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A RELIABILITY COEFFICIENT FOR

MAXIMUM LIKELIHOOD FACTOR ANALYSIS

Ledyard R Tucker
and
Charles Lewis

University of Illinois

ABSTRACT

Maximum likelihood factor analysis provides an effective method
for estimation of factor matrices and a useful test statistic in the
likelihocod ratio for rejection of overly simple factor models. A
reliability coefficient is proposed to indicate quality of represen-~
tation of interrelations among attributes in a battery by a maximum
likelihood factor analysis. Usually, for a large sample of individuals
or objects, the likelihood ratio statistic could indicate that an
otherwise acceptable factor model does not exactly represent the inter-
relations among the attributes for a population., The reliability
coefficient could indicate a very close representation in this case
and be a better indication as to whether to accept or reject the

factor solution.
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Maximuwa likelihood factor analysis offers effective procedures for
statistical estimarion of factor matrices and for statistical tests as
to whether a factor analysis model represents the interrelations of
attributes in a battery for a population of objects or individuals,

In practical use of these methods, however, there is a problem in judging
the quality of a factor analytic study. While the factor analytic
approach may be quite profitable in establishing latent traits which
account for essential interrelations among observations in a domain of
phenomena, the factor analytic model involving a limited number of common
factors almost surely will not represent exactly the phenomena for a
population of objects. This proposition raises questions as to the

use of the likelihood ratio test associated with manimum lixelihond
factor analysis. When a study is conducted with a very large sample

of individuals the statistical test may indicate that the factor analytic
model with a scientifically desirable number of common factors would not
represent data for a population of cbjects. In these cases a measure

of goodness of fit of the model to the phenomena is needed.,

Lawley's (1940) initial solution of maximum likelihood factor
analysis appeared to offer an elegant procedure for estimation of factor
matrices and the associated likelihood ratio statistic seemed to promise
a solution for the long standing number of factors problem. Due to the
extensive calculations involved these procedures were little used but
were discussed in the theoretic literature. Rac (1355) derived canonical

factor analysis and demonstrated the equivalence to maximum likelihood
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factor analysis. Lord (1956) provided the first application of maximum
likelihood factor analysis to a large battery of measures using the
Whirlwind computer at the Massachusetts Institute of Technology. With
the further developments of high speed digital computers and of effec-
tive computer programs by JBreskog (1867) maximum likelihood factor
analysis has become quite feasible for application. Experience with
maximum likelihood factor analysis has been developing with the;e appli-
cations. This experience indicates a dilemma in the application of the
likelihood ratio statistic to decisicns concerning the factor analyses.

The problem with the use of the likelihood ratio statistic, or any
other similar statistic, involves the form of the decision procedure.
The statistical hypothesis is that the factor analytic model with a
restricted numbsr of common factors anplies strictly for a population
of objects. Rejection of this hypothesis most surely will occur for
a very large sample of objects at any usual level of significance.

This rejects the scientific hypothesis. A reversal as to role of the
statistical hypothesis and alternate hypothesis has occurred from the
common use of decision procedures in scientific investigations for which
the scientific hypothesis is the alternate hypothesis and is to be
accepted when the statistical hypothesis has been rejected.

Consider a case involving a well daveloped battery of attribute
measures such that with an extremely large sample of objects there
would be common agreement that r important common factors are in-
volved and that any further factors are trivial and uninteresting.
Tucker, Koopman, and Linn (19639) proposed a system for producing corre-
lation matrices based on the conception of a major factor domain and
a minor factor domain to simulate cbserved correlation matrices. Browna
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{1969) pointed out that any correlaticn matrix may be perfectly repro-
duced from a factor matrix when a large encugh number of factors was
permitted and that the different methods of factoring differed _n the
definition of a limited number of factors accepted and in the factors
not accepted, The failure of the factor analytic model with a limited
numher of common factors to reproduce the matrix of correlations or
covariances can be transformed to the existence of additional comnon
factors which are to be rzjected. In the case being counsidered there
is common agreement as to the number of major factors in the common
factor space and that the remaining common factevs “erive from a minor
factor space and are to be discarded. The likelihood ratio and usual
decision process would be quite appropriate in rejecting fewer than r
factors. The problem is that this statistic and decision procedure
probably would reject also r common factors. This would occur with
a large enough sample of objects even for very trivial and meaning-
less minor factows. For example, Harman (1947, see page 229) states
in reference to the maximum likelihood solutions for his 8 physical
variables example:
"This example illustrates the general principle

that one tends to underestimate the number of factcrs

that are statistically significant. For twenty years,

two factors had been considered adequate, but statisti-

cally two factors do not adequately account for the

observed correlations based on a random sample of 305

girls. However, the third factor (whose total contri-

bution to the variance ranges from 2 per cent to 5

per cent for the different solutions} has little

"practical significance," and certainly a fourth

factor would have no practical value."
As shown in Table 1 both the 2 factor an¢ 3 factor models would be
rejected at high levels of significance, p 1less than .001 and .01 ,
respectively.
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This situation is quite analogous to that of paired comparison
scaling for which Mosteller (1951) provided a statistical tect con-
cernaed with whether the model might or might not be rejected. Gulliksen
and Tukey (1958) provided a reliability type coefficient for measuring
goodness of fit of the model to data. They contrasted two examples:
Mosteller's baseball data, for which the significance test did not
reject the model while the reliability was low, with quality of hand-
writing data, for which the significance test indicated a decision
to reject the model while the reliability was high. This contrast
was due in part to quite different numbers of cases on which aach
proportion used was based: 22 for the baseball data versus 200 for
the total sample for the handwriting data. An analogous reliability
type coefficient is needed for factor analysis.

In developing a reliability coefficient for maximum likelihood
factor analysis an assymtotic identity developed by Lawley (1940) for
large N and several analogies sre used. (N is the numher of objects
in a sample.) JBreskog (1967) utilizes a derived function, Fm for
m common factors, which is minimized to maximize the likelihood
function, He indicates that the likelihood ratio is (N-l)Fm o Let
C be the observed covariance matrix for a battery of n attributes,
ﬁm be the estimat:d factor matrix for m common factors, ﬁm be the
estimated unique factor loadings for an m common factor model, and

Gm be an n xn , symmetric matrix defined by

-1 2 Ay anl
G U (e - A &) O . (1)



In the maximum likelikood solution
(% = Diag (C - A A" . (2)
m mm
Consequently
Diag (Gm) = 1 . (3)
The matrix Gm may be considered to contain the partial inter-
correlations of the attributes partialling out the estimated common
factors. Lawley's identity may be combined with J¥reskog's function

Fm to yield

(4)

has!
13

where gmjj' are the entries in Gm > Thus, Fm may be considered
as approximately the sum of squares of the partial correlations on cne
side of the diagonal in Gm .

