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A RELIABILITY COEFFICIENT FOR

MAXIMUM LIKELIHOOD FACTOR ANALYSIS

Ledyard R Tucker

and

Charles Lewis

University of Illinois

ABSTRACT

Maximum likelihood factor analysis provides an effective method

for estimation of factor matrices and a useful test statistic in the

likelihood ratio for rejection of overly simple factor models. A

reliability coefficient is proposed to indicate quality of represen-

tation of interrelations among attributes in a battery by a maximum

likelihood factor analysis., Usually, for a large sample of individuals

or objects, the likelihood ratio statistic could indicate that an

otherwise acceptable factor model does not exactly represent the inter-

relations among the attributes for a population. The reliability

coefficient could indicate a very close representation in this case

and be a better indication as to whether to accept or reject the

factor solution.
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Maxim= likelihood factor analysis offers effective procedures for

statistical estimation of factor matrices and for statistical tests as

to whether a factor analysis model represents the interrelations of

attributes in a battery for a population of objects or individuals.

In practical use of these methods, however, there is a problem in judging

the quality of a factor analytic study. While the factor analytic

approach may be quite profitable in establishing latent traits which

account for essential interrelations among observations in a domain of

phenomena, the factor analytic model involving a limited number of common

factors almost surely will not represent exactly the phenomena for a

population of objects. This proposition raises questions as to the

use of the likelihood ratio test associated with maximum likelihood

factor analysis. When a study is conducted with a very large sample

of individuals the statistical test may indicate that the factor analytic

model with a scientifically desirable nu-iber of common factors would not

represent data for a population of objects. In these cases a measure

of goodness of fit of the model to the phenomena is needed.

Lawley's (1940) initial solution of maximum likelihood factor

analysis appeared to offer an elegant procedure for estimation of factor

matrices and the associated likelihood ratio statistic seemed to promise

a solution for the long standing number of factors problem. Due to the

extensive calculations involved these procedures were little used but

were discussed in the theoretic literature. Rao (1955) derived canonical

factor analysis and demonstrated the equivalence to maximum likelihood
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factor analysis° Lord (1956) provided the first application of maximum

likelihood factor analysis to a large battery of measures using the

Whirlwind computer at the Massachusetts Institute of Technology° With

the further developments of high speed digital computers and of effec-

tive computer programs by Jbreskog (1967) maximum likelihood factor

analysis has become quite feasible for application° Experience with

maximum likelihood factor analysis has been developing with these appli-

cations This experience indicates a dilemma in the application of the

likelihood ratio statistic to decisions concerning the factor analyses,

The problem with the use of the likelihood ratio statistic, or any

other similar statistic, involves the form of the decision procedure

The statistical hypothesis is that the factor analytic model with a

restricted number of common factors anplies strictly for a population

of objects° Rejection of this hypothesis most surely will occur for

a very large sample of objects at any usual level of significance,

This rejects the scientific hypothesis. A reversal as to role of the

statistical hypothesis and alternate hypothesis has occurred from the

common use of decision procedures in scientific investigations for which

the scientific hypothesis is the alternate hypothesis and is to be

accepted when the statistical hypothesis has been rejected,

Consider, a case involving a well developed battery of attribute

measures such that with an extremely large sample of objects there

would be common agreement that r important common factors are in-

volved and that any further factors are trivial and uninteresting,

Tucker, Koopman, and Linn (1969) proposed a system for producing corre-

lation matrices based on the conception of a major factor domain and

a minor factor domain to simulate observed correlation matrices. Brown.1

6
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(1969) pointed out that any correlation matrix may be perfectly repro-

duced from a factor matrix when a large enough number of factors was

permitted and that the different methods of factoring differed :n the

definition of a limited number of factors accepted and in the factors

not accepted, The failure of the factor analytic model with a limited

number of common factors to reproduce the matrix of correlations or

covariances can be transformed to the existence of additional common

factors which are to be rejected, In the case being considered there

is common agreement as to the number of major factors in the common

factor space and that the remaining common factors "erive from a minor

factor space and are to be discarded. The likelihood ratio and usual

decision process would be quite appropriate in rejecting fewer than r

factors, The problem is that this statistic and decision procedure

probably would reject also r common factors, This would occur with

a large enough sample of objects even for very trivial and meaning-

less minor factors, For example, Harman (1967, see page 229) states

in reference to the maximum likelihood solutions for his 8 physical

variables example:

"This example illustrates the general principle
that one tends to underestimate the number of factors
that are statistically significant, For twenty years,
two factors had been considered adequate, but statisti-
cally two factors do not adequately account for the
observed correlations based on a random sample of 305
girls, However, the third factor (whose total contri-
bution to the variance ranges from 2 per cent to 5
per cent for the different solutions) has little
"practical significance," and certainly a fourth
factor would have no practical value."

As shown in Table 1 both the 2 factor an 3 factor models would be

rejected at high levels of significance, p less than ,001 and ,01 ,

respectively,

7
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This situation is quite analogous to that of paired comparison

scaling for which Mosteller (1951) provided a statistical test con-

cerned with whether the model might or might not be rejected, Gulliksen

and Tukey (1958) provided a reliability type coefficient for measuring

goodness of fit of the model to data, They contrasted two examples:

Mosteller's baseball data, for which the significance test did not

reject the model while the reliability was low, with quality of hand-

writing data, for which the significance test indicated a decision

to reject the model while the reliability was high, This contrast

was due in part to quite different numbers of cases on which each

proportion used was based: 22 for the baseball data versus 200 for

the total sample for the handwriting data An analogous reliability

type coefficient is needed for factor analysis,

In developing a reliability coefficient for maximum likelihood

factor analysis an assymtotic identity developed by Lawley (1940) for

large N and several analogies are used, (N is the number of objects

in a sample.) areskog (1967) utilizes a derived function, F
m

for

m common factors, which is minimized to maximize the likelihood

function. He indicates that the likelihood ratio is (N-1)F
m

0 Let

C be the observed covariance matrix for a battery of n attributes,

A
m

be the estimated factor matrix for m common factors, U
m

be the

estimated unique factor loadings for an m common factor model, and

G
m

be an n x n , symmetric matrix defined by

G
m = 01(c - A

M
At)

0M
1 ( 1)



In the maximum likelihood solution

Consequently

6

-2
U
m

= Diag (C - A
m
A') (2)

Diag (Gm) = I (3)

The matrix G
m

may be considered to contain the partial inter-

correlations of the attributes partialling out the estimated common

factors, Lawley's identity may be combined with Mreskoes function

F
m

to yield

n -a. n

Fm a
2

j=z 1 j'=Ej+1
g

11131

whem
gmn ..,

are the entries in G
m

Thus, F
m

may be considered

as approximately the sum of squares of the partial correlations on one

side of the diagonal in Gm

The preceding suggests an analogy with components of variation

in analysis of variance. In this interpretation let M
m

be a mean

square corresponding to Fm

M
m

= F
m
/df

m

where df
m

is the degrees of freedom associated with F
m

in the

maximum likelihood solution, For variance :omponents let a
m

be a

variance associated with a model having m common factors, 6
m

be

9

(4)

