
DOCUMENT RESUME

ED 047 505 EN 008 706

AUTHOR
TITLE

INSTITUTION

SPONS AGENCY
REPORT NO
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

ABSTRACT

Loftus, Elizabeth Jane Fishman
An Analysis of the Structural Variables that
Determine Problem-Solving Difficulty on a
Computer-Based Teletype.
Stanford Univ., Calif. Inst. for Mathematical
Studies in Social Science.
National Science Foundation, Washington, D.C.
TR-162
18 Dec 70
105p.

EDRS Price MF-$0.65 HC-$6 -58
*Arithmetic, Complexity Level, *Computer Oriented
Programs, Disadvantaged Youth, Problems, *Problem
Solving

A word problem is more difficult to solve when the
minimum number of different operations to reach the correct solution
is large, when it is of a different type than a problem preceding it,
whoa the indexed complexity of its most complex sentence is great,
when there are a large number of words in the problem, and when a
conversion of units (as from days to weeks) is required. These
variables of problem difficulty were determined to be significant in
an experiment using 16 disadvantaged sixth-grade students, who were
given access to a computer-based teletype. Variables that did not
make a significant contribution to the regression analysis were: the
"verbal-clue" variable, the "order" variable, and the "steps"
variable. (MY)



lurlk AN ANALYSIS OF THE STRUCTURAL VARIABLES THATc DETERMINE PROBLEM - SOLVING DIFFICULTYir.
N. ON A COMPUTER-BASED TELETYPE

U.S. DEPARTMENT OF HEALTH, EDUCATION
& WELFARE

OFFICE OF EDUCATION
CO THIS DOCUMENT HAS BEEN REPRODUCED

EXACTLY AS RECEIVED FROM THE PERSON ORCI BY ORGANIZATION ORIGINATING IT POINTS OF
VIEW OR OPINIONS STATED DO NOT NECES

LIJ SARILY REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION 0.1 POLICY

ELIZABETH JANE FISHMAN LOFTUS

TECHNICAL REPORT NO. 162

DECEMBER 18, 1970

PSYCHOLOGY SERIES

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

STANFORD UNIVERSITY

STANFORD, CALIFORNIA



TECEN I CAL REPORTS

PSYCHOLOGY SERIES

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

(Place of publication shown in parentheses If published title is different from title of Technical Report,
this Is also shown In parentheses,)

(For meats no. 1 -44, see Technical Report no. 125.)

50 R, C. Atkinson and R. C. Calfee. Mathematical learning theory. January 2,1963. (In B. B. Wolman (Ed.), Scientific Psychology. New Yak:
Basic Books, Inc., 1965. Pp. 254-275)

51 P. Suppes, E. Crothers, and R. Weir. Application of mathematical learning theory and linguistic analysis to vowel phoneme matching In

Russian words. December 28,1962.
52 R. C, Atkinson, R. Coffee, G. Sommer, W. Jeffrey and R. Shoemaker, A test of three models for stimulus compounding with nhIldren.

January 29,1963. (J. axe. Psychol., 1964, 67, 52-58)
53 E. Crothers. General Markey models for learning with inter-trial forgetting, April 8,1963.
54 J. L. Myers and R. C. Atkinson. Choice behavior and reward structure. May 24,1963. (Journal math. Psyche!, 1964, 1,170-203)
55 R. E. Robinson. A set-theoretical approach to empirical meaningfulness of measurement statements. June 10, 1963.

56 E. Crothers, R. Well' and P. Palmer. The role of transcription In the learning of the orthographic representations of Russian sounds. June I7,. 1963.
57 P. Suppes. Problems of optimization in learning a lint of simple items. July 22,1963. (In Maynard W. Shelly, II and. Glenn L. Bryan (Eds.),

Human Judgments and Optimality. New York: Wiley. 1964. Pp. 116-126)
58 R. C. Atkinson and E. J. Crothers. Theoretical note: all-or-none learning and intertrial forgetting. July 24,1963.
59 R. C. Calfee. Long-term behavior of rats under probabilistic reinforcement schedules. October I, 1963.
60 R. C. Atkinson and E. J. Crothers. Tests of acquisition and retention, axioms for paired-associate learning. October 25,1963. (A comparison

of paired-associate learning models having different acquisition and retention axioms, J. math. Psycho'.; 1964, I, 285-315)
61 W. J. McGill and J. Gibbon. The general-gamma distribution and reaction times. November 20,1963. (J. math. Psychol., 1965, L 1-18)
62 M. F. Norman. Incremental learning on random trials. Dezember 9,1963. (J. math. Psycho'., 1964, c336-351)
63 P. Suppes. The development of mathematical concepts In children. February 25,1964. (On the behavioral foundations of mathematical concepts.

Monographs of the Society for Research in Child Development, 1965, 30, 60-96)
64 P. Supper. Mathematical concept formation In children. April 10, 1964. (Amer. Psychologist, 1966, 21,139-15C.:

65 R. C. Calfee, R. C. Atkinson, and T. Shelton, Jr. Mathematical models for verbal learning, August 21, 1964. (In N. Wiener and J. P. Schoda
(Eds.), Cybernetics of the Nervous Ststemi Progress in Brain Research. Amsterdam, The Netherlands: Elsevier Publishing Co., 1965.
Pp. 333-349)

66 L. Koller, M. Cola, C. J.. Burke, and W. K. Etas. Paired associate learning with differential rewards. August 20,1964. (Reward and
information values of trial outcomes in paired associate learning. (Psycho'. Monogr., 1965, 79, I-21)

67 M. F. Norman. A probabilistic model for free-responding. December 14,1964.
68 W. K. Estes and H. A. Taylor. Visual detection in relation to display size and redundancy of critical elements. January 25,1965, Revised

7-1-65. (Perception and Psychophysics, 1966, I, 9-16)
69 P. Suppes and J. Donio. Foundation, of stimulus-sampling theory for continuous-time processes. February 9,1965. U. math. Psychol., 1967,

4, 202-225)
70 R. C. Atkinson and R. A. Kinchla. A learning model for forced-choice detection experiments. February 10, 1965. (Br. J. maUi stmt. Psychol.,

1965,18,184-206)
71 E. J. Crothers. Presentation orders for items from different categories. March 10,1965.
72 P. Supper, G. Groan, and M. Schlag-Rey. Some models for response latency In paired-associates learning. May 5,1965. W. math. Psychol.,

1966, 3, 99-128)
73 M. V. Levine. The generalization function In the probability learning experiment. June 3,1965.

74 D. Hansen and T. S. Rodgers. An exploration of psycholinguistic units In initial reading. July 6,1965.
75 B. C. Arnold. A correlated urn-scheme for a continuum of responses, July 20,1965.
76 C. Izawa and W, K. Estes. Reinforcement-test sequences In paired-associate learning. August 1,1965. (Psycho'. Reports, 1966, 18, 879-919)
77 S. L. Siebert. Pattern discrimination learning with Rhesus monkeys. September 1,1965. (Psycho!. Reports, 1966, 19, 311-324)

78 J. L. Phillips andR. C. AtkIncon. The effects of display size on short -term memory. August 31,1965.
79 R, C. Atkinson and R. M. Shiffen. Mathematical models for memory and learning September 20,1965.
80 P. Suppes. The psychological foundations of mathematics. October 25,1965. (Colloques intemationaux du Centre National de is Recherche

Soli ntifique. Editions du Centre National de la Recherche Sclentifique. Paris:1967. Pp. 213-242)
Sup.81 P. Is. Computer - assisted instruction in the schools: potentialities, problems, prospects. October 29,1965.

82 R. A. KInchla, J. Townsend, .1. Yellott, Jr., and R. C. Atkinson. Influence of correlated visual cues on auditory signal detection.
November 2,1965. (Perception and Psychophysics, 1966, 1, 67-73)

83 P. Supper, M. demon, and G. Groen. Arithmetic drills and review on a computer-based teletype. November 5,1965. (Arithmetic Teacher,
Apri11966, 303-309.

84 P. Suppes and L. Hyman. Concept learning with non-verbal geometrical stimuli. November 15,1968.

85 P. Holland. A variation on the minimum chi-square test. U. math. Psycho'., 1967, 3, 377-413).

86 P. Supper. Accelerated Program In elementary-school mathematics the second year. November 22,1965. (Psychology In the Schools, 1966,
3 294-307)

87 P. Lorenzen and F. Binford. Logic as a dialogical game. November 29,1965.

88 L. Keller, W. J. Thomson, J. R. Tweedy, and R. C. Atkinson. The effects of reinforcement Interval on the acquisition of paired - associate
responses. December 10,1963. ( J. ea. Psycho', 1967, 73, 268-277)

89 J. i. Yeilott, Jr. Some effects on nonewitingent success In human probability learning. December 15,1565.

90 P. Supper and G. Gram. Some counting models for first-grade performance data on simple addition facts. January 14, 1966. (in J. M. Scandura
(Ed.), Research In Mathematics Education. Washington, D. C.: NCTM, 1967. Pp. 35-43.

91 P. Supper. Information proces'Ing and choice behavior. January .31,1966.

92 G. Groin and R. C. Atkinson. Models for optimizing the learning Process. February 11,1966. (Psycho'. Bulletin, 1966, 66, 30?-320)

93 R. C. Atkinson and D. Hansen. Computer-assisted instruction In Initial reading: Stanford project. March17, 1966. (Reading Research

Queerly, 1966, 2, 5-25)
94 P. Supple. Probabilistic inference and the concept of total evidence. March 23,1966. (In J. HintIkka and P. Supper (Eds.), Aspects of

Inductive Looio. Amsterdam North-Holland Publishing Co., 1966. Pp. 49-65.

95 P. Suppes. The mimetic method In high-school mathematics. Apr1112,1966. (The Role of Axiomatic' and Problem Solving In Mathematics.
The Conference Board of the Mathematical Sciences, Washington, IL C. Ginn and Co. , 1966. Pp. 69-76.

(Continued on inside back cover)



AN ANALYSIS OF THE STRUCTURAL VARIABLES THAT
DETERMINE PROBLEM-SOLVING DIFFICULTY

ON A COMPUTER-BASED TELETYPE

by

Elizabeth Jane Fishman Loftus

TECHNICAL REPORT NO. 162

December 18, 1970

PSYCHOLOGY SERIES

Reproduction in Whole or in Part is Permitted for

any Purpose of the United States Government

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

STANFORD UNIVERSITY

STANFORD, CALIFORNIA

3



ACKNOWLEDGMENTS

I would like to express my thanks to Dr. Patrick Suppes, the

chairman of my committee, for his advice, support and encouragement

throughout all stages of this research. I would also like to thank

Dr. Richard Atkinson for years of patience.

I am grateful, finally, to Geoffrey, to whom I owe much more

than I can acknowledge.

This research was conducted during the author's tenure as a

Public Health Service Predoctoral Fellow, Fellowship No. 1-F01-MH-46479-01.

This research was supported by National Science Foundation Grant

No. G-18709 to Patrick Suppes.

4



Acknowledgments

TABLE OF CONTENTS

Page

Chapter

I. Introduction 1

II. Traditions in Problem-solving Research 4

III. The Theory 15

D. Design and Experimental Procedure 26

V. Results 35

VI. Discussion 52

VII. Summary 56

References 58

Appendix A 68

Appendix B 91

ii



AN ANALYSIS OF THE STRUCTURAL VARIABLES THAT
DETERMINE PROBLEM-SOLVING DIFFICULTY

ON A COMPUTER-BASED TELETYPE

Elizabeth Jane Fishman Loftus

Stanford University
Stanford, California 94305

Chapter I.

INTRODUCTION

There exists a great diversity of approaches to the investigation

of human problem solving. A wide range of materials, techniques, and

"problems" has been used for such study. Subjects have been required

to solve an anagram, a matchstick problem, a water-jar problem, a

pendulum problem, a concept-identification problem, an analogy problem,

a number-series problem, or an arithmetical word problem, to name a few.

Some of these problems require the student to restructure a patterned

situation to achieve a novel result (Duncker, 1945; Wertheimer, 1945),

while others require him to find the commonality in a group of disparate

situations (Heidbreder, 1947; Bruner, Goodnow, and Austin, 1956). Some

problems are solved in a sequence of well-defined steps (Hayes, 1965), while

others are solved suddenly in a single step (Maier, 1931). Several

theoretical formulations have been offered and many facts have been

discovered, but there is still no single adequate theory into which they

can be integrated. In addition, there is very little analysis of why

arithmetic word problems, specifically, are difficult for students. We

know that students have notorious difficulty in solving word problems.

The present study is an attempt to find out why. It is an attempt to

explore the notion that in solving a set of word problems, certain items

are more difficult to solve than others. It is an attempt to understand

what variables cause some word problems to be hard to solve while others

are easy. Once we have a grip on these variables, we can attempt to

organize a set of word problems in terms of them. It is assumed that

understanding the variables relevant to problem solving is a worthwhile

and scientifically important goal, for only then can we hope to be able

to formulate a coherent theory of problem solving.

1
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The purpose of the present study is to examine the relative

influence of structural factors in word problems to be solved. The use

of the term "structural" indicates that the focus of attention is on the

variables which characterize the specific problems themselves (for example,

the number of words in the problem) and on the variables which characterize

the relationship between individual problems (for example, the structural

similarity of two adjacent problems). The emphasis, then, is on the

problems themselves and the relationship between problems, rather than

on variables which characterize the students (student variables) or

variables which characterize the experimental methods used to present

the problems (presentation variables). Presentation variables which

have been examined in previous research include such ones as massed vs.

distributed practice, immediate vs. delayed reinforcement, etc. They

are generally thought to be independent of the student's past learning

history. Student variables which have been studied previously include

such ones as the chronological age, sex, training, reading ability, and

capacity for mathematics of the student. Problem-solving ability has

been shown to depend on all of these (Lazerte, 1933). Possible inter-

relationships between the structural, presentation, and student variables

are not denied here. However, a number of experiments suggest that the

effects of most presentation variables (massed vs. distributed practice,

for example) hold in diverse student populations and over a wide range

of experimental materials (Underwood, 1961; Mednick, 1964, pp. 84-87).

In this study, therefore, we feel justified in having restricted ourselves

to an analysis of structural variables alone.

One aspect of this research is unique to investigations of problem

solving. It was conducted in the context of a computer-assisted instruc-

tional system. At Stanford, the Institute for Mathematical Studies in

the Social Sciences (IMSSS) has been developing over the last six years

a working computer-assisted instruction (CAI) system for classroom use.

This research is a small part of an investigation of the potential use

and value of such systems. This study, in conjunction with Suppes,

Loftus, and Jerman (1969), demonstrates a new use for such systems.

