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CD GENERAL PREFACE

ra:J This monograph was written for the Conference on the New Instructional

Materials in Physics, held at the University of Washington in the sum-

mer of 1965. The general purpose of the conference was to create effec-

tive ways of presenting physics to college students who are not pre-

paring to become professional physicists. Such an audience might include

prospective secondary school physics teachers, prospective practitioners

of other sciences, and those who wish to learn physics as one component

of a liberal education.

At the Conference some 40 physicists and 12 filmmakers and design-

ers worked for periods ranging from four to nine weeks. The central

task, certainly the one in which most physicists participated, was the

writing of monographs.

Although there was no consensus on a single approach, many writers

felt that their presentations ought to put more than the customary

emphasis on physical insight and syntDesis. Moreover, the treatment was

to be "multi-level" --- that is, monograph would consist of sev-

eral sections arranged in increasing order of sophistication. Such

papers, it was hoped, could be readily introccIced into existing courses

or provide the basis for new kinds of courses.

Monographs were written in four content areas: Forces and Fields,

Quantum Mechanics, Thermal and Statistical Physics, and the Structure

and Properties of Matter. Topic selections and general outlines were

only loosely coordinated within each area in order to leave authors

free to invent new approaches. In point of fact, however, a number of

monographs do relate to others in complementary ways, a result of their

authors' close, informal interaction.

Because of stringent time limitations, few of the monographs have

been completed, and none has been extensively r'writteu. Indeed, most

writers feel that they are barely more than clean first drafts. Yet,

because of the highly experimental nature of the undertaking, it is

essential that these manuscripts be made available for careful review



by other physicists and for trial use with students. Much effort,

therefore, has gone into publishing them in a readable format intended

to facilitate serious consideration.

So many people have contributed to the project that complete

acknowledgement is not possible. The National Science Foundation sup-

ported the Conference. The staff of the Commission on College Physics,

led by E. Leonard Jossem, and that of the University of Washington

physics department, led by Ronald Geballe and Ernest M. Henley, car-

ried the heavy burden of organization. Walter C. Michels, Lyman G.

Parratt, and George M. Volkoff read and criticized manuscripts at a

critical stage in the writing. Judith Bregman, Edward Gerjuoy, Ernest

M. Henley, and Lawrence Wilets read manuscripts editorially. Martha

Ellis and Margery Lang did the technical editing; Ann Widditsch

supervised the initial typing and assembled the lia-L1 drafts. James

Grunbaum designed the format and, assisted in Seattle by Roselyn Pape,

directed the art preparation. Richard A. Mould has helped in all phases

of readying manuscripts for the printer. Finally, and crucially, Jay F.

Wilson, of the D. Van Nostrand Company, served as Managing Editor. For

the hard work and steadfast support of all these persons and many

others, I am deeply grateful.

Edward D. Lambe
Chairman, Panel on the
New Instructional Materials
Commission on College Physics



BASIC THEMES OF PHYSICS

PREFACE

These pages constitute the opening chapters of an introduction to

physics for students who do not intend necessarily to make physics

their lifetime major interest. The emphasis is deliberately placed on

the over-all themes and general ideas of physics and very little on the

manipulative processes. For this reason the textual material tends to

be discursive, but at the same time an effort is made to be concise.

In no sense is the student being talked down to. On the contrary he

should feel that with every new topic presented his mind is being chal-

lenged and that a rather considerable intellectual effort on his part

will be required to fully comprehend what is being said and implied.

Since mathematical prerequisites are not stressed, the student will

recognize that what difficulties there are in the understanding of

physics are not in the mathematics which is so conveniently used in the

discussion of physical ideas but in the ideas themselves.

