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Secondary School Mathematics Curriculum Improvement Study

Course I - Teacher Commentary

HOW TO USE THIS COMMENTARY

1. Purposes. At the start of the commentary for each
chapter, the overall purposes and goals for the chapter
are stated. Often, specific sections within the chapter
are identified here ag they would relate to each purpose
stated. Similarly, the commentary for every section within
the chapter will begin with a statement of specific

purposes.

2, Sections. There are two basic types of sections within
each chapter. One type presents concepts; the second
type consists of exercises. The sections have been ordered
so that every section of exposition is immediately
followed by a section of related exercises. Within
various sections, the teacher will find: possible motiva-
tional devices; a variety of approaches; notations
relative to difficult exercises; suggestions for place-
ment of exercises a&s class work; homework or self-study;
hints regarding difficulties that may occur; new vocabu-
lary underscored; and some abstract background for the

teacher.

3. Time Estimates. In terms of days, a time estimate will




-2-

be found at the beginning of each chapter commentary.

This is the estimate for the chapter; it is based upon
individual {time estimates for sections within -the
chapter.

Time estimates are given only to those sections containing
some form of exposition. It is assumed that each exercise
section is to be grouped with the concept section immedi-
ately preceding it relative to time estimations.

The teacher should carefully note that the key chapters

of this course are 1, 2, 3, 4, 6, 9, 10, and 12. If the
class deviates widely from the time estimates given, the
teacher should feel free to assign chapter 11 as a self-
study unit and to pace his teaching so that emphasis is
still placed on the chapters noted here.

Exercises. Certain exercises have proven to be more suc-
cessful when discussed within the actual lesson rather
than assigned ms-homeWOrk. Suggestions regarding the
placement of exercises appear at varioué points within the
commentary.

The teacher need not hold rigidly to the exercises as
listed. He is free to choose, add or alter any exercises
whatsoever. In instances stressing drill, the teacher
may wish to select or limit exercises depending upon

the particular skills of his class and/or individuel

students.

by



Difficult problems have been starred and may be consi- i

dered as optional. However, these problems are the most
rewardinz as well as the most challenging, and the teacher
should discuss some of these in the classroom and/or
assign them to the better students as homework. In all
instances, the teacher should study the exercises

before assigning them, carefully noting the concepts

involved and approximsting the time required for those

exercises chosen. To insure that the teacher's evalua-
tion of time for an assignment is as accurate as possible,
the teacher should occasionally ask students to time home-
work assignments, allowing him to compare the true mean

time with his judgment,

Self-Study Units. At various points within each chapter,

certain sections will be identified as "self-study" ones.
In essence, these sections usually contain simple

applications of concepts previcusly taught and such é
sections should be regarded as being within the scope of

each student's ability.

Summary and Review Exercises. At the end of each chapter, . j
the teacher will find a summary of the main concepts
studied followed by a series of related review exercises.
The teacher may wish to assign the reading of the summary
and the completion of the review exercise as:

2) homework to be reviewed in class the following

day, ?

-
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b) self-study with time allowed the following day
for student questions, or

c) classwork.

Tests. At the end of each chapter commentary, the teacher
will find a series of suggested test items. The teacher
should again feel free to choose, add, or altér any of
these problems in constructing a test for his own class.
An additional source of test items, once altered, would

be the review exercises appearing at the end of each

chapter in the text.

Cunulative review exercises appear at the end of Chapters

3, 6% 9, and 13 in this commentary. These items, when
grouped and/or altered to constitute a test should point
out areas of weakness that will, in turn, demand re-

enforcement,

Unified approach. The teacher should be alert to related

topics and conrmepts throughout the entire course. The
students should be able to grasp key ideas that weave a
continual thread throughout the main body of the text.
Properties and relations must continually be placed in

the foreground and mathematics should be viewed as a united
subject rather than a series of disjoint branches of

learning.



Teachers Commentary of Unified Modern Mathematics Course I

is an expansion of the original commentary written by the authors
of the text, It was revised by the following nine pilot teachers
in the SSMCIS Project:

Samuel Backer, Elmont, New York

Annsvelle Cohen, Teaneck, New Jersey

Alexander Imre, Elinont, New York

Edward Keenan, Elmont, New York

Howard Kellogg, Teaneck, New Jersey

Otto Krupp, Teaneck, New Jersey

Thomas Reistetter, Portchester, New York

Ruth Schulman, Portchester, New York

David Swaim, Leonia, New Jersey

It is hoped that the teaching experience of this team will
be reflected in a practical list of suggestions and a reasonable

estimation of time allotments for the whole of this commentary.,




Chapter 2.
Finite dJumber Systems

Commentary For Teachers

Time Estimate for Chapter 1: (13 to 16 days)

Chapter 1 introduces the possibility of having arith-
| metics other than the familiar whole number arithmetic.
é Primary concern centers on the following three objectives:
§ (1) To review in a new setting ideas that may have been
? introduced to the students in the Elementary School.

Such ideas include those of identlty element, com-

; mutativity, and arithmetic system. (Throughout the

chapter primarily in exercises)
(2) To introduce to the student, in the contex:t of
clock arithmetics, the ilmportant concepts of finite

§ set, open sentence, inverses, associativity, and

distributivity. (Sections 1.4, 1.7, 1.20 and 1.22)

i (3) To extend the student's understanding of operations
on the set of whole numbers by defining and exam-

ining corresponding operations on sets of clock

i numbers. (Sections 1.1, 1.2, 1.4, 1.5, 1.13, 1.15,
1.17, 1.18).
Notations:
l. This chaptér assumes that the student understands
the definition and notation for set and empty set.

2. Since the primary goal of this chapter is an under-
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standing of certain mathematical properties that will

appear throughout the text, these properties should

be emphasized and taught with care. The teacher should

feel free to omit or limit exercises that stress
computational skills; this will depend upon the
nature of each class and/or individual students.
Certain sections have been marked as self-study units.
In each instance, the student may read the exposition
and answer some or all of the exercises in the follow-
ing section. For the most part; these sections con-
sist of simple applications of previously learned
concepts.

A supplementary unit will be found at the end of the

commentary for this chapter. The unit deals with
Slide Rules for Finding Products in (Zm,.). Its

origin can be found in section 1.12, problem 6,

A chapter examination and answer key will be found

at the end of the commentary for this chapter. These
guestions reflect concepts within the chapter.
Because the test is a suggested one; the teacher need
not hold to it rigidly. In fact, he should be
encouraged to be creative in constructing other test

items relative to the work studied.

1.1 and 1.2 Jane Anderson's Arithmetic and Clock Arithmetic

(Both sections together should take one day).

After reading this brief story, students might be asked

9
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such questions as the following:

"What is eleven plus two?" '"Was Jane right?" '"Have you
ever used Jane's method?" '"What time is it six hours after
ten o'clock?" "What is ten plus six?" "How do we assign a

sum to ten and six?"

" Students might be asked to find out how time 1is kept by
the Army of the Navy, i.e., using a 24-hour clock. Perhaps &
student knows of, or has access to, a special clock such as
an ”Egg-timér" clock. 1In any case, get students thinking about
how numbers are assigned to pairs of numbers as sums.

The notion of order in reading a table is most important.
In this chapter (and all preceding ones involving the use of

tables), the operation a * b will be defined as:

1. Select the element, a, from the *1 "a b ¢
index column at the left. Coa @

2. Select the element, b, from the b
index row at the top. : S c

3. The solution to a # b will be Here a 4 b = x

the cell in which the row @nd
column intersect.

Order will not seem important at first since the systems
are commutative. However, the teacher should stress order
continually and, once subtraction is introduced, many examples
of non-commutativity cén be seen.

Here, in (Z3,-), ' (Z3,~)

we see that

feck
)



2 ~1=1 - 0 1 2
l-2=2 0 0 2 1
1 1 0 2
2 2 1 0

1.3 Exercises {Answers)

1.

(a)
(g)

(a)
(a)
(b)

(c)

(d)

1 () 4 (e) 3 (a) 11 (e) 9 (£) 9
1 (n) 1 (1) 10 (J) 9 (k) 9 (1)12

8 (b)) 6 (e¢) 7 (d) 11 (e) 12 (f) 4 and 10

1+6 since we are using a row-column approach.

It represents adding 1 to each number at the head of

a column, |

The teacher should be aware of several patterns. Here

are a feﬁ:

1. Each round is a shift left of the preéeding one,
with the extra number moved way to the right.

2., The numbers in the cells are symmetric around the
main diagonal {upper left to lower right).

3. Every element appears only once in each column
and each row,

The first column and the first row contain the same

elements in the same order. The last column and the

last row maintain a similar order. In general, the

elements in row n appear in the same order as the

elements in column n.

11
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(e) )
+ 1 2 3 4 5 6 8 9 10’ 11 12
112 3 4 s5 6 T 8 9 10 1 12 1
2 | 3 L 5 6 7 8 9 10 11 12 1 2
3|4 5 6 7 8 9 10 1 12 1 2 3
Ly 15 6 T 8 9 10 11 12 1 2 3 N
51 6 7 8 9 10 11 12 1 2 3 N 5
6|7 8 9 10 1 12 1 2 3 4 5 6
718 9 10 11 12 1 2 3 4 s 6 T
8 ]9 10 11 12 1 2 3 4 5 6 T 8
9 |10 11 12 1 2 3 b 5 6 7 8 9
10(12 12 1 2 3 ¥ 5 6 7T 8 9 10
1112 1 2 3 4 5 6 7 8 9 10 11
121 2 3 4 5 6 7 8 g9 .10 11 12

g (f) All possible sums in 215 can be shown. Some Z,5 sums are

: different than the corresponding W sums. In fact, every

-'i sun below the lower left to upper right diagonal 1is
, § different. |
J 1.4 (Z..,+) and (W,+) (1 day)

The chief purpose of this section is to differentiate

between finite and infinite sets. The terms "finite" and

"infinite" are used in a most naive way in this Section. After
the students think of "atoms," "electrons," etc., then the
answers given to Question 2 can become quite exciting. Possible

answers .for Question 3 might be the set of even whole numbers,
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the set of natural numbers (that is, the set of whole numbers

with O deleted), etc.

! Note that the commutative and identity properties in (W,+)
| are mentioned within the reading for the first time. After

reviewing and explaining these properties within (W,+), the
‘students are asked to look for similar properties within
(Zy55+)

For the student: Commutative Property in (W,+)

If x and y are numbers in (W,+), then
Xy = ¥.X

For the teacher: Commutative Property in (S,*) or the set S

4 under the operation *,

Vx,y€S: x¥%*y = y*x
For the student: ADDITIVE IDENTITY in (W,+) = O

since 0 + x = x and X 4+ 0 = X where X is
any number from W,

For the teacher: IDENTITY in (S,s#) = e where Vx€S:

exX = X#e = X

Special notation: Some confusion has developed with regard to

the symbol "+". The authors have decided
to write "11 + 2 = 13" in (W,+) and "11 + 2 = 1"
in (Zza’+)' |
To‘avoid the above confusion one could specify that clock addi-
tion is to be performed on a set by 1htroduc1ng é symbol such
as ""12", Then we would have "1l +, 2=1".
One could extend such a symbolism and eventually obtain

such expressions as "(Z,5,+,5)", or "3+,,12 = 12" or even

13
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"3ey2(5+54) = (3 *,5) + (3 *,,4). Both pedagogical and
printing considerations encouraged us to avoid introduction of
any new operational symbols but instead we specify the conﬁext;

€.8.s (Zla,+), where in éuch operations are to be performed.

Teachers, of course, can decide on the symbolism they wish to

use,

Helpful device: A large cardboard clock listing the elements

of Z,, (and consequently, later models listing the elements
of other Z systems) could aid in student understanding. A
hand on such a clock will prove to be most useful when other
operations (subtraction, multiplication, division) are intro-
duced in subsequent sections,

Many students are intrigued with the notion of "infinity".
An excellent outside reading for students is the article
entitled "New Names for 014" by E. Kasner and J. R. Newman in

the World of Mathematics, Vblumé ITI, Simon and Schuster, New

York, 1956. pp. 1996-2011. (Teachers and better students will
enjoy "Infinity" by Hans Hahn, same volume, pp. 1593-1613. See
also Leeinppin's Uses of Infinity, L. W. Singer Co., 1962),

'1.5 Calendar Arithmetic (1 day)

This section could be assigned to introduce (Z,,+) in a
practical situation. Problems 5 and 6 in Section 1.6 are most
important in developing the properties and concepts studied to
this point. |

iy
~a,

3
b
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1.6 Exercises

1. (a) Monday, Sunday (A useful device for problem 1 would
(b) Monday be a clock showing the set Z, and
(¢) Wednesday ‘the days of the week).

(d) Thursday

Sot
2, (a) o (£) 2 (k) 6
(b) 1 (g) 3 (1) o
(e) 1 (n) & (m) o
(a) 6 (1) s (n) o
(e} 2 (3) 1 (o) ©
3. (a) 5 (b) & (¢) 3 (a) 5

L, NOTE: Instruct students to save this (Z,,+) as well as all
other (Zn,+) tables for later study.
 + | o 1 2

o O U1 K~ W

H O O U &= W p|

N H O O I &~ WLW
S W opp O o W

O Ul Wy H O
O U1 W M H O
w P H O O U B~

Ul & Ww nm H O O O

(A
)




5.

(a)
(v)
(e)
(d)

(e)

(£)

(a)

(v)

-14-

Table shows every possible sum,

Yes, O since O + x = x and x + 0 = X,

Yes. |

There is a shift of every element 1 to the left,; with
the first element moving to the position at the far
right, whenever you compare row (n) with row (n + 1).
There is a shift upward 1 element, with the uppermost
moving to the position at the very bottom, whenever
you compare column (n) with column (n + 1).

There are a variety of explanations. Among them:

(1) (upper) right to (lower) left diagonal = set of

ordered pairs whose sum is 6. As one number of
the pair increases by 1, its mate decreases by 1.
(2) (Upper) left to (lower) right diagonal = the set
of ordered pairs (n,n).
A variety of speculations and observations. Some

include:

1. Where x + y is less than 6, the tables match exactly.

2., Where x + y > 6 (thinking of whole numbers), the
matching elements in the tables differ by 7.

8

1

Ex: In (z1a:+): 3+5
In (Zy,+), 3 +5

3. All properties relating row and column for one table

(order, commutativity, etc.) will hold for both
tables.

Yes. The more important is the main diagonal (upper

; vv.rh

8
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left to lower right). The symmetry about this
diagonal implies commutativity. For the other
diagonal, all elements in (Zn,+) add up to (n - 1).
6. Possible similarities: both (Z,,,+) and (W,+) have an
additive identity element; both are commutative under
addition.
Possible differences: the number of entries in the addition
table for (Z1§’+) is finite whereas the number of possible
sums in (W,+) is not finite; we can show all possible
cases of commutativity of pailrs of elements under addition
by means of the table for (Z,,,+) whereas this cammot be
done for. (W,+).
7. (a) Yes.
(b) Yes, particularly in the first row and colwm and the
last row and column.
NOTE: It is suggested here that "12" be replaced by "O"

in (le,+) in order to conform to the other (Zn,+) systems.

1.7 Open Sentences (2 days)

The primary purpose of this section is an understanding of

open sentences and solution sets. A great many new terms are

introduced in this section: mathematical sentences (true, false,

open), variable, domain of the variable, equation, inequality,

solution set, empty set. This section should be studied and

-amplified extensively, most reasonably by proving a variety

of review exercises while studying the oncoming sections. These

17
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concepts and terms will play a basic role in chapters to come.
Teachers might wish to consider every-day examples of open
sentz2nces such as:
1'ls the President of the United States.
A is the Empire State.
M is the boy whose first name begins with the letter R.
A 1s the girl whose first name begins with the letter
X.
M is older than 12 years, _
Have the students ldentify the variable; the domain of the
variable; true and false sentences as they result; the solution
set. Alter domains and study the varions solution sets
obtained.
Ex: Find the solution set of x - 6 = 6

Domain W Zy Zys | 0dd numbers

Sotution | {12} | (5] {0} S

In the exercises, students should be asked to explain how
they obtained solution sets for open sentences. Did they use
a table? Note that no formal approaches are given for solving
open sentcences at this time. Intuition and simple substitu-
tion should be the typical approach of most students.

Set notation should be carefully explained and noted in

all exercises. The solution of X+ 2 =5 3isnot x = 3. In
truth, x = 3 is the simplest equivalent open sentence for
x + 2 = 5, Since the braces, {}, are read as "the set whose

members are", we enclose our solution with these braces.

-

5
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Stress that the solution depends upon the domain, Here, the
solution of x = 3 is {3} if the domain is W and {} or ¢ if the
domain is the set of Even Numbers. '

Teachers might wish to point out that the concept of order
which appiies to the set of whole numbers has no anaslogue for
sets of clock numbers. However, there are no exexrcises in
this text involving order in finite systems. To examine one:
Solve x < 10 using Z,, as the domain of the variéble. There
can be no solution. By simply Studying thé clock, the students
should see that 3 could come before 10 or after 1O.

1.8 Exercises
1. (a) True (b) False (c) open (d) True (e) open
(f) open (g) False (h) open
2., (a) False: 11 + 7 =6 in (Z;2:+)
(b) True: Check table for (Zy,+)
(¢) True: Check table for (Z,,+)
(d) True: Check table for (Z,,,+)
3. (a) {8} (p) {3} (e) (22} (a) (8} (e) 4.
(£) {3,4,5,...] (g) (1,2,3,4,...]
(h) {0,1,2,3) (1) {0,1,2,...9) (3) {5}
4, (a) (o} (v) {o} (e) {4} (a) {2}
(e) (51 (£) (6}
5. (a) {1} (v) (7} (c) (6} (a) (5} (e) ({0}
(£) 4.

6. Answers will vary. Some examples might be:

19
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(a) x+ 4 =10 (b) x+4=3 (¢) x+8=2
7. Answers will vary. Some examples might be:. .

(a) x +x=2x (b) x+5=2 (e) x< 1.

: 8. (a) not equivalent (b) not equivalent (c) equivalent

(d) equivalent (e) not equivalent

1.9 New Clocks (1 day)

This section can be assigned for self-study. Since it is
simply an extension into the Z,, 2, and Z, systems, all

students should be able to read this section and answer

the exercises in section 1,10 with complete understanding.

1.10 Exercises

Students at this stage should see that the periodicity
of the entries in clock addition tables makes them easy to
construct. Also as soon as the entries for a row are deter-

mined, then commutativity allows us to complete a column.

1. (a) +| o 1 2 3
ojo 1 2 3
1] 1 2 3 0
21 2 3 o 1
313 0 1 >

(b) (1) 3 (3) 3 (50 o (7)) o
(2) o (4) 2 (6) 3 (8) 1
(c) Low

o
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(d) Addition in Z, is commutative since entries in table
for (2, ,+) are symmetric with respect to the main
diagonal.

2. Answers are similar to those in Section 1.€, numbers 5 and 6,

3. (a) + o 1 2 3 4
0 0o 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

(p) (1) 1 (3) o (5) 1
(@) o (4) 3 (6) 2

(¢) Answers are similar to those in Section 1.6, nﬁmber(5.
(d) Answers vary. Here are some examples:
.~ High + [ = Off
Low + ] - Low
3

4. (a) Answers may vary depending on the number of channels

Simmer + Medium

and positions such as "OFF"; "UHF", etc.
(b) Answers vary. Some examplés include: the hours in
a day are éiven by'(224,+), the minutes on a clock
by-(Zgo,+), the seasons by (24,+).
5. (a) Answers vary. Here are some:
(1) TIdentity element of O does not alter any number,
~(2) Row n and column n have the same elements in

the same order.

21
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(3) 1If written in order (n, n+l, n+2,...), each row
shifts one element to the left,
(4) 1In (Zn’+) no element appears more than once in any

one row or in any :-one column.

(b) +] 0 1 2 3 L4 5
| 0 d 1 2 3 4 | 5‘

11 2 3 4 5 o0

2]l 2 3 4 5 o0 1

313 4 5 0o 1 2

4t 4 5 0 1 2 3

515 0o 1 2 3 4

1.11 Rétations ‘ ; |

This section requirgs only a simple}explanation that would
serve af introduction to a new type of éystem. It should ggg
be treated as a full 1ésson requiring one day of class time, By
constructing part or all of the (Hexagon, rotatibn) table in the class,
the students should be able to answér.Questions 1 thrbugh 5 in
Section 1.12, Note that some students might have troﬁbie in identi-
fying re = r,. ; | .v |

Students, 1f glven straight edge»and compasses, might discover

how easy it is to inseribe a regular hexagon in a circle.

1.12 Exercises

1. (a) r, (v) =, (¢) r,  (a) r, (e) 1ra

2. (a) The resulting position after ry leaves the hexagon in the
same position as r_. .

(o]
(b) The rotation r, will not alter the position of the

R4
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hexagon after the last rotation.
" (¢) The identity rotation. .
(a) (1) A rotation of 60° followed by a rotation of 60°
is equivalent to a single rotation of 120°,

(2), (3), and (¥ similar reasoning.

() rot. r, T T, Iy r,
r, r, I, r, T Ty Tg
ry r, r, Ty T, Tg r,
r, r, Ty Te r, T
Ty Ty rg r, Ty N
r, r, Tg r, T r, Ty
Tg Tg r, . r, T, Ty

(c) The table for (Hexagon, rotation) has the "same form" as
the table for (Zs,+).
(a) r = rotation of 90° clockwisé}*r; = rotation of 180°;

r., = rotation of 270°.

(v) rot. Ty r, r, Ty
fo r, T, r, r,
r, ry r, Ty r,
T, ry T r, T,
Ty Yy r, T r,

(c) The table for (Square, rotation) has the "same form" as
the table for (2,.+).

5. The tabie for (Heptagon, rotation) has’the "same form" as the

table for (Z,,+). Use the addition table for (2Z;,+,*) using

the elements of Z, as subscripts for the rotations.

. ‘E!’
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6. By matching 0 from ruler B with 2 from ruler A, e#ery element
on ruler A is 2 larger than its corresponding element on ruler
B. Thus, 5 from B matches with 7 from A.
In general, (n) from B matches with (n+2) from A.

NOTE: A supplementary unit on Circular Slide Rules for Finding
Products in (Z;,°) can be found at the end of this'
chapter's commentary.

To answer the question on (2 ,,+) slide rule:

By matching O from the "inner"
ruler with 2 from the "outer"
ruler, every element on the
outer ruler is the sum of 2
and the element on the inner

ruler.

(1 day)

1.13 Subtraction in Clock Arithmetic

The purposes of this section are to introduce a new operation

called subtraction with Z, systems and to examine the operation.

Important observations should include:
(a) Whereas subtraction is restricted in (W,+), subtraction
in (Zm,+) is unrestricted. .3 - 5-cannot be answered in W
but it can be answered in Z,.

(p) Subtraction is defined in terms of addition: stress that

for all a, b and ¢ in Zm, a-b=c if and only if ¢ + b = a.
The students should be shown that such a "c" exists and
also that "c¢" is unique (there is one and only one c).

(c) Subtraction 1n_(zm,+)‘1s not commutative. The only excep-

tion to this rule is the 2, system.

24
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Special Hints: Some students might find it difficult to
subtract numbers by the use of an addition
table. Setting up a subtraction table (section
1.14, exercise 2) might offer a greater obstacle.
Here, a teacher or student constructed clock
will prove most.helpful. By moving the hand
or dial in a counter clockwise movement, sub-
traction becomes a relatively easy operation.

‘Some teachers might wish tb introduce the
notion of inverse of 3 is written as -3 and
-3 =2, Thus, 1 =3 =1+ (~3) =1+ (2) = 3.
Note: The terms "restricted operation" and "always possible
operation" are used in this chapter. 1In Chapter 2,
when operations are studies, the term "operation" will

be used to refer only to "always possible" operations.
1.14 Exercises

Excrcise 2 shows that subtraction 1s an unrestricted
operation in (Ze,+) and could be presented in class. Exércise
3 shows an interesting situation. “In developing addition we
went from a real world clock or dial to an abstract table.
However, subtraction was first obtained with an abstract table
and then an application to the real world was made in connec-
tion with moving "counter clockwise" on a dial., For exercise

Ts note that subtraction is not commutative.

25
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NOTE: The teacher should feel free to assign only'a’"seléctioh"

from exercises 1, 4, 5, 8 and 9 since much of this is

repetitive,.
1. (a) 2 () 1 (¢) 4 (d) 2 (e) o
() 3 (& 1 () & (1) 3 (§) 3
2. (a) | (b) Yes
-] o 1 2 3 &4
ol o 4 3 2 1
1 1 o 4 3 2
2l 2 1 o 4 3
3 3 2 1 0 4
sl s 3 2 1 o
(v) Yes.' Every possible pair is assigned an element from
(Zg ).

Subtraction in (Zg,+) is unrestricted, but subtraction

~~
(e
~

is restricted in W. In W, there is no solution for
2 - 3.
3. (a) "4"; 2 -3=4
{b) Move the pointer to "1" and then move the pointér
counterclockwiéévthrough 2 intervals. The pointer
will then be direcied a£ "4", fThus, 1 - 2 = 4 in Zg.
() M) 2 (@ 2 (33 (®) 3
b (d) 3 (®) 3 (e) 3 (d) 3 (e) 5

2 (& 5 M 2
5. (a) 2 () 6 (e} 5 (d) 3 (e} 4 (f) 6
(g) 1 (n) o

(1) 5 (4) 4 (k) o (1) &

B 1
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6. (2) no (b) no v (¢) no
For m > 2 there does not exist an identity element for
subtraction in (Zm,+). (Note: for m > 2, 0 is a right
identity element for subtiraction, i.e. for all x, x - 0 = X,
But for m > 2, O is not a left identity element for sub-
traction, i.e. for all x we do ggg‘have»o - X =X,
Therefore, for m > 2, there is no identity element).

7. (2) No. Not all entries are symmetric with respect to

the‘main diagonal. | | |

(b) No. (¢) wo.
For m > 2 subtraction is not commutative in (Zm,+).

8. (a) (3} (p) (0} (e) (2 (4) (1)
(e) ) (£) (M (g) (o} (n) (&)
(1) 3} (3) (o} (k) (3} (1) (3}

9. (a) (4 (v) (3} (e) (5} (a) (4} (e) (3}
(£) (2 () (3} (n) (M (1) (8 () (0]

1.15 Multiplication In Clock Arithmetic (1-2 days)

The purposes of this section are to introduce the operation

of multiplication in Zﬁ systems,_to examine felations between

multiplication aﬁd»other operatiohs and to_study properties

in (me.). | s N , .
Possible Motivation: Before defining multiplication,

students might be asked to construct a multiplicatibn table

for a set of clock nuubers. These tables could then be studied

for various properties they might contain, even if the elements
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within the tabie are incorrect. As an ekample, a student

* could construct the (Z4 5°) table incdrrectly as:

. 0 1 2 3
o} 0 o} 0 o}
1 o 1 2 3
? 0 2 3 1' —— Errors within

The zero ﬁroperty‘of muitipiicaﬁion and the multiplica~
tive identity are correctly stated. However, the errors
would lead the student to a faise conclusion of non=-
commutativity. Note the inconsistency in claiming 2.2 = 2
while 2 + 2 = 0 in the (2,,+) table; the student should realize
that 2 + 2 = 2.2 |

Relations: Just as in (Wy+,+), multiplication in

(Zm,+,~) can be expressed as repeated addition. The use of

a physical clock would be helpful at this point. However,
multiplication in (zm,~) relates directly with division in
the whole numbers, taking its products from the sef of
remainders. .

vThe prdpérties that studehts might discover are fully
stated in section 1.17 which follows the exercises. The
teacher may merge.both seétions together or allow the students
to explore this section in an intuitive manner before firmly

establishing the properties that hold.

‘“”fifil-



1.16 Exercises -

1, (é) .

0 1 2 3 ]
o] o o 0 0 0
1 0 1 2 3 i
2 0 2 4 1 3
3 0 3 1 4 2
b o 4 3 2 1

(b) There are many. Some include
(1) The 0 row and the 0 column have all O entries
since 0;x =x,0=0
(2) Row n and column n contain the same elements in
the séme order.
(3) There is a symmetry about the main diagonal.
(4) Every non-zero row and non-zero column contain

each element from Zg only once.

2. (a) (2} (e) (4} (1) (1)
(b) (1} () (o} (3) (4}
(c) (0} (g) (3} (k) (2}
(d) (0,1,2,3,4) (h) (3] (1) ¢
3. (a) . 0 1 2 3
0 0 0 0 o
1 0 1 2 3
2] o 2 0 2
) 31 o 3 2 1

(b) Patterns 1, 2, 3 are the same as those in exercise 1,

part (b), of this section. However, row 2 and

29
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column 2 do not yield every element from Z; only
once; there is’a series using products of 0 and 2 only.
[Some students may conjecture that rows beyond the 0

row will repeat in a'(Zm,-) table whenever m is not a

SZQa'! Z?:'

o= w o = olf

o o o o o olo

(a)

()

U & W Do~ ok

= v o |m
W O W o w olw
D oF o M o oO|F
- MW s W oo |w,
U & W D Mo
O o o o o oo
SR v = o e
W Kk o &E M oD
PR I SN u:vo w
o N> S, B I o W I
5 o0 W wuw oo |wm

= NN o
= D W s U O O OV

6lo 6 5 4 3 2

Both are commutative finite operational systems with

a multiplicative identity element 1, etec. Solution

for 2.%x = 0 is {0,2} in (2,, ) whereas the soluticn
set for the corresponding equation in (2s,¢) is {0,3]

-ete.

Similar: Both are finite operational systems; both
are commutative over‘mu1t1p11Cation ete.

Different: In (Z,,+) zero appears és an entry in
only the first row and first column whereas this is
not true in (Zg,+); In (Zy,+) entries do not repeat
in a row or column except in the zero row and zero

column whereas this is not true in (Z,,-), ete.




(v)

(c)

(1) (2} (2) (1.3} (3) (0,2} (%) (3}
(5) (0,1,2,3) (6) ¢~ (7) (3) (8) ¢
(1) (%) (2) (#  (3) (3} (4) (o)
(5) () (6) ¢ (7) (2) (8) {0}
(1) (3} (2) ¢ (3) & (&) {0,3}
(5) {2,5) (6) & (7) (3,3,5) (8) (o0,2,4}
(9) ¢# (10) (1,4} (11) (0,3} (12) (2,5)

1,17 Comparison of (W,) and Clock Multiplication (1 day)

This is & new section which can probably best be used as

2 basis for class discussion comparing the various multiplica-

tive systems. It might be helpful to have several of the

(Zn,') tables displayed in class to facilitate comparison.

Important here are the properties. The questions (a)-(e)

are leading the student to a discovery that repetition of ele-

ments will occur in a non-zero row of (Zm,~) whenever m is not

prime. The rows that will contain these repeating series will be

the prime factor rows of m and all multiples of those prime

factors. In (Zlo,-) repeating rows will be 2, 4, 5, 6 and 8.

-The "secret code" research problem may be treated as

enrichment. The answers to questions (a) - (h) follow:

(a)
(v)
(c)
(a)
(e)

EBOHFS

HELP

IIA_I!

There are 26 letters in the English alphabet,

X' = x + 3 in (Zpg,+)

)
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(£) (1) =
{2) =x e . .
IN ENGLISH TEXT, THE LETTER E OCCURS MOST OFTEN.

x in (Z,gs+) GOOGOL IS THE SPY.

X + 3 in (229,+)'

(g) 2:13 = 0 and 2:0 = 0. No.

1.18 Division in Clock Arithmetic (1 day)

- Here the purposes include an introduction to the
operation of division and an examination of relations and
properties with the operation.

Division, as with the whole numbers, is defined in terms
of multiplication. Essentially, bring out that for all a,
b and ¢ in Zm,a+b = ¢ if and only if ¢ * b = a. Again we
must show that c exists and is unique.

Division may be spoken of as repeated subtraction and
here a physical cloek will prove helpful. Some teachers may
wish to use the concept of inverse at this point, equating

a + b with a . = where = is the multiplicative inverse of b.

b b
. Certain divisions must be noted as "not defined". We
know thet 6 + O =X cannot be solved in (W,+) since there is
no x to satisfy x.0 = 6. in the (Zm,-)‘systems employing
division, many more numbers are restricted as divisors.
Ex: In (Z¢,+)s 4 + 3 is not defined since.3.x = U4 cannot
be solved in the system. '

Note that division is not commutative and that the systems

possess no identity. Some difficulty might arise in looking

9

Y




-31-

at division problems in the form % as fractions existing in

& clock system,

1.19 Exercises

In their reports on division students might note that

there is no x in Z, such that 1 + 2 = x and also note that

the solution set of 2 + 2 = x is {1, 3}. Thus both

existence and uniqueness fail for division in Z;.

1.

(a) 4 (b) 2 (c) 4 (d) 2 (e) 1

(£) & (g) 3 () & (1) o (3) o

(¥) 3 (1) 2 (m) 2 (n) 3 (o) not defined
(2) (d) are not defined

No. For example, given 3 and O, in this order, we cannot

assign an element of Zg to this pair as quotient, i.e.
3 + 0 is not defined in Zg.

Division is restricted in Zg and in W; subtraction is

restricted in W and unrestricted in Zg. Note that division

is restricted in Zs only when dividing by 0. In W, division

may be restricted more often, such as 2 + 3.

4.
5.

(a) (31 () 1} () (4 . (a) (2}

There are no entries in the first column of the division
table whereas all cells in the multiplication table
contain entries.

Answérs will vafy. Some notations could include:

(2) 2,3 and 4 have no multiplicative inverses

29
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(b) while g =5, it is also true that % = 2 since 2.2 = 4,

1.20 Inverses in Clock Arithmetic (1 - 2 days)

Teachers might wish to point out how the idea of inverses
can be applied to solving open sentences. The idea of inverse
elements in an operational system will be encountered

frequently later, so mastery is not crucial at this point.

1.21 Exercises

Exercises 7, 9, 10 and 12 call for generalizations. The
teacher may wish to do these exercises in class or allow time
for class discussion after assigning them as homework. The
teacher may wish to reassign certain numerical problems in
this section, simply changing the system for (Zg,+,°) to
(Zas+,°).
1. (a) 3 (b) & (c¢) o (d) 2 (e) 1 (£) 2
2. (a) 3 (b) 4 (e) 1 (a) 2 (e) does not

have a multiplicative inverse. . (£) 2
3. (a) (1) & () 1 (3) o (4) 3 (5) 2

() (1) 3 (2) 1 (3) 4 (4) 2 (5) not defined
L, (a) 1 () 2 (¢) 1 (a) o (e) & {(f) o
5. (a) 2 (b)) 1 (e) 1 (a) 2

(a) (1) (o} (2) (2} (3) (1}

(») (1) (1} (2) (1} (3) (2}
7. (a) 2

() (1) 4 (2) 1 (3) 3 (4) o

(c) 3 (@) -(-x) = x

24
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(2) If 1+ 2 =2x, then1l = 2,x. The solution set for
X is . Or simply, in Zs, 2 does not have a
multiplicative inverse.

(b) No. (e) o (d) 1

(@) (1) v (2) » (3) & () & (5) 3 (6) 3

9.
(b) -(2+3) =-(0) =0
(e) 2 +-3=3+2=0
(d) ~(x+y) =-x+ -y
10. In Zs less the 0 element under multiplication, or in the
1 1 1l
! —_—= =,
set {1,2,3,4) or Zs numbers, Ty -%"F
1. (a) True (b) True (c) PFalse since not true for x = O.
12, (a) True (b) False, 2.2 = 0 does not imply that 2 = O.
1.21 The Associative and Distributive Properties (1 day)

John wrote "had". James wrote "had had". Thus "John,

where James had had “had had;" had had "had." The idea of

associativity will again be discussed in Chapter Z. Stress

that the purpose of a distributive property is to tell how two

operations can be combined. This also will be seen again

later so it need not be mastered here.

For the teacher: Associativity in (S,%):

Va, b, ¢ € S: a*(b*c)=(a*b)*ec,

For the teacher: Distributivity in (S;%,4)

Right hand distributivity exists, or % distributes

over A when Va, b, ¢ € S: a% (bac)=(a+*b)r(arc).

et oty s i ot et o e A A i
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TLeft hand distributivity of % over A is shown as:
Va, b, c € S: (abdb)*c=(a*c)A (b+*ec).

For the students: é%iess that one operatioh distributes over

a second operation. In the systems noted, it is multiplica-
tion that distributes over addition., The reversz wlll not

be true. Some students will write 2 . (b + c) = a:b + c,

The use of parentheses, (a*b) + (a‘c), on the right may
overcome this error. Numerical substitutions, a;ways perform-
ing operations within parentheses first, will help the

student in discovering his error,
1,23 Exerrises

If the teacher wishes to select a limited number from
exercises 1 through 4, he should be aware that pairs of
‘ exercises are grouped to provide drill with the properties
; studied. Parts (a) and (b) are coupled; Parts (c) and (d)
are coupled; etc. Exercises 6 and 7 are optional but they

form a basis for an excellent classroom discussion.

1. (a) &4 (v) &4 (¢) 1 (a) 1
(e) 2 (£) 2 (g) O (h) o
2. (a) 4 (b) 4 () 1 (a) 1
(&) o (£) o (g 1 (h) 1
f 3. (&) 4 () 4 () o (a) o
(e) 2 (£) 2 (g) 4 (h) &4

4, (a) O (b) © (e) 1 (a) 1. -




e

5, (a) Multiplication is distributive over subtraction in
Zg, L.e.a . (b -¢c) =a.b - a-c
(b) Division is not distributive over addition in Zg
(Note 4 + (1 + 0) = &4 + 1=4, however (4 + 1) + (4 = 0)
is not defined.)
6. There is & right hand distributive 1éw
(b +¢) =+ a="D-a+c.ain (Zg,+.)

7. (a) a -« (b +¢)

a.b + a+c (Distributive Law of . over +)

b*a + c.a (Commutative Property of .)

T

? = c.a + b.a (Commutative Property of +)

(b) Yes. a+(b +c) =c-a + b-a holds in all (Zm,+,-).

1.24  Summary

% Students should study this section at home, noting the key
3 topies discussed in the chapter. A possible homework assign-
ment would include reading the summary and answering the
review questions in the following section. Any problems that
arise could then be brought to the attention of the teacher
the following day.
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1.25 Review Questions
+10 1 2 3 4 5 6 7T O 1 2 3 4 35 6 7
olo 1 2 3 4 5 6 T o©l0 0 O O O O O O
11 2 3 4 5 6 T O L0 1 2 3 4 5 6 7
212 3 4 5 6 7 0 1 2|0 2 4 6 o0 2 4 &6
313 4 5 6 T 0 1 2 310 3 6 1 4 7 2 5
yi14 5 6 7T 0 1 2 3 4 1o 4 o 4 o 4 o &
5{5 6 7 o0 1 2 3 4 510 5 2 7 4 1 6 3
6{6 7T 0 1 2 3 4 5 6 lo 6 4 2 o 6 4 2
7l7 o 1 2 3 4 5 6 T}o T 6 5 4 3 2 1
1. (a) 5 (b) 0 (c) 4 (a) 4 (e) 5 (£)
| 2, (a) 2 (b)) 0o (e) 4 (a) 4 (e) 1 ()
3. 0(a) 4 () B (c) 4 (a) 4
; 4, Tt is false. 2 * x = O does not imply x = O because we
. could also have x = 4, Similarly try 4 * x=0or 6 + x =
5, x = 0 1 2 3 4 5 6 7
x=|| o 7 6 5 4 3 2 1
6. x 0o 1 2 3 y 5 6
ollms bomee 3 omE 5o 7
P 7. (a) (2} (b) (4} (c) (7} (4) (0,4 (e) (M)
* (£) (0,2 4 6 (&) (5) (n) (5) (1) # (4) @
; 8. Saturday. Using (Z7,+), adding 1000 is equivalent to
addingl6.
9. T.
A8




Chapter Examination

Items 1 through 10 would constitute a comprehensive full
period test for this chapter. To spow the teacher a varlety
of exercises, some of which could be truly challenging, additional
items (11 through 13) are provided for the teacher's perusal.
Again, this examination is a suggested one and the teacher
should feel free to add or delete ltems as he chooses.

1. Construct an addition table for (Z,,+).
2. Construct a multiplication table for (Z,,°).
3. (a) Why is (%,,+) a restricted operational system?
(b) Is multiplication commutative in (Z,,+)? Explain
your answer.

L, compute the following in (2, ,+,°):

(a) 3+3 (£) 3 °{1-3)

(b) 2+ (3 +2) (g) -(-3) .
(c) (2+73) +2 (h) -2 . [(=3) + (-1)]
(@) 2+ (3+1) (1) $-(@+3)
(e) -1 (J) 20

5. Solve the following open sentences in (Z‘,+,-):

() 2+3=x (a) 2-x=0
(b) 3+y=1 (e) §=3
(¢) 22 =1 (f) x *x=1

6. (a) Give an example of a non-finite set.
(b) Give an example of a large but finite set.
T. Give an example which shows that each of the following is

False.

20
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(a) Subtraction is commutative in (Z,,°).
(v) The solution set of 2 * x = 2 is {1} in (2,,*).
(¢) Every element has a multiplicative inverse in (24,°)
(d) Subtraction is distributive over multiplication in
(2 ,+..)

8. State two similarities between (Z¢,+) and (W,+).

9. State two differences between (Z,,-) and (W,*).

10. Fill - in by writing the missing word, phrase or symbol in
an answer column
(a) Mathematical sen@ences that are elther true or false

are called .

(v) In an open sentence, the symbol which may be replaced
by symbols for numbers is called the

(c) The set of all elements from the domain which give
only trﬁe statements when replaced for the variable

is called the set,

(d) A set containing no elements is called the

set.
(e) 1In (Z4,+) for every element x, x * O = 0O ° k = 0,
This illustrates what property?
(£) In (Z.,+) for every element X, X + 0 = O + X = X.

This illustrates what property?

(g) In (Z,,:) for every element X, x * 1 =1 « X = X
This 1llustrates what property?

11. Circle the systems which are "vnrestricted":

(W,+) (w,-) (C:’) (c,+)

4af)
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(Zy55+) (Zn:') (2g5+) (ngs:+)
(E, ) (0,+)
Here,T}et C = set of counting numbers = {1,2,3...}
| E = set of even whole numbers = {0,2,4...]
0 = set of odd whole numbers = {1,3,5,...}
Give all possible solutions for each open sentence using
each of the four domains for the variable
w - Lg Lg Zia
4 + 3 = X
2 4=X
X + X =0
X + 4 =2
2 — *=3

Answer True or False

(a)
(o)
(c)
(a)
(e)
(£)
(g)

(n)
(1)

The commutative property holds in (Zg,-).

The commutative property fails in (Z;,-).

54+ 3 =8 1is a true statement in (Z,,+).

The identity element in subtraction is always O.

In (W,+) , x + 2 < 3000 yields an infinite solution set.
In (Zlo’+)’ the solution set of x > 7 is {8,9}.

In every (Zn,‘) there is always at least one row with
repeating elements.

In (Z,,+), 5+ 3 =1 is an example of a false statement.
In any system, 5 + x = 12 is always considered to be

an open sentence.

q A
4
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Answers to Chapter Examinations.

i, + ¢ 1l 2 3 2, - o 1 2 '3
0 0 1 2 3 0 0 0 0o 0
1 1l 2 3 0 1 o) 1 2 3
2 2 3 0 1 2| o 2 o 2
3 3 0 1 2 3 0 3 2 1
3. (a) For every ordered pair of elements in Z, we can

assign one and only one element of Z, to this pair as
their sum. _
(b) Yes (1) There is a symmetry about the main diagonal or
(2) Row n and c@luﬁn n both contain the same elements
in the same order.
b, (a) 2 (v) 3 (e) 3 (a) o
(e) 3 (£) 2 (g) 3 (h) o
(1) o (3) not defined :
5. (a) {1} (bv) (2} (c) Bor{ ]}
(a) (o0,2) (e) (2} (£) ({1,3)
6. (a) e.g. W; or the set of even whole numbers; etec.
(b) the set of electrons in the earth; etec.
7. (a) Any of the following: 1 -0 #0 -1; 3 -0 # 0 - 3;
2-1#1-2 or3-2#2-3,
(b) No. The solution set is {1, 3}
(c) No. O does not have multiplicative inverse in (Z,,°).
Neither does 2,
(d) No. For example
3-(2+3)#(3-2) (3 -3) because 1 # 0.

ERIC A9
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8. Both (Z,,+) and (W,+) have an additive identity element
and both have commutative and associative propertles for
addition; etc. ‘

9. (2,,°) has a finite number of products in its multiplication
whereas (W,*) has a non;finite'number of ‘such products.
Also x.y = 0 implies x = O or y = O in (W, *) but not in
(245°); etc.