2
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A computer program was used to teach sixth-grade students the

mechanics of how to solve arithmetic word problems on a computer-based

teletype. The assumption was made that the students had a basic under-

standing of the four arithmetical operations: addition, subtraction,

multiplication, and division. The students were required to know which

operation(s) should be performed for problem solution, and to tell the

computer which one(s); however, the actual computations were done by the

computer. Following the initial instruction set, a series of 100 word

problems was presented to the students. For each problem, the students

were required to find fa quantitative answer. The arithmetical operations

were not explicitly indicated. An example of a problem in arithmetic

providing the pupil with an opportunity to use his knowledge of multi-

plication is the foU.owing:

A bushel of corn weighs 56 pounds.
How much do 44 bushels weigh?

The solutions of these problems were analyzed to determine the structural

variables related to problem difficulty. The length of a problem and the

number of steps required to reach the correct solution are examples of

what we mean by factors related to problem difficulty. It is quite

probable that a problem containing a large number of words or one requiring

a large number of steps is harder to solve than one containing fewer words

or requiring fewer steps.

3



Chapter II.

TRADITIONS IN PROBLEM-SOLVING RESEARCH

There has been a great deal of writing, speculating, and research

on problem solving. Although much of this work is not directly relevant

to the investigation of word problem solving, it did provide a number of

important hints and suggestions as to which variables might be influencing

problem-solving performance. It would be neither practical nor useful to

present a comprehensive survey of all remotely relevant research. We

refer interested readers to the following excellent reviews: Johnson,

1955; Gagne, 1959; Duncan, 1959; Davis, 1966; Kleinmuntz, 1966. In this

section, we instead describe the types of work that have been done and

attempt to give the flavor of these previous approaches to the investi-

gation of problem solving.

Research on problem solving has evolved within two main traditions.

One tradition has its roots in Gestalt psychology. The Gestalt psychol-

ogists used many different kinds of problems, ranging from mechanical

puzzles to abstract mathematical problems. Many of the problems they

chose for study were selected from a "true life" situation such as

troubleshooting electronic equipment. Others tried to capture the

flavor, if only partially, of problems we meet in everyday life. The

Gestalt approach, in remaining devoted to the analysis of internal

processes, emphasized the tendency of the mind to organize and integrate

and to perceive situations, including problems, as total structures.

They emphasized the structure of the problem, then, and the process of

reorganization of the perceptual field which leads to insight. This

insight leads to a solution of the problem. This emphasis on perceptual

phenomena dominated their research on problem solving.

Working within the Gestalt tradition, Maier (1931) demonstrated

how the perception of the solution of his famous pendulum problem was

like perceiving a hidden figure in a puzzle picture--the solution appeared



suddenly and as a complete idea. In this problem, two strings are

hanging from the ceiling and the subject is required to tie the ends

together. However, the strings are too far apart for the subject to

grasp one, walk to the other, and tie them. The solution is to tie a

weight on one string and set it in motion as a pendulum, then hold the

other string and wait until the swinging string comes within reach. The

only object in the room available to serve as a weight; is a pair of pliers.

Because the pliers normally function as a tool rather than as a weight,

they are not easily seen as a pendulum bob. This has been called func-

tional fixedness. In order to solve the problem, the pliers must be seen

as a weight. Maier pictured the solution of this problem as the sudden

combination and organization of elements. This characterization of problem

solving, in terms of changes in organization and meaning, is typical of

the Gestalt view. However, these results can easily be interpreted in

terms of an all-or-none conditioning model. If the phrase "sudden com-

bination and organization of elements" is replaced by "all-or-none con-

ditioning," the underlying formal model is unchanged.

Whereas Maier emphasized the perceptual aspects of constructional

problems, Duncker (1945) emphasized the structural aspects of practical

and mathematical ones. He used clearly defined problems requiring the

discovery of a novel relationship. For example, how can rays which

destroy organic tissues at sufficient intensity be used to treat an

inoperable stomach tumor? Or, why are all six-place numbers of the

form abc,abc, such as 276,276, divisible by 13? His interesting experi-

ments with such problems were designed to evoke general facts about

reasoning and problem solving. They were meant to open up the field

and supply data for further investigation rather than to answer questions

or confirm theories. From a number of diverse experiments he drew

general conclusions, suggesting that in solving a problem, a subject

usually applies previous experience to the present situation by means

of cognitive-perceptual responses. These cognitive-perceptual responses

are set off through reactions to some signals from the immediate environ-

ment in which the problem is set. The subject perceives in the present,

and he reacts to present stimuli. Whether he solves the problem correctly

5
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depends more or less on chance reformulations and changes in those presented

stimuli. The solution itself emerges from a particular reorganization of

the entire "psychological field."

Max Wertheimer (1945), a founder of Gestalt psychology and one-

time teacher of Duncker, completed a whole series of problem-solving

experiments. From this series he arrived at several notions which could

comprise his theory of problem solving. It is a good statement of the

Gestalt position. For Wertheimer, problem solving depended on a grasping

of the structural and functional relationships of the problem situation.

The key to solving a problem was discovering the "inner relations" of

the situation and reorganizing the situation in light of that discovery.

For example, suppose a child who is capable of finding the area of a

rectangle is asked to get the area of a parallelogram. Wertheimer claimed

that if the child thinks about it he will notice that a parallelogram

differs from a rectangle in that the former has a "protuberance" on one

side and a "gap" on the other. (See Figure 1.) Then, he realizes that

Insert Figure 1 about here

the "protuberance" and tie "gap" are equivalent (discovering "inner

relations" of the situation). If he moves the "protuberance" to fill

in the gap, the parallelogram is converted into a rectangle of the same

base and altitude. He has essentially reorganized the situation in

light of his discovery. Now he knows that the formula for the area of

a parallelogram is the same as it is for a rectangle.

Problem solving, then, involved striving and struggling with a

configuration the structure of which changed with the effort. Problem

solving was not the automatic application of established habits or

behavior patterns to stereotyped situations. It was a dynamic process

growing out of, and shaped by, each specific situation.

Hoffman's (1961) theory of problem solving was essentially a

statement of the conditions which stimulate creative problem solving.

The following conditions appear to be necessary:

6
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2

Fig. 1. Wertheimer's parallelogram. The parallelogram (1) is
equal in area to a rectangle of the same base and altitude because the
"protuberance" at one end is equal to the "gap" at the other end (2)
(adapted from Scheerer, 1963).

7
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1. Differing, but comparable, cognitions must coexist. Examples of

such cognitions are solutions, or approaches to the problem.

2. At least 2 differing cognitions must acquire approximately equal

positive valence, so that none of the alternatives can be accepted and

an impasse is reached.

3. Problem solving must occur in a situation in which the individual

or group which is solving the problem is required to arrive at the best

possible decision. Thus, the possibility of leaving the problem or

accepting a quick solution just "to get it over with" is omitted.

4. The points of conflict between the alternatives should be

recognized.

Hoffman cites some examples from research literature which illustrate

the usefulness of viewing problem solving in terms of these conditions.

The work of Sheerer (1963) centered on the phenomenon of fixation.

Sheerer observed that insight into many different problems and puzzles

is often delayed or thwarted by "fixation" on an inappropriate solution.

The problems he discussed illustrated several causes of fixation. A

person may start with an incorrect premise or fail to perceive a required

novel use of a familiar object, or be unwilling to accept a detour that

delays the achievement of his goal. Too much motivation can amplify any

type of fixation and is detrimental to a solution. Fixation can often be

overcome and insight attained through a sudden "recentering" or shift in

the ways the problem or objects are perceived.

Cognitive considerations have entered into the studies reported

by Bruner, Goodnow, and Austin (1956). Following in the tradition of

Wertheimer and Duncker, they report nine new experiments on the phenomenon

of categorizing or conceptualizing, a type of problem solving. In a

typical task, S has to select stimuli, one by one, from a whole set of

stimuli, being told each time whether the instance selected was a member

of the concept which E had in mind. The authors claim, rightly, that if

we are to analyze the sequences of behavior involved in such a problem-

solving activity, we must externalize the components of those sequences.

As their unit of analysis, they have used "cognitive strategy," a tem-

porarily extended segment of behavior. The sequence of choices enables E

8
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to make inferences about the particular strategy which S has adopted.

But these cognitive strategies are little more than descriptive terms;

analysis of such strategies may be useful for understanding concept

formation, but it does not provide any sort of framework for estimating

parameters for the prediction of differential difficulty of concept

formation items or any other stimulus items (Suppes, Jerman, and Brian,

1968). Nor can any predictions be derived within the framework of

Wertheimer's "inner relations," Hoffman's "differing cognitions," or

Sheerer's "fixation" on an inappropriate solution. It is our conviction

that until such predictions can be derived from well-developed theoretical

ideas, we are not even close to having a deep understanding about cognitive

processes.

A more recent development within this tradition, the information-

processing approach, has been due to the impact of computer technology.

Computer simulation is a method for investigating human behavior that

uses a computer program as a precise, well-defined theoretical model of

the behavior being simulated. Some of the computer models directly

concerned wiLh problem solving are reported by Neisser (1963a), Feigenbaum

and Feldman (1963), Newell, Shaw, and Simon (1958a), Newell and Simon

(1963a), and Paige and Simon (1966). The computer program serves as a

useful notation and the computer itself serves as a helpful mechanism

for testing the implications of the models and for dealing with the

complexities involved.

The basic notion behind the computer simulation approach is that

complex thinking processes are built of elementary symbol manipulation

processes; human subjects are thought to solve problems in a manner very

similar to the symbol manipulations carried out by a computer. The

general strategy of these information-processing psychologists, then,

is to develop a computer program which produces a sequence of rules for

manipulating symbols (i.e., solving problems) in a manner which closely

matches the behavior of human subjects. Often information gained in

comparing computer program sequences and human protocols is used to

modify the program and make it a more accurate simulation of human

performance. When the program can produce a protocol which closely

9
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resembles human behavior in terms of the sequence of steps used in solving

a problem then that program constitutes a theory of how subjects solve

problems (Newell and Simon, 1963b).

Computer simulation is a difficult process. Among other things,

prior information, possible solutions, and the sequence of steps in

problem solving must all be specified (Hovland, 1960). Yet it has been

done with reasonable success. Newell, Shaw, and Simon (1958a; 1958b;

1959; 1963a; 1963b) have developed programs that solve logic problems,

prove theorems, and play chess in a manner much like that of humans:

traces of the moves considered by the computer compare line by line with

human protocols. Newell, Shaw, and Simon have elaborated tine it research

into a theory of problem solving which emphasizes the discovery and

understanding of systems of heuristics. Their work has significantly

influenced recent research on higher mental processes, but their programs

can be considered only tentative theories; additional evidence is still

needed to determine the extent to which the problem-solving processes

used in the theory resemble, or differ from, processes used by humans

on the same tasks. One difficulty with this approach is that, from the

examination of a computer program alone, is often very hard to understand

just what the theory is. Because discussions of the internal structure

of a program typically involve pages and pages of very technical informa-

tion, a high level of sophistication is usually necessary to understand

the program. Another major problem associated with computer simulation

models lies in evaluating the goodness of fit of the model to the data.

Hilgard and Bower (1966, p. 421) point out two drawbacks to the typical

method for testing the validity of such models (i.e., direct comparison

of computer output and human performance). One drawback is that the

content of the subject's protocol may be influenced by incidental,

selective reinforcements by the experimenter. The effects of certain

facial expressions, tones of voice and other casual reinforcement upon

behavior, whether intentional or not, are well-established (Krasner,

1958; Verplanck, 1962). A second drawback is that in many cases the

standard statistical data analysis techniques cannot be applied. Because

10
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of these technical complexities and other practical problems, some

researchers feel that computer simulation may be as much a halderance

as a help in theory construction (Scandura, 1968).

The other main tradition in problem-solving research has its

roots in Behaviorism. Behaviorism is an approach which considers the

relations between observable stimuli and responses. Proponents of

behaviorism are concerned not with what people think and feel, but

with what people do. They maintain that the phenomena termed "problem

solving" can be accounted for most efficiently by means of elementary

relationships among stimuli and responses. The laboratory study of

learning has been successful in establishing these elementary principles;

these can then be used to explain problem solving and other complex

processes. Since problem solving itself is concerned with mental pro-

cesses and thus is often not observable, psychologists working in this

tradition have been forced to assume implicit or internal stimuli and

responses which mediate the overt response indicating the solution of

the problem. This attempt to broaden the theoretical system typically

results in one's predictions being applicable to more situations, but

not closely to any.

A typical experiment on problem solving within this tradition is

one by Judson, Cofer, and Gelfand (1956). Their subjects learned lists

of words prior to working on Maier's two-string pendulum problem. The

list learned by one group included names of objects relevant to the

solution of the problem (e.g., rope, swing, pendulum, weight). This

group subsequently did better in solving the problem than control groups

exposed to lists containing no "key words." These key words referred to

different uses of the problem material, and learning them was assumed to

mediate the overt responses which constituted solution of the problem.

Along these same lines, Saugstad (1952) showed that Ss tended

to solve problems more readily when verbal response sequences concerning

the function of problem-solving objects were present. Gagn6 and Smith

(1962) found that Ss who are required to verbalize while practicing in

a problem-solving situation perform significantly better than Ss who are

not required to verbalize.
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A series of experiments by Kendler and his associates (Kendler

and Vineberg, 1954; Kendler and D'Amato, 1955; Kendler and Mhyzner, 1956;

Kendler and Karasik, 1958) have demonstrated that problem solving seems

to depend upon the prior establishment of verbal discriminations. Two

specific findings were (1) the proportion of children who respond most

effectively in problem solving increased with age, and (2) younger

children who were required to tact the stimuli to which they were

responding solved problems more quickly. These suggest that problem

solution is dependent upon the availability of verbal responses (tacts)

to the objects involved in the problem. A stronger position suggested

by these studies is that some verbal mediation must be assumed to occur

between the external stimulus and the overt responses if we are to

account adequately for human concept learning.

Other behaviorists, arguing that complex behavior can be explained

by the same elementary principles that explain simple discrimination

learning, have attempted to analyze problem solving in the language of

operants, habit family hierarchies, and chains of association. Osgood's

(1953) model of problem solving, for example, emphasizes the role of

meaning responses. Briefly, an object involved in a problem elicits in

the subject a hierarchy of meaning responses (ways of perceiving the

object or its significance). Each meaning response itself elicits a

hierarchy of problem-solving behaviors. Chains of these meaning responses

constitute the mechanism controlling problem-solving behavior. The problem-

solving models of Maltzman (1955), Staats (1961), and Cofer (1954) provide

additional examples of well-developed models with which the present dis-

cussion is congruent.

We will not review the pros and cons of the Gestalt or Behaviorist

viewpoints; for the interested reader, such reviews exist in several

places (see, for example, Hebb, 1949; Estes et al., 1954; or Hilgard,

1956).

It is difficult to find crucial differences between the predictions

which follow from the theoretical notions of these two traditions, and it

is not our purpose here to try to do this. It is, however, in the context

of the latter tradition that we have chosen to experiment. We believe

12
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that problem solving is compounded of elementary behavioral processes,

and thus we have devised some simple problems in which the relationships

of fundamental variables to problem solving are highlighted. We believe

that in order to fully understand problem-solving behavior, we must

discover new variables or new relationships between old variables. Like

Duncker, however, we hope to evoke some general facts about problem solving

and to supply data for further investigation, rather than to put forward

a neat theory which, once submitted to scrutiny, turns out to be unsourd.