The organization and selection of topics are based on one view of

what is most likely to stimulate the students' interest and enthusiasm

for physics and what will at the same time contribute to a genuine un-

derstanding. The point of view taken here is that in order to achieve

these objectives, physics may well be regarded as a study of the ele-

mentary processes of nature, even at the beginning level. The principle

theme of the course, at least in its early stages, is motion and the

manner in which systems evolve in time. The course begins in the way

other courses do with a study of kinematics, but in a somewhat dif-

ferent context as determined by the tenor of the Introduction as well

as by the discursive passages accompanying the presentation of each

new idea. Also, important differences in comparison with standard

methods tend to accumulate as the subject is developed. One of the

most important is the early discussion of force in the context of basic

interactions, the presumption being that the number of types of inter-

actions in nature is small and knowable. The status of our current

knowledge in this respect is stated immediately following the discus-



sion of Newton's laws of motion. Other differences that occur early in

the text are the systematic discussion of the three important simple

categories of motion in the section on kinematics before any dynamics

is mentioned, the attempt to enliven the subject of kinematics by call-

ing upon the students' recently acquired understanding of acceleration

in circular motion and his knowledge of free-fall acceleration to pre-

dict the velocity of an earth satellite, and the introduction of rela-

tivity and its use under a Galilean transformation to establish the

principle of conservation of momentum. From this point on the organiza-

tion of material is not wholly determined at this time, but a long chap-

ter on electricity and magnetism, omitting most of the historical in-

troduction to electrostatics, will come early; there will be a section

on the molecular-atomic constitution of matter with kinetic theory and

thermodynamics in that order; and there will be a section on relativ-

ity and light. This will be followed by quantum theory, the structure

of atoms and nuclei, and some elementary particle physics.

The mode of presentation throughout the text is a combination of

the axiomatic and historical, with the balance chosen hopefully in such

a way that the students' interest is the more strongly enhanced. Con-

sequently, whenever it seems relevant to discuss the human aspects of

progress in science and something of the manner in which scientific

ideas originate and are developed, historical aspects have been

stressed. At the same time it is assumed that students live in a mod-

ern world in which the notion of atoms and molecules, atomic energy

and satellites, is commonplace, and not all of the historical develop-

ment needs to be belabored. In a few sections the presentation is

strictly axiomatic.

The first five sections which follow constitute the bare text for

those portions of the course and may be regarded as typical of what the

bare text for the remainder will be like. This text must eventually be

enlivened with more figures and with examples and problems. A course

along lines similar to this has been given once, and another attempt

has been in progress during the summer of 1965. Consequently there is

an associated list of exercises, problems, quizzes, and examinations,

but this material is not included at this time.

Edwin A. Uehling
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1 INTRODUCTION

Physics deals essentially with the
elementary processes of nature. Its
method is to isolate such processes
conceptually, and if possible, experi-
mentally, and thus to study the vari-
ous processes occuring in nature under
the simplest possible conditions. The
elements of such a study are the physi-
cal entities composing the system,
the properties which these entities
are observed to possess, the nature of
the interaction between them, and the
general principles which govern the
way in which the over-all system
evolves in time. In order to obtain a
description in these terms the appro-
priate concepts must be developed and
the principles of physical behavior
must be discovered.

As an example of an elementary
process occurring in our everyday ex-
perience, the free fall of an object
near'the earth's surface may be men-
tioned. That an object falls when re-
leased is known from earliest child-
hood. But to analyze this motion as
Galileo was the first to do almost
four centuries ago and to discover
that the motion which takes place is
of a particularly simple kind required
something more than mere observation.
Among other things an abstraction
from the actual situation occurring in
nature, thus eliminating certain ex-
traneous elements such as the resist-
ance of the air, was required. Also,
a rather considerable exercise of the
imagination was needed in order to
devise experiments and to establish
tests leading eventually to an unam-
biguous characterization of the partic-
ular motion under consideration. But
the student will also note something
more. In even so simple a physical
situation as this there are many prob-
lems. We have spoken of only one of
them: the kind of motion. Even to
answer this question one has to know
something about motion in a general

1

sense, what it is, what the concepts
are in terms of which it is described.
These are some of the kinds of ques-
tions people were able to answer up to
the time of Galileo and to which he
himself made important contributions.
But having answered these questions,
one finds immediately that there are
others, questions which in many cases
are sugges.Led by the answers already
given. In the case of free fall one
would naturally ask, after having
learned that the motion is of a cer-
tain kind, why this kind of motion
occurs in this particular physical sit-
uation in contrast with other kinds of
motion which occur in other physical
situations. In effect, what is the
essence of motion, and what is it that
determines whether it is of one spe-
cial kind or another.

