E

DOCUMENT RESUME
¥D 048 915 LI 002 724
TITLE On-Line Retrieval System Design; Part V of

Scientific Report No. ISR-18, Intormation Storaye
and Retrieval...

INSTITUTION Cornell Univ., Ithaca, N.Y. Dept. of Computer
Science.

SPONS AGENCY National Library cf MNed.cine (DHEW), Bethesda, Md.;
National Science Foundation, Washington, D.C.

REPORT NO ISR-18 | Part V)

PUB DATE cct 70

NGOTFR 100p.: Part of LI 002 719

EDRS PRICE EDRS Price MF-%0.65 HC—-$3.29

DESCRIPTORS Automation, Computer Programs, *Design, ¥*Information

Retrioval, *Information Systems, Languages, Man
Machine Systers, Programing, #*Search Strategie:s,
Shared Services, Systems Analysis, Use Studies

IDENTIFIERS *Saltons Magical Automatic Retriever of Texts, SMART
On Line Retrieval Systems

ABSTRACT

On~line retrieval system design is discussed in the
two papers which make up Part Five of this report on Salton's Magical
Automatic Retriever of Texts (SMART} praject report. The first paper:
HA Prototype On-Line Document Retrieval Systen" by D. Williamson and
R. Williamson outlines a design for a SMART on-line document
retrieval system using console initiated search and retrieval
procedures. The convecsational system is descrived as well as the
program oryanization., The second paper: "Template Analysis in a
Lonversational Systen" by S. P. Weiss discusses natural languade
conversational systems. The use of natural language makes pussible
the implementation of a natural dialogue system, and renders the
system available to a wide range of users. A se:t or ygoals for such a
system is presented. An experimental conversational systeuw is
implenented using a tempiate analysis process. A detailed discussion
of both user and system perforrmance is presented. (For the entirve
SMART project report see LI 002 719 and for parts 1-4 see LI 002 720
through LI 002 723.) (Ni)

O

RIC

Aruitoxt provided by Eic:



————— e - (Y

e e b e s b e A il < o s e o e e
PERMISSION TO REPRODUCE THIS COPY

RIGHTED MATERIAL HAS BEEN GRANTED

BY

Jepe.

ﬁtug;g ;L’gr,uﬁ Mnd.
. TC ERIC AND' ORGANIZATIONS OPERATING

UNDER AGREEMENTS W'TH THE US GFFICE
QOF EDUCATION FURTHER REPRODUCTION
OUTSIDE THE ERIC SYSTEM RENUIRES PER
MISSION UF THE COPYRIGHT OWNER

Department of Computer Science
Cornell University

Ithaca, New York 14850

ED048915

On- bhine zc.tv"ld'.uo.l $SS§M bgscqh
' Poe - Y

of
Scientificn Rgpox‘t No. ISR-18
INFORMATION STORAGE AND RETRIEVAL
to
The National Science foundation
and to

The National [ibravy of Medicine

Reports on Analysis, Dicticnary Construction, User

Feedback, Clustering, and On-Lire

Retrieval
Tthzea, New York Gerard Salton
.S. OEPARTMENT OF HEALTH,
OctOber 1970 v UCATION & WELFARE * 13
S or EDUCATION Project pirector

THIS DOCUMENT HAS BEEN REPRO
OUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANILATION DRIG
INATING (T PO'NTS OF vIEw OR OPIN
IONS STATED DO NOT NECESSARILY
REPRESENT QFFICIAL OFFICE OF §DU-
CATION POSITION OR PULICY

X002 722

T
A

=

Aruitoxt provided by Eic:



o

ERIC

Aruitoxt provided by Eic:

®

Copyright, 1970
by Cornell University

Use, reproduction, or publication, in whole or in part, is permitted

for any purpose of the United States Government.

| (]

ii



O

ERIC

Aruitoxt provided by Eic:

e b A v

SMART Project Staff

Robert Crawford
Barbara Galaska
Eileen Gudat
Marcia Kerchner
Ellen Lundell
Robert Peck
Jacob Razon
Gerard Salton
Donna Williamson
Robert Williamson
Steven Worona
Joel Zumoff

i




ERIC Usei Please Note:

This Table of Contents outlines all 5 parts of Information Storage
and Retrieval (ISR-18), which is available in its entirety as

LI 002 719. Only the papers from Part Five are reproduced here

as LI 002 724. See LI 002 720 thru LI 002 723 for parts 1 - 4,

TABLE OF CONTENTS

Page

SUMMARY . . + &« s & s s s 4 e s s e aa e e e

PART ONE

XV

Avaitlable as

2UTOMATIC CONTENT ANALYSIS W coa 130

I. WEISS, sS. F.
"Content Analysis in Information Retrieval"

Abstract . . .+ 4 s s s e e e s e e e e e s
l. Introduction . . .+ .+ + . . & s e 4 4 e ..
2. ADI Experiments . « . .« .+ « ¢ s 4 e a4 = s

A} Statictical Phrases « « .+ .+ &+ + o+ . s
B) Syntactic Phrases . .+ . + « o « « .
C) COOCCUYYence., . .+ « 4+ s+ o & & s s » &
D) Elimination of Phrase List . . . . . . . .« .

E) Analysis of ADI Results . .« . .« « + + =+ o
3. The Cranfield Collection . . .+ . « « « & + &

4. The TIME Subset Collection. . . « .+ « .+ =+ + « .
A)  Construction. . . « 4 4 4 . 4w e e

B) Analysis of Results . . . . . . . « .+ .+ .

5. A Third Collectionm . . .« . « + + o « « o« &

T

6., Conclusion . . .+ + + » 4 4 e e 2 e e 4

References .+ + » s s s x e a s s s w e ws

II. SALTON, G.
"The 'Generality' Effect and the Retrieval Evaluation for Large
Collections"

ERIC 4

s iv

I-27
I-27
I-31

I-39

I-43



TABLE OF CONTENTS (continued)

1I. continued :
Abstract . . . . . L L0 0. e e o
1. Introduction. . . . . -. ve h e e e e e
2. Basic sSystem Farameters . .« . « + o« 4 4 e . . .
3. Variations in Collection Size . . . . . . . . . .
A) Theoretical Considerations . . . . . . . . .
B) Evaluation Results . . . . . ., . . K
C) Feedback Performance . . .+ .+ . .+ . . . . .
4. variations in Relevance Judgments. . . . . . . . .
S. SUMmMArY . ¢ v v e w0 e e e e e e
References. . . . . . . . . 040w 0o
III. SALTON, G.
"Autematic Indexing Using Bibliographic Citations"
Abstract . . . . . . . . 0L .0 ey e

1. significance of Bibliographic Citations. . . . . . . I
2. The Citation Teﬁt S ¢
3. Evaluation Results. . . . . . . . . ., . . . . 1
References. . . . . . . . . . < . . W0 o 1

Appendix . . . . . . . . 0 . e e e .

IV. WEISS, S. F.
"Automatic Resolution of Ambiguities from Natural Language Text"

ERIC

s v

r

Page

17-1

1I1-7
I1-10
II-15

II-24
II-31

I1-33

II1-1
II-1
I11-4
11-9
I11-19

11-20




TABLE OF CONTENTS ({continu

IV. continued

Abstract . . ¢« « . . . 4 . .
1. Introduction. . . . . . . . .
2. The Nature of Ambiguities . . . .
3. Approaches to Disambiguation . . .
4. Automatic Disambiguation. . . . .

A) Application of Extencded Template
Disambiguation . . . . . .
B) The Disambiguation Process . .

C) Experiments . . « .+« .+ . .-

D) Further Disambiguation Processes

5. Learning to Disambiguate Automatically .

A) Introductior . . . . . . .
B) Dictionary and Corpus . . .« .
C) The Lezrning Process . . . .
D) Spurious Rules e e e e e
E) Experiments and Results . . .

F) Extensions. . + « .+ o+ s .
6., Conclusion « + + v+ 4 s e e

References. . » « & o+ <« & .+ .

+  PART TWO

ed)

Page

S A5 |
e v e e e . 1v=2
e+ e+ . . 1v-4
e+ .« . . 1v-8
e .‘ .. Iv-14

Analysis to
« v s e e 1IV-14
T 29
P A ¥

e+ s+ e+ s+ . IV-20
s s s s e Iv-21

e s e s s s Ive21
e e s e wo.oIv-21
e s s e e IV=23
s s s s e . 1IvV-28
s s s s s . IV=3D
c + e .« s+ . 1IV-46

e s s+« .« IV-49

e« + + » .+ w» 1IV=50

Puailabvie atc

AUTOMATIC DICTIONARY CONSTRUCTION

V. BERGMARK, D,

ERIC 6

s {
v

v qoa N2}



[P

O

ERIC

Aruitoxt provided by Eic:

TABLE CF CONTENTS (continued}

V. continued

[ g S

Page

"The Effect of Common Words and-Synonyms on Retrieval Performance"

Abstract

1. Introduction.

2. Experiment Cutline.

A) The Experimental Data Base

B) Creation of the Significant Stem Dictionary.

C) Generation of New Query and Document Vectors

D) Document Analysis — Search and Average Runs.

3. Retrieval Performance Results

A) significant vs. Standard St-m Dictionary.

B) significant Stem vs. Thesaurus

C) Standard Stem vs.

D) Recall Results

Thesaurus

E) Effect of "Query Wordiness" on Search Performance.

F) Effect of Query Length on Search Performance

»

G) Effect of Query Generality on Search Performance .

B) Conclusions of the Global Analysis.

4. Analysis of Search Performance. .

S. Conclusions

6. Further Studies.

References.
Appandix I.

Appendix II

-

vii

v-1
V-1
V-2

V-2
V=2
V-4
V-5

V-7

V-9

v-11
v-11
v~15
v~15
v-17
v~19
v-20
V=31
v~32
V~34
v-~35

V-39




VI.

vII.

O

ERIC

Aruitoxt provided by Eic:

TABLE OF CONTENTS (continued)

BONWIT, K. and ASTE-TONSMANN, J.
"Negative Dictionaries"
Abstract . + . . e 4 4 e 4 4 e s e
1. Introduction. . . .+ « s . . . . .
2, Theory. .« .+ .+ .+ L
3. Experimental Results « . ¢« .+ + .+ «+
4,y Experimentzal Method . . . . . « . .

A) Calculating Qi e e e e e
B) Deleting and Searching, . . . . .

5. Cost Analysis e e e e e e
6, Conclusions « + + & &+ s .4 e e . .

ReferenceS., « o+ « o o & s e s 4w s

SALTON, G.
"Experiments in Automatic Thesaurus Construction
Retrieval”
Abstract .« .+ . . ¢ ¢ . e e 4 e e
1. Manual Dictionary Construction. . . . .
2. Common Word Recognition . . . .« . & .
3. Automatic Concepti’ Grouping Procedures . .

4. Sunmaly . . . . . . . . . . . .

REfEYANnCESs « o o " o 4 s 4 4 e s e

viii

Page

e« s+ e . VI-2
e« e s . VI~T7
e« + ¢« o VI-19

e« + .+ . VI-1S
e« o o o« VI-20

v e« o« s VI=25
e o« » « VI-29

s+« &« VI-33

for Information

5 $ 85 |
R e
. . . . VII-8
R $ &3 ¥
« .+ .« . VII-25

. . . . VII-20



1ABLE OF CONTL..{S (continued)

Page
PART THREE Availlable as

USER FEEDBACK PﬁOCE}DURES bt 00722

VIII. BAKER, T. P.
"Variations on the Query Splitting Technique with Relevance
Feedback"
Abstract .« « ¢ v ¢ ¢ 4 v e e e v e e e e eoWIIINY
l. Introduction. . « + « v ¢ 4+ 4 s 4 4 e e . VIII-L
2. Algorithms for Query Splitting. . . . . . . . . VIII-3
3. Results of Experimental Runs . . . .+ . . .+ . . VITI-1

4. Evaluation .+ .+ .+« + ¢ 4 4w e e e e e . VIID-23

References. . .+ v + . ¢ 4 4 4 4 e v 4 e W« VITI-25

IX., CAPPS, B. and YIN, M.
"Effectiveness of Feedback Strategies on Collections of

Differing Generality" .

Abstract .« . . . o Lo LT 0w v e e e e IX-1
1. Intreduction. . .+ . .+ .+ . 4 . . ... . Ix-1
2. Experimental Environment. . . . . . . . . . . IX-3
3. Experimental Results . . . . . . . « + . . . I1X-8
4. Conclusion . .« . . .+ v . 4 e e e I¥-19
References, . . . . ¢ . 4. . . voe e e e Ix-23

AppendiX . . . 4 4 h e e e e e e e e IX-24

ERIC 9

ix




e U L LT T Sy P .,4.A\»-~M¢“.M—m_."“‘“~\

TABLE OF CONTENTS {continued)

Page
X. KERCHNER, M.

"Selective Negative Feedback Methods"
AbStract . . + . e v e e e e e e e e w1
1. Introduction. . . .+ « « 4« 4 4 e 4 e o« . X-1
2, Mathodology . .+ v + o 4+ 4 s e e s s e s w X~2
3, Selective Negative PRelevance Feedback Strategies. v. . X-5
4. The Experimental Enviro.ment . .. . . . . .+ . . X-6
5. Experimental Results . . . . . . . .+ .+ .+ . . X-8

X-13

6, Evaluation of Experimental Results

RefeYencesS. s+ ¢ o o o o &« & 2 e e a2 s e s » X=-20

XI. PAAVOIA, L.
“7The Use of Past Relevance Decisions in Relevance Feedbac

Abstract . « + 4 4 4 e 4 s e e e s a4 . s XI=)
1, Introduction. . . . « + 4+ 4 4 4 s a2 s . . XI-1
2. Assumptions and Hypotheses . . . .« .+ =« =« 2 .+ . XI=2
3. Experimental Method . .« . .+ + « « 4+ o« e« . -. Xi~-3

4. Evaluation .« .+ .+ & ¢ 4 4 4 4 e e e e 4 . XI=7

..-

5. Conclusion . . P 3 €

RefOIENCeS. « o o o o o o« e e e e e e e . . %1-14

Qo : 10
ERIC x

Aruitoxt provided by Eic:



psin

J D

XII.

O

ERIC

Aruitoxt provided by Eic:

JOANSON, D.

TABLE OF COMTENTS (continued)

PART FOUR

CLUSTERING METHODS

B. and LAFUENTE, J. M.

Aveairlablie a$
LT 062 123

Page

'A Controlled Single Pass Classitication Algorithm with Application
to Multilevel Clustering”

Abstract

1. Introduction. . . . . .

2. Methods of Clustering. . .

3. Strategy « .+ o« . .« e .

4. The Algorithm . . . . .

Al
B)
C)
D)

Cluster Size . . . .
Numnber of Clusters . .
Overlap. . .« « .« .
An Example. . . . .

5. Implementation . . . . .

A)

Storage Management . . .

6. Results . . « . « .« . .

A)
B)
)
D)

Clustering‘Costs. e e

Effect of Document Ordering .

Search Results on Clustered ADI Collection .

Search Results of Clustered Cranfield Collection

7. Conslusions

References. . « « .« .+ .« .

11

xi

XiI-1

XII-1

XI11-3

X1I-5

XII-6

XII-8
¥1I-9
XII-10
Xri-10

¥1I1-13

X11-14

XI1-14

XII1-15
XII1-19
XII-20
XI1-31

XII-34

X11-37




TABLE OF CONTENTS (continued)

III. WORONA, S.

“A Systematic Study of Query--lustering
Progress Report"

Abstract .« + o« o« s s s a s
1. Introduction. . .+ =+ .+ .+ .+ .

2. The Experiment . . . . . . .

A) Splitting the Collection . .
B) Phase 1:
C) Phase 2:

D) Phase 3: Assigning Centroids

E) Sumwmary. . .+ « .« . R
3. Results .« .+ + « & o« s s
4. Principles of Evalvation. . . .
References. L
Appendix A. . . . .+ . . . . .
Appendix B. .+ .+« . .« .+ . . .

