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ABSTRACT
Three procedoes, alpha, image, and oniquenes

resealing, were applied to a joint occurrence probability matrix.
That matrix was the basis of a well-known latent class structure. The
values of the recurring subscript elements were varied sls follows:
Case 1 - The known eleuents were input; Case 2 - The upper hounds to
the recurring subscript elements were input; Case 3 - No input
parameters, thus incorporating analogs of the strong and weak lower
bounds. The uniqueness resealing and image methods took out the
correct number of dimensions in Case 3. Orthogonal rotation failed to
reproduce the known latent structure probability parameters. Least
squares transformation of the image pattern, however, produced close
approximations of the original matrix and the occurrence probability
matrix. The results are reported in a comprehensive set of tables.
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It was the purpose of this study to investigate some e;v,r;c; rc._

ships between Factor analysis and latent class structure. A joint

probability matrix Po was factored using various procedures to de:err-jne

feasability of reproducing a known joint item probability matrix LG.

Green (1951) demonstrated some matrix equations for the po:n, discr:0_Jcr,

of latent class structure. The assumption basic to the procedure is thL_

relationships may be entirely explained by some underlying distribuLion--;

independent for each latent class and item intercorrelations due to varyi7.

latent item probabilities. A solution may be realized by Factorin9 two

occurrence proportion matrices and Pijk. Those matrices contai,

with recurring subscripts (Pit and Piii) which are analogs to coality

in the factor analytic sense. The limiting values of those eler.e,its nave

shown to be P. X P. X P.
2

for the matrix Pu.
4

Data Source and Methods

The matrix Po which was used by Green to illustrate a three class,

item example was used as the data source for this study. The matrix is fG,r.L.

the June, 1951 issue of PSYCHOMETRIKA. It as defined as Po = (r 1) X it r ii

a symmetric matrix, with elements Pij: Poi = Pi, and Poo = t, where r ec,.s Coe

number of items, and i equals the item subscripts from o to r.

The factoring methods used are summarized as follows:

(1) Alpha - Facturs a matrix reduced with uniqueness arc. reseal,

3ert F. Green, Jr., "A General Solution for the Latent Class Moc0:1 _acc..nt

Struc:ire Analysis," PSYCHOMETRIKA, 16 (June, 1951), 151-165.
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communality estimates. The method is iterative and produces ,,LJ,,,_

mum g,neralizaaiity in the (.ronbach's alpha sense. Unless spec7:., , t _7

.34 factors taken was equal to the number of eigenvalues of H-1(R-U2)K-1

than one--the weak lower bound. Communality was initially estimatud witn

multiple correlatioos unless other parameters were input, i.e., rc,currin

elements.

(2) Uniqueness Resealing - Factors the correlation, matrix a,'ter

been resealed with uniqueness estimates. Squared multiple corrol:.:(,ns .,;--

tracted from one are used to estimate uniqueness unless communality para',,Lr_

are input. If not specified, the number of factors taken was ec,dal to t,u :wHc;cr

of eigenvalues of U -I
RU greater than one--the strong lower bound.

(3) lrrage - Factors the image covariance matrix and, unless specif7c:d

otherwise, the number of image components taken was equal to the nuer of ei:,en-

values of S-IRS-1 greater than one--the strong lower bound.

Three types of recurring subscript elements were used with

solutions:

Casc% One - The known elements (Pii) indicated by Green were input.

practical situations those elements are unknown.

Case Two - the pi's, the upper bound to the pii's, were

Cast: Three - No parameters were specified so that the reci)rocaL c

diagonal elements of the inverse of Po with l's in the diagonal

in a correlation matrix those elements subtracted from one yield ,.c.,;arec.

correlations. In this case, however, those elements were not sst.arod rrlti?1,!

multiple correlations but analogs to them because the joint occurrence

ratrix Po was not a correlation matrix.

The raw pattern matrices were orthogonally rotated according to thc

a



varimax criterion.

Results

Casc, One: The alpha procedure extracted two factors, while

ness resealing and image procedures took out six. Neither the r&::

pattern matrices yielded close approximations to the know later.;. s

Those procedures took out an incorrect number of factors.

Case Two: As previously, the alpha procedure extracted two

The uniqueness rescal:ng method, however, went to nine factors, ar46

to nine components. Neither the raw nor rotated solutions proved to be

able approximations. These results seem to suggest that the pi's ;:e.-id ,6

estimates to the recurring subscript elements for methods which f'eJ,:re 2 c

of uniqueness resealing.