As a second example from our
everyday experience, let us mention
the common observation that there are
fringes of color which are seen by
the most casual observer under a
great variety of circumstances: the
so-called irridence of a thin film of
oil on water, reflected light from
small bits of glass under certain cir-
cumstances, light shining through the
mist at a waterfall, and on a larger
scale, the rainbow itself. Camera
enthusiasts are aware also of an analo-
gous effect called chromatic aberra-
tion, a property of all simple lenses.
The physical situation common to all
these phenomena is the passage of
ordinary light, i.e., the light of the
sun, through transparent materials
such as oil, water and glass. Clearly,
the physical situation can be ideal-
ized, and quite clearly also some
idealization is required before an in-
terpretation free of irrelevancies can
be obtained. The first one to do this
was Newton. His immediate problem was
the elimination of color fringes sur-
rounding the image produced by a lens.
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He soon realized that the problem had
to be reduced to simpler terms, and
he began the study of the properties
of white light using prisms. In this
way he showed that ordinary light is
composed of many colors and that a
prism has the property of decomposing
light into its various color compo-
nents. This information may be shown
to be sufficient to explain the ap-
pearance of color fringes around the
image produced by a lens. But as in
our previous example, it raises new
questions, and enhances the interest
in old questions: in this case, the
nature of light itself, and then, the
nature of the interaction between
light and the transmitting medium. The
physical situation is now not as sim-
ple as in the case of free fall. We
will find that in the latter the ap-
propriate abstraction is to consider
simply two objects, the earth and the
falling body, attracting each other
with a force of a certain strength
which we will be able to determine and
describe. In the former we are dealing
with the interaction of light and
matter. Obviously, we will have to
know a great deal about light before
we can even begin the discussion of
this problem. Also we will have to
know and understand the properties of
atoms, the ultimate constituents of
the matter through which the light is
passing. And finally, we will have to
understand how light interacts with
atoms. Thus, a further abstraction in
this problem will be the description
of how light interacts with a single
atom.

Much of modern physics is far re-
moved from the realm of everyday ob-
servation. The frontier of physics
still spans the entire universe from
the cosmological to the subatomic,
but the greatest activity and interest
is naturally at the two extremes of
this range. There is one important
difference compared with the old phys-
ics. As we have just seen in two typi-
cal examples, the study of elementary
processes in the old physics was a
natural consequence of the questions

people ask concerning the natural
phenomena of everyday experience. By
a process of isolation and idealiza-
tion the actual phenomenon is decom-
posed into its parts and freed from
effects which may be regarded as tem-
porarily irrelevant. This leads event-
ually to a decomposition of a large
physical problem into a number of
smaller ones, some of which may be re-
garded as descriptive of specific ele-
mentary processes in nature. The ele-
mentary processes of modern physics
are of a different character. Many of
these processes are discovered simply
by pushing the modern techniques of
observation to their limits. The tech-
niques are so powerful that completely
unsuspected phenomena are frequently
brought to light. Experiments per-
formed for a different purpose will
lead in this way to results of the
most astonishing kind. Thus, a new
elementary process, one which is not
merely a simple component in a more
complex physical situation, is dis-
closed. Since the process was unsus-
pected, the reason for its existence
in nature is not known, and frequently
cannot be surmised. Thus the study of
the purpose in nature of elementary
processes and the associated elemen-
tary particles discovered by the meth-
ods of modern physics becomes one of
the larger problems of modern physics.
At the present time there are many
such cases. A typical example is the
muon, an elementary particle of mod-
ern physics which, insofar as we have
been able to determine after a quarter
century of study is identical with the
electron, only heavier. The muon was
discovered when people looked for a
heavy particle, which, according to
theory, would account for a strong
interaction force between two other
elementary particles, the proton and
neutron. It was another ten years be-
fore this latter particle, called the
pion, was discovered. In the meantime
the muon, having properties like the
electron, was not capable of providing
the desired interaction force, and
subsequently, and up to this day, no
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purpose in nature for this particle
has been found.