(9)
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a variance representing the deviation of the model from actuality, and

c
m

be a variance associated with sampling. For this component of

variance model consider

E(MO) = a
m

+ 6
m

i e
m

(6)

E(M
m

) = 6
m

+ e
m (7)

where M
0

is the mean square for a model having zero common factors,

A value for c
m

may be obtained for the case when 6
m

is zero, that

is when the model fits exactly for a population of objects. Then

(N-1)F
m

is distributed as chi square with df
m

degrees of freedom

and has an expected value of dfm , From this and equation (5) the

expected value of (N-1)Mm is unity and the expected value of Mm is

1/(N-1) . Using this result as a value for c
m

equations (6) and

(7) become

E(M ) = a + 6 +
1

0 m m 775;

E(Mm) = 6m + Trrr

A rel3ability coeficient may be defined by

a
m

Pm 7-Tr
m m

(10)

This is analogous to an intraclass correlation. It represents a

ratio of the proportion of variance associated with the model to total

10



variance, An estimate may be obtained by substitution of observed

values of M
0

and M
m

for the expected values in equations (8) and

(9)e Then

8

M
0
-M
m

Pm 40-1/(N-1)
(11)

This reliability coefficient may be interpreted as indicating how well

a factor model with m common factors represents the covariances

among the attributes for a population of objects. Lack of fit would

indicate that the relations among the attributes are more complex than

can be represented by m common factors.

Several examples are given in the tables for application of the

reliability coefficient to correlation matrices taken from the

literature. Table 1 presents results for Harman's (1967) 8 physical

measures example. These measures were selected from a battery of 17

measures used by Mullen (1939) and the correlations based on an N of

305 were taken from her study. As indicted previously, a two common

factor model is rejected by the likelihood ratio statistic at a sig-

nificance level of .001 . The reliability, p , was .934 for the

two factor solution which has been accepted for years. A three

common factor model may be rejected according to the likelihood

statistic for which the p was less than .01 . The reliability had

risen to .975 . This three common factor structure has two very

highly correlated factors after rotation; one for height and length

of lower leg, and one for arm span and length of forearm, These four

measures loaded on a single rotated factor in the to factor solution;

thus, the three factor solution is providing C Jifferentiation between

11



length of leg bones and length of arm bones which may be of scientific

inte:est. The two and three factor solutions had similar factors for

the last four measures involving weight and girths. A four common

factor model cannot be rejected by the likelihood ratio statistic and

the reliability has risen to .994 . However, the four factor solution

does not add a meaningful factor in our judgment to the rotated solution

for the three factor solution, We suggest that the three factor solution

should be accepted in that the reliability is high and in that the four

factor solution does not add a meaningful factor beyond the three in

the three factor solution. This sugges-ion disregards the likelihood

ratio result which indicates that the three factor solution would not

he exact for a population of girls.

The square roots of the M's for the various numbers of factors

are listed also in Table 1. These values may be interpreted as root

mean squares of the partial correlations among the attributes after

the given number of factors have been extracteJ. One point to remember

is that the approximate sum of squares, F , has been divided by the

number of degrees of freedom remaining rather than by the number of

partial correlations. Thus, even though F dropped from .074 for

3 factors to .014 for 4 factors, M dropped only from .0093

to .0047 since the degrees of freedom decreased markedly from 8

to 3 . The corresponding decrease in the root mean square was only

from .096 to .069 . With consideration of this point, the values

of H112 may be considered as measures of the sizes of the partial

correlations. Both .096 and .069 are quite small.

A second example is presented in Table 2. This is the eleven test

combined battery selected by Tucker (1958) from the larger battery

12
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studied by Thurstone and Thurstone (1941), Tucker used this battery

to illustrate his inter-battery factor analytic method and selected it

to have two common factors, The two factor solution may be rejected

at a high level of significance, p < .001 ; however, the two factor

solution has a reliability of ,981 indicating a very good fit of the

model to the interrelations among the scores on these eleven tests.

The three factor solution, which may not be rejected and for which the

reliability is 1 000 , does not add a third meaningful factor,

Loadings on the third dimension are moderately small, In consequence,

the two factor solution which does not -i the data by the likelihood

ratio test appears justified to represent the relations among the

scores on these eleven tests,

Results for Harman's 24 psychological test example, which he

obtained from a study by Holzinger and Swineford (1939), are shown

in Table 3. cur factor solutions have been used in past analyses.

This size model may be rejected by the likelihood ratio test at a

value of p = .02 . Reliability of the four factor model is relatively

high at .952 , Rotation of axes for the five factor solution presents

some problems whereas the four factor solution has four rather nice

rotated factors. Consequently, the four factor solution appears to be

appropriate.

The number of individuals in the 24 psychological test example is

less than the numbers of individuals in the preceding two examples.

A conjecture may be made that if the study were repeated on a larger

sample, the four factor model could be rejected by the likelihood ratio

statistic at a higher level of significance, If our development of the

reliability coefficient is justified, it should not change in a

13
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systeltat:.c fashion,

Table 4 presents results for the eighteen special tests in Lord's

(1956) study of speed factors, Six tests were constructed in each

of three ability factors. Two of the tests for each factor were power

tests, one test was moderately speeded, and three were speed tests. A

three factor model may be rejected at a very extreme level of signifi-

cance but this model has a moderately high reliability of ,958 and

the three rotated factors represent the three ability factors. Some

psychologists might wish to accept this representation of the relations

among the scores on these tests. A four factor solution may also be

rejected at an extreme level of significance but it has a quite high

reliability of ,988 , This solution adds a small general speed factor

to the three ability factors, Again, some psychologis,s might wish

to accept this solution. Rejection of a five factor model on the

basis of the likelihood ratio is problematic. By this number of

factors the reliability has become extremely high. However, the five

factor solution adds only an indication of some differentiation among

the types of speeded tests, Otherwise the results appear very

similar to the four factor solution,

The preceding examples utilized data from studies involving

measures and performances of real people. To gain further experience

with the reliability coefficient, maximum likelihood solutions were

obtained for twelve of the correlation matrices in the study by Tucker,

Koopman, and Linn (?969) on simulated correlation matrices. These

matrices were constructed for 20 attributes and for populations of

individuals. A domain of major common factors was combined with minor

common factors and unique factors, The minor common factors numbered

14
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180 and had random factor loadings in decreasing magnitude with

progression of factors. These twelve correlation matrices differ on

three experimental design variables: number of factors in the major

domain, 3 or 7 ; proportion of variance in the measures deriving

from the major domain (range of B ) high ( .6 to .8 ) or low

( .2 to .4 ) ; and form of derivation model: "formal" involving

only major domain common factors and unique factors, "middle" in-

volving all three types of factors; and "simulation" involving only

major domain and minor domain common factors, A point to be considered

is that maximum likelihood factor solutions are quite feasible for

these matrices but that the likelihood ratio statistics are not

appropriate. There is no sampling of individuals problem. Differences

between the matrices represent differences in how well the theoretic

factor model with a limited number of common factors represents the

interrelations of the attributes.