Appendix C. . < .+ i e . s

PART FIVE
ON-LINE RETRIEVAL SYSTEM

t

XIV. WILLIAMSON, D. and WILLIAMSON, R.
"A Prototype Cn-Line Document Retrieval

Abstract . - . . . . . . . .

14
Q . ’ xii

ERIC

Aruitoxt provided by Eic:

Techniques:

. . . .

Clustering the Queries . . .

Clustering the Documents. . .

. . -

DESIGN

System”

Page

XI11l~1

. XI17-1

XII1-4

XIII-4
XI11I-6
XIII-8
XIII-12
XIII-13

XITI-13

XI1I1-16

X111-22

X{I1-24

XI111-29

XIII-36

X1v-1



X1v.

XV. WEISS, S. F.

O

ERIC

Aruitoxt provided by Eic:

continued

1.

2.

3.

4.

5.

6.

Appendix

TABLE OF CONTENTS {continued)

Introduction. . « « .+ « o« o« .

Anticipated (- , uter Configuration . . .

On~Line Dccument Retrieval — A User's View.

Console Driven Document Rotrieval = An Internal

a)
B)
)
D)
E)
F)
G)
H)
I)

3y

The Internal Structure. . . . . .o

Genrral Characteristics of SMART Routines

Pseudo~Batching . .« « . .+« + . .

Attaching Consoles to SMART « « « &

View

Console Handling — The Superivscr Interface .

Parameter Vectors .« .+ « . . e
The Flow of Control. . . . « . .

Timing Considerations . . . .« . .

. Noncore Resident Files. . . .« .

Core Resident Files. . . « .+ +

Consol — A Detailed Look. « « « + «

A)
B)
<)
D)
E)
F)

Competition for Core . . « .+ . .
The SMART On-line Console Cuntrol Block
The READY Flag and tl » TRT Instruction
The Routines LATCH, CONSIN, and CONSOT
CONSOL as a Traffic Controller . . .
A Detailed View of CYCLE « . . .+ .

SUMMAYY « « + ¢ o+ e s o+ e .« e s

“Template Analysis in a Cunversational System"

xiii

v .

Page

XIv-1
X1v-2
XIV=-4
Xiv-10

Xiv-10
X1/-16
XIv-17
X1v-19
Xiv-21
Xiv-21
X1v-22
X1v-23
XIV-26
XIv-28

Xiv-30

X1v-30
X1v-31
XIv-32
X1v-32
XI1v-34
XIv-27

XIV-39

X1v-40

13

-

e s .t Moot 5




TABLE OF CONTENTS {vontinued)

Page

XV. continued

Abstrant . .. . 4 0 4 0 0 e e e e e xv-1
1. Motivation . « + « 4 4 s 4 4 e e Xv-1
2. Some Existing Conversational Systems. . . . . Xv-4
3. Goais for avProposed Conversational System. . . xv-f
4. Implementaticn of the Conventional System . . . Xv-11

A) Capabilities « « « & 4« « 4 e e+ s Xxv-11
B) TInput Conventions .« . .« + +« .+« .+ . . Xv-12
C) The Structure of the Process. . . . . . Xv-13
D) Template Analvsis in theGnmwersational System  Xv-14
E) The Guide Facility . . . « « .+ .+ .+ . Xv-23
F) Tutorials « .+« + + o o o o &« o s Xv-24

5. Experimentation. .« . .+ « « + « ¢+ o+ . Xv-25

A) System Performance « .« « « o « o o Xv-30
B) User Performance. =« « « « » o o & Xv-31
C) Timing « .« « « « ¢+ e ¢ 4 e e . Xv-34

6. Future Extensions . . . . . .« .+« .« + . . Xv-35
7. Conclusion . .+ « +« ¢ 4+ 4+ e e s+ 4 e a Xv=-37

References. .« .« + o s e v 4 e o a s e Xv=-39

Q 14
IEIQJ!: Xiv

Aruitoxt provided by Eic:



[E

ERIC User Please Ncte:
This svmmary discusses all 5 parts of Informatien Storage
and Retrieval (ISR-18), which is available in its entirety as

LI 002 719, Only the papers from Part Five are reproduced here
as L1 002 724, See LI 002 720 thru LL 002 723 for parts 1 - 4,

Summary

The present report is the elghteenth in a series describing research
in automatic information storage ahd retrieval conducted by the Department
of Compufer dcience at Cornell Univérsity. The report covering work carried
out by the SMART projent for approximately one year (summer 1969 to summer
1970) is separated into five parts: automatic content analysis (Sections
1 to IV), automatic dictionary construction (Sections V to VII), user feed-
back procedures (Sections VI1I to XI), document and guery clustering methods
(Sections XII and XIIl}, and SMART systems design for on~line operations
{(Sections XIV and XV}.

Most recipients of SMART project repo¥ts will experience a gap in
the series of scientific reports received to date. Report ISR-17, consisting
of a master's thesis by_Thomas Braven entitled "Document Vector Modification
in On-line Information Retrieval Systems" was prepared for limited distribu-
tion during the fall of 1969. Report ISR~17 is available from t'.e Naticnal
Technical Inforination Service in Springfield, Virginia 22151, under order
nunber PB 186-135.

The SMART system continues to operate in a batch processing mode
on the IBM 360 model 65 system av Cornell University. The standard processing
mode is eventually tov be replaced by an on-line system using time-shared
console device§ for input and output. The overall design for such an on-line
version of SMART has been compieted, and is described in Section XIV of the
Present report. While awaiting the time-sharing implementation of the
system, ncw retrieval éxpetiments have been performed using larger docunment

collections within the existing system. Attempts to compare the performance

O

IQJ!:‘ x;1‘3

Aruitoxt provided by Eic:




[E

of several colleccions of different . :es must take into account the
collection "generali:y". A study of this problem is made in Section II of
the present report. Of special interest may also be the new procedures

for the automatic recognition of "commnn" words in English texts (Section
VI), and the autqmatic construction of thesauruses and dictionaries for use
in an automatic language analysis system (Section VII). Finally, a new
inexpensive method of document classification and term grouping is
described and evaluatecl in Section XII of the present report.

Sections I to IV cover experiments in automatic content analysii
and automatic indexing. Section I by S. F. Weiss contains tﬁe results of
experiments, using statistical and syntactic procedures for the automatic
recognition of phrases in written texts. It is shown once again that be-
cause of the rzlative heterogeneity of Aost Gocument collections, and
trhe sparseness of the document space, phrases are not normally need:d
for content identification.

In Section II by G. Salton, the "generality" problem is examined
which arises when two or more distinct collections are compared in a
retrieval environment. It is shown that proportionately fewer nonrelevant
items tend to be retrievéd when larger collections (of low generality)
are used, than when small, high generality collections serve for evaluation
purposes. The systems viewppint thus normally favors the larger, low
generality outpu!:, whereas the‘user viewpoint piefers the .performance of
the smaller collection. { ot

The effectiveness of bibiiographic citations for content analysis

purposes is examined in Section III by G. Salton. It is shown that in

some situations whes the citation space is reasonably dense, *he use of

O

IQJ!:‘ xvi

Aruitoxt provided by Eic:



citations attached to documents is even more effective than the ‘i1se of

standard keywords or descriptors. 1In any case, citations should be added
v :

to the normal descriptors whenever they happen to be available,

In the last section of‘Part'l, certain template analysis methods
are applied to ;he autoratic resoluti;n of ambiguous constructions
(Section IV by S. F. Weiss). It is shown that a set of contextual ruies
can be constructed by a semi-automatic learning process, which will eventually
lead to an automatic recognition of over ninety percent of the existing
textual ambiguities.

Part 2, consisting of Sections V, VI and VII covers procedures
for the automatic construction of dictionaries and thesauruses useful in
text analysis systems. In Section V by D. Bergmark it is s.own that word
stem methods using large common word lists are more effective in an infor-
mation retrieval_environment that some manually constructed thesauruses,
even though the latter also include synonym reco,nition facilities.

A new mod<l for the automatic determination of "common" words
(which‘are not to be used for content identification) is proposed and
evaluated in Section VI by K. Bonwit and J. Aste-Torsmann. The resulting
process can be incorporated into fully automatic dictionary construction
systems. The complete thesaurus corstruction problem is reviewed in Section
VII by G. Salten, and the effectiveness of a variety of automatic dictionaries
is evaluated.

Part 3, consisting .f Sections VIII through XI, deals with a
nurnber of refinements of the normal relevance fcedback process which has
been examiiied in a number of previous reports in this series. In Section
VIII by T. P. Baker, a query splitting process is evaluated in which input

Q
ERIC 1/

i ot e
xvii




queries are split into two or more parts during feedback whenever the
relevant documents icentified by thé user are separated by one or more non-
relevant ones.

The effectiveness of relevance feedback techniques in an environ-
ment of variable generali: is examined in Section IX by B. Capps and M.
vin. It is shown that some of the feedback techniques are equally applica-
ble to collections of small and large generality. Techniques of negative
feedback (when no relevant items are identified by the users, but only
nonrelevant ones) are considered in Section X by M. Kerchner. It is shown
that a number of selective negative techniques, in which oﬁly certain
specific concepts are actually modified during the feedback process, bring
good improvements in retrieval effectiveness over the standard nonselective
methods.

Finally, a new feedback methodology in which a number of documents
jointly identified as relevant to earlier queries are used as a set for
relevance feediack purposes is proposed and evaluated in Section XI by L.
Paavola.

Two new clustering techniques are examined in Part 3 of this report,
consistin, of Sections XII and XIII. A controlled, {inexpensive, single-pass
clustering algorithm is described and evaluated in Section XII by D. B.
Johnsoa and J. M. Lafuente. In this clustering m2thod, each document is

)
examined only once, and thc procedure is shown to be equivalent in certain

circumstances to other rore démandlng clustering procedures.
The query clusteringlprv:ess, in which query groups are used to

define the information search strategy is studied in Section XIII Ly S.

Worona. A variety of parameter values is evaluated in a retrieval environ-

ERIC i

Aruitoxt provided by Eic:



O

ERIC

Aruitoxt provided by Eic:

ment to be used for cluster generation, centroid definition, and final

search strategy.

The last part, number five, consisting of Sections XIV and XV,
covers the design of on-line informglion retrieval systems. A new
SMART system design for on-line use }s proposed in Section XIV by D. and
R. Williamson,_based on the concepts’of'pseudo-batching angd the interaction
of a cycling program with a conscle monitor. The user interface and
conversational facilities are also described.

A terplate analysis technigue is used in Section XV by S. F. Weiss
fcr the implementation of conversational retrieval systems used in a time-
sharina environment. The effectiveness of the method is discussad, as
wnll as its implementation in a retrieval sjtuation.

Additional automatic content analysis and search procedures used
with the SMART system are described in several previous reports in this
series, including notably reports ISR-11 to ISR-16 published between 1966

and 1969. These reports are all available from the National Technical

Information Service in Springfield, Virginia.

G. Salton

13

Xix




O

ERIC

Aruitoxt provided by Eic:

XIv-1

XIV. A Prototype On-Line Document Retrieval Systenm

D. Williamson and R. Williamson

Abstract

A design is outlined for a SMART on-line document retrieval system,
using console initiated search and retrieval procedures. The conversational

system is described as well as the program organization.

1. Introduction

The SMART system precently contains routvines for experimental, off-
line document retrieval. The experimental results ohtained so far indicate
that automatic docunent vetrieval can provide useful information for
general library users. The next logical step is the development of a sujt-
able user-oriented interface p-oviding access via on-line consoles in an
interactive mauner.

“his report describes a prototype, on-linhe document retrieval
system and a user interface. The system which is outlined is intended to
provide the best service possible to on-line users at a reascnable cost, but
covld also be efficiently used with very few modifications as a batch or
remcte entry system. While initial %est®  with collecticrsof only a few
thousand documents and less than five consoles is anticipated, the mecka-
nisms used are intended to be applicable without revision to much larger
collections of about 500,000 documents, and up to one to two hundred input-

output consoles.

20



XIv-2

2, Anticipated Computer Configuration

In order to provide adequate response t.imes — about 10 seccnds for
minor inputs and about 30 seconds for responses to search commands — a
large, high-g.eced computer is necessary. Document retrieval, like many
other non-numeric processes, requires a large data base of which a small, but
substantial, fraction 1ust Le accessed for each query. Thus, it is necessary
to operate with large, on-line files — presumably on a disk (although certain
files could be placed on a data cell type device).

While a large computer is necessary to support the input-output equip-
ment, and provide reasonable responsze times, an on-line retrieval system
such as SMART, will not be able to utilize the full resources of a large
machire. First, periods will occur when no users wish to avail themselves
of the on-line system; and even when actual users are present, most of the
real-time of an interaction is spent waiting for user de:isions. Also,
while processing a search request, the computer may be expected to be input-
output (I-0) bound wsiting for vocabularies and documents to be brought
into core.

If processing costs are to be reasonable, provision must be made
1> permit non-retrieval users to proc¢ess while the retrieval system is in-
active for one reason or another. The type of environment needed is typi-
fied by many of the rwlti-processing and tim:-sharing systems available on
large machines today. W'th these systems, jobs are effectively allocated to
two queues: most are avvaiting execution, and a few are in execution. Those
in execution share the central processcr (C.P.U.), memory, and on-line
storage devices. Each memocry area and storage device is usually dedirated
to ¢ single job. (In addition, a few devices and storage areas are normally

Q
ERIC

2
FalTo: Poiod b EHG “



O

XIV -3

reserved for the supsrvisor which is used by all jobs.) CPU allocation is
nornally switched from one executing job to another (through the supervisor’
whenever that job is blocked — usually because it mast await completion of
an I-0 transmissicn. System blocks are provided to prevent jobs from meno-
polizing the CPU, when no blocks occcur for a certain time.

In the normal course or events, each executing job receives the
opportunity to use the CPU several times a minute. Much of the time, a
retrieval process such as SMARY will be unable to utilize the cpportunity
to process. However when SMART has work io do, and the information necessarvy
to do thac werk is availabl~, the CPU is normally accessible — effectively
instantaneously. The reason is that the retrieval tasks will appear as
highly 7-0 bound jobs, which are therciore core r:sidenv f.. long periods
of time, and are usually high in priority for CPU access.

SHMART can make efficient use of as much core storage as cau be
made available. However, the retrieval rouvines tend 1o be tmall, and are
highly overlayable; thus, the basic core area requirements are quite small.
As in other typical data processing applications, the major core requirements
ir. a retrieval program are for sata areas in which to place I-0 buffers for
dictionaries, documents, etc. 1t would be most desifable if SMART could
obtain 100 K to 200 K c¢f core (possibly from a bulk core rather than from
the high speed main core) on demand, for pariods of only several seconds
each time a request (or gfoup of pseudo-batched requests) are processed.
This core could easily come from the system buffer pool. ltowever, sharing
of core in this way is not a normal feature of tolay's operating systems;
thus, SMART will undoubtcdly have to reserve an area of high-speed ucore for

prograas (25-30 K bytes), and an area of bulk core for data (at least 50 K

ERIC

Aruitoxt provided by Eic:

o
o



XIV-1

bytes — however, the more core is available, the faster will normally be

the obtainable response times).

3. On-Line Document Retrieval — A& User's View

When control of a console is transferred to SMART, the remcte unit
should be titled clearly to indicate to the user what basic information is
needed at edch step (detailed information should be provided as specified
by a user's manual).

If “MART 1is omn-line at the time c¢f console transfer, the user must
first enter such basic information as his name and account number (see
Fig, 1). After this information is accepted by SMART, the user can proceed
to ask for the execuvion of a g.ven prccess. HMany processes, such as query
searches, query updates, and displays of output are available,

An initial user will probably start with a single query search
(such @s shown in Fig. 1). 1In this case, he will type in his query and
then ak for a search to be decne. The rosults will be displayed (in one
of several possible forms, such as titles, avstracts, etc.), and the user
will then either get a ‘urther display of the documents, or use the results
of the search at that point,

Several types of displa, for retrieved documents could be used,
The volume of information included in ebstracts (c¢r full articler)} is
likely to be so large that teletype display will be impractically slow;
cathode-ruy tube display is however qu.te enpensive. Storage of abs+vracts
at the remote terminzl is an attractive alternative, witn storage either on
microfiche cards or in corputer listings.