10, (a) statements (e) zero property of multiplica-
(v) wvariable tion
(c) solution (f) (additive) identity
(d) empty or null (g) (multiplicative) identity
11. '"Unrestricted" systems include:
(W,+)  (c,) (Zygot)  (Zg, =)
(Zg, ) (Zeoas+)  (E,:)
12, W Zs Ze 2, .
{7} {2} {7} {7)
(8) (3} (0) (8)
{0} {0) {0, 4) {0,6)
gor () {3} {6} {10}
gor (] (4] {7} {11}
13, (a) False (d) False (g) True
(v) False (e) False (n) False
(c) False (f) False (1) True
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Sup 1eme?tary Unit: Circular Slide Rules for Finding Products
11’1 Z ,. ’
m

It is sometimes possible to construct circular slide rules
in order to compute products for certain (Zm,') operational
systems. For example, consider the set of numbers 1,2,3,4.
This is the set Zg with O removed. Arrange these four
numbers clockwise on a dial in the order 1,2,4 and 3. A
larger dial with the same numbers in the éame order is placed
beneath the first dial., If the numerals are placed at equel

intervals then we have a device similar to that in Figure la.

Fig; 10. - Figlb

How can we compute such products as 4.2 or 4.4 in (2Zs,')? 1If
we wish to find the product of a number in Zg (except 0) and
4 we proceed as follows: First, we rotate the smaller dial
until the numeral 4 on the smaller dial is directly below

1 on the larger dial. Then to find the product of 4 and n

AR
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we find n on the larger dial and the number directly next to
n on the smaller dial is the product. For example, to find
the product of 4 and 2 we rotate the smaller dial until 4 is
directly below the 1 on the larger dial. (see figure.lb)

We locate the 2 on the larger dial and note that the number
directly next to 2 on the smailer dial is 3. Since the
product of 4 and 2 is 3 in (Zs,) we see that this agrees with

our earlier work with products.

Possible Lesson on Circular Slide Rules:

(a) Make a sketch to show how we can use a circular slide rule
to compute 3 *+ 1, 3 * 2, 3 + 3, and 3 * 4. Do these
results agree with our earlier work with products in
(Zgs+)?

(b) What products are indicated in Figure la?

(¢) Would you be able to obtain products if the same numbers
were put on the dials in the order 1,2,4 and 3 rather
than 1,2,3 and 4? (Answer: No) |

(d) In (Zs,*) compute the product of

(1) 2 and 2

(2) 2 and the product found in (1)
(3) 2 and the product found in (2)
(4) 2 and the product found in (3)

How are the above four results related to Figure la? If we
had started with 3 and multiplied repeatedly by 2, what set

of numbers result?




(e)

(g)

il

If you arranged the numbers on the two dials in the order
1,3,2, and 4, would you be able to find the products in
(Zg,+)? Take the number 3 and multiply it repeatedly by
3 in (Zs,°) What set of numbers results? Do you see a
pattern emerging? If you take any number of the set
(1.2,3,4) and multiply it repeatedly by 4, do you obtain
the same results as when you multiplied repeatedly by 3°?
What does this imply?
Construct a slide rule for finding products in Z, with O
omitted by placing on two dials the fullowing numbers in
the order indicated 1,3,2,6,4, and 5.
Show how this slide rule ecan be used to find the
product of each of the above numbers and 4.
In figure 2 a circular slide rule is shown which indicates
the products of the numbers in Z;a (with b onitted) and

the number 3.

Figure 2:
Circular Slide
Rule for (Z,3,°) less {0}
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obtained when we multiply numbers in le by 3.

(1) Explain how the entries of the partially filled
table in Figure 13 can be obtained by use of
Flgure 12.

. 1 2 3 L 5 6 T 8 9 10 11 12

1

2

3 3 6 9 12 2 5 8 1 1 4 T 10
Figure 13: Partial Table for (2i4,°) less {0}

(2) which of the following ways of arranging the number
1.2,3,... 12 on dials would yield a slide rule for
determining products in (21;,-) less {0}?

(&) (1, 11, 4 5, 3, 7, 1, 2, 9, 8 1o, 6)
(b} (, 2, 3, 4 5, 6 7, 8 9, 10, 11, 12
(c) (3, 7, 10, 5, 9, 11, 12, 6, 3, 8, y, 2)
(a) (1, 7, 2, 8, 3, 9, 4, 10, 5, 11, 6, 12)




CHAPTER 2
Time for Chapter 13 - 15 days
COMMENTARY FOR TEACHERS

Chapter 2 is designed principally to accomplish the following
two objectives:
1) Extend the student's understanding of what is meant by

a binary operation on a set.

2) Extend the student's understanding of certain key

properties of operations and operational systems.

The first of these objectives is the concern of the

following sections of tne chapter (together with exercises
which follow each of them):

Section 2.1, which reviews the notion of assigning one
and only one element to an ordered palr of
elements;

Section 2.3, which contains a formal definition of a
binary operation on a set;

Section 2.5, which provides computational experience with
several different operations on the whole
numbers;

The second objective is accomplished principally in the
following sections:

Section 2.9, which contains formal definitions of some

' operational properties the student has met
earlier;

Section 2.11, which deals with cancellation laws in an

operational system.

A%
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These five sections then constitute the heart of'the chapter.

Section 2.7 provides further experience with solutions
of open sentences, and at the same time helps to reinforce the
concept of operation. Emphasis should be placed on solution
set, and the use of set notation for root or roots of the open
sentence.

Section 2.13 introduces no new ideas, but introduces
instead two special systems which help to reinforce the ideas
already introduced.

Section 2.15 simply introduces the word "group" for a
perticular kind of operational system, examples of which have
been dealt with throughout the chapter.

Exercises which involve computation may (at the discretion
of the teacher and dependent upon the proficiency of the class)

be shortened.

Ordéred Pairs of Numbers and Assignments (2 days including

2.1
2.2)

By means of such processes as division and raising to a

power, the student's intuitive appreciation of the importance

.of ordered pairs of numbers should be increased. The principal

objective of this section is to make the student aware of the
fact that, confronted with a palir of numbers, he already knows
many special ways of assigning a third number to that pair.
All of this work is preparation for the formal definition of
a binary operation, coming in Section 2.3.

One possible class activity, to accompany this introductory

A9



,,,,,

18-

section, consists of having a student make assignments to
certain ordered pairs, with other students guessing how he
decidc¢d upon the assignments, Hopefully, students will come
up with some unusual schemes which can be saved and used
later, as examples (or counterexamples) of operations.

So called "Cayley Tables" or operational tables appear
in this section and throughout the chapter. Presumably,
students are familiar with them from Chapter 1, but be

especially sure that they see how the notion of ordered pair

depends upon reading the table correctly. Reading of the
table should be stressed in terms of first element relating
to the second element.

Special attention should be given to exercise 11 of 2.2.
Do nut assign as homework but develop in class. Exercise 12

may be developed later.
ANSWER TO EXERCISES

2.2 Exerclses

i. (a) 5 (b) 5 (e) 12 (a) 583 (e) 58 (f£) 1000
'y %%' (h) 74 (1) 1.0 (§) 10,000,000.

2. (a) (0,5), (1,4), (2,3), (3,2), (4,1), (5,0).
(b) (c,1)s (1,0) (e) (0,0).

3. (a) (1,24), (2,12), (3,8), (4,6), (6,4), (8,3),

(12,2), (24,1).

(b)) (1,13), (13,1). (¢) (0,0), (0,1), (1,0), (0,2),...

1
o
R g
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(There are of éourse an endless number of such pairs.)
b (a) o (b) 0 (c) 48 (d) 5ko6 (e) 5406 (£) 123
(6) 7 (n) 1 (1) .3 (3) .eel
5. (a) 8 (b) 4 (c) 2 (d) 10 (e) 100 (£) 1000
(g) 10,000 (h) 1,000,000 (i) 25 (§) 32 (k) 64
(1) 8 (m) 27 (n) 1
6. (a) 81 (p) 64 (c) 16 (d) 16 (e) 243 (f) 125
7. (a) (2,4), (4,2), (16,1). b) (10,1)

8.
+ 5 682 17 8 0 1 1720
5 10 687 22 13 5 5 | 1725
582 687 1364 699 690 682 683 | 2402
17 22 699 34 25 17 18 | 1734
8 13 690 25 .16 8 9 | 1728
0 5 682 17 - 8 o [ 1 {1720
1 6 683 18 9 1 2 | 1721
1720 1725 2lp2 1737 1728 | 1720 | 1721 | 3440 -
9.
5 682 17 8 0 1 i720
5 25 3410 85 Yo1lo 5 8600
682 [3410 465,124 | 11,594 54551 0 | 682 1,173,040
17 85 11,594 289 13610 17 29,240 |
8 | o 5456{ 136 eulo | 8| T3,760
0 0 0 0 0] o 0: 0
1 5 682 17 8| o 1 1720 -
0

1720 + | 8600 |1,173,040} 29,240 | 13,760 1720 | 2,958,400 ‘
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10. (a) 1In all cases
(v) Whenever a = b. Also 4® = 2¢

11. (a) 0; 2; -2; undefined; 8; 5 ~ Note: for negative
1 1 numbers, the response may
(b) 12; 14; 10; g 88; 21 be "no known number,"

(e) T5: T3 T3; &y 8%—(,; 255
205" B¢ 2005-
(e) 30,000; 30,002; 29’998’§6‘666“ 855—5553 2,000,005.
(£) 3 25 -135 2; 105 5%
12, (a) 2 (b) 6 (c) 5 (a) 200 {e) 3 (£) 1 (g) 1 (n) 4 (1) 21 (3) 21

(a) 300; 302; 298;

2.5 %hat is an Operation? (2-3 days -~ including 2.4)

The principal purpose of this seetion is to establish
understanding of formal definition of a binary operation on a
set. In order to assure understanding of the phrase "one and
only one" which is used in that definition, it is important
to use two kinds of counterexamples. In one kind, there are
paifs to which no assignment can be made; see, for instance,
problems 3 and 4 of section 2.4. 1In the other kind, there are

pairs to which more than one assighment can be made; see, for

instance, problem 5 of Section 2.4,

The introduction of an operational symbol such as "*" can
be troublesome. But stﬂdents should see tha+ ‘he operation:
of addition makee the assignment (3, 5)—9-8! which can be
written "3 + 5 8 " if one understands thut "+" identifies

the operation 1@ question, In the same wa&: if we ar2 thinking

of some operati@p that makes the assignment (3,5)—> U5, we

ro)
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simply agree to let "," identify that operation for the time
being, we can write "3,5 = 45."

The ' word "binary" is included in the definition of
operaticn since that is the kihd of operation with which We
are concerned (és contrasted;, for instance, to a unary
operation which assigns an element to & single element, or
a ternagz operation which assigns an element to a triple of
elements).

An example of a unary operation is: assign the successor
to an element. Another example would be x—»x®. An example
of a ternary operation is take an ordered triple and assign
a 3 digit number in that order (or reverse order) that is
(6,3,7)—>6 3 7 or (6,3,7)—>T 3 6 etc.

Another example of a ternary operation is: select 3 non-
collinear points ordered either clockwise or counter-clockwise
and assign a parallelogram. Another example would be a
triangle and assign the center of gravity.

While the student should see the obvious connection between
the word "binary" and the notion of pairs, the word is not
emphasized in the text at this time.

Exerclses 7;9 of 2.4 should be covered in class even %though
L.C.M. is not used again until chapter 11. Exercise 1l and 12
can be handled in an intuitive fashion with rigor in so far as

proof is concerned, dependent upon the class.
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2.4 Exercises

: 1. (2) o () 1 (¢) 1 (d) 15 (e) 15 (£f) 100 (g) 2010

f (n) 1000 (1) a+1 (3) & () a |

2. (a) 6 (b) 8 (c) 12 (d) % (e) 3 (£) 680 (g) 136
(h) 8536 (i) 161 (3j) 820,000 |

3. No. for instance, 2-5 is not a whole number. So subtraction
does not assign a whole.number to every pair of whcle
numbers.

4. No. for example, 2 + 3 is not a whole number.

5. No. Many pairs have more than one number assigned to them.

% For example, the pair (8,12) can be assigned 1, 2, and L,

% €. (a) No. One counterexample ruins it. There is no number
to assign to the pair (0,0).
(b) Yes. The pair (0,0) has been removed in this case.

7. (a) 6 (v) 120 (c) 10 (d) 77 (e) 77 (£) 5 (g) 5
(h) 100 (1) 630 (J) %42

8, All answers are O.

7N TR S BT T e s T e -

e v AT

9. (a) Yes.
(b) Yes. Every ordered pair->0. (a,b)—>0. O € W, and

0 is unique.

10. (a) No. 1+ 1 =2. So 2 is assigned to the pair (1,1),
but 2 is not in S.

‘ +] 0 1
oj o 1
1{ 1 2




11.

12,

130

14,

15.

16.

(o) Yes. 1o 1
0] 0] 0]
1 0 1

(a) Yes. An even ﬁhole number is assigned to every pair.
(b) Yes. An even whole number is ‘assigned to every pair.
(c): No, not unless we give meaning to such expressioné

as 2° =1, 1 ¢ E. o = 0°, |
(a) No. An even number is assigned to each pair,

(b) Yes, since an odd number is assigned to every pair.

(e) Yes.
(a) +] o 1 (b) Yes, and here are all the
assignments:
of 0 1
(0,0)=>0; (0,1)—r1;
11 o

(1,0)=>1; (1,1)—o0.

Yes, the table does define an operation. To every pair

is assiéned a member of the set {a,b}.

If we consider "2% and "b" as labels, remove "a" and

replace it by "0%, reiove "Q".and replace it by "1", we .

have the table from exercise 13(b). Thus, the two systems

are "alike except for the labels used."” (Note: examples

such'as these are intended to pave the way for the concept

of isomorphism, coming in chapter 3 of the second course.)

(a) No, since c is not in the set.

(v) nNo. Thefe are no assignments for such pairs as
(a,c), (c,a), (b,c), ete.

(a) Yes (b) Yes

(c) Yes. Assign the point Q itself.

=5
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(d) Yes. To every pair of points is assigned a point.
(This problem deserves some emphasis, since students
need to understand that operations do not have to be
concerned with "numbers.")

(e) No; "mid" is not associative,

~mid (P.o@)
P o M Q

~—
~
~X\

DN
mid(P(md 6R) S \\ ~ svmid (6,R)
md(BQIMARS T \ '

o

17. (2) 3 () 338 (0) k6 (1) 10 () .7ho5 (£) of

2.5 Ccmputations with Operations (and 2.6 - 2 days)

In this section, we wish to do the following:
1. Reinforce the definition of binary operation.
2. Introduce the student to the use of parentheses in
mathematical expressions.
3. Provide instances of commutativity, associativity,
identities, and inverses, prior to formal statement
of properties in Section 2.7.
The ordinary operations -- addition and multiplication --
of arithmetic are so familiar to the students that the three
objectives above are best accomplished by introduction of some

unfamiliar operations (all on the whole numbers) so that the
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student must constantly think about whaﬁ he is doing. That
is the reason for the six operations introduced in this
section. It might be a good idea to have these six definitions
reproduced on separate sheets so that students may have them
readily at hand, without heving to refer to the text; they will
be used not only in this section, but in some subsequent
sections,

Every teachef probably has his own special way of helping
students with parentheses. "Working from the inside out" is
a phrase commonly used, for instance, when working with
parenthéses within parentheses. It is probably best to avold,
howeve®, instructions such as "Do what is in parentheses first."
With such instructions and confronted with the expression
"3 + (5 + 7)," the student's thinking may proceed as follows:

First,.5 + 7 is 12, Th#n 3 more is 15. |
Unwittingly he has used conmutativity, by taking 12 + 3, rather
than the intended 3 + 12. Of course, since addition is
comnutative, the final result in this case is correct. But for
a non-ccmmutative operation, the procedure would lead to an
incorrect result. Fcr instance,

32%,0 (4* 056) = 32%,0U56 = 32,456 (not 45,632).

In the exercises of Section 2.6, problems 2 and 6 are

directed to associativity, problems 3 and L to commutativity,

and problem 5 to identities. Also, problems 15 and 21 (a),
(v) deal with distributivity of multiplication over addition,

if you care to mention it at this time. Since this chapter
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culminates in the group properties, where only one cperation
is involved, the distributive property does not play a part
in it.

2.6 Exercises

1. (a) 10 (b) 7 (c) 5 (4) 5 (e) 17 (f) 29

(a) 8 (v) 8 (ec) 1160 (d4) 194

(a) 111 {b) 111 (e) 109 (4) 111

(a) 58 (p) 32 (e) 17 (4) 17

(a) 42 (v) 42 (c) 42 {(a) 615 (e) 615 (r) 615
{(a) 12 (b) 12 (ec) 298 (4} 116

(2) 15 (p) 13

(a) 61 (v) 87

(a) 1445 (b) 17

10. (aj 170

11. 897 12. 1479 13. 34250 14, 14 15. 33 16. 33
17. 36 18. 17 19. 17 20. 293
2. (a) 3¢ (o) 3 (o) 65 (@) 1
22. Answers vary.

23. (a) n = 0. (b) {0, 1, 2, 3, 4: 5}

R0
.

n

O 0 3 & » & W

il

(e) 24 (1) 13

2.7 Open Sentences (and 2.8, 1 - 2 days)

In this section, the six operations introduced in Section

2.5 are used to extend the student's understanding of open

Q Fe,
: g
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sentences and his ability to solve them. Again, emphasis

should be placed on solution set.,

2.8 Exercises
1. 3 2. no solution 3. 2 4. no solution 5. 22 4
6. no solution 7. 11 8. no solution 9. (0, 1, 2, 3, 4, 5)
10. (0, 1, 2, 3, 4, 5, 6} 11l. no solution 12. 42
13. any whole number L, any whole number 15. no solution
16. 3 17. 3 18, U4 19. no solution 20. no solution
21. 60 22, no solution 23. no solution 24. no solution
25. 280 26. (a) 1 () o (c) (0, 1, 2,...,832) (4) any
whole number (e) no solution (f) no solution
27. (a) any whole number (b} any whole number (c) any whole
number (d) 3 (e) any whole number (f) any whole number
28, (a) 6 (b) 5 (c¢) no solution (d) 121 (e) no solution
(f) no solution (g} no solution (h) 5 (i) 5 (J) no
solution
29. (a) 2 (v) any whole number (¢) 23 (4) omit if
possible or do on an intuitive level (a*sa) = 68,
a? + (a? + a2)2, a® + (2a?)2,a® + La* = 68, a% (1 + 2a?) = 68,

a=2. (e) 108 (r) 3

2.9 Properties of Operations (and 2.10, 2 - 3 days)

In this section, we formalize the notions of commutativi-
ty, associativity, ldentity, and inverse, all of which the

students have encountered in a mcre informal way earlier. Be

~0
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sure to stress the importance of saying "For every a, etec."

in the statement of the properties. Thus, 8 - (5 -~ 0) =

(8 - 5) - 0, but subtraction is not associative, since such
a statement is not true for every a, every b, and every c.

In the same vein, stress the importance of finding a counter-
example to show thé falsity of a general statement. Thus,
the single counterexample (8 - 3) -2 #8 - (3 - 2)
establishes that subtraction is not associative.

We deal here with a general iderntity element, rather than

with the more sophisticated notion of right hand and left
hand identities. Thus, for us, an identity element must "work
on both sides;" i.e., it must commute. For example, O is not
an identity for subtraction although n - o = n, for any n,

it is false that O ~ n =n for any n. But O could be called
a "right-hand" identity for subtraction.

Section 2,10 Exercises 1-13 may be covered in.class. Exercises

14-19 may be assigned.

2.10 Exercises

1. (a) 599 (b) 599 (c) 435 (d) no whole number (e) 42,394
(f) 42,394 (g) 102 (h) no whole number

2. (a) and (c¢) are true for all whole numbers.

3. (a) and (c) are true.

4, (a) The statement is true whenever a = b,
(b) The statement is true whenever a = b.

#*
5. The following is not commutative: 4 All others are.

¢
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11.

12,
13.

14,

15.
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(a) 20 (b) 20 (c) 8 (a) 4 (e) 144 (£) 144 (g) 1 (n) &

(a) and (c) are true for all whole numbers.

(a) and (c) are true.

(a) Whenever ¢ = 0, and a and b are any whole numbers, with
a>b

(b) Whenever ¢ =1, and a is a multipie of b

(Emphasize that lack of associativity means that the operation

is not associative in every case: there may be true instances

of associativity ever: for a non-associative operation.)

The following is not associative: *6 All others are.

(a) 15, 15, 312, 312

(b) 0. It is the only identity element.

(¢) 15, 15, 312, 312

(d) 1. It is the only identity element.

1l #za =1

There is no identity element for division. n + 1 =n, for all

n. However, 1 + n # n, in general.

(a) It is commutative. The table is symmetric about the diagonal.

(b) It is associative.

(¢) Yes. oO.

(d) 1 and 5 are inverses. 2 and 4 are inverses. 3 is its own

inverse. O is its own inverse,

(a) It is commutative.

(b) It is associative.

(e) <Yes. 1.

(d) 1 is its own inverse. 5 is its own inverse. No other

elements have inverses.

.
“ l:*
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16, (a) Yes (b) No (Students should give counterexamples.)
17. (a) P#P =P (b) There is exactly one assignment for each pair.
(¢} No. For example, P % Q =R, but Q * P = &

(d) No S P Q R
(e} No p g Q R P*Q
S = (P¥Q)*R
P - ( Qg) R__Q*R T
T = P*(Q*R)

18. (a) Yes (b) Yes (e¢) Yes. b (d) a and c are inverses of
each other. b 1s its own inverse.
19. (a) 8 does not have an inverse. O is its own inverse.

(b) 8 does not have an inverse. 1 is its own inverse.

2,11 Cancellation Laws (and 2.12 - 2 days)

Cancellation laws are important, for instance, in solutions of
equations. Later, when the student is working with real numbers,

he will solve the equation "2x + 7 = 15" as follows:

2x + 7 =15
2x =8
x = U,

The steps in this chain can be explained by the cancellation
laws of addition and multiplication in the set of real numbers.
Thus, We could write:

2x + 7 =15

2x (by cancelletion law of addition)

8
N

2 *x=2 14

3

x = 4 (by cancellation law of multiplication)
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It might be of advantage at this point to demonstrate this
diagram for the students in preparation for Course II section on
equivalent equation.

In this section, illustrations both of systems with a
cancellation law and of systems without a cancellation law are
given. The student should see why there can be no general

cancelliation law if any element appears more than once in any row

and column of the multiplication table; it must be excluded
from any cancellation law formulated for multiplication. Later,
in algebra, the student cannot reason that if x * x = 2 - x, then

x = 2 {since 0 ig obviously a solution also).

Section 2.12 - Exercises 1l-4 could be covered in class. Exercises

5-12 may be assigned.
2,12 Exercises

l. a=19 and b = 19
2, x =38 and y = 38

3, (a) a=b (r) a=b (ec) no conelusion

4. (a) No. Foe example, U max 3 = 4 max 2, but 3 # 2.
(b) WNo. (See counterexample in part (a).)

5. Yes

6. (a) yes (b) yes (c) no cancellation law {(d) no cancellation law

T. You can make the conclusion from statements a, ¢, ¢, f, g, h, i, J,
but not from statements d, e, k.

8. We run into trouble here, since * is not a commutative operation.

We do not have a left cancellation law; that is, if P*Q = B*R,
then @ = R. And we have a right cancellation law; if Q¥P = R¥*P,

ERIC "3
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then Q@ = R. However frow a statement sucn as P#¥R = Q#P, we

can conclude nothing as the following counterexample shows:

R PR =3
S

Q*P =S Q #R

Q
i
;

T
A

This problem gives an opportunity to discuss with students the
necessity of right hand and left hand cancellation laws in systems
that are commutative.

9. No. This shows up in the table since b appears twice in a
row and in a column, Thus, b*a = b¥c, but a # c.

10. Answers vary.

11. (a) Yes (b) Yes (c) Yes, even (d) Yes (e) Yes ,
. o . | Even [0cad

Even | Even {Even

0dd | Even |0dd

12, (a) Yes (b) Yes (c) Yes, odd (d) No (e) No

2,13 Two Opezational Systems (and 2,14 - These 2 sections may be

omitted if pressed for time).

In this section, twio additional operational systems, one
numerical and one geometric, are introduced in order to have one
more look at operational properties before summarizing the properties
of a group.

Besides the digltal multiplication system discussed in the
text, other systems the student might enjoy investigating are:

{1, 3, 7, 9) and digital multiplication;
{1, 3, 5, 7, 9} and digital multiplication,

In the system(P, tri), rely on the student's intuitive notions

of plane, equilateral triangle, and "clockwise,'" which should be

strong enough to enable him to understand how the assignments are

1 made. A good discussion question grows out of the stipulation
LS
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that R-S-T be clockwise in orientation. Why is this necessary?
Students should see that except for this restrictlon, there

would be two assignments to (R,S), and we vould not have a binary

In cother words, the
restriction to'clockwise
preserves the notion of a

binaxry operation,

operation (see below).

Show that Q # T
2.14 Exercises
1. (a) yes (b) symmetric about diagonal
2, (b) yes; it can be concluded from the fact that ordinary
multiplication is associative {the digits come from
ordinary multiplication).
3. (a) vyes, 6 (1) no
b, (a) 2 (b} 6 is its own inverse; 4 is its own inverse,
5. (a) a=0»
b) Yes. No element appears more than onee in a row or column.
6. (a) 8 (b) 6 (ec) 6,4 (d) no solution (e) 8 (f) 8
7. no
8. no
9. no
10. There can be no inverses, since there is no identity.
11, There 1s a right hand cancellation law, and a left hand
cancellation law,
12, (a) Yes; commutativity, associative, identity, inverses.,

(v) No.
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2,15 What is & Group? (and 2,16 - 1 day)

This section should not be dwelled upon at length, for there
is plenty of time for the group concept to develop spirally. Here
we intend simply to introduce the word "group" as a name for a
certain kind of operational system largely by citing systems
aiready encountered. Examples of groups will occur throughout

the remainder of the course.

2,17 and 2,18 - Summary and Review - 1 day

These two sections may be assigned for homework and then
discussed in class.

Time should be allowed for quizzes and tests,

2,16 Exerclses

1, commutative group
2, not a group, lacks inverses
3, not a group, lacks lnverses
L, commutative group

5. not a group

2,18 Review Exercises

1. (a) 9 ()14 ()7 (a)9 (e)2
2, (a) (0, ¥, (1,3), (2,2), (3,1), (4,0)
() (1,4), (2,2), (L,1)
() (0,4), (L,4), (2,4), (3,4), (5,8, (43), (42), (%1), (4,0)
() (0,4), (1,3), (2,2), (3,1), (4,0), (5,11), (6,10), (7,9),
(8,8)s (9,7), (10,6), (11,5) &6
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e,
9.
10,
11,
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13,
14,

(e)

(a)
(£)
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(1,8), (2,2), (41, (8,2), (2,8), (4,4), (4,7), (4,10),
(5,8), (7,4), (8,5), (8,8), (8,11), (10,4), (10,10),
(11,8)

1112 (b) 1112 (e¢) 622 (d) no whole number (e} 867
867 (g) 435 (n) 435 (i) no whole number {J) no

whole number (k) 27 (1) 81 (m) 64

The

following are operations, a, b, e

(f is an operation only if you define expressions with zero

exponent)

The following are true: a, b, e

(a) 20 (v) 20 (e) & (a) 8 (e) 144 (f) 144 (g) 1 (n) Lk
(1) 12 (3) 12

(a) 4096 (b) 65,536

The followling are assoclative: a, d, e

(a) 12 (b) 15 (¢) no

(a) 55 (b) 202 (c) 2500 (d) 2400 (e) 184

{a) 61 (v) O (¢) no solution (a) 7

(e) no solution (f) 1 (g) 0 (h) 0, 1, 2, 3, &4

(1) 5 (3) no solution (k) 2 (1) no solution
(m) any whole number is a solution (n) no solution
(o) 50 (p) 10 (4q) no solution (r) 3 (s) 100 (t) 0, 1, 2

(a)
(h)
The
(a)

10 {v) 16 (c) 64 (a) 49 (e) 29 (f£) 49 (g) 27
21 (1) 26 (3) 25 (k) 25
conclusion can be made from the following: a, b, ¢, f

Assign Q itself (b) yes; one and only one point is

assigned to every ordered pair of points (e¢) and (d) no

(students should show counterexamples) (e) no (f) There

)
[
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is a right hand cancellation law, and a left hand cancel-
lation law.

There arc sixteen binary operations on the set [0,1]. One
way to analyze the situation 1s as fcollows: Take the pair
(0,0). There are two possibilities for an assignment, O
and 1., Having made a choice for this assignment, take the
pair (0,1); there are also two cholces kere., Hence, there
are four different ways to make assignments to the pairs
(0.0) end (0,1). Continuing in this way, there are eight
different ways to make &assignments to the three pairs
(0,0), (0,1), (1,0). And finally there are sixteen ways to
make assignments to tue four pairs (0,0), (0,1), (1,0) and
(1,1).

All sixtean operational tables are printed below., It would
be profitable for students to discuss properties of these

systems, deciding which are groups.

1 lo1 o1 01 Jo 1 o 1 0 1

0 o ofo 1 ofo o o|lor o oo ofo 1 o]0 O
1 0 10 0 11 0 1{2 o 1o 1 1{o0o 1 1|1 1
0 1 | o 1 o 1 jo 1 | 0 1 0 1 0 1
oflo 1 ol1 0 of1 1 ol1 0 o0o|l2 1 o1 0 o0]1 1
1111 10 0 10 0 1{2 0 12 0 1j0 1 1|0 1

£]
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SUGGESTED TEST ITEMS

(The test is too long for one class period, Selections may

be made from these items.)

PART ONE, COMPLETION., In each of the sentences below, there is

12

a blank, Decide what word or expression
must go in the blank in order to make a
true statement. Then write that word or
expression in the blank preceding the
statement., The example, number 0, has

been completed correctly.

The number ___ is the sum of 8 and 4,
Addition is a binary operation on the set
W of whole numbers which assigns the
number ___ to the ordered pair (6,3),
Multiplication is a binary operation on
the set W of whole numbers which assigns
the number 1 to the ordered pair __,

P = .

>3 = .

" S—

79
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5. If # is a binary operation such that asb

= bxa for every whole number a and every
whole number b, then the operation x has

the property.

6. 18-(10-2) = .
7. (18-10)-2 = .
8. If # is an associative operation, then for

all numbers a, b, and c, ax(bxc) = .

g. The number is the identity element for

addition of‘whole numbers.

10.. For every whole number 8, a‘*l = .
11. In (Za,+) the inverse of 2 is .
12, __In (Zs,*) the element has no inverse.

PART TWO. TRUE-FALSE Decide whether each of the following state-
ments is true or false. Then write the

complete word "true" or the complete word

"false" in the blank preceding the state-
ment, The example, number O, has been

i answered correctly.

0. false The sum of 8 and 2 is 16.

1. Subtraction is a binary operation on the

set of whole numbers.

2. If & and b are whole numbers, and a + 2 =

b + 2, then a = b.

3., If a and b are whole nurbers, and 0.8 =

.O‘b’ then a8 = b.

ERIC | o
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The solution set of the equation "0°X =
0" is the entire set W of whole numbers.
The system (W,+) has a cancellation law.
The system (W,+) is & group.

In the system (W,+) every number has an
inverse,

In the system (W,+), the equation "5 + x
= 2" has no solution.

The third power of 4 is 12,

In any group, the identity element is its

own inverse.

PART THREE "COMPUTATION WITH PARENTHESES" Find the simplest

name for the number by each of the followling expressions,

l. 2+ (17 + 5)
17 ¢+ (5 + 2)

(17 - 5) +2
12

51

2 + (39)
(2 + 3)2

~N O Ui & W D

o v

(14 - 0)3

|—l

[(8 max 2)° + 3] * 10
(17 - 5) + (17 - 2)

FOUR. In this section, we consider a set S with exactly three

elements, called a, b, and ¢. That is,

O

S = (a,b,c-}
1
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The operational tables below define two binary operations,

! *# eand #*;, on set S.

% - *alb c ®,lalbp|ec
g a|l alv| e alalala
% bl bjc| a bla] b| ¢
1

} cleclalb clal]ec] b

So, We have two operational systems, (S,%;) and (8,%,).

All questions in this section refer to these systems.

2. 1In the system (S,*,), list all ordered palrs to which ¢

j is assigned.

. ot (c*c)

3
n
5
6. (c*yc)*yc
7
8
9

. Is *; a commutative operation?
. Is *, a commutative operation?

. (a) 1Is there an identity element in the system (S,*;)?

If so, what is it?
(b) Is there an identity element in the system (S,*,)?
If so, what is it?
10. Give the inverse of each element in (S,*,). If the element
has no inverse, say sd.
(a) The inverse of a is

(b) The inverse of b is




J}: e

(c) The inverse of c is

11. Give the inverse of each element in (S,*;). If the element
has no inverse,. say so.
() The inverse of a is

(v) The inverse of

{3

is
(c) The inverse of ¢ is |
12, In which_of the two systems is there a cancellation law?
13, Solve the following equations. That is, find what element
x must be in order to make the statement true. If the

equation has no solution, say so. If there is more than

one solution, be sure to list them all.
a) b* x=a |
b) c* x=c
c) a*, x=a
d) a*, x=0>

e) x%¥ x=05»

73
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Answers to suggested test items

g Part I. | Part ITI
g 0. 12 1. 24
g 1. 9 2. 119
% 2. (1,1) 3. 87
3. 9 b1
b 8 5. 5
5. Commutative 6. 11
| 6. 10 7. 25
f 7. 6 8. 670
| 8. a#(bxc) '9. 119
9. O 10. O©
10. a Part IV.
11. 1 1. ¢
12. 0 2. (bye),(csb)
Part II 3. ¢
0. Tfalse h, ¢
1. false 5. ¢
2. true 6. a
3. false 7. yes
4, false 8. yes
5. true 9.a) yes, a 12, *
: 6. false b) yes, b 13.a) [ ¢}
i 7. false 10.a) a b) { b}
8. true | b) ¢ c) (a,b,c)
g. false e) b d) & - no
10. true , 11l.a) none solution
lijkjj . SoR b) b e) (c)
— e) ¢
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TEACHERS' COMMENTARY
Chapter 3 Mathematicel mappings

APPROXIMATE TIME FOR CHAPTER: 13-16 days

The main purposes of this chapter are:

(1) To develop the concept cf a mapping as a special kind of
assignment.

(2) To develop some elementary procedures for investigating
the properties of mappings, particularly meppings of
sets of numbers.

(3) To introduce the opération of composition of mappings.
(4) To develop the notion of inverse and identity mappings,
end sufficient conditions for a2 mapping to have an

inverse under composition.

(5) To study two classes of mappingé of sets of whole numbers,
specifically n—» nta and n—yan, and the properties they

- possess as a class.

It should be‘understood at the outset that & mathematical

mapping is considered by the author to te Synonymous with a
function from a set A to a set B. The fundamental notion
underlying the concept of a mapping is that of assignment.

An assignment can be treated as a relation or a correspondence,

of course, but it is our desire at this level to give the
function concept a more dynamic connotation. Also the word

"assignment" carries with it the element of directionality

5
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which is an inherent part of the mapping concept, e.g. a
mapping from A to B.

It must be stressed that before we can begin to talk
about whether an assignment is a mapping we must be clear as
to the set of 2lements to which objects arebassigned, and clear
as to the set from which the assigned objects hay be chosen,
There must also be a clear method, process, rule, display, or

diagram by which the individual objects are assigned.

However, the particular 'method, process, or rule by
which objects are assigned is absolutely immaterial to whether
or not an assignment is a mapping. The fundamental and
unchanging criterion for us is that each element of the first
set be assigned exactly one element of the second set. This
is stated more formally in the foilowing definition.
Definition: A mapping is an ordered triple (f,A,B) such
that A and B are sets and such that to each
x€A there is assigned by f exectly one
element y€B. o

To in@icate that a€A is assigned bEB we write av-EL)b.. b

is then called the image of a Wy f or the image of a under f.

£ %Dy

The "exactly one"” condition may then be stated as: if &



and a—I-—3by ther b, = by,

Note that in this defin}tion the phrase "fhere is
assigned" and the symbol "f" ere left undefined. Thus, the
notion of an assignment is an additional undefined teym in
this development which is not found in the definition of a
function as "a sét of ordered palrs such that no two pairs
have the same first element." "Assignment" could be given
& precise definition in teims of set theory but we choose
not to do suv at this time. The purpose of the examples in
section 3.1 is to make clear what is meant by an assignment,
as well as to provide a basls for the definition of a
mapping.

We shall name a mapping in the course in various ways.
For defined sets A and B, "the mapping f of (from) A to B"
may be given by:

(1) the rule n—>

(2) the table...

(3) the arrow diagram...

(4) ... (some verbal description of the way images are

assigned).

The domain of a mapping is always the first set in the mapping.

The range may or may not be all of the second set in the
mapping. No specisl name is usually.givsn to the second set.
If you wish, you may refer to it as the codomain. Then the
range is a subset (a proper subset in many instances) of the-

codomain,

"
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3.1 Assignments and Mappings - (Approximate Time: 1 day)

In this section there are exampies designed to make
intuitively clear what we mean by an "assignment" and
"assigns". There is an inherent difficulty with these words
grammatically; however, that should be faced at the outset.

Suppose we have in an arrow diagram

C3"”,‘—;>—--‘\\\‘ Helen,

Now we say that "to Cy is assigned Helen" so that the
direction of the mapping is clear. But we might more naturally
say that Helen is assigned to C4, in which case fhe assignment
is ‘read in the reverse direction to the actual sense of the
mapping. Care shouléd be exércised in this regard.

The essence of this chapter is a special type of assignment
called a mapping.

The use of "arrow" criteria.for an assignment to be a
mapping is recommended. e.g.;

(1) each element of A is the origin of an arrow

(2) no element of A is the origin of more than one arrow,

or, equivalently,

(3) each element of A is the origin of exactly one arrow.

The student should have a clear conception of what a
mapping is and should be made to realize thet every assignment
is not & mapping. He should feel comfortable in his ability
to recognize a mapping. The terms domain and range and their

relation to a mapping should also be emphasized.

qu
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Note that in this set of exercises and in subsequent
sets of exercises; it is not necessary to assign every
exercise (is this assignment a mapping?). Exercises felt to
be absolutely essential to the development will be noted here.

An additional &activity here might be to have students
think of natural assignments that are or are not mappings.
Exercise 4 should be assigned. It is the forerunner of the
step function in analycis. Suggested exercises: exercises

1l and 2 may be done in class. The rest may be assigned as

homework. Exercise 4 is a good review of fractions.

3.2 Solutions to Exercises

1. Example 1: (a) No. C1 (») Yes. C2 assigned
Judy and Mery, C4 assigned Louise and
Sandra, C5 assigned Janice and Carol,
[Note double arrow from C,J and C, has no
assignment.

¢) No. (d)

(
Example 2: (a) Yes. (b) No. (¢) Yes.
(d) Domain: {John, Al. Bert, Fred, Steve)}
Range: {68,70,73,7T]

2 3
Example 3: (a) Yes. (b) Yes. Eiéfzg 3<1:c

"/

(c) No. (@) ___
Example 4: (a) Yes. (b) No. (c¢) vYes.
(d) Domain is set of states of the United
States of America. Range is the set of

their capitel cities.
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Example 5: (a) Yes. (b) No. (c) Yes.
(d) Domain is W. Range is (5,6,7....}
Example 5: (a) Yes. (b). No. (c) Yes.
(d) Domain: {Mery, Steve, Joe, Jenet, Peter,
Harry).
Renge: (Mr. Brown, Mr. Jones, Mr. Ross,
Mr. White}.
2. (2) Yes. Each element of A is assigned exactly one

element of B, [Or, each number in A is the crigin
of one and only one &rrow.]

I
(v) No. 5<f::q . Thet is, 5 is assigned more than one

element of B. [Or, 5 is the origin of more than one
errow. ]

(¢) Yes. Each element of A is assigned exactly éne
element of B. [Or, no number in A is the origin of
rnore than one arrow.]

(a) ves. Each nunber in A is the origin of exactly one
arrow. |

(e) Nc. 1, 2, 5, and 7 are each the origin for two

arrows..
—
3. (1) |
(=) . Cl » o - Jane
c2 Elaine
C2 - Karen
ch ‘ ~ Martha
€5 ——— . Peggy
<Y STp) D - Alison/

Tables ' ~ Students
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(v) Not a mapping

(¢) €2 is the origin of two arrows.

(2)

(a) ! Cl‘ \ ~“~ Noreen
c2 > Betty
c3 - | :
cl — Theresa
c5 Eileen

(h) Not a mapping.

(¢) €3 is assigned no student.

(c3 is not the origin of an arrow)
(3)

(a) Dolores
[~ Cheryl
—~ Betsy

s Ann

\—s Veronica

Tables SR ' students

Y

(b) A mapping.
(c) Each table is the origin of exactly one arrow.

-8 - Possitle Costs

24

A - Welghts
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Or other non-linear arrangements of (1,2,3,4,5]
(v) 1.
(c) (1,2,4)
(d) Nc. 2 and 5 are contained in B, but are not
contained in the rénge. | |

(e) Yes, 2 and 4.

3.2 Mappings of Sets of Whole Numbers - (Approximate Time:

1 - 2 days)

The purpose of this section is to further extend the notion
of a mapping to the set of whole numbers and to introduce the
notion of a mapping given by a rule n—> .

Examine the examples in the text and stress the technical
definition of a mapping.

It should be pointed out in example 2 that one should be

o
i€
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very cautious about such arrow diagrams., Without a rgle, we
really know nothing about the imezes for whole numbers not in
the diagram:

The answers to the questions following example 4 are:

(1) each whole number has an image.

(2) each whole number has exactly one image.

(Please note that the use of the word "imsge" should
be confined to the objects assigned by a mapping. )

(3) 3—>5, 4—6, T—>9.

(4) Yes. 1, 2, 5,

In exarple 6, 2—>U4, 5—3, and 6—~—>11. The range is
(2,3,4,7,9,11).

In this section, all mappings are represented on a single
line. It should be noted here that the same mapping can be
pictorially represented using two lines.. This idea is first
introduced in section 2.13 but'can aid the students in the
earlier chapters in distinguishing the domain from the range.

Consider Example 4 of this section. The pictorial repre-
sentatiﬁn is as follows: (Note that dotted lines indicate an
infinite mapping)

-~

RO NT L. T L

Another suggested representation is as follows:

01 2 3 4 5 A 7 8 9 10 11 12
‘ N\
o 1 2 2 &4 5 6 7 8 9 10 1 1B

a2 fos e s

e e o i o A B e b it e e e e s 8 Ao
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Suggested assignment: for 3.4: Exercise 1,2 and 6 may be done
7

in class. Exercise & is a good discussion question., Exercises

3,4,5,7 are excellent homework problems.

3.4 Solutions to Exercises

1. (a) 3, 41, 1362,
(b)

0 1 WWO 11 12 13 14 15 16

2., No. Let A = {3,4,5). Any set of whole numbers which
excludes 0, 1, and 2 is permissible, the simplest being

(3} = A. |
> NI SN -~
0 2 4 6 10 12 1 ete.
4, (a) True: 3—>56 (b) True: 3—10
4—>3 o 4—»13
5—» 10 R 5—>16
(¢) TFalse: 3—»8 : ' (d) False: 3-»9
boy1l | h>16
S5—>1l4 : 5—>25
(e) False: 3—»9
| . 4—»8
537

5. (a) The set A may be any subset of W,
(b) A may be any subset of (0,2,4,5,...}

(A




(c)
(a)
(e)
(£)
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A may be any subset of W.

A may be any subset of (2,3,4,5,...}

A may be any subset of W.

A may be any subset of N.

The arrow diagrams will vary according to choice of A.

(a)

(b)

(c)

(d)

(e)

()

(e)
(a)

(1)
(3)
(1)

(3)
(1)

(3)
(1)

(3)

(4)
(1)

(3)
(1)

(3)
(1)

Yes., (2) Domain = (0,1,2,3); Range = {1,2,3,4)

n—y n + 1 (4) vYes.

Yes. (2) Domain = {0,1,2,3,4,5)
Range = {0.2,4,6,8,10)}
n-»2n (4) Yes,

(1,2,3,4,5,6,7,8)

Yes. (2)' Domain =
Range = {031:2;3:4:5:6;7]
n—-n-1 (4) VYes.

Yes. (2) Domain = {10,11,12,...,18}
| ' Range = (10,11,.:.,17}.
Rule not easily expressed: 1 »10s forn =10

nNe——yn -1 for n £ 10
No.
W

Yes. -(2) Domein
Range . = {0,1,4,9,16,...]

n—n?® (4) Yes.

Yes. (2) Domain =W
. Range = {1:3:5;7:9:---]
n—s2n+1 (4) TYes. |

No. 3—%6 and 3—» 0; 6—>9 and 6—>3.

::Z:Etscgzsg‘ | o : .

0 2 4 6 8 10
~H



3.5 MAPPINGS OF CLOCK NUMBERS (Approximate Time: 1 day)

‘Such mappings provlde an Oppbrtunitj to show that two
seemingly different rules make the same assignment of images,
Stress, that, regardless of extérnal‘details, two mappings

are the same (equal) if and orly if (1) they have the same

h

~



2. (1) a. yes b. domain
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first and second sets, and (2) for each element of the fiist
set the lmages assigned are the same. .
An excellent opportunity again arises here to'study the
information that can be obtained'about & mapping by studying.
the "arrows." Also, alternative diagrams like the following

might be used.

Zs Zs
o T T~
1 — 1
2 ~ 2
3 —. 3
L - I

One might begin this section with a discussion and
explanation of W and 2n. A useful technique might be to
consider a particular rule n—» _using first W and then

2n as your domain and range.

