
DOCUMENT RESUME

?D 048 915 LI 002 724

TITLE On-Line Retrieval System Design; Part V of
Scientific Report No. ISR-18, Information Storage
and Retrieval...

INSTITUTION Cornell Univ., Ithaca, N.Y. Dept. of Computer
Science.

SPONS AGENCY National Library cf Medi,cine (DHEW), Bethesda, Md.;
National Science Foundation, Washington, D.C.

REPORT NO ISR-18 1Part V)
OUB DATE Oct 70
NOTE 100p.; Part of LI 002 719

EDRS PRICE EDRS Price MF-$0.65 RC-$3.29
DESCRIPTORS Automation, Computer Programs, *Design, *Information

Retrieval, *Information Systems, Languages, Man
Machine Systems, Programing, *Search Strategies,
Shared Services, Systems Analysis, Use Studies

IDENTIFIERS *Saltons Magical Automatic Retriever of Texts, SMART
On Line Retrieval Systems

ABSTRACT
On-line retrieval system design is discussed in the

two papers which make up Part Five of this report on Salton's Magical
Automatic Retriever of Texts (SMART) project report. The first paper:
"A Prototype On-Line Document Retrieval System" by D. Williamson and
R. Williamson outlined a design for a SMART on-line document
retrieval system using console initiated search and retrieval
procedures. The conversational system is described as well as the
program organization. The second paper: "Template Analysis in a
Conversational System" by S. F. Weiss discusses natural language
conversational systems. The use of natural language makes possible
the implementation of a natural dialogue system, and renders the
system available to a wide range of users. A set or goals for such a
system is presented. An experimental conversational system is
implemented using a template analysis process. A detailed discussion
of both user and system performance is presented. (For the entire
SMART project report see LI 002 719 and for parts 1-4 see LI 002 720
through LI 002 723.) (NR)

PERM/5510N TO REPRODUCE THIS COPY
RIGHTED MATERIAL HAS BEFs. GRANTED
BY

az,ed-

5.ILLEAce_. etEA.4*# 1140/
TO, ERIC AND/ ORGANOZATONS OPERATING
UNDER AGREEMENTS W1T11 THE US OFFICE
OF EDUCATION FURTHER REPRODUCTION
OUTSIDE THE EPIC SYSTEM REQUIRES PEP
MISSION Of THE COPYRIGHT OWNER'rw4

Department of Computer ScienceC7N
Ci)

Cornell University

CD
Ithaca, New York 14850

C=3

2.4.ta ta. uga. Sts4a.,«A CPesidirt

t-
6 c

Scientific Report No. ISR-18

INFORMATION STORAGE AND RETRIEVAL

to

The National Science Foundation

and to

The National Iibravy of Medicine

Reports on Analysis, Dictionary Construction, User
Feedback, Clustering, and On-Lire Retrieval

114

bo
Ithaca, New York

Gerard Salton

44\,) October 1970 U.S. DEPARTMENT OF HEALTH.
EDUCATION & WELFARE

Project DirectorOFFI:E OF EDUCATION0 THIS DOCUMENT HAS BEEN REPRO
DIKED EXACTLY AS HECEIVED FROM
THE PERSON OR ORGANISATION OR1G
iNATING ii POINTS OF VIEW OR OPiN
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU
CATION POSITION OR PtiLtCY

Copyright, 1970
by Cornell University

Use, reproduction, or publication, in whole or in part, is permitted

for any purpose of the United States Government.

SMART Project Staff

Robert Crawford
Barbara Galaska
Eileen Gudat
Marcia Kerchner
Ellen Lundell
Robert Peck
Jacob Razon
Gerard Salton
Donna Williamson
Robert Williamson
Steven Worona
Joel Zumoff

iii

ERIC User Please Note:

This Table of Contents outlines all 5 parts of Information Storage
and Retrieval (ISR-18), which is available in its entirety as
LI 002 719. Only the papers from Part Five are reproduced here
as LI 002 724. See LI 002 720 thru LI 002 723 for parts 1 - 4.

SUMMARY

TABLE OF CONTENTS

PART ONE

Page

xv

Available as
AUTOMATIC CONTENT ANALYSIS coa 1 AO

I. WEISS, S. F.
"Content Analysis in Information Retrieval"

Abstract

1. Introduction

2. ADI Experiments

I-1

1-2

1-5

A) Statistical Phrases 1-5

B) Syntactic Phrases I-7

C) Cooccurrence 1-9

D) Elimination of Phrase List 1-12

E) Analysis of ADI Results 1-20

3. The Cranfield Collection 1-26

4. The TIME Subset Collection 1-27

A) Construction 1-27

B) Analysis of Results 1-31

5. A Third Collection 1-39

6. Conclusion 1-43

References 1-46

II. SALTON, G.
"The 'Generality' Effect and the Retrieval Evaluation for Large
Collections"

4
iv

TABLE OF CONTENTS (continued)

II. continued

Abstract

Page

II-1

1, Introduction II-1

2. Basic System Parame',:ers

3. Variations in Collection Size 11-7

A) Theoretical Considerations 11-7

B) Evaluation Results II-10

C) Feedback Performance 11-15

4. Variations in Relevance Judgments 11-24

5. Summary 11-31

References 11-33

III. SALTON, G.

"Automatic Indexing Using Bibliographic Citations"

Abstract III-1

1. Significance of Bibliographic Citations III-1

2. The Citation Test 111-4

3. Evaluation Results 111-9

References 111-19

Appendix 111-20

IV. WEISS, S. F.

"Automatic Resolution of Ambiguities from Natural Language Text"

V

TABLE OF CONTENTS (continued)

IV. continued

Page

Abstract IV-1

1. Introduction IV-2

2. The Nature of Ambiguities IV-4

3. Approaches to Disambiguation IV-8

4. Automatic Disambiguation IV-14

A) Application of Extended Template Analysis to
Disambiguation IV-14

B) The Disambiguation ProcesS IV-15

C) Experiments . IV-17

D) Further Disambiguation Processes 1V-20

5. Learning to Disambiguate Automatically IV-21

A) Introductior IV-21

B) Dictionary and Corpus IV-21

C) The Learning Process IV-23

D) Spurious Rules IV-28

E) Experiments and Results IV-30

F) Extensions IV-46

6. Conclusion IV-49

References. IV-50

V. BERGMARK, D.

PART TWO

AUTOMATIC DICTIONARY CONSTRUCTION

vi
6

Atm% ickb io uc
aoca net

TABLE OF CONTENTS (continued)

V. conthlued

Page

"The Effect of Common Words andSynonyms on Retrieval Performance"

Abstract V-1

1. Introduction V-1

2. Experiment Outline V-2

A) The Experimental Data Base V-2

B) Creation of Ule Significant Stem Dictionary. . V-2

C) Generation of New Query and Document Vectors . V-4

D) Document Analysis Search and Average Runs. V-5

3. Retrieval Performance Results V-7

A) Significant vs. Standard St-I'm Dictionary V-7

BY Significant Stem vs. Thesaurus V-9

C) Standard Stem vs. Thesaurus V-11

D) Recall Results V-11

E) Effect of "Query Wordiness" on Search Performance. V-15

F) Effect of Query Length on Search Performance . . V-15

6) Effect of Query Generality on Search Performance . V-17

H) Conclusions of the Global Analysis V -19

4. Analysis of Search Performance V-20

5. Conclusions V-3I

6. Further Studies V-32

References V-34

Appendix I V-35

Appendix II V-39

I
vii

TABLE OF CONTENTS (continued)

Page

VI. BONWIT, K. and ASTE-TONSMANN, J.
"Negative Dictionaries"

Abstract VI-1

1. Introduction. . , VI-1

2. Theory VI-2

3. Experimental Results

4.$ Experimental Method VI-19

A) Ca)culating Qi VT-19

B) Deleting and Searching VI-20

5. Cost Analysis VI-25

6. Conclusions VI-29

References VI-33

VII. SALTON, G.
"Experiments in Automatic Thesaurus Construction for Information
Retrieval"

Abstract VII-1

1. Manual Dictionary Construction VII-1

2. Common Word Recognition VII-8

3. Automatic Concept;' Grouping Procedures VII-17

4. Summary y11-25

References VII-2o

8
via

TABLE OF CONTL fS (continued)

Page

PART THREE
AVAA10.414 gt%

USER FEEDBACK PROCEDURES kr 00 9. 12,2.

VIII. BAKER, T. P.
"Variations on the Query Splitting Technique with Relevance
Feedback"

Abstract VIII-1

1. Introduction VIII-1

2. Algorithms for Query Splitting VIII-3

3. Results of Experimental Runs VIII-11

4. Evaluation VIII-23

References VIII-25

IX. CAPPS, B. and YIN, M.

"Effectiveness of Feedback Strategies on Collections of
Differing Generality"

Abstract IX-1

1. Introduction IX-1

2. Experimental Environment IX-3

3. Experimental Results IX-8

4. Conclusion IX-19

References IX-23

Appendix IX -24

9
ix

TABLE OF CONTENTS (continued)

Page

X. KERCNNER, M.
"Selective Negative Feedback Methods"

Abstract X-1

1. Introduction X-1

2. Methodology X-2

3. Selective Negative Relevance Feedback Strategies. X5

4. The Experimental Enviro-ment X-6

5. Experimental Results X-8

6. Evaluation of Experimental Results X-13

References X-20

XI. PAAVOLA, L.
The Use of Past Relevance Decisions in Relevance Feedback"

Abstract XI-1

1. Introduction XI-1

2. Assumptions and Hypotheses XI-2

3. Experimental Method X1-3

4. Evaluation XI-7

5. Conclusion XI-12

References XI-14

10
x

TABLE OF CONTENTS (continued)

PART FOUR

CLUSTERING METHODS

wo. 1 4:0-101 it. 0.

ooa

Page

XII. JOHNSON, D. B. and LAFUENTE, J. M.
'A Controlled Single Pass Classitication Algorithm with Application
to Multilevel Clustering'

Abstract XiI-1

1. Introduction XII-1

2. Methods of Clustering XII-3

3. Strategy XII-5

4. The Algorithm XII-6

A) Cluster Size XII-8

B) Number of Clusters XII-9

C) Oi.erlap XII-10

D) An Example XII-10

5. Implementation

A) Storage Management XII-14

6. Results XII-14

A) Clustering Costs XII-15

B) Effect of Document Ordering XII-19

C) Search Results on Clustered ADI Collection . . XII-20

D) Search Results of Clustered Cranfield Collection . XII-31

7. Conslusions XII-34

References XII-37

TABLE OF CONTENTS (continued)

III. WORONA, S.
"A Systema;Ac Study of Query-'1ustering Techniques: A
Progress Report"

Abstract

1. Introduction

2. The Experiment

Page

A) Splitting the Collection XIII-4

B) Phase 1: Clustering the Queries XIII-6

C) Phase 2: Clustering the Documents XIII-8

D) Phase 3: Assigning Centroids XIII-12

E) Summary XIII-13

3. Results XIII-13

4. Principles of Evaluation XIII-16

References XIII-22

Appendix A XIII-24

Appendix B XIII-29

Appendix C XIII-36

PART FIVE

ON-LINE RETRIEVAL SYSTEM DESIGN

XIV. WILLIAMSON, D. and WILLIAMSON, R.
"A Prototype en-Line Document Retrieval System"

Abstract XIV-1

12
xii

TABLE OF CONTENTS (continued)

XIV. continued

Page

1. Introduction XIV -i

2. Anticipated C- ,uter Configuration XIV-2

3. On-Line Document Retrieval A User's View XIV-4

4. Console Driven Document. Retrieval An Internal View XIV-10

A) The Internal StruLture XIV-10

B) General Characteri3tics of SMART Routines Xl1-16

C) Pseudo-Batching XIV-17

D) Attaching Consoles to SMART XIV-19

E) Console Handling The Superivsor Interface XIV-21

F) Parameter Vectors X1V-21

G) The Flow of Control XIV-22

H) Timing Considerations XIV-23

I) .Noncore Resident Files XIV-26

J) Core Resident Files XIV-28

5. Consol A Detailed Look XIV-30

A) Competition for Core XIV-30

B) The SMART On-line Console Ccaltrol Block . . XIV-31

C) The READY Flag and TRT Instruction . . XIV-32

D) The Routines LATCH, CONSIN, and CONSOT . . XIV-32

E) CONSOL as a Traffic Controller XIV-34

F) A Detailed View of CYCLE XIV-37

6. Summary XIV -39

Appendix XIV-40

XV. WEISS, S. F.
"Template Analysis in a CL.nversational Syr.tem"

13

XV. continued

Abstra.lt

TABLE OF CONTENTS (ontinued)

1. Motivation

Page

XV -1

XV -1

2. Some Existing Conversational Systems XV-4

3. Goals for a Proposed Conversational System. XV-7

4. Implementation of the Conventional System XV-11

A) Capabilities XV-11

B) Input Conventions XV-12

C) The Structure of the Process XV-13

D) Template AnAlysis in theCbTxxsational System XV-14

E) The Guide Facility XV-23

F) Tutorials XV-24

5. Experimentation XV-25

A) System Performance XV-30

B) User Performance XV-31

C) Timing XV-34

6. Future Extensions XV-35

7. Conclusion XV-37

Refezences XV-39

14
xiv

ERIC User Please Ncte:

This summary discusses all 5 parts of Information Storage
and Retrieval (ISR-18), which is available in its entirety as
LI 002 719. Only the papers from Part Five are reproduced here

as LI 002 724. See LI 002 720 thru LI 002 723 for parts 1 - 4.

Summary

The present report is the eighteenth in a series describing research

in automatic information storage and retrieval conducted by the Department

of Computer science at Cornell University. The report covering work carried

out by the SMART project for approximately one year (summer 1969 to summer

1970) is separated into five parts: automatic content analysis (Sections

1 to IV), automatic dictionary construction (Sections V to VII), user feed-

back procedures (Sections VIII to XI), document and query clustering methods

(Sections XII and XIII), and SMART systems design for on-line operations

(Sections XIV and XV).

Most recipients of SMART project reports will experience a gap in

the series of scientific reports received to date. Report ISR-17, consisting

of a master's thesis by Thomas iIrauen entitled "Document Vector Modification

in On-line Information Retrieval Systems" was prepared for limited distrik,u-

tion during the fall of 1969. Report ISR-17 is available from t...e National

Technical Information Service in Springfield, Virginia 22151, under order

number 1)13 186-135.

