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it was the purpose of this study to investigate scmc Cipiricii Fu. o % -
ships between factor analysis and latent class structure. A joint occurrsento
#robanllity matrix Po was factored using various procedures to deresmine oo
feasability of reproducing a known joint item probability marrix L.

Green (1951) demonstrared some matrix equations for the poin. disiriou_son
of latent class structure, The assumption basic to the procedure is thoo o0} i
relationships may be entirely explained by some underlying distribucion=-, =i
independent for ecach Tatent class and item intercorrelations duc (o varyin-
latent item probabilities. A solution may be realized by factoring wwo | sing
occurrence proportion matrices Pij and Pijk' Those matrices contaia elene ts
with recurring subscripts (P;; and P,;.) which are analogs to coirunality .uiimates

in the factor analytic sense. The limiting values of those elerents nave oon

shown to be P, N P.. > Pzz for the matrix P;;.
Data Source and Methods
The matrix P, which was used by Green to illustrate a threc class, «i:-t

item example was used as the data source for this study. The matrix is voene 1
the June, 1951 issue of PSYCHOMETRIKA. It was defined as P0 ={r = 1) x {r 3

a symmetric matrix, with elements Pi P, =P, and P = I, where # ecre:s the

it Toi i

number of items, and i equals the item subscripts from o to r,

The factoring methods used are summarized as follows:

(i) Alpha - Facturs & matrix reduced with unigquencss arc vescaloe i

3ert f. Green, Jr., "A General Solution for the Latent Cisss Mool w. .atcnat
Struc:ire Analysis,' PSYCHOMETR!KA, 16 (June, 1951), 151-165,
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commnunal ity ¢stimates. The method is i{terative and produccs Jacot ¢ wit, . «. -

rmum generalizaoiiity in the (ronbach's alpha sense. Unless speciliue, tow oo o»

oY Yactors teken was equal to the number of eigenvalues of H'l(R-UZJH'] e oL T
than one--the weak lower bound. Communality was initially estimated witn o oit¢

multiple correlaticns unless other parameters were input, i.c., recurring .o 100 o
elements,

(2) Uniqueness Rescaling - Factors the correlation matrix a’ler i1 &
been rescaicd with uniqucness estimates. Squared multiple correlaiions suo-
tracted from one are usea to estimate uniqueness unless communality paraic.or.
are input. If not specified, the nunber of factors taken was cgquai 10 e furcer

IRU-l

ot eigenvalues of U~ greater than one~-the strong lower bound.
(3) Image - Factors the image covariance moirix and, uniess speci?iud
otherwise, the number of image components uasken was equal to the nunser of cigen-

values of s™iRs ™!

greater than one--the strong lower bound,

Three types of recurring subiscript elements were used witn oing o
sotutions:

Casc. One - fhe known elements (Pii) indicated by Green werc input. n
practical situations those elements ars unknown. |

Case Two - ihe p;'s, the upper bound to the p;;'s, ware in.u..

Casc Three - No parameters were specified so that the reciprocale o (v
diagonal elewents of the iaverse of Py with 1's in the diagonal wove dncoer wriicc,
in 3 correlation matrix those elements subtracted from one yield <cusrec wviiisic
correlations. In this case, however, those elements were not squared moltipie
multiple correlations but analogs to them because the joint occurcusce »rcoability

rairix Py was aot a correlation matrix.

The raw pettern matrices were orthogonaily rotated sccording tu ithe aor, i
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varimax criterion.

Rasults

Casc One: Tihe alpha procedure extracted two factors, whilc ine i c-
ness rescaling and image procedures took out six. Neither the raw or & L o
pattern matrices yielded close approximations to the know iaternti Cicses o .lou’ .

Those procedures took out an iacorrect number of factors.
Casc Two: As previously, the alpha procedure extracted two factonss.
The uniqueness rescal. ng mathod, however, went to aine factors, anc [aacs <ol
to nine components. Neither the raw nor rotated solutions proved to be r..-un-
able approximations. These results seem to suggest that the pi's cead Lo ver
estimates 10 the recurring subscript elements for methods which feaiure 30 & . lrc
of uniqueness rescaling.
Casc Three: The aipha grocedure tock out two factors, whilc (ne (. ¢
snd uniqueness resceling both took out three. Once again, the rotated so0.. e
proved to pe poor spproximations as did the raw pattern matrices. Tae vinc. ..o
methods did, however, extract the correct number of factors--it wes «no. v

that the solution involved three latent classes. The fact that tie rota.c. .-

B

utions did not prove satisfactory indicated that the requirement 77
«was too sevearz and that a transformation other than orthogonal rotacion was accuid,
flearly a transformation was called for since the raw solutions indicated ¢
existence of negative proportions. The foilowing procedure was uscu:
(1) Want A transformed to fit Lg.
(2) Define T = (A*A)7TA'L,
< AT = aaA) A