Fellowing the retrieval of an initial set of abstfracts, the query

ERIC

Aruitoxt provided by Eic:

95



O

ERIC

Aruitoxt provided by Eic:

$PROCEED

--SMART

#

# SMART

#

#What is your name?-

-Jce Cornell

#What is your access code?-
~NONE

#Your access code is '"MNAIZ".
#Do you wish to enter a query?
~Tes,

#Please enter your 1 th query.
#Type "End of query." when finished.
-What articles are there in ...

. End of quevry.
#Is your query ready for analysis?-

-Yes.

A Typical User's First Query

Fig. 1

n

Do

XIV-5



XIv-6

Rank Article Correlation

1 60x1212 0.6708
L. B. Heilprin, Towards a Definition of
Information Science

2 45x1215 0.4L72
D. Crosland, Graduate Training in
Information Science

3 03x121¢ 0.3823
x. L. Taylor, In Information Science
Educetion

4 21x120% 0.3600
Personnel — An Assessment and Projection

5 43x1206 1.3651

A. M. Rees, The Education of Science
Information Perronnel — A Challenge
to the Library Schools

O

ERIC

Aruitoxt provided by Eic:

Results of Initial) Search of Query 1

Fig. 1 (continued)

N

JQ



ERIC

Aruitoxt provided by Eic:

XIV-7

Following the ret. ‘eval of an initial set of abstracts, the query
author can return to the console ard give the system his estimated relevance
decisionc. Since a prime scurce of error in all document retrieval systems
is the discrepancy between a query author's intended query and his expressed
query, initial queries can often be greatly improved through a process known
as relevance feedback. This process modifies the query by adding words used
in the relevant documents to the query, thus enlarging, and hopefully, im-
_roving the query. To improve his query, the user would re-enter the system,
asking fcr a sesrch on the original query pilus velevant documents. An example
of the re-entry to use feedvack is shown in Fig. 2. In this case, :he user
asks to delete titles and uses only minimal replies. After the preliminary
tign on at the console, the user is asked if he wishes to submit relevancy
decisions for any :ctive queries (in tbis case qu=ry 10). An indication must
then be given of these decisions on a relevance scale from 1 to 5. After
entering the decisions, the user asks for relevance feedback, and gets the
results in a manner similar to the search results in Fig. 1.

For nore experienced users, other prrocedures might be useful. Dic-
tionary display to help the user construct more reasonable queries is possible,
and various types of syntactic analysis can be used. The user can also alter
the searching methods used by utiliuing his private search parametevs instead
of the standard system parameters.

Each of the various procedures available to users requires specific
patterns of interastion between tne console and the user. Tab.e 1 contains
a tabular display of portions of a proposed censole interface. Only a few
of the preocedures are traced in full, as an example or how such an interface

wouid te constructed. The importance of *he table lies in its overall stru.-

290



XIV-8

ture — the specific wording of the messages and the division of labor among
table c2gments is ¢f minor interest. However, it should be notad that
console intevraction is handled in a sequential manmer. Thus each user is
associated with just one poi.cter indicating the segrment to which he is
replying.

Each table segment consistis of one computer to console message inclu-
ding a possitle user response, or system action. If an unanticipated response
is obtained in a basic Systém, “he text will be repeated in tutorial mode.

In a more advanced system, special segments cculd be set up to handle unanti-
¢cipated responses in special ways.

Several responses are global in that they could appear at any time
rather than in response to a specific SMART message. These are listed in
Table 1 under segment O (e.g. veply class shifts). The normal form of a
response is a key phrase followed by a carriage reiurn. Some responses can
include explicit requests for changes in parameter values at the user's
option. For those responses which can take up more than one line, a period
terminates the response.

Some responses can contain a number of piricus, and consist of more
than one line, e. g. gueries. Such respcnses are terminated by a key phrase,
e.g. 'End of query.". To eliminate problems caused by missing periods, etc.,
a user should be required te enter at least one character within 10 seconds
of a zarriage return; otherwise the multipla line response is considered
complete. Such a rule is nceded to prevent the system from waiting for user
action while at the same time the user ir expecting action by the computer,

Bach reply text uses an ampersand "#'" to indicate a mandatory carriage
return. Additional carriage returns are inserted as needed by a console
me;sage director d-pending on the number of characters per line available on a

©
ERIC

2/



O

ERIC

Aruitoxt provided by Eic:

Proceed

SHART.

No title, minimal rveplies.
Nama?

Mike Lesk

Access Cede

XAQ13

SMART XAQ13 Mike Lesk
Relevancy decisions for active query 10?
Yes.
Document # 4C5 603 20X 815 10004
Decisions 3,4,3,5,1
Abstract decisions?
Yes.
Relevance Feedback?
Yes.
Search?

Yes, search.

Results of 3rd search of Query 10

DCNE
Control is relinquished to the supervisor.

Proceed

Relevance Feedback

Fig. 2

a6

XIv-9



XIV-10

1

specific console. A hyphen '-" indicates that the console l.eyboard s un-
locked for @ user response. Each quoted anticipated response, such as the
key pnrase responses, can be abbreviated by using only the capital letters
specified in the response. All anticipated responses can bz typed using
any mixture of upper or lower case letters.

The conten’.s of the 'Iiternal' column are, for the most pert,
self-explanatory. The use of the variable READY is described later but
included in the Table for completeness. It indicates whether ccnsole inter-
action is needed, or whether internal work is needed.

The 'Next Segment' tield indicates which segment Is to be considered
next. Often this is dependent on the response or the Action field. Ar "R"
indicates a return to whichever segment was previously considered. Each
user is assigned variables to indicate the segment he is in and the line of
text {for that segment's message) that is being transmitted. When a console
joins SMART, logical control is first set at segment 9 if SMART is on-line,
otherwise control is set at segment 1. MNote that segments above 104 are not

included in tl'e Table, but would be set up in the same way as other segments.

4, Console Driven Dccument Retrieval — An Internal View

This section describes a possible implementation of the on-line
document retrieval svstem presented earlier. All routines available for
batch SMART runs are usable without any reprogramming. An on-line executive

program is however needed to drive tle consoles and the Datch routines.

A) The Internal Structure
The interral structure needed for a prototvpe system must satisfy
several goals. As indicated in the introduction, a prototype system must

ERIC

3
e 2 J



XIv-11

Segment | Reply | Messages for Ccnsoles Anticipated Responses Internal Action Next
Number Class from Consoles Segment
0 (nonea) "DONE™ 51
(Attention Key) Delete trans-
mission and
activate
keyboard R
"Titorial “eplies" REPCLS =
Tutcrial
""Short Replies" REPCLS = Short
"Minimal Replies" REPCLS =
Minimal R
"2" or an unantici- If REPCLS = M
pated response Then REPCLS = S R
If REPCLS = S
Then REPCLS = T R
If REPCLS = T 2000
1 SMART is on-line 2
SMART is rot
i on-line 3
2 #SMART is already on-
line. You may not 51
initiate a duplicate
system.
3 #SMART is initiated. "Yeg" NEWCON = Yes 3.5
Your console is the
master console.
May cother consocles YNo" NEWCON = No 3.5
attach to SMART?- .
b 3.5 (Reply Class Shift n
Only)

a} Introductory Segments
SMART Console Interface

Table i

5 Q

& ‘ U

-




XIV-12

Segment | Reply | Message for Consoles Anticipated Responses Internal Action Next
Number Class from Consoles Segr.en
L S #Wwhat is your name?- User's Name Store Name 6

M #Name? -
6 S #What is your access "None" Assign an access
code? - code 7
M #Ac>:ss code?- Access code Verify code-0K 8
NOK 9900
7 Your access code RUMCUS(-number
is “aCCODE". of customers
ACCODE(-User's
new access code
Store access code 100
8 #ilelcome to SMART.
ACCODE ACCODE(-access
code
NAME NAME(-User's name
as ¢a file
Does user have any
unfinished queries?
Yes 2000
No 100
9 If SMART is
on-line 3.5
If SMART is
off-line 10
10 #SMART is not now 51
on-line. Retrieval
will be available
(time, day).
a) Introductory Segnents (contd.)
SMAKT Console Interface
Table 1 (continued)
O

ERIC

Aruitoxt provided by Eic:

34



XIv-13

ERIC

Aruitoxt provided by Eic:

o
T

Segment | Reply | Message for Conscles Anticipated Responses Internal Action | Next
Number Class from Consoles Segment
50 S #Please select one of "Done." 51
the following "Query " 100
programs. .. )
"Analyze," 500
Fuonss breiyies SO0 vpnaryes i
1 1 - 1" i =
Pre-search, Search XYZ sivategy. ANALPV=XYZ 500
Options, Feedback "Search." 1000
Options, Analysis o
\ Search, using
ggs;o“s’ Judgments, XYZ strategy."” SEARPV=XYZ 1000
"Display." 2000
"Feedback." 3500
"Feedback, using
XYZ strategy FERDPV = XYZ 3500
"Judgments." 3000
"Pre-search." 4000
"Analysis options." 5000
"Search options." 6000
"Feedback options." 7000
|
i 51 " #Thank you for using READY = 0
i SMART TST = 0
fiControl is Return control
relinquished. of conscle to
supervisor
b) Central Director
SMART Console Interface
Table 1 (centinued)
O




XIV-14

Segment | Reply | Message for Consoles Anti:ipated Responses | Incernal. Action Next
Number Class from Consoles Segment
1¢o Do you wish to enter "Yes." 101
a query? "No . 50
101 S fiPlease enter your MAXQUE = MAXQUE
MAXQUEth query. + 1
#Type "End of R .
query.” when finished. NUMQUE = MAXQUE 102
M EEnter MAXQUEth query.
i 102 - A line of a query. Store line.
Does line end
in EOQ? YES 1C3
Yo 102
—
103 ) #1Is your query ready "Delete Query." MAXQUE = MAXQUE
for analysis?- -1
Delete query 101
M #Analyze?- "Add to Query."
"Boolean." Does user want
to supply
Boolean Informa-
tion? YES 104
No 500
YYes, fearch." DOANAL = 1
"Yes." DOCENT = 1
DOSEAR = 1 500
YYes, Search, using
XYZ Strategy." As above and
SEARPY = XYZ 500
!
"Yes, using XY2Z |
Strategy.” DOANAL = 1
ANALPV = XY7
"No." 50

YERIC

PAFullToxt Provided by ERIC

¢} Query Text Handling

SMART Conscle Interface

Table 1 (continued)



[E

XIv-15

have the speed and ease of use of a production system, as well as the flexi-~
bility and measurability of an experimental system. A document retrieval
system must provide fast on-line service and exhaustive, inexpensive off-
line service. A typical first thought is simply to provide two systems —
one for on-line work, and the other for off-line work, However, a single,
flexible system capable of handling both types of service is normally less
expensive to develop, operate and maincain than two separate systems, pro-
vided a schzme with the needed features can be found.

The flexibility required to provide on-line and off-line service in
a single packege is best illustrated by the differing amounts of transmitted
information. Oft-line users will want, and can afford, to use 1.ige volumes
of information. Such a volume of information cannot be trar.ni ' -Jd . low
cost to an on-line user, nor would an on-line user be able tc cope with the
quantity of information of use and interest to an off-line u.er.

Another illustration of the needed flexibility is relatei to machine

storage. During off-hours, ownership of large amounts of storise for long

lengths of time may be possible. Most on-line requests, how wver, will be
serviced during the day when cthers also warnt tc use the ccap: s, To reduce
costs, it is necessary that a minimum of computer resources I« per. anontly

arivcated to each specific task., Unfortunately, human respolnse mes are
much slower than ncrmal computer response times when the cou iter 1. being
used for batch processing. For example, a complete off-line sc¢ vch for

42 queries and 1400 documents can be completed in less real-time t:an a
single on-line query because of the slowness of human resg nse. (Obviously,

the 42 query search requires more process time.)

O

RIC

Aruitoxt provided by Eic:



X1Vv-186

B) General Characteristics of SMART Routines

To satisfy the need for flexibility and modifiability, SMART is
programmed as a set of small, clearly defined, and well docu ented Fortran
subroutines. Each subroutine accomplishes one task with a minimal inter-
face with other routines. Faicn SMART routine lies in a distinct class
depending on the amount of structure in the data used or manipulated. On
the bottom of the pyramid are the I[-0 routines and the MOVE routines
{which move sets of sequential locations from one place to ancther}. These
routines "know" only the length and origin of the fields with which they
deal.,

Next in the hierarchy are routines which deal with the various kind
of vectors. SMART uses several kinds of vectors, all consisting of @
"head" indicating the length of the vector followed by information in
double words. 1In the case of concept wvectors, these double words contain
concepts and weights; in the case of result vectors, the first word contains
the document number and rank retrieved {each in half words), and the corre-
lation of the document with the query. The routines that deal with these
vectors "know" the internal structure of the vectors. Some examples of
this class of routine are LSTCON, which prints the contents of a concept
vector, and RESULT, which prints the contents of a vector of document-query
correlaticns.

Above this level are routines which deal with groups of vectors.
These are the routines which know that many queries exist in the system,
Typical of these routines is BLOCK, which cembines the result vectors for the
several iterations of one query during a batch run, and gives the combination,
one query at a time, to RESULT.

Q

30



XIV-17

At the top to the entire pyramid are the routines EXEC and ONLINE.
EXEC is a card-controlled driver for the system. It is normally used for
batch experimental work and “obs typically done off-iire, such as the
addition of new text and centroid generaticn. ONLINE is normally used to
control on-line document retrieval. A partial tree of GMAKT routines

showing this structure foilows in Fig. 3.

C) Pceudo-Batching

Basic to an urderstanding of the mechanism proposed for document
retrieval is the idea of pseudo-batching. In any reascnable batch-pro-
cessing document retrieval system, & large number of queries are handled
in parallel. This serves 1o reduce the fixed overhead per query to a
fraction of the total overhead. So long as the increased expense of dealing
with several queries is kept srall, there is a .et gain in effectivencss
per unit cost,

A basic problem in an on-line document retrieval system is that
each search passes through Jifferent stages with different requirements.
This prasents problems because of the multiplicity of distinct programs
which may be required, as well as the input-output preoblems. If each query
is multi-programmed with other gueries, severe competition for resources
would result. One query would need document files, another Adictioraries, and
yet another would require text files. A complicated scheduling algoriihn
would le required to untangle the requirements for file access facilities
and storage space; this would increase overhead cost< sharply.

In an on-line system where many users irndividually cycle threough
tie came se. of routires and files, a much better utilization ~f rescuivces

results by batching the incoming cuerlez. If the syscem process<es only

ERIC

-~
Ju




O

ERIC

Aruitoxt provided by Eic:

XIV-18

Master
Control
Routlnes

b e e e m

Routines
Needing
I'xternal
Inputs

Routines
Handling
Batched
Vectors

Routines
Handling
Dope
Vectors

Routines
Handling
Material
Within
Veclors

3SEARCH

(various other

routines)
DEFITM
v
INNER
LOCITM
READ

EXEC
v
ONLINE
CYCLE
~

CONSOLE

v
FUTCOL CONSI

KRESULT LOCITM

MOVE

Structure of SMART Foutines

Fig. 3

3/




XIv-19

those queries avallable at the start of a (twenty second) cycle, competi-
tion for resources is eliminated. Each query would then take thirty
seconds on the average; twenty seconds of actual processing and ten
seconds of waiting.

Many advantages can be accrued to the overall system and thus to the
user by the batching of queries. Of greatest importance is the resulting
lack of competitior for different files or for space to store them. Secondly,
each query has an apparent overhead considerably less than it would have
if it were the only query to use a file at a given time. Obviously, lower

overhead means lower cost.