Case Three: The alpha procedure took out two factors, while ,he

and uniqueness rescaling both took out three. Once again, the rota:ed

proved to be poor approximations as did the raw pattern matrices. 7.1e int

methods did, however, extract the correct number of factors--it ivc :no.

that the soution involved three latent classes. The fact that tl.c,

utions did not prove satisfactory indicated that the requiremen, = 7'i -

..as too severe and that a transformation other than orthogonal rotion a:

Clearly a transformation was called for since the raw solutions ir,:cated

existence of negative proportions. The following procedure was ust.,

(1) Want A transformed to fit Lo.

(2) Define T Q (A'A)-1A1L0

AT = A(A'ArlAmLo

(3) Known that AT is a least squares approximation of Lc,.

4



That transformation produced a reasonably good approximation.

Image Solution

Raw Image Pattern (Case Three)

-.840 .007 -.003

-.623 -.046 .015

-.7C9 .004 -.020

-.436 -.095 -.015

-.333 .099 .004

-.614 -.005 .020

-.263 -.085 .011

-.233 -.034 .04
-.581 .883 .007

Matrix Lo
1.00 .1 .6 .5 .2 .0 .0 .1 .3

1.00 .5 .7 .0 .7 .7 .0 .2 .9

1.00 .9 .8 .7 .2 .8 .5 .4 .5

(A'A)-1

.375

2.334

-.178
27.634
-2.253

2.334
-2.253

642.338

(A'A) A'

-.323 -.190 -.313 -.181 -.133 -.182 -.053
.349 -1.194 .281 -2.513 2.780 -.073 -2.3;1

-.390 8.280 -14.510 -10.438 1.569 11.424 7.928 5.3

(A'A)-1A11.0 m I

.717 -1.061 -1.206

.322 3.806 -2.102
-15.202 3.040 1.890

AT =I
0.651 .204 .814 .510 .210 .135 -.036 .040

. 910 .531 407 .056 .743 .694 .001: .202

. 993 .387 .809 .698 .201 .789 .521 .432 (7



S2 Unicueness Estimates

Variable 1-S2 Green's Pii

1 .251 .749 1.000
2 .595 .405 .1382

3 .465 .535 .539
4 .781 .219 .295

5 .867 .123 .175
o .611 .389 .467

7 .921 .089 .125
3 .917 .083 .054

9 .655 .455 .386

Determinant .067549

Eigenvalues 8.053000
1.240000

1.053000
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Table 1

Greon's Orioiral Joint Occurrence Probability Matrix (P,)

1.000 .620' .730 .450 .350 .610 .250 .230 .a0
.620 .482 .477 .325 .199 .465 .225 .212 ....;86

.730 .477 .539 .370 .251 .467 .200 .214 .'!25

.450 .325 .340 .295 .090 .280 .175 .150 .235

.350 .191, .251 .090 .175 .227 .050 .036 ..2.:;1

.610 J63- .467 .280 .227 .467 .200 .202 .:.;39

.250 .223 .200 .175 .050 .200 .125 .100

.230 .212 .214 .150 .086 .202 .100 .094 .,0

.580 .366 .425 .205 .251 .389 .125 .160 .336

Table 2

Fact:)r Matrix Alpha Procedure CamlunalitiesjCase, 0nL)

I 11

-.958 -.132
-.680 .092

-.724 -.056
.219

-.327 -.268
-.660 -.031

-.298 .178

-.303 .050

-.569 -.250

Table 3

Rotated (Verimax) Factor Matrix Alpha Procedure
Communalities (Case One)

I II

.738 .624

.386 .568

.526 .501

.148 .49;

.418 .064

.464 .470

.067 .341

.165 .259

.567 .256
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Table 4

Raw Factor Matrix Uniqueness Rescaling Procedure
Communalit1es (Case Ore)

1 I I IV V VI

.995 .00c, -.004 -.COO .000 -.GOO

.626 -.20 .067 -.000 .002 .017

.731: -.057 .006 -.002 .025 .01

.1'53 -.193 -.234 -.005 -.039 -.008

.352 .:20 .197 -.054 -.023 .009

.616 -.231 .192 -.007 .003 -.023

.253 -.233 -.053 .000 .000 .011

.232 -.118 .005 -.000 .002 .006

.533 .048 .213 .040 -.025 ..004

Table 5
Rotated Factor (Varimax) Oiqueness Rescaling Procedure

Co;nnunalities (Case One)

.11 IV V VI

.727 .528 .423 .060 .023 .004

.385 .569 .091 .020 .020 .004

.516 .441 .278 .064 .017 .009

.125 .439 .304 -.C15 -.002 -.001

.417 .063 .035 -.007 -.030 -.004

.470 .496 .012 .013 .021 .047

.064 .341 .054 .004 .004 -.001

.164 .249 .067 .011 .008 .vo)