(3) Known that AT is a least squares approximation of L.
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That trarmsformation produced a reasonably good approximation.
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R
$€ Unicuencss Estimates

Variable 1-52 - Green's P,
] .251 749 1.000
2 .595 .05 g2
3 465 535 .559
4 .781 219 . 295
5 .867 123 175
3 o1 .389 LLE7
7 .921 .089 .125
3 917 .083 094
g .655 455 286
Daterminant , 067549
Eigenvaices 8.053000
1,240000

1.053000
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Table 1

Grecn's Jriairal Joint Occurrence Probabilicy Matrix (P}

1.000 B20 730 .450 .350 .610 .250 .280
.620 82 Lb77 .325 .199 465 .225 212
.730 L7 <539 .370 .251 467 .200 L2145
450 L1325 .340 .295 .030 .280 175 .150
350 L19y .251 .090 175 .227 .050 L0386
610 63 L67 ,280 .227 467 .200 .202
.25¢C .225 .200 75 ,050 . 200 125 .100
L2580 212 214 .150 .086 .202 . 100 004
.580 . 366 L425 . 205 .251 .389 125 160

Table 2

|

-.?58
~-.630
-. 725
-. Loy
e 327
-.660
-.298
~-.303
~.569

Table 3

-.132
.092
-. 056
.219
-.268
-.031
.178
.G50
-.250

Rotated {Varimax) Factor Matrix Alpha Procedure

Communalities {Case One)

.738
. 366
.526
148
8
Lok
.067
165
.567

624
.568
.501
L9
.064
470
.34
.259
. 256



Table b

Row Factor Matrix Uniqueness Rescaling Procedure
Comuunalities (Case One)

z i L1 1y v vi o
.985 .008 -, 004 -.C00 . 000 -,000
L6268 =250 .067 -,000 .0C2 017
.73k -.057 .006 -.002 .025 .60}
.53 ~-.163 -, 23k -, 005 -.039 ~.008
V352 .20 157 -.054 ~.023 .009
R3S -.231 192 -.007 .003 -.023
. 253 ~.238 -,053 .000 .000 LO0N
.232 -.118 . 005 ~.000 .002 .006
L5383 .0L8 .213 .0Lo ~-.025 .. 004

Table §
Rotated Factor {Varimax) hniquencss Rescaling Procedure
e Communalities (Case One) e

: L P v v Vi e
727 .528 123 . 060 .028 .00k
.385 .569 .091 .020 .020 .004
516 S .278 L0564 017 009
. 125 439 .204L -.G015 -.002 -, 001
L7 . 0063 .035 ~,007 -.030 -.004
470 456 .012 .013 .021 .0L7
L0864 .34 . 054 .004 .00k -,001
. 164 .249 .067 01 .008 .01
.563 . 244 .093 .009 o7 . 005

Tabln 6

Ra Cezpongat Matrix lmage Procedure Comnunalities (Case O:) -

i Lo 1l Ly Vvl o
.520 .CCS -.002 . -,000 .000 -.000
.623 -.159 032 -.000 . 000 L0
.73 -.931 .003 -.000 .002 .000
453 -,109 -.110 ~-,000 -.003 -,000
.350 L0565 .093 - ,004L -.002 . 000
b1 -.127 .090 -. 001 .000 -. N0}
.252 ~. 13 =-.025 .000 . 000 . 000
.28% -,065 .002 ~,000 .000 . 000

.581 .02¢ .100 .603 -,002 000




Table 7

Rotated {Varimax) Component Matrix Image Procedure
Communalities (Case One)

W

I i 1 iV V Vi
751 bz2 173 .003 .004 -.000
108 .4G8 ~.000 .002 .001 .000
.538 .83 .106 .002 .00] L0Nn0
.240 .355 116 -.000 -.001% -.000
.337 LG 01l ~-.002 -, 000 -.000
L2 Lh51] -.036 .002 .001 .002
116 L2561 -.001 .CO0 .000 ~-.000
.182 223 .01k ,001 .00i .000
.hg6 .312 .027 .006 .000 .000