D) Attaching Ccnsoles to SMART

Since one can assume that consoles will not be continuously dedi-
cated to a document retrieval system, at least in an experimental environment,
provision must be made for transfer of control of a console from the computer
supervisor to SMART. If SMART is core-resident and a specific console is
wanted for SMART, the process is as simple as obtaining additicnal disk space
or mora core. However, it is desirable that a user be able tc go to any
available, superviscr-controlled console, and that the console be transferred
to SMART at the user's initiation. Under such circumstances, the possibility
also exists that SMART is not available on-iine at some given time. Natufally,
the problems and cost of serving additional users are far less when SMART is
alregdy on-line than when SMART must be started for the first user. Since
SMART wishes to permit anyone to utilize the document retrieval system,
provision nust lLie made to prevent the occurrence of unrear onable exper-es.
One obviously unrcascnable expense is the improper activation of SMART,

. Another problem is the need to keep te¢ a minimum the actions which tha
LS

Aruitoxt provided by Eic:

36



XIV-20

typical, non-computer-oriented user must carry out to use the SMART sy:sten
on-line.

For these reasons SMART could include a sm&ll routine that is con-
tinucusly a part of the supervisor. Normzlly, after a user has activated
a console (e.g. by dialing the computer if telephcne lines are used), the
computer expects the name and account number of the user {(in order to pre-
vent unauthorized usage). The user may then enter simply the word "SYART".
This will cause the execution of a program called SMILATCL which is supplied
with the "name" of the console presently wanting SMART. This code will
"know'" whether SMART is on-line or not,

If SMART is not on-line an appropriate response is made. (An
example is prevented in Fig. &.) If SMART is on-line, the console number
of the new user will be made aviilable to the normal SMART programs and a
fiag will be set indicating that a new console needs toc be attached. When
SMART repains use of the compu*er, the supervisor can be requested tu

transfer control of thac console to SMAKT.

]

(Dial computer and press carriage return.)
#Proceed.
%SMART.

$SMART will be available next at 3 p.m.
Tuesday, October 4, 1968,

#Priceed.,

%

Censole Response to a Raquest for SMARY
When SMART is not On-line

Fig., «

ERIC 33




XIv-21

E} Cousole Handling — The Supervisor Interface

SMART will uot need to worry about physical control of the consoles.
Rather SMART provides a rcutine which the supervisor can call whenever a new
line is available from a console. The console keyboard is than locked (i.e.
nothing more can be typed by the user) until SMART allocates space for a
new line somewhere in a SMART secticn of memory and so tells the supervisor.
Alternatively, at this tirme, SMART can transmit a line to the conmsocle. Nor-
mally the console keyboard will Le freed fast enough (if multi-li.e input
is anticipated) so that the user will be unaware of the keyboard ever being
iucked.

When SMART wishes to write on a console {which includes unlocking
the console keyboard), a call to the supervisor is made with the location
of a message and the name of specific console on which the message is to
appeér. If the keybcard of that conscle is locked, the message is immediately
transmitted. If the keyboard is not locked, the transmission is refused and
SMART will rave to lock the keyboard first and accept whatever message was
transmitted. (On the equipment presently available the conscle cannot be
locked; oi:ly the user can lock the keyboard by pressing "Attention" or

"Carriage Return'; the system must therefore wait for user zction,)

F) Paramecter Vectors

As each enquirer is introduced to SMART, he is associated with a
user vector that contains pointers to parameter vectors. These vectors are
filled with information taken from control cards during a batch processing
run, or from a default vector for new on-line users, or from personal para-
meter vectors. These parameters supply values needed to control the action
of the retrieval routines. Each user may define his own personal parameter

O  vectors which can be saved for use on many searches.

ERIC 10

Aruitoxt provided by Eric:
— =T




O

XI1V-22

G) 1The Flow of Control

The flow of batched queries is comparatively simple compared to
that of on-line queries. Although batched and on-line queries use different
means to £ill parameter vectors, and take Jifferent action with respect to
the output of most routines, these differences are unimportant.

The manner of introducing an on-line user has clready leen described.
(As far as SMART is concerned, a user and the console he is then using are
equivalent jn all ways. Thus, wherever the word ‘console' appears, the
word ‘user' could be substituted.)

The on-line control program consists of two logically distinct
routines. CONSOL handles physical communications with the consoles on an
interrupt basis (i.e. in real-time). CYCLE handles the use of core and the
large system files by cycling among them, satisfying users as it can.
Logical control of each console shifts between CONSOL and CYCLE.

The SMART On-line Console Control Block (SOCCR) indicates at any
given instant which routine is logically in command of a console. The
SOCCB synchronizes the real-time rcutine CONSOL with the process-time
routine CYCLE. The RLADY flag asso.ated with each console takes on certain
values if the consocle is awaiting completion of a task done by CYCLE. When
CYCLE is firished, the READY kecy is chanpged. Since the key is changed,
CONSOL can recognize that it should proceed with that console.

Testing READY flags (for up to 256 consoles) is accompliched by a
single instruction (Translate and TEST — TRT) using a 256 byte array. Since
the test is fast, it can be carried out freyuently by both CONSOL and CYCLE.
For example, after sending each line of a message to one console, CONSOL can

test to see Jjf any other console requires service for a single line. If so,

ERIC

Aruitoxt provided by Eic:

q1



XIV~23

the servicing of the one console with a series of lines is termiuated, and
consoles with single-line needs are handled. CONSOL then returns to

the multi-line message and finishes. CYCLE uses the speed of the TRT
instruction to locate those queries needing a specific process. After

each CYCLE driven routine finishes with a batch of queries, the table ¢ n
be scanned to see if, in the meantime, any other queries now need that same
process. Some routines which can be logically divided into two parts, omne
essentially in-core and the other necessitating file accessing, could be
programned to check for "latecomers" to speed up overall response without
losing the advantages of cycling.

For a list of typical READY flags see Table 2.

H) Timing Considerations

In order for' the type of organization presented to be acceptable
to non-SMART users of the computer, two timing considerations are .aramount.
First the CONSOL routine must be assigned highest priority by the supervisor,
since it must respond to on-line signals. CYCLE is assigned the second
highest priority. This implies that if CYCLE is free to perform work, the
CPU is taken away from any other executing program (except CONSOL and the
supsrvisor itself). Normally, however, CYCLE is I-O bound. While CYCLE is
waiting for needed information from noncore resident files, and when CYCLE
has no work to do, the CPU is abie to do the work of cther customers.

Thus, CONSOL must have available everything it needs to work and
CYCLE must contain no wait loops of any size. If information is not available,
the supervisor must be given control until the required information is
available.

ERIC

Aruitoxt provided by Eic: 4 ~



KIV-24

Non-SMART I'rograis Jqsfi —————————————— --- | “Console 1 ]

’

[ Supervisor

T

|

‘(,/” TGiaF Parini er Vectors ]
k_"‘ __________________

————

CONSOL

’ \ e el ip -

| [ SHART Statistics ]

i

]

1

1

1

: —
: SMART On-Line

I Consele Control Biock

I: —

! TST Censole User READY
] Rurrber Vector Flag
i 255 45 3408 34

: 255 12 3479 an

! 0 0 0 0

! 2202 4

! 0 0

)

[}

]

i

: Foe-seanih DISpIAY le{ AR V3aBilary ]
!

]

I

]

|

v

Searching |4—| Centroid Concept
L Vectors

cearching | Dscument Concept
Vectors

______________ Vectors

{ “Query Update | 4__~___{"ﬁaéﬁiéhf'ééﬁééﬁf']

Lege.d: Core-resident ——m——— Auxiliary ~---- H.R. Human Readable
Q SMART On-line Control Legic

ERICS

e i Fig. 5



XIV-25

Routine READY Meaning

Needed

.NONE} 0 Unused slot.

CONSOL 1 Newly arrived console, no assigned user vector.

(NONE) 2 Consnle keyboard unlocked for user transmission.

CONEOL 3 Consolg k?yboard locked by receipt >f a user
transmission.

(NONE) y One line message goiug to console,

CINEQL 5 Conso.e keyhoard locked further liurs are needed.

CYCLE 6 Lllocate core.

CONSOL 7 Core Allocated.

CYCLE 20 Cracx text.

CYCLE 21 Cracking text.

CONSOL 22 Texr cracked.

CONSOL 23 Notifying user.

CYCLE 24 Ret-up pre-search display.

CYCLE 28 Settirg-up pre-search display.

CONSOL 26 Pre-search cisplay setup.

CONSOL 27 Displaying to user.

CYCLE 40 Search centroid tree.

CYCLE 41 Cearching centroid tree.

CONSOL 42 Cen*rcid tree searched.

CONSCL 43 Informing user oi results of tree search.

READY Flags

Table 2
ERIC

Aruitoxt provided by Eic:



XIV-26

I) Noncore Resident Files

Before going into CONSOL and CYCLE in detail each of the files used by
SMART is introduced briefly. The variocus lcgical segmenis of c<ore are then
similarly defired tu provide a reference and to eliminate detailed descripticns
within succeeding sections.

SMART files can be divided into three distinct classes — those¢ used
by CYCLE, these used Ly CONSOL, and the consoles themselves. The console
files are basically standard sequential files, with, however, an unpredictable
access time. Like sequential files, records are read {or written) one-at-a-time
and in linear order. There is, of course, no backspacing, rereading or over-
writing.

CONSOL deals with three files of a more familiar nature. The
'SMART Statistics File' is a sequential, write-only file on which is placed
information to enable evaluation of SMART's performance by supervisory
staff. Information such as observed user and SMART response times, and
statistics on query authors using the system might be kept,

The 'User History File' retains information about unfinished queries
on an individual user basis. For each user, such information as the number
of queries he has submitted to the system, the number still active, and ac-
counting information may be kept. For each active query, a recerd is kept
of the text of the original query, and of the last active concept vector
for that quory. Perhaps, a list of additicnal documents, unseen by the usér,
should be hept to try to forestall a complete lack of positive feedback. In
this manner c3sts could be kept reasonably low for a majority of users by rnot
showing many documents except when necessary. One might also want to keep

scim: type of record of the searche . centrnid tree so that 'ebvicusly" unsuitable

RELe
N



O

ERIC

Aruitoxt provided by Eic:

X1v-27

tree nodes would not have to be reconsidered during relevance feedback.

The 'User Parameter Vector File' contains user parameter vectors.
Fach user can have several different parameter vectors (with distinct names)
for different purposes. The only reason for s :parating this file from the
previous file is that this file is essentially a read-only file, whereas
the previous file is updated with every system access. It is anticipated
that the directory for this file would be one part of the preceding file.

The files used by CYCLE-called routines are of two distinct types —
human readable and machine readable. The human readable files contain
information suitable for display to normal users at consoles. The other
files are however organized for maximum speed of access and minimum space
for storage of information used solely by SMART. A complete system must
have human readable files -- the vocabulary aid files and the source text
files. Vocabulary aid files contain thesaurus expansions, hierarchies,
fregquency lists, etc. Source texts contain titles and abstracts of docu-
ments in a form suitable for on-line display. Normally vocabulary aids are
used prior to a search and texts aiter a search.

There are three machine-readable classes of files — vocabulary files,
files of centroid concept vectors, and files of document concept vectors.
Vocabulary files contain the information needed to quickly understand input
text (i.e. to convert raw text into a standard concept vector). The
other two files contain, respectively, files of centroid concept vecters
and files of do:ument concept vectors. The separation of centroid aud
document concept vectiors into two distinct files is dictated by the relative
sizes of the two files. Conmonly, a centroid has over 10 sons: thus a

centroid tree for a tile of 100,000 document would contain less than

do



XIv-28

3,000 nodes. In most situations, the centroids could be accessed faster
as a separate data set because of their smaller volume.

There alsc exists a file which contains the programs called ty CYCLE,
In order to further conserve space, it may be desirable that these mutually

axclusive routines be overlayed during execution.

J)} Core Resident Files

Seven types of core resident files are used by SMART. They have dif-
fering typical 1lifetimes, lengths, sources, and destinations. Because of
their differing lifetimes, they are allocated from different pools of avail-
able core. This minimizes a serious tendency to fragment core and eliminates
a need for dynamic relocation of in-core files. By permitting the systen
to obtain variable amounts of core, SMART is able to work in 50 K or 500 X,
albeit with grossly different rosponse times and CPU utilization rates.

The first file is the previously mentioned SMART On-line Console
Control Block (SOCCB). This block is the key to the entire control c¢f the
on-line system and is, therefore, described in detail in the next section.
The size of the SOCCB is fixed when SMART is initiated by the number of
consoles toc be accepted on-line at one time. This block is retained
until SMART goes off-line.

Each user is assigned a user vector. Thic block is of fixed length
and is retained as lcng as the user is on-line. Thne user vector contains
pointers to the lccations of dynamic fielcs "owned" by the given console.
These fields include parameter vectors, buffers and correlation vectors.

The user vector is accessed only by CONSOL and CYCLE.

The parameter vectors contain values for veriables used to control

fhe various rcutines. Each routine needs its own parameter vector. There

ERIC

rorecrosieio enc) 4 }



O

ERIC

Aruitoxt provided by Eic:

XIvV-23

exists a standard defauit parameter for every rcutine, and these standard
vectors are core-resident for the life of a given invocation of SMART. Any
user vector can point to one of these default vectors; however, 1.0 user

can change values in the default vectors. If a user wishes to change any
values, space is allocated for his own individual parameter vector for earh
routine the user wishes to control in a non-standard fashion. A cser may
name his parameter vectors in order to re-use them easily. An individual
parameter vector is core-resident only fTor the duration of the process
which that vector controls.

Buffers contain a line or a track of information. They typically
have a short lifetime, and the space occupied by the buffers is reutilized
at a high rate. Buffers to or frem a single file can be linked while in-
core- These vectors constitute the majority of core needed by SMART. In
some cases, it may be desirable to keep some buffers in core in anticipa-
tion of repeated use. If sufficient core is available, this can be dore.
However, this in-core saving of a buffer is unknown to all routines except
to the buffer manager. This permits a routine to use 50 K of 500 K bytes
without any internal knowledge. Only the response times to requests for a
buffer will differ depending on the amount of core utilized.

The concept vectors constitute the output of the routines converting
text into concept vectors, and of the query update routines. These vectors
are much shorter than the text they vepresent, and they can be more easily
utilized for search purposes. Only one concept vectcr per user need te
kept in core and the concept vector supplants the buffers containing the
original query.

Specification and correlation veccors contain the names of individual

centroids or of documents to be matched with a query, and later, the corre-

46



X1V-30

lations with those items. The life of these vectors is short but the core
requirements for a single query can be determined only dynamically.
Result vectors are shortened correlation vectors. They are used by

CONSOL to pass information to the consoles.

5. CONSOL — A Detailed Look
Once the overall structuve of the proposed on-line system is under-
stood and the contents of the variocus files in understood, a detailed expla-
nation of the operation of the twec major routines becomes straightforward.
CONSOL will be considered first since it is first logically. 3Before
geing into the routine itself, the SMART on-line console control block

(SOCCB) is described:

A) Competition for Core

It is possible that one user may finish a line and the interrupt-
called supervisor can start CONSOL, while a second user can finish his line
before CONSO% finishes with the first user. The second usre's finish would
cause the supervisor to start CONSUL again. A routine 1ike CONSOL is called
reentrant if several different processes (users) can simultanecusly execute
it. ©On a single CPU machine like Cornell's 360/65 <he simulianeity is apparent
and due to interrupts. However, on & multiple CPU ~achine the sunultaneity
could be re3l. In both cases the problem is ihe same: no process can know
if ancther process is also executing the same code. The requirement is that
no "edition" of a reentrant routine can change core locations possibly known
to another "edition" of that routine. If the reentrant routine must obtain
additionil core, the same problem exists — two editions may try to take the
same space. A simiiar prublem arises between CONSOL and CYCLE: CYCLE could

ERIC .

Aruitoxt provided by Eic:




[E

XIV-31

be claiming an area of core while at the same time CONSOL decides to use
that same area.
In order to prevent destructive competition for ownership of ressurces,
the 360 provides a single instruction which locks a resource as it tests
that rescurce for availability. The instruction iIs called Test and Set
(TST). Basically TST sets a byte non-zero and sets the condition ccde to
zero or ncn-zero as the previous contents of the byte were zero or non-
zevo in one inseparable step. (The TST instruction is cutlined in Fig.

