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Secondary School Mathematics Curriculum Improvement Study

Course III - Teachers Commentary

HOW TO USE THIS COMMENTARY

Purposes. As in the first two courses, the teacher must
be aware of the important topics and concepts that run
through the main body of the previous courses to create a
unified approach to mathematics. Students will learn to
view mathematics asz a unified subject only if basic relations
and properties are continuously used and emphasized. The
concepte learned. in Course I and Course II are to be
used to an advantage in the presentation of Course III.
Teachers presenting Course III must be familiar with the
content and concepts emphasized in the previous courses.
At the start of each chapter, the overall
purposes and aims for the unit are stated. The commentary
for every section within the chapter will start with a

statement of specific purposes.

Sections. There are two baslc types of sections within each
chapter. One type presents concepts; the second type
consists of exercises. The sections have been ordered so that
a section {or sometimes two sections) of ekposition is

followed by a section of related exercises. Within



various sections, the teacher will find: possible
motivational devices; a variety of approaches; notatlions
relative to difficult exercises; suggestions for placement
of exercises as class work; homework or self-study; hints
regarding difficulties that may occur; new vocabulary

underscored; and some abstract background for the teacher.

Time Estimates, In terms of days, a time estimate will

be found st the beginning of each chapter commentary.

This 1s the estimate for the chapter; it 1s based upon

individual time estimates for sections within the chapter,
Time estimates are given only to those sections contain-

ing some form of exposition, It is assumed that each exer-

cise section is to be grouped with the concept section

immediately preceding it relative to time estimations.

Exercises. Certain exercises have proved to be more

successful when discussed within the actual lesson

 rather than assigned as homework. Suggestions regard-

. ing the placement of exercises appear at various points

within the commentary.

The teacher need not hold rigidly to the exercises listed.
He is free to choose, add or alter any exercises whatso-
ever. In instances stressing drill, the teacher may wish
to select or limit exercises depending upon the particular

skills of his class and/or individual students. Difficult
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problems have been starred and may be considered as
optional. However, these problems are the most
rewarding as well as the most ehallenging, and the
teacher should discuss some of these in the classroom
and/or assign them to the bvetter students as homework,
In all instances, the teacher should study the exercises
before assigning them, carefully noting the concepts involved
and approximating the time required for these exercises
chosen., To insure that the teachers' evaluation of
time for an assignment is as accurate as possible, the
teachers should o©ccasionally ask students to time home-
work assignments, allowing him to compare the true mean
time with his Jjudgment.

In Chepter 5 (combinatorics) additional problems have

been inclided, to be used at the discretion of the teacher.

Proofs. The proofs presented in the commentary and the
text are not to be accepted as the only possible, logical
proof, The teacher should expose the students to other
approaches, and encourage the students to develop their
own. proofs. Student approaches, very often, are more
direct, less involved, yet complete mathematical solutions
to problems., |

In Chapter 9 on Informal Geometry, some complete

mathematical proofs should be presented by the teacher

with the use of the observations (axioms) and conclusions

(theorems) derived from the observations, In addition, sume
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of the students shnuld be encouraged to develop and pre-
sent formal proofs on theorems not done in class. Time
may not permit to do so with 211 the theorems, but

some of them yleld to relatively short yet complete proofs

which can be done or at least followed by most pupils.

Summary and Review Exercises. At the end of each chapter,

the teacher will find a summary of the main concepts stu-

died, followed by a series of related review exercises.

The teacher may wish to assign the reading of the summary

and the completion c¢f the review exercise as:

(a) homework to be reviewed in class the following day,

(b) self-study with time allowed the following day for
student questions.,,

(¢) classwork or

(a) test items.

Tests. At the end of each chapter commentery, the teacher

will find a series of suggested test items. The teacher

should again feel,free to choose, add, or alter any of these
problems in constructing a test for his own élass. An
additional source of\test items, when altered, would

be the review exercises appearing at the end of each

chapter in the text,

The Pitfalls To Avold. To guarantee that the suggested

6
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curriculum be essentlally covered within the time span

of one school year, the teacher shculd be flexible enough

to:

&,

b.

C.

d.

e,

f.

&e

Drop specific topics that prove o be overly
difficult, with the idea of coning back to this
material at a later date;

Judge whether certain topics will be seen again,
as in & spiral approach, and then realize that
complete mastery need not always be thained wifh
the introduction to the material;

Select éxercises’as needed rather than assign all
of the problems indicated;

Assign additional exercises and/or construct new
worksheets as the need arises with each specific
class;

Provide occasional review sheets throughout the
term to supplement spiral approach;

Have coples of Course I and II readlly aveilable
for reference;

Teach the "spirit" rather than the "letter" of the

program.



Teachers Commentary of Unified Modern Mathematicg Course

III is an expansion of the original commentary written by the
authors of the text. It was revised by the following pilot
teachers in the SSMCIS Project:

Franklin B. Armour, Teaneck, New Jersey

Samuel Backer, Elmont, New York

Annabelle Cohen, Teaneck, New Jersey

Alexander Imre, Elmont, New York

BEdward Keenan, Elmont, New York

Christine McGoey, Leonia, New Jersey

Mary P. Renda, Teaneck, New Jersey

David Swaim, Leonia, New Jersey

A practleal l1ist of suggestlons and a reasonable esti-
mation of time allotments for the whole of this commentary is

included based upon the experiences of the above pilot teachers.
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Time Estimate - Course III

Chapters Teaching Days Test Total
1l 10 - 12 1l 11 - 13
2 12 - 14 1 13 - 15
3 12 - 14 1l 13 - 15
4 14 -~ 18 1 15 - 19
5 19 2 21
6 12 - 14 1 13 - 15
4 16 - 20 1l 17 - 21
8 16 - 20 1l 17 - 21
9 9 =12 1l 10 - 13
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Chapter 1
INTRODUCTION TO MATRICES
Time Estimate: 10 -~ 13 days

This Chapter has two mein objectives. The first is to show
that matrices are a natural and neat way to display date in some
situations. The situations chosen for this purpose relate to
baseball, mileage charts, economics (the case of the builder
of homes), coding and decoding secret messages, solving systems
of two linear equations in two unknowns, bus route connections
between towns, geometric transiormations, and transition of
states. The list is impressive, but by no means exhausts the
actual number and only suggests the great variety of possibili-
ties.

The use of matricés as & means of simplifying the presenta-
tion of data 1s unquestionably valuable. But if that were its
only falue 1t would not have become a subject of mathematical
inquiry. The situation may be compared with the stage in man's
history when he knew what numbers were, using them to tell how
many there were in a set of obJjects, but not yet realizing that
they could‘be added, subtracted, multipligd, and divided. Thus
the second'obJective in this chepter is to show that operations
on matrices are a'natural outcome, as are operations on numbers.

- This is easily done for adding matrices, and multiplying a scalar
‘and a metrix, It is more difficult for multiplication of
matricgs. But all bperations with matrices can be developed

‘naturally as thc result of (1) asking the right questions,
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(2) allowing students to answer them, and finally, (3) seeing
how students' answers may be regarded as some operation with
matrices. It is hoped that when done this way, students will
see how natural, though strange, the three operations on
matrices are.

In the course of learning these operations, & number of
mathematical questions will arise. For example, the commutati-
vity of addition or multiplication of matrices. It is not the
aim of this chapter to give final answers to such questions,
nor should you discourage students from asking them, or even
discussing them. It is the aim of this chapter to stir and
whet the students' curiousity concerning the properties of the
operations. It would be unfortunate to engage in formel dis-
cussion about these properties in this chapter while many
students are still trying to understand the operations
themselves., We prefer to expose students to the formal
considerations in Chaptér 2. Meanwhile there will surely be
some students who will anticipate the formal results. They
should be encouraged iqgividually and privately. They should

" not be allowed to "spoil" it for others by presenting their
discoveries'ﬁo an audience not ready to receive them.

References

Davis, P. J. Mathematics of Matrices. New York: Intersecience
Publishers Inc., 1963.

Eves, Howard. Elementary Matrix Theory. Boston: Allyn and
Bacon, Inc., 1900.

Kemeny, Snell, Thompéon. Introduciion to Finite Mathematics.,
Englewood Cliffs, N, J.: Prentice-Hall Inc., 1957.

"

Q




- 10 =

Matthews, G. Contemporary School Mathematics Matrices 1 and 2.
London: Edward Irno%d, 196X,

School Mathematics Study Group. Introduction to Matrix Algebra.
Pasadena: A. C. Vroman Inc., 196H,

1.1 What is a Metrix (Time for 1.1 and 1.2 = 1 to 13 days)

Matrices were used to tabulate data in rectangular arrays
long before mathematiclans became interested in them. In this
sense, & railroad timetable and & stock market report are
matrices. In 1845 Arthur Cayley (1821-1895) observed in his
treatise on linear transformations that every linear transfor-
mation could be asscclated with a rectangular array, anéd calied
these arrays matrices. HMatrices turned out to be a convenient
tool in discussing linear transformations and 'soon thereafter
mathematicians found that other situations also submitted to
a matrix approach, The advent of electronic computers made it
possible to use matrices in disciplines that had been considered
unrelated to mathematics, and this in turn, further encouraged
mathematicians to study metrices energetically.

In this section the student takes & first step in the
direction of appreciating the values of matrices hinted above.
That step is a smail one, concerned with situations with which
he is familiar and in which he is probebly interested. The
student is also'expected to familiarize himself with terms
' -assoclated with matrices: row, column; first row, first column,

" -and aiJ, the entry in the ith row, jth column.

12
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1.2 Exercise Solutions

1. a. 10x5 b, b7; 616 c. (0, 52.6, 49.8, 20.4, 1.4},
(ay4: 1 =3, J <5) = {ay: 1 <50

d. The greatest entry in the first row is 49.0. The
greatest part of professional and technicians have
college training.

e. The greatest entry in the first column is 5.1. There
are more people with no schooling among farm laborers
and foramen than among ény other group.

f. The greatest number in the fifth row 61.6; the least
i1s .2. Among sales people the greatest number are
high school trained, the least have no schooling.

g. The greatest number in the fifth column is 28.0; the
least is 0. The greatest number of graduate studehts
are professionals and technicians; the least are farm

laborers and foremen.

2. b. The stock markét is a matrix. In the New York Times
version there are 8 columns: yearly high, yearly low,
numbers of stocks sold, first bid of the day, high
bid, low, last, net change. The number of rows is

; equél to the names of the stocks. Sometimes a

dividend (as a ninth column) appears.

3. a, 6 X 5 ba ai. = 29,028 a.i = 11,500,000, a4. = "27 ’-l-
| c.> {11,5oo,ooo, 19,340, -436, 136.0, ~11.4].
d.'f{16,9oo,ooo, 19,340, -228 120.0, -67.0}.

13
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e. {11,500,000, 20,320, =131, 122.0, =5.0]}.
fo {29)028) '436) 13400) ‘2704}0
g. (11,500,000, 22,834, -39).

1.3 Using Matrices to Deseribe Complex Situations (Time for

1.3 and 1.4 = 1 to 1} days)

In this section we show how matrices can simplify the pre-
sentation of a set of rules used in a game to determine the
amounts won or lost by each of two players. To keep the
illustration simple, we choose a game in which only two possible
strategies are available to each player (heads or tails). If
you wish to use an illustration in which more than two strate-
glies are aveilable to the players, you might use the game in
which each of two playerswpresents l, 2, or 3 fingers, at o
signal, with a set of rules that determine the amount won or
lost by each player.

More amazing is the second example which concerns bus
routes between town, This is a specific case of planar graphs

used in geometry (see Graphs and Their Uses by Oystein Ore, The

L. W. Singer Co. 1963) and in representing communications

networks by matrices (see Kemeny, Snell, Thompson: Introduction

to Finite Mathematics; Prentice Hall, pages 315-320).

_ The section ends with a discussion of coefficient matrices,
associated with systems of two 1inear equations in two variables.
v.The coefficient matrices are to be an important tool in this
v:and the next chapter, in solving a system of linear equations.

14

Y



- 13 - .

They are also an introduction to transformation matrices.

Note to teacher: In Exercises 1.4, problem 3, tell students
to follow the Example 2 (Figure 1.5) in the text, to avold

confusion.

1.4 Exercise Solutions

1, loser
A B c
A 0 4o 30
Winner B 35 0 25
C 38 32 0

8y 4 # 8y except when 1 = J (that is, &,y = 0)

2. B
| 1 2 3 4 5 6
1 2 | =3 -5 =7
2| -3 b | -5 6| -7 8
A 3 b -5 6 | -7 81 -9
TR 6 { -7 81 -9 10
5 6 | -7 8] -9} 1w]| -1
6| -7| 8} -9 10 |-11 12

-

- O ~|W
O O K H|a
=~ 0 W
H O F|Q
o~ = O|JY

o e = Ol®:
vaw®>

O H K O|»

gaw®
o oM olu’

Y
I
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A B ¢ D
A 0 1 0 0
B 1 0 2 0
c. d.
c 0 2 0 0
D 0 0 0 0
A B c D
A 0 0 1 0
B 0 0 1 1
e,
o 1 1 0 0
D 0 1 0 0
3 51 [3- 5 8 3
a. b.
4 2,4 -2 0 2
2 31 [2 3 & E
c. |1 2 1 2 8] d4. |1
B 0
e; E2 'ﬂ » E -1 5] f. E2

A B ¢ D
Alo o 1 o
Blo o o 1
cl1 o o 1
plo 1 1 o
2o a1l [3 2 -1 3]
-3 1f,{2 -3 1 5
1 1) 1 1 1 3]
1 ol |1 1 o 2
1 1),{0 1 1 1]
W 0B 4 1

Operations on Matrices (Time for 1.5 and 1.6 = 2 to 2% days)

This section presents three operations.

Addition of two.matrices having the same dimensions.

Multiplying_a scalar and a matrix (the component parts of
5 afﬁéffikvére‘é¢alars), and |

fMﬁitipiyihg'twO‘matrices.

16
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All of these operations emerge from a consideration of a
single situation; the case of a builder of homes, bullding two
models, in three towns, for two years., Data are presented in
matrix form. Then questions are asked which relate to the
situation. Each question 1s designed to elicit an answer which
can be formulated as an operation on the matrices. We suggest
that you glve these questions a prominent role in your presen-
tation, repeating them 1f necessary, to clarify their meaning.
It will be more difficult to describe multiplication with two
matrices., To help your students understand multiplication,
write their answers at the boards, as is done in the text
following Fizure 1-10 ending with Figure 1-11. It is possible
that, even with this, all students will not see the pattern
in the multiplication. Figure 1-12 may help these students.
When the operation is understocd, it may be remembered as
. multiply "row by cqlumn" - not an accurate description - only a
mnemonic device,

Mﬁltiplying matrices hd??gé large dimensions, say 20 x 25
and 25 x 30, is & cumbersome process. (In management science
studies ori2 may meet matrices with dimensions 100 x 300.)
Multiplying matrices does arise in economics and sciences. It
is not difficult to progrem a computer to carry out these
multiplicatiohs no matter what the dimensions. Largely for this
‘reason matrices have become an important tool in scientific and

"ménagementrstud;es.
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1.6 Exercise Solutions

1.

2.

h.

a.

Dimensions of D, E, F, G are respectively 2 x 3,

2x3,3.x2, 2.x1.

15 3 3
D+E = |
7 5 2

No. Addition is defined only for two matrices having

the same dimensions. 3
5
3 2 1l 27 34
D+ F = .15 6 =
b o 2 26 34| .
5 7

No. D does not have as many columns as E has rows.

E « F is the number of doors and number of windows used
in the 1968 progrem in P and Q. F . G is the cost of
doors and windows used for each model.

(E - F) - G means the cost of doors and windows used

in the 1968 program. E . (F - G) means the same thing.

295
(E.F):G=E . (F-0)=
455
9 6 3 :
3D =
112 0 6

These matrices cannot be added. Their dimensions differ.

v+ 5
o , d. See (b).
7

B oo T o

¢
‘: 0 ‘ . a b
T
o : 123 | c d
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0 6 6 9
b.
0 18 18 27

Not possible. The first matrix does not have as many -
columns as the second matrix has rows.

e. Not possible. See (e).

o 4
a I 1 0 at® o
g. "h.
c d 0 1 o o
Not possible. The first matrix has more columns then

the second matrix has rows.

2 + bc ab + bd| 0 0 e 4
K. 1.
ac + cd  be + d? 0 0 a b

_ (2 , _

12 8 0 0 0
u ] bo -k CQ O O J
- 0

— -% Lt

12 13 [3 2
-1 ( 3

T

The addition is not possible.

The second multiplicatioh is not possible.

X +2z ]
X 4+ 2y + 32
-x+2y
M 3 o 7
d’ls 2l s 18
3 2] [o 28] [o 7

19
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E s| [3 5] [& - 3 5l 3 5] [+ 5
6. . = and . = :
1 2i |-1 2 1 -1 -1 2 l 2 -1 -1
Therefore the products are not the same.
3 2 2 - 5 b
T. a. b. c.
8. Same answers as those in Exercise 7.

1.7 Metrices and Coded Messages (Time for 1.7 and 1.8 =1 to

1
2

15 days)

This section should be fun for both student and teacher.
Coding and decoding interest many youngsters, as well as adults,
Built into this coding device "lurk" two mathematicel problems.
One, is the question of invertibility. Suppose, for instance, a

coding matrix is E; ﬂ It has no multiplicative inverse, hence

no decoding matrix exists. (See Chapter III for explanation of
why it has no multiplicative inverse). The other is the ques-
tion of commutativity. If the coding matrix is a "right"
multiplier (some books call it a "post" multiplier), then the
decoding has to be & "right" multiplier also, in order to be
‘effective. A "left" (pre-multiplier) multiplier does not
produce the original message! Here is a dramatic demonstration
that guggests that multiplying two matrices is not commutative.
_ ' The coding and decoding mafrices used in the text are also
'-fused in éxerc;seé 344 of Section 1.8 to solve pairs of linear
B :§Qua£iohsf1n twq:unknown§. Note, however, that these equations

) g‘?e‘restrictedrto_those whose coefficient matrix is either the

 {E£Sg;t I o '251)




-19 -

coding or decoding matrix. This is done with "malice afore-
thought" in order to motivate the students, stirring up some
curiosity, without supplying mathematical explanations. We
hope, &s a result, that meny questions will occur to the
student, which being noted, are tabled to Chapters 2 and 3.
This is done so that students may explore the questions by
themselves and thus give them an opportunity for mathematically

creative activities.

Very Important Note to Teacher: It is necessary for the

teacher to point out that the form of the decoding matrix in

comparison with that of the coding matrix in this section,

is not the general relationship between a matrix and its

multiplicative inverse. It is very probable that students will

Jump to the conclusion that a coding matrix of the form [a t]
c d

' a b
has & corresponding decoding matrix of the form[ ] or
-C d

d - J
[ :I, which is false, To convince them, give them the coding
-c .

-2 -
matrix [ J and ask them to try and find the decoding matrix,

1 2
ol B 4 2
which is . Or try the coding matrix whose
' 1 2 3 1

-+ 1
decoding matrix is l:i , . (See Chapter III for explanation
o -2 .

of how to find the decod_ing or multiplicative inverse matrix.)
Also stress that if the coding matrix is & right multiplier, so
| '_mu,ét' 'the., decd’ding métrix be. To convince them, have them try to

O _scode & message by multiplying on the left with the decoding
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matrix.

1.8 Exercise Solutions

1. &, COME HOME substitution, 315135 815 13 5
™3 1j 8 15 3 151 2 3 81§E §"I
_—-’ . [3
13 5l,p3 5] 13 5| b 2Lh3 sl 2
21 39 1 57
—_ — 21 39 31 49 31 54 31 by
31 49,1 49

23 B|[5 1 [25 15
b. WHER EARE YOUX—? |
5 18/,08  5|,[21 24

__’54 81 |11 17] |65 105
28 s51],l41 64],66 111

> 54 85 28 51 11 17 41 64 65 105 66 111
58  o7] [25 49]
127 53§,|27 53]

58 o7l 2 3] [e5 9|2 -3] 19 20 [ =2
N E 9‘.!" 5 49| NE 3
27 53§21 2],]27 53 p1 2 1 25[,{1 25

——— STAY AWAY

N ELTSY N RS 912525'|
"2 89l,[5r 87 15 22,5 21

I LOVE YOU

2 =351 [-2 2(-2) +3(3) =5
3. - a. . = Check:
R 2| 3 (-2) + 2(3) = &4

. [2 .,-37-; 5] -l choe; 2(4) +3(1) = 5
PRI E | - B i 1) (-4) +2(1) = -2

(x,y) = (-4,1). 29

2, a. 5897 27 53 25 L9 27 53—




2 -3 [ie] 6] 2(6) + 3(0) = 12
c. . = Check:
;1 2 L6 o . 6 +2(0) =6
(X,Y) = (650)
(2 -3 [0 l:15- 2(-15) + 3(10) = 0
d. ‘ = Check:
;1 2 | 5] |19 (-15) + 2(10) = 5
(x,y) = (-15,10) .
(2 3] [0 0] 2(0) + 3(0) =0
e. . = _ Check:
-1 2] Lo |9 0 +2(0) =0

4, Use the coding matrix.

[2 ﬂ {s] 'h] 2(4) - 3(1) = 5
a. . | = ‘ Check:
2 I_-e_l |_1 -(4) +2(1) = -2

(x,y) = (4,1)

[

2 j "fl 8 2(8) - 3(3) = 7
b. . = Check:
1 1-2 3 -(8) +2(3) = -2
(st) = (8!3)
B P j "z-II [2] ' 2(2) - 3(0) = 4
c. . = Check:
1 | -2 0 _ -(2) + 2(0) = -2

(x’Y) = (230)

5. Many possible énswefs. For example, see Exercisé la where
"M" and "H" both become "31." (It is hoped that this
exercigé induces the contention that multiplication of
matrices is not commutative. )

- 6. No. ‘See Exercise 5, or try it!
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1.9 Mstrices and Transformations (Time for 1.9 and 1,10 = 2

1
to 25 days)

This is a good opportunity to review transformations,
and, at the same time, extend students' abilities to study
transformations through the use of matrices as tools. The
matrix of a transformation is derived in exactly the same
manner as the coefficient matrix of a set of linear equa-~
tions; namely, by detaching coefficients of varisbles, with-
out disturbing their relative locations. We have restricted
ourselves in this section to transformations with coordinate
rules, for which the origin is & fixed point. This includes
reflections in the x-axis, y-axis, £, (the line with equation
Y = X), two rotations about the origin, dilations about O,
but not translations nor glide reflections. To include the
latter exceptions we would have to use 2 x 3 (or 3 x 3)
matrices, and this would mar the simplicity of a first approach
to this topic. Consider for instance, the composition of the
halfturn sbout 0 with matrix li; (j and the translation with

rule (x,y)——»(x.+.8, y + b), or what comes to the same

thing, the matrix [? 0 & . 'The composition requires a
e 0 1 b
i -1 O l1 O a
multiplication of matrices. We can multiply .
o - ¢ 1 b

but not E o a]. [’1 ﬂ This introduces a problem for
‘ 1 b o -

which students are not ready. It can be solved by using

homogeneous cocrdinates in a projective plane. This results in

4




Note the natural way in which the question of associa-
tivity arises in connection with the effect of & composite
transformation on a point. For this we need a product of
three matrices, and the question taken up in the text leads
to an interpretation of the product of two transformation
matrices.

We have introduced a shear in a plane in this section
since, like the other plane transformations, it too has &
simple 2 x 2 matrix.

A shear is & stretching, but not an equal stretching.
An example of & shear is the mepping (x,y)— (ax + by, cy).
The concept-of & shear is useful in physics, especially fluid
mecheanics. For a reference see "Geometric Transformations,
Volume 1" by Modenov and Parkhomenko, Academic Press.

But simplicity of matrices does not necessarily make
for simplicity of transformation. For examples, see
Exercise 4(a) and Exercise 5 in the section that follows.

Do not expect your students_to give a full eccount of

the transformations with matrix I:e fl (the_ coding matrix).
o 1 2

You should be content with & description which reconverts the

matrix to the coordinate rale. So, for [: f] expect

" (x,y)—t(ex + 3y, X + 2y)"

d » We have not considered what interpretations to give the
L[}{U:um of two matrices associated with transformations. Actually,
— 3.1




the answer is simple.

When & matrix has the form I:a] it can be interpreted sas

b
being associated with the translation that maps (0,0) onto (a,b),

and (8] + |¢]=[°" is the matrix of the composite trans-
b a] o+d

lation which follows the familiar "parallelogram law" for
edding translations (or vectors). Now, [? fl,[f] may be
, b d

"decomposed" into x[a] + y[c . Thus |® € ) may be
b d b d y

viewed &s the sum of two 2 x 1 matrices, each multiplied by a
scalar. Hence, the image of eech (x,y) is obtained as the
sum of two vectors. If you like, this can be taught in

connection with Exercises 4-8 in Section 1.12. For instance

[ o ve s n[] + o] o [ < [
The image of (1,2) is found by the addition []] EI ﬂ

The image is (8,5). In this manner we find that the image

of the unit square, with vertices (0,0), (1,0), (1,1), (0,1)
is the parallelogram with vertices (0,0), (2,1}, (5,3), (3,2).
This suggests how the entire plane, viewed as a network of
squares, is transformed onto & network of parallelograms.

(See Matthews, Metrices 2, pages 20-23).

1.10 ' Exercise Solutions

| 1 N
1. 8. . = v The tmage 18 (3,2).
0 -1 R E
[ o3 F3 -
b, . = The image is (-3,-2).
B SR L= R 2%



o AT [Z
c. . = The image is (-2,5).
1 92 L3
Co - [3 [ 4]
d. . = The image is (2,3).
11 92 L3y
SR B
e. . = The image is (-3,2).
-0 -!'d :g -g- N
f. 7 = The image is (9,-6).
o 3L -6
B! 6'| -1 0] [-8] ﬂ :
2 8 . =l | The image is (2,0).
o -y Lo -1 Lo L4
o 1 Fr 9o |2 [9] .
b. . A= The imsge is (0,2).
1 o' lo -2 Lo L2
o -1 F1 O] [~8] [
c. . = The image is (0,2).
1 o o -1 Lo L2
"1 o] [o -1] [8] [9] (0,2)
d. . . . = The image is (0,2).
o -2l L1 o Lo L2
8 [o 1) [ [0 -
e. . . = The image is (0,-0).
o 4 Lb o Ld L8
o I [+ O] 8 [9 (0,-8)
f. R 1. = The image is (0,-O).
1 o lo 4 Lo L8
. ool M 1 [ -
3. a R _ =
‘ :0:‘ "‘-1: :0 ]..'. L_o -a.
MR ot -1
b. * =
Lo i e -l Lo 2
AU ot RN « O =S ) B -
C, s ¥ =
o o 1 '|o -2f fo -2

2
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2 o] 1 11 2 -3
o 2] Lo 1 |o -2
2 o] [2 ol T 0]
o 2] "o 2] Lo &
Each point is its own image. The transformation is

‘the identity transformation.

(0,0)——(0,0); (1,0)—>(1,1); (0,1)—=>(0,1);
(1,2)=——=5(1,2). This is a shear with rule

(%, ¥)—s (x, x + y).

(0,0)—> (0,0); (1,0)=—>(0,-1), (0,1)===d(1,-1),
(1,1)=—>(1,-2) . This is R, followed by R, followed
by shear with matrix [i ﬂ These are determined

by noting how to transform square with vertices (0,0),
(1,0), (1,1), (0,1) into the parallelogram with
vertices (0,0), (0,-1), (1,-2), (1,-1).

.Also acceptable is the answer: the transformation
with rule (x,y)—p(y, X = y).
(0,0)=—(0,0), (1,0)—(-1,0), (0,1)—>(1,1),
(1;1)=—p(0,1). This transformation maps (x,y) onto
(-x +y, ¥).
(0,0)—(0,0), (1,0)=—(2,0), (0,1)=—3(0,1),
(1,1.);_;(2,1).: In general (x,y)—3»(2%,y). This

‘moves & point along & line parallel to the x-axis

(y—ﬁy) and twice as far from the y-axis (x—p2x).
(0‘,0)—,'——)(0,0); (1,0)—-f-)(2,1), (0,1)—-)(1,1),
(1,1)— (3,2).; In this transformeation

“X,y)—(2x +'y, X +¥).
2.0 o
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g. (O:O)H(O:O)i (1:0)‘—)(2:0): (0:1)‘_“)(0:2):
(1,1)=——p(2,2). In this transformation
(x,y)——3(2x,2y). It is & dilation with scale factor
2.

0 1 0 1l 0 2
h. ] + [ ] = [ ] o (0:‘0)—'—‘)(010):
1l 0 0 0 1l 0

(1,0)=——(0,1),
(0,1)—=(2,0), (1,1)—)(2,1). 1In general,
(x,y)—p(2y,%x). It can be regarded as a motion
parallel to the y-axis (x=—=px) and twice as far
from the x-axis (y—)2y), followed by Rg.
(3,2)~=—(5,5) and (2,3)—3(5,5). Therefore the mapping
is not 1-1. Hence it is not a transformeticn.
The rule of this transformation is (X,y)=—p(2x,x + y).
One can describe it as moving & point parallel to the
x-gxis to enother twice as far from the y-axis as the
first (the effect of 2x) and raising it (or lowering it)
a directed distance of y (the effect of x + y).
The rule is (x,y)—>(3x,y). fhis keeps & point at the
same distance from the x-axis (y——>y) and triples its
distance from‘the y-axis (x—93x).

f'C hes the rule (x,y)—3(2x + 3y, x + 2y).
:"D has the rule (x,y)=—gp(2x - 3y, -x + 2y).
~.In either order the composition is i, with rule

(X3} (x,7).

- For space tranéformations we use 3 x 3 matrices. Some

';1gx§mp1és follow.

29
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The reflection in the xy-plane has the rule
(x,¥,2)—>(x,y,-2).

1 0 0
The matrix for this rule is |0 1 0

0 0 -1
The reflection in the origin 0 has the rule

(X,¥,2)~—>(-x,-y,-2).
The matrix for this rule is 0 -1 0

The reflection in the x-axis has the rule
(X, 52 )=—d(X, =y, -2).
1 0 0
The matrix for this rule is |0 -1 o)
| o o0 -1
The dilation'with center 0 and scale factor 2 has the rule
(x,y,2)—>(2x,2y,22).
. 2 0 0
~ The matrix for this rule is |0 2 0
o o o o 2

The 90° rotation sbout the x-axis has rule [1 0 6]
- (x,¥s2)=(x,-2,y) and- the matrix for this {0 0o -1
ruiélis-v:-“ o o 0 1 0
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1.11 Transition Matrices (Time for 1.11 and 1.12 = 1 to 1%
days)

We have deliberately chosen transition matrices in which
the sum of entries in each row is one. Then each of these
matrices may also be considered & stochastic matrix and the
entries ere known as transition probabilities. .A sequence of
calculations in which we start with a set of states and
calculate consecutive stages of states (as we do for the
population of a city and its suburb) is a Markov Chain.

However a transition matrix need not be & stochastic matrix.
Had we allowed for an increase in the total population of our
example then the sum of the entries in & row would have been
more than one, and hence, they would no longer be transition
probabilities - and neither would the matrix be a stochastic
.one,

For additional examples of a Markov Chain see Kemeny, Snell,
Thompson:‘.Introduction to Finite Mathematics, Prentice Hall,
peges 171-175.

1.12  Exercise Solutions

e o 1.9 .1 .
1.  (a) [4,830,000, 2,170,000] - [:; ;] = [4,781,000, 2,219, 000]

(®)  []963 to 196U4| 1964 to 1965 | 1965 to 1966
“changes in city |- 100,000 | - 70,000 - 49,000
‘population - . | |

. changes 1in suburkl + 100,000 | “+ 70,000 + 49,000

- population .~ .} S

Kl
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The absolute values of the changes are smaller and
smaller, and presumably continue in this manner to
approximate zero. This is the mathematical way of

describing a tendency to stability.

98 .02
. = 8 2
(2) Moo ¢ o1 oo [ss 2]
08 .02
b 98 2] . = |96.06 3.94
(®) E d .01 .99 :l

98 .0
(c) [o6.06 3.94] I: 0 = [os.1782  5.8218
.01 .

The changes in water vapor in successive hours are + 2,
+ 1.94, + 1.8818, indicating a constantly increasing
amnount of vapor - even though the amount of increase is

slowly decreasing. This would suggest (not prove) that

kthe sequence of vapor changes has & lower bound O. This

would imply that the amount of water vapor has a greatest
lower bound - hence eventual stability. However the data
collected for three hours only suggests this stability.
More data would'méke this argument more plausible and
mathematical theory (involving charscteristic values of
the transition matrix) would prove the conclusion of

stability.

(a) Te .15 T' ~83 .17
a le .8 L2 .8 N

.98 .02] [-98 .02] [-9606 .03k

Lor  .99f |.o1 '.9_9_ .0197  .9803

Tb‘find the 1962?§opulétieg(§rom the 1963 population

£
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multiply
[5,000,000 2,000,000] by the inverse of the transition
matrix, Thus, if A is the transition matrix, and {x,y]
is the 1962 population,
5,000,000 2,000,000}-A"* = [x,yl.
becsuse [5,000,000 2,000,000]:A7! . A = [x,y]-A
or [5,000,000 2,000,000] = [x,y]-A

as required.

1.14 Exercise Solutions (Time for summary and 1.14 = 1 day)

28 42 14 28
1, (a) AB = BA =
|0 1 o 28
| 6 0] 3
{(b) AB = BA =
3 9 4 2
I d P q
(¢) AB = P BA = p1
EY L os
0 -1 - 10
(d) AB = | BA =
1 15 43 5

2. In eachcase A+ B=B + A

7 6 5 2 p+1l g 1 -1
a, b. c, d.
- 1 8 3 1 r s+ 1 -9 6
S 3 8 L 2] 6 16 8 -4
2A + 2B + 2 ' L+ |
- ' -2 4 4 12§
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3 2] |-3 2 0O o0
(b) + =
6 4] |-6 - 0O 0
23 21510 |19 15
5. (a) WILL COME SOON :
12 19,113 51|15 14

3 1
Which on multiplying on the right by [: :] beccmes
5 2

Em Eu l'32 uEI
96 361,|64 "3, 115 13

114 41 96 36 84 33 64 23 132 49 115 43,

114 4 4
(b) on multiplying the
96 » |115
- 9 1
right by becomes :

WILL COME SOON.

2 -Tﬁré' 2] 3(2) + (3) =
6. a, . = Check:
5 36 I3 | 5(2) + 2(3) =
(x,y) = (2,3)
. T2 1) 3] 2] 3(2) + (=3) =
b, . =] Check:
-5 3 44 -3 5(2) + 2(-3) =
4 (x,y) = (2,-3)
3 Y R 2(-2) - (-3) = -1
C. : b = | Check:
s gLy |3 -5(-2) +3(-3) = 1
(x,¥) = (-2,-3)
3 1 [1 [5 2(0) - (0) =0
a. . =1 | Check:
s 2fd Lo | -5(0) +3(0) =0

(;c,y) = (0,0)

e
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0 1 0 a b ¢ a e fl
7. 1 0 ol.la e f£l=]e b ¢
0o 0 1 h i g h i

The product may be obtained from the second matrix

by interchanging the first and second rows.

8. A B C A B C D
Aj O 2 0 Ajo 1 o 1
a. B| 2 0 1 b. Bl1 o 1 o
clo 1 0 clo 1 o o
p{1 o o o
A B C D
alo 1 1 1
c BlJ]1 o 1 1
cl1 1 o 1
pj1 1 1 o
7 3]
9. a. [3,000,000 3,000,000] - » .8' =
-l

[2,700,000 3,300,000]

[2,700,000 3,300,000]

ey
Lo W)
]

[2,550,000 3,450,000]

T 2
[2,550,000 3,450,000] - [; ;] =

(2,475,000 3,525,000)

e
e
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Suggested Test Items

A desaler sells three kinds of cars, A, B, C in two sales
offices I, II.. His sales for the month of January are
‘shown in matrix P, and those of February are shown in

matrix Q. The prices of cars are shown in matrix R,

jp B ¢ jo B ¢ A | 2000

I 16 3 4 I1]5 7 1 B | 2500

II |3 4 2 IT {3 4 5 C | 3000
P Q R

Using matrix operaticns, showing a1l work, find:

8. 'The total number of each kind of car solé, in each
'office, for both months.

b. The total number of each car sold, in each office,
during March, assuming that the March sales are double
the Februery 3ales. 3

¢. The sasles revenue for the January sales in each office.

The matrix of rgo is E -:I and that of dilation Dy is

5 5 1 of

]

a., Find the image of (-3,5) under ryo 8nd also under Ds
using matrix operations.

b. Find the matrix of the 2omposition of rg, followed by Ds.

¢c. Using matrices, determine whether or not reo©0Ds =

a2
3
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Express as a single matrix.

: 3 2
In coding a message with matrix E ] the appropriate
: 3

-2
decoding matrix is [ ] 5 using this information
3
solve und check:
3X + 2y = 4 3x - 2y = -8
a, b.
4x + 3y =5 “U4x + 3y = 11

Devise a matrix for each of the following two way bus

routes depicted below A
A
B C . B — o

The population of a c¢ity at the end of 1968 is 5,000,000

and that of its suburbs is 3,000,000. Assume that 80 %

of the city people in any year, remain in the city end

20 4 of them move to the suburbs, while 90 % of the
suburban population remain in the suburbs and 10 % of
them move to the city.

Using matrices, calculate the bopulation in both city and
suburbs, at the end of 1970.

9y
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Solutions of Test Items,

11 10 5
;. a, P + Q = 6 8 ]J
10 w2
b 2q =
| 6 8 10|
(6 - 2000) + (3 + 2500) + (4 - 3000)
¢ FrR ‘;3-2ooo)+(4 -42500)+(2-3oo<;| i
31,500]
22,000
2. ° A P ss—2mss,e3)
1 o L3 L3
2 0 - - Da N
= (-3,5)—>(-6,10)
o 2] "Ll |-
2 3] [0 -1 [0 -7
"ol oAl dTl e
[0 -1 2 o] [o -2
b Jdle ol o treoemammeeng
0 1—6
3. 2 |-1f + 5]1 . [2 5-11=]31-[2 5-1] =
2} 114
-6
6 15 -3

4, a, [ ]- = (x,¥) = (2,-1)
4 3 5 -1

Eh
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3(2) +2(-1) = &4
4(2) +3(-1) =5

Check:

3 2 8] [-
b. E J [::, = [:l (x,y) = (-2,1)
Check: 3(-2) - 2(1) = -8
~4(-2) +3(1) = 11
A B C A B C D
o 1 1 Ajo 1 1 1
5 a. BJ1 o0 =2 b. BJ]1 o0 1 1
cyl1 2 o cji1 1 o 1
pjJ]l1 1 1 O

6. Solution method 1:
[5,000,000 3,000,000] -
(4,300,000 3,70C,000].

(4,300,000 3,700,000] -
(3,810,000 4,190,000].

FEPN B PN
o Mo My

Population of city at the end of 1970 is 3,810,000 and the
popuistion of the suburbs is 4,190,000.