For clearly an all-inclusive theory which seeks to explain a wide range

of behavior in terms of a few simple principles is open to some question.

Although problem solving is not a total mystery, the facts available at

present, as the result of experimental studies, are scanty. What is

needed are much more empirical data, not more abstract, empty theory.

This can only be undertaken through a large number of separate investi-

gations, each concerned with a highly specific situation in which one

type of problem is studied. Each type of problem situation has to be

investigated separately and related to the others only if connections

are revealed. Until this has been done, we believe it is unwise to

attempt to put forth an all-encompassing theory of problem solving.

Let us turn briefly to the specific problem situation with which

we are dealing, that is, the solving of arithmetic word problems.

According to Davis (1966) there are no systematic investigations of

variables which may determine some sources of difficulty in solving

various types of arithmetic problems.

There are studies on problem solving which are concerned with

the effects of stress (Kurz, 1964; Woodhead, 1964), the effects of

hypoxia (Phillips, Griswold, and Pace, 1963), and the effects of sleep

deprivation (Orr, 1964). These experiments seem to suggest that minor

stresses do not particularly disturb problem-solving performance.

Numerous experiments are concerned with problem-solving ability.

Most of these examine the relationship bet* -en an individual's success

in problem solving and sane other characteristics of his personality.

Klausmeier and Loughlin (1961) analyzed the problem-solving behaviors

of 11-year-olds as a function of IQ. They found that the high-IQ Ss

13



made significantly fewer errors, were more persistent and more efficient

than low-IQ Ss. Martin (1963) found that problem solving as measured by

the Arithmetic Problem-solving Test of the Iowa Tests of Basic Skills

given to fourth and eighth graders was correlated with the following

factors: reading comprehension, computation, abstract verbal reasoning,

and arithmetic concepts. In addition, problem-solving ability has been

reported to be related t) arithmetic reading ability (Stevens, 1932),

ability to note details in reading (Chase, 1960), and a General Reasoning

factor (Werdelin, 1966). Although it is evident that there is some rela-

tionship between a number of abilities and success in problem solving,

the nature of the relationship and the relative contribution of each of

these factors is still unclear.

From the standpoint of a deeper scientific view of either what

determines problem difficulty or how problems should be organized in

order to optimize student learning, the existing research has been

disappointing. One reason is that few of the studies purporting to

show evidence of variables affecting problem-solving performance can

be accepted without con3iderable reservation. Many of them are faulty,

either in design or interpretation. Very few of these experiments have

dealt with the specific structural variables in word problems or in the

sequence of word problems.

A search of the literature reveals a few studies on the effects

of content of word problems (Washburne and Morphett, 1928; Travers, 1967),

a few on the effect of language used in the problem (Hydle and Clapp,

1927; Steffe, 1967), and a few on the effects of readability (Thompson,

1967). A handful of others that have been particularly relevant to our

choice of variables are discussed in Chapter III. Howevpx, these are

pitifully few. Many more detailed studies dealing with specific structural

variables are needed as an important step to the development of a general

theory of word-problem solving. The present study is meant to be a modest

contribution toward the development of such a theory; to attempt to put

forth such a theory now is far beyong the theoretical reach of this study.
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Chapter

THE THEORY

For the word problems analyzed in this paper, the main task was

to identify the factors that contributed to the difficulty of the item.

Examples of factors that we examined are the number of words in the prob-

lem and the minimum number of steps required to solve that problem.

Exactly how each factor was defined is a matter that we take up in detail

below. We world like to attach weights to the various factors, and then

to use estimates of the weights to predict the relative difficulty of

each of a large number of items.

Before we can formulate any linear structural models from which

parametric predictions of relative difficulty can be made, some notation

is needed. Let the jth factor of problem i in the set of prdblems be

denotedbyX.
ij

.The statistical parameters estimated from the data

are the weights attached to the factors. We denote the weight assigned

to the jth factor by a . We emphasize that the factors identified and

used in the model presented in this paper are always objective factors

identifiable by the experimenter in the problems themselves. The response

data themselves never influence the decision as to what is the numerical

value of a factor for a giver word problem. The definitions of all the

factors used in the analyses presented here are quite straightforward;

each factor has an intuitive and direct relevance to commonsense ideas

of difficulty.

Consider the analysis of the response data For a given problem i,

let p
i

be the observed proportion of correct responses for a group of

students. The main task of a model is to predict the observed proportion

pi. The natural linear-regression model in terms of the factors Xij

anatheweightsa.is

4Xa aE.pi =
0
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In order to guarantee preservation of probability, that is, to insure

that predicted pi's will always lie between 0 and 1, we make the

following transformation and define a new variable zi:
1

(1 - pi)
z
i
= log

Pi

We then use as the regression model

zi = E a X. + a
j j 0

(1)

(2)

The rest of this section is devoted to Ue discussion of how each

variable used in the regression analysis is defined.

We consider two types of variables. Variables of the first type

are 0,1-variables. A 0,1-variable would be appropriate if, for example,

we were dealing with a problem that required a conversion of units, such

as from days to weeks. If a problem requires such a conversion, the

conversion variable for that problem would receive a value of 1. If no

conversion is required, the conversion variable is given a value of 0.

Variables of the second type assume a finite set of values, with the set

being greater than 2. Such a variable would be appropriate, for example,

if we were concerned with the length of a problem; the length variable

is given a value which is equal to the number of words in the problem.

Three other variables of the second type are the operations

variable, the steps variable, and the depth variable. The operations

variable refers to the minimum number of different operations required

1
To take care of the case when the observed p

i
is either 0 or 1,

we use the following transformation

log (2ni - 1) for pi = 0

Z =
1

log
- 1

for pi = 1

where n = the total number of subjects responding to item i. It should
be noted that the reason for putting 1 - p

i
rather than p

i
in the

numerator of equation (1) is that it is desirable to make the variables
z
i

increase monotonically in difficulty. For example, if the length of
a problem or the number of steps needed to solve a problem increases with
the difficulty of the problem, it is desirable that the mcdel reflect this
increase directly rather than inversely.
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to solve a problem. For any given problem, this variable could take on

a value of 1, 2, 3, or 4. The steps variable refers to the minimum

number of steps required to reach the correct solution.
2

These two

variables may be distinguished more clearly if we consider a problem

that asks the student to find the average of 8 numbers. Such a problem

would give a value of 8 to the steps variable and a value of 2 to the

operations variable. Seven steps of addition and one step of division

are required to solve this problem.

Before discussing the depth variable, a few words must be said

about the length variable. Sentence length is frequently proposed as

the most obvious and plausible factor contributing to sentence difficulty.

This factor is generally determined by the total count of the number of

words in the sentence. Studies in language acquisition (Miller and Ervin,

1963; Ervin, 1964) give evidence of a gradual progression of children's

language development from one-word sentences, holophrases, to two-wcr:d

pivot sentences, to sentences consisting of greater numbers of words.

When children first begin to combine words, and when they begin to imitate

adult sentences, they tend to use a "telegraphic code," a grammatically

incomplete sentence which is a shortening of adult sentences that retains

only content words (Brown and Fraser, 1963). Many other developmental

studies have shown similar increases in chronological age (McCarthy, 1930;

Davis, 1937; Loban, 1963; Menyuk, 1963). For Menyuk, mean sentence length

is taken to be a valid and quantitative measure of increased verban maturity.

Deutsch and Cherry-Peisach (1966) found sentence length to be a significant

variable in distinguishing the speech of first-grade children of different

socio- economic groups. Braun-Lamesch (1962) found that younger children

cannot recall whole sentences easily. Because this evidence indicates

that younger children in early language development lack the ability to

process long sentences, it seems safe to say that long sentences are more

difficult for children to comprehend than shorter sentences. For the

present, we shall generalize these results and assume they imply that

longer word problems will be more difficult than shorter ones.

2
To avoid any ambiguity, we always first minimize the number of

steps and then the number of operations.
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Modern linguists agree that total comprehension of a sentence

include6 recognizing and understanding the structural relationships in

the sentence. Factors which focus on element counts (e.g., number of

words, number of pronouns, number of syllables per one hundred words)

have been successful in accounting for only 26 to 51 percent of the

variance in comprehension scores (Ruddell, 1964). This low percentage

makes obvious the need for more attention to be given to the organization

of language structure. The measure of structural complexity that we will

use is based on the depth hypothesis of Yngve (1960). Yngve describes a

procedure which assigns a number to each word of a sentence. The number

reflects how embedded the word is in the sentence; the more embedded in

the sentence the word is, the higher the number assigned to the word.

Yngve's procedure for determining the characterizing set of numbers for

any sentence consists of drawing a phrase structure tree diagram of the

sentence in question and then counting the number of left branches leading

to each word. The number of left branches which terminates the longest

string of left branches represents the maximum depth, dmax, of the

sentence. Figure 2 illustrates the constituent structure tree represented

by the sentence THE MAN SAW THE BOY. The. sentence can be characterized

by the following set of numbers: 2, 1, 1, 1, 0: these are the respective

number of left branches leading to each word in the sentence.

Insert Figure 2 about here

The first occurrence of THE terminates the longest string of left

branches. Since THE terminates two left branches, the maximum depth for

this sentence is two. Yngve (1964) claims that the depth hypothesis

explains many of the complexities of language in terms of their function

in allowing a maximum depth of about seven, but no more.

Martin and Roberts (1966) have modified Yagve's depth measure by

using the average number of left branches per word in a sentence as their

measure of structural complexity. The depth of the sentence THE MAN SAW

THE BOY is equal to the mean of its Yngve numbers, or (2 + 1 + 1 + 1 + 0)/5

= 1.33. Martin and Roberts presented to subjects sentences which differed
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NP

THE

N

MAN.

VP

SAW

NP

T I N

THE BOY

Fig. 2. The constituent-structure tree represented by THE MAN
SAW THE BOY. This constituent-structure tree is based on the following
grammar and vocabulary:

1. Grammar

a. The whole sentence is symbolized by S.
b. S VP + VP S can be rewritten as noun phrase, VP,

plus verb phrase, VP.
c. VP T + N The noun phrase is rewritten as

T, and a noun, N.
an article,

d. VP V + VP The verb phrase is rewritten as a verb, V,
and a noun phrase, NP.

2. Vocabulary

a. N = man
b. N = boy
c. T = the
d. V = saw
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in depth. Out of 6 "low-depth" sentences, subjects correctly recalled

an average of 3.9 sentences; recall for "nigh-depth" sentences waJ 3.1

sentences. Martin, Roberts, and Collins (1968) demonstrated additional

support for the depth hypothesis in a task of recall of single sentences.

Other investigators (Rohrman, 1968; Perfetti, 1969) have found no support

for the depth hypothesis in recall tasks.

The conflicting reports cast some doubt on the general value of

the Yngve hypothesis in recall tasks. However, the hypothesis may have

some value for our understanding of word problem difficulty. The notion

of quantifying the structural complexity of a word problem and relating

that complexity to problem difficulty is appealing. For a given problem,

then, let its structural complexity, or depth, be formally defined by the

following procedure:

1. Compute the mean of the Yngve numbers for each sentence in the

problem.

2. The highest value of this set of what might be called Yngve means

is taken as a measure of the structural complexity of the problem as a

whole. In other words, we assume that a problem is as complex as its

most complex sentence.

The procedure is illustrated by the following simple example.

Suppose the problem is:

Jim has 40 bottles. Ken has 30 bottles.
They have how many bottles together?

Sentence 1 can be characterized by the following numbers: 1, 1, 1, 0,

with a mean of .75. Sentence 2 can be characterized by the numbers

1, 1, 3, 2, 1, 0, with a mean of 1.33. 1.33 is the structural complexity,

or depth, of the problem.

At this point, it is important to mention that coding the depth

of a sentence objectively is not an easy matter. Any discussion of the

Yngve metric that does not consider this difficulty is quite naive. The

coding problem has been hinted at recently by Rohrman (1968) in his attack

on Martin and Roberts (1966). Martin and Roberts characterized the sen-

tence "children are not allowed out after dark" by the numbers: 1, 4, 3,

2, 1, 1, 0; "are" was assigned a 4. Rohrman claims that it is very dif-

ficult to see what kind of tree could possibly give more than two branches
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leading to the auxiliary verb, "are." It is certainly possible for a

given sentence to have more than one derivation tree, in which case there

would be a different mean depth for each of the trees. This is often the

case with ambiguous sentences; typically they have more than one tree and

a different mean depth for each. However, in the context of a complete

word problem, none of the sentences used in the study is ambiguous. The

problem of coding still exists, however, because Yngve has failed to pro-

vide an explicit set of rules for assigning numbers to words in a sentence.

To assess the degree of reliability between two people coding these prob-

lems independently, a graduate student in psycholinguistics was given the

job of coding a sample of 20 of the problems. His results correlate ex-

tremely well with those obtained by the author on that 20-item sample.

Further discussion of this procedure is presented in Chapter V.

The first 0,1-variable is he sequential variable. This is the

only variable in this study which concerns the relationship between

individual problems rather than emphasizing the structure of the indi-

vidual problems themselves. If a problem cannot be solved by the same

operation(s), in the same order, as the problem that preceded it, the

sequential variable for that problem is assigned the value of 1. If a

problem is of the same type as the preceding problem, the value for this

variable is O. Successful use of a sequential variable has been made in

the analysis of fractions (Suppes, Jerman, and Brian, 1968, Chapter 7)

and in the analysis of arithmetic word problems (Suppes, Loftus, and

Jerman, 1969).

The emphasis on such a sequential variable is very much in the

spirit of recent work on verbal learning. In free recall, for example,

the importance of the relationship between items in a list is well

documented. Underwood and Schulz (1960) and Postman (1964) have stated

quite explicitly that recall may be facilitated by associations among

items in the list. In other words, recall of a particular item depends

not only on the item qua item but also on the relationship between the

item and other items in the list. Other psychologists have postulated

the relationship between list-items and the general experimental context

to account for the response-learning stage in paired-associate learning

21
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(Keppel, 1964; McGovern, 1964; Underwood, 1964). Using a reaction-time

technique, Carey, Mehler, and Bever (1970) presented Ss with a pic ,ure

then with a sentence, and asked them to judge the sentence true or false

with respect to the picture. Results showed that the response latency

for an ambiguous sentence clearly depended upon the particular syntactic

structure of prior sentences that the Ss had heard. This abundance in

the literature of evidence for the effects of inter-item relationships

indicates that this matter is of psychologically great importance.

The verbal-clue variable is the second 0 1-varilble. Brownell

and Stretch (1931) felt that a problem could be analyzed into several

elements or factors, one of which was a verbal clue to the operations.

This factor was not varied systematically, and so no conclusions could

be drawn about it.