Finally, we will note that the
elementary processes of nature with
which physics must deal are not neces-
sarily confined to what is generally
regarded as the physical universe in
contrast to the biological. The biolo-
gists are finding that many, perhaps
all, of the elementary biological
processes are physical (or chemical)
in character. As an example we will
note the remarkable union of biology
and physics which seems to be develop-
ing in connection with the efforts of
biologists and geneticists to under-
stand the hereditary mechanism. Biolog-
ical experiments of great subtlety
have proven that the gene, the locus
in the chromosome of specific biologi-
cal properties, is essentially perma-
nent; i.e., it is transmitted from
generation to generation and through
repeated cell divisions and duplica-
tions without any change whatever. A
possible explanation of this perma-
nence of structure is believed to lie
in the quantum theory. Furthermore,
the genetic code contained in the DNA
molecule and involving the linkage of
specific molecular groups each contain-
ing a relatively small number of atoms
must be physical in character. Modern
physical theory based on quantum con-
cepts has been developing steadily
ever since the first hints of quantum
phenomena were discovered by Planck
and Einstein in 1900 and 1905. Modern
genetics and genetic theory, starting
with de Vries, Correns, and Tschermak,
has also been developing since the
beginning of this century. The possi-
ble union of these two theories at
this time when both have reached a
certain maturity is a matter of great-
est interest and importance to both
the biologists and physicists, and of
course to people in general.

These examples may provide the be-
ginning student with some idea of
what physics is about before starting
the course. But examples alone cannot
give a very clear picture, either of
the vast scope of the subject, or of

the depth and beauty of its various
parts. Not even a course in physics
can do that adequately. But by a se-
lection of the material, and by a
choice of emphasis, we can perhaps
hope to convey something of the spirit
of physics as well as something of
the physical content. Our objective
should be to provide some understand-
ing of what is basic and exciting in
modern physics, some conception of sci-
ence in general as a continuous state
of intellectual inquiry, some notion
of what is contained in the large body
of knowledge that is the result of
that inquiry, and some conception of
vhe ever expanding frontier which
separates that body of knowledge from
that which is presently unknown.

In order to accomplish these ob-
jectives the principal ideas of phys-
ics as they came to be understood in
the course of man's study of natural
phenomena will be presented. Me em-
phasis throughout will be on ideas
as described in terms of concepts,
general principles, and the connec-
tions between principles and phenom-
ena, rather than on detailed applica-
tions. Thus, it will not be expected
that the student will acquire facility
in the application of the stated prin-
ciples to new situations, but it will
be expected that t'a student will be
able to describe selected physical
phenomena in terms of general princi-
ples, and to this extent at least,
achieve an understanding of basic
principles and some of their more im-
mediate implications.

Since the emphasis will be on the
ideas of physics rather than on strict
analysis, much of the discussion and
some of the description of actual phys-
ical situations can be made in verbal
terms; i.e., without the use of mathe-
matical symbolism. However, since all
logical processes are in essence
mathematical, the student will find
that avoidance of symbolism is little
more than a subterfuge. Consequently,
the student will find it helpful to
recall what he can from previous
courses in algebra and geometry, and
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to acquire a certain facility in the
use of algebraic and geometric methods.
Early in this course he or she will
be assisted in doing this by a review
of what is needed for present pur-
poses. There will also be some in-
struction in the concepts and defini-
tions of trigonometry, in the use of
coordinate systems, in the meaning and
graphing of simple algebraic functions,

and in the nature of scalars and vec-
tors. Also we will describe and use
the method of analysis which is based
on making small changes in each of two
variables which depend on each other,
comparing them, and studying their ra-
tio in the limit that the changes are
very small. The resulting concept is
a basic one in the calculus, and is
called a rate of change.



2 KINEMATICAL

We begin the study of physics by put-
ting our attention on a single prop-
erty of the motion of an object: its
location in space at various times.
This is the kind of description we
give when we ask, for example, how far
down a certain road an automobile may
have traveled after leaving its start-
ing point when moving at a specified
speed, say 30 miles per hour. Simi-
larly, we may ask about the distance
of travel of a baseball along its
curved path after leaving the pitch-
er's hand, and again, the question can
be answered if we know the speed with
which the ball was pitched and can cal-
culate the changing speed of the ball
as it moves. Note that when we ask
such questions about the automobile or
the baseball we are abstracting from
certain other properties of these ob-
jects. The baseball, for example, may
be rotating at the same time that it
is traveling forward. Clearly, we are
ignoring this other motion, and closer
examination will disclose that it is
legitimate under certain circumstances
to do so. In the same manner we are
ignoring also numerous other physical
properties of the object under discus-
sion in our attempt to describe its
forward motion. This process of ab-
straction in physics is one which must
be justified as we go along. It is at
the same time an essential process.
No physical situation can ever be
described in all of its details. We
are forced for the sake of clarity of
argument, as well as by the sheer com-
plexity of natural phenomena, to re-
duce each physical situation to just
those relevant elements in which we
happen to be interested. This is what
is meant by abstraction in physics.
We would make no progress without it.