Solution method 2: —
‘ .8 .2 .8 .2
[5,000,000 3,000,000] - . =
.1 .9 .1 .9
' ' l.e6 .34
[5,000,000 3,000,000] - | =
' .7 .83

" [3,810,000 4,190,000].

39
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Chapter 2
LINEAR EQUATIONS AND MATRICES
Time Estimate: 13 - 15 days

The main objective of this chapter is to solve systems of
linear equations by means of tableaus, and operations on tab-
leaus,

It is important from the very outset to understand that a
tableau is not a crutch; in the sense that this term 1s used
émong teachers tc describe a device that helps students to
overcome 2 difficulty and is then discarded. The tableau, indeed
a helpful device, is not discarded. It is used in this chapter
to answer many questions about solving systems of linear equa-
tions; 1t 1is used again in all subsequent chapters where systems
of equalities and systems of inequalitles are to be solved; it
is used in the simplex method to solve linear programming prob-
lems; 1t is used again in linear transformations.

A tableau is an orderly way of writing a system of linear
equations or inequalities. It reveals simply and quickly the
coéfficients, detached but not entirely removed, of variables,
and constants. That this is a sensible arrangement follows
from the fact that solutions of systems operate on the coeffici-
ents and constants,.not on the variables. This and the fact that
tableaus are easily related to matrices have induced modern
mathematicians to use them extensively. Another advantage of

tableaus is that they can be used in computer programs to solve

40



-~ 39 -

The tableau is a short step from a data table., When a prob-
lem contains many facts and relations it is advisable to af-
range the data in a table. This has been the practice in teaching
the conventional rate-time-distance problems or age problems,
to mention only two ? 'pes, To illustrate with a variation of
a rate-time-distance problem: Two men start at a point and move

- in opposite directions, one at the rate of 30 m.,p.h., the other
at 40 m.p.h, After the first travels x hours and the second y
hours, they are 250 miles apart, If their respective rates had
been 35 and 45 m.p.h. That distance would have been 285 mijes.
Put in a data table form, this can be recorded as follows:

DISTANCE
A 30 4 250

B 35 45 285

Then the equations are
30x + Loy = 250
35x + b5y = 285,
How simple it 1s to convert the data table to a tableau

'by writing the variables at the top of columns as follows

X y -1
30 ho 250 =0
35 hs 2851 =0

Once the student has learned to plvot on an entry in the
tableau, the method of solution is simple and direct. The
method is the same for a system of 100 equations in 200 variables.

) .
IERE(P this sense, the tableau, together w%ﬁ% the pivotal operation,

IToxt Provided by ERI
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becomes an operational system, Summarizing, a tableau
incorporates three basically important features.
(1) It organizes a complex set of data.
(2) It is a simple way to write a system of linear
felatlons.
(3) It serves in an operational system to solve

the systen,

2.1 Linear Combinations of Equations (1% - 2 days)

In this section we try to clarify the nature of a system
of linear equations. Such a system is a conjunciion of open
sentences. The conjJunction is true if each component is true.
Hence the solution set of the system is the intersection of the
solution sets of the component equations. The focus of this
section is to see how the solution sets of equations are
affected by the two elementary operations performed on equations.
In the first of these operations the equation is multiplied by
a non-zero cbnstant,_and the solution set is unaltered. In the
second operation an equation in a system i1s replaced by the sum
of itself and a multiple of another. This leaves the solution
set of the system unaltered. The second operation is a special
case of linear combinations, a notion that assumes more and
more importance in subsequent studies.

Observe the notation by which a system is represented by

a capital letter, such as A, and its component equations are

represented by the létter with subscripts. If system A has

A9

-
]
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three equations they'are called Ay, A,, A,.

The crucial ideas of this section are found in Theorems

1 and 2,

2,2 Exercise Solutions

1, (a) 10x+ 2y =6
(v) x+%—y=%
(c) -%x-§y=-l

2, (a) x-§y=-2'

(v) -%x +y = +33

(b) Bx+y=17

(¢) -Ty =21
2
(@ -f =7
T, - 14
(e) %=
(£) Tx =14
L, (a) m=3 (b) n=-2 |
5. (a) m=-2 (b) n=2 (¢) k=2
%, ax+by=c A,
A , . _
a'x + b'y = ¢! Ay
‘b, _C 1
Xty =3 By, = 7A
B
S Qx +,a'b| ;a"by = act ;alc B, =A§ - a'B
o ble - be! ‘
X+ 0y = —m—
C y ‘a‘b| - a,l'b 01 = B‘.I. - %CQ
Ox +y =288l -alc Cy =

2
ab' - a'b 5T —a7b L2
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_ . ac'! ~ a'c
If a'p = a'p, B, 1s Ox + Oy = ——5—— This equation has no

solution if ac' #£ a'c and is satisfied by all (x, y) if ac' = a'c,
In the latter case system A is equivalent to one of its
equations,

>

2,3 Pivotal Operations (2% - 3 days)

The aim of these operatlons is to convert all coefficients
of a variable into zeros and if possible, one "1". It is
iterated as many times as are possible. These operations pro-
duce a sequence of equivalent systems, whose solution sets are
the same. If it is possible to reduce a system so that each
variable has zero coefficients and on "1", then the system
has ‘a unique solution that is easily read in the "-1" column,
Otherwise, the system has elther no solutions or an infinite
number of solutions. |

The pivotal operations were first invented by Gauss to
"diagonalize" a system. In this form all entries below diagonal
entries are zeros. It was extended by Jordan (a French engineer)
to obtain zeros above diagonal entries which are hopefully
all "1"'s,

We have tried to effect a gradual transition from using
pivotal operations on equations, written in the classic manner,
to rows of a tableau. It is important in this transition to stop
and retrieve equations from tableaus at various stages of the
Gauss~-Jordan reduction, in order that the student acquire the
conviction that pivotal operations are based in an intelligent

EKC procedure - not only mechanical. . 1‘14

Aruitoxt provided by Eic:
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In this section we confine ourselves to systems tha: have

unique solutions. Others are considered in Section 2.5.

2,4 Exercise Solutions

l. X y =1 2. x vy -1
® 3 10 ® 3 10
2 5 16 2 1 6
1 3 10 1 3 5
o @ -4 o € -b
1 o -2 1 o0 2
o 1 & lo 1 2
(x’ Y‘) = (‘2:)4) (X, Y) = 2:2)
3. x ¥ -1 4, ‘u v -l
5 =3 12 5 3 27
® -1 5 5 @ 10
o €3 -3 ) o 12
1 | 1
1 -3 3 3 5
1l 0 =3
1 1 -
0 1 14
1 0 3 .
! (u! V) = ("3: 1"”)
(x, y) = (3,1)

a3
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)= P D

10. (x’ y, Z) = (1, 0, -1)

11, (%7, Xp5 Xg) = 2% 17, é%a

12, (x, y, 2z} = (=~ %’ %? - %)

9. (x’ y, z

13. (x, ¥y, z) = (1, 0, 2)

14, (x, ¥y, 2, W) = (%Z, %2, %ﬁ: - -—)

2.5 Solvigg S: stems of Linear Equations, Continued (1 -~ 2 days)

Tn this section we consider three types of systems:

(1) Those that have exactly one solution

(2) ‘Those that have no solution

(3) Those that have an infinite number of solutions
One of the (many) advantages of the Gauss-Jordan form

(the last stage of the iterated pivotal operations) is that

it dist;nguishes at a glance among these three types as follows:

(1) 1If every row as a "1" in a different (variable) column,
all other entries being zero, there is‘exactly one
solution. It is found in the "-1" column,

(2) If the coefficlents in a row are all zero, and the constant
is not, there are no solutions. If the constant is also
zero, delete that row and work with the others.

(3) 1If there are more variable columns than roﬁ;_(after
deleting zero rows),_and some rows have entries other

Q than one "1" and zeros, the system has an infinite number

A
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of solutions, The variables whose columns contain the
non-zer s other than the "l1", serve as parsmeter of
the infinite solution set.
We have written solution sets in two ways. For instance

the sets in Example 5 are
((%,752): x = =-2s+3t+5, y = s, z = t, and s,t€R}

or ((-2s +3t + 5, s, t): s, t € R},
I# you wish to write the solutions (not as yet) it may bve

done as follows: (X, vy, 2z) = (-2s + 3t + 5, s, t).

2.6 Exercise Solutions

1. [2 3;"‘13 2. b
4L 10 7 -4 4
4y 10 7 6 U 6
1 3 3 1 -5 1
[0 0 1] ‘0 0 Qg
no solution, (x,y): (1 + % , t) t € R,}

or {(1 + %ta t)}.

a8
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2.7 Homogeneous Linear Equations (1 day)

There are no new techniques introduced in this section.
We devote a scotion to homogeneous linear equations because
of their theoretic importance in subsequent studies, This
becomes evident in differential equations (especially partial
differential equations) vector subspaces (Chapter 8 Course III)
are kernels of linear transformations (Course IV).

Of particular interest here is the fact that all systems
of linear homogeneous equations have at least the solution
(X35 Xas oees xn) = (0, 0, ..., 0), Also, as system of m
equations in n variables, m < n, has an infinite solutlion set.

The Gauss-Jordan form helps to explain why this is soc,

2.8f Exercise Solutions

1. (x, y) = (0, 9)
2- (x’ Y) = (0’ 0)
3. (x, y) = (=3t, 2t) t any real
4. (x, y) = (0, 0)
5., ° % = g implies ad ="be, or ad - be = 0,
x X y x y
a : 1 -g- 1l -
is reducible to or &
e a : ad - be}
5" 0 a 0 0

.'.x=-é-t, y=t, t any real
6, (x: ) z) = (0: 0, 0)'

Toe (X35 X5 X3) = (-4t, 3t, t) t any real

£4)




8.

9.
10.

11,
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(x, ¥y» 2) = (3%t, 2t, -5t) t any real

(a, by, c) = (t, t, =t) t any real

(%, X9 %) = (0, 0, 0)

(%, Xy5 Xas Xg) = (26, 3t, =Ut, -t) t any real.

(Note: Infinite solution sets may be designated in other ways.)

12,

2.9

The given system 1s equivalent to a system of two equations
in three variables. Bt Gauss-Jordan reduction this leads
to a form in which at most two columns have 1l's., Thus one
or two variables can be expressed in terms of the remaining

variables. Hence an infinite number of solutions.

Matrix Multiplication Derived from Linear Equations in

Matrix Notation (1 day)

We don't actuslly derive the dofinition of multiplication

from a system of linear equations, We show that if we accept

that definition the matrix notation for a system is equivalent

to that system, This is further strengthened by showing how one

matrix equation can represent a set of systems, having the same

coefficient matrix,

The definition of matrix multiplication was discovered by

Cayley, when he investigated the resultant of two linear trans-~

formations. We repeat his experience for simple transformations.

Suﬁpose under Transformation T,

X} = a,,xX + 2,,¥ 211 212

Y = ag,X + 85,Y 854 PP

3
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and under Transformation T,

1 1
x11 b,y X +b12y

y‘.l'.l

by Xt + by,y?
Then under T, ¢ T,

%1 = b,y (a,,% + a,,Y) + Dya(as,x + 2,,Y)

Y11 =D, (a),X + 2,,y) + boo(ag X + a,,y)
x12 = (byy8,y + Dya8y,)x + (Dy38,, + by,8,,)Y
Y11 = (byy a1y + baa8y, )X + (bzlaaa + Dp28s3)Y
This result is given by
by18yy + bya8g, byy8y3 + by 852 |

M°'0 M'.l =

byy8yy + bpy2y, bay8y5 + baglas

2,10 Exercise Solutions

1. (a) [3 5 'y El '3 1
] [ = or [x y] ] = [8 3]
(1 21 Ly 3 5 2
3 -5'| ™= 2] .3 17 |
(b) = | | or [xy] = [2 b]
11 -31 Wyl 4] -5 =3
ra, b [X] c] ER N
(e) | = or [x ¥yl = [¢ D]
| d e | V] £ | b e |
. E 5] [x1 X, xa] [8 3 17
) 2dly, v, ¥ 3 1 0.
x y 8 3
or ! ! 3 1
Xa ¥, 5 of = 3 1
Xa Vs 1 0
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2,11 Matrix Inversion (1% - 2 days)

In Section 2.9 we used matrix notation to shed some light
on systems of linear equations. In this section there is a
reversal of point of view. We use a system of linear equation
to solve an 1m§ortant problem about matrices. From our
cxperiences with groups and fields, we know how important is
the notion of inverses, both additive and multiplicative.
Every matrix has an additive inverse. But every matrix does

| not have a multiplicative inverse. This perhaps unexpected

fact is clarified with the aid of what we have learned about
solving systems of linear equation.

Students should know that our concern here is only with
square matrices, Others do not have inverses, for we cannot

multiply two m x n matrices if m # n.

2,12 Exercises Solutions

8 12]1 o 1 0 % -3}
1, reduces to 3
3 510 1 : 0 1 |-g 2
8 12 % -3
The inverse of 3 ’ is 3
5
-7 2
8 2 |1 o (1 o0 |.1 -
2. : reduces to 1 )
2 0 1 -0 1 - ]
g8 2 1 -1
o The lnverse of é is 7 4
ERIC ! "z
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2,13 Word Problems (2 - 2% days)

The aim of this section is to relate the solving of
equations to problems that do not present themselves in the
form of equations. It is assumed that students have already
had some word problem experiences in earlier grades. We want
here to extend these experiences to include systems of linear
equations,

Many students find it difficult to solve word problems,
Part of this difficulty arises often from their failure %o
appreciate the importance of finding and translating a word
sentence into a matnematical sentence. Sometimes this 1s du:
to the fact that word sentences are implicit in the situation
described in a problen, Often thelr search for that implicit
sentence is a feeble one, Their efficiency can be much
improved if they are (a) made aware that they are looking for
& word sentence which expresses a number relation, and (b)

- willing to feadmﬁggmqgggwﬁggtgqge several times until they
get an exact understanding of the number relation in the
situation. o |

Some teachers believe that group word problems és types
(coin, mixture, motion, etc.) does not bring héme the main
point that an edﬁation or inequality corresponds to & word
statement, Others believe it is easier to make this point
only after students have had some experiences with a graded
sequence of types of problems. We take no position on this

O

Emcmpstinn Wo wiah Anl«w +~ malta +he cédedondt ownws ~Ff dha nnd

IToxt Provided by ERI
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to search out the word statement that it is to be translated
into mathematical symbols.

There are many situations we have not included in the
exercises, feeling that doing so would make an already long
chapter still longer. However, if you think you can make room
for it we suggest that you compose problems that result in
two equations in three unknowns, and svine that result in three
equations in two unknowns. You can still use situations
like those we have described in our exerclises, which involve
stamps, coins, mixtures, gate recelpts, etc.

The student is cautioned to check answers with the
conditions as stated in the problem, not as described in
equations or in equalities. Correct solutions of wrong equations

will satisfy them, but not the conditions of the problem.

2.4 Exerclse Solut’ons

1. Let x be the number of single desks and y the number of
double desks.
.x +y =36
X + 2y = 42 (x, y) = (30, 6)
2. Let X be the number of 4 cent stamps and y the number of
6 cent stamps.
X +y =15
hx + 6y = 72 (x, y) = (9, 6)

R
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Let x be the number of 4 cent stamps, y the number of 5
cent stamps, and z the number of 6 cent stamps.

X +y + 2 =21

4x + 5y + bz = 106

Ux + 6y + Tz = 120 (x, y, 2) = (7, 6, 6)

Let x be the number of the 70 cent coffee, y the number
of 80 cent coffee.

X +y =20

70x + 80y = 76-20 (x, y) = (8, 12)

Let x be the number of dimes and y the number of quarters.
10x + 25 y = 295

25x + 10y = 265 (x, ¥) = (7, 9)

Let n be the number of nickels, d the number of dimes, g
the number of quarters.

n ; d +q =13

5n + 10d + 25q = 240

5d + 10gq + 25n = 145 (n, d, Q) = (2, 3, 8)

Let x be the number of junior members and y the numbher
of all others.

X +y =28

25x + 35y = 870 (x, y) = (11, 17)

Let x, be the number of A toys and x5 the number of B toys.

Bx, + 6xq = 260

Bx, + 5xg = 310

6x; + 3xg = 210 (x,, %g) = (20, 30)
28 +3b = 7
ha + 5b = 7 (8, p) = (L, 2D

Sl




lo.

11.

12,

13.

14

15,
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a +2b - 3¢ 12

a - 3b + 2c 12
2a + b - 2¢c = 12 (a, v, ¢) = (0, ~12, -12).
Let x be the number of men employed at 12 dollars, y the

nunber st 15 dollars, and z the number at 20 dollars, per

day.

X +y+z =12

15x + 18y + 20z = 219

20x + 18y + 15z = 204 (%, ¥5 2) = (3, 3, 6)

Let m be the number of men, -w, the number of women,
m= 2w
m-5=w+5 (m, w) = (20, 10)
Let m be the number of men; w the number of women; c the
number of children
46

m-2+w=c¢

m+ w4+ ¢

wa-i{(m=-2)=¢ -12 (m, w, ¢) = (8, 16, 22)
bx -y +2=0

il
o

2x+y -3
3Xx -y +1

i
(o]

‘No solution, The ninny had no numbers
in mind.

Let the men's age be m, the women's W, the sons' s,
m+w+s =64

m+ 6 = 3(s + 6)

w - 12(5 - ll-) (m, W, S) = (30: 28, 6)-
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16, Let the cost of first type be Xx; second type y; third
type z.
X+y+2z=16
15,000x + 20,000y + 25,000z = 295,000
x=y+z (x, ¥, 2z} = (8, 5, 3)
17, x +y + z = 16
bx + 6y + 8z = 108
2x + 2y + 2z = 46 No solution, This implies
contradictory data., If x +y + z = 16,
then 2x + 2y + 2z cannot equal 46,

2,16 Review Exercises Solutions (1 day)

1. X y -1 2, X y z -1
1 -b 1 3 2 1
-1 3 1 2 2
1 =) a 3 7 5 6
0o -1 a+b 1l 3 2 1
1 0  -3a-ib o -1 o 2
0o 1 -a-b o -2 -1 3

(x, ¥) = {(-3a-Ub, -a-b) 1 0 2 7

1 0 2 5

0 1 o =2

0 0 1 1
EMC 01 - (xs352) = (5,-2,1)
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3. (%, ¥, 2) = (- 3 3 )

b, (x, y) = (1, -1)
5. (x, ¥, 2) = (-3-t t §-3t) teR
(There are other possible ways of writing these solutions.)

6. (x, y) = (% - %t, t) (or other ways of writing these

solutions),

2 17
5 -2 5 75
L[ , [F 3
-7 3 1 3
5 5
! 13 1 - 3 5 2
5 ¥ % ¢ 7 7]
A 2 1 6 3 4
S - S U 0. |7 77
1 .1 1
L5 - 2 1 1
[ 18 18 A XA
B 7
1 1 1 2
3 3 3 73
1T 1 2 1
3 3 3 3
11.
1 2 1 1
3 3 3 3
2 1 1 1
|73 3 3 3_
3 2 n 4 0
12, ] [x1 * x’] - [ ’ ]
,7 5Ly, Y2 Vs 11 17 O




13.

14,

15.

16,
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X, X Xa -2 1 o0°
[Yi Ya Ya]’ ) |:5 2 O:I
(%5 ¥,) = (-2, 5), (%35 ¥a) = (1, 2), (x5 ¥ya) = (0, 0).
The last equation is a linear combination of the other
two, in fact their sum. Therefore the system consisting
of the first two has the same solution set as the system
consisting of the three. A system of two equations in
three variables has an infinite number of solutions.
a+b+c=0
Yo, + 2b + ¢ =5 (a, b, ¢) = (%: %: -2)
9a + 3b + ¢ = 13
Let x be the number of packages of the first kind; y
of the second kind.
bx + 3y = 38
3x + 5y = 45 (x, ¥y} = (5, 6)

Let x be the number of elementary schcol students, y the

i

nunber of high school students, z the number of college
students.

x+y+z=100

25 + 50y + 100z
25x + 35y + 75y

6375
1850 | (X, ML) z) = (75: 25, bo).

An Interesting Application of Linearity

The following problem appears in Davis' The Mathematics

of Matrices {(p. 251). It might serve as the subject of an

29
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interesting report or class discussion., It helps to explain
the meaning of linearity as applied to a mechanical device,
The essential mechnical principle is that a (movement) change
in x (or y) is accompanied by a change of k,x in the attached
arm, and that changes in k,x and kyy of the left arms in the

box produce a change cf k,x + k,y in the output,

Fixed pivot
o) a
ﬂ 2777,
° 0
T U (7774 J
N |
P —1 <
. U ‘ \ 1 0
. T Slot wd O
w U
0 © ] T
1 . T2 P
)’r_ m__ﬁ o’ et
wesd
T
N P77 r
(J 0
U |
8 Fixed slide block
Fixed pivot

"Black Box" device

Figure A
Figure A depicts a "black box" device. Values of x and
y (INPUT) are fed into the box and a result, w (OUTPUT), comes
out. In this black box input values of x and y are dactermined
by adjusting (pulling out or pushing in) the two levers x and

y. The result can be read from the w {output) indicator.

£
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The questionkis whether this device 1s linear--is She input

(x, y) related to the output, w, by & linear relationship:

For example, if we had:
INPUT OUTPUT
(L,1) —=> o0

(3,1) > 2
(2,6) > -k
(6,2) > 4
you would suspect that you could write
(x,¥5) --==-- >SW=x -y
(X,y) ==wm== >w = 1x + -ly. Hence this input is

related linearly to the output.

Determine whether the "black box" in Figure A 1is a linear

device,

Suggested Test Items and Answers

1. Using pivotal operatiins on a tableau solve each of the
following systems. Use set notation to express infinite

solution set.

(a) 3x + 2y =
{5x + Uy =7 Answer (x, y) = (3, =2)
(v) X+ 2 -2=3
X+3y-2z2=5 Answer (x, y, z) = (-2, 3, 1)

2Xx ~y+ z = <6

f5



() (x+2y=3
x+3y=5 Answer: no solution
2x -y =6
(d) X -2y +2 =0
2wy -z2=0

i

X +y - 22
(e) x, +x, -2x, =8
2x1 -X2+3X3=3

Answer: {(x,,X;,Xs): X, = %% - %t

x, =% +Lt, %, = t, t ¢RI,

) M+ o -1l
2., Find the inverse, if any, of -1 1l 0
0 -1 1l

Answer: no inverse,
3. A dealer packages pens and pencils in only two ways. In
one kind of package he puts 3 pens and 6 pencils. 1In the
_other he puts 5 pens and 2 pencils, Investigate whether
or not it is _.ossitle to buy some packages of each kind to
ocbtain a total of 50 pens and 50 pencils,
Answer: If x and y represent numbers of packages
(x, ¥) = (%:1, 2) Inpossible.
4, Buying 6 and 10 cent stamps, altogether 20 of them, I
paid $1.48. How many of each did I buy?
Answer: 13 6¢ stamps and 7 10¢ stamps.

o
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Chapter 3
THE AIGEEBRA OF MATRICES
Time Estimate: 13 - 15 days

Below is a highly tentative schedule for covering Chapter
3., The first lessons may go much more quickly than here
"indiceted - the latter ones may take more time, Dépending on
how Chapters 1 aund 2 will have gone - the time limit on this
chapter might be 2-I weeks,

The suggested homework assignments for the first few
lessons are proposed even more tentatively and hesitatingly
than the lesson sequence, They are intended to hint at a
;piral approach to the work - and at a stretching out of the °
problem materials beyond the time of the first considerations
of a topic, 1In all instances, the simple and concrete exercises

should be given first - the theoretical ones, the proofs -

several days after the topic was first discussed,

Lesson Homework

1, General Motivation 3.2 -1, 3a, 4
Review occurence of Some problems from
metrices Chapters 1 and 2
Symbolism
Equality

2, Addition of Matrices 3.2 =2, 3b, 5
Subtraction 3.4 - la, 6a, 2

Some problems from
Chapters 1 and 2

3. Review equality, add, ' 3.4 - 1b, 6b, ba
subtract
Go over homework problems Some problems from

Chapters 1 and 2




11,

12,

13.
14,
15.

16.

17.
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Multiplication by a
scalar

Continue with scalar
multiplication

Multiplication of
matriczs

Review Chapters 1 and 2
Theorems 5 and 7
Multiplication of

matrices
Theorem B8

Review Sections 3.1-3.7
Multiclicative inverses
Multiplicative inverses
Solution of equations
Review Chaptei 2

Complete Multiplicative
Inverses

Ring of 2 X 2 Matrices
Definition of Ring
Varietiess of Rings
Fields

Various types of rings
Review homework problems

A field of 2 X 2 Matrices
Review Rings and Fields
General Revliew

Chapter Test

ER

3.4 - 1le, 4v, 6, c

3.6 - la, e; 2a, 4, 5a
30”’ - ld, 3, 6d

3,6 - 1b, 8; 2b, 3a, 5b

3,8 - selection

Pick up from 3.4, 3.6
Some from Chapters 1, 2



Introduction

The primary aim of this chapter is to examine sets of
matrices from a structural point of view, We want the students
to examine the slgebra of matrices as operational systems,
They should attempt to determine which of the propertlies they
have previously studied apply to matrices., This search for
structural properties is not purely an academic exercise, A
knowledge of these properties is the background against which
we judge whether or not a problem involving matrices can be
solved, and if so, how we might approach the solution,

In this search for group properties we shall find that
a set of matrices having the same dimensions is an additive
group, but a set of matrices that can be multiplied does not
constitute a multiplicative group, even with the deletion of
the additive identity, We shall find that a set of square
ma%rices forms an operational system under multiplication; but
not a group, resembling (Z,,+) in this respect, But we shall
find that a set of invertible (square) matrices of the same
order, with the additive identity deleted, does form a multi-
Plicative group,

After we study matrix addition and scalar multiplication we

could introduce the very important concept of a vector space,

‘However we have chosen to defer that study until it again arises

ERI

naturally (and is it did in fact, historically) in connection

with our study of vector geometry. At that point we will utilize
certain subsets of matrices as additional illustrations of

vector spaces, In this chaptef subsets of 2 x 2 matrices serve

=3 1illustrations of rings and fields. In 3.11 the ring of

mmemm X 2 matrices is discussed. The ring structure will also appear
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in Course III, Section 7.7 when polynomials are discussed. In
3.13 the field of special 2 x 2 matrices is examined.

We have stressed matrices whose élements are real numbers,
Another use for matrices is their relation to transformations
which were described in terms of reals., However, the elements
of matrices need not be real numbers, and it 1is advisable to
give students some experiences with other fields, for instence,
matrices whose elements are those of 25, Of course we should
then add and multiply the elements of -these metrices in
accordance with the operation definitions «f (Zs,+,+), You may
recall that we used matrices to describe bus routes among some
towns, in which we used only whole numbers, another examgle

where matrices did not use reals,
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This chapter is heavily theoretical but, since it only
formalizes the intuitive and notational uses of matrices from
Chapters 1 and 2, it is easy to restate and summarize the theory
rather quickly, However, you are urged to strike a balance
between spending enough time on the theory to have its signifi-
cance sink in - and spending too much time on theory., Do not
wait until all the problems in any section have been done before
you go on to the next section, Always save a few problems in
any section for future uses in a good spiral review as you
get into sections ahead, In fact - you should have problems
left over from Chapters 1 and 2 to incorporate in the a;signments

of this chapter,

3.1 The World of Matrices (1 day)

The purpose of c¢his section is stated in the students!
text, We simply give a formal definition of an operation that
has been performed and was motivated by real interpretations
before, If the subscript notation gives difficulties - make up
1dditional oral problems of the sort given in Examples 1 and 2
in Section 3.2,

The equality of matrices 1s defined - and the fact that it
1s an equivalence reiation is left as an exercise,

Exercise 5 in Section 3,2 prepares the way for a formal

definition in Section 3.3.

£l
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3.2 Exercise Solutions

l, a) 4 X5
b) 5, 4, -7, -1, -1
c) 1=1,3=5

1=2,3=5
1=l J=2
lal, §=5
2, 8 =3¢1 -2:142=3 83y =32 - 21 +2 =6
84g = 3¢l =22 +2 =1 Bap = 342 = 242 + 2 = 4
813 = 3¢l =23 +2 = &1 Bgs = 3¢2 = 2342 a2
a1 B1a s 3 1 1
a3y 8gz 8gs B 6 4 2
3. 8) 2 +3=1 X = -2
2-y=3 y= -1
b) x2 =l y=-1
X = -l y2=1
Xm -l y=-1 (x, y) = (-1, -1)

5. &) By definition two matrices are equal iff they have
the same dimension and corresponding entries are
equal, Since, for all A, 844 = aij’ then A = A,
b) If A = B, then 834 = byys for all i, J. By the
symmetry property for real numbers, if a.i‘1 = biJ’
then biJ = aiJ' HAence B = A,
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¢c) If A=3Band B= C, then a;4 = b, . and byy = ¢4y

J
for all i, J, By the transitive property for

real numbers, aij = biJ = ciJ' Hence A = C,

b, 1 1 O
1 1 1
1 -1 1
2 0o 1

3.3 Addition of Matrices (1 - 15 days)

Students should be made aware of the fact that addition of
matrices is defined only for matrices that have the same dimen-
sions, and that addition of corresponding elements is performed
as defined in the system from which the elements are taken,
Thus, for instance, 2 + 1 = 0 if the elements of the matrix are
taken from Zs. Some books describe matrices that can be added
as "conformable for addition" or "addition conformable", We
have not used these terms in the text, but your students may
find.them convenient in their discussions,

The highlight of this section is the theorem that (M,+) 1is
a group, where M is a set of matrices having the same dimen-
sions.v This is one of the properties of a vector space, The
additive inverse group property makes possible the inverse
operation of‘subtréction.

Equality between two matrices was defined only for two
matrices that have the same dimensions, This implies that for

2s~h entry in one matrix there is an equal corresponding entry

ERIC




-72-

in the other, This equality relation is an equivalence relation,
and hence any member of a set of equal matrices may be used to
name the set,

The notion of equelity between matrices makes possible
writing as many scalar equations as there are entries in each
matrix, This lies behind a number of exercises in the section

that follows.

3.4 Exercise Solutions

3 4 3

l, a) b) Cannot be added
3 o 3
a b ¢ o ¢

c) d)

d e £ 0 o0
Ll 3 o

2, a) |Z ~ , b) Cannot be subtracted
-2 =10 2|

3. a) By definition (-A) is the matrix such that A + (-A)
= J, Thus (=-A) has elements -84 4.
Since &4 = '('aid) it follows that A = -(~A).
b) By {(a), -(A + B) has elements -8y -b1J = (‘aiJ) +
(-bgy).
& «(A +B) = (-A) + (-B).
¢) «C =0 since U + (-0) = T,
4, a) a-2=23,2b+1=-5,a+3=c, 16=3d -2
| % @m5,b=-3, cuB,d=b
b) 3a =15, 10=2b, 2a + c = 10, 2b - d = O,
&F am5 b=5,c=0, d= 10

~4 0

s

r/'q
L
¢ -
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5. a) Since aiJ + biJ = biJ + aiJ’ A+B=3B+A,
b) Siace (a.j_‘j + biJ) toeogg= Ayt (v
(A+B) +C=A+ (B +0C),

13 + ciJ)’

¢) Since a4 + 0=0 + 84 = 855 A+T=0+4A=A,

ij
d) If biJ = a4, then 8y + biJ = biJ + 84 = 0, and

A+B=B+A=T0, (The uniqueness of B follows

from the uniqueness of bid)‘
2 10 1

6. a) |3 2T by {2 % O
g 5 = 3 °

,_a,+l b c a b
c) d e+ 1 £ d) [#4a + b 2a

l_ 4 h+1 i+1

3.5 Multiplication of a Matrix by e fcalar (1 - 2 days)

Note in the definition of k « A, where k is a scalar and A
is a matrix, k 1s always written first, Perhaps your studepts
will ask whether A ¢ K means the same a8 k «+ A, This is a
natural question since we have been interested on many occasions
whether multiplicatlon over a set of numbers is commutative,

In some books k « A and A « k are defined to be equal, However
we prefer to talk only about k « A for a reason that may elude,
and Perhaps confuse them, We therefore leave it for you to
decide whether or not to answer the guestion, If you decide

to answer the explanation might be offered as follows:

We must first recognize that k and A are members of

7
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different sets, 1In this respect alone we note immediately that
we do not have multiplication in the ordinary sense, Then we
must recognize that k « A is never a scalar; it is always a
matrix, The two observations should convince us that we do not
have an operation in the sense that multiplication over the set
of reals is an operation, It is unfortunate then that we use
the term "multiplication” in the title of this section,

Operations over the set of reals - in which pairs of
numbers are mapped onto the set of reals are what are sometimes
called "internal operations" (Bourbaki), Multiplication of a
matrix by a scalar is an example of an "external" operation,

However we do recognize that an assignment is made to
every ordered pair consisting of a scalar and a matrix, The
notion of an assighment belongs to a mapping also, And we
actually have here a mapping, whose domain and range is a set
of matrices, To follow through on this analysis we call k the
mapping and the rule of the mapping is to multiply each number
of the matrix by the number k, Hence k is used to mean both a
mapping and the number used in the rule of the mapping, This
explains why we do not write A ¢ k, for our notation calls for
writing mapping first, then the object to be mapped., It aliso
explains why the word multiplication is used., It is hoped that
the two meanings given %o k in k « A will be clearly differen-
tiated,

- It is in this connection that we say "closure makes no

sense" here, Not too much should be made of this because by

virtue of our definitions we still have a sort extension on

i
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the notion of closure, We insist that R - A must be in the set
of matrices,

Incidentally, if 7 1s a set of matrices having the.same
dimensions and A is a fixed member of 7, thcn {k « A, k € R} is
a module, for it is & subset of an additive group, and is itself

an additive group,

3.6 Exercise Snlutions

Note: Exercises that have a number of parts, as 1, 2, 3, 5 -
should.ggg be assigned all at once at any one time, Use them
sparingly - assign two or three at a given time and save the
other parts for review aspects later on - possibly even in

future chapters,

6 -2 0 | 9 -3 o0 |
8 4 243 12 6 3J3

)-620 d)raoo
i Y | o o o

) [3/3 -/3 0 " (64343 243 o
e X
W3 a3 3 | 8+t/3 W23 2/3+3
1 -1 o
3 ' h) 06 “‘02 0
L P 8 4 203
3 3 73

8
V [6 jE ﬂE il—l :
2, a) 2A+B-C= + - =
10 2 0o -4 0 5 L&p =7
6 )

9 ERE ICRT
o -8 lo 20{ |15 -25

b) 3A + 2B - UC =

I{; I
iu:+<n|

"y




d)

o)

d)

6 4 [-12 18] [6 12 20
2(A +2C) - 3C = + - -
10 2f | o0-16 Jo 15 |10 -29

JE'(A+B+C)=J2‘E 6 =[2£ 6@]- > 2:l=
5 2 52 22 5 1
22 -3 642 -2
,;ﬁ-s 2&-]

1 1 71
A+B+C=’: 2 0
ik O 2
-1 1 1]
A+B-C=|1 o0 O
1 o o
1 1 T
A-{B+C)= (-1 0 0
1 0 -2
o o 2o 3 © 0o T
2A +3B+4C=]0 2 of|+|[3 0 o]+j0 4 o0
2 0o o Jo o 3o o &
4 3 2
3 6 0
2 o 7

I_o -3 32 o o [2 -3
3(A-BY+2C=i{-3 3 of+j]o 2 o]=}]3 5
3 0 <31 |]0 0 2 3 0

H O W

e R P R A AL AL

"IQ




; 2] b ﬂ E il [u 2]
5. 4a) + X = + s, X =
5 1 o -4 [0 5 -5 0
3 2 3 4l 2 o 8 2
b) + 2% = - 2X = X =
5 1 Lo -4 o 5], 5 -10],
=4 1
-5 =5
=3
NIERE] 3 4]
¢) z +X]= 3X+2
\B 2 o -]
3 2 3 &
+X = 6X + L
|.5- .1; _0 -y'—
3 21 12 16
- = 5X
5 1 Lo -1
T5 -1l 3 =%
J- R 17
5 17 1 ~
23 4 2 0 -3 b
d) 3 -X]= 2{x - -
| 0 -4 0 5 0 -4
=9 12 b 0 -3 4
- 3x = 2X - -
| 0 -12] 0 10 0 -4
8 16 8 16
o ol 5X%, X = |5 5
0 -8l o 6
=
6, a) (k + t)(a.j_d) = kayy + re, g Therefore (k + 2)A
« = kA + 1A,
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b) (k2)(agy) = k(4ayy). Therefore (k£)A = k(1a).

c) If k=4, k(aig) = 0, & kA =70,
IfA=0, 8,4 = 0, and k(aid) = 0, ~kA =0,
If kA = 0 then for all i,Js k-ai'j = 0,
Then in turn if k = 0 or a1J =0, If a1J = 0 then
A=0,

d) For all i,Js leasy = 844, ~1A = A,

e) KA = kB implies ka,y = kby 4. Since k # 0, a3y =
biJ' Hence A = B,

7. Since k € R, -k € R, For each matrix in {kA} there is
o matrix kA, Since kA + (-k)A = (=h)A + hA = T, -kA
is the additive inverse of kA,

8. a) 2y = {0, 1, 2}, Hence each entry can be one of
three numbers, The total number matriées in P is
therefore 3.3¢3¢3 = 81,

b) (P,+) is a graph for
(1) The sum of any two matrices in P is in P since
Zy 18 & groﬁp under addition,
(11) For any three matrices in P, A + (B+C) =
(A + B) + C, since addition in Zs 1is associa-
, tive,
- (111) The matrix [: :] is the additive identity,

(1v) For'each matrix in P there is an additive
1nverse since for each number in 24 there

is ap additive inverse, For insteance, the

| T T o 1 [o -1
Q R additive inverse of is
ERIC . ... 2 1 -2 1.




.-79.-

0 0 1 2 2 1
¢c) CA = s 1A = y 2A = 1.
0 0 0] 1 0 2

The set {kA} is a group.

The table
+ CA 1A 2A
OA OA 1A 2A
1A 1A 2A OA
2A 2A OA 1A

can te used to facilitate the presentation of the proof,

0 0 1 1 2 2
d) OB = s 1B = s 2B = N
o o 1 1 2

{kB} is a group under addition, A Cayley table

(as in c)) facilitates the presentation of the

proof,

0 0
0 0

e) If C, D, E are the given matrices, then the table
E D Cc

is the group table,

LIl

Q U =
Q U o=

"

+
hﬂ Hl
o=}

]

N

"

+
F=lo ® e

£)
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1 1 .
9, LetA = [ _j . Then {OA, 1A, 2A, 3A} do form a

group under addition,

2 2 0 0
Let A = . Then {OA, 1A} form a group.
2 2 0 0

is also a group, The answer is: yes,

3.7 Multiplication of Matrices (1% - 2 days)

In thls section we formalize the definition of the multi-
plication of matrices, If your students havz difficulty - in
the first stages - with the procedure "multiply row by column" -
you might try a pictorial device that Papy uses in his Modern
Mathematics 6 Chapter 6, With the use of colors he shows:

red o rred redio
18 5 7| )
blue = bl =
2% bluef§
3 o
_ 2
is can also be shown by: — —

o

It will help your students if they understand clearly that

b L ] .‘.

two ma.trices ca.n be multiplied only 1f the first matrix has as

g mo.ny columns as the second has rows, and that the product has

82
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as many rows as the first end as many columns as the seconc,
They may find the following mnemonic helpful,

(1, 31 « [J, k] = [1, K],
Note, in passing, that if the order of the matrices indicated
in this mnemonic is reversed, we no longer have the fequired
condition satisfied, It becomes immediately apperent that it
is idle to ask whether the multiplication of matrices is

commutative, because we do not even have & product in the second

case,

However, if 1 = J = k, that 1s, if the two matrices are
square matrices of the same order, then & reversal of order
results in a possible multiplication, Hence, for square
matrices of the same order, the question of commutativity of
multiplication 1s a meaningful one,

Since multiplicative inverses are defined A+B = B¢A = ],
the question of the invertibility of a matrix applies only to
square matrices, and I, the unit matrix, 1s necessarily a
square matrix.