Table 8

Raw Matrix Alpha Procedure Communalities (Ccse Two)

i 1)

-.957 -.129
-.680 .091
~-.72h ~.055
-.462 .206
-'330 --290
-.659 -.030
-.300 .180
-.300 .0hg
-.566 -.240
Table 9

Rotated {Varimax) Factor Matrix Alpha Procedure

Comnunalities {Case Two)

.639 .723
574 .376
512 .515
484 147
.060 435
178 sk
. 345 .060
. 262 L1861

.271 .552




Table 10

Ruw Fector Matrix Uniqueness Rescaling Procedure
Communalities (Case Two)

Vil

i i HE 1V v Vi Vil e
.395 L017 L0507 -.008  -.003 .001 .003  -,600 L0GG
L5280 =037 =088 -6 .100 .236 .007  -.035 LCu
.739 -6 .059 .391 .005 =.000 ~.005 -.00] Lol
Jasls =0179 .27 =118 68 =.199  -,215 -.0W LG3
.352 ik -.220 .057  -.140 43 - ,3hg L036 -8
B18 -.31% 0 -,222  -.062 =214 -.169 016 -.033 L0206
L2585 -,213 071 -.068 047  -.043 -,003 025 =35
L2883 ~.i2k .009  -.040 019 =,025 .009 ch2k oLz
.586 0Ly -,388 .064 .266  -,084 -,002 -,003 -.G0C

Table 11
Rotated (Varimax) Factor Matrix Unigueness Rescaling Procecurc
Commnunal icies (Cas~ Two) B o

! 1 R v Vv Vi Vil Vil : _
453 .40} .360 . 289 .323 .2577  .229 .198 .372
.208 .07 L2138 .224 .140 .585 73 .218 L0356
.680 .237 .226 A9 .196 179 L164 .161 L0
.136 . 085 .602 .008 .039 b 13 .156 022
.095 .130 .033 .083 .556 .062 .055 .019 005
.199 .222 .163 .603 .178 .198 .161 .180 . 036
.06¢ .08 .106 .073 .018 .077 .073 463 003
.07k L0569 .082 .073 L, 05} .067 L35 .076 G5
.176 .658 2101 .158 .210 .128 0k ,080 .025

Table 12

- Raw Comporent Matrix Image Procedure Communalities (Case T‘LiL:__,;; e

] il L1 v v Vi Vil Vit 1 .
990 .02 .00% -.005 =-.002 =.000  .002 ~-.000 =.003
676  -,238 -,032 -,073 .053 .i20 .003 -,016 000
L7360 -1 .C45 . 247 .003 =-,000 -,002 -,00! .CO
JA52 - 124 .82 -.074 .089 =-,100 -,099 -,019 L0256
. 381 0760 -14L3 .036 -.075 .073  -.159 016 -.015
616 -,2i5  -.1L5 -,039 -.1l4  -,086 L007 -.015 Lo
253 -.15) LC45  -,nh3 .025  =,022 -.00] 0} B
L2822 -,0%% L0056 -.026 010 =.013 . 004 .193 LU
.583 034 -,25% .040 b2 -,048  -,001  -,001  -.002

ot



Table 13

Rotated {Varimax) Component Matrix Image Procedurc
e L Communalities (Case Two)

] I P v Vv Vi Vil Vil P L
.523 .437 330 .328 .318 314 .178 L1031 A
L2355 .251 3L6 .182 .237 .154 167 .302 L0y
354 L2802 258 .208 .234 461 .128 .087 L00S
L7 17 225 U89 .157 ,098 . 068 .050 L0505
365 .063 0656 .079 .087 .062 .04 .033 LOGn

307 L18% .293 197 .224 146 . 357 .098 RS
. 060 012 .278 .052 .096 . 054 . 052 . 025 o0y
101 .002 116 . 065 .285 .057 . 046 .031 07
. 368 148 . 156 A3 170 31 . 105 . 006 .009

Table 14

Raw Factor Matrix Alpha Procedure Communalities
(Case Three)

\ L

-.958 -.133
-. 681 . 094
-.725 -.057
-.463 217
-.32" -.257
'.6L4 "-03]
-.297 . 176
-.303 .051
-,571 -.258
Table 15

