular school year
(April 11, 1966 to June 10, 1966). Two grcups of first-grade children were given a

ERIC -
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revised version of the seccond-grade program (April 11, 1956 to June 10, 1966).
Drill-and-practice lessons in symbolic logic were given to 30 sixth-grade students
one day esach week from May 5, 1966 through June 9, 1966. A group of 7 Tourth-grade
students were given the same lessons in logic for a pericd of four weeks, one day
each week (May 19, 1966 to June 9, 1966).

1566-6

In the summer of 1964, the Institute was granted a contract by the United
States Off'ice of Education to investigate the feasibility of teaching mathematics
and reading as an intcgral part of an elementary-school program by using individual-
ized, tutorial computer-assisted instruction over an extended period of time., The
site chosen was the Brentwood Elementary School (Ravenswood City School District)
in Bast Palo Alto, California. The Laboratory was housed in a specially built unit
and was equipped with an IBM-1500 Instructional System operated by an IBM-1800
computer. (Use of this equipment was terminated on July 1, 1968). The first
students were run on the system on October 27, 1966. For the 1966-67 school year,
over 100 children, including all the first-grade students at Brentwood, participated
in the project. Half of the students had daily computer-assisted instruction in
mathematics, and the other half had daily sessions in reading. For a description
of the reading program, see Atkinson (1967), Aikinson & Hansen (1966), and Wilson
& Atkinson (1967).

In additicn, the drill-and-practice program was expanded during 1966-67.
Summary statistics are given in Table 2. In March 1967, two teletypes were put in
operation at the Morehead State University Laboratory School in Morehead, Kentucky,
more than 2,000 miles from Stanford. As in the case of other schools, the connection
to the Institute's computer was by ordinary telephone line. Teletypes vwere added at
other schools, mostly in California, so that the starting number of 877 students
ncreased to slightly over 1,500 students at the end of the school year.

In addition, 31 students (average age about 10 years) at Walter Hays Elementary
School in Palo Alto, California participated in a teletype program on symbolic logic
and modern algebra. Lessous were prepared for two courses of study, sentential logic
and elementary algebra. Both courses used the same logic program, but had separate
introductory tracks for rule rames and applications. Ior most of the year the
sentential logic stressed derivations using symbols, and the algebra emphasized .
numerical derivations; however, rules from both were required for some proofs near
the end of the year. Each child alternated his course of study from one day to the
next; logic one day, algebra the next.

The logic program was intended to be self-contained as tutorial computer-
assisted instruction at a teletype terminal, b 5 students were gble t» question a
staff member who was available in the teletype room when the logic program was
running. Although a considerable amount of individual instruction was given to some
students while they were working at the terminals, very little group instruction
occurred.
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The format used for the logic problems was similar to that used in earlier
years.

Lesson 1 of the sentential logic contained 19 problems that were written in
symbolic format with two or three premises and that required one-step proofs applying
modus ponendo ponens, a rule of inference familiar to all the students. As already
indicated. the rule was abbreviated AA for affirm the antecedent. The students
needed to know that 'R — 3' meant 'if R then S§', that 'R - 5' was a conditional
sentence whose antecedent was R and consequent was S, that 'P' was the abbreviation
for ‘premise', and that the use of AA required two line numbers with the line number
of the conditional sentence followed by the line number of its antecedent. A period
separated the two line numbers. After the teletype had printed what the student was
to derive and the given premises, the typewheel positioned itself for the student's
instructions. The student then typed the abbreviation for the rule aad the line
numbers requirea for its application. The next information printed by the teletype
was either a valid step based on the student's input or an error message if the
student had given instructions for an invalid step. The teletype proceeded to the
next problem when the student had completed the desired derivation. An example
from Lesson 1 is the following:

Derive: L

P (1) K->1L
P (2) M
P (3) K
AA1.3  (4) L.

The under'ined phrase indicates what the student typed for this problem. The
remainder of the typing was performed automatically under computer control.

Lesson 2 contained 8 more problems that haa either two or three premises and
that required only a one-step proof. Mathematical sentences were included, as well
as the usual symbols of sentential logic. Each of the 7 problems in Lesson 3 had
three premises and used Rule AA. Two-step problems were presented for the first
time in this lesson.

The Rule of Conjunction was introduced in Lesson 4 as the rule that would Form
a Conjunction (FC). The 17 problems in this lesson involved one-step, two-step, and
three~step derivations using modus ponendo ponens and the Rule of Conjunction.

In Lesson 5, the Rule of Simplification was presented as two separate commands
for the student to give the computer: to derive the Left Conjunct he typed LC, or to
derive the Right Conjunct he typed RC with a designated line number to complete the
instruction. For ex. nple:

10
o9



Derive R

P (L) S 5R&Q
P (2) 8

AAL.2 (3) R&Q
LC3 (%) @R,

The underlined sections of the problem indicate the student's input for the deriva-
tion. There were 21 problems in Lesson 5 that involved one-step, two-step, and
three-step derivations that used from one to five ypremises.

In Lesson 6 there were 20 problems that contained two, three, or four premises
using all the rules introduced up to that place in the curriculum. The problems
required from one-step to four-step derivations. Ancther new rule, modus tollendo

poinens, was inbtroduced as the rule that woull Deny & Disjunct (BB). For cxample:

Derive: D

P (1) av (B&C)
P (2) Dv -B

P (3) -A

Dpl.3 (4) B&C

k. (5) B

J

D2.5 (6) D.

As before, the underlined sections indicate %he student's typed work, and the
teletype printed tae remainder of the problem.

Lesson 7 contained 21 problems that required from one to four lines to solve
problems based on two or three premises. Another new rule, modus tollerndo tollens,
was introduced as Deny the Consequent {DC). The underlined statements represent the
student's work in the following problem:

Derive: R

P (1) w

P (2) -R - -8
P (3) N->8
AA3.1 (L) 8

D2k (5) R.

At approximately this stage in the curriculum (depending on each student's
individual rate of progress), a multiple-choice mode was available for use at the

11
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teletype terminals. Two inserted 'essons used this multiple-choice mode for review
and practice on logical vocabulary. One new rule, Double Negation (DN), was intro-
duced v using the multipla-choice mode for direct instruction. The first inserted
lesson contained 20 problems and the szcond lesson 19 problems.