Results for these twelve matrices are given in Table 5 which

presents the reliabilities for factor models having numbers of factors

equal to the number of factors in the major domain, In all four cases

the fit was exact for the formal model and the reliabilities were

unity. Results for the middle model were higher than for the simu-

lation model. Reliabilities, except for the formal model were higher

for three factors in the major domain than for seven factors in the

major domain. The combination of high range of B and middle model

yielded quite acceptable reliabilities in the middle nineties while

combinations of low range of B and simulation model yielded quite

unacceptable reliabilities around ,5 . These results indicate the

relation of the reliability coefficient to the quality of the data
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entered into a factor analysis. For high reliability, the minor

common factors should be held to a low level of influence. Higher

reliabilities are obtained when higher proportions of the variances

of measures on attributes are derived from the major factor domains,

It is better to have a higher ratio of number of attributes to number

of factors in the major domain,

The proposed reliability coefficient for maximum likelihood

factoring appears to summarize the quality of representation of the

interrelation of attributes in a battery by a factor analytic model

having a limited number of common factors, It does not appear to

provide a criterion as to how many common factors to accept, However,

as pointed out previously, the likelihood ratio test also does not

provide such a criterion, The number of factors to accept appears

to depend on size of loadings and meaningfulness of factoring results,

In conducting a factor analytic study, a large enough sample of indi-

viduals or objects should be used to yield stable results. The

likelihood ratio statistic should indicate that all models with fewer

common factors than acceptable on other grounds should be rejected at

an extreme level of confidence, This statistic might indicate that

the accepted model would be rejected as not exactly representing the

interrelations for a population, Any accepted solution should have

a high coefficient of reliability.
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Table 1

Maximum Likelihood Factoring Reliability

Number of

Harman's 8 Physical Measures Example

N = 305 , n 8

Factors F df
m1/2

0 6.861 28 *** .2450 .495

1 2.011 20 ' .A06 .317 .598

2 .249 13 5..7.% .0192 .138 .934

3 .074 8 ** .0093 .096 .975

4 .014 3 ,23 .0047 .069 .994

** p < .01

**A p < .001

Table 2

Maximum Likelihood Factoring Reliability

Selected Battery from Thurstone & Thurstone

N = 710 , n = 11

Number of
Factors F df P m M

1/2
....._

0 4.465 36 *** .1240 .352

1 1.300 27 A..4 .0481 .219 .623

2 .071 19 *** .0037 .061 .981

3 .017 12 .46 .0014 .038 1,000

*** p < .001

18

15



Table 3

Maximum Likelihood Factoring Reliability

Harman's 24 Psychological Tests Example

N = 145 , n = 24

Number of
Factors F df

mi/2

0 10.735 276 ft* ,0389 .197

1 4.326 252 *** .0172 .131 .680

2 ;,918 229 T.:: .0127 .113 .818

3 2.053 207 *** .0099 .100 .907

4 1.574 186 .02 .0085 .092 .952

5 1.297 166 ,13 ,0078 .08E .973

*** p < .001

19

16



Table 4

Maximum Likelihood Factoring Reliability

Example From Lord's Speed Factor Study

Number of
Factors F

N = 649

df

n = 18

m m
1/2

p

0 13,984 153

_2_
ft* .0914 .302

1 7,489 135 .. V .0555 .236 .400

2 2,220 118 " .0188 .137 .808

3 .540 102 ." .0053 ,073 .958

4 .231 87 .0027 .052 .988

5 .140 73 .08 .0019 .044 .,996

6 .098 61 .39 .0016 .040 .999

p < .001

20

17



Table 5

Maximum Likelihood Factoring Reliability

Siakulated Correlation Matrices

N = oa n r- 20

Three Factors in Major Domain, Reliabilities for Three Common

Factor Models,

Range
of B Formal

Derivation Model
Middle Simulation

High 1.000

piMf
.962 .832

Low 1.000 .851 .549

Seven Factors in Major Domain, Reliabilities for Seven Common

Factor Models.

Range
of B Formal

High 1.000

Low 1,000

Derivation Model
Middle Simulation

.941

.741 .483

21

18



A THREE-MODE FACTOR ANALYSIS OF SERIAL LEARNING

William D, Love

and

Ledyard R Tucker

University of Illinois

AB'TRACT

Variations in serial position learning curves over stages of

learning and individuals were studied by means of a three-mode factor

analysis of data for a list of 20 CVC trigrams, Ten scores, including

partial credit for pairs of trigrals, were obtained on each of 19

trials for 33 subjects, A space of four dimensions described the

trials mode, the transformed components representing successive stages

of learning, Three of the four transformed components for the serial

position space represented segments of serial position and the fourth

component was the familiar U-shaped function of serial posf.tion curves.

There were two dimensions in tree person space; the first having nearly

equal scores for all subjects and the second representing individual

differences in performance, Individuals having positive scores on

this second person dimension tended to show less of a U-shaped function

and learned the earlier portions of the list faster than individuals

with negative scores,

22
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Serial learning tasks have been viewed from many angles. Usually,

the investigator 5s interested in the shape of the learning curve over

the serial positions, To get a descriptive curve, the investigator

averages over trials and individuals for each position and plots his

results, The familiar U-shaped curve slightly higher over the first

positions is a product of such efforts (Ward, 1937; Hall, 1966, pp.

347-353)0

Another investigator may be interested in looking at serial

learning from another angle, that of trial by trial learning. He

will average over positions and individuals to produce what usually

is some form of a monotonically increase curve (eg., Osgood, 1953,

p, 330),

More recently, individual differences have provided yet a third

angle to view serial learning tasks, One notable result of this type

of investigation has been by Duncan (1960), He points out that in a

series of serial learning tasks slow learners have quite a different

serial learning curve over positions in the early part of the

series of tasks than do fast learners, This difference disappears in

later learning tasks,

Two questions may be asked at this point, First, the descriptive

techniques used are averaging techniques, The question then, how well

does an average represent the data. For example, for a given individ-

ual there is a serial learning curve for each trial in the experiment,

Some of these serial learning curves may show learning only on certain

positions while other serial learning curves may show learning on other

positions, In averaging over trials a representation of these serial

2"
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learning curves is produced which may not accurately represent either,

An accurate representation for learning over trials ray also be dis-

torted by averaging, In both averaging procedures individual differ-

ences, if any are totally lost,

One method to overcome this problem has been develcped by Tucker

(1966A), This method determines the minimum number of dimensions

along which learning curves vary, and provides a specific type of

learning curve for each dimension, These "generalized" learning curves

can be combined linearly with weights to produce approximations to

learning curves of different individuals and different trial's and

positions, Thus this representation of the data can capture the dif-

ferences as well as the similarities in the learning curves of a

serial learning task.