The SMART system continues to operate in a batch processing mode

on the IBM 360 mode] 65 system at Cornell University. The standard processing

mode is eventually to be replaced by an on-line system using time-share0

console devicas for input and output. The overall design for such an on-line

version of SMART has been completed, and is described in Section XIV of the

present report. While awaiting the time-sharing implementation of the

system, new retrieval experiments have been performed using larger document

collections within the existing system. Attempts to compare the performance

13
xv

of several collections of different .es must take into account the

collection " generality". A study of this problem is made in Section II of

the present report. Of special interest may also be the new procedures

for the automatic recognition of "common" words in English texts (Section

VI), and the automatic construction of thesauruses and dictionaries for use

in an automatic language analysis system (Section VII). Finally, a new

inexpensive method of document classification and term grouping is

described and evaluated in Section XII of the present report.

Sections I to IV cover experiments in automatic content analysis

and automatic indexing. Section I by S. F. Weiss contains the results of

experiments, using statistical and syntactic procedures for the automatic

recognition of phrases in written texts. It is shoWn once again that be-

oause of the relative heterogeneity of most document collections, and

the sparseness of the document space, phrases are not normally need :d

for content ieentification.

In Section II by G. Salton, the "generality" problem is examined

which arises when two or more distinct collections are compared in a

retrieval environment. It is shown that proportionately fewer nonrelevant

items tend to be retrieved when larger collections (of low generality)

are used, than when small, high generality collections serve for evaluation

purposes. The systems viewpoint thus normally favors the larger, low

generality output:, whereas the user viewpoint prefers the performance of

the smaller collection.

The effectiveness of bibliographic citations for content analysis

purposes is examined in Section III by G. Salton. It is shown that in

some situations whet the citation space is reasonably dense, the use of

xvi
16

citations attached to documents is even more effective than the Ise of

standard keywords or descriptors. In any case, citations should be added

to the normal descriptors whenever they happen to be available.

In the last section of Part 1, certain template analysis methods

are applied to the automatic resolution of ambiguous constructions

(Section IV by S. F. Weiss). It is shown that a set of contextual rules

can be constructed by a semi-automatic learning process, which will eventually

lead to an automatic recognition of over ninety percent of the existing

textual ambiguities.

Part 2, consisting of Sections V, VI and VII covers procedures

for the automatic construction of dictionaries and thesauruses useful in

text analysis systems. In Section V by D. Bergmark it is shown that word

stem methods using large common word lists are more effective in an infor-

mation retrieval environment that some manually constructed thesauruses,

even though the latter also include synonym recognition

A new model for the automatic determination of "common" words

(which are not to be used for content identification) is proposed and

evaluated in Section VI by K. Bonwit and J. Aste-Tonsmann. The resulting

process can be incorporated into fully automatic dictionary construction

systems. The complete thesaurus corstruction problem is reviewed in Section

VII by G. Salton, and the effectiveness of a variety of automatic dictionaries

is evaluated.

Part 3, consisting ,f Sections VIII through XI, deals with a

number of refinements of the normal relevance feedback process which has

been examined in a number of previous reports in this series. In Section

VIII by T. P. Baker, a query splitting process is evaluated in which input

queries are split into two or more parts during feedback whenever the

relevant documents identified by the user are separated by one or more non-

relevant ones.

The effectiveness of relevance feedback techniques in an environ-

ment of variable generality is examined in Section IX by B. Capps and M.

Yin. it is shown that some of the feedback techniques are equally applica-

ble to collections of small Ind large generality. Techniques of negative

feedback (when no relevant items are identified by the users, but only

nonrelevant ones) are considered in Section X by M. Kerchner. It is shown

that a number of selective negative techniques, in which only certain

specific concepts are actually modified during the feedback process, bring

good improvements in retrieval effectiveness over the standard nonselective

methods.

Finally, a new feedback methodology in which a number of documents

jointly identified as relevant to earlier queries are used as a set for

relevance feedback purposes is proposed and evaluated in Section XI by L.

Paavola.

Two new clustering techniques are examined in Part 3 of this report,

consistin, of Sections XII and XIII. A controlled, inexpensive, single-pass

clustering algorithm is described and evaluated in Section XII by D. B.

Johnson and J. M. Lefuente. In this clustering m'thod, each document is

examined only once, and the procedure is shown to be equivalent in certain

circumstances to other more demanding clustering procedures.

The query clustering pvcess, in which query groups are used to

define the information search strategy is studied in Section XIII by S.

Worona. A variety of parameter values is evaluated in a retrieval environ-

1(7;

rent to be used for cluster generation, centroid definition, and final

search strategy.

The last part, number five, consisting of Sections XIV and XV,

covers the design of on-line information retrieval systems. A new

SMART system design for on-line use is proposed in Section XIV by D. and

R. Williamson, based on the concepts of pseudo-batching and the interaction

of a cycr.ng program with a console monitor. The user interface and

conversational facilities are also described.

A template analysis technique is used in Section XV by S. F. Weiss

fcr the implementation of conversational retrieval systems used in a time-

sharing environment. The effectiveness of the method is discussed, as

wnll as its implementation in a retrieval situation.

Additional automatic content analysis and search procedures used

with the SMART system are described in several previous reports in this

series, including notably reports ISR-11 to ISR-16 published between 1966

and 1969. These reports are all available from the National Technical

Information Service in Springfield, Virginia.

G. Salton

XIV. A Prototype On-Line Document Retrieval System

D. Williamson and R. Williamson

Abstract

XIV -1

A design is outlined for a SMART on-line document retrieval system,

using console initiated search and retrieval Procedures. The conversational

system is described as well as the program organization.

1. Introduction

The SMART system presently contains routines for experimental, off-

line document retrieval. The experimental results o'-)tained so far indicate

that automatic document retrieval can provide useful information for

general library users. The next logical step is the development of a suit-

able user-oriented interface in,oviding access via on-line consoles in an

interactive manner.

This report describes a prototype, on-line document retrieval

system and a user interface. The system which is outlined is intended to

provide the best service possible to on-line users at a reasonable cost, but

could also be efficiently used with very few modifications as a batch or

remote entry system. While initial test' ; with collectionsof only a few

thousand documents and less than five consoles is anticipated, the meal-

nisms used are intended lo be applicable without revision to much larger

collections of about 500,000 documents, and up to one to two hundred input-

output consoles.

20

XIV-2

2. Anticipated Computer Configuration

In order to provide adequate response times about 10 seconds for

minor inputs and about 30 seconds for responses to search commands a

large, high-::eaed computer is necessary. Document retrieval, like many

other non-numeric processes, requires a large data base of which a small, but

substantial, fraction must he accessed for each query. Thus, it is necessary

to operate with large, on-line files presumably on a disk (although certain

files could be placed on a (.ate cell type device).

While a large computer is necessary to support the input-output equip-

ment, and provide reasonable response times, an on-line retrieval system

such as SMART, will not be able to utilize the full resources of a large

machine. First, periods will occur when no users wish to avail themselves

of the on-line system; and even when actual users are present, most of the

real-time of an interaction is spent waiting for user deoisiona. Also,

while processing a search request, the computer may be expected to be input-

output (I -0) bound waiting for vocabularies and documents to be brought

into core.

If processing costs are to be reasonable, provision must be made

t.-.) permit non-retrieval users to process while the retrieval system is in-

active for one reason or another. The type of environment needed is typi-

fied by many of the multi-processing and timr-sharing systems available on

large machines today. W.th these systems,jobs are effectively allocated to

two queues: most are avaiting execution, and a few are in execution. Those

in execution share the central processor (C.P.U.), memory, and on-line

storage devices. Each memory area and storage device is usually dedicated

to E single job. (In addition, a few devices and storage areas are normally

21

XIV 3

reserved for the sup-'rvisor which is used by all jobs.) CPU allocation is

normally switched from one executing job to another (through the supervisor)

whenever that job is blocked usually because it must await completion of

an I-0 transmission. System blocks are provided to prevent jobs from mono-

polizing the CPU, when no blocks occur for a certain time.

In the normal course of events, each executing job receives the

opportunity to use the CPU several times a minute. Much of the time, a

retrieval process such as SMARM will be unable to utilize the opportunity

to process. However when SMART has work 10 do, and the information necessary

to do that work is availabla, the CPU is normally accessible effectively

instantaneously. The reason is that the retrieval tasks will appear as

highly f-0 bound jobs, which are thereLore Lore r!siden-,.. f: long periods

of time, and are usually high in prfority for CPU access.

SMART can make efficient use of as much core storage as can be

made, available. However, the retrieval rou,:ines tend to be small, and are

highly overlayable; thus, the basic core area requirements are quite small.

As in other typical data processing applications, the major core requirements

in a retrieval program are for data areas in which to place I-0 buffers for

dictionaries, documents, etc. it would be most desirable if SMART could

obtain 100 K to 200 K of core (possibly from a bulk core rather than from

the high speed main core) on demand, for periods of only several seconds

each time a request (or group of pseudo-batched requests) are processed.

This core could easily come from the system buffer pool. Eowever, sharing

of core in this way is not a normal feature of today's operating systems;

thus, SMARI will undoubtedly have to reserve an area of high-speed ,:ore for

progradis (25-30 K bytes), and an area of bulk core for data (at least 50 K

bytes however, the more core is available, the faster will normally be

the obtainable response times).

3. On-Line Document Retrieval --A User's View

When control of a console is transferred to SMART, the remote unit

should be titled clearly to indicate to the user what basic information is

needed at each step (detailed information should be provided as specified

by a user's manual).

If "MART is on-line at the time cf console transfer, the user must

first enter such basic information as his name and account number (see

Fig. 1). After this information is accepted by SMART, the user can proceed

to ask for the excctrcion of a g:Jen prccess. Many processes, such as query

searches, query updates, ane. displays of output are available.

An initial user will probably start with a single query search

(such os shown in Fig. 1). In this case, he will type in his query and

then ask for a search to be clone. The results will be displayed (in one

of several possible forms, such a6 titles, abstracts, etc.), and the user

will then either get a :urther display of the documents, or use the results

of the search at that point.

Several types of displa, for retrieved documents could be used.

The volume of information included in abstracts (cr full articles) is

likely to be so large that teletype display will be impractically slow;

cathode-ray tube display is however quite expensive. Storage of abstracts

at the remote terminal is an attractive alternative, wito storage either on

microfiche cards or in co7puter listings.

Following the retrieval of an initial set of abstracts, the query

XIV-5

$PROCEED

-SMART

SMART

#What is your name?

-Joe Cornell

#What is your access code? -

-NONE

Your access code is "MNAIZ".

#Do you wish 'co enter a query?

-Yes,

#PleasP enter your i th query.

#Type "End of query." when finished.

-What articles are there in ...

. End of query.

#Ic. your query ready for analysis?-

-Yes.

A Typical User's First Query

Fig. 1

XIV -6

Rank y Artiae Correlation

1 60x1212 0.6708

L. B. Heilprin, Towards a Definition of
Information Scierhle

2 45x1215 0.4472

D. Crosland, Graduate Training in
Information Science

3 03x121C 0.3823

h. L. Taylor, In Information Science
Education

r+ 21x1209 0.3660

Personnel An Assessment and Projection

5 43x1206 9.3651

A. M. Rees, The Education of Science
information Personnel A Challenge
to the Library Schools

Results of Initia3 Search of Query 1

Fig. 1 (continued)

2,

XIV-7

Following the ret. eval of an initial set of abstracts, the query

author can return to the console and give the system his estimated relevance

decisions. Since a prime scurce of error in all document retrieval systems

is the discrepancy between a query author's intended query and his expressed

query, initial queries can often be greatly improved through a process known

as relevance feedback. This process modifies the query by adding words used

in the relevant documents to the query, thus enlarging, and hopefully, im-

_roving the query. To improve his query, the user would re-enter the system,

asking fLr a smirch on the original query plus relevant documents. An example

of the re-entry to use feedback is shown in Fig. 2. In this case, user

asks to delete titles and uses oily minimal replies. After the preliminary

e.ign on at the console, the user is asked if he wishes to submit relevancy

decisions for any Ective queries (in this ease qury 10). An indication must

then be given of these decisions on a relevance scale from 1 to 5. After

entering the decisions, the user asks for relevance feedback, and gets the

results in a manner similar to the search results in Fig. 1.

For more experienced users, other procedures might be useful. Dic-

tionary display to help the user construct more reasonable queries is possible,

and various types of syntactic analysis can be used. The u3er can also alter

the searching methods used by utilizing his private search parameters instead

of the standard system parameters.

Each of the various procedures available to users requires specific

patterns of interaction between the console and the user. Tab:e 1 contains

a tabular display of portions of a proposed console interface. Only a few

of the procedures arc traced in full, as an example or how such an interface

would be constructed. The importance of the table lies in its overall stru,-

20

?UV-8

ture the specific wording of the messages and the division of labor among

table :.1,gments is oi minor interest. However, it should be noted that

console interaction is handled in a sequential manner. Thus each user is

associated with lust one poi.:ter Indicating the segment to which he is

replying.

Each table segment consists of one computer to console message_ inclu-

ding a possible user response, or system action. If an unanticipated response

is obtained in a basic system, the text will be repeated in tutorial mode.

In a more advanced system, special segments could be set up to handle unanti-

cipated responses in special ways.

Several responses are global in that they could appear at any time

rather than in response to a specific SMART message. These are listed in

Table 1 under segment 0 (e.g. reply class shifts). The normal form of a

response is a key phrase followed by a carriage return. Some responses can

include explicit requests for changes in parameter values at the user's

option. For those responses which can take up more than one line, a period

terminates the response.

Some responses can contain a number of p.:ricos, and consist of more

than one line, e. g. queries. Such responses are terminated by a key phrase,

e.g. ''End of query.". To eliminate problems caused by missing periods, etc.,

a user should be required to enter at lease one character within 10 seconds

of a carriage return; otherwise the multiple line response is considered

complete. Such a rule is needed to prevent the system from waiting for user

action while at the same time the user in expecting action by the computer.

Each reply text uses an ampersand "" to indicate a mandatory carriage

return. Additional carriage returns are inserted es needed by a console

message director &Tending un the number of characters per line available on a

21

XIV-9

$ Proceed

SMART.

- No title, minimal replies.

Nam?

- Mike Lesk

Access Code

XAQ13

SMART XAQ13 Mike Lesk

Relevancy decisions for active query 10?