The preceding suggests an analogy with components of variation
in analysis of variance. In this interpretation let Mm be a mean

square corresponding to Fm .
M= Fm/dfm (%)

where dfm is the degrees of freedom associated with Fm in the
maximum likelihood solution. For variance <omponents let . be a
yariance associated with a model having m common factors, Gm be

ERIC

s q



a variance representing the deviation of the model from actuality, and
€ be a variance associated with sampling. For tais component of

variance model consider

E(MO; o +8 te , (6)

il
(=]}

E(Mm) ot e , (7)

where MO is the mean square for a medel having zero comion factors.
A value for e, may be obtained for the case when Gm is zero, that
is when the model fits exactly for a population of objects, Then
(N-l)Fm is distributed as chi square with dfm degrees of freecdom
and has an expected value of df « From this and equation (5) the
expected value of (N-l)Mm is unity and the expected value of Mm is

1/(N-1) . Using this result as a value for € equations (6) and

(7) becoume

_ 1
E(MO) = a_+ 46 +m—y » (8)
B ) = 6+ (9
m m N-1 ¢
A reljability coefiicient may be defined by
«
= m (10)
P o +8 ¢
m m

This is analogous to an intraclass correlation. It represents a

ratio of the proportion of variance associated with the model to total
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variance. An estimate may be obtained by substitution of observed
values of My and Mm for the expected values in equations (8) and

(9). Then

(1)

©
3

1
=
e
-i’?.E!
—

This reliability coefficient may be interpreted as indicating how well
a factor model with m common factors represents the covariances
among the attributes for a population of objects, Lack of fit would
indicate that the relations among the attributes are more complex than
can be represented by m common factors.

Several examples are given in the tables for application of the
reliability coefficient to correlation matrices taken from the
literature. Table 1 presents results for Harman's (1367) 8 physical
measures example. These measures were selected from a battery of 17
measures used by Mullen (1933) and the correlations based on an N of
305 were taken from her study. As indicated previogsly, A two common
factor model is rejected by the likelihoed ratis statistic at a sig-
nificance level of .001 . The reliability, ¢ , was .334 for the
two factor solution which has been accepted for years. A three
common factor model may be rejected according to the likelihood
stgtistic for which the p was less than .01 . The reliability had
risen to .975 . This three common factor structure has two very
highly correlated factors after rotationj one for height and length
of lower leg, and one for arm span and length of forearm. These four
measures loaded on a single rotated factor in the 1o factor solution;

thus, the three factor solution is providing & Jifferentiation between
Q

s ]”1



length of leg bones and length of arm bones which may be of scientific
intesest. The two and three factor solutions had similar factors for
the last fourr measures involving weight and girths, A four common

factor model cannot be rejected by the likelihood ratio statistic and

the reliability has risen to .99% . However, the four factor sclution

does not add a meaningful factor in our judgment to the rotated solution
for the three factor solution. We suggest that the three factor solution
should be accepted in that the reliability is high and in that the four
factor solution does not add a meaningful factor beyond the three in

the three factor solution. This sugges jon disregards the likelihood
ratio result which indicates that the three factor solution would not

be exact for a population of girls,

The square roots of the M's for the various numbers of factors
are listed also in Table 1. These values may be interpreted as raot
mean squares of the partial correlations among the attributes after
the given number of factors have heen extracted., One point to remember
is that the approximate sum of squares, F , has been divided by the
number of degrees of freedom remaining rather than by the numbefxﬁf
partial correlations. Thus, even though F dropped from .074 for
3 factors to .0l4 for 4 factors, M dropped only from .0093
to .0047 since the degrees of freedom decreased markedly from 8
to 3 . The corresponding decrease in the root mean square was only
from .096 to .069 . With consideration of this point, the values

of Ml/2

may be considered as measures of the sizes of the partial
correlations. Both 096 and .069 are quite small,
A second example is presented in Table 2. This is the eleven test
combined battery selected by Tucker (1958) from the larger battery
O
ERIC
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studied by Thurstone and Thurstone {1941}. Tucker used this battery
to illustrate his inter-battery factor analytic method and selected it
to have two common factors. The two factor solution may be rejected
at a high level cf significance, p < .001 3 however, the two factor
solution has a reliability of .981 indicating a very good it of the
model to the interrelations among the scores on these eleven tests.
The three factor solution, which may not be rejected and for which the
reliability is 1.000 , does not add a third meaningful factor.
Loadings on the third dinension are moderately small., In consequence,
the two factor solution which does not <1 the data by the likelihood
ratio test appears justified to represent the relations among the
scores on these eleven tests.

Results for Harman's 24 psychological test example, which he
obtained from a study by Holzinger and Swineford (1939), are shown
in Table 3. Tour factor solutions have been used in past analyses.
This size model may be rejected by the likelihood ratio test at a
value of p = ,02 . Reliability of the four factor model is relatively
high at .952 . Rotation of axes for the five factor solution presents
some problems whereas the four factor solution has four rather nice
rotated factors. Consequently, the four factor solution appears to be
appropriate.

The numbee of individuals in the 24 psychological test example is
less than the numbers of individuals in the preceding two examples.
A conjecture may be made that if the study were repeated on a larger
sample, the four factor model could be rejected by the likelihood ratio
statistic at a higher level of significance. If our development of the

rﬁliability coefficient is justified, it should not change in a
(8
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systenati.c fashion.

Table U4 presents results for the eighteen special tests in Lord's
{1956) study of speed factors. Six tests were constructed in each
of three ability factors. Two of the tests for each factor were power
tests, one test was moderately speeded, and three were speed tests. A
three factor model may be rejected at a very extreme level of signifi-
cance but this model has a moderately high reliability of .958 and
the three rotated factors represent the three ability factors. Some
psychologists might wish to accept this representation of the relations
among the scores on these tests. A four factor solution may also be
rejected at an extreme level of significance but it has a quite high
reliability of ,988 . This solution adds a small general speed factor
to the three ability factors. Again, some psychologisis might wish
to accept this solution. Rejection of a five factor model on the
basis of the likelihood ratio is problematic. By this number of
factors the reliability has become extremely high, However, the five
factor solution adds only an indication of some differentiation among
the types of speeded tests. Otherwise the results appear very
similar to the four factor solution.

The preceding examples utilized data from studies involving
measures and performances of real people. To gain further experience
with the reliability coefficient, maximum likelihood solutions were
obtained for twelve of the correlation matrices in the study by Tucker,
Koopman, and Linn (i969) on simulated correlation matrices. These
matrices were constructed for 20 attributes and for populations of
individuals. A domain of major common factors was combined with minor

common factors and unique factors. The minor common factors numbered

14
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160 and had random factor loadings in decreasing magnitude with
progression of factors, These twelve correlation metrices diffar on
three experimental design variables: number of factors in the major
domain, 3 or 7 ; proportion of variance in the measures deriving
from the major domain (range of B ) , high ( .6 to .8 ) or low

( .2 to .4 ) ; and form of derivation model: ''formal" involving

only major domain common factors and unique factors, "middle" in-
volving all three types of factors; and "simulation" involving only
major domain and minor domain common factors. A point to be considered
is that maximum likelihood factor solutions are quite feasible for
these matrices but that the likelihood ratio statistics are not
appropriate. There is no sampling of individuals problem. Differences
between the matrices represent differences in how well the theoretic
factor model with a limited number of common factors represents the
interrelations of the attributes,

Results for these twelve matrices are given in Table 5 which
presents the reliabilities for factor models having numbers of factors
equal to the number of factors in the major domain. In all four cases
the fit was exact for the formal model and the reliabilities were
unity. Results for the middle model were higher than for the simu-
lation model, Reliabilities, except for the formal model were higher
for three factors in the major domain than for seven factors in the
major domain. The combination of high range of B and middle model
yielded quite acceptable reliabilities in the middle nineties while
combinations of low range of B and simulation model yielded quite
unacceptable reliabilities around .5 . These results indicate the

relation of the reliability coefficient to the quality of the data

1o



entered into a factor analysis. For high relighility, the minor
common factors should be held tc a low level of influence. Higher
reliabilities are obtained when higher proportions of the variances
of measures on attributes are derived from the major factor domains.
It is better to have a higher ratio of number of attributes to number
of factors in the major domain.