The second question about serial learning tasks has to do with

relatiorships among variations over trials, positions, and individuals,

Previous experiments have not been able to answer adequately such

questions as "do certain types of individuals have different types of

learning curves over trials and positions?" Tucker (1966b) has devel-

oped a methods known as the three-mode factor analysis technique, which

provides the possibility of considering simultaneously all three

angles of a serial learning task and developes an index which repre-

sents the relations among dimensions of variation of each, Each way

of viewing the experiment, referred to as a mode, is probed for its

structure and the interrelations among the structure of the modes is

determined,

The combination of the procedure of "generalized" :earning curves

and the three-mode analysis, may provide information about a serial
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learning tasf heretofore unknown. The following experiment does just

that It replicates a typical verbal serial learning task and compares

the information obtained from averaging techniques to the factor analyt-

ic techniques.

METHOD AND PROCEDURES

Materials:

Twenty CVC trigrams were presented for 19 trials, Table 1

presents the list of CVC trigrams. The CVC trigrams were chosen from

a list of all possible CVC trigrams listed by Archer (1960). Each

vowel of the alphabet was represented five times in the list, and

each consonant was represented at least once but not more than four

times in the list.

To overcome the effects of variation in meaningfulness of the

trigrams, CVC trigrams of approximate equate association value were

used (Archer, 1960), The association values are shown in Table 1,

Three ra-Aom orderings of the list were prepared,

Procedure?

the serial anticipation method was utilized (see Andreas, 1960,

p. 374). The list for each subject was presented for 19 trils using

a Kodak Carousel slide projector automatically timed to present a new

trigram every 5 seconds until the list of 20 trigrams had been shown,

There was a 20 second int rval after each trial while the sli6es were

being readied for the next trial,

At the beginning of the list a slide with two pluses appeared in-

dicating the start of a new trial. This was followed by a slide with
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three pluses at wnich time the subjects were asked to anticipate the

first CVC trigram, Then, as each item was presented, the subject

anticipated the one which followed it in the list, A subject re-

sponded by writing his anticipation on an answer sheet, Thera was only

one ant!cipation written on a page and one set of answer sheets to a

trial. The subjects used the time between trials to change ztnswer

sheets and to write their identification number on the sheets,

In scoring, partial credit was given for partiallyccorre2t anti-

cipations. The three-mode factor analysis technique does not differ-

entiate adequately when there are possible scores only of zero or one,

which is the usual method for scoring serial learning trigrams, With

partial credit and grouping of trigrams into pairs, a possible score

of zero to ten was obtained for each of the ten pairs, In partial

scoring two points were given for each consonant correctly positioned

and one point for each vowel correctly positioned, This allowed a non-

zero score for any anticipation that was not wholely incorrect,

The subjects were assigned at random to one of three groups

corresponding to which ordering of the list was to be used,

Subjects:

The experiment used 33 students from a beginning course in

psychology, Participation in experiments of this kind is one re-

quirement for the course,
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RESULTS

The scores of the subjects were arranged in a three-mode matrix,

subjects x trials x serial position, and analysed by Tucker's method I

(1966b, see pages 297-298). Figure 1 presents the series of roots for

factoring each of the three modeso Four dimensions were chosen for

each of the trials and serial positions spaces and two dimensions were

chosen for the person space, Transformations in these spaces were

chosen to optimize interpretability of the results. Figure 2 presents

the loadings on the transformed trials dimensions which were termed

"transformed trials components", Each of these components has non-

trivial loadings for a segment of the series of trials and has a

maximum loading of approximately unity, These segments overlap be-

tween the components which have been ordered ac(:ording to trials

affected by the components. Trials affected by the components are

component 1 - early trials, component 2 - middle early trials, com-

ponent 3 - middle late trials, component 4 - very late trials.,

Figure 3 presents the loadings on the transformed serial position

dimensions which were termed "transformed serial position components".

The first three components affect a segment of serial positions from

early in the list through middle late in the list to late in the list.

The fourth component involves the first two serial positions and thq

last serial position, thus representing the familiar U-shaped serial

position curve,

Figure 4 presents the transformed person space, Each point repre-

sents one of the subjects, having coordinates equal to the subject's

scores on the transformed dimension. This transformation was determined



such that The sum of scores on the second dimension was zero and the

correlation between scores on the two dimensions was zero, These di-

mensions were scaled such that the mean square score on each dimension

was unity. The circles are for conceptual individuals chosen to repre-

sent the variety of performances of the actual subjects.

Investigation of possible effect of using different order.Ings of

the list for three groups of the subjects was conducted for the-person

space. There was no significant effect, each of the three groups

appeared to spread over the same area in the space.

Table 2 presents the transformed, three-mode core matrix, This

matrix completes Tucker's (1966) three-mode factor analysis model:

.=EEE ai b. c
m ]p

g
mpq

mpq
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(1)

where xijk is the fitted score of individual i on trial j at

serial position k , aim is the score of individual i on person

dimensionm,b.71) is the loading of trial j on trials component p ,

c
kq

is the loading of serial position k on serial position component

q , and is the entry in the three-mode core matrix, A two-mode core

matrix may be defined for each individual by

(h.) = E a
pq im

g
mpq

m

so that the fitted score for this individual may be expressed as

xijk = EE b. (h.) c
]p pq kq

Pq
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ThematricesBofb,vs and C of ckg*s form a constant.
DP

frameworkforallsubjects,ThematricesH,of (h.)
pq

contain

the individual information for the different subjects, Table 3 pre-

sents the two-mode core matrices He for the three conceptual indi-

viduals, c , indicated by circles in Figure 4, Coordinates on the

person dimensions for these conceptual individuals are. given as vectors

a in Table 3,

Two groups of four subjects each were selected by scores on the

second person dimension: a positive group having the highest positive

scores and a negative group having the most negative scores, Mean

scores for each group were computed at the ten serial positions for

each of trials 3, 8, 13, and 18, These trials were chosen to represent

the four trials components, Figure 5 presents these mean scores,

DISCUSSION

Several interesting effects appear in the results, The trials

components give a basis for describing changes in the serial position

curve for an individual subject associated with successive trials,

These trials components might be conceived as reflecting stages of

learning with the overlap representing transitions from one stage to

the next, These trials components also enter into the differences be-

tween subjects by providing a basis for describing differences in per-

formance of different subjects at the several stages of learning,

The serial position components provide an analysis of the learning

of the list into several possibly more basic aspects of the learning

process, At a minimum they prov::.de a basis for describing changes
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in the form et performances of individuals across the list at different