5

PRELIMINARIES

2.1 POSITION

We consider now the motion of an
object as a whole. We speak of this
kind of motion as translational motion.
The object is being translated from
one point in space to another. Since
we are ignoring all other properties,
the object itself may be conceived as
something which in fact possesses no
other properties than those which are
relevant to its behavior in transla-
tional motion. Since, in effect, we
will have selected a single point in
the object to which we consider posi-
tion locating measurements to have
been made, e.g., the front of the auto-
mobile in its travel along the road,
it is only this selected point of the
object which is of immediate interest
to us. Consequently, we ignore every-
thing else and put our attention on
the selected point. This leads us to
the concept of the point particle. We
will presently attribute other proper-
ties to the point particle than mere
location in space, but we will legiti-
mately abstract at least from all
properties of extension possessed by
the object in question. Clearly, this
is a tremendous idealization when we
are speaking of an object as large
and complicated in structure as an
automobile, or even a baseball, which
have dimensions measured in feet or
inches. It will seem like much less
of an idealization when the object un-
der consideration is a proton or elec-
tron whose dimensions are very much
less; e.g., radius of the order
3 x 10-13 cm for the electron.

The problem of translational mo-
tion is now reduced to the specifica-
tion of the location of a point parti-
cle at various instants of time. We
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will here consider the first part of
this statement; i.e., the specifica-
tion of position. The way in which we
do this depends on the situation. Let
us consider several cases in turn.

Suppose that a point particle is
constrained to move along a straight
line; e.g., the automobile on a
straight road. Regard the line as ex-
tending indefinitely in both direc-
tions. In order to locate the object
along this indefinitely long straight
line we must have a reference point.
Once the reference point has been
selected, all positions along the line
can be specified in terms of the dis-
tance to the reference point. We note,
however, that the object may be either
on one side or the other of the refer-
ence point. For definiteness we call
distance in one direction positive and
in the other negative. We find it con-
venient to denote the distances by a
symbol. For example, if the line is a
horizontal one and we measure dis-
tances to the left and right from a
certain reference point, a common
convention would be to denote the
distance by a letter x; if the object
is at a distance x1 to the right, the
position will be denoted by x1 where
x, is a positive number; if it is at
a distance x2 to the left, the posi-
tion will be denoted by x2 where x2
is a negative number. The reference
point is called the origin.

A similar convention may be used
for motion along lines which are not
straight; e.g., the motion of an ob-
ject at the end of a string in a cir-
cle. Since the point particle is con-
strained in its motion so that it must
always lie on some given line,
straight or curved, its position is
uniquely determined by a single num-
ber, say s in this case, where s is
measured from an arbitrarily chosen
fixed reference point on the line, and
is positive or negative according to
convention, depending on which side of
the reference point it may be located.

The position of a point particle
in a plane may be specified by a sim-
ple extension of these procedures.

One now requires two reference lines
which may be chosen arbitrarily in a
variety of ways. The simplest choice
is to use two straight lines of infi-
nite extent which intersect at right
angles. Denote the point of intersec-
tion as the reference point. We call
it the origin of rectangular coordi-
nates. Denote distances along one line
by the symbol x which is positive or
negative according to which side of
the origin a given point may lie, and
denote distances along the other line
by a symbol y which is similarly posi-
tive or negative according to which
side of the origin a given point may
lie along the y line. The point parti-
cle under consideration is now re-
garded as moving in a plane, and we
take the plane defined by the xy co-
ordinate system to be coincident with
the plane in which the particle is con-
strained to move. In order to locate
the point particle we drop perpendicu-
lars from it to the x and y axes which
intersect at say x = x, and y = y1
where xl and y1 constitute a pair of
numbers. These numbers uniquely de-
fine the position of the particle.