3.6 . Solutions to Exercises

1. Because . in Zg, n-3 =n + (-3) = n+2

]

renge = (0,1,2) c. n—yn-1 d. No
(2) &. yes b. domain

it

vrahge = {0,1.,2,3} e. n-7n+2 d. No
(3) a. no 0 has'tﬁo"images. | .

(4) a. no 1 has two images.

(5) a. yes b. domain = range = (0,1,2,3,4,5} c. n—n d. No
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(6) a. yes b. domain = {0,1,2,3,4}, range = {0}
c. n«ébo d. yes, 0.
(7) a. yes b, domain = {O 1,2,3, Ly, range = (4}

c. n=»4  d, yes, b. ,
(8) a. yesyhb. domain = {2,3,&), range {1,0,5}

C. no easy rule d. no

3.7 SEQUENCES - (Approximate Time: 1 - 2 days)

The purpose of this section is to examine a particular
type of mapping with domain N} |

Take care to point out that when we write down a sequence
as, ‘for example 3, 5, T, 9, 11, 13, ..., we really have
indicated a mapping because we have put 3 in the "first

"

position," 5 in the "second: position,"

11 13,

ete. so that;we’have

where. the order of "positions" is from left to right.

Suggested assignment: Exercise 1 may be & classroom assignment,
Exercises 3 and 4 may be a homework assignment. Exercise 2
should be assigned and discussed. The point here is that a
mapping can be generated by chance phenomena. Also exercise

5 should be assigned and discussed, but prior discussion is

needed to prevent difficulty with notation,
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3.8 Soiution to Exercises

1. () (1) N (b) (3) and (5) are finite.
(2) N ‘ The rest infinite.
(3) (1,2,3,4,5} (e) (1), (2), and (4) are
.(4) N infinite because thé.domain
- (5) (1,2,3,4,5,6} ~ is N,
(6) w

2. Many answers. Discuss in class.

3. (a) 1,2,3,45,6
(b) 11, 20, 9,8, 7, 6 |
(c) 485, 658, 831, 1004, 1177, 1%'50

() 3742, 3730, 3732, 38:3, 383, 3613
(e) 157, 160, 165, 172, 181, 192
(£) 79, 81, 833, 87, 91, o7

4. (a) 2, 1, 6, 2, 10, 3, 14, 4, 18, 5
(v) 39

5. (a) T, 16, 43, 124

(b) e =3 -2 -5=3-°1096 -5 =3288 -5 = 328
8g =3 * 8 -5=3 - 3283 - 5 =9849 - 5 = 9844

3.9 Composition of Mappings - (Approximate Time: 2 days)

‘It should be emphésizéd that, where defined, the composition of
two mappingéuis.qgain a mapping. The reason for this order is that
we wish [gOf](X)~=fg(f(x)) when we get the f(x) notation. Be
sure that in each example the conditions for the composite

o napping to be defined are met.

E‘ S e gy
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When finding a rule for gOof in terms of ruleS,for g and' T,

stress that "n" in "n

>3n + 2" for instance, is a place
holder. Thus, if k + 2 is in the domain of the mapping, we may

write "k + 2 ~———53(k + 2) + 2." Use of "0" might be helpful

alSO, e-g-’

O

_ >3 + 0O+ 2,

It should be stressed that for the composition to exist
the range of the first must be contained in the‘domain of the second.
The use of colored chalk and colbred pendils can Be an essentigl
aid in distinguishing the assignments in the composition of
mappings. the,notatién 225 implies thét fhe mapping g must be done
first and then f. 1In repiesenting a compositioh of mappings
pictorially, the best method may be to consider three parallel
lines as in Figure 3.29.

2.10 Solutions to Exercises

1. (a) 6 (b) 5
(c)

2.

goesf. R P‘g

They are the Samé mapping since their arrow diagrams are the
same, i.e. they each assign the same images to 0, 1, 2, and 3,
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3. (a) 201 - (d) eo7 . (g) 203
(o) & ~ (e) 4os (n) ko3
(c) 135 (e 137 (1) 139

4, (a) 11 | (b) 50 (c) 5 C(a) 1
(e) There is no whole nunbér n such that n h Sh,

5. (a) 4 (o) &+
(¢) (1) 1, &, 7, 10 (3) [2, 5, 8, 11]

(2) # (4) o

3.11 Inverse and Identity Mappings —(Approximate Time: 2=3 days)

‘The student is now 1ntroducéd to the inverse and identity

mapping. It should be noted that the identity mapping on a given

set A, & mapping of Avto:A with the rule n >n, 1ls designated

by the symbol jA. ‘The symbol jB'déndtes the identity mepping of B
to B. The inverse mapping is introduced here by demonstrating that
in certain instances a given mapping £ of A to B has associated with

it a mapping g of B to A such that gof Jy and £Og Ir

= Jg

A = B, of course, g°f = f°g3= hThen, the goal is to see what

jA"
properties of A and B made thisapbssible. They are, of course,
that £ and g are both one-to-one and -onto mappings. We have not

developed the true statement that 1’ and fOg = JB then

=
T and g are both one-to-one and onto.v This will be considered in
Course II; ‘However, it is a legitimate question for exploration,
but it is a more sabtle,question. . The student should realize that

if g is the inverse of f then f is the inverse of g.

G4
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3.12 ‘Solutions to Exereises

l; (a)‘ Examgle 2: Has no inverse. Every element of the second
- set. is the 1mege of some element in the first
set but 73 is the image of both John and Fred.
Example b: Has an 1nverse. Every element of the second
- set is the image of exacily one element of the
first set. | |
Exampie 5: Hes ne.inverse. Some elements of the seeond
.~ set (0, 1, 2, 3, and 4) are the image of no
_ element in the first set.
Ekaméie 6:"Fas n0l1nverse. Every element of the
o second set is the image of some element
bof the first set but Mr. Jones and Mr. Ross
are eeeh the-imege.of 2 elementseof the first
set. o
.(b) f has an 1nverse. Both conditions hold.

Diagram is a sufficient proof

(c) g has an 1nverse.»'Arrodeiagram is sufficient to show
that conditions (1) and (2) hold.

(d) h has no inverse. 1,2,4, and 5 are each not the image
of any element in Zg; also O and 3 each have 3 pre-

images.
8 a0

\-1 . ’ [
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(e) This mapping has no inverse. Condition (2) is not
satiéfied. ‘Each coﬁﬁtry”has many people assigned to it.
2. (a) Example 4: Assign to each Cabitai city the state for’
| | which it is capital.
; (b) An arrow diagram is a satisfactory ansﬁer or rule
n —>2n. o - |
% (¢) An arrow diagram is a satisfactory answer or rule
n——>n + 3, - |
g 3. (a) For every n in W,
g | n —& >2n —1-—>2n so that n ——19£;>2n.
; and
n J >n £ >2n so tha.'b n -&L>2n.
(b) Yes. Because whatever happens under £, the image
remains the same under J.
b,
5. (a)
(v)

(c)

R

7

In (c) some argument should be given to justify the diagram.

03
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(a)

e @
>
4

o

) O D0
’ 1 2 3. Ly 5 6 7

Again, some argument Shouid be given, e.g.
£ h h oK Bk o

2 — >o_ >2 S0 that 2
*Since 0 and 1 are not in the domain of K, the arrow diagram

starts with 2.
(a) D=W, R={1,3,5 7:9:---}
The inverse mapping of R to D has the rule

n >n51 . ;
(b) D= = [1:2:3:4:---]-

R=(1,4,7,10,13,16,...)

The inverse mapping of R to D has rule

n N n ; 2

(C) D= [2: 3:.4: 5: 6&---1
R= [OJ 1) 2) 3)--0) =,W.

The inverse mapping has the rule n Sn + 2,
(d)D=w, R=[é 3, L",.o']
The inverse mapping of R to D has rule n

() D=W, R= - (25, 3, 121, 169;...)

> n - 2.

The inverse mapping of R to D has rule

(£) D =W, R = (1800, 1808, 1816, 1824,...)

The inverse mapping of R to D has rule

N o— s -81800

n

A

adn
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: " S ; | -
7. (a) ~ This mapping has an inverse, since
it is ohe-to-one and ohtg.. The
' rule is eithern —>n -1 or
| n——>n+h '

(v)

This mapping has an inverse, since it
is a one-to-one and.onto.,'A rule is-

n

—>n +3o0orn

>n-2-
(c) The mepping hes noc inverse.
It is neither one-to-one nor onto.

(d)

This mapping has an inverse, since

it is one-to-one and onto.  The rule is
n——>:§L-(n-1) or

3(n - 1) or 3(n + 4) or

%—(n + 4)

3.13 Special Mappings of W to W - (Approximate Time: 1 day)

The goels of this section are to: _ ’
(1) 1lay the groundwork for the study of linear functions of

the real numbers to the real numbers as mappings with

rules n

>n + b, n

compositions.

> an(a # 0), and their

(2) point out the lack of inverses for such mappings of W to
W even though.it seems natural to conceive of such en
inverse in terms of a physical interpretation.
(3) point out incidentally some geometric properties related

to these meppings. Here only observations or discoveries

on the student's part are intended.

a5
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3;14 Solutions to Exercises

1. (1) (a) R'=:{7:8g9:10:»..] e

>n+ 8, =T

(b) Rule type: n
(e)

10 11 12 13 14

(2) (a) R =,{1:3:5:7:9;---}
(b) Rule not of either type
(c)

(3) (a) R = {0:5:10315:203-F-}
(b) Rule type: n >an, a = 5.
(c)
0 1 2 3 L 5 6 T 8 9 10 11 12 13 14 15 16

ete.

J—

I 5 5 &4 5 € 7 8 9 10 11 12 13 1% 15 16

Note: In each of these'mappings 8 different scale may be used.
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(#)

(5)

(6)

(a)
(b)
(c)

(a)
(e)

(a)

(v)

=95~

Sdme discussion should be made in class as to the

-relationship between the appearanc§ of the diagrem

“and the actual mapping.

(a) R={3,7,11,15,...]
(b). neither rule type
(e) &g before.

(a) R = (25326227,0-‘01

(b) n—=>n+a, a=25

(c) _._l

(a) R = (0,60,120,180,...}
~(p) n >an, a = 50,

(c) |

Yes. Yes.

No. Yes.

Yes. This inverse only exists if h is one-to-one and
onto. ‘ |

You move 7 hours in a clockwise direction.

Yes. A move of T hour positions in a counterclockwise

Sn + 5,

direction. Rule is n > h - Torn

Move it one unit to the right.
(1)

0 1 2 3 45 6 78 9 100 2
To 12 34 5 2,

(2)

E_l.? 3 456789 101 12§
0 1 2 33X

(3)

02123456789 10111213 11516171819 £

0

1l 2 3 _f{ 0y

¢
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(4)

tao 21 22 23 24 25 26 27 2 29 30 3L 32 ¢

0] ' 1 e 2

34

4, Only one or two arrows need be drawn; Choose scales to

5¢

allow construction easily.

(a)

56 63

—> an —&—> an + b

then n

on—B%2S o 4 b so that p is & and q is b.

3.16 Solutions for Review Exercises

1.

(a)

o 2 4 6 8 10 12 14 16 18 20 22 24 26
1 b 29 >
—d 3 4 5 :
(a) -~ . (b)) - (e) wves
(d) £ = koh where n h TTn
and n —£ -5 n + 1306
() Itn —LI— an
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ete.

v

gof: . ete,

SR 5{%‘5&* TR TN

0

(b) n—_-ggf—>.2n+6, n,__EE?L>2n+3

I TRPETSE

Y B e TS

(c) 637 —B2Ls 1280, 637 T8 » 1277

No. No. Becsuse 637 has a different image under gof
. than 1t does under fog;_- |
(@ i)

@ () or 8
2. (a)

01 2 3 45 6 78 9 10 11 12
o |  ete.
01 2 3 45 678 9 10 11 12
(v) No. 2 is the image of no whole number (also O, 1 and 3).

‘(c) Yes. Each image 1s the image of exactly one whole number.

0 1 2 4y 5 6 7 8 9 10 11 12 _a'

"/ o - N 7

} //ﬂ::%j:::;’///ﬂ ete,
012 3 456 7 ; 9 10 11 12 ? a
(b) | I

2 L 6 , 8 10 ., 12 g

1 747 3 5 (] 9 11 -’

A | 4 N 4 AN ete.
o 1 2 3 N G 6 >y
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a
>

() o 122 3 48 © 7 % 930

cete,

(e} (a) is one-to-one

(a) is onto

(a) has an inverse because of previous answers.
> %Kn - 1) or

3(n ~ 1) or‘3(n + h)?ornégn‘- L)

The rule is n

Suggested Items fdr 8 Chapter Test

1. Detefmine whether or not each of the following assignments is
a mapping. In each case give a reason for your answer.

(a) A gym teacher assigns the boys in a gym class

activities acgording to the following chart:
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" Name e “Activity -
- John DR - Flying Rings
Steve R , ‘Rope Climbing
Henxy Tumbling
Allan n "~ Flying Rings
Georgé Rope Climbing
Howard . Tumbling
Tom Tumbling
(b)
>
(Remember that in an arrow diagram the first set is the
set of numbers that are at the origin of some arrow
and the second set is the whole numbers.) |
(e) |
4 5 6 7 8
P ]
L 5 6 7 8
(a)

(Here the first set and the

second set are Z,.)

2. (a) Choose a set A of whole numbers such that n

>3n - T
is a rule for a mapping of A to W.
(b) List at least one whole number that cannot be in the

domain A of any mapping of A to W having this rule.

3. Draw an arrow dlagram on a line for the mapping of

1

{2,4,6,8,10} to W having the rule n > =n = 1.

01
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In this problem the domein for each sequence is {1,2,3,4,5) and

the range is contained in the set of numbers of arithmetic.

(a)

()

(c)

(a)

Find the range of the sequence with rule

-—> 2n - 1.

n
Find the range of the sequence with rule

3.8
>z£n 3
Find the range of the sequence given by the rule that
(1) 1 > 23 and
() apm—> 38, - 7.
Find a rule like that of (c) for (a).

n

" Two mappings f and g of Z. “to Zs are given by the foullowing

arrow ciagrams

(a)

(v)

(c)
(a)

(o)
(£)

Find the image of 3 bj f.

Find the.image of uuby g.

Find the image_cf.3_by gof.
Find the image of 3 by fog.
Draw an arrow diagram for fog.

Does fog = gof? :Explain‘you: answer,

f and g are mappings of W to W given by the rules:

n - 3

>.12n + 7 i . n —-e—-> 13n + .16,
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(?) Find a rule of the form n
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(a) Find the image of 4 by f.

(b) PFind the image of 8 by g..

(¢) Find the image of 5 by gof. .
(d) Find the image of 5 by fog.
{e) Find a rule of the form n -

> 0 :for gof.

> [.'Jl'flor fog. |

For the ma.ppings in (6): -

(a) List the set of whole numbers whose image of f is
127, if possible, :

(b) List the set of whole numbers whose image by g is
355, 1f possible,

Determine whether or not t'hema.pp‘ing f of A to B where

A=Wa.rldB={1, 3, 5, 7, 9, 11;13,0..] a-ndn >2n-1

has a.n inverse. If so, give rea.sons ‘for your a.nswer and

'the rule of the 1nverse ma.pping g.

Given the rule n > -2-n - 3, find g domain D and a ra.nge R

consisting of whole numbers o) tha.t the rule def:l.nes a

_one-to-one mapping of D onto R. Then find the rule of the

inverse mapping of R onto D _
Given 'A = {O,‘lv,‘2 3,4}, Draw an arrow diagram on a line

for the 1dent1ty ma,pping JA of A to A,

,If the ma,ppir.g f of A to B and the ma,pping g of BtoA

are inverse mappings:
(a) fog = 7
(b) gof =
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12, Given the rule n > 2n,

(a) Ifn > 2n is the rule for a mapping £ of W to W,
or F? Why?

> 2n is the rule for a mapping f of Zs to Z,

is thefe an ihverse mapping

(b) Ifn

Fy

is there an inverse mapping for F? Why?

(¢) Ifn > 2n is the rule for a mapping of Zs to Zs is

there an inverse mapping'for f? Why?

Answers to Suggested Test Items

1. (a) Yes. Each boy is assigned exactly one activity?

> l4; 5 ———> 8 and 5 > 9,

(b) No. O

> O and O

(¢) Yes., Each whole number 0-8 is assigned exactly one whole
.number. |

1 (@) Yes. Each element of Z, 1s assigned exactly one element

' of Zs.

? 2, (a) Any non-empty subset of (21,24,27,...(

' (b) Any number not 1n‘the‘set {21,24,27,...}

0 1 2 3 L 5 6 7 8 9 10
4. (a) 1, 3, 5, 7, 9.

17, 11, 89, 38, 233
(b) T F @ T I

(e) 23, 62, 179, 530, 1583.
(d) 1 > 1

T3 > a‘n + 2,
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11,
12,
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(a) 3 > 0 (c) 3 ~E%50

(b) () 350

(e) (£) Mo - e.g. 3 —8°L 5 0 and
3 L& 5 "

() (a) 5 Lo 81 |

(v) (e) n —-59-£-> 156n + 107

(¢) (£) n —£%5 156n + 199

(a) {10} (b) { ) or # or not possible.

Has an inverse because it is one-to-one and onto.

The mapping g has the rule n > %,(n + 1),

D may be any non-empty subset of (6,8,10,12,...]}.

R must ‘then be properly selected. Rule of inverse in any

case is n > 2(n+ 3) orn > 2n + 6,

QO

o 1 9 (3} 9

(a) fog = J (b) gof = J,

(a) No. Because f does not map W onto W,

(b) Yes, f is then one-to-one and onto,

(¢) No. f 1is neither one-to-one nor onto,

, ?‘-,05




CHAPTER 4
TEACHERS ' COMMENTARY

The Integers and Addition (13 dayé)

General Introduction

The purpose of this chapter is the introduction of a new
set-of numbers (the integers) in which every equation of the
type x + a = b has a solution. First a need is shown for a
new type of numbers. Then addition is introduced by gain and
loss in & game situation. The general properties of (Z,+) are
then formally discussed. Line transiations are used to add
a geometric interpretation to addition.

Subtraction is introduced -informally and then developed
formally in terms of addition. Equations are solved by use

of translations and also by use of the cancellation law.

Ordering the integers 1s diséussed, followed by the idea of

absolute value as & meximizing operation. The entire chapter

could take 12 days plus 1 day for, a test.

Section 4.1 (1 day)

The purpose of this section is to review the solution of
equations of the kind studied in chapters 1 and 2, with con-
siderable emphasis on the fact that not every equation of the
type "x + & = b" has a solution in (W,+). This emphasis
serves to preview the purpose of the chapter -~ the introduc~

tion of a new set of numbers, the integers.

e

08
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Exercise 1 may be used as a class exercise.

4.2 Exercises

1. (a) (43 (b) (3} (ec) {3} (a) {0} (e) (¥} (f) (3}
(g) (6} (n) {5} (1) (4]

2. (a) {2} (v) (2} (c) {1} (4) (1)

3. Yes =~ in this case, 1t is not too laborious to write
every possible equation.

4, Ansﬁers vary.

5. Yes., See question 3 _

6. (a) (11} (b) (19} (e) & (d) {112} (e) &
() {22} (g) (953} (n) (311} (1) &

4.3 Some New Numbers (1 day)

This section introduces somé of the negative integers
informally by means of a simple interpretation -- winning and
losing points in a game. Emphasize the agreement to add
partial scores in order to obtain thé total score, for it is
this agreement which forces us to create new numbers (rather
than subtracting). It might be profitable to actually play
a simple game in class, with students using the whole numbers
and the new negative numbers to keep score,

In a later section (4.13), after the integers have been
more formally developed, the point is made that all equations
of the type "x + a = b" are solvable in the set of integers.

Even in the present section, however, it might be pointed out

that the new number “5, for instance, is a solution of the

iney
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equation "6 + X = 1"; and, as the student saw in section 4,1,
this equation has no whole number solution. In this way,
section 4.1 and present section may be related.

Exercises 5, &, 7 may be done in class. Problem 6 and 9 could
also be used to introduce addition Qf integgrs. Problem 11

could be optional.

L. 4 Exercises

These exercises not only provide drill but constitute an
important part of the development. The student has an
opportunity to work with a number of physical situations
(e.g., temperature change, profit and loss, etc.) which
helb to give meaning to negative numbers and to addition.
It is not intended that any formal rule for addition be
discussed this time., Students should find sums intuitively,
using the physical interpretations as a guide. The
verbalization of the addition proéess is‘probably too
complicated to be coﬁsidered at this time; at the end of
the chapter, a formal definition of addition (in terms of
absolute value) is presented.

(a) "1+ (0) 7 (e) "7 (d) 22 (e) 22 (£) 14

What is x if you score x points on the first play, T points
on the second play, and your total score after two plays
is 42 (Emphasize again that we add scores to obtain the
total score.)

You score 5 points on the first play, X points on the

108
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second, and your total score after two plays is O.

-5 |

()% (0) 0 (c) ™% (a)1 (e)o (£) 71 (g) 5

(h) 15 (1) 20 (3) 25 (k) "7 (1) 189 |
(a) 550 (b) 7;2 (c) 5;710 (d) In part (a) the number
must represent a five degrée rise; in part (¢) the number
must represent a five degree fall. (e) 0;75.

() 1 (b) 5 (e) "2 (d) 10 (e) 10 (f) 0 (g) "2
(h)2 (1) 2 (3)o (k) 4 (1) 9 (m) & (n) 15 (o) 30.
(a) 25;225 (b) 0;200 (c) "25;175 (d) In part (a) the
number must represent 25 more; in part (c) the number must
represent 25 ;§§§Q - o H |
(a) 5; 14 (v) 534 (c) 1In part (a) the number must
represent a gain of five yards; in part (b) the number
must represent a loss of five yards (d) "9;0 (e) "15; 6.
(a) 122 (b) 48 (c) 48 (d) T122 (e) T18 (f) "102

(€) 20 (n) “106 (1) 106 () 760 (k) 60 (1) 75

(m) 75 (n) 7125 (o) "500 (p) "100 (a) “1000 (r) 1500

Answers vary.

4.5 The Integers and Opposites (1 day)

In this section, the student learns the words "integer,"

"positive integer," and "negative integer." The existence of

the entire set Z of integers is simply assumed; the work of

the preceding sections should make the assumption a reasonable

one,

109
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Opposites are introduced as & pair of numbers‘(integers)
whose sum is zero. The symbol "-a" should be introduced with
care, with emphasis on the fact that -a is not necessarily a
negative number. In order to maintain the distinction
between the two concepts of opposite of an element and a

negative element, we are using both the "upper dash" (as in

"2, a negative number) and the "lowered dash" (as in -a, the
opposite of a). 1In section 4.11, after the concepts have had
time to take root, we shall discontinue use of the upper dash.

Should the occasion arise in class to make a distinction

between the concepts of opposite and negative, you might use

a system such as (Z4,+) with which the students are already
familiar. In this system, the element 3, for instance, has an
inverse; it is 1, since 3 +1 =1 + 3 = 0. Therefore we may

write "-3 = 1," as in fact we did in chapter 1. However,

‘there are no negetive elements in Z).

Be siure that students do not become confused with the use
of parentheses in expressions such as "-(72)" end "a(-a)."
They simply separate the dashes in order to facilitate reading.

Exercises 3, 6, 7 may be done in class.

h.6 Exercises

Exercise 5 might be used as a starting point for encouraging
students to discover an interesting generalization. That
1s, -(-8) = a; -(-(-a)) = -a; -(-(-(-2))) = &; etc. Some

students will probably discover that an even number of
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oppositing symbols produees & itself, while an odd number
of oppositing symbols produces -a.
1. (a) 3 (b)2 (c) 5 (d) 72 (e) O (£f) "15

Since the loop from
"0 to 0" may be
traversed in either
direction, no arrow
is needed.

g
OO 31@31 e

7. Answers vary. 8. Answers vary.

9. (a) (0,1,71,2, 2,3, 35...} Of course, there need be no
particular order, and these particular integers need
not be used.) “

(v) Answers vary. (e) Answers vary. (a) (o}

4.7 Properties of (Z,+) (1 day)

Students should accept by this time the fact that they
can assign an integral sum to any ordered palr of integers.
Thus, at this time, we make note of the fact that (Z,+) is
an operational system (operational systems having been

defined in chapter 2). Since much work has already been done

111

"




-110-

with the properties of commufativity, associativity, identity
element, and inverse elements (in both chapter 1 and chapter
2), they are introduced here with little fanfare as properties
of the system (Z,f). In terms of the physical situafions _
which ini‘tia;ly‘ motivated creation of the integers, all of the
properties should seem reasonable to the student.

Of course, with these propefties the system (Z,+)»is seen
to be a commutative group (qefined in section 2.15). The
student's attention is directed to this in exercise U4 of the

following section.

4.8 Exercises

1. (a) "4 (b) "3 (e) 73 (a) 11 (e) 11 (f) 90 (g) "36
(n) 36 (1) bl |

2, (a)2 (b) "3 (c) 20 (d) 750 (e) 16 (£) 28 (g) 165
(h) 195 (1) 9 (J3) 14 (k) "24 (1) 105

3 (- 2, "‘l) 5
(-4,-8) ) -12
(i, o
(b, ) o
(20,715) 13
(31,47)

k, (a) (Zh’+) has all four properties (b) Not every element
in (W,+) has an inverse; all the other properties are
present (c) All four properties (d) All three

systems are commutative groups.

142
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4.9 The Integers and Translation on a Line (2 days)

Tn this section we return to the problem (first raised in

Sn + a,

chapter 3) of working with assignments of the kind n
In this section, however, & 1is an integer, and so we are able

to speak of translations of the line. That is, rules of the

kind n >n + 8, a € Z, may be used to describe translations.

In a line translation, every point of the " line has exactly
one image, and every point is the image of exactly one point.
Thus, the translation is a one-to-one onto mapping; the domain
is the set of all points on the line, and the range is the set

of all points on the line.

Sn + a,

Translations of the kihd“désériﬁéd ﬁfnﬁ.
a € Z, where a is a hegative integer, help us to associate the
negative integers with points of the line. Furfhérmore,
composition of line translations gives us still another inter-
pretation of addition of integers,
| Exercise 4 could be assigned as homework and then discussed
in class.' Problem 7 a - ¢ may be done In class and the
remainder done for homework, Problem 11, 12, may be used by the

teacher as part of the classroom explanation of this section.

4,10 Exercises

In exercise 4, use known instances of identity elements to
help make the answer "identity translation" reasonable. For
instance, in addition of integers, O is the identity element,

since addition of O (in either order) to any integer produces

b
.‘:.;,_é
waD
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that integer. 1In the same way, the composition of

n

>n + 0 (in eithervorder) with any translation produces
fhat translation, -

Exercise 12 is again concerned with group pfoperties. Showing
the translations on a number line can be helpful 1n convineing
students that composition of translations 13 assbciative.

(See exércise 11i and 11].)

Exercise 11 1s_ﬁorth considergble éttention, gince it

provides a good viswal way of adding integers; it may be
particularly helpful to any student who has been having trouble
with addition.

, i;..._ o

2.

-4 ~3 2 <\ o | 2 4 s o 1 8
3. n —>n + 4
Lt D VD OO 9P

4 3 -2 -1 (o) 1 Z 3 IS

5. n >n + 0 (6) n >n + (-a)
7. (a) n——>n+ (712) (b) n >n + (713)

{¢) n- >n-+ 45 (d) n >n + 66

(e) n sn + (a +b) (f) n sn + 63

(g) n———>n + 0
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8. Yes.
9. (a) n——->n+ (T14) (b)) n—>n + (T54)
(¢) n >n + 0 (d) n——>n + (T127)
(e) n——>n+ (T10)  (£f) n—>n + (=27 + (-a))
10. (a) n sn + 4 (b) n

sn o+ 4
11, : /‘\ | 4 -
_|S\\\\f;____—’,,/<ﬁz 0o ‘ ete

12. "Yes" for all parts

4,11 Subtraction in (Z,+) (% to 1 day)

~In this section we ask the student to use an understanding.

of subtraction he has had since the elementsary grades: a - b = ¢

if and only if ¢ + b = a. As pointed out in the @ext, the
student has probably used this faét to "check" subtraction
problems in arithmetic. The desire to preserve this relation-
ship between subtraction andvaddition motivates the way in
which we determine the difference of any two integers. Since

_the student is sble to relate this to his earlier work in
arithmetic, this introduction is probably more meaningful than
one which simply defines a - b as a + (-b). The latter princi-
ple is considered in section 4.13.

It is at the beginning of this section that we agree to
discontinue use of the "upper dash." The lower dash may now
be used for both a négative number and to indicate an opposite.
Thus, "-2" may be read as either "negative two" or "opposite of

two," since the opposite of two is negative two. Howevei, in
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the case of an expression containing a variable, such as "-X,
the preferred reading is "opposite of x." Reading this latter
expression as "negative x" may cause some students to consider
it as a negative number,

Sections 4,11 and 4.13 could be done in one day. -The

exercise in 4,12 could all be done in class.,

L.,12 Exercises

1. 3 2. 7 3. -7 4 -3 5.3 6. -3 7. 8 8 -8
9, -1 10. -5 11. -7 12. 200 13, O 14, -100
15. 300

4,13 Subtraction as Addition of Opposites % to 1 day)

Through the use of numerical instances, the student should .
come to accept the principle "a - b = a + (-b)" as a perfectly
reasonable one. It is of course the definition of subtraction
in any additive group.

L Only two numerical instances are discussed in the text.
In most classes, many more will probably be called for. For
example, each of the exercises in section 4.12 might be used:
5-2=5+(-2);5 - (-2) =5 +2; -5 -2 = -5 + (-2); ete.

Exercise 1 - 30 could be done in class. Problem 21 could

be used as part of class explenations and class discussion of

- (a +b) = (-a) + (-b), an important fact.

‘41.;
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L.,14 Exercises

1. 100 6. -7 11. -2b9 16, a + 2

2. -100 7. -21 12, 110 17. -2 + a

3. 50 8. -182 13. © 18. -a + b

b, 7 9. 8 4. 4,366,269 19. X +y

5. 21 10. & 15. 5,233,568 20. a + (b + c)

21. Yes. Subtraction aésigns exactly one integer to every
ordered pair of integers.

Subtraction is neither commutative nor associative.

22. 1 29. -bo
23. -6 - 30. 17
a4, 37 31. -27
5. 188 32. -95
26. -3T71 33. O
27. =261 34, 0
28, -32 35. O

36. (-x) + (-y), or -x -y
37. x4 (-y), or x -y

2. x4y

3§; ~T -a

4o, -a + 4 (Note that this is -(a + -4) = -a + -(-U4) = -a + &)
b1, -a + o

o, -a -b -c

43, -a -b+c = 4, -a+Ddb+ec 45, x +y

4,15 Equations in (Z,+) (1 day)

- At the beginning of this chapter, we observed that not all
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equations of type "x + a = b" are solvable in (W,+). The
purpose of the present section is to make clear to the
student that every such equation is solveble in (Z,+).

Line translations and their inverses are used to lead to
the general equation (X + a = b) which appears as exercise
320 in the section following. ©Note that in terms of line

translations we have

if a is positive; and we have

Q

—O.
if ¢ is negative. 1In either case, however, x + a = b 1is seen
to be equivalent to b + (-é) =%, orb - a = x. (Here again
we see the importance of understanding -a as an opposite, not

necessarily a negative number.) Exércise 1 - 10 may be done

in .class. .. e

I,16 Exercises

1. -2 6. =10 11. 13
2. 0 7. 10 .12, 13
3. -2 8. 10 13. 60
b, 0 9. -8 14, 23
5. 5 10. -8 15 . 13

SR
—ech
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16, 15 21. b -3 26. b + (-15),
. or b - 15
17. 12 : 22, b -5 27. b + 10
18, -18 23. b - 100 28. b + 10
19. =103 2h, b + 6 29. b + 14
20. 103 (Here note 25. b + 6 30. b + (-a),
that -a = -103; so or b - a

a = 103.)
31. Yes; the solution is in fact b - a,

32. Answers vary.

4,17 Cancellation Law (1 day)

Looking back, the work of this section should be related
to that in chapter 2 in which cancellation laws in operational
vystems were considered. Tooking ahead, it is important that
the cancellation law in (Z,+) be understood at this time,
since it will play an important role in developing multiplica-
tion of integers in chapter 6,

Be sure that students understand that the equation solving
in this section is to see if they undgrstand the canqellation
law; if the only purpose were to find solutions, they might
well prefer the method of the preceding section. However, be
certain that the students are able to solve equations by the

cancellation law,

4,18 Exercises

1. Yes, sin.e (Z,+) possesses the commutative property.
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2. (a) (w,+) is one; see chapter 2 for others.
(v) (Zu,-) is one; see chapter 2 for others,

3. (2) 5 (0) 5 () -3 (@) -3 (e) -lo (£) -14
(g) 19 (n) -19

b, (a) 12 (b) 16 (e) -3 (d) -3 (e) 55 (f) -32
(g) 44 (n) 5 (1) 21 (3) o4 (x) &4 (1) b-a

4,19 oOrdering the Integers (1 day)

The definition of ordering presented here is the usual

one. That is, a > b is and only if a - b is a positive integer.

Point out to students that this means all positive integers
are greater than zero, and all negative integers are less than
zero, a fact they have probably accepted intuitively long ago.
Also point out that the ordering of the integers induces an
ordering of the points on the number line. Problem no. 1

could be done in class and no. 6 is optional.

4,20 Exercises

1. (a) 2, since 2 - (-6) is a positive integer.
. (b) 6, since 6 - (-2) is a positive integer.
(c) -2, since -2 - (-6) > 0. (In view of the remark in
the preceding section, "> 0" means "is positive."
(a) 0, since 0 ~ (-1) > O.
(e) 1, since 1 - 0 > O.
(f) -6, since -6 - (-7) > 0.

170
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2. "‘5, "'Ll-, '3: “2: "“1: 0: 1: 2: 3: L": 5

3. a3 s; ¢c=4d

h, (&) 7> -3 (g) 5 <14
(b) -5 > -15 (h) 5> -14
(e) -B<o (1) 7<15
(d) 8>0 (3) -7>-15
(e) -100< 2 (k) -3<5
(f) 1> -2500 (1) 3> -5

5. If a < b, then -a > b,

6. (&) 7 (v) 5 (c) 13 (d) 52 (e) 3
7. (&) vy (v) vy () x
8

. a<c ("<" is a transitive relation in Z.)

w

(£) o1

4,21 Absolute Value (1 day)

Exercise 6 of the preceding section and the study of the "max"
operation in Chapter 2 have prepared the student for the definition
of absolute value which is presented in this section. For any

integer a, the abgsolute value of a is the greater of the pair

(2,-a); i.e., max(a,-a). Thus if a is positive, |a| = a; and if
a is negative, |a|l = -a. Of course, |0] = 0. Be sure that students

understand that ja| = & is not necessarily true; it is true
only if a is positive or zero. | ‘

Also be sure that students see that |a - b| = |b - al. This
follows sinqe a - b and b -~ a are opposites; and if two nu@bers
are opposites, they have the same gbsolute value. The appﬁication

of this to finding the distance between two points on a line

101
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A second approach to absolute value is to introduce the idea

of distance between a and 0.

Exercise 1 méy be done in class as well as 11 a - f,

Exercises 5, 7; 13, 16, 17 are optional problems.

L, 22 Exercises

1. (a) 7 (8)
(p) 7 (h)
(¢) 215 : (1)
(d) 215 (3)
(e) 215 (k)
(£f) 3 (1)

2. 0

3 (a) 4 (e) 7
(b) b (£) 7
(c) 82 (g) 21
(a) 82 (h) 7

4, (a) 43 (v) 10 (c)

5. (g) 7 (a) 7 ()
(v) 7 (e) 18 (h)
() 7 (£) 18 (1)

6. (a) 7 () 7 () 12 (
21

e3

18
18

83

100
100

[$4)

100

a)

12

[l (It is noy p, unless p is pos

49

) 25
J) 25
) 28
1) 28

(e), 20' () 20 ()

¢

itive o zero.)
i




10.
11.

12,

la]
()
(v)
(c)
(2)
(b)

(¢)
(d)

(e)
(£)
(g)
(h)

(2)
(b)
(c)
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-b

5 4 3-24 0 i1l2| aj4ls

: ﬁK\E::::f//ﬁT N

< 0 is never true

{5:"‘5} (d) {100’-1001 (g) {1: '5} (J) {6: '6}

{0} (e) (8,-8) (h) {1,-1} (x) &
g (f) (8,-10} (1) (-4,6} (1) (-7}
. {0,1,2,-1,-2)

Union of two sets: 1integers greater than 2; integers
less than -2.

(-4,-3,-2,-1,0,1,2,3,4)

Union of two sets: integers greater than 5; integers
less than -5.

g

All integers except O

All integers between -100 and 100 (-100 < a < 100)
Union of two sets: integers greater than 100; integers

less than -100. (a < -100) U (a > 100)

-3, -2, =1
1, 2, 3
"3:. '?-: "1: 0, 1.v,2: 3: L": 5: 6: 7: 8: 9

e
Y
)
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(d) -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3

14, True (On the number line, the points are the same distance
from thg origin.)

15. (a) True (b) True (¢c) True

16. (a) You may simply add the absolute values.
(b) Add the absolute values; then take the opposite.

- (lal + [o])

? (c) Subtract the absolute value of b from the absolute

value of a; then take the opposite. - (lal - |b])
*17. It is true in the following cases:
when a = 0 or b =0

when a and b are both positive

———

when a and b are both negative

.23 Many of the following problems can be done in class as a

% review, Some can be omitted according to the needs of the class.

L,2l4 Review Exercises (1 day)

1. -33 7. 66 13. -63 19. -132 25, 63
2. =117 8. -12078 1y, =21 20. 38 26. ~1
3. 71 9. 280 15. 55 21. -15 27. =111
4, 180 10. -1616 16. =155 22. 15 28, -4
5. =447 11, Lo 17. 71 23. 5 29, lho77
6. 7 12, =72 18. =570 2k, -5 30. 2902
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31.
32,

-1000, -1_09, -88, "",""2, -10, -3, 0, 3, 68: 72, 215

(e) <
(

(c) > (a) =

(v)

(a) >

()

3)

(1)

(g) < (n) <

>n - 7

(b) n

>n + (-3)

n

(c)

-2 -1 01 2 3 4 5

-3

-

L 30 0060000

=5

B

=

oW1 2 3 4 5 £/7 e

-2

~
L
~~

“ 6
4 "ﬁ'
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35. (a) The composi Tonis ne—
(b) n——>n+0 (c) n >n - 4 (d)
(e} p——>n + 7

36. (a) (4} (g) (187}
(p)  {-4) (h) {187}
(e) {10} (1) (v -7}
(d) ({10) (3) (13 - a}
(e) {25) (k) (b -2}
(£) (-25) (1) (r - t)

ERIC

Full Tt Provided by ERIC.
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{5,-5} (f) Zero and all positive integers or

37. (a)
(v) @ {x: x> 0}
(¢) (0} (g) all negative integers or {x: x < 0]
(a) (5,-5) (h) All integers
(e) (5, -9} |
38. (a) All integers between -15 and 15 or -15 < x < 15
(

b) Union of two sets: integers greater than 15;
integers less than =15 or =15 > x > 15
(c) All integers |
(d) ¢
(e) All integers t2tween -3 and T or 7 > x > =3
(£f) All integers between -7 and -3 or -7 < x < =3
39. (a) -a + (-b), or -2 - b (b) -a +Db (c) a + (-b) or a - b
(d) a +1» () -x+y -z
ho., (a) They all lie in a line, from upper left to lower right
(b) Symmetry about the.principal diagonal
(c) Zero appears exsctly once in each row and in each

‘column

Suggested Test Items

Chapter 4
1. 32 + (-8) = 6. 25 - 5 - 10
2. 32 - (-8) 7. 13 + (-7) + (-13)
3. 25 + (-3) 8. -7 -8 + 15
h, 25 -3 9. 21 - 18+ 14 -7 - 10

5. 42 4+ (=2) + (-8) 10. 102 - 18 + 15 - 75

11. a + (-a), where a is an integer .
o | Ty




12,
13,

1k,

20'
21.
22,

46,
b7,
L8,
k9.
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e - A, where a is an integer
List the properties of a commutative group. Use integers
to give an illustration of each propertw.

In pwoblems 14 - 25, snlve the given equation for x

X+2=25 16, X + 75 = 60 18, 34 x=0
X +5=2 17. X - 75 = 60 19, -5 +x +7=1
-2 +x + (-3) =5 23. x + 4 = b, where b is an integer.
4+ x = -6 4. X + a =1b, vhere a and b are
X 4+ g =12 integers.
25, x + n =t, where n and t are
integers.
|-3] = 32, |15 - 7| =
12| = 33. | - 32 + 7] =
max, (3,-3) = U, |la + (-a)] =
if a is positive, |a| = 35. |7 + (-3)] =
if a is negative, |a| = 36. |7] + |[(-3)] =
7 - 15| =
In problems 37 - 45, solve the given equation for X,
|x] = 4 Yo, Ix] +1 =3 b3, x| = |-7|
x] =0 b1, |x + 1] =3 W, [|x + 1] >3
|x] = -4 ho, x| = 17| b5, Ix + 1} <3

In problems 46 - 55, answer "true" or "false.,"
The sum of two negative integers is a negative integer.
If a < b, then |aj
(Z,+) is a commutative group.

If a ¢ b, then -a ¢ =b

12¢
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50. If r - s is a positive number, then r > s
51. ja +b| = |a] + |b]
52, Ifa <bandb < c, then a <c.
55. Every equation of type "x 4+ a = b" has a solution in the
set of integers.
54, Ifx+a=3%x+Db, thena = b,
55. If a=Db, then x +a =x + b.
In problems 56 - 60, insert "=" or "<" or ">"

whichever gives a true sentence,

56, =27
57. 2 =7
58. {3 + (-2)] 131 + |-2]

59. a -a, where a 1s a positive integer.

60. a -a, where a is a negative integer.
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Answers to Suggested Test Items

Chapter 4

1., 24 21, {-20} hs, b «x <2
2. Lo 22, ({-21} 46, True
3. 22 23. {b - U4} L7, TFalse
L, 22 2k, (b - a} 48. True
5. 32 25. (t - n} b9, False
6. 10 26, 3 50. True
7. =6 27. 3 51, False
8. 0 28. 3 52. True
9. O 29. a 53. True

E 10, 24 30. -a 54, True

% 11. © 31, 8 55. True

% 12, 0 32, 8 56, <

g 13. Operational system 33. 11 57. >

% with . 0 58. <

E 1. Assoclativity 35. 4 59, >

% 2. 1Identity element 36. 10 60. <

; 3. Inverses 37. (4,-1)

§ 4k, Commutativity 38. fo}

% 1w, (3] 9. 4

g 15. (-3} 4o. (2,-2)

% 16, (-15) b1, (2,-4)

17, (135) b2, (7,-7)

18. (-3} 3. (7,-7)
19. (-1} | Wi, x >2 orx< =4

; 20. ({10}

) 120




Course I Chapter 5
Probability and Statistics

Commentary for Teachers

(Estimated time for chapter: 10-12 days)

A. General Comments

Although the chapter on probability and statistics is not
completely in the path of a sequential development of algebraic
and geometric ideas, 1t serves many useful purnoses at this point:

l. It is sufficiently different from the preceding chapters
in nature and in the type of activities periormed by
the stulient to provide variety.

. 2. It provides practice in computation with raticnal numbers
and maintains skills developed in elementary school with
"fractions"., This is needed since the formal iﬁtroduction
©o rational numbers comes late in the program.

3. It provides examples of uses of topics such as mappings,
graphing conditions, function notation, measure and others,
thereby serving to bring together many diverse topics in
one setting.

L. Through its use of statistics, probability at thig stage
gives the students a glimpse of a branch of mathematics
which is extremely fruitful both in a theoretical and
applied sense.

5. Some idea of scientific method can be developed in connection

with the experiments.
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There are certain concepts that students hopefully should
acquire from this chapter. A list of these may serve as a gulde
to teachers in connection with tests of student achievement:

1. An experiment as a set of trials and a corresponding set

of outcomes.

2. The idea of an outcome set or outcome space and an event as

a subset of an outcome set.

3. The relative frequency of an outcome or an event as a number.

L, The relative frequency of an event as a number greater

than or equal to zero and less than or equal to one.

5. The relative frequency is 1 if the event is certain and

0 if it is impossible.

6. The relative frequency of an event is the sum of the

relative frequencies of its simple outcomes.
T. The sum of the relative frequencies of the simple outcomes
in an outcome set is 1.

8. The concept of the stability of relative frequencies ag
a tendency.

9. Probability as a prediction of relative frequency.

10. Equally likely outcomes.

11. The meaning of "and" and "or" as it is often used in

mathematics.

12, Some thought about events that have common outcomes and
P(A or B) = P(A) + P(B) - P(A and B).

13. Methods of presenting graphical data.

B. Some suggestions on sections and answers to exercises,

(5.1 « 5.3 Estimated time - 1 to 2 days).
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5.1 Introduction

The words "estimate", "confidence", "control", "assembly line",
"sample", and "population" may be difficult for the student. The
teacher should discuss the meaning of these words before the
students read the text. The word "estimate" should be discussed

as intelllgent guessing.