stages of learning, An individual who learns the list from beginning

toward the end would have higher entries in his two-mode core matrix

for the earlier serial position components on the early trials compo-

nents. In later stages of learning the larger entries in the core

matrix would spread to the later serial position components. An indi-

vidual whose learning was characterized by a strong U-shaped curve

would have large entries in the fourth serial position component in his

core matrix,

The effects of these influences can be seen in the two-mode core

matrices for the conceptual individuals given in Table 3, The first

of these conceptual individuals, having scores of 1,0 and 1.5 on the

two person space dimensions, starts out with some learning in the early

and middle portions of the list but is characterized more on trials

components 1 and 2 'of large entries for the fourth serial position

component, the U-shaped component, For trials component 2 this indi-

vidual also has a high entry for the second serial position component

which indicates that he would have a bump in the middle of his serial

position curve at this stage, This bump is very evident in Figure 5

for the positive group. As the trials continue to stages 3 and 4

of the trials oomponents, the performance of this individual becomes

more characterized by high entries on the first two serial position

components and then on the first three serial position components,

The effect of the fourth serial position component has diminished,

This pattern indicates a serial position curve for this individual at

the final stage which is relatively flat with a possible slope from

the beginning of the list twoard the end. The mean performance of

30
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the positive group on trial 18 in Figure 5 illustrates this form of the

serial learning curve,

Individuals having negative scores on the second person dimension

appear to be influenced more by the U-shaped serial position component

4 after the first trials component as indicated in Table 3 for the

third conceptual individual for which the person dimension scores are

100 and -1.5 This same effect may be seen in Figure 5 for the nega-

tive group, This conceptual individual appears to learn the list from

the back toward the first part of the list with entries becoming larger

on serial position component 3 than on the first two serial position

components, This effect tends to give a slope upwavd toward the end

of the list as seen for the negative group in Figure 5,

The forms of the serial position curves at different stages of

learning for these two kinds of people are quite different. The curve

forms for individuals between these extreme individuals will be between

the curve forms illustrated. These different forms might indicate

different learning abilities of the subjects or different approaches

to the learning task, maybe both, One speculation is that the indi-

viduals characterized by positive scores on the second person dimension

worked harder at the learning task than those having negative scores

by actively reviewing the list from beginning toward the end, Indi-

viduals with negative scores on the second person factor may have

followed a strategy of allowing the list to be absorbed into their

memory, Such a strategy might emphasize the effects of primacy an

especially of recency. This possiblity should be checked in further

experimentation,
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The foregoing experiment and analysis appears to indicate changing

forms of the serial position curve for individuals as they progress from

one stage of learning to the next and different forms far cifferent

individuals. Several inf_uen,s appeared in the analysis in terms of

the serial position components. The effects of these influences differed

at different stages of learning and for different individuals, These

effects, however, are not chaotic but are limited or constrained ac-

cording to the parameters in the three-mode factor analytic model,
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Table 1

The 20 CVC Trigrams and Their Associative Value (Archer, 1960)

Trigrams Associative Value

GAC 17%

QAS 17%

XAT 14%

LAJ 14%

XER 12%

VEF 12%

DEJ 13%

FEP 14%

15%

KIN 15%

YIB 16%

14%

GOQ 13%

YOX 16%

MOJ 13%

ZO3 13%

NUQ 13%

BUV 15%

WUC 16%

2UX 14%
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Table 2

The Transformed, Three-Mode Core Matrix

Person Dimension, m = 1

Serial Position
Trials Components

Components 1 2 3 4

1 ,59 .43 -.07 4.85

2 2.17 3.54 2.76 7.38

3 3,94 4,01 3.98 4.55

4 7,60 6,31 7.85 4,60

Person Dimension, m = 2

Serial Position
Trials Components

Components 1 2 3 4

1 ,27 -82 .20 .66

2 .96 2,05 .72 -.18

3 2.09 2,00 .74 -1.95

4 1,78 2010 .88 -1,70
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Two-Mode Core Matrices for Concepual. Individuals

a = (1.0 , 105)

Serial Position
Trials Components
Components 1 2 3 4

1 1,00 1,67 ,22 5,85

2 3,61 6,61 3,83 7,10

3 7,08 7,00 5,09 1,62

4 10,28 9,45 9,17 2,05

a
c

= (1.0 , 0,0)
-

Serial Position
Trials Components
Components 1 2 3 4

1 ,59 ,43 -,07 4,85

2 2.17 3,54 2,76 7,38

3 3,94 4,01 3,98 4,55

4 7,60 6,31 7,85 4,60

a
c

= (1,0 , -1,5)
-

Serial Position
Trials Components

Components 1 2 3 4

1 ,19 -,80 -,37 3,86

2 ,73 ,46 1,69 7,65

3 ,79 1.01 2,86 748,

4 4,92 3,16 6,52 7,15
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FITTING OF FACTOR MALYTIC RYPERPLANES

BY A PERSONAL PROBABILITY FUNCTION

Ledyard R Tucker

University of Illinois

Abstract

Possible use of personal probability functions is proposed

to define and fit simple structure hyperplanes in factor analysis,

This development would automatize many of the subjective judgments

in graphical rotation of axes and would replace judgments as to

which attribute vectors are to be considered "in a hyperplanec"

The personal probability of an attribute vector being in a hyper -

plane is written as a function of the projection of the vector on

the normal to the hyperplane and these personal probabilities for

the vectors in a study a:e taken as weights, The hyperplane is

fitted so as to minimize the weighted mean square projection of

the attribute vectors on the normal to the hyperplane, A symmet-

ric, or two-sided function could be used when interpretable attri-

bute projections might be either sign or a one-sided function

could be used when a positive manifold is expected, Use of a one-

sided function is illustrated on three factor matrices,
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A number of attempts have been made to reduce or eliminate

subjective judgments in rotation of axes in exploratory factor

analysis. And, while several objective criteria have been devel-

oped, the final judgments as to acceptability of results produced

by these objective criteria appear to have been made partially on

subjective bases, Two classes of questions are relevant, First,

to the evaluator of proposed objective techniques: to what extent

do the results of application of an objective criterion to a num-

ber of factor matrices conform to a simple structure evident to a

perceptive factor analyst? Second, to an experimenter conducting

an exploratory factor analysis: are the results of an objective

rotation of axes for his study an adequate approximation to a

rotation to simple structure or should he undertake further rota-

tions guided by subjective judgments, Thurstone (1938a, 1938b,

1947) described graphical procedures for rotation of axes involv-

ing many detailed subjective judgments, Answers to the two areas

of questions have involved not only the types of subjective judg-

ments inherent in graphical rotation of axes but also some actual

graphical rotations, The present development is an attempt to

translate some of the features of the subjective judgments in

graphical rotations into mathematical or computational form, thus

providing an objective basis for operations involving these types

of judgments,
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The present attempt to translate the detailed judgments of