The proposed reliability cczfficient for maximum likeliihood
factoring appears to summarize the quality of representation of the
interrelation of attributes in a battery by a factor analytic model
having a limited number of common factors. It does not appear to
provide a criterion as to how many common factors to accept. However,
as pointed out previously, the likelihood ratio test also does not
provide such a criterion. The number of factors to accept appears
to depend on size of lcadings and meaningfulness of factoring results.
In conducting a factor analytic study, a large enough sample of indi-
viduals or objects should be used to yield stable results. The
likelihood ratio statistic should indicate that all models with fewer
common factors than acceptable on other grounds should be rejected at
an extreme level of confidence. This statistic might indicate that
the accepted model would be rejected as not exactly representing the
interrelations for a population. Any accepted solution should have

a high coefficlent of reliability.

O
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Table 1
Maximum Likelihood Factoring Reliability
Harman's 8 Physical Measures Example

N=305, n=38

Number of

15

Factors F df P M Ml/2 p
0 6.861 28 R ~243Q <495 —_
1 2,011 20 ik .1008 »317 .598
2 249 13 e .0192 »138 2934
3 .Q74 8 fi ,0093 0986 2975
4 .Q1Y 3 <23 .Q047 .069 .994
o p < 01
A po< 001
Table 2
Maximum Likelihood Factoring Reliability
Selected Battery from Thurstone & Thurstone
N=710 , n=11
Number of . 1/2
Factors i af P M M p
(o] 4,465 36 sk +1240 . 3582 --—
1 1,300 27 Lt 20481 +219 .623
2 Q71 19 R .Q037 .061 »981
3 .017 12 246 .0014 .038 1,000

®ik p < ,001
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Table 3
Maximum Likelihood Factoring Reliability
Harman's 24 Psychological Tests Example

N =145 ,n =24

Number of .

Factors 3 & p M wt/2 0
0 10,735 276 s .0389 .197 -
1 4,326 252 AR <0172 .131 .680
2 7,918 229 feicl .0127 .113 .818
3 2,083 207 i .0092 -100 .907
4 1,574 186 .02 .0085 -092 .952
5 1.297 166 .13 <0078 .08 .973

#h% p < ,001

O
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Table 4
Maximum Likelihcod Factoring Reliability
Example From Lord's Speed Factor Study

N =643 , n = 18

Number of

Factors |3 af N M Ml/2 [
0 13,984 153 st 0914 +302 -
1 7.489 135 il .0555 .236 400
2 2,220 118 feiti .0188 137 .808
3 <S40 102 Wi .0053 ,073 .958
4 »231 87 LU .0027 .052 .388
5 « 14Q 73 .08 .0019 LAl 296
6 .093 61 +39 .0016 .040 .999

Rl P < .001

ERIC
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Table §
Maximum Likelihood Factoring Reliability
Siaulated Correlation Matrices

N=ow,n= 20

Three Factors in Hajor Domain, Reliabilities for Three Common

Factor Models.

Range Darivation Model

of B Formal Middle Simulation
High 1,000 2962 . 832
Low 1.000 .851 .549

Seven Factors in Major Domain, Reliagbilities for Seven Common

Factor Models.

Range Derivation Model

of B Formal Middle Simulation
High 1,000 294l 7.3
Low 1.000 741 1483

O

ERIC

Aruitoxt provided by Eic: 2 l



E

A THREE-MODE FACTOR ANALYSIS OF SERIAL LEARNING

William D. Love
and
Ledyard R Tucker

University of Illinois

ABSTRACT

Variations in serial positiocn learning curves over stages of
learning and individuals were studied by means of a three-moje factor
analysis of data for a list of 20 CVC trigrams. Ten scores, including
partial credit for pairs of trigrans, were ocbtained on each of 19
trials for 33 subjects. A space of four dimensions described the
trials mode, *he transformed components representing successive stages
of learning. Three of the four transformed components for the serial
position space represented segments of serial position and the fourth
component was the familiar U-shaped function of serial position curves.
There were two dirensions in tae person space; the first having neably
equal scores for all subjects and the second representing individual
differences in performance. IndivIlJuals having positive scores on
this second person dimension tended to show less of a U-sheped function
and learned the earlier portions of the list faster than individuals

with negative scores.
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Serial learning tasks have been viewed from many angles. Usually,
the investigator is interested in the shape of the learning curve over
the serial positions. To get a descriptive curve, the investigator
averages over trials and individuals for each position and plots his
results, The familiar U-shaped curve slightly higher over the first
positions is a product of such efforts (wWard, 1937; Hall, 1968, pp.
347-353),

Another iInvestigator may be interested in looking at serial
learning from ancther angle, that of trial by trial learning. He
will average over positions and individuals to produce what usually
is some form of a monotcnically increase curve (eg., Osgocd, 1953,

p. 330).

More recently, individual differences have provided yet a third
angle to view serial learning tasks:. One notable result of this type
of investigation has been by Duncan (1960). He points out that in a
series of serial learning tasks slow learners have quite a different
serial learnirg curve over positions in the early part of the
series of tasks than do fast learners. This difference disappears in
later learning tasks.

Two questions may be asked at this point. First, the descriptive
techniques used are averaging techniques. The question then, how well
does an average represent the data. For example, for a given individ-
ual there is a serial learning curve for each trial in the experiment.
Some of these serial learning curves may show learning only on certain
positions while other serial learning curves may shcw learning on other
positions. In averaging over trials a represcntation of these serial

Q
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learning curves is produced which may not accurately represent either.
An accurate representation for learning over trials rmay aiso be dis-
torted by averaging. In both averaging procedures individual differ-
ences, if any, are totally lost-.

One method to overcome this problem has been develcped by Tucker
{1966a}. This method determines the minimum number of dimensiocmns
along which learning curves vary, and provides a specific type of
learning curve for each dimension, These "generalized" learning curves
can be combined linearly with weights to produce approximations to
learning curves of different individuals and different trials ard
positions. Thus this representation of the data can capture the dif-
ferences as well as the similarities in the learning curves of a
serial learning task.