6).

B) The SMART On-line Console Centrol Block

The SMART On-line Console Control Block {SOCCB) shown in Fig. 5 holds
four items for each active user., The maximum number of consoles that can be
on-line at one time is decided when SMART is first entered; MAXUSERS contains
this number. The fields marked TST and READY (in Fig. 5) are each vectors
of "MAXUSERS" consecutive bytes. The TST field contains zero if that parti-
cular line is unused. When a line is reserved for a particular console, the
TST field is set non-zero. The Console Number field contaius the super-
visor number for a console and the User Vector field contains the location

of the user vector fur that console.

TST LOCK (Instruction) Before After
Execution Execution
Case 1 Location LOCK 0 255
Condition Code - Zero
Case 2 Location LOCK 255 2L5
Condition Code - rnon-zero

The Test and Set Instruction (TST)
o ac Applied to the Location Named LOCK

RIC

Fig. 6 Ji)




XIv-32

C) The READY Flaz and the TRT Instruction

The READY field contains one 0f£256 equivalent flags. Each flag (value)
indicates what process is then needed by that user. Typical values are
given in Table 2. To understand the value of the vector, one needs to under-
stand the Translate and Test (TRT) instruction. This instruction considers
two read-cnly vectors., The first vector is the vector of READY values; the
second contains a table cf 256 bytes. This last table contains zero bytes
except in those bytes whose address {relative to the first byte of the table)
is the same as a READY value which must be tested. The TRT instruction takes
bytes from the first vector, one-at-a-time, and léoks at the table entry
corresponding tc the value of that byte. If the object hyte is zero, the
next READY value is considered; if the object byte is mon-zero, the instruc-
tion ceases vith that object byte and the location of the sourcz byte is
made available. If no byte stopped the instruction, that fact is so indi-
cated. If the instruction is stopped by a non-zero object byte, the
registers used by the instruction are left in a condition such that the
instruction can be reexecuted for the remaining bytes in the source vector.

A pictorial explanation of the TRT instruction is given in Appendix 1.

For internal convenience, READY values are often assigned in blocks —
each block associated with a given process. Most processes can be divided
into four phases: unconsidered by CYCLE, being considered by CYCLE, uncon-
sidered by CONSOL, and being considered by CONSOL. Some KEADY values

appearing in Table 2 show this assignment.

D) The Routines LATCH, CONSIN, and COHSOT

When a person types "SMART! on a console, the supervisor transfers
CQPtPOl to SMTLATCH. SMTLATCH interrogates the variable SMTOPEN. If SMTOPEN
v

] s
I d



XIV-33

is zero, SMTMSG lcontaining the appropriate message) is sent out to the
calling console. If SMTOPEN is non-zero, control is transferred tc (the
location contained in) SMTOPEN. SMTLATCH, including SMTOPEN and SKTNMSG,
is always available tc the supervisor as a standard supervisor process.
Since SMTLATCH takes only 96 bytes, it can be kept constantly core-resident.

The first routine called when SMART is started ia the standard
nanner is (ONLINE) which inserts the location of the routine LATCH at
SMTOPEN. When SMART no longer wishes to accommodate new users, the
routine OFFLINE updates SMTMSG to indicate the rext scheduled time fer
on-line document retrieval; finally, SMTOPEN is set to zero. Conscles
active in the system can still be accommodated in any suitable manner.

When LATCH is called, an unused row is located in the SMART
On-line Console Control Block (SOCCB) using the TST to insure that the
selected vow is indeed available. LATCH then changes READY for that row
to 1 (from 0) and stores the name of the console in the SOCCB. If CONSOL
is running, LATCH simply returns to the supervisor (which will restait
CONSOL where CONSOL was interrupted). If CONSOL is not running, LATCH
causes the supervisor to mark CONSOL as runnable. LATCH then returns to
the supervisor. The new console will bte noved in due course by a TRY
in CONSOL.

Routine CONSIN is similar to LATCH; when a coésole is relezsed to
a user, the supervisor needs the nare of a routine to call when the trans-
mission from the user is complete as well as a place to put the transmission.
CONSIN is that routine. The supervisor tells CONSIN the name of the console
which intercupted; CONSIN then changes the READY flag for the console {from

22 to 3 and iasures that CONSOL is running.

LS
ERIC
04

[ T—




XIV-34

o minimize over-all response times only one line will be se. up
for transmission to a console if ancther console also needs service. If a
conscle needs Several lires, but only one is transmitted, CONSOL will have
to prepare other lines at a later time. To do this on an interrupt basis,
routine CONSOT is called by the supervisor after transmission of a line to
a console if that console requires mor: information.

All of these routines consist of fewer than a hundred instructions
and take less than a millisecond to execute. Fast respense to the changes
made in the READY table is insured, since CONSCL tests the flags after each
line of a transmission is complete. The test for a console needing attention
is less than fifteen microseconds if no console needs attention {assuming
ten con-line consoles). Since the test is so fast, frequent repetition is

not expensive.

E) CONSOL as a Traffic Controller

In basic terms, CONSOL uses the WRT instruction to select a console
which has a need and then satisfies the needs of that console at least
temporarily. CONSOL then uses the TRT again to select another console.
Eventually all console needs will be satisfied and CONSOL will retire to
permit other processes tn use the CPU; one of these processes will most
likely be CYCLE. When CYCLE has completed a request for a user, or a set
of requests, CYCLE will ask the supervisor to restart CONSOL, and, by so
doing, suspend itself in real;time (but not in process-time). Alternatively,
the completion of a user line at a console will result in an interpupt-
initiated call to CONSIN or LATCH which can wake-up CONSOL. Effectively
then, CONSOL uses the TRT instruction to facilitate a traffic direction

problem,

ERIC 5.4

P o



SMTLATCH

\d

OUTPUT

SMTMSG
TO

CONSCLE

SMTOPEN ).ﬂ___-

GO TO
SMTOPEN

I
r
!

v

T

j———

\d _
RETURN ( LATCH )
—

LOCATE A ZERO

IN TEE
ST VECTOR

b 4

STORE CONSOLE #
(READY(CONSOLE }=1

CONSIN

A d
‘ CONSOT )

( READY(CONSOLE) REA

i =3

DY (CONSOLE)
=5

L D ————

1€\
NO —/COICSDL YES
\ ACTIVE /

ACTIVATE
CONSCL
RETURN

RETURN

XIV-35

SMTLATCH, LATCH, CONSIN, 3nd CONSOT

ERIC

Aruitoxt provided by Eic:

rig. 7




XIV-36

Y

WHAT TYPE OF
ATTENTION

CONSOLON=1
L~
1
TRT:
LOCATE ANY
ALL CONSOLES CONi?%gNgigﬁING A CONSOLE
ENCAGED NEEDS ATTENTION
CONSOLON=0
WAIT for
| CONSOLON=1
[

\
/

o IS NEEDED. 12
\\> {READY) 15
1 18 5
: 2
A . ¥ 27 Y
HANDLE A PROCESS A CONSOLE NEEDS
NEW USER NL " LINE A NEW LINE
“ROM USER
1
4 A4
REQUESTED CORE PROCESSING
SPACE NOW REQUESTED OF
AVAILABLE CYCLE IS
FINISHED
— ™~ k N
CONSCL
Q
]EIQJ!: - Fig. 8

T | )




It is apparent from a s. in of various possible reeds tha: som=

are inore urgent than others. For CONSOL, hewever, needs are satisfied so
quickly that the arbitrary selection of the console highest in the SOCCE is
adequate. CONSOL works so rast that even if the 256 users were on-line and
all had a need at the same instont, and the first user were serviced fir:t,
the last user would be satisfied before the transmissicn to the first user
was complete. In actuality, in most cases, only one user will need service
at any given time. The obvious excepticn to t.uls is after CYCLE completes
a task — at that time, several consoles will need transmissicns. It is
immaterial, however, which console is satisfiea first, since all coascles

will be satisfied by CONSOL in much less time that was takeu by CYCLE.

F) A Detailed View of CYCLE

In contrast to CONSOL, CYCLL follows a strict pattern in deciding
what to dc. Like CONSOL, CYCLE uses the IRT instructicn but CYCLE decides
.what process to do first. Then It sees which consoles need that process.
If no console needs that process, CYCLE tries the next process in its list
of processes. To permit on-line access to more than one collec:ion for
test purposes, or access by sophisticated users with special needs, each
process is run for all consoles that request cne collection and then for
all consoles that require another collection. This is illustrated in
Fiz. 9.

Some object processes staited by CYCLE are standard programs
used for batch experimentation; text cracking, centroid tree sz2arching,
Jocument correlation, and query redefinition. The prccesses unique to the
on-line systam divide into two classes — these that access files for the

\)"eev and those that service CONSOL. There are nresently two programs of

ERIC _

PR provind b e [ S
BT T Vo



XIy-3e

CYCLE

SELECT
NEXT
PROCESS

—— ]

¢ILE = THE
FILE NEEDED
BY TETS USER

\ S

1

~J
y

/. TRT: ‘ NO

20 ANY USERS

NEED THIS
PROCESS
——— ———-————l/

YES HAVE ALL
PROCESSES
\\\ BEEN TRIED

RUN
PROCESS

CALL CONSOL

N0

CYCLEON=0
WAIT for
TRT: CYCLEGY=1
DO ANY OTHER
USERS NEED -
THIS PROCESS I
DOES THIS USER
YES WANT THE SAME \\\2;\\\\0

FILE AS THE
PREVIOUS USER

LINK THIS USER
TO OTHERS
FOR THIS PROCESS

) »
O
. CYCLE
ERIC
Fig. 9

Aruitoxt provided by Eic:




O

XIV-39

the fivst type: to display pre-search information, e.g. thesaurus cate-
goriuzs, and to display post-search mateviai, e.g. abstracts. Since CONSCL
operaies on an interrupt basis. it cannot allocate resources for itself.
However, COKSOL dces need to be able to obtain core storage space on de-
mand. To provide this, CYCLE can be asked to allccate storage for a console
and return control to CYCLE.

From the flouchart for CYCLE shown in Fig. 9, it can be seen that
CYCLL restarts CONSOL without testing if CONSOL is running. This is

possible since CYCLE can tse ths CPU only when CONSOL is inactive.

&. Summary

On-iine information reirieval is implemented by two co-routires,
CONSOL and CYCLE. The former operates in the real-time of the console user
providing reapid response; the latter in the process-time inherent in any
routine which needs to 2ccess auxiliary storage providing realistic costs
for work deone. The two routines communicate through & single area of
mutually known core.

This system should prove adequate for both experirentation and real-
time use in a libriry, for both the novice user and the sophisticated

researcher with the complex problem.

ERIC

Aruitoxt provided by Eic:

obe ]

]



XIV-44

Appendix
-
TRT READY, TABLEn (Instructiorn image, n=l, 2, 3 or 4)
Location: READY + G} 23 i 5678
Contencs: 543420001
Location: TABLEL + 01 2 3 4 56
Contents: 0006020
Leccation: TABLE2 + 01 2 3 4 56
Contents: D02 009060
- — — -
Location: TABLE3 + 01 2 3 456
Contunts: 0 z230000
Location: TABLEL + 01 2 3 4 56
Contents: 0800000
Execution: 1st Znd 3rd
Register: 0 1 cc 0 1 cc ne
——
1 5 (READY)+2 1 0
2 9 (READY)+1l 1 9 {READY)+3 1 0
3 3 (READY)+u 1 2 (READY)+6 1 0
4 i (READV)+6 2 |
[ —_
—
(READY) means the address of READY ; cc = condition code

The Effecte of the Translate and Test Inztruction (TRT)
“hten the Vector READY is Enterced Against Several Tables

ERIC
R S



—

XvV-1

XV. Template Analysis in a Conversational System

S. F. Weiss

Abstract

This study presents a cuiscussion of natural language
conversaticnal systems. The use of natural language rather than
fixed format input in such a system makes possible the imple-
mentation of a natural dialogue system, and renders the system
available to a wide range of users. A set of goals for such
a system iy presented. These include the provision of fast
responses, usable by all levels of users, and the use of intel-
lectual aids such as tutorials.

An experimental conversational system which meets these
goals is implemented using a template analysis process. Tem-
plate analysis is used nc¢t oniy to analyze ratu-al lanpuage
input, but also to control the overall operation of the process.
Experiments with a number of users show :hat the system is easy

to utilijze and provides accurate analyses. A detailed discus-

sion of both user a 41 system performance is prescnted.

2., Motivation

Programs and data are normally entercd into a computer in
¢ batch processing mcde. However, the recent trend in computer
system design has been toward the development of larpe tinme
shared systoms which give a number of users simultaneous on-line

access to the ccmputer. This makes possible the implementation

ERIC

>
O




ERI

Xv-2

of conversational programs which permit real-time man-machine
dtalogues. Such conversational programs are both useful and
necessary to cope with the ever expanding conplexity of com-
puterized data processing tasks. Consider for example, an ou-
line programming language such as APL. The ability to test

amd debug a program on-line is an aid to the programmer. Evrors
are more easily located and may be corrected immediately. 1In
addition, on~-line data entry allows the programmer to adjust
parameters and data while the program is running in order to

get the desired results.

Conversational programs are also useful in all forms of
language processing and expecially In information retrieval.
Consider for example a case in which a natural language analysis
program encounters an uniesolvable ambiguity. In the batch
mode, the program would be forced either to give up or to
nroceed using the multiple interpretations. But in a conver-
sational mode, the system can ask the user for clarification
and then proceed with perfect information as is shown in the

example 1in Fig. 1,

Ut TYPE 2 GRAMMARS

S: YOU HAVE USED TYPE AMBIGUOUS'Y. PLEASE SPECIFY:
A. PRINTING
B. VARIETY

Uu: B

S: PROCEED

User Disamhiguation

TC Fig. 1

Aruitoxt provided by Eic:

61



O

ERIC

Aruitoxt provided by Eic:

Xv-3

In information retrieval the applicability of conversational
programs is very broad. It is the only way to make the retrieval
operation fast enough for practical use. 1In addition it permits
the usver to see results immediately and adjust his query and
other search parameters to tailor the performance to his evxact
needs. The conversational mode is also the best framework in
which to implemeat the relevance feedback process (11,24].

In general the conversational facility is an extremely powerful
information retrieval tool.

Section 2 of this study discusses some existing on-line
systems. Most of them require a fixed fcrmat input. But the
current trend in information processing is toward natural
language input. Not only does this permit the treatment of
documents and queries in their original form, but it also makes
the on-1line facility available to a broad spectrun of potential
users, This is especially important since on-line systems
permit remote access from places such as libraries and schools
whbich are not inhabited strictly by computer people. This
study discusses conversationil systems in general and presents
a natural language facility for information retrieval.

There are four basic goals which any such natural language
conversationdl system should meet., First, the system obviously
must 1ccept natural language input. Second, it must provide
fast response. Users tand to become impatient if the delay
between the submission of a command and the system's response
exceeds more than a few seconds. Third, the systewn should be

usable by all levels of users. Inexperienced users should be



XV-4

able to perform usefui work. At the same time the system must
not hamper the expert with excessive verbosity and unwanted
material. And finally, the system should provide some intellec-
tual aids such as tutorials and prompts which can help the user

conduct a useful dialogue.

2. Some Existing Conversational Systems

Many conversational systems are currently in operatiun.
Most are vart of a larger implementation such as an information
retrieval system. But a few such as ELIZA are designed solely
to perform conversation. 'The major differences amung the conver-
sational aspects of the various systems is in the amount of man-
machine interaction permitted. In some systems the on-line
input is not far removed from batch input and the user has little
control over the running of the process. At the sther extreme
are systems in which the user is directly linked to the process
and 1s continuously in command of program operation. The dis-
cussion of on-line systems presented below is roughly in order
cf increasing complexity of dialogue.