graphical rotation of axes into more formal statements and pro-

cedures may be contrasted with attempts to develop objective criteria

for rotation of axes. Many of the objective criteria have replaced

the concept of simple structure by a mathematical form which empha-

sizes some feature of simple structure. Thurstone (1935, 1947) pro-

posed an equation for simple structure which has theoretical interest,

but is not a complete specification, even for constructed factor matri-

ces, and has questionable applicability to matrices obtained from real

world observations. The equation states that the product of loadings

for each attribute on all common factors should equal zero This

specification is insufficient in that it may be satisfied by the occur-

rence of one zero loading for each attribute, therefore being insensi-

tive to cases when there might be two or more zero loadings for an

attribute, Carroll (1953, 1957) modified this equation to involve

products of squared loadings for pairs of factors for each attribute

and summed over all possible pairs and attributes. This sum was mini-

mized to produce a best fitting simple structure in the sense of this

criterion, Saunders (1953), Neuhaus and Wrigley (1954), and Pinzka and

Saunders (1954) interpreted the desirable feature of many zero load-

ings into statistical distribution theory. They emphasized the

kurtosis of distributions of loadings across factors for the attri-

butes by summing the fourth power of the loadings and maximizing

this sum. Kaiser (1958) in the varimax criterion emphasized the

distribution of loadings by factors rather than by attributes. Tucker

(1955) and Cattell and Muerle (1960) have emphasized counting the

number of loadings within an interval about zero and maximizing
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this counts In contrast to the foregoing attempts to set up satis-

factory objective criteria the present development proposes to use

a personal probability function which may reflect the subjective

judgments for detailed Decisions in the rotation of axes, It is an

attempt to translate the judgments involved in graphical rotation

of axes rather than an atterdt to translate the principle of

simple structure into operational form.

Use of a personal probability function, as proposed here, to

determine a simple structure hyperplane is a direct descendant of a

proposed definition of a simple structure hyperplane as a least

squares fit to a subgroup of attribute vectors considered to be

"in the hyperplane", that is, having small projections on the normal

to the hyperplane. Thurstone (1936) proposed a procedure that was

based on this definition of the best fisting hyperplane. A major

problem has been in ways to decide on the subgroups of attributes,

Tucker (1940, 1944) considered procedures for making these deci-

sions, his 1944 procedure involving inspection of the inter-factor

graphs and making subjective judgments quite analogous to the sub-

jective judgments in graphical rotation of axes. This latter pro-

cedure eliminated judgments as to angles of rotation in the graph-

ical methods, Subsequently, Tucker (1955) proposed an automatic

procedure for decisions as to inclusion of attributes in the sub-

groups, This procedure also emphasized the maximization of the nur,i-

her of attributes in the subgroups, One common feature of the deci-

sions concerning inclusion of attributes in the subgroups was that

these decisions were based on the data leing analysed rather than

a priori hypotheses, A second common feature was 'hat the total
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group of attributes was partitioned into two subgroups on the basis

of projections on the normal to the hyperplane, one subgroup with

projections in an interval including zero and the other subgroup

composed of remaining attributes. This interval could be symmetric

about zero, an interval of + ;10 being common, or it could have

a limit only on the positive side in case a positive manifold were

desired, The partitioning of the attributes amounts to a step

function based on the projections of the attributes on the normal

to the hyperplane, An alternative conception of the procedure is

that a weighted least squares fit of the hyperplane to the attri-

butes is obtained for which tine weights are unity or zero, the

weights being a step function of the projections,

A major difficulty with the preceding proposals has been the use

of the step function, Not only is it non-algebraic, which leads to

operational difficulties, but it raises questions such as: why should

an attribute having a projection just less that the limit of the inter-

val be given a full weight in the determination of the hyperplane while

another attribute having only a slightly larger projection, but a pro-

jection just larger than the limit, be given zero weight in the deter-

mination of the hyperplane. A continuous function would tend to elim-

inate both of these difficulties, A possible conception of such a

continuous function is a personal probability function, the personal

probability that an attribute should be considered in the subgroup

defining the hyperplane, This personal probability ould be a

function of the projection of the attribute vector on the norral to

the hyperplane, Further, the hyperplane could be defined so as to

48



minimize the mean weighted projection when the weights are the per-

sonal probabilities, A computer procedure has been developed based

on this conception and has been tried out on several factor matrices.

Let A be the coordinate factor matrix for J attributes in

an M dimensional common factor space. Entries in A will be des-

ignated a. , The computing procedure starts with a trial normal
Jm

to a hyperplane, ret
kt

be a row vector containing the direction

cosines for the t'th trial normal for hyperplane k. Projections of

the attribute vectors on this trial normal are containea in a column

Bkt , the entries being bjkt

A Nkt' = B
kt

Let
zjkt

be the trial personal probability that the vector for

attribute j is to be considered to be in the hyperplane k This

trial personal probability is to be a function of the projection of

the attribute vector on the trial normal, that is a function of bjkt

The precise nature of this function will be discussed in subsequent

paragraphs, Let Ok(tti) be defined by

[j )kt b jk(ti-DMEj
z.
3

]
kt

4'

(1)

(2)

where b
jk(ti-1)

is the projection of attribute vector j on the

next trial normal for hyperplane k ,
Nk(ti-1)

Note that
c(ti-1)

is the weighted mean square of the projections of the attribute vectors

on the next trial normal when the weights are determined from the
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projections of the attribute vectors on the present trial vector,

The next trial normal N
k(t+1) is to be determined so as to min-

imize (1)

k(t+1)
, In order to accomplish this let Z

kt
be a

diagonal matrix containing the trial personal probabilities zjkt and

define a matrix P
kt

ny

= '

Pkt
A Zkt A (3)

To minimize 4)

k(t+1)
the next trial. normal,

Nk(t+1)
, is the

characteristic vector of P
kt

corresponding to the least root,

When the trial personal probabiiites zjkt are an algebraic

function of the projections bjkt the preceding operations can be

automated and a series of trials can be carried out on a computer,

Experimental trials have indicated that such a procedure is quite

feasible and a stable state is obtained in a very few trials, where

the stable state is defined by very small change in the trial nor-

mal from one trial to the next, At such a stable point the weighted

mean square projection of the attribute vectors on the normal is a

minimum for the weights equal to the personal probabilities corre:

sponding to these projections, This appears to be the desired result,

Two questions remain, First, what function might be used for the

personal probability function? This question will be discussed

subsequently, Second, what are reasonable first trial normals to

the hyperplanes? In the experimental try outs of the procedure,

Kaiser's (1958) normal varimax procedure has given very satisfac-

tory results,
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Selection of a personal probability function posed a problem.