The second qQuestion about serial learning tasks has to do with
relatiorships among variaticns over trials, positions, and individuals.
Previcus experiments have not been able to answer adequately such
questions as "do certain types of individuals have different types of
learning curves over trials and positions?" Tucker (1966b) has devel-
oped a method; known as the three-rode factor analysis technique, which
provides the possibility of considering simultaneously all three
angles of a serial learning task and cdevelopes an index which repre-
sents the relations among dimensions of variation of each. Each way
of viewing the experiment, reterred to as a mode; is probed for its
structure and the interrelations among the structure of the modes is
determined.

The combination of the procedure of "generalized" learning curves
and the three-mode analysis, may provide information abou* a2 serial
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learning tasc heretofore unknown. The following experiment does just
that. It replicates a typical verbal serial learning task and compares
the information obtained from averaging techniques to the factor analyt-

ic techniques,
METHOD AND PROCEDURES

Materials:

Twenty CVC trigrams were presented for 19 trials. Table 1
presents the list of CVC trigrams. The CVC trigrams were chosen from
a list of all possible CVC trigrams listed by Archer (1960). Each
vowel of the alphabet was represented five times in the list,; and
each consonant was represented at least once but not more than four
times in the list.

To overcome the effects of vaiiation in meaningfulness of the
trigrams, CVC trigrams of approximate equa. association value were
used (Archer, 1960). The association values are shown in Table 1.

Three random orderings of the list were prepared.

Procedure:

rhe serial anticipation method was utilized (see Andreas, 1960,
p. 374), The list for each subject was presented for 19 tria=is using
a Kodak Carousel slide projector automatically i1imed to present a new
trigram every 5 seconds until the list of 20 trigrams had been shown.
There was a 20 secnnd int rval after each trial while the slices were
being readied for the next trial.

At the beginning of the list a slide with two pluses appeared in-
?icating the start of a new trial. This was followed by a slide with
©
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three pluses at which time the subjects were asked to anticipate the
first CVC trigram. Then, as each item was presented, the subject
anticipated the one which followed it in the list. A subject re=
sponded by writing his anticipation on an answer sheet. Ther:z was only
one ant’cipation written on a page and one set of answer sheects to a
trial. The subjects used the time between trials to change wunswer
sheets and to write their identification number on the sheets.

In scoring, partial credit was given for partially«corre:t anti-
cipations. The three-mode factor analysis technique does not differ-
entiate adequately when there are possible scores only of zero or cne,
which is the usual method for scoring serial learning trigrams, With
partial credit and grouping of trigrams into pairs, a possible score
of zero to ten was obtained for each of the ten pairs, In partial
scoring two points were given for each consonant correctly positioned
and one point ftor each vowel correctly positioned. This allowed a non-
zero score for any anticipation that was not wholely incorrect.

The subjects were assigned at randem to one of three groups

corresponding to which ordering of the list was to be used.

Subjects:
The experiment used 33 students from a beginning course in
psychology. Participation in experiments of this kind is one re-

quirement for the course.
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RESULTS

The scores of the subjects were arranged in a three-mode matrix,
subjects x trials x serial position, and analysed by Tucker's method I
(1966b, see pages 297-298}. Figure 1 presents the series of roots for
factoring each of the three modes. Four dimensions were chosen for
each of the trials and serial positions spaces and two dimensions were
chosen for the person space. Transformations in these spaces were
chosen to optimize interpretability of the results. Figure 2 presents
the loadings on the transformed trials dimensions which were termed
"transformed trials components". Each of these components has non-
trivial loadings for a segment of the series of trials and has a
maximum loading of approximately unity. These segments overlap be-
tWween the components which have been ordered according to trials
affected by the components. Trials affected by the components are:
component 1 ~ early trials, component 2 ~ middle early trials, com-
ponent 3 ~ middle late trials, component U4 - very late trials.

Figure 3 presents the loddings on the transformed serial position
dimensions which were termed "transformed serial position components".
The first three components affect a segment of serial pnsitions from
early in the list through middle late in the list to late in the list.
The fourth component involves the first two serial positions and the
last serisl position, thus representing the familiar U-shaped serial
position curve.

Figure 4 presents the transformed rerson space. Each point repre-
sents one of the subjects, having coordinates equal to the subject's
fcores on the transformed dimension.- This transformation was determined

©
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such that ~he sum of scores on the second dimension was zero and the
correlation between scores on the two dimensions was zero. These di-
mensions were scaled such that the mean square score ¢n each dimension
was unity. The circles are for conceptual individuals chosen to repre-
sent the variety of performances of the actual subjects.

Investigation of possible effect of using different ordemings of
the list for three groups of the subjects was conducted for the:person
space. There was no significant effect, each of the three groups
appeared to spread over the same area in the space.

Table 2 presents the transformed, three-mode core matrix. This
matrix completes Tucker’s (1966) three-mode factor analysis model:

X = ILLL a (1)

. b. ¢
SRS mpq M IP kq®npq

~

where xijk is the fitted score of individual i on trial j at

serial positdion k , an is the score of individual i on person

dimension m , bjp is the locading of trial j on trials component p ,

c is the loading of serial position k on serial position component

kq
q , and gmpq is the entry in the three-mode core matrix. A two-mode core

matrix may be defined for each individual by:

(hi)pq = i aimgmpq (2)
so that the fitted score for this individual may be expressed as:
Mgk T 2 23 pekg )

O
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v

The matrices B of bjp s and C of ckq*s form a constant
framework for all subjects. The matrices Hi of (hi)pq contain

the individual information for the different subjects. Table 3 pre-
sents the two-mode core matrices HC for the three concepiual indi-
viduals; c¢ , indicated by circles in Figure 4. Coordinates on the
person dimensions for these conceptual individuals are given as vectors
a, in Table 3,

Two groups of four subjects each were selected by scores on the
second person dimension: a positive group having the highest positive
scores and a negative group having the most negative scores. Mean
scores for each group were computed at the ten serial positions for

each of trials 3, 8, 13, and 18. These trials were chcsen to represent

the four trials components. TFigure 5 presents these mean scores.

DISCUSSION

Several interesting effects appear in the results. The trials
components give a basis for describing changes in the serial position
curve for an individual subject associated with successive trials,
These trials components might be conceived as reflecting stages of
learning with the overlap representing transitions from one stage to
the next. These trials components also enter into the differences be-
tween subjects by providing a basis for describing differences in per-
formance of different subjects at the several stages of learning-

The serial position components provide an analysis of the learning
of the list into several possibly more basic aspects of the learning
process. At a minimum they provide a basis for describing changes

ERIC
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in the form ¢f performances of individuals across the list at different
stages of learning. An individual who learns the list from beginnirg
toward the end would have higher entries in his two-mode core matrix
for the earlier seriel position components on the early trials compo-
nents. In later stages of learning the larger entries in the core
matrix would spread to the later serial position components. An indi-
vidual whose learning was characterized by a strong U-shaped curve
would have large entries in the fourth serial position component in his
core matrix.