Kendler and Kendler (1962), who discuss problem solving in S-R

terms, claim that verbal behavior is necessary for problem solving.

Furthermore, they say, problem-solving ability depends on the development

of verbal behavior which mediates between the problem stimulus and the

problem-solving behavior. At one point they suggest that investigation

of the cue function of words might prove fruitful (p. 10). The work of

Kendler and associates, discussed in Chaptera, has demonstrated the

critical role of verbal discriminative responses in problem solving.

These findings suggest that the provision of a verbal clue to the opera-

tion(s) required to solve a word problem may facilitate solution.

In the following problems

A wooden box contains 23 red beads and
83 blue beads. How many beads does it
contain in all?

the word "and" should help the person to discriminate between the four

operations he could use, and to choose the one (addition) that he should

use.

In a sense, the word "and" is a cue or a label for the operation

of addition. The importance of the verbal responses of labeling in a

multitude of situations is very well known (Miller, 1948).
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We have defined the verbal-clue variable as follows°

1. The verbal clue for problems requiring a single addition is the

word "and"; if the problem does not contain this word, the verbal-clue

variable for that problem is to be assigned a value of 1, and 0 otherwise.

2. The corresponding verbal clues for the other operations are:

(a) "left" or a comparative for subtraction;

(b) "each" for multiplication;

(c) "average" or "each" appearing in the question sentence of the problem

for division.

3 Problems requiring multiple operations must contain all of the

verbal clues pertaining to the required operations in order that the

verbal-clue variable be assigned a value of O.

The order variable is the third 0,1-variable. Burns and Yonally

(1964) asked the question, "does the order of presentation of numerical

data in multi-step problems affect their difficulty?" In other words,

if problems are stated with numerical data not given in the order needed

to solve the problem, will students solve as many of them successfully

as problems stated with numerical data given in an order in which they

could be used to solve the problems? Their results indicated that students

were less successful in getting the correct answer to word problems when

the numerical data were presented in some order other than an order in

which they could be used to solve the problem. These results suggest a

new factor, the order variable, assigned a value of 0 if the problem can

be solved by using the numerical data in the order given in the verbal

statement of the problem. Note that the numerical data need not necessarily

be so used, but if it can be used in the order presented, the value for

the order variable is O. If the order of the numerical data must be

reversed, then the value of the order variable is 1.

The conversion variable is the last 0,1variable. if a problem

requires a conversion of units (such as from months to weeks), the con-

version variable for that problem is assigned a value of 1, and 0 other-

wise. The importance of this variable was suggested by the results of

Suppes, Loftus, and Jerman (1969).
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In summary, the variables we investigated are:

X
1

= the aerations variable, that is, the minimum number of different

operations required to reach the correct solution;

X
2

= the steps variable, that is, the minimum number of steps required

to reach the correct solution;

X3 = the length variable, that is, the number of words in the problem;

X4 = the depth variable, that is, the Yngve mean for the most complex

sentence in the problem;

X
5

= the sequential variable, assigned a value of 1 if the problem

is not of the same type (i.e., cannot be solved by the same

operation(s)) as the problem that preceded it, and 0 otherwise;

X
6

= the verbal-clue variable, assigned a value of 1 if the problem

does not contain a verbal clue to the operation(s) required to

solve the problem, and 0 otherwise;

X
7

= the order variable, assigned a value of 1 if the numerical data

are presented in some order other than an order in which they

could be used to solve the problem, and 0 otherwise;

X
8

= the conversion variable, assigned a value of 1 if a conversion

of units is required to solve the problem, and 0 otherwise.

It should be noted that the higher the value assigned to a variable, the

more difficult the problem is assumed to be.

To illustrate how a word problem is coded on each of the 8 variables,

consider the following example:

A truck and its load of coal weighed 14,875 pounds.
The empty truck weighed 5,996 pounds.
Find the weight of the coal.

The operations variable receives a value of 1 because the minimum

number of operations required to reach the correct solution is one. The

problem can be solved by using only subtraction.

The steps variable receives a value of 1 because the minimum

number of steps required to reach the correct solution is one. One step

of subtracting will do it.
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The length variable receives a value of 22 because there are

22 words in the problem. Each number was counted as one word.

The depth variable receives a value of 1.60. The Yngve means

for the three sentences in the problem are 1.60, 1.17, and .83, respectively.

The first sentence yields the highest Yngve mean and the depth variable

receives that number as its value.

The sequential variable receives a value of 1. The problems were

arranged sequentially such that this problem never followed a problem of

the same type. A value of 1 is thus appropriate here. 3

The verbal-clue variable receives a value of 1. The problem does

not contain a verbal clue to the operation required for solution; it does

not contain either the word "left" or a comparative for subtraction.

The order variable receives a value of 0. The numerical data

are presented in an order in which they can be used to solve the problem.

No rearranging is required.

The conversion variable receives a value of 0 because a conversion

of units is not required to solve the problem.

3The randomization and sequencing of problems will be explained
further on in the next chapter.
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Chapter IV.

DESIGN EXPEPIMENTAL PROCEDURE,

SUbjects

The 16 subjects who completed the problem solving program were

seven sixth grade smdents in one ,:lementary school School A) and nine

sixth-grade students at a .s.:ona element)ry .chool. (School B). Both

schools are in the Re-' en aty School. Diotrict in California. The

district, in which 55,1)a-: iii7e in a 17-square-mile area, comprises

5 percent of the total county school population. Thirty-three percent of

the county welfare families live within this school district. Both schools

are essentially ''depresed are schpols. In School A, 82 percent of the

children are black. The average sixth-grade IQ is 93. In School B, 59

percent of the cnildren are blaok. The average sixth-grade IQ is 99.

Because these ,..hildren 9re slow learners, the generality of the

statements that can be maue ''rom the results of this investigation is

limited, However, investigation potentia.:ly contributes information

about the disadvantaged student who has teen neglected in previous research,

Equipment

The student terminalc used in this project were commercially

available teletype machine',, connected by private telephone lines to a

computer at the insitute for Mathmatical Studies in the Social Sciences

at Stanford. There were five teletypes at School A and four at School B.

All teletypes at a particular school. operated in a single classroom at

'that school.

The control functions for the entire system were handled by the

PDP 1, a medium-sized computer with a 32,000-word core and a 4,000-word

core interchangeable with arty of 32 bands of a magnetic drum, together

with two large IBM-1301 disc file. All input-output devices were

processed through a timesharing ,:yrstem. Two highspeed data channels

permitted simultaneous computation and servicing of peripheral devices.
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Instructional Program

Initial instruction on the teletype consisted of explaining to

each student the general procedure of taking turns on the machine and the

general program logic. Each .student was given assistance in finding the

letters to type his name for the first two lessons. No student had any

trouble learning how to type his name or answer the questions on the

teletype.

The program began each day by asking the student to type his

assigned number and his name. If the student made an error or gave a

fictitious name, such as Napoleon, he was asked to try again. If he

correctly typed his number and name, the computer consulted his file

and began with the item following the last one completed. The items

were divided into two parts, with the set of instructions presented

before the set of problems.

The set of instructions. The students were taught how to command

the computer to perform operations on given numbers by a set of instruc-

tions presented via computer. The complete set of instructions is given

in Appendix A.. We will briefly list and give an example of each of the

abbreviated operation names that the student learned in the instruction

set. Student entries are underlined.

1. X is the answer key.

Suppose the student sees on the printout sheet before him:

G 1) 21

He would indicate that 21 was his answer by typing 1X, which says

to the computer "my answer is on line 1." The line number followed

by X indicates what line the final answer is on.
4

4,
"GI stands for "given number." Whenever a student is given a

word problem to solve, all the numbers in the problem are typed out as
given numbers just after the word problem itself has been typed out.
The reason for designing the program in this way was to reduce the time
required for students to input large numbers themselves. Requiring
students to input very large numbers slows down the learning and can be
relatively demanding, especially during early stages of learning. Instead
we ask the child to input on the keyboard what rule he wishes to apply to
what given numbers.. All he has to input, then, is the rule and the lines
to which that rule is to be applied.
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2. A is the abbreviation for ADD.

An example of how a student might use the A rule is:

G 1) 36

2) 41
1.2A 3) 77

By typing "1.2A," the student tells the computer to add the number

on line 1 to the number on line 2. The computer then prints the

result of doing the addition operation.

3. S is the abbreviation for SUBTRACT.

An example is:

G 1) 500
G 2) 48
1.2S 3) 452

4. M is the abbreviation for MULTIPLY.

An example is:

G 1) 59
G 2) 4

1.2M 3) 236

5. Q is the abbreviation for DIVIDE. Q rather than D was used for

divide because D was used for something else in the system.

An example is:

G 1) 77
G 2) 7
1.2Q 3) 11

6. E means ENTER, and is used to enter a number that is not entered by

the computer program. For example, in a problem that asks the student

to find the number of days in 8 weeks, the student would be required

to enter the number 7, the number of days in one week. The number 8

would be entered by the computer as a "given number."

An example is:

G 1) 8
2)
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The following sequence of interactions between the student and

the computer illustrates how a word problem is solved in this context.

Again, student entries are underlined. The computer first types out

the problem, and then types out the numbers in that problem. The

student sees on the printout sheet before him:

At the tree nursery, Tom counted 28 rows of pine trees.
The forester said that there were 575 trees in each row.
How many trees were there at the nursery...

G 1) 28
G 2) 575

At this point, the student tells the computer the operation he wants the

computer to perform, and the line numbers to which the operation should

apply. For this problem, the student typically types out "1.2M," meaning

"multiply the number on line 1 by the number on line 2." The computer

responds by typing the result of applying the operation, or by typing

an error message if the operation could not be applied validly.

The student is still not finished with the problem. He must also

indicate where his final answer is by typing the line number on which the

answer appears followed by an X. The complete protocol for a correct

response in the above example, then, might be:

At the tree nursery, Tom counted 28 rows of pine trees.
The forester said that there were 575. trees in each row.
How many trees were there at the nursery...

G 1) 28
G 2) 575
1.2M 3) 16100
3X
Correct

If the answer is incorrect, "answer is wrong" appears in pleace of

"correct." If the student has not yet indicated his final answer by

using "X," and if he asks the computer to perform an operation that

cannot be applied validly, he receives an error message. In the above

example, if instead of typing "1.2M" the student had typed "1.2MT,"

the computer would respond by typing "There is no rule name 'MT.'" If

the student had erroneously typed "1.2," the computer would respond by
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typing "No rule name given." A flow chart of the program logic is

shown in Figure 3.

Insert Figure 3 about here

A given word problem can often be solved in many ways. The

students own experience and ingenuity determines which rule he uses

and what strategy.he takes. The computer allows any valid step, regard-

less of whether it helps reach the solution. Any combination of steps

reaching a solution, valid within the rules, is entirely acceptable.

A problem such as the following could be solved in several ways:

For an experiment, Susan mixed 7 ounces of
glycerin and 14 ounces of alcohol with some
water. The resulting mixture contained
45 ounces. How many ounces of water were
used?

It could be solved:

45 - (7 + 14) or (45 - 7) - 14 .

A more idiosyncratic solution, such as 45 - (7 x 3), is equally

acceptable.

In the instruction set, students solved easier problems before

being presented with more difficult ones. On several of the problems,

the student was invited to ask for a hint after a certain time lapse by

the message, "Type H and a space if you want a hint." If the student

asked for a hint on the problem "What is (486 + 390) + 707?" he was told

"First find 486 + 390. Then add that sum to 707." No hints were avail-

able on multiple-choice problems; the student had to guess until he got

the problem correct.

While the student was trying to reach a solution, the computer

did four things.

1. Every student command was examined to see if it was a valid step

and if the syntax was correct. If incorrect, the computer printed out

un err-or hisstlge.

2. If valid, the computer performed whatever step the student commanded.
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I
PROBLEM

YES error NO

NO

NO

YES

PRINT :
answer

is wrong

PRINT:
correct

YES

PRINT:
error

message

PRINT
RESULT OF
PERFORMING
OPERATION
COMMANDED

Fig, 3. Flow chart of the program logic for presentation of
problems and classification of responses.
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3. The desired solution was compafed to the final answer indicated

by "X." If the two were identical, the computer terminated. the problem

after typing "correct." If they were not identical, the computer typed

"answer is wrong."

4. After a fixed time lapse, the computer offered a hint on certain

problems. Hints were available only for certain problems in the instruc-

tion set, not for those in the problem set.

The word-problem set. The 100 word problems used in this study

were designed to be of appropriate difficulty for sixth-grade students.

The word problems are listed in Appendix B. These 100 problems were

divided into 5 J pairs; a pet consisted of two problems both of which

could be solved by the same operetin or :-equence of operations. The

50 pairs were then randomly permuted with the following restriction:

no two pairs whose problems required the identical operation(s) for

solution could be presented .Ddlacent to each other. Five randomizations

were obtained, and. each S vas assigned. to one of the five random sequences.

The purpose of creating sequences of problems in this way is that for a

given pair of problems, tie first problem never followed a problem of the

same type and the sequential variable for that problem always received a

value of 1. The second problem in the pair always followed a problem of

the same type; the sequential variable for that problem always received

a value of O. Since the study was designed to permit investigation of

factors that might contribute co problem difficulty, the problem set was

designed so that there would be as many different combinations of variable

values as possible.

To solve the set of problems, students used the rules they learned

in the instruction set. As before, the computer first typed out the prob-

lem, and then typed. out th numbers in that problem. Then, using any of

the rules mentioned. above, the student told the computer what to do with

these numbers. Figure 4 illustrates how a student could have gone about

solving a word problem in this way.

Insert Figure 4 about here
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IN ITS FIRST 3 GAMES A FOOTBALL TEAM SCORED
14 POINTS, 35 POINTS, AND 20 POINTS.
LAST YEAR THE TEAM AVERAGED 20 POINTS PER GAME.
THIS YEAR'S AVERAGE SCORE IS HOW MUCH ABOVE LAST
YEAR'S AVERAGE.

G (1) 3
G (2) 14
G (3) 35
G C4) 20
2.3A (5) 49
4.5A (6) 69
6.10 (7) 23
7.4S (8) 3
SX
CORRECT

Fig. 4. Sample solution of a word problem.
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After the computer typed out all the numbers in the problem as "given

numbers," the type wheel of the teletype was positioned at the left-hand

side of the paper. The student made his response, and then the computer

positioned the type wheel at the center of the page, typed the line number,

and finally typed the result of the operation the student had commanded

the computer to perform. If the final answer was correct, the computer

typed the message "correct" and went to the next problem. If the final

answer was incorrect, the computer typed "answer is wrong" and went to

the next problem.

When working on the teletype, the students were not allowed to

use pencil or paper. Every problem was worked on the machine, so that

all responses could be recorded.

Following the "goodbye" message the student was told "please

tear off on dotted line." A dotted line was printed, and the student

tore off his printout and gave it to the experimenter.