Consideration of functions derived from a priori assumed distributions

of projections was abandoned due to an unattractiveness of any part-

icular distribution of non-zero projections. These considerations

did lead to a division between two types of functions, one for cases

when non-zero projections might have either algebraic sign and the

other for cases when a positive manifold is to be assumed, These two

cases are termed here the two sided personal probability function and

the one sided personal probability function, A two sided personal

probability function should be symmetric, bell shaped with a maximum

for a zero projection, A one sided personal probability function

should be asymmetric with personal probabilities near unity corre-

sponding to negative projections and approaching zero for increasing

positive values of projections, Such a function is illustrated in

Figure 1. Since selection of a function having an appropriate form

seemed as arbitrary as the selection of a priori distributions of

projections, consideration was given to simple functions that pos-

sessed desirable features,

A one sided personal probability function was developed by use

of two functions, one stating values of z , the personal probab-

ility value, as a function of an artificial variable y , and the

other stating values of y as a function of projections b , These

two functions are given below:

z - 1
1 , (1 + c)

- L - - -
1 + c
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where c is a parameter affecting the slope of this function, and

Y
-d 12

+ b +

(1 - d
2

) (1 - d
2

)
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(5)

where d is a parameter affecting the value of b corresponding

to a value of z equalling one half. For b equal to -1, y equals

-1 and z equals +1; for b equal to +1, y equals +1 and z

equals 0. The function for z in terms of b has a negative slope

in the range for b equal to -1 to +J for values of d between 0 and

.4143 Study of this function indicated that a value of c equal to

10/d yielded a desirable single parameter family of functions.

Figure 1 presents three functions from this family. The parameter d

can be thought of as a stringency of definition of the simple structure

parameter. For a small value of d only attributes having small

positive projections or having negative projections would have a high

personal probability of being in the hyperplane. Larger values of d

would correspond to a more lenient view as to inclusion of attributes

in the hyperplane for which the projections are not as small as for a

small value of d

An operational point for computations involving a one sided

personal probability function is that the trial normals should be

directed such that the larger projections are positive. In the exper-

imental try outs each trial normal was considered in a preliminary

and in a final direction. The sum of projections of attributes on the

normal in its preliminary direction was obtained. If this sum was

positive, the normal in its preliminary direction was accepted as the
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normal in its final direction, If the sum of projections was nega-

tive, the normal was reversed in direction from its. preliminary

direction to its final direction In the first case, the projections

on the normal were retained as computed; in the second case, the

projections on the normal were reversed in sign,

No satisfying two sided personal probability function has been

developed,,

A by-product of the consideration cf a personal probability

approach to attributes being it hyperplanes is the possible use of

the complement, the personal probability of attributes not being in

hyperplanes, in interpretation of the factors, In an analogy to de-

cision processes, significance levels might be established for inter-

pretation that a factor had an effect on the measures of an attri-

bute, The personal probability significance of the projection of

an attribute could he entered into the inductive inferential process

involved in the interpretation of a factor

Three analyses will be presented to illustrate the application

of the foregoing development of factor matrices,. The first illus-

tration is for Thurstone's (1947, see page 194 for the centroid

factor matrix used here as the coordinate factor matrix) 20 attri-

bute box problem, Results are given in Table 1,, A first step in the

analysis for the example was to establish an "ideal" solution

This was done by hypothesizing, on an apricsi basis, that there should

be a factor for each dimension of the boxes and that the measures,

or attributes, not involving that dimension should have zero pro-

jections, or be in the hyperplane. The least squares solution for



49

these hypothesized zero projections is given at the left of Table .1

Two personal probability function solutions are given, one for d

equal to .15 and one for d equal to ,05, Kaiser's (1968) normal

varimax solution was used to obtain initial trial normals for the

three factors in each of the personal probability function solutions.

Both of these solutions are very close to the ideal solution at the

left. There is a difference in the complementary personal probability

of attributes not being in the hyperplanes. Consider attribute 19,

eY , and its projections of 06 and 08* for the two solutions.

Interpretation that this attribute depends on the first factor, which

appears to be an x dimension factor, would be an error analogous to

a type I error in decision processes, This situation may be consid-

ered as indicating that a d of ,05 is too stringent for the box

problem: A similar effect occurs for attribute l4, log y on the

third factor, A point of strategy might be that as stringent a

definition of the hyperplane, low value of d , should be used as

does not yield nonsensical interpretations,.

Table 2 presents results for the second example, Harman's (1967)

24 psychological tests example. These data were derived from the

study by Holzinger and Swineford (1939), a revised four factor 1IINRES

solution supplied by Harman (personal communication) being used as

the coordinate factor matrix. Harman also supplied hypotheses as to

which tests should have zero loadings on each of four factors:

The least squares solution for these hypotheses is given on the left

of Table 2, A personal probability solution with a d of J5 is

given on the right of Table 2, As in the previous example, Kaiser's
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(1958) normal varimax solution was used to obtain initial trial

normals. Again, the two solutions correspond very closely, The

largest discrepancies are for factor 3 for which the projections

tend to be more positive, This effect is greatest for test 10

with a shift in projection from -21 to -10, a more acceptable

projection for a positive manifold. There are a few cases for

which the interpretation of effects of factors differ, Factor 1

appears to be a verbal factor. Harman hypothesized that test 24,

arithmetic problems, should have a zero projection while the

personal probability solution indicated, with a probability great-

er than ,90, that this test is not in the hyperplane. The indi-

cation from the personal probability solution is that the verbal

factor has some small effect on scores on the test of arithmetic

problems, a not unreasonable result considering a number of other

findings with verbally stated arithmetic problems, Similar shifts

from hypotheses of zero projections to projections for which the

personal probability would indicate that the tests were not in

the hyperplane occur on factor 3 for tests 12, counting dots, and

18, number-figure which is a memory test, Factor 3 appears to be a

visual perception factor and it is not unreasonable that the tests

12 and 18 should be affected to an appreciable, but small extent

by this factor.

The third factor matrix used in the experimental try outs was

one suggest,d by Horst (personal communication) as a very tough

example for automated rotational procedures, This is a specially

constructed factor matrix having vectors for nine attributes in a
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three dimensional space. There are three unit length vectors ',11

each plane of a right sperical triangle. The vectors in each plane are

1
22 7 degrees apart centered in the space between two corners of the

spherical triangle. This configuration is presented schematically

in Figure 2 in which an equilateral triangle is used to represent

the spherical triangle. There are no vectors at the corners of

this triangle. A number of series of trials were run for a per-

sonal probability solution starting from randomly directed initial

trial normals. Figure 2 illustrates results obtained with one

initial trial normal. Several values of d were employed. In

series 1 of trials a value of d of .05 was employed. The stable

position of the plane was across a corner of the spherical tri-

angle with vectors 4 and 7 nearly zero. This is a very undesi.rable

solution. In series 2, a value of d of 15 was used first and

after a stable position was obtained the value of d was reduced

to .05. The solution with d equal to .15 went beyond the corner

but when d was reduced to .05 the trial vector returned to the

corner as a stable position. In series 3 values of d of .25, .15,

and .05 were used in succession, a stable position being obtained

with one value of d before the next smaller value was used. The

stable position for a d of .25 was nearer one of the planes of

the spherical triangle than had been obtained in the previous

series using smaller values of d and the starting position of the

series as the initial trial normal. In series 3, when d was

reduced to .15 and the stable normal from the d equal to .25
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solution was used as an initial trial normal; a stable position was