- Yes.

Document # 4C5 603 201 815 10004

- Decisions 3,4,3,5,1

Abstract decisions?

- Yes.

Relevance Feedback?

- Yes.

Search?

- Yes, search.

Results of 3rd search of Query 10

- DONE

Control is relinquished to the supervisor.

$ Proceed

1

RelevAnce Feedback

Fig. 2

XIV-10

specific console. A hyphen "-" indicates that the console heyboard un-

locked fore user response. Each quoted anticipated response, such as the

key pnrase responses, can be abbreviated by using only the capital letters

specified in the response. All anticipated responses can b?. typed using

any mixture of upper or lower case letters.

The conten oF the ' Internal' column are, for the most pert,

self-explanatory. The use of the variable READY is described later but

included in the Table for completeness. It indicates whether console inter-

action is needed, or whether internal work is needed.

The 'Next Segment' field indicates which segment is to be considered

next. Often this is dependent on the response or the Action field. AT "R"

indicates a return to whichever segment was previously considered. Each

user is assigned variables to indicate the segment he is in and the line of

text (for that segment's message) that is being transmitted. When a console

joins SMART, logical control is first set at segment 9 if SMART is on-line,

otherwise control is set at segment 1. Note that segments above 104 are not

included in tie Table, but would be set up in the same way as other segments.

4. Console Driven Document Retrieval An Internal v'ew

This section describes a possible implementation of the on-line

document retrieval system presented earlier. All routines available for

batch SMART runs are usable without any reprogramming. An on-line executive

program is however needed to drive the consoles and the catch routines.

A) The Internal Structure

The internal structure needed for a prototype system rust satisfy

sevei.a:1 goals. As Indicated in the introduction, a prototype system must

2d

XIV-11

Segment
Number

Reply
Class

Messages for Consoles Anticipated Responses
from Consoles

Interne] Action Next
Segment

0 (none) "DONE"

(Attention Key)

"Tutorial Replies"

"Short Replies"

"Minimal Replies"

"?" or an unantici-
pated response

Delete trans-
mission and
activate
keyboard

REPCLS =
Tutorial

REPCLS = Short

REPCLS
Minimal

If REPCLS = M
Then REPCLS = S

If REPCLS = S
Then REPCLS = T

If REPCLS = T

51

R

R

R

R

R

R

9000

1 SMART is on-line

SMART is not
on-line

2

3

2 #SMART is already on-
line. You may not
initiate a duplicate
system.

51

3 #SMART is initiated.
Your console is the
master console.
May other consoles
attach to SMART?-

"Yes"

two'?

NEWCON = Yes

NEWCON = No

3.5

3,5

3,5 (Reply Class Shift
Only)

4

a) Introductory Segments

SMART Console Interface

Table

XIV-12

Segment
Number

Reply
Class

Message for Consoles Anticipated Responses
from Consoles

IW:emal Action Next

Segn.en

L S #What is your name?- User's Name Store Name 6

M #Name?-

6 S #What is your access "None" Assign an access
code? code 7

M #Acss code?- Access code Verify code-OK 8

NOK 9900

7 Your access code
is 'ACCODE".

NUMCUS(-number
of customers

ACCODE(-User's
new access code

Store access code 100

8 #Welcome to SMART.

ACCODE ACCODE(-access
code

NAME NAME(-User's name
as c.n file

Does user have any
unfinished queries?

Yes :000
No 100

9 If SMK.C. is

on-line 3.5

[

If SMART is
off-line 10

10 #SMART is not now
on-line. Retrieval
i.11 be available

51

(time, day).

a) Introductory Segments (contd.)

SMART Console Interface

Table 1 (continued)

31

XIV-13

Segment
Number

Reply
Class

Message for Consoles Anticipated Responses
from Consoles

Internal Action Next
Segment

50 S #Please select one of
the following
programs...

#Quer:, Analyze, Search,
Display, Feedback,
Pre-search, Search
Options, Feedback
Options, Analysis
Options, Judgments,
Done.

"Done."

" "Query.

"Analyze."
"
Analyze using
XYZ strategy."

"Search."

"Search, using
XYZ strategy."

"Display."

"Feedback."

"Feedback, using
XYZ strategy

"Judgments."

"Pre-search."

"Analysis options."

"Search options."

"Feedback options."

ANALPV=XYZ

SEARPV=XYZ

FEEDPV = XYZ

51

100

500

500

1000

1000

2000

3500

3500

3000

4000

5000

6000

7000

51 #Thank you for using
SMART

#Control is
relinquished.

READY = 0
TST = 0

Return control
of console to
supervisor

b) Central Director

SMART Console Interface

Tablc. 1 (cLntinued)

3

XIV-14

Segment
Number

Reply
Class

Message for Consoles Anti:ipated Responses
from Consoles

Inc:arna:. Action Next
Segment

100 Do you wish to enter
a query?

"Yes."

"No."

101

50

101 S #Please enter your MAXQUE = MAXQUE

MAXQUEth query. + 1

#Type "End of
query." when finished.

NUMQUE = MAXQUE 102

M Enter MAXQUEth query.

102 - A line of a query. Store line.

Does line end
in EOQ? YES 103

No 102

103 S Is your query ready
for analysis?-

"Delete Query." MAXQUE = MAXQUE
- 1

Delete query 101

M }Analyze ? - "Add to Query."

"Boolean." Does user want
to supply
Boolean Informa-
tion? YES 104

No 500

"Yes, search." DOANAL = 1

"Yes." DOCENT = 1

DOSEAR = 1 500

"Yes, Search, using
XYZ Strategy." As above and

SEARPV = XYZ 500

"Yes, using XYZ
Strategy." DOANAL = 1

ANALPV = XV.

"No." 50

c) Query Text Handling

SMART Console Interface

Table 1 (continued)

XIV-15

have the speed and ease of use of a production system, as well as the flexi-

bility and measurability of an experimental system. A document retrieval

system must provide fast on-line service and exhaustive, inexpensive off-

line service. A tN?ical first thought is simply to provide two systems

one for on-line work, and the other for off-line work. However, a single,

flexible system capable of handling both type3 of service is normally less

expensive to develop, operate and maincain than two separate systems, pro-

vided a scheme with the needed features can be found.

The flexibility required to provide on-line and off-line service in

a single package is best illustrated by the differing amounts of transmitted

information. Ofi'-line users will want, and can afford, to use 1,tfe 7ol'imes

of information. Such a volume of information cannot be trar.';',,, -I low

cost to an on-line user, nor woold an on-line user be able tc e with the

quantity of information of use and interest to an off-line u:er.

Another illustration of the needed flexibility is relate.; to machine

storage. During off-hours, ownership of large amounts of stori;e `,:r long

lengths of time may be possible. Most on-line requests, how vet, will be

serviced during the day when ethers also want to use the ccmi- reduce

costs, it is necessary that a minimum of computer resources 1,2 1.21

aiii,cattil to each specific task. Unfortunately, human respc,F.3e mes are

much slower than normal computer response times when the cc.. rtrr i being

used for batch processing. For example, a complete off-lino sc l'ch for

42 queries and 1400 documents can be completed in less real-t:me t;,an a

single on-line query because of the slowness of human resinse. (01,viously,

the 42 query search requires more process time.)

3 (.1

X1V-I6

B) General Characteristics of SMART Routines

To satisfy the need for flexibility and modifiability, SMART is

programmed as a set of small, clearly defined, and well doctrented Fortran

subroutines. Each subroutine accomplishes one task with a minimal inter-

face with other routines. Fich SMART routine lies in a distinct class

depending on the amount of structure in the data used or manipulated. On

the bottom of the pyramid are the I-0 routines and the MOVE routines

(which move sets of sequential locations from one place to another). 'These

routines "know" only the length and origin of the fields with which they

deal.

Next in the hierarchy are routines which deal with the various kind

of vectors. SMART uses several kinds of vectors, all consisting of e

"head" indicating the length of the vector followed by information in

double words. In the case of concept vectors, these double words contain

concepts and weights; in the case of result vectors, the first word contains

the document number and rank retrieved (each in half words), and the corre-

lation of the document with the query. The routines that deal with these

vectors "know" the internal structure of the vectors. Some examples of

this class of routine are LSTCON, which prints the contents of a concept

vector, and RESULT, which prints the contents of a vector of document -query

correlations.

Above this level are routines which deal with groups of vectors.

These are the routines which know that many queries exist in the system.

Typical of these routines is BLOCK, which combines the result vectors for the

several iterations of one query during a hatch run, and gives the combination,

one query at a time, to RESULT.

XIV-17

At the top to the entire pyramid are the routines EXEC and ONLINE.

EXEC is a card-controlled driver for the system. It is normally used for

batch experimental work and ..obs typically done off-line, such as the

addition of new text and centroid generation. ONLINE is normally used to

control on-line document retrieval. A partial tree of 'AWE routines

showing this structure follows in Fig. B.

C) Poeudo- Batuhing

Basic to an understanding of the mechanism proposed for document

retrieval is the idea of pseudo-batching. In any reasonable batch-pro-

cessing document retrieval system, a large number of queries are handled

in parallel. This serves to reduce the fixed overhead per query to a

fraction of the total overhead. So long as the increased expense of dealing

with several queries is kept small, there is a :et gain in effectiveness

per unit cost.

A basic problem in an on-line document retrieval system is that

each search passes through different stages with different requirements.

This presents problems because of the multiplicity of distinct programs

which may be required, as well as the input-output problems. If each query

is multi-programmed with other queries, severe competition for resources

would result. One query could need document files, another dictionaries, anti

yet another would require text files. A complicated scheduling algoriam

would be required to untangle the requirements for file access facilities

and storage :,pace; this would increase overhead cost sharply.

In an on-line system where many users individually cycle through

tue same se, of routines and files, a much better utilization A resources

results by batching the incoming cueries. It the sysem proceses only

d

XIV -18

Master
Control
Routines

Routines
Needing
External
Inputs

Routines
Handling
Batched
Vectors

Routines
Handling
Dope
Vectors

ONLINE

CYCLE

MODBAT

'i

(various

SE

other
routi

/

RCH

COR

e .$)

AT BLOCK DISPLA

FUTCOL

CONSOLE

Tr'

CONSIN

Routines
Handling
Material
Within
Vectors

DEFITM

11P

LOCITM

READ

RESULT

INNER

LOCITM

READ

MOVE

Structure of SMART Routines

Fig. 3

XIV-19

those queries available at the start of a (twenty second) cycle, competi-

tion for resources eliminated. Each query would then take thirty

seconds on the average; twenty seconds of actual processing and ten

seconds of waiting.

Many advantages, can be accrued to the overall system and thus to the

user by the batching of queries. Of greatest importance is the ,esulting

lack of competition for different files or for space to store them. Secondly,

each query has an apparent overhead considerably less than it would have

if it were the only query to use a file at a given time. Obviously, _'over

overhead means lower cost.

D) Attaching Consoles to SMART

Since one can assume that consoles will not be continuously dedi-

cated to a document retrieval system, at least in an experimental environment,

provision must be made for transfer of control of a console from the computer

supervisor to SMART. If SMART is core-resident and a specific console is

wanted for SMART, the process is as simple as obtaining additional disk space

or more core. However, it is desirable that a user be able tc go to any

available, supervisor-controlled console, and that the console ba transferred

to SMART at the user's initiation. Under such circumstances, the possibility

also exists that SMART is not available on-line at some given time. Naturally,

the problems and cosy: of serving additional users are far less when SMART is

already on-line than when SMART must be started for the first user. Since

SMART wishes to permit anyone to utilize the document retrieval system,

provision must le made to prevent the occurrence of unrecvonable exper.-es.

One obviously unreasonable expense is the improper activation of ::ART.

Another problem is the need to keep to a minimum the actions which

XIV-20

typical, non-computer-oriented user must carry out to use the SMART syEtem

on-line.

For these reasons SMART could include a small routine that is con-

tinuously a part of the supervisor. Normally, after a user has activated

a console (e.g. by dialing, the computer 3f telephone lines are used), the

computer expects the name and account number of the user (in order to pre-

vent unauthorized usage). The user may then enter simply the word "SMART".

This wi11 cause :-.he execution of a program called SMTLATCL which is supplied

with the "name" of the console presently wanting SMART. This code will

"know" whether SMART is on-line or not,

If SMART is not on-line an appropriate response is made. (An

example is presented in Fig. 4.) If SMART is on-line, the console number

of the new user will be made available to the normal SMART programs and a

flag will be set indicating that a new console needs to be attached. When

SMART regains use of the computer, the supervisor can be requested to

transfer control of that console to SMART.

(Dial computer and press carriage return.)

#Proceed.

%SMART.

$SMART will be available next at 3 p.m.
Tuesday, October 4, 1968.

#Pr)ceed.

Console Response to a Request for SMART
When SMART is not On-line

a

YIV-2l

E) Console Handling The Supervisor Interface

SMART will not need to worry about physical control of the consoles.

Rather SMART provides a rcutine which the supervisor can call whenever a new

line is available from a console. The console keyboard is than locked (i.e.

nothing more can be typed by the user) until SMART allocates space for a

new line somewhere in a SMART section of memory and so tells the supervisor.

Alternatively, at this time, SMART can transmit a line to the console. Nor-

mally the console keyboard will :..)e freed fast enough (if multi-li"e input

is anticipated) so that the user will be unaware of the keyboard ever being

When SMART wishes to write on a console (which includes unlocking

the console keyboard), a call to the supervisor is made with the location

of a message and the name of specific console on which the message is to

appear. If the keyboard of that console is locked, the message is immediately

transmitted. If the keyboard is not locked, the transmission is refused and

SMART will lave to lock the keyboard first and accept whatever message was

transmitted. (On the equipment presently available the console cannot be

locked; only the user can lock the keyboard by pressing "Attention" or

"Carriage Return"; the system must therefore wait for user action.)

F) Parameter Vectors

As each enquirer is introduced to SMART, he is associated with a

user vector that contains pointers to parameter vectors. These vectors are

filled with information taken from control cards during a batch processing

run, or from a default vector for new on-line users, or from personal para-

meter vectors. These parameters supply values needed to control the action

of the retrieval routines. Each user may define his own personal parameter

vectors which can be saved for use on many searches.