5.2 = 5,3 Die-Tossing Experiment

Start with examples of events such as: the event that the
outcome 1is less than 3 ete.; or the event that the outcome is
even, and lead the students to the nioctlon that an event is a subset
of an outcome space. The definition was too abrupt.
It is important to point out that there are many possible
events that can be picked out of the outcome set or cutcome
space f'or the same experiment. There are also many ways of
describing any event within the outcome space. For example, in
the dle-tossing experiment:
(1,2,3,4,5,6}
{odd, even}
{0, < 3; 04 2 3)
(0o, = 25 0, #2
These are all descriptions of the outcome space itself,
("Oi" refers to any definite but unspecified simple event and i can
have the values 1,2,3,4,5 or 6.)
The terms "two-headed coin", "frequency", "relative frequency",

and "cumulative frequency” need to be discussed andi explained.

O
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Exercise 11, p. 251, should “e stressed; perhaps expanded to a
day's lesson. It might be desirabie to add a column to show each
student's ouservation. Note that relative frequencies should be
expressed as a decimal, to show the convergence.

Note 1

(However, when relative frequency and probability are first
introduced, it is important that the students be made aware that

these can be expressed interchangeably as a decimal and as a fraction,

and that they have practice in making the convarsion.)

5.3 Exercises (after the die-tossing experiment)

1. (a) (1,2) (1) 1(2,3) (£) (1,2,3,4,5,6)
(v) (6} (e) (3 (e) (2,3,5]
(¢) (1,2,€)
2, (a) The outcome is even.
(b) The outcome is odd.
(¢) The outcome is less than 2 greater than 5.
(d) The outcome is & prime number, (There are other pcssible
answers.)
3. Answers to (a), (b), and (c) will vary.
(d) The sum should be 1 in each case.
(e) The sums should be 1.
(f) Because the sum of the frequencies of the outcomes 1is

equal to ‘the number of trials.

g, (a) 100 (b) 1 (c) Yes (a) 1
5. (a) © (b) O (c) Impossible
6. Zero

104
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A I
12 1

8. 5 <%

9. 3

10. The relative frequency o¢f an event is the sum of the

relative freauencies of the simple outccmes in the event.

5.4 The Thumbtack Experiment {Estimated time - 1 day)

In the table the consecutive differences should be given in
declmel form. The dots in the second graph to illustrate the
stability of relative frequency should be connected by stralght
segments only to show the tendency from point to point.

5.5 The Probability of an Event (5.5 to 5.8 - 1 to 2 days)

At the end of the section, listing the properties of probabi-
lities, express properties 1, 2, and 3 in words and relate them
snecifically to the summary at the end of Section 5.3. All 5 of these
properties are extremely important to later work in prcbability
and statistics., Make sure these 5 properties are clearly understood,
illustrated, and tested experimentally. Interesting discussions
can result from the variation between the expected and the

experimental results of Section 5.4,

5.6 and 5,7 A Game of Chance and Equally Probable Outcomes
(Which might best be done in class)

The game of chance in 5.6 should lead the students to realize
that not all the events (i.e. sums) are equslly likely. Section 5.7

195
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develops the concept of equally probable outcomes, The words
"fair" and "random" may not bhe understood and their meaning should

be discussed at an intuitive level for future use. (Tetrahedron)

5.8 Exercises

Ex. 2 and Ex. 3 should both be stressed to show results
when events are independent and when they are not independent.
A comparison of these results should be made in a class discussion
(as in Ex. 3 (g)).

Exercise U4 is optional: however, it it a good motivational
exercise. It makes the point that each trial is independent.
For example, in tossing a die, if the probability of getting a 6
on the first toss is %, and a 6 is obtained, the probebility of

getting a 6 on the second toss is still -é—

dms
———

Answers to Exercises:

1. (a) 12 (g) %_2.=%,§_‘61=§
3°3
(£) 36 3
15 .15 ., 30
2. (a) 36 36 36
3. (c) Yes: (4, 4)
(@) 2:2: 2
36 36 36
{e) %% : %% : No
(g) Yes

(5.9 - 5.11 -- Estimated time one day).
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5.10 Counting with Trees

The point should be made that each path represents an
ordered triple and each ordered triple respresents a simple

outcome.

5.11 Preview

This section formalizes the results of examples 2 and 3 in
Section 5.8. If necessary, recall these at this time, If 5.8
is completely understood, 5.11 can be omitted.

5.12 Exercises (Estimated time one day.)
Ex. 9, 10, 11 (together) should be stressed to show that
P (A and B) = P (A) * P (B) (when A and B are independent events).

Answers to BExercises:

1. ({a) Greater for tetrahedron: % for dies % for tetrahedron,
(b) Most students will pick the cubical die.
(e¢) Most students will select tack on left.
2, (a) ((1,4), (2,4), (3,4), (B,4), (5,4), (6,4)
(1,3), (2,3): (3,3), (43), (5,3), (6,3)
(1,2), (2,2), (3,2), (&2), (5,2), (6,2)
(1,1), (2,1), (3,1), (41), (5,1), (6,1) }
(b) ( (H, 1, a) (H, 1, e) etc. for 40 triples.}
3. Ir P(R) > P(L), you will tend to reach +3 first.

4, (a)g-:g

(b) #

5. 14

q Oy
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1l1.

13,

14,

15.
16.

17.
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P (vowel) = y2 NOTE: A, E, 1, O, U are considered
as vowels and Y is considered
21 a consonant..

P (consonant) = %
385 NOTE: Lettoers must be random.
7

2

(a) Approximately 190

(v) Approximately 384

(c¢) 8

(a) The middle spinner

(p) ﬁ : % : I% may be reasonable estimates.

If a f-child family 1s selected at random, the prcbability
that the 6 are all boys is %%

(a) 33 (o) =%

1
15
(a5 (7,3) () § (£) &
() =% ()yp=% (&) %

(b)
(c)

o . He B

5.13 Research Problems (Estimated time one day.)

This section may be omitted if time is short. Challenging

and worthwhile discussions can arise from these problems,

particularly in an exceptionally good class. If the class has

had little difficulty with this materisl and has enjoyed 1it,

this section would be most fruitful.

178
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£.13 Research Problems

1. The number of paths to each state follows the pattern of
Pascal's Triangle:

4-i058 5-Tpss
line line

Probabilities line-wise:

1
32

1
B %

1 4 10

g8 15 32

1 3 6 10

I g 16 32

1 2 3 4

2 ! 8 16 3'%

1 1 1 1 1

.z I g 16

n

The probability that some twec people in a group of 20 people
(unselected with respect to birthdays) will have the same
birthday anniversary is .41, for 30 people it is .71l and
.for 4o it is .89.
(Note: The full solution of this problem is beyond the tools used
in this course. It might be best, therefore, to simply ask
the studentslto guess what they think the probabilities will
be. Then try the experiment in‘your class., Most of them will
underestimate and will be greatly surprised by the above result,
If thej ask "why" be honest and simply state that this is an
]}Rit}dvanced problem in probab?1lity that they will encounter later.

IToxt Provided by ERI

19¢
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It is sometimes desirable to indicate, by pr=senting probleme
like these, that a subject often goes far beyond the simple

problems encountered at a first introduction.)

(Est. time for 5.14 - 5.16 -~ 2 days)

5.14 sStatistical Data and 5.15 Presenting Data in Tables

In these sections the student is introduced to statistics and
arrangement of data. These sections should be done carefully as
the ideas introduced here will be used again, both in this course
and later onzs. In particular, the meaning of the words
"interval" and "frequency" should be completely understood.

Further work involving organization of data in tables, charts,
and graphs will be done in Cheapter 13.

The teacher might begin these two sections by presenting some
statistical data that one might collect given in "raw" form. For
example, the data might represent the number of cars passing a given
street-corner during successive one-minute intervals, and might look
like:

+, +, 1, 4, 3, 5, 3, 2, 5, 5, etc.
The point should be made that this "raw" data is not very useful.
To improve the presentation of the data, we might use a frequency
table, and then calculate relative frequenciles and add them to
the table:

1A0
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Number of Calls Frequency Relative Frequency

0 e o g 5 .

1 B3 1 6 .

o . .

3 . . .

i

5

6 ,

7

Now have the students collect some data at home and organize 1t
in a frequency teble (including relative frequencies). Then give
a set of data concerning a continuous variable (of course the
words discrete and continuous are not used!) for example:

(a) A set of 50 observations of the time it takes a worker

to perform the same task.

(b) The lengths of 50 leaves taken from a tree.
Next discuss grouping of the data (discrete data are usually not
grouped but continuous data are). Follow this with exercises,

then treat bar dlagrams, the way discrete data are usually given.

A

Frequency

—

1 2 3 L 5  .Number of calls’

(In this case it now has meaning to draw rectangles (see

commentary for Section 5.17.))

141
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5.16 Exercises

1. Answers will vary.

2, (a) giris - 3 boys - 3

(b) giris - 7 boys - 6

(e¢) giris - 8 boys - 8
Interval Tally Frequency

3b and I. 61 - 65 1 1

3c II, 66 - 70 1111 b

III. 71 - 75 3 5

IV, 76 - 80 33 1111 9

V. 81 - 85 333 11 7

VI. 86 - 90 TE 5

VII. 91 - 95 111 3

VIII, 96 - 100 1 1

3d

HF D w0 N 0

I II III v v VI VII VIII

(Est. time for 5.17 - 5.18 -- 2 days)
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5.17 The Frequency Histogram and the Commulatlve Frequency Histogram

In this section the histogram and comulative frequency histogram

are developed using the concepts of the preceding two sections.

Flrst, the histogram is Introduced:

The area of a rectaengle above a class is equai to the frequency

or relative frequency of the class. A special kind of histogram

is a population pyramid. TFor instance, the one for the U.S.A.
Next, the cunulative relative frequency is given for the

right end point of each interval and the points are connected

with straight lines:

-5 . b & —d

The point might be made that a histogram is different from

a bar graph. In a bar graph the bars are separated by a space.
Bar graphs are not used for statistical purposes (beyond simply
displaying the data). For this reason bar graphs will not be
mentioned in the text of this or later courses.

The extension from the cumulative freguency table (or graph)
to the cumulative frequency polygon is immediate, and students will

te asked to do these in the exercilses.

5.18 Exercises
All of these should be assigned as homework and gone over

ikjrefully, especially Example 3.
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1. (a)
No, of

Scores

O

U S T ORI S 1 B o ) W S o

61 65 70 75 80 85 90 95 100
1. (b)
Com. No.,
of Scores
35
30
25
20
15
10
5

61 65 70 - 75 80 85 90 95 100
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3a. Score Frequency Cum. Frequency | Score Frequency Cum. Frequency
62 1 1 81 2 21
67 1 2 82 1 22
69 1 3 83 2 24
70 2 5 84 1 25
72 2 T 85 1 26
73 2 9 88 2 28
75 1 10 89 1 29
76 2 12 90 2 31
78 4 16 92 1 32
79 2 18 93 2 34
80 1 19 98 1 35
3b. #Frequency Jum. Frequency
I. 61 -65 1 1
II. 66 - 79 L 5
ITi. 71 - 75 5 10
76 - 80 9 19
V. 81 - 85 7 26
VI. 86 - 90 5 31
VII. 91 - 95 3 34
1 35

VIII. 96 - 100

#Phis column is repeated from Example 3, Section 5.16.

?fﬂ;
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3c. (Revised: see note on the bottom of the preceding page.)

35
30
25
20
15
10

5

(5.19 and

_ A

M—/ 1 J -

61 65 70 75 80 85 90 95

5.20 - Est. time, 1 day)

5.20 Review Exerqises

1. fa)

(b)
(c)

(a)

{(bus, train), (bus, plane), (train, plane)} or, if the
student considers order important, {(bus, train),
(train, bus), (bus, plane), (plane, bus), (train,plane),
{plane, train)}

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

((2,8), (2se), (as1), (a,0), (a,1), (e,e), (e,1), (es0),
(e,u), (1,1), (4,0), (1,u)s {0,0), (0,u), (u,u)} or you
could use the set pf 25 permutations. The outcome set
is selected for the purpose at hand.

{(1,1), (1,2), (1,5), (1,10), (2,2), (2,5), (2,10), (5,5),
(5,10), (10,10)} or the permutations or {2, 3, 4, 6, 7,
10, 11, 12, 15, 20} when outcome set is the set of

possible scores.

118
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(e) (3 blue; 0 red) (2 blue 1 red) (i blue, 2 red))

() ((335), (338), (383), (837), (Jss8), (8Js), (SsJ), (8s8))}
{(5-2, 8-0), (J-2, 8-1), (J-1, 8-2), (J-0, §-3)}

(® 25 () z= () g (o) 2

(g) {2, 3, 4, 5 6, 7, 8, 9, 10)

(n) Eg : Eg : E%

IR

(a) ((L,H), (2,8), (3,8), (LK), (5H), (6H), (1,1), (2,1),
(3’T)’ (II'QT)’ (SQT)’ (GQT)}

() g () 2 () 1 () 1 (&) § (n) W

(1) 5 (9 Yes

(@ F (® % (o) F () 3

12 weays

6 ways, %

Chapter Test on Probability and Statistics

Answer the following questions based on the information in the

table:

- -

Record of a Baseball Player for 25 Times at Bat

Event ‘ Frequency
Made a hit (event H) 7
Made an out (event 0) : 10
Walked (event W) 3
Made first on an error (event E) 5
Times at Bati\ 25 o

or
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1) What is the relative frequency of event:
(a) H (v) o© (c¢) W (a) E?

ods Ve

it 1s the sum of th

he relative frequencies of H, 0, W, Ef

What is the relative frequency of

(a) Hor 0 (b) WorE (c) HorW (d) o or E?

4) What is the relative frequency of H and 0%

5) What is the relative frequency of the event that the
player did not get a hit?

6) What is the sum of the relative frequencies of H and
(not H)%?

7) Express the relative frequency of E as a decimal to the
nearest thousandth.

8) What is the relative frequency of the event that every
time the player went to bat he made a hit or made an out
or walked or made first on an error?

§ 9) (a) What events are included in not-W? Not-E?

(b) What events are included in both not-E and not-W?
10) What is the probability of not-W or not-E?
ITI. True-False

(a) The probability of an event is never greater than 1.

(b) The probability of an event is sSometimes greater than .99.

(c) The probability of an event cannot be an odd number.

(d) If a coin is "fair", the probability of heads is less
than .

(e) The relative frequency of an event is a prediction of the

probabllity of the event.

148
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(f) As the number of trlals increases iIn an experiment, the
relative frequency of an event tends to "stabilize",

(g) 1If you select a vowel at random, the probability of
selecting "e" is %.

(h) The sum of the relative frequencies of the simple
outcomes in an experiment is always 1.
(1) 1If P(E) = R, then P(not-E) = R - 1.
(J) Every experiment has exactly one outcome set.
III. Tabulate an outcome set for the following experiments:
(a) Toss a penny and a nickel and observe the palrs of
outcomes (penny first).
(b) Toss & palr of dice and observe the sum of the outcomes,
(¢) Toss 3 thumbtacks, each with a different color, and
observe ordered trivles as outcomes.
IV. Organize the data in the table below:
Helghts of Thiity-Six Seventh Grade Students
(in inches)
56, 55, 58, 59, 57, 61, 54, 56, 59, 60
57, 59, 56, 59, 60, 55, 57, 56, 58, 50
60, 52, 57, 60, 59, 54, 6k, 62, 54, 59
62, 61, 53, 58, 56, 62

Relative Cumulgtive
Interval Frequency Freouenc F&:lagﬁge
9.5 - 53.5
53.5 - 5T7.5
57.5 - 61.5
61.5 - 65.5
149




Course I Chapter 6
Multiplication of Integers
Commentary for Teachers

(6 - 9 days)

This chapter has 3 main objectives:
1. To extend the definition of multiplication from W to Z;
2, To give computational practice with the new definition
and develop some simple yet useful properties of (Z,+,°);
3. To show that (Z,*) can be interpreted as a set of dilation
'mappings of & line with the operation of composition.
Recalling Chapter 2, it is important to emphasize the fact that
there are many possible ways to define "-" on Z. All that need
be given is some rule ﬁhich assigns to each ordered pair of integers

(x,y) a unique integer which is called the product of x and y. For

example:
v
X +y=0 "Xy
. A
¥
X*y=VJ X,y

are all bona fide operations on Z and could be chosen as the

definition of multiplication. quever;; it is only reasonable

to expect that ":" for Z should be aan extension oi'"'"  for W; that is,
if a, b > 0, & * b 1is the whole number product. Furthermore}zbwe would
hope that the us€ful properties of (W,+,:) are also properties of (Z,+,:
an43>that our definition of "-" makes sense wherever multiplication of

integeré is the appropriate model of a physical situation.

6.1. Operational Systems (W,:j and (Z,:) (and 6.2: 1 day)

To accomplish 1 and 2 above, we review the definition,
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properties, and computation of (W,.). Particular emphasis shall
be placed on the distributive property since it is cehtral in
later sections. A successful class procedure with this. section
has been a closed book review: "Name ahd give an illustration

of one property of (W,*),..."

6.2 Exercises

1. (a) Identity or Cormutative
(b) ZIdentity
(c) Identity
(d) Associative
(e) Commutétive'
(f) Assbciative

2. (a) (43 x 28) x 76

= 76 x (43 x 28)
(76 x 43) x 28
87 x (76 x 43)
(87 x 76) x 43
{69 x 25) x 8
69 x (25 x 8)

(b) 87 x (43 x 76)

]

(e) 8.x (69 x 25)

> Q P oa . Q

i

(Other orders are possible.)
3. For all a and b in W;.a +b =D+ a.
4., For all.g; b, and c inW; a + (b +¢) = (a +Db) +c.
5. © _ v ,
6. 0; 1; 0; 1; O;jo;_l;, none 0 - a # a'.
7. 504; 504; 50U; 504; 4700;_2162, (note use of properties is in
aid here)

8. Variations on pattern of the example done in text

E‘ Product is the same I 15;1
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10. 189; 189; 2300; 3800; 470; 430; 130; 65
11, No, 13 # 63

12, No, see 1l for counterexample

6.3 Multiplication for Z (Sections 6.3, 6.4, 6.5, 6.6 ~- 2-3 days)

Although to define * for all ordered pairs in Z we must
technically consider an infinite number of cases, it seems highly
reasonable to assume at once |r| °* |s| = |r * s|, thus making
signs the main object to be questioned. We will not consider
"a negative and b positive" only because we want multiplication
to be commutative. This condition need not be satisfied since
there are non-commutative operations. (We will not be too
happy with any definition for multiplication that somehow turns
out non-commutative.) Since multiplication of positive integers
is actually multiplication of whole numbers, the rule "positive

times positive is positive" is forced on us.

6.4 Multiplication of a Pecsitive Integer and a Negative Integer

You might want to suggest--before looking at the pattern--the
following definition of - for Z:
a *b, a,binW¥
{0, a,b negative integers (either or both)

a °b =

is associative, commutative, and has the multiplication property
of zero, as you can show with numerical examples:
| 3(-4) =0=1(-4)3
7 (2(-5)) =7 0=0 =14 (-5) = (7 2) (-5)
170
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However, cancellation, multiplication property of 1, and distribu-
tivity fail--which you might challenge the students to prove by
exhibiting appropriate counter-examples. For example, after
defining and illustrating ask, "Will this be okay for a definition
of multiplication in Z? Will the desired properties hold?"

The pattern shown in this section then suggests the definition
"positive times negative is negative". It remains fo be seen if
this rule of assignment meets the expectations we have for it.
Some simple physical situations of multiple loss are usually
convincing. Section 6.7 will be more effective if you hold off

on the distributivity argument for now,.

6.5 The Product of Two Negative Numbers

Students will question the adequacy of this pattern as a basis
for "negative times negative is positive'. This weakness must

be admitted, but it is certainly fair to say, "Let us give it

a try and see if it meets the criteria set up in 6.3 for multiplication

in 2.} The hext set of exercises does just this,

In Chapter 4, -a was defined as the opposite of a such that
a+ -a =0, and -(-a) was defined as the opposite of the opposite
of a, or a itself; It might be wise at this point to demonstrate
(by reading aloud) this terminology. Numerical examples (of
the following general case) should be done first, followed

by this generalization:

e e et 0 e A i L ey TS0




A, =, =

-]_52-

If 2, b > 0 then (1) ab > 0 and (2) -(ab) = a(-b) < 0.

Therefore
(-a)(-b) = -(a(-b))
= =(-(ap))
= ab,
and (-a)(-b) = ab > 0.

Another approach for mature students, since the proofvof
multiplication of the integers is developed in Gourse II in
the chapter on Groups is the following: Demonstrate the

following:
-(ab) + ab = 0 Definition of Inverses
a(-b) + ab = a(-b + b) Distributive Property of - over +.
=a *0 Definition of inverses
=0 Multiplication of O
hence since - (ab) + ab = 0 and a (~b) + &b = 0
then ~(ab) + ab = a (-b) + ab Replacement
- = (ab) = a (-b) Right Cancellatioh

ab + - (ab) = 0 to show (~a)(-b) = ab can be shown in the same

way.

6.6 Exercises

1, -540: -1221: -540: 112: 112; -1221, Note that this
seems té ihdicaté that multiplication as defined in 6.5 is
conmutative. So far, so good! ' |

2. 470: -4300: -3Q0: -300: U470: -4300. This suggests
associativity. ‘ '

154
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3, 170: 170: 370: -6700: -6700: 370: U600. This suggests
distributivity. (Watch out for (g), though. It is not

distributivity since it is + over x.)-
b, -: +4: = +: -, Note -- You might want to ask the class

for a generalization on the sign of a product of n factors.

6.7 Multipliéation of Integers through Distributivity

(and 6.8 1'- 2 days)

It might be wise to review the distributive property and
the cancellation laws of (W,+, ) before discussing this
section., Also, more examples of the Replacement Assumption
including examples such as (-a + a) =0 or (7 + -7 = 0),

(4 + -6) = -2. Have the youngsters give examples. This will
be helpful in handling proofs in Course II 1n.the Chapter on
Groups.

Here 1s where you deliver the coup de grace to doubting.
Thomases. Negative times negative must be positive or the
distributive property won't hold. As a further proof you might
show vhat hgppens-if we define negative times negative equals
negative.

1) Assume (-5)(-5) = 25

2) We already have defined (-5)}(5) = -25

3) Therefore, (-5)(-5) = (-5)(5)

4) But this implies that -5 = 5 by cancellation.

Thus either distributivity or cancellation can be used to infer

(-)(-) = ().

1RR
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6.8 Exercises

1. -70: -70: U48: 48: 156: 156: -418: -418. Note that
this exercise suggests (-r)(s) = (r)(-s), r * s = (-r)(-s),
end - (r + 8) = (-r)(s). Draw these generalizations from
the class. Point out that in the generalizations, -r
need not répresent e negative number, It is the opposite
of r, whatever r is, Thus.-r «s=1r-° (-s) also implies
that  (-(-3))(-5) = (-3)(5).

2, -90: -90: 210: 210: 210: -90: =90: 210: 210:

Note that a(b - c) = gb - ac =-a(b + (=c)) is suggested
here, You may or may not want to prove it using 1 as
follows:
a(d - c) = a(b + (-¢))
eb + a(-c)

eb + (-(ac))

= gb = ac
3. ~-11: 3: 3: -8: 6li: 64: 262: 252: 252: 16: -6U4:
112: -13: 13: 13: -19: 65: =-33. Note that again meny

generalizations are illustrated here.

b (#2): (#2): @ (0,+1}: (0,41} {1,-5): (0,6):
(-2,3):  (0,-1,~2,-3}: (0,1,2,3)}: (0,-3}.
6. (2) 3(0+0)=3+0 (b) 3(2+ (-2)) =3 0
3+04+43°+*0=3-°-0+0| 3°*2+3(-2)=0
| 3°-0=0 ' ‘ 6 +3(-2) =0
3(-2) = -6

16
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3(2+(-2))=-3"0
(-3)(2) + (-3)(-2) = 0

-6+ (3)(:2) = 0

If a -

have

(-3)(-2) = -(-6)
(3)(-2) =6 |
b = O and neither a nor b are zero then we would

etther (+)(-) = (=), ()(-) = (#), or (+)(=) = (-)

neither of which involves a zero product.

T

(a)
(b)
(¢)
(d)
(e)

()

(e)

(4}

‘F: T: T:“T{ T,

12: (-6)

x - 3: (-3}

b < x® < 20: {43,+4]
X+ (x +1) = -T: (-4}
x(x +1) = b2:  (6,-T)

2x

2x

2x +3x = (2 + 3)x (4) 2x -5% = 2x + (5)x
= 5x = (2 + (-5))x
. -
2x + x = (2x + 1x) (e) 5x -Ux =5x + (-U)x
- @+ - (5 + (-4)x
= 3x ' ‘ = X
5% - 2x = 5% + (~2)x (£) x - 5% =1x + (5)x
L5+ (2))x = 1+ (5))x
= 3x ' = -lx

{-4): (20}: {(u): {-20}: (-20}: ({-20}:

(0,+1,+2}:  {0,+1,+2,-3].

15
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6.9 Dilations and Multiplication of Integers (and 6.10:

1 - 2 days)

This section develops a .mathematical system (D',x) which
is isomorphic to (Z,+). The set D! ié a set of mappings--the
elements of D' are themselves mappings. The operation "x"
is composition of mappings. Intuitively, the mapping 2°'
takes an elastic line and stretches i1t to twice its length.
The midpoint of the 1iné is the only fixed pdint. This could.:
be demonstrated by labeling various points on a piece of
elastic, fixing their original locations with respect to
points-on the chalkboard, and then strétching the elastic and
labeling the new points|correi£onding to those on the elastic.

Q c P!
- —d —— A P

Care should be taken in this section with the terms

reflection in C, and symmetry in Point C as these terms are not
defined here (they will be in chapters 9 and 10.) Students
should understand these on an intuitive level.

In section 6.10, exercise 5 should be developed from &an
intuitive approach. ' The "more rigorous" proof may be
demonstrated on the board after the students have volunteered

their own solutions.

6.10 Exercises

1. be: —42: 7: 0
2. -h2: B2: -7: 0 . _1§§1$%
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6: 6: 0: -60: 60 |
h2r: -hv: h2v: Wh2r: 2250 6250: 12251: 2025
-24r: -2l -1700':  -1700°'.

(a) |r' x s'| = |r'|-|s'| Also thevpumber of reflections in

i

{s'|*]r'] r' x s' is the same as the number

|s* x r'| 1in 8' x r'. Therefore they are

equal mappings.

]

(b) |(r* x s') x t' | = ](r' x s*)]*]t'| Again, same number
(Ix*{-1s'|)°|t'] of reflections in
Iz (ls']-1%']) voth.

2]+ fst x &1 -

it

]

= |r* x (s' x t')]
In (a) and (b) the manipulations are possible because
magnitudes of dilations are whole numbers and obey those
properties. |
(¢) The comment about (a) and (6) applies here too.
1 x zt) = 1]+ |z] =2 )rt] = |r)
0': A——>C for 8ll A, where C is the center of the

dilation. O' is & mapping.

Yes.

Yes. But only for 1'. Every point is mapped to itself.
-1 ohly has i‘fixed point. The length is equal to the
original segment but it reflects through the fixed point.

6.11 and 6.12 Summary and Review (1 day)

These two sections may bte assigned as homework and dis-

15q
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cussed the next day in class.
Allow 1 day for a chapter test. Quizzes may be given

during class.

6.12 Review Exercises

1. 2 16: -2: 63: -63: 144:  207: 207: 376:

© -390:  -580:  -95. |

2. (43): (#1): (-4} ({o,#1,+2): @& (0,-2)}): [}
(1,-3):. (0,+1,42)}:  (0,-1}.

y, T T F: F: T: F: T: F.

5. (a) 1 iy =& t 5
1 > @® 8 %
; L 2 by
lh 2 & ©®
3 1 ") 3

| 1 2
1 2 4 8 @5
(b) No. The midpoint should be less. In fact, the squere

root df the product. Notice that the midpoint for
points 2 and 8 is 4 and not 5.

e

1£0)
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7. (a) The hot rod is moving to the left st a speed of 4 fps.
(b)’ 12 feet to the right of 0. -3 seconds may be interpre-
ted as 3 seconds ago. o N
(¢) 4 x -2 locates the hot rod where it was 2 seconds 280,
. at -8 - x 2 locates the hot rod where it will be
in 2 seconds, but it has been moving to the left, so
that 1t will be -8. -4 x -2 locates the hot rod where
it was 2 seconds ago, but it has been moving to the

left, so that it was at 8.

" Quiz for Chapter 6

I. Compute:
{a) -16 * -14 , (@) (-7 * 23) + (-3 * 23)
(b) 26 - -2k - (e) (17 - (-29)) - (7 - (-29))
() -7 (8- () | | |
II. Find the solution set from the set of integers.

(a) 2247 =3 (£) 13z] =
(b) 2y +7 = -3 (8) s* =9 ;

) -2x-T=-3  (0) (x+1) (x-1)=0
(a) 7 -8 =10 | (1) |13s -1] =2

(e) 8-8=-1 (B et +1f <3

ITI. Answer Sometimes (S), Alveys (A), or Never (N), whichever
fits. Use SOmetimes only when the sentence may be true
on some occasions end false on others. r; 8, and ¢t are

integers.

e
e
3
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(a) rs = sr 4 (f)}‘f(s.+ 1) =rs +r
(b) -(rs) =(-r-s8) . (g) 2r>r
(e) |rs| = |-r|:|-s| () (-2)r = -r
() J-erf =27 (1) ® <o
(e) (rs)t < r(st) (@) P
" Key to Quiz

" I. (a) 224 (v) =624 '(c) -70 (d) 4-230~ (e). -290'-

1I. (a) (-2} (£) (2,-2})
(v) (-5} (g) (3,-3}.
(e) (-2} - (h) (1,-1)
C(a) (-3) (1) (1)
o (e) (9} | W) (0,1,-1)
III.(2) A | (£) A |
- (b) A (g) s
(e) A "~ (n) &
(d) A (1) wn
(e} N Q) ¥




TEACHERS' COMMENTARY

Chapter 7 o . Lattice Points and the Plane
Approximate Time for Chapter: 13 - 16 deys

Chapter 7 has three major objectives:

(1) To develop the idea of assigning peirs of integers to
lattice points in a plane in such a way that the
result is a two-dimeﬁsional coordinate system.

(2) To apply the idea of a coordinate system to the study
of open sentences in two variables.

(3) To epply the idea of a coordinate system to the study
of such’mappings as translations, dilations and_others.

The relationship between the lattice points and the set of
ordered integers will form the basis eventually for the plane
coordinate system. But the material of this chapter, even
though 1imited, has an interest of its own,

Emphasize the fact that when the expression "two lines" is
used, it means two different 1lines. However we often meet
situations when it is necessary to use two different names for
the same line until we are sure that they are, in fact, thé
same line., For example you mey wish to dlscuss line r and 1line
s and 8till leave open the possibility that they are the same
line as in an indirect proof where you assume the line r is
not aqual to line s and show that this leads to & concentration.

You will notice that our coordinate system uses oblique

axes, This is done to avoid the impression left with many

764
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students that axes in a plane coordinate SyStem are'neceseafily
perpendicular to each other. The perpendicularity relation
between lines becomes important in.rectangular coordinate |
systems, the systems appronriate to comparison-of distance on
different lines. Our interest here is in the affine plane '

| where such comparisons are not made. .

You may have to remind students that we are working with
& lattice, a set of points that are separated from each other.
There are empty spaces in a lattice just as there are numbers
missing in the set of integers.v If this confuses students they
may be assured that the empty spaces and missing numbers will
be filled in subsequent developments. For this ehapter we
are interested in mappings over the points in a‘lattice and the
set of ordered integers. | |

Students should be supplied with graph paper, rulers, and
coloied pencils‘to facilitate the work of this chapter.
Teachers may find an overhead projector valuable in teaching

" this ma*erial.

7.1 Lattice Points and Qrdéred Pairs of Integers (1 to 2 days)

The purpose of this section is to introduce lattice points
and ordered pairs of integers. The motivation used to 1ntroduce
lattice points is the geodesic dome. However, the dome does
not exist in a plane and Has to be flattened finst. Unfortu-
nately a certain amount of stretching takes place in this

flattening process which destroys the size and shape of some

i §
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triangles. Nevertheless the interest that many have in the
dome can be used as & starting point It can suggest the
lattice in figure 7, where all triangles are equi1atera1 and
where points are evenly spaced o

_ Ample practice should be given in (a) finding the
coordinates of a given point in the lattice‘and_(b) finding |
the point for a given pair of coordinates._ It might be
worthwhile to mention that the 1attice system is divided by
the axes into four regions}each called a quadrant. | |

Exercises 1 and 2 may he done in class. Exercises 4 and
6 are good reasoning questions.

A good exercise for reinforcing the students' skill in
locating coordinate points is the following:

A Fun Exercise in The Use of Lattice Points

Directions: Locate each:ofwthe~following'points, starting with
‘ A, and Joinjeach successive point with a straight
line segment. For exsmple: (1) locate points A
and B and draw a 1ine segment between them, (2)
locate point C and draw a line segment from B
to C, (3) locate point D and draw a line segment
fromjc to D; etc;

Note: For best results, use a rectangular coordinate system.

A: (2,13) ‘ - E: (30,6) - I: (0,-10)

B: (17,8) - F: (20,3) J: (-11,-17)
c: (26,8) G: (12,4) K:  (-14,-17)
D:  (36,14) H  (1,-4) L (-13,-15)
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M: (-11,-15) R:  (-b,=T) W (-21,4)
N (-2,-9) st (-6,-5). X: (-22,5)
0: (2,00  m (-7,0) Y:. (-20,8)
P: (-5,0) | "Ui (?10:9) Z: (-14,14)
Q: (-5,-4) v (-18,6) o
AA: (-15,11) BB:”(717,10)  - CC: (-11,8)"_pb: (2,13)

7.2 Solutions to Exercises

1. a.. A(3,1), B(-1,1), C(-2,-1), D(1,-2), E(2,0). -

b. A(L1), B(1,-2), C(-1,-1), D(-2,2), E(0,2).

c. A(-1,2), B(-2,-2), ¢(2,0), D(0,-1), E(2,2).

d. Note axes; A(2,4), B(-1,4), c(o0,-2), D(1;-3), E(-3,0).
yes; yes; nho, 2% £ 2.

to be shown on lattice paper of student

(-1,0), (0,0), (1,0), (3,0), (4,0), (5,0).

(0,-1), (0,-3), (0,-1), (0,0).

In each the angle between axes may vary.

A B & W

Group 1
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5 ('k}j

> {D

v

Note: (m) includes 2 lines.
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(e),(a)

7.(a), (b)

(e), (£)

| (e;)
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7.3 Conditions on 2 x Z and their Graphs (2 - 3 days)

The purpose of this section is to relate tﬁe Cartesian set
Zx2Z tovconditions in two variables, Many important ideas are
included in this_seetion: o A

(1) The set. of lattice’points associated'with the ordered

pairs satisfying & given condition is. called the graph
of the solution set of the condition.

~(2) The translation of verbal‘sentences into mathematical
symbols, -

(3) The translatiop of a mathematical sentenee into a verbal

staxemeny.

No formal method of finding the ordered pairs satisfying a
condition is given; the approach is primarily intuitive,

If a graph consists of a set of collinear points, its structure
can be indicated by drawing a "line" through the points. However,
it is more accurate when working with cohditions onZ x Z, to show
the graph by enclosing the points as a set or individually as the
case may reqnire.

The teacher should be selective in assigning exercises in
this section, Exercises 1, 3, 6, 7,and_11 may be classwork
problems, Some of the remaining exercises may be assigned as

homework; problems 12 and 13 are especially good,

7.4 Solutions to Exercises

-5 (1) x

1, (a) x=y (e) x+y-= = -2
(b) x=-y  (f) x-y=2 (3) y=14
(¢) x+y=3 (8) x=y=-1 (x) Ix| = Iyl
(@) x+y=-3 (n) x=2

T AT
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These will be the same as the graphs in 7.2 Exercise 6, The

difference is that the students are now graphing the solution

sets of open sentences rather than just finding points that

satisfy certaln conditions,

() Six more than the first coordinate is equal to the

(v)
(e)
(a)
(e)

(£)
(g)

- (a)
(e)

(a)
(a)
(v)
(e)
(a)
(e)
(£)
(g)
(n)

second coordinate.

The

difference of the second coordinate and first

coordihate is three.

The

second coordinate is equal to the absolute value

of the first coordinate.

The
The
x <

x <

y =
The
The
The
The
The
The
The
Two

The second coordinate is two less than the first
_coordinate,
.The sécond coordinate is the absolute value of three

"less thah the first coordinate,

first coordinate is seven,

second coordinate is one.

y () x>y (e) x+y>5 (d) x+y<-5
-2 (f) x>3 (g) y<-4  (n) y>3

2x (b) x=2y (e) y=3x (4 x=3y
second coordinate is five times the first coordinate.

first coordinate is five times the second coordinate.
second coordinate is the square of the first coordinate.
second coordinate is zero,

second coordinate 1s 1esélthan,zero.

first coordinate is greater than.éero.

product of the coordinates is six,

times the first coordinate is three times the

second coordinate,

1
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7.

-9,

10,
11,

12,

13,

Ansvers will vary., = '9-_-’21

The origin; y =0; x=0; y =X, ¥ = 2x, and x = 2y,
3y -5

(a) The second coordinate is one more than the first

n

(a) y=2x+1 (b) x

coordinate, A
(b) The second coordinate is one less then the first

- coordinate,.

»(c) The second coordinate is two more than the first

éoOrdin‘ate.
(d) The second coordinate is two less than the first

.coordinate,
; ¢ _(~9='1“,

dg:'}.—l

They were parallel: (0, 1), (0, -1), (o, 2), (0, -2),
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‘7.5 Intersection and Unions of Solution.Sets (1 - 2 days)

The purpose of this section is to introduce compound conditions
in Z x Z, TFor the first time the concept and symbolism fbr union
and interesection are used, Previous knowledge of these ideas is
assumed; however, s review may be necessary, To differentiate
among graphs of different conditions one can use different Geometric
Figures to encloge the points, This makes it easy to visualize
intersections and unions of graphs and the related solution sets,
The exercises on inequalities are‘important in providing a back-

ground for graphing absolute value conditions,

7.6 Solutions to Exercises

1,

v @« © o o
e ®© ®© o @
® ®© & e o
» & o e ©
e o o ¢ ®
e & § o
* @ e & »
e @ @ &
® & e o

3.

N

e ® © g e g
® o o w e -

® ¢ o a o

® s o o o

® e @ «-a
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7.7 Absolute Value Conditions ‘fl day)

The purpose of this section is to investigate absclute value
conditions, Recall that we defined the dbsolute'value of an
integer a as max-(-a, a). ‘Now the definition of absolute value
is broken down into cases, These cases correspond to certain
regions of a plane, For example- consider the condition y = lxl:

Case I: x>0

Case II: x< O
If you examine the case where x > 0, the éorrespondiné reglion 1is
the half-plane oh.the sidé of the y-axis where X is posiﬁive; in
the same way, if you examine the case where x < 0, the correspond-
ing region is the half-plane on the side of the y-axis where x 1s
negatlive, Therefofe,'ﬁé consider the graph of an absolute value
condition in parts, according tb whether the expression within
the absolute value sign is positive or negative.

Exercise 1 may be a class assignment, & shprt reviéw exerclse,
Exercises 6 and 7 may be omitted; howeve:’, many teachers have found
success with problem 7., The remaining exercises may be assigned

as homework,

1A
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7.8 Solutions to Exercises

1, (a) 7 (0) 15 (¢) 0 (a) 1 (e) 999
2, (a), (b) |

/lxl 4\’

N /P '\

‘0 e o0 o o0 b o

L4 L A ) e 0 4 P o

. * o 0 * 0 0 B o

. ".LOO.DO
s W S AR
T e
S v v —>

s b o a0 g 0 b o

0 o 0t ¢ ¢ ok .

. o o ® o ¢ o Pp o

L} [ ® o L]

& J v

4

(e) {(%1), (4,-1), (=4,1), (-4,-1))
(d) The 4 lines
(e) (e) is determined by the intersection of (a) and (v),
(e¢) is determined by the union of (a) and (b).
3. ¥y = |x| h, y=|x+1]

15
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7.9 Lettice Point Games (1 day)

A lattice point geme first appears as a suggested exercise in
Section 7.1 of the teachers' commentary. Here, further such games
are presented, The teacher may use hls own discretion in omitting
or using this as an optional exercise, It has been suggested

that this seection be saved for a day before vacation as review

work,
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7.10 Sets of Lattice Points and Mappings of Z into Z (1 day)

Every lattlce pbint serves to relate its coordinates, That is,
the integer, x, obtained'from the x~axis is related té,(or mapped
onto) an integer, y, obtained from the y-axis, by the point that
has (x,y) as coordinates, A set of lattice points, then, (where
no two have the same first coordinate) represents e mapping of a
subset of Z into Z., The domain is the set o7 first coordinates
and may be related to the points on the x-axis with coordinates
(x,o). The range is the set of second 2oordinates and may be
related to the points on the y-axis with coordinates (O,y).

Students should have practice in finding the image, y, for

-an integer, x, by substituting x in the rule for the mapping and
computing to find y. The table method of relating domain and
range is used here, This is a great help in graphing & mapping
when given a rule relating x and y.

Note: for exercise 1, the teacher shoﬁld state a domain,

7,11 Solutions to Exercilses

1, (&) y = x%° (v) y=2x+1
0 0 0 1

1 1 1 3

-1 1 -1 -1

2 4 2 5

-2 4 -2 -3

3 9 3 7

-3 9 -3 -5

N TR PRV PCIRNPS T
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(¢) y=x"+1 () y=2x -1
Doma.in Range Doma,in Range
0 1 | 0 -1
1 2 1 o
-1 2 -1 -3
2 5 2 3
-2 5 -2 -5
(e) If xis eveny = 9,
If x is odd y = 1,
Domein Range
] 0 9
1 1
a 2 9
3 1l
L 9
2
2, (a) y=x (b) y=2x+1
® .
©
©
(OJ o o
¢ 4 Lé = -
O]
(d) y=2x-1
/74
I
@
O
€ ————t—y
®

178
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(e) 9 if x is even
¥ =11 1f x 1s odd

o o ”S © o

A
5
W

¥

7T.12 ‘Lattice Points in Space (1 cay)

The purpose of this section is to give the student some idea
of the need for three coordinates in space and to indicate that
there is an extension of the ideas devéloped for Z x Z and lattice
points to three dimensions, Students may have difficulty in
visualizing three dimensions, In this case the teacher may refer
to physical anologlies such as the corners of the room or models,
For students faced with this problem, Exercise 2 of Section 7.13

may be assigned, ‘Exercise 1 may be done in class,

T.13 Sclutions to Exercises

1, (a) EbGF, BCDG, AOCB, EFAO, FGBA, EDCO
(b) 3: AOCB, EFAO, EDCO
(¢) Diagrem with vertices (0,0,0), (2,0,0), (0,3,0),
(0,0,4), (2,3,0), (0,3,4), (2,0,4), (2,3,4).

(a) Figure should resemble a "corner",

10
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7.14 Trenslations in Z2 x 2 (1 day)

If students have covered the first 6 chapters, they will
have a background of ideas on translations and compositions of
mappings. In this case, Section 7.14 will be an extensions of
these ideas to lattice polnts and coordinates,
The notation, Ta,b s designates the translation which maps
(0,0) onto (0 + &, 0 + b) or (a,b), or in general (x,y) onto
(X + a, y +b). The main activity in this section is to find the
images of points in a geometric figure under translation and see
what properties are preserved,
Note: Exercise 1 introduces the concept of an inverse
translation, It might be advisable to treat this as
a classwork exercise, Exercise 2 may be difficult for
some students and the teacher may choose to do this

problem with the class end assign exercise L, which

i : is an analogous problem,

7.15 Solutions to Exercisges

(v) Ty o (e) To,0

ahsiatigre
[
L
P
®
d
)
O
o

T AR L S R R R T

=T. +a,d+0 definition of composition

=Ty 4 ¢, b+q Commutativity of (z,+)
=T, q0Ty,p definition of composition

3. The commutative property for composition of translations,

en



Te
8.
S.
10,

Ta’b o (T

c,d
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° Te,f) =Ta,b © Te 4 ¢,

= T(e + c) + 8,

= Te + (c + a),

#

(Ta,b

Tc +a, d+Db o Te,f

o Tcsd) o Te,f

£ +,d def, of componition
(£ + d) + bdef of composition

£+ (a4 b)assoc. of (Z,+)
def, of composition

def. of composition

The associative property for composition of transletions

4

[ (0,3)

(7,3)

o [} ‘aﬂ)

i PN 1

I 'l -

Yes.

s

7 7

("5:"2)5 ('2:2)5 (5:.2)5 (25'2)

Yes,

Yes,

7.16 Dilations and Z x Z (1 day)

A 4

(4,-0)

If students have covered the first 6 chapters, they will have

a background of ideas on diletions and compositions of mappings.