Typically, it takes about 8 weeks to complete both the instruction

set and the word-problem set. Each portion takes 4 weeks. However, the

students at School A had such initial difficulty with the program that

they were allowed to repeat portions of the instruction set before

beginning the problem set. The notion was that we wanted them to learn

the rules as well as possible before beginning to solve the test prob-

lems. The School A group took a mean of 12 weeks to finish the program:

8 weeks for the instruction set and 4 weeks for the word-problem set.

The School B group took a total of 8 weeks to complete both portions of

the project.

it
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Chapter V.

RESULTS

Before reporting the results, a few words are in order about the

measure of depth based on Yngve. The problem with the measure of depth

discussed in Chapter III arises when we attempt to find the Yngve numbers

for a particular sentence. It is not an easy matter to ascertain the

precise tree structure to be associated with a given sentence. Since

there exists no agreed-upon, explicit set of grammatical rules to which

you can refer, it follows that there is no absolute, agreed-upon way to

assign Yngve numbers to words in a sentence. What is needed is a system

of generative rules of such a kind that they will explicitly assign the

correct constituent-structure to sentences. In the absence of such a

system, and because Yngve has not completely formalized the rules of

structural assignment, we have had to make some arbitrary decisions on

the assignment of structure. When Yngve offers no basis for a particular

decision, we have based the decision on Hockett (1958), or Wells' (1947)

methods for determining immediate constituents, or on our own best judgment

of linguistic notions.

To get an estimate of reliability, a random sample of 20 word

problems was given to J. Dexter FleLcher, a graduate student concentrating

in psycholinguistics. For each problem, he computed the mean of the Yngve

numbers for each sentence. The complexity of a problem was taken to be

the highest value of the set of Yngve means for that problem. The Pearson

correlation was .84 (r
2

.71) between the values we obtained and those

obtained by Mr. Fletcher for Ube sample of 20 problems. The correlation.

is sufficiently high to give us reasonable confidence that our methods

of structural assignment were well-founded.

In this chapter, the main task is to report the predictive worth

of the eight variables described earlier. The objective is successfully

to predict the probability of a correct response for each item. The first
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step in analysis was to obtain regression coefficients for each of the

factors. A stepwise, multiple linear regression analysis program,

BMD 02R, adapted for Stanford University's IBM 360 computer, was used

to obtain regression coefficients, multiple correlation R and R
2

.

For purposes of analysis, we have initially combined the data

from both School A and School B into one group composed of 16 Ss. We

will present the results of the combined data first, and then present

the results of the two groups taken separately.

Combined Group

The mean percentage of correct solutions for 16 Ss was 47.09

percent.

The regression equation was

zi = -3.24 + .48X:I* + .04Xi2 .02X:4; + .88x::* + .6lx:;*

+ .2oxi6 - .13xi7 + .49x18

(* indicates p < .05; ** indicates p < .01; *** indicates p < .001)

with a multiple R of .83, a standard error of estimate of .52, and an

Oof.70.Thereasorathatxi3is significant in spite of the fact

that its regression coefficient is so small is because the standard

error of the regression coefficient is .006. The T-value is computed

by dividing the regression coefficient by its standard error. Table 1

presents the regression coefficients, standard errors of the regression

coefficients, computer T-values, and partial correlation coefficients

for each of the eight independent variables. Table 2 presents the inde-

pendent variables in order, as introduced in the stepwise regression,

with corresponding multiple correlations. Table 3 presents the analysis

of variance for the multiple regression.

Insert Tables 1, 2, and 3 about here
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TABLE 1

Regression Coefficients, Standard Errors of Regression Coefficients,
Computed T-values, and Partial Correlation Coefficients

(8 Variables, 16 Subjects)

Variable
Regression
coefficient

Standard
error

Computed
T-value

Partial
correlation
coefficient

X
1

operations .48329 .10251 4.71479 .44308

X2 steps 04135 .05431 .76137 .07956

X3 length .01740 .00611 2.84970 .28623

X4 depth .87853 .22884 3.83898 .37334

X5 sequential .61081 .10617 5.75318 .51644

X6 verbal-clue .19603 .11872 1.65125 .17056

X
7

order .13303 .12467 1.06703 .11116

X8 conversion .49446 .21960 2.25165 .22972
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TABLE 2

Order of Introduction of the Variables in the Regression
witY Corresponding Correlations

( Variables, 16 Subjects)

Variable
Multiple

Regression

1. X = operations .67

2.

1

X = sequential .77

3.

2

X = length .79

4..

3

X4 = depth .81

5. X = conversion .83

6.

5

X
6

= verbal-clue .83

7. X = order .83

8.

7

X
8

= steps .83
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TABLE 3

Analysis of Variance for Multiple Linear Regression
(8 Variables, 16 Subjects)

Source of variation d.f. Sum of
squares

Mean
squares

F
value

Due to regression

Deviation about regression

Total

8

91

99

56.927u0

24.82055

81.74795

7.11592

0.27275

26,08924

p < .001
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Consideration of the partial correlation coefficients indicates

that thethe sequential variable is the most important of the eight

variables. The operations variable, X1, the depth variable, X4, and

the length variable, X
3

, are also valuable predictors of the probability

of a correct response for each item. The conversion variable, X8, is

moderately valuable. A rough indication of the goodness of fit of the

regression line is given by the multiple correlation coefficient, R,

and its square, R
2

, which is an estimate of the amount of variance

accounted for by the regression model. In this case, 70 percent of the

variance in probability of a correct response is accounted for by the

model.

Figure 5 presents a graph of the predicted and observed propor-

tions of correct responses for each of the 100 ite,as. The probabilities

are plotted as a function of the rank of observed proportion of correct

responses. Consequently, the curve of the observed probabilities is

Insert Figure 5 about here

monotonicaLly decreasing and smoother than the predicted curve. An

inspection of the two curves shows a reasonable fit for the regression

model, especially in view of the heterogeneity of problem types. The

model does not fit for very difficult or for very easy items as well

as it does for items in the middle range of difficulty. For an analysis

of goodness of fit of the probability of a correct response predicted

from the regression model and the observed probability of a correct

response, the predicted probability, pi, of a correct response for

problem i, was first calculated for each item, As a measure of fit,

X
2

was then calculated, where

X
2
= E (f

i
p
i /

N)2/[p
i
(1 - pi)N]

and f
i
= observed frequency of correct response, N = number of students.

For the above model, X
2

= 206.74.

This rather high value for X
2

is an indication that the correspon-

dence between the observed and expected frequencies is not very close. A
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closer look at the components of X
2
, however, shows that a few problems

made extremely large contributions to the total X
2

. The following

problem, for example, contributed 6.3 percent to the total X
2

obtained:

"A school playground is rectangular, 273 feet
long and 21 feet wide. What is the total
length of the fence around the playground..."

The observed proportion of correct responses for this item was .06, while

the predicted proportion was .50; clearly, this is a very poor fit. As

a second example, the following problem contributed 5.3 percent to the

total X
2

obtained:

"Mary is twice as old as Betty was 2 years ago.
Mary is 40 years old. How old is Betty..."

None of the 16 Ss solved this problem correctly, although .39 was the

predicted proportion of correct responses. The large deviations between

the observed and predicted results for certain problems, such as the two

just mentioned, emphasize the need for a more elaborate theory.

Often, most of the prediction achieved can be attributed to a

small number of variables, and the inclusion of additional variables

contributes only small amounts to prediction. In this case, most of the

variance can be accounted for by variables X
1,

X3, x
4,

and X
5

. If

we reduce the number of variables in the regression equation to include

only these, the reduction in multiple R and le is very slight. Considering

only these four variables, the regression equation becomes

+ .64X. .02Xi3 + .64Xi4 + .63Xi5

with a multiple R of .81, a standard error of estimate of .54, and R
2

of

.66. The standard errors of the regression coefficients are X1, .081;

X3, .006; x
4'

.225; and X
5'

.109. All four variables are significant.

Table 4 presents the analysis of variance for the multiple linear regression

using these four variables.

Insert Table 4 about here
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TABLE 4

Analysis of Variance for Multiple Linear Regression
(4 Variables, 16 SUbjects)

Source of variation d.f. Sum of
square

Mean
squares

F
value

Due to regression

Deviation about regression

Total

4

95

99

53.900

27.848

81.748

13475

0.293

45.969*

* p < .001
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School A Group

Tb mean percentage of correct solutions for 7 Ss was 50.30

percent. The regression equation was

z.
1

-3.74 + .52e" + 0.0X
i2

+ .02X + 1.03X** .72X/!5 *
i3 i4 /

+ .21X
i6

4 .2bx + .27x

(** indicates p < .01; *** indicates p < .001)

with a multiple R of .80, a standard. error of estimat of ,66, and an

R
2

of .64. Table 5 presents the regression coefficients. standard errors

of regression coefficients, computed Tvalues, and partial correlation

coefficients for each of the eight independent variables. Table 6 presents

the independent variables in order, as introduced in the stepwise regression,

with corresponding multiple correlations. Table 7 presents the analysis

of variance for the multiple linear regression.

Insert Tables 5, 6, and 7 about here

School B Group

The mean percentage of correct solutions for these 9 Ss was

43.58 percent. The regression equation was

z.
1

-2.96 + .51X + .03
12

+ .02X.
1

+ .76X.
4

+ .61X.
3 1 15

+ .20X.
16

+ .07X. + .60x1*
17 8

(** indicates p < .01; *4(* indicates p < .001)

with a multiple R of .83 a standard error of estimate of .51, and an R
2

of .70. Table 8 presents the regression coefficients, standard errors of

the regression coefficients, computed T-values, and partial correlation

coefficients for each of the eight independent variables. Table 9 presents
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TABLE 5

Regression Coefficients, Standard Errors of Regression Coefficients,
Computed Tvalues, and Partial Correlation Coefficients

(8 Variables, School A)

Variable
Regression
coefficient

Standard
error

Computed
T-value

Partial
correlation
coefficient

X
1

operations .51821 .11039 4.69438 .44154

X
2

steps .00014 .00009 1.63630 o1.6906

X3 length .02064 ,00740 2.79040 .28075

X
4

depth 1.03102 .28891 3.56865 .35038

X
5

sequential .72709 .13450 5.40597 .49303

X
6

verbal-clue .21291 .14790 1.43956 .14922

X
7

order .28089 .15877 1.76918 .18235

X8 conversion .26669 .29792 .89518 .09343
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TABLE 6

Order of Introduction of the Variables in the Regression
with Corresponding Correlations

(8 Variables, School A)

Variable Multiple r

1. operations .57

2. sequential .69

3. depth .75

4. length .77

5. order .78

6. steps .79

7. verbal-clue .80

8. conversion .80
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TABLE 7

Analysis of Variance for Multiple Linear Regression
(8 Variables, School A)

Source of variation d.f. Sum of
squares

Mean
squares

F
value

Due to regression

Deviation about regression

Total

8

91

99

69.80213

39.54274

109.34487

8.72527

.43454

20.07954

* p < .001
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the independent variabl-. in order, as introduced in the stepwise

regression, with corresponding multiple correlations. Table 10

presents the analysis of variance for the multiple linear

regression.

Insert Tables 8, 9, and 10 about here
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TABLE 8

Regression Coefficients, Standard Errors of Regression Coefficients,
Computed T-values, end Partial Correlation Coefficients

(8 Variables, School B)

Variable
Regression
coefficient

Standard
error

Computed
T-value

Partial
correlation
coefficient

X1 operations .50698 .10098 5.02084 .46575

X2 steps .03171 .05350 .59272 .06201

length .01756 .00602 2.91922 .29262

depth .76093 .22543 3.37547 -33358

X5 sequential .61000 .10458 5.83262 .52164

X6 verbal-clue .19509 .11695 1.66822 .17226

order .06686 .12281 .54443 .05698

X8 conversion ,59629 .21632 2.75652 .27760
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TABLE 9

Order of Introduction of the Variables in the Regression
with Corresponding Correlations

(8 Variables, School B)

Variable
-1

Multiple r

1. operations .67

2. sequential .77

3. length .79

4. depth .81

5. conversion .83

6. verbal-clue .83

7. steps .83

8. )rder .83
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TABLE 10

Analysis of Variance for Multiple Linear Regression
(8 Variables, School B)

Source of variation d.f. Sum of
squares

Mean
squares

F
value

Due to regression

Deviatirn about regression

Total

8

91

99

55.09598

24.08506

79.18104

6.88700

.26467

26.0210*

* p < .001
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Chapter VI.

DISCUSSION

results reported in Chapter V indicate the following variables

to be significant determinants of word problem difficulty: sequential,

operations, depth, length, and conversion. These findings imply that a

word problem will be difficult to ::olve if it is of a different type

than the problem that preceded it, if its solution re,..itlires a large

number of different operations, if surface 7.ru.iture is complex,

if it has a large number of words, or if it requires a conversion of

units. The multiple correlations and thus the predictive results of

this analysis of the data are rather impressive. There is considerable

difficulty in intuitively rank- ordering the expected proportions of

correct responses obtained word problems. We that our

results give a sense of the real possibility of analyzing and predicting

in terms of meaningful variables, the response performance of children

who are solving arithmetical. word problems. At first glance, the problem

set appears to be quite complex. Yet, with a few variables we have

brought a considerable amount of order to it In view of the intrinsic

complexity of this type of problem solving, the fit obtained is excellent.

It is interesting and potentially instructive to compare the

results of performance of this "disadvantaged" group with the results

of a similar study using bright Ss (Suppes, Loftus, and Jerman, -1969).

The important variables repot,,=d Suppes et al., were the snuential,

operations, and conversion variable. Depth and order were riot inves-

tigated in that study. The most important variables in the present

study were operations, sequential, depth, and length; conversion was

of secondary, although substantial, importance. The findings regarding

the conversion variable are extremely. interesting. For School A

(average IQ = 93), the conversion variable was the last variable to

be introduced into the stepwise regression. It had the lowest partial
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correlation coefficient. For School B (average IQ . 99), the conversion

variable was the fourth most important variable. For the bright group

(average IQ > 120), the conversion variable was the second most important

variable in terms of predictive worth. It appears that there may be some

relationship between mental ability and the importance of the conversion

variable. No attempt has been made to estimate parameters that would

reflect mental ability, or to explore the relationship between mental

ability and the conversion variable, because accounting for differential

mental ability is beyond the scope of this research.

The most suggestive finding in all the analyses is the importance

of the sequential and operations variables. These two variables are

highly significant determinants of difficulty for bright as well as

disadvantaged students. Whether one is a bright or a dull student, one

is more likely to solve a problem correctly if it is similar to the

problem that preceded it or if its solution requires a small number of

different operations, The implication is that many aspects of the

processing done internally by the students when they solve problems

do not differ for children of differing mental ability. The next step

is to acquire a better understanding of these variables and to use this

understanding to develop better predictive models.

Recall that in Chapter V two problems were mentioned as having

contributed most heavily to the total X
2

obtained, The two problems

are

1. A school playground is rectangular, 273 feet long and 21 feet
wide. What is the total length of the fence around the
playground?