.563 .244 .093 .009 .071 .005

Tab11 6

Raj Ccroneot Matrix 1mace Procedure Comounalities

I 11 III Iv V VI

.990 .005 -.002 -.000 .000 -.000

.623 -.159 .032 -.000 .000 .001

.73; -.031 .003 -.000 .002 .000

.45; -.109 -.110 -.000 -.003 -.000

.35o .066 .093 -.004 -.002 .000

.613 -.127 .090 -.001 .000 -,001

.252 -.131 -.025 .000 .000 .000

.281 -.065 .002 -.000 .000 .000

.581 .026 .100 .003 -.002 .000
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Table 7

Rotated (Varimax) Component Matrix Image Procedure
Commonalities (Case One)

I III IV V VI

.751 .622 .173 .003 .004 -.000

.408 .,I9S -.000 .002 .001 .000

.539 .LS3 .106 .002 .001 .000

.240 .395 .116 -.000 -.001 -.000

.337 .ILAS .014 -.002 -,000 -.000

.442 .451 -.036 .002 .001 .002

.116 .261 -.001 .000 .000 -.000

.182 .223 .014 .001 .001 .000

.496 .31e .027 .006 .000 .000

Table 8

Raw Matrix Alpha Procedure CommunalitieS (C.se Two)

11

-.957 -.129
-.680 .091

.724 -.055

-.462 .206

-.330 -.290
-.659 -.030
-.300 .180
-.300 .049
-.566 -.240

Table 9

Rotated (Varimax) Factor Matrix Alpha Procedure
Communalities (Case Two)

I II

.639 .723

.574 .376

.512 .515

.484 .147

.060 .435

.478 .454

.345 .060

.262 .161

.271 .552
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Table 10'

ROW Fctor Matrix Uniqueness Restating Procedure
Communalities (Case Two)

1 11 111 IV V Vi VII VIII

.995 .017 .007 -.003 -.003 .001 .003 -.600 .000

.629 -.374 -.0b,8 -.116 .100 .236 .007 -.035

.739 -.160 .069 .391 .005 -.000 -.005 -.001 .CD!,

.454 -.179 .279 -.118 .168 -.199 -.215 -.041 .000

.352 .110 -.220 .057 -.140 .143 -.345 .036

.619 -.312 -.222 -.062 -.214 -.169 .016 -.033 .62

.254 -.213 .071 -.068 .047 -.043 -.003 .025

.283 -.124 .009 -.040 .019 -.025 .009 .424

.566 .049 -.388 .064 .266 -.094 -.002 -.003 -.000

Table 11

10

Rotated Varimax) Factor Matrix Uniqueness Rescaling Procedure
Communalicies Cas, Two

l II Iii IV V VI VI; VIII

.453 .401 .360 .289 .323 .2i77 .229 .198 .372

.208 .197 .218 .224 .140 .585 .173 .218 .030

.680 .237 .226 .191 .196 .179 .164 .161 .021

.136 .085 .602 .098 .039 .114 .113 .156 .022

.095 .130 .033 .083 .556 .062 .055 .019 .0:3

.199 .222 .163 .603 .178 .198 .161 .180 .03i.,

.069 .08 .106 .073 .018 .077 .073 .463 .0.3

.074 .069 .082 .070 .051 .067 .435 .076 C)15

.176 .653 ..101 .158 .210 .128 .114 .080 .025

Table 12

Raw Comporent Matrix Image Procedure Communalities (Case Ts:

I I III IV V VI VII VIII

.990 .0.2 .004 -.005 -.002 -.001 .002 -.000 -.000

.626 -.238 -.032 -.073 .053 .120 .003 -.016 .016

.736 -.111 .045 .247 .003 -.000 -.002 -.001 .CO?

.452 -.124 .1132 -.074 .089 -.101 -.099 -.019 .026

.351 .076 -.143 .036 -.075 .073 -.159 .016 -.011)

.616 -.2i5 -.1L5 -.039 -.114 -.086 .007 -.015 .0::

.253 -.15) .046 -.0h3 .025 -.022 -.001 .011

.282 -.0E6 .006 -.026 .010 -.013 .004 .193 .011

.583 .0.4 -.253 .040 .142 -.048 -.001 -.001 -.032
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Table 13

Rotate(' (Varimax) Component Matrix Image Procedure
Conlmunalities (Case TwoJ_

IV V VI VII VIII

.528 .437 .330 .328 .318 .314 .178 .131 .215

.259 .251 .316 .182 .237 .154 .167 .302 .36'