Lesson 8 contained 18 problems having from one to three premises and required
one-step through four-step derivations to derive the conciusions. Practice in
applying the Double Negation Rule was emphasized. For example:

Derive: B

P (1) --(A —=B)
P (2) A

DN1 (3) A-B
AA%.2 (&) B.

The problems in Lesson 9 featured another new rule, Iliypothetical Syllogism (HS).
There were 2). problems in this lesson that required from one-step through five-step
derivations. From one to three prenises were provided for each problem. Cne problem

required the use of an algebraic rule in its derivation. The rule of the Hypothetical
Syllogism was applied in the following typical problem:

Derive: A - D

P (1) A-B
P (2) BC
P (3) C-D
Hsl.2 () A ->C

HShk.3 (5) A ~D.

Lesson 10 contained 27 prcoblems with from one to five premises -~hat required
from one-step to twelve-step proofs for solution. Many applications of the algebra
rules wers necessary for the problems in this lesson. Also, the Law of Addition,
Form a Disjunction {(¥D), was presented. This rule permitted the student to type
the second part of a disjunction formula. The underlined sections indicate work
typed ty the student. For example:

Derive: -3
P (1) s--(RvT
P (2) R
w2 (3) Rv (D)
DC1.3 (&) -s.

12
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In Lesson 11 sore of the 17 problems required derivations and some of the prob-
lems were preserted in the multiple-choice mode. Those problems of the multiple-
choice type reviswed the vocabulary and required the student to identify a certain
type or part of a formula. The derivations contained from one to six premises with
from two to twelve lines of rule applications for the solutions.

Lesson 12 combined both derivations and multiple-cinice problems for the intro-
duction of two new rules that applied the Commutative Laws. The first rule .as
called Commute Disjunction (CD), and the second rule was called Commute Conjunction
(cC). There were 18 problems in this lessonj; the nine derivations had either one
or two premises and were one-step or two-steps in length. The Rule CD was applied
as follows:

Derive: A v B

p (1) B

L (2) B v (4)
cp2 (3) A v B.

Lesson 13 emphasized the combined use of algebra rul=s and logic rules. The 27
problems included both multiple-choice problems and derivations having one to three
premises with as many as g¢ix lines of rule applications. The 16 problems in Lesson
14 followed the same format of combining multiple-choice problems with derivations
that included the use of algebra rules.

The algebra curriculum was presented in much the same format to the students as
the logic curriculum, with the exception that rules were introduced in a notebook
written in a programmed format. This approach was initiated because there was no
mulitiple-choice mode available when the algsbra program started.

Directions written into the program instructed the student when to read the
introduction and when to solve the problems for a new rule in nhis notebook. The
student then used the answer section in his rntebook to check his work. The first
two pages of the notebook included the rule names for both the logic and alsebra
programs and examples of their application. Each student had his notebook at the
teletype terminal available for reference each day.,

Lesson 1 contained 10 problems in which the student practiced the Rul= of
Number Definition (ND). (Each positive integer greater than 1 is defined as its
predecessor plus 1. Thus 2 =1 + 1, 3 =2 + 1, etc.) This rule was printed with a
prefix that indicated which number the machine was to present and define. For
example:

Derive; 6 =5

em (1) 6=

-

1
+ 1.

The underlined section shows the student's command to the computer.




Lesson 2 presented 1> prohlems that required the student to apply the Rule of
Kumber Definition and then the new rule, Definition (D), that allowed the definition
of a particular number to be substituted for (the name of) the uumber in a given
number sentence. A prefix number in front of the rule abbreviation indicated the
number that was to be replaced by its definition, and a postfix number indicated
which occurrence of the number in the given sentence was to be defined. For example:

Derive: 8 = ((5 + 1) + 1) +1
8D (1) B=7+1

L (2) 8=(6+1)+1

601 (3) 8= ((5+1)+1)+ 1.

1]

Lesson % contained 20 problems using both the Rule of Numbeyr Definition and
the Rule of Definition for two-step to four-step derivations. Lesson 4 provided
further practice using the same rules for 15 problems that required three or four
lines of proof.

In Lesson 5 a new rule, Commute Addition {CA}, was introduced. To apply this
rule to the previous line ot the problem, a postiix number indicated whichh occurrence
of the plus sign was used for the commutation. For example:

Derive: 7 =1+ 6
76D (1) 6+ 1
CAl  (2) 1+ 6.

7
7

For the 20 problems in this lesson, both the Rule of Number Definition and the Rule
of Definition were used continuously.

Lesson 6 contained 23 problems that required as many as four steps of proof.
The three rules available four algebra proofs were used. Lesson 7 provided further
practice with the same rules. The 22 problems required as many as seven steps for
a solution. Lesson 8 extended the use of the same three rules. The 13 problems
needed as many as eight lines of proof for the derivati .

In Lesson 9 a mew rule, Associate Addition to the Right (AR), was introduced.
The student typed a postfix number to indicate which plus sign was %o be dominant
after applying Associate Addition to the Right. For example:

i

P (1) (B+3)+1
AR (2) b+ (3+1)

F+ 3 +1
(b + 3) + 1.

i

There were 20 problems in this lesson that needed as many as five steps of proof
for solution.

b

A7




bt

bogisiy

o et Ay

N Ml thr et

A P danor -,

ooty

Jcrmiariipnd
N ¢

¥

s
L

—re

Lesson 10 provided practice with all rules that had been presented. There
were 21 problems that required as many as seven steps of proof. Lesson 11 contained
11 problems that provided further practice witn the same rules. *

Lesson 12 contained a new rule, Inverse Definition (ID). This rule put a
number in place of its definition. A postfix number was required to indicate which
occurrence of a number's definition was to be replaced by the ramber. For example:

P (1) 5+1=5+1
6ID2 (2) 5+ 1 = 6.

The postfix 2 indicates that the second ocecurrence of the definition of 6 it Lo be
replaced. There were 20 problems in this lesson and some requirel «s many as seven
steps of proof for a solution.

In Lesson 13 there were 17 problems that needed as many as six steps for a
derivation. Lesson 1&4 introduced a new rule, Associate Addition to the Left (AL).
This rule allowed the sgtudents to reassociate numbers to the left using the same
format as Associate Addition to the Right. There were 17 problems in this lesson.