found very close to the plane of the spherical triangle, Reduction

of d to a value of c05 lead to a stable position even closer to

the plane of the spherical triangle,

This third example illustrates several point's, Firsts there

may be a number of stable positions of the normal in a personal

probability function solution, The existence of these many sol-

utions may depend on the incompleteness of the definition of hyper-

planes by the vectors in a factor matrix.. Horst's example is

characterized by this incompleteness of definition since the

vectors are all some distance from the corners of the spherical

triangle, Secondly, a satisfactory solution may be obtained by

sequential use of values of d in descending order as to size,

Thirdly, and this is a relatively technical point, the solution

for a constructed example such as Horst s can be made to approach

the theoretically correct solution, the plane of the spherical

triangle, as closely as desired by using successively smaller

and smaller values of d

In conclusion, the foregoing use of a personal probability

function in fitting hyperplanes in factor analysis appears to

replace subjective judgments to a considerable extent and to yield

very satisfying results, Further, it yields guides to the inter-

pretation of the factors with the probabilities of attribute

vectors not being in the hyperplanes. Ibis procedu-re does not

eliminate completely judgment by the experimenter and analyst,
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Appropriate values of d must be chosen and there must be a

constant awareness that extra solutions may exist so that

a series of trials may end at one of these solutions.

These areas of judgment and precaution are no more, however,

than should be involved in any careful scientific study.
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TABLE 1

THURSTONE'S 20 ATTRIBUTE BOX PROBLa:

Least Square,T. Solution
Attributes hypothesized
to be in Hyperplanes

for

Direction

Personal Probability Function Solutions

3

d = .15

Linen-
sion

d = .05

Dimansion 1 2

Cosines of Normals

1 2

Dimen-
3 sion 1 2 3

1

2

3

47

-84

28

46

25

-25

43

55

68

1 47 45

2 -84 25

3 28 -86

40

.:,5

69

1

2

3

49

-84

26

46

25

-85

49

56

67

Attribute 1 2 3

Projections on Normals

3

Attri-
bute 1 2 3

Attri-
bute 1 2

1
x2

2 y
2

3 z
2

4 xy

5 xz

6 yz

97

01#

00#

46

38

000

71

i5

-02#

60

66

-02#

95

-04#

02#

27

63

94

06#

Co 4

00#

94

olg

72

-01#

38

51

01#

75

62

00#

60

03#

92

-03#

35

45

014

90

02#

01#

00#

96

00#

85

79

-52#

39

44

-01#

65

62

00#

06#

94

70

28

02#

-05#

05

1 96*** 00

2 01 94***

3 00 01

4 46** 72::

5 38** -01

6 06 38**

7 71:'::::* 511'; *

8 84*,.* 00

9 -03 751411:'c

10 60*** 62***

11 66*** -01

12 -02 60***

13 95*** 03

14 -04 9.2 ::*

15 02 -04

16 27** 35"

17 63U::: 451.:17;

18 94*** -04

19 06 90***

20 -01 02

00

00

85o: :::

79***

-03

31**

too*

-01

61***

62

_01

C.

94***

75*"

270

02

-05

95***

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

16

20

03

00

48***

38***

00

85***

-01

62***

60"
-01

96

-02

02

','8."

f,01:ft

95 ***

-01

0904***

01

72***

-01

387:th*

51***

01

75'

62***

00

6D;re;*

03

92:*the;

-J3

35***

:45**i:

-Ot

0:

0002

06:'

6:50:
-02

143:35:::

00

G4i:::::

-01

06*

3to:

71***

01

-J3

7 ix2+y2

9 Vxqz4

9 o9+z2

10 2x+2y

11 2x+2z

12 2y+2z

13 log x

14 log y

15 log z

16 xyz

17 riX +y

18 e
x

19 eY

20 ez

+z2

N = hypothesized zero projections.

A Personal probability of attribute not being in the hyperpl,lne
TI IT II II IT II TI IT II TI

Ii u TI

59



TABLE 2

HAi',AN'S 24 PSYCHOLOGICAL TESTS EXAVPLE

Dimensions

Least Squares Solution for
Attributes Hypothesized°
to be in Hyperplanes

of Normals

Personal

Diven-
sion

Probability Function
Solution with C = .13

Direction Cosines

1 2 3 41 2 3 4

1 -34 -23 -26 -16 1 -35 -22 -32 -16

2 -76 75 -01 26 2 -72 74 11 25

3 -56 -47 80 20 3 -59 -48 76 20

4 03 41 54 -93 4 03 41 55 -93

Projections on Normals

Test 1 2 3 4 Test 1 2 5 4

1 Visual Perception -030 07# 58 -020 1 -03 06 61*** -02

2 Cubes 01# 000 39 -03# 2 00 00 40** -03

3 Paper Form Board 034 -120 47 -01# 3 02 -12 47** -01

4 Flags 100 -020 44 -08# 4 10 -02 45** -07

5 General Information 61 OSP -02W -060 5 62*** 08 00 -05

6 )aragraph Comprehension 64 -080- -020 044 6 651 ** -08 -02 04

7 Sentence Completion 71 02# -02# -130 7 72*** 02 -02 -53

8 Word Classification 43 09/1 16# -06# 8 43** 09 18 -06

9 Word }leaning 70 -100 -04# 024 9 70*** -10 -04 03

10 Addition 034 77 -214 034 10 07 77:-',:, -10 02

11 Code 010 43 -04g 23 11 03 43** 05 231

12 Counting Dots -130 65 140 -05# 12 -11 65*** 231 -05

13 Straight-Curved Capitals 000 44 32 -10# 13 02 44** 39** -10

14 Word Recognition 06# -04# -120 18 14 09 -04 -09 45°1:4

15 Number Recognition 00# -049 -0211 45 15 CO -04 01 451:::

16 Figure Recognition -10# -090 26 40 16 -10 -39 31** 1,1*:1

17 Object-Number -014 100 -100 50 17 01 10 -35 50**

18 Numl)er-Figure -16# 2? 1811 33 18 -15 22: 25 331 *

19 Figure-Word 010 0717 12# 24 19 02 07 16 24i

20 Deduction 23 -04# 25 13d 20 23* -04 27** 13

21 Numerical Puzzles 00# 32 29 04# 21 02 31** 35** 04

22 Proble Reasoning 22 -GIP 24 12# 22 22* -01 26* 13

23 Series Completion 20 0811 35 030 23 20 08 39** 03

24 Arithmetic Fralems 20# 36 020 110 24 22* 36** 08 11

°Hypotheses given by Harry H. Harman (personal corunication).

if = Hypothesized zero projection.

* = Personal probability of attribute not being in the hyierplane > .93 .

1411 a 11 n 11 a IP 11 t/ II II
" bj5 .

II 11 it
" > . J3
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Figure 2

Results for Horst's 9 Vector Exomple
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