2. Mary is twice as old as Betty was 2 years ago. Mary is

1i0 years old. How old is Betty?

The discrepancies between the observed and predicted proportions of

correct responses for these two problems were quite large, In the

first problem, Ss typically multiplied the two numbers together, or

added the two numbers together only once. The difficulty here seems

to be due to the confusion about what a perimeter is, as distinguished

from an area, and how to find a perimeter, In problem 2, the word "ago"
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seemed to worry all of the Ss. They tended to subtract two years at the

beginning of the problem. Suppes et al., report that the very same two

problems contributed most heavily to the total X
2

obtained in their

study with bright Ss. It appears that the regression models investigated

cannot account for performance on these two types of problems, for either

above or below average Ss. A more elaborate theory is needed to handle

them. That theory should be able to handle problems which require

additional knowledge (such as the formula for finding the perimeter)

as well as problems which involve a change in tense.

An interesting side result is revealed by comparison of the

percentage of correct responses for School B vs. School A group. Recall

that the B group, drawn from a class with an average IQ of 99, and in

which 59 percent of the children were black, solved 43.58 percent of the

problems correctly. The A group (82 percent black, average IQ = 93)

solved 50.9 percent of the problems correctly. We assume that the

reason for the superior performance of the A Ss was they they were

allowed to repeat portions of the instruction set before beginning the

problem set. They may have learned the rules better than the B group.

In addition, their motivation seemed to be elevated by the mere successful

solving of a problem, regardless of whether that problem had been missed

the first time. It appears that if t student has failed to solve a

problem correctly, to allow him a second chance at the problem is a

better procedure than to force him to go on to a new problem.

A disadvantage of the data reported in this study is that even

though the students did participate in the program for a number of weeks,

the number of students completing the program was small. A main objective

for the future is to increase considerably the number of students involved

in order to provide the quantity of data required for meaningful inferences

about problem-solving processes.

The results obtained in this study give a clear indication of the

difficulty in constructing an explanatory theory that is adequate to

account for all the difficulties students encounter in solving word

problems. We have just scratched the surface of the complete syntactic

and semantic analysis that will be required to predict all the details
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that must be accounted for in the behavior of students. The present

study represents only a tentative, preliminary effort at the construction

of a more mature theory. Further development of such a theory, as well

as any discussion of the implications of the various predictive analyses

for the teaching of problem solving, must await much needed additional

research. In particular, more refined analysis with data from larger

numbers of students is needed. We are convinced that deeper investiga-

tions in this direction are essential to a better understanding of

problem solving.
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Chapter VII

SUMMARY

The research reported here examines the problem-solving performance

of 16 sixth-grade students. These students were taken from two "depressed

area" schools. The students were first taught the mechanics of how to use

a computer-based teletype to solve arithmetic word problem. The assumption

was made that all students had a basic understanding of the four arith-

metical operations: addition, subtraction, multiplication, and division.

The students were required to know which operation(s) should be Performed

for problem solution, and to tell the computer which one(s). The actual

computations were done by the computer. Following the initial instruction

set, a series of 100 word problems was presented to the students. For

each problem the students were required to find a quantitative answer.

The arithmetical operation(s) required were not explicitly indicated.

An example of a problem in arithmetic providing the pupil with an

opportunity to use his knowledge of multiplication is the following:

A bushel of corn weighs 56 pounds. How much
does 44 bushels weigh?

The solution of these problems were analyzed to determine the variables

related to problem difficulty. A linear regression analysis revealed

the vollowing variables to be significant:

1. The operations variable, that is, the minimum number of different

operations required to reach the correct solution. The larger the required

minimum, the harder the problem was to solve.

2. The sequential variable. A problem was easier to solve if it was

of the same type (i.e., could be solved by the same operation(s)) as the

problem that preceded it.

3. The depth variable, that is, the mean number of left branches

per word in the constituent-structure tree for the most complex sentence

in the word problem. This mean, sometimes called the Yngve mean, is a
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measure of the structural complexity of a sentence. Problems of lesser

indexed complexity were easier to solve than problems of greater complexity.

4. The length variable, that is, the number of words in the problem.

The larger the number of words in a problem, the harder the problem was

to solve.

5. The conversion variable. Problems which required a conversion

of units (such as from days to weeks) were harder to solve than problems

which did not.

Three additional variables did not make a significant contribution

to the regression analysis:

1. The verbal-clue variable. A problem that contained a verbal

clue to the operation(s) required for solution was not easier to solve

than a problem which did not contain such a clue.

2. The order variable. A problem which contained the numerical data

in an order in which they could be used to solve the problem was not easier

to solve than a problem which did not.

3. The steams variable, that is, the minimum number of steps required

to reach the correct solution. No relationship was found between the

minimum number of steps and problem difficulty.
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APPENDIX A

Problem-Solving Program
Instruction Set

570.1

HELLO. WELCOME TO PROBLEM SOLVING. THESE LESSONS WILL SHOW YOU A NEW,
FUN WAY TO SOLVE PROBLEMS.

THIS PROBLEM ENDS WITH CHOICE A), B), OR C). TYPE THE LETTER OF THE
CORRECT CHOICE, THEN PRESS THE SPACE BAR. THE LETTER ALONE IS NOT
FN OUCH, vOU Mflt7 . n'i

nn
A) WINK AN EYE
B) PRESS THE SPACE BAR
C) CROSS YOUR FINGERS

B

570.2

WHAT DOES 2 4. 3 EQUAL...
A) 2
B) 3
C) 5

C

570.3

HOW MUCH IS 14 MINUS 8...
A) 14
B) 6
C) 8

B
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570.4

NOW YOU WILL LEARN A NEW WAY TO TELL THE COMPUTER WHAT YOU. THINK THE
ANSWER IS. WHEN THE COMPUTER STOPS TYPING DO THESE THINGS:

1. FIND THE ANSWER TO THE PROBLEM.
2. FIND THE LINE NUMBER THAT THE ANSWER IS ON.
3. TYPE THE LINE NUMBER, THEN TYPE 'X',

THEN PRESS THE SPACE BAR.

NOW, LET'S TRY IT...
THE PROBLEM IS: WHAT IS 2 +

G
G
2X

570.5

(1) 4

(2) 5

'X' IS THE ANSWER KEY. '2X' TELLS THE COMPUTER, 'MY FINAL ANSWER IS
ON LINE 2'.

HOW DO YOU TELL THE COMPUTER YOUR ANSWER IS ON LINE cp...
A) 3
B) x
C) 3X

C

571.1

TO DO THIS PROBLEM TYPE '3X' AND THEN A SPACE.
2+3,..

G (1) 2
G (2) 3

G (3) 5

3x

571.2

'3X' MEANT THAT ON LINE 3 IS THE ANSWER TO...
A) 2+3
B) 3+5

A
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571.3

USE A LINE NUMBER AND X TO TELL THE COMPUTER WHERE THE ANSWER IS.

G (1) 10
G (2) 11
G (3) 12
2X

571.4

IN PROBLEM SOLVING, WE CAN USE THE COMPUTER TO ADD NUMBERS. TO ADD
THE NUMBERS ON LINES 1 AND 2. TYPE '1.2A'. THEN SPACE.
ADD 48 AND 37.

G (1) 48
G (2) 37

TYPE H AND SPACE IF YOU WANT A HINT.
H DID YOU TYPE '1.2A' AS THE COMPUTER SAID.
1.2A (3) 85

TYPE H AND SPACE IF YOU WANT A HINT.
H IF YOU TYPED '1.2A', NOW USE 'X' TO TELL

THE COMPUTER WHERE YOUR ANSWER IS.
3X

571.5

TO ADD THE NUMBERS ON LINES 2 AND 3, YOU TYPE...
A) A2.3
B) 2.3A

B

571.6

THE COMMAND FOR ADDITION IS...
A) A
B) ADD

A
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1

1

1

1

I

I

571.7

TO TELL THE COMPUTER THAT YOUR ANSWER IS ON LINE 4, YOU TYPh...

A) 4

B) 4x
c) x4

571.10

ADD 491 AND 510.
(1) 491

G (2) 510
TYPE H AND SPACE IF YOU WANT A HINT.

TYPE '1.2AI, THEN SPACE. REMEMBER X.

1.2A (3) 1001
3X

571.11

IG' STANDS FOR GIVEN NUMBER.
IN PROBLEM 571.10 THE FIRST G SHOWS THAT
491 IS A...
A) GRAND TOTAL
B) GREEDY NUMBER
C) GIVEN NUMBER

C

571..12

IN THIS PROBLEM TRY 1.2A AND THEN TRY 2.1A TO SEE IF YOU GET THE
SAME ANSWER.
4587+3089=...
G (1) 4587
G (2) 3089
1.2A (3) 7676
2.1A (4) 7676

3x
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571.13

YOU GET THE SAME RESULT IF YOU ADD TWO NUMBERS IN THE OTHER ORDER
BECAUSE...
A) ADDITION IS COMMUTATIVE
B) ADDITION IS ASSOCIATIVE

A

571.14

THE NUMBERS BEFORE THE COMMAND ARE...
A) LINE NUMBERS
B) THE NUMBERS TO ADD

A

571.15

TO ADD THE NUMBER ON LINE 2 TO THE NUMBER ON LINE 3 YOU WOULD TYPE...
A) 1.2A
B) A3.2
C) 3.2A

C

571.16

SOMETIMES THERE ARE EXTRA NUMB) RS GIVEN.
FIND 486+390.
G (1) 707
G (2) 486
G (3) 390
2.3A (Ii) 876
4x

571.17

WITH 'A' YOU CAN ONLY ADD TWO NUMBERS AT A TIME.
TO FIND THE SUM (5+7)+4, FIRST ADD 5 AND 7 TO GET 12,

A) ADD 4 TO 7.
B) ADD 4 TO THE 12.
C) ADD 4 TO 5.

B
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571.20

FIND
G
G
G

G .

1.2A
3.4A
5X

(486+390)+707.
(1) 486
(2) 390

(3) 707

571.21

TYPE H AND SPACE IF YOU WANT A HINT.
FIRST FIND 486+390.
THEN ADD THAT SUM TO 707.

(4) 876
(5) 1583

Ft-TNT) 523+(341+56),

G (1)
G (2)

G (3)
2.3A (4)
1.4A (5)

5X

571.22

523
341

56

397
920

ADD 947, 382, 410, AND 523.
G (1) 947
G (2) 382
G (3) 410
G (4) 523
1.2A (5) 1329
3.4A (6) 933
5.6A (7) 2262
7X

571.23

WHAT IS THE SUM OF 450, 301, 271, AND 638.
G (1) 450
G (2) 301
G (3) 271
G (4) 638
1.2A (5) 751
3.4A (6) 909
5.6A (7) 1660
7X
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571.24

ADD 43 AND 43.
G (1) 43

1YPE H AND SPACE IF YOU WANT A HINT.
H TYPE '1.1A'.
1.1A (2) 86
2X

571.25

ADDING A NUMBER TO ITSELF IS..,
A) TRIPLING THE NUMBER.
B) DOUBLING THE NUMBER.
C) SQUARING THE NUMBER.

B

571.26

DOUBLE 577.
G (1) 577
1.1A (2) 1154
2X

571.27

JOHN HAD 55 APPLES. TOM GAVE HIM ANOTHER 39 APPLES. HOW MANY APPLES
DOES JOHN HAVE NOW...
G (1) 55
G (2) 39
1.2A (3) 94
3X

571.30

A TANK HAD 957 GALLONS OF WATER IN IT. 1188 GALLONS ARE ADDED.
HOW MANY GALLONS DOES THE TANK HAVE NOW...
G (1) 957
G (2) 1188
1.2A (3) 2145
3X
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571.31

DURING ONE WEEK, MISS BROWN'S CLASS USED 120 CARTONS OF MILK AT
LUNCH TIME. MRS. SMITH'S CLASS USED 132 CARTONS AND MRS. GUGGENHEIMER'S
USED 143 CARTONS. HOW MANY CARTONS OF MILK DID THE 3 CLASSES USX
DURING THE WEEK...
G (1) 120
G (2) 132
G (3) 143
G (1k) 3

1.2A (5) 252
3.5A (6) 395
6x

571.32

A WOODEN BOX CONTAINS 23 RED BEADS, 5 GREEN BEADS, 30 YELLOW BEADS,
AND 83 BLUE BEADS. HOW MANY BEADS DOES IT CONTAIN IN ALL...
G (1) 23
G (2) 5

G (3) 30
G (4) 83
1.2A (5) 28
3.4A (6) 113
5.6A (7) 141
7x

572.1

WE CAN SUBTRACT TWO NUMBERS USING THE '5' COMMAND.
IN THIS PROBLEM, TYPE '1.2S', SPACE. REMEMBER X.
FIND 4258-256.
G (1) 420
G (2) 256
1.2S (3) 4002
3X

572.2

THE '1' IN '1.2S' IS...
A) THE LINE NUMBER OF THE LARGER NUMBER.
B) THE NUMBER YOU WANT TO SUBTRACT.

A
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572.3

THE '2' IN '1.2S' IS...
A) THE NUMBER WHICH IS LARGER.
B) THE LINE NUMBER OF THE SMALLER NUMBER.

B

572.4

FIND THE DIFFERENCE BETWEEN 9613 AND 912.
G (1) 9613
G (2) 912
1.2S (3) 8701
3X

572.5

CAREFUL HERE.
SUBTRACT 912 FROM 9613.
G (1) 912
G (2) 9613

TYPE H AND SPACE IF YOU WANT A HINT.
G TYPE '2.1S', SPACE.
2.1S (3) 8701
3X

572.6

BE CAREFUL OF EXTRA GIVEN NUMBERS.
SUBTRACT 1396 FROM 6054.
G (1) 1396
G (2) 48go
G (3) 6054
3.1s (4) 4658
4x
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572.7

USE S TWICE HERE.
FIND
G
G
G

H

1.2S
4.3S
5X

DO WHAT IS IN THE PARENTHESES FIRST.
(8376-649) - 00.

(1: 8376
(2) 649

3) 700

572.10

(4)

(5)

TYPE H AND SPACE IF YOU WANT A HINT.
TYPE '1.2S' FIRST. THEN SUBTRACT 700 FROM
WHAT IS INSIDE THE PARENTHESES.
7727
7027

USE A AND S HERE. DO WHAT IS IN THE PARENTHESES FIRST.
WHAT IS (320+168)-167...
G (1) 320
G (2) 168
G (3) 167
1.2A (4) 488
4.3s (5) 321
5x

572.11

WHAT IS (9131-4275)+25...
G (1) 9131
G (2) 4275
G (3) 25
1.2S (4) 4856
3.4A (5) 4881
5x

572.12

WORD PROBLEMS ARE EASY NOW.

READ EACH PROBLEM.
THE COMPUTER WILL PRINT THE GIVEN NUMBERS.
DECIDE WHICH OPERATIONS TO USE.
USE THEM. REMEMBER X.