Thus, in these 17 algebra lessons a total of six algebraic rules of inference
were introduced. The introduction of these rules gave the students experience with
the sort of mathematical inferences that are widely used in elementary algebra and
that are rather different from the rules of sentential inference. I emphasize again
that the students were about 10 years of age.

1967-68

Seventy-three students continued in the 1967-68 tutorial mathematics program
at the Brentwood Laboratory. A new mathematics curriculum was initiated for the
second grade.

The drill-and-practice mathematics program expanded again during 1967-68. From
the end of January, 1968, to the end of May, 1968, the enrollment jumped from 2,387
Lo 4,555 for %0 schools in California, Iowa, Kentucky, and Mississippi.

The &40 students enrolled in the drill-and-prectice program in the Job Corps
Center in Clinton, Iowa were high-school-age girls and older. These girls concurrently
attempted to learn a trade and to earn a high school diploma. The majority of these
students worked et the fourth-grade level.

In September 1967, 30 students at Stanford University enrolled in a course of
computer-based elementary Russian for credit. Professor Joseph Van Campen o.” the
Department of Slavic Languages at Stanford was responsible for the developmenu of
the computer-based Russian course. A control class received regular classroom
instruction, attended a languag- laboratory, and submitted written homework assignments.




In a computer-based instruction class, regular classroom instruction was eliminated
and work at Model-?5 teletypes with Cyrillic keyboard and sudiotapes with earphones
was substituted. The students received instruction at the terminals for a period
of 50 minutes per day, 5 days a week, throughout the entire academic year.

The statistical evaluation of the Russian course has been positive in two
major agpects.

Of the 30 students who started the first-year computer-based course, 1 left
during the first quarter, 3 left between the first and second quarters, 1 left
during the second quarter, and 3 left between the second and third quarters. Two
ney students entered the computer-based section at the beginning of the second
quarter. Of the 38 students enrolled fer the autumn quarter in the regular Russian
section, 10 left the course during the first quarter, 13 left between the first and
second quarters, and 3 left between the second and third gquarters. Four new students
entered the regular section at the beginning of the third quarter, 1 of them having
transferred from the computer-based class. Of the 30 students originally enrolled
in the computer-tased program, .22 (73 percent) finished all tnree quarters, whereas,
of the 38 students in the regular class, only 12 (32 percent) finished the year's
curriculum. This finding suggests that the computer-based course held the interest
of the students much better than the regular course did. Probably because Russian
is more difficult than French, Spanish, or German for American stud’ 'ts, the dropout
rate in Russian at Stanford and other universities is traditionally high.

Approximately 66 percent of the content of the final examinations for the autumn
and winter quarters was identical for the computer-based and the regular Russian
sections; the complete final examination for the spring quarter was identical for the
two groups. The number of errors for each student, when the students are ranked
according to their performance on the final examination, is shown in Figures 2, 3 and
4 for the fall, winter and spring quarters, respectively. Although the average
number of errors was lower for the computer-based students in all three quarters--
15.8 relative to 49.0 in the fall quarter, 21.8 relative to 25.8 in the wiater
quarter, and 53.0 relative to 71.1 in the spring quarter--the difference was statis-
tically significant for the fall quarter (Mamn-Whitney U test, P < .00l) and the
spring quarter (P < .05), but not for the winter quarter. Since the selection
process resulting from the pourer sludents® Leaving the regular course biases the
results on the examination against the computer-based group, the superiority of the
computer-based group on the spring examination is more impressive than the difference
indicated by the average nuvmber of errors.

The logic and algebra tutorial program inc_eased to 195 students in seven schdols
in California and Mississippi. This was the only program zimed mainly at very bright
students and was offered as a supplement or enrichment to the regular mathematics
prograem. An additional feature of the logic program was some work on problem solving
aimed at obtaining a better understanding of the difficulties students encounter in
solving word problems. This was done bty giving the students a routine for cc¢ puta-
tions to be performed by the computer program.
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Insbructions were presentad, via compiter, to teach the students how to command
the computer to perform operations on given numbers. The following sequence of
interactiong between the student and the computer illustrates how a problem is
solved in this context. Student entries are underlined. The computer first types
out the problem, and then types out the numbers in that problem. The student sees

on the printout sheet before him:
Tom collected 500 seashells and plLacad 42 of them in a showcase.

How many shells were not placed in the showcase...
g (1) 500
G (2) 43

" 1n 1" . 1"

G stands for given number.

The student then responds by telling the computer the cperation he wants the
computer to perform, and the line numbers to which the oPeratlon should apply. In
the present case, the student ordinarily types out l 2S" meaning "from the number
shown on line 1 subtrazt the number shown on line 2" The computer responds by
typing the result of applying the operation, or by typing an error message if the
operation could not be applied validly.

The student also learned to indicate the answer by typing the line number
followed by an X. The complete protocol for a correct response in the above

example, then, might be:
Tom collected 570 seashells and placed 43 of them in a showcase.
How many shells were not placed in the showcase..
G (1) 500
G (2) b3
1.28 (3) k57
X
Corract
Similar notation was used for the other tihiree rational operatiocns of addition,

multiplication and division. A detailed report of this study is to be found in
Suppes, Loftus and Jerman (1960). A subsequent study is reported in Loftus (1970).
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1968-69
The prcject in East Palo Alto schools shifted major emphasis from tutnrial
programs to drill-and-practice programs in elementary mathematics and reading. All
eight elementary schools in the Ravenswood district were involvzd. Forty teletype
terminals modified for audio were used in the reading program for Grades 1, 2. and
3, and 50 teletype terminals were used for arithmetic in Grades 1 to 6.

The total number of students enrolled in the drill-and-practice program in
elementary arithmetic grew to over 6,000 during the year. Again, summary data are
shown in Table 2.

Under the direction of Professor Atkinson, an initial reading program was
designed and prepared that would complement any classroom reading series by providing
drill and practice in the basic subskills for the complex task of learning to read.
This program, pioneering the use of digitized audic, was made available to L2 first-,
second- and third-grade students.