The effects of these influences can be seen in the two-mode core
matrices for the conceptual individuals given in Table 3. The first
of these conceptual individuals, having scores of 1.0 and 1.5 on the
two person space dimensions, starts out with some learning in the early
and middle portions of the list but is characterized more on trials
components 1 and 2 by large entries for the fourth serial position
component, the U—shapéd component. For trials component 2 this indi-
vidual also has a high entry for the second serial position component
which indicates that he would have a bump in the middle of his serial
position curve at this stage. This bump is very evident in Figure §
for the positive group. As the trials continue to stages 3 and &
of the trials oomponents, the performance of this individual becomes
more characterized by high entries on the first two serial position
components and then on the first three serial position components.
The effect of the fourth serial position component has diminished.
This pattern indicates a serial position curve for this individual at
the final stage which is relatively flat with a possible slope from
the heginning of the list twoard the end. The mean performance of
O
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the positive group on trial 18 in Figure § illustrates this form of the
serial learning curve.

Individuals having negative scores on the second person dimeision
appear to be influenced more by the U-shaped serial position component
4 after the first trials component as indicated in Table 3 for the
third conceptual individual for which the person dimension scores are
1.0 and -1.5 . This same effect may be seen in Figure 5 for the nega-
tive group. This conceptual individual appears to learn the list from
the back toward the first part of the list with entries becoming larger
on serial position component 3 than on the first two serial positicn
components. This effect tends to give a slope upwa:rd toward the end
of the list as seen for the negative group in Figure §.

The forms of the serial position curves at different stages of
learning for these two kinds of people are quite different. The curve
forms for individuals between these extreme individuals will be hetween
the curve forms illustrated. These different forms might indicate
different learning abilities of the suhjects or different approaches
to the learning task, maybe both. One speculation is that the indi-
viduals characterized by positive scores on the second person dimension
worked harder at the learning task than those having neg-tive scores
Ly actively reviewing the list from beginning toward the end. Indi-
viduals with negative scores on the second person factor may have
followed a strategy of allowing the list to be absorbed into their
memory. Such a strategy might emphasize the effects of primacy and
especially of recency. This possiblity should be checked in further

experimentation.
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The foregoing experiment and analysis appears to indicate changing
forms of the serial position curve for individuals as they progre:s from
one stage of learning to the next and different forms for cifferent
individuals. Several influen.:s appeared in the analysis in terms of
the serial position components. The effects of these influences differed
at different stages of learning and for different individuals. These
effects, however, are not chaotic but are limited or constrained ac-

cording to the parameters in the three-mode factor analytic model,
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Table 1

The 20 CVC Trigrams and Their Associative Value (Archer, 1960)

Trigrams Associative Value
GAC wommecemmmmce e 17%

QAS ~mwmmmnmcmemmaee 17%

AT memcmmcmca e mceae 14%
LAJ ~—s=mcmeccmemmmas 1%
b 43 R 12%
VEF w~emermersccwmeo 12%
DEJ s=emmmarc mrcmwem 13%
FEP ==~=mcmmmmecacao o 14%
RIW ~=cmmsamwemmmceee 155
KIH somecmc e e e 15%
YIB ==wommmmmmemme e 16%
VIY memwmmccccm e 16%
BOQ ~=-=mmecmmeoee 13%
YOX wovmmomimec e 16%
MOJ ~eomecm e 13%
L0535 sememmmm e 13%
NUQ ~-ecmmccmmmoceeae 13%
BUV wmermecmmcccen 15%
WUC wommmmme e 16%
ZUX ~emememmm e 14%
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The Transformed,

Trials
Components

1

2

Trials
Compeonents

1

2
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Person

+ 99
2,17
3,94

7.60

Person

Table 2

Dimension, m =1

Serial Position

Components

2 3

43 -.07
3.54 2,76
4,01 3.98
6.31 7.85

Dimension, m = 2

Serial Position

Components

2 3

- 82 .20
2.05 72
2.00 T4
2,10 .88

Three-Mode Core Matrix

4,85
7.38
4,55

4,60

-.18
'legs

~1.70

w
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Two-Mode Core Matrices for Conceptudl Individuals

Trials
Components

1

2

Trials
Coriponents

1

2

Trials
Components

1

2
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Table 3

a = (1.0 , 1.5)
2.
Serial Position
Components
1 2 3
1.00 1.67 022
3.61 6.61 3,83
7.08 7.00 5.09
10.28 3.u45 9.17
a* (1,0 , 0,0)
Serial Positicn
Components
1 2 3
.59 . 43 -.07
2,17 3.54 2.76
3,94 4,01 3.98
7,60 6.31 7.85
a = (1.0 , ~1.5)
Serial Position
Components
1 2 3
.19 -.80 -o.37
73 JUb 1.69
.13 1.21 2.86
4,22 3.1t 6.52

36

5.85
7,10
1.62

2.05

4,85
7,38
4,55

4,60

3.86
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FITTING OF FACTOR AYALYTIC HYPERPLANES

BY A PERSONAL PROBABILITY FUNCTION

Ledyard R Tucker

University of Illinois

Abstract

Possible use of personal probability functions is proposed
to define and fit simple structure hyperplanes in factor analysis,
This development would automatize many cof the subjective judgments
in graphical rotation of axes and would replace judgments as to
which attribute vectors are to be considered "in a hyperplane."
The personal probability of an attribute vector being in a hyper-
plané is written as a function of the projection of the vector on
the normal to the hyperplane and these personal probabilities for
the vectors in a study ave taken as weights., The hyperplane is
fitted sc as to minimize the weighted mean square projection of
the attribute vectors on the normal to the hyperplane, A symmet-
ric, or two-sided function could be used when interpretable attri-
bute projections might be either sign or a one-sided function
could be used when a positive manifold is expected. Use of a one-

sided functien is illustrated on three factor matrices.



E

O

RIC 4

A number of attempts have been made to reduce or eliminate
subjective judgments in rotation of axes in exploratory factor
analysis. And, while several objective criteria have been devel-
oped, the final judgments as to acceptability of results produced
by these objectiQe criteria appear to have been made partially on
subjective bases, Two classes of questions are relevant. First,
to the evaluator of proposed objective techniques: to what extent
do the results of application of an objective criterion tec a num-
ber of factor matrices conform to a simple structure evident to a
perceptive factor analyst? Second, to an experimenter conducting
an exploratory factor analysis: are the results of an objective
rotation of axes for his study an adequate approximation to a
rotation to simple structure or should he undertake further rota-
tions guided by subjective judgments. Thurstone (1938a; 1938b,
1947) described graphical procedures for rotation of axes involv-
ing many detailed subjective judgments. Answers to the two areas
of questions have involved not only the types of subjective judg-
ments inherent in graphical rotation of axes but alsc some actual
graphical rotations. The present development is an attempt to
translate some of the features of the subjective judgments in
graphical rotations into mathematical or computational form, thus
providing an objective basis for operations involving these types

of judgments.