4u

XIV-22

G) The Flow of Control

The flow of batched queries is comparatively simple compart-d-to

that of on-line queries. Although batched and on-line queries use different

means to fill parameter vectors, and take different action with respect to

the output of most routines, these differences are unimportant.

The manner of introducing an on-line user has already Leen described.

(As far as SMART is concerned, a user and the console he is then using are

equivalent in all ways. Thus, wherever the word 'console' appears, the

word 'user' could be substituted.)

The on-line control program consists of two logically distinct

routines. CONSOL handles phys5.cal communications with the consoles on an

interrupt basis (i.e. in real-time). CYCLE handles the use of core and the

large system files by cycling among them, satisfying users as it can.

Logical control of each console shifts between CONSOL and CYCLE.

The SMART On-3.int! Console Control Block (SOCCB) indicates at any

given instant which routine is logically in command of a t.onsole. The

SOCCB synchronizes the real-time routine CONSOL with the process-time

routine CYCLE. The RLADY flag assocated with each console takes on certain

values if the console is awaiting completion of a task done by CYCLE. When

CYCLE is finished, the READY key is changed. Since the key is changed,

CONSOL can recognize that it should proceed with that console.

Testing READY flags (for up to 256 consoles) is accomplished by a

single instruction (Translate and TEST TRT) using a 256 byte array. Since

the test is fast, it can be carried out frequently by both CONSOL and CYCLE.

For example, after sending each line of a message to one console, CONSOL can

test to see if any other console requires service for a single line. If so,

41

XIV-23

the servicing of the one console with a series of lines is terminated, and

consoles with single-line needs are handled. CONSOL then returns to

the multi-line message and finishes. CYCLE uses the speed of the TRT

instruction to locate those queries needing a specific process. After

each CYCLE driven routine finishes with a batch of queries, the table c,n

be scanned to see if, in the meantime, any other queries nJv need that same

process. Some routines which can be logically divided into two parts, one

essentially in-core and the other necessitating file accessing, could be

programmed to check for "latecomers" to speed up overall response without

losing the advantages of cycling.

For a list of typical READY flags see Table 2.

H) Timing Considerations

In order for the type of organization presented to be acceptable

to non-SMART users of the computer, two timing considerations are .)aramount.

First the CONSOL routine must be assigned highest priority by the supervisor,

since it must respond to on-line signals. CYCLE is assigned the second

highest priority. This implies that if CYCLE is free to perform work, the

CPU is taken away from any other executing program (except CONSOL and the

supervisor itself). Normally, however, CYCLE is 1-0 bound. While CYCLE is

waiting for needed information from noncore resident files, and when CYCLE

has no work co do, the CPU is able to do the work of other customers.

Thus, CONSOL must have available everything it needs to work and

CYCLE must contain no wait loops of any size. If information is riot available,

the supervisor must be given control until the required information is

available.

XIV -24

Non-SMART Prograls vt<1 I Console 2 I

[Console 2]
Supervisor 1

4

CYCLE

AV//XI Console 3

) Buffers Console 256 J

User Far&mcLer Vectors J

4-- pL User Histories j

SHAFT Statistics

SMART On-Line
Console Control Block

i TST Console
Number

255 45

255 12

0 0

255 1

0 0

User

Vector
READY
Flag

3408 34

3479 34

C 0

2202 4

0 0

I Fre-search Display 7,44 H.R. Vocabulary J

L Text Cracking J 4 Vocabularies

Centroid Searching j4....A Centroid Concept
L Vectors

EDocument .Searching j Dccument Concept
Vectors

41

Post search Display j4.1_ H.R. Text

C Query Update J Document Concept
Vectors

Lege:Id: Core-resident Auxiliary H.R. Human Readable

SMART On-line Control Logic

Fig. 5

XIV -25

Routine
Needed

READY Meaning

;NONE) 0 Unused slot.

CONSOL 1 Newly arrived console, no assigned user vector.

(NONE) 2 Console keyboard unlocked for user transmission.

CONSOL 3 Console keyboard locked by receipt of a user
transmission.

(NONE) 4 One line message going to console.

LJNSOL 5 Consomme keyboard locked further liars are needed.

CYCLE 6 Allocate core.

CONSOL 7 Core Allocated.

. .

. .

CYCLE 20 Crat_A text.

CYCLE 21 Cracking text.

CONSOL 22 Text cracked.

CONSOL 23 Notifying user.

CYCLE 24 Set -up pre-search display.

CYCLE 29 Setting-up pre-search display.

CONSOL 26 Pre-search cisplay setup.

CONSOL 27 Displaying to user.

CYCLE 40 Search centroid tree.

CYCLE 41 Searching centroid tree.

CONSOL 42 Centrcid tree searched.

CONSUL 43 Informing user of results of tree search.

. .

. .

READY Flags

Table 2

4

X1V-26

I) Noncore Resident Files

Before going into CONSOL and CYCLE in detail each of the files used by

SMART is introduced briefly. The various logical segments of core are then

similarly defined to provide a reference and to eliminate detailed descriptions

within succeeding sections.

SMART files can be divided into three distinct classes those used

by CYCLE, these used by CONSOL, and the consoles themselves. The console

files are basically standard sequential files, with, however, an unpredictable

access time. Like sequential files, records are read (or written) one-at-a-time

and in linear order. There is, of course, no backspacing, rereading or over-

writing.

CONSOL deals with three files of a more familiar nature. The

'SMART Statistics File' is a sequential, write-only file on which is placed

information to enable evaluation of SMART's performance by supervisory

staff. Information such as observed user and SMART response times, and

statistics on query authors using the system might be kept.

The 'User History File' retains information about unfinished queries

on an individual user basis. For each user, such information as the number

of queries he has submitted to the system, the number still active, and ac-

counting information may be kept. For each active query, a record is kept

of the text of the original query, and of the last active concept vector

for that query. Perhaps, a list of additional documents, unseen by the user,

should be 1.ept to try to forestall a complete lack of positive feedback. In

this manner casts could be kept reasonably low for a majority of users by not

showing many'documents except when necessary. One might also want to keep

sOinu type of record of the searcht. uentroid tree so that "obvicusly" unsuitable

XIV-27

tree nodes would not have to be reconsidered during relevance feedback.

The 'User Parameter Vector File' contains user parameter vectors.

Fach user can have several different parameter vectors (with distinct names)

for different purposes. The only reason for sparating this file from the

previous file is that this file is essentially a read-only file, whereas

the previous file is updated with every system access. It is anticipated

that the directory for this file would be one part of the preceding file.

The files used by CYCLE-called routines are of two distinct types

human readable and machine readable. The human readable files contain

information suitable for display to normal users at consoles. The other

files are however organized for maximum speed of access and minimum space

for storage of information used solely by SMART. A complete system must

have human readable files --the vocabulary aid files and the source text

files. Vocabulary aid files contain thesaurus expansions, hierarchies,

frequency lists, etc. Source texts contain titles and abstracts Jf docu-

ments in a form suitable for on-line display. Normally vocabulary aids are

used prior to a search and texts alter a search.

There are three machine-readable classes of files vocabulary files,

files of centroid concept vectors, and files of document concept vectors.

Vocabulary files contain the information needed to quickly understand input

text (i.e. to convert raw text into a standard concept vector). The

other two files contain, respectively, files of centroid concept vectors

and files of document concept vectors. The separation of centroid and

document concept vectors into two distinct files is dictated bi the relative

sizes of the two files. Commonly, a centroid has over 10 sons: thus a

centroid tree for a ffle of 100,000 document would contain less than

XIV-28

9,000 nodes. In most situations, the centroids could be accessed faster

as a separate data set because of their smaller volume.

There also exists a file which contains the programs called by CYCLE.

In order to further conserve space, it may be desirable that these mutually

exclusive routines be overlayed during execution.

J) Core Resident Files

Seven types of core resident files are used by SMART. They have dif-

fering typical lifetimes, lengths, sources, and destinations. Because of

their differing; lifetimes, they are allocated from different pools of avail-

able core. This minimizes a serious tendency to fragment core and eliminates

a need for dynamic relocation of in-core files. By permitting the system

to obtain variable amounts of core, :MART is able to work in 50 K or 500 K,

albeit with grossly different response times and CPU utilization rates.

The first file is the previously mentioned SMART On-line Console

Control Block (SOCCB). This block is the key to the entire control cf the

on-line system and is, therefore, described in detail in the next section,

The size of the SOCCB is fixed when SMART is initiated by the number of

consoles to be accepted on-line at one time. This block is retained

until SMART goes off-line.

Each user is assigned a user vector. This block is of fixed length

and is retained as lcng as the user is on-line. The user vector contains

pointers to the locations of dynamic fields "owned" by the given console.

These fields include parameter vectors, buffers and correlation vectors.

The user vector is accessed only by CONSOL and CYCLE.

The parameter vectors contain values for variable;; used to control

the various routines. Each routine needs its own parameter vector. There

4'

XIV-29

exists a standard default parameter for every routine, and these standard

vectors are core-resident for the lire of a given invocation of SMART. Any

user vector can pint to one of these default vectors; however, 1.c user

can change values in the default vectors. If a user wishes to change any

values, space is allocated for his own individual parameter vector for ear.h

routine the user wishes to control in a non-standard fashion. A Jser may

name his parameter vectors in order to re-use them easily. An individual

parameter vector is core-resident only for the duration of the process

which that vector controls.

Buffers contain a line or a track of information. They typically

have a short lifetime, and the space occupied by the buffers is reutilized

at a high rate. Buffers to or from a single file can be linked while in-

core- These vectors constitute the majority of core needed by SMART. In

some cases, it may be desirable to keep some buffers in core in anticipa-

tion of repeated use. If sufficient core is available, this can be done.

However, this in-core saving of a buffer is unknown to all routines except

to the buffer manager. This permits a routine to use 50 K of 500 K bytes

without any internal knowledge. Only the response times to requests for a

buffer will differ depending on the amount of core utilized.

The concept vectors constitute the output of the routines converting

text into concept vectors, and of the query update routines. These vectors

ate much shorter than the text they represent, and they can be more easily

utilized for search purposes. Only one concept vector per user need be

kept in core and the concept vector supplants the buffers containing the

original query.

Specification and correlation vectors contain the names of individ.Jal

centroids or of documents to be matched with a query, and later, the corre-

4ti

XIV-30

lations with those items. The life of these vectors is short but the core

requirements for a single query can be determined only dynamically.

Result vectors are shortened correlation vectors. They are used by

CONSOL to pass information to the consoles.

5. CONSOL A Detailed Look

Once the overall structure of the proposed on-line system, is under-

stood and the contents of the various files in linderstood, a detailed expla-

nation of the operation of the twc major routines becomes straightforward.

CONSOL will be considered first since It is first logically. Before

going into the routine itself, the SMART on-line console control block

(SOCCB) is described:

A) Competition for Core

It is possible that one user may finish a line and the interrupt-

called supervisor can start CONSOL, while a second user can finish his line

before CONSO'I finishes with the first user. The second use's finish would

cause the supervisor to start CONSUL again. A routine like CONSOL is called

reentrant if several different processes: (users) can simultaneously execute

it. On a single CPU machine like Cornell's 360/65 the simultaneity is apparent

and due to interrupts. However, on a multiple CPU ^a chine the sumultaneity

could he real. In both cases the problem is the same: no process can know

if another process is also executing the same code. The requirement is that

no "edition" of a reentrant routine can change core locations possibly known

to another "edition" of that routine. If the reentrant routine must obtain

additional core, the same problem exists two editions may try to take the

same space. A similar problem arises between CONSDL and CYCLE: CYCLE could

XIV-31

be claiming an area of core while at the same time CONSOL decides to use

that same area.

In order to prevent destructive competition for ownership of resources,

the 360 provides a single instruction which locks a resource as it tests

that resource for availability. The instruction is called Test and Set

(TST). Basically TST sets a byte non-zero and sets the condition cede to

zero or ncn -zero as the previous contents of the byte were zero or non-

zero in one inseparable step. (The TST instruction is 'outlined in Fig.

6).

B) The SMART On -line Console Control Block

The SMART On-line Console Control Block (SOCCB) shown in Fig. 5 holds

four items for each active user. The maximum number of consoles that can be

on-line at one time is decided when SMART is first entered; MAXUSERS contains

this number. The fields marked TST and READY (in Fig. 5) are each vectors

of "MAXUSERS" consecutive bytes. The TST field contains zero if that parti-

cular line is unused. When a line is reserved for a particular console, the

TST field is set non-zero. The Console Number field contains the super-

visor number for a console and the User Vector field contains the location

of the user vector fur that console.

TST LOCK (Instruction) Before
Execution

After
Execution

Case 1 Location LOCK 0 255

Condition Code - zero

Case 2 Location LOCK 255 2..5

Condition Code - non-zero

The Test and Set Instruction (TST)
ac Applied to the Location Named LOCK

Fig. 6

>1V -32

C) The READY Flag and the TRT Instruction

The READY field contains one of256 equivalent flags. Each flag (value)

indicates what process is then needed by that user. Typical values are

given in Table 2. To understalA the value of the vector, one needs to under-

stand the Translate and Test (TRT) instruction. This instruction considers

two read-only vectors. The first vector is the vector of READY values; the

second contains a table cf 256 bytes. This last table contains zero bytes

except in those bytes whose address (relative to the first byte of the table)

is the same as a READY value which must be tested. The TRT instruction takes

bytes from the first vector, one-at-a-time, and looks at the table entry

corresponding tc the value of that byte. If the object byte is zero, the

next READY value is considered; if the object byte is non-zero, the instruc-

tion ceases ,,ith that object byte and the location of the sourc2 byte is

made available. If no byte stopped the instruction, that fact is so indi-

cated. If the instruction is stopped by a non-zero object byte, the

registers used by the instruction are left in a condition such that the

instruction can be reexecuted for the remaining bytes in the source vector.

A pictorial explanation of the TRT instruction is given in Appendix 1.

For internal convenience, READY values are often assigned in blocks

each block associated with a given process. Most processes can be divided

into four phases: unconsidered by CYC!,E, being considered by CYCLE, uncon-

sidered by CONSUL, and being considered by CONSOL. Some READY values

appearing in Table 2 show this assignment.

D) The Routines LATCH, COUSIN, and CONSOT

When a person types "SMART" on a console, the supervisor transfers

control to SMTLATCH. SMTLATCH interrogates the variable SMTOPEN. If SMTOPEN

5

XIV-33

is zero, SMTMSG ,containing the appropriate message) is sent out to the

caning console. If SMTOPEN is non-zero, control is transferred tc (the

location contained in) SMTOPEN. SMTLATCH, including SMTOPEN and SMTMSG,

is always available to the supervisor as a standard supervisor process.