[ g e

A remedial mathematics course for college students was prepared and run with
students at Tennessee State University. The drill-and-practice program emphasized
computational skills in arithmetic and elementary algebra. The program included
sections on concept development as well. Students spent 20 minutes a day on terminals
and the remainder in regular class sessions. The terminal installation consisted of
20 teletypes and a PDP-8 computer serving as a mltiplexing device, connected by
high-speed phone line to the Institute's central computer at Stanford.

haicing atmicie}

The students who began work in logic and algebra on terminals in their school
in 1966-67 continued during 1967-63 and 1968-69. By June of 1969 they were about
twelve years in age and had proved most of the standard elementary theorems that
hold fcr ordered fields. A list of the theorems used in the curriculum is given in
Table 3. At this point their intensive work terminated because of their graduation
from elementary school.

i

-

The second-year computer-based Russian course consisted of 113 lessons aad was
offered for credit at Stanford University through the Department of Slavic Languages
and Litevature. Disk-generated, computer-generated individualized review sessions
and analyses of student performance were initiated and preliminary tests were made
in the computer-based generation of sentences from individual vocabulary items.

For the autumn quarter, 1968, 19 students enrolled in the computer-based class
and 11 enrolled in the conventional class; for the winter quarter, 1969, 18 students
enrolled in the computer-based class and 8 enrolled in the conventional class; for
the spring quarter, 1969, 15 enrolled in the computer-based class and 6 enrolled in
the conventional clasc. The results paralleled thcse for the previous year.

The system was expanded during the year, as shown in Figure 1, into a network
that included students in fendall School for the Deaf in Washington, D. C. on the
east coast and students in the Special Education Unit of the University of Washing-
ton in Seattle on the west coast.




TABLE 3
Logic and Algebra Course Outline
1968-1969

Second Year*
Recognit:on of true and false sentences; recognition of types of
sentences; equations; inequalities.

Review of astomic and mclecular sentences; conditionals; when a
conditional is true.

Ad:  affirm the antecedent;
Truth value of conditionals as related to truth value of antecedent
and consequent.

ND: number definition.

WP-CP: working premise and conditional proof.
Valid rule of inference.

CE: commute eguals,

AE: add equals.

subtract equals.

rule of logical truth.

replac. equals (long form).

replace equals {short form).

2PEEHB

commute addition axiom
A+ RB=B+A
short form of CA.

AS: wussceiate-addition axiom
(A+B)+C=A+ (B+ C);

LR: associate addition right;

ATi: associate addition left.

Z: zero axiom
A+ 0 =A.

N: negative number axiom
A+-B = A - B,

22
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AI: =&dditive inverse axiom
A+ -A = 0.

Theorem
Theorem
Theorem
Theorem
Theorem

Theorem
Theorem
Theorem
Theorem
Theorem

HWY O~y VI FEF WD
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Theorem 1ll:
Theorem 12:
Theorem 13:
Theorem 1k;
Theorem 15:

Theorem 16:
Theorem 17:
Theorem 18:
Theorem 19:
Theorem 20:

Theorem 21:
Theorem Z=z:

0O+A=A
(-A) +A =0
A-A=0
0-A=-A

on
(oo BN B« N«

+.

(@]

i

A - (A+ B)

(A-BY+ (B-C)=4-C.

CM: commute multiplication axiom

AXB-=

B x A.

MU: multiplication-by-unity axiom

AX1l=

Theorem 30;

A.
1 XA =A.

ME: multiply eguals,

DE: divide

equals,

MI: =nultiplicative inverse axiom

—A=0-A
Theorem 31l:

-1l =0.

x(1/A) = 13

—A=0-{1/A) XA =1.

U: unity axiom

IP: 3Indirect Proof.
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FR: axiom

for fractions

—~B=0-4/B=AX (1/B)
Theorem 32: 1/1 =1
Theorem 33: A/l = A
Theorem 34%: — B =0 & A X (1/B) =C—>A=BXC
Theorem 35: =—A=0&B=1/A-5AX3B=1
Theorem %: B=1&—2A=0 :4XB=A
DL: distributive axiom:
Theorem 37: A X O = O.
MS: associate-multiplication axiom

(AXB) XxC=AX(BXC);
MR: associate multiplication right;
ML: associate multiplication left.
Theorem 38: AXB=0& A =0-5B=0
Theorem 39: =—4& =0 —-0/A =0
Theorem 40: S A=0& AXB=AXC->B=:C
Theorem “1: — B =0& A=B X C—>A X (1/B) =C
The orem 42: = A=0& AXB=1-B=1/A
Theorem 43: — A =0& A XB =A -5B=1
Theorem 44: (A + B)'X(C+Lj=(AXC+AXD)+ {BXC+BXD)
Theorem 45: A % (-B) = -(A X B)
Theorem 46: (<A) X B = -(A X B)
Theorem 47: {-A) X B = A X (-B)
Theorem 48: (-A) X (-B) = A X B
Theorem 49: A X (B-C) =A XB - AXC
Theorem 50: -A = (-1) X A

Truth assignment mode

Jounterexample mode

Axiom 13:
Theorem 60:

A<B-> B<A
-—A<A

Problems using counterexample mode

Theorem 61:
Theorem 62:

Axiom 14:

Theorem 63:
Theorem 64:

Theorem 65:

B-—)—|A<B&—|B<A
B>—-A=B&-~B<A

A+ C<B+ C
0-0< =-A
-A-A<O
B<B+C-B<C

=3
oA B>
+ AANW A
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Theorem 66: A < B — -B < -A
Theorem 67: -B < -A 5 A <B
Theorem 68: A + (-B) <A+ (-C) -5C < B
Theorem 69: C < B - A + (-B) < A + (-C)
Theorem 70: (A< O0&B<C) 5AXC<AKXB
g Theorem 71: (A< O & A xB<AXC) ->C<B
- Theorem 72: (O< A& A XB<AXC) 5B <C
. Theorem 73: 0 < 1
g‘ Theorem Th: A < O - (L/A) <0
* Axiom 15: (A<B&B <C) 5A<C
Theorem 75: (0<A&B<O0&C<O0)-»AXB<BXC
Theorem 76: (A< 0 & 0<B&O0O<C) 5AXB<BXC
Theorem 77: 0 < (A/B) =0 <A x B
: Theorem 78: 0 <A XB -»0< (A / B)
‘\ Axiom 16: — A =B >A<BVB<A
Theorem 79: (- A =B & A <B) »5B<A
Third Year®
j Theorem 80: Z + B = 0 »Z = -B
Theorem 8l: Z + B <0 -5Z < -B
[ Definitiont: A>B e B <A
poY Definition: A>B e A>B VA =38
Theorem 82: Z + B >0->2%Z > -B
; i Theorem 83: AX = 0&—A =0 >X =0
. Theorem 84: AX >0& A>0-5X >0
‘ Theorem 85: AN > 0& A <0 55X <O
{ Theorem 86: AX < 0 & A >0 5X < 0
) Theorem 87: AX < 0 & A<O0-5X>0
X Theorem 88: AX + B = 0& - A =0 ->X = -(B/A)
f Theorem 89: AX + B >0 & A > 0 X > ~(B/A)
. Theorem 90: AX + B > 0 & A < 0 -»X < -(B/A)
Theorem 91: AX + B <0 & A > 0 »X < -(B/A)
H Theorem 92: AX + B <0 & A <0 —»X > -(B/A)
’ Theorem 93: X + ¥ =A->5X=A-V&Y¥Y=A-X
. Theorem 9%: — A = 0 & AX + BY = 0 - X = -(B/A)Y
{ Theorem 95: —A =B &X+ Y =0&AX +BY =C >Y = C/(B-A)
.5 Theorem 96: —A =B & X + ¥ = 0 & AX + BY = C »X = C/(A-B)