e
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The present attempt to translate the detailed judgments of
graphical rotation of axes into more formal statements and pro-
cedures may be contrasted with attempts to develop cbjective criteria
for rotation of axes. Many of the objective criteria have replaced
the concept of simple structure by a mathematical form which empha-
sizes some feature of simple structure, Thurstone (1935, 1947) pro-
posed an equation for simple structure which has theoretical interest,
but is not a complete specification, even for constructed factor matri-
ces, and has questionable applicability to matrices obtained from real
world observations. The equation states that the product of loadings
for each attribute on all common factors should equal zero. This
specification is insufficient in that it may be satisfied by the occur-
rence of one zero loading for each attribute, therefore being insensi-
tive to cases when there might be two or more zero loadings for an
attribute. Carroll (1953, 1957) modified this equation to involve
products of squared loadings for pairs of factors for each attribute
and summed over all possible pairs and attributes. This sum was mini-
mized to produce a best fitting simple structure in the sense of this
criterion. Saunders (1953), Neuhaus and Wrigley (1954), and Pinzka and
Saunders (1954) interpreted the desirable feature of many zero load-
ings into statistical distribution theory. Tﬁey emphasized the
kurtosis of distributions of loadings across factors for the attri-
butes by summing the fourth power of the loadings and maximizing
this sum. Xaiser (1958) in the varimax criterion emphasized the
distribution of loadings by factors rather than by attributes. Tucker
(1855) and Cattell and luerle (1960} have erphasized counting the

number of loadirgs within an interval about zero and maximizing
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this count. In contrast to the foregoing attempts to set up satis-
factory objective criteria the present development proposes to use
a personal probability function which may reflect the subjective
judgments for detailed Jecisions in the rotation of axes., It is an
attempt to translate the judgments involved in graphical rotation
of axes rather than an atterpt to translate the principle of

simple structure intc operational form.

Use of a personal probability function, as proposed here, to
determine a simple structure hyperplane is a direct descendant of a
proposed definition of a simple structure hyperplane as a least
squares fit to a subgroup of attribute vectors considered to be
"in the hyperplane", that is, having small projections on the normal
to the hyperplane. Thurstone (1936) proposed a procedure that was
based on this definition of the best fiiting hyperplane. A major
problem has been in ways to decide on the subgroups of attributes.
Tucker (1940, 1944) considered proceduves for making these deci-
sions, his 1944 procedure involving inspection of the inter-factor
graphs and making subjective judgments quite analogous to the sub-
jective judgments in graphical rotation of axes. This latter pro-
cedure eliminated judgments as to angles of rotation in the graph-
ical methods. Subsequently, Tucker (1955) precposed an automatic
procedure for decisions as to inclusion of attributes in the sub-
groups. This procedure also emphasized the maximization of the num-
ber of attributes in the subgroups. One common feature of the deci-
sions concerning inclusion of attributes in the subgroups was that
these decisions were based on the data leing analysed rather than
a priori hypotheses. A second common feature was ‘hat the total
Q
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group of attributes was partiticned into two subgroups on the basis
of projections on the normal to the hyperplane, one subgroup with
projections in an interval ineluding zero and the other subgroup
composed of remaining attributes. This interval could be symmetric
about zero, an interval of + .10 Leing common, or it could have

a limit only on the positive side in case a positive manifold were
desired. The partitioning of the attributes amounts to a step
function based on the projections of the attributes on the normal
to the hyperplane. .An alternative conception of the procedure is
that 3 weighted least squares fit of the hyperplane to the attri-
butes is obtained for which tiie weights are unity or zero, the
weights being a step function of the projections.

A major difficulty with the preceding proposals has been the use
of the step function. Not only is it non-algebraic, which leads to
operational difficulties, but it raises questions such as: why should
an attribute having a projection just less that the limit of the inter-
val be given a full weight in the determination of the hyperplane while
another attribute having only a slightly larger projection, but a pro-
jection just larger than the limit, be given zero weight in the deter-
mination of the hyperplane. A continuous function would tend to elim-
inate both of these difficulties. A possible conception of such a
continuous function is a personal probability function, the personal
prcbability that an attribute should be considered in the subgroup
defining the hyperplane. This personal probability -ould be a
function of the projection of the attribute vector on the norrmal to

the hyperplane. Further, the hyperplane could be defined so as to
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minimize the mean weighted projecticn when the weights are the per-
sonal probabilities. A computer procedure has been developed based
on this conception and has been tried out on several factor matrices.
Let A be the coordinate factor matrix for J attributes in
an M dimensional common factor space. Entries in A will be des-
ignated ajm . The computing procedure starts with a trial normal
to a hyperplane. Ilet th be a row vector containing the direction

cosines for the t'th trial normal for hyperplane k. Projections of

the attribute vectors on this triel normal are contained in a column

Bkt y the entries being bjkt .
\ =
A Npo By - (n
Let ijt be the trial personal probability that the vector for
attribute j 1is to be considered to be in the hyperplane k . This

trial perscnal probability is to be a function of the projection of
the attribute vector on the trial normal, that is a function of bjkt ¢
The precise nature of this function will be discussed in subsequent

paragraphs. Let ¢k(t+l) be defined by

2

*k(t+1; [g %3kt bjk(t+1)]/[§ e (2)
is th . . \. .
where bjk(t+1) is the projection of attribute vector j on the
. ' .
next trial normal for hyperplane k , )k(t+l) . Note that ¢k(t+1)

is the weighted mean sqQuare of the projections of the attribute vectors
op the next trial normal when the weights are determined from the
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projections of the attribute vectors on the present trial vector,

i N . . .
The next trial normal k(1+1) 1is to be determined so as to min-

imize In order to accomplish this let Zkt be a

Yk(re1)
diagonal matrix containing the trial personal probabilities zjkt and

define a matrix Pkt by

kt kt

To minimize ¢k(t+l) the next trial normal, Nk(tfl} s+ 1s the
characteristic vector of Pkt corresponding to the least root.

When the trial personal probabiiites zjkt are an algebraic
function of the projections bjkt the preceding operations can be
automated and a series of tria.s can be carried out on & computer:
Experimental trials have indicated that such a procedure is quite
feasible and a stable state is obtained in a very few trials, where
the stable state is defined by very swall change in the trial nor-
nal from one trial to the next. At such a stable point the weighted
mean square projection of the attribute vectors on the normal is a
minimum for the weights equal to the personal probabilities corre-
sponding to these projections. This appears to be the desired result,

Two questions remain. First, what function might be used for the
personal probability function? This question will be discussed
subsequently. Second, what are reasonable first trial normals to
the hyperplanes? In the experimental try outs of the procedure,
Kaiser's (1958) normal varimax procedure has given very satisfac-

tory results.