Moreover, when we investigate whether a set of matrices is
a multiplicative group we need éoncern ourselves with a set of
square matrices having the same order, Limited to such sets
multiplication is indeed an 6peration since the product of any
two of its members is a member of the set since the product
has the same order as that of its factors,

v | Host of our atténtion in this section is devoted to 7y,
V.the set of matrices of order 2, We see that (7g,¢) 18 not &

O oup because not all its members have multiplicative inverses,

8.
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In this respect (7,°) resembles (Zs,*), in which neither ! nor
3 have inverses since there is no number in Zg for which 2x = 1
or for which 3x = 1, But (7,,°*) like (Zs,°) enjoys the
assoclative property, and they differ in that « is not commuta-
tive in (7Mg+) but » is commutative in (Zg,¢). However the set
of invertible matrices in M, do form a {non-commutative)

multiplicative group, as we see in Section 3,11, Theorem 14,

3.8 Exercise Solution

© Tjfo It o
l. 3.) AB = ° =
1 o 9o |0 -1
[0 1] {1 ol -
b) AC = . -
1 oo -y B o0
o0 -1l [ ©° o T
C) BC = ° =
1 o0 -1 B 9
0o -1] fo 1l 1 0
d) BA = . l.- =
1 o1 oo 1
T ol Tlo T
e) CA = ol -
| 0 -1 |3 91 9
: | 1T o]l fo -3 fo -1
f) CB = - ° =
| o e - o1 9
"2, AB = -BAj AC = -CA; BC = -CB, For any two matrices D

end E in M, it is not true that DE = -ED, For instance

[r 2] [3 1'11"'55'1;3 1 2 [3 7

QA




5.

7.

A' = A+(A-A)

or A = (A<A).A

[

I

-3

i i]

If there is a multiplicative inverse let it be

TR e

(1) ax +az =1

(3) bx + bz = 0

From (1) and (3), a{x + z) = 1 and o(x + 2) = O,

X+ 2z#0, thenb = 0,

(2)
(&)

\y +

o - : ]

ay + aw = 0
by + bw = 1

Since

But (4) says that b(y + w) = 1,

Hence b # 0, Therefore, [ ] has no multiplicative

inverse,
a) true b) false (AC ¢ CA) <¢) false d) false
—a ‘b_ rc ? -B.c = bd ad + b-c;
a.) EF = . =
| -b al] |-d cl =bc - ad -bd + ac} .
e dl [a Y ac - bd be + ad
FE = . =
;d E‘ Ll ‘EJ :_ad - be -bd 4+ ac].
o.o EF = FE.
b) In g = E*F, &, = &35 and gy3 = -8a3.
“ [a O 1 0]
e) then b = 0, EF = F = a F = aPF,
o 0 & 0 1
- o] [2 ) 2 0
a) - 2 = - ’ = Ua.
- Yy o 2f [0 2
N A% - 24 - 31, = 13 [ _2F f_ 5
. 0 3 0 0 3 0
1
- fo
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1 1] [
c) A® -2A +2I, = .
=1 4 |-
I:o 31 2
2 9 |2 3

8, a) (A+B)(A - B) =

2 ] [2 -1 0 1
A? _B% = . -
o 4l Y Lo J
T 3 2 1 [2 -
o 4l d ke -
(i + B)(A - B) ¥ A2 - D%,
: 2 ] Jo 1 2
b) (A + B)(A + B) +

0 3 2 i Y
» 2 o[z o] [
"l 2l 2l (s
R Ak 11 [

A® + 2AB + B?' = . + 2
o UY'lo Lo
o U o I} B

+ . =
2 1 |2 U Lo
B 2 ol [&

+ + ~
2 470 o "[s

(:A‘v.+_B)l(A; + B) # A" + 2AB + B2,
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¢} In using the distributive property in the set of
reals (a + b)(a - b) = (a + b)a - (a + b)b =
a® + ba - ab - b2, this last expression is &2 - b3
if bpa - ab = 0, That is, if ba = ab, This is
true, .~ (a + b)(a - b) = a? - b2, However, the
multiplication over the set of matrices is not
commutative, We cannot assert BA = -BA, Hence
(A + B){(A - B) # A® - B®,

d) (a +Db)(a +Db) = a® + ab + ba + b®, ab + ba = 28ab

if ab = ba, This is true for real numbers--not for

matrices, Hence, if a, b are reals, {(a + b)? =

a? + 2ab + b2, But if A and B are matrices, (A + B)?®

# A® + 2AB + B?,

satisfies X? = U, To find another matrix that

X ¥y
satisfies X? = DU,, let X = [: :] .
P4 W
X y b 4 y Q. 4]
4 W ) z W - 0 0

(1) »» +yz=0 (2) xy+yw=0

(3) x2+2w=0 (4) yz + w2 =0,

From (2), y(x + w} = 0} from (3), z(x + W) =

If x +wa=0, then values of x, y, and z that satisfy

x? o+ yzia 0 will give suitable values, For instance,

A7
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if y=-9, z =4, then x = 6 (or -6), and w = -6
(or 6), Thus,

T I U B
1 o fr 9 [T 0O
10. 8.) o =
o i y (o 1
= — [re— — o —
1 ol |1 0 i 0
b) . =
o -i lo -if o 1
21 o[l 9 [T 7
C) . =
1 oL 9 [ o
d) . =
o -afio = [0 2

There certainly are at least four square roots for the
given matrix!
Yes, there are others,

In fact 1f x ¥ O, then

0 x{ |0 X 1 o
Y =

1 1

5 of Ik 0 0 1

We have jJust examined the equation
X2 - I, = O,
which 1s equivalent to
| X3 = I,
and we have found that it has an infinite set for a

soiution set.

B8
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3.9 Multiplicative Inverses in M, (1% - 2 days)

Having discovered that not all matrices in 7, have inverses,
the question naturally arises: How can one determine whether or

not a given matrix is invertible? The answer is obtained in an

a b X y 1 ¢)
attempt to solve R = s Where the given
c 4 z W 0 1l
a b X y ,
is and is a matrix that is the inverse of
c d z w

a b
[: :], if there is one, 1In the course of seeking a solution
'C d

of the four assocliated scalar equations, we find that a unique
solution exists if and only if ad -~ bc # O, This gives the
expression ad - bc an importance, sufficient to give it a
special representation, We use h as that representation, in
accordance with some usage, Of course, h is the determinant
of a 2 X 2 matrix, We refrain from using the term "determinant,"
for we do not want to give beginners the impression that only
M, matrices have determinants, and we do not want to face
questions about determinants in general in an already full
chapter, |

Inverses are used extensively in this section to scive palrs
of linear equations in two unknowns, Of course there are the
claésicalbmethods to whlich our students have already been
introdu¢ed,.and they may be more comfortable with familiar
| _methodsé Névertheless they should be encouraged to learn how

to usefﬁhe Inﬁerse of the coefficlent matrix for two reasons,

Q

8Q
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First, they are building the notion of a matrix equation at
least in the simple form AX = B, where A is the coefficlent
matrix (not necessarily a 2 X 2 matrix), X =[§] and B =[§],
Second, they review the method introduced in Chapter 2 that can
easily be programmed for electronic computers that solves a
system of n linear equations in m unknowns, if a solution
exists, This arises in many operation research problems,
including linear programming., A third reason, 1f it is needed,
is that the matrix method works exactly the same way for all
systems of equations, while the classic methods can vary with
the ingenuity that a student can bring to bear., (This last
reason, of course, can be used to argue in favor of the classic
method, )

We repeat here the suggestions: Do not assign all parts
of a given exercise at once! Save some problems for review

purposes as you go along in the text,

3,10 Exercise Solutlons

| 2 0 %- 0
1., a) The inverse of is (h = 2),
: 0 1 0 1

3 9
b) has no inverse, h = 3¢6 - 9.2 = O,
2 8
R
c) has no inverse, h = 2¢2 = 2.2 = 0, §
2 2 |
o — =1
L 2 - 1
d) . For , h = =2, Its inverse 1is ;
3 3 -2
: 2
on




3.

2
f) For
L:l
2
g) For
L_:_1
a b
h) For
1 1
L
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= =4, Its inverse is .

3 1
T 7

, h =0, It has no inverse,

1l 1l
, h =21, Its inverse is .
-1 -1 2

, h =0, It has no inverse,

To be singular, h must equal O,

a) 3x-6=0, x=2,

‘b, x? = 36, x = 6 or -6,

c) x* -2x-8=0, (x -4)(x+2)=0, x="Uor -2,

d) -3x+2-2=a0, x(x - 3) =0, X =0 or 3.
1
2 0 0 0
a’)[ ]05 1 [ ] 2-1=A-1o
0 2 0 g: ) 5
b) k k-i AR L lle:
.Iﬂ == ‘= ‘
o 1 o i E Y o 3
— —=f1 ] 1 -
k o] |f g I'—'l i|'i- g k O
o ko f Lo 2 fo glo ®
x ¥ x vyl [x ¥
Let be its own inverse, Then .
;[ K w[z ]

L]

'(1) xa + yz =1
(B) yz 4w =1

(2) xy+yw=0 (3) xz + zw=0
From (2), y(x + w) = O

019
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From (3), z{x +w) =0, Ify+w#0, y=0, z=0,
X2 =2awWw?=1, Xx=4, Ww=+1,
Four possibilities arise, each of which gives a ﬁatrix
that is its own inverse, namely
EoFo-l ol [-1 o
S A A
If x + W= 0, then x = -w and from (1) or (4),

X2 + y2 = 1, This ylelds many possibilities, for

instance x =6, y =7, 72 = =5, w = -6 and

R A T

In general, let x = a, y = b, then g2 «a —p— , W = =&

1s its own inverse for any value of

a and any non-zero vslue of b,

For U, h = 0, . U, is a singular matrix,

Assume A has inverse A”', Then A" AB = A"*T or B = U,
But B ¥ 0, Therefore A is not invertible,

. a b e f ae+bg af+bh
Let A = and B = . Then AB =
c d ' € h ce+dg cf+dh

h of AB = aecf + aedh + bgef + bdgh - ceaf - cebh -
dgaf - dgbh
= aedh + bgef - cebh - dgaf
= (ad - bc)(eh - gf),

.The last product is the product of the h's of A and B,
Since B is not invertible, eh - gf = 0, Then h of AB=0

49
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and AB is not invertible, By the same reasoning BA is

also not invertible,

a)

b)

b)

d)

Using the results in the proof of Exercise 7, both
h of A and h of B are not zero, Hence h of AB or
BA is not zero, and BA-and AB are invertible,
Consider AB°B'1A", assoclating its factors in a

variety of ways, A(Be B“)A" = AA™Y = I, Also

AB'B™*A™' = (MBY(B™'A™M)A™' = I, & (AB)* = B7MATR,

The inverse of[ ] is ,—5 ] h = 1)
-5 3115 _ -1 (x (-1, 2
. altel=l.]: &= y) = (-1, 2).

Check, -1 + 3‘2) =5, 2(-1) + 5(2) = 8,

The inverse of ] [ 3] (h = -1)
-1 2 I
[ ]0[5] = ]o (x’ y) = (l, l)

2 =3]13 _l

Check. 3(1) + 2(i) =5, 2(1) + (1) = 3,

[5 3] [l 3]
The inverse of = (h = -1)
' 2 1 2 -

2 -5"[5] |2

Check, 5(2) + 3(1) =13, 2(2) +1 = 5.

o

7
The :I.nverse of E is [ (h = 1)

BT




f)

g)

h)

1)

Check,

The inverse of [j

[ '] J.ll
Check

The inverse of

3 L

Check

The inverse of
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2(5) - 7(1) = 3, (5) - 3(1) = 2,

T

(x, y) = (4, 2)

3(4) +2 = 14, B(L) +2(2) = 20,

_5 ] £ Jo

(x, ¥) = (2, 6)

19 114

Ma+3w)-%,ﬂa-s=u

UJ

Check, 3(-1) +

i N
= -l1
I e
U1 . (r: 8) = (‘1: 1)o

4(1) - 1, 5(-1) - 7(1) = -12,

l»n

-3 8}
The 1nverse of _3' (h =2

A

Check,

;J'[;;]
The inverse of

_(‘h = a® - b?)

-‘ggl:n?] (u, y) = (3, -4).

5(3) - 3(-4) = 27, 6(3) + 2(-4) = 10,

& D | 2 -b]
18 =
b a & = b" |p a

1 a =b
ﬁa - b -b

&

1-

1 a? -_ba
a® - b3 0 (X,y)=(1,0).




J)

k)

1)
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Check. a{l) + b(0) = s, p(1) + a(0) = b,

me tnverse of[ :l {: :|
N LR E —s’[ a0

a-2b 28 - b
a.’ ba’;rba)

2a - b a?® - b?

- 2b
Check, a( ) + b(aa _ bg) = a?® . p? =1
a - 2b - b 2a® - 2v?
b(&=2) + o5 =5 =2
The inverse of [ :I l: :l
3 - aa
h = ba - a

=f I el ]

(x, ¥) = (0, -1).

Check, a(0) - b(-1) = b, b{0) - a(-1) = a,

1 1 1 -1

g 3 T -3
The inverse of is 72 .
1 1 -1 ]
I 0 3 2
1 -1 1
(h = g - 5" 7?
l -1 1
1] 3
T2 H o= 12 1. (x, y) = (24, 24)
zZ 3

Check., %(21;) + %(211) = 20, %(2&) + %(am) = 14,

-
95
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10, Proof of Theorem 11: "A~' is unique"

Suppose A has another inverse, say C, Then

CA = I3 hypothesis

(ca)A™ = 1,477 right operation
c(AA™!) = Ioa™? assoclativity

c(aa™t) = a™? identity property

CIs = A™} definition of inverse
C=4a"t identity property

3.11 The Ring of 2 X 2 Matrices (1 - 1% days)

A ring is a less restrictive mathematical system than a
field, While every field is a ring - the converse statement
is not true, Note and emphasize that in the definition of a
ring we do not assume that 1) multiplication is commutative;

2) there is a multiplicative identity; 3) there is a multiplica-
tive inverse for each element, We can have, therefore,
examples of rings which in addition to the basic properties of
a ring also the properties 1), 2), or 3), A ring which has

all the properties 1), 2), and 3) is a field,

Emphasize the importance of proving gli the postulates
for a ring in showing that a given system is a ring,

Rings arose from a study of the integers -~ and the integers,
‘matrices (céftainrsubsets of them); and finite number systems
whose moduli are not prime are the'best illustrations of rings
that are not also fields,

_ The exercises attempt to give samples of rings which lack
[]{ﬁ:bne or ﬁore of the three additional properties listed above,

IToxt Provided by ERI



3.12 Exercises

1. a) (Mg,+) is an abelian group since it is a subset of
11 'x n matrices with matrix addition - which we
proved to be a group,

b) (M;,*) is an operational system for
ae + bg af + bh
[ J [ :' ce + dg ef + dh
which is a 2 X 2 matrix,
(M;,¢) has the distributive property for:
e+k f+n
LC I E
a(e+k) +b(g +m) a(f+ &) +blh + n)
c(e+k)+d(g+m) c(f'+£)+d(h+n):'

and
ae + bh af + bh ek + bm af + bn
ce + dg cf+d;l ck +dm ¢4 + dn
ae + bh + ak + bm af + bh + af + bn
.l;e+dg+ch+dm cf+dh+c£+dr;|
- Similarly for right hand distributivity, (M;,°*) has
'a.ssociati.vity for:
a b fle £ [x e ek + fm el + £d]
e dl” g IJ.L‘ n-L :l gk + hm glo+h£
E’(-k + fm) + b(gk + hm) a(es+ £d) +b(gL+ hn) |

c(ek + fm) + d(gk + hm) c(es+fd) d(gs+hn)
~and

.‘a._.bl ae+bg af + bh| [k f)
c _ ce+dm cf + dh m n
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(ae + bg)k + (af + bh)m (ae + bg)2L + (af + bh)n

(ce + dm)k + (cf + dh)m (ce + dm)£4 + (ce + dm)n

The crux of the proof lies in showing that if A and B

are invertible 2 X 2 matrices, then so is AB,

-} h e £
Let A = and B =
¢ g‘ g h
If A and B are invertible then
ah - cb £#0 and eh - gf ¥ O
ae + bg af + bh
Now AB =
ce + dg cf + dh
To show that AB is invertible we must show that
(ae + bg)(ef + dh) - (ce + dg)(af + bh) £ 0
By expanding this product we get
ge¢f + aedh + bgef + YhdA - ¢gAf - cebh - dgaf - dg¥A
= aedh - dgaf - cebh + bgef
= ad(eh - gf) - cb(eh - gf)
= (ad - be)(eh - gf) ¥ O

‘We kaow that (Z,+) 1s an abelian group, We also know

that (2,°) is an operational group which obeys the
commutative, associative, and distributive principle,

Therefore (Z,+,+) is a ring, It is distributive and

. has an identity but there are no multiplicative

~inverses, .

(E,+) 1s a commutative group with‘o as its identity,

_(E,¢) is an operational group - with commutativity,

".associativity, and distributivity - but no identity,

OR
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Therefore (E,+,¢) is a commutative ring without

identity or multiplicative inverses,

5. (R,+) and (R,-)'are both commutative groups., We have
the additive identity O, and the multiplicative iden-
tity, 1. (R,+,°*) therefore is a ring, If we exclude,
as we usually do, the multiplicative identity - there
is a multiplicative inverse for each element and
therefore (R,+,¢) is a field,

6. The Cayley tables for (2,,+,+) are

+1 0 1 2 3 4 5 6 . o 1 2 3 4 5 6
0ojo 1 2 3 4 5 6 oo 0 0o 0 o0 o0 O
11 2 3 4 5 6 o0 1o 1 2 3 4 5 6
22 3 4 5 6 0 1 20 2 4 6 1 3 5
313 4 5 6 0 1 2 310 3 6 2 5 1 4
414 5 6 0 1 2 3 Lo 4 1 5 2 6 3
515 6 O 1 2 3 4 510 5 3 1 6 4 2
66 o0 1 2 3 4 5 6j]0 6 5 4 3 2 1

It is clear that (Z,,+) and (2Z,,+) are abelian groups
with identity elements O and 1, Therefore, (Z,,+,°)
is & commutative ring with an identity, Moreover the
elements 1, 2, 3, 4, 5, 6 (the non-zero elements)
also form an abelian grdup under multiplication,

Therefore, (2Z,,+,*) is a field - a finite one,

@9
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7. The Cayley tables for (Z4,+,+) are

H O \Ul & w
N O N0 EFCleE
H N wHFEU oW

Vi & w - ol+
W W - oo
O WM Fw N H
N = OV = Wwlw
w oW &l
£ w oo,
Vi PWw O ol

© oo o o ofo
Ui W N - O+
&= N o F NV oM
w owow olw

(Zg,+) is a commutative group and (Zg,+) is an
operational system which obeys the commutative, associa-
tive, and distributive property., (Ze,+,°) is a
commutative ring with identity elements O and 1,
However, we find

23 = 3.2 =0

34 = 4.3 =0
and yet 2 £ 0, 3 £ 0, 4 £ 0,

~Here we have examples of
~ab = O with a # 0 and b £ 0,

Remember, such numbers in a syscem are ca;led divisors

- of zero, Consequently, (2Ze¢,+,°) is not a fleld,

8, a) « | en e s ‘©py €33
e; | ea1  eiq O o

eii 0 0 € €13

€3 €31 €22 0 0

€23 0 0 €31 €g2
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b) We know - aside from the table - that the set
€315 €125 €335 €35 form a commutative group
under addition, We note, from the table, that
the system is an operational system obeying the
associative and distributive laws., Therefore
(eiJ,+,') is a non-commutative ring without
an identity, We also note that €1, €12, g1, ©34

are gll divisors of zero,

1 0
c) e, +eyp = =1, .
0 1

3.13 A Field of 2 X 2 Matrices (1 day)

One of the purposes of this section is to emphasize that
a field is a special kind of ring and a ring is a generalized
kind of field,

Another purpose is to select a special subset of 2 X 2
matrices that has a useful connection with a future topic =«
complex numbers,

The set Y, of course, is isomorphic with the field of
complex numbers. Complex numbers are treated in Course 1V,
and they should hot be introduced now, However, for your in-

formation let's point out the correspondence that can be set up,

TIE T g

a:«l + bei where 1 = J/=I,

101
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3.14 Exercise Solutions

1,
2,

3.

d), 8), h), i), possibly, J)

d) does not have an inverse,

1 -l
3 5 ]
g)11 h)l.fj
T T A

1) Ifa=d and b = -c and ad - bc = a2 + b3 # O then

the matrix has an inverse and it is

8 a
a® + p? a® + b?
b a
a® + p? a® + b?

N [LE+r 1. F
) .- -

-1 ST+l
- W TR

Since Y is a subset of m x n matrices (in fact of 2 X 2

matrices), we know by previous work that (Y,+) is an

~ abelian group.

o X =y
Since in l: :l x* + y* 1is positive if x ¥ O and

. ¥y £ 0, we know that every element of Y has a multi-

plicative inverse, To show that Y is a field, we
need to show that : |
Y,Y, €Y
and Y,¥y = XY,
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Xy =N X3 =~Ya
Let Y, = and Y; =
£ X; ¥a Xa

X3Xg = V1¥a =X1¥2 = J1Xa
Now: Y; Ya =
Y1Xg + X3 =YV1¥a + XX,

and this is of the form

— ;
XyXy = YiVa =X Y3 = ViXs

Y; Ya =

| V1 X3 + X3¥a =V1¥s + X3 X,
and

XgXy = Ya¥1 =Xa¥1 - ¥VaXy
YQY; =

| YaXy + Xg¥1  -Va¥1 + Xg¥a
and therefore Y,Y, = Y,¥, and Y 1s a field,
Consider the set G of 2 X 2 matrices
X -y
]
such that x®* + y® = 1, The system (G,*) is a group,
This is a special case of Theorem 14,

consider the points (a, b) in the plane such that

a® +b° = 1, They are clearly the points on the

'circle‘with center at the origin and radius 1 - the

unit eircle,

The correspondence
& -
(.a: b) < >[ ]
b a

is one-to-one,

163
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a =b a b
The inverse of is
b a =b a

and, with the above correspondence in mind,

L

or, the reflection of the point (x,‘y) in the x-axis,

> {x, -¥)

3.16 Review Exercise Solutions

3 2
2X +
1 5 9
6 g] [3 7?2 6 8] [1 2
CheCk. 2 + = 3 - ’
— oo 1 1 5 10 17 (3 &
"-15 18 5 6
= 3 °
21 39 "l

2, To show that (2Z,,+,°) i8 a ring, we show

(1) (2,,+) is an esbelian group, This has already been
done in preceding courses,
(1) (2,,°) is an operational system, as can be shown
in its Cayley teble; also, it is associative,
(111) Using tabies for (Z,,+) and (Z,,*), we can show

that o distributes over +, by considering cases,

4 1 3 -1l
3, a) The inverse of [ ] is[ ]. (h =1),
11 3 -11 y

b) [: :] has no inverse because h = 0,

-6
¢) The inverse of [: :] {(h = -10) is :]
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-l -2
d) |: :I has no inverse beczuse h = (-4)(-1) -
-2 -1 .

(-2)(-2) = O,

3 2] |x X
u'o [x .Y] ]-[]'—" [3x - ¥ 2x +2y] '[]:
ERE N y

[3x® - y +2xy +2y®] = [3x? + xy + 2y°],
1 4 [ P

5. . -4 -5

2 2 2 3 L

9 15' N 16] [s o] [o

"l wls 12l o 5 Lo

6. To be a multiplicative ldentity, A

o

should'equal

o
viw  uge) 2 o||r ©Of

Ui Ui

"I for all A € My, This is not so.

ol

1 1 1 1]

7. |1 2 2 2 2
1 2 3 3 3

1 2 3 4 4

8, Since x* +x -1=0, x* +x =1 and -1 = -x® - x, Also

x =xand 0 = 0,.
*4+x -1 1 -x2 -x
Therefore | = .
' L X 0 0

3
9, Transpose of A [:

Transpose of B

W N o o




0
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L]

3L
7 o

matrix [:

a 0
1 o -1 1 O]
4"k ;l'[_; -
qF TR 9
J 'l ;l'[o Bl

We note that AB = -BA,

In this case we say that multiplication is

anti-commutative,

Any
0
11, :
1
o
|1
12, a)
b)
13, Supp

Then

It is a ring,
It 1s easy to see that, if Q is the set of numbers
a + b3 (a and b rational), (Q,+) is a commutative
group,
Let Xy= 8y + D43 Xg = a5 + bas/3
Then X;¥3; = (a; + b;4/3)(ag + be3)

= (8185 + 3b1by) + (8305 + 250y )43
80 (Q,*) is an operational system, Assoclativity
and distributivity can be proved similarly,
It i3 not a ring - and we need only a counter-
example,

1
€.8. 7 ° %a% is not in the_set.

ose A has an inverse A™!
ATl = 0O
A"*(AB) = O

168
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{A”'aA)(B) = O
IB = 3
_ or B = U  contrary to hypothesis
that B & T,
B can have an inverse only if A = U,
If B has an inverse B~
Then T = 0B~ = (AB)B™}
= A(BB™!)
= Al = A
i.e, A =T,

Chaper Test Items

1,

3.

Write a 3 X 3 matrix with elements alJ such that
=0, a4 =31 -2) forl #* J.

[] J F I

find the matrix
2A—B-C.
For the matrices A, B, C in ex. 2, find:
a) A(B«C)
?) AB - BC
c) 3A - IB + IC
Find the inversés, if they exist, for matrices A, B, C
in ex, 2, | |
Show that the set of invertible 2_x 2 matrices form a
multiplicative group that ic not abelian,

s Ko,
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6., Prove: If a matrix D in M; is invertible and E is its
left inverse, then E is also its right inverse,
7. Prove that multiplication is commutative for matrices

of the form
X y
X, ¥ €R,
-y X

Y, Suggested Test Items - Solutions

-1 -3
1., |4 0 0
7 5 O

s 12|l [ 2] [s
2. 2 - -
3 1 =2 2
B
8 12 g8 2| [8 -
3. a) . .
3 5 2] |2 1

]
=l
-
|U‘l r\>|
S
bod
LT ) (SR =1|

8
£ £
s 2
] ]
S
|O r\)'

Eglh» ool
5%
.
[~ ol
o)

+ n
o
e

[}

o ¥

|9
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5 .12
4, a) 1Inverse is 1 ;J

+

-3

15 -2
b) Inverse is =

27 8

c) Has no inverse since (8)(1) - (-2)}(-4) =0
5., We already know that the multiplicetion of 2 X 2
matrices is associative - therefore the multiplicetion
of 2 X 2 invertible matrices is associative, There
is an identity element, I,, such that
AIl, = I,A = A
Every element for every A, A™},
To prove that the set of 2 X 2 invertible matrices,
under multiplication, we need only show that the
product of two invertible matrices is an invertible
matrix, We did this in Exercise 8 of section 3,10,
Moreover, the inverse of AB is B7!A™?
for (AB)+(B~*A"') = A(B-B7*)A™?
= AI A"}
= AAT?
= I,
also (BA)(A™'B™') = B(A*A™’)B
= BI,B”}

-1

= BB~}
- I,
6. Let the left inverse E of D be D!,
Then E.D= DD = I,
0 But D«E = D:D”! = I,

ERIC 409
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Xy J1 Xa .V_

let A = and B = ?
-Y1 Xy Y2 {ﬂ

Xy5 X2, Y15 Y3 € R,

Xy Xg = V1¥a X1 Vs + YiX3]
Then A‘Ba ] 1J2 1J9 172
~Y1Xg3 = X3¥2 =~Y1 Y2 + xtfﬂ

XXy = Ya¥1  Xg¥y + Yalu
and B¢A =
~YaXy = Xa¥Vy ~Ya¥1 t XaX

Comparing the elements of A+B and B¢<A and recalling

the commutative properties of the real numbérs we see
that
A‘B = B.A

110
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Chapter 4
GRAPHS AND FUNCTIONS

Time Estimate: 15 - 18 deys

In this chapter the concepts of graphing a function and graph-
ing a condition in ..!0o varlables are studied and the concepts
unified. Graphs are used to extend the study of operations on
functions, applications of functions, and properties of functidns.
It is hoped that after completing this plcture the student will
have a graphic plcture in mind of the various concepts introduced
in this chapter and will be able to operate with these concepts
graphically and, to a lesser extent, algebraically.

An estimated time for the completion of the chapter is 15-18
class days.

4,1 Conditions and Graphs (2% - 3 days)

We consider a condition to be an open sentence, A condition
in two variables 1s an open sentence in two varlables, In this
chapter the domain of the variables is considered to be R, the
real numbers. Such conditions may also be referred to as conditions
on R X R, and are denoted generally by C(x, y).

Associated with C(x, y) 1s its solution set. S ='[(x,,y): X € R,
y € R, and C¢{x, y) is true}. This set of ordered pairs then has
a graph, T, where T is the set of points of the plane whose coor-
dinates with respect to a coordinate system are the ordered peairs
of S. We refer directly to T as the graph of C(x, y). The co-

\rfdinate system 1s standardized as a rectangular coordinate

| o 111
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systenm,

With this background in mind, the student should be led
to recognize the relationship between equality, inequality,
and absolute value conditions and the subsets of points of
the plane which are their graphs,

In this section exploration of the relation between
symmetry of graphs (sets of points in a coordinatized plane)
and the conditions which determine them is begun. The following
general defintions of symmetry of sets of polnts apply here
and later,

| Definition: If F is a set of points in a plane,
(1) F is symmetric in line £ (has
line symmetry) if and only if F is
its own image under the line re-
flection in 4.
(2) F is symmetric in point P (has point
symmetry) if and only if F is its own
image under the point reflection in P,
Exercise 6 of 4.2 is essential to future development.
Problems 1 and 2 cbﬁld be done in class.

All problems in 3 and 5 need not be assigned.

l;-e,‘&
N
e
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4,2 Exercises

1. (a) - (4)

a v
(e) All the graphs have a slope of 3,
(f) The slope.

| 'lss
I=
' wand
D
[}
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2. (a) - (4)

}

(e) All lines intersect at (0, 4).
(f) The ¥ intercept. The line intersects the y axis

at (0, b).

114
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(a)

Both are symmetric with Both are symmetric with

respect to the y - axis. respect to the y - axis.

(e) Same as (c¢)

+y
() "[
r X
——t "'3 ——
| R
-4 (@3) o &

115
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1) Symmetric with re- Symmetric with re-
spect to x ~ axis. mpect to x - axis.
J) Symmetric with re-
spect to x - axis.

Y T
R

>

=)

(e) Triangle is bounded by x =0, y =0 and y = -3x + 4

Q in exercise 4(d).

114
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5. {a)

x

(v) ‘ | 3?

(3.0)

(c)

kiR
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(d) xzo’yZI

(e) x+2y=4orx+2y=-4
2y = -x+ 4or2y =-x-14
Y=-%x+§ory=-%x-gory=-%x-a
The graph is a pair of parallel lines of slope - %, One

line has y -~ intercept 2, the other -2,

(£) 2y = |x| +x g
1 1 t

y = glxl +3x

1f x> 0

y=-3+5x=0

ifx<O ‘,

RY




? [ O ' \\\\‘
4 /7(
N ,’ g7 7
\ ~ /
N 7 \\\\
N T/
Y X 1 )
P N
/': \\\ -

6. (a) Yes. No.
(b) ofx, y) if (-x, -y).
(c) Yes,
7. (a) Symmetries (1), (2), (3), and (4).
(v) Symmetries (1), (2), and (3).
(¢) symmetries (2).
(d) sSymmetries (3), (4).
8. (a) (b)

'(;349

119
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(c) (d)

-~ - o e e - -
» .
[]
>

L)

X+y=lorx+y=-=1
y=-x+1

ory = =x -1
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4,3 Regions of the Plane and Translations (2 - Q%fdays)

The main idea of this chapter is embodied in Figure 4.8,
In many traditional texts, the emphasis is on change of coor-
dinates by a translation but here we emphasize that since a
translation 1s an lsometry, the region and its image under a
translation are congruent,

The student should gain the insight that the graph of
C' (x + a, ¥+ b) is the image of the graph of C(x, ¥) under

the translation (x, y)

in sign,
For example, consider the graph of |x - 5] + |y ~ 3| =

(x - a, y -b), Note the change

Example 2 in the text, There it is notéd tuat the graph G!

of [x =5| + |y = 3] = 2 is the image of the graph G of

x| + |y| = 2 under (x, y) —— (x + 5, x + 3). But we can

also consider the graph G!' of |x = 5| + |y = 3] = 2 to be the

graph of |x'| 4 |y'| = 2 where x' and y' are the coordinates of

points of G! if new x' and y! axes are chosen with origin at

(5, 3) and axes parallel to the x and y axes, Thus, if a point

has coordinates (a, b) in the x, y coordinate system it he=:

cobrdinates (a =5, b =3) in the x', y' coordinate system, If

a point has coordinates (a', b') in Fhe x!', y' coordinate system,

it has coordinates (a''+ 5, b' + 3) in the x, y coordinate system,
However, because of the students' familiarity with trans-

lations as isometries the point of view here is to treat the pro-

perties of a region in terms of an isometric region lying con-}

] H
veniently with respect to a given x, y coordinate system, In other

I:R\(:words, the coordinate system is fixed. '
191
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4.4 Exercises

1. (a) (®)
AY
) | 4
i Wa
2 =
S 70 ———
o\ 7 +
_ x /
(e) (d)

<V

199
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(e)

12

o

]

L]

—_ | —p
/' ok 4
|

2, (a)

r e 2 "
X

ERIC
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(¢) x<O0or3y ~2x>6 or 5y = 3x < -30r 4y +x> 2
or y < 0. (any correct equivalent)
(d) SW+¥2x29%90ry>lory <x-7.

(any equivalent form)

194
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3. (a)

(b) y+ 32 =3(x -5) and x =52 0and y ) -7,
(or equivalent form) y + 7 { =-3(x - 5) + 4 and
_.X-520andy+720

175
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(a) = (c)

(a) - (b)
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(¢) Ix+9|+|y+6]<3
6. (a): (b)

(b) Translations map
lines onto parallel
lines,

(e) 3

(d) Yes, because any line

Aol . ! with slope 3 is
- parallel to y = 3x
and differs only in its
intercept. If b is the y-
intercept, i.e.,
¥ = 3x + b is the line,

(y - 5) = 3(x -~ 4) . then the translation T,

ify=3x -7 will map y = 3x onto

y=3x+0Db
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4.5 Functions and Conditions (1%'" 2 days)

The following points are central to the development of this
section,
(1) A real function f: A —9 B determines a set of
ordered pairs {{x, £ (x)}: x —~£ﬂ?;f{x) and X £ 4}
and this set of ordered pairs determines the

T 7Y
)

function f, From the ordered pairs or thelr
grapn the assignments x £ f(x) 2an be re-
covered, Thus, this set of ordered palrs may be

called the set of ordered pairs of f,

(2) Associated with f is the equation y = f(x), called
an assoclated function equation, The solution set of
this equation as a condition in x and y may or may
not be the set of ordered pairs of f, The
condition y = £(x) and x € A has as solution set the
set of ordered pairs of f, Graphing a function
then becomes equivalent to graphing a condition,

The solution set of y = f(x) and x € A thus also
determine the function of f,

(3) A set of ordered pairs may determine a function only
if no two pairs have the same first element (for the
graph, the vertical line test holds).

{4) Any condition C(x, y) potentially determines a
function, The solution set of C(x, y) must satisfy (3)
above In order to determine a function, However,

Q even if this is true,c(x, y) in itself uniquely

198
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determine a function unless the codomain is
spzcified,

In dealing with each of these ideas emphasis should be
pPlaced on specifying the domain and in the properties of the
ordered pairs and thelr graph, Codomain should be discussed
but it is not a central issue here, If, as is noted, R is taken
as a standard codomain, y = f(x) and x € A completely deter-
mines & function, as does any function condition,

The treatment of symmetry should be handled with reference
to y = f(x) as a condition in x and ¥y and with strong reference
to the graph itself,

The greatest integer function 1s introduced here as a
special function so that it is avallable for use in examples
and exercises later on.

Note that x € [a, b] means that a { x { b: x ¢ R,

4,6 Exercises

1, f(a) y=1+x= (@) v, 3 +xx,

¥y

(b) y=Ix (e) v, 3x+5

() ¥

2, (a) Yes, Graph is a line, Vertical line test holds.,
(b) Yes, No two ordered pairs have the same first element.,
{(c) Yes, No twio ordered pairs have the same first element,
(d) Yes, Same reason,
(e} lyl==x. *. Forx, 3, y=+3,
(f) No, Graph is a pair of parallel lines: x+ y = T,

ERIC X+ y=-T. 199
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(g) No, Vertical lines test fails, Also, no ordered

pair exists for x = 23,

(n) No, For x =3, y= 41,

(1) No, For x> 1, y is imaginary number and thus not
in standard codomain R,

() No. For x =1, y= + 216,

‘!

(c) (d)

B b ¢
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Y
N '\
J (o7)

\ -1, 0)

N N

{(g) Ix|l+ sl =27 x€R

-

—>
2
-

v

(m,0)

TN

(h) x2+|y|=10 X €R

1
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(3) 'A
(o,mr)
& r—
(0,"108)
3., (a) Symmetry in y - axis, (e) .None
(b) None (f) None
(c¢) Symmetry in origin (g) Symmetry in origin
(d) Symmetry in origin (n) Symmetry in y - axis
b,  (a) (b)

#3 A I
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) 1ty (4)
. (!) fs
) S S I
Sy a . ~ o " 4
o
! p ¢
Graph is the single point Yes, Vertical line test holds,

(1, 1). Yes. Domain = (1}.

(e) (£)
Aa A
-4 ‘ -
2 2 2 2 4 2 ,’ A A L 2 4 N
x
u B
Yes, Vertical line test Yes,
holds.