s

*Seeond Year and Third Year refer to the curriculum as luid out for
a year's tutorial work and assume that the first year of curriculum has
already been completed. The Third Year does not represent a full year,
but rather only the first part.

i
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A tutorial program in computer programming was initiated with high schocol
students in Woodrow Wilson High School in San Francisco. Twce languages, SIMPER and
LOGO, were taught. The nonstandard languages were develored especially to provide
an introduction to some of the basic ideas underlying computer programming. The
terminal installation consisted of 15 teletypes.

1$59-70

Fewer terminals were in the system than in the previous year, because two of the
major centers (Mississippi and Kentucky) continued with systems of their own, and
because there was a decrease in the level of federal support to other schools.

The block program for Tennessee State University was continued throughout the
year. New course material was prepared. The content of the program included a
review of aritvhmetic and intermediate algebra in a drill-and-practice mode.

The number of instructional programs increased as shown in Table 2. In the
spring, the block version of the drill-and-practice mathematics program (for a
detailed description of the block version, see Suppes, Jerman and Brian (1968) or
Suppes and Morningstar (1969)) was replaced by a new program, which I now describe.

During the summer of 1968, development began on a major revision of the drill-
and-practice program in arithmewvic. The revised program evolved when attention was
diverted from a program that could duplicate and expedite classroom procedures for
a given grade to a program that could provide the most efficient drill for a given
individual from the start of Grade 1 through the end ¢f Grade 6. The question used
to determine what types of problems a child should receive on a drill changed from
"What grade is the child in?" and “What is usually taught at that grade level?"” to
"What concepts has this child mastered?" and '"What should this child learn next?"

Attention to the child rather than to the classroom resulted in & reorganizaticn
of the drill-and-practice material in elementary-school mathematics into ungraded
strands. The student, working on several strands simultaneously, begins at the
bottom of a strand and moves upward on each strand as a function of his ability to
perform correctly on that strand. Since movement along a strand depends on the
student, the level of performance on one strand relative to the level of performance
on other strands creates a problem set for one student different from the problem
set for another student. Thus, unlike in the traditional classroom, each student
is solving a different set of problems, and each set of problems contains problem
types from each strand appropriate to the ability level of the student involved.

U

The strand system consists of three major elements:

Ii_‘,‘

; 1. A curriculum structure that classifies the problems appropriate for an
4 elementary-school mathematics program;

4
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2. A set of rules for determining the problems to be presented to each student;
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%, A set of rules to define the progress of a student i‘hrough the structure.

The present curriculum structure contains 15 strands. Fach strand includes
all problem types of a given concept, e.g., fractions, equations, or of a major
subtype of a concept, e.g., horizontal addition, vertical multiplication, presented
in Grades 1-6. Table 4 shows the 15 strands and the portion of the six-year
curriculum for which they are appropriate.

Within each strand, problems of a homogeneous type, e€.g., all horizontal
addition problems with a sum between zero and five, are grouped into equivalence
classes. FEach strand contains either 5 or 10 classes per half year with each
class lzbeled in terms of a grade-placement equivalent. A prcblem count of problem
types occurring in three major elementary-school mathematics texts and data
collected during the past three years of the drill-and-practice program at Stanford
were used to arrange the equivalence classes in an increasing order of difficulty
and to insure that new skills, e.g., regrouping in addition, were incvroduced at the
appropriate point in the curriculum.

In addition to the ordering of the problems within a stra.d, we must know how
much emphasis is needed on each strand at a given point in the year. To determine
this, we divided the curriculum into 12 parts, each corresponding to half a year.
A probability distribution was defined for the proportion of problems on each
strand for each half year. Both the problem count from the three textbooks and
the average latency for problem types based on pas™ data were used to characterize
the curriculum distribution. The final proportions in terms of time and problems
for each half year for each strand are shown in Table 5, with the exception of
Strand 15 (problem solving) which is handled separately.

A student's progress through the strand structure is a function of his
performance on each strand. As certein criteria of nerformance are satisfied for
a given strand, the equivalence class from which the student is receiving problems
cha .ges, with a corresponding change in the student's grade placement on the
strand. The criterion for a given equivalence class is a function of the strand
and half year of which that class is a member.

For each equivalence class the criterion is stated in terms of three integers,
W, Y and Z. After every Y problems on a strand the student's performance is
examined; if he did W or fewer problems correctly, he moves down one equivalence
class; if he did more than W and fewer than Z problems correctly, he stays at
the same equivalence classj if he did at least 2 problems correct.y, he moves up
one equivalence class. An exception to the criterion for movement is made when a
student is presented probiems from a given equivalence class for the first time.
In such a case, 2 check is made after the first three problems; if the student did
all three incorrectly, he moves down one equivalence class.