Since SMTLATCH takes only 96 bytes, it can be kept constantly core-resident.

The first routine called when SMART is started in the standard

manner is (ONLINE) which irn,erts the location of the routine LATCH at

SMTOPEN. When SMART no longer wishes to accommodate new users, the

routine OFFLINE updates SMTMSG to indicate the next scheduled time frr

on-line document retrieval; finally, SMTOPLN is set to zero. Consoles

active in the system can still be accommodated in any suitable manner.

When LATCH is called, an unused row is located in the SMART

On-line Console Control Block (SOCCB) using the TST to insure that the

selected row is indeed available. LATCH then changes READY for that row

co 1 (from 0) and stores the name of the console in the SOCCB. If CONSUL

is running, LATCH simply returns to the supervisor (which will restart

CONSUL where CONSUL was interrupted). If CONSOL not running, LATCH

causes the supervisor to mark CONSOL as runnable. LATCH then returns to

the supervisor. The new console will be noted in due course by a TRT

in CONSUL.

Routine CONSIN is similar to LATCH; when a console is released to

a user, the supervisor needs the name of a routine to call when the trans-

mission from the user is complete as well as a place to put the transmission.

CONSIN is that routine. The supervisor tells CONSIN the name of the console

which interrupted; CONSIN then changes the READY flag for the console (from

2) to 3 and insures that CONSOL is running.

al IL"

XIV-34

fo minimize over-all response times only one line will be se-, up

for transmission to a console if ancther console also needs service. If a

console needs several lines, but only one is transmitted, CONSOL will have

to prepare other lines at a later time. To do this on an interrupt basis,

routine CONSOT is called by the supervisor after transmission of a line to

a console if that console requires morn information.

All of these routines consist of fewer than a hundred instructions

and take less than a millisecond to execute. Fast response to the changes

made in the READY table is insured, since CONSOL tests the flags after each

line of a transmission is complete. The test for a console needing attention

is less than fifteen microseconds if no console needs attention (assuming

ten on-line consoles). Since the test is so fast, frequent repetition is

not expensive.

E) CONSOL as a Traffic Controller

In basic terms, CONSOL uses the ..12T instruction to select a console

which has a need and then satisfies the needs of that console at least

temporarily. CONSOL then uses the TRT again to select another console.

Eventually all console needs will be satisfied and CONSOL will retire to

permit other processes to use the CPU; one of these processes will most

likely be CYCLE. When CYCLE has completed a request for a user, or a set

of requests, CYCLE will ask the supervisor to restart CONSOL, and, by so

doing, suspend itself in ..,eal-time (but not in process-time). Alternatively,

the completion of a user line at a console will result in an interrupt-

initiated call to CONSIN or LATCH which can wake-up CONSOL. Effectively

then, CONSOL uses the TRT instruction to facilitate a traffic direction

problem.

Oki

=0
SMTOPEN "

GO TO
SMTOPEN

LATCH

OUTPUT
SMTNSS

TO

CONSOLE

('\
RETURN

=0

LOCATE A -:11R.0

IN TEE
TST VECTOR

STORE CONSOLE #
(READY(CONSOLE)L71

READY(CONSOLE)
=3

NO

(ACTIVATE
CONSOL
RETURN

SO L

ACTIVE

TST

CCON SOT

READ? (CONSOLE)
=5

YES

SMTLATCH, LATCH, CONSIN, and CON SOT

Fig. 7

XIV- 35

CONSOLON=1

ALL CoNSOLES
ENCAGED

CONSOLON=0
WAIT for
CONSOLON=1

TRT:

LOCATE ANY
CONSOLE NEEDING

ATTENTION
A CONSOLE

NEEDS ATTENTION

WHAT TYPE OF
ATTENTION
IS NEEDED.
(READY)

1

12

15

18

21
24

27

3

HANDLE A
NEW USER

PROCESS A
NE LINE
'ROM USER

CONSOLE NEEDS
A NEW LINE

REQUESTED CORE PROCESSING
SPACE NOW REQUESTED OF
AVAILABLE CYCLE IS

FINISHED

L

J)

CONSCL

Fig. 8

It is apparent from a si in of various possible needs tha: some

are more urgent than others. For CONSOL, however, needs are satisfied so

quickly that the arbitrary selection of the console highest in the SOCCP is

adequate. CONSOL works so fast that even if the 256 users were on-line and

all had a need at the same instimt, and the first user were serviced first,

the last user would be satisfied before the transmission to the first user

was complete. In actuality, in most cases, only one user need service

at any given time. The obvious exception to t.lis is after CYCLE completes

a task at that time, several consoles will need transmissions. It is

immaterial, however, which console is satisfie6 first, since all consoles

will be satisfied by CONSUL in much less tine that was taken by CYCLE.

F) A Detailed View of CYCLE

In contrast to CONSUL, CYCLE follows a strict pattern in deciding

what to dc. Like CONSOL, CYCLE uses the 1RT instruction but CYCLE decides

what process to do first. Then it sees which consoles need that process.

If no console needs that process, CYCLE tries the next process in its list

of processes. To permit on-line access to more than one collection for

test purposes, or access by sophisticated users with special needs, each

process is run for all consoles that request one collection and then for

all consoles that require another collection. This is illustrated in

Fi3, 9.

Some object processes started by CYCLE are standard programs

used for batch experimentation; text cracXing, centroid tree searching,

document correlation, and query redefinition. The processes unique to the

on.-line system divide into two classes those that access files for the

user and those that service CONSOL. There are presently two programs of

XIV-38

SELECT
NEXT

PROCESS 1

YES
TRT:

DO ANY USERS
NEED THIS
PROCESS

NO

t'iLE = THE YES HAVE ALL NO
FILE NEEDED PROCESSES
BY THIS USER BEEN TRIED

CYCLEON=0
WAIT for

TRT: CYCLEON=I I

DO ANY OTHER
USERS NEED

THIS PROCESS

RUN
PROCESS

CALL CONSOL

YES
DOES THIS USER
WANT THE SAME
FILE AS THE

PREVIOUS USER

[

LINK THIS USER
TO OTHERS

FOR THIS PROCESS

NO

CYCLE

F:g. 9

XIV- 39

the first type: to dispLay pre-search information, e.g. thesaurus cate-

gories, and to display post-search material, e.g. abstracts. Since CONSOL

operates on an interrupt basis, it cannot allocate resources for itself.

However, CONSOL does need to be able to obtain core storage space on de-

mand. To provide this, CYCLE can be asked to allocate storage for a console

and return control to CYCLE.

From the flochart for CYCLE shown in Fig. 9, it can be seen that

CYCLE restarts CONSOL without testing if CONSOL is running. This is

possible since CYCLE can Lse the CPU only when CONSOL is inactie.

6. Summary

On-line information retrieval is implemented by two co-routines,

CONSOL and CYCLE. The former operates in the real-time of the zonsole user

providing rapid response; the latter in the process-time inherent in any

routine which needs to access auxiliary storage providing realistic costs

for work done. The two routines communicate through a single area of

mutually known core.

This system should prove adequate for both experirrentation and real-

time use in a librry, for both the novice user and the sophisticated

researcher with the complex problem.

XIV-40

Appendix

TRT READY, TABLEn (Instruction image, n=1, 2, 3 or 41

Location;

Contencs:

READi + 0 1

5 4

2 3 (5 6 7 8

3 4 2 0 0 '..J 1

Location:

Contents:

TABLE1 + 0 1

0 0

2 3 4 5 6

0 6 0 0 0

Location:

Contents:

TABLE2 + 0 1

0 9

2 3 4 5 6

0 0 9 0 0

Location:

Contents:

TABLE3 + 0 1

0 2

2 3 4 5 6

3 0 0 0 0

Location:

ContEnts:

TABLE4 + 0 1

0 8

2 3 4 5 6

0 0 0 0 0

r---'
Execution: 1st 2nd 3rd

Register: 0 1 cc 0 1 cc r..c

n

1

2

3

4

5 (READY)+2

9 (READY)+1

3 (READY)+4

G (READY)+6

1

1

1

2

9 (READY)+3

2 (READY)t6

0

1

1

0

0

(READY) means the address of READY ;cc = condition code

The EffectE of the Translate and Test Instruction (TRT)
;len the Vector KEADY is Entered Against Several Tables

XV. Template Analysis in a Conversational System

S. F. Weiss

Abstract

XV -1

This study presents a discussion of natural language

conversational systems. The use of natural language rather than

fixed format input in such a system makes possible the imple-

mentation of a natural dialogue system, and renders the system

available to a wide range of users. A set of goals for such

a system is presented. These include the provision of fast

responses, usable by all levels of users, and the use of intel-

lectual aids such as tutorials.

An experimental conversational system which meets these

goals is imple.nented using a template analysis process. Tem-

plate analysis is used not only to analyze ratu:al language

input, but also to control the overall operation of the process.

Experiments with a number of users show ;hat the system is easy

to utilize and provides accurate analyses. A deta!led discus-

sion of both user a J system performance is presented.

. Motivation

Programs and data are normally entered into a computer in

P batch processing mode. However, the recent trend in computer

system design has been toward the development of large time

shared systems which give a number of users simultaneous on-line

access to the computer. This makes possible the implementation

XV -2

of conversational programs which permit real-time man-machine

dialogues. Such conversational programs are both useful and

necessary to cope with the ever expanding complexity of com-

puterized data processing tasks. Consider for example, an ou-

line programming language such as APL. The ability to test

amd debug a program on-line is an aid to the programmer. Errors

are more easily located and may be corrected immediately. In

addition, on -l.ne data entry allows the programmer to adjust

parameters and data while the program is running in order to

get the desired results.

Conversational programs are also useful in all forms of

language processing and expecially in iniormation retrieval.

Consider for example a case in which a natural language analysts

program encounters an uniesolveble ambiguity. In the batch

mode, the program would be forced either to give up or to

proceed using the multiple interpr.etations. But in a conver-

sational mode, the system can ask the user for clarification

and then proceed with perfect information as is shown in the

example in Fig. 1.

Ut TYPE 2 GRAMMARS

S: YOU HAVE USED TYPE AMBIGUOUS'Y. PLEASE SPECIFY:

A. PRINTING

B. VARIETY

U B

S: PROCEED

User Disambiguation

Fig. 1

61

XV -3

In information retrieval the applicability of conversational

programs is very broad. It is the only way to make the retrieval

operation fast enough for practical use. In addition it permits

the trEer to see results immediately and adjust his query and

other search parameters to tailor the performance to his ecact

needs. The conversational mode is also the best framework in

which to implement the relevance feedback process (11,24].

In general the conversational facility is an extremely powerful

information retrieval tool.

Section 2 of this study discusses some existing on-line

systems. Most of them require a fixed format input. But the

'current trend in information processing is toward natural

language input. Not only does this permit the treatment of

documents and queries in their original form, but it also makes

the on-line facility available to a broad spectrum of potential

users. This is especially imporrant since on-line systems

permit remote access from places such as libraries and schools

which are not inhabited strictly by computer people. This

study discusses conversational systems in general and presents

a natural language facility for information retrieval.

There are four basic goals which any such natural language

conversational system should meet. First, the system obviously

must accept natural language input. Second, it must provide

fast response. Users tend to become impatient if the delay

between the submission of a command and the system's response

exceeds more than a few seconds. Third, the system should be

usable by all levels of users. Inexperienced users should be

64

XV -4

able to perform useful work. At the sane time the system must

not hamper the expert with excessive verbosity and unwanted

material. And finally, the system should provide some intellec-

tual aids such as tutorials and prompts which can help the user

conduct a useful dialogue.

2. Some Existing Conversational Systems

Many conversational Systems are currently in operation.

Most are part of a larger implementation such as an information

retrieval system. But a few such as ELIZA are designed solely

to perform conversation. The major differences among the conver-

sational aspects of the various systems is in the amount of man-

machine interaction permitted. In some systems the on-line

input is not far removed from batch input and the user has little

control over the running of the process. At the Wither extreme

are systems in which the user is directly linked to the process

and is continuously in command of program operation. The dis-

cussion of on-line systems presented below is roughly in order

of increasing complexity of dialogue.

The most basic type of conversation consists of a simple

user input which results in some appropriate system action being

performed. RECON [16), DIALOG II [29), TIP [15), and AUTONOTE

(22) are representative of this type of conversation. In

RECON for example, the user presses a button which indicates

the desired operation and then types the operands on the con-

sole. In the other systems the user types the operator name

followed by operands. Thus all these processes require a fixed

1; I

XV-5

input forma:. 1n addition, should the user become lost or

confused, the systems cannot supply any intellectual cid Lo help

him out. One type of user aid, the tutorial, is a feature of

the AUDACIOUS system [2]. In addition to the normal operator-

operand commands like those above, AUDACIOUS permits two special

commands: HELP and PUNT. In response to these, the system

produces a tutorial message appropriate to the user's position

in the dialogue. In this way the confused user can receive help.

A second type of intellectual aid is the prompt. SPIRES

[21] is an example of a system which uses the prompting feature.

Unlike tutorials, prompts are presented without user request.

Their purpose is to indicate to the user what type of infor-

mation is to be specified in the current input. However, since

prompts are presented without a user request, they can sometimes

be a nuisance to the expert user. All the conversational systems

presented thus far share two attributes. First, they all require

fixed form input. And second, they are all information retrieval

systems and hence the conversational operation was not the prime

consideration in their development. The systems discussed

in Or? next few paragraphs are designed basically to conduct

conversation in natural language.

Probably the most famous natural language conversational

system in Weizenbaum's ELIZA (34]. The program conducts a

coherent dialogue with the user much like that between a psy-

chotherapist and his ritient. Inputs are searched for the

presence of certain keywords and structures. These indicate

the type of output appropriate to the input. For each input

G (.1

XV -6

form there is more than one allowable response. ELIZA cycles

through this set thus eliminating repetition and producing a

more realistic looking conversation. The approach to conver-

sation used in the system presented later in this study is similar

to the ELIZA concept.

Another area of usefulness for conversational capabilities

is in computer assisted instruction. One such conversational

CAI system is Eolt's Socratic Instruction [6]. Its operation

is basically an extension of the techniques outlined for ELIZA.