The extension of these methods
to three-dimensional space is obvious.
We now use three straight lines which
are mutually perpendicular and inter-
sect at a single point, the common
origin of the three-dimensional rec-
tangular coordinate system (the so-
called system of Cartesian coordi-
nates). We call the three lines the
x, y, and z axes of the coordinate
system and we measure distances along
these lines from the origin and denote
the results by the same letters x, y,
and z. The location of a point parti-
cle in space is now uniquely specified
by the three numbers x y and z1,
which are the numerical values of the
intersections on the x, y, and z axes,
respectively, of perpendiculars drawn
from the position of the particle to
the three coordinate axes.
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2.2 VELOCITY

If the point particle is in mo-
tion its position changes with time.
We may begin again by considering
motion along a straight line. We ob-
serve immediately that there are two
distinct cases. The first of these is
such that the distances traveled in
equal intervals of time are the same,
no matter when the observation is
made. If we divide any interval of
distance traveled by the time it took
to travel that distance we obtain the
same result, independent of which in-
tervals are chosen. In symbols,

X2
v

t2 ti'

where x2 x, is the interval of dis-
tance considered, and t2 t 1 is the
correspondiw; time interval. The ra-
tio, denoted by the symbol v, is
called the velocity of motion, or sim-
ply the velocity. For the case consid-
ered v is a constant. Frequently we
will simplify the notation by writing

x
v =

t'

which has precisely the same meaning
as the previous relation. The only dif-
ference is that the zero values of x
and t are in effect chosen at the be-
ginning of the motion. We observe that
the case of constant velocity can be
equally well characterized as the case
of uniformly increasing distance with
time; i.e., we may write the relation
in the form

x = vt,

which shows that x increases propor-
tionally with the increase in time.

All other cases fall into the
second category; i.e., the motion is
not at constant velocity. We first ob-
serve that if the velocity is not a
constant, the ratio of x2 xl and
t2 tl, which was used previously to
define velocity, will now have a value

which depends on which intervals of
x and t are chosen. Also it depends
on the size of the intervals. These
facts suggest that the only sensible
definition of velocity which we can
make is one which makes use of posi-
tion and time intervals which are ar-
bitrarily small. Here and elsewhere
we will denote arbitrarily small in-
tervals by placing a symbol A before
the quantity we are considering. Thus
we will denote an arbitrarily small
time interval by the symbol At. Let
Ax be the small distance traveled in
the small interval of time At. Then
using the same definition of velocity
as was used in the case of constant
velocity we define

v =
At'

This definition is still not quite
satisfactory however. A little consid-
eration shows that v still depends on
the size of Ax and the associated At
but that this dependence tends to dis-
appear as we make the intervals
smaller and smaller. Thus, we consider
that the ratio is to be evaluated in
the limit that both Ax and At are re-
duced to zero. We express the defini-
tion formally by writing

v = lim Ax
At.

At

The velocity so defined is called the
instantaneous velocity. It is a de-
finition that can be used under all
circumstances. Further clarification
of its meaning may be obtained from
a graphical construction. Suppose we
plot x as a function of t in a given
case. Examination of such a plot will
show that the v obtained from the
definition as given here is simply the
slope of the curve of x as a function
of t. Both the slope and the velocity
have well-defined instantaneous values
at arbitrarily selected values of t
or x.

The extension of these defini-
tions to motion in a plane or in
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three-dimensional space is most easily
made if we consider that the motion
parallel to the different coordinate
axes of a rectangular coordinate sys-
tem are independent of each other.
Thus, in two dimensions we have mo-
tion at velocity vx parallel to the
x axis and at velocity vy parallel to
the y axis. The velocities vx and vy
are called the components of the ac-
tual velocity v in the plane. Their
definitions are given separately in
precisely the same way as for one-
dimensional motion. Thus

vx = lim
Ax
At

AY
vy = lim

At-0 At

The extension to motion in three di-
mensions requires nothing more than
the addition of the equation for the
third component, i.e.,

Az
\Ix = lim

At-0 At

It is convenient as well as in-
structive to speak of velocity as the
rate of change of position. It is our
first example of a physical variable
which is defined as the rate of change
of another. Quite clearly, zero vel-
ocity corresponds to zero rate of
change of position (no motion), low
velocity corresponds to position
changes which are taking place at a
low rate, and so on. The symbolic
definitions given above are simply a
way of expressing the idea of rate of
change precisely and in a form suit-
able for quantitative use.