.354 .2): .268 .208 .234 .461 .128 .087 .00',

.;17 .417 .225 089 .157 .098 .068 .050 .033

.396 .063 .066 .079 .087 .062 .049 .033

.307 .194 .298 .197 .224 .146 .357 .098

.060 .112 .279 .052 .096 .054 .042 .025 .00-i

.101 .009 .116 .065 .285 .057 .046 .031 .37

.368 .148 .156 .431 .170 .131 .105 .006 .005

Table 14

Raw Factor Matrix Alpha Procedure Communalities

I I i

-.958 -.133
-.681 .094

-.725 -.057
-.463 .217
_.32r -.257

-.6t, -.031

-.297 .176

-.303 .051

-.571 -.258

Table 15

Rotated (Varimax) Factor Matrix Alpha Procedure
Commuralities (Case Three)

I II

.742 .621

.387 .568

.528 .499

.149 .489

.409 .o68

.466 .468

.069 .338

.166 .259

.575 .250

2



Table 16

Fa,tor Matrix Uriqueness Resealing Procedure
Commur.e.lities (Case Three)

11 III

-.897 .017 -.014
-.630 -.105 .065

-.758 .010 -.091
-.435 -.216 -.006
-.356 .226 -.018
-.656 -.Oil .090

-.231 -.193 .058

-.303 .077 .047

-.559 .189 .032

Table 17

12

Rotated (Varimax) Factor Matrix Uniqueness Resealing Procedu.-Q
ties Three)

II 111

.(61 .598 .110

.412 .537 .014

.522 .498 .172

.186 .466 .129

.414 .081 -.007

.470 .466 -.017

.072 .338 -.015

.168 .267 .009

.565 .276 .022

'Table 18

Raw Component Matrix Image Procedure
CoT7[unalities (Case Three)

II III

-.840 .007 -.003
-.673 -.046 .015

-.709 .004 -.020
-.436 -.095 -.015

-.333 .099 .004
-.614 -.005 .020

-.263 -.085 .013

-.263 -.034 .010

-.561 .083 .007
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Table 19

Rotated Narimax) Component Matrix Image Procedure
Communalities Case Three

II III

.607 .580 .019

.414 .468 -.001

.511 .491 .034

.2t.6 .372 .025

.30S .161 .000

.436 .432 -.008

.129 .245 -.006

.179 .222 -.004

.460 .332 .002
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Least Squares Transformation:
Ravi Pattern (Image) and Joint Occurrence Matrix Po

-.840
-.623

-.709
-.436
-.333

-.614
-.263
-.283
-.561

A =
.007

-.046

.00J.

-.095
.099

-.005
-.085
-.034
.083

-.003
.015

-.020

-.015
.004

.020

.013

.010

.007

(A'A)-I =
.375 -.178 2.334

-.178 27.634 -2.253
2.334 -2.253 642.338

(A'A)-1A1 =

-.323 -.150 -.313 -.181 .133 -.182 -.053 -.077 -.205

.350 -1.1;4 .282 -2.514 2.786 -.074 -2.331 -.912 2.378

-3.903 8.285 -14.511 -10.439 1.569 11.425 7.928 5.839 3.C.r.)3

(A'A)-1A'Po = T =
-1.065 -.717 -.792 -.495 -.372 -.706 -.3)2 -.3.9

.155 -.369 -.003 -.704 .602 -.041 -.525 -.186 .52'_

-1.178 1.000 -.428, -.859 .220 1.396 .472 .257 .38,

AT = Po =
.899 .567 .666 .413 .316 .589 .249 .266

.639 .479 .487 .327 .207 .463 .219 .211

.779 .487 .570 .365 .262 .472 .203 .220 . L2

.467 .332 .352 .295 .102 .291 .175 .153 .22

.365 .206 .262 .091 .184 .237 .050 .0=,:9

.630 .462 .478 .290 ..230 .462 .198 .2.)2

.252 .233 .203 179 .050 .207 .130 .;03

.284 .225 .220 .155 .087 .215 .108 .099 .,Q;

.602 .379 .441 .212 .260 .402 .129 .165

Squared Residuals Image Procedure

(AT - P0)2
.010 .000 .004 .001 .001 .000 .000 .000

.000 .000 .000 .000 .000 .000 .000 .000 ...0C

.002 .000 .001 .000 .000 .000 .000 .000 .003

.000 .000 .001 .000 .000 .000 .000 .630 .300

.000 .000 .000 .000 .000 .000 .000 .'DJ .CO.:

.030 .000 .000 .000 .000 .000 .000 ..:LiD .00',.:

.000 .000 .000 .000 .000 .000 .000 .000 .000

.000 .000 .000 .000 .000 .000 .000 .600 .000

.000 .000 .000 .000 .000 .000 .000 .000 .000