Like ELIZA, the Socratic Instructor uses tIla user position in

the dialogue along with the input to determine the proper res-

ponse. In addition, the Socratic Instructor remembers all pre-

vious user inputb and dialogue points. These are also used in

output detetmination.

Most conversational systems in existence today are imple-

mented by basically ad hoc programming methods. This not

unusual for a fairly new area such as conversational programs.

However, as on-line systems become more common, higher level

implementation processes must be developed. One such process

already in existence is the LYRIC system developed by Silvern

(26]. This is a programming language for describing conversa-

tional CAI programs. With processes such as this, tha con-

versational implementer is relieved of some of the ugly program-

ming details in much the same way as a compiler-compiler aids

the systems programmer.

The conversational systems presented here by no means consti-

tut,e the complete set. They are, however, representative of

XV - 7

most systems. It appears that systems such as TIP and SPIRES

which perform efficient on-line information retrieval require

highly structured input format. On the other hand those such

as ELIZA which permit natural language input have a very weak

conceit of understanding. it would be desirable to develop

a system which combines the best attributes of both; that is,

a fast and accurate information system which allows natural

language input. This is the topic of the following sections.

3. Goals for a Proposed Conversational System

This section discusses the design considerations that go

into the development of a new conversational information re-

trieval system. Some elements of the new system are drawn

from existing facilities while others are new. The primary

goal of this system is to allow a user to conduct a natural

language dialogue with the system. The only limitation is that

the input be restricted to an information retrieval context.

Not only should the user be allowei to specify natural language

commands, but also there should be no restriction on the number

of commands per line as there are in most other conversational

systems. An input such as

USE THE COSINE CORRELATION ON THE CRi.NFIELD

coLLECTIor.

should be perfectly legal. Of course there may be some inputs

for which natural language is impossible or impractical and a

fixed format input must bP used. For example, the user should

be required to specify a fixed form "SIGNOFF" in order to

G

XV -8

prevent accidental termination of the conversation. But these

formatted inputs should be key': to a minimum. Another goal for

this system is to be cble to resolve automatically ambiguities

occurring in the user's input. In addition the system must meet

the requirements specified in sectiLn 1. These include providing

fast response, being usable by all levels of users, and providing

intellectual aids such s tutorials and prompting.

This proposal makes demands on the user as well as the

system. First, the basis for learning the system is a manual.

It would be aesthetically pleasing to allow the system itsalf

to contain a compuLer aided instruction ..:acility (CAI) which

would make the sys;:om completely self-contained. Unfortunately

this is impractical. Successful CAI requires concentrated aod

frequent exposure to the teaching medium. It appears that the

typical informaticn retrieval user dialogue will be both brief

and fairly infrequent. 1.1s°, trying to teach the user at the

console unnecessarily ties up the facilities. Thus an off-

line approach to learning the system seems more reasonable.

While no CAI facility is provided, the system should offer a

prompting option by which a user can be led step by step, through

a simple retrieval process. In this way the user may learn

something about the system while actually performing useful

retrieval work. The user's manual for this system is divided

into several sections. Each deals with system use in progres-

sively greater detail. A user need only read those parts which

satisfy his ;.articular need. A casual user who wants only simple

retrieval operations using system defaults, has to read only a

6/

XV -9

few pages. And the prompting facility can used with only

a paragraph or so of instruction.

Another user problem that must be treated is the separation

of novices and experts. As is often the case, conversational

systems are handled by users with widely varying degrees of

expertness. The system should neither hamper the expert with

excessive verbosity nor hinder the novice with obscure and terse

responses. Some systems compromise and use a "middle of the

-road" approach, but this satisfies no one. Other systems have

multiple sets of dialogue scripts. A user is classified as having

a particul-f level of proficiency and he receives the dialogue

appropriate to that level. But this too can lead to problems.

In any large facility strAl as an information retrieval system,

it is entirely possible for a user to be very proficient in

some but not all areas of the system. Classifying him strictly

as a novice or exp.... is wrong in both cases. To solve this

problem, the proposed system uses an implicit rather than

explicit separation of novice and expert. Thic is accomplished

by allowing access to options only when she user asks for them.

Thus the more the user knows about the system, the more faci-

lities he has at his disposal. The novice is thereby protected

from options which h' doe' not understand. Tutorials are also

pres-nted only on requc,r.. Because of this only a single se!

of tutorials is needed and they can be reasonably long anti clear.

The expert user .rho does not ask for a tutorial need never see

any and thus is not hindered by them. The only manifestation

of the novice facilities that an expert must see is the short

ytestionl

XV -DJ

Do you need help in using the system?

This appears immediately after signon. Even this can be eli-

minated by 1lowing a Lser status file to be stored between system

uses. Upon signing on, the user's status file is read and appro-

priate parameters, including his negative answer to the above

question, are set.

A few other characteristics of the proposed system also

help in the proper handling of both novice and expert users.

These are the multi-step processing technique and the ability

to compound ccmmands on a single line. An expert, for example,

can put several system commands into a single input thus saving

time and effort. The same commands may also be split on a number

of lines for greater clarity. This and the multi-step process

are discussed in gteater detail in section 4.

One final goal of the proposed system 1: k ,:ntation

of useful tutorials. These messages must be easily available

so that even the most confused user can get help. One simple

method is to use a single question mark "?" as the tu-orial

request. The tutorials must reflect the specific place in the

dialogue where they are called. In addition, they must take

into consideration the commands and options that the user has

already specified. Tutorials are also useful in treating errors.

When an erroneous input is detected, the system automatically

produces a tutorial appropriate to the place where the error

occurs. The incorrect input is an implicit indication that Chu

user needs help and thus the tutorial is appropriate at that

point.

69

The design considerations presented in this section are

basically nontechnical. They stem from an effort to satisfy

within practical limits the basic conversational needs of the

largest possible user population. The next section presents

a discussion of the actual implementation of such a system.

4. Implementation of the Conversational System

This section discusses tne implementation of the conver-

sational system. The major obstacle in the process is the fact

that the Cornell University Computing Center has a: present,

no facilities for user implementation of on-line systems.

the programs thus must all be run in the conventional manner

with batched input. This poses no real problem in the design

and operation of the system except in the area of testing it on

real users. But even this can be circumvented with adequate

simulation.

A) Capabilities

The conversational system is designed to perform SMART-

like information retrieval operations. The capabilitiec built

into the present system include specification of a correlation

coefficient, tearch strategy and ollection to be used. The

first two of these are provided with default values that are

used if nol:ing is explicitly specified by the user. There is

provision for submitting a query containing a number of data

base entry point references (subject, date, journal, and author).

A search can be initiated and the user can request to see any

number of retrieved documents. In additicn these information

(3

XV-12

retrieval operations, the user has available some commands to

thfs ccnverationr,1 system itself. These include requesting a

tutorial, asking to be guided througl! a retrieval operation,

and signing on or off. A few other information retrieval opera-

tions, most notably relevance feedback, are deliberately omitted,

since the system is designed to test the conversational and

natural language capabilities, and not to retest the informa-

tion retrieval techniques. The set of capabilities is selected

as typical of the inputs, outputs and internal processes

required in a larger system. Also relevance feedback is not

conductive to handling in natural language. While a user might

introduce a natural language input which indicates his desire

to perform relevance feedback, the actual submission of rele-

vancy judgements is best handled in a fixed format. Relevance

feedback and a few other capabilities would add little to the

significance of system experimentation and hence are omitted.

L) Input Conventions

While it is tha aim of this system to allow natural lan-

guage input, there are a few places where the use of natural

language is impractical. This is usually caused by the physical

characteristics of the conversational system or information

retrieval in general. One such instance is in setting off a

query from :they types of input. A query may deal with any

subject area. For example It could ask for information about

some aspect of a conversational system. It could thus be indis-

tinguishable from a legal system command. For this season,

the user rather than the system, must perform the discrimination

XV-13

between queries and commands. This is accomplished by simply

prefacing each query with 'QUER?" or "Q". This adds little to

user effort and eliminates what might be an impossible system

task. Another area where fixed format is necessary is in

search initiation. Unlike other operations in a conversational

system which require only a few computer cycles, the search is

relatively costly in computer time. It is therefore desirable

to avoid uncalled for searches. Also, searches should not be

initiated until the user is satisfied with his query and search

specifications. For these reasons, searches are performed only

upon an explicit signal ("GOSEARCH") from the user. A third

fixed format input is the request for a tutorial. This is

accomplished by typing a single question mark ("?"). This is

done strictly for user convenience. In this way, even the

cost confused user can receive a message appropriate to his

present dialogue position. Tutorials are also automatically

g^nerated when a user introduces an incorrect input. The final

fixed fcrm input is the SIGNON command. In an actual on-line

implementation, it is quite possible that this command will

be handled by a supervisor program which controls all on-line

operations. Thus the natural language analy3is facility may not

be present to process this input. The remainder of the inputs

may be posed in natural English.

C) The Structure of the Process

The structure of the conversational system may be viewed

as a graph. The nodes represent user decision points and the

edges represent possible alternatives and systcm actions. As

XV -14

the user progresses through his dialogue, he moves from node to

node in the graph. The action is much like that of a finite

automaton. At every point in the dialogue, the user is at some

system node. The combination of this current node and the user's

input at that point determine the action to be performed (ana-

logous to tht: output of the automaton) and the node o which

control is passed after the action is completed. This strategy

allows the system to be throught of as a set of modular units.

Each unit corresponds to r. node and each has associated with it

the subset of inputs that are legal at that point, as well

as the associated actions. The input processing is thus greatly

simplified since at each node the system need only test for

those inputs that are legal. All other inputs are illegal even

though they might be acceptable at some other point in the dia-

logue. The modular approach also facilitates some degree of

disambiguation. Some inputs are ambiguous when considered with

respect to the total set of system inputs. However, many become

unambiguous within the context of a single node. The simplest

example is the tutorial request ("?"). The question mark by

itself is not enough to determine which of the many tutorials

is desired. But the combination of the question mark and the

current node performs the disambiguation and the proper mes-

stge is presented,

D) Template Analysis in the Conversational System

There are two main jobs to be performed in a natural lan-

guage conversational system. The first is the natural language

analysis required to transform the input to a machine-usable

7t3

kV -15

form. Tile second job is bookkeeping. The system must keep

track of the user's present position in the dialugue, the

legal inputs as well as the successor node associated with

each input. It seems relatively clear that the template analysis

process introduced by Weiss [31] is sufficient to handle she

natural language analysis task. The expected input consists of

queries and system commands coming from some sort of on-line

terminal. They thus conform exactly to the user restricted

input for which template analysis is designed. While more

complex systems would produce a more rigorous analysis of the

input, template analysis can provide all the information that

is nLeded :rom the input and at a considerable saving in time

over other methods. Thus template analysis appears to be the

ideal natural language anlaysis technique for this application.

Upon first analysis the bookkeeping task seems outside the

realm of template analysis. But actually, the most efficient

way in which to implement this task is to imbed it within the

template analysis structure. This is done as follows. Each

template is applicable to only one node, which is called its

Lost node. This is indicated by appending the host node number

to the template concept numbers. Since template concept nurrbers

range from 11 to 999, this appending can be accomplished by

adding the desired node number times 1000 to the concept number.

Each template contains a set of concept numbers, a key word,

and a link to an action routine that is tc, be executed if that

template is matched. Some additional information must be added

for the conversational application. Each template must contain

a next node: Immediate (NNI) number which tells the node to

XV -16

which control is to be transferred immediately after execution

of the associated template action. It is sometimes useful to

defer transferring to a new node until all possible executions

of the template action have been performed. For example in

cases where a number of similar pieces of information must

be picked up from one input. In this case, NNI refers to the

host node. A second value, the next node: final (NNF) then

indicates the node to which control is transferred after all

actions at the current node are complete. In the examples in

Fig. 2 below, template A and B are both applicable only in node

5, and bath match the same input substring. After matching,

however, template A calls action routine 51, and control is

then immediately transferred to node 2. Template R causes

action 55 to be performed and ccntrol remains at node 5.

Finally, after all possible node 5 matches have been processed,

control passes to node 3. In cases such as A where NNI causes

a transfer to a node other than its own, the NNF value is

ignored.

NNI NNF ACTION TEMPLATE CONCEPTS

[:

2

5

-

3

51

55

5011,

5011,

5012,

5012,

5013

5013

Sample Conversational Templates

Fig. 2

In order to match the proper templates, the input must Le

made to reflect the current node (CNODE) in the dialogue. Upon

reading an input, the current node times 1000 is added onto each

73

XV -17

input concept. Also, after every node change, the old node

number is stripped off the input and the new node times 1000

added on. Thus the input reflects the current node in exactly

the same way in which the templates reflect their host nodes

and hence proper matching occurs. In this way the template

process it3elf keeps track of the current node, the legal inputs

for each node and the successor node function. This operation

is summarized in the schematic in Fig. 3. An input is read

and each word is assigned a numeric concept by a dictionary

lookup. The input is then set to reflect the current node

A scan is trade of the entire template set in search of a match.

However, only those templates hose host node is i have any

chance of matching. If a match in this subset ip found, the

a3sociated action is performed and the next node path is fol-

lowed.

Fig. 4 indicates the node structure of the conversational

system. Node 2 is the supervisor. After the initial signon

phase, operations generally start and end in node 2. Most

operations are two step processes. First, in node 2, the input

is analyzed and the type of operation that !t specifies is

determined. Control then passes to the appropriate new node.

Second, in this new node, the exact operation is determined and

executed. Control is then returned to node 2. As an example

consider the input

USE THE COSINE CORRELATICN.

In node 2, it is determincd that a correlation is to b: speci-

fled and control pass's to node 12. In node 12, the specific

7t)

XV-18

INPUT 1

LOOKUP 1.

SET INPUT
TO REFLECT

CNODE

TEMPLATE
ANALYSIS

PERFORM
ACTION

RESET
NODE

7
DICTIONARY /

APPLICABLE

TO NOTE 1

APPLICABLE

TO NODE 2

APPLICABLE

TO NODE N

Q"QQ() Q(71c)

0(74Cx7Q 1Q0c'

QQ1

T=TEMPLATE
A=ACTION

N=NEXT NODE

Schematic of Conversational Operation

Figure 3

L`

XV-19

1.

SIGNON

A.

INTRODUCTORY
MESSAGE

SET
GUIDE

FACILITY

QUERY

[72
SPECIFY

CORRELATION

2.