The calculation of the values of W, Y and Z for each equivalence class
involved the combination of knuwn facts, estimated facts and several assumptions.
Knowing the amount of time a student would spend doing problems during a half year,
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TABLE 4

Content and Duration of Each Strand

Strand Content Grade range
1 Counting and place value 1.0-7.0
2 Vertical addition 1.0-6.0
3 Horizontal addition 1.0-3%.5
4 Yertical subtraction 1.5-6.0
5 Horizontal subtraction 1.0-3%.5
6 Equations 1.5-7.0
7 Horizontal multiplication 2.5-5.5
8 Vertical multiplication 3.5-7.0
9 Fractions 3.5-7.0

10 Division 3.5-7.0
11 Large numbers and units of measure: time, money, linear

measure, dozen, liquid measure, weight, Roman numerals,

metric measure 1.5-7.0
12 Decimals 3.0-7.0
13 Commutative, associative, and distributive laws 3.0-7.0
14 Negative numbers 6.0-7.0
15 Problem solving 3.0-7.0




and estimating the average latency from presentation of a problem to a response
from the student for each problem type (equivalence class), we estimated the number
of problems a student would receive from each strand during a half year. Then,
assuming that a student has an average probability correct of .70, the values of

W, Y and % were computed so that 2 student would be expected to increase his
grade placement by .5 on all strands during a half year of time at the computer
terminal.

A programmed tutorial course in BASIC was added as another computer programming
course during the year. Studentc in both Wilson High School and the Stanford
Medical Center were enrolled in the program. In addition, a small number of students
at Wilson High School took a more advanced programming course in the compucer
language AID.

Due to faderal cut-backs in the 1969-70 school year, the initial reading prograu
was operative in only two Ravenswood elementary schools. Selected kindergarten
students, all first and s ond graders, and remedial third-through-sixth-grade stu-
dents took part in the p .gram on a dally basis.

The mathematics & . logic programs were continued for the students at Kendall
School for the Deaf 7 Washington, D. , Thirty special lessons were written and
used by deaf student at Kendall 3chool during April, May and June. The lessons
included the grammsz . of single noun phrases and an introduction to interrogative
transformatio.s. Jne teletype terminal was located in a school in Cupertino School
District in Cali~>rnia for handicapped children who were trainable.

The first- and second-year computer-based Russian language courses were
offered for credit by Stanford Univers.ty. In the autumn quarter, 49 students
registered for the first-year course and 31 registered for the second-year course.
The spring quarter ended with 39 first-year students and 22 second-year students.
Approximately 90 students were turned away from the first-year course in September
because of lank of facilities to accommodate more than 80 students. While the
second-year course continued to be revised, the first-year course ran without
further changes.

Using the experience gained from the logic and algebra course for bright
elementary-school students, we prepared and testcd an introductory college course
in elementary mathematical theories with Stanford students. As in the case of the
Stanford Russian courses, the bulk of the instruction took plac: at teletype termi-
nals. A revised version of the material on sentential logic and the algebra of
ordered .ields was used. In addition, axioms for Boolean algebra in quantifier-
free form were presented and the students wers asked to prove a number of elzmentacy
theorems. The emphasis throughout the course 1s or getting practice in proving
theorems. To this end the students were encouraged to experiment with various lines
of attack on a theorem and %o view the teletype output as creating a "work space"
or scratch pad for thinking through a proof. Because the program formally checks
the correctness of a proof, false starts and blind alleys remaila part of the output
and provide us with an unparalleled opportunity to study the m-thods of attack
tried by the students.
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On Monday, May 18 and Friday, May 22, 1970 the Institute made what is perhaps
the first use of a communication satellite to distribute CAI. The demonstration was
important because it proved that satellite distribution of CAI through low-cost
satellite ground stations had the potential for making CAIL as accessible to isolated

rural areas as to large cities.

Prediction for the Seventigi

I turn now to some predictions about the development of computer-assisted
instruction for the coming decade. Kather than engage in general long-range
speculations that will not be realized for another fifty years, I shall attempt to
make my pradictions relatively concrete and definite and pertinent to the coming
decade. As a reference, I shall use the history of our efforts at Stanford. In a
gener:.. way I have divided my projections for the future into four parts. The first
part deals with research on dialogue ard the interaction between studert and computer
program. The second deals with the theoretical problem of building an adequate
psychological model of the studernt. The third deals with some operational predictions
concerning the simplest applications and their spread during the next ten years.
Finally, the last part deals with the social and cultural impact of the continued
spread in use of computers for instruction.

1. Research on dialogue

Without giving the subject much reflection, one might think the appropriate
model for a dialogue should be Socrates at work in the Platonic dialogues, but it
does not take much perusal of Plato's writings to recognize that this is not a seri-
ous pedagogical or psychological model of how an instructive or tutorial conversation
should take place. The real problem is tha% we do not have a good intellectual model
that is well enough developed for the interaction between a tuvou: and his pupll. We
therefore do not have a sharply defined anal+ti.al model that we can plan to simulate
in formulating powerful computer programs. The central difficulty in the area of
interaction between student and program is not the clumsiness or iimitations of the
computer, but our ignorance in understanding in any explicit way the character of a
successful dialogue. A large number of topics being studied either as a part of
computer-assisted instruction or as part of artificial intelligence should contribute
to a deeper understanding of the nature of dialegue. 1 shall mention only a few
special topics, since I see no point in trying to deal with this difficult problem
in a general way.

Let me mention some of the things we are planning under this general heading
for the logic and mathematics programs I have described as part of our activity at
Stanford during the past decade Perhaps the central limitation of these programs
at the present time is their requirement that the student construct an exrzlicit
formal proof for every theorem. Scumehow the routine steps of more advanced mathe-
matical work must be compressed and eliminated from the student's explicit focus
of concern in order to provide adequate time %o concentrate on the crucial con-
~eptual steps in a given proof. DPublished mathematical proofs, even in relatively
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elementary textbooks, are far from formally complete. We must close the gap

between this formal incompleteness and the thieoretical conception of a proof in the
formal sense. The most promising approach to this central problem in the develop-
ment of more advanced mathematics courses in CAI is the use of theorem provers for
instructional purposes. With theorem provers the student can instruct the program
to move frum one point to another in the proof. The steps in these moves are modest
and of the right level of difficulty for theorem provers; they cover the many
routine steps that are tedious and far too boring for the student to make explicitly
if he is called upon to prove any genuinely interesting theorems. For example,
repeated use of the commutative and associative laws in a fashion that is common in
elementary algebraic arguments would be turned over to the theorem prover to execute.
The same remark applies to all standard arguments using sentential or predicate
logic. Once the student has learned the elements of sentential and predicate logic,
the routine applications may properly be assigned to the theorem prover by the
student.