O
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Selection of a personal probability function posed a prcblem.
Consideration of functions derived from a priori assumed distributions
of projections was abandoned due to an unattractiveness of any part-
icular distribution of non-zero projections. These considerations
did lead to a division between two types of functions, one for cases
when non-zero projections might have either algebraic sign and the
other for cases when a positive manifold is to be_assumed= These two
cases are termed here the two sided personal probability function and
the one sided personal probability function., A two sided personal
probability function should be symmetric, bell shaped with a maximum
for a zero projection. A one sided personal probability function
should be asymmetric with personal probabilities near unity corre-
sponding to negative projecticns and apprcaching zero for increasing
positive values of projections. Such a function is illustrated in
Figure 1. Since selection of a function having an appropriate form
seemed as arbitrary 1is the selection of a priori distributions of
projections, consideration was given to simple functions that pos-
sessed desirable features,

A one sided personil probability function was developed by use
of two functions, one stating values of z , the personal probab-
ility value, as a functicn of an artificial variable y , and the
other stating values of y as a func¢tion of projections b . These

two functions are given below:
_1 (1 + ¢}
z = = [ 1 FTT%& ] (4)

O
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where ¢ 1is a parameter affecting the slope of this function, and

’d2 +b+-—---9—--§---b2 (5)
(1 -4%) (r - d9)

where d is a parameter affecting the value of b corresponding

to a value of 2z equalling one half. For b equal to -1, y equals
-l and 2z equals +1lj for b equal to +1, y equals +1 and =

equals 0, The function for 2z in terms of b has a negative slope

in the range for b equal to -1 to +] for values of d between C and
«4ll, Study of this function indicated that a value of ¢ equal to
10/d yielded a desirable single parameter family of functions.

Figure 1 presents three functions from this family. The parameter d
can be thought of as a stringency of definition of the simple structure
parameter., For a small value of d only attributes having small
positive projections or having negative projections yould have a high
personal probebility of being in the hyperplane. Larger values of d
would correspond to a more lenient view as to inclusion of attributes
in the hyperplane for which the projections are not as small as for a
small value of d .

An operational point for computations involving a one sided
personal probability function is that the trial normals should be
directed such that the larger projectiosns are positive. In the exper-
imental try outs each trial normal was considered in a preliminary
and in a final direction. The sum of projections of attributes on the
normal in its preliminary direction was obtained. If this sum was
positive, the normal in its preliminary direction was accepted as the

ERIC
B C

o 50



normal in its final direction, If the sum of projections was nega-
tive, the normal was reversed in direction from its.preliminary
direction to its final direction. In the first case, the projections
on the normal were retained as computed; in the second case, the
projections on the normal were reversed in sign,

No satisfying two sided personal probability function has been
developed,

A by-product of the consideration of a personal probability
approach to attributes being ir hyperplanes is the possible use of
the complement, the personal probability of attributes not being in
hyperplanes, in interpretation of the factors. In an analogy to de-
cision processes, significance levels might be established for inter-
pretation that a factor had an effect on the measures of an attri-
bute. The personal probability significance of the projection of
an attribute could be entered into the inductive inferential process
involved in the interpretation of a factor.

Three analyses will be presented to illustrate the application
of the foregoing development of factor matrices. The first illus~
tration is for Thurstone's (1347, see page 134 for the centroid
factor matrix used here as the coordinate factor matrix) 20 attri-
bute box problem: Results are given in Table 1. A first step in the

analysis for the example was to establish an "ideal" solution.

This was done by hypothesizing, on an & priori basis, that there should

be a factor for each dimension of the boxes and that the measures,
or attributes, not involving that dimensioen should have zero pro-

jections, or be in the hyperplane. The least squares solution for
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these hypothesized zero projections is given at the left of Table 1.
Two personal probability function solutions are given, one for 4
equal to .15 and one for d equal to .05. Kaiser's (1958) normal
varimax solution was used to obtain initial trial normals for the
three factors in each of the personal probability function solutions.
Both of these solutions are very close to the ideal solution at the
left. There is a difference in the complementary personal probability
of attributes not being in the hyperplanes. Consider attribute 19,
ey , and its projections of 06 and 08% for the two solutions.
Interpretation that this attribute depends on the first factor; which
appears to be an x dimension factor, would be an error analogous to
a type I error in decision processes: This situation may be consid-
ered as indicating that a d of .05 is too stringent for the box
problem. A similar effect occurs for attribute 14, log y , on the
third factor. A point of strategy might be that as stringent a
definition of the hyperplane; low value of d , should be used as
does not yield nonsensical interpretations.

Table 2 presents results for the second example, Harman's (1967)
24 psychological tests example. These data were derived from the
study by Holzinger and Swineford (19239), a revised four factor HINRES
solution supplied by Harman (personal communication) being used as
the coordinate factor matrix. Harman also supplied hypotheses as to
which tests should have zero loadings on each of four factors.
The least squares solution for these hypotheses is given on the left
of Table 2. A personal probability solution with a d of .15 is
given on the right of Table 2. As in the previous example, Kaiser's
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(1958) normal varimax solution was used to obtain initial trial
normals. Again, the two solutions correspond very closely. The
largest discrepancies are for factor 3 for which the projections
tend to be more positive. This effect is greatest for test 10
with a shift in projection from -21 to -10, a more acceptable
projection for a positive manifold. There are a few cases for
which the interpretation of effects of factors differ. Factor 1
appears to be a verbal factor. Harman hypothesized that test 24,
arithmetic problems, should have a zero projection while the
personal probability solution indicated, with a probability great-
er than .30, that this test is not in the hyperplane. The indi-
cation from the personal probability solution is that the verbal
factor has some small effect on scores on the test of arithmetic
problems, a not unreasonable result considering a number of cother
findings with verbally stated arithmetic problems. Similar shifts
from hypotheses of zero projections to projections for which the
personal probability would indicate that the tests were not in

the hyperplane occur on factor 3 for tests 12, counting dots, and
18, number-figure which is a memory test. Factor 3 appears to be a
visual perception facteor and it is not unreasonable that the tests
12 and 18 should be affected to an appreciable, but small extent
by this factor.

The third factor matrix used in the experimental try outs was
one suggest.d by Horst (perﬁonal communication) as a very tough
example for automated rotational procedures. This is a specially
constructed factor matrix having vectors for nine attributes in a

Q
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three dimensional space. There are three unit length vectors 'n

each plane of a right sperical triangle. The vectors in each plane are

22 %-degrees apart centered in the space between twoc corners of the
spherical triangle. This configuration is presented schematically
in Figure 2 in which an equilateral triangle is used to represent
the spherical triangle. There are no vectors at the corners of
this triangle. A number of series of trials were run for a per-
sonal probability solution starting from randomly directed initial
trial normals., Figure 2 illustrates results obtained with one
initial trial normal. Several values of d were employed. 1In
series 1 of trials a value of d of .05 was employed. The stable
position of the plane was across a corner of the spherical tri-
angle with vectors 4 and 7 nearly zero, This is a very undesirable
solution. In series 2, a value of d of .15 was used first and
after a stable position was obtained the value of d was reducad
to .05. The solution with d equal to .15 went beyond the corner
but when d was reduced to .05 the trial vector returned to the
corner as a stable position. In series 3 values of d of .25, .15,
and .05 were used in succession, a stable position being obtained
with one value of d before the next smaller value was used. The
stable position for a d of .25 was nearer one of the planes of
the spherical triangle than had been obtained in the previous
series using smaller values of d and the starting position of the
series as the initial trial normal. In series 3, when d was

reduced to .15 and the stable normal from the d equal to .25
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solution was used as an initial trial normal; & stable position was
found very close to the plane of the spherical triangle, Reduction
of d to a value of .05 lead to a stable position even closer to
the plane of the spherical triangle.