173
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(&)

A o} —_
'
e ‘__-_ - Kt :_

&' fler,

Yes. No, Vertical line test fails,

4,7 Punctions and Solution of Equations (1%-- 2 days)

The fundamental aim of this section 1ls to tie together the
work involving graphing of functlons, graphing of conditions, a
and the solution of equations, Whenever possiblz, try to show
how several equations or systems of equations can be solved using
a single graph of function in terms of "a - points" or
zere - pointsg,

In using graphs, the fact that only approximate solutlons
are obtained should be discussed and how, practically. the
approximations can be made more precise,

The space = tlme examples provide a practical application

of these technliques and are generalized somewhat in the exercises.
Q
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Other typical 'verbal problems" that appear in the usual

elementary algebra text such as "mixture" problems may be

solved by similar graphic technlques,

Exercises 4 and 5 should be done completely and as many

parts of Exercise 6 as are deemed necessary,

4,8 Exercises

1, (a)
(b)
(c)

2, [(a)
(b)

(c)

200 miles
200 miles

1
2§-hours

125 miles
200 miles

3 hours

(d) Yes

(e)

200 mph, 66 %-mph,
133%'- mph,

(f) Wind, gaining attitude, losing attitude,etc,

(v)

(c)

(4,6, 600)
No
Yes, No explanation

needed,

3. The plane in f statred 400 miles from the base and

travelled for 8 hours, while the plane in g starts from

the base but 2 hours later than f and travels 6 hours,
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E

o
L3

o
-
re
» ¥

(Note: Problem L, (e)
should read:

Solve the system of equations

I y =g -2

y=x+1).

(a) (b) approximately (-2.8, 0)
(2.8, 0)

(c) (-1, 0) (a) (-4.8, 4.8}

(e) (-2, 1), (6, 7))

These are the coordinates of the points where the

graphs intersect.

jon




(v)

x-—f-'—)-5x+l.0

X _£3 4 - x

X = 1.,
(1.5, 2.5)
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(b) x, 6
(c) (B -55)

»




(c) x—£—>-§-x+2'39-
x—Es - B 4 B2

No soliwtion, The graphs

show parallel lines,

(a) x L %-x

r—fole

]
i ofy

The graphs are the same line,
Therefore all velues of X
thac satisfies f(x) satisfies

g(x).

(e) x-—f‘-')%x+2

x =B Ux - 12

&
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(f) x ~fy x4+ 7

x =55 - %‘-x + 3
x= 1,
> <
(1.5, 2.5)
4,9 oOperations on Functions (2 - 2% days) L

The treatment of the functions [f + ca] = [f. + &).and
ECa o 1 = [af] for a € P 1s an extension of the work done with
operations on functions in Course II, Chapter 7, These notions,
together with [f + g] and [f « g] will be utilized in Chapter 5
in developing polynomial functions and polynomials,
Given a function f, new functions f, and f, may be
constructed by the rules
£,(x) = f(x + a), a €R \ {0}
fa(x) = £(ax), a € R \ (0}.
But defining them in this way obscures the fact that f, is in
fact a composite function, as is f£,, If g:(x) = x + a and
g2(x) = ax, then £, = fo g, and fg = f » g,. The general case
mey be studled for gy = ax + b, Then £, = £ o g3 1s the function
with rule f4(x) = f(ax + b), This particular composition is
important in trigonometry where for example f(x) = sin x so that
fegy(x) = sin(ax + b), Note that in the examples g, and g, in
effect respectively translate and dilate the x - axls before
applying f, &g is an affine transformatioh of the x - axils,
Care should be taken to point out the use of composition in

)
]ERj(jnstructing the graphs as in Figure 4,24 and Figure 4,25,

e i
GG
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Emphasis should be placed on doing all the work, 1f possible, on
the graph. ltself, working from the graph of a simple funetion,
or a given graph, to the graph of the function required,
Encourage students to elaborate or simplify the graphic
techniques., Try not to insist on a single approach,

Suggestion: It may be desirable for students to make master
copies of graphs of such standard functions as q where q(x) = %2
and co trace the functions when using them in graphing others,

Exercises: 2, (e) is troublesome because of the scale
factor involved, You may use kl(x) = 2X instead if you like,
Also, suggest appropriate intervals of the domain in trouble-
some exercises on which to graph the function, Symmetry may
also be used here as an aid to graphing,

Exercises 1, (a) and (b) are good classroom exercises,

4,10 Exercises

1, (a) f:y= |x| Jry=x
g:y= [x] c, s ¥y=1
h:y=x+5 q: y=x*
k:y=lx
(b) (1) ¥y = |x| + [x) (1) y= |x] +x+ 5

(111) y = 52 + 5 (iv) ¥ = |x| « [x]
(v) y= [x+ 5] (vi) ¥y = 4x|x|

(vit) y=x+5 (vit1) y=x2 + x+ 5
(ix) y = x® + Ux (x) ¥y = [bx]

(x1) y= x5 + 4x + 1 (x11) ¥y = x2
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(x111) y = x2 + Ux + 1 (xiv) y = #x® + 20x

(xv) ¥ = [x2] T’

(e) (e)

(1,0) is in the

groph of j-g but
ot in the graph

J

(a) (£)

ct
' d
—
X
Q
o




(2)

(n)

149
K ‘
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(v)

2.

(c) - (£) are done in a similar fashion. The finished

.graphs are shown below,

(c) (a)
J .
ty .
) —
. -0 :
N L] s
-'_o -
—0 — 3
3 - 2
-t -h—1 l; — ;
o C BT R
o x
-0 .

1417
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(e) Note: the scale on the
y = axis must be con-
tracted drastically to

get a reasonable picture,

—
X

(£) y

3, The completed graphs are shown,

(a)




(v)

(¢) 1 has a diilating effect and m a translating effect,
k has a dilating effect In Just the opposite way
from 1, 1 tends to enlarge while k shrinks, Both
m and h translate the original graph,

(2) = (b)

175
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.

max (f, g) is the shaded part
of the graph,

: - ok
4,11 Bounded Functions and Asymptotes (2 - 25 days)

Note that %-15 really J o f, where J 1s the function
with rule x -JLQ'%. Thus, the study of % tells us how to expect
% to behave for small values of |f(x)|, for large values of
|£(x)| and for values of |f(x)| near 1, However, this anproach

is not used directly in the text since we wish to define %

directly and illustrate by constructing 1/J, where x 15 x.
Note the assumption of continuity and that f£(x) continues
to increase as x increases for x ) x4 and continues to decrease
as x decreases for x < X,.
Exercise 3 should be assigned, but it is not expected that
students will be able to carry it through completely. Do it
thoroughly but informally (graphically if possible) in class,

..
~ -
~a

g
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4.12 Exercises

-;- ot defined

whare 3(::) 20,
ie. x € [0,1].

(e) Y (d)
| h AW
oy A

(e)
A\X

D
O

ERIC

Full Tt Provided by ERIC.



3.

(a)

(b)

(e)

(a)

(a)

(v)

(e)
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% t y=0 ¢, ! hone
é : none Cs ¢ none
% ty=0 ¢ : none
1 *4
Y= 0 g :y=
f:x=0 ¢, : none
g ¢ none Cs ¢ none
h: x= -5 c 4: rione
k:x=20 q :x=20
1l 1 1 1

= =3 =5, = all have a local max and a local min at
g Cy° Ca” C, '

each point of their domain, technically., However, the
student's intuitive answer will no doubt be no for
all the reciprocal functions in (1) and this should

be accepted as correct,
1

f : not bounded ¢, : bounded (e) z is bounded;
g ¢ not bounded c, : bounded also, so are
h : not bounded c, : bounded 1,2 .

e, ¢y’ ¢,
k : not bounded gq : not bounded (f)
Yes. Since |f£(x)| { k, for all x € [0, 1}, k, > O,

and |g(x)| { k, for all x € [0, 1], k» D O,

|£(x)| + |g(x5| { k, + k, for all x € [0, 1].

But |f(x) + g(x)| < |£(x)| + |&(x)| by the triangle
inequality ~ |[f + gl(x)| { ¥k, + k; = k for all x in
[0, 1].

Yes. The identity is O. f + g is restricted to

[0, 1], which is clearly a bounded function. -f € B

since for all x € [0, 1], |-f(x)] = |£(x)| < k.
Yes since |o £(x)| = |~| |£(x)| { || where |£(x)] { k.

148
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4 14 Exercises

1.

2. Each of the followlng are isolated examples, There are,

however, many such examples possible,

(v)

o

(a)

PR TA




j2l=2

(v)

!
L
e

=

M

>

g

=

A

>

© o @

A I ¥
[ ]
+ "
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(b) (1) WB, B}, (1) {-2, 2}, (iii) {~/I0, ~I0}

These answers are approximate,

(i
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o=

is the dotted graph,

7. (a)

(b) Tocal Mex. (-4, -2); (4% -3) cor
Local Min, (=35 1): (2, 1) £
for f

Local Max. (=3, 1f); (2, 17) !
)

(c) x,‘h%,x=-3%,x=-2%,x=%,x=2%-, x=6%'-
S (d) 4 xg L forf

g 1
2 {xL0fors

155
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Chepter 4 Sample Test on Graphs and Functions

I, Tell whether each of the following is a function equation
for the domain specified, If it is not, explain why not,
(a) y=x%4+14, x €R,

(b) y=x+ 4, x € R,

(e¢) ¥ ﬁ,xen.

() Jyl = |x| +4, x eR
(e) x? +y2 =4, x € [-2, 2]

IT1, Discuss the symmetry of the graphs of each of the following
conditions,

(a) x| + Jy] =3

(b) y = 3x®

(¢) y=3x =1
() vy =[x+ 3]
(e) y=x°

III. Graph the compound condition : ¥2 0, y¥. { ~x + 5,
x<0, and y S.%* + 8,
IV, Given the following functions of R to R with rules:
x~E3x4+3 x =B [x] x —£p x3
(a) Draw the graph of k, Then use it to construct the
graph of -3k, Label each graph carefully, Write
the function equation for =3k,
(b) Draw the graph of h, Then use it to construct the
greph of hOf, Label each graph carefully,

1Th
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VI,
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Study the 3 graphs
{a, b, ¢} at the right

and then answer these <

questions:

€
(a) Which graph (or graphs)

are symmetric in the

origin? v
(b) Which graph (or graphs)

are symmetric In the

Yy - axis?
(¢) which graph (or graphs)

are functions of x?
(d) which graph (or graphs)

are bounded?
At the right is a graph of the function f,
(a) On the same a.J'c-es, sketch 9

the graph of" %-. w

(b) Write the equations

(x = a; y=D) for

asymptotes of -J'f.-.
(¢) Give an interval in
which %;- is bounded: I

|
(d) If a local maximum of %.- exists, zive its coordinates,

(If none exists, write '"none'),

Rk b =P e e e



II.

IIT.

(a)
(b)
(c)
(d)
(e)
(a)
(b)
(e)
(a)
(e)

- 156 -

Answers to Test Questions

Yes

Yes

Yes

No, 1 ~=>5; 1 — =5

No, 0 —>2; 0 — =2

Symmetric to x - axls, y ~ axis and origin,
Symmetric to y - axis,

No symmetry

No symmetry

Symmetric to origin

7

Sy
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31 o
v, (a) ?‘5 . (v) # |
v / ho'x 0——& ——0
/ —0 - — \k
i : A e o
o) —P
~3h/ | -
L — * ) -1-
v. (a) ®
(b) ¢
(c.) b, ¢
(d) ¢

vi. (a) Y T




(b) x= -2;
y=0
(e¢) 2<{x4

(@) (-, -3

x=1

- 158 =

104
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Chapter 5
COMBINATORICS

Time Estimete: 21 days

General Introduction

This chapter formalizes some of the principles involved
in combinatorics with its application to the binomial
expansion and in preparation for the chapter on Probability

which follows., 8ection 5.9 postulates the Principle of

Mathematical Induction.

The teacher should restrict the time to the concepts
and skills introduced in the chapter. There are a few
problems in the sections involving probability. These should
be done with the use of previous knowledge of the students or
by informal methods. Students could be asked to list the
successful events.and all possible outcomes to derive the
prbbability of'an event, The emphasis must be on combinatorial
counting with application to simple problems.

The development of the concepts of permutation and combination
is closely tied to previous work with 1l:1 mappings and subsets.
A permutation is defined as a 1l:1 mapping of a set A into a
set B, ‘Ekambiés‘ih 5,2 develop the notion of permutation as
a 1:1 mapping between two sets. (n), denotes the number of

pefmutatibnsléf niébdects taken r at a time (number of

104
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1:1 mappings from a set A consisting of r elements into
a set B with n elements).
Section 5.4 reviews the meaning of the power set of
a given set, and 5.5 employs the concept of subset in
developing the meaning of the term combination. (: denotes
the number of combinations of n objects taken r at a time, or
in subset terminology, it refers to the number of r-element
subsets of a given set of n elements.
_ In section 5.7 the concept of subset is used in determining
the coefficlents in a binomial expansion. Problems dealing
with the binomial theorem (5.8) and mathematical induction
(5.10) provide students with practice in algebraic manipulation.
Experiences of teachers have shown the need for additional
problems on applications of combinations and permutations.
Some additional problems are provided in this commentary (see
end of answer keys to sections 5.3 and 5.6).
In the next chapter, Probability (Section 6.6) students will
need to apply their'knowledge about permutations and combinations
to some ppobability problems, (See Teachers Commentary, Chgpter

6, p, 212, 226-227.)

5.1 . Introduction

Thevpurpose of the introduction is to give the student a
1itt1é;iﬁéiéht inﬁo ﬁﬁe 1deévthat coﬁbinatorics has become a
branchng:méfhématiqs.in_ifs'own right. Much research is
being done;”théfé.afé mény ﬁnéolved problems for people who

' lijkfre interested to work on; and there are many applications of

100
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combinatorics to other branches of mathematics,

5.2 The Counting Principle and Permutations (7ime: 4 days

or 5,2--Supplementary problems)

Several examples are givzn at the outset to develop the
idea of a counting principle on an intuitive level. In each
case the examples Involve a set of tasks, each of which may
be performed in any of a number of ways. The product of the
numbers of ways in which the tasks may be performed individually
is the number of ways that the set of tasks may be performed
one after the other, The examples are sellf-explanatory and
need no additional background, They should be discussed in
deteil with the class.

Wherever mappings aré used to develop an idea, for example
in the case of the number of permutations of n elements taken
r at a time with r less than or equal to n, it is Important
that the students find each of the mappings involved and represent
them with arrow diagrams. This is simply s "brute force"
technique at first but ylelds a real payoff later in understand-
ing,

A more general counting principle, CP', is presented
after the intuitive one, It uses the set operation Cartesian
product where the pProduct of the numbers of elements in the
two sets individuelly is the number of elements in the
Cartesien product, (It is a coincidence that "counting

.principie"-and'“CarteSian product" have the same initials, C.P,)

109 -
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It should be emphasized to the students that even though the
sets involved are sometimes related to one another, it is not
really necessary that they be related, The counting principle
in any of its forms may be extended to more than two sets,
(See Theorem 1, CP).

It may be that the diagrams illustrating all possible
mappings in one picture may be a little confusing, In this
case 1t might be worthwhile to have students represent each
mapping individually on the board,

The counting principle 1s used to derive the formula for
computing numbers of permutations, The symbol "(n)r" is

becoming wldely accepted iIn the textbooks at all levels.

5.3 Exercises

1. This exercise may be done two ways. Students should be
told which way to interpret the problem or asked to do
the problem with both interpretations. Answers with no
letter used more than once.

() 7 - (b)) 4 - (c) 210 (a) 8o
(e) 2520 (£) s50bo (g) 5040
Answers with letters repeating:
(a) 7 (0) 49 (c) 243 () 1700
(e} 11,907 (f£) 83,349 (g) 583,443
2. The students should see that the questions in Exercise 1

with npwletters repeating and Exerclise 2 are essentially

o ‘the;same;a,rhey represent different applications of (7)y.
o (&) 7 (b) 42 (c) 210 (d) 840 (e) 2520 (r) 5040 (g)5040
101
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Same as Exercise 2,

8«7 ¢6 5 U =672

51 =5 ¢4 ¢« 3 .2 ¢1=120
5 «U4 ¢« 3 =60

Exercises 7, 8 and 11 are not 1-1 mappings from one set to

another, These permlt all mappings from set A to B, If A

has a elements and B has b elements and a g‘b, then the

number of possible mappings (not necessarily 1-1) is ba.

Te

8.

9.

10,

11,
12,

13,

(a) 26 « 26 « 10 * 10 « 10 = 676000

(b) 24 . 24 « 10 ¢« 10 ¢ 10 = 576000

(a) 107 (b) 9 « 10°

(¢) 910109 « 10® or 92 . 10°

10 « 4 = U0

5 « U =20

6% or 36

(a) 5.4.3.22120 (b) 8 « 7 «6=2336

(c) 8 ¢7 6 5 «4=26720

(d) 20 . 19 = 380 (e) 15,120
(a) 8 «7 « 6= 336

" (b) 8«7 +6 5 U302 .1=40,320
(¢) 5 ¢4 32 .1=120

(@) 336

14,

(b) 65+

() 6 *5 .U« 3= 360

=

3.2 .1= 1720
(¢) 2+1=2
(d) 360

165



15,

16,

17.

18,

19.

21,

22,
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(a) 10 -9 * 8= 720

(b) 2109 ¢8e¢7 6 5 ¢4 «3.2.1= 3,628,800
() 7+6 ¢5 4 +3 .2 ¢1=5040

(a) 720

Since (n - r)! gives the product of all counting numbers
from 1 to ﬂg_:_r), then multiplying this by the product
of the counting numbers from (2_:_5 + 1) to n will give
n! by definition of n! Note that (n - r + 1) is the
successor of (n - r).

On the basis of the result for Exercise 16, n! =

(n), + (n - r)! It then follows by dividing both sides
of the above equation by (n - r)! that:

(n), = n}

(n=-r)7
11 « 10 - 9 = 990

(a) (11)3 = lli

(®) (Mg = T

7T +6+5«4°3=250

() (15)5 = 15

(¢) (100), = 100!

15 ¢ 14 + 13 = 2730

100 « 99 = 9900

Answers may vary. Students may give straightforward
answers such as "number of permutations of 8 elements

taken 2 at a time." Or they may do it in terms of mappings,
in terms of applications.

(a) 8% = 40,320 (b) 12! = 479,001,600
(¢) 6+2+1+1=10 - (a) =88
(e) 33

2-digit, 4; 3-digit, 8; 4-digit, 16, 15?‘;
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In order to give the students additional practice in

the kinds of word problems involving permutations, the following

set of problems are included to be used at the discretion of
the teacher,
1. In how many ways can 4 seats in a row be filled by
selccting from 6 people?
2., In how many ways can 4 people seat themselves in 6 seats?
3. Two dice are tossed, In how many ways can they fall?
4, How many distinct license plates for cars can be made if
each plate consists of 2 different capital letters (not
0) one at each end and a number (not using 0) 1less than
100, 000 ‘betieen the end letters;
5. How many 4-digilt numbers greater than 5000 can be formed
using the digits.0, 2, 3, 4, 8, 9 (rio repetition of digits)?
6. How many numbers of 4 digits each can be formed from the
digits 0, 2, 3, 5, 6, 9? Of these how many are even? How
meany are divisible'by 57
7. In how many relative orders can 8 people be seated at a
round table?
8. How many different 9-bead necklaces can be made from 9
different colored beads? (necklace has no clasp).
9;v In how mdn& relative orders can U men and 4 women be seated
“at & round teble 1° men and women are to alternate?
10. In how ﬁany ways Eah 3 girls and 2 boys sit in & row of
- 5 seats if the boya are not to sit together?
11, ‘How many different numbers of 8 digits each can be formed

EMC' '..:by the use of three 1's, two U's, one 5, and two T's.
e : Bl 1m7
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13,
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From the digits 1 through 9, all possible numbers of §
digits are formed, How many are divisible by 57

In how many ways can 4 different novels and 3 different
mystery books be arranged in a row on a shelf, if books

of the same variety are to be side by side?

Answers to supplementary problems,

1.
2,
3.
4,

5.
6.

7.

9. 3

Hence T! = 50k0,

The number Of,WBVS of placing the 5 people without regard

65«4 .2=360

6 +5¢+4.3=360

6+ 6 =236

25 9 9999 24 =59,999,400
25«0l 03=120

(&) 5+5.4°3=300

b) 5 e b o3 e1 . Boele3eop
( giam o * hot endInz In o = 150

() Zgtiaet + Yt it - 108

Since the placement of the first person at any one of the
8 chairs will not change the relative order of the people,
the placement of the other seven are only to be corsidered,

% = 20’160.

.. . u' The placement of the first man or first women does
not matter after seating the first man or woman there are
ﬁ' ways of plaeing the. 4 ‘men or women and 3! ways of placing

the rest of the sex seated first.

to Qrder‘ie.ﬁz, The number of ways of placing them so that

178 }
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the boys sit together is (2 *+ 1 + 3 + 2 « 1) + 4 hence the
number of ways where the boys do not sit together is

5! =2 ¢1 3 21 ¢ 4=12,
81 .
11, 3T 2T = 1680,
12, 8 «7 «6 5 1
13, 4 ¢ 31 - 2 = 288,

5.4 The Power Set of a Set and 5,5 Number of Subsets of a

Given Size (Time: 4 days at least)

Before considering the problem of finding the number of
subsets having r elements that can be formed from a set
having n elements, we consider the more general problem of
finding the power set of a set. The power set of a set S,
denoted ?(S), is the set whose elements are the subsets of S.
Thus #(S) contains all of the r-member subsets of a set S,
with n elements, where r < n. #(S) is developed incductively
making use of mapping diagrams and CP' and n(¢(S)) is found
to be 2n. Then for any r and n with the above restrictions, the
set, whose members are the r-member subsets of S, is a subset
of #(8), For sets with a reasonably small finite cardinal
number of members, it is easy enough to tabulate the power
setvand'thus find the number of r-member subsets for any r < n.
However, since this is not always practicable, a general
formula ié developed to find the number of r-member subsets as
menfioned above, |

5 _
In example 2, (2> refers to the number of subsets having 2

1£9
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elements which can be forma2d from a set having 5 elements,
Traditionally in the literature this has been called the

number of combinations of 5 things taken 2 at a time, However,

we introduce this idea in terms of sets and mappings and CP in
order to relate to the rest of the coﬁrse; also, the word
"ecombinations” does little to elucidate the concept., In this
particular example the number of one-~to-one mappings of the
set {1, 2} to the 2-member subset {a, b} of the 5-member set
{a, b, ¢, d, e} is found to be 2!, Since 2! would be the
number of such mappings from any 2 - member subset of the
‘above 5 - member set, the product of 2! and (g), the number
of 2 - member subsets, would give the total number of mappings
of a 2 - member set to a 5 - member set., Since we have

already learned that this is (5)2, the counting principle yields:

2! (2) = (5),
Furthermore, (g) = _{_23_2_ = H = 10,

Then another specific case is developed to find the number
of 3-member subsets of a T-member set. The formula for the
general case of finding the number of r-member subsets of an
gfmember set then becomes an exercise in proof.

Since it is often easier to compute the number of
(n - r) member subsets than the number of r-member subsets, and
‘sihce'thesé two numbers are the seme for a given r and n, we
havé'anothér"thébrem to prove: (}) = (, 72

n ~-x
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5.6 Exercises

35
6 64; 20
(a) 35

(a)

o B~ Ww ¢
. . . . .

o 4 50).'..
22+ 2

10 + 10 = 20

w)@9+®=

(n-(m-1)+1)

For all m g_ n-

n(n-1),..(n-m+1)(n-m)}

(m)%
( n=m+1 )

(n-m)!}

n( n-]:)

( m-1)

. n-m+2)

n(n-l)..

1)

J n-=1),. (n-m+2) (n-m+1)

.(n-m+2)
-1)e

_ mfn( n-1)..

(n-m+2 )j

m{ m- )

[n(n-1)...(n-m+2) J(n-m+1)

m( m=1)1

_ (mn-mt1) (n(n-1)..

m{m=1;1

(n=m+2)

mi

_ () (n)(ne1) ..

(n-m+2) .

_[_Qn+i) - m]}

m{

[(n+1) - m]!

o((nt1) =m+1)((n+1) ) !

_ (nt1)(n)(n-1)..
- m}

_ n+l)}
T ml ((n+l) - m

)

Q.E.D.

((n+l)-m):

171
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7. (a) (x-1)+<x-1> ___(..x )
y y+1 y+1
(b) Sincey <x -1 A y+1<x-1 Ay+1<x
thenx >2y+1 Ax2y+2 Ax23>y+1
therefore x > y + 2

! t
8. Ifn>o (2)=(n-’35:a = 5TIT -

5[
it
)

1 1

1
s | d

6 10 | 15
10 } 20 | 3
15 |1 35 | 70

Problem No. 10 should have been eliminated from text and each

L R R -
U [ Jw o |-

of the problem numbers following be decreased by 1.

N - ny _ n! _nn=-1)! _
10. If n > 0 => (1) = G-OTIT < a- - =n

k.

1. Ifn=ll==>léo( ()+(§>+@+(§)+@)

1+ 4+6+4+1
= 16 or 2“. 4
12, (a) Since this is a problem of finding the number of
subsets of a set with n elements, one can simply
observe that selecting any subset is a matter of
ma.-lcing‘ one of twd possible choices for each of the
n elements. In other words, for each of the n
elements, one selects or rejects, The Counting
Principlé ghows that the number of ways of making

CERIC  this set of selections is:

170
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14,

15.

16.
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2 * 2 . 2 L

«+ 2 or on

(n factors)

(p) 1If you have a set with x subsets, then adding one

element will double the number of subsets which

gives 2x subsets.

This is because for each of the

X subsets you can make another unique subset by

including the additional element. The

to show that the statement in the exercise 1ls

for n =

1.

Also, from the above argument, if

n it 1s easy

true

the

statement is true for some particular n, it also

holds for the successor of n.

Note that doubling

2h gives 2n+1 and as we noted above, adding 1 to the

number of elements in & set doubles the number of

subsets.
) - ni __n! _

If n_>_o (n) = ar (n - n)? = nior <
(a) o (e) ©

52\ _ 52 - 51 - .., 40 _

(13} T “I3T = 635,013,599, 600
A "~ 1
b72 b~ 2 b7‘42

c c,//” c

a

o b:><:1' a;;}g;

b : b ;

T2 Ny .

N
n O

%

Q

5[8
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17. There are ? choices of an image for each of the 3 elements
in the domain. Therefore, by CP the number of mappings
18 23 = 8,
18. 1In this case you have a choices for the image of each
of b elements., By CP the number of possible mappings
is ap.
19. (a) Since each pair of the four nodes determines a

path, the number of patrs in eech graph is the

number of pairs that can be selected from U nodes.

This is (g) and the number for the two graphs is

2 2)

(v) Since each of the 4 nodes in Graph I 1s connected
to each of the U4 nodes in Graph II, the CP gives
4 + 4 or 16 additional paths to complete the graph
for 8 nodes.

(c) Since each pair of the 8 nodes determines a path,

there are (g) or (2 é 4) paths in the new graph.,
(d) We started Wiph 2 graphs each or U nodes, and (g)

paths. Then we added 16 paths to complete the
8-node graph, The result would be the number of
paths in an B8-node graph:

2 . (g) + 42 .-.(g) or,

12 + 16 = 28




2. (a) 2(3)+5 =(®3°

~
o
~r
N
N
S
N
-+
bﬂ
it
S~
N
N o
=
N =

f
o~

() (§)+(§)+6-u-
15 + 6 + 24 = U5

@ (3)+(3)+n-a- ( ).

21, Show that 2 +n? = 2n &=>n(n -1 +n* =n(2n - 1)
2 2,

giﬂl%&:ll + n? = gBL%?:ll r{n-1) + n® = n(2n-1)
n® -n+ n? = n(2n-1)

n(n-1) + n® = n(2n-1) 2n® - n = n(2n-1)

n® -n+n® =n(2n-1) n(2n-1) = n(2n-1)

2n® - n = n(2n-1)

n(2n-1) = n(2n-1)

hence the original statements are equivalent,
22, (a) Using the axioms of the affine geometry in chapter
III it is easy to show that any one of the lines
with k points will be intersected by each of a set
of k mutually parallel lines in each of the k points.
This gives k2 roints. The question remains to show
that these are all of the points of . Adding another
point will force you to add another point to each
line and another line to each point if you don't
wish to violate the parallel axiom. See the teaching

guide on affine geometry for more detailed information

'EMC " on the geometric ‘aspects. 1#-;55
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(b) There are K> points and X + 1 lines on each point.
If you form the product, Ke(k + 1), you will be
counting each line kX times, since there are k
points on each line. So one must divide kg(k +1)
by k giving k(k + 1) lines in T,

(v) First alternate solution.

If there are K2 volnts in space then you can take
(g?) (2 element subsets) to name lines in space, however

"there w!ll be (g) of these pairs that will name
the same lines. Therefore the actual number of lines

in space will be:

(218) _ K¥(x® - 1) _ K; f--l
§ - T

_k o k(k+ 1)(k - 1)
k (k - 1)

= k(k + 1).

(b) Second alternate solution:
Every line contains k points there are k + 1 lines
that pass through each of these k points (by axiom
3 and theorem 11 of affine geometry chapter 3 of Course
III), Hence there are k(k + 1) lines in space.

r! (?) = (n),, where r {nand r, n € z*. Consider the

one-to-one mappings of a set, A, of r members onto an
r-member subset of a set, B, of n members. We already
know that there are r! such mappings. Therefore for each
r-member subset of B there are r! one-to-one mappings of

A to such & subset. The numher of r-member subsets of B

1" 8




2k,

- 175 =

is (?). Therefore the total number of one~to-one
meppings of A to B is r! (%), But by definition, the
(n)._.

r

number of such mappings is (n),.. Therefore r:(?)

(nlzr)= (n-r) ! r(ln-(n-r'))!‘ = (n-?;".rz = ri(r::-r)l = (?)
Therefore, (n?r) = (?).

The following are additional word problems relgting to

combinations and thelr answers to be used at the discretion

of the teacher.

Combinations

How many triangles can be drawn if their vertices are
chosen from 10 points, no 3 points are collinear?

How many parallelograms are formed if a set of U4 parallel
lines intersects another set of 6 parallel lines?

From a sult of 13 cards, how many hands of 5 cards each
can be dealt to a player?

In Number 3, how many of these hsnds must include a king?
In how many weys can a hostess select 6 luncheon guests
from 10 women ii she must avoid having 2 particular
women together?

From a group of 6 men in how many ways can you choose &

committee of at least 4 men?

If 2 dice are tossed, in how many ways can & sum of 6 be
thrown? |

How many combinatlions of 3 letters each can be formed from
5 given distinct letters if repetitions are allowed?

In how many ways can 6 obJects be divided into 2 equal
groups? | S 1#,4}7
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11,

12,

13.

1k,
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If 6 coins are tossed together, in how many ways will
(a) all fall heads? (b) Just 2 fall heads?

If 7 coins are tossed together, in how many ways can
they fall with at most 3 heads?

One bag contains 6 white and 8 black balls. A second
bag contains 3 white and 6 black balls, How many ways
can 6 balls consisting of 4 black and 2 white balls be
drawn if all the balls must come from the same bag?

How many distinguishable combinations can be formed from
the digits (2, 2, 2, 3, 4, 5, 6) taken 3 at a time?
From the digits (1, 2, 3, 4, 5, 6, 7) how many numbers
of 4 different digits each can be formed if each number

must contain 2 odd and 2 even digits?

Answers to Problems on Combination

U
.

()

(10) 10.9:8 120

oti

(B)E)- 6 - 25 o

(153) ) 12 f-:;% 2 .1

() Bl -

() ()= o or oY)+ (2)- 2+ m

any 6 always includes 2

(ﬁ)+(§)+(2)= 15 + 6 + 1 = 22,

178

.
o
.
\O
|
o
D
gl




-177 -

7. (l:<®5) (2:@%) (3:@%) 5 ways.

8. none repeated + one repeated twice + one repeated 3 times

G (3) () () (3) G) ()

10 + 20 + 5 = 35.

0. (%)

10. (a) 2 () (§)= &2 = 15

10

11, all tails . + one head + 2 heads + 3 heads
@ + HE O O
1 + 7 + 21 + 35 =64,
2 ()€ ¢ (. (D - 0.
13. 3 -~ 2's + 2 - 2's + 1-2 + no. 2's,
G +« G0 + Q6 + 6
1 + b + 6 + b = 15

J

i, (2)-(3)c w = w2

5.7 The Binomial Theorem (Time: U4 days)

The ideas in this section that lead to a statement of the
binomial theorem are from those that have already been presented
in this chapter on combinatorics along with mapping diagrams

and examples.

In particular the sequence of ideas and activities is as follows:

(a) Raising a binomial to the 5th power by multiplication
lijkj and observing not only the difficulty but also certain
' resulting patterns; :?7@)
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(0b) Raising a binomial to a power by repeated applications
of the distributive property and examining the result
which is the sum of products broken down into factors
a and b;

(¢) Ovserving that the same products could have been found
by selecting just one of a or b from each of the binomial
factors and illustrating all such selections with mapping
diagrams.

(d) The combinatoric form of the theorem is then developed
through considering the ﬁumber of mappings in which the
second term in the binomial is the image of each
particular number from O to n.

(e) This is then summarized in summation form and several
examples ‘are given. |

The material in this section should be mostly self-explanatory

but discussion and experimenting will be helpful to students.

5.8 Exercises

1. (3+2) = 5%
32 4 2(2)(2) + 22 =0+ 12+ 4 =25
2. (1+2) =33 =27
12+ 3(1)%(2) +3(1)(2)2 +2° =1+ 6+ 12+ 8 =27
2. (a) a* + 4a3b + 62202 + sabd + p
(v) x6 + 6x5y + 15x4y2 + 20x‘y3 + 15x2y4 + 6xy5 + y6
(o) e + 7¢% + 216562 + 35¢%a3 + 3503a% + 216265 + 7ea® + a7
(d) a0 + 100% + 45a%2 + 1202703 + 21085t + 2528515 +
Q - 210a*° + 1208307 + 458265 + 10409 + 1O .

100
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2
b, (a) as - 3a2b + 3ab2 - b
2
(b} xu - 4x3y + 6x2y2 - Uxy” + y4
2
(e) a2 - Saub + 10a3b2 - 108°0° + Sab'!‘l - b

5 6

iy 2 2.4 +y

(@) =x° - 6x5y + 15x y© - 20X3y3 + 16x%y ' - 86Xy

(@)

5. 11 .

5.2 (x+1)3 = %3 + 3x%(1) + ()% + (1)3
3 423x% +3x +1
2

b, (x-1)° = x5 - 3x2(1) + 2x(2)% - (1)

2
= X~ = 3x2 + 3x - 1

2
-

7.2, (xe2) = xF 4 w3 (2) + 6x2(2)2 + ux(2)3 + (2)H
= x4 + 8x3 + 2ux2 + 2% + 16.
b, (x-2)4 =it -8k 4 2ux® - 22x + 16,
Jix :
c, (x-%-)4 =x -2 & %xz - %x + f%

8.a, (2x+1)5 = 32x° + 16x4 + 83 4+ Ux® 4 2x + 1
b, (2% -~ 1)7 = 3250 - 16x% + 8x3 = 4x® 4 2% - 1
9.8, 1x°°0 - 20x19 4+ 190x18

b, 1x8 + bxT & 720

c. -128x! - 64x6 -~ 32x°

4/

1. (141)7 = (g) 17+ (1) 1™ L) + ...+ (7) 17

() + (D + ..+ (0)=2".

The above sum is the number of subsets of a set with n elements

O _ From previous work we know that this is 2°.




- 180 -
1.0510100501 .

0.9509900499 .
)1

11. (a) (1.91)5
(b) (.99)°

12, For n = 1 this becomes (1+x

> 1+ 1x which is true.

For n = 2 this becomes (l+x)2 >21l+2x or 1+ 2x + x° > 1 +2x .

This is also true since x- 2 0.

Then for all n greater than 2, the first two terms of the ex-
pansion on the left will be 1 + nx and in addition there will be
other terms all of which will be positive. Therefore the expression

on the lett will represent a number greater than or equal to the

number represented by the expression on the right for all x > 0 and
positive values of n.
13. We shall consider the task of selecting exactiy one of the
two numbers a or b from each of the six factors (a+b) in (a+b)6.
Since the number of times a is selected 1s uniquely determined by
the number of times b is selected in performing the above task,
we can find the coefficients of the binomial expansion by finding
the number of ways that b can be selected O times, 1 time, etc. up
to & times. '

The number of ways that b may be selected from O of the 6

factors is (g) or 1. But this is the same as selecting a from

each of the 6 factors producing 35 for which the coefficient will

then be 1 or (g) Therefore the first term in the binomial expansion
will be

6

(5) &6 .

The other terms may be found in a similar manner giving:

(6)2° + (%)a% + ()a*? + (D)a%3 + ($)a* + (B)aw® + (3)°

0 2/ - 3 4= 5/22 &=
| T 6
O ls can be summarized as: (a+b)6 = ) (g) g?"rbr .

r=0 109
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5.9 Mathematical Induction (Time: At least 5 days)

The first example stated in the text was designed to
make students wary of generalizing too quicklys; in particular,
generalizing on the validity of a finite number of cases, It
might be meaningful and dramstic to ask various members of
the class to replace n, in the expression n?® - n + 41, by
natural numbers from 1-4i1 (at least)., Have the group observe
that you really do generate primes until n = 41, An interesting
group discussion question might be:

How can you predict, before replacement, that n® - n + 41
is composite when n = 41? Could any quadratic expression,
ax?® + bx + c, generate only primes when x is successively
replaced by natural numbers?

The first problem in the text that leads into PMI is to

prove that for every n,

142 +3+ ,..+n=nfn+1).

2
Students may legitimately questlion the verification of such a
formula for very large n. The text does this only for n = 8
and n = 11, How might we informally Justify such a seemingly
maglical result? TIf you consider the sum in question, written
two different ways,
l1+42+3+ se0+1+ 00+ n and

n+(n-1)+n-=-2)+ .00 +(n~14+1)+ ,..+1

and add you get (n + 1} + (n+ 1) + (n + 1) +eaet(n + 1)+e.et+(n + 1).
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Thus, 2(1 + 2 + 3 +eeetn) = (n + 1) + (n + 1) +eoet(n + 1) =
n(n + 1), Consequently, 1 +2 + 3 + ... + n=n{n +1) .
2

Though this method, attributed to Gauss, does suggest the
result, there 1is a concealed use of mathematical induction;

one has to apply PMI to show that

n:‘ n

Zi: Z (n =1+ 1) and that

1=1 1=1

n n n

Y4+ Y (n-=1+1)= ) [1+ (n-14+1)]
i=1 i=1 i=1

=n(n + 1),

The domino effect was included as a visual ald to explain
PMI., It must be emphaslzed that the dominoes have to be
properly oriented and space for the effect to be applicable.
The situation 1s summarized as:
1., The first dqmino falls down
2. 1If a particular domino falls, then the next one falls
too.
3. (Therefore), all dominoes fall down,
Translated into mathematical terms, say in terms of a
sequence of statements fys f35 eee fpns ooo the argument takes the
form:
(1) £, is true. (fn can be verified for n = 1)
'(é) Whenever f is true, then f, + 1 is true too.
(Whenever f, can be verified for n =k, 1t can
also be verified forn =k + 1),

Q +
« 3 .
£1{U: (3) (Therefore) f, 1s true, for every n € Z

104
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)
The pedagogical difficulty that must be recognized here is

that the arguments above are not logically sound; in other
words, the use of the word "therefore” is not Justified by
logic., The acceptance of the "conclusion" must be considered
as the acceptance of a hitherto unobserved property of the
natural humbers. This means that we take the principle of
mathematical induction as an axiom of the natural numbers,
This was precisely what Peano did in his characterization of
the natural numbers.