As one mode of operation for the use of theorem provers, we introduce an addi-
tional instruction into the proof procedures, an instruction called show. In this
case the student inputs what he wants the theorem prover to show; he also indicates
the preceding theorems and axioms from which the intermediece result should be
derived. Our theorem prover is of sufficient power to tak: these intermediate
steps, but not adequate to take the larger steps required for an entire proof.
There is good reason to believe that this will probably be the situation for several
years. My own feeling is that the instructional use of theorem provers is perhaps
one of the best operational arenas in which to develop and improve on the results
accomplished thus far. Without a facility such as a theorem prover I see little
hope of being able to give self-contained courses that catch the spirit of more
advanced parts of mathematics in the sense of raquiring the student to give proofs
of the main theorenms.

A second and closely related activity for which theorem provers are a
necessar: ingredient is that of monitoring a student's activity while he is in tne
process of searching for a proof and then giving him hints of how he may complete
the proof he has begun. Again, at least in elementary and semi-elementary domains
of mathematics, there is hope of concretely realizing programs of this sort. The
data base is simple, namely, the elementary mathematical theory, together with the
data on the student's current attempt at a proof. Investigations of ways in which
to complete the proof begun by the student are in such contexts not overly difficult.
The theorem prover searches for a way to complete the proof and then gives the
scudent a hint of the next step to take when he has run out of conjectures himself.
Preliminary work that we have begun on this line of attack seems promising. I do
not for a moment underestimate the problems of extending our work to more complex
bodies of mathematics. I do think it is an important direction for developing
richer mathematical courses in a computer-based environment.

In many respects we can expect to make the most rapid progress in the domain
of mathematics, because of its limited data base, the formality and explicitness of
its language, and our own very expl.cit understanding of the structure. The




development of tools to provide aids and hints in other domains will not be a simple
matter. There is currently a variety of attacks on the development of good question-
answering systems. Although adequate systems are still far from available, it seems
likely that the development of jyuestion-answering systems for use in instructional
settings will be an important part of research in CAX during the seventies.

I would like briefly to mc.ution some of my own work ir this area, especially
work conducted in conjunction with Dr. Héléne Bestougeff of the University of Paris.
Dr. Bestougeff and I are attempting to write a guestion-answering system with certain
features that have previously been missing in the literature and that we think are
probably highly desirable for future progress in this domain. The central objectives
of our study can be described very simply. We are attempting to define for the
question inputs and answers a machine-independent grammar and semantics such that
when the program is constructed we can prove a theorem asserting that every question
is answered correctly. Of course, by saying that every question is answered correctly
we mean that every question is answered correctly relative to the data base. Without
an explicit grammar for the fragment of a natural language used for the input questions
and without an explicit semantics for this fragment, it is impossible to prove a formal
theorem about the nature of the question-answering system. As in other domains of
science, there is also a hope that by introducing a deeper structure into the
question-answering system--such as the kind introduced by an explicit grammar and
semantics--we shall be able to handle more efficiently and develop more easily the
actual system itself. Whether or not my conjectures about this direction of develop-
ment are correct, there seems to be little doubt that progress in this area will be a
significant part of CAI work in the coming decade.

Closely related to what I have said about question-answering systems is the
whole domain of developing genuine voice-to-voice interaction between student and
program. We are beginning to have an understanding of natural language grammar and
sémantics for fragments of natural languages, adequate to produce a reasonable line
of talk on the part of the computer. By making the grammar and semantics proba-
bilistic, we can also avoid the stereotyping that otherwise would be a disturbing

character of the computer talk.

Important wo.” on speech recognition by Dr. D. Rajagopal Reddy and others has
taken place during the past decade. Reddy and his group are able to recognize in
; reasonabhle time a vocabulary of up to about 500 words. While it is true that the
i machine power required for this recognition is awe-inspiring and far too great for
operational applications in CAI, there is reason to hope that fairly soon at leas%
2z small vocabulary may be recognized easily. Then we shall be in a position to
nave a genuine volce-to-voice interaction between computer and program with the
beginnings of a genuine verbal dialogue.

The bulk of our research at Stanford and res:arch conducted elsewhere on
£ student performance in computer-based courses is at a very empirical level. Rougaly
ﬁ speaking, the behavioral research falls into two classes. One class of studies is
i concerned with external evaluation by achievement test data of the comparative

1

!

;

E

g 2. Research on model of the student
:
;

Q 32

ERC 35,

T




15 performance of students in CAI. In thess studies, control groups of a comparable
nature either receive ordinary instruction or ordinary instruction without benefit

of supplementary CAI work. The second class of studies 1s concerned to analyze
the detailed performance of student's responses in a CAI course. Regression

{ studies of item difficulty, reported extensively in Suppes, Hyman and Jerman (1967)
and in Suppes, Jerman and Erian (1968), are typical. The structural variables that
are defined as independent variables in these linear regression studies involve

[ almost without exception complexities of the subject matter and the curriculum,
not postulated complexity of the student. Structural assumptions about the student
only enter through consideration of the dependent variable, which in these studies

[ has been either probability of a correct response or latency of response.

It might be thousht that the developments in coguitive psychology, especially
the structuralism of Piaget and others, would provide a basis for going beyond
sheer empiricism in considering student responses. Unfortunately, however, it
does not take an extended perusal of the literature in cognitive psychology to deter-
mine that the models are not sufficiently developed in a mathematical fashion to
provide a genuine tool for the analysis of data. Perhaps the best way to put the
matter is that the current cognitive theories are simply not specific and definite
enough in their formulation of basic assumptions to lead to specific predictions.
There simply are not the tools in the writings of Plaget, nor in those of Bruner
and others, adequate to provide predictions of differential difficulty over a
selection of items drawn from some complex domain like that of elementary arithmetic
or elementary foreign-language learning. I do not claim that Piaget or Bruner, for
example, have stated that they offer such tools. I merely make explicit the fact
that such tocls are not available in the theoretical work they have as yet offered
us.

