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An Analytical Procedure for the
Eruipercentile Method of Equating Tests

Carl A. Lindsay and Mark A. Prichard
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Prior use of the equipercentile method of test equating was based on a graphic

procedure which is tedious, subject to smoothing errors, and non-analytical. Rec-

ognition of the equipercentile method as a curve-fitting procedure for two cumu-

lative perce.ltage distributions leads to a proposed analytical solution to the

problem through use of linear estimates for successive "missing" score points. A

complete equipercentile procedure which uses the proposed method and provides

linear and quadratic functions for goodness-of-fit and extrapolation is discussed

and illustrated with data from a test equating project. A FORTRAN IV program

for the complete procedure is available.



An Analytical Procedure for the

Equipercentile Method of Equating Tests

Carl A. Lindsay and Mark A. Prichard
The Pennsylvania State University

The purpose of this paper is neither to defend nor decry the practice of

equating tests, nor to discuss the various methods extant and their applicability

to different situations (see Flanagan, 1950; Angoff, in press; also see Marks

and Lindsay, 1970 for a theoretical and empirical treatment of test equating).

Rather we shall restrict our attention to a discussion of an analytical procedure

for the equipercentile method of equating tests.

According to Lord (1955), tests X and Y can be considered equivalent for a

given group when the score scales on the two tests are so adjusted that both tests

have the same frequency distribution of true scores in the given group. When

both tests are equally reliable, or unreliable, then it makes little practical

difference whether estimated true scores or obtained scores are equated. If we

ignore the issue of whether or not we are dealing with obtained scores or esti-

mated true scores, the equipercentile test equating method defines two scores on

test X and Y as equivalent if their corresponding percentile ranks or relative

cumulative frequency distributions in any given group are equal. The equipercentile

method is thus seen as a curvilinear or area transformation problem rather than a

linear or linear regression problem. Po3sible differences in the shapes of the two

distributions are taken into account with the equipercentile method.

A graphic procedure, discussed by Flanagan (1950) and Angoff (in press), has

previously been used for finding equivalent raw score points with the equipercentile

method. First, relative cumulative frequencies are developed throughout the obtained

score range for each test. The relative cumulative frequency distributions for

both tests are then plotted on arithmetic probability paper and a smooth line drawn

between the points to obtin percentile ranks. Next, raw scores for both tests,
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associated with selected percentile ranks, are plotted on regualr graph paper.

Finally, a smoDthed line, drawn between the plotted points, is used to record the

conversion of scores from test X to test Y.

It is easily seen that this procedure is tedious, subject to smoothing errors,

and non-replicable, i.e., it does not use an analytical solution for finding equated

score points. Although there have been two analytical methods proposed for smoothing

obtained score distributions (Cureton & Tukey, 1951; Keats & Lord, 1962), n.1 analyt-

ical solution for the equipercentile method has been proposed previously which both

smooths the obtained distributions and develops equivalent scores. In addition,

since the graphic procedure is done by hand, it is not convenient to develop functional

equations for predicting equated scores on one test from the other and for extra-

polation beyond the obtained data points.

The impetus for the present research was provided by an actual test equating

problem requiring the use of the equipercentile method. Faced with the problem of

cross-equating six subtests each from two nationally-used achievement tests given

to over 3,000 fifth graders, the authors developed an analytical solution to the

equipercentile method. A FORTRAN IV program was written which carries out the

equipercentile equating procedure and provides linear and quadratic functions for

gocdness-of-fit and extrapolation as well as estimates of the error involved in

predicting one test from the other.

Method

From an analytical point of iew, the graphic procedure for the equipercentile

method involves two steps: (a) interpolation and (b) extrapolation based on a curve-

fitting procedure. The proposed method uses a linear rule to interpolate the two

obtained distributions, then develops functional equations from the interpolated

distributions for matching and extrapolation.
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Interpolation Procedure

Given two cumulative percentage (CP) test score distributions X alii Y, each

score and its associated CP can be represented on an ordered pair, (Xi, (Yk,

P
k
) where X

i
refers to a given raw (scaled, grade equivalent, etc.) score and P

k

to its associated CP. The first task involved with the equipercentile method is

to find pairs of raw scores that cut off equal proportions of the two distributions.

It is seen, then, that the interpolation problem of the equipercentile method

involves the estimation of "missing" raw score points in one distribution for a

given CP in the other. The proposed solution to the smoothing problem assumes

that the best estimate of a "missing" score point on one distribution lies on a

straight line connecting two adjacent CP's and their associated score points. It

is derived below:

Given: (X1, P1) and (X2, P2) from distribution X

and

(X
n
and Pn) from distribution Y, where Pn Pl, P2.

The problem is to find the X
n
on distribution X associated with the P

n
from

distrPlution Y.

We begin with the following identities:

n Xi) (Pn Pi)
X2 - X1

(`P2
- P1/

and

P
n

Xn - X1 =(P
2
- P

(X2 X1)

(1)

(2)

In other words, the linear rule requires a proportionate increase or decrease

on score points in terms of their associated CP's.