Following Peano, we consider a set N and a function
g:N—> N (the set of natural numbers N and the successor
function g) such that:

Axiom 1, for each natural number n é N, there is a unique
successor g(n) € N (the next natural number).
Axiom 2. If m, n € N and m # n, then g(m) # g(n)&w“\
Axiom 3. There is a unigue natural number, denote;tzs 1, that
is not the successor of any natural number,
Axioms 1, 2, and 3 simply state that g is a 1~-1 mapping of N
onto N|{1]. Now, the principle of mathematical induction
assumes the form:
Axiom 4. If S C N such that 1 € S and k € § —>»z(k) € S,
then S =N,
To show the necessity of postulating "hathematical induction"
to characterize the natural numbers (up to isomorphism); that
is, to show thét-Axiom L does not follow logically from
Axioms 1, 2, ahd 33 it is sufficient to exhibit a set N, # N for

175
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which Axioms 1, 2, and 3 are true but for which Axiom 4 is
not true.

Tet Z = {(a, b): a ¢ Nand b €N}, Z NN =g,

Let Ny = N U Z and define the successor function g1 N, —3N,
as follows:

If n €N,, thenn e Nor n € Z,

If n € N, define g,(n) = g(n) where g is the successor

function of N,

If n € 2, thenn = (p, q) where p, g € N.

Define g;(n) = g (ps qa) = (p + 1, q).

Verlfy that N, and g, satisfy Axioms 1, 2, and 3. ToO show
that Axiom 4 1is not true, consider S = N, Now 1 € S and

k €S —>k + 1) €3, However, S # N,, The principle of
mathematical induction does not characterize W; and is seen
to be Ilndependent of Axioms 1, 2, and 3. Starting with the
Peano axioms and general set-theoretic principles, it is
possible to go on to construct the integers, rational numbers,
real numbers, and complex numbers. ‘

If one is willing, however, to begin with the real
number system, then the natural numbers may be defined in such
a way that the principle of mathematical induction becomes a
theorem, This, of course, is not the position taken in the
text, It 1s presented solely as background material for the
Instructor.

Beginning. with R, the set of Reals, we define:

Definition 1, If x € R, then x + 1 1s called the

successor of x.

178
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Definition 2. If S ¢ R, then S 1s called a successor
subset of R if and only if:
(a) 1 ¢s8
(b) S contalns the successor of each of
its members. (x € 8 —»(x+l) € 3).
Observe that there are many sets that are successor subsets
of R as well as many that are not. R, itself; Q, the set of
rational numbers and %, the set of integers are all successor
subsets of R, On the oth  hand, the set of irrational
numbers, the even integers, and the prime numbers are not.
Theorem 1. The intersection of any collectlion of successor
subsets of R is a successor subset of R.
Proof. Lef S15 Sz5 Sas see S5 4. be a collection

of successor subsets of R, ILet P = Q Sa.

1l ¢ Sx, for each =, since Sa is a successor
subset of R Thus 1 € P, Let k € F, This
means that k € S for every «, But again,

sirice each Soc is a successor subset of R,

(k +1) € 5_. Thus, (k + 1) € P, We have
shown that
(a) 1 eP
(b) x e P —>k + 1) €P,
This means that P ls a successor subset of R,
Definition 3. Let N be the intersection of all successor
subsets of R. The members of N are called

naturel numbers.

104
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By Theorem 1, N itself 1s a successor subset of R. Though
the definition avoids naming the elements of N, N must include
precisely the elem ats 1, 141, 14141 etc. The principle of
methematical induction, phrased in the language of "successor

subsets, "

may now be stated as a theorem.
Theorem 2, TILet N be the set of natural numbers. If
S c N and if S is a successor subset of R,
then S = N,
Proof. It is given that S ¢ N. Now, S is a successor
subset of R and, by Definition 3, N is the
intersection of all successor subsets of R.
Thus, N < S, Consequ=ntly, S = N. -
The text states the principle of mathematical induction
in set-theoretic language (PMI) and in terms of a sequence
of statements (PMI'). The definition of a sequence will have
to be reviewed. Since the domain of a sequence 1lg always
Z+, it is customary to de~cribe the sequence by its terms
(range values) £y, fa5 eee f s +ess In the context of this
section, the student 18 concerned only with sequences whose
codomains consist entirely of statements; hence the expression
"sequence of statements.” In Course IV, Chapter 2, the
emphasis will be on sequences of numbers; that 1s on sequences
whose codomeins consist of real numbers. The student should
have some experience approaching a problem through PMI and

through PMI! but neither orientation shouls be emphasized as

being intrinsically more acceptable.
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Students will probably need help in interpreting statements
such as 1 +2 +3 + ... +n=nn+1)or2+ 4 +56+,,, +2n-=
n(n + 1); in particular, what do ;ich statements mean when
n =1, Also, in going from the assumption that fk is true to
the proof that fk+1 is true, there may be some difficulty
transforming the statement fk into the statement fk+1' Adding
a particular term to both sides of an equation is not a
magical process, reserved for mathematicians., This, in fact,
is a good opportunity to review the student's present
algebralc skills and to prepare him for the next chspter,

The Exercises in Section 5.10 1llustrate the necessity
of both conditions in the principle of mathematical induction.
Though the greater et'fort is usually invested in the second
condition (k € S = (k+1) = S), the first condition (1 € 8)
is equally as important. Exercise 4 1is a simple but striking
example that this 1is zo.

Don't expect all students to understand mathematical

" induction the first time around. Now that it is included in
Course IIT, it will be relied on frequently 1ln subsequent
course work. Students will have many opportunities to ponder
over this principle and to apply it co a great variety of

mathematical situations.

179
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5.10 Solutions

n

n
1. (a) Prove Z 7ay = 72 ay
i=1 i:l

X X
Let 8 = {x:x € Zz¥ and 7 7ai=7z ai},
i=) i=1
1 1

Tey = Tay and 7 Zai = 7.8y, 1 €5,

Since )
i=1 i=1

Assume k € S and show k + 1 € S, k € S implies
Add 7ak+1 to both sides.

= T(ay + agh...+ay + 8, ;)

Thus, kK + 1 € S.
By PMI, § = z*.

(b) Prove:

12 4 22 4 22 4 ,,, +n? = n(n + 1%(2n.+ 1) for every
n €272,

Define the sequence of statements fy. f5, ... £, ...
where f 1s the statement 12 422 4+ ... +n? =

n(n + 1)(2n + 1)
& .

1(1 + 1)(2°1 + 1) 1(2)(3)
6 - 6

Since =1 =12 we may say

that £, is true.
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Assume fk is true and show that fk+1 is true

12 + 2% + ... k® = k(k + 1)(2k + 1)
)

Add (k + 1)2 to both sides.

k(k+1)(2k+1)
6

12 + 22 + ... + kK% + (k +1)2 = + (k+1)2

I

k(gt;)(zkg;)+ 6(k+l)?

=(kﬂjﬂkwﬁ?L+6UHDi

_ (k+1)(2k27+ 7k + 6)

_ (k+1)(kg2)(2k+3)

_ (k1) (k1 ) 271)(2(k+1) + 1)

Thus fk+1 is true.
By PMI?, fn is true for every n € Z+.
(¢) Prove:

1,1,1 1
§'+ §'+E+ ooo+2n<no

Since %-( 1, we see that f, is true,

Assunie fk is true anid show that f 1 mist be trué.

k+

PRES
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1 . 1,1 1
fk is the statement 5+ 3—+ T+ oeee + ;E'<k

and fk+1 is the statement

1 1 1l 1l 1 1 . 1
S+ T+ Tt eee 4+ + + eee + 5= < ktl
273ITEH ok T ok Koo oK+1

2k terms

where the number of terms added to the left hand side

of fk is 2% To prove fk+1 true we must show that the

sum of these 2k terms 1s less than 1

1 1 1
ioeo kK + k + ooo+;T{'_*T <1.

2%l 2%

Since each term on the left is less than -x,

2

1 1 1l 1l
K +k +...+_F+T<T+T+...+-—E

\2*+1 2742 2 / 2 2 2
k

27 terms 2k terms

which is equal to'2k « ¥ =1
. 2 :

Therefore,

1 1 1
+ == 4+ eee *+ <1
ok T oK okl

Thus,

1,1 .1 1 1 ' 1 .
""+ + + XX + "'—+ —_—— + e0e + Q k+1.
2T3ITE R ) ST .

¢

|

SRELI W

100

R TR
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Consequently fk+1 is true.
By PMI', the statement £, 1s true, for every n € z*¥,

(a) Using PMI to prove that ——<— € N for every
n € Z+
X X
Tet S = {x:x ¢ 2% and é....&....,%.u €. N)
Jince =Z=l leZ =»1¢85s.
Assume that k € S and show that k + 1 € S.
6k - oF
Let ———=1p where p € N
then 6K ~ 2K = by,
and 65 = 4p + 2K,
ghtl _ okl
. b -
_6.6% - 0.0K
m
_6(kp + 2K) - 2.0k
' 4
_2bp + 6.2F - 0.0k
L
_olp + 2¥(6 - 2)
' 4
_ 24p_+ 25
;M
4 _ U6 + ok
; 4
= 6p + ok v
Since 6p + 2 ¢ Z¥ then k + 1 ¢ .

Hence by PMI S .= ZT,

109
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(e) Prove that 253-2"'——11 is a natural number for every n € Z.

Define the sequence of statements f;, f,, ... 5.0

where fn 1s the statement

%n-l-_]i is a natural number.

1(1 + 1) _1(2)

: 2 2
we may say that f; is true,

Since =1 and 1 is a natural number;‘}i

Let us assume fk is true and prove that fk+1 is true.

M%i'-—ll = p, where p is a natural number,

Now (k+1)[(k;l) + 1] _ (k+1)2(k+2) - (k+;.)k + (k+12)(2)

=p + (k + 1) .
+ \ + +
Sincepe Z and (k+1) e Z, p+(k+1) ez,
Thus fk+1 is true.

By PMI, fn is true, for every n.

; 1 i 1 1 1 1
(f) Prove 3+ R+ 5 + .v0 + = = =(1 - =) for every
+3' -V ¢ 2 30
nez.
_ . + 1 1 1 _1 .1
Let S = {x:x € Z--and-got-gpt ooo + ;J? = 2(1 3x)]._.. .

Since %—(1 - 3{-) = %(§)= %‘-, we may say that 1 € S,
Let us assume that k € S and show that (k + 1) ¢ 8.

1,1, 1 1 1 1
+ + + LI ) + =—1 -
Itytar 3k =51 - %)

Add ;qu to both sides.

1

1 1 1 1 1 1
T+ +§7+"‘+31E+'51{_+I‘=§(1'§K)+51§T

\Oj =

104
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- %(1 - g%-+ ;éﬁf)
= %(1 - §§%1-+ gé%r)
= 50 - ()

- 301 - ;ﬁ%IJ

Thus, (k + 1) € 8.
By PMI, S = 2Z7.

(g) Prove: 1 +2 + 4484+ ...+ 202

n e Z+.

¥ Let f,, f,, eeof s... be a sequence of statements

" where fn is the statement:

1+2+4+84+,,, +201

=2% .1

Since 1 = 2! - 1 we may say that f, is true,

=20 . 1 for every

Let us assume fk is true and show that fk+1 is true.

1+2+44+8+ .., 4281 20K
mv——— .Add wek to both Sides e 4 e emmde e rimmta ba rm——————t e e etmam—— aeme —_
1+2+44+8+ ... + ok-1 4 2k

Thus, fk+1 is true.

By PMI!, f, is true, for every n A

1
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2. Let Ay, A, ... A be non-empty sets and let n(A;) = r,

for 1 =1, 2, ... k, where each ry € Z¥. lLet Ay X Ay X ..,
x.A.k = {(31, 33, ree ak)= ai € Ai 1= 1, 25 aee k]-
Then, n(A, X A, X «.0 X A ) =TTy .. Ty,
Define the sequence of statements f,. fé, eee Tis ee
where f, 1s the statement:
n(A; xA; x .00 x &) =1°r, ... 1, (assuming that
n(Ai) = ri).
Since n(A,) = r,, the statement f, is true.

Iet us assume that fk is true and show that fk+1 is true

n(A, x A, X ... X Ak) =TT, e T

Now A, X A, X ... X Ak X Ak+1 = {(a‘]_’ 8pny e ak’ ak+1)
where a; € A, for i =1, 2, ... k + 1}, The (k + 1) tuple
(815 835 eoe 8y ak+1) may be viewed as the adjuncting of
8,7 to the k-tuple (2y5 835 s ak). In this way, we
see that we form the elements of A, X Ay X ... AL, bY

adjuncting the elements of Ak+1’ one at a time, to the

A X ... X A, are distinet, then the adjunction of an
element in Ak+1 to each will product two distinct elements
in A X Ay X ou0 X A X A y. Since n(A; x 4, x ... A))
arr; ... I and n(Ak+l) = Iy, the number of elements
in Ay x Ay X .00 X A X Ay s (ryeryer; ... rk)- Teeq =
1‘1r21‘3...1‘k-1‘k+1. ThuS, fk“"l iS tmeo By PMI", fk iS

true, for every k € Z+.
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When one reasons by "induction, " one reaches'his
conclusions based upon the verification of a finite
number of cases (hopefully large). We observed, in the
text, that the inferences drawn through inductively
reasoning are not always conclusive; that is, inductive
reasoning does not constitute mathematical "proof." The
Principle of Mathematical Induction is a postulate about
the natural numbers, which permits generalizations to be
made about all natural numbers under specified conditions
(PMI or PMIY),
T={n:n € 2" andn =n + 1}
Let k € T. This means that k € Z' and

(1) k =k + 1. Add 1 to both sides of (1).

X+ 1=1(k+1)+ 1.,

Thls means that (k + 1) € T,

We may not conclude that T = Z+

since we cannot show that
leT,

Let S = (n:n € Z+ and the number of dilagonals in a polygon

of n-sides-isnf{n -——3)}. If n =-3;-the polygon is a triesngle
--no diagonals maflae drawn. In the case h = 3,

9197541L = 51575—11 = 0y we see that 3 € S.

Let us assume thet kX € S and show that (k + 1) € S,

We are assuming that in a palygon of k sides, k(k - 3)
2

diagonals may be drawn. Suppose the polygon in Figure 1

Ta%
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has k sides. .

Figure 1

If we now have (k + 1) sides, we have one addition vertex,

say X. This is illustrated in Figure 2.

2

A \
\

X B —

Figure 2
Earn diagohal that can be drawn in Figure 1 can be drawn
in Figure 2. The side AB in Figure 1 is now a diagoral of
Pigure 2, Thus, we gain one diagonal., In addition, we
may connect X and any vertex other than A or B to form a
new diagonal in the polygon of Figure 2. This produces
(k - 2) new diagonals.
Thus, the total number of diagonals in Figure 2 1is

B =3) a4 (x-2)-BlEz3), .y

k(k ~ 3) + 2(k - 1)
2

k® - 3k + 2k = 2
2

_K® -k =2
=Tz

(k + 1)24k -2)

_ [k + 1)L(12c+ 1) - 31

Thus, kK + 1 € S,

By PMI (modified), S contains every natural number x 2_3.

198
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6. Prove or disprove the assertio.:
For every natural number n, 2° > 3n.
When n = 1, 2! = 2 and 3n = 3, Thus, the assertion is

not true for every natural number, Table 1 reveals that

n 2" 3n
X 3
2 4 6
3 8 9
4 16 12
5 32 15

the assertion seems to be true, beginning with n = 4,
Let S = {n:n € Z¥ and 2® > 3n}.
We know 1 £ S, 2 £S, 3 £8, but 4 € s.

Let us assume that k¥ € S and show that (k + 1) € S.

We assume 2F > 3k.
B+l o 20% > 243k = 2k + 3k D> 3k + 3 = 3(k + 1).
Thus, (k + 1) € S,

Now, 2

By the modified Principle of Mathematical Induction, we
may say that S contains every natural number n ) L,

Te Let £3, £35 Tas eee fn eee be a sequence of statements
where f is the statement

n+l
a+ar+ ar? + ...+ ar’ = a(1 T z = ) for r # 1.

1+1
stnco Q0= E) 8 o) _alle 0

=a(l +r)=a+ar,

we see that £ 1s true.

Let us assume fk is true and Sbfﬂ that fk 1 is true.,
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k+1
a + ar + ar® + ... + ar® = a(l-r )
l -1
add arftl to both sides. -
- k+1
a +ar 4+ ar® + ...+ ar® + ark+1 = 3(11 r ) 4 oar
_ 1 .r
a{l - rk+1) + ark+1 (L -1r)

l -1

af[l - rk+1 + rk+1 - rk+l . r]

l -1

_ p(k+l)+1)
l -7

al(l

Thus, fk+1 is true.

By PMIY, we conclude that fn is true, for every n € J*;

e

b

Assertion x® - x =0

Let 8 = {nin € 7¥ and n® - n = 0},

Since 12 -1 =0, 1 € S.

Assume k € S and try to show that (k + 1) € S.

k® -k = 0 or k® = K.

(x + 1)° - (k +1) > k2 + 1 - (k+ 1) =k®+1 -k -1
=%3 -k = 0.

Since (k +1)2 - (k + 1) > 0,.then (k + 1) > k + 1.

Thus, (k + 1) £ S.

PMI fails to be satisfied.

We may say that the statement f;: 1f 10|, then

10|n + 10 is true for each n € zt.

The form of this statement 1s (P =»q) =R,

We must show that R 1is false since P = Q is always true.

Th
erefore if we show that 1 £ T then T # z¥ and

therefore R is false, because PMI 1is not satisfied.

Since 10 J/ 1 then 1 £ T hence T # zt,

0N

e et b o <~
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c. 3+ 54+ T+ ooe + (2n+ 1) =n® 4+ 2 for every n € 7t

]

et S={(nin ez and3+5+7+ ... + (2n + 1) =n? + 2},

Since 3 = 1? + 2, we may say that 1 € S.

Assume that k € S and try to show that (k + 1) € 8.
-2

I, — 1
\c

- 2 1) . ]
noT i) = T C

B34+ 54+ T+ eee +
Add 2(k + 1) + 1 to both sides.
3+5+4+ 7+ eee + (2k+ 1) + [2(k + 1) + 1]

k? + 2 + [2(k + 1) + 1]

il

=k® + 2k + 5

k? + 2k + 1 + 4
= (k + 1)% + 4,
Thus, k + 1 £ S,
PMI falls to be satisfied.
8. d. 100n > n® for every n € 7',
Let S = {n:n € Z" and 100 n > n?}.
Since 100(1) > 12, we see that 1 € S.
Assume that k €.S and try to show that (k + 1) € S;
that is, assume 100k 2. k? and show that
100{k + 1) > (k + 1)2,
100(k + 1) = (k + 1)3 = 100k + 100 - (k® + 2k + 1)
= (100k - k2) + 99 - 2k. |
By hypothesis, we know that 100k - k® > 0, However,
we cannot say that 99 - 2k > 0. We are unable to
conclude that 100(k + 1) - (k + 1) > O,
Thus, we cannot show that (k + 1) € S.

Of course, the counter=-example n = 101l also shows that

' 3 _
100n 2 n® is false, o

w0l
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9, For every n € z', 2n { 2%,
I. Let S= {nn e Z' and 2n 2™
Since 2.1 ¢ 21, les,
Assume k € S and show that k + 1 ¢ S,
Assume 2k §_2k.

Now 2(k + 1) =2k +2< 2

= 2k+1.

Thus, k + 1 € S,
By PMI, S = Z',

ITI. Let f,, f,, f,y «o. £, ... be a sequence of statements

n

where fn 1s the statement:

en ¢ 2",
Since 2.1 { 2,, the statement f, is true.
Assume the statement fk is true and show that fies1 is
true. |

Assume 2k §_2k.

2(k + 1) =2k +2 ¢ 2%+ 2 ¢ 2F 4+ oF

= 2.0k

Thus, fk+1 is true.

By PMI', all the statements fn in the sequence are true.
10. Prove thgt for every n ¢ Z+,

l1+2+3+.,...+n=n+{(n-1)+(n-2)+ (n - 3)

+lll+1l

n
where fn is the statement:

Let fy, f,, f3, oee £ .5... De a sequence of statements

1+2+3+.,...+n=n+n-1)+(n-2)+ (n - 3)

+lll+1l

€60
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f, is the statement 1 =1, Thus, f, is true,
Assume fk is true and show that fk+1 is true,
Assume 1L + 2 + 3 + ,.. +k =k + (k = 1) + (k = 2) +
00 +1
Add (k + 1) to both sides.
= . - s 11 . e . oan
tL + 2 + 0 *+ 440 + K} + (K + 1)
=[k+(k=1)+(k -2)+ .o +1] + (k+ 1)
= (k+ 1)+ [k+ (k=-21)+(k=-2)+ ...+ 1]
replace each k by (k + 1) -1

Thus, 1 +2 +3 + ,,. + k + (k + 1)

=(k+ 1)+ [[(k+1) =27+ ((k+1) =2) + (k +1) ~ 3 +,,.+]

Consequently fk+1 is true., By PMI!, fn is true, for

every n € Z+.

5.11 Summary. (Time: 5.11, 5.12 = 2 days)

5.12 Review Exercises Solutions.

(a) 6! = 6°5:43.2-1 = 720 (b) 6% = 216.216 = 46,656
5:6.2 = 60
1.§-O.J—'-= 3 = 1
-2 V-2 3
1:2626:26 = 262 = 17, 576.

2:26% = 2.17,576 = 35,152 '

6 61 _ 6.
() = 11 = ?7%

(3) = o2k _ 5.4
2 3127 = 27T = 10 lines,

15 selections.

876 = 336

€.,
i
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9. (5 = 5ﬁ;r wi§-1-~ 56 committees.
10.

&
‘//’////‘ 2 5¢4 = 20
i

u

1. (H @) =75=3

12, 9:14 = 126

13. 9°10+10 = 900

14, (a) 9°9:8 = 728 (b). 9¢1°1 =9 .(c) 900 - (728 + 9) = 163

i

15, (a) (7)5
16, (a) (8),

2520 (b) (5)g =120 (e} (B), = 56

It

56 (b) (10)2 = 151,200

17, (a) ()= -2928- w0 (v (3 =120
() &N=1 @ D=1 (& Q=3 =G -

18, (2)+(X0) = 1045 = 450

19. (a) () =36 (b)) (g)=165 (e} (=7
@ =0 (o) -2

7
20, ( ) = ( ) W5 different ways

21, ()+(3)-(5) = 600

ERIC 204
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22, (120) _ 100°99°98:97+96

= Belle3.2+1 = 75!287!520

23, (2) + (g) = (g)

2, (a + b)* 4

1

it

(et + (et + (De2v® + (Fhavs + (1

at + UaSh + 6a3b® + U4abS + b4

it

3 3
25, (a -b)* =a*t - la’b +6ad - Lebd + b4

26, (a + b)?

(g)aan + (?)a.n'lbl + (rel)an'zb2 + (g)an'3b3 +

(ﬁ)an'ubu + (g)an'5b5 + (g 08 4 ..,
27. (2u + v)® = 6Bu® + 192u°v + oligudv® + 160udv® + 60udvé + 12uve + v°

2
2n

[

n
28, Prove by induction ? -lff =1 «
k=1 2

Let fl, fay eon fn be a sequence of statements where

fn is the statement

1 2 n n

)1 + oy + see F == l -—=

2 2 2n 2n

L1 l1 1 _

Since W 1l - =3 we see that £, 1s true.
Assume fk is true and show fk+1 is true.

1 2 k k
Glven: + 4+ eee + =1 =

k+1 )

1 2
prove + + eee + o =1 =
1 2 -1 -
’é"l + é“l + oo + —E =1 —E
2 2
k+1 ,
adding —=ir to both sldes we have
2

1 2 k k+l _ k k+l
@+2-3+...+-2-E+-2m 1--21€+-2-m

i

fl
)
"
!

nence k + 1 £ S therefore the

Qo v
FRICblem s disproven by PMI*.

—_ . :,) o q
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Second solution:
A counter example shows that this 1s only true for f,.

For example let n = 2 = %1 + gg ALl - %,
1
2

1 1
tp#fl-3
1
1 # 5
29 n(A) = x 1 2 3 4 5 6
n(B) = y 720 | NG 10 | NO 6 6

Since A} = 720, x = 6 and y = 6 will probably be an
answer qulckly given by the students, Since the maps must
be 1:1, n(A) { n(B) and if n(A) > 6 then there will be more
than 720 permutations, Thus 1 { n(A) { 6, You can use a
table to find y-values for the possible values of x = 1, 2,
3, 4, 5, 6, If x= 3, (y)3 = ye(y = 1)*(y - 2) = 720 and

y = 10, Other x-values are examined in a similar fashion,

30, (S) = 15 > n(rlé.]) =15 =>n® -n=30son? -n - 30=
(n-6)(n+5)=0, n=56

#31, (a) a and (c or d)) 1:3 = 3 ways
(b) I.(a or c) and (b or d), 3:3=09 II. 2% = 1=7
TII, 37 = 21 IV, 28 ~ 1 = 31 (¢c) n=8, 2" =1=255

D
>
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III.

IV,
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Sample Test on Chapter V
(Time: 1 day)

Evaluate each of thz following:

(a) (5)s ) (6 () (T (@)
(&) (§) () (33 () &) (n)
(1) (@) (1) ()

A set S has 6 elements.
(a) How many subsets does it have?
(b) How many proper subsets does it have?

(¢) How many of its subsets has exactly 4 elements?

Expand:
(a) (p + q)s
(b) (a - 1)

For each of the following, tell how many one-to-one

mappings are possible from set A to set B.

(a) How many four - digit numbers are there with the
first digit not 0°?
(b) How many four - digit numbers are there with no two

digits alike (first digit not 0)?

o0y

N

w oUW,
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NOTE: 7You do not have to multiply out the answers in

VII.

VIII.

IX.

X.

XI.

XII.

problem VI - IX,

Five boys compete in a race. In how many ways can first
and second places be won if there is no tie?

A zarpenter needs 4 men and 10 men apply for the job. 1In
how many ways can he pick out 4 men?

Glven teu points, no three of which are in a straizht line,
find the number of line segments that can be drawn ty
joining pairs of the points.

In how many ways can a teacher give out 9 grades of A in
a class with 15 pupils?

Use the binomial expansion to find (1.02)4.

In the expansion of (x + y)'?, what is the complete

term that contains x®? Give the coefficient as an
integer,

Use PMI or PMI' to prove one of the following:

(a) 2R + 1) 45 a natural number for every n ¢ AR

k=0

() 52 1 t ez’
= 1is a natural number for every n € Z .

Bonus; Question (optional)

1. Expand (x - 2y)5
2. Show that 2+(2) + n? = ()

28
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Answers for Sample Test

I a) (5), = 5! = 5.4.3.2.1 = 120
b) (6), = &L = 6
c) (T = -(T%-r = T:6:5 = 210
6) (g)= -5"::=g'.';'=1
6 6! 6! 6! _
¢) ) = DI < seIr - 57 = 6
£) (S%) = (223) = -231. ; - 23:92 = 253
8, _ 8! _ 8
e) (o) = tv—oyor = 8T - 1
N ) - wHmr - oy - $2Y - W
1) &) = () = 8 byn),
I
i} (5) = 0 vy der.
II a) n(e(s)) = 2* = 64
b) proper subsets = 64 - 1 = 63
) §) = © - &y =53 -

II1 a) (p +q)®

Q% + Qrta + B’ + ()pfe® +
(FIea* + ()a°

p® + 5p'a + 10p°¢® + 10p°q® + S5pgt + q°

219
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b) (a-1f = (hat - (et v et - B2+ ()
= o* - Ua® + 6a° - Ha + 1
_ 6! _ 6 _ _
&) (6)3 = =37 7 = = 6:5-4 = 120
b) (5), = m2yT - 3 = 5432 = 120
a) 9-10°10°10 = 9000
b) 9-9:8.7 = 4536
5.4 = 20
(30y = 23T - 210
(120) = 10"9 = us
(15) } (15) _ 15! _15r 15 14 13 12 11 10
9’/ = ‘67 ~ -6):67 ~ 9orer 5-5:4-3:2-1
= 5005
(1 + .02)* = (g)l‘ + (%)1’-(.02) + (2)1”-(.02)’ +

(g)l-(.oe)3 + (ﬂ)(.oz)‘

= 1 + 4(.02) + 6(.0004) + 4(.000008)
+ (.0:2000016)

1 + .08 + 0024 + .000032 + ,00000016
1.08243216

12 -.11.' 10 220x° v

4th term = (1Q2)x'y°

g) L1 ¥1) L2 1, Since 1 € S
(2] n
agsume k!k + 12- = p, DE 7+ ' ff-..f_".
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prove (k+1)(2k+1+1l e 7+

(k +1)(k+2) _ kK +3k+2 _ K +k+2k+2
5 = )

- 2

k(k 4 1) +2(k +1) _ k(k+1) + 2(k + 1)
2 2 2

=Bﬁ—2ul+k+l

= p+k+1
+ +
Since p, k, and 1 € Z2', v + k + 1 € 2
Hence k + 1 € S and § = 27
n 1 _ 4 _ 1
To prove , %, ok Ek'
Iet S = {x: x € Z" and k§;2x Ex]
N S R S
X 1
Assume k €S, k€S =D k§1=1"21€

ﬁ? + ;%.-+ é: + ---‘*'ﬁk + Efgr = 1 - fk +
=1 - (%k-r_;}'
=1 - Eﬁér

Thus k + 1 € S. Hence by PMI S = 27,

n n

¢) To prove 5—3'—2— 1s a natural number for every n € z%

Define a sequence of statements f,, f, ,..., fn

211
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where . = 5o =2° anar ezt
r n 3 n
- 21 -
Since 5——3—2- = 5—3—2 = % = 1 f; is true,
5K _ ok N
Assume fk is true,-——jg——— = p, p €Z
k k
i"fijl' = p=> 5°-2%= 3p =>5%- 3p+2x
k41 k+3
Show that 2 7 2 e zt
5k+1 _ 2k+1 _ 5k'5 _ ek_e
'3 - 3
_ 5(3p +25) - 2K.2
3
_ 15p +5.25 - 2K.2
3
k
_ 15p +2%(5 - 2)
3
15p + 2%(3) Kk
== 3 = sp o+ 2
k+1 K+
Since 5p + 2% e zt, 22 gt

Hence fk+l is true., By PMI'fn is true for every n € zt

Bonus Questions

1) (x-2y)® = (Q)x* - ()xb-2y + (3)x*(2y)® -
@y + @Ix(ey) - (@) ()"

= x% - 10x*y + 4ox®y? - v g3 + 8oxy*
Q - 32¥.
. £19

£
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2) To prove: 2(2) + (n?) = (%?)

2.n(n - 1) . 2n® _2n(2n - 1)
2 2 2

2n(n - 1) + 2n? = 2n(2n - 1)

2n® - 2n + 2n® = 2n(2n - 1)
n® - 2n = 2n(2n - 1)
2n(zn - 1) = 2n(2n - 1)

N
b
e
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Chapter 6
PROBABILITY
Time Estimate: 12 - 15 days

General Remarks

Before they study Chapter 6 on probability it would be
desirable that students have studied the probability in Course I,

the statistics in Course II, and combinatorics in Course III.
If the students do not have this background then the topics that

should be presented, elther before starting the chapter or as the

topic 1s needed in the chapter, are as follows:

I, From Statisties:
a) Frequency and cumulative tables and
diagrams,
b) Summation with emphasis on examples and
symbolism,
¢) Perhaps the Chebyshev Inequallty, since this
is an important theorem and deals with relative
frequency which in turn is closely related to
probability,
II, From Combinatoriecs:
a) The Counting Principle,
b) Permutations, subsets(combinations) and
Cartesian prduct,
c) The power set of an outcome set, S,
d) Perhaps the Binomial Theorem in a combinatorics
setting,

Q .
ERIC 1In general the purpose of this chapter is to use the intuitive
A ruText provided by Eric (‘: ,E )q

. BEONEE.
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and experimental background from Course I and the statistics in
Course II and combinatorics as a foundation on which to bulld a
set theoretic approach to probabllity leading to the notion of
a probability space, Then definitions and theorems related to
& probablility space are carefully developed, This msterial on
a Probability is the 'keystone" of probability theory.

From the pedagogical viewpoint the extensive use made of
graphics in the presentation is a most important feature of
giving the student an understanding of the concepts before they
are presented in a strictly theoretical setting., Proofs with-
out preliminary motivatlon are usually difficult for secondary
school students at the level for which this material is intended,

Some of the graphics used in this chapter are:

a) Venn diagrams which are very good for illustrating
relations among events,

b) Arrow diagrams to illustrate functions,

c) Tree diagrams to illustrate outcome sets and
probabilities,

d) One-dimensional, two-dimensional and three-dimensional
Cartesian graphs are used extensively to illustrate
outcome sets, events and relations defined on events,

e) Although they are not presented in this chapter, there
might be situations which arise in class where the teacher
would want to use bar diagrams to illustrate a probabil-

ity measure.on the singletons of an outcome set,

N
Y
)|
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Some important features of this chapter are:

a) An occasional review of ideas at the beginning of a
section to serve as a foundation for new ideas,

b) Several examples worked out in detaill and iliustrated
cn the topic in each section,

c) Proofs of difficult theorems are included in the text
to avoid discouragement of some students,

d) Use of terminoclogy that is in the spirit of the latest
terminology used by mathematicians,

e) A chapter summary and review exercises,

6.1 Introduction

The purpose of the introduction is to give the student a
little glimpse of the "humanities" side of mathematics by including
some historical background related to probability and some in-

“dication of the usefulness of probability in fields other than

mathematics,

6.2 Outcome Sets and Events (2 - 3 days)

The ideas in this section are, for the most part, not new
to the students and are not very difficult, With the background
that the students have had in sets and mappings along with the
material in the Course I chapter on probability, much of the
section will be review,

The power set of an outcome set may be a new idea, if the

o “tudents have not covered the chapter on combinatorics, Also
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using the terminology intersection event. union event, differences

event, and complementary event may be new but is basic to the
development of the chapter,

The method 1s to discuss, illustrate with diagrams, and
give many examples of experiments, trials, outcomes, outcome
sets, and events, The more this is the result of original stu-
dent thinking the better,

The important goal here should be to follow up informal
work in desveloping ideas with careful and precise definltions
and to extend the ideas wherever possible, For example, the
idea of disJjoint sets is extended to three or more sets,

Some specifics in the chapter are:

a) A short review of some basic terminology and notions
used in probability experiments with finite outcome
sets,

b) Several worked out examples which the students should
have chance to discuss,

c) Experiments to perform such as the one with the peri-
patetic bug taking walks on the edges of a cube and
the card matching experiment; in the card matching
experiment a nice extension is for the teacher to have
the students find the average number of matches for
a set of trials with a particular size deck where it
is a surprising discecovery for the students to find

that the average tends to be 1 for any size deck.

N
ceh
-3
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The experiment of tossing two dice and finding the
sums leads to the idea (later) of a random variable,
Tossing three coins gives a nice opportunity to

graph an outcome set and events in three dimensions,
Other ideas are events as subsets, power set, single-
ton events, union events, intersection events, com-
plementary events, difference events and disjoint sets

for 2, 3 and n events,

6.3 Exercises

1,

a)

b)

c.)
d)

((t,up), (H,down), (7,up), (T,down))

{{rye,honey), (ryé,mnrmalade), (rye, caviar),
(wheat;honey), (whent,marmalade), (wheat,caviar))

((d<.99), (.97€a<1.01), (d>1.01))

{(red,plue,n<5'), (red,blue, 5'<n6'),
(red,blue,h>6'), ..., (blonde,brown,h>6')]}

Let urn T contain 1 red bead; 5 blue beads and 7 white

beads;,and urn II contain 2 black beads and 3 yellow

beads. Then the experiment could be to first select

one of the two urns and tnen select a bead from that

urn, Several answers are possible, based on changes

in the number of beads,

Selecting a flavor of lce-cream and then a sundae
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topping.,
c) Selecting a girifriend on the basis of weight, Or
perhaps more accurately, classifying a set of girls
on the basis of weight, I don't know why I am pre-
Judiced in favor of girls, It could be boys or pigs
or most anything that can be weighed!
d) Tossing three coins or tossing one coin three times, etc,
e) Forming two-letter "words" from the set of vowels with-

out repetition,

3. a) A = (Hb, H2, H3, D&, D2, D3)

b) B = (H3, D3, 83, C3)

c) A B = (M4, H2, H3, D4, D2, D3, 83, C3)

d) AnB = (H3, D3)

e) X = (s4, s2, s3, c4, c2, c3)

£f) A\ B = (H4, H2, DU, D2)

g) Let C = (H4, D4}; D = (sS4, c2, D3); E = (ch),
Then C, D and E are disjoint events since they are
pairwlse disjoint. There are many cther solutions.

h)

— This point is for
O« the outcome C2,

Y]

H D S c

b, a) ((1,1), (L.2), ..oy (4,3), (B,4)])
b) ((2,4), (3,3), (4,2))

21
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c) {(hsl): (4:2)3 (u:3): (4:4)]
d), e) and f)

yellow 4?- .
3¢t .
21
1t ,
1

5. a) (AnBnT) 1 (ANBNC).
~p) (FBnc) v (ANBNT).
c) (AnB) u C.

a) : b)

. ZT'"""E

1)

|
!

(AUB)NC ANBDN

Note: There should be some discussion on «lagrams a and g. It

should be related to distributivity of "A" over ",

220
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c d ) v
) ’:‘:,:.o.o,o . 0" 0‘0'0 .:,0

0

A W B i
. |
- \

' DO

T —\, /' 7 }’ 0
S s 0" ":‘"’: ;”’o ow
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5 Q“ 0‘0 XX 4’ XXX4

AyB
(& N B) :

(all shaded regions included)

a2

e) £)

),
AN B
(This can alsoe be rnprebentea

by the cross-shaded region
in d above,)
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Te The diagrams for ¢ and d should have the same reglorns
shaded even if they have been done in two different ways.
One relatlonship statement might be, "The complement of the
intersection of two events A and B 1s equal to the union
of the complements of A and B." Another statement that
would demonstrate gocd thinking would be, "If x is not in
A and B, then it is not in A or it is not in B."

f, The diarrams for e and £ should have the same reglons

shaded. Acceptable statements could be, "The complement of
the union of two events A and B is the intersection of the

complements of A and B," or "If x is not in A or B, then
it 4s not in A and it is not in B."
9. Each event that includes the outcome a has occured.

That is, {(a,b,c}, {a,b}, {a,c}, {(al.

6.4 Probability Measure (2% - 3% days)

This section is perhaps one of the most important of the
chapter because thishia thg first fairly formal presentation of
1deas which,aie at the fouﬁdation of probability theory. Con-
cepts such as a probability measure P, the probabilitx of the event

A, P(A), and a probability space, (S,P) should be discussed

thoroughly in connection with the definitions and the examples,
Additional examples should be given and students should be able
to give original examples themselves if they understand the

meterial.