I do think, howevrer, that vithin the general tradition of stimulus-response
psychology, tools of an adequate precision and complexity are now available for at
least the elementary parts of skill subjects, such as mathematics and foreign-
language learning. Concerning model:c for foreign-language learning, some preliminary,
but at least specific, models are offered by Crothers and me (1967), along with
extensive tests of these models. In a more recent and promising vein, we have begun

‘ to use probabilistic automaton models to study the performance of students in
elementary arithmetic. Theoretical formulation of these models is begun in Suppes
(1968) and is currently under active development in our work at the Institute. Our

{ objective is to build a large probabilistic automaton model for the individual
student, with individual parameters reflecting his state of learning and performance,
and then to present instruction differentially and contingently so as to change the

i values of critical parameters in the model of the individval student in a manmner
that can be characterized in one specific sense as optimal. I shall not enter into
details here, but I do emphasize that I think the task of building an automaton to

i; model the individual student, even in a subject as well defined as elementary arith-

. metic, is far from trivial. We are currently successfully testing models for individual
i parts of arithmetic of this sort, and these models have a full information-processing

] capacity. But, putting together a common model for a given student across, say, the

! skills of addition, subtiaction, multiplication and division is already proving to be
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a more complex and difficult problem than we had originally anticipated. While I
would not want to be overly sanguine about the depth of what we shall be able to
accomplish in the next few years, I do think this 1s the direction in which we must
move, The computer program must have a more sophisticated and complex representa-
tion of the student in order to provide instruction that is properly tailored to
the individual student.

3., Some operaticnal predictions

It is not possible to construct an adequate data base from which to make a
serious prediction about the operatiocnal use of CAI in the United States or in
any -ther country during the course of the next decade. Certainly in the past,
sanguine predictions have been made that have turned out not to be true, and I do
not want to engage in any overly optimistic forecasts in the present discussion.
There are, however, already signs that the effort, at least in the United States,
will be subsi ntial during the seventies, ar’ by this I mean that a substantial
effort will be made on the part of school systems &nd not simply on the part of
research centers like ours at Starnford.

I do think that the following prediction is a reasonable one. By 1980, 15
percent of the studenis in the United States at all grade levels will be in daily
contact with a computer for some aspect of tiieir instruction. At the elementary-
school level this will probably be especially in the areas of reading and mathematics.
One large-scale operational system is already installed in New York City, and the city
of Chicago is in the process of making a similar installation that will become opera-
tional in the fall of 1971. A number of smaller school systems have already purchased
systems. The list is too long to enumerate here. It is on the basis of the above
information that I predict that over the course of the next ten years at least 15
percent of the students will have such involvement. My forecast is the same for
secondary schools and for colleges, but let me pursue the analysis a bit for the case
of the elementary school. There are approximately a million elementary-school
classrooms in ihe United States. Fifteen percent of these is approximately 150,000.
The ordinary classroom has between 25 and 50 students. For drill and practice in
mathematics or in reading, one terminal per classroom would be an appropriate aliloca-
tion. During the seventies, tne cost per terminal will probably be about $3,000.

This means that by the end of the decade we will incur a cost of approximately half

a billion dollars to service 15 percent of these students. In terms of current

school costs in the United States, this is nct an unrealistic allocation. Certainly
the expenditure of fifty million dollars a year for ten years is a relatively modest
expenditure, considering tlhie enormous concentration on basic reading and mathematics
skills ir the elementary school and the fact that gbout a billion-and-a-half dollars
is being allocated each year primarily for such concentration as part of Title I of
the Elementary-Secondary Act of 1965.

I believe that similar forecasts can be made for the secondary schools and
colleges. Hcwever, in the case of the colleges, the use may be somewhat different.
For example, the student may operate in more of a tutorial mode as in the case of
the Russian and logic courses at Stanford described earlier. I have recently been
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involv:d in the implementation of a i Sorial course in basic Euglish at the college
level. This course is designed for stucdents who are not able to vass a standard
placement examination upon entrance into college and who need reuwedial work in
grammar and compesition., At Stanford we have also been involved in similar work in
remedial mathematics. The work described at Tennessee 3tate University is an example.

4. Social and cultural impact of CAI

In the Hellenistic werld of, say, 100 B.C., a scholar who wanted to r:ad and
study lierature or science in a domain of his interest was able to do so only in
a small number of places. He could go, for example, to Alexandria and work in the
great library and museum. He could also find papyri in other great cities such as
Athens and Syracuse. Unless he were a man of great wealth, he would nave few oFf
these papyrus manuccripts in his own house. With the “"evelopuent of printing 1520
years later, it became possible (starting in the sixteenth century) for a man of
ordinary affluence to acquire a substantial library for his personal use. In the
twentieth century, even a person of modest means has access to large libraries with
extensive holdings in most domains of sclence and literature. The bulk of the
population in Europe and the United States is within relatively east traveling
distance to a library of some serions proportions. The cultural impact of this
slow, but increasing accessibllity of learning has without question been enormous
and one of the most important features of modern culture.

It is reasonable to ask ourselves if the same will be true of the slow, but
inevitable spread of computer facilities. What can we anticipate? I do not want
to attempt to forecast all the dimensions of development, but Fust to concentrate
on that concerned with instruction. I believe the most important social change
that will begin in the seventies, but not have a major impact until after that
decade, will be the placement of computer terminals in homes and the availability
of & wide range of courses for the continuing education of adults. We are already
formulating plans at the Institute for a large-scale experiment on the use of
computers installed in homes for instructional purposes during the seventies.
Initially, we have been thinking of two sorts of students. One sort is citizens who
need additional education in basic skills and vocational training in order to com-
plete their education. At the prasent time ouly about 70 percent of the population
completes their secondary school education. In hospitals, in factories, in businesses
and in government there 1s substantial employment of individuals who are blocked
from further advancement because of their lack of education and who now perceive the
advantages of completing secondary school and possibly teking additional work. We
would like to have an organized set of courses that would allow students who a2re now
in their mature years and who are fully employed to complete secondary school
requirements.

The second sort of students include professional people who already have a
relatively high degree of formal education, but who wish to develop additional skills,
such as mastery of an additional language or acjuisition of technical skills like
those of computer programming or statistics.
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It is not possible to predict how successful. such courses woul i be or how well
they would be received by the individuals initially in the experiment, but they do
represent a development that seems almost inevitable. It will be an important
aspect of CAI in the seventies to identify those skills and subject matters that
adults will want to learn wr acquire in the privacy of their own homes,

Bringing computer terminals into the home is in one sense the ultimate act of
decentralization in education. It can apply not only to adults, but also to children.
A social problem of the futuvre is the extent and nature of such decentralization.

The answers will depend on cocial and cultural, rather than technical considerations.

A bibliography of articles and technical reports on research in the Institute
rclevant to CAI is included.
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