This third example illustrates several points. Tirst, there
may be a number of stable positions of the normal in a personal
probability function solution. The existence of these many sol-
utions may depend on the incompleteness of the definition of hyper-
planes by the vecters in a factor matrix. Horst's example is
characterized by this incompleteness of definition since the
vectors are all some distance from the corners of the spherical
triangle. Secondly, a satisfactory solution may be obtained hy
sequential use of values of d in desrending order as to size,
Thirdly; and this is a relatively technical point, the solution
for a ccnstructed example such as Horst 's can be made to approach
the thecretically correct solution, the plane of the spherical
triangle, as closely as desired by using successively smaller
and smaller values of d .

In conclusi~n, the foregoing use of a personal probability
function in fitting hyperplanes in factor analysis appears to
replace subjective judgments to a considerable extent and to yield
very satisfying results. Further, it yields guides tc the inter-
pretation of the factors with the probabilities of attribute
vectors not being in the hyperplanes. This procedure does not

eliminate completely judgment by the experimenter and analyst.
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Appropriate values of d must be chosen and there must be a
constant awareness that extra solutions may exist so that

a series of trials may end at one of these solutioms.

These areas of judgment and precaution are no more, however,

than should be involved in any careful scientific study.

o
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TABLE 1

THURSTONE'S 20 ATTRIBUTE BOX PRIBLEW

Least Squares Solution for Personal Probability functicn Solutions
Attributes liypothesized
to be in Hyperplanes d = .15 d = _.05
Direction Cosines of Normals
Dimen- Dimen-

Dimension 1 2 3 sion 1 2 3 sion 1 L2 3

1 y7 46 us 1 47 45 ug 1 4g L6 4y

2 -84 25 55 2 -8i 25 55 2 -8y 25 )

3 28 -£5 68 3 28 -86 59 3 25 -55 67

Projections on Normals
Attri- Attri-

Attridute L 2 3 bute 1 2 3 bute 1 2 3 __
1 x? 97 Q0¥ 014 1 95%¥% 00 00 1 gy 90 00

2 y? 01 ay 027 2 0l gL 00 2 03 guitiir 0

3 2? 00# 04 96 a o 01 gputis 3 o 01 3g it
4 xy 46 2 00+ i 4et gesnt Qo 4 ygit poadt Q1

5 xz 38 -01f 85 5 3g%E Q1 g5 5 3 9] g5 feés
5 yz 00# 38 79 6 ot aghn 7guan 6 o 3gs gowiss
7 /xlty? 71 51 ~024 7 71%En 53Rt 03 7 72 51858 ~02

8 vx¥5z% 35 gl# 39 8  guEii g0 33un 8

9 Kylez? -02# 75 4l 9 -03 758ty 3

10 2x+2y 60 62 ~01# 10 BOWHE  goERE 0] 10

11 2x+2z 66 00 65 11 2 Bl 11

12 2y+2z -02# €0 62 1 BOTITE g% 12

13 log x a5 034 00# 13 03 ~01 13 ggir 03 -01

14 log y -0ud 92 n6d 14 EPLLT N 1 ~02

15 log =z 02§  ~03K oh 15 02 -Cl 15 02 -J3

16 xyz 27 35 70 16 274 35de 16

17 XTylezZ 63 45 28 17 63%RE ysw 17

18 e* 94 QUi 02§ 18 gniwd oy 02 18 958t L 0l

19 & o6# 90  -054# 19 ¢6 go¥in -0 19 0wk goRER -3

20 e? cod 024 95 20 -01 02 95 &f W -0 e 950
# = Hypothesized zerc projecticns.

Personal probability of attribute act being in the hyperplane > .90,
" 1 " " D " " " " " > ,95.

" " " n " n " ” n " - .gg.
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TABLE 2
HARNAN'S 24 PSYCHOLCSICAL TESTS LiAMPLE
Lsast Squares Solution for Perscnal Probability Function

Attributes Hypothesized® Solution with ¢ = .15
to be in Hyperplanes

birection Cosines of Hormals

Diven-

Dimensions 1 2 3 4 sion 1 2 3 4

1 =34 ~23 -20 -1 1 -35 =22 =32 -15

2 -76 75 -31 26 2 -72 T4 11 26

3 =56 =47 80 20 3 -53 -4 76 20
" 03 4l sS4 -9% 4 03 41 55 -93

Projections on Normals

Test 1 2 3 4 Test 1 2 3 4

1 Visual Perception -03#% 07¢ 58 -J2¢ 1 =03 06 61w 202

2 Cubes 01 00# 39 -03¢# 2 00 00 uo#% 03
3 Paper Form Board 035  ~12j W7 =01 3 02 -12 y7EE 0]

4 Flags 103 ~024 Yl -0 8 4 10 =02 L5 .07

5 General Information £l 08f  -02¥  -06¥F 5 g28%% 08 00 -05

6 ‘taragraph Comprehension 6L ~08f  -02# Ol 6 §57% ~08 -32 04

7 Sentence Completion 71 02#  -02#f  -13{ 7 -02 -13
8 VWord Classification u3 09# 16%  -06# 8 G3 18 -06

9 V¥ord Meaning 70 ~10% -0ui 0z 9 -0y Q3
16 Additien 034 77 =214 03¢ 10 + 10 U2
11 Code 01# 43 -0LF 23 11 03 oS 23
12 Counting Dots -134 55 4% =053 12 -1 23% =05
13 Straight-Curved Capitals  00# uy 32 -104 13 02 Gt 39nE 19
la  Word Pecognition 0&f -0u# ~12# L8 14 09 =04 =09 Lgh
15 ‘iurber Recognition 00#  -Ou¥ =328 45 15 00 -0 01 Ly
16 Figure Recognition -1C#  ~09¥ 28 40 1t -0 -39 318 LY
17 Objezt-Number =014 10# -10# 50 17 01 10 =05 5%
18 HNumber-Tigure - 164 2? 18# 33 18 -1 22% 253 33n%
12 Figure-WYord 01# 07i 12¢ 24 19 02 07 16 24
20 Deduction 23 -0u4 25 134 20 23%  -0u 27%% 13
21 Numerical Puzzles 00# 32 23 ou# 21 02 31dE 35FR oy
22 Probleiwr Feascning 22 ~01¥ 2y 124 22 22%  -01 256% 13
23 Series Completion 29 :3 35 034 23 20 08 395 03
24 Arithmetic Priblenms 208 36 02# 14 24 z2% /TR 0B 11

°Hypotheses given by Harry H. Harman (ferscnal ccrrunication).

# = Hypothesized zero projecticn,

* = Personal prubability of attribute nct being in the hyrerplane > .39 ,

Q - " n n " DY " " u " > .35 .
= " " " " " L1 ” t " L} > .‘J} .
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