AFTER THE COMPUTER PRINTS THE GIVEN NUMBERS, YOU SHOULD...
A) STAND UP AND SMILE.
B) DECIDE WHICH OPERATIONS TO USE.
C) DESTROY THE TELETYPE MACHINE

B
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572.13

TOM COLLECTED 500 SEASHELLS AND PLACED 48 OF THEM IN A SHOWCASE.
HOW MANY SHELLS WERE NOT PLACED IN THE SHOWCASE...
G (1) 500
G (2) 48
1.2S (3) 452
3X

572.14

USE TWO OPERATIONS HERE.

MARY HAD 128 POSTCARDS. HER MOTHER GAVE HER 17 MORE. HER BROTHER
TOOK AWAY 10 POSTCARDS. HOW MANY POSTCARDS DID SHE HAVE LEFT...
G (1) 128
G (2) 17
G (3) 10
1.2A (4) 145
4.35 (5) 135
5x

573.1

USE M TO MULTIPLY TWO NUMBERS.

MULTIPLY 19 BY 46.
G (1) 19
G (2) 146

TYPE H AND SPACE IF YOU WANT A HINT.
G TYPE '1.2M', SPACE. REMEMBER X.
1.2M (3) 874
3X

573.2

FIND 72X21.
G (1) 72
G (2) 21
1.2M (3) 1512
3X
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573.)

'1.2M' MEANS...
A) MULTIPLY THE NUMBER '1' BY THE NUMBER '2'.
B) TAKE THE NUMBERS ON LINE 1 AND LINE 2 AND MULTIPLY THEM.

B

573.4

2.1M GIVES THE SAME RESULT AS 1.2M RECAUSE...
A) MULTIPLICATION IS COMMUTATIVE.
B) MULTIPLICATION IS ASSOCIATIVE.
C) ADDITION IS COMMUTATIVE.

A

573.5

MULTIPLY 34 BY 32.
TRY MULTIPLYING BOTH WAYS BEFORE USING X.
G (1) 34
G (2) 52
1.2M (3) 1088

(4) 1088
3x

573.6

TO FIND THE PRODUCT OF THREE NUMBERS, USE M TWICE.
FIND (6X9)X10.
G (1) 6
G (2) 9
G (3) 10
1.2M (4) 54
3.4M (5) 540
5X

573.7

MULTIPLY 15X(2X1003).
G (1) 15

G (2) 2
G (3) 1003
2.3M (4) 2006
1.4M (5) 30090
5X
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573.10

MULTIPLY 43 BY 43.
G (1) 43

TYPE H AND SPACE IF YOU WANT A HINT.
H TYPE 11.11411 SPACE.
1.1M (2) 1849
2X

573.11

WHAT is (68x68)x7...
G (1) 68
G (2) 7

1.1m (3) 4624
2.3M (4) 32368
4x

573.12

THE GIRL SCOUTS SOLD 54 BOXES OF COOKIES.
EACH BOX HAD 12 COOKIES IN IT.
HOW MANY COOKIES DID THE GIRL SCOUTS SELL...
G (1) 54
G (2) 12
1.2M (3) 648
3x

573.13

EACH WEEK HAS 7 DAYS IN IT.
EACH DAY HAS 24 HOURS IN IT.
HOW MANY HOURS ARE THERE IN 6 WEEKS.
G (1) 7

G (2) 24

6
1.2M

(3)
(4) 168

3.4m (5) 1008
5x

8o
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573.14

FIND (214X122)+36.
G (1) 214

G (2) 122
G (3) 36
1.2M (4) 26108
3.4A (5) 26144
5x

573.15

JOHN HAD 25 PACKS
ROGER GAVE HIM 29
DID JOHN HAVE THE
G (1)

G (2)

G (3)

H

1.2M
3.4A
5x

573.1.6

(4)

(5)

OF BASEBALL CARDS WITH 4 CARDS IN EACH PACK.
MORE BASEBALL CARDS. HOW MANY BASEBALL CARDS

N...

25

4

29

TYPE H AND SPACE IF YOU WANT A HINT.
THIS PROBTPM IS WORKED JUST LIKE 573.14.
FIRST USE M, THEN USE A.
100
129

TO SEE HOW TO MULTIPLY BY A NUMBER THAT IS NOT GIVEN, STUDY THIS PROBLEM.

MULTIPLY 8 BY 12.
G (1) 8
G (2) 12
1.2M (3) 96
3x

YOU MAY TELL THE COMPUTER YOU WANT 10 ENTER A NUMBER BY TYPING...
A) 'X', SPACE.
B) 'E', SPACE.

B
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573.17

AFadi TYPING 1E') SPACE, WAIT UNTIL THE MACHINE STOPS. THEN TYPE...
A) THE NUMBER YOU WANT TO ENTER, SPACE.
B) A LINE NUMBER) SPACE.

A

573.2o

HOW MUCH IS 51X32...
G (1) 51

TYPE H AND SPACE IF YOU WANT .A HINT.
H TO ENTER A NUMBER THAT IS NOT GIVEN,

TYPE 'E') SPACE.
E (2) 32
1.2M (3) 1632

3X

573.21

HOW MANY DAYS ARE THERE IN 3 WEEKS...
G (1) 3
E (2) 7

1.2M (3) 21

3X

573.22

HOW MANY MONTHS ARE THERE IN 7 YEARS...
G (1) 7

E (2) 12
1.2M (3) 84

3X

573.23

PAT HAD TO WAIT 14 WEEKS AND 3 DAYS UNTIL HIS BIRTHDAY.
HOW MANY DAYS DID HE HAVE TO WAIT ALTOGETHER...
G (1) 14
G (2) 3

TYPE H AND SPACE IF YOU WANT A HINT.
H YOU MUST ENTER 7, THE NUMBER OF DAYS IN A WEEK.
E (3) 7
1.3M (4) 98
2.4A (5) 101
5x
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574.1

THE RESULT OF DIVIDING ONE NUMBER BY ANOTHER IS CALLED THEIR...
A) SUM
B) DIFFERENCE
C) QUOTIENT

C

574.2

WHEN WE DIVIDE TWO NUMBERS, WE USE 'Q'
BECAUSE 'D° ALREADY MEANS SOMETHING ELSE.

TO DIVIDE ONE NUMBER BY ANOTHER, USE...
A) Q
B) DIV
C) D

A

574.3

DIVIDE 91 BY 13 BY TYPING '1.2Q', SPACE.
G (1) 91
G (2) 13
1.2Q (3) 7
3x

574.4

WHAT IS 1750 DIVIDED BY 50...
G (1) 1750
G (2) 50
1.2Q ( 3) 35
3x

574.5

DIVIDE 3750 BY 30.
G (1) 375o
G (2) 25
G (3) 30
1.3Q (4) 125
4x
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574.6

WATCH OUT HERE.
DIVIDE 75 INTO 2625.
G (1) 75
G (2) 2625

TYPE H AND SPACE IF YOU WANT 1, HINT.
G WHEN YOU USE Q, PUT THE LINE NUMBER

OF THE LARGER NUMBER FIRST.
2.1Q (3) 35
3X

574.7

DICK'S FATHER DROVE 96 MILES IN 3 HOURS.
WHAT WAS HIS AVERAGE SPEED PER HOUR...
G (1) 96

(2) 3

1.20 (3) 32
3X

574.10

JIM HAS 78 CENTS.
HOW MANY 6-CENT STAMPS CAN HE BUY...
G (1) 78
G (2) 6

1.2Q (3) 13
3X

574.11

SUBTRACT 205 FROM 268.
THEN DIVIDE THE RESULT BY 7.
G (1) 205
G (2) 268
G (3) 7
2.1S (4) 63
4.3Q (5) 9
6x THERE IS NO LINE 6.
5x
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574.12

USE E.
DIVIDE THE NUMBER OF MONTHS IN 13 YEARS BY 6.
G (1) 13
G (2) 6

TYPE H AND SPACE IF YOU WANT A HINT.
H YOU MUST ENTER 12, THE NUMBER OF MONTHS IN A YEAR

MULTIPLY 12 BY 13, DIVIDE THE RESULT BY 6.
E (3) 12
1.3M (4) 156
4.2Q (5) 26
5X

574.13

FIND THE NUMBER OF WEEKS IN 77 DAYS.
G (1) 77
E (2) 7

1.2Q k3) 11
3X

574.14

FIND 3844/4.
G (1) 3844
E (2) 4

1.2Q (3) 961
3X

574.15

IN 13 DAYS, THE JONES FAMILY TRAVELED 4212 MILES ON A VACATION TRIP.
HOW MANIC MILES A DAY DID THEY AVERAGE...
G (1) 13
G (2) 4212
2.1Q (3) 324
3X
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574.16

WATCH HOW WE SOLVE AVERAGE PROBLEMS.

WHAT IS THE AVERAGE OF 5 AND 15...
G (1) 5

G (2) 15

1.2A (3) 20
E (4) 2

3.4Q (5) 10
5X

WHICH OPERATION DID WE DO FIRST...
A) ADD
B) DIVIDE

A

574.17

IN 574.16 WE ENTERED THE NUMBER OF THINGS WE WANT TO AVERAGE.
IT WAS...
A) 10
B) 2

B

574.20

WHAT IS THE AVERAGE OF 23, 14, AND 8...
(1) 23

G (2) 14
G (3) 8

TYPE H AND SPACE IF YOU WANT A HINT.
H ADD THE THREE NUMBERS.

THEN DIVIDE BY 3.
1.2A (4) 37
3.4A (5) 45
E (6) 3

5.6Q (7) 15
7x
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574.21

RUTH HAD 37 STAMPS, MARY HAD 58, AND JUDY HAD 31.
WHAT WAS THE AVERAGE NUMBER OF STAMPS AMONG THE GIRLS...
G (1) 37
G (2) 58
G (3) 31
1.2A (4) 95
3.4A (5) 126
E (6) 3

5.6Q (7) 42
7x

574.22

FIND (10620/45)+33.
G (1) 10620
G (2) 45
G (3) 33

TYPE H AND SPACE IF YOU WANT A HINT.
H REMEMBER TO DO WHAT IS IN

THE PARENTHESES FIRST.
1.2Q (4) 236
3.4A (5) 269
5x

574.23

WHAT IS (7x12) +(7x3)...
G (1) 7
G (2) 12
G (3) 3
G (4) 5

1.2M (5) 84
1.3m (6) 21
5.6A (7) 105
7X
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574.24

DO WHAT IS INSIDE THE INNER PARENTHESES FIRST.
FIND (34-((486/162)+6))X58.
G (1) 34

G (2) 486
G (3) 162
G (4) 6

G (5) 58
2.3Q (6) 3

1.6s (7) 31
4.7A (8) 37
4.6A (9) 9
1.9S (10) 25

5.1om (1a) 1450
lix

575.1

TRY THESE WORT PROBLEMS.

HARROLD WENT FISHING. HE CAUGHT 112 FISH IN THE MORNING AND 127 IN
THE AFTERNOON. HOW MANY FISH DID HE CATCH THAT DAY...
G (1) 112
G (2) 127
1.2A (3) 239
3X

575.2

HENRY SAW 291 WILD DUCKS ON THE LAKE. 120 OF THE DUCKS FLEW AWAY.
HOW MANY DUCKS WERE LEFT...
G (1) 291
G (2) 120
1.2S (3) 171
3X

575.3

BILL HAS 16 BANANAS, 34 APPLES, AND 28 ORANGES.
HOW MANY PIECES OF FRUIT DOES HE HAVE...
CT (1) 16

(2) 34
G (3) 28
1.2A (4) 5o
3.4A (5) 78
5x
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575.4

CHICKEN LITTLE LAYS 98 EGGS A DAY.
HOW MANY EGGS DOES SHE LAY IN 2 WEEKS...
G (1) 98
G (2) 2

E (3) 7
2.3M (4) 14
1.4m (5) 1372
5x

575.5

FOR THANKSGIVING THE BAKER MADE 3405 LITTLE PUMPKIN PIES.
HE DIVIDED THEM EQUALLY AMONG EACH OF HIS 5 CHILDREN.
HOW MANY PUMPKIN PIES DID EACH CHILD GET...
G (1) 3405
G (2) 5

1.2Q (3) 681
3X

575.6

ONE MARSMAN HAS 71 GOLLOPS, ANOTHER HAS 24 GOLLJPS, AND A THIRD
HAS 35 GOLLOPS. WHEN THEY ARE ALL HERDED TOGETHER, 20 OF THE GOLLOPS
ESCAPE. HOW MANY ARE LEFT...
G (1) 71
G (2) 24

G (3) 35
G (4) 20
1.2A (5) 95
3.5A (6) 13o
6.4s (7) 110
7x
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575.7

IN 1 DAY, FAT ALBERT EATS 4 STRAWBERRY, 3 VANILLA, 2 RASPBERRY)
AND 8 CHOCOLATE ICE CREAM CONES. HE WILL GAIN WEIGHT IF HE EATS
MORE THAN 20 ICE CREAM CONES A DAY. HOW MANY MORE MAY HE EAT
THAT DAY WITHOUT BEING SICK...
G
G
G
G
G
G

(1)

(2)

(3)
(4)

(5)
(6)

1

4

3
2

8
20

2.3A (7) 7
7.4A (8) 9
8,5A (9) 17
6.9S (10) 3

10X

575.10

27 CHILDREN GOT 13 PIECES OF CANDY EACH. GENEROUS GEORGIA GAVE AWAY
9 PIECES. HOW MANY PIECES DID SHE HAVE REMAINING...
G (1) 27

G (2) 13
G (3) 9
1.2M (4) 351
4.3S (5) 342
5x
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APPENDIX B

Word Problem Set

1. How much larger is 456 than 402.

2. The number 301 is how much smaller than 586.

3. A bushel of corn weighs 56 lb. How much will 44 bushels weigh.

4. Dick's uncle weighed 161 pounds. Dick weighed 87 pounds. How much
less did Dick weigh than his uncle.

5. A school superintendent transferred 275 pupils out of a school
having an enrollment of 1080 pupils. How many pupils were left.

6. A trailer was loaded with 4 automobiles weighing 3185 pounds each
What was the total weight of the load.

7. Mr. Jackson drove 12,903 miles in 11 months. On an average, how
many miles did he drive each month.

8. Miss Allen had 789 books in the library and added 350 books during
the summer. How many books were then in the library.

9. Pike's Peak is 14,110 feet high. How high above the peak would an
airilane fly, if it flew at an altitude of 30,000 feet.

10. A truck and its load of coal weighed 14,875 pounds. The empty truck
weighed 5996 pounds. Find the weight of the coal.

11. The driver of a school bus drove the bus 38 miles each day. How
many miles would he drive the bus in 9 days.

12. As an advertising stunt a new car was driven 2880 miles in 24 hours.
What was its average speed per hour.

13. A driver estimated that he averaged 16 miles per gallon of gasoline.
How many gallons of gasoline would he use in driving 10,000 miles.