The most basic type of conversation consists of a simple
user input which results in some appropriate system action being
performed. RECON [16]), DIALOG II [29), TIP [15), and AUTONOTE
[22] 2re representative of this type of conversation. In
RECON for example, the user presses a button which indicates
the desired operation and then types the operands on the con-
sole, In the other systems the user types the operator name
followed by operands. Thus all these processes require a fixed

Q

6o



Xv-5

input forma:. In addition, should the user become lost or
confused, the systems cannot supply any intellectual ¢id Lo help
him out. One type of user aid, the tutorial, is a feature of

the AUDACIOUS system [2]. 1In addition to the normal operator-
operand commands like thuse above, AUDACIOUS permits two special
commands: HELP and PUNT. In response to these, the system
produces a tutorial message appropriate to the user's position

in the dialogue. In this way the confused user can receive help.

A second type of intellectual aid is the prompt. SPIRES
(21] is an example of a system which uses the prompting feature.
Unlike tutorials, prompts are presented without user request.
Their purpose is to indicate to the user what type of infor-
mation is to be specified in the current Jinput. Rowever, since
prompts are presented without a user request, they can scmetimes
be a nuisance to the expert user. All the conversational systems
presented thus far share two attributes. First, they all require
fixed form input. And second, they are all information retrieval
systems and hence the conversational operation was not the prime
consideration in their development. The systems discussed
in the next few paragraphs are designed basically to conduct
conversation in patural language.

Probably the most famous natural language conversational
system in Weizenbaum's ELIZA {34]). The program conducts a
cohcrent dialogue with the user much like that between a psy-
chotherapist and his putient. Inputs are searched for the
presence ¢f certain keywords and structures. These indicate
the type of output appropriate to the input. For each input

Q

ERIC

N
($31}



XvV-6

form there is more than one allowable response. ELIZA cycles
through this set thus eliminating repetifion and producing a

more realistic looking conversation. The approach to conver-
sation used in the system presented later In this study is similar
to the ELIZA concept.,

Another area of usefulness for conversational capabilities
is in computer assisted instruction. One such conversational
CAI system is Bolt's Socratic Iustruction [6]. 1Its operation
is basically an extension of the techniques ocutlined for ELIZA.
Like ELIZA, the Socratic Instructor uses the user position in
the dialogue along with the input to determine the proper res-
ponse. In addition, the Socratic Instructor remembers all pre-
vious user inputs and dialogue points. These are also used in
output determination,.

Must conversational systems in existence today are imple-
mented by basically ad ho¢ programming methods. This is not
unusual for a falrly new area such as conversational prograns.
However, as on-line systems become more commnn, higher level
{implementation processes must be developed. One such process
alréudy in existence is the LYRIC system developed by Silvern
(26)]., This is a programming language for describing conversa-
tional CAl programs. With processes such as this, the con-
versational implementer is relieved of some of the ugly program-
ming details in much the same way as a compiler-compiler aids
the systems programmer.

The convevsational systems presented here by no means consti-
tute the complete set. They are, however, representat.’ ve of

O
ERIC

Aruitoxt provided by Eic:



Xv-7

most systemns. It appears that systems such as TIP and SPIRES
which perform efficient on-line information retrieval require
highly structured input format. On the other hand those such
as ELIZA which permit natural language inpu*t liave a very weak
concejt of understanding. it would be desirable to develop

a system which combines the best attributes of both; that is,
a fast and accurate information system which allows natural

language input. This is the topic of the following secticns.

3. Goals for a Proposed Conversational Systen

This section disnusses the design considerations that go
into the development of a new conversational information re-
trieval system. Some elements of the new system are drawn
from existing facilities whiie otherc are new. The primary
goal of this system is to allow a usexr to conduct a natural
language dialogue with the system. The only limftation is that
the input be restricted to an information retrieval context.
Not cnly should the user be allowed to c¢pecify natural language
commands, but also there should be no restriction on the number
of commands per line as there are in most other conversational

systems. An input such as

USE THE COSINE CORRELATION ON THE CR«&NFIELD
COLLECTION,.

should be perfectly legal. Of course there may be some inpu*s

for which natural language is impossible or impractical and a

fixed format input must be used. For example, the user sho.ld
Q : required to specify a fixed form "SIGNOFF" in order to

bo



E

Xv-8

pravent accidental termination of the conversation. But these
formatted inputs should be kep to a minimum. Another goal for
this system is to be zble to resolve automatically ambiguities
occurring in the user's input. In addition the system must meet
the requirements specified in sectiun 1. These include providing
fast response, being usable by all levels of users, and providing
intellectual aids such s tutoriils and prompting.

This proposal makes Jemands on the user as well as the
system, First, the basis for learning the system is a manual.
It would he aesthetically pleasing to allow the system itsalf
to contain a compucter aided instructiorn Jacility (CAI) which
would make the sysi2m completely self-contained. Unfortuuately
this 1is impractical. Successful CAI requires concentrated anrd
frequent exposure to the teaching medium. It appears that the
typical informaticn vetrieval user dialogue will be both brief
and fairly infrequent, /Ylso, trying to teach the user at the
consvle unnecessarily ties up the facilities. Thus an otff-~
line approach to learning the system seems more reasonable,
While no CAI facility is provided, the system should offer a
prompting option by which a user can be led step by step, through
a simple retrieval precess. In this way the user may learu
semething «bout the system while actually performing useful
rettieval work. The user’'s iranual for this system is divided
into several sections. Each deals with system use in progres-
sively greater detail. A user need only read those parts which
satisfy his rarticular need. A casual user who wants only simple

retrieval operations using system Jdefaults, has to read only a

O

RIC

6 /



XvV-9

few pages. And the proumpting facility can e used with oniy
a paragrarh or so of instruction.

Another user problem that must be treated is the separation
of novices and experts. As is often the case, conversational
systems are handled by users with widely varying degrees of
expertness, The system should neither hamper the expert with
excessive verbosity nor hinder the novice with obscure and terse
responses. Some systems compromise and use a2 '"middle of the
road" approach, but this satisfiec no one. Other systems have
multiple sets of dialogue scripts. A user is classified as having
a particul.s level of proficiency and he receives the dialogue
appropriate to that level., But this too can lead tc problems.

In any large facility su~h as an information retrieval system,

it is entirely possible for a user to be very proficient in

some but not all areas of the system. Classifying him strictly

as @ novice or expe.. 1s wrong in both cases. To solve this

problem, the proposed system uses an implicit rather than

explicit separation of novice and expert. Thic is accomplished

by allowirg acless to options only when vhe user asks for then.

Thus th& more the user knows about the system, the more faci-

lities he has at his disposal. The novice is thereby protected

from options which h~ doe" not understand. Tutorials are also

pres- nted only on requv=!t. Because of this only a single se!

of tutorials is needed and they can be reasonably long and clear.

The expert user who does not ask for a tutorial need never see

any and thus 1is not hindered by them. The only manifestation

of the novice facilities that an expert must see is the short
ERIC

s ES]

estion:t



XV-10
Do you need help in using the syscem?

This appears immediately after signon. Even this can be eli-
minated by 1llowing a user status file to be stored between system
uses, Upon signing on, the user's status file is read and appro-
priate parameters, including his negative answer to the above
question, are set.

A few other characteristics of the proposed system also
help in the proper handling of both novice and expert users.
These are the multi-step processing technique and the ability
to compound ccinmands on a single line. An expert, for example,
can put several system commands into a single input thus saving
time and effort. The same commands may also be split on a number
of 1lines for greater clarity. This and the multi-step process
are discussed in greater detail in section 4.

One final goal of the proposed system i: oy <ntation
of useful tutorials. These messages must be easily available
so that even the most confused user can get help. One simple

"?" as the tu~orial

method is to use a single question mark
request, The tutorials must reflect the specific place in the
dialogue where they are called. In addition, they must take
into cornsideration the commands and options that the user has
already gpecified. Tutorials are also useful in treating errors.
When an erroneous {input is detected, the system autumatically
produces a tutorial appropriate to the place where thz error
occurs. The incorrect input is an implicit indication that thec
user needs help and thus the tutorial is appropriate at that
point.

ERIC

PAruntext provided by eric
G 1 )



Xv-11

The design considerations presented in this section are
basically nontechnical. They stem from an effort tv satisfy
within practical limits the basic conversational needs of the
largest possible usar population. The next section prescnts

a discussion of the actual implementation cf such a system.

4, Implenentation of the Conversational System

This section discusses tnc implementation of the conver-
sational sysctem. The major olbstacle in the process is the fact
that the Cornell University Computing Center has a: present,
no facilities for user implementation of on-line systems.
The programs thus nust all be run in the ceonvi¢ntional manner
with batched input. This poses no real problem in the design
and operation of the system except in the area of testing it on
real users. But even this zan be circumvented with adequate

simulation.

A) Capabilities

The convarsational system is designed to perform SMART-
like information retrieval operations. The capabilitiec built
into the present system include specffication of a correlation
coefficieat, rearch sctrategy and 'onllecticn to be used. The
ficst two of these are pruvided with default values that are
used {f noliing is explicitly specitied by the user. There is
provision for submitting a query containing a number of data
base entry point references (sublect, date, journal, and auihor).
A search can be initiated and the user can request to see any
nt?her of retriev:d documents., In additicn v ‘hese information

ERIC

Aruitoxt provided by Eic:

7y



Xv-12

retrieval oprsrations, the user has available some commands to
the convercationsl system itself. These include requesting a
tutorial, asking to be guided through a retrieval operation,

and signing on or off. A few other information retrieval opera-
tions, most notably relevance fcedback, are deliberately omitted,
since the system is designed to test the conversational and
natural language capabilities, and not to retest the informa-
tion retrieval techniques. The set of capabilities is selected
as typical »f the inputs, outputs and internal processes
required in a larger system. Also relevance feedback is not
conductive to handling in natural language. While a user might
introduce a natural language input whichk indicates his desire

to perform relevance feedback, the actual submission of rele-
vancy jJudgements 1is best handled in a fixed format. Relevance
feedback and a few other capabilities would add little to the

significance of system experimentation and hence are omitted.

B) Input Conventfons

While it is the aim of this system to allow natural lan-
guage input, there are a few places where the use of patural
language is impractical. This is usually caused by the physical
characteristics of the conversational system or information
retrie?al irn general. One such instance is in setting off a
query from .ther types of input. A query may deal with any
subject area. For example it could ask for information about
some aspect of a conversational system. It could thus be indis-
tinguishable from a legal system command. For this reason,
the user rather thaa the system, must perform the discrimination

O
ERIC

)
]



Xv-13

between queries and commands. This is acccemplished by simply
prefaciag each query with "QUERY" or "Q". This adds little to
user effort and e¢liminates what might be an impossible system
task. Another area where fixed fcrmat is necessary is in
search initiation. Unlike other operations in a conversational
system which require only a few computer cycles, the search is
relatively costly in computer time. It is therefore desirable
to avoid uncalled for searches. Also, searches should not be
initiated until the user is satisfied with his query and search
specifications. For these reasons, searches are performed only
upon an explicit signal ("GOSEARCH") from the user. A third
fixed format input Is the request for a tutorial. This is
accomplished by typing a single question mark ("?"). This is
done strictly for user convenience. In this way, even the

rost confused user can receive a message appropriate to his
present dialogue position. Tutorials #re also autltomatically
grnerated when a user introduces an incorrect input. The {inal
fixed {crm input is the SIGNON command. In an actual on-line
implementation, it is quite possible that this command will

be handled by a supervisor program which controls all on-line
operations. Thus the natural language analy:is facility may not
be present to nrocess this input. The remainder of the inputs

may be posed in natural English.

C) The Structure of the Process
The structure of the conversational system may be viewed
as a graph. 1he nodes represent user decisjon points and the
\)odges refresent possible alternatives aud system activns. As
ERIC

Aruitoxt provided by Eic:

7



YERIC

R Ful Toxt Provided by ERIC

XV-14

the user progresses through his dialogue, he moves from node to
node in the graph. The action is much like that of 2 finite
automaton. At every point in the dialcgue, the user is at some
systeﬁ node. The combination of this current node and the user's
input at that point determine the action to be performed (ana-
lecgous to the output ct the automaton) and the node :o which
control is passed after the action is completed. This strategy
allows the system to be throught of as a set of modular units.
Each unit corresponds to ¢ node and each has associated with it
the subset of inputs that are lega) at that point, as well

as the associated actions. The input processing is thus greatly
simplified since at each node the system need only test for
those inputs that are legal. All other inpu:s are illegal even
though they might be acceptable at some other point in the dia-
logue. The modular approach also facilitates some degree of
disambiguation. Some inputs are ambiguous when considered with
respect to the total set of system inputs. However, many become
unamdiguous within the coutext of a single node. The simplest
example is the tutorial request ("?"). The question mark by
itself is not enough to determine which of the many tutorials

{s desired. But the combination of the question mark and the
current rnode performs the disambiguation and the proper mes-

sege is presented,

D) Template Analysis in the Conversational System
There are two main jobs to be performed in a natural lan-
guage conversational system. The first is the natural language

analysis required to transform the input to a machine-usable

R



XV-15

form. Tlie second job is bookkeeping. The system must keep
track of the user's present position in the dialugue, the
legal inputs as well as the successor node associafted with
each input. It seems relatively clear that the template analysis
process introduced by Weiss [31] is sufficient to handle ihe
natural language analysis task. The expected input consists of
queries and system commainds coming from some sort of on-line
terminal. They thus conform exactly to the user restricted
input for which template analysis 1is designed. While more
complex systems would produce a more rigorous analysis of the
input, template analysis can provide ail the information that
is neceded Jrom the input arnd at a considerable saving in time
over other methods. Thus template analysis apprears to be the
ideal natural language anlaysis technique for this application.
Upon first analysis the bookkeeping task seems outside the
realm of template analysis. But actually, the most efficient
way in which to implement this task 13 to imnbed it within the
template analysis structure. This 1s done as follows. Each
template is applicalle to only one node, which is called its
liost node., This is indicated by appending the host node number
to the template concept numbers. Since template concept nurmbers
range from 11 to 999, this appending can be accomplished by
adding the desired node number times 1000 to the concept number.
Each template contains a set of concept numbers, a key word,
and a 1link to an action routine that is tc¢ be executed if that
template i{s matched. Some additional information must be added
for the conversational application. Each template must contain
agnext node! immediate (NNI) number which tells the node to
ERIC

.
¥




Xv-16

which control is to be transferred immediately after execution
of the associated template z2ction. It is sometimes useful to
defer transferring to a new node until all possible executions
of the template action have been performed. For example in
cases where a number of similar pieces of information must

be picked up from one input. In this case, NNI refers to the

host node. A second value, the next node: final (NNF) then

indicates the node to which control is transferred after all
actions at the current node are complete. 1In the examples in
Fig. 2 below, template A and B are both applicable onrnly in node
5, and btoth match the same input substring, After matching,
however, template A calls action routine 51, and control 1is
then immediately transferred to nodé 2. Template B causes
action 55 to be performed and ccntrol remains at node 5,
Finally, after all possible node 5 matches have been processed,
contrcl passes to node 3. In cases such as A where NNI causes

a transfer to a node other than its own, the NNF value is

ignored.
NN1 NNTF ACTION TEMPLATE CCNCEPTS
A 2 - 51 5011, 5012, 5013
B 5 3 55 5011, 5012, 5013

Sample Conversational Templates
Fig. 2

In order to match the proper templates, the input must Le
made to reflect the current node (CNODE) in the difalogue. Uponr

[}ii(fading an input, the current node times 1000 is added onto each
Phrir o e "
79



Xv-17

input con:ept. Also, after every node change, the old node
nunber is stripped off the input and the new node times 1000
added on. Thus the input reflects the current ncde in exactly
the same way in which the templares reflect their host nodes
and hence proper matching occurs. In this way the template
process itself keeps track of the current node, the legal inputs
for each node and the succescor node function. This ovperation
is summarized in the schematic in Fig. 3. Aa input is read

and each word is assigned a numeric concept by a dictionary
lookup. The input is then set to reflect the current node i

A scan is made of the entire template set in search of a match.
However, only those templates vhose host node is i have any
chance of matching. If a match in this subset ir found, the
associated action is performed and the next node path is fol-
lowed.