Solving for Xn, the "missing" raw score point, we have the coaputing formula:

Pi)Xn =
P - P

(X
2
- X

1
) + X

1
2 1

(3)
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The method, of course, is general and we may solve for Yn by appropriate

substitution. In practice the method finds successive "missing" points on X and

Y by doing "flip-flop" estimates from one to the other.

An illustration of the linear rule for smoothing or interpolation is provided

by the data in Table 1.

The left-hand side of Table 1 shows the original CP distributions for the

tests. The right-hand side shows the smoothed distributions for the two tests

obtained by applying the linear rule. Successive, "flip-flop" estimates of raw

scores for "missing" CP's in one distribution are shown in parentheses. It is

seen that this method yields two distributions with an equal number of raw score

points in each. However, it is also evident that the smoothing procedure does

not necessarily yield "equated" scores for all possible score points in the two

distributions. So far, a score of 20 on X is equated with a score of 22 on Y, a

score of 27 on X is equated with a score of 23.5 on Y, etc. But what about a

score of 2 on X r a score of k2 on X? This problem is dealt with in the following

section.

Curve - Fitting Procedure

The next step involves the development of functional equations, by the least

squares criterion, for fitting the two interpolated distributions. The two smoothed

distributions are taken as the best estimate of the complete distributions of scores

if an infinite number of observations were available, and are subsequently referred

to as actual distributions.

The curve-fitting procedure involves the development of first, second, or higher

degree polynomials, using the interpolated score points. Standard least square

numerical solutions are used to obtain the constants for the polynomials or prediction

equations. The accuracy with which a given polynomial reproduces the actual trend of
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Table 1

Original Cumulative Percentage Distribution and
Smoothed Cumulative Percentage Distributions for

Two Tests Obtained by the Linear Rule
(Dummy Data)

Original Smoothed

Text X Test Y Test X Test Y

Score CP Score CP Score CP Score CP

(Xi P
i
) (Y

k
P
k
) (Xi P

i
) (Yk

P
k
)

20 1 22 1 20 1 22 1

27 3 25 S 27 3 (23.5) (3)

30 8 31 8 (28.2) (5) 25 5

35 20 35 25 30 8 31 a

40 40 37 40 35 20 (33.8) (20)

'41 59 43 57 (36.3) (25) 35 25

52 74 44 72 4U 40 37 40

53 88 45 88 (40.9) (57) 0 57

62 96 50 93 41 59 (43.2) (59)

70 100 55 100 (50.5) (72) 44 72

52 74 (44.2) (74)

53 88 45 88

(58.6) (93) 50 93

62 96 (52.1) (96)

70 100 55 100

Note: Values in parentheses were obtained by applying the linear rule to
obtain score points corresponding to "missing" CP points.
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the bivariate distribution is assessed by developing an estimate of the average

error.
A

)(E . Y\1 -- Y
K

Where E = average error

Y = actual value of Y

= predicted value of Y (from X)

K = number of data points.

(4)

Results

The FORTRAN IV Program

A FORTRAN IV program has been written to carry out the complete analytical

equipercentile equating method described above. It is currently available from

the, authors as a subroutine of the statistical package for the Social Sciences

(Nie, Bent, and Hull, 1970). However, it can be modified to stand alone.

The program also has another convenient feature which is illustrated in the

next section of this paper. It produces card or tape output cor:tuining the actual

smoothed distributions data points and data points generated by the linear and

quadratic prediction equations. These points serve as input to a CALCOMP plotter

which produces a graphic representation of the goodness-of-fit.

Illustrative Results

Shown in Figures 1 and 2 are two CALCOMP plotter graphs based on actual data

from a recently completed test equating project (Lindsay, 1969a; 1969b). The

FORTRAN IV program briefly described above was written to carry out the equipercentile

equating for this project.

As is known, the main object of test equating is to provide an estimate of an

individual's score on, say, test Y, given his score on test X. The functional

equations shown in Figures 1 and 2 were obtained by finding the best fit line (linear,
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Figure 1 and quadratic, Figure 2) for predicting test Y from test X. The two

figures then show graphically how well the estimated distribution, generated by a

given equation, fits the actual distribution. It is easily seen that the quadratic

equation provides the best fit to the actual bivariate distribution. This is borne

out by an error variance of 1.08 for the quadratic equation as compared to one of

2.10 for the linear equation.

Conclusions

It is recognized that the proposed analytical solution is appropriate only

in those instances that the graphic one is. It does not solve the problems associated

with a small number of subjects, highly skewed distributions, etc. In fact the

solution should be viewed only as an analogue to the graphic method. It is concluded

that the proposed method has merit because the results are verifiable, it is fast

and inexpensive if done on a computer, it eliminates tedious hand-smoothing, and puts

the equipercentile method on the same analytical basis as the linear method of test

equating.
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