In this case, Section 7.16 will be an extension of these ideas

to lattice points and coordinates,

O

A dilation can be expressed by (x,y)—>(ax,ay), a # O,

" 1, this is sometimes called a "stretching";

181

If
if a =1, every




3 -180-

point maps onto itself and we have the identity dilation; if a = -1,

then each point is "reflected" in the origin which means that s
~point and its image are symmetric with respectAto the origin .

(this is sometimes called & half-turn); if a < -1, then the dilation

is é composition of the point reflection in the origin and a

"stretching”. We don't allow a = O, but if we did, the rule for

a dilation would map each lattice point onto the origin where

they would stay because no other dilation would be able to map

the origin anywhere but onto the origin,

Note: Exercise 3 discusses some of the improtant properties

of dilations,

T.17 Solutions to Exercises

1. (=3,-1) —>(=9,=3)
(0,3) >(0,9)
(7,3) >(21,9)
(4,~1) >(12, -3)

169
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2, (a) a parallelogram
(b) No. Yes.
Note: A comparison of this problemiand’prdblem 6 of
Section 7.15 can lead to a comparison of dilations
and translations,
>(1x,1y)

30 (a) Dl or (x’y)
(b) Yes. Yes.
Note: These properties are dependent on the same
properties for Z,
(e) D, and D_,,

R NN ST e A

7.18 Some Additional Mappings and Z x Z (1 day)

% This section provides an opportunity to investigate the

properties of several other kinds of mappings, The concepts of

§ the previous sections are reinforced, If a student still wishes
Z‘ (or needs) other examples of mappings, try:
(a) (x,¥)
(p) (x,y)— >(x;ay), where a is an integer.

>(ax:Y) '

This section may be omitted at the discretion of the teacher.

T.20 Solutions to Review Exercises

1, Answers will vary..
2, (a) 22-3y=7 (b) x=2]y] -3 (e) x>0andy<2,

3, (a) The second coordinate is two less than the square of the

first coordinate,
(b) The absolute value of the sum. of the coordinates is five,

(c) The second coordinate is greater than two or the first

coordinate is less ,than three,
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b, (a) ((%,1)) (®)  ((-1,2))
5. (a) (b)
y=2x -1 " y = -3x
A
e o 0 o e * ¢ 0 ¢ ¢ g 0 .9 ® o 0
¢ 4 * o@.. v 0o o (® o o o 0
e o * o o g4 e o © o 0 9 0
¢ 4 0 0000 ‘.QQ'YQOQ.
<:'?k T1 > " e o 0 e 0 o ¢
SRR RRES SEAd PSS
¢ 3 o @ [ LI ) LI B |
(c) A4
x>0andy=0
M
¢ o 0 0.
00.0‘,0...
6. (a) First Quadrant (b) 1st, 2nd, 3rd, or Uth,
(¢) Third Quadrant () Second Quadrant

T. These points should lie on a circle in the first quadrant
if the axes are drawn perpendicular to each other and have
the same unit distances on both axes, Otherwise, they lle
on an ellipse,

8., Same as 7,

9. (a) (0,0), (0,10), (4,0)

(b) (0,0), (0,10), (~4,0) It might prove valuable
(e) (0,0), (0,-10), (-4,0) to discuss the results
(a) (0,0), (0,-10), (4,0) of these mappings,
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10. (a) (3:”‘): (3:7.)3 (7,7), (7,4)

(v) (0,0), (6,3), (10,3) (%,0) It might prove valusble
(c) (5,0), (5,=3), (9,=3), (9,0) to discuss the results
.(d.) (010').! (OJO)J (4,0), (4,0) of these mappings,

Suggested Test Items

Part I:
1. Find the coordinates of the , 2, Loeste the points that have
point; named, ‘ the following coordinstes.
| L~ A } ﬂf A. (-3,0)
4 dP IR B. (-4,i)
/ LA ala*
C ' 2. (032)
. - .
A ”a 'D_".....__.._ "‘FF‘T*’:. 1o i l—*Ja_'-T*xD' (-1,-2)
y 7 E 5 "E. (0,0)
L e =3 T
A / -3
) e 3
\.' T
4 e '
LA

Part II: Complete the following sentences:

1. The coordinates of the origin are .

2, If two points are on a line parallel to the x-axis, they

have thé same : .

3. 1If two points are on a line parallel to the y-axis, they have

the same .

L, If a point is on the x-axis, its second coordinate is H

if the first coordinate of a point is zero, it is on the

5. If x>0 and y > 0, then (x,y) is in the .

- £~
?l".gs
s
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6. If z>0 and y < 0, then (x,y) is in the .
7. (-5,-6) is in the quadrant.

8, Ifx=-3andy = |x|, theny = .

9. If x=3 andy =5x - 16, theny = .
10, If y= |x|] and y # x, theny = .
11. If x < 0, then lx| = .
12. Ifx+y=7 and x -y =1, then (x,y) = .

13, If the points of a circle are mapped onto points by the rule,

(x,y) > (5x,5y), the image will be a and

will be than the original.

14, If a parallelogram is in the first quadrant and is translated
> (x + 5, y + 3), the image will be a

by (x,¥)
in the quadrant .

Part III: Graph the following conditions:

1. Y=x+1 5. ¥y = |x + 3|

2, y=2x-4 6., 2y ~1=2x -1

3. ¥ < -3x 7. %<0 and y = -2

L, x =4 8. x>0 and x<5 and y<5
e v ol —_—

Part IV: For the following mappings find the image of triangle
(0,0), (2,2), (5,0) and tell what quadrant or quadrants

it is in:
1. (xy) > (x + 1, x + 3) L. (x,y) > (x, -y)
2. (xsy) > (-3x, -3y) 5. (x,¥) > (x-3ys ¥)
3. (x,y) > (-x, ¥)




-185-

Answers to Suggested Test Items

Paft I;

l. A. (}-I-,O) c. (‘3."2) E. (0."‘3)
Bo (3’-1) Dc (-253)
’ 23 ,
* B
C
)
A E
€ > X
D
v
Part II:
1. (0,0) 6. Uth quadrant 11, =x :
2, y-ccoordinate 7. 3rd quadrant 12, (4,3) |
3. x-coordinate 8. 3 _ 13. ‘circle; larger
4, zero; y-axis 9., =1 14, parallelogram; first
5. 1lst quadrant 10, -x
Part III:
Y Y
10 ' 2- :t
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A

I
N
)

148
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Part IV:

1. (0,0 > (1,3)
(2,3) > (3,6) 1st quadrant
(5,0) > (6,3)

2. (0,0) > (0,0)
(2,3) > (-6,-9) ‘ 3rd quadrant
(5,0) > (-15,0)

3. (0,0) > (0,0)
(2,3) > (-2,3) 2nd quadrant
(5,0) > (-5,0)

4, (0,0) > (0,0)
(2,3) > (2,-3) Yth quadrant
(5,0) > (5,0)

5. (0,0) > (0,0)
(2,3) > (=7,3) 1st and 2nd quadrants
(5,0) > (5,0)




o .
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TEACHER'S COMMENTARY

Chapter 8 : Sets and Relations

The main objectives of this chapter are:
1. To provide for the student prec;se meanings of basic set-
theoretic terms. The terms considered (and the section in
which they are discussed) include the following:
set (8.1), equality of sets (8.3), subset (8.3), proper
subset (8.3), null set (8.3), universal set (8.5), union
of two sets (8.7), intersection of two sets (8.7),
complement of a set (8.7), diéjoint sets (8.7), cartesian
product set (8.9). ~
2. To introduce to the student the following ideas and terms
which deal with relations and properties of relations on setis:
relation (8.9),
reflexive property (8.11), symmetric property (8.11),
transitive property (8.11), equivalence relation (8.11),
equivalence class and partition of a set (8.13).
3. To expose the student to certain tools that may ensgvle him
to‘ﬁsfkwﬁoré effectively with sets and relations.
"hese include:
set notation (8.1), Venn diagrams (8.5 and 8.7),
arrow diagrams for relations (8.9).
Teachers should note that the odd numbered sections 8.1
-8.13 are content sections. All of the even numbered secticns

8.2-8.16 are exercise sections.
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Abundant motivating material for a discussion of sets
and relations can be found in Chapters 1-7. With regard to
sets, the following were introduced: "set" and "set of whole
numbers'", "set of clock numbers" and "empty set" in Chapter
1, "subset" in Chapter 2, "set of integers" in Chapter 4,
"outcome set", "union", and "intersection" in Chapter 5,
etec. Such notions as "operation", "mapping", "an integer

is a set of ordered pairs of whole numbers", "the set of

lattice points" all involve ideas from relation theory.
Thus this chapter provides an opportunity to bring together
for a close scrutiny many ideas concerning sets and relations

which have been introduced earlier.

8.1 Sets (Estimated Time = 1 day.)

Students will enjoy thinking up examples of sets with
interesting and/or familiar collective names, Student's
examples can be used to bring out the idea that we distin-
guish between a set and the elements that make up a set, e.g.
The set of all boys in the class is not a boy; or the set of
desks in the room is not a desk. Students may be familiar
with the ideas of number and numeral where we distinguish
betﬁeen a set and the name of a set. This point can also
emegge by asking students if {2,2} is the same set as (2}.°

lTeachers may wish to point out early that when the
elements of a set are themselves sets, we often spesk of this

as & family of sets or a class of sets rather then say '"a set

of sets".

Observe that the ten examples given verbally in 8.1 are
104
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repeated again in 8.1 using set notation. In the second
presentation of these examples, use is made of the roster

method in the odd cases and the rule or set builder method

in the even cases. Note that Example 8 introduces the null
set,

Be aware that in this chapter primary concern should be
directed to developing a working vocabulary in connection
with sets rather than developing an abstract theory of sets,.
If certain usages of language appeal to a given class (or
teacher) they can be adopted tehporarily. Later on it can
be pointed out that a certain term, cr synonym of this term,
is used most often in mathematics. Teachers may wish to
point out that mathematics is truly a universal language of

science.

8.2 Exercises

All the exercises in this section should be done as
homework and gone over in class, Exercise 8 affords'an
excellent opportunity for the students to display their
ingenuity and imagination: although there is only one null
set, there is an endless variety of defining properties
which describe a null set. Exercise 10 proviges another
opportunity to discuss finite versus non-finite sets
(recall Chapter 1%; Exercise 9(c) should make the students
aware of the diffépence between {0} and { }.  This difference

should be understo&d thoroughly.
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Answers to Exercises

Maine, Missouri, Mississippi, Montana, Maryland,
Minnesota, Michigan, and Massachusetts.

Indianapolis, Indiana; Oklahoma City, Oklahome; Dover,
Delaware; Honolulu, Hawaili.

They contain the same elements, i.e. A; = AlO'
Every element of A is an element of A;, i.e, Ay is a
subset of A,.

(a) A2 = (T}

(b) Ae =¢& (or { })

(a) A possible answer is Ag = {x : x is & divicor of 24)

(b) Ay ={x : x is an integer, x < 3, x > -3}
{e¢) Ag = {x : x is & whole number, x >0, X < T, X is odd)
The set of whole numbers X, such thet

(1) x #x

(2) x =x+1

(3) x is divisible by 6 but not by 3 |
(Many other properties possible)
(a) no (b) yes (c) no (d) yes.
They are all finite sets.

8.3 Set Equality, Subsets {(Estimated Time - 1 day)

Ask the class why the following is not an adequate
definition.
Set A 1s the samé as set B if every element in

set A is contained in set B,
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Venn diagrams can be introduced to illustreste Remark 1:

‘If set A is not a subset of set B, then set A contains at least

one element x that is not contained in set B.

7B

However, a detailed discussion of Venn diagrams is
reserved for Sections 8.5 and 8.7.

Remark 2 can be proved as a theorem. It is sometimes
called the "working definition" of equality since we make use
of it often to establish that sets specified in different
ways may actually be the same set.

For remark 3 note that set A is & subset of itself, but
A is not & proper subset of itself. Remark 4 provides an
opportunity to introduce the notion of indirect proof. Also
note that ¢ is a proper subset of every set except itself,

8.4 Exercises

Exercise 1 highlights the fact that the order in which
we display the elements of a set is immaterial. Exercises 5,
6 and 7 provide an excellent experience in formulating
generalizations. Exercises 9 and 10 make good classroom

exercises and actual students can be used. Many exercises

404
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should be done in class.

1.

10.
11.
12,

Set G is equal to set H, since both sets contain exactly

the same elements.

(2) G © L because every element in G is also an element
of L.

(b) G # L because L is not a subset of G.

(2) B Z R since Dick € B but Dick £ R.

(b) G S R since every element of G is an element of R.

(2) yes (b) nc {¢) yes (d) yes (e) no (f) no (g) yes.

(a) &, (51 (b) 4.

(a) ¢, (5}, (7}, (9}, (5.7}, (5.9}, (7.9}, (5,7,9)

(v) &, (5}, (7}, (9}, (5.7}, (5.9}, (7.9}

() 16 (b) 15 (ec) 32 (d4) 31 (e) 2",

There is at least ornie element in set B that is not an

element in set A: B ¢ A,

(a) X<z (b)) Tcs (eYMcq (d) Tce

(e) Since A € Q and Q € R we have that A € R, Also since
we know that R & A we conclude that A=R.

{f) Nothing concerning sets P and R.

(2) yes (b) no (¢) yes (d) yes (e) no (f) yes.

They are all the same,

# is a set containing no elements whereas (¢} is a set

containing an element, namely, the empty set.

(2) True since X © 2z (b) Not necessarily true since y

could be an element of Y and still not be an element of

X. (c) Not necessarily true since, for example, p

* could be an element of Z and not en element of Y. (e) True

105




-194-

since q #Yand X c Y, (f) True since r £ Z and X € Z.

8.5 Universal Set, Subsets and Venn Diagrams (Estimated time
23 days.)

Encourage students to use a variety of shapes, besides
the circular, to represent sets, Be Very careful to have
them discriminate between the geometric figures of the
diagram and the actual sets portrayed by these figures, For
example a region in the Euclidian plane will have infinitely
many points, yet may be used in a Venn Diagram to represent
a finite set or even an empty set! Note that an "x" is used

to indicate that a set has at least one element but does not

show how many. The "@" indicates the absence of all elements

in a set or its subsets,

8.6 Exercises

Exercises 1 and 2 can be answered using only the notions
of equality, subset} proper subset, and empty set, These
have already been.discussed. A discussion of unions, inter-
sections, and complements is reserved for the next section
(8.7). However, there is no harm if the students use some
of that language here in responding to Exercises 1 and 3.

In Exercises 2, 4 and 5, encourage the students to use
the more general'diagram with intersecting regions, alfhoﬁgh
alternate solutions submitted by students should be accepted,

if they are correct,
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All exercises should be done carefully; however, many

problems can be done in class with student discussions,

8.6 Exercises (Solutions)

1. a. BcA

CA, A#d. »

B (i.e. AC B and BC A)
CB, A#£d, B#Y

B=¢

B, A#d, B

B, A,B#Y

O and R £ ¢

li

g.

®
> > P > o o o
it

h.
2. Note 2(c) should also state "B £ ¢".
and 2(e) should show "A # B #5S # ¢".

9 ~— S d. S-I
A & —, A L~ X

CE3 | 292

b. . S+ e ) BS.X
c. S f. . — 3
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3. a. Ac(C,BC(
b, Ac€cC, BC(C, ACBHB
c. ACB,ACC(C,BCC,A#C, BEC
d. AcCr, ACB, BCC, A#C, AZB
e. A=B=_¢ f.CEBCACSandiC£B#FALS

4 a. |
=
S
b.
|
S
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6. &a. Yes
b. Yes
c, No
d. Yes
e, Msybe
f. No
g. Yes
h. Maybe
1. Yes
Jj. No
k., Yes
l, No
m., Mzybe
n. Yes
0. Yes

8.7 Unions, Intersections, Complements (Estimated time 1-2 days)

The Boolean properties of‘sets should be developed
informally and semi-formally by
(a) exemples using specific sets
(b} reasoning from definitions and previous remarks
made in text
(¢) shading, or otherwise marking, Venn Diagrams.
Instead of shading we can use dashed lines to
indicate such sets as AUB, ANB, A\B, etc.
Colored chalk is often very helpful for this purpose.

anA
£
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ANB A\B.

Besides using Venn diagrams, teachers might wish to

illustrate set relations as Papy does 1ndhis Mathematique

Moderne.* He makes effective ugse of color to display such
operations as union, intergection, difference, etc. The
overhead proJjector, if availsble, is a great aid in this

section.

8.8 Exercises

Note that Exercises 1 through 10 provide san opportunity
to develop some of the general Boolean properties of sets.
Observe that Exercises 2,3, and 4 go together as do Exercises
5 and 6. Exercise 14 depends on Exercise 12, These two
exercises can be considered optional, as can exercises 7 and
15. Class use of alternating problems in an exercise (say a,
c, e, g, etc.) with the remaining problems (b,d,f,etc) as
homework can save time on homework and yet yield better

results. Exercises 12 and 14 should be done in class.

*Modern Msthematics, Vol. 1. G, Pepy, Macmililan Co.,
New York, N.Y. 1965.

O
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8.8 BHExercises

1.

The set of all students in the school who are

a,

b.

not seventh graders.

girls

(both) seventh graders and boys.

(both) boys and bus to school.

seventh graders or boys (or hoth).

boys or who bus to school (or both).

(both) seventh graders and girls.

not seventh greders or are boys.

girls, and do not bus to school.

girls, or students who do not bus to :chool.
seventh graders, or boys, or who bus 1o school.
seventh graders, snd are.boys who bus to school.
seventh graders whc are girls or are students who bus

to school.

not seventh greders, or are boys, or do not bus to
school.,

not seventh giaders, and not both boys and students

who bus to school.

not seventh graders, and not (either) girls or
students who bus to school.

s (b) @ (c) [ 0,2,3,45,67,81 (d) (2]
[1,2,3,5,7,91 (f) [3,5,7] (g) B (h) A
[0,1,4,6,8,91 (J) [9,1,3,%,5,6,7,8,9]
(0,1,3,4,5,6,7,8,91 (1) ¢

20
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suc=8 (b)) [0, 2, 4,6, 8 U1, 2,3 5,7, 9] =5
(0, 2, 4, 6, 8 0 (3,5 7] =¢ (a) g N (3,5,7) = ¢
(o, 2, 4,6,8{ v (3,5,7} = { 0,2,3,4,5,6,7,8)}
sn{o,2,3,4,5,6,7,8} = {0,2,3,4,5,6,7,8}

(0,2,4,6,8}) n (1,2,3,5,7,9} = (2]

gu {2} = (2}

AUB= (-4, -3,0, 3, 4, 8 16}
AUB=(T7]}

ENB

ANB=1{38)

EMB=(-4, -3, 0, 3, 4 16}
EUB=(-4 -3,0,3, 4 16)
ANn(BUC) = {0,8)

(AnB)U (ANnC)={0,8)

AU (BNC)={-4, o, 8, 16}
(AUuB)YN(AUC)={-4, 0, 8, 16}
AU (AnB) =(~4, 0, 8, 16}

AN (AU B} = (-4 0, 8, 16}
FU(BUC) =4

EnN(BNT) =¢

Answers mey veary.

Some correct conjectures which students might make from

above exercises are as follows:

AUB=ENEB
ANB=AUTB
S=¢g

- \?
=
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AU(BUC)=(AUB)UC

An(Bng¢)=(ans)nc
An(BUC)=(anB)U (ANTC)
Avu(enc)y=(AUB)YNh (AU C)
AU(ANB) =AN{AUB)

A

BUT) =ENENG

However there are a number of incorrect conjectures which

the students might make. These should be discussed carefully

to see where they break down, eg. firom 5 i: it may appear that

AU(BNC) =Aor from5m: ENEBNCT=¢

Venn diagrams can be helpful in explaining why these

conjectures are false,

7.

(a)

(v)
(c)

(a)
(e)
(£)

(g)
(h)
(2)

True: because NC W, i.e. every element of N is
elready contained in W

Felse: actually NN W =N

gggg: because O is the only element ¢f W which is not
an element of N. |

True: the complement of the universal set is always ¢
False: because N contains an element, O

True: because W = @ and the intersection of any set
with ¢ is 4.

True: because WU N = W and hence 1ts complement is ¢,
False: actually WN N = N = {0}.

By definition of iﬁtersection wé have that
ANB=([x:x€A and x € E)

Since every element of A N B is an element of A, we

9‘)-:;



(v)

b)

[»7]
~—

-204-

conclude from our definition of subset that (A N B) € A
By the definition of uvnion, we have that

AUB={x: x€Aorx€Bor x is an element of both
A snd B]

From exercises 6 (a) above we know that (A N B) € A,
Thus we conclude that every element of AN B 1s an
element of A U B. 1In short, (AU B)< (AU B).

By definition A U A ig the set that contains those and
only those elements (of S) that belong either to A or
to A. This condition 1s satisfied by every element of
A and only the elements of A, Hence A U A = A,

By definition A N A is the set that contains those and
only those elements (of S) that bolong to both A and A.
This condition is satiasfied by every element of A and
only the elements of A, Hence A N A = A,

By definition A U A is the set that contains those and
only those elements (of S) that belong either to A or
to X. This condition is satisfied by every element of
S (and only by elements of S). Hence A U R = 8.

By definition A N & is tﬁe set that contains those and
only those elements (of S) that belong both to A and A.
But no element (of S) can belong both to A and &,

Hence A NK = ¢

e
-
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By derfinition S is the set of all those elements of S
which do not belong to> S. Since there can not be any
such elements, 5 = ¢.

By definition @ is the set of all those elements cf S,
which are not in . Since this condition is satisfied
by every element of S, it follows that @ = S.

By definition A U S is the set that contains those and
only those elements {of S) that belong either to A or S,
or both, This condition is satisfied by 'every element
of 8 (and only the elements of S).

Hence A U S = S,

By cefinition A N ¢ is the set that contains those and
only those elements (of S) that belong both to A and to
@. Since @ is empty, there are no elements (in S) that
satisfy this condition. Hencz AN = ¢

; = A, because by definition Z ;s the set of all elements
of S, which do not belong to K. But by definition of XK
the elements of S that do not belong to K are the elements
of A, itself,

A N B is shaded.

oaly
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12, (al Yes: A B=aNTB

(b) No: A B#B A These results are

{c) Yes: A Bc A

S me

(d) (A BYU(ANB)YU (B A)=AUB  means of Vemn

(e} (A B)N (B A)=¢ diagrams.

13,
3
(AnB)U (KN B) is shaded.

14, &) Yes b) Yes c) Yes d4) ANB
15. &) ¢

b) (x: x € Z and x # 0)

c) B |

d) ¢

e) 2

f) (x: x € Z end -5 < x < 10} or by listing:

(-4, -3, -2, -1,0, 1, 2, 3, 4,5, 6, 7, 8 9}

g) (1, 2,3,4,5, 6,7, 8, 9]

h) (1,2, 3, 45 6 7, 8 9

1) a

j) D

f}f\,O\
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8.9 Cartesian Product Sets, Relations (Estimated time 2-3 days)

This section could be motivated by reviewing some topics
considered earlier such as the outcome set for the tossing of a
pair of dice or the idea cf a set of Jattice points, etc. Some
student might wish to make a report to the class on the life of
Rene Descartes,

Many seventh graders enjoy playing tic-tac-toe on a finite
lattice where you lose your turn if you give incorrect coordi-
nates (e.g. if the point has already been taken or if the point
i5 not part of the lattice set being considered). Robert Davis
has used this device with great success with very young
children,

Note that both a tree and an arrow diagram are special

instances of directed graphs or "disgraphs"., This is an

interesting topic and could be.the subject of & report by some
interested student. A good reference is Oystein Ore's Graphs
and Their Uses (Singer). Note that we have assigned no direc-

tion to loops. When a member maps to itself, there is no need
for the arrow,

Note also that.the most general definition of a relation
as subset of A x B (any set of ordered pairs) is not stressed
here. Emphasis is placed almost entirely on relations which

are subsets of A x A, i.e., relations on a set A,

8.10 Exercises

Exercise 8 provides an opportunity to review the idea of

operational system. Exercise 10 can be related back to
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Chapter 3 but is optional.

Q
fod
<
s
S
[44]
=
[ ¢]
s
o
Q
(/1]
o~
E:
1]
b
L]
¢}

1. a. ((T,H), (T,B), (T:M), (T,3), (H,E), (B;G), (B,A))
. ((H,B) (H,M),(HJ),(B,H),(B,M),(B,;7),(C,A), (LF), (F,P)]
c. ¢
da. [(B,E),(B,P),(B,F)»(H,G),(H,A),(H,P)s(H,F)}
e.'{(M,H),(M,B),(M,J),(J,H),(J,B),(J,M),(A,G)}
2. &, {(1,2),(1,3),(1,&),(2,2),(2,3),(2,4)}
b. [(2,1),(2,2),(3,1),(3,2),(4,1),(4,2)}
e. ((1,1),(1,2),(2,1),(2,2)]
d. [(2+2),(2,3),(2,4),(3,2) ,(3,3), (3,4)5 (4,2), (4,3), (1, 4))

\41

b' y'

-4 1 _ 4

3, a and b: 3 c: 3
2 \- D 2 N\ /
1l ' 1

| 1 2 3 4 1 2 3
‘ a. (1) ((2,2))

(2) ((2,1),(2,2)}

(3) ((1,2),(2,2)}

(4) P x (2} = ((1,2),(2,2)]

(5) ((1,1),(1,2),(2,1),(2,2)} V {(1,2),(1,3),(1,4),

(2,2),(2,3),(2,4))
(6) P x {1,2,3,4) = ((1,1),(1,2),(153),(1,4),
(2,1),(2,2),(2,3),(2,4)}
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Various answers will be given and should be discussed.
Students will learn from wrong answers as well as right
answ2rs, Same results are:

(1) (Px@) 0 (axP) = (PN Q) x (PN Q)

(2) Px(PNQ)=(PxP)N (PxQ)

(3) Px(PUQ)=(PxP)U (PxQ)

(1) ((3,2),(1,3),(2,2),(2,3)) U {(1,4),(1,5),(2,4),(2,5))
= ((1,2),(1,3),(1,4),(1,5)(2,2),(2,3), (2,4), (2,5))
(2) (1,2} x (2,3,4,5) = {(1,2),(1,3).(2,4),(1,5),(2,2),

(2,3),(2,4),(2,5))
Mx(NUP)=(MxN)U(Mx P), so for this example at

#

!

least, "x" is distributive over U.

((2,0),(2,1),(4,0), (4,1),(4,2))

AXB

Not true, because 0 is not greater than 2, (also (0,2) is

not in the set of pairs listed in part (e).)

Not true, because while 4>3 is true, 3 ¢ B.

((2,2),(2,4),(2,8), (2,60}, (4,4),(4,8),
(4,60),(5,5),(5,15),(5,45), (5,60),
(8,8),(15,15), (15,45), (15,60), (45,45), (60,60)}

AxB



d. From the above disgram, a b will be true if and only

1f there is an arrow from a leading to b.

7. a. ([x}
g
b. /,[X:,f)z]\
(x,y) (x,2) (y,z)
\m/ \tzl
§ (y)
|
g
8. a. (UF (2)T (B)F (M7 (5)T (6)F (T)T (B)F

a,
b. ((1,2),(2,2),(4,2))
((%,1),(2,2)}

Q

Full Tt Provided by ERIC.
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9. &a. No, because to be & mepping you must have exactly one
2nd element for every possible 1st element in a pair.
For example:
((1,2),(1,3),(2,3)) is not a mapping because 1 as a
first element has both 2 and 3 as possible 2nd element.
{((1,2),(2,3)(4,2)) is not a mapping of the set {1,2,3,4)
because 3 is not mapped; i.e. there is no peir with 3
es & first element. This set of pairs does describe
a mapping of the set {1,2,4}, however.
b. Yes, because a mapping of set A into set B can always
be written as a set of ordered pairs (a,b) where a € A
and b € B, and this will be & subset of A x B, This
subset defines a reiation,
c. If the pairs are indicated on the graph by x's, we look
to see if exactly one x appears in every column. R is
& mapping if and only if this holds.
10. There are mn possible pairs in the set A x B, There are

emn

2Mn possible subsets of A x B, so there are possible

relations that could be defined.

8.11 Properties of Relations (Estimated time 2 days)

This section contains ma&ny important ideas. Have the
students examine the examples carefully. Encourage them to
construct further examples as well as counter-examples, i.e,
reflexive relations vs, non-rerlexive ones, symmetric vs.
non-symmetric, transitive vs., non-transitive, The goal here

is the notion of an equivalence relation, a notion which is

Q. 219
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very important in future work.
Terms such as "irreflexive", "anti-symmetric", etc. are

} not introduced here. but they are included in a few optional

exercises in sections 8.12 and 8.14.

8.12 Exercises

Teachers may have students suggest relations becides those
? found in these exercises, and have these relations discussed.
Family relationships are interesting and instructive.

i, &a, R is a subset of E x E,

3

c. It is reflexive, because every element has an arrow

running to itself. It is not symmetric, because while

there is an arrow running from 2 to 3, there is none

from 3 to 2,

faNe)
=
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8.12 Exercises Continued

2.

a,

A

/

3
b. Not reflexive, since (4,&) €/s.

Not symmetric, since (1,3) € S but {(3,1) £ s.
Not transitive, gince (2,3) € S and (3,4) € S but
(2,4) ¢ s.
a. Yes b, No c¢c. Yes d. No e Yes f. No g. Yes
. No b, Yes ¢. No d. No e. Yes f. No g. Yes
a, Yes b, No ec¢. Yes d. Yes e. Yes f. No g. Yes
(e) end (g)
ej When there is & number n in A such that (n,n) is not
in the relation..
b) When there is an ordered pair (e,b) in the relation
but (b,a) is not in the relation.
c) When (a,b) and (b,c) are in the relation but (a,c) is not.
OR when aRb and bRe are in true but aRc is not.
(2) Rgis reflexive
(v) Ry and R5 are symmetric
(e) R3, R, end R5 are transitive

215
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9. (a) "is a brother of" is not reflexive
(b) is not symmetric
(¢) 1is transitive
10. (a) (1) R3 is reflexive
(2) Ry, R3 and Ry are symmetric
(3) Ry, Rys R, and Ry are trensitive
(v) R3 is an equivalence relation on A
11. (a) The relation is reflexive
| (b) The relation is symmetric
(e) It is transitive
(d) It's an equivalence relation on the set of lines.
12, (a) (i) is reflexive.
(v) (i1i) is symmetric.
(¢) (i) and (ii) are transitive.

13, (a): (v) and (d) are irreflexive.
(v) R is irreflexive.
(c) Ry is irreflexive
(a) (11) and (ii1) are irreflexive.

., (a) () (¢) (a) eand (f) are antl-symmetric.
(v) Ry and'Ru are anti-symmetric.
(e) Rys R, and R5 sre anti-symmetric.
(d) (1i) is anti-symmetric.

8.13 Equivalence Classes and Partitions (Estimated time 2 days)

Some teachers may wiéh to introduce modular srithmetic at

this time since this provides a clear example of how an
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equivalence relation partitions a set into equivalence classes,
(For example, for 23, the equivalence classes produced are
(0, £3, %6, %o, ...}

By now the students should know the meaning of an equiva-
lence relation on a set, Now the students will learn that the
relation effects a separation of the elements of a set into
disjoint subsets. The éollection of subsets produced by the
equivalence relation R on G is called a partition of ¥, Each

of these subsets is called an equivelence class, Each must

also be non-empty.

8.14 Exercises

Exercise 6 can be amplified by asking the students to
supply other relations between lattice points which yield
interes®ting equivalence classes. For example, the relation
Ry on lattice points defined vy (a,b) Ry (¢, d) if and only
if a-b = c~d partitions z x z into equivalence classe®, These
also consist of "parallel lines", These exercises 8 and 9
are honor problems and only a few students, with help, will
make progress with them. Exercise 10 is also optional. It
introduces the notion of a partial order and pre-suppose

Exercise 14 in Section 8.12.

8.14 Exercises (Answers)
1. (a) No. U4 ig not in the union of the sets,
(b) No., The sets are not all disjoint

21ty
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2 € {1, 2} and 2 € (6, 2}

(c) Yes. {1, 3, 5} u (2, 4, 6} = A and
{1.- 3.- S]n [2: ""_s 6] = ¢
(d) Yes. The union of the sets = A

Intersections of pairs of sets = "

(e) Yes. For the reasons in (d)
(f) No. 4 € {1,2,3,5) and 4 € (4,5,6)
(g) Yes. The two conditions are :satcisfied.
(h) No. (1, 2} U (3, 4} #4A
({1, 23} ; ({1}, (2}]
"¢" does not partition W because "less than" is not an
equivalence relation on W,
cRa means aRc by symmetric property.
aRc and cRb means aRb

by the transitive property.
({1}, (2}, (3}, (41}
({1,2},(3,4)), ((1,3},(2,43}, ((1,4}, (2,3]]
({1,2},(3),(4)), ((1,3},(2),(4}), ({1,4},(2,},(3}]
((2,33,(2),(4)}, ((2,4},(1},(3}}, ((3,4},(1},(2))
((1,2,31, (83, ((1,2,41,(3}), ((L,3,4), (2))
((2,3,4},(1}}, ((1,2,3,4}]

(a) The relations are reflexive, symmetric and transitive.

(v) R1 divides the set of lattice pdints into subsets
where each subset contains the lattice points whose
first coordirnate is the same., Each lattice peint is

in one and only one subset and the union of the

21Q
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subsets 1s the set of lattice points.

R, similarly divides partitions the set of lattice

2
points by the second coordinate being the same for
each point in the subset of S.
(a) Rl’ th and R5 are equivalence relations on P.
(v) Rl forms equivalence classes  cointaining people living
in a state.
R4 forms equivalence classes of people who belonrng to
the same political party. (Students will question
the validity of this since some people do not belong
to any political party. Do not try to resolve the
question.)
R5 forms equivelence classes of people whose IQ
scores are the same,
B, = {x:xRa}
Suppose yeBa. Then yRa is true. Then y is in the same
equivalence class a8 a. Hence, Ba is a subset of the
equivalence class Ca containing a.
Now suppose Z€Ca; thet is, 2 is in the equivalence class
containing a. Then by definition of equivalence class,
ZRa is true. But then, by our definition of Ba, Z€Ba.
Hence Ca < Ba.

But BaCCa and'CaCBa

> Ba. = Ca. Hence for each &, Ba
is the equivalence class containing &, so the sets Ba are
exactly the equivalence classes in the partition of A
effected by R.
(a) s =((1,2}, {1}, (2]}, @). R is the set
(g, (1)), (& (2)), (&, (1,2)), (4,9), ({1}, (1})
(13, (1,2}), ({2}, (2)), ((2}, (1,2)), ((1,2), (1,2})]
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This is reflexive, since (@,d),({1},(1}),({2},(2}),
({1,2},(1,2}) are all in R.
R is anti-symmetric, since whenever (a,b) and (b,a), then

a =b. R is transitive by inspection.

(b) - Each arrow points in Just one
A {l,a} R direction; 1.e. we cannot have
03 T'- %2} a<——>b (if a and b are different).
N 4) A1 Also, if one "follows" the arrows,

it is not possible to "get back

to"an element once having left it.
10. (a) '
This relation is a partial

ordering on E.

(b) M"aLa" is hever true, so the relation "L" is not re-

flexive, and hence is not a partial ordering.

8.16 Review exercises (Answers)

1. (a) (1) ["3:"2:"1.90:1:2:3} or S (7) A or ["3:"2:"1:0}

(2) (1} C (8) (o}

(3) (-3,-2,-1,0,1,3}) (9) Dor (0]

(4) (-3,-1) (10) B or (1,2,3!}

() (-3,-1,1,2,3) (11) D or {0}

(6) (1,3} : (12) s or (-3,-2,-1,0,1,2,3}
(v) (1) (1,2,3} or B (5) (-2,0,1,2,3}

2) (-3,-2,-1,0} or A (6) ¢

(3) (-2,0,2;

\(o | 2210
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(c)

Some

(a)
(b)
(e)
(d)
(e)
(£)
(g)
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(1) D is a subset of A

(2) D is a proper subset of A

(3) A and B are disjoint

possible responses are

@ is a subset of A

A is a subset of the universal set

ANA=A
AUA=A

A is an 1mpropér subset of itself

ANEKE=¢g
A U K = the universal set
AUdZ=A

ANg =g

AN S =A (s-=universal set)
AUS =‘S

(0,2}

{0},{2},{0.2),¢

(0},{2}

((0,0), (0,2}, (2,0)(2,2))

No, since (0,1) is not an element of B x B.

Yes,
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(v) No. (0,2) € R but (2,0) £ R
| also (1,1) £ R

(¢) S would be an equivalence relation on U:

For, aRa, for each a€V;

for each (a, b) € R, (b, a) € R;

end for (a,b) and (b,c) in R, (a,c) is in R.
! 5. (1) (ANB)U (ANTB) =A0 (BUB) by distributivity
(2)
(3)

"

AN (8) by definition of B

i

A since AC S

i

6. a) "less than or equal to"
b) "{s the séme age as"
¢) "is the father of"
d) "is greater than"

e) "is a classmate of"

7. a) False Example: S = {1,2,3,4,5}
b) True A = {2,3) - K = {1,4,5)
B = {2,3,4] B = (1,5}
AcBout A¢gB
’ and Bc &




8. a)
b)
e)
9.
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Not a partition of D since the sets are not all disjoint
sets.

It is a partition since the interaction of pairs of

sets is the null set and the union of the three sets

is D,

It is not the partition since the union of the three

sets is not D,

AN (BoC) (ANB)o (AN C)



Course I Chapter 9
'Transformation of the Plane

Commentary for Teachers

Introduction (11 days)

The main objective of this chapter 1s to provide an
experiential background for the following basic transformations
in a plane:

(a) Reflection in & line,

(b) "..flection in a point.

(¢) Translation,

(d) Rotation,

On the basis of this experience, the children should conjecture
that all four transformations ére one-to~-one mappings of the

plane onto itself preserving:

distance midpoint
collinearity angle measure
betweeness parallelism

Under reflection in a point and translation, a line and its
image are parallel,
If a figure and its image are identical under:
(a) some line reflection, then the figure is symmetric
in a line, »
(b) some point reflection, then the figure is symmetric
in & point,
(c) some rotation which is not a multiple of a complete
rotation, the figuré has rotational symmetry,
Devices, other than those shown in text, may be suggested

by your students for finding 1ma%g?bunder a mapping, A pin may

F-/- Ol 4
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be used to pierce holes in a creased paper. A soft lead pencil
serves well in place of ink spots--just fold and use your
pencil or finger nail to press over penciled sections.

Encourage your students to think of properties that are
not mentioned in the text. For example: intersecting lines
map into intersection lines, perpendicular lines map into perpendi-
cular lines, circles map into circles;, a composition of an even
number of reflections in parallel lines corresponds to a translation,
a cbmposition of an even number of reflections in concurrent lines
corresponds to & rotation. |

You might challenge your students to find meppings that do
not preserve distance, or collinearity, or parallelism. You
might suggest dilation in a point (or line) of a plane,

If the notion of & group has been developed you can ask for

sets of mappings that form a group under composition. For

example, the following set of mappings are groups under composition:

(a) translations

(b) point reflection together with translations

(¢) rotations in a fixed point

(d) reflections in & fixed line together with the identity map

(e) réflection in a fixed point together with_ﬁhe identity map

(£) reflections in two perpendicular lines together with |
point reflection in their intersection and the identity
map.

"' 9.1 and 9.2 (2 days)

The purpose of these sections is to show experimentally the

]ERJ}? properties of a line reflecfionﬂ The basic property demonstrated
A FuiText provided by Eric v ? ‘l) 5
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by the activities is to show that this mapping is an isometry.
Having seen that it is an isometry, the preservation of
betweeness and collinearity is also shown.

Many of these problems could be done in class. Parts of
problems 5-8 could be done in class and parts at home.
Problems 9-13 could be done at home as well as problem 15.
Problem 11 is an important problem for future use and problem.

14 can be considered optional.

9.3 Answers to Exercises

. All points on the line of reflection.
. The left hand.

. A,B,C.
5. (a) - .. (b) (c)

1
2
3. Spinning counter-clockwise.
N
5




10.
11.

12,

13 .
14,

. 15,

()
The

No.

A line containing A and peirpendicular to m.

m and & line perpendicular to m containing A.

Crease paper sb that m folds on itself and the crease
contains A.

Same as (a), but m is identical to its reflection in m.

cutout figure is symmetric in the line at the crease.

ABCDEHIKMOTUVWXY

An activity.

The

neme reads correctly.

An activity.'

(a)

(v)

29

SR
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(c) (a)
»
or
n
(e) In (a), m | PP' and bisects PP'.
In (b), m | X5 and bisects AB or AB c m.
In (c), the angle at ST and SA is the same as the
angle at SR and SA.
In (d), m j.h. Also many angles as in (c) are the same.

9.4 (1 day)

The object of this section is to introduce the idea of

lines, rays, and segments. Stress should be placed upon the

way that each of these is named and the essential difference

between them. Note that the idea of an open halfline does

‘not appear until Section 10.2 of Chapter 10.' A ray is

considered the same as & closed halfline or Jjust a halfline.

When naming a ray the procedure here is to place the arrow

over the two letters so that it moves from left to right.

Thus,

".A.

B"

> 1is named AB and not BA.

9.5 Exercises

Problems 1 and 2 may be done in class and exercise 3 is a

good one to be dcne for homework.

nD
D
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9.5 Answers to Exercises

1.

(a) 3
(b) AB, AC, BC
(c) BA, CA, CB

(a) 6

(v) 10

(¢) No. of Points 2 3 4 s 6
No. of Lines 1 3 6 10 15°

Children may recogniie\that the differences are 2, 3; b, 5,‘
increasing by one. Do.nét expect the generalizatioﬁ that
the number of lines is B-%1:-]=-Lwhere n is the number of
points, |
(a) Any one of n points may be selected and then any one
of the remaining n-1 points. There are n(n-1) selec-
| tions doﬁnting order. There will be two selections
for each line. |
(a) AB, AC, BC, BD, CD
BA, CA, DA, CB, DB, DC
(v) 4B, BC, CD, BA, CB, DC
accept also the ray opposite.po AB and the fay'.
opposite to DC.

(c) 6 (or (8))

(d) No. of pdints ‘1 2 3 4 5

No. of rays 2 4 6 8 10 ‘
(e) The number of reys is twice the number of points.
(f) With the addition of each point two new reys are
" obteined.
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(g) 4&B, AC, AD, BC, BD, CD

(n) 6

(1) No. of points 2 3 4 5 6
No. of segments 1 2 6 10 15

(J) and (k) see exercise 2.

9.6 (5 dey)
The purpose of this section is to define perpendicular
lines as two lines such that either is its own reflection in

the other.

9.7 (3 day)

The purpose of this section is to introduce the student
to a method 6f comparing the measure of angles by the measure
of their apan using a compass. The purpose of activities 5-7
is to demonstrate that angle measure 1s preserved by line
reflections., Note that the idea of measuring an angle using a
protractor will be discussed in section 10.19'of Chapter 10.

Activity 5 could be done in class while the others could

be done as part of a homework assignment.

9.8 Exercises
Problem 4b previews the differences between similar
and congruent triangles. A véry informal discussion might

be profitable in class.

)
e
3
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1. (a) (b)
- A A=
| I
()  for(a) ’ ? for (b)
i - , ,
. —X- = A N A
‘ ,
- J
2. (a) It has two sides of the same length.
(v) There is no such triangle.
(c) All 3 sides have the same length,
(a) No.ﬁ : c m
3. (a) |
T Trm
A 8
-

Tmnm

Tmrom |/ \ Tmn
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(b) A variety of generalizations are possible. Among
them are the fact that Tm and T, commute under the
operation "o". Alscu, all the‘trianglés are fhé same
size and shape and the same distance from the line
of reflection.

4. (a) The radii PA and QT have different lengths and so
cgnnot be used to compare angle measures. .

(b) Not necessarily. Consider 2 equilaterél triangles

with sides of different lengths. - |
5. For such rays a relatively large increase in the opening

produces but a slight increase in the angle measure.

6. (a) No.
(b) No.
2.9 (2 days)

The purpose of this section is to introduce the concept of
reflection in a point and its properties. Comparison is made
between line reflections and point reflections. Students
should be encouraged to see the properties preserved by

themselves rather than told what these properties are.

9.10 Exercises _ _ _

Problem 3'he1ps clarify the meanihg of symmetry in a point
and symmetry in a line, Note that the names of the mappings are
"reflection in a line" and "reflectioh»in a pointﬁ, while the
properties of the figures are called "symmetry in a line" and

"symmetry in & point". Problem 11 is optional.

a2

h
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2. (a) Yes. 1Its midpoint.
(b} No.
(¢} Yes. Any poinﬁ in the 1line. _
(d) Yes. Any point in a midway parallel line.
(e) Yes. The point at which the diagonals cross. -
(f) Yes. The midpoint of the diagonal bar.