MASTER

IC.
SPECIFY

COLLeTION

5.

SEARCH

11. SPECIFY
SEARCH

ALGORITHM

SEE

RFTRIEVED
DOCUMENTS

SEE
MORE

DOCUMENTS?

Conversational Node Structure

Figure 4

XV 20

correlation coefficient (i.e. cosine) is detected and noted.

Control then goes back to node 2.

There is no necessity that the commands for two step opera-

tions appear on the same input line. For example, simply

typing 'CORRELATION" causes a transfer of control from nrde 2

to 12. The system then waits in 12 for further instructions.

Strictly for the sake of convenience a special ieature is used

in cases like this. Whenever the system finds itself waiting

in a node other than 2 it knows that an incomplete input has

been entered. A special routine is therefore called to print

a message appropriate to the current node. This aids the user

in completing the input as is shown below. In this example

and in all other samples of conversational scripts, user inpit

is identified by a leading "U:".

U: CORRELATION

SPECIFY A CORRELATION

U: COSINE

Not only can inputs be spread out over several lined,

several inputs can also be compounded onto a single line.

For example

U: PERFORM A FULL SEARCH ON THE PHYSICS COLLECTION

WITH THE COSINE CORRELATION.

As is seen in the detailed flow chart in Fig. 5, once an input

is read, it is processed repeatedly until all valid template

matches are exhausted. This results in an exit from box 6 via

failure. Since this same exit is taken regardless of how many

7.1

. INITIALIZE
CNODE TO 1

1437 READ INPUT

4. SET INPUT 4
TO CNODE

5. NNF1N = -1

6. TEMPLATE
SEARCH

UNSUCCESSFUL ?

YES

1--

7. ACTION
ROUTINE
,TN)

8. NNFIN=NNF(TN) _.1

9. CNODE=NNI(TN)

O. SET INPUT TO CNODE 11. CNODE=NNI(TN)

Conversational Control Algorithm

Figure !-

8U

XV -21

XV -22

rM_t___.

13.PRINP
ERROR
ESSAG3

14.

FORCE
nr.

INPUT

12.

DID ThE INPUT
HAVE AT LEAST

UNE MATCH?

18FORCE
GUIDE

INPUT # GCOUNT

19.

GCOUNT=GCOUNT+1

15. IS

GUIDE
ON?

NO

17.

CNODE=NNFIN

NOTE: NNFIN is the next node: final value. It is initialized to -1
before template matching begins. If no template matches are found,
it will still be -1 at box 16. This indicates that control is to
remain at the current node.

Conversational Control Algorithm

Figure 5 (Cond.)

81

XV -23

or few, tEmplate matches occur in the input, a test must be

made to see if at least one match occurs (box 12). If not,

the input is not valid and a diagnostic must be presented to

the user. The system prints a short general error message,

erases the current input and replaces it by a question oark.

Control is then passed back to the input analysis section.

This results in the appropriate tutorial being shown to the

user. This process of supplying diagnostics by allowing the

system to force in a special input r:nd then treating this as a

norrnaL user input is also used in the implementation of the

guide facility which is discussed below.

E) The Guid: Facility

In the original propnsal for this system, n a sire is

expressed to provide a prompting facility to guide a novice

user, step by step, (rough an actual retrieval operation.

When a user signs onto this conversation system, he receives

a brief introductory message:

Do you need help in using this system?

If the user is familiar with the system he can simply arswer

NO an° he sees no more of the prompting script. If his answer

it YES, he receives a iomewhat longer introduction to the

system (See Fig. 6) and is then asked if he wishes to be guided

through a retrieval operation. If not, the system operates

normally and no prompting is given. If on the other hand, his

answer to the seo.ond question is YES, the guide facility is

turned on. The guide subroutine has a set of special strings

of the form:

XV -24

<general operation> ?

These include for example:

CORRELATION

SEARCH

QUERY

etc.

Each time the guide subroutine is called (see Fig. 5, boxes

le sod 19) 1 arces its ith string into the input area,

increases i by one, and transfers control back to .te input

analyzer. These special irputs have the effect of performing

the first haJ of a two step operation and then generating a

tutorial. Al: the user has to do is respond in turn to each

tutorial thus completing the second half of the two step pro-

cess. When the guided retrieval process is finished, i is

reset to one and the user is asked if he wants to be guided

again.

F) Tntorials

There is a tutorial associated with each system node.

When the use. types a question mark, he is giver the tutorial

appropritte to his current rode. The tutorials for all nodes

except 2 provide instruction on the specific type of input

expected. Unlike other nodes which have a very limited legal

input set, almost all options are available from node 2. A

different and more detailed form of tutorial message is neces-

sitated in this case. The rode 2 tutorial consists of two

parts: the present status end the available options. The

R,3

XV-25

status report provides a summary of the specifications that the

user has already made. The available options are presented

as a list of tasks that are currently legal. Each option in

the list has an identifying letter so that the user may pick it

simply by typing the letter.

Fig. 6 shows some actual scripts produced by the conver-

sational system with various levels of users ranging from

novices who use the guide facility (Fig. 6A) to highly know-

ledgeable experts. The scripts include both correct and in-

correct inputs as well as the various tutorial forms. The

program which performs the conversation is written in G-level

FORTRAN-IV. It consists of about 1.300 FORTRAN statements and

includes 35 subtautt.les and entry points. The program uses two

output streams. One is used for diagnostic output. This is

useful in debugging and in determining if the program's internal

operations are working properly. The second stream is the c'n-

versational output which would be displayed vn the user console.

Tiiing statistics for the system are presented in section 5.

5. Experimentation

The experimentation tests the system with actual users an

analyzes the results both with respect to system performance and

user performance. The user population used represents a fairly

broad spectrum of potential conversational system users with

varying degrees of knowledge of information retrieval. The

experiment for each user consists of two parts. First, the user

is given a brief introduction to the system. Basically 1-.e is

told that this is a conversational in ormation retrieval system

84

XV -26

U: SIGNON
SMART ON-LINE...DO YOU NEED HELP IN USING THE SYSTEM?
U: YES
THIS IS A NATURAL LANCUAGE CONVERSATIONAL
INFORMATION RETRIEVAL SYSTEM. THE SYSTEM RETRIEVES
DOCUMENTS IN RESPONSE TO ENGLISH QUESTIONS. YOU MUST SELECT
A DATA COLLECTION TO BE SEARCHED. IN ADDITION YOU CAN
SELECT SEARCH STRATEGIES AND CORRELATION OR AL/OW SYSTEM
DEFAULTS. IF YOU NEED HELP AT ANY TIME IN YOUR LIALOGUE,
TYPE "?" AND YOU WILL RECEIVE A TUTORIAL APPROPRIATE TO YOUR
PRESENT POSITION IN THE DIALOGUE. FOR FULL INFORMATION
CONSULT THE MANUAL.

DO YOU WISH TO BE GUIDED THROUGH A RETRIEVAL PROCESS?
U: YES
TEE FOLLOWING COLLECTIONS ARE AVAILABLE FOR SEARCH
('ELECT RY NAME OR LETTER).

A. ENGINEERING
B. BIOLOGY
C. LITERATURE
D. CHEMISTRY
E. PHYSICS

U: A
THE FOLLOWING CORRELATIONS ARE AVAILABLE. CONSULT
MANUAL FOR FORMULAS.

A. COSINE (DEFAULT)
B. OVERLAP

U: COSINE
THE FOLLOWING SEARCH STRATEGIES ARE AVAILABLE.

A. FULL SEARCH (CONSULT MANUAL BEFORE USING)
B. CLUSTERED (DEFAULT)

U: CLUSTER
YOU MAY NOW ENTER YOUR QUESTION. IT CAN BE IN NORMAL
ENGLISH AND MAY CONTAIN SPECIFICATIONS FOR DATES (YEAR),
JOURNAL, AND AUTHOR.
U: INFORMATION ON ORDERING OF RECURSIVE FUNCTIONS BY THE
Ut DIFFICULTY OF COMPUTATION
YOU MAY NOW INITIATE A SEARCH BY TYPING GOSEARCH
U: GOSEARCH
SEARCH UNDER WAY, EXPECT DELAY
SEARCH COMPLETE

CONVERSATIONAL DIALOGUE

Fig. 6A

8d

XV -27

INDICATE HOW MANY DOCUMENTS
IF NON TYPE "NONE".

YOU WANT TO SEE.

U: GIVE ME 5
RANK 1 DOC 91 CORR = 0.9896705
RANK 2 DOC 11 CORR = 0.9791623
RANK 3 DOC 42 CORR = 0.8563247
RANK 4 DOC 40 CORR = 0.8002142
RANK 5 DOC 45 CORR = 0.7656324
DO YOU WANT TO SEE MORE?
U: YES 5 MORE
RANK 6 DOC 98 CORR = 0.6665342
RANK 7 DOC 25 CORR = 0.5542100
RANK 8 DOC 32 CORR = 0.4022313
RANK 9 DOC 89 CORR = 0.3987652
RANK 10 DOC 41 CORR = 0.3654201
DO YOU WANT TO SE2 MORE?
U: NO THANK YOU
SMART ON-LINE...DO YOU NEED HELP IN USING THE SYSTEM?
U: NO
U: ?

PRESENT STATUS:
SEARCH ENGINEERING COLLECTION
COSINE CORRELATION
CLUSTERED SEARCH
NO QUERY HAS BEEN SPECIFIED YET

AT THIS POINT YOU MAY:
A. SPECIFY A DOCUMENT COLLECUT.ON
B. SPECIFY A SEARCH ALGORITHM
C. SPECIFY A CORRELATION COEFFICIENT
D. SUBMIT A QUERY
F. LOOK AT SOME RETRIEVED DOCUMENTS
G. START OVER
H. SIGNOFF

U: H. SIGNOFF
SIGNOFF ACCEPTED

CONVERSATIONAL DIALOGUE

Fig. 6A

(cont'd)

Ru

XV-28

U: SIGNON
SMART ON-LINE...DO YOU NEED HELP IN USING THE SYSTEM?
U: NO
U: YES
INPROPER INPUT
HELP FOLLOWS
PRESENT STATUS:

SEARCH PHYSICS COLLECTION
COSINE CORRELATION
FULL SEARCH
NO QUERY HAS BEEN SPECIFIED YET

AT THIS POINT YOU MAY
A. SPECIFY A DOCUMENT COLLECTION
B. SPECIFY A SEARCH ALGORITHM
C. SPECIFY A CORRELATION COEFFICIENT
D. SUBMIT A QUERY
F. LOOK AT SOME RETRIEVED DOCUMENTS
G. START OVER
H. SIGNOFF

U: Q. 1970 LASER ARTICLES
QUERY SUMMARY: DATE = 1970
U: 4

YOU CANNOT SEE DOCUMENTS UNTIL A SEARCH HAS BEEN PERFORMED
COMMAND IGNORED
U: GOSEARCH
SEARCH UNDER WAY, EXPECT DELAY
SEARCH COMPLETE
U: 4

RANK 1 DOC 56 CORR = 0.9828174
RANK 2 DOC 5 CORR = 0.9620456
RANK 3 DOC Cl CORR = 0.8022164
RANK 4 DOC 21 CORR = 0.6553271
DO YOU WANT TO SEE MORE?
U: NO
U: SIGNOFF
S1GNO'F ACCEPTED

CONVERSATIONAL DIALOGUE

Fig. 68

8/

XV-29

U: SIGNON
SMART ON-LINE...DO YOU NEED HELP USING THE SYSTEM?
U: NO
U: ?

PRESENT STATUS:
NO COLLECTION SPECIFIED YET
COSINE CORRELATION (BY DEFAULT)
CLUSTERED SEARCH (BY DEFAULT)
NO QUERY HAS BEEN SPECIFIED YET

Ai THIS POINT YOU MAY:
A. SPECIFY A DOCUMENT COLLECTION
B. SPECIFY A SEARCH ALGORITHM
C. SPECIFY A CORRELATION COEFFICIENT
D. SUBMIT A QUERY
G. START OVER

SIGNOFF

U: CORRELATION
PLEASE SPECIFY A CORRELATION
U: ?

THE FOLLOWING CORRELATIONS ARE AVAIABLE FOR SEARCH.
CONSULT MANUAL FOR FORMULAS.

A. COSINE (DEFAULT)
B. OVERLAP

PLEASE SPECIFY A CORRELATICN
U: B

U: FULL SEARCH OF THE PHYSICS COLLECTION
U: Q: MU MESON PARTICLES
U: GOSEARCH
SEARCH UNDERWAY, EXPECT DELAY
SEARCH COMPLETE
U: I WANT 5 DOCUMENTS
RANK 1 DOC 53 CORR = 0.86547531
RANK 2 DOC 41 CORR = 0.7024357
RANK 3 DOC 49 CORR = 0.6654654
RANK 4 DOC 9 CORR = 0.5557575
RANK 5 DOC 17 CORR 0.4302142
DO YOU WANT TO SEE MORE?
U: NO
U: SIGNOFF
SIGNOFF ACCEPTED

CONVERSATIONAL DIALOGUE

Fig. 6C

8o

XV -30

and that he must type "SIGNON" to begin. F,:om then on, the user

is on his own. The intent here is to see if the uninitiated

user elects the guide option and if sc, is the user successfully

able to complete a retrieval operation using the guide facility?

In the second experimental phase, the user tries to be more of

an axpert. Using information he has learned during the guided

operation and some additional instruction, the user performs

a second retrieval operation. This second operation is done

without the aid of the guide facility. The sample scripts in

Figure 6 are the actual results of these experiments with a few

of the users. Results must be analyzed with respect to both

system and user performance. For the most part, system per-

formance can be measured objectively while user performance is

more subjective,

A) System Performance

The basic measure of system performance is simply how many

inputs are handled correctly wit of the total number seen.

This can be divided vp since inputs arrive from several sources.

Most inputs come directly from the user, but some are forced

into the input area by the system itself. An input nay be legal

or illegal. Most illegal inputs are requests for options not

accessible at thP current node. If it is legal, a correct

analysis is produced if the system performs the action intended

by the user. For an illegal input, a correct analysis takes

the form of noting the error and printing an appropriate mes-

sage. Figure 7 shows for each input type, the total number

of inputs, and the number analyzed correctly and incorrectly.

8d

XV-32.