2.3 ACCELERATION

In the same way that velocity is
defined as rate of change of position,
acceleration is defined as rate of
change of velocity. A few examples
will help to clarify this concept. Mo-
tion at constant velocity is said to
be motion at zero acceleration, i.e.,

the rate of change of velocity with
time is zero. The next simplest case
is that in which the velocity in-
creases (or decreases) uniformly with
time. By this we mean that the veloc-
ity is changing, and that the amount
of change is the same in each succeed-
ing second. This is motion at constant
acceleration. Consider for example mo-
tion along a straight line. If the
velocity is changing uniformly with
the time its value v at any time t
must be given by

v = v, + at,

where v, is the velocity at t = 0, a
is a constant, and v increases or de-
creases uniformly with t depending
on whether a is positive or negative.
We call a the acceleration (constant
in this case). By solving for the ac-
celeration and expressing the result
in the form

a
t

V 110

we observe that a is the rate of
change of velocity; i.e., the change
of velocity per secoLd. A more general
form of the definition is

Av
a =

At'

where Av is the change of velocity in
the time At, and, for the case of con-
stant acceleration, the ratio is a
constant independent of the size of
the intervals or of the way in which
they are chosen. The analogy with the
definition of constant velocity as the
ratio of Ax to At is apparent.

If the acceleration is not a con-
stant we must proceed in the same way
as for the case of velocity which is
not constant. As for the latter, we
are able to define the instantaneous
values by choosing arbitrarily small
intervals and taking the limit as the
intervals go to zero. Thus, the gen-
eral definition of acceleration for
one-dimensional motion is
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a = lim
Av

At-0

The extension to two- and three-
dimensional motion is the same as for
the velocity. Also it is instructive
to plot v as a function of t and to
observe that the instantaneous acceler-
ation as here defined is the same as
the slope of the curve at correspond-
ing values of t. This is analogous to
the correspondence between instanta-
neous velocity and the slope of curve
in the plot of x as a function of t.

Position, velocity, and accelera-
tion constitute the complete set of
kinematical quantities required in or-
der to give a complete description of
any motion. The reason that we require
these three and no more will become
apparent later.

We will conclude with some re-
maAts about the units in which to
measure the kinematical quantities.
We will most frequently consider dis-
tance to be measured in centimeters
(cm) and time to be measured in sec-
onds (sec). Then the proper units for
position, velocity, and acceleration,
as may be verified by consulting the
definitions, are cm, cm/sec, and
cm /sect, respectively.

2.4 CLASSIFICATION OF MOTION

The first successful characteriza-
tion of any natural motion was made
by Galileo after a series of ingenious
experiments at the University of Pisa
between the years 1590 and 1600. These
experiments demonstrated that all mo-
tion at the surface of the earth, due
to the influence of the earth's gravi-
tational field, and abstracting from
the effects of friction and other in-
fluences, is motion at constant accel-
eration. It is probably this result to-
gether with the observations of Kepler
on the motions of the planets which
stimulated Newton and led to his form-
ulation of the equations of motion
less than a century later. Before

Newton, people did not know the basis
upon which a classification of motion
was possible, a fact which renders
the achievement of Galileo all the
more remarkable. Since the classifica-
tion will be helpful in our subsequent
discussions we will anticipate the
basis for the classification, defer-
ring its justification until after we
introduce the equations of motion. The
basis is simply the nature of the ac-
celeration. We will now describe the
kinematical properties of several im-
portant types of motion classified on
this basis.

2.4.1 Motion At Constant Accelera-
tion

We will restrict the present con-
siderations to motion along a straight
line and take the acceleration a to be
directed along this line in the posi-
tive sense if a is positive. Then, as
we have already seen, the velocity at
any time t is given by

v = vo + at,

where v0 is the velocity (positive or
negative) at t = O. We are interested
now in calculating the distance of
travel during a time t if at t = 0
the body is at x = O. This is easily
calculated by noting that for this
case of uniformly increasing velocity
the average velocity V during the
time t is equal to half the sum of the
initial and final velocities; i.e.,

= 1(v + v0).