L%T S

3. Letter Symmetry in a point Symmetry in a line
A NoO ‘ YRS
B No YES
C NO YES
D ‘NO - YES
E NO _ YES
F NO NO
G NO _ ~ No
H YES YES
I YES YES
J NO ‘ No
K NO YES
L NO : No
M NO - ' . YES
N YES NO
0 YES . YES
p NO . NO
Q NO No
R NO NoO
S YES NO

T NO- YES
U NoO - YES
v NO YES
W NO YES
X YES YES
Y NO YES

-z YES - NO

Some may say that L is symmetric in a line, Accept it after -
their explanation.
4. (a) Yes. The ] bisector of the'segment or the line that

the segmént lies along.




(b)
(c)
(d)
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Yes, the carrier of the ray.

Yes,

No.

5. Activity.

(a)

(v)

7. (a)

~(b)
(¢)
(a)
(e)

(£)

(g)

(h)
(1)

6. Activity.

Any m | 1 or the line itself.

Fold paper so that m falls on itself and the crease

runs‘through P. Open up and fold so that the crease

‘falls on itself and the new crease runs through P.

The new crease should be parallel %o m.

First construct a perpendiculer from P to m. Now

construct a perpendicular to 1 through P.

éyﬁme%ry
symmetry
symmetry
symmetry
symmetry
symmetry
symmetry
symmetry

symmetry i

symmetry

wjﬁf;ikij”k}ifig;f'
3 {f'ﬁ(f e -, -
Atﬁﬁﬁ;;

in

in
in
in
in
in
in

in

iine‘/‘ndﬂe |

line, in a point, and rotational symmetry
line, a ﬁoint, and rotational symmetry
line, in a point, and rotational

line |

line and rotational symmetry

line, symmetry in a point, and rotational

point and rotational symmetry
line

A



(a)

(v)

(c) . -

SsiSgsa it S
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(g) b, C:A d, e’., f _ '
There‘ are-many possibie answers. We shall glve but one.
(a) A translation or reflection through a point or line

will do.

298

‘ i -.\.
™
!
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Sp°Sp is the identity mapping;
(a) o
8,8¢0¢
1m
(e)
|
|
(f) |
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(b) A reflection in the 1ine that bisects AT and ED.
Also, see (c)
(c) Use the midpoint of AC as the point for a point
‘reflection. Then reflect in the line that biéecfs the
angle formed by GD and the image of EB.
10. - Activity. [Note: 1,° 1 means compose 1, wiﬁhlls;]
(¢) (1) No {2) Yes (3) Yes
11. (a) Reflect T in m. )
' (b) Find the imege of T under the symmetfy in P, -

9.11 (1 day)
The purpose of this section is to examine the properties
of a trenslstion as well as the properties of composition of

translatiqns;

9.12 Exercises

1. None (except for the identity)

2. (a) None |
~(b) . None
(c)' Any trenslation thet is parallel to the given line.
(d) Any translation | ,
(e) Any trenslation that is parailel to the edge of the
" halfplane. | | |

3. An activity;
The faces are & union of the original face and its image
under 2, 4, 6, 8 taken one at & time.

4, Activity.
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9.13 (2 days)

The purpose of this section is to describe rotations as-
geometric transformations.  The term rotational symmetry épplies
to a particular figure when there is a‘point, a rotation which
1s less then e full rotation but not & zero rotation that
maps the filgure onto itself. Note that one muét'épecify either
& clockwise or counterclockwise directlon when considering
rotation. The problem answers-have'considered'oniy a cdugter-

" elockwise direction,

9.14 Ekercises 4
4Prob1ems 1-3, and 7-10 could be used in class. . Problem
5 is a good homework problem. The table for 5d in the answer
sheet is a row-column table in this sense: a ° b means put
a in the row and b in the column. The rotations are considered
counter-clockwise: ‘
l. HINOSX?Z
2. Preserved:‘ Distance,‘collinearity, betweeness, midpoint,
angle measure, parallelism, perpendicularity.
Not preserved: Direction
3. (a), (b), (e)
4, (a) 1line symmetry
(b) 1line symmetry
(e) and (d) 1line symmetry, point symmetry, and rotational

symmetry

298
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5 . e 1m . e 1m 11'1 SP
e e 1 e e 1 -ln SP
1, 1m e 1m 1 e SP 1n
1n 1n SP e 1m
5p % W W ©
e P P P e P P 1r , 1s 1t
e e P P P e e P P 1r ' 18;, 1t
P P P P e P P P e 1 1r 18
P P P e P 3 P e P 1s 1t 1r
P P e P P .1r 1r 1s 1t e P P.
1s 1s 1t 1r P e P
1t 1t 1r 1s P P e

6. (a) 1y (b) 'Sp' (c) B3y (a) oz (e) Py o
7. vAll four preserve (a), (b), (c¢), (a), (e), (£)
8. None that we have'studied-—except perhaps dilations (a)
9. (a) The image of & point A, A!, is such that EE' is | to
the blane and is bisected by the plane.
(b) The image of a point A, A', i such that AE' is ] to
the line and 1s bisected by the line. |

(c) and (d) natural extensions into space.
10. (&) The line. |
(b) The point. ~ o - 3

s e el
3 dnEa

(c) The direction and magnitude.

il Sl i N

e
e

(d) The point and magnitude and direction.

239
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Review Exerciges (1 day)

1. All answers are "Yes".

2.

(a)
(e)
(4)
(e)
(£)
(g)
(h)

(a).

()
(c)
(a)
(a)

(b)
(e)

(d)

and (b) Reflection in a line,

- Gymmetry in a point.

Reflection in a line and symmetry iﬁ a point.
Ail except translation.

Symmetry in a point and rotational symmetry.
Translation. |

PTranslation, symmetry in a point.

The 1line.

The point.

None.

‘The point of rotation.

If the line of a refléction is perpendicular to the
given line or it is the given line.

If thé point of symmetry is in.the given line.

If the direction of & translation is parallel to the
given line, |

If the rotation is & half turn about & point in the line.
If the line of reflection contains the ray.

If the line of reflection is the | bisector of the segment

" or the line of the segment.

If the point of symmetry is the midpoint of the segment.

If the rotation is a half turn about the midpoint of

the segment.
If the line of reflection biseets the angle determined
by the rays.

240
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10.

(e)

(f)

(g)
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If the line of reflection contains & diagonal or the
midpoints of two oppoéite:éides.

If the point of symmetry is the intersecticn of the
diagonals. e N o

If the rotation is a multiple of the quarter turn about
the center. T

If the line of reflectién contains the midpoints of
two opposite sides. . |

If the point of symmetry is the intersection of the
diagonals, | _ |

If the rotation is a multiple of the half turn about
the center. ‘
If the point of symmetry is the intersection of the

diagonals.

When either is 1ts‘own image under a reflection in the other.

m_|_n.-

The point where m and n'intersect.

()

1 () 2 (e) 1 (4) 2 (e) 3
.

o
V-’
s
>
®
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11.

| abﬁ;: Aﬂg

Test on Chapter 9

1. Without folding, find ETBT the image of EB under the
(a) reflection inm (b) reflection in P

A ' .R

8 ' e

| —> |
(¢) translation 2 (unit is the inch)

8

(d) rotation P, s, (full credit is given for a good guess, but
try to figure out a construction method)

P A o v 8

2. List five prbperties common to &ll the mappings listed in 1.
3. For which two of the four mappings studied are a line and

its image always parallel?

2A2
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8.
9.
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Uhder what ciréﬁmstances will a line be identical with 1its

image under a

(a) reflection in a line

(b) symmetry in a point

(¢) translation

(d) rotation

If & point'and its image are one and the same point, we call
the.pbint'a fixed point under the mapping. What are the fixed
points for | :

| . / = |
(a) 1, (0) sp (e) 2 (d) Py

Which of the mappings listed in Exercise 5, when composed with
itself, glves the identity mapping?
What kinds of symmetry does each of the following have?

 (Describe each specifically-égive the point, or line, or

turn, ete.)

(a) & parallelogram

(b) a square

(c) an equdlateral triangle'

(d) a circle

Define"pérpendicuiar lines in terms of reflection.

What is an isometry?

Ansvwers to Test Questions

1.

(a)

A

m | 243
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2., Preserve: distance, collinearity, betweenness, midpoint,
angle measure,

3. Symmetry in a point and translation. ,
4, (a) When the line is | to the line of the reflection or
when it is the line of reflection. |
(v) When the 1ine contains the point of the symmetry.
(¢) When the line is parallel to .the direction of the
translation. |
(d) When the rotation is a multiple of a half turn and the
line contains the point of rotation.

5. (a) All the points of m.

(p) P
(c) None.
(a) p
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6. 1, and Sg.
7. (a) point symmetry.
(b) 1line symmetry, point symmetry, and rotational symmetry.
(¢) 1line symmetry, point symmetry, and rotetionsl symmetry.
(d) 1line symmetry, point symmetry, and rotational symmetry.
8. Lines are perﬁendicular when either line is its own reflection
in the other line,

9. An isometry is a mapping that preserves distance.

5




Course I Chapter 10

Segments, Angles and Isometries
(16-21 days)

Commentary;for'Teachers

The major purpose of this chepter is to sift out of students’
experiences and intuition some mathematical cdncepté and principles
concerning segments, angles, ahd isometries which may be use
quickly and easily to derive some theorems. There is no persistent i
attempt'to use formal procedures. The methods of deductiog and
experlmentation are used indiscriminately leaving it to teachers

"do what is natural".

and studentvs to
One may see this chapter in four parts:
Part 1. Segments. Sections 10;2-10.9.
" Part 2. Coordinates and Isometries. Sections 10.10-10.16.
Part 3. Angles. Sections 10.17-10.23.

Part 4, Angles and Isometries. Sections 10.24-10.31.

One may also regard as the purpose of this chapter to create
an organization in the set of points in a plane, for out of an i
organization (é set of basic relations) one can deduce theorems.
" The first attempt in this effort to organize is to consider, for
points on a line, the Line Separation Principle. From this
principle, that a point of a line separates it into two disjoint
sets, we are led to a recognition of open halflines, halflines or
rays, and segments. {Our definition of a halfline, which 1s
syﬁonymous with ray, is not the usual one. We prefer a halfline
to resemble a halfplane, both of which are defined as including

their boundaries, We could have defined them both as open sets,

Al
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10.2 Lines, Rays, Segments 10.3 - 1 day

The concept in this section to be emphasized is the halfline,
The student has had éxpérience with lines and rays in Chapter 9.
The first Separation Principle is defined in this section.

The exercises may be done in class.

10.3 Exercises

1. T TF; TE TR
2. a. IC 4, I g. &D J. &
b, B e. ® h B k. 4
3. a. BE° b. W c. AT d. BD7 yes AU ADZ..
4. a. T b, F c¢. T 4. F e F f£. T g T
5. a. =2€£x%x<3 c¢. x<3 e. allnumbers g. x>0
b. x > -2 d. x>-2 f. 04£xK3 h. all numbers

10.4 Planes and Halfplanes 10.5 - 1 day

The second separation principle is defined in this section:
that of the plane., The Exercises 1-7 may be done in class as
they continue the development and reinforcement of this section.

Exercise 8 may be assigned.

10.5 Exercises ,
1. T 2., P 3. T 4, F 5, F 6. T 7. F

8. QIT = H_,MH, 5  QIII = H ,MH_ 5  QIV = H, MH__
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but becausefthere are more occasions to refer to "closed halfplanes"
than to “6p;n halfplanes", we allow ourselves the convenience of
defining halfplane to be a "closed halfplane”,

We use coordinates extensively, first line coordinates and _
then plane coordinates. It is hoped that students will learn to
use them easily. Thus distances and midpoints are treated in terms
of line coordinates in Part 1.

The second major step in organizing or structuring the set of
points in a plane is taken by the Plane Separations Principle
(also in Part 1) and this leads to halfplanes, which in Part 3,
paves the way fbr angles. _

In Part 2 we continue the use of zoordinates to treat
isometries. The important item in each case is the coordinate
formula that serves as the rule of the isometry. In Section 10.10
we introduce coordinates by showing how useful they are in extending
isometries from a pair of points to the points of the line containing
the pair, or from a triplet of noncollinear points to the plane
containing the points. This notion may prove to be too sophisticated
for 7th year students, and if this is indeed the case, one may omit
this section entirely. It has no accompanying set of exercises.

We list the coordinate formulas for isometries, It should be
noted, however, that the formulas for the two line reflections
are valid only for rectangular coordinate systems, while the other
two are valid in any coordinate system.

Translation from (0,0) to (p,q): (X,y)——>(x +p, ¥ + Q)

>(X, ‘Y),
A study of the properties that are invariant (preserved)

Reflection in the x-axis: (x,y)

under these isometries use these coordinate formulas and when

248
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appropriate, equations and slopes of lines. Both éguétions and
slopes serve in studies of collinearity and parallelism.

It is noteworthy that perpendiculars are introduced through
line reflections and that rectangular doordinate systems follow
naturally therefrom. (Perpendicularity is continued here after
having bteen introduced in Chapter 9.)

In Part 2 we develop a éoncept of angle which iiffers from
the one gencrally developed in the United States., It has been
suggested by Professor G. Chogquet as the result of his experiences
in teaching children and the experiences of other professors in
Europe. He bvelieves (and we concur) that the notion of the
'angular region is closer to one's intuitive notion of an angle
than the union of two noncollinear rays having the same endpoint.
Our analysis of the analogy between segments aﬂd the regilon notion
of an angle leads us to agree with Professor Chogquet. 1In fact, we
suggest that yoﬁ exploit this analogy to the hilt in teaching the
concept of angle and the measurement of angle., For some suggestions
of this analogy, see Exercise 5 in Section 10.18.

Section 10.21, on Boxing the Compass, will probably be of
interest to Boy Scouts as well as others. However, our major
purpose in presenting it is to exhibit the bisection process.

This process is also used in graduating an inch-ruler as well as
other linear systems. Halving is a natural folk concept, as found
for instance, in the measure "half of a quarter" instead of an
"eighth", and as such has a firm place in one's intuition. The
Process can also be used to construct a sequence of rational

numbers whose limit is an irrational number. However, this section

may be omitted without loss of continuity. (For this reason

. 9aq
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. we have not ﬁritten an éccompanying set of exercises. If
‘pressed for time--this may be omitted.) |
In FPart 4 we study the relationship between angles and these
types of isometries. Quite early we come to the important
property that ismetries, which by definition preserve distance,
turn out to preserve angle measures also. This furnishes the

underlying program for Sections 10.24-10.29. It leads quickly

to a demonstration that the measures of the base angles of an

j isosceles triangle are the same, that similar properties are
found for kites and parallelograms, and to the "Z angles"'(alter-
nate interior angles of parallel lines) and the "F angles"

(corresponding angles of parallel lines). Part 4 ends with a

lengthy study in which isometries are used to show the triangle-

‘ angle-measure-sum property. This basic property then provides

the student with many opportunities to make simple deductions

(corollaries). Thus this chapter ends with an intensive experience

J in deductions.
i Students will use frequently the property of isometries that
preserves angle measures. This may suggest the possibility that

all mappings that preserve angle measure are isometries. They

should be quickly disabused of this error. We included an exercise
among the Review Exercises, Exercise 13, which dispels the notion.
If students show interest in this matter they should be encouraged

to discover for themselves that while distances are not preserved

|
{
1
|
|
i
!
]
|
i
|
1‘
1
!
{
1

it is true that ratios of distances are preserved. We have here the
beginnings of the mapping of the plane into itself which is called

a similitude.
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10.6 Measurement of Segments 10.7 - 1 day

Measurements of segments are discussed as mappings which
assign the endpoints of a segment to corresponding numbers on
a ruler. The section also points cut that a translation
preserves distance. It might be helpful to have the sﬁudents
experiment in class with rulers to emphasize the ideas §f

mappings and translations., The teacher should emphasize the

idea of a line coordinate system and the coordinate of a
point, &s this will be discussed again in Course II--Coordi-

nate Geometry.

10.7 Exercises

Loa, jo-13 =13 e |3-13 =1 1. [1F-2| =1
bolo-331 =3 £ lF-2l =1} g -1 -2
c. 10 -5 =52 @ |4 -3l =3 w135 - 4fl - 3
1
a. lig - ol =4 h 5 -3 =5 1. |4 - 53l = 12
2. 3 or -3
3. |x -8 =2 >(x -8 =2 o0rx -8 = -2) >(x = 10 or 6)

> (x = 89% or 76%)

10.8 Midpoints and Other Points of Division 10.9 - 2 days

' These two sections should be developed carefully. The
formulas for midpoints and for other points of a segment are

developed and then reinforced in the Exercises l-4 of 10.9.

014
[
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It would be wise to do these in class since they are needed
later. Exercise 5 may be assigned for homework. (Exercises

| 2, 3, 4 develop the Triangle Inequality Property.)

10.9 Exercises
1. a. If x is assigned to B then 5 < x < 12 guarantees that
B is between A and C.

b. [5-8] +|8-12] =|5-12] or 3+ 4 =7
1 1 ' el L1
|5-11§|+|11§-12|=|5-12| or 65 + 5 =T
c. AB=|5-x] =x-5,8=|x-12| =12 -x, AC =
|7 - 12| Therefore AB + BC = AC.

2. a, The additive property of betweenness for points; same
reason
b. AB =AC +CB =1y + Trs |
¢. The additive property of betweenness for points; the
substitution principle

DA + AC + CD

3. The perimeter p, of ADAC
The perimeter ps of ADBC = DB + BC + CD
To prove py > pe it is sufficient to prove DA + AC > DB + BC
or DA + AB + BC > DB + BC or DA + AB > DB

4., By the Triangle Inequality Property AB + BC > CA or
AB > CA - BC, or CA - BC < AB. The same proof can be given
for BC - AB < CA and CA - AB < BC.

5. (a): (e), ()




-251-

10,10 Using Coordinates to Extend Isometries

10.11 Coordinates and Translations 10.12 Exercises - 2 days

Section 10.10 develops isometries further and builds an
affine plane coordinate system. Emphasis should be placed on
drawing lines parallel to the axis. Section 10.11 continues
translations in the plane, develops the parallelogram, the
concept of the diagonals bisecting each other and reinforcement
of point symmetry.

10.12~~ExXercises--may be done partly in class and

completed as an assignment.

10.12 Exercises (Ex. 1, 4-6 may be done in class.)

1. a. Midpoint of AB' has coordinates (%(a +c¢ + p),
%(b 4+ d + q) and the midpoint of A'B has coordinates
3(c + a +p), (3(d +b +q)). Hence AF' and KB

bisect each other..

]

b. The sum of the x-coordinates of A and B! a +c¢c + p.

The sum of the Xx-coordinates of A' and B =c¢ + a + p.
atc+p=c+a+pby the associagtive and commuta-~
tive properties of (Q,+). (This assumes a principle
from preceding times,)

c. b+d+qgq=4+Db+ g by associative and commutative

properties of (Q,+).

2, a. c(3,2) c. D(-3,-5) e. A(-4,4) g. D(ate-c,b+f-d)

b. ¢(5,5) d. B(2,-1) f£. c(a,b)
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in the suggested coordinate system C has coordinates (1,1),

E has coordinates (%,O), and F has coordinates (%,1).

Then midpoint of AC and midpoint of EF have same coordinates,

that is, (%u%). Hence AECF is a parallelogranm.

a. PR and S@ have the same midpoint (with coordinates
(2,2)) and hence PQRS is a parallelogram.

b. Using the coordinate system in a, the coordinates of
B, A, C, respectively are (2,2), (1,3), (3,1) from
which it follows that B is the midpoint of AC. Since it
it is also the midpoint of PR, it follows that PCRA is
a parallelogranm,

To be suitable the sum of the x-coordinates of P and R

should equal the sum of the x-coordinates of S and Q, and

the sum of the y-coordinates of S and Q. The significance
of taking any coordinate system is that the truth of the
staterent to be proved in Ub is independent of coordinate
systems; or to put this in the jargon of mathematicians,
the property is "coordinate-free". This suggests that the
property is a geometric (rather than algebraic) one,

(This exercise should be done in class.)

T.et A and B have coordinates (a,b), (c,d) in some coordi-

natc system., Then M, the midpoint of AB has coordinates

(2%9, E%Q-. Tet a translation of points of the plane (in
which we are working) have rule (x,y)———>(x+p,y+q).
Then Aa,b)———>A" (a+p,b+a), M(ZE %) >

M (B2 ip, b4 1q) and B(c,d)——>B'(ctp,d+q). Tt is an

easy matter to show that the midpoint of A'B' is M! for

FEA S
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%(a+p+c+p) = 2%9 + p and %{b+d) + q.

10.13 Perpendicular Lines 10.14 - 1 day

This section and the exercises may be combined to develop
and reinforce perpendicularity. Exercise 4 defines the mid-
perpendicuiar or perpendicular bisection of a line. - This
exercise and Exercise would be to the students advantage if

they were done in class.,

10.14 Exercises
l, a, ¢ l_a because ¢ # a and a is its own image in the
reflection in c.
b. Yes; b ] c.
c. The results support}the statement, since we started
with & || b, made a | ¢ and found b | ¢,

2, No., Through A there can be exactly one line perpendicular
to BC and since we were told that AC | BC then AB cannot
be a second perpendicular.

3. No. If £, and #4g intersect at some point, say P, then
there would be two perpendiculars to line a containing P.

4, (in class)

Tre image -of P is P itself, 23ince A ~A!' and
Peee——2>P AP = A'P, Let W be any point in 4, Then

¢ >Q and AQ = A'Q,

5. (in class)

a. (1) 4 is the boundary of two halfplanes, Since KB




-

-254 -

intersects 4, A and B are on opposite sides of 4.

(2) E is on the same side of £ as B, Hence E and A are
on opposite sides of 4.

(3) E and A are on opposite sides of £,

(4) The auditive property of betweenness for points.

(5) The Triengle Inequality Property.

() Every point in the midperpendicular of a line segment
is as far from one endpoint of the segment as the
other,

(7) The substitution prineipie (CA for CB).

(2) The additive property of betweenness for points.

b. The argunent in & can be modified by replacing B with A

and E with F,

¢c. Every point in one of the halfplanes determined by the
midperpendicular of a line segment is nearer to the end-
point of the segment in thet halfplane than to the other

endpoint.

10.15 Using Cocrdinates for Line Reflection and Point Symmetrics

20,763 days T
Rectanguler coordinate systems are introduced here as a

special coordinate system. Reflections in the axes yield the

rules for reflections and the composition of these reflections.

The composltion of Lx °

zy is a point symaetry in the origin.
Students may volunteer other names for this composition.
The exercises 10.16 may be begun in class and continued

at home, but they should be discussed in clu.s,

org



-255-~

10.16 Exercises
1. a. (3,-5); (-3,5); (-3,-5) e. (2,0); (-2,0); (-2,0)

b, (-3,-5); (3,5); (3,-5) £. (0,-5); (0,5); (0,-5)

c. (5,3); (-5,-3); (-5,3) g. (-3,1); (3,-1); (3,1)

d. (~3,5); (3,-5); (3,5) n. (82,643); (-82,-643); (-82,643)
2. Consider the problem in this light:

Y S S
Flé%iiii_.__.__.__.__.ﬁg?qil..__ TSy
3% ]
¢(3,4)
5> X

P'(%y,y1) is the image of P(x,y).
Then X = 3 = 2 - X,
so Xy = 6 - x,

AlSO, y:. = yo

'I (X,Y)

Thus, (x,y) >(6 - x,y).

!

~(3,8) (x,4)

N

r (XH\JI)

As in the above:
X, =X andy -4 =4 -y, so

yi =8 -v.

M:ﬂmm y-!-vg\lij.
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Hence, (x,y) (x,8 - ¥y).

a. (5,4) e. (3,2) e. (6,0) g. (-2,-3)

b. (6,3) d. (9,~1) f£. (-4,0) h. (6-x,y)
3. a. (1,4) c. (3,6) e. (0,8 g (8,11)

b, (0,5) d. (-3,9) f. (10,8) h. (x,8-y)
4, a. (-1,-4) c. (-3,-2) e. (0,0) g. (-8,3)

b. (0,-3) d. (3,1) f. (-10,0) h. (-x,-y)
5. a. A'(1,5); B'(3,-1)

b, M(2,3); M'(2,-3)

c. (2,-3) = (83, =254

(A line reflection preserves midpoints.)
S>B! (22, -24)

6. A(2a,2b) >A' (2a, -2b), B(2c¢,2d)

M, midpnint of AB (a+c,b+d)

>M! (atc,-b-d) and

midpoint of ETB' also has coordinates (a+c,-b-d). Hence
zx p-eserves midpoints.

7. A(2a,2D)
M of AB (0,0)

>B! (-2¢, -2d).
>M'(0,0) = midpoint of ATB', (Special

~A' (-2a,-2b), B(2c¢,2d)

case of Exercise 6)

8. a. This can be done by observation or by use of slope

| . - 3-1 . D
% formula, i.e. %:% - T%:% - - £

b. The images have coordinates (1,-3), (4,-1), 10,3).
-1+3 _ 4 _2
The new slopes are TI-5° 3
¢c. The reflections preserve collinearity.
9. Images under point symmetry in O have coordinates (-1,-3),
(-4,-1), (-10,3). Equality of slopes is preserved. (The

line and its image ar: parallel.)

o
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Problem 8
\

It might be advantageous to indicate that all lines have an
equation in the form of y = ax + b, Then by using simul-
taneous equations you can demonstrate slope and also '
indicate that all 3 points satisfy the equation. (This will
depend on the maturity of the class.)

(This may be ontional) 9 is similai to 8.

Both problems may be done from an intuitive viewpoint.

10.17 What is an Angle? 10,18 - 1 day

Care should be used here to define an angle. This section
should include a definition of angles of 0° and 180°. The
teacher should be aware of the fact that these 2 "degenerate"
angles do not satisfy the definition in themgdok. However,
if they are defined as they are in the text, the student should
be able to accept these as "special cases". It is important
that they accept the 0° and 18¢° angles as angles, since they
are necessary ones. The students should also be aware of the

following:

TR

Figure a.
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a) LAOB is the half-plane defined by the shading in

Figure a.,

, AN .
A o 8

Figure b,
b) LBOA is the half-plane defined by the shading in
Figure b,

10.18 Exercises
l. LBOD ... red-black pencil
LAOC ... blue-black ink
LBOC ... red~black ink
2. a, LXOY; LZOW and LYOX; LWOZ
b. LYOY; LZ0Z; LX0X; LWOwW
c. LYOZ; LZOX; LXOW; LWOY
3. a. LAOC; b, LCOB; c. LAOD; d. LcCOC
4. (AOB, LAOC, LAOD, LBOC, LBOD, LCOD
5. 2. An angle has two endrays.
b. An angle is a set of rays.
? ¢. The interior of an angle contains rays of the angle
| other than its endrays.
d. If Vﬁ>and Vﬁ>are interior rays of LAVD, then every
ray in LVCD i in LAVB.
6. From Funk and Wagnalls: Standard College Dictionary.
(1) Critical angle (cptics) the least angle of incidence
at which 2 ray is totally reflected
(2) Angle of attack (aeronautics)

ERIC 260
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(3) Gliding angle (aeronautics)
(4) To angle a moving object in order to avoid a hazard
(5) Angle iron
(6) Angle meter (clinometer)
(7) BAngle of attack (aeronautics)
(8) Angle of incidence (physics)
(9) Angle of view (optics)
{(10) Angle of yaw (aeronautics)
(11) Angle plate (mechanics) (an angle worm has reference

to an angler, one who fishes with a hook (an angle)).

10.19 Measuring an Angle 10.20 - 1-2 days

The students should each have protractors to use and each
student should be checked to see that he is using a protractor
correctly. The exercises can be done partly in class, perhaps

Exercises 4, 8, 11 in class and the rest as homework,

10.20 Exercises

1. a. 60 d, B¢ g. 1220 j. 180
b. 45 e. 105 h, 0 k. 90
c., 45 £, 135 i. 180 1. 90
2? a. TO c. 50 e, 30
" b, 80 d. 10 £. 130

3. a., T0 b. 110 c., 260
4, (v) LABC and LCBD

. 281
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12,

13.
1k,

15.

10.21 Boxing the Compass 3
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LAVB and LBVC; LBVC and LCVD; lLCVD and LDVA;

LDVA and LAVB; LAVC and LCVD; LAVC and LAVD;

LCVD and LDVA; LCVD and LCVB.

In the figure for Exercise 5 mLDOB + miBOC > 180, which is

not a possible angle measure.

a. mAVB =92  d. mEVC = 120  g. mnlBVF = 122
b. mDVC = 28  e. mLAVF = 28 h. mlAVD = 180
c. mAVC = 152 f. mlFVD = 152

003 OY¥f LDOC

a. LAOB; b. 4DOC

mLAOC = 130°, mlBOD = 130°, mLAOB = 50°, mLCOD = 50°.

mlA =Tl, mLB =65, mlC = Il

(These are approximations.) Sum of measures = 180.

a, 6I>and 5§>do not:intersect the semicircular edge of the
protractor and hence are not assigned numbers.

b. No. The difference between any two numbers on the
protractor cannot exceed 180.

mLBVC = mlLAVD

90

a. mLAVB is approximately 30; then mfiBCV = 180 - 30 or 150

b. 180 - 70 = 110

This seétion may be omitted if pressed for time or

{
5 students may read it on their own tine.

10.22 Mori &bout Angles 10.23 - 1 day

Here the uniqueness of the midray is defined. The names

262
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of angles such as right, acute, and obtuse are also defined.
Exercises 7,8 may be included in the classwork., The rest of

the exercises can be assigned as homework.

10.23 Exercises

Answers for Exercises 1 and 22 should be the same except
for position.

Answers for Exercises 2b - 6 vary with each student.
Included in Answer 6 should be the idea that the sum of 2
right angles is 180°, and the sum of the three angles of a
triangle is 180°, hence there is a contradiction.

T. a. no b. yes ¢. ho; noj no d. yes
e. A ray ls between two other rays if it is an interior
ray of the angles having the other rays as sides,
8. If VC is between VA and VB, then mLAVC + mLCVB = mLAVB.
If C is between A and B, then AC + CB = AB.

10.24 Angles and Line Reflections 10.25 - 1-2 days

Isometries preserve distance. It is demonstrated here
that they also preserve angle measure. This concept is
helpful in demonstrating that base angles of an isosceles
triangle are equal and leads to other deductions found in

the exercises,

10.25 Exercises
These exercises should be completed as they develop the

concepts presented in 10.24,

263
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rgmma e e

1. Since AB = AC, AABC is isosceles and m{ABM = mLACM
m{ABD = 180 - mLABM, mLACE = 180 - mLACM. Hence
miABD = mLACE,
2, a. 1is true because BD = CE and BM = CM. It follows that

DM = EM. Also AM | BC. Hence AM is midperpendicular
of DE.

b. 1s true because the endpoints of a segment are images

under the line reflection in the midperpendicular of
the segment.
i ¢c. is true because 4: g————>A, D——>E, Hence AD = AE,
' d. is true because & preserves collinearity.
e. 1is true because 4: LDAB——————>£EAC“and isometries
preserve angle measure,
3. Suppose that P is not in 4, .Tnen it is one of the open
halfplanes of 4 and then would be nearer to Q than to P,
and nearer to R than to Q. Both of these are false since

PQ = QR. Therefore P.is in 4.

|
I
|
S
| 4., a. isosceles; isosceles
% b. The midray of LA is in the midperpendicular of BD.
; The midray of LB is in the midperpendicular of BD.
| c. One. This leads oto: the midrays are in AC.

d. LADB and LABD; LADC and LABC; LDCA and LBCA;

LBDC and LDCB; LDAC and LBAC; LACD and LACB.

5. The line reflection in AC: D—>B. Hence'AC is the

midperpendicular of DB, The line reflection in DB:

A————C.

‘ : 264
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<=> —
Hence DB 1s the midperpendicular of AC.
Another approach is to use midrays K5>and Bg>and point
that then we have 2 isosceles triangles and the midrays
are midperpendiculars as well, hence the diagonals bisect

each other and are | to each other.

10.26 Angles and Point Symmetries 10.27--1 day

This section continues the development of isometries and
angle measure and relates point symmetries to the idea of

isometries. The exercises may be done in class.

10.27 Exercises
1. If the measure of one angle is a, then the measure of the

other three are 180 - a, a, 180 - a.

.C_
2. a F;£i~ b FKQL__

PRV TANEAEA 3

> Al
6_-3' \ : 0 A
AV o B A
A
t
c \C\ . ¢ ’
C. . L
N A

>

v
Show the parallelogram at the board.
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V——>A, LBVA—>LB'AV.

Since O is the midpoint of VV' and BB', VBV'B' is a
parallelogram and it follows that AB' || BV (opposite
sides of a parallelogram lie in parallel lines). ...lies
in a line that is parallel to the line of the second side.

I, The quadrilateral is a parallelogram. In addition to all
the properties of a parallelogram this quadrilateral (a
rhombus) also has the following:

The diagonals bisect each other a right angles.’.
Each diagonal here is the midray of two angles.
The sides have the same length.
Please demonstrate this at the board so that the students
can see the rhombus and that the diagonals are |.

5. This quadrilateral 1s also a parsllelogram but not a rhombus.
Again, demonstrate at the board.

6. Yes. The intersection of AC and BD. Under this symmetry
A< >C, D< >B, KB -——>CD; AD ——>CB; LDAB——>LBCD

hence m{A = mLC, etc.

10.28 Angles and Translations 10.29--1 day

These two sections should be done as a unilt.

10.29 Exercises

1. VA2— ER7 8' B
VB———>AB! \
e

LAVB———>LA'AB! ~ A A v
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g!
2. a. VA——SAY \\
VB———SA'B &
A Y\

LAVB———5LVA'B"

}

AW

p v!

v A

R
b. VA SBA! A?
VB———>BB!
LAVB—~———>/A'BB!
b.

\"4

B

A Vv
3. a,

v

vu
Yoo T, v Y
T2 with T,

c. yes, yes

4, a. The translation that meps V onto Q T|WHhTz
b. The point symmetry in M
¢. The point symmetry in Q
d. Seme as ¢
e. ¢ with a

f. They are the sanme.

10.30 Sum of Measures of the Angles of a Triangle 10.31--1-2 days

The sum of the measures of the angles of a triangle is
180°. 1In this section the "proof" is developed using the
concepts of translaetions, and isometries. A kind of paragraph
proof for the right triangle and for sum of angles of a
quadrilateral.

O
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Exercises 1, 5, 8, 10, 11 may be assigned.

Exercises 6, 7, 9, 12, 13 may be done in class.

10.31 Exercises

a. T0 b. 69 c. 11

a. 50 b. 80 c. 56 d. 69.5
60

&. 30, 50 b. 42, 70 c. 56 93%
a. 98 b. 136 c. T2

The sum of the measures of three angles in 90.3 or 270.

Hence the measure of the fourth angle is 360-270 = 90.

mlA = mlC, and m{B = m{D. But m{A + miB + mLC + mlD = 360.

Hence 2miA + 2mLB = 360 or mLA + mLB = 180. By a similar

argument miC + miD = 180.

a., The measure of an obtuse angle is greater than 90.
Therefore the sum of measures of two obtuse angles is
greater than 180, The sum of the measures of angles
of any triangle is 180. Therefore there is no triangle
the sum of whose measures is greater than 180.

b. The sum of the measures of the base angles is less
than 180. Since these measures are the same, then each
measure is less than 90. Hence the base angles of an
isosceles triangle are acute angles.

a, By the isosceles triangle property mlA = m{B = mlC
since mLA + mLB + mLC = 180, then mlLA = 60.

b. In AADE, m/E + mLEDA + m/DAE = 180.

In AADC, mZADC + m{DCA + mLDAC = 180.

26%
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In AACB, m/ACB.-+ mLCBA + mLBaiC = 180.

The sum of the measures of the rine angles is 540,
Among these nine angles mLZEDA + m{ZADC = mlEDC, mLDCA
+ mLACB = m{DCE and mlEAD + mLDAC + mlCAB = mlEAB,
because of the Betweeness-Addition Property of Angles,
Hence, the sum of the mecasures of the angles of

ABCDE is 540.

% . 540 = 108
mLBCD = 110
mLBCD = 117

Yes, mL{BCD = mLA + mLB (An exterior angle of a
triangle is equal to the sum of the opposite interior
angles.)

m/BCD = 180 - m{BCA = mlA + mLB

180 - miA + m{B = mLBCA

180 - mLBCA = m{A + mLB. Then by transitive property
it is proved.

mLADC = 98°

mLPAD = 100, miQDC = 82, mLROB = 70, mLSBA = 108,
360

360

360

If A, B, C, D are the angles of ABCD, with measures a, b,

¢, 4 then the "are" angles have measures 180 - a, 180 ~ b,

180 - ¢, 180 ~ d. The sum of the measures of these latter

angles 1s 720 - (a+b+c+d) = 720 - 360 = 360.

12,

a.

T20

269
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b. 360
c. 120; 60

13. for 8 sides; 1040, 360, 45
for 10 sides; 1440, 360, 36

10.32 Summary 10.33 Review Exercises--1 day

These two sections should be assigned and reviewed in
class. Time should be all for Quizzes and 1 day allowed for

g Chapter Test.

ANSWERS - REVIEW EXERCISES

1. a. AB=}-2 -4} =6
1
b, 5 (-2+4) =1 <

c. If x is assigned to C, then -2 < x < 4.

d. If x is assigned to D, then |-2-x| = 2|x-6|. Since

1

3 |

f. |x-(-2)] = 6 and (x+2 = 6 or x+2 = -6) and x = 4 or +8

2 < x < -6, -2-x = 2(x=-6) and x = 3

’ but since AB - 2 > A, 4
; 2. a. AB=|-12 - (-6)] =6
| b. % (-12-6) = -9

>B, then E = B.

E c. -l2<x< -6

d. |-12 - x| =2 |jx + 6] and x = -8
e, =12 = x = -2 (x+6) and x = 0

-18 or -6

f. |x-(-12)| = 6 and x
3. a. mLAVB = |10 - 110|

| _
g b. % (10 + 110) = 60

100

¢c. No

d. 10 < x < 110 ()rﬁ_ﬁ“
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e. 100
f. |y - 10] =2]110-y| ory =7

Wi

4. a. mAVB = [122 - 38| = 84
b. % (122 + 38| = 8
c. yes
d. 38 < x < 122
e. 84
£. 122 -y = 2(y-38) or y = 695

5. It cannot be done since the sum of the measures of two
argles of a triangle cennot exceed 180. In the attempt
to draw such a triangle two sides would diverge and thus
the triangle would not "close".

6. a. A' (-4, -2), B' (1, 3), C' (6, -2)

b. No, since slope of AB 3 slope of BC. No--same reason

for A', B', C!'.

c. AB = A'B' since line reflections are isometries.

d. mlABC = mLA'B'C' because line reflections, like all

isometries preserve angle measures.

7. a. A'(4,2), B'(1,3), C'(-6,2)

b,c,d. same answers as in Exercise 6.--b, ¢, d.

8. a. A' (4, -2), B'( -1, 3), C' (-6, -2)

b, ¢, d. same answers as in Ex. 6.--b, ¢, d, modified to
read "point symmetry in the origin" for "line
reflection on the x-axis".

9. a. A' (6,2), B' (1,7), C' (-4,2)

b,c,d, same answers of Exercise 6.--b, ¢, d, modified to

read "point symmetry in P(1,2)" for "line reflec-

27
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tion in the x-axis".
10. a. A(6,2), B(1,-3), c(-4,2).
bs; ¢, d. same as Exercise 6.--b, ¢, d, modified to read
"line reflection in the given perpendicular"
for "line reflection in x-axis".

11, =. (032): ()4':0): (2:'1): (393): ("25'5).‘7 (0:0)
b, 2

—————
\ .
¢c. Line translations in the line with equation y = x.
Domaln = Range = set of points in plane. The rule of
its inverse is (x,y)——>(y,x)
d. the identity me)piug
12, a. (0,-2), (-4,0), (-2,1), (-2,-3), (2,5), (0,0)

c. It is a line reflection in the line with equation
X+y = 0. Domain = Range = Set of points in plane.
d. yes
13. No. Distances are doubled.
14, The point symmetry in M maps B onto C, C onto B, and A
onto A', where M ié the midpoint of AA'. Also the trans-
lation that maps A onto C, maps B onto A'. Hence mlA +

miB + mlC = mlA'CD + mLBCA' + miC = 180.

F o
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15. a. 120 b. 60 c. 135 d. 150 e. 162
16. a. 60 b. 120 e. U5 d. 30 e. 18
17. The midperpendicular of BC contains both D and A. Hence,

under the line reflection in this midperpendicular

D- >D, A SA, B- >C and LDAB————>LDCB, or
mLDAB = m/.DCE,

Suggested Items for a Test - Chapter 10

i. Let a ruler assign -4 to A and 8 to B.
&. Find AB.
b. Find the number assigned to the midpoint of AB.
c. For what numbers assigned to C will C be between A
and B?
d. What numbers may be assigned to D if AD = 5¢%
e. VWhat numbers may be assigned to E if AE =3 - EB?
f. What numbers may be assigned to points in AB?
2. The numbers assigned to VA and VB by a protractor are 50
and 105.
a. Find mLAVB.
b. PFind the number assigned
to the midray of LAVB.
¢. PFor what numbers assigned to

o
V¢ will VC be between VA and‘w

VB? »

d. What numbers may be assigned to

VD if mLAVD = 20.

Q . ¢2r’£’
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e. For what numbers assigned to VE will ZAVE be obtuse?
f. Fof what numbers assigned to VF will m/ZBVF = 3mLAVF?

3. In a certain rectangular coordinate system the coordinates
of A, B, C are (-3,3), (-1,1), and (4,-4) respectively.

a. Find the coordinates of their images under a line
reflection in the x-axis.

b. A, B, C collinear. Show that their images are eliso
collinear by calculating slopes.

¢. Exglain why the length of AB is the same as the length
of its image.

4., In a certain ccordinate system (not necessarily rectangu-
lar) the coordinates of P, @, R are (-2,3), (0,0), (5,1)
respectively.

a. What are the coordinates of P', R', Q', the images of
a translation under which the image of @ is Q'(1,2)?

b. Compare the measures of LPQR and LP'Q'R'. Justify
yonr auswer.

5. Explain why the sum of the measures of the angles of

quadrilateral ABCD is 360.

6. Pind the measure of each angle of a 10-sided figure if

their measures are the same. Also find the measure of an

514
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exterior angle.

Answers for Suggested Items for a Test

AB = 12 a. |x-(-4)} =5 X =1or -9

2{(-4+8) =2 e. |x-(-4)| = 3|x-8] x =14 or 5
~4<x<8 f. x> -4

55 d. 30 or 70

e e. 140<x<180

50<x<105 £. [105-x| = 3|x-50]  x = 633 or 221

A'(-3,-3), B'(-1,-1), C'(4,4)

Slope A'B' = slope of B'C' =1

A line reflection is an isometry--hence it preserves
distance,.

P (-1,5), Q'(1,2), R'(6,3)

They are the same., Iscmetries preserve angle measures

and the translation maps LPQR onto LP'Q'R'.

Conisider AADC and AABC.

m{D + mLDAC + mLACD
Sirice mLDAC + mLCAB
mlDCB or LC, we add and obtain mlA + -mlB + mfC + miD

8,

0t

180 = m{B + mLBAC + mLACB.
mLDAB or mf{A, and mLDCA + mLZACB

360.

180) = 144 180 - 144 = 36

275



TEACHERS COMMENTARY

Course I
Chapter 11
Elementary Number Theory

(Approximate Time 9-12 days)

It has been noted in the introduction of the commentary that
Chapter 11 is not a key Chapter in the development of this program.
Although thls Chapter is not essential, the teacher should make
some attempt to introduce its basic ideas. The teacher should be
aware that this commentary has been written in the rpirit thsat
this Chapter will be covered in full, but the teacher may not have
the time to do so. As a result, the teacher may approach this
Chapter in different ways once the key Chapters have bee:n completed.
He may, of course, cover this Chapter in full. Another alternative
that has been suggested is that this may be assigned as a self-
study Chapter. 1In this case the teacher should be selective in
assigning reading and exerzises. Also, he may choose some major
ideas from the section and introduce them in class. Once again,
the time element is key note irn determining the completeness of

Chepter 11.

Purposes of this Chapter:
1. To examine (N,+) and (N,®)and some of their properties through
an axlomatic approach,

2. To reint'orce the concepts of multiple, factor and divides.

276
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3. To develop an elementary way of proof dependent on certain
axioms.

4. To iIntroduce the division algorithm and its applications.'
To introduce prime and composite numbers.

6. To develop the concept of unique factorization of the natural
numberg through a discussion of complete factorization.

7. To examine the sieve of Eratosthenes ss a technique of
discovering primes.

8. To study some important proofs of number theory such as
Euclid's proof that there are gn infinite number of primes.

9. To introduce Euclid's algorithm, a technique for finding the

greatest common divisor of two natural numbers.

11.1 (N, +) and (N, )

approximate time (1 day)

The purpose of this section is to review the concept of
an operational system, in particular, (N, +) and (N, *) and to
consider the definitions of (1) factor (2) multiple (3) divides.
‘Here, for the first time, the student encounters an approach to
mathematics. It should be emphasized et theis point thet math
itself is built from axiomatic systems, The distinction between
an axiom and a theorem should be clear in the minds of the
stu&ents.

Recall that the relation "divides" has been previously
discussed, it may be important to note that this relation is
reflexsive, anti-symmetric, and transitive. Exercises 1l and 3

may be done as & classwork assignmment.