Fig. 4 indicates the node structure of the conversational
system. Node 2 is the supervisor. After the initial signon
phase, operaticons generally otart and end in node 2. Most
operations are two step processes. First, in node 2, the input
is analyzed and the type of operation that it specifiec is
determined. Control then passes to the appropriate new node.
Second, in this new node, the exact operation is determined and
executed., Control is then reti'rned to node 2. As an example

consider the input
USE THE COSINE CORRELATICN.

In node 2, it is determined that a correlation is to b- speci-

Q fed and control pass~s to node 12. 1In node 12, the specific

ERIC



Xv-18

INPUT

LOOKUP

i

| CNODE

SET INPUT
™ TO REFLECT

CNODE
VALUE

DICTIONARY//
APPLICABLE APPLICABLE
TO NOUE 1 TO NODE 2

ANALY

TEMPLATE

QQQQOQ)| -

APPLTICABLE
TO NODE N

QOO

SIS

ACT

PERFORM

i

QOYORYY -

QO

IONW

—J

RESET

QOO -

ojelo

NODE

ERIC

Aruitoxt provided by Eic:

T=TEMPLATE
A=ACTION
N=NEXT NODE

Schematic of Conversational Operation

Figure 3

7/



1.

SIGHON
3. 3. SET
INTRODUCTORY GUIDE
MESSAGE FACILITY
J 2.
I MASTER
6. 5.

QUERY ﬁ SEARCH
12'spsc1w L. szgix
CORRELATI L -

REE. N —> ALGORITHM
1c.
C: spEcrry - 8. Mg%
COLLECTION
e DOCUMENTS ?
7. SEE |
RETRIEVED
-——
DOCUMENTS

O

ERIC

Aruitoxt provided by Eic:

Conversational Node Structure

Figure 4

76

Xv-19



Xv-20

correlation coefficient (i.e. cosine) is detected and noted.
Control then goes back tu node 2.

There is no necessity that the commands for two step opera~-
tions appear on the same input line. For example, simply
typing “CORRELATION" causes a transfer of control from nede 2
to 12, The system then waits in 12 for further instructions.
Strictly for the sake of convenience a special ieature is used
in cases like this. Whenever the system finds itself waiting
in a node other than 2 it knows that an incomplete input heas
been entered. A special routine is therefore called to print
a message appropriate to the current node. This aids the user
in completing the input as is shown below. In this example
and in all other samples of conversational scripts, user input

is identified by a leading "U:".

U: CORRELATION
SPECIFY A CORRELATION

U:r COSINE

Not orly can inputs be spread out over several lines,
several inputs can also be compounded onto a single line.

For example

U: PERFORM A FULL SEARCH ON THE PHYSICS COLLECTION

WITH THE COSINE CORRELATION.

As is seen in the detailed flow chart in Fig. 5, once zn input

is read, it is procéssed repeatedly until all valid template

matches are exhausted. This results in an exit from box 6 via
[:Rj}:ailure. Since this same exft {s taken regardless of how many

Aruitoxt provided by Eic:

7



l. START

2. INITIALIZE

CNODE TO 1

7

READ INPUT

v

4. SET INPUT

TO CNODE

Xv-21

!

S. NNFIN = -1

YES

%

6. TEHPLATE
SEARCH

UNSUCCESSFUL 2

- ¥
7. ACTION
ROUTINE
£ TN)

3

8. NNFIN=NNF(TW}
.
?
9. CNODE=NNI(TN)
.

+0. SET INPUT TO CNODE l

i |

ERIC

Aruitoxt provided by Eic:

11.

CNODE=NNI (TN)

L

Coaversational Control Algorithm

Figure ¢

54



12. @

DID ThE INPUT
@ HAVE AT LEAST

ONFE MAYCH?

13. 15. IS
PRINT _@J GUIDE NO
ERROR ON?

MESSAG:
A .
14.
16, ?
F??SE YES NNFIN=-1
INPUT i
ls'FORCE GUIDE
INFUT # GCOUNT
(®) F T
17.
CNODE=NNFIN
19.
5COUNT=GCOUNT+1 S

NOTE: NNFIN is the next node: final value. It is jinitialized to -1
before tenplate matching begins. 1If no template matches are found.
it will still be -1 at box 16. This indicates that control i< to
remain at the current node.

Conversational Conirol Algorithm
Figure 5 (Cond.)
Q

Aruitoxt provided by Eic:

81



Xv-23

or few, template matches occur in fthe input, a test must be
made to see if at least one match occurs (box 12). If not,
the input is not valid and a diagnostic must be presented to
the user. The system prints a short general error message,
erases the current input and replaces it bty a question wark.
Control is then passed back to the inpvt analysis section.
This results in the appropriate tutorial being shown to the
user, This process of supplying diagnostics by alleowing the
system to force in a special input and then treating this as a
normal user input is also used in the implementation of the

guide facility which is discussed below.

‘E) The Guid: Facility
In the original propnsal for this system, a a sire is
expressed to provide a prompting fa-ility to guide a novice
user, step by step, 1rough an actual retrieval operation.
When a user signs onto this conversation system, he receives

a brief introductory message:
Do you need help in using this system?

If the user {s familiar with the system he can simply arswer

NO ana ne sees no more of the prompting script. 1I:i his answer
it YES, he receives a 3omewhat longer introduction to the
system (S2e Fig. 6) and is then asked if he wishes to be guided
through a retrieval operation. If not, the system operates
normally and no prompting is given. 1If on the other hand, his
answer to the senond question is YES, the guide facility is
Q ;ned on. The guide subroutine has a set of specinl strings

the form:

8



XvV-24

<general operation> ?

Tr.ese include for example:

CORRELATION 4
SEARCH ?
QUERY ?

etc.

Each time the guide subroutine 1Is called isee Fig. 5, Dboxes
18 and 19) 1 orces its 1th string into the iunput area,
increases 1 by one, and transfers control back to tlhie input
analyzer. These special Iinputs have the effect of Lerferming
the first ha.f of a two step operation and then generating a
tutorial. Al. the user has to do 1s respond in turn to each
tutorial thus completing the second half of the two step pro-
cess. When tine gulded retrieval prccess 1is finished, 1 s
reset to one and the user is asked if he wants to be guided

again.

F) Tutorials

There 18 a tuctorial atsociated with each system node.
When the use. types a quescion mark, he is giver the tutorial
appropricte to his curvent rode. The tutorials for all nodes
excapt 2 provide instruction on the specific type of input
expected. Unlike other nodes which have a very limited legal
input set, almost all opt.ons are available from node 2. A
different and more detailed form of tutorial message is neces-
gitated Iin this casa. The rode 2 tutorial consists of two

Q@ sarts: the present status «nd the available options. The

ERIC

N r
s 83

R L



XvV-25

status report provides a summory of the specifications that the
user has already made. The available options are prasented

as a list cf tasks that are currentlv legal. Each option in
the list has an identifying letter so that the user may pick it
simply by typing the letter.

Fig. & shows some actual scripts produced by the conver-
sational system with various levels of users ranging from
novices who use the guide facility (Fig. 6A) tc highly know-
ledgeable experts. The scripts Include both correct and in-
correct inputs as well as the various tutorial forms. The
program which performs the conversation is written in G-level
FORTRAN-1IV. It consists of about 1300 FORTRAN stztements and
includes 35 subtroutines and entry points. The program uses two
output streams. One is used for diagnostic output. This is
useful in debugging and in determining If the program's internal
operations are working properly. The second stream is the con-
versational ocutput which would be displayed opn the user console.

Tiiing statistics for the system are presented in section 5.

5. Experimentation

The experimentation tests the system with actual users and
analyzes the results both with respect to system performance and
user performance, The usrer population used represents a fairly
broad spectrum of potential conversationu.l system users with
varying degrees of knowiedge of information retrieval. 1lhe
experiment for each user wnsists of two parts. First, the user
is given a brief introduction to the system, Basically te is
@ ld that this is a conversational in._ormation retrieval system

ERIC

o 84




XV-26

U:s SIGNON
SMART ON~LINE...DO YOU NEED HELP IN USING THE SYSTEM?
U: YES

THIS IS A NATURAL LANCUAGE CONVERSATIONAL

INFORMATION RETRIEVAL SYSTEM. THE SYSTEM RETRIEVES
DOCUMENTS IN KESPONSE TO ENGLISH QUESTIONS. YOU MUST SELECT
A DATA COLLECTION TO BE SEARCHED. 1IN ADDITION YOU CAN
SELECT SEARCH STRATEGIES AND CORRELATION OR ALIOW SYSTEM
DEFAULIS, IF YOU NEED HELP AT ANY TIME IN YOUR LIALOGUE,
TYPE "?" AND YOU WILL RECEIVE A TUTORIAL APPROPRIATE TO YOUR
PRESENT POSITION IN THE DIALOGUE. FOR FULL INFORMATION
CONSULT THE MANUAL.

DO YOU WISH TO BE GUIDED TRROUGH A RETRIEVAL PROCESS?
U: YES
THE FOLLOWING COLLECTIONS ARE AVAILABLE FOR SEARCH
(SELECT BY NAME OR LETTER).

A. ENGINEERING

B. BIOLOGY

C. LITERATURE

D. CHEMISTRY

E. PHYSICS
U: A -
THE FOLLOWING CORRELATIONS ARE AVAILABLE. CONSULT
MANUAL FOQOR FORMULAS.

A. COSINE (SEFAULT)

B. OVERLAP
U: COSTNE
THE FOLLOWING SEARCI! STRATEGIES ARE AVAILABLE.

A. FULL SEARCH (CONSULT MANUAL BEFORE USING)

B. CLUSTERED (DEFAULT)
U: CLUSTER
YOU MAY NOW ENTLR YOUR QUESTION. IT CAN BE IN NORMAL
ENGLISH AND MAY CONTAIN SPECIFICATIONS FOR DATES (YEAR),
JOURNAL, AND AUTHOR.
i+ INFORMATION ON ORDERING OF RECURSIVE FUNCTTONS BY THE
Ut DIFFICULTY OF COMPUTATION
YOU MAY NOW INITIATE A SEARCH BY TYPING GOSEARCH
U: GOSEARCH
SEARCH UNDER WAY, EXPECT DELAY
SEARCH COMPLETE

CONVERSATIONAL DIALOGUE

Fig. 6A

O

LRIC 80
RI



Xv=-27

INDICATE HOW MANY DOCUMENTS YOU WANT TO SEE.
IF NON TYPE "NONE".
U: GIVE ME 5

RANK 1 pocC 91 CORR = 0,9896705
RANK 2 DoOC 11 CORR = 0.9791623
RANK 3 pocC 42 CORR = 0.8563247
RANK 4 DOC 40 CORR = 0,8002142
RANK 5 DOC 45 CORR = 0.7656324
DO YOU WANT TO SEE MORE?

U: YES 5 MORE

RANK 6 DOC 98 CORR = 0.6665342
RANK 7 pocC 25 CORR = 0.5542100
RANK 8 DoC 32 CORR = 0.4022313
RANK 9 DOC 89 CORR = 0.3987652
RANK 10 po¢C 41 CORR = 0.3654201

DO YOU WANT TO SEZ MORE?
U: NO THANK YOU
SMART ON-LINE...DO YOU NEED HELP IN USING THE SYSTEM?
U: NO
Uu: ?
PRESENT STATUS:
SEARCH ENGINEERING COLLECTION
COSINE CORRELATION
CLUSTERED SEARCH
NO QUERY HAS BEEN SPECIFIED YET

AT THIS POINT YOU MAY:
A, SPECIFY A DOCUMENT COLLECT'ON
B. SPECIFY A SEARCH ALGORITHM
C. SPECIFY A CORRELATION COEFFICIENT
D. SUBMIT A QUERY
F. LOOK AT SOME RETRIEVED DOCUMENTS
G. START OVER
H. SIGNOFF
Ut H. SIGNOFF
SIGNOFF ACCEPTED

CONVERSATIONAL D1ALOGUE

Fig. 6A

(conz'd)

ERIC

Aruitoxt provided by Eic:



Xv-28

U: SIGNON

SMART ON-LINE...DO YOU NEED HELP IN USING THE SYSTEM?
U: NO

U: YES

INPROPER INPUT
HELP FOLLOWS
PRESENT STATUS:
SEARCH PHYSICS COLLECTION
COSINE CORRELATION
FULL SEARCH
NO QUERY HAS BEEN SPECIFIED YET

AT THIS POINT YOU MAY
A. SPECIFY A DOCUMENT COLLECTION
B. SPECIFY A SEARCH ALGORITHM
C. SPECIFY A CORRELATION COEFFICIENT
D. SUBMIT A QUERY
F. LOOK AT SOME RETRIEVED DOCUMENTS
G. START OVER
H. SIGNOFF
u: Q. 1970 LASER ARTICLES
QUERY SUMMARY: DATE = 1979
1
YOU CANNOT SEE DOCUMENTS UNTIL A SEARCH HAS BEEN FERFORMED
COMHMAND IGNORED
U: GOSEARCH
SEARCH UNDER WAY, EXPECT DELAY
SEARCH COMPLETE

u: &

RANK 1 DOC 56 CORR = 0.9828174
RANK 2 DOC 5 CORR = 0.9620456
RANX 3 poc 1 CORR = 0.8022764
RANK 4 DOC 21 CORR = (0.6553271
DO YOU WANT TO SEE MORE?

U: NO

U: SIGNOFF
S1GNOFF ACCEPTED

CONVERSATIONAL DIALOGUE

Fig. 6B

ERIC - 8/

-I-I-I-I-----I-l.--!IIIIIIIIIIIIIIIIIIIIIlIIII---IIII..-I-.I.-.I



Xv-29

U: SIGNON

SMART ON-LINE...DO YOU NEED HELP USING THE SYSTEM?
U: NO
v: 7

PRESENT STATUS:
NO COLLECTION SPECIFIED YET
COSINE CORRELATION (BY DEFAULT)
CLUSTERED SEARCH (BY DEFAULT)
NO QUERY HAS BEEN SPECIFIED YET

AT THIS POINT YOU MAY:
A. SPECIFY A DOCUMENT COLLECTION
B. SPECIFY A SEARCH ALGORITHM
C. SPECIFY A CORRELATTION COEFFICIENT
D. SUBMIT A QUERY
G. START OVER
Y. SIGNOFF

U: CORRELATION
PLEASE SPECIFY A CORRELATION
u: ?
THE FOLLOWING CORRELATIONS ARE AVAIABLE FOR SEARCH.
CONSULT MANUAL FOR FORMULAS.
A. COSINE (DEFAULT)
B. OVERLAP
PLEASE SPECIFY A CORRELATICN
U: B
U: FULL SEARCH OF THE PHYSICS COLLECTION
U: Q: MU MESON PARTICLES
U GOSEARCH
SEARCH UNDERWAY, EXPECT DELAY
SEARCH COMPLETE
U: I WANT 5 DOCUMENTS

RANK 1 DCC 53 CORR = 0.86547531
RANK 2 DOC 41 CORR = 0.7024357
RANK 3 DoOC 49 CORR = 0.6654654
RANK 4 DOC 9 CORR = 0.5557575
RANK 5 DoC 17 CORR = 0.4302142
DO YOU WANT TO SEE MORE?

U: NO

Us SIGNOFF
SIGNOFF ACCEPTED

CONVERSATION.:AL DIALOGUE

Fig. 6C

ERIC

s 8-«



Xv-30

and that he must type "SIGNON" to begin. Fvom then on, the user
is on his own. The intent here is to see 1if the uniritiated
user elects the guide option and if sc, is the user successfully
able to complete a retrieval operation ucing the guide facility?
In the second experimental phase, the user tries to be more of
an axpert., Using information he has learned during the guided
operation and some additional instruction, the user performs

a second retrieval operation, This sacond operation is done
without the aid of the guide facility. The sample scripts in
Figure 6 are the actugl results of these experiments with a few
of the users. Results must be atalyzed with respect to both
system and user performance. For the most part, system per-
formance can be measured objectively while user performance 1is

nore subjective.