© _ fTheorem 2 should be discussed carefully and each step should

lated (in the students' thinking) with the properties of n
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probability measure, the definitions, or parts of the theorem
previously presented, Example 8 provides an opportunity to
understand the theorem a little better by illustrating certain
parts,

Theorem 3 gives a more general fermula for the probability
of the union of two events as 1t includes both the disjoint and
non-disjoint cases., Here example 9 provides illustration, Pro-
pérty three of a probability measure is extended to the case of n
events, This can be proved for n = 3 by using assoclativity of
union and addition. Then the case for n in general can be proved
by induction, It might be better here to assume the case for n
in general,

Other idens of this section are ?hat:

a) Every event with 2 or more members can be expressed as
the union of singletons (1,e., sets, each of which
include exactly one of the outcomes in the event);

b) These singletons are pair-wise disjoint;

c) Thus using the extension of property 3 of a probability
measure, the probabliity of an event is the summation of
the probabillties of the singletons which are subsets of
the event,

The probabilitles of the singletons are called elementary

probabilities.

Examples ‘1,2,3,4,5 and 6 in this section present probability
measurcs where the probabilitiés of the singletons are not all
gqunl. In example T the probability measure is uniform, That

15, the elementary probabilities are all equal.

223
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Exerclses: Nole ﬁhat prohlem number /! 1s not numbered in the text.
a) .3 b)) .5 e).8 d) . eo f£)1

a) B0 b) .33 ¢) U5

7/8

4, a) 64

b) (0, 0) ——»(0, 1) —% (1, 1) —> (1, 0)

w N O
L3 [ 3 [ 3 -
i

(0, ¢) —> (0,-1) —» (1,-1) —> (1, 0)
(0o, 0) == (1, 0) —~» (0, 0) ~>» (1, 0)
(0, 0) —= (0, 1) — (0, 0) ~ (1, 0)
(0, 0) —— (=1,0) —» (0, 0) —> (1, 0)
(0, 0) — (0,<1) —» (0, 0) —» (1, 0)
(0, 0) —» (1, 0) —= (2, 0) —» (1, 0)
(0, 0) —> (1, 0) — (1, 1) —» (1, 0)
(0, 0) —%» (1, 0) ~» (1,-1) —» (1, 0)

d) P(1, 0) = P(0, 1) = P(0, -1) = P(-1, 0) = 5-
P, -2) = P(1, 2) = P(-1, 2) = P(-1, 2) =
P(2, -1) = P(2, 1) = (=2, 1) = B(-2, -1) =

P(3, 0) = P(~3, 0) = B(0, 3) = P(0, -3) = -6%

¢) & (or )

b) :387;-‘(01'5%) d) 3%- (or ér)

g (or %)

5e

224
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Since (a,}, (a,)s (2,}, {a,} are events property 1 of

a probability measure applies to each, Therefore for
each a,, P([ai]) > 0,

Also 8 = {a,} v {ag) v (g} 1 (a,)

Therefore I(8) = P({a ] 1 (a3} v (a,) 1) (ag)) and since
P(S) = 1, so does P({a;} v {2}y (o} 1 (& )).

But since the a, are disjoint we have,

P({a,)) + P({a,}) + P({a,]}) + P({a,)) = P(8) =1,

The proof for the case of n cutcomes is perfectly
analogous except for slight changes in notation,

If x € {0, 1, 2 then:

(i) is nori~-negative;

if 0<p K1, then p* is non-negative

and (1-p)2-x is non-nedative,

'I‘hcrofore(}ac)px(l-p)Q-x is non-negative and this ratisfies
the first conditlon,

For the next condition consider the summation, where x
foes from O to 2 inclusive of (i)px( ].-p)2 -X

This con be expressed as:

2 1 -2p+pP+2p-20°4p =1

In 8 manner similar to that in part a) it cen bhe shown that

for any n€N and eny XEN from 0 to n inclusive, each of the

- expressed factors in (2) px(l-p)a'x i8 non-negative provided

‘that 0.< p < 1. This satisfies condition 1 in Exercise 5.

,ToisHHWTthat dond;tion 2 is satisfled, (:) px‘(l-p)"'"x is

" the expression for a term of the expsnsion of the binomial

_ﬂ;??fs
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[p+(1-p)]®. But since p+(l-p) = 1, and 1™ = 1, The summation

where x goes from O to n for any néN, of (:) P (1-p)" ¥ 14

equal to 1,

g.a) 1/4 b) 3/4 c) 9/16 d) 1/16
10.a) .12 ~bv) .88
11.8) If x is a member of ANB, then it is a member of A. So

c)

12.

13'

.

ANR 18 a suhset of A.

Then by theorem 1d, P(ANB) < P(A).

TIf x 18 a memher of A, then x is a member of Anﬁ. So A is
s subset of AYR.

Arein by theorem 1d, P(A)< P(AUR),

From theorem 2, P(AUR) = P(A)+(P(B)-P(AOR).

So P (AUB) + P(ANB) = P(A) + P(B)

Put since P(ANR) > 0, P(AUB) < P(A) + P(F)

.3 L]
The event that exsctly one of A and B occurs, 1s the event
[(A\F) U (B\A)]. And since (o \ B) and (B\A) are disjoint,

P{(A \B) U (B\ A)] = P(A \ B) + P(B\ A). Then using
theorem 2¢ end substituting in the right cide of thé equation

“ahove we get P(n) - P(ANB) + P(B) - P(BNA). Then rearrenging

' the terms and using the fact that ANB = BNA, we get

=-;P(A§¥ P(R) - 2P(APR). That's 1t!!

1f P(A) > .5, then P(K) <. 5 stnce P(A) + P(K) = 1.

: '?i_ﬁ',""t'h‘i's: ‘case’ P(A) > P(K) and therefore P(A)/P(K) > 1.

' Noﬁ'to_go‘in the qfhgr‘direction,'suppose 0(n) > 1.

T Phi’s mesns that O(A) > 1.
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Then P(A)/P(X)> 1, which means P(A) > P(K).
Then since P(A) + P(K) = 1, P(A) > .5.

15. Proof:
1) pr{aumyc) - [P(AUR}YC], since union of sets 1s sssociative,
?2) pl(auB)UC]) - P(AUB) + P(C) - P[(AUR)NC]; theorem 3,

.3)  P{AUB) = P(A) + P(R) - P(ANB); theorem 3.

L) (AURING - (ANCH(RBNC) by the dlatributive property of

intersection over union,

n)  PL(AUR)NC)= p[(Afic) U (RAC)], since the two events in
step 4 sre equal thelr probabili-
Lies are coqual,

6) P[(ANC) U (BNC)] = P(ANC) + P(BNC) - P[(ANC)N(BNC)].

Step 6 1s an instance of theorem 3.

7)  But [(ANC) N (BNC)] = (AMBNC) from a theorem about sets
involving the associative and commutative property of"

intersection of sets and the fact thet CNC = C;

8) Andvthereforé P[(ANC) N (BNC)] = P(ANBAC), since the
events in step 7 ere equal and thus their probabilities
sre equal,

9) 'wa“using the trensitive property of equality on stepa

' ﬁ'and f and substituting the right side of 8 for the

"1ast term in 6:
P[(AUB) Nc) = p(a N c) +_p(BnC) - P(ANBNC)

16)'\_Now substitut1ng the right side of 3 in place of P(AUB)
‘Jon the ripht side of 2, and suhstﬂtuting the right '

oy
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side of 9 for P[(AUB)NC] on the right side of 2, we get:
P{AUBUC) = P(A)+P(B)+P(C)-P(ANB)-P{ANC)-P(BNC)+P({ANBNC ).

16. 1) P(AUB) = 1-P(AUB) hy theorem 1b,

?) PBut from a set theorem, (AyYB) = (ANR}.
1)  So substituting the right side of step ? for (AUB) in

atep 1 ;iives the result,

6,6 Uniform Probability Measure, (2% - 3% days)

The initial examples of probsbility measures
glven before this section were non-uniform, If the students see
non~uniform examples first, then the uniform cases never come as
a surprise, To glve the'specialized case of a uniform measure
first often gives students the impression that this is the on1y
kind, It is importent to emphasize in your teaching that this
is a special case,

Thelpoints that should be stressed in this section are:'the

definition of a uniform probabiliﬁy measure, Theorem 4, which

nia
n{sS

an event A in e space where the probability measure is uniform,

Justifies the formula P(A) = for finding the probability of
and the 4 examples each of which, although different from the
others in nature, involves uniform probabiiity measure, Some
‘discussion of rendom numbers should teke place and the table on
: paite 48 may be wied for a class expoeriment by aﬂsinninn ench
 student a different row in the table end having them find the
‘frequencv of each d1glt 1n that rowv, Then acoumulate the

requencles obtaired and use the information to calculate he
_ r"3${
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Eelative frequencies for each of the digits with respect to that
portion of the table,

It should be stressed that the expression, "at random" as
It 18 used here, simnly means that for the experiment being

consldered, each outcome is equally likely.

If the students have not previously had some exposure to
the counting principle, permutations and number of subsets,then
it must be treated here since it 1s necessary information for
understanding the examples and the exercises, In selecting an
outcome set it 1s vital to know in certaln cases whether to

celect ordered n-tuples or n-membered subsets,

6.7 Exercises

1L . |

2. a) .5 b) .74 c) .1

3. a) The set of all ordered triples of dipgits.
b) .5 c) .1 (Don't forget that 000 1s less than 100.)
a) .1

4, &) 1/6 b) 518 ¢) 11736 d) /4 e) &/9

5. &) 1/U455 b) 1/910 c) 6/M55 |

6. The problem here is to fifst find the total number of 3-jump
trips tﬁe rat can make starting at (0, 0). This numter is
6u.and can be_Justjfied quite easily by obaerving that the
,afe Ul Jumps that the rat can make ffdm the point’ (0, ) and
fromléaCh‘of the points thét»the rat can reach nt.the end of

o 1 jump there are i choices and from every one of the pcints

that the rat cen reachat the qu)of 2 Jumps there are
- 1’1 Ll I I I
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I choices., Therefore by the rountinm principle there are
Bedisl = 64 possible 3-Jump trips that the rat cen make,

Nine of these terminate at (0, 1). Thus the prcbahility that

the rat will be at (0, 1) et the end of a 3I-jump trip is 9/64,

The 9 ponssible trips which end at (0, 1) sre:

1st trip 2nd trip 3rd trip
(0,0} to (0,1} to (0,0) to (0,1)
(0,0) to (0,1) . to (0,2)  to (0,1)

and S0 ON ,..ce000c00! _
The first probsbility (x=0) 1s (g) (1/3)0(2/3)5 = 32/243,
The next is, (x=1), (3) (1/3) (2/3)" = 80 s2u3
and S0 ON ...visanoaal |

An estimate based on my computetion is 3/54145,
At any rate a morb sensible answer ig:
by,
‘ (5 j
a) 213 x 5°
b) misprint
ec) 10

a) 213 x52 x 10

. 1 )
e) ——
- 21% x5 x 10

" f) part a ~[PL x20x 19 x5 x 4



10,

11,

12,
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For the experiment of tossing 3 dice, the nature of the
outcome set is that of a set of ordered triples,

A sketch of the outcome set would be {(1, 1, 1), (1, 1, 2)...
(2, 2, 1) ... (6, 6, 5), (6, 6, 6)}. n(s8) =6 « 6 « 6 = 216,
a) The probability of 3 sixes here is 5%3 .

b) 3

c) The probability of 2 fives and 1 six is 3/216 = 1/72.
d) The orobability of 0 sixes is 125/216,

The probability that one of the cards drawn was the 5 card
is 3/10.

The probability that all three of the cards were even is 1/12.
The probability that all three were even or one of the csards
was the 5 card is 3/10 + 1/12 = 23/60,

A theorem is, if two eveats are disjoint, then the
probability of their union is the sum of the probabilities

of the two events.

a) {3: }"‘: YXY) 18]

b) 3

¢) st5

a) P(3) = iz 5 P(4) = 532 P(5) = 55 5
P(6)=3-%5P(7)=2—155;P(8)=%55
P(9) = &% p(1o)_2—75, P(11) =

P(12) = 22 ; p(13) = A% ; P(14)
P(15) = #% 5 P(16) = 55 5 B(17)
P(18) = 575 .

1
n n n
siu:ldr; 5*4
e

.?_:Q
-2
’ 8.
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e.g., P(12) =

P({(1, 5, 6), (1, 5, 5), (5, 1, 6), (6, 1, 5), (5, 6, 1),
(6, 5, 1), (2, 4, 6), (2, 6, 4), (&, 2, 6), (6, 2, 4),
(4, 6, 2), (6, 4, 2), (3, 3, 6), (3, 6, 3), (6, 3, 3),
(2, 5, 5)s (5, 2, 5), (5, 5, 2), (3, 4, 5), (3, 5, 4),
(4, 5, 3), {5, 4, 3), (4 3, 5), (5, 3, 4), (4, &4, 4)})

- 2

6.8 Looking Tack (1 day)

The important ideas to be satressed in this section dra:

1) The stability of relative frequencies developed
experimertally and 1llustrated graphicaily;
?)  The concept of probatiility as e predication of relative

frequency,

3) The choice of a probability measure may be based on
the nature of experimental objects, on evidence based on
experimental data, or on assumptions as long as it
satisfies the properties of the definition;

6.9 Exercises '

‘ The purpose of exercises 1 and 2 is to give the students
some prectice ir. performing experiments, recording the results,
end making a decision about the kind of probability measure that
might be appropriate, |
3. a) Uniform 1 b) non-uniform ¢) non-uniform

a) non-uniform e) uniform f) ‘non-uhiform
£)  uniform

One would predict the frequency, 34, for the outcome, tails,

One would predict a relative frequency of 2/3 for tails,
€139

- - aentnbts
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6 .10 Looking, Ahead. (1 day)
The big idea iwn this section is the idea of a random variable.

Rendom variables have been implicit in the material on probebility
1n Course I and in the statistics in Course II., Here the term is

defined and examples are given, The students should he pilven

opportunity to provide meny more examples, Since & rsndom
variable 1g neither random nor a veriable, it 1s important to
emphasize the fact that it is really a mapﬁing or function,
In Course IV, Chapter 6 tieory and applications related to in-

dependent svents are developed, Two events A and B are inde-

pendent if and only if P(A n B) = P(a) * P(B).
6.11 Exerclses

1. @a) and b) The answers to these ere contained in the

diegram for c).

/
c)
HEH HHT HTH THH HTT  THT H i
\\ X /
Sy 3 3 ' 0

1
d) and e)
P 1 3 3 1
X g g g 8
2, a) end b)

1 1 P({x)}
1 -1 ({x})
o ' 1 X

(If this doesn't satisfy the requirements of a probabillty
measure check your computation agein.)
3. 8) ((1,2), (L,3), (L,4), (1,5), (2,1), (2,3), (o,4)
(2,5), (31)y (3,2), (3,4)0 (3,5), (1,1). (1,2)
U m,3), (,5), (5,1), (5,2), (5,3), (5,8)) 273
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b) Since the selection was at random, the probability of
each ordered pair is 1/20,

c) The images of the ordered vairs in the same order as
the ordered pairs in (a) are as follows:

1, 2, 3, 4, 1, 1, 2, 3,2, 1,1, 2, 3, 2, 1, 1, 4, 3, 2, 1.

a) .4 .3 .2 .1
. . P({x})
1 2 3 i} X

6 .13 Review Exercises. (1l day)

1, The probability that the break wes within 2,000 ft,
of the station is 2/5,
The probability that the bresk was not within 2,000 ft.
of the station is 3/5,
The prohability that the break ﬁﬁs within 2,000 ft, of
'tﬁe 3tation gi within 2,000 ft. of the antenns s U4/5.
The probability that the break was within 4,000 ft.
of the station and within 4,000 ft. of the antenna

is 3/5.
2. Let the probebility of the first outcome be x,
Then x42x + 6x. = 1} 9x = 1 and x = 1/9. ‘
'3. a) .00t | b) .504
n, ns.
5. 1/35.

o 6. a) 506 b) 12 c) 13/16
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7. &) 49 b) ¢) and 4):

1 2 3 L 5 6 7 X

8. The project in 8 is to copy and complete the arrow

, diagram,
REVIEW TESTS

Test A.

Use the following information for exercises 1 to 6, There
were I entrances to the first floor of a store called the North,
HGouth, Eest and West ent}ances respectively. Once you were inside,
there were 3 choiéés of ways to get to the 2nd.’ floor; elevator,
eacalator or walking up stairs,

1. Tebulate the outcome set for the experiment of selecting a

_ ':why'tb két from the street tc the 2nd, floor,
2. How many"ways are there to get 1rom the street to the 2nd.

_ floor? _
3. | Assuming a uniform probability measure for the outcome set
1h Exercise 1, what ié'the prctability of selecting a path
,vw,ﬁhlchg1nc1udes%r1d1ng to the 2rd, floor from the 1s8t?
v-; whth15,the prbbability of selecting sn outcome by which

one walks from the .street to:the 2nd. floor? 215



6.

ol
-
-

9.

10.

11,
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What is the probability that one uses the North or South
entrance and then takes the elevator or walks to the 2nd,
floor?

What 18 the prohability that one takes the East entrance

and rides the escalator to the 2nd. floor?

1se the following information in answering questions 7 to 10,

The guldance direétor in a school found, on the basis of
previous records, that the relative frequency with which o
senior received a grade of A in mathematics was‘.d6; of

A in English was .09, and 6f A in both mathematics and
Fnglish was .07, These relative frequencies were then

used 1n connectlion with predicting results for the following

year.

What 18 the prohability of getting an A 1n mathematics and not

in Enizlish?

What. I8 the probability of getting an A in English and not

in mathematics?

Vhat 18 the probability of getting an A in neither
mathematics nor FEnglish?

Draw & Venn diagrem for the‘events related to the guidance
directors surﬁe&'and label regions with the appropriate
probabilities,

Draw a Venn dlagram for the event:

(ANBNAT)U (ANBNC).

Use ‘the operations of union, intersection and complementation

‘?tofefpreas‘the set relationship as indicated by the shaded

”fiégibh in the following Venn diagram. DTS
aRls
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Use the‘fdllowing information in answering, questions 13 to 18,
For the outcome set {ay, 8&,, az} the probability of {31] is

.15;  of [a2] 18 .45; end of [a3] is Jho.
13. Compute P([ai, &?]). . 14, Compute P([al, 03])
15. Compute P((ay, &, a,l). 16, Compute o({&,1).

17. Compute 0([a?]). 18, 'Computeuo([aq]);

T8t B,

Use the following*informatioh‘to answer questions 1 to 9,

YW W AW 1W  Home 1F 2E  3E 4K

" 'The starting point in this geme is the point labeled "Home."
Tqu‘h'symmétric'coin.'5vathe coin lands hesds, go 1 un.. East,
»7‘1f”£pe~¢oih;1ands7taW1s,‘gdflfunit'West; Keep repeatihg this
‘ vbrbcédﬁre“frdh theftést'destlnation'until-yqu have tossed the
éoln'h?timés;.*Whatfls the“proﬁabiiity that after 4 tosses you
WL Be ety | | |

F T(ffv'*?iff"ﬁbﬁe?u} TrpLocame 3. PE? M. W S
ERIC B Y R AREE: | T 7. MR B0 3w 9. MW ., ':Kf7 ‘
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Wuestions 10 to 14 refer to selecting 3 cards at random from

a standard hridpge deck.
IWhnt 1s the prohahility that:
10. A1l 3 wiyy be hearts?
11. A1l 3 wili be number cards?
12. A1l 3 will be picture cards?
13, .Twn will be kings and nnebwill he n queen?

1&. A1l 3 will hn'numhered with the ssme numbher?

Test C.

Questions 1 to 6 will refer to selecting two-digit rendom
nunbers from a teble of random numbers,
What is the probebility that the number will be:
. Less than 10 or greater than 897
. Greater tha 15 and less than 267
. Less than or equel to 37
Not less than or equal to 37
Less then 12 end greater than 237

o SRS T — T R R

. Leés‘than.s or less than 37

‘Use the following information in answering questions 7
~ to 13, w0 symmetric cubes, one blue and one red, are
Q:eachviabeled with numeral 3 on two sides and the numerai
’fasdon*thelother 4 sides. The experiment is to roll the
_ ﬁmtuo‘cubes end record the-o:dered pair of numbers
" indicated on the upper faces, Let the number shown by

the blue cube be the:first component and the number on

the red cube be the second component, A
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7. Tabulate the outcome set.

8. Assuming that esch face of such a cube is equ:lly likely,
make a table showing the probability of eech outcome.
9, Let the random variable X assign the sum of the

comporients of an outcome to that outcone, Meke a téble

showing the assignments made by X.
10. Meake a table showing the aspignment of probabilities

to the images under the i'andom variable X,
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Chapter 7
POLYNOMIAL AND RATIONAL FUNCTIONS
Time Estimate: 1T - 21 days

Introduction

The overall concern of this chapter is that of

introducing .and developing basic algebralc skills within

the framework of a structured course. Specifically, the

objectives of this chapter are:

1.
2.

to realize the nature of a polynomial function;

to introduce and develop skill in operations with

polyncimial functions:

(a)} addition, multiplication, and division,

(b) reinforcement of the Binomial Theorems and the
division Algorithm;

to factor functions of second and third degree polynomials;

~to study and graph the guadratic function, using

applications of transformatlon geometrys;
to extend polynomials to rational functions:
(a) operations with algebralc fractions,

(b) graphing of rational functions,

'(c)~=under5tanding'limitatidns on the domain of Reals;

to investigate a commutative ring with unity.

9Li6)




-239 -

7.1 Polynomial Punctions (Time for 7.1 and 7.2 = 1 diy)

Students should come to this chapter with an under-
standing of the ldentity function j on the set of real numbers,
and of constant functions Cys & € R. The principal con-
cern of this section 1s to develop an understanding of
the definition of a polynomial function over the real
numbers. Students should be made aware that a polynomial
functlon may be generated by addition only, by multipli-
cation only, or by a combination of both addition and
multiplication. However, no other opevations may be used.

One productive activity might be that of presenting the
class with the identity functlon and several constant
functions, then having them compile a list of polynomial
functions they can generate, One student might put his list
on the board, with other students called upon to explain
how each was generated,

One poiﬁt which is not mentioned in the text, but which
might arise is this? §£ when considered as the quotient orf
JR by c3lis technically not a polynomial function. However,

g = %x, which is the product of q£ and JR‘ Since this
equivalent form 1s a result of th% multiplication of'functions,,
then %-may be considered as & polynomial,

As noted 1In the text, a polynomial is associated with
every yolynomial function, and much of our study of these
~ functions will be done in terms of the associated polynomials.

Actually, "polynomial expression” might be a better name to

211
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use than "polynomial. But until such time as students
study abstract polynomial theory, there seems to be little
chance cof confusion in using the shorter (and common) term
"polynomial" in the context of this chapter.

Encourage students’to think independently about the
two questions posed in the first paragraph of the section,
even though they have no formal machinery with which to

compute answers. (Solutions: 2 seconds; 16 feet).

T.2 Exercises

1. (a) 10 (b) 7
{c) =x (a) 1+ x
(e) -4x® + 2% - 10 (f) =% + x

(g) (x+x+x+x+x)ex, or5¥x (h) 7x® - x + 0, or Tx?-x

(1) -x® +12x® + bx + 9 (3) Ox, or O

(k) x®* +1 (1) 8xt -3x® + 7
2. (a) x® + 3x + &4 (b) -7x* - x® + U4x

() x° +x° + 2 (d) -3%® - 2x + 7

(e) 82 -7x® +3x+ 4
3. (a) [(cg * J°3°J3-3e3-3°3) + (caeJedededed) + cupl
" (b) Not a polynomial; requires division by J.
(e) [leg « 3) + eyl
(a) Technically not a polynomial, since it requires
division by c,. However, it is equivalent to the
polynomial in part (c), and so may be considered

“as a polynomial. (See Teacher's Commentary, Section 7.1)

240
A 5 .
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(e) Not a polynomial, requiring division by jp.

(f) Technically not a polynomial, since it requires
division by c,. NHowever, equivalent to
polyhomial %x.

(8) (cmy = J + J) + (cg ¢ J) + (coyd.

L, (a) x+2

(b) 2 -x
(e) 2x
(d) not a polynomial
(e) %x
5. [(Can e J o Joeeey) (can-i JooJ oeeed) ot (Ca1 - J) + Caol
n factors n-1 factors
6. Answers vary.
7. (a) -3 (b) -8
() 19 (a) -25%
(e) 1285
8. - (a) €, is of form C,, & € R. (D) C, is of form C» a€R.
The range is {o} . The range is {1}.
(e) 3 (4) ¢
(e)
9., (a) Yes, by definition (b) True; 3 « x=x+Xx+ x ¥x

Yeg, 2 » X=X+ X VX

(e) [c, « 4]
10. (a) ¢ (b) Cg
(e) G 34 (a) Cs

() ¢ -3 -3

241
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7.3 Degree of a Polynomial (Time for 7.3 and 7.4 = 1 day)

The‘object of this section is primarily to introduce
vocabulary, although the concept of degree of a polynomial
function is not an unimportant one. Notice in this section,
as indeed throughout the chapter, that there is a kind of
dual development. If one defines degree of a polynomial
function, he has iutomatically defined degree of a polynomial
(expression). Thus, the degree of the function x——> x°
is three, and the degree of the polynomial "x®" is three.

The altogether simple use of the phrasss "coefficient,"

"constant term," and "leading coefficient" 1s probably
best established by numerous examples.

Point out the importance that a, # 0 in
the definition of degree,Thlis lmportance is brought out in
fix—» 0x® + 5x - 2, Here, it is quite all right (and in
fact more commensurate with abstract polynomial theory)
to consider the coefficient of x® to be 0. However the
dzgree is the greatest exponent assoclated with a nonzcro

coefficlient.

Stress the fact that the zero polynomial function

(co: X ——>» 0) has no degree; therefore the polynomial "O"
has no dugree, However, fo:* a # 0, any polynomial function

c, has degree zero.

AN

£



7.4 Exercises

-3 Oy U = W
e & s s

—2)"}'3 -

(a) 3 (b) 5 (e¢) 3 (a) o (e) no degree
(a) 2 (b) 1 (e) O (d) no degree
(e) 7 (£) 2 (&) (n) 10 (1) 1 (3) 2
(a) ¥v7 (b) -5 (c) -5 (a) tnird (e) 3 (f) -5
(a) 6 (v) -8 (¢) third (d) second(e) 2 (f) -8
(&) -7 (b)) -10 (e) O (a) o (e) -4
() -3 (b)) -3 (e} 5 (a) o (¢) O
() © (b) 1 (e) 1 (a) o (e) ©
(f) no degree (g) 1
Polynomial Polynomial Real

Cvet,Integers Over Rationals Polynomials
(a) ; X X
(b) X
(c) X x X
(a) X X X
(e) X X X
(£) x X X
(g) X X
(h) X
(1) X X X
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7.5 Addition of Polynomials (P, +). (Time for 7.5 and 7.6

=1 to 121- days)

The purposes of this sectlon are twofold:

1. to develop an understanding that (P, +) is an operational
system. Here P 1s the set of polynomial functions and
+ 1is function addition.

2. to develop sklll in the addition of polynomials.

The purpose of Example 1 -- and of several of the
exercises in Section 7.6 -- is to remind students that, for
instance, "4x? - 3x + 6" is a legitimate substitution for -
"(ox2? + 3x - 2) + (-53;2 - 6x + 8)" since for every x € R,
(9% + 3x - 2) + (-5x® - 6x + 8) = Ux2 - 3x + 6. Lest some
students miss the importance of this, 1t is important to
use some numerical instances. (See Section 7.6, exercise 1)

Emphasis is placed on the fact that (P, +) is a
cdmmutative group by developing some of the properties within
the exposition and leaving others to be done as exercises.

It is therefore important that exercises 19, 20, 21, 22, 23
and 29 (in Section 7.6) be completed.

The theorem (it is not stated as a theorem in the text)
concerning the degree of a sum of two polynomial functions
should follow easily from consideration of specific illustrations.
thé that the general theorem does not apply if either of
the functions p,q 1s c,. "Max'" is an operation on the real

numbers; so both deg(p) and deg(q) must be numbers in order

23
o |
e




- 245 -

for the theorem to have meaning. Since deg(co) is not

a number, the exclusion is necessary.

7.6 Exercises

NOTE: Teacher discretion is advised in assigning only
a limited number of problems. Imperative in the assignment

should be 1, 19 to 23, 29, 30, 31, and 38 e¢,d.

1. (a) 3x% - b4x? - Ux
(v) O
(e) 03 0-0-0=0; check: 4+ (-4) =0

24 - 16 -8=03; check: =10+ 10 =0

(d) -455; -375 - 100 + 20 = -455; check: =311 + (-144) = -U55
g2 - 2bx - 17

. =13x® - 12x%® - 5x + 17

5. %xa - %xﬁ + gx

2

3

4, -30x
5

6. 0 (zero polynomial)

7. 2 ® + (F =B+ (VT + 5

8. 2x10

9, x* +1.2¢2 + x® - JUx + .7
10. %g&% + x + g

11, -T7x* + %x? + gxa - Tx + 6

12, (ap + by)x® + (a; + by )x + (ay + b))

DA

Ao
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14,
15.
16.
17.
18.
19.

20.

21,
22,
23.
24,
25,
26.
27.

28,

29.
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5% + x + 11

-11x® - U4x2 + 14 + 4x

20 x* + 3x® . x? + Ux - 17

0 (zero polynomial)

Lox3

- 16 %2 + 6x + 25

%x* + x* - x2® + %x + g

(2)
(c)
(e)
(a)
(c)

(a)

(b)
(a)

-20x? + 9x ~ 15 (b) 14x10 - 7x® + 6x8 + (16 +6)
%2 -~ 3x + 8 (d) 7x® - 3x + 8

10x® + 8x® - 7x - 19 (f) U41x? + 19x® - 2o

0 (zero polynomial) (v) 0 (zero polynomial)

0 (zero polynomial) (d) 0 (zero polynomial)

0 (zero polynomial)  (b) g:. X——) =3%2 + Ux - §

£ x— - 5x® +3x -7 (v) ¢,

-8 X——p ~ 3x® - 14x® + 35x + 19 (v) C,
- 14x? + 35% + 19

7x -5

+ 5x* - 8x2 + 1lU4x + 8

3 +8x -9

+ 9% - 10

associativity, commutativity, identity element,
inverse for each element

yes

yves (b) yes

5% - 12x + 39
6x? - 14x? + 13x + 11

-2.5%% -~ 5,4x2 - 2.8

2

lxﬂ + Zx - %

AR




- 247 -
35. a/ox + 9
36, -17x% + 8x® -~ 19x? - 12x + 10
37. 5x%° - 3x2 4+ 20x - 18

38, (a) 4x® - 2x2 - 4x -1 (b) 4x® -2x® - 4x -1
(e) 6x® +2x2 - 10x + 11 (d) 4x® + 4x® - 12x + 13
(e) Lx® -2x® - 4x -1 (f) 6x* +2x® - 10x + 11
39. (a) deg (f+g) =5 (b) deg (f+g) = 3
(e¢) deg (f+g) =6

4o, (PQ, +) is a subgroup of (P, +).

(Pz’ +) is a subgroup of (PQ, +).

T.7 Multiplication of Polynomial Functions (P,+, )

(Time for 7.7, 7.8 =2 to Eé-days)

In this section the emphasis is on the operational system
(P,+) énd on developing skill in multiplication of polynomials.
An interesting aspect is that (P,+) forms an operational system
while it does not form a group. While stressing that the
product of two polynomials 1s always a single polynomial, it
can be said that the group structure fails only because the
inverse'property fails.

In studying two specific cases to demonstrate closure
under multiplication, students must accept the theorem that

deg(p-q) = deg(p) + deg(a) 5 p Acys a #c..
Incidentelly the proof that (P,¢) is not a group, involving
proof that at least one polynomial x2, does not have an

~ inverse, might be used to remind students that one counter-

o axample is enough to prove that a general statement does not hold.

T

a0
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The guestion in the text, "Can you identify some
polynomial functions that do have inverses in (P, «)?"
is easily answerable. It is precisely the subset of poly-
nomial functions of form ¢, a € R and a # O. (Example:
inverse of x —» 4 is x — %F Gy * ¢y = ¢ ). No other

polynomial has a polynomial multipiicative inverse.

TO THE TEACHER:

In summarizing the properties of (P,+,. }, the text notes

that these are the defining properties of a commutative ring

with unity. (This might be omitted, with omission also of
Exercise 58 and 59 in Section 7.8).

PROPERTIES RING COMMUTATIVE RING COMMUTATIVE

RING WITH RING WITH
UNITY UNITY
(é,+) operational system YES YES YES YES
(S,+) associativity YES . YES YES YES
(8,+) identity ‘ YES YES YES YES
(S,+) inverses YES YES YES YES
(s,+) commutativity : YES YES YES YES
(sf{ol,+) 6perational system YES YES YES YES
(s|fol,*) associativity YES YES YES YES
(s]fo},*) identity. ' YES YES

(s]fo},*) inverses |
(sffol},+) commutativity YES YES
(s,+,*) * distributives over + YES YES YES YES

200
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7.8 Exercises

NOTE: Teacher discretion should again be employed in
assigning a limited number of these exercises. Imperative
to any assignment should be 1 to 5, 20, 21, 26, 29,

b9, sk, and 57.

11.
12.

13 L
14,

15.
16.

(a) x® +x* -2x -8 (b) © =
(c) -20 = (-5)(4) (@) -8 = (- P(53)
x? + Tx + 10

x2 -3x + 10

x? + 3x - 10

x® - 7Tx + 10

2x® + 17x + 21

10x® + 13x - 30

2x? - 15%x® - 7Tx - 8

x + Ux® - 8x? + 11x + 4o

12x® + 28x4 + 32x! - 21x® - 49x - 56 .

o s -y

%%xz - é%x - %

.06x® + ,01x - .35

ox10 . 6x? + 10x® + 5x* - 15x® + 25

x1% - 2x® + 8x7 - 16

x? + 1l4x + 49
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1

17. x° - 16x + 64
18, 9x2 - 60x + 100
19. 4x® + 20x + 25
20. y? + 8y + 16
18a + 81

22. t? + t + %

21, a?

23, x? + a/2x + 2

24, t2 + 32t + 256

25. x® + 2bx + b?

26. a2x2 + 2abx + b2

27, x* + Ux® +6x2 + Ux + 1

28. a®x* + 2abx® + (2ac + b?)x® + 2bex + c?
29, y?® - 16

30, x® - 36

31.» t? - ]
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43, =z - 52* 4+ 142% 4+ 8z - 96
b, 8n* +5m® +n+ 7
bs, a°® + v?
b6, a® - b?
b7, 30x® - 2x® + 29x” + 51x* =~ 57x® - 6x* + 107x® + 62x® - 59x -4O
48, -5x'% + 5x1% + 3x'2 4+ LoxrO . 2x% - 25x7 - 12x5 + 18x* + 12x° + 108
hg, -3x® +2x -7
50, =3x8 +2x + 7
51, x2 -4/5
52. x2 -5
53. -6x% + 5x + 56
54, (a) -x® - 5x* - 6x® + 3x® + 16x + 14
(b) -x* -5x* -5x* + Ux® + x -6
(e) O
(d) x® +5x + 6 |
(e) x® + Uxt + 10x* - 3x® - 12x - 30
(f) -x® -5x -6
(g) -x® -5x -6
(h) x® +5x + 7
(1) 2 +5x+6
(3) -x® - xB 4 1hx* + 27x® + 3x® - lox - 72
(k) x® - 6x° + 9
(1) x8 - x* - 16x® - 37x® - 60x - 27
(m) x2 -3
(n) x* -3
55. vyes

N
PAl
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57. (a) x* + 3x* +1 + 3x®
{b) x® +1
(e) 2x® + x
(d) 4x20 + 4x* + x® + 1
(e) 2(x® + 1)° + (x® + 1); or 2x2° + 10x® + 20x" + 20x* + 11x?+3
(£f) yes
(g)
(h) m'n or nem
58. All except (a) and (g)
59. In (a), (W,+,°) has no additive inverses. (except 0)
In (g), (2x2 matrices, +,.) is not commutative under

multiplication,

7.9 Division of Polynomial Functions (Time for 7.9,7.10 = 2 to 3 days)

(P,+) is not a group since it lacks inverses. Students
should realize that they cannot readily change a + b to the
form a-b™, It is necessary here to view the division of
polynomials from the standpoint of the division algorithm:

"given positive integers a and b, bZ0, there exist
unigque whole numbers q and r suéh that a =b « g + r
where 0 { r <b."

Simple arithmetical problems using the division algorithm
chould be done in class by the teacher, both for review and
as an introduction to the more complicated polynomials.

The development of this algorithm is done by a series
of examples in the text but certainly more are needed for

[]{ﬁ:aningful student comprehension. Emphasis for (f + p) is placed

oo Proided o EHC - o8

i — e et e
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on the identity

f = [{(q-p) + r]
where g and r can be thought of as quotient and remainder.
This eventually takes on function notation to allow for

polynomial functionss

f(x) = [a(x)p(x)] + r(x)

To the teacher:

While the proof (because of length and difficulty) is
omitted from the text, it can be proved that, given two poly-

nomial functions p #c o and f, there exists unique polynomial

functions g and r, deg(r) { deg(p), such that f = [(q + p) + r].
The proof 1s outlined below.

Proof of existence:

(1) Let f(x) = :L_xn + a,n_lxn"l + eee + 84X + B (an # 0)

n 0
_ m m-1
p(x) = b X + by (X (bm £ 0)

m-1
n = deg(f); m = deg(p)

+...+b1x+bo

(2) If n<{ m, then q must be c,> and r = f,

(3) If n) m, consider the general case:

g{-’,%} = a(x) + 5%

£(x) anxn-m + rix

pix) bm pix
a_xnm

f(x) = —————nbm « p(x) + r(x)
a_xn M

£(x) —-257,1— « p(x) = r(x)

El{fC‘ " Here, r(x)=co or deg (r) < n.