77
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11.2 Solutions to Exercises

1. (a) True. 2 + 3 or 5 is a natural number.
(b) True. 2+ 3or 6 is a natural number.
) False. 0 € Whbut 0 + 0 € N.
(d) True. (N, +) is an operational system.
{e) False, 1 €N, O €Whbut (0 * 1) € N.

(f) True. (N, *) is an operational system.

2. (a) Multip:e.
(b) x (and y) is a factor of z
» (¢) r is a multiple of p (and r)
i (d) divisor
(e) product of 7 and 8

(f) product expression.

g 3. (a) T (e) T (i) F
| (b) F (£) T (§) F
(¢) T g) T (k) T
(¢) T (h) T (1) F
4. (a) T 3 .13 =239 (e) T 13*5= 65
(b) F 91 = 5+17 + 6 (f) T 3+2=6, 3* 4 =12
1 3+6= 18
(¢) F 8 x 5= 4
(g) T 2va=n, a € N
(@) T h =1 - 4

(h) T l*n=n

(1) T n(n + 3) = N2 + 3n

by the distributive
property.

&
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5. () 6°1,3*2,2+3,1°*6

o) 71,17
(¢) 11

-
S SR DU IO S oS

(@) 12«1,6°*2,L4*3,3~4,2"6,1"12 i
(e) 13*1,1°13
(¢) 21,12
(g) 3°1,1°3
(h) 35 *1,7°*5,5°*7,1"35 |
(1) 36 *1,18*2,12°*3,9°*4,6°*°6,4*~9,3"* 12,
2 *18, 1" 36
(3) 37 1, 1°* 37

11.3 Pivisibility
(approximate time 3 days)

The purpose of this section is tovdevelop an elementary proof
dependent on 7 basic axioms. It should be stressed that the
axioms given and the theorems discussed are, for the purposes of
this Chapter, true only in N. 1In a proof, each statement should
be Jjustified by one of the following:

(2) Assumption (of given) 4

(b) Definitions

(¢) Axioms

(d) Replacement Assumption

(e) Previously proven Theorems.
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Depending on the type of class, the teacher's expectations
in terms of rigor for a proof‘may vary,;the format presented in
the text, although a good introduction, need not be followed. It
will be necessary to discuss each of the theorems in this section,

Axiom 7, the Division Algorithm, is not & new concept for
the student. The basic difficulty with this notion will probably
be the notation, which can be explained with a few simple examples.

Also in this section, the even and the odd numbers are formally
defined. A teacher might ask the students to formulate their own
definitions and then to compare them to those in the text.

Once &gain the teacher should use his own discretion in
selecting exercises. It should be noted thet if & proof of a
theorem is not assigned the statement of the theorem should be
discussed. Exercise 9 introduces a test for divisibility which can
be helpful to students in future experiences. However, the notation
and many of the proofs are difficult and need explanation, but

are certainly worthwhile.

11.4 Solutions to Exercises

1. (a) Division Algorithm
(b) Distributivity of multiplication over addition
(c) Property of 1
(d) Theorem A, 1
(e) 7 € N and 7 is not even

(f) 2b + 1 where b is same whole number

220



-279-

(g) "p implies q". Should e student interpret the sentence

g

"'4f q is false impiies p is faise', a correct answer

©
[/}

is "neither p nor q".

(n) (N, °) is an operational system.
2. (0, 13),(1, 10),(2, 7),(3, 4),(4, 1). ALl. (4, 1).

3. {(a) Given: 2| aand3 | b, 2, b €N

Prove: 3 | {a + b)

Proof

3|a and 3|b; e, b, € N Assumption

For some X, y € N, a = 3x, b = 3y Def. of r|s.

a +b=3x+ 3y Th. A, 1)

= 3(x + y) Distributivity (45)
(x +y) €N (N, +) is an operational
3| (a + b) system

Def. of r|s

(b) Given: c | &, c|| b; asb,e €N

Prove: c¢ | (a + b)

Proof
cle, c|b; e,b,c €N Asgumption
For some X, vy € N, & = cy, b = ey Def. of rl|s
a+b=cx+cy Th. A, 1)

=c (x +y) Distribvutivity (A5)
(x +y) €N (N, +) is an operational
el (e + b( system

Def. of r|s

292
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4, Given: a | b, b | c; a,b,c €N

Prove: a | ¢

Proot
a|b, ble; 8, b, c €N Assumption
For some X, y € N b = ax, ¢ = by Def. of r|s
~c = (ax)y Replacement: b = ax
c = alxy) Associativity (A4)
(xy) € N (N, *) is an operational
a|c system
Def. of r|s
5. Given: a|lb; 8, b, c € N
| Prove: albe
Proof
alb; a, b, c €N Assumption
For some x € N, b = ax Def, of r|s
bc = be Equality is reflexive
be = (ax)c | Replacement: b = ax
be = a(xc) Mult. is asscciative (A4)
a|be Def. of r|s

292 .
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6. (a) Given: a € E, b€ 0
Prove: a +b €0
Proof
a €EE, b €0 Assumption
For some x, y € W Def., of even end odd

a =2X, b=2y +1

a+b=28+hb Equality is reflexive
a+b=2x+ (2y + 1) Replacement
2 +b=(2x+2y) +1 Additiin is associative (A4)
a+b=2(x+y)+1 Distributivity (A5)
X+y €W (W, +) is an operational

- system
a+b€o

Def, of odd number

(b) Given: =a, b €0
Prove: a +bh €

Proof

a, b €0 Assumption
For some x, y € W Def. of even number
a=2x+1, b=2y+1 Equality is reflexive
a+b==a+b Replacement
a+b=(2x+ 1) + (2y+ 1) Addition of whole numbers
g +b=(2x+2y) + (1 +1) is commutative and

assocliative
a+b=2(x+y+1)

Distributivity: 1+1=2.1
X+y+1€W

(W,+) is an operational
a+b€E

system

« 2’3 . Def. of even number
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(¢c) Given: 2 € E, b €0
Prove: ab € E

Proof

a €RB, b€O Assumption

For some x € W, a = 2x Def. of even number

ab = ab Equality is reflexive

ab = (2x)b Replacement: a = 2x

ab = 2(xb) Mult. is associative (Al4)
xb € W (W, » ) is an op. system
ab € E Def. of even N

(d) Given: a, b € 0

Prove: ab € O

Proof
a, b €0 Agssumption
N For some x € W, a = 2x + 1 Def. of odd number
- ab = a b Equality if reflexive
ab = (2x + 1)b Replacement
ab = (2x) b + b Distributivity
(2x)v € E Previous exercise (c)
ab € 0 Previous exercise (a)

7. There are no three odd number totaling 30.
Proof: The sum of any pair of odd numbers is an even number
from exercise 6(b). If this even sum be increased

by any odd number the total is an odd number by
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exercise 6(a). Hence, the toal of any triple of odd ?
numbers is en odd number. But as 30 = 2(15), 30 is
an even number, so there are no three odd numbers

totaling 30.

(a) False 2|6 but 2\(6 + 1)

(b) True For assumptions needed, see exercise 5.

{c) True , 2
Proof |

alb + ¢, alb a,b,c € N Assumption

(p+c -b) €N (N, +) is an operational

system

al(b +c - 1) Exerecise 3b

b+c-Db=c¢ (N,+) is an operational

system
- ale

Replacement

(a) As 10 is even, it follows that every natural number N
may be expressed in the form
N=2x+y Where x, y € W
2x + y is even iff y is even from exercise 3(b) and
exercise 8(c).

2x + y is odd iff y is odd from exercises 6(a) and 8(c).

. _ n 2 1l _
Note: 2x = anlo + ... + a210 + allo and y = 8,
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proof will be sketched for a four-digit number.
séme idea can be used for any number,

N = 8,105 + 8,10° + 8,1C + &

83105= s (103-1) + 83=8s (1000-1) % 8s = 99985 + ag
a2102= aa(loa—l) + 8y=a, (100-1) + a8, = 99a, + a,

8,10 = 93, + a,

Hence N = (999as + &s) + 992 + 85) + (98, + &) + &
N = (99925 + 998, + 98,) + (as + 85 + &)
N = 3(33385 + 3385 + 38,) + (a3 + 8, + a,)
N=3x+y

where x = 3338, + 33a, + 38, €W
Yy =93 +a, + 8 €W

Hence, N 1s a multiple of 3 iff y is a multiple of 3

(1)
(2)
(3)
(4)
(5)
(6)

(1)
(2)

(3)

from exercises 6(c) and 8(c)

iff 4| (loe, + ao)

iff & =0 or5

iff 2|N end 3|N

iff 8| (1008, + 108 + a )
iff 9] (a, + & 4+ ... +a))
iff a_ = 0.

For some x € W, N = 4x + 10a; + &,

For some x € Wy, N = 6x + 8,

Let N = 6x + y where x, y € W

end y < 6. If 2|N and 3|N then 2|y and 3ly
(Exercise 8(c)). As y < 6 y must be 0. Hence
N = 6x and 6|N

9508



e

-285-

(4) For some x € W, N = 8% + (1008, + 10a, + a,)
(5) A proof exactly similar to 9(b) may be given.

(6) For some x € W, N = 10x + 8

If 10|N then 1da  (Exercise 8(c)). But a_ < 10.

Hence, a, = 0.

11.5 Primes and Composites

(epproximate time 1 day)

This section discusses prime and composite numbers. The
notion of a factor set is used to exemplify the factors of a
: number. Note that (1}, the set of prime numberg and the set of

composite numbers form a partition of N.

11.6 Solutions to Exerciges

1. (a2) 1 and the number itself
(b) 2 natural number divisible by & natural number other than
1 and itself,
(e) 2

(d) 1 or rore than 2

2. (a) {1, 2, 5, 10}
(b) (1, 13}
(¢) (2, 2, 3, b, 6, 12}
(a) {2, 2, 3, 4, 6, 8, 12, 24)
(e) (1, 2, 17, 34}
(£) {1, 5, 7. 35)
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(g) (1, 2, 3, 4, 6. 9, 12, 18, 36}
(h) (1, 37)

3. (a) 13, 37
(v) 10, 12, 24, 34, 35, 36

(¢) None
4, It must be composite.
5. (a) A&7 (v) &
6. It must be a composite number.
7. (a) (2} | (v) (3,5,7,11,13,17,19)

8. The number of elements in the factor set of a composite

number is not two.

9. (a) l", 9, 25-that 1S, p2
(b) 6, 8, 10-that is, pyp, Or pa

11.7 Complete Factorization

(approximate time 1 day)

The purpose of this section is to introduce the concept of
the unique factorization of the natursl numbers. This goal is
reached by & discussion of complete factorization through the use
of factor trees. The students have encounted the notion of the
gregtest common divisor in their previous study of operationeal
systems; here a formal definition is giveh. To find the greatest

common & visor, factor sets and complete factorization are both used.
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Exercise 5 can be & fun problem which reinforce- the mnotion
of the uniqueness of & complete factorization. Prior discussion
in reviewing a binary operation and its properties may be necessary
for exercise 7. The construction of the table in exercise 8 m;y
be a good homework problem followed by & class discussion on
parts & - h of the same exercise, Exercises 9 -and 10 introduce
the concept of the least common multiple through the use of factor
sets and complete factorization. It would be advisable for the
teacher to discuss the least common multiple before assigning

these exercises. A comparison and distinction between the least

common multiple and the greatest common divisor should be attempted.

11.8 Solutions to Exercises

1. (a) 1+9, 3°3
(b) 1-10, 2°5
(e) 1-15, 3°5
() 1°100, 2°50, 4*25, 10°10
(e) 124, 2°12, 3°8, 46
(f) 1°16, 28, 4°4
(g) 1°72, 2°36, 3°* 24, 4+18, 6°12, 8°9
(h) 181, 3°27, 9°9

2. (a) 33 (a) 2% 5° (€) 3" (3) 2%53
(b) 2°5 (e) 233 (h) 23%5:7
() 35 (1) 2 (1) 2*s?
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1’ 4’ 6’ 8’ 9’ 12’ 18’ 72
(a) 2 will be a factor
(b) 2 will not tes factor

(a) ol ol ol
/ \ /N 7\
4 x 6 3 x8 2 x 12
VA A AN
2x2 x 2x3 3 x 2x$ 2 x 2x6
\ LN \ T AN
3 x 2x2x2 2 X 2x2x3
and"others'
(b) 96 96
/ N\ / \
;K‘x }2 16 X
2x4 x 3£h hxu X 2;5
ZC\ | I\ /)
2 x 2x2 X 3x2x2‘ 2x2° x 2x X 2x3
(e '
) 625 625
7\ N
25 x 25 5 x 125
/v /\ 1 FANS
5x5 x 5x5 5x 5x 25
| ' AN
5x 5x 5%x5
(d) 1009 1000,
1o X 100 25 x 40
’ ’N\
?x5 X 10x10 5x5 x Ux10
/ i I\ N\ 1IN NN\
2 x5 x 2x5 x 2x%5 5x5 X 2x2 x 2x5
and others

290
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(a) 2 x5 or 10
(b) 1

(¢) 2x3 or 6

(d) 13'x 17 or 221

g.c.d. is a binary operation on N. It has the following

properties: commutativity, assocclativity, 8%, = a, afl =

1%, =1 if p, #p,, P°n =por 1,

1,

n . PFactors of n Number of factors Sum of factors
9 1,3,9 3 1%
10 1,2,5,10 4 1l
11 1,11 2 12
12 1,2,3,4,6,12 6 28
13 1,13 2 . 14
14 1,2,7,1 4 24
15 1,3,5,15 4 24
16 1,2,4,8,16 5 31
17 1,17 2 18
18 1:2b3:6:9:18 6 39
19 1,19 2 20
20 1,2,4,5,10,20 6 42
21 1,3,7,21 L 32
22 1,2,11,22 4 36
23 1,23 2 24
2l 1,2,3,4,6,8,12,24 8 60
25 1,5,25 2 31
26 1,2,13,26 42
2 1,3,3,27 4 4o
2 1,2,4,7,14,28 6 56
29 1,29 | 2 30
30 '1:2:3:5:6:10315:30 8 72

(a’ 2:3:5:7911:13:17:19:23:29
(b) 4,9,27 -
(¢) 3

(d) 4; % +p +q+ pg or(l+p) (1+q)

() K+ 1
(f) X+ 1
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(g) K+1
(h) 6,28

9. (a) 30 = 2x3x5, U5 = 32x5 » l.com, = 2x32x5 = 90
If p is a factor of either number then select p or the
greatei power of p. The product of all such p's will
be the l.c.m. of the numbers. _
(b) (1) 30= 2x3x5 , 108 = 2°x33 1l.c.m. = 2°%33x5 = 5l0
(2) 45 = 3%x5, 108 = 2°x3>  1l.c.m. = 2%x33x5 = 540

(3) 15 = 3%5 , 36 = 2°x3°  l.c.m. = 2°x3°x5 = 180

(4) 81 = 3u, 210 = 2x3%5x7 l.c.m. = 2x34x5x7 = 5670
(5) 16 = 24, 2l = 2343 l.c.m. = 2:x33= 48
(6) 200 = 23x5° , 500 =253 1:¢.m. = 27x57= 1000

(¢c) The product of the g.c.f. and l.c.m. of & and b is ab

10. l.c.m. is & binary 6peration on N. It has the following
properties: commutativity, associativity,

8% =a, a1 = a s if py #P2 » D1 ° Pz = D1 P2

11.9 .The Sieve of Eratosthenes

(approximate time 1 day)
In this section the Sieve of Eratosthenes is encountered,
a simple technique of discovering prime numbers. The historical
implications of this section should be enjoyable and rewarding,
perhaps some students. will be motivated to undertake further study
along these lines. " The concept of twin primes is introduced in

the reading and that of prime triplets is presented in exercise 5.
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If this last idea is rather difficult, xercise 5 may be sssigned

as an extra credit problem., This section may be assigned ss a

self-study unit.

11.10 Solutions to Exercises

1. (a) (1) & (2) 9 (3) 25 (4) 49
(b) p°

(e)
(d)

(e)

2. (a)
(b)
3 (a)
(b)
(c)
b (a)
(b)

(c)

11 x 11 = 121 and 51 < 121
(1) They are not primes.
(2) fThey are primes.

No. Multiples of 4 are multiples of 2.

Primes sre: 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,
53,59,61,67,71,73,79,83,97,101,103, 107,
109,113,127.
25 (e) 31 (d) 127 - (e) 11 because
130 € 13 x 13
(3,5), (5,7), (11,13), (17,19), (29,31), (41,43),
(59,61), (71,73)
Twin primes.
8

Primes are: 281, 283, 287

281, 283, 287
2,3,5,7,11,13,17



(a)

(v)
(c)
(a)
(e)

(£)
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If & prime larger than 17 appesared among the numbers
iess than 290 then the other factor would have %o be

leas than 17 and therefore could have been eliminated.

3,5, 7

The triple would then have a composite number.
If k > 1, 3k is & composite number.

lor2

As p #3k, p =3k + 1 or 3k + 2 for some K > 1,

If p = 3k + 1 then 3|(p+2), since p+2 = (3k+1l) +2 =
=3k + 3 = 3(k+;).
If p = 3k+2 then 3|(p+4), since pHi = (3k + 2) +4 =

3k+6 = 3(k+2). 1In either case p, p+2, p+3 for
P > 3 can not all be prime numbers.

The only prime triple is (3, 5, 7).

11.11 On the Number of Primes

(Approximate time: 1 day)

As in the previous section, this section presents some

important historical background. The proof of Euclid that there

are an infinite number of prime numbers is developed. Unsolved

problems such as, "Is the number of twin primes infinite or

finite?"

sre brought to the students' attention. It is important

that they realize that more than half of the mathematics we assume

has yet to he proven.

This section may be either assigned as & self-study unit or

considered as sn optional topic.
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11,12 Solutions to Exercises

1.

(a)
(v)
(c)
(a)
(e)

(a)

(v)

(c)
(a)

(e)

(f)

10 =3 + 7 (f) 20 =3 + 17

12 =5+ 7 (g) 36 =5+31
4 =3+ 11 (h) 48 =5 + 43

16 = 3 + 13 (1) 100 =3 + 97

18 = 5 + 13 (3) 240 = 113 + 127

Each number N is one more than & product of consecutive
primes. P is the largest of the consecutive primes.
Last N here should be 2,3 * 56 ¢+ 7 % 11 ¢ 13 ¢ 17 + 1
2+1=3 a prime

2°*3+1

T & prime
2+*3°*5+1=31 e prime

2 *3%5+*7+1=211 s prime
2*3*5

*7°* 11 +1 =2311 a prime

510, 511
19 x 26, B69

23 +«5+«7T*11°13* 17T +1

If 17 were the largest prime number then the number in
(d) 1s larger than 17 and s6 must be composite. But
none of the primes 2,3,5,7,11,13,17 divide the number
in (d). Hence the number in (d) cannot have any prime
factors, contradicting the fact that N is composite.
Hence, 17 cannot be the largest prime.

There sre an infinite number of consecutive primes to
check. Computers can heandle, at best, a finite number

of numbers,
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11.13 Euclid's Algerithm

(epproximate time 2 days)

This section introduces Euclid's Algorithm, another
technique for finding the greatest common divisor, of two natural
numbers. The process involved is an intriéate one involving
successive applications of the division algorithm. The teacher
should not belabor the method, but should try to convey the idea
through the use of & few examples. The idea of relatively prime
numbers should be mastered for it is important in the following
Chapters.

! ~ Axiom 8 and the theorems following may be omitted et the
discretion of the teacher. Perhaps, the more capable students
will be interested in studying these topics on their own.
Exercises 4 -~ 7 which involve proofs may be omitted depending on
the depth of the development of this section.

Exercise 9 is extremely difficult. Not only is the concept
of Fermat's Little Theorem involved, but the proof of this Theorem

is beyond the capabilities of most Junior high school students.

11.14 Solutions to Exercises

1. (a) 1122 = 10 x 105 + T2

105 =1 x 72 + 33

72 =2 x33 +6

33 =5x6+3

6=2x3+0 g.c.d. (1122, 105) = 3
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(c)

(d)

(1)

(2)

(a)
(b)
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22Ul = 5 x 418 + 154

418
154
110

2 x 154 + 110

‘1 x 110 + 44

2 x 44 + 22

bh =2 x 22 +0 g.c.d. (2244, 418) = 22

315 = 1 x 220 + 95
220 =2 x 95 + 4o |
9% =2 x 40 + 15
40 = 2 x 15 + 10
15 =1x 10 + 5
10 =2x5+0 g.c.d. (315, 220) =5
19,656 = 21 x 912 + 504
912 - =1 x 504 + 408
504 =1 x 408 + 96
4o8 =4 x 96 + 24
96 =4 x24+0 g.c.d. (19,650,912) = 24
W =1 x 104 + ko
104 =2 x40 + 24
bo =1x24 +16
24 =1x16.+8 |
16 =2x8+0 g.c.d. (144, l04) =8
s =2%x3%, 108 =23 %13 agc. =23-8
1
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As p+ b, pand b are relatively prime. Hence these gre

integers x and y such that pXx + by = 1
Multiplying by c yields cpx + cby = c*1 or cpxtcby = c
But p|(cpx) and p|(cby) so that p}(cpx + cby) hence, plec.

From exercise 4 if pf a thenp | b, If p Y b thenp | a.

As a and b are relatively prime there are integers x and y
such that ax + by =1
As alc and blc there are integers r and s such that
ar =c and bs =c¢
Multiplying by c yields cax + cby =c¢c « 1
cax + cby = ¢

acx + bey

li
0

]
0

a(bs) x + vlar) y
ab(sx) + ab(ry) =

(o]

gb(sx + ry) = c
Hence (abv) | c.
As d = g.c.d. (a,b) there are integers x and y such that
d = xa + yb '
But a = pd and b = sd. Hence

d

k(rd) + y(sd) or d = (xr) d + (ys)d or

d = (xr + ys)d

| Dividing by 4 gives

l =xr+ ys
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If r end s were not relatively prime then their common divisor

would have to divide 1. But the only divisors of 1 are 1 and

- 1. Hence, r and s are relatively prime.

Seven consecutive composites are
90,91,92,93,94,95,96

Eight consecutive composites are
114,115,116,117,118,119,120,121; elso 119,120,121,122,
123,124,125,126,

Another approach that suggests & general method is to consider

9! + 2 9! + 6
9! + 3 9! + T
9! + U4 9! + 8
9! +5 9! + 9

which are eight consecutive composites, the first is divisible
by 2, the second by 3, ... , the eighth by 9. In general,
to find n consecutive composites consider the n numbers.

(n+ 1) +2

(n+ 1) +3

0o q 000000

(n+ 1) + (n + 1)

th

The k™ number listed is divisible by k + 1.

mn

(2) 297 L1 =21 =161 = 15 and 5|15 . 5|(25‘1_1)

Bl -420 2161 =15 end 3015« 3| (8371

(b) 1If pla then p f (eP~1-1) Exemple: 3|6 but 3y(6371-1) =
=6 - 1=236-1=35
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-1, 203 -

(¢) The conclusion need not follow, Thus 2
=231 281 =7, 4T o by (¥l
(d) Note that p is & prime and p [ a. {If p is divided into
the following multiples of a:
1°a,2° 8 3°8, ... (p-l)a
The smallest whole number remainders will be less than

p and, as we shall show, be all different. That the

remainders are different may be argued as follows. Let:

; l.a=qpt+r 0<r, <p
!

i 2 .8=0p+r 0<rs <P
% 3 a=0qsp + rs 0<ry <p
,d * ® @ ® 000 00 0 0 0 0 0o o ® & 0000 0O 0 00 0 00
: (p-1) « 8 = p_1p + rp_lo < rp_1< p

Where q;Qas ... » qp-l are the respective quotients

when p is divided into 1°2, 2+a, 3°a, ..., (p-1). a.

The respective remainders Iy ,YaTas +c.. rp-i eare all

less then p. As p Y a and p [ s for all natural numbers
1,2,3, ..., p-1 it follows thet p Y (sa) for

s =1, 2, 3, ... » p-1. Hence, for s=1, 2, 3, ...,p-1
there will always be a non-zero remainder when dividing
sa by p. Thus r;,ra,r;, .+s Ty y8Te 2ll greater then
zero.

We shall now show that two remainders can not be the same.

Suppose two remainders were the same say the uth

vth remainders with u < v, so that r, = r,. It follows

end the

that
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va = dvp + r

and‘u <v

Then va - ua dvp - dup

and (v -u) a-= (d,-d4,) p

and p | (v -u)a .

But 0 < v - u < p, so that p is relatively prime to

v - u, Also, p is relatively prime to a. It then
follows that p is relatively prime to (V-u)a and pJf(v-u)a.
This contradicts the previous result that p|(v-u)a.

This contradiction srises from the assumption that

remainders ru and rv were the same. Hence, no two

remainders can be the same. But the remeinders

r’r’r s e r
1 e -Ts’ ’ "p-1

are p - 1 different natural numbers between O and p and
so must be, ir some order, the p - 1 natural numbers

1, 2, 3, «ees P -1 . We shall need the following
preliminary theorem.

Given: ua = qp + ru

ve = qp +r,

Conclusion: uve® = r,F, + an integer multiple of p
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Proof

ve = qup + Ty va =‘qvp + rv Assumption

(va) (va) = (ua)(va) Equality is reflexive
(va) (va) = (qup + ru) (qvp+rv) replacement
(na) (va) = rurvf'ruqvp ~ Distributivity (W, +)
+r QD+ q,49.0p and (W, *) are operational
: | systems.
= rurv+(vuqv+rvqu+quqvp)p Distributivity
(va) (va) = r, r,t¥ps x €W (W,+), (W,*) are oper,
systems.

We now multiply the left members and right members of

the following equalities and make use of the above

. theorem repeated by

lea=qgp¢+r
1 1

n
*
®
I

qp+r
2 2

. +
3 a qu r;

\ . =
(p'l, a = qp_lp + vp_l

1*2¢3 ... (p-1)ca " *=rrr ...r _+

a multiple of p

209
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1.

(a)
(v)
(e)

(a)

(e)
(£)
(8)
(h)
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ut rrr... r
B 1 2 3 “p~1

remainders need not be 1n'1ncreasing grder, Hence, &s

= 12+3 .., (p~1) vhere the

1+ 2+3 ... (p-1)+ &®1 = (p-1): + & multiple
of p \ |
We have (p-1)! &Pl = (p-1): + e mﬁlg. of P
or (p-1): ePl -1 - multiple of p
Hence p | {(p-1)! ap'l-l]. But p 1s relativelyAprime
to (p-1)!
Hence p| (aP 1-1) which is exactly what Fermat's
Little Theorem says must be the case. This completes

the argument,

sglutions to Revielexercises

50 = 10°5

6 is a factor of 30 or 30 = 56

6°5=230

6*1=6 _

There is no integer x for which 7Tx = 30

The natural ﬁumber divisors of 7 ére 1l gnd 7
6=2+*3

91 = 7 * 13

. (2), (b) If eb =c then a end b are factors of ¢ while ¢ is

multiple of & and of b.

(c) If the factor set of a number consists of exactly 2 numbers,

then the originel number is a prime,

e B e by e i T B i T v B £ A A
A A




(d)

(a)
(v)
(c)
(d)

(a)
(v)

(a)
(v)
(e)
(a)
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If the factor set of a number has a cardinality other

than two, then the number is composite provided it is

' greater thah one.

38 =2 17

72 =23 32

9 =22+ 3

§7=97aprime”

2  (e) 23e 3 =21
2 (@) 1 |
234 3% v 17 = 1224

22« 3¢ 17 = 1632

22« 32 - 288

23+ 3%+ 97 = 6984

Primes are: 131, 137, 139, 149
(a) &
(b) 1

(e)
.
72

]

11 because 13°13 = 169.> 150

1x72+24
3x24 +0 g.c.d. (96, 72) = 24

Given: alb, bjc 8, b , c €N

Prove: alc
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Proof
; alb, blc a, b, c €N Assumption
? For some X, y € N Def. of r|s

h =8x ¢ = by '

¢ = by
| = (ax) Y A ‘Replacement
% = a(xy) _ Mﬁlt. 1s‘assbciat1ve (al)
é (xy) € N (N,*) is an operational
f system
; ~ale ' Def. of r|s

9. Yes. 9 and 10 are relatively prime. See Exercise 6 of set
11.14, | o |

10. If a /b and a is prime then a and b are relatively prime

as the only common factoriis 1, Hence, g .c.d. (&, b) = 1.

SUGGESTED TEST ITEMS

1. Determine if the following are true or false. Explain your
answers. x
a) 8 is a factor of 32.
b) U47 is a composite number.
¢c) 39 and 65 are relatively prime .
d) 28 is a multiple of 7.
e) 19 is a prime number,

f) 12|12
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Give & complete factorization of each of the following:
a) 48 ’
b) 351

Determine the following:

e) g.c.d. (90, 126)
b) l.c.m. (90, 126)

¢) g.c.d. (140,17%)

d) 1;c;mf (324, 60)

If 7°6|c does it following that T|c end 6|c? Explain your
answer.

In the following proof, suppiy the reasons for each step.

If cla and ¢|b, then c|a*b where a, b, ¢ are natural numbers.

1. cla and c¢{b where a,b,c € N

2. For some X, y € N, a = ¢x and b = cy.
3. as* b= (ex)* (cy)
b (ex) + (ey) = clx(ey)]
5. a* b =c[x(cy)]
6. [x(cy)] €N

7

. cla* b

Prove: The sum of two even numbers is an even number,

308



| -305~

ANSWERS TO SUGGESTED TEST ITEMS

1. 2) True: 8¢ 4 = 32
b) False: The factor set of 47 = {1, 47}. Therefore, 47 is
a prime number. |
: c) False: g.c.d.(39, 65) = 13
n d) True: 7 is a factor of 28 or‘7°4 = 28
e) True: The factor_get of 19= (1, 19}

f) True: 12 is a factor of 12 or 12+ 1 = 12
i 4 '

2. a) 4B=3° 2
b) 351 =13 * 33

3. a) g.c.d. (90, 126) = 18
b) 1l.c.m. (90, 126) = 630
c) g.c.d. (140, 175) = 35
d) 1l.c.m. (324, 60) = 1620

4, Yes. As T end 6 are relatively prime numbers, both 7 and
6 must belong to the factor set of ¢. Therefore, Tlc and
6lc.

5. Step 1: Assumption
Step 2: Definition of r|s
Step 3: Theorem Ah: a= b and c=d = aec = bed
Step 4: Associativity of multiplication (Ah)
Step 5: Replacement (Statements 3 and 4)
Step 6: (N,.) is an operational system.
Step 7: Definition of r|s

Q ) ji | | ' :"ﬂr
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Given: a €E, b € E

Prove: a + b € E

Proof:

1.

2.

a€E, p€EE

For some x, y € W
a=2%x, b =‘2y
ea+b=2x + 2y
2x + 2y = 2(x + y)
a+b=2(x+y)
(x+y) €w

8 +b €E

-306-

Assumption

Definition of even

Theorem A,

'Distributivity

Replacement (Statements 3 and 4)
(W, +) is an operational system

Definition of even.
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Course I
Chapter 12 - THE RATIONAL NUMBERS
Time Estimate for the chespter: (15-18 days)

In addition to the overall purpose of studying the rationel
number system, the approach teken in this chepter outlines

several primery goals:

a) To develop'the rational number system (Q,+,o) by ex-

tending the lergest number system we know - the set of
integers (Z,+,-). (Sections 12.1, 12.2, 12.4)
b) To define a rational number by studying equations of the

form "ax = b" where 2 € Z, b € Z, a # 0. The objects
which are solutions of such equations, denotéd by %, are
celled retional numbers. (section 12.6)

¢) To study the prgpefties of (Q,+,+) (Sections 12.8, 12.12)

d) To delineate (Q,+,°) @8 a field and to define an order

relation on Q so that (Q,+5°) is presented (without

using formel languege) as an ordered field. (Section 12.16)

e) To study addition, subtraction, multiplication and

|
i
:
{
{

division as operations with Q, using elements of §°
(Sections 12.6, 12.10, 12.12, 12.14)
f) To study decimal fractions and infinite repeating

decimels. (Sections 12.18, 12.20, 12.22)

(Sections 12.1 and 12.2 com-
bined with exercises in 12.3
1-2 days)

12.1 W, Z and Z,

By studying the ﬁimilarities end differences of these

ERIC o |
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three systems, the student is introduced to & quest for a

more encompassing number system. In Chapter 4, W was ex-

tended to Z so that equations of the form "a + x = b" would
alweys have solutions. Through this extension, subtraction
on Z became ah‘unrestricted operation. It should be evident
that "a + x = b" will always contain solutions in Z.

By introducing equations of the form "ax = b", the students
should see thet solutions can not always be found in (W,+,.)
and in (2,+,*), obviously, division is not an operation on
W and on 2. Using (2»,+,*), students will see that solutions
to "ax = b" can be obtained provided that & # 0. With this
information, that a # 0, the students should see that we

will try to extend Z to form a new number system where

solutions of "ax = b" will always be possible.

Calling this new system Q (the set of rational numbers),
the students should realize that its elements can be written
in the form % where & and b are integeré énd a £0. It
should follow that division is an operation on Q\{O].

As a bonus, it can eventually be séen that equations
of the form "ax = b" will have solutions in @ when a € Q,

b € Q and & # 0. Please remember that this section is
intended to give an overview; the actual extension will
take place in preceding sections.

Special note: An excellent classroom discussion

could arise in that (Z,,+,-) is a field that cannot be
ordered. In any ordered field. with additive and multi-
plicative identities of 1 and 0, it is & theorem that 1 > 0.
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Then 1+1 > 0, 1+1+1 > 0, etc. until, in (Zy,+,*)
1+1+1+1+1+1+1 > O becomes 0 > O.

(Combined with Section 12.1

in time estimate) :

12.2 ' ‘
This section describes a set 2’ consisting of

reciprocals of Z. The question is then asked: Will Z U 2’

form the set that will contain all the solutions for.
equations of the form "ax = b"? _
Although many properties will hold within Z U 2‘, an

operetional system cannot be attained. It is inherent in

what is done here and later that the new numbers obtained
will obey the usual laws of commutativity, associativity,

ete.,

12,3 Exercises

Note that the exercises are extensive and time-
consuming. The teacher should feel free to be selective.
Please note that exercises 1 throﬁgh 7 refer to (2,,-)

There is a deliberate relatlon for exercises 1, 5, and

7 and a second deliberate relation for exercises 2, 3, 4

and 6.‘_
1. (@) & @) 3 2. (8) 5  (e) 4
(v) 5 (e) 6 (v) 4 (£) 2
(c) 2 (£) undefined (e) 2 (g) 3
(a) 5 (h) 6
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(a) 5 (e) 4 4, (a) (5) (e) {4)‘

(v) &  (£) 2 () W (£) (2)

() 2 (g) 3 (e) (2) (g) (3}

(@) 5 () 6 (@) (5)  (h) (6]

(a) 4 (@) 3 '

(b) 5 (e) 6

() 2 - (F) no ‘solution

be % = %-and the solution to ax =D is gn (a # o)‘in

(29 ,+,+) The answers for exercises 2, 3 and 4 must be the

same, | _

% 18 the solution in (Zy ,+,) for ax = 1 if & ¥ 0. The

answers for exercises 1 and 5 must be the sane.

(a) :% "~ (b) no multiplicative inverse

() 13 G

() 17 (g) -18

(@) -1 (h) -1

(2) -104 '(f)_ 3§ (x) .,_.g.ﬁ

(b) -104 (8) =55 (1) =5

(c) -1ok (b)) (n) &5

(4) -104 (1) =55 (n) —Ig5

(e) -104 (1) =¥ (0) —fgp

(a) 9= (3)(3) = (-3)(-3) = (9)(1) = (-9)(-1) = (1)(9)
= (-1)(-9). |
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(b) 75 = (1)(75) = (-1)(-75) = (-3)(-25) = (5)(15)
= ("5) ("15): etc.
(¢) -15 = (- 1)(15) (1)( 15) (3)(-5) = ( 3)(5), ete.

1. (e) ‘1“=T?‘)'('67 1_7'(_67 - T < W
ok TTT Tm I ete.
1 1
7-5- -(-3-)—(?3-)- -(--3-'-(—§§y '(—)—('—)- '(_)—(—T—)-, etc.
) =I5 = OBy = BT = BT < EIE o

z 2. (@) 3 (0 2 B (@) @ () (0
) L () () (3) (n) (ko)
- o (e) (18} (1) (375)
© 1 @ g (a) i-506) (3) (285)
(@) # (h) - (e) (-6}  (x) (-30)
| (£) (-2000} (1) (-15,3k0)
. (a) (7} () { Yorg (1) (-100}
(b) (-7} (£) (0} - () (-3)
) {Yord (8) (Yorg (k) (-12)
(a) (9} (h) (100} (1) (Yorg
15. (a) 7 (¢) 0 (1) none

(b) -7 (£) none (J) -TO01
(¢) none (g) -3 (k) -2117
(@) -10 (h) 257

16. Every integer is a solution of "0-x = 0", Therefore n O

0
is indeterminate, it cunnot be the name of a unique integer.

The solution set of "0-.x = 0" can be written as Z.

17. There is no solution in Z°.
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12.4 ZUZ' toQ (2 days)

Five important concepts are found within fhis section
which finally brings us to the set of rational numbers, Q.
1) Q is created as the set which contains Z, 2’ and the

set of "missing" products (b-%) where b € Z and %-6 z'.

The students should review the definition of an opera-
tion on & set (from chapter 2) at this point. Then
they should see that to this point they have (Z,)

and (2',+) as operational systems but not (Zuz’,.).

It should be made clear thaet in all of this we
are assuming that the desirable commutative and
associativ;"iaws hold for multiplication and that 1
is the identity element throughout. (Thus we do not

worry about (%,b) because it should be true that
% *b="Db - %). Also, the question as to whether

(Q,+) is in fact an operational system is left open
in this section. It may be advissble to call this

to the students' attention.

2) A rational number is a single element from Q, say %.

However there are an infinite number of names for

this single element, found by %% when n € Z, Just as
one person has many names (Henry Allen Jones, H.A. Jones,
Henry, Hank, Stinky, etc.) and Jﬁst as one integer

has many nemes (9 = 8 + 1 =9 + 0 = 10 + -1, ete.),

the concept of one rational number with meny neames

should not be treated in a complicated manner.

214
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The major problem considered here is what to
do about 6 - % =‘g and 3 '“% = %.

First, we show that = is a solution for the
equation "ax = b". Then we show ‘that %%, for n € 2,
is also & solution of "ax = b". We argue that
"ex = b" must have a unique solution in Q. If not,
the desirable cancellation property of Z does not
carry over to Q. Finally, we show that % = %% for

cevery n in Z.

na 1
EB na _—Bn -

= (n . 2)(a . )

=1-(g)

_ a
— B.
That is, % and %% must be the same rational number.

By definition, a distinction is made in that a

rational number is en element of the set Q while a

fraction is a name for that ational number,
Two fractions, % and %, are said to be equivalent if
and only if a.d = b.c (the approach noted in part 2

sbove shows why this is true).

All equivalent fractions will form an equivalence

relation (symmetry, transitive, reflexive properties
hold). The set of fractions which are equivalent
name one rational number snd these fractions are said

to belong to an equivalence class.

A second approach to this topic could include
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ordered pairs. It would then be stated that a
rational number is defined as an equivalence class
of ordered pairs:where (a,b) ~ (e,d) if and only if
a-d = bec,

The irreducible fraction is introduced as one in

which the numerator and denominator contain no common

factors. A second definition, relying upon concepts
learned in Chapter 11, simply states that when the

numerator and denominator are relatively prime, the

fraction is called irreducible.

Ex: Q% is an irreducible fraction,
Note thet neither 9 nor 20 are prime but since
they contaip no common factors, they are relatively
prime,

Ex: 5% is not an irreducible fraction,

| Both numerator and denominator contain & common

fantor of 5; even though 5 is prime, 5 and 20 are

not relatively prime.

5 5.1 _ . ,1_1
o -F5r=1"§ =75

5 . 1
55 is equivalent to the irreducible fraction I

12.5 Solutions for Exercises

Note:

1. (a)

(v)

Exercise 5 is essential to future work. Exercises

L4 and 5 could be started in class.

2 -2 _4 -4 6 _ -6
I3 "6 67 g
-6_6_3_-3_9_-9

8" 8 " T T 12 180

- 316
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-3 _ 3.-6_-9_9
©) 5= 30" "5
(@) 4 _4 2 _ -2 _6 _ -6
B~ -5-5-15°-15"°
() 3=-3_6_-6_9_-9
1 -1 2 2 -3 -3 7
2. (a) ¢h () (3
(b) (-1 (£) 2
(=3} (2)
(€) ¢z (&) (£
(@) =4 ) &
3. (a) 9x =17 (d) -3x=1
(b) 13x = -12 () 3x=-1
(¢) 2x =1 (f) -8 =-5

other answers are possible,

b () 6 = 2-3 Follow the procedures as
9 f;?;) . outlined at the left. Cross-
= 73 multiplication (ad = be) should
= (2)(3)(%)(%0 be used only as a quick
} (2)(1)(3)(1) mental check,
3 3 a) True
= @G v) e
- @)1 c) False
4(3) d) True
g = % e) False
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Ya i/2,

5. (a) (1) ~ because 2.1 = 1

0 a 1 2

. T T

(2) "N ASN A because 4,1 = 1

o '/4 1 T

B %...

(3) e ea madacn on because 8.1 =1

o % 1 8

Yy % 34 3ly
(4) \ " "=\ because 4.% =3

[ PO T I | iy [ [ T |
6] % 1 2 3
33 .
(5) H_,Mm,.._,,.hr-m.—«—v—*ﬂ because 8.3 = 3
0 ¥ 1 2 3 8
(6)
/ ve
Mﬁm because 8.2 = 2
O % 1 2 8
(b) 2/3 2/3 2/3
o . A N N ) >3 because 3.2 = 2
0 1 2 k}
4, 3, 44,
— . Y,y Y., .Y ., because 3.4 =
o i 2 [3)
blq lq blq
-A 1.1 1 .\ PP W U { l \c- because 3.6 =
& 4 2
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Each fraction (§ is a correct replacement for x
s

i 6)
e 9
in "3+ x = 2," Since there is only one solution to

this equation, the three fractions must be equivalent.

12,6 Q, : (1 day)

Here it should be pointed out again that we are essuming
that * 1is commutative and assocletive. We now give the rational

number b a description as the unique solution of the equation
a

"ax = b" where a and b are integers and a # 0.

For the sake of standardization, students should be told to

place ell fractional answers in the irreducivle form equivalent
to the asnswer. obtained,

Some condusion might arise with the negative integers. The
teacher may wish to form another convention:

a) fractions containing one negative integer should be

written in the form :% where a, b € N.

b) fraction conteining two negative integers should be

written in the form a where a, b € N.

b
Thus 3. . -3 stmee 3. .13 - (@) = (-1) )
PR RT3
| 175 5 5°
Similarly, -2 becames 2 since =2 = =1+2 = (:l)(go = (l)(g\
=T 7 A L i T’
GRS AL
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12.7 Solutions for Exercises

Note: Exércises 2 and -8 are essentisl to future work.

1If possible, these exercises should be introduced in cless,

The teacher should be attentive to properties illustrated by

exercises 3,5 and 6.

2, (a)

(v)
(c)

(d)

3. (a)

(v)
_(e)
(a)
(e)

1
3 (e)
-7 (£)
b |
3 ]
65 (h)
37
3 . 2 = 1 » 9 . 2 = 1
r 3 2 12 %I ?
yes
3

(1) 2 '215: (4)

2 2
(2) ,;: 52 (5)
(3) 38, 38,

7 7
Confirm,
2 (£)
15
1 (g)
5% g
8 (h)
1T
8
8 (1)
_1qu (3)
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(k)
(1)
(m)
(n)
(o)
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(2)
(v)

(e)
(a)

(a)
(v)

(2)
(b)
(c)

(a) -

(e)
(2)
-(h)

(1)

(2)

-319..
{s) 56 (1) -6
(£) 56 (3) =6
1 Y
(g) 75 (k) 24
(h) 15 (1) 24
T T
(e) 9
(c)% g
a) 10 f) 3
(a) ¥ (f) 3
In all parts, the product is 1
I
-5 _1 _-10 _15 =15
"_7“‘11I"'-'IE“§'I"?2T'
=2 _4 -4 10 _ -10 _
T 3T6T8 15 15 T
_=1_2 _-2_3 _ =3
T T8 T BTIT 12 T
-1 __2_3_-3 _
T 10 T 20 30 0 <30 C
_=2 _ 4 _ 6
-5 10T 15 T
_ =2 _ 4 4
=5 =g="g=
= 2:
-2 _ 28 _ -2a 3a _ _ he
=5 =5 "5 =55 " """ " nb where M € Z.
2 24 2) 37 6
3% 0~ T20
2°6 2 3*4 (-3)(-20) 2 10°6
12 = 12 +60 = 60
Equivalent Equivalent

10

Ho & 8

W Ui
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(3) 7118

7(-16) 2 8(-14)

-112 = =112
Equivalent
(v) (1) true (6) true
(2) true (7) true
(3) true (8) rfalse
(4) true (9) true
(5) false (10) true
12.8 Properties of (Q, °) (1 day)

Here the properties suggested by the preceding discussions
and exercises afe formally stated. The students should clearly
see that within the operational system (Q, '), we have:

(a) commutativity

(v) associativity

(c) an identity equivalent to 1
: 1

(d) multiplicative inverses or reciprocals.