A) System Performance

The basic measure of system performance 1is simply how many
inputs are handled correctly o'it of the total number seen.
This can be divided uvp since inputs arrive from several 8sources.
Most fnputs come directly from the user, but some are forced
into the input area by the system {tself. An input may be legal
or illegal. Most illegal inputs are requests for optiong rnot
accessible at the current node. If it is legal, a correct
analysis is produced if the system performs the action intended
by the user, For an {llegal input, a correct analysis takes
the form of noting the error and printing an appropriate mes~-
gsage., Figure 7 shows for cach input type, the tertal number

E thnputs. and the number analyzed correctly &nd incorrectly.

84

Aruitoxt provided by Eic:



Xv-32

CONVERSATIONAL ANALYSIS

INPUT TOTAL # CORRECT # INCORRECT % CORRECT
LEGAL 295 293 2 99.3
ILLFGAL 10 8 2 80.C
FORCED 71 71 0 160.0
TOTAL 376 372 4 98.9

Sumna.y of Conversational System Performance

Figure 7

In addition it shows the percent of correct analyses associatad
with this operation. These results indicate a very high level

of performance for the system., WNot only does it handle valid
inputs successfully, but it is also able to detect invalid inputs
and treat them properly. The total number of inputs shown in
Filgure 7 1is actually greater than the total number of input lines.
This is because several inputs may be compounded onto a single

line.

B) User Performance

The measures ¢f user performance are necessarily more sub-
jective than those of system performance. However, these results
can provide useful information into the overall validity of
this type of approach to a conversational implementation.

For each user, at least two dialogues are conducted; one
with the user having a minimum of system knowledge, and one
where he has more instruction and previous experience. On the
first try, cvery user responded properly to the initial systenm
[:RJ}:ion and was able to turn on the guide facility. Then using

90

| U




Xv-32

the guide facility,.all but one user was able to successfully
complete a simple retriecval process. The one exception did not
understand the use of the word "default'"., After this was
explained, the operation progressed normally. In general, all
Jsers were able to respond properly to the guide questions.
The only major problem occurred at the end of the guided dia-
logue where the process 1s recycled and started again. It was
not obvious to the user &t this point, how he could sign off.
But most users knew enough to request a tutorial which then
explicitly displayed the available options; SIGNOFF being

one of them. An example of this situation appears in Figure
6A. A slight modification of the final guide process can rec-
tify this,

Having been guided through retrieval operation supplies
the user with a great deal of insight into the use of the
system. Using this experience and a small amount of added
instruction to f1i11 in any areas not touched by the guide faci-
lity, the user next attempts a normal (unguided) dialogue. All
of the users tested were gble to conduct a reasonable dialogue
without outside help. A few of the users who had previous
information retrieval experience were able to perform a highly
competent retrieval after only a single introductory guided pro-
cess. Of course nearly all of the users became stuck at some
point and had to tequest a tutorial. Of the 32 tutorial calls
made by all users, all but one supplied the information neces-
sary for the user to continue. In some cases where the user
received the master status tutorial, the single message answered

O
- RJ(C. of the user's questions. He was then able to continue
Fe o _
91



Xv-33

by making several references back to the same message. The
one situafion in which the tutorial did not help cccurred when
a user requested a tutorial during a gulle process. Since

the guide facility operates by generating successive tutorial
messages, the user's request resulted in a repeat of the pre-
viously printed message. Thus the tutorial present2d no new
information. The user, however, was able to extricate himself
by requesting a default copiion. 1In all the dialogues there
was no case in which a user was forced to stop because he
became hopelessly lost.

At the conclusion of each user dialogue he is asked his
opinion of the system. The reaction of ne.rly all the users
was favorable. They found the system both simple to learn and
use,. The tutorial facility is very well  ~ceived, especislly
the convention of printing the appropriate tutorial in response
to an erroneous input. Mcst of the critical coruents centet
around revision in the wording of the various mccscages., A few
of these mc.sages are felt to be insufficiently clear to a new
user. One user suggested that tutorials not only explain their
options but also pruvide some samples of appropriate valid
inputs., This comment, however, appears to be based on user
timidity more than anything else. Unlike others, this user did
not fully appreciate the natural language capabilities of the
system and was afrai. of submitting an erroneous input. He
therefore wanted the sample input as a highly structured quide-
line for his input. But because of the abi{lity of the system
Lo éreat natural language, such guidelines are unnecessary.
ERIC N

/
~



E

RIC Jo

Aruitoxt provided by Eic:

XV-34

The overall feeling of the user 1s that the system provides
an easy ito use yet sufficiently rigorous conversational informa-
tion retrieval facility., In addition the control conversational
dialogue can be performed at each user's particular level of

competence.

C) Timing

No analysis of a potential on-line system is couplete without
saying something about processing time. The current conversa-
tional program 1is written in FORTRAN and contains a great deal
of diagnostic prucessing and output, as well as other debugging
aids. It might therefore be considered that the timing statis-
tics fur the program would be somewhat worse than could be
achieved using more efficient production programming techniques.
However, th.se results do give a general idea of the processing
speed., The timing of each operation varies from about 50 to
150 millisecoﬁds. Tiie complete set of 376 operations is performed
in 37.057 seconds or about 0.1 second per input operation.
When considering an actual ceonsole usrer, a rather conservative
estimate for the average time between inputs (that is the time
between end of input signals) is 10 seconds. In practice this
average 1is probably higher. Thus at the rate of 10 conversa-
tional vperations per second. the current system could adenquately
support a network of 100 consoles and supply one second or better
of response time., Even with the inefficiernt code and conserva-

tive estimates, this is clearly within practical limits.

O



XvV-35

6. Fucure Extensions

There are a number of arcas for future study with respect
t» the coaversational system. First is a user storage facility,
With this capability 2 user could store various aspects of
his dialogue, such as queries or retrieved documents, for future
use, [n a2ddition, a user could sLore pavameters which would
be automatically set at sign-on time. This would eliminate the
need to specify the parameters each time ho used the system. In
addition the system can keep various stetistics about its
own performance which are valuable in evaluating and improving
the system.

Carrying the storage capability one step further, the
conversational system could be equipped with a learning sub-
system. A us.r could then mpecify his owa notation along
with more conventionally stated equivalents, The system would
then learn the user's special requirements. In this way a
user could tailor the conversational system to his exact needs
and conventions., The learning process could also ge‘used in
the treatment of erroneous inputs. This is shown in the sample
script below. The user erroneously requests a nonexistent
"BOOL" correlation. The system noiifies him of his error
and requests clarification and whether the incorrect input
should be learned. After answering affirmatively, the user may

then use "overlap"” or "bool" interchangeably.

U: B0O0OL CORRELATION
INCCRRECT CORRELATION, PLEASE CLARIFY AND
INDICATE IF INPUT SHOULD BE LEARNED.

O

a;
———l_“



Xv-36

U: YES, OVERLAP

UNDERSTOOD; BOOL = OVERLAP
Thus the learning process provides a way of meefing the parti-
cular needs of each individual user.

Some further work must also be done with respect to user
terminals., Currently the most nopular on-line cowmmuncation
device is the teletype console. These are easy to use and
ralatively inexvpensive. The most serious drawback is their slow
output speed. A fairly simple tutorial may take 30 seconds
or more to print, This can frustrate the user and needlessly
tie up the terminal. Another type of terminal is based on a
cathode ray tube (CRT). These permit almost instantaneous
disolay of ~assages, In addition, part of the screen may be
devoted to a prompting avrea. Ip this way tite user always knows
where he is in his dialogue and what options are currently
available. Some CRT units have a light pen which allows selac-
tion of options by merely pointing the pen at the name of the
desired opticn on the screen. However, there are several problems
with CRT displays. First, the added hardware needed to drive a
CRT makes them very expewsive. Some work is being done by
Bitzer [l) on the design of an inexpensive visual display
unit which uses a plasma screen and slide projector, However,
these are not yet commercially available. Alse the CRT produces
no hard copy. A user might thus have to copy a long list of
document numhers from the screen. The solution to this may
be supplied by devices which contaln both a visual and a hard
copy facility. The user conducts his dialogue on the CRT.

O
E l(}never he receives sometliing he wants saved, he indicates the

O
g



Xv-37

appropriaté subset of the script which is then printed. Such
a device is currently being used experiemntally by the RIQS
System at Northwestern University {13],

Another area for future study 1is the manner in which docu-
ments are displayed to the user. SMART and a number of other
systams normally display only the document number. At best
documer.t numbers provide minimal information about the document's
con:eni. It might be better tc store document titles or even
abstracts on-line so that they may be seen by the user. This
could be done best using a high capacity, low speed peripheral
storage device, However, the expense of the dedicatéd storage
device along with the prospect of having the termninal tied up
printing abstracts, may make this technique uneconomical.
Another possibility is to store document abstracts on microsichea.
A set nf microfiche and a reader would be supplied at each
terminal station. The user would get a list of dociment
numbers from the information retrieval system and then look
them up off-line at the reader. Not only is the physical equip-
wrent for this cheazper than an on-line file, but also the fact
that the scanning of abstrac*s is done off-line frees up the
terminal for more useful work.

The fourth and probably most significant srea for future
development is the anl. sis of the conversational user. It is
from this type of siudy that will come significant advances in

tailoring systems to the actual needs of the system user.

7. Conclusion

)
El{l(j Conversational informaiion processing has many sdvantages
P racr i e N

9o



E

Xv-38

over conventional batch methods. In this study . + shown
that it is quite reasonable tc conduct conver-a- - infor-
mation retrieval in a natural language framewo - Furthermore

the template analysis procesrs proves to be a useful technique
not only for handling the natural language input to a conver-
sational system, but it can take care of the bookeeping as
well. The conversational system implemeunted using tlese tech-
niques is8 shown by actual user experimentation to provide an

excellent communication medium between man and machine.

O

RIC .

Aruitoxt provided by Eic:



(1)
(2]

(3]
(4]
(5]

(6]

(7]

(8]

(9]
[10]

(11}

[12)

(13]

ERIC

Aruitoxt provided by Eic:

Xv-39

References

Alpzrt, D., and D.L. Bitzer, Advances in Computer-based
Education, Science, Vol. 167 (March 1970).

Athertor, P., aud R.R. Freeman, AUDACIOUS, AIP Report,
AIP/UDC 7, April 1968,

Berezner, S,C., H.C. Carney, J,A. Craig and C.R. Longyear,
DEACON: Direct English Access anc Control, General
Electric Co., Proceedings FJEC, Santa Barbara, Caiifornia,
1966.

Bergman, S., W. Franks, E. Rubpinoff and M. Rubinoff,
Experimental Evaluation of Information Retrieval through
a Teletypewriter, CACM, Vol. 11, No. 9 (September 1968).

Bobrow, D.G., Natural Language Input for a Computer
Problemsolving System, in Semantic Information Processing,
M. Minsky, Ed., MIT Press, Cambridge, Mass., 1968,

Bolt, R.H., Computer-assisted Socratic Instruction, 1in
Conversational Computers, W.D. Orr, Ed., John Wiley and
Sons, Inc., New York 1968,

Curtice, R.M., and P.E. Jones, An Operational Interactive
Retrieval System, Arthur D, Little, Inc., 1969.

Dimsdale, B., and B.G, Lamson, A Natur:l Language Information
Retrieval System, Proc. of IEEE, Vol. 54, No. 12 (December
1966).

Halpern, M., Foundations of the Case for Natural Language
Programming, IEEE Spactrum, Vol. 4, No. 3, dMarch 1967,

IBM Systems/360 Document Processing System, Applications
Description, IBM, 1967.

Ide, E.C., Relevance Feedback in an Automatic Document
Retrieval System, Information Storage and Retrieval, Report
No. ISR-15 to the National Science Foundation, Cornell
University, 1968,

Kellogg, C.H., A Natural Language Compller for Qn-line
Data Management, AFIPS Conference Proceedings, Vol. 33,
Proc. AFIPS 1968 Fall Joint Computer Conf., Vol. 33,
Thompson Book Co.., Washington, D.C.

Krulee G., and B, Mittman, Computer-based Information
Systems for University Research and Teaching, Ncrthwestern
University, Evanston, Illinois, 1969.

Jo



O

ERIC

o

[14]

(15]

[16]

(17]

(18]

[19]

[20])

(21]

(22]

(23]

(24)

(25}

f2¢)

References (contd.)

Maceyak, J., A Question-answering Language for a SMART
type Data Base, May 1968.

Mathews, W.C., TIP Reference Manual, Technical Information
Program, The Libraries, MIT, Cambridge, Mass., 1968,

Meister, D., and D.J. Sullivan, Evaluation of User Reactions
to a Prototype On-line Information Retrieval System (RECON),
Appendix RECON User's manual, Report NASA-CR 918, Prepared
by Bunker-Romo Corporation, Conoga Park, California.

Moyne, J.A., PROTO-RELADES: A Restrictive Natural Language
System, IBM, 1967.

Moyne, J.A., A Progress Report on the Use of English in
Information Retrieval, IBM Corp., Federal Systems Center,
Gaithersburg, Maryland, June 1969.

Moyne, J.A., Information Retrieval and Natural Laiguage,
IBM Corp., Federal Systems Center, Gaithersburg, Maryland,
June 1969.

Orr W.D., (Ed.), Conversational Computers, John Wiley and
Sons, Inc., New York, 1968, i

Parker, E., SPIRES User Manual, Stanford Physics Information
Retrieval System, Institute of Communications Research,
Stanford University, Palo Alto, California.

Reitman, W., R.B. Roberts, R.W. Sauvain, and D.D. Wheeler,
AUTONOTE: A Personal Information Storage and Retrieval
System, Mental Health Research Institute Communication
#248 and Information Processing Working Paper #12, Univer-
sity of Michigan, Ann Arbor, Michigan, 1969.

Rubinoff, M., S. Bergman, H. Cautin, and F. Rapp, Easy
English, A Language for Information Retrieval Through a
Remote Typewriter Console, CACM, Vol., 11, No. 10 (October
1968).

Salton, G., Automatic Information Organization and Retrieval,
McGraw Hill, New Yurk 1968.

Salton, G., Interactive Information Retrieval, (Unpublished),
Silvern, L.Z., CAIl in an Expanding Universe of Educational

Methodology, in Conversational Computers, W.D. Orr, Ed.,
John Wiley and Sons, Inc., New York 1968,

9u



O

ERIC

Aruitoxt provided by Eic:

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

(35]

XV=-41
References (Contd.)

Simmons, R.F., Synthex, in Conversational Computers,
Ww.D. Orr, Ed., John Wiley and Sons, Inc., New York, 198§,

Simmons, R.F., Natural Language Question-answer Systems:
1969, CACH, Vol. 13, No. 1 (January 1969).

Summit, R.F., DIALOG II Users Manual, Information Science
Electronic Science Lab., Lockheed Palo Alto Research
Lab,, Lockheed Missiles and Space Co.

Thompson, F.B., DEACON Type Query Systems, in Conversa-
tional Computers, W.D., Orr, Ed., John Wiley and Sons,
Inc,, New York, 1968,

Weiss, S.F., A Template Approach to Natural Language
Analysis. for Information Retrieval, Ph.D. Thesis,
Department of Corputer Science, Cornell University,
ithaca, New York, 1970.

Weiss, S.F., Template Analysis and its Applicatinn to
Natural Language Processing, Information Storage and

Retrieval, Report No. ISR-16 to the National Science

Foundation, Cornell University, 1969.

Weizenbaum, J., Contextual Understanding by Conmputers,
CACM, Vol., 10, No. 8 (August 1967).

Weizenbaum, J., ELIZA — A Computer Program for the Stud:x
of Natural Language Comnunications Between Man and
Machine, CACM, Vel. 9, No. 1 (January 1969).

Williamson, R., A Prototype Docurent Retrieval Systen.
{Unpublished).

100