14. In one city, there were 1737 pupils enrolled in elementary school
and 713 pupils enrolled in high school. How many pupils were enrolled
in the schools.

15. Ruth bought 200 Mexican stamps. She traded some of them for United
States stamps. Then she had 163 Mexican stamps. How many Mexican
stamps had she traded.

16. The Castle School has 6 new bicycle racks. Each rack holds 54
bicycles. There is room for how many bicycles in the 6 new racks.
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17. Jerry counted 444 names listed on a page in the telephone bock, and
there were 55 pages in the book. How many names were listed in his
telephone book.

18. A car traveled 391 miles in 1 day and used 23 gallons of gasoline.
About how many miles did the car travel on 1 gallon of gasoline.

19. The estimated September school enrollment of a city was 12,404
pupils and there was to to an average of 28 pupils per classroom.
How many classrooms were needed.

20. In March the number of bicycles produced in the United States was
4084 the first week and 1370 the second week. How many bicycles were
produced during the 2 weeks.

21. At the equator the diameter of Mercury is 3100 miles and that of
the Earth is 7927 miles. How much greater is the diameter of the
Earth than that of Mercury.

22. At the tree nursery, Tom counted 28 rows of pine trees. The forester
said that there were 575 trees in each row. How many trees were in
the 28 rows of trees.

23. David's older brother built a ham radio statior. He said that he
spent about 60 hours working on the station and that he finished
it in 5 weeks. On the average, he spent how many hours per week
working on the station.

24. Mr. Andrews can drive to work in about 35 minutes less than the
time it takes when he rides the bus. He can drive to work in about
45 minutes. How long does it take Mr. Andrews to get to work when
he rides on the bus.

25. Mr. Phillips averaged 800 miles of driving a month. About how far
did he drive in 3 years.

26. A school playground is rectangular, 273 feet long and 21 feet wide.
What is the total length of the fence around the playground.

27. A football team gained 215 yards rushing, lost 12 yards passing,
and lost 25 yards on penalties. What was their net gain in yards.

28. One day the girls gathered leaves for a science project. Ann found
23 different leaves, Susan found 31, and Marie found 29. How many
leaves did the girls gather.

29. A dramatics club had 109 guests at its first play, 129 guests at
its second play, and 135 guests at its third play. How many guests
came altogether.
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30. Some empty crates were stacked outside a shed. There were 13 rows

of stacks, with 15 stacks in a row, and there were 9 crates in each

stack. How many crates were there.

31. For an experiment, Susan mixed 7 ounces of glycerin and 12 ounces

of alcohol with some water. The resulting mixture contained 45

ounces. How many ounces of water were used.

32. It is 715 miles by airplane from New York to Chicago, 1858 miles

from Chicago to San Francisco, and 2407 miles from there to Honolulu.

What is the distance between New York and Honolulu by this route.

33. Ranger VII transmitted 4304 pictures of the moon to Earth. Ranger

VIII transmitted 7137 pictures of the moon and Ranger IX transmitted

5814 pictures of the moon back to Earth. How many pictures of the

moon have these space probes sent back to Earth altogether.

34. Bob had 75 stamps. He gave 18 to Dan and 23 to John and 12 to Mike.

How many stamps did Bob have left.

35. John scored 21 points in the first football game) 7 in the second,

and 9 in the third. He was 12 points short of the school record.

What was the school record for 3 games.

36. A homeowner paid 90 dollars for a specially made front door. The

carpenter charged 18 dollars for installing the new door. Hardware

cost 13 dollars, and the man who weather-stripped the door charged

24 dollars. What was the total cost of the door.

37. Don bought 15 dozen cookies. He ate 3 cookies. Then how many

cookies were left in the box.

38. Janice is 14 years of age. Her brother is 5 years less than twice

Janice's age. How old is her brother.

39. Mary is twice as old as Betty was 2 years ago. Mary is 40 years

old. How old is Betty.

40. David read 2 books in 11 days. One book had 266 pages, and the
other had 119 pages. David read an average of about how many pages

per day.

41. Paul delivered 140 papers. Of these he delivered 61 on Poplar Street,
58 on Garfield Avenue, and the rest on York Road. How many did he

deliver on York Road.

42. John and his father drove 387 miles in 9 hours. They had hoped to

average 45 miles an hour. By how many miles did they miss their

guess.
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43. Mr. Ellis bought a car for 2768 dollars. He made a payment of
950 dollars and agreed to pay the rest in 18 payments. If there
were no additional charges, how much would each payment be.

44. At one place in the warehouse there are 23 stacks of canned peaches
in cases, with 16 cases in each stack. At another place there are
27 stacks with 16 cases of peaches in each stack. How many cases
of canned peaches are there in all.

45. Steve has 13 toy soldiers, Tam has 18, and Richard has 41. What is
the average number of toy soldiers.

46. An airplane flying at 14,000 feet climbs 3000 feet to avoid a storm.
Then it drops 6000 feet and finally climbs 2000 feet. What is its
final altitude.

47. There were 1500 textbooks to be stored on shelves. 48 of them were
sent to the library. 28 shelves have been filled with 34 books on
each shelf. How many books remain to be stored.

48. A ship sailed 746 miles. Then it sailed 9 days at 287 miles per
day. The total distance planned for the voyage is 3765 miles. How

49. A football team had the ball on its own 15-yard line. On three
successive plays the team made a gain of 7 yards, a loss of 12
yards, and then a gain of 21 yards. On what yard line was the
football then.

50. John and his brothers weighed 74 pounds, 83 pounds, 69 pounds, and
70 pounds. What was their average weight.

51. June helped her mother with the housework for 50 min. on Monday,
35 min. on Tuesday, 40 min. on Thursday, and 55 Min. on Saturday.
She helped with the housework for how many hours that week.

52. There are 638 sixth-grade pupils, 395 fifth-grade pupils, and 205
fourth-grade pupils in the Crystal Lake schools. Last year each
sixth-grade pupil wrote 4 book reports. Each fifth-grade pupil
and each fourth-grade pupil wrote 3 book reports. What is the
total number of book reports written by these pupils last year.

53. Mr. Taylor was making a 700-mile trip. Before lunch he drove for
5 hours at an average speed of 42 miles per hour. Before dinner
he drove for 3 hours at an average speed of 39 miles per hour.
How many more miles did he have to drive after dinner.

54. In 5 months, a dealer sold 165 tons, 206 tons, 210 tons, 274 tons,
and 115 tons of coal. What was the average amount of coal sold
each month.

99 1



55. The sixth graders sold 264 children's tickets at 1 dollar each,
53 student tickets at 2 dollars each, and 72 adult tickets at
3 dollars each. How much money did the sixth graders receive
for all of the tickets.

56. Find the average of the following scores on a bicycle safety test:
12, 23, 15, 30, 8, 6, 18.

57. Mark has test grades of 79 and 86 on 2 tests. What score must he
make on the next test in order to have an average of 85 on all 3
tests.

58. John and Alice were the only candidates for class president. Alice
received 75 votes more than John. There were 519 votes cast. How
many votes did Alice receive all together.

59. Bob had 1 gross, or 144, pencils to sell. He sold 5 dozen on
Wednesday. On Thursday and Friday he sold all but 15 of the remain-
ing pencils. How many pencils did he sell on Thursday and Friday
together.

60. A square-shaped school playground is 87 feet on a side. One third
of the playground is used for basketball courts. The rest is used
for football fields. How much land is used for football. Give
your answer in square feet.

61. Judy bought 3 pounds of steak at 98 cents a pound and 24 oranges
at 45 cents a dozen. If 4 girls shared the cost, what did each
girl pay.

62. In its first 3 games a football team scored 14 points, 35 points,
and 20 points. Last year the team averaged 20 points per game.
This year's average score is how much above last year's average.

63. Alice practiced on the piano for 20 min. on Monday, 35 min. on
Tuesday, and 15 min. on Wednesday. Her sister Ruth practiced 40
min. a day on these 3 days. Ruth practiced how much longer than
Alice.

64. Committee members bought 3 jars of candy with 14 ounces in each
jar, and 2 boxes of candy with 27 ounces in each box. They put the
candy into bags that contained 4 ounces each. How many bags of candy
did they fill.

65. 3 classes of 32 pupils each, 1 class of 34 pupils, 4 teachers, and
7 parents took a trip on 3 buses. Each bus took the same number
of riders. How many riders were on each bus.

66. A pump has a capacity for pumping water at the rate of 57 gallons
per minute.
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67. Mrs. Tulip's flower garden is 507 feet long and 39 feet wide.
Every day she walks along the perimeter of the flower garden once.
How far does Mrs. Tulip walk each day.

68. Gordon bought 140 guinea pigs, and his sister gave him 28 more.
He gave away 19 of the guinea pigs. How many did he have left.

69. If a book has 95 names per column, and 5 columns per page, how many
names does it have on 64 pages.

70. Mr. Dumpty bought a new holc,g! costing $28,000. He used $6500 which
he had in the bank and $2876 from the sale of some land. The rest
of the money he borrowed. It cost him $175 to have a lawyer make
out the necessary papers to buy the house. What amount did he have
to borrow in order to pay for everything.

71. The aviary at the zoo has 3584 birds. 224 birds eat at each outdoor
feeding station. There are 7 indoor feeding stations where no birds
eat. How many feeding stations does the aviary have altogether.

72. 124 Girl Scouts have 100 boxes of mint cookies and 260 boxes of
chocolate chip cookies to sell. If each girl sells the same number
of boxes of cookies, how many boxes will each girl have to sell.

73. The Jolly Green Giant weighed 16,000 pounds. He had hoped to weigh
95 times as much as a man weighing 200 pounds. What is the difference
between how many times heavier he wanted to be and how many times
heavier he actually was.

74. The sixth graders were decorating the gym for a party. Although
they bought a 606 foot roll of crepe paper ribbon, they lost 30
feet of it. How many 24 foot lengths could they get from the
remainder of the roll.

75. Yesterday Willy the whale drank 16 gallons of water in the morning
and 17 gallons of water in the afternoon. Water weighs 8 pounds
per gallon. How many pounds of water did Willy drink yesterday.

76. Mr. Daniels drove 295 miles on Monday, 330 miles on Tuesday, and
395 miles on Wednesday. On the average, how many miles did he drive
each day.

77. In the beginning of June, Dr. Pill deposited 56 5-dollar bills and
27 10-dollar bills into the bank. At the end of June, he deposited
37 more 5-dollar bills. How much money did Dr. Pill ddposit in
the bank in June.

78. A boat and its contents weigh 17,000 pounds. Its contents consist
of 130 gallons of gasoline and 12 gallons of oil. Gasoline weighs
6 pounds per gallon and oil weighs 7 pounds per gallon. What is the
weight of the boat without its contents.
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79. During one week Mr. Loaderman reported the number of sounds of
freight loaded for each of five days as follows: 1294, 2010, 2413,

1999, and 1079. What was the average number of pounds loaded per

day.

80. Mrs. Sewer had a new spool of ribbon. From it she cut 8 pieces
each 4 yards long and 6 pieces each 3 yards long. She had 2 yards:

of ribbon left. How many yards of ribbon did the spool hold.

81. The Swiggle family went south for its vacation. Mr. Swiggle drove
35 miles the first day of the trip, 41 miles the second day, 59
the third day, 53 the fourth day, 39 the fifth d;,y, 44 the sixth
day, and 65 the seventh day. Find the average Lumber of miles that
Mr. Swiggle drove per day.

82. Sound travels at a speed of about 1100 feet per second. A blast

from a whistle travels for 5 seconds. Then it travels another

1000 feet. How much further will it have to go to pass 9990 feet.

83. My uncle weighs 70 pounds more than John (computers also have
relatives). John and Jim are identical twins who together weigh
4 pounds less than I. I weigh 130 pounds. How much does my uncle

weigh.

84. Tom has 331 toy cars. George has twice as many as Tom. Bill has

28 fewer cars than George. Cohn has 188 fewer cars than Bill. How
many toy cars does John have.

85. At the beginning of the year there were 1620 people registered at
the employment office. At the end of the year there were 6 times
as many people registered, one third of whom were under 25 years

old. How many people were over 25 years old.

86. There are 2 computers that teach children how to solve problems.
One computer breaks down 4 times a day. The other one breaks down

12 times a week. What is the average number of breakdowns per
computer in 21 days.

87. The Podunk Daily Post had an average daily circulation of 9305
papers the first week, 8000 papers the second week, and 10,127
papers the third week. The average Sunday circulation for those
3 weeks was 13,455 papers. By how much did the average Sunday
circulation exceed the average daily circulation.

88. If a student's grades on the first 3 tests were 70, 80, and 95,
and his average on the 4 tests was 75, what was his grade on the
fourth test.

89. A fast snail averaged 35 inches per hour for 6 hours and 40 inches
per hour for 4 hours. What was his average speed per hour on his
10-hour t;Ap.
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90. Every day the Greasy Spoon Restaurant makes 37 poached. eggs,
46 fried eggs, 15 cheese omelettes with 3 eggs in each omelette,
and 43 scrambled eggs. If 57 people eat in the Greasy Spoon, and
each person eats the same number of eggs, how many eggs does each
person eat.

91. Euclid wanted to measure the area of his back yard. Since it was
L-shaped he could break it up into 2 rectangles--one measuring
42 feet by 13 feet, the other 13 feet by' 23 feet. What was the
total area.

92. The Hobby Club decided to have a party one Saturday night. There
were 40 members in the club--24 boys and .16 girls. If each boy
brought 4 guests and each girl brought 5 guests, how many guests
came to the party.

93. Mr. Larsen used 396 pounds of apples to fill baskets with 44 pounds
in each. He sold the baskets for 2 dollars each. How much did he
receive for his apples.

94. If a man can bind 124 sets of books in 4 days and there are 17
books in a set, how many books does the man bind in a day.

95. Sam had enough books to pack 13 boxes with 28 books in each box.
He had 5 books left over. How many books did he have in all.

96. An old pad of paper had 47 sheets of paper left in it 21 new pads
of paper each had 151 sheets of paper. How many sheets of paper
were there in all the pads.

97. Someone has yelled at me once every day for the last 69 days,
except for 5 days while I was gone on vacation. If my 9 aunts
and 7 uncles each yelled at me an equal number of times, how
many times did each person yell at me.

98. There were 154 popcorn balls on a table where 8 boys and 4 girls
were seated. A dog came along and ate 10 of the popcorn balls.
If the children shared the rest equally, how many popcorn balls
were left for each person.

99. An empty airplane weighs 2600 pounds. Each pilot and passenger
weighs 170 pounds. If the plane has 2 pilots and 10 passengers,
what will be the total weight of the airplane, pilots, and
passengers.

100. A milk can that weighed 18 pounds when empty was filled with 7 gallons
of water in the morning, and 6 gallons were added in the afternoon.
Water weighs 8 pounds per gallon. How much did the can full of
water weigh.
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