Rotated (Varimax) Factor Matrix Alpha Procedure
Communalities (Case lhree)

.7h2 .621
. 387 ,568
.528 499
Lih9 LL89g
.09 ’ .068
LL66 L468
. 069 .338
.166 .259
.575 .250




Tabie 16

Raw Factor Matrix Uriqueness Rescaling Procedure

_ Communslities (Case Three)

i it

-.397 .017 -.0l4
-.636 -.105 . 065
-.750 .010 ~.091
- 135 -.216 -.006
-, 356 .226 ~-.018
-.556 -.0i1 .050
-.23% -.193 .058
-.303 .077 047
~.559 .189 032
Table 17

Rotated {VYarimax) Factor Matrix Uniqueness Rescaling Procedu. v
Communalities (Case Three)

p— o &Rz prac . LR TDErie = i - S T

i . K 1]

01 . 598 110
2 .537 ’ L
.522 498 72
.186 466 .129
aRs .081 -.007
470 466 -.017
.072 . .338 -.015
.168 .267 .0G8
.565 .276 .022
‘Table 18

Raw Component Matrix lmage Procedure
Corwunalities {Case Three)

: I il

-.840 .007 -.003
-.623 -.046 .0i5
-.709 .004 -.020
- 136 -.095 -.015
-.333 .099 ' .04
-6k -.005 .020
-.26% ~.085 013
~.28% -.034 .010
-.561 .983 .007

(]



Table 19

Rotated (Varimax) Component Matrix Image Procedure

R ———

Comnunalities {Case Three)

.607 .580 .019
Aih 468 -.001
S A9 .034L
L2586 .372 .025
.308 161 .000
‘14}36 ll+32 "s008
129 . 245 -.006
179 $ 222 -.004

450 .332 .002

[ SRR
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Least Squares Transformation:
Row Pattern (Image) and Joint Occurrence Matrix P,

ey o L e s EINE )

A =
-.8i0 .007 -,003
-.623 ~.045 015
-.709 004 -.020
~. 436 -.095 -.015
-.333 .099 .004
-.614 -.005 .020
-.263 -.085 .013
-.283 -.034 010
-.561 .083 .007

(A‘A)"l =

375 -.178 2,334
-.178  27.634 -2,253
2,334 -2.253 642,338

(ara)-lar =
-.323  ~.190 -.313  -.18] 133 -.182  -,053  -.077  -.205
,350  ~1.194 ,282  -2.514 2,786  -.074  -2.33] -.912  7.37%

-3.903 8.285 -14,511 ~10.439 1.569  11.hLes 7.928 5.839 3.000

(ATA)"1Aatpy = T =

-1.055 - 717 -.792 - .95 -.372 -.706 . ~.322 -.3i9 - 0%,
155 -.359 -.003 -.704 .602 -. 04l -.525 -.186 Loan
-1.178 1.060 -.428,  -.859 .220 1.396 Ji72 .257 .38,
AT = Po = .
.899 . 567 .666 A3 .316 .589 249 . 266 Ny
.639 479 487 327 . 207 463 .219 .21 L3S
779 87 .570 . 365 . 262 472 .203 .220 ol
67 . 332 .352 . 295 102 291 75 L1353 e
.365 205 . 262 .091 184 .237 .050 .033 SRS
.630 452 478 .290 4230 462 .198 L2302 ViDL
.252 . 233 .203 179 . 050 .207 .130 .i03 L2
. 284 . 225 220 155 .087 .215 .108 .039 S
.602 379 L 0212 . 260 .L402 .129 L1865 Ritore
Squared Residuals image Procedure ) _
(AT - Po)?2
.010 .000 .00k . 001 . 001 .000 .0v0 . 000 Rteld
. 000 .000 .000 .000 .000 .000 .000 .500 e
.002 .000 .00l . 000 .000 .000 .000 .0J0 .00
. 000 . 000 .00i .000 .000 .000 .000 L0330 .303
.000 . 000 .0C0 .000 .000 .000 . 000 JhD! L0020
.030 .006 .000 .000 . 000 .000 .000 L0 L00U
.000 .000 .000 .000 . 000 .000 .000 L0J0 . 0G0
.0C0 .000 .000 .0C0 .000 .000 .000 .60 .000
.000 .000 .000 .000 . 000 .000 .000 .030 .000
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