QT




a_x™m
(4) If r(x) = c,» then f(x) = nbm . p(x).
o xR
(5) 7If deg(r) ¢ n, then f(x) = —ET«— ¢ p(x) + r(x)
bm

Proof of Uniqueness!
(1) Assume there are two pairs of polynomials gq and r
satisfying the required conditions,

f

Qp + r

f

Q'p + r'
ap + r = q'p + T

@p - @'p =1 -

)

)

) (q-q')p = (r'-r)

) If (q-q') # Coo then deg(p) { deg(r'-r)
) But deg(r) { dez(p)

deg(r') < deg(p)
Thus deg(r'-r) < deg(p)
or deg(p) > deg(r'-r).
(7) This contradicts the last statement, thus proving
unigueness,
The last part of this section deals with the divisibllity
of xn - by x - r, where both are real polynomials. Tails
is of some interest in its own right of course, but its use
in this chapter is primarily in proving the Factor Theorem
,(Section 7.13). Thus, if one plans to omit the Factor Theorem,
part of the preéent section Might also be omitted, If it is
included, be sure students understand that divisibility by

© x + r is included since x + r = x - (-r) is of the desired form,




7,10 ixercises

Note: The teacher should limit the number of exercises
assigned te students to comply with the ability of the

individual student and/or class.

g: x = x + 10
re x — 35

]
o

deg(p) = 1; deg(r)

Q: X - 3x® - Tx + 4

rs x - 27x - 27

deg{p) = 2; deg(r) =1
xa

q: X ~—»

rs X —p12

a(x) = x*; r(x) =0

a(x) = 0; r(x) = x

a(x) = x +2; r(x) = -1

a(x) =x® +2x+ 4 r(x) =0

a(x) = 0; r(x) = x -2

q(x)=%x8 --g-x’ +7x4,—gxa + Ly —%x+§-, r(x) = 0
a(x) = x + 2; r{x) = -4

a(x) = x ~ 3; r(x) =0

q(x) = 1; r(x) =0
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13. q(x) =2x + %i r(x) = - g

14, q(x) = 2x® + 3x -%—; r(x) =g

15. q(x) =5x -2 ; r(x) = -10x
16, g(x) =x% + x® -3x® + Tx - 13 r(x) = =4
17. q(x) =2x + 3 5 r(x) =0
18, a(x) =2x+2 ; r(x) =3
19. q(x) = ;c,]-'-x -2;r(x)=0
20, q(x) =x®* -3x+9; r(x)=0
21. (a) Q! X —>)X =53 r: X —) =7
(b) =7 =(0)(3) + (-7)
(e) 21 = (=7)(-4) + (-7)
(d) -7 = (-3)(0) + (-7)
22, (a) q: x ~——>2x%® - 15x + 67 3 r: x —) =321
(b) 3 = (54)(6) + (-321)
(e) 1k = (67)(5) + (-321)
(d) =321 = -321
23, In the first case, deg(r) ¢deg (p)

24, (a) T (b) T (¢) F (4) T (e) F (f) T (g) F
(h) T (1) () 7 (k) T (1) T (m) T (n) F
(o) T (p)

25. (a) T (b) (e) F (a) F (e) T

26. (a) T (bv) (¢) F (a) F (e) T

27. a(x) = x® + x*r + x*r® + x3r® + xr* + 18

28, a(x) = x* + ksr + Xr® + xX3r% + xX°r4 + xr® +

T
F
T
T
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29. (a) q(x) = x® +2x+ 4

(b) x® -2x + 4
(e) a(x) = x®
30, g(x) =x° + x%r + X"r® + x®r® 4+ X5r% +x4r% + XPr% + x2r" + xr® + 1°

7.11 Polynomial Factors and the Iactor Theorem

(Time estimate for chapter 7.11, 7.12 = 2 to 2% days. )

Whereas students previously factored polynomials with
leading coefficients of "1" (see Course IT, Chapter 4), this
section is a natural externision to polynomials with various
leading coefficients,

The method used here is a rather general one for tri-
nomial quadratics, being based on distributivity. The student
should see that it applies equally well if the leading co-
efficient is 1, as in earlier examples he has met. Thus,

x* +2x - 15 = x* + (R + S)x - 15.

R+ 3 =2, and RS = -15,

So R=5, §= -3

x? +2x - 15

x* + (5 + «3)x - 15

%% 4+ 5x - 3x - 15

x(x +5) - 3(x + 5)
(x - 3)(x + 5).

One must be careful about the use of the words "factor"

and "prime". The number 5, for instance, is prime over the
set of whole numbers, since in that set it has no factors other

than itself and 1. Over the set of rational numbers, however,

ﬂ.r'ﬂ

AT )
&
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it is not prime; among others, it has the factors %-and 10.
Similarly, 5 is not prime over the set of real numbers. Thus,
the words '"prime" and "factor' are relative to the domain
under discussion. In number theory, it 1s usually the whole
numbers (or at most the integers) which constitute the

domain, and thus 5 is classified as prime.

A similar situation exists when one considers factoring
polynomials, specifically in this case trinomials of degree
two. Here the domain must be specified for the allowable
coefficients. Consider, for instance, "x® + 4", We are used
to celling it prime, as indeed it is if the domain is the
set of integers, the only factorization then being 1(x2 + 4)
or (~1)(-x® - 4), However, if one were to allow rafional
coefficients, the factorization %{Qxa + 8), among others,
would be possible; clearly it is the product of two polynomials,
neither éf which is a unit. As one other example, x?® - 2
ié not prime if one chocoses R as domain, for the factorization
(x ++2)(x -+~2) is then available.

The truth of the matter is that if the complex numbers

are chosen as domain, any quadratic ax?® + bx + ¢ (a#0) has

factors:

-b - /%% = Hac

- M. 2

For these2 reasons, the student is reminded that we are
looking for factors of a particular kind, namely (ax + b)(ex + d),

where the coefficients are integers (we are "factoring over the

integers".

280
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The Factor Theorem has many uses in mathematics ‘see for
instance Example'5, in which the graph of a function is
sketched, using zeroes of the function.,) Point out the
assumption here that the graph of a polynomial is a
"smooth curve”, However, it might be omitted at this
time if the chapter seems to be consuming too much time.

In that case, omit also Exercises 21, 22, 23, 24, and 25 of
Sectien 7.14,

7.1l2 Exercises

1, 1 x —»x+ 7 gt X ——>x - 4

2. f1 X ——p33x =5 g8 X —>x + 4

3. (x-8)(x - 3)

b, (x + 11)(x + 3)

5. (x - 8)(x +1)

6. (x+7)(x-5)

7. (2x + 3)(x -7)

8. (4x - 3)(x + 5)

9. (5x +2)(x + 2)
10. (7x - 2)(x + 3)
11, (5x + 1)(3x - 2) .
12, prime over the integers ' .
13. (6x + 5)(x - 10)

14, (2x + 3)(3x - 8) |
15, (9x - 2)(x + 3) ‘ : }

A9
S
[ vah
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6. (a) (x+2)(x -2)
(b) (x + 4)(x - &)
(¢) (n + 10)(n - 10)
(a) (2x + 3)(2x - 3)
(e) (5y + 7)(5y - 7)
(f) (x +1v)(x - D)
(g) (ax + b)(ax - b)
17. NOTE: Students may, by this time, recognize these
as (a + b)? and (a - b)?,
() (x + 3)(x + 3)
(b) (2 +5)(a +5)
() (x - 4)(x - L)
(a) (x - 12)(x - 12)
(e) (x -a)(x -a)
(f) (x+ a)(x + a)

18. (a) +49
(v) +81
(o) 43
1
(d) + g
(e) +%2
‘ 2 *
(£) + g |
19, b,c, and d are prime
20. a and 4 are prime ? f
21, (a) o© (b) yes (¢) x® +x +2
22, (a) -28 (b) :no (e¢) © (a) yes

) j
lfRi(j (e) -x® +x -5 ;
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23. (a) o, (v) ves (c) ** +3x+7
2k, (a) p(5) =0 (b) (x-5)(x -3)(x + 1)
(e)

v
. A 5
-1 0
HE:
1 -
219 X LY N I C I
I T
-5 .
5 | 0 ol
y
25. (a)
x|y 3;'
-1 0
0 [(-15
|5 ATAY
2 |- - 3\ o
3 0 X —— + + X
4 15
5|0 /\

(p) (5 - z)(x - 3){x + 1)

7.13 Quadratic Punctions and Equations (Time for 7.13, 714
= 2 to 2% days. )

The student has had extensive work with the graph of x2,
and in Chapter 4, of ax® and ax® + b, In this section we
work to the more general form

a(x - h)? + k

Nra
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Students should see that this may be considered as the

graph of a condition C!(x!',y'), obtained from the graph

of ax® (condition C(x,y)) by the translation (x + h, y + k).
The various possible intersections of the graph of a

quadratic function with the X-axis should lead naturally

to a discussion of fthe number of zeroes--none, one, Or two--

and hence to the possible number of real sclutions of a
guadratic eguation.

The technique of completing the square is not an easy
one for students, and it is quite likely that Example 3,
and similar examples, will have to be carefully explained
in cléss. The teacher should refer bvack to problem 18 of
Section 7.12 (completing the square) and could present
quadratics with leading coefficients = 1 before doing
Example 3,

NOTE: Special attention should be pald to problem 7(i)

in Section 7.14, since it develops the general solution for

a quadratic eq_ation. A °'ood deal of class time should be

devoted to its development and meaning. Various other
appreaches can be taken here:
Approach 1: ax® + bx + ¢ =0, a #0

a(x® + gx) +c¢=0

) b b 2 _ b3
cv(Xa + a—x + zl-é.-a-) + Cc =2a (zl-é?-)
(x2+3x+ )+9-=-b2
a T2 a Ia=

2 3
(2 + 2%+ agz) = 5w - )3



X+ 55 = a
BT T Tme
x = 28,

Approach 2: ax® +bx+c¢c =0, a#0

ba(ax® + bx + c)= 4a(0)

La2x3 4+ Labx + labe = O
La?x? 4+ Uabx = -lge
La?x3 + Labx + b2 = b2 - lac
(fax + b2) = b? - lac
pax +b = - Hac
pax = -b L .J/B¥ = fac
x=-bf45‘;ﬂ'§6

7.1% Txercises

1.

on J
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f(x)

4 (ar2y”
Z t a
Z(X-2)

NOTE: Scales used in graphs indicate affine systems.

+3) 6, 7]

L, (a) (x - 6, ¥y
(0) (x+2, y+ ll‘) {2, 4]
(c) (x"‘%': y - 3) [%‘: -3]

() (x -7, y - 10) [-7, -10]
ERIC (e) (x+0, y+2) [0, 2]




Ul
~
D
N®
~~
o
g

\4,1) - \ /
\; , e 7‘\' & \7 7)‘
ey
h ¥
(e) ? (1)
i\ ' 3
¢ 7, FA o 2
— R : (3’ ‘.‘) .
(2) + A
Yy
" /
(1]
& a—
39
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6. These problems should e approached from the concepi of
completing the square and finding the zeroes of the

function as indicated in section 6.13.

f-3,-21 = zeroes or
the function

}2
3
(x + 5)7 + %7—
-2 31) -
a,..
no real zeroes
() € >
cJ . 121
2(x+%—)“ -5
rl 1 =
Ey -51 = zeroes of
ﬁ’ - the function

) 268
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3(x - 2 - P

3, - §‘3 = zero points

7 25
> 2()( + u_—)a -5
2L
{-3, - '%] = zerd points
2(x + %)2 + )-'g-
T no real zeroes
ﬁr
L e
% =+ 4
\ 4

269
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3
or 9(x + 2-)2 - %—L-

2(x +3)? - X

§ R {'5 +1.I\[/-17: -5 L-L*/—l'?)

-5 -1
1) ¢

\ / (x +3)2 - %

/’1 -3 + N/_13 —3 - \/_13}
'{'" 2 (4

210
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5
(x + 5)8 - T
=3 +45 =3 -5
(--—?‘ 'i) f 2 s 2 !
;) 4
3(x + %)3 - %g
(=2 +410 -2 -Jlo)
3 ’ 3
a(x + 'b)a 4 Bac - 2
' Za a% +
4y -3 (v) =252/5 (c) %, -3
-1, %- (e} no real solutions (f) - gy 1
5 1 -b "-'«/b”l - Tac
- 3‘: 1l (h) §‘: 3 (1) Ja

/

\V

2 zero points

(v) \U (c)

1 zero point

No zero points

914
wo -
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7.15 Rational Functions (Time for 7.15, 7.16 = 1 to l% days)

The first definition of a rational function presented
in this section is a natural extension of the definition of
polynomial function. The generating functions in both cases
are the same -- JR and Cye @ € R, However, in the case of a
rational function, division is also permitted, OFf course it
is also useful to think of a rational function as simply
the quotient of polynomial functions, and this is presenfed as
a second and alternative definition in the section. Be
sure students understand that every polynomial function
is a rational function (denominator = 1).

Whereas the domain of a polynomial function presented
no difficulty (unless there is some external reason to
restrict the domain, it is always R) the domain of a
rational function is always important to consider. A rational
function considered as the quotient of two polynomials p/a
ﬁill never have the zeroes of q in its domain; the class might
discuss once more the reason for this, the inability to define
division by zero, We shall generally assume the domain of
a rational function to be the greatest possible subset of R.
The graphs of rational functions included in this section
and in the exercises are meant to be simply rough sketches and
highly intuitive. Fmphasis should be placed on using the

excluded values to draw asymptotes, and on locating enough

specific points to get an idea of how the graph "behaves'.

"Gets bigger and bigger", "gets closer and closer", etec. are
phrases that probably will have much meaning for students

ERIC in connection with these graphs. a0

w
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7.16 Exercises
1. (a) yes (b) no (c) no (i) yes (e) yes (f) no

2. (a) Polynomial and rational (b) Rational

(¢) Rational (d) Rational
(e) Rational (f) Neither
(g) Polynomial and rational (h) Polynomial and rational
(i) Neither (J) Polynomial and rational
(k) Rational {1) Neither
3. (a) R|fO? (v) R|{3?
(c) R[{-5} (a) R[{-5?
(e) R () RB[{-7,31
(g) Rlf-2, 5, - 2 (h) R|{0, 3, -12, /23
4, .
> a
| '\
I\ }
P
xk - | \\_____
|
|{o AN
Rljo
| RE}
|
6. 7
L l
X+2 l
(1) |
€2,1) |
‘ |
T
R| fl ,
e
| R| &2}
279 !
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|
8 9.} l
i |
\
| |
! | '
| X i
L~ | |
O\ ' i
| r|{2? | |
| ' ‘
| ‘ {"5931
| ' 3
11, . 143
1\ -2
I\ &l
Asymptotes:
X = 2, y = 1
#12, '
: t
' | R|f3, -21
' |
| !
AN Lo
| l
| |
I
| |
| |
Q- A
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7.17 Operations with Rational Functions

(Time for 7.17, 7.1l8 =3 to 3%-days)

The work of this section is concerned with the now familiar
concept of operations on functions. This time, however, the func-
tions are rationcl functions, and the work is done primarily
by means of the associated rational expressions. Thiis the
student encounters the traditional high shcool algebra content

of "algebraic fractions". Also traditionally, this work

has not been easy for students, and the examples in the tex*

will almost surely have to be explained carefully and buttressed
by similar examples.

Again it is important to emphasize the domain of rational
functions. In a division problem the zeroes of the numerator

of the divisor must also be excluded, As an example, in

x+3 x =2
X+ 45 x-7

The text does not discuss the structure of (RF, +, °),

the domain is R|{-4,2,7}3.

vhere RF is the set of rational functions. This is because of
some inherent difficulties whose resolution would only add

v0 the length of an overlong chapter. For instance, while the
function ¢, is surely the identity function for multiplication,
the product of x and % is not exactly the function c,, whose
domain is R, but rather the function X———> 1, with domain Rl{O’.
X E 5 is not c,, but the
function x ——» 1, with domain R|{23. A similar difficulty

Similarly, the product (x =~ 2) -

arises in the additive structure. Here o is the identity.
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1
X
domain R|{0¥. In this connection, see Exercises 3 and 4

+ %%-is not Coe but the function x———» 0, with

Yet
of Section 7.13. Except for these difficulties with domain,
(RF, +, .) would of course be a field.

Even so, analogy with the field of rational nﬁmbers is
probably a good ons to emphasize. The text does some of
this, and Exercise 1 of Section 7.18 is dJdirected to this

.analogy, helping students relate new learning to old.

7.18 IExercises

22 8x - 5 8x -5
1. (a) = e g)(x =5 of ¥ - 3x - 10
(v) £ SE o X o ik oX
105 (x =2J(x + IJT (x + 3) xT+2%x%-5x-6
10 +2)(x + 5 x? + 7x + 10
(e) a7 Tﬁ?’-’ﬂ‘}‘%?"-")ﬂ' °F ¥ - IIx® T 12X
3
(a) 73 =z
2. (a) &P Sy R|(7,-3)
(v) ff ] R|{7,-3?
(&) TR RI{7,-3]
() Erpsdes RJ {7, -3)
() E=7RETT R|(7,-3)
4y + 12
(f) —xr R'{O: Ts "3}
(g) X 3x+12 R|{0, 7, -3]

X




(x - 5) is a polynomial

. function with domain
(b) by Teso | RJ{S}. Therefore
- =5
L, fa)

(b) Reflection in x - axls (a,b) € £ =) (a;-b) € h

(¢) 2  Rr|{0}
(d) False (not true for x = 0)
x® + 6x - 10
5‘ X(x+ 5) x# o-' -5
x® + bx
5. mE o -2 x#2, 2
(P x £2, -2, 3
8., 1 X #£2
9. O x#£0
10 X+ 3
. ?‘T‘B‘ x#z) "'3
ll.o i‘g‘ x;‘O

iy
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12, X tex 4 X £ -2, 2
1, A2 cexol x/-% 2
6. e xF£ 235

7.19 Summary

7.20 Review Exercises

1. (a) polynomial and rational
(v) neither
(¢) neither
(&) polynomial and rational
(e) rational
2 (f) rational
(g) polynomial and rational
(h) rational
(1) neither
(j) polynomisl and rational
2. Tx* - 12 4 x - é
3. x° - 15%% + 43x - 84
4, %;_-x’ -4x3+17x+11§-
5. x® -2
6. 9x® + lUox + U9
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7. 6x* - 4ox® + 1bx - 98

8. 0

9. 8x* - 16x® - 20

10. x? - 21x® + 1b7x - 343

1. (a) a(x) =2x - 3L r(x) =12
(p) a(x) = x® +2x + 4 r(x) =0
(¢) a(x) =x® +x+1 r(x) = -7
() a(x) =3x+% r(x) =%

12, (a) (3x -2)ox + 7) (b) prime over integers
(¢) (5x - 2)(5x - 2)

13.. (a) 2(x +1)® -2 Teoy s -2
() 2(x - - 2 T egp
(¢) 2(x + %-)3 + :8?' T‘é’aaa.
(a) 2(x -3 +@2 T3, pa

14, *

pd



15. (a)
(e)
16. (a)
(c)
(e)
17.

~b4, -3

no real zeroes
NT, T}
(-3 5

{o, 3
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(b)
(d)
(b)
(a)
(f)

-3, 1
3

—

2
no real solutions

{-1 +43, -1 -4/31
{3 +441 3 -_ﬂul
I T

X =3 (x-7)(x-2)(x+5) becomes

X —3 x® - Ux® - 31x + 70.

This is a polynomial function since it can be expressed

as the addition and multiplication of the identity function,

Jgps &nd the constent functions (c-,, C-gys Crp ).
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- X o= <4

F
if
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SAMPLE ITEMS: CHAPTER TEST ON POLYNOMIAL FUNCTIONS

Part I: Select the best answer and rewrite the "letter" only
at the right.

1. Which is NOT a polynomlal: 1.
?
(a) =° --éix (b)) = +7 (c) x-;lc- (d) 5 +~%

2. Which polynomial functions represent the polynomial (2x°®)? 2.

(a) cg.JR‘ca (b) ca.JR.JR.JR (C) Coe JR.ca'jR'ca'ch (d) none

3., Which of the following is equivalent to (c-g +3p)? 3.
(a) Jg-dg (B cayedpedp () coyrdg + cqyedg (d) coyte,

4, The degree of the function x —p 0 is: b,
(a) 1 (v) © (¢c) none

5. 3x® +409x - % is NOT a polynomial over the! 5.
(a) reals (b)  rationals (c) integers

6. If deg(f) = 3 and deg(g) = 4, then deg(f-g) = 6.
(a) 4 (v) T (¢) 12 (d) 4 or less

7. If deg(f) = 3 and deg(g) = 3, then deg(f + g) = 7.
(a) 3 (b) 6 (c) 9 (d) 3 or less

8. Which is NOT a commutative ring with unity? 8.
(a) (2,+,*) (b)) (Ry+,*) (¢) (Zs.+,0) (a) (W,+,-)

9. The domain of ; I 3 +f§.: % is: 9.
(a) R (v) R|{-4,21 (¢) R|{-4,1Y (a) RJ{-4,1,21

10. Given f:x—p 3x® - 2x + 1, the value of f(-2) is: 0.
(a) 5 (v) 9 (e) 17 (a) W1

11, For (x® + 6x + k) to be a perfect square polynomial, 11.

k must equal: (a) 3 (p) 9 (c) 12 (d) 36
12, The zeroces in R of the fumetion k are 3 and 2, Which is 12.
the function k? (a) x2+6 (b) x2+5x+6 (c) x?-5x+6 (d) (x+3)(x+2)

)
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Part II - Answer all questions with regard to the polynomial:

What

What

What
What

What
What

What

o 3N O U &= w

What

0x5 +

is
is
is
is
is
is
is

is

the
the
the
the
the
the
the

?
8,

3x¢ + -2x° + 7x - 8.
coefficient of x?
constant term?

degree of the polynomial?
leading coefficient?
coefficient of x?¢?
coefficient of x°?

exponent of T7x?

Part IIT - f(x) =x® -4 ; g(x)=x+2; h(x)=x-5

Perform the operations as indicated and simplify all answers.

. [g-h}(x)

. lg-sgl(x)

1l

1l

. [f - gegllx) =

. [f + gl(x)
. [f+ gl(x)

Part IV:

1
2
3
b, [f - n)(x)
5
6

‘Perform the indicated operations: (Simplify your answers)

1. (3x - 8)(2x® - 5) 1)
2. (4x® - 7Tx + 10) + (x® - 2x - 5) 2)_
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3, (x® -3x+ 7) - (5x® - x - 4) 3.
L, ':?“'22% + ?ﬂj—c-g b,
6. 3(2x® - 6x + 4) - 2(3x® + 9x + 6) 6.
7. (2x - 5)(2x ~ 5) 7.
8. (2x -5)(2x + 5) 8,
9. (2x - 5)(3x + 1) 9.
10, (x® + x+ 1)(x - 1) 10,
Part V:

Identify each of the following as &a polynomial expression,
a rational expression, both, or neither.

i

1. -2-xa F 3x 1.
2, x? + % 2,
3. x® +43x%2 + 5 3.
L, x% + 2x® +4Jx + 5 L,
5. 3 5.
Part VI:

Write each of the following in the form 3(x - h)? + k. Then
tell how the graph of that function can be obtained from the
graph of f: x —) 3x°,

1. 3x2 + 6x 1,
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2. 3X8 -2X+ 5 2-

Part VII:

For each of the following pairs of polynomials, f and p,
find polynomials q and r, with r = ¢  or deg(r) < deg (p)s
such that f= ([p°q] + r).

1. f(x) =6x® - Tx + 10 1. q:
p(x) =3x + 4 r:
2, f(x) ==x® - 27 2. q:
p(x) =x -3 r:
3. f(x)=x+1 3. q:
p(x) = x2 r:

Part VIII: IMind the zeroes in R of the following quadratic
functions.

. X® -8x + 16

X2 -5

2x3 + Tx + 3

. 5x2 - Ux

m ~ w N
m o w D

. 2x3 + 4x -1

-



Part

Part

Parst

Part

Paxrt

Part

Part

Part

I. 1.
2.
3.
IT: 1.
2.
3.
IIT:1.
2.
3.
Iv: 1.
2.,
3.
L,
5.
Ve 1.
2.
VI: 1.
VII s
VIII:
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Answer Key for Chapter Tes

t

e 4, ¢ 7. 4 1l0. ¢
b 5., ¢ 8, 4 1l1. b
c . » 9, d 12. ¢
7 K3 7.1
-8 5, -2 8. 3
L 6. 0
x? - 3x - 10 h, x® - x+1
x2 + bx + 4 5., X% + x -2
“ix - 8 6, x -2
6x® - 16x® - 15x + Lo 6. =36x
x + bx® - 9x +5 7. b4x® - 20x + 25
Ux? - 2x + 11, 8., Ux2 - 25
ox7 + 12x 9. 6% - 13x - 5
kLo 10, x* -1
Both 3. Both 5. Both
Rational 4, Neither
3(x + 1) - 3 2, 3(x-§)a+l;-*
Translation -1, -2 Translation ; 4
3 3
l. q: 2x -5 r: 30
2. q: x® +3x+9 r: O
3. q: O | re x +1
. 2. 5, -5 3. -5 =3
Lo g s s a-P
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Chapter 8
CIRCUIAR FUNCTIONS
Time Estimate: 18 - 22 days

The basic concepts of mapping and functilon have played a
prominent role in preceding chapters and in earlier courses; and
two speclal classes of functions--polynomial and ratlionali--have
been studled rather extenslvely. In thls chapter the function
theme 1s picked up once again, this time with the introduction
of the circular--or trigonometric--functions. These functions
differ markedly from the algebraic functions ercountered earlier;
one of these differences, the property of periodicity, 1is cited
in the introduction, although a fuller appreciation of periodi-
clty must await the introduction of a wrapping function in
Course IV,

Traditionally, the study of trigonometry has begun with
the problem of solving right triangles, moving on to the solu-
tion of triangles in general, While this topic has some iumpor-
tance (e.g., resolving forces in physics) it is an outgrowth of
a more analytic study of the circular functions, rather than a
beginning point, Thus, in the present chapter, trliangle sclving
appears in the final section, 8.15.

The chapter begins with a definition of sensed angles., The

geometric concept of angle, introduced in A
Course I, is not sufficient for analysis,

For example, the angle shown at the right

must be construed as measuring either 90o

or 2700, and injecting the notion of order to palrs of coterminal
1l

4
by
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rays allows for this.

Sensed angles in fact play an lmportant part in the entire
chapter, The first circular functions developed, SINE and COSINE,
are functions of sensed angles; functions of numbers are intro-
duced in a subsequent sectioh. In this chapter, we confine our-
selves to a measure function (m) which assigns to sensed angles
only numbcrs between O and 27 (not including 2w). With the
introduction of a wrapping function in Course IV, any real num-
ber may be interpreted as an angle measure. Even so, the measures

assigned by the m function remain the principal measures, and

50 assume gpecial importance.
Following is a 1list of the major topics (concepts and skills)
of the chapter:
Definition of sensed angle
Congruence of senscd angles
Standard position of a sensed angle
Measuring sensed angles (m function)
Circular functions of angles: SINE and COSINE
Circular functions of numbers: sine and cosine
Addition of sensed angles
Graphs of circular functions
Solution of triangles: Law of Sines and Law of Cosines

8.1 Sensed Angles (1%-- 2 days)

The specific purpose of this section is to present the

definition of sensed angle--l.2., to introduce the notion of

28
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order when considering a pair of coterminal rays. Notice that
the definition here involves simply the rays themselves, not the
region "oounded" by them; this stands in contrast to the earlier
work with geometric angles.

The definltlon of congruent sensed angles is made in terms
of direct isometries, a concept of trans-
formation geometry with which students
should be familiar by this tire. For
background here, we offer a rationale

for thls definition, though it would

probably mean little to students at this

time. In the accompanying diagram, /AOB and /AOC, as geometric
angles, are congruent, However, considering the sensed angles,
7AOB and Zhoc, the SINES of the angles are not the same; the SINE
of 7A0B is positive, whereas the SINE of 7A0C is negative. Also,
the two sensed angles do not have the same measure; the measure
of 740B is 45°, while the measure of 7A0C is 315°, or -45°,
Hence, because we want congruent sensed angles to have the
seme measure and the same SINE (i.e., we want the same assign-
ments made to all members of a congruence equivalence class),
we do not want the angles AOB and AOC above to be congruent.
And the definltlion of congruent sensed angles makes it clear
that these two angles are indeed not congruent, for there is
no direct isometry mapping initial side onto in’tial side and
terminal side onto terminal side.

Note that the definition of sensed angle does not rule out

o"3traight angles" (where the two rays are distinct but collinear)

ERIC
0nq

P
e
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and "zero angles" (where the two rays of the pair are indeed

the same ray). Such angles in fact play a crucial role in analy-
sis; they are introduced in Exercises 9, 10, and 11 of Section 8.2
and should not be omitted.

8.2 Exercises

1. (a) T and RN (b) ¥ ana XX
(e) It ana IT* (d) T0 and E&"
2., (a) False--no direct isometry will map initial side onto
initial side and terminzl side onto terminal side,
(v) True--for instance, a translation carrying E to H,
followed by a rotation, will map one angle on the
other; both of these are direct isometries,
(¢) False (d) True
3. (a) Translation mepping B on E
(b) Yes, since a direct isometry maps initial side onto
initial side and terminal side.
(¢) Translaticn mapping E on B
(d) Yes
(e) Yes, it is symmetric; the inverse of a direct isometry
is also a direct isometry.
ZRTN = 7ASD
(TN} TK) = (5D, =)
ZWTR = 7bsA
5. (a) Identity transformation

=~
*

(b) Yes

o (c) Yes 29/
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(d) Yes
(e) No--a single line reflection would give the required
mapping, but this is not a direct isometry
6. (a) Translation mapping B on E
(b) tes
(¢) Transletion mepping E on H
(d) Yes
(e) Translation mapping B on H
(f) Yes
(g) Yes (the preceding parts are an illustration of this)
7. Yes, since it is reflexive, symmetric, and transitive. (Note
therefore that a single sensed angle may be taken as repre-
sentative of an entire equivalence class ef sensed angles,
In later sections a standard position sensed angle will often
be taken as such a representative.)
8., (a) Translation, mapping S onto M, followed by a rotation
(b) Yes--the two mappings in part a are both direct isome-
tries; thus thelr composition is also a direct isometry.
(¢) No=--a line reflection will be required, which makes the
isometry an opposite one rather than direct.
9. (a) Yes
(b) Half-turn
10. (a) Yes; translation~-D to B--followed by rotation
(b) Yes; trenslation followed by rotation
11. (a) Yes; translation--0 to A--followed by rotation
(b) Yes; translation followed by rotation will give the
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required meapping.
12, ([Student construction]

8.3. Standard Position (1 - lé-days)

Standard position of a sensed angle is introduced in the

usual way: the initial side of the angle is the "positive half"
of the x-axis. The work with ratio of arc length to radius of
circle should be treated lightly and intuitively, passing quick-
ly to the unit circle on which all later work will be based.

The m function introduced in this section is to play an im-

portant role in followlng sectlons, both in this course and sub-

sequent ones, Essentlally it assigns a unique real number between
0 and 27 (not including 27) to each sensed angle in standard
position, Thus it is a one~to-one mapping from the set SéSA
(standard position sensed angles) to the set [0,27). (Be sure
students understand that the symbol "[0,27)" indicates that O

is included, but 27 excluded,) ILater, in Course IV, a wrapping
function will be introduced so that an infinite number of num-
bers {or "measures") may be associated with a given angle; for
example, a quarter-turn may be associated not only with gu but
also with %;; -%;Q etc. Nevertheless, the numbers assigned by

the m function will remain the principal measures.

[Notice that the choice of [0,27) as the range of m |
means that intultively we move counterclockwise,

about the unit circle to determine the arc length

for a gilven angle in standard position. Thus for a

T 306
| three-quarter turn, the arc length 1s %;; not 5 e




In Section 8.7, trigonometric functions of real nwibers will
be ‘developed by means of composition of functions. One of the
functions in the composition 1is the function m'l. Therefore,
the inverse of the m function merits some attention in the pre-

sent section. Since m is one-to-one and onto, 1t has an inverse;

the domain is [0,27), and the range is SPSA. Some of the exer-
cises in Section 8.4 (see, for instance, Exercise 8) deal with
this inverse function,

It was established in Exercise 7 (and preceding exercises)
of Section 8.2 that congruence of sensed angles is an equivalence
relation. Thus every sensed angle, in standard position or not,
is congruent to some standard position sensed angle. Emphasize
the principle gtated in this section to the effect that all
angles in the same equivalence class are assigned the same
measure. Thus the m function indirectly determines a measure

for every sensed engle.

8.4 Exercises

1. For radius 3, circumference is 6w, Thus 9 is % X 6w, or .

a3 P _T
Since r=3, F=T
For radius 2, circumference is Uy, Thus 8 is %-x 4#, or %w
a §:
3 _T
Since r=2, F T~ T

For radiusvl, circumference is 27, 6 is %-x 2r, or %w, and
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T
LI

r T 3

¥mphasize that the results are the same, illustrating
the principle discussed in the text.

2. (a) g.(one-fourth of the circumference)
(b) %ﬂ (one-third of the circumference)
(c) %W (one~-twelfth of the circumference)
(a) %r (five-eighths of the circumference)
(e) %w (seven-eighths of the circumference)

(f) = (one-half of the circumference)

3. [student drawings])

L, [student drawings]

5. The measure of (REC Fﬁ) is O, since this angle is congruent
to the standard position zero angle. Congruent sensed angles--
all in the same equivalence class=--are assigned the same
measure,

6, (a) No; we do not at this time consider negative arc lengths.,
(b) Yes; the "zero angle” is assigned measure O.

(c) The arc length 27 corresponds to point (1,0); this
brings us back to the zero angle, which has been as-
signed meacure O,

(d) No [In Course IV, the wrapping function will assign
many numbers to each sensed angles, but the principal
measures will remain those numbers between 0 and 27]

(e) {x: 02x<2r)

O~. The m function is one-to-one. S0
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8. [student drawings] Be sure students understanc that n~L

maps from {x: 0% x<2r} to the set of standard position
sensed angles, This inverse function will play an impor-
tant role in subsequent sections and in Course IV,

(a) %w (The initial side is X, not 51‘2: by way of contrast,

note m2 ROX% )

(b) fur
(¢) 7
(a) 3
(e) #r
(£) gr
(g)

8.5 Circular Functions of Angles (2 - 2% days)

In this section, the SINE and COSINE functions are intro-
duced, with the usual definitions of ordinate and abscissa, re-
spectively, of the point where the terminal ray of a sensed
angle intersects the unit circle,

Emphasize that the domain of each of these functions is the
set SPSA., It is for this reason that the functlion names are
capitalized, distinguishing them from functions of numbers to
be introduced in Section 8,7 and to be denoted by the lower case
names "sine" and "cosine."” Thus SINE and sine are distinet func-

tions, and the upper and lower case designations help to keep this

005

o
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distinction intact.
Note that SINE (and also COSINE) is not one-to-one, since
two angles may have the same SINE. This can be made clear on

the overhead projector with a diagram such as that below, where

A _B

e
-

the horizontal line AB is represented by a thin stick placed
on the projector so as to be parallel to the x-axis, Since
this line intersects two points on the unit circle having the
same ordinate, the two angles so determined have the same SINE,
The same thing may be done with COSINE, this time placing the
stick parallel to the y-axis.

The section includes the principle that angles have the
same sense if and only if their SINES have the same sign (both
positive or both negative), There is a physical way in which
students may think eabout two angles having the same sense or

opposite sense, In angle ABC below, think of transversing a

path from A to B to C and back to A, G-H-K
¢ ; E F G Ca
A-B-C
(64
B E-F=G H K = K-H-G
A ;) CL

Such a path could be described as counterclockwise., Similarly

the path E-F=G=E 1s counterclockwise, Thus the sensed angles
ABC and EFG have the same sense (counterclockwise)., On the

O other hand, ZGHK is of opposite (clockwise) sense, since the ‘?fM§
‘ : £
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path G-H-X-G is physically construed as a clockwise one. (Notice,

however, that TKHG does have the same sense as Z'ABC.) This is

not Iintended as a definition of same sense and opposite sense,

but rather as a physical aid for students in bringing some sort

of meaning to the phrase

"same sense,"

8.6 [Exercises

1.

2.

(a)
(b)
(e)
(a)
(v)
(a)

(b)
(c)
(d)

(a)
(b)

0 and -1

-1l and O

l and O

0

1l

No point of the unit circle has y-coordinate greater
than 1

No point of the unit circle has y-coordinate less than -1
{xfj-1¢ x<s1)

No. For instance, two different angles will be assigned
the number %-. In fact, except for 1 and -1, every num-
ber in the range l1ls assigned to two distinct angles.
[x|-1=x=1)

No

SINE 7A0B=y and COSINE 720B=x, where (x,y) is a point of the
unit circle, x*+y®=l, Thus. by substitution, [SINE (7A0B)]3+
[cos (7hoB)1?=1

(a) positive

(v) positive

(c) negative

(d) negative o0



Te

9.

lo.

*11 ]
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(a) negative
(b) positive
(e) positive
(d) negative
(2)

. ‘[L
(a)

1.
(v) —;

-+
T

There are two such standard position sensed angles. They

are detérmined by the x-axls and the line y=x,
From Exercise 5, [SIN(ZAOB)]3+[C0S(70B])2=1
And if SINZAOB=COS7AOB, we have

[ SI_N(Z"AOB) 12+( SIN( 7A0B)])?=1
2[SIN(ZA0B) ]2 =1

3
[SIN(ZhOB)) %
SIN(7A0B) =L 3.21. =t .g. 20K
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The SINE functlon assigns g- to the first quadrant angle,

and -g to the third gquadrant angle.

12,

These angles are determined by the x-axis and the line y = -x.

13, since (3)° + (%-./3)2 =%+ 3 =1, the point (3» 5/7) satisfies

the equation x® + y® =1 of the unit circle.

14, (a)
(2 373)
(b)
(3 57
(c)
(-5 -2/3)
15, P("a:b): Q('a.v‘b): R(a:"b)
16. 7AOB and 7AOC both have a positive

number assigned by the COSINE
function.

However, A-0-B is a "clockwise"

orientation, whereas A=0-~C is a

")ﬂq"counter clockwise" orientation.
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8.7 Circular Functions of Real Numbers (2 - 2% days)

Before thls section 1s taught, it is might be wise to be sure
that the class 1s clear on the SINE and COSINE functions, and on
the function m'l, the inverse of the m function. It may also be
well to review briefly the notion of composition of functions,

a concept that has been met a number of times before. Thus if
f and g are functions, then the composition g © f is meaningful
f the domain of g is a subset of the range of f,
Putting these ideas together, it is apparent that the compo-

-1

sition SINE © m™ is meaningful, since the domain of SINE is the

set SPSA, which 1s also the range of m'l. This composition is
then a new function, denoted "sine." 1Its domain is [0,27) and
its range is [-1,1]. Similarly, the cosine function is defined
as the composition COSINE © m™l,

The distinguishing feature of these new functions is that
they assign numbers to numbers rather than to angles as wis
the case with the SINE and COSINE functions. Thus students
get a first notion of the idea of, say, sine 2, where 2 1is a
measure of something other than an angle (e.g., time).

In Course 1V, with the introduction of a wrapping function,
we shall be able to speak of the sine and cosine of any real
number, But at the present time, with only the m function
available (which deals just with principal measures) we are

limited to zpeaking of sine (or cosine) X, where O g_ x < 2r.