These properties should be linked with earlier discussions
of cperational systems (e.g., Chapter 1, Chapter 2 Chapter 4.)
Note: Not every rational number has a multiplidative inverse,

If the inverse of a is b and if b is to be a rational
b a , a

number, then a # o, In short, every rational number

2
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% hes a multiplicative inverse provided that a # 0 and

b # 0.

12.9 Solutions for Exercises,
Note: 1In Exercises 2, the student should come to realize
that the product of 0 and any‘rational number is 0.
Note that in Exercise 5(c), (Q, °) fails to bea group
for the one reason that 0 has no inverse. If this
element is "removed," a group stPucture results.

(5(d)). Be sure to consider Exercise 7.

1. (a) {%] (d) [%] (g) [%]

®©) SUNE) () ¢, -1
1l i

(c) [T] (£) {:]7.-5'}

Note: In (h) 1 is a solution because x*x =1 .1=1

1 1 1l
end -1 1s & solution because x+x = -1 . =1 =1
T T T

but 1 . -1 #1,
- 1T I

2. In all parts, the product is O,

3. The product of 0 and any retional number is O.

4, 12 3 k kro
(a) R (k #0)
(b) 2,10, 3, .35 . (x#0)
1, (d) 1 and -1 9
() 1, (@) zend ol (o) 9

et S e g A G oA
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5. (o) essociativity, identity element, inverse elements
(b) No; not every element hes an inverse.
{¢) No;, 0 has no inverse

(d) Yes; 1t is a commutative group.

6. (a) -8 14 -234; 55; o

(b) -8. 14. -234, 85. 0. -14
T T TI1e v T T

5

[

7. (a)% (b)% (@) 1 (e)%(f)

o

() 1 (n) 6
2 7

(1) ’27 (3) &

12.12 Division of Rational Numbers. (1 to 11 days)
2

Division (as usual) is defined in terms of multiplication,
end this section is designed to help the student see why it is
reasonable when dividing by a rational number to multiply by

the reciprocal instead. While eventually he will use this

generalization almost automatically, it would be wise o work a
number of examples such as those in the text, Incidentally, the

phrase "multiply by the reciprocal" is prefereble to "invert and

multiply."

We also show now that the rational number b may be interpreted
as the quotient of b and 2 for b € Z, 2 € Z, 2 Z end a2 # 0.
This justifies the use of Q as a symbol for the rational numbers.
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Also, we show that in constructing a system to solve equations
"

pX = q" with p € Z, q € Z, and p # O we have also constructed a
system (Q, +,°) in which "px = q" has a solution for p € Q, q € Q,

and p £ 0.

12,11 Solutions for Exercises.

In Exercise U4, 1f the student hes trouble with equations such

as 2 . X = 3’ use analogies such as 5 * n = 10 to help him see that
y

he may rewrite the equation as =3+ 2,

X z
y 3

In Exercise 5(d), there is some ambiguity. Technically,
division is not an operation since we cannot divide by zero, and
this is the answer called for here., However, i. is generally
accepted that the rational numbers are closed under division,
with the understanding that division by zero is not allowed.

1. (a) 3 (b) % (e) 3 () 8 (e) ;%g (£) &%

T 15
2 ) @ GG @1 @ (s
(£) g (g) % (h) lg (1) l% (3) % (k) l%
(1) %
3. (a) 3

(b) % (c) % (@) & (e) %, (£) 1 () %
(h) 1In (Z,°) there is no solution. However, the quotient
is 1.
2

(1) %

325
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Dp O mg g g

5. (a) No. There is no number which when multiplied by 0
1

glve %. Or, O has no multiplicative inverse,

(v)

o

(¢) 0 or O beceuse 0 has no reciprocal. Or, d ¥ Q.
1 c

(d) No, since one cannot divide by .0.
(e) Yem. (See commentary notes sbove).

(f) No.

12,12 Addition of Rational Numbers (2 to 3 days).

This section contains five meajor areas of study or purpose,
the last of which 1s optional for classroom discussion:

1. Computational understanding regarding the addition of

rational numbers in fractional form, a

In general, a + ¢ = ad + bc where a c¢ € Q.
P d bd b’ d

The students must understand that (Q, +) is an operational

syscem,

928
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2, An inherent understanding of the least common denominator.

A good device for student comprehension of this concept
can be found in listing two sets of fractions equivalent

to the fractions to be added.

Ex: 3+ 1
8 ®
3 = (3. 6 9 12 15 18 21 }
8 8 16’ 24 ° 32’ 40’ §B8° BB’
1 {1 2 3 4y 5 6 T 8 9 }
&~ '8’ 12° 18’ 28’ 30° 36’ E2’ 4B’ B ¢

Here, % and % same many common denominators: 24, 48, 72,

96, 120, etc. but only one is least, that is 24,

3. . By studying the properties that hold in (Q, +), the

students should realize that (Q, +) is a commutative

group. In addition to being an operation system, we
see that (Q, +) maintains:

(a) commutativity

(b) associativity

(c) an identity, %

(d) an inverse for every element. The additive

inverse of & is -& where both are Rational
b b

Numbers.

k., An additional property rvelating (Q, +) with (Q, °) is

that of distributivity. Here, multiplication will

327
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distribute over addition in (Q, +, °):

Va c e€Qq: 8./C , ey _
5, d, T g g+e =

and

ole
o1e
o

. % +

8, C e . :
F+q) -7=5 " Fta-7

(optional discussion) (Q, +, °) forms a structure

called a field. We see that the properties of the

field are maintained in that:

(a) (Q, +) is a commutative group.

(b) (Q\'[O], :) is 'a commutative group.

(¢) Distributivity of multiplication over addition

holds.

L.(e) 5 (23 ()1 ()
(e) gg () %% (8) gg (h) n
{1) % (3) ny;yw

2. (a) % (v) T% (c) %g (a) %%
(e, g% (£), g% (g) %%T (h) égi

3. Commutative property

4, (2) g% (b) g% (c) 11 ‘d) 11

5. Associative property. .

s etc,

o
Njo
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. a) i;
7. {a) 9 (v) ° (c) T% ( _1_19_
n) -81 ;
(e) % (f) ° () _clz (h) 8
B. () 20 (®) 10 () 7T (A T (e) -8
£) -22 -12 -12 :
(£) __%__ (g) (1) _il"
9. (a) vYes, it is a commutative group.
(b) Yes, it is a commutative group.
10. (a) ;% (v) % (e) % (a) :'175_
£
(e) 1; (f) 2 |
. (a) 3 () 3 (o) o .(d) 73
-2 £) 2 h) - 1
(e)_g ()g (s)% ()_% ()g
12, 2 b) 2 2 d) 2 3
(a) 2 (b) 2 (e) 2 (a) 2 (e)
(£) 3 (&) _1 (h) 1
5 15 15
12,14 Subtrection of Retional Numbers (1 day)

In genersl, subtrection is defined in terms of addition as
follows:
A -B=A+ (-B).
And this is the sort of definition we present here for
subtraction of rational numbé.rs. Notice the saralogy between the

cages for division anu subtraction:

J29
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Instead of dividing by'%, you mey multiply by the

(multiplicative) inverse.
Instead of subtracting %, you may add the (additive) invers.

This anelogy 1s probably worth mentibning to the students. Thus

we speak of the system (Q, +, °) since theoretically division

and subtraction are not needed as distinet operations.
Note that subtraction is neither commutative non associative,
For lack of the latter property, it cen be stated that (Q, -)
is not & group. Similarly lacking would be & left hand
identity element.

12.5 Solutions for Exercises.

1. xa)_g_ (b) 1% (c) ig' (a) ;I%
L f -4 -2 h 1
(e) 2 (£) = (e) = (n) 3
-l 8 -8
(1) % (3) 1% (k) §_131_ (1) __?3%
4 -
(m) ,‘% (n) _1_3_5__
. 1 b 1 -3 d -1
2 (2) = (b) & (e) 3 (a) 2
3. (e) % (b) 5 (e) 1 (a) ;ﬁ_% (e) _g_g_
(£) g_g_ (g) g_ (h) o
4, VYes
5. (s) No. (b) No. (c) No. (since % does not
commute )




‘f . A

-329-

6. No (it is not associative, and it lacks a left hand
identity element)

12,16 Ordering the Rational Numbers (1 dey)

The fact that (2, + ,°) is embedded in (0, +, °) and the
desire to reserve the properties of "<" with respect to Z is
used to motivate the definition of the "<" relation in Q x Q.
The purpose is to develop a sense on the line by which order is
reinteined, 1In “erms of convention, we usually say that a < b
if a is to the left of b. An interesting experiment is seen in
indicating parallel lines with opposing senses and checking to
see that order within each is maintained. In looking at the

rationals, a and ¢, the students must understand that b and d
b d

are positive integers. Since there &re no stipulations regarding
t+1e numerators, & could be a positive integer, a negative integer
or zero., The same holds for c.
Thus a < ¢ ad < be
P d td bd

% <% if and only if ad < be.

The number line {as in Examples 1 and 2 is often &n excellent
visual aid to help students get the "feel" of the "<" relation.
It might also be w{se to point cut why it is correct to speak of
"¢" as a relation, in accordance with the concept devéloped in

Chapter 8. One could, after all, 1list ordered pairs belonging
" n 1 :
te "<, e.g., (2, 5),. (%-_, %)’ (3,, _59_). i

i
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12,17 Solutions for Exercises.

In Exercise 5, emphasize that we can partition Q into three
classes called POSITIVE, ZERO, AND NEGATIVE. |
Exercise 6 suggests the usual definition of a positive

element in Q. That is, a is a positive retional number if the
b

integral product ab is a positive integer.
Exercise 9 desls briefly with the notion of density. 1In Q,
it is always possible to find a third rational number which is

between two given rational numbers. Another interesting way to

show this is to show that if a ¢ then a+c is between them.
b~ @ o+d
1. (&) 3 < 2 since 15 < 16 (¢) 5 < 7 since 25 < 28
8 5§ 40 50 I 5 20 20
(b) 5 < 3 since 5 < 6 (d) 9 < 8 since 27 < 32
8 ¥ 8 B 3 1 1
2. (a) WP FPUTE TN FTPTL FPTTE ST U Be e e eer ey
| : W o R ” 1
i 2
| Bt 50
| (b) (c) (d) similar.
E 3. (8) true (v) false (¢) false (d) rfalse
(e) false (f) true (g) false (h) felse
(i) false
b (a) 1<5 1l ¢ -8 (1) 17 < =5
Z B } (e) -5 i3 . I 73
: :
(p) -8 < -1 f) they are equal
‘E% = (£) y qu
(e) 7<¢1 (g) 13 < 100
I 5t
(d) -1% ¢ -7 (h) they are equal
23 15

| 932,
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11.

12,

(2)
(v)
(c)
(d)
(e)
(£)

Yes,
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positive (g) negative
negative (h) positive
negative (1) zero

positive (3J) negative
negative (k) positive
positive (1) positive

it is positive, since either numerator end denominator

are both positive or both negative, We know this because

the product is positive,

(2)
(b)
(c)
(a)

(a)
(b)

(c)

N

- e

No, since it is not true that ab < sb.
No, for if a < ¢, then it is not true that ¢ < &

—

P d d b
Yes.
< (b) = (e) >
No

Yes, for instance g which 1s their average.
3

Yes, Since the average of two rational numbers is a

rationel number between them. We know 2 %.13 between

2 and 3.
13. 49 16. -3 19, 12
2 16
1, -13 17.. -16 20. 4
] 3 3
15. =19 18. & 21. -6
] hul
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22, -6 29. 37 35. 47 < 6
) ;)
23, 81 30. 7 36. 999 <1
T 1000
2y, 81 31, -3¢~
=3 3
25, <=2 32, 41 < 14
: 3
26, -2 33. 4<¢2)
5
27. 5
28. 10 3"". _-_2_]; < """
5
12.18 Decimal Fractions (1 day)

The purpose here is to view the set of rational numbers when
using decimal notation in place of that of common fractions.

Students will understand that every fraction (e rational & where
b

8, b € 2 and b £ 0) can be written in decimal notation. Agein,
changing the name of the rational number will not change the

way in which it behaves, whether in operations or in the solution

of equations.
. Note that not a1l decimals are rational numbers. Only
termineting decimals and infinite repeating decimals can be

transformed to the form %.where 8, b € Z and b £ 0.

j The student Probebly has a firm understsnding of the place
value concept which he brings with him from the elementary school.
Hence, this section is in the nature of a review, ﬁith the possible
} exception that extension to the right of the decimal point may

not be so familiar,

934
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One of the purposes of Exereise 2 is to emphasize that .5,

for instance, 1s not a new kind of number; it is the rational

number which is the solution of "10* x =5" or "2 » x = 1,"

1. (a)
(v)
(c)
(d)

(e)

() W0~ x=17
(¢) 25 x =2
(@) 100 xt7
(e) 00°* x=1T7
(f) 1000 * x = 33
(8) 10° x= 27

(h) 8°* x =3
3. (a) 5

(b) .25

(¢) .75

(a) .2

(e) .4

(f)

(g)

(h)

(1)

(J)

3

100

3

1060

1000000

N

3

(1)
(3)
(k)
(1)
(m)
(n)
(o)
(p)

(f)
(&)
(h)
(1)
(3)
(k)

(k) 61
20
(1) 251
10
m) 5
(m) 2
(n) 8
) ]
(o) 33
T00
5°*x=3
5°*x =3
1000000 ¢ x = 123456
1000000 * x = 533333
-2 °* X =1
«20°* x =1
=10 * x = 27
-8°* x =3
.6
.8
.125
.375
. 625
815 335




-33h4-

4, (a) .5 =.50=.500 =. 5000 = . 500000
(b) to (1) similar.

5. (a) the numeretor may be thought of as 5, and the denominator
(understood) as 10.
(b) 7 and 100000.
(¢) 82 and 10

(d) Yes. The place value system determined the denominator.

6. (2) .15 (b) .35 (c) .32 (a) .84
(e) .390625 (£) .315

12.20 Infinite Repeating Decimals. (1 - 11 days)
2

Certain retional numbers, such as 1 do not have a terminating
| 3’
, decimal representation, and this section deals with them.
Actually this is a very subtle topic, since the limit concept is
1 involved in a statement such as 1 = .3333 ... = . 3 therefore
; such a statemenf is avoided at this time, and we merely show

that we can spproximate 1 to as many decimal places as desired.

Every rational number may be represented as &an infinite repeating

decimal (for instance, % = ,49999999 ... = . 49) ; but sgain we

do not discuss the matter here. The student should see however

that every rational number is represented by either & termineting
decimal or a decimal that develops (sooner of later) a "repeating

pattern."
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12,21, Exercises,

In Exercise 5(e), the limit concept is not far beneath the
surface, If the class seems prepared, then other questions of
this nature might be asked.

Exercise 7 is a good one for class discussion. The student
should be convinced that in perfoming the division a + b, either
he will get a zero remainder at some stage, or a repeating
pattern will develop. (This results from the fact that only &

finite number of remainders are availeable.)

1. (a) 1 (b) 1 (¢) .3333
3000 30000
2. (a) 3+ x=1 (b) 10 » x =3 (e¢) 100 * x = 33

(d) No, for they are different numbers.

. u’ . [ )
3. (a) s (e) .17 (e) 66%6 (g) 167
2 4 16 .
(b) =5 (a) . (f) 167 (h) 1667
4, (e) .8333 (d¢) .1818
(b) .6667 (e) .0833
(¢) .0909 (£) 4167
5. (a) g% (b) §%6 (c) 56%6 (a) 90300

(e) .111111

6. (a) 2.333 (b) Yes
7. (a) Seven numbers--0,1,2,3,4,5,6 (v) .142857142857
8. 0
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9. If you get 0 as a remainder, the decimal terminates. If
you never get 0, some remainder must repeat, since there i1s

a limited nwnber of possible remainders.

0. 01 .09; .10 .0909; .0910 .090909; .090910
,09096909;  .09090910

11. It is neot the ~ase that each of the intervals is contained

in the interval before it.

12,22 Decimal Fractions and Order of the Rational Numbers.

(1 day)

Compariscn of raticnal numbers represented by dec imal

fractions is very easy, and so, if place value is properly

understood, this section should pose no difficulties.

; 12,23 Exercises.
Exercise 3, (together with Exercise 9 of 12,18) should be
used to strengthen the understanding of Q as a dense set. One
cannot list consecutive elements of Q by the natural ordering,

for between eny two elements there is a third.

1. (a) 12.5 » 12.4 (£) 826,32 > 826.30

| (b) 8.33 < 8.34 (g) 5.4793293 > 5.4789999
(e) .1257 > .1250 (h) 548 < 551

; (d) .1257 > .125 (1) 1.9999 < 2

| (e) .6666 < .666T (5) .987h < .9875

Q o 338
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2. (a) -3.567 > -3.582
(b) -.12345 > - 12453
{¢) =.99> -1
(d) -100.555 > -100.565

e) -42 8 > -42.85

) -b2.8 > -42.85

g) -12.9999 < 12.9998
h) -4.378 < -4.3779

s )

N

“nart?

(
(
(
(

3. Answers will vary. Here, the exact midpoints are shown:

(a) .7 (e} 5.425
(b) 2.37 (f) 5.425

(c) 45.9615 (g) 3.85
(a) 105 (n) 2.99%5

h. 4 i —t— + -
1 v =z ¥ Z

5. No, it is not possible, for instance, to find an ineger

between 1 and 2.

12.25 Solutions for Review Exercises.

1. (a) 3 (£) 2 (k) 3L
(v) % (e) g% (1) TI% or - %T
(c) =3 or 33 or - 2 (h) 7 (m) 1
(a) 3 (1) % (n) o
(e) 3 (4) :g or fg (o) 2




Ut

(a)
(b)
(c)
(a)

(a)
(v)
(e)
(a)
(e)

(a)

(v)

(s)

(b)
(c)
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17 (e) 64
12 25
8 (f) 1
9
27 (g} 4
B ) 3
- 27 (h) 3
hs ) I
m -27
(m) =27
(n) 5
32
17
2k
11
5
21
10
20
=5
8
9
6 (e) 10
T 3
81 (a) 32
R 5
6. 1
10
6. 1+3._1
10 100
0. 1+6, 1 +3
10 100

(1)

T

(J)

oy Wi

(%)
(1)

LFY
n

Pemn
=]
S
W Jw

(1)

(e) ad
be

" 1600
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(d) o. 1+0. 1 +6. 1 +0. 1 +3, 1
10 100 1000 10000 100000
(e) 2,10 +5+ 0.1 +8, 1
10 100
(f) 3+1. 1+7. 1 +5. 1
10 100 7000
(g) 2+0. 1+0. 140, 1 +0, 1 +0. 1 +
0 100 1000 0,000 100,000
5
T, 000,000
(h) 3. 1+3. 1 +3. 1 +3. 1
0 100 1000 10,000
6. (a) .5 {(f) .3333
(b) .5 (g) .7
(¢) .75 (h) .70
(d) .4 (1) .625
\e) 3.4 (J) .1429
7 (2) % < % (a) .3475 > .3h429 (g) .00001>.000009
(v) 4>5 (e) 1> .333333 (h) 20 > 25
T 9 3 - 1z
(¢) 23 > 25 (f) .3715 =3 (1) -3>-2
- 8 5 3
8. Answers will vary., Midpoints are shown here.
(=) 3 () 3 (8) 37
15
(b) 5 (e) (h) 1
g % 255
(¢) 9 f) .34
- (£) .3455

Q 341
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(a) 9
: © 3

(v) - (@) -43

i =43
15 " 10
Swgested Test Items ~-- Chapter 12

PART ONE., "RATIONAL NUMBER OPERATIONS.'" Perform the following
rational number computations, in each case giving

the result as an irreducible fraction.

2 -3 6. -1+(5.§)
3 5 8 5
5 + 3 7 -2 + 2
6§ B (“3 3) T%
3+5 8. 5.17)+ (3. =2
3+2 (5 .7)+ ( )
1+ 2+3 9. 36 . 15
2 3 K 5 2
(2 -1) =1 10. 2+1
3 5 3
-1
3 5

PART TWO. EQUATIONS. Give the solution of each of the

equations.
2 v x=3 6.%.:(_0 10.-%+x--%
=7+ x =15 7. 2 .x=1 11, -7 +x =7
l.x=15 3 8 8
2 8. 2.x=2 12, x+7=_3
3.x=1 3 3 9 21
> 2 9. -7+x=0
X+ x=3 8

I

% . X=0 zqub
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PART THREE. 'DECIMAL FRACTIONS."
Write a decimal fraction for each of the following

rational numbers.

(a) % (b) % () % - (a) % (e) g

Write an irreducible fraction %.which represents the same

rational number as each of the following.

(a) .6 (v) .125 (e) .250 (d) 1.8
(e) .300
Write a decimal fraction which approximates g correct to
9
three decimal places.
PART FOUR. ORDERING AND DENSITY
In each of the following, place & "<", "=", or ">" so
that a true statement results.
(e) 9 17 (d) .3215 .3209
F 2
(b) - 9 =171 (e) .6666 2
¥ 2 3
c -1 0
(c) ¥
Prove that .33 < 1 < .34,
3

(a) Find a rational number x such that 5 < x < 6

T 7
(b) Find a rational number x such that a < x < %

b

343
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PART FIVE. PROPERTIES AND RELATIONS
Complete each sentence with the word, phrase or term that
will make the sentence & true statement for (Q, +, °)

(2) The additive inverse of 3 is .

—————— —

(b) The multiplicative inverse of -1 is .
T
(¢} (35+ 9y,8 _35 9+ _8y by the
& ®Wrto-w* %
property.

(d) Operational systems in Q inelude (Q,+),(Q°) and .
(e} a = c¢ if and only if be = .
P d

Using (Q,+,°), answer TRUE or FALSE.

(a) (Q,+) is a group.

(b) Every rational number has a reciprocal,
(e) (Q, °) is & group.

(a) If a < ¢, then a new raticnal number can be found so
b a

that a < a + ¢ < ¢
b+d d°

(e) The identity in (Q, +) is 1.
(f) The identity in (Q, -) is O.

(g) In (Q, °), x =1 only when x = 1,
X

(h) Every rational has an additive inverse.

(1) Addition distributes over multiplication in (Q,+,°).

Rewrite any three of the false statements from problem 2,

correcting the errors to make them true statements.
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Answer Key for Suggested Test Items,

Part One
1. 1 4, 23 7. O
% 12 T
2. 20 5. 10 8. 5 10 11
9 3 1 32
3. 9 6. O 9 9
20 T 10
Part_Two
1, {g} 5. [%] 9. {%]
2. (-15 6. (0 10, (O
("=3) (P (P
> P (O L d
Part Three

1. (a) .5 (v) .2 (e) .75 (@) .875 (e} 2.5

2. (a) 3 (b) 1 (e) 1 (d) 9 (e)
L3 5
3 RIUY)
Part Four
1. (e) < (v) > (e) < (a) > (e)
2, .33< 1<, 30 =—=—333<C1l1<34 —>
3 00 3 7100
1563 <3 (55) < (%) " 550 300 300 .

J00'F
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3. Answers will vary

(a) 11 (midpoint), ete,.
T
(b) ad + te (midpoint); 8 + c ; ete.
2bd b+ d
Part Five
1. (e) -3
5 (d) (@, -)
(v) -7 (e) ad
T

(c) associative

2. (a) True (d) True (g) Fa’ase
(b) False (e) False (h) True
(c) False (f) False (1) Palse

3. (b) Every rational number except zero has & reciprocal.

(c) QQS[O}, ‘) is a group.

(e) The identity in (Q, +) is O .

(f) There is no identity in (Q -).

(OR) The right hand identity in (Q, -) is O.
(g8) In (Q, ") x =1 only when x =1 or x = -1 .
X

(1) Multiplication distributes over addition in (Q, +,°).

S




Course I Chapter 13
Some Applications of the Rational Numbers
(total time 15 days)

Commentary for Teachers

The purpose of this chapter is to show some important
applications of raticral numvers. Dilations and translation
are extended to a domain with rational numbers. Computation
with decimals and percents are shown here. Ratio and propor-
tion are also an important application of rational numbers.
Presenting data in rectangular, circle and bar graphs is done
in this chapter. An introduction to the idea of vectors is

important for future work.

13.1 Rational Numbers and Dilations (3 days)

In view of the student's earlier wqu with dilations D,
where a is an intege» (Chapter 7), the extension of the concept
to include dilations D, where X is a rational number should not
be difficult for the idea is the ssme. The "distance" of any
ppint from the origin is multiplied by the factor x, together
with a reflection in the origin if X is a negative number.

The text intrcduces rational number dilations in terms of
a composition. Thus, D3/2 is interpreted as a dilation D3
(a "stretcher") followed by a dilation Dl/? (a "shrinker").
Such an interpretation has some advantage in that students see
that if a segment is stretched by 3, then shrunk by only 2,
the final segment will be longer than the original. Hence, in

P - | 347
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a problem of the type, "find a of x" (a2 number of which are

Loy

included in this section) he can easily tell whether the result

should be greater than X or less.

13.2 Exerclses
In Exercise 2, the student should see anothei reason why we
interpret a and ¢ as representing the same number if ad = be;
for in sucE.a cagg, they are associated with the same dilation.
In Exercise 4, the student should see that composition of
dilations provides another reason for defining multiplication
of rational numbers as we do. In fact, for the students not
already familiar with multiplicacion of fractions this might well
be the initial motivation.

1. a. ,..Q___(IY, . N
-3 -2 -1 O Z 3 5

d. D2/3

4/5: 7/3: 10/2 orD 10/2 orD

2. a, /’—E\ £g§t§’%£;;f§;;;::::h'

b. Same as a.

c. Yes; under these two dilations, every point has the
same limage.

d. When ad = be.
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30,000
$1955.00
10. $2.25
11. a. Jim b. Sue c. They are the same height.
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12, &

13. (c) and (c) In both cases, it is the segment joining (0,0)
and (%u%){
(2) + (b)

y

14, a.
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c. They are the inverse of each other.

15. a, b,

b a
b, & o)
(X,¥) >0, 20 —2—>E . 2,2 . 2y)
a b (X’Y)
Dy . Dg=D
%% o
c. (X, Y) —==(X,Y)——>(X,Y)
16. a. D b. D c. D d. D
2 5 : L x40

17. &. The points are all mapped to (0,0).
b. The points are their own images.

c. The images are reflections about the origin.

13.3 Computations with Decimal Fractions (2 days)

Here we deal with the "decimal fraction computations"
which we expect all students to be able to do. Some classes
may already know this material very well; in others, it mey be
advisable to discuss in ¢lass a number of examples similar
to those explained in the text. Although a full explanation is
seldom fascinating to students who already know "how to do it",
they should at least see how the basic properties (e.g. distri-
butive property) are involved in the computational algorithms.

In Example 2, students should understand why we compute to
"three decimal places" when our final answer is expressed
correct to ohly "two decimal places". The '8' in the thousand-
ths place tells us to use 29.13 instead of 29,12 (since .128
is closer to .130 than to .120). |
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13.4 Exercises
In Exercise 2, be sure that students see why all of the
results are the same. Such examples can do much to end the

confusion over "moving the decimal point" in a division problem.

|—l

1
. a., 11.50 b. 46.220 c. =-344.73 4. 11.25 e. 5.0625

f. -1.40 g. -11.00 h. 29.1 i. 15.2 J. -15.2
k. 2.025 1. =-15.80

2. a. 1.7 b. 1.7 c. 1.7 a. 1.7

¥4

. Any one of the quotients can be obtalned from the other

by multiplying by the multiplicative identity.

L, a. 15.69 bv. 6.46 c. 181.25 d. .02 e. .02 f. 5149.53
5. $256.67

6. $285.18

T. a. g b. 1.2

8. 6.75 inches

g. 12 yerds

13.5 Ratio and Proportion (1 day)

We discuss ratio first as a comparison of sets; specifically,
it is defined as the quotient of the meesures of the sets. When
the measures are those made on finite sets they are whole
numbers and the ratio 1s.a iraction when thé measures are of
continuous physical magnitudes. They are usually rational
numbers and again their quotient is a rational number. This
is the kind of definition we want in mathematics, although in
the vernacular people often speak of the retio of things.

851
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13.6 Bxercises

In Exercise 6,

-350-

1t should be stressed that g = %means the

following:
4 a8 =
_3 _ 4
Therefore, & = T b, and b = T
1. ao 2:5 b. d2/5 c. 5.2
2, a, 2:1 b. 1:2 c., 2:1
f. T:13 g. 2:1

3. &a. 17:20 b.

4. (1,3), (2,6), (3,9),---.
5. a. a b.

6. ea. %» b.

7. &a. 325 miles

8. a, b.

3:20 c. 1l:1

c c. ¢

3
i

3. b,

a.

é. D5/2 e, 1l
66:25 e. 13:7

[=]]

d., 17:3 e. 3:17

d. equal

352



Qﬂ%//

.L“v.f

The lines seem to be parallel.

13.7 Using Proportions (1 day)

This section presents a physical example to motivate the
applications of proportions. The second example is strictly
an algebraic approach to show the student how to solve a

proportion.

13.8 Exercises

5 10 15 _ 20 1_2 3 4 1 _2 3 _4
1.8 g=T>» I®=2F ° I BT ©5°15°3
2. a. 27 b. 28 c. 16% |
3. a. 6 Y, 4% c. 7 d. L.A4T e 4 £ 18
g. 2 h. 25 1. 5

L, 35

5
5. 357

6. x = 12%3 y=15

13.9 Meaning of Percent (1 day)

Percent is defined in the usual way. Specifically, we
want an equivalent fraction with denominator equal to 100.

The numerator of this fraction will be the percent.

993
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The percent equivalents in Exercises 4 and 5 are ones

a'o

[o]]

2
,2_;, Zete. b, F g
%‘, g‘ etc- ec %) g‘
20% b, 10% c.
50% b. 50% c.
125% g. 17% h.

ete.

ete.

25%
25%
117%
.25

.75
.20
.60
.20
.125
.875
.80

375

Lo

.10

.90

1.00

c.

d.
d.

%u g ete.
452 e.
250% e.

are worth commiting to memory.

100%

150%
25%
T5%
20%
60%
20%
12.5%
87.5%
80%
37.5%

hog

90%
1006



-353-

L .70 TO%
10
1 .05
= 5%
3 .30 20%
0
1 .01
100 1
2 2
5. a. 663% b, 165%

c. 333% d. 8%%

13.11 Solving Problems with Percents (1 day)

Here we discuss standard problem types involving percents.
No distinction 1s made as to "types", however; all are treated
as proportion problems. Students should not be forced to use
proportions however, as the text points out following Example
5. Also, confronted with a problem such as "Find 18% of 90",
the student might well prefer to solve it as he did in
Section 14.1:

184 of 90 = T%g of 90 = I%% . 90.

13.12 Exercises
Exercise 1 is intended to suggest to the student that if he
first finds 1% of a number, it is relatively simple to find
8% of a number by multiplying by a.
l. a. 53 25; 2.5; T7.5; 250; .5; 50; 500
b. 1.50; 15; 50; 2
c. .24; 6.72; .18; .42; 18
d. 80; 40; 120: 260; 4000
Q e. .5; 50; 100; 120 £f. .92; 92; 276; 322

3%
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910

15%

a. % b. 663 c. 3 d. 1508

55'9. D0V,

20° YV

20

5, 80%

25

53> 1258

500

m": 125%

400

209 80

8

8o  10%

§g, 1000%

16

0’ 20%

8o

'1'6': 500%

4,2

2’ l%

L2

1.8

&

180 .

g 10000%

a. 22%% b. 22 points

55 points

a. 55 Db, 160 ec. 34—27- d. 40 e¢. 700 f. 8400
a. $1.60 b, $.60 c. $.50 d. $.13 e. $.04
f. $.40 g. $140 h. $139.96 i. $.bo

a. $90 b. $180

a. $22.50 b. $56.25 c. $22.50
a. #$§20 b. $10 ec¢. $5 d. $51 e. $25.50

356
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f. $12.75 g. $165 h. $123.75 i. $31.50 j. $15.75

14. a. 1300 b. 66%% c. 1504 d. 111% e. 50
£. 270 g. LA n. 4l 1. 27 j. 11 k. 83%%

13.13 Presenting Data in ¢raphs (2 days)

The fundamental outcome of this section is to have students
recognize that for approximate judgments, comparison of geome-
trical figures as seen by the eye are usually quicker and
easier'to grasp than similar comparisons of the numerical
measures of these figures. Students must also develop Judgments
of the size of a unit to be used to make a graph of acceptable
size and yet readily analyzed. In bar graphs we compare the
lengths of the bars, in a rectangular graph, the lengths of the
separate sections, and in circle graphs either the lengths of
the area or the areas of the sectors. A good intuitive
exercise is to show that ratios of arcs and the corresponding

ratios of the areas of the sectors are equal.

13.14 Exercises

1. a. 2 b. 4 ¢c. bicycle; walk d. circle or bar

4, percents 36; U4; 5; 15; Degrees; 129.6; 158.4; 18.0; 54.0

13.15 Translations and Groups (1 day)

There is no new concept to be developed here, merely ex-
tending a translation of a singleton onto a singleton to that

of a translation of an ordered pair onto an order pair in the

%7
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plane. The analogy should cause no trouble in making a
composition of translations in the plane. The teacher should

propose that if the translations x

>X + a, ¥

>y + b
and (x,y)———>(x + a, y + b) are understood, what meaning

could be given to (x,y,z2)——>(x + a, ¥y + b, 2z + ¢c).

13.16 Exercises

In Exercise 7 and 8 note that t represents only one
particular translation for each (x,y). Taen t;"1 also repre-
sents only one particular translation.
1. Yes; the composition of any two translations is a trans-

lation.
2. (t;ot,)ota = t;o(tgota) (Associativity)

o)

There is an identity translation I such that 1% =¢t1I=t

Y
Every transformation t has an inverse ¢t such that
10

<1
%™ =t t =1I.

3. If the rule for t is (x,y)———>(x + a, y + b), then the
1
rule for t- 1is (x,y)———>(x - &, y - b).
4, 0 is a rational number, and I is the translatiqn with the

following rule:

(x,y) >(x + 0, y + 0)
5. If t,' (x,y)——>(x + a, y + b)
ta! (X,y)—>(x + ¢, y+ d)
ty ' (X, y)—>(x + e, y+ £)

Then (tzot,)ota = t,o(tgot,) since (x + e) + (c + a) =
((x +e)+c) + a, and similarly for y.

6. t! (x,¥)
ta' (x,¥)

>(x + a; y +b)

>{(x + ¢, y + d)

o8



-357-

7. f{a) (x,y)
(b)  (x,y)
(e) (x5¥)

>(X+'§':Y‘4‘;_-')
>(X+1:Y"6%j)
>(x + 13 ¥y - 9)

- (d}— No. There is no identity, and there are no inverses.

8. (a) (xy)——>(x - 3 v + 2f)
(b) (x,) >(x - %v y + 43 _
() (xy)——>(x =1, y + 6%)

(d) No. There is no identity, and there are no inverses.
9. Yes; all necessary properties are satisfied.
The identity I is present. The inverse of £* 15 £k,
10. It must be shown that the composition of two such trans-
lations is a translation of the same kind.
>(x + ;pa, ¥+ a1b).
>(x + paa, ¥ + dpb).

>(x + pya + pga, y +

Let t, have the rule: (x,y)

Let ty have the rule: (x,y)

Then tg°t, has the rule: (x,y)
Q1 a + qga).
or
(x,y) >(x + (py + pale, ¥+ (@ + Qp)b).

which is of the required form, since p, + py is an integer,

and qy + Qg is an integer. The identity is obtained by

—>{x + pa,

letting p = @ = 0. And the inverse of (x,y)
>(x - pa, ¥y - qb). (With students,

y + ab) is {x,y)
numerical examples will be helpful.)

13.17 Applications of Translations (1 day)

This section is important. It is the first notion of a vector

in the physical sense of th: word, and the section develops the
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additive group of translations in a plane as a composition
group of free vectors in a plane. For further work on this

section see Elementary Vector Geometry by Seymour Shuster,

Wiley and Company.

Section 13.18 Exercises
1.

(c) Diagram is not necessary. The two forces act in the
" same direction.
Actual speéd = 20 miles per hour.

Angle with the north = 135°.
. i AN




S~
3 r~ resultant = r = 11 1b,
20[4, — -~
o7, (1.1 inches)
4, a. 39 b. 29 c. 24
. 1
b' 22§
6. U4
7. 39
8. Same magnitude, opposite directions.

13.20 Review Exercises

1. a. 4 b. 30 c. 227.5

2. #$420.00 |

3. $176.00

4, 15%%

5. 200

6. $95.00

7. a. 53.202 b. 15.15 e. -1T.5 d. THIT5S e. 49
£, 1.32 g. 4.65

8. %, 6.7

9. 18

10. a. 21 b. 31.5  c. .2-.1% d. 6 or -6

1. s (-1, -1) b (1,1 e (X ‘?%) a. (0, -15)

12. a. (x+%’-,y-%) b. (x+5,y-g c. (x-%,Y+§

d., (x - !'-%-, y+§)

Suggested Test Items (2 days)

1. Below are listed certain points on & tine, together with
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their coordinates. Write the coordinate of the image of

each of these points under the dilation D7:

P: 3 Q: -3 R: 7 S: 6 3 T 5

3 2

John has visited 66%4 of the states. How many states has

he visited? .

Jene has visited 66% of the states. How many states has

she visited?

Last year a man earned $8200. This year he earned % of

that amount. How much has he earned this year?

Compute the following:

a. 54.83 + 17.75

b. 54.83 - 17.75

c. 17.75 - 54.83

d. 18.4 x 7.6

e. %gég

A pic%ure measuring 10 inches (length) by 8 inches (width)

is enlarged so that the new length is 14 inches.

a. What is the ratio of old 1ength to new length? (Express
as irreducible fraction.)

b. What is the ratio of new. length to old length? (Express
-aslirreducible fraction.)

¢. What is the new width?

Solve the following proportions:

2-X 2 _ X | 5 _28
Express the ratio of %% to % as an lrreducible fraction.

A bank pays 4% interest. If Mr. Jones receives $36.00

interest, how much money does he have in the bank? (Assume
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‘thav the interest rate is an annual one.)

In a school with 560 students, 70 of them are in the

honor society. What percent of the students are in the
honor society?

In the same school (560 students), 35% of the students

are taking a foreign language. How many students are
taking & foreign language?

The expenditures of a certain town for the past year ‘
amounted to $50,000. It is estimated that the expenditures
for the present year will be 120% of that amount. What is

the estimated amount (in dollars) of this year's expenditures?

a., 80 is % of 50.
b. 50 is % of 80.

c. 50 is 80% of .
d. 80 is 504 of .

Test Answers

P: 3—m>7, Q}m3 >-21, R: -l-‘t—g—, S: 3 = 14, T: 3—56
33

33

$10250

a. T2.58 b. 37.08 c, =-37.08 4. 139.84 e. 1l0.8

a. % b. % c. 11.2
a. 60 b, L2 c. 22%
1

100

$900.00
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196
$60,000
a. 160%

d. 160

34




Comments for Teachers
Course I, Chapter 14
Aigorithms and Their Graphs

This chapter introduces the basic language and techniques
of flow charting with two goals in mind. First, computer
capabilities have had & profound influence on the problem solving

techniques of mathematies and the sciences. The first step in
solving a2 problem is often analysis of processes into a sequence

i of simple steps each of which can be simulated on a computer.
Thus it is helpful to have systematic standardized procedures
for diagramming or graphing processes,

Second, successful flow chart analysis of any process
requires, as & prerequisite, thorough understanding of the process.
Therefore, the exercise of flow charting familiar algorithms has
a pedagogical feature independent of the flow charting itself;

familiar algorithms can be reviewed and analyzed from a fresh
point of view.

The sign painter flow chart is used as an organizing thread
for the chapter, but the important processes are the mathematical
algorithms. The chapter will probably take from 7 to 10 days of

class time.

" 14.1 Each type of flow chart box has a characteristic kind of
direction and, to indicate immediately the purﬁose, a8 characteristic
shape. However, the only really crucial thing 1s to have
directions within the boxes}clearly descfibe the action to be

taken. Flow charts composed by different programmers (students)
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will commonly vary in detail and organization. This is particularly
true of the non-mathematical processes such as sign painting or
finding one's way to school. While the absence of a single

"right answer" might be initially upsetting to students, it is a

fact of life even in many parts of mathematics and must be met.

14.2 Solutions

1. Answers will vary greatly here. Two examples are given.
a. <:§Eart >

Walk to bus sto?]

Ride to Eighth and Grand

Walk to school

d. - ’ tar

f"ﬁ%o numbers

Add the number§|

Divide this sum by 2]

ThisAresultvisi :
the aversage

JERR Sto < %s
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Quite often the order of the boxes is essential; occasionally

some rearrangement will still produce the same result,
2, With the change suggested in (b) it is possible to use the
same flow chart for a wide variety of signs.
(d) (1) 21, (2) 12
(e) (1) 8/7 inches, (2) 2 inches
3. (a) operation (b) input (c¢) input (d) input
(e) operation (f) input (g) output
h, (a) vall, basket, aim, shoot, score
(b) needle, thread, cloth, cut, sew, dress
(c) ball, glove, bat, throw, hit, catch, out
5. Answers will vary, but here is one possiblility.
Grard

given

(&

ST}

Igpmpute asC = X

compute bed

]
<

answer is

X
y

367
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6. See 1(d)

7. Remaining boxes might be:

Stop at first number,

|

Turn to the left passing the
second number once and stopping
at it the second time around.

. W+
l?urn right to the third number,

L .
Pull the lock briskly with the
thumb and forafinger

4

Voila

Stop>

14.3 Branching processes are very common in mathematics as
the examples of this section illustrate. This is a good
time to review the definitions and computational algorithms

of many number operations,

4.4 Solutions
1. (a) yes (b) no (c) yes (d) no (e) yes (f) no
2. This flow chart could be derived by minor modifications

of that in Figure 14.8
3. One possibility:

b8
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su@

|

[ _a,b,c given |

C Isaxbd Aﬁ)

Stop

4. This can be obtained from the chart in 3 by asking one more
question along each branch. For instance in the far left or
~"yes" branch one must also ask "Is b > c", If the answer is
yes; then one éan‘éonclude that a > b > c, If the answer is
Ano, then bne can conclude a‘g;c 2 b. |

5; One wéy to remove thé dupiicates wéuld be to interject
several boxeé‘of the type "is a = b"‘at the beginning and
then using appropriaté short circuit arrows to the order
decision box.thatvis useful next,

6. One possibility:

969
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Gtard

(a:b:c:d;fe:f:g:hl
yes
(Is a<b?2) — @
no
yes
(Is a<c?) >
no
) yes

s th?) 4[’{"
0

14.5 Writing 2 flow chart ﬁhat makes use of a count r (diamond)
for directing iteratiuns of a process requires directions that are
given in formula terms as well as the pesky business of subscript
indices. This will probably need special teaching attention, but
it is valuable for muChvfuture work in mathematics.

Note that there‘Are several different ways to make use of a
diamond in thé fiow chart for adding 100 nﬁmbers. The method given
was chosen because it seemed to simplify things the best. However,
encourage stﬁdents to trthpg%r own formulation of the directions.
It is certainly unimportantbfar them to memorize the particular

flow chart given in Figure 14.3, : 3?0
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14,6 Solutions

1. This was to be n! One possible chart is the following.

Compute subproduct
Let SO =1

Sy =8y x1

Of course one wey to eliminate diamonds is to put eech step

in as an individuel operation box. A more concise way would

be to do something like the following.,

Add the next number‘1(

no

~ Are the numbers less ‘\;
‘than fifty used up?AJ/

yes

Sto

n
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3. One simple version is the following:

Count the number, n, of
aJ that are less than a,

$

label ai aS'ai’N

o \

14,7 fThe important part of <chis section is the Newton Method for

calculating approximations to square roots, It will be used
heavily in later work--particularly statistics in Course II--and

thus must be mastered.

372
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1. Various charts are possible. ' One example is the followiﬁg:

i

/&l,a 3 e e 0 k] 8.50

Let S0 =0

505.3l Compute Si = Si_1 + 8

i

| Compute 850 + 50

This is the answerl

2. One possibility is the following:

e,b,c Find GCD of a,b
end call it Tl

Find GCD of b,ci Find GCD of Tl
and call it Té and T2.

This is the|
answer,

3. One possibility is the following: To divide & by b
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a,b Use Euclidean Algorithm to Use Euclidean Algorithm to
find q and r such that find q' and r' such that

a=4agb + r 10r = q'b + r!

(1s r':fg;é)

no

atb = qs(q'+1)|

4, One possibility is the following:

_ | | 1
Let 8, = OHCompute 8; =8; 1 %02

The diamond is designed so that any chosen n can be inserted.

5. It calculates the LCM of two given integers.

a 1 2 e
6. If | e-e | <TI0 then |a-e | <I0.

e
or |Na-e| . |Na+e|<TI0.

But since e < |va +e |
el . | Ve

-

e
e | <10 .

' 1
Therefore, |Va - e | < IO
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