CONVERSATIONAL ANALYSIS

INPUT TOTAL h CORRECT / INCORRECT % CORRECT

LEGAL 295 293 2 99.3

ILLEGAL 10 8 2 80.0

FORCED 71 71 0 100.0

TOTAL 376 372 4 98.9

Sumi.aLy of Conversational System Performance

Figure 7

In addition it shows the percent of correct analyses associated

with this operation. These results indicate a very high level

of performance for the system. Not only does it handle valid

inputs successfully, but it is also able to detect- invalid inputs

and treat them properly. The total number of inputs shown in

Figure 7 is actually greater than the total number of input lines.

This is because several inputs may be compounded onto a single

line.

B) User Performance

The measures of user performance are necessarily more sub-

jective than those of system performance. However, these results

can provide useful information into the overall validity of

this type of approach to a conversational implementation.

For each user, at least two dialogues are conducted; one

with the user having a minimum of system knowledge, and one

where he has more instruction and previous experience. On the

first try, every user responded properly to the Initial system

question and was able to turn on the guide facility. Then using

90

XV -32

the guide facility, all but one user was able to successfully

complete a simple retrieval process. The one exception did not

understand the use of the word "default". After this was

explained, the operation progressed normally. In general, all

users were able to respond properly to the guide questions.

The only major problem occurred at the end of the guided dia-

logue where the process is recycled and started again. It was

not obvious to the user at this point, how he could sign off.

But most users knew enough to request a tutorial which then

explicitly displayed the available options; SIGNOFF being

one of them. An example of this situation appears in Figure

6A. A slight modification of the final guide process can rec-

tify this.

Having been guided through retrieval operation supplies

the user with a great deal of insight into the use of the

system. Using this experience and a small amount of added

instruction to fill in any areas not touched by the guide faci-

lity, the user next attempts a normal (unguided) dialogue. All

of the users tested were able to conduct a reasonable dialogue

without outside help. A few of the users who had previous

information retrieval experience were able to perform a highly

competent retrieval after only a single introductory guided pro-

cess. Of course nearly all of the users became stuck at some

point and had to request a tutorial. Of the 32 tutorial calls

made by all users, all but one supplied the information neces-

sary for the user to continue. In some cases where the user

received the master status tutorial, the single message answered

several of the user's questions. He was then able to continue

91

XV -33

by making several references back to the same message. The

one situation in which the tutorial did not help occurred when

a user requested a tutorial during a gul,'e process. Since

the guide facility operates by generating soccessi7e tutorial

messages, the user's request resulted in a repeat of the pre-

viously printed message. Thus the tutorial presented no new

information. The user, however, was able to extricate himself

by requesting a default option. In all the dialogues there

was no case in which a user was forced to stop because he

became hopelessly lost.

At the conclusion of each user dialogue he is asked his

opinion of the system. The reaction of ne,fly all the users

was favorable. They found the system both simple to learn and

use. The tutorial facility is very well -ceived, especially

the convention of printing the appropriate tutorial in response

to an erroneous input. Most of the critical com,li.nts center

around revision in the wording of the various mcsonses. A few

of these mu.sages are felt to be insufficiently clear to a new

user. One user suggested that tutorialb not only explain their

options but also provide some samples of appropriate valid

inputs. This comment, however, appears to be based on user

timidity more than anything else. Unlike others, this user did

not fully appreciate the natural language capabilities of the

system and was afraiu of submitting an erroneous input. He

therefore wanted the sample input as a highly structured guide-

line for his input. But because of the ability of the system

tJ treat natural language, such guidelines are unnecessary.

XV-34

The overall feeling of the user is that the system provides

an easy Lo use yet sufficiently rigorous conversational informa-

tion retrieval facility. In adoition the control conversational

dialogue can be performed at each user's particular level of

competence.

C) Timing

No analysis of a potential on-line system is complete without

saying something about processing time. The current conversa-

tional program is written in FORTRAN and contains a great deal

of diagnostic processing and output, as well as other debugging

aids. It might therefore be considered that the timing statis-

tics fc,c the program would be somewhat worse than could be

achieved using more efficient production programming techniques.

However, thLse results do give a general idea of the processing

speed. The timing of each operation varies from about 50 to

150 milliseconds. rue complete set of 376 operations is performed

in 37.057 se,onds or about 0.1 second per input operation.

When considering an actual console user, a rather conservative

estimate For the average time between inputs (that is the time

Setween end of input signals) is 10 seconds. In practice this

average is probably higher. Thus at the rate of 10 conversa-

tional operations per second. the current system could adequately

support a network of 100 consoles and supply one second or better

of response time. Even with the inefficient code and conserva-

tive estimates, this is clearly within practical limits.

XV-35

6. Future Extensions

There are a number of areas for future study with respect

t.-) the conversational system. First is a user storage facility.

With this capability a user could store various aspects of

his dialogue, such as queries or retrieved documents, for future

use. In addition, a user could store parameters which would

be automatically set at sign-on time. This would eliminate the

need to specify the parameters each time ha used the system. In

addition the system can keep various statistics about its

own performance which are valuable in evaluating and improving

the system.

Carrying the storage capability one step further, the

conversational system could be equipped with a learning sub-

system. A us .r could then specify his own notation along

with more conventionally stated equivalents. The system would

then learn the user's special requirements. In this way a

user could tailor the conversational system to his exact needs

and conventions. The learning process could also be used in

the treatment of erroneous inputs. This is shown in the sample

script below. The user erroneously requests a nonexistent

"BOOL" correlation. The system notifies him of his error

and request; clarification and whether the incorrect input

should be learned. After answering affirmatively, the user may

then use "overlap" or "bool" interchangeably.

BOOL CORRELATION

INCCRRECT CORRELATION, PLEASE CLARIFY AND

INDICATE IF INPUT SHOULD BE LEARNED.

XV -36

U: 7ES, OVERLAP

UNDERSTOOD; BOOL = OVERLAP

Thus the learning process provides a way of meeting the parti-

Lolar needs of each individual user.

Some further work must also be done with respect to user

terminals. Currently the most popular on-line c3mmuncation

device is the teletype console. These are easy to use and

colatively inexpensive. The most serious drawback is their slow

output speed. A fairly simple tutorial may take 30 seconds

or more to print. This can frustrate the user and needlessly

tie up the terminal. Another type of terminal is based on a

cathode ray tube (CR7:). These permit almost instantaneous

display of :-.essages. In addition, part of the screen may be

devoted to a prompting area. In this way the user always knows

where hL is in his dialogue and what options are currently

available. Some CRT units have a light pen which allows selec-

tion of options by merely pointing the pen at the name of the

desired option on the screen. However, there are several problems

with CRT displays. First., the added hardware needed to drive a

CRT makes them very expensive. Some work is being done by

Bitzer [l] on the design of an inexpensive visual display

unit which uses a plasma screen and slide projector. However,

these are not yet commercially available. Alse the CRT produces

no hard copy. A user might thus have to copy a long list of

docuxent numhers from the screen. The solution to this may

be supplied by devices which contain both a visual and a hard

copy facility. The user conducts his dialogue on the CRT.

Wherever he receives something he wants saved, he indicates the

(1

XV -1.37

appropriate subset of the script which is then printed. Such

a device is currently being used experiemntally by the RIQS

System at Northwestern University (13].

Another area for future study is the manner in which docu-

ments are displayed to the user. SMART and a number of other

systems normally display only the document number. At best

document numbers provide minimal information about the document's

con:en,.. It might be better to store document titles or even

abstracts on-line so tLat they may be seen by the user. This

could be done best using a high capacity, low speed peripheral

storage device. however, the expense of the dedicated storage

device along with the prospect of having the terminal tied up

printing abstracts, may make this technique uneconomical.

Another possibility is to store document abstracts on micro;icha.

A set of microfiche and a reader would be supplied at each

terminal station. The user would get a list of document

numbers from the information retrieval system and then look

them up off-line at the reader. Not only is the physical equip-

rent for this cheaper than an on-line file, but also the fact

that the scanning of abstracts is done off-line frees up the

terminal for more useful work.

The fourth and probably most significant area for future

development is the anl. sis of the conversational user. It is

from this type of study that will come significant advances in

tailoring systems to the actual needs of the system user.

7. Conclusion

Conversational information processing has many advantages

9 0

XV -38

over conventional batch methods. In this stud, i shown

that it is quite reasonable tc conduct convel e' infor-

mation retrieval in a natural language framemo- Furthermore

the template analysis process proves to be a useful technique

not only for handling the natural language input to a conver-

sational system, but it can take care of the bookeeping as

well. The conversational system implemented usin3 these tech-

niques is shown by actual user experimentation to provide an

excellent communication medium between man and machine.

9

XV -39

References

[1] Alpert, D., and D.L. Bitzer, Advances in Computer-based
Education, Science, Vol. 167 (March 1970).

[2] Atherton, P., and R.R. Freeman, AUDACIOUS, AIP Report,
AIP/UDC 7, April 1968.

[3] Berezner, S.C., H.C. Carney, J.A. Craig and C.R. Longyear,
DEACON: Direct English Access anc Control, General
Electric Co., Proceedings FJEC, Santa Barbara, California,
1966.

[4] Bergman, S., W. Franks, E. Rubinoff and M. Rubinoff,
Experimental Evaluation of Information Retrieval through
a Teletypewriter, CACM, Vol. il, No. 9 (September 1968).

[5] Bobrow, D.G., Natural Language Input for a Computer
Problemsolving System, in Semantic Information Processing,
M. Minsky, Ed., MIT Press, Cambridge, Mass., 1968.

[6] Bolt, R.H., Computer-assisted Socratic Instruction, in
Conversational Computers, W.D. Orr, Ed., John Wiley and
Sons, Inc., New York 1968.

[7]

[S]

(9)

Curtice, R.M., and P.E. Jones, Aa Operational Interactive
Retrieval System, Arthur D. Little, Inc., 1969.

Dimsdale, B., and B.G. Lamson, A Natural Language Information
Retrieval System, Proc. of IEEE, Vol. 54, No. 12 (December
1966) .

Halpern, M., Foundations of the Case for Natural Language
Programming, IEEE Spactrum, Vol. 4, No. 3, March 1967.

[10] IBM Systems/360 Document Processing System, Applications
Description, IBM, 1967.

[11) Ide, E.C., Relevance Feedback in an Automatic Document
Retrieval System, Information Storagc and Retrieval, Report
No. ISR-15 to the National Science Foundation, Cornell
University, 1968.

[12) Kellogg, C.H., A Natural Language Compiler for On-line
Data Management, AFIPS Conference Proceedings, Vol. 33,
Proc. AFIPS 1968 Fall Joint Computer Conf., Vol. 33,
Thompson Book Co., Washington, D.C.

(13] Krulee G., and B. Mittman, Computer-based Information
Systems for University Research and Teaching, Northwestern
University, Evanston, Illinois, 1969.

JV

XV-40

References (contd.)

[14] Maceyak, J., A Question-answering Language for a SMART
type Data Base, May 1968.

[15] Mathews, W.C., TIP Reference Manual, Technical Information
Program, The Libraries, MIT, Cambridge, Mass., 1968.

[16] Meister, D., and D.J. Sullivan, Evaluation of User Reactions
to a Prototype On-line Information Retrieval System (RECON),
Appendix RECON User's manual, Report NASA-CR 918, Prepared
by Bunker-Romo Corporation, Conoga Park, California.

[17] Moyne, J.A., PROTO-RELADES: A Restrictive Natural Language
System, IBM, 1967.

[18] Moyne, J.A., A Progress Report on the Use of English in
Information Retrieval, IBM Corp., Federal Systems Center,
Gaithersburg, Maryland, June 1969.

[19] Moyne, J.A., Information Retrieval and Natural. Language,
IBM Corp., Federal Systems Center, Gaithersburg, Maryland,
June 1969.

[20) Orr W.D., (Ed.), Conversational Computers, John Wiley and
Sons, Inc., New York, 1968.

[21] Parker, E., SPIRES User Manual, Stanford Physics Information
Retrieval System, Institute of Communications Research,
Stanford University, Palo Alto, California.

(22] Reitman, W., R.B. Roberts, R.W. Sauvain, and D.D. Wheeler,
AUTONOTE: A Personal Information Storage and Retrieval
System, Mental Health Research Institute Communication
#248 and Information Processing Working Paper 012, Univer-
sity of Michigan, Ann Arbor, Michigan, 1969.

[23] Rubinoff, M., S. Bergman, H. Cautin, and F. Rapp, Easy
English, A Language for Information Retrieval Through a
Remote Typewriter Console, CACM, Vol. 11, No. 10 (October
1968).

[24) Salton, G., Automatic Information Organization and Retrieval,
McGraw Hill, New York 1968.

[25) Salton, G., interactive Information Retrieval, (Unpublished).

[26) Silvern, L.:., CAI in an Expanding Universe of Educational
Methodology, in Conversational Computers, W.D. Orr, Ed.,
John Wiley and Sons, Inc., New York 1968.

9.)

XV -41

References (Contd.)

[27] Simmons, R.F., Synthex, in Conversational Computers,
W.D. Orr, Ed., John Wiley and Sons, Inc., New York, 1968.

[28] Simmons, R.F., Natural Language Question-answer Systems:
1969, CACM, Vol. 13, No. 1 (January 1969).

[29] Summit, R.F., DIALOG II Users Manual, Information Science
Electronic Science Lab., Lockheed Palo Alto Research
Lab., Lockheed Missiles and Space Co.

[30] Thompson, F.B., DEACON Type Query Systems, in Conversa-
tional Computers, W.D. Orr, Ed., John Wiley and Sons,
Inc., New York, 1968.

[31] Weiss, S.F., A Template Approach to Natural Language
Analysis. for Information Retrieval, Ph.D. Thesis,
Department of Computer Science, Cornell University,
Ithaca, New York, 1970.

(32] Weiss, S.F., Template Analysis and its Applicati-)n to
Natural Language Processing, Information Storage and
Retrieval, Report No. ISR-16 to the National Science
Foundation, Cornell University, 1969.

[33] Weizenbaum, J., Contextual Understanding by Computers,
CACM, Vol. 10, No. 8 (August 1967).

[34] Weizenbaum, J., ELIZA A Computer Program for the Study
of Natural Language Communications Between an and
Machine, CACM, Vol. 9, No. 1 (January 1969).

[35] Williamson, R., A Prototype Document Retrieval System.
(Unpublished).

10)