2040
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8.8 Exercises

‘(g) -1

(-33p + b =3+ d-1
(a) 2r

(o) 7h0B
(c) %

(4) %

(e) -
(£) - |

(%«/’2)3 + (- %‘Je)z =72-T+% 1
(2) fr

(b) 7hoB
(¢) - a2

it

(d) - W2
(e) - 2
(£) 2P
(g) &2
(h) 22
(a) =1
(a) 1
(e) O
(e) ©

(v)
(o)
(a)
(£)
(h)
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7. (a) sins > 0; cosp < O
(b) sinf < 03 cosa< O
(c) sin® > 0; cos9 > O
(d) sins < 03 coss > O

8., (a) true (v) false
(¢) false (d) false
(e) false (£) true
(g) fealse (h) true
(1) true (3) true
(k) true (1) false

9. (a) I (b) 3w
(c) 33 (a) /3
(e) 3 (£) %

10. (a) r (b) 3
(c) 32 (a) 2

(e) 22 . (£) ~3/2
11. (a) SPsa, fhe sat of sensed angles In standard position
(b) no; two argles may be assigned the same number
(¢) (x|lo{ x< 2r)
(d) no
(e) sPsA
(f) no
(g) {xfo¢ x< 2r)

(h) no
or 0
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8.9 Degree Measure, Kadian Messure, and Angle Addition (2 - 2% days)

A number of principles are introduced in this section,
First, the "degree protractor,” familiar from earlier work,
is extended to a full circular protractor so that every stan-
dard position angle may have a measurement expressed in degree
units as well as in radian units., While the m function, as
originally defined, assligns numbers which can be Iinterpreted
as meagurements in radians but not in degrees, 1t is neverthe-
less common to see such notation as "m(7A0B) = 30°." We avoid
it ag much as possible, however, saying instead such things as
"TAOB has a degree measurement of 30°,"

The two principles presented next (concerning the relation
between the measurement of an angle and its reflection 1in the
x-axis, and between an angle and the angle obtained by inter-
changing initial and terminal sides) should be clearly under-
stood as they will be used in the development of Section 8,11,
With the ald of a dlagram, the two principles are very easy to
understand, and the rationale in the text should make them seem
reasonable to students, In terms of logical structure, they may
be viewed simply as postulates,

Also to be used in Section 8.11 is the definition of angle
addition, which makes up the final portion of this section. The
rationale for the definition may be illustrated physically by

drawing two angles, say ZABC and 7DEF on the overhead projector,

o 29
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E D

maeking & tracing of ZbEF, and moving the tracing over so that
T coincides with AC, The angle ABF so formed illustrates the
sum 7ABC + ZDEF. Of course students should understend that

the definition itself, while suggested by the picture, is inde-
pendent of 1it,

Angle addition may serve the purpose of probing once again
the fundamental concept of binary operation. Here the operation
is defined on the set of sensed angles, and so we have an opera-
tional system (SA,+). It may be of interest to investigate the
properties of this system., It 1s assoclative, as a demonstration
on the overhead projector may illustrate. There is an identity
element; in fact, any Zero angle functions as an ldentity. Each
angle has an inverse; specifically, the inverse of 7ABC 1is 7CBA,
since, by definition of angle addition, ZABC + ZUBA = BA; a zero
angle, Angle addition is not commutative when one considers
individual sensed angles. Thus, 7ABC + 7DEF is not the same
as TDEF + TABC (in the first case, ZDEF is "moved over" to ZABC,
while in the second 7ABC is "moved over" to 7DEF.) However, if
one considers the operation as being defined on equivalence
classes of congruent sensed angles, then the operation is com-
mutative; in the case above, the results are not identical, but
are congruent and hence in the same equivalence class. Thus,

conéidering the operation as one of equivalence classes, the
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struci;ure is that of a commutative group.

8.10 Exercises

1. O radians
T

2, 5 radisns

radians

T
T

b, g- radians
T

9. 135°
10, Jr radians

11, %ﬁvr radians

12, g‘ﬂ‘ radians

13, gcr redians

14, 225°
15, 240°
16, 210°
17. (15 x I'éo-) redians, or ﬁ
18. (§_16FQ)O "\

19. g%
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20, (r-l:'-?_-g)o

21, d-(IgU) radians

22, (a) 305° | (v) 160°
(¢) 305° () 160°
(e) 55° (£) 200°

23, [student construction] Note that the two results here repre-
sent distinct sensed angles, and hence a lack ¢f commutativity.
However, the two sums are equivalent in the sense that they
are congruent to the same standard position sensed angle,

olbi, (a) zero angle (b) half-turn
(¢) zero angle (d) half-turn

25, 7AOB (note that the zero angle is an identity element for
angle addition) |

26, zero angle 7AOB + 7BOA = (OR, OK)

8.11 sSome Special Angles (15 ~ 2 days)

fhis is one of those sections iﬁ which the unification

theme 1s especially prominent. Essentially the purpose of the
sectlion is that of determining the SINE and COSINE of certain
angles (e.g., those measuring 30°, 45°, 60°, etc.) 1In the
development concepts from geometry (e.g., Pythagorean theorem)
and transformation geometry (e.g., line reflections) are used
as well as the definition of addition of sensed angles and the
two principles from Section 8.9,
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In the text 1tself, angles measuring 60°, 120°, 2400, and
300° are treated, with the others left for the exercises (see
Exercises 1 and 2 of Section 8.12). You may wish to use these
exerclises as class projects, with students participating in the
development., If the explanation for those angles treated in
the text 1s understood, there should be little difficulty with
the exercises,

Be sure to emphasize that it 1s the 30°, 450, and 60° angles
which are in a sense essential here; if they are known, the others
can be obtained quickly by using basic facts of transformation
geometry,

8.12 Exercises

1. (a) -3 (b) &3
(c) % (a) - &3
(e) -3 (£) -&/3

2. (a) - &2  (v) A2
(c) &2 () - V2
(e) - 2 (£) - &2

3. sine cosine

o° 0 1
3° F 3
4° A2 2
0M



60°

90°
120
135°
150
180°
210°
225
240
270
300°
315°

330°
(a)

(e)
(e)
(g)
(1)
(k)
(m)
(o)

)
N

)
N

)
N

=
n

] = =~
H%Ml—'

W

[~ ]
Py
e
o

()
(73

o MH!\;\n'-amga -
N

| ]
" o o e
5w

]
()
W

oy l\i‘I-'
N

- 306 -

cosine

| I |
g op
n

!
()
w

[}
g
W

]
()
n

]
ST

O )
RS °

(b)
(a)
(£)
(h)
(3)
(1)
(n)
()

o=
N

[}
)
N

[}
)
N

()

=
Mpwng-am

ol

059
>
2
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5. (a) 30°, 150° (b) 210°, 330°

(c) 45°, 205° (a) 135°, 315°
6. (2) oO,7r (v) g.,gqr

(c) 2 o (@) o, L 7 3r
7. (a) % (v) 33

(c) 1 (a) 3/

(e) 2 (£) 1

() % (h) 23

(1) 1

8. Let m™1(s) = TaoB.
Then sin®9 = (SINTAOB)Z
cos®3 = (COSZAOB)?
From Exercise 5, Section 8.6,
(SINZAOB)? + (COSZAOB)2 =1
Therefore, by substitution,
sin®9 + cos®s = 1
9. (a) 3
(b)

(c) False (note that the sine function does not possess
the linearity property)
(a4) 1
(e) /2
(£) %
(g) False
Q o, 1,414! 707, 707

200
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11, 1,732, .866, .866

12. O 0.000 1,000
.500 866

.T07  .7T707

.866  ,500

1,000 0;000

.866 =-,500

707 =.T707

.500 -.866

0. 000 -lo 000

-.500 -,866
-.707 =.707
-.866 =,500

-1,000 0,000

olﬁ:;qu;ml\%wui:%n olrl 3 ollm %wui’mrq# Wl H= o

-.866 .500
-. 707 .707
-.500 866

8.13 Graphs of Circular Functions (2%-- 3 days)

Graphs of functions should by now be a familiar concept,
and it seems quite natural to investigate briefly the graphs
of the sine and cosine functions. These graphs can be sketched

O with relative ease by using points based on the "special value"

410
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determined in Section 8.11, together with an intuitvive fee' _r
continuity. Thus with the points plotted in the text for sin x,
the nature of the curve becomes apparent.

The full periodlc nature of the sine and cosine functicns
is lacking from the graphs here, since the domain at this time
is restricted to {x] 0 { x < 2r}. 1In Course IV, with the
introduction of a wrapping function, the domain is extended to
the full set of real numbers, and the nature of periodicity
explored. |

It may be profitable to investigate the sine and cosine
graphs for symmetry, a transformation geometry concept developed
earlier. For example, the sine graph does not have line symmetry
but it is symmetric to the point (i, 0). It also has rotational
symmetry about this point. Simlilarly the cosine graph has both
symmetry and rotationsl symmetry about the point (ga 0). (See
exercises 13-16 of Section 8.14) Students may want to discuss
the point that technically these symmetries do not exist unless
the point (0, 0) is suppressed; this results from the fact that

the number 27 1s not in the domain,

8.14 Exercises

1. (a) .bisb (p) .891
(c) .643 (a) .643
(e) .174 (f) .174
(g) .743 (n) .743

2. sin 130° = sin 50° = .766

e
kY
=Y
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3. (a) cos 130° = -cos 50° = =-,643
(b) sin 250° = -sin 70° = -.940
(¢) cos 200° = -cos 20° = -.940

-.940

(d) sin 290° = -sin 70°
(e) cos 290°
(f) sin 179° = sin 1° = ,017
(g) cos 269°
(n) sin 359°

i

cos T70° = .34

-cos 89° = -,017

i

-sin 1° = -, 017

2N f and g are reflections
\
‘\ of each other in the
o’
x-axis
5.
2 4 P Aal N RN
5’ ‘\ SN f: sin x
1.5- , \ .0 \‘
/ \ o \ g: 2 sin x
11/ % \ X
54 \\ J : '\ h: -2 sin x
L] “
o 3 o
5 5 : an /]
-.5 .‘. ' . ‘
n A 'l Note that g and h are

11 “.‘ N ‘\ ,’ reflections of each
-1.5¢ R \\ /' other in the x-axis

-2 '\t“ \\I

(a) Thé range of f is {y] -1 Cvy<1)

T3
REBN

)

The renge of both g and h is {y| -2 {y<2)}
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6.
> Ve g
2 -
14 g may be obtained from
f
/\j h by the translation
-1 (x,5) — (x,3+ ),
) h from g by the inverse
-3 translation
(x,5)— (xxy")"')
Te
1 L
57
- 5 o é. yr
-1 "
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11
5]

90 180 270 0
-5 '
=11

g obtain the graph by

:'Sin + €08 _44ition of ordinates

; "OSIF co \ | Y j

714
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411,
l 3
.5.
T T 3. o 5 3 7. U/
-,5J Z a7 a7 7
-1}

15.

16.

(v)
(e)
(a)
()

(a)
(b)
(c)

The point (37, sinjr) and the point (gr, sin gr)

are symmetric about the point (w, 0).

0

o

190°

o

The points (%v, cos%w) and (%w, cos%w) are symmetric
with respect to the point (g, 0),

(4]

o

90° + 47° = 137°

M5
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8.15 TLaw of Cosines and Iaw of Sines (2% - 3 days)

The purpose of the present section is quite clearly that of
developing ability to "solve triangles', 6nce the principle con-
cern of an elementary course in trigonometry. Instead of begin-
ning with the solution of right triangles, we first develop the
Law of Cosines and the Law of Sines; then solutions of right
triangles appear simply as speclal cases of these (see, for in-
stance, Exercise 11 of Section 8,16).

The derivation of the Law of Cosines involves a number of
ideas encountered earlier in the program: the distance formula,
the plane transformation known as a dilation, and the definition
of SINE and COSINE of an angle., Thus here a new and important
principle,

The derivation of the ILaw of Sines too calls upon some
past experiences; principally those dealing with finding the
area of a triangle.

Students should understand that there is not always suffi-
cient information to solve a triangle. ("To solve" a triangle
is usually taken to mean determining without ambigulity its other
parts.) Exercise 14 of Section 8.16 is directed to this issue,
Part (a) of that exercise is the famous "ambiguous case" of tri-
gonometry. Thus, suppose we want to "build” a physical triangle
having these parts:

igle
-1
)
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There are clearly two ways to do it:

Hence, we cannot say that these three parts dgtermine a tri-
angle.

Let Exercise 8 in Section 8.16‘come as & surprise to
students; obviousily the Law of Sines won't work in a "tri-

angle" that does not exist in the first place!

8.16 Exercises

1., c? = 400 + 100 - (400) (.940)
500-376

= 124
Thus ¢ = VIZF & 11,1

[The answer of course is an approximation, since ~IZ¥ has

has been approximated, and even .940 18 an approximation
of cosine 2¢°]
2, c¢® =144 + 25 ~ (120) (0)
169 - 0
= 169
¢ =159 = 13

[This exercise can be used to ghow that the Pythagorean

principle is a special insténce of the Law of Cosines.]
3, (a) a® =b2 + ¢® - (2be) (cosA)
(b) b2

a® + ¢2 - (2ac) (cosB)
4, fThe other two sides, as well as the angle opposite the un-

E MC known side.

-

e

* o

a
ey




5e

Te

9.
10.

11‘
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a® = 36 + 144 - (144)(.616) x 91.3
Thus 2 % 9.5
b2 = 36 + 144 - (144)(-.616)
N 268.7
Thus b % 16,4
[Note here that cos 128° = -(cos 52°)]
(a) O
(b) o
(e) Pythagorean principle [See also Exercise 2, which is
a particular case of this]

sin 4 _ sin 60°
i2 10

Thus sin A 2 f%-x 12 x .866 % 1.0392
But this 1s impossible, since no angle has a sine greater
than one,
Therefore, no such triangle exists.
[Encourage doubtful students to try constructing it.]
approximately 4.9 and 6.6
First, 1t 1s a right triangle by the Pythagorean principle.
Thus, the angle opposite the 5~side 1s 90°. The other two
are approximately 53° and 37°, (Either the Taw of Sines or
the Law of Cosines may be used here,]
(a) ﬂ%‘f = g- 3 therefore c-sin A = a-l

and sin A =

(v) g{%—g = % 3 S0, sin B =

ojc ap

[Point out that these are valid in any right triangle;
you may want to inject the common verbiage "side oppo-

site over hypotenuse']

I pLsES
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)4_0__:.8-
12, sin 40 5

a = 15(sin 40°) % 15 (.643) x 9.6

' o_ b

2

b = 20(sin 60°) & 20 (.866) =17.3

e

14, (a) There are two possibilities--see discussion in pre-
ceding commentary
(v) no
(¢) yes--use Law of Cosines
(d) yes--use Law of Sines

(e) yes--use Law of Cosines

8.18 Review Exercises (1% - 2 days)

1. (a) SR
(v) ST

2. I’DCF and 7¥CD

3. A sensed angle 1s in standard position if and cnly if its
initial side is the '"positive ray" of the x-axis.

4, (a) 18"-

(v) 7
5. [student drawings]
6. (a) %P/E

(b)) &

7. (a) %/'2 and -%/’2
(b) ~vI=a® and ~/T-&°

of course |a| must be less than or equal to 1,

10
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(v)
(c)
()
(e) Y2

9, (a) The domain is SPSA, and the range is [-1, 1]

e HF

(b) The domain is [0, 27} and the range is [-1, 1]

10. cos®a = l=-sin®s
Since sin?9 must be positive, co0s29 is a number less than 1,
Therefore, cos® must be less than 1l; otherwise, its sguare
would exceed 1,

1. (a) E
(b) 180
(e) 270
(da) 60
(e) *u
(£) gr

12, (a) %2
(b) Y2

(c) %73
(d) - 2V3
13, (a) false

(b) true
(c¢) false

(d) rfalse 290



14,

15.

16.

17.
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27

With

2 1, -
1.5 1 “ sin x
11 \2 cos x
| \
.5 \ , ‘
...5 L g \\\ " %” 21T
/
1 4 \\ /
-1.5 4 \\
2 1 \‘~"/
(a) Symmetric about the point (mw, 0), except that the
image of (0, 0) is not contained in the graph.
(0, 0) excluded there is a point symmetry,
(b) No
(a) T70°
(b) AB z4.9, AC Zb.5
AB = 10 (the triangle is isosceles)
AC 2 17.3
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(a) 120°

(b) Both sides measure approximately 5,8,

Suggested Test Items

I,

I,

(a)

(v)

(c)

{d)

(a)

(v)

A sensed angle in standard position intercepts an

arc of 8 units on a circle of radius 4 units,

What is the radian measure of the angle?

In a2 unit circle, a sensed angle 1ln standard

position has a radian measure of %?. What is

the length of the arc intercepted by this angle?

A sensed angle has a measure of 1400. Find its

radian measure,

A sensed angle has a measure of %?-radians. Find

its degree measure,

The terminal side of a sensed angle in standard

position intersects the unit circle at (%3 - %w@?).

If the angle is ZAOB,

(1) What is Sine (ZK0B)?

(2) What is Cosine (7R0B)?

(1) If Cosine (ZﬁST) = %5 what are the possible
values of Sine (/RsT)?

(2) 1If Sine (/RoB) = %3 what are the possible values
of Cosine (ZR0B)?
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III. Using the unit circle below, draw the following sensed

angles in standard position, as indicated:

(a) m(os) , 3L (b) m(ZRoc) = 3
(c) m(ihop) , IF (d) m(Ror) = -
aY

-
N

IV, (a) What is the domain of the sine function?
(v) What is the domain of the Sine function?
(¢) What is the range of the sine function?
Ve Complete the following:

(a) sin 225° (b) cos 150°

(c) cos (a) sin 90°

(e) cos O (f) cos §21r~

() sin 240° (h) sin 557[ + sin 7

(1) sin? 30° + cos230° (3) sin 60° + cos 150°
VI, Draw graphs of the following functions on the same set
of axes: |
(a) £ : x —dsin x o{x<e2r
(b) g: x—~—>=sinx O0<{x<2r
(¢) h:x—>2cosx 0x<er

3293
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VI. In MBC, AC = 4", AB = 5", and JA = 60°,
(a) Find the length of BC to the nearest tenth of an
inch, :
(b) By using Law of Sines find the measure of 3C to

the nearest degree,

Answers to Suggested Test Items

I. (a) 2 radians
(b) L
(c) &
(d4) 210
I, (a) (1) -

—
n
~
I+ W=

(v) (1)

|+

II1I.

207




Iv,

VI,
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(a) {x: 0 <2

(h) Set of sensed angles in standard position

(¢) y: 1<y}
(2) -“/-f—
(a) 1

(e) -“%—-

(3) o

W

(b) -
(e) 1
(h) %

V3
2

(c)
(£)
(1)

H O N

Vi,

2925
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Chapter 9
INFORMAL SPACE GEOMETRY
Tise Estimate: 10 - 13 days

This chapter extends the study of geometry to three
dimensional space. An introduction to incidence and parallelism
of lines and planes in space is followed by a short section
exposing studénts to deductive processes for an affine geometry
in three dimensions. Following this, coordinate systems are
introduced into affine 3-space using the same coordinatization
axioms previously used in Course II in conneciion with the
affine plane,

An informal discussion of perpendicularity in space follows,
Rectangular coordinate systems are Introduced and the distance
formula for points In space is developed. The chapter ends
with a short study of certain surfaces. Included are set
notation descriptions of the sphere, cylinder of revolution
and right circular cone.

A basic objective of the chapter 1s to acquaint the
student with a body of information and experiences which will
provide adequate background for future study of topics requiring
familiarity with space geometry. Also, the chapter's content
and scope reflect a desire tc expose the student who might
not pursue an educational program involving geometry at a
higher level to as broad a sampling of space geometric notions

as time will allow. AT



Coming as 1t does at the end of a course, the teacher
may find that there is inadequate time available to cover all
the material of the chapter., In that event, it is recommended
that priority be given to Sections 1-5 on iines and planes
in space, and Sections 10-15 on perpendicularity and rectangular

coordinate systems,

9.2 Planes in Space (1 day)

A set of activities are suggested leading to a number of
"Observations" which are not formalized to the status of
axioms in the section. The students are expected to accept
these observations as statements concerning physical reality,

conforming with their life-experiences,

9.3 Solutions to Exercises

1, (a) infinite number (b) infinite number (c) infinite number
2, one

3. one

L, one

5. (a) no (b)  three (¢) no; none; six
6. (a) yes (b) one or four; yes

7. (a) none (v) four (¢) inrinite number
8. no

9, It depends on Observation 2 and the fact that two given

points can lie in infinitely many planes,

10, Have fun arguing with your class on this.
Q- QO™
ERIC "
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11. (a) a line ~(b) yes, Observation 1
12, (a, yes (b) no (e) no
(4) no (e) yes

9.4 Parallel ILines and Parallel Planes in Space (1 day)

This section includes intuitive exploration designed to
make the standard definitions of parallelism plausible and
leading also to Observation 5 which 1s the generalization of
the paraliel postulate to space. In the activities it is very
important to stress the fact that physical models are only
suggestive of geometric properties. To avold limiting the
applicabllity of geometric results we should obtain abstract
idealizations of limited physical objects,

9.5 Solutions to Exercises

1. given in text

2, false

3. true

4, false

5. false

6. false

T. true

8. true

9, false
10. true |
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11, true
12, true
13, false

9.6 Deductive Processes in Affine Space Geometry (1% -2 days)

No attempt is made in this section to develop a formal
synthetic geometry paralleling the approach for plane gaometry
in Course II, Chapter 3.

Accepting the five Observations (axioms), the student
observes how certain statements (theorems) can be deduced by
use of the Observations. There 1s danger, of course, that the
students will confuse "truth" with validity. The teacher should
take pains to emphasize that we accept the Observations as being

"true"; the statements are then necessary consequences,

The proofs in the first two Examples are rather informal.
For the third, an indirect approach 1s outlined and the
student is led to the point where he should be able to complete
the proof himself,

Because of limited experience with writing proofs., it
might be unwise to assign more than a few of the exercises
of Section 7.7 immediately., A better procedure might be to
proceed to subsequent sections after covering the first few
exercises, the remainder being assigned one or two at a time

as subsequent sections of the chapter are studied.

‘ 219G
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9.7 Solution to Exercises

1.

")

Suppose m and n are a distinct pair of parallel lines.
There is a plane T, which contains both m and n (see
Section 9.l4). Suppose Ty # T, contains m and n. Let

P, Q€mand let R€n, P, Q, and R € T,, since

mn € 7, If mn also € Ty, then P, Q and R also € m,,
But this contradicts Observation 2 which states that three
non-collinear points lie in exactly one plane. Conse-
quently m and n are contalned in exactly one plane,

Let m, and m; be two distinct parallel planes and let T,

intersect m,. Suppose m is the Intersection of 7, and

- Ty, (we assume that Ty is distinct from T, and Ty,) If we

claim that Ty does not intersect m,, then it must be
parallel to it. If A is a point in m, then 7, and T, are
two distinct planes containing point m in space which are
both parallel to m,. This violates Observation 5.
Consequently T, must intersect 7, as well as T,.

Tet T, and T, be parallel planes and let Ty intersect both
T, and Ty. Also, let the intersection be m = Ty N 7, and
n=1"mTy NT,. Are m and n ||? Suppose they are not. Then
they intersect at some point P, P é€m —> P € m;
Pe€n—>Pem,., . P is a point of intersection of m,

and T,. But this viclates our given information that T,

and T, are parallel and therefore have no intersection.

Consequently m || n.

Py
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Let m and n be two parallel lines (suppose them to be

distinct), and let A be the intersection of m with plane

év. Will 7 intersect n also? Suppose it does not, that

is, that n || 7., According to Example 3, parallel lines m
and n are contained in exactly one plane 7', 7' will
intersect T in some line p which contains A, p and n

are distinct coplanar lines which are not p~rallel, hence,
have an intersection point B, But B must be in both 7 and 7'
since every point of p lies in ™ and 7', So T intersects
n at B, and our assumption that n || T was incorrect.
Therefore, T intersects n.

Let T, and T, be two parallel planes, and let m N T, = A,
Will m intersect 7, in a point also? (Assume m, and T,
to be distinct planes,) Supposem | T,. Let n be an
arbitrary line in 7, which includes A, By Example 2,

m and n are contained in a unique plane T,. In Exercise
3 above we proved that if two parallel planes are
intersected by a third plane, the intersection lines are
parallel, Suppose'b is the intersection of T4 and 7;.
Then p “ n., Now, p and n are both in Ty, If they are
parallel then we have m and n in T4, If they_are,parallel
then we have m and n in Ty containing A £ p and parallel
to p. This violates the parallel postulate, Therefore,
m intersects 7,.

Let # and m be parallel, and let T contain ¢£. Is m | n?

Suppose not, Thenm N 7™ = A, Let 7' be the unique plane

At



»g8,

- 330 -

containing 4 and m (Example 3). A € m implies that A is
in m', and therefore A is in both planes. But the only
points in the intersection of hoth planes are in the line
L. Therefore A is an intersection point of ¢ and m,
This violates our given information that £ and m are
parallel, Consequently m || T,
(Reflexivity). Every plane is parallel to itself by
definition,
(symmetry). If m, || m,, then m, || m, by definition of
parallel planes,
(Transitivity). Let T, | 7, and , | my. We must prove
that T, | Ty, Suppose T, }Ty. Then 7, and T, are
distinct intersecting planes. Since 7, || T, and T,
intersects m,, then my must intersect 7,, contradicting
the fact that Ty || Ty, therefore 7, || 7,.
(Reflexivity). Every line is parallel to itself by
definition.
(Symmetry)., If £ || m, then m || & by -definition of
parallel lines,
(¢) (Transitivity): Let ¢ | mand m || n.

We must now prove that £ || n.

(1) If £ =mor m=n, there is nothing further to

prove, Hence we may assume that £, m and n are}

distinct lines in whﬁch case they are disjoint.
(Wny?)



(2)

(3)

(&)
(5)

(6)
(7)
(8)

(9)

- Since iy and 7, are distinct plaries both
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There is a plane 7, containing ¢ and m and a
plane T, containing m and n. (Example 3.)

If m, = m, then 4, m and n are coplanar in which
case the theorem follows from transitivity of
paralleiism in a plane (see Course II, Chapter

3, Theorem 15). Hence take m, ¥ 7,, II P is any
point in line n, then there is a plane m, that

contains line ¢ and point P.

7"1;

Ty, Ty and Ty are distinct planes,

containing P, these two planes must intersect in

some line n' containing P.

The points common to T, and T, are all in line

25 the points common to 7, and T, are all in line
m, Therefore line n' cannot intersect plane m,.

Therefore # || n' and m || n'.

Sincem || n and m || n', n = n'., But these

were distinet lines!

Consequently £ || n. 29
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9.8 Coordinate Systems in 3-Space (1 - 1% days)

This section extends the coordinatization of the plane
begun in Course II to all of three-space. The procedure is
the natural generalization of the one used in that chapter.

It depends on the fact that if three planes (the xy, %2, and
yz-planes) meet in a single point, then any triple of planes
parsllel respectively to the three given planes also intersect
in a single point. |

Since 3-dimensional diagrams are not easy to sketch "off-
the cuff" it might be desirable to prepare some of the
diagrams in advance on transparencies suitable for use with an

overhead proJjector.

9,9 Solutions to Exercises

1, (a) If P is any point on the y-axis, then the plane m,
(which contains P and is parallel to the yz-coordinate

T plane) is identical with the yz-coordinate plane

because polnt P is contained in this prlane, Since

this plane intersects the x-axls at 0, the x-coordinate

of P is 0, P is also in 7y which intersects the z-axis

at 0, Consequently its z-coordinate is O, Hence the

y-axis contains points whose x and z-coordinates are

both 0,
(v) (P(x, y, 2): x=0, y =0].
o To assign a z-coordinate to a point P, we use

e @
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Observation 5 to obtain a unique plane Ty wh:ch
contains P and is parallel to the xy-plane. This
plane T, must intersect the z-axis in a unique point
Z. The point Z thus determined has a unique (0, J)

line coordinate which we assign as the "z-coordinate

of point P.,"

3. (a) All points on ///1;:“~\--~5--;

the positive - y
&~
y-axis. J’{ x

(b) 'All points 2
on the negative
x-axis (ray not
including its endpoint).

(¢) All points on the

positive z-axis

-together -with the -—- -
origin (ray including
its endpoint).

(d) A segment consisting
of all points on the
x-axis between the
origin 0, and the
point P(4,0,0). (The

endpoints 0 and P are not

ERIC included.) ant
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(e) All points in the

xz-coordinate plane,
( Indicated by shading
in diagram).

(f) All points in space
which are on the
"positive side" of
the xz-coordinate

plane.,

(g) All points in space
which are on the
"negative side" of

the xz~coordinate plane,

(h) All points in a
““"plane parallel to
the xz-plane
containing the point
Y(0, 5, 0) (Shaded)

(1) All points between the xz-coordinate plane and the

Q plane indicated in the plane irdicated in the e




h, (a) {P(x, y, 2): x =0}
(b) [P(x: Y z): x =0, y =0, z <0}
(e} {P(x, y, 2): z =5)

(d) (B(x, y, 2): 0 < z<5]
5. (a) {P(x, v, z): 2z = 14)

(b) (P(x, y, z): x=2]

(e) (P(x, ¥, 2): y =0}
6. (a) The line of
intersection of
two planes:. m,,
parallel to the
Xz coordinate
plane, and T,
parallel to yz

coordinate plane,

The line of
intersection of
the Xy-coordinate
plane with a plane
T parallel to the

yz=-coordinate

plane. (Note
the line is
parallel to the

Q y-axis.)
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A plane containing
the x-axis and
intersecting the
yz-coordinate
plane along a line

Where y = 7,

7. (a) {P(x, ¥y, 2): x =
(v} (P(x, y, z): x

(e) (P(x, y,2): ¥ =
*(a) (P(x; ¥y, z): ¥ =

8. % ”/,y This set consists
of all points
within as well
as on the surface

of & parallelepilped

x whose zdges are

4, 3, and 2 units.

2. (a) ° = (O’O’O)’ A= (l’ O’O)’ B = (03130), C = (0,0,l)
Q (b) L = (%’O’O)’ M= (O,']é‘,O), M= (0,0,']2-') )
11 g
P = (']2-"%”0)’ Q = (']2."0,%‘), R = (05'2','2') ' ’
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9.10 Perpendicularity of Lines and Planes in Space (1 gay)

Four major points should be made in this section, First,
a line is perpendicular to a plane if it 1s perpendicular to
every line in the plane through the poin? of Intersection of
the original line and the plane, and the lesser sufficient
condition that perpendicularity to two lines guarantees
perpendicularity to the plane, Second, there is a unique
perpendicular to a plane at a point on the plane and from a
point not on the plane, but in space there is not a unique
perpendicular line to a given line at a point on that line,
Third, two intersecting planes are perpendicular if and only
if there is a line in each plane perpendicular to theilr line
of intersection and these two lines are perpendicular, Fourth,
if a 1line is perpendicular to a plane, then any plane containing
that line 1s perpendicular to the given plane,

9.11 Solution to Exercises

1. Yes, no, no, 2
2. The lines are parallel to each other
3. The perpendicular from a point to a plane is the shortast

distance between these two point sets,

Lk, false
5. true
65, true
7. true

229
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8, false
90 false

9.12 Rectangular Coordinate Systems in Space (1 day)

The classroom space ls utlllized as a simple example
of a rectangular coordinate system in space, The mid=-point
formula for 3-space 1s Introduced by an example and as a

natural extension of the corresponding formula in two dimensions.,

9.13 Solutions to Exercises

1. (a) (36,13,5) (b) (18,26,5) (c) (18,0,5)

(a) (36,0,20)  (e) (36,0,0)  (£) (9,63.25)
2. Answers will vary.
3. (a) (6,8,9) (v) (-6,8,9) (¢) (-1,-2,6) (d) (6,2,-9)

L, (a) (2,3,-2) (b) (-3,0,-9) (c) (13,0,0) (a) (16,-6,10)

5. (a) (-2,-3,2) (b) (-7,-6,-5) (c) (9,%,4) (da) (12,-12,1%4)

6. Yes, (x+a, y+b, z+c) = (x+a', y+b', z+c') implies x+a = x+a'
which implies a = a', ete,

7. Yes, The pre~image of (x,y,z) 1s (x-a, y-b, z-c).

9,14 Distance in Space (1 - 1% days)

It should be stressed That thls section pre-supposes the
adoption of a rectangular coordinate system for 3=gpace, because

a proof of the distance formula 1s based on the Pythagorean

A0
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property for right triangles. In a general affine coordinate

system, the triangle OBC in Figure 9.33 would not be a right
triangle and the lingth of OB would not be ~¥{IB)® + (13)°
as indicated in the text.

9,15 Scolutions to Exercises

1,

2.

(a)
(a)
(b)
(c)
(a)

13 fp) 26, (e} 13 (4) 13
OP = 26, (3,4,12), 13

0P = 13, (- 3, -2, -6), 6%

0P =55, (3, 2, 2), /50

oP = 250, (3,4,5), ¥50

Shiould confirm,

(a)
(a)

3 () 6 (¢) 1 (d) 3T
(5, -2,4)

(b) AM =3, MB =3, AB=6

(c)

Since AM + MB = AB, the point M must lie on segment AB
and since AM = MB this point must be the midpoint of
segment AB,

Midpoint of side EB is M(-1, 0, 4)
Length of median: M =+(1-(-1))2 + (2-0)2 + (-4-2)2

=22 4 23 4 62
=l

9,16 Surfaces in Space (1%- - 2 days)

This section presents some familiar surfaces with precise



descriptions in get theoretic terms, Using rectangular
coordinates, set expressions are derived for the sphere, right
circular cylinder and cone of revolution., For simplicity, the
center of the sphere is located at the origin and the axes
of the cylinder and cone coincide with coordinate axes., If
time permits, set descriptions of these surfaces with other
center and axis locations can be investigated with the aid of
translations, - possibly even rotations, (See Exercise 8 in
the chapter summary. )

The right circular cone displayed in coordinatized
space has an element angle of L degrees, Since the tangent
function is not introduced until Course IV, the general des-
cription, with cone angle «, of a cone oriented as in the
text example might be inappropriate at this time, It is
(p(x,y,2): %2 + y° = Eég;; }. However, a description in terms

of sine and cosine might be deiived by students in a "project"

setting.

9.17 Solutions tc Exercises

1, circle

2., circles of varying diameter with centers lying on an axis
of the sphere,

3. circles of varying diameter, the longest being that determined
by the plane that also passes through the center of the sphere,

A6
9"0
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4, {a) (b) /
/,

(c)
OR
S .
e
1} A
5. (a) (b)
\ v
(c)

RN
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6. It is a plane except that one line is missing, the line

- through the vertex of the cone and parallel to the generating
curve, ‘z‘
/l
7. It 1s a plane, ,
. '/
8. (a) a sphere centered at T Y
the origin with radius 1 ' "0
U
¢ 2
X -
(v) a sphere centered at the See above /\’
diagram " 4, (+2,0,0)
origin with radius /2 ”
(0,-2,0) (0,2,0)
. === v
(e¢) a right circular cylinder, (2,0,0)
axls the z-axls, and with

radius 2

(d) a right circular cylinder
axls the x-axls, and with
radius 1

{e) a right circular cylinder,

axls the y-axls, and with i

radius 3. Cpe———1 ¥y




9.

(£)

(e)

(a)

(b)
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a right circular cone,
axis the y-axls, vertex

at the origin, and « = 45

a right circular cone,
axis the x-axis, vertex

at the origin, and o = 45

a line containing the point
(1,1,0) and parallel to the
z~axis intersects the sphere
in the points (1,14/2) and
(1,1,-~2)

a plane containing the point
(0,0,1) and parallel to the
xy=coordinate plane intersects
the sphere in a c¢ircle centered
at (0,0,1) and with radius ~3,
The plane of the circle is
parallel to the xy-coordinate

plane,

AR
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¢ Az
(¢) A right eircular cylinder A
/
with axis the z-axis and 9;/(-2“%0)
/
with radius 2 intersects ;?’
£0,2,0) ¥
the sphere in a circle in ¢~ —=KIT =
th , Th ¢ (0,-2,0) |
e xy-plane, e center )
(2,0,001/ 1
of the cirecle is at the / !
origin and the radius is 2, x E: v D
anZ

# (d) A "sandwich" consisting of
the points on and between

the planes y = =1 and y = 1

intersect the sphere in a
portion of the sphere such
as the one depicted on the
‘right,

9.19 Solutions to Review Exercisas

1., Perhaps the football field, but this could be contested.

2, (a) infinitely many - (b) intinitely many (¢) one
3. (a) true

(b) -false

(¢) false

(d) false

(e) true

2

wh
)
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4, (a) (2,2,2)

(b) (-4, -1%, -73)
5, square root of 50, square root of 338 or 132
6. (a) 5 (b) 13 (e) 9
7. (a)

(v)

(e)

#8B, (a) See previous sketches of sphere with center at origin,
Radius of this sphere will be 3,

(b) The result would be a sphere because a transformation

2/
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(d) A sphere centered at the
point (2,1,3) and with

radius 2,

Suggested Chapter Test Items

I. Complete each sentence by writing the words always,
sometimes, cr never in the space provided.

(a) Two distinct parallel lines are contained in

exactly one plane,

(b) Three parallel planes _ ___ intersect in a line,

(¢) Given three points, there is one and only
one plane that contains them.

(d) Two planes : intersect in a point:

(e) Two distinct planes which are both perpendicular to a
third plane are parallel to each other,

(f) A line _ intersects a plane in exactly one

point if it is not contained in the plane,
(g) If a line intersects one of two parallel planes, then it

intersects the other plane.

II. Using an indirect approach, give a convincing argument to
show that a line which is neither in a given plane nor

parallel to it must intersect the plane in exactly one point,

. A
Q. .f‘q
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III. Glve a verbal description of each of the following
gsets of points in affine 3-space,
(2) (P(x,¥y,2): ¥ =0, 2= 0}
(b) (P(xsys2): x =1, ¥ = 2]
(c) (P(x,y,2}: 2 = 3}
1V. The given figure depicts a cube in a rectangular
coordinate systom. Each side of the cube is # units long.
(a) Tind the coordinates of
Points D,F, and C. D E
(b) Find the coordinates of M, |
the mid-point of DF.

{c) Find the lengths of
WM&, TM, and DC.
(4) show that D,M and C are

vertices of a »ight triangle.
V. Give set descriptions for each of the following surfaces
in rectangular space.
(a) The set of all points with z-coordinate equal to 3.
(b) The set of all points which are 5 units distant from
the origin,
(¢) The cylinder of revolution with the x-axis as 1its
axis and with radius equal to 3.
(d) The right circular cone with center at the origin, the

z-axls as its axis, and with a = hs ,

29
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Answers to Test Items

I. (a) always
() sometimes
(c) sometimes
(d) never
(e) sometimes
(£f) always
(g) sometimes (the line might be contained in one plane),.
II., Suppose line 4 £ v intersects 7 in A, Could B be
another intersection point of ¢ and m and be distinct
from A? Two points A and B determine a l:l.ne(Ifwhich
must be contalned in m, since we observed that 1f two
points of a line are in a plane, then the entire line is
contained in that plane., But this would contradict our
assumption that g € v, Consequently A is the only inter-
section point of 2 and 7.
III, (a) A line, the x~-axis
(b) A line parallel to the z-axis and including the
point (1,2,0). |
(c) A plane, parallel to the xy-coordinate plane and
including the point (0,0,3).
v. (a) D(0,0,4); F(4,4,4); c(4,0,0)
(v) M(2,2,4)
(¢) MC =+24; DM =+/B; DC =432
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(a) since W2E)2 + (WB)2 = (V32)%, the triangle DFC
is a right triangle by the converse of the Pythagorean
theorem,
V. (a) {P(x,y,z): z = 3)
() (P(x,y,2): %2 + y2 + 22 = 25}
(e¢) ({P(x,y,2): y® + 22 = 9)
(@) (P(x,y,2): x* +y? =27}