Then the distance traveled is

x = Vt = 1(v + vo)t

= vot + 1 ate.

This is the characteristic result for
motion at constant acceleration; the
distance through which the object
moves in a time t increases as the
square of the time. As noted by Gali-
leo, one can easily show from this
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result that the distances through
which the object moves in successive
unit intervals of time are in the
ratio of the odd integers.

Also, as shown by Galileo on the
basis of actual experiment, these are
the relations which correctly de-
scribe motion in the earth's gravita-
tional field (bodies rolling down in-
clined planes and bodies falling
freely toward the surface of the
earth). Galileo's stop watches (water
clocks) were not sufficiently accurate
to provide him with reliable data on
freely falling bodies, but he was
able to establish beyond doubt that
the motion with which he was dealing
was one of constant acceleration. Con-
sequently, one of our first important
results is that motion at the surface
of the earth takes place at constant
acceleration. Although Galileo could
not measure the magnitude of the ac-
celeration very accurately, its value
is in fact easily determined, and
methods for its determination will be
discussed in class. Anticipating the
measurements, we will now give the
result. We denote the value of the
acceleration of gravity at the earth's
surface by the letter g in order to
set it apart from all other accelera-
tions which we will continue to denote
by the letter a. The result of the
measurement is g = 980 cm /sect approx-
imately and it is directed very nearly
toward the center of the earth. For
reasons to be discussed at a later
time, its direction (with respect to
a line drawn toward the center of the
earth), and its magnitude vary
slightly over the surface of the earth.

Galileo's contribution to the un-
derstanding of the principles of mo-
tion is so great, and his thought
processes (as demonstrated by the
kinds of experiments which he per-
formed and by the logic of his argu-
ments), are so beautiful, that every
student of science, casual or not,
should want to make some further study
of his work. An excellent summary to-
gether with excerpts from the original
writings is to be found in Shamos,

Great Experiments in Physics, pp. 13-
35.1

One additional relation valid
for straight-line motion at constant
acceleration is of interest. As we
have seen the defining equation for
acceleration automatically gives the
velocity as a function of the time in
the special case of constant accelera-
tion. The question may be asked wheth-
er or not we can give an expression
for the velocity as a function of dis-
tance. A little consideration will
show that all we need to do in order
to obtain such a relation is to elimi-
nate the time between two relations
involving v and t and x and t. One
way of doing this is as follows: Start
with the two relations

v = vo + at

x = vt = i(v + vo)t;

rewrite them in the form

v vo = at

v + vo = 2x/t;

now multiply the two equations by each
other to give

v2 vo2 = 2ax.

At this stage the student will
find his understanding of what has
been accomplished enhanced by making
applications to a few specific situa-
tions. It will be helpful also to plot
some of the relations. Consider for
example the simple straight-line plot
of v as a function of t for each of
the four cases obtained by taking
combinations of positive and negative
a with positive and negative vo, then
in each case consider the behavior of
x as a function of t and v as a func-
tion of x. An important special case
is that of free fall along a vertical
line in the earth's field. Consider

'Morris H. Shamos, (ed.), Great Experiments in
Physics (Holt, Rinehart and Winston, Inc., New
York, 1960).
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problems in which the object is given
initial velocities upward and down-
ward, and use various sign conven-
tions in solving the problem.

2.4.2 Motion In A Vertical Plane At
the Earth's Surface

On the basis of the discussion
given in the preceding section, we al-
ready know how to characterize this
type of motion. We have learned that
objects moving under the influence of
the earth's gravitational field ex-
perience an acceleration directed to-
ward the center of the earth equal to
g = 980 cm/sec.2. In addition we have
already stated that motion in a plane
can be decomposed into motions along
an x axis and a mutually perpendicular
y axis. Let us now take the y axis to
be the vertical axis. Then the y mo-
tion is at constant acceleration g
directed downward. Since the y axis
is vertical, the x axis is horizontal.
There is no acceleration along this
axis. Consequently, the x motion is
at constant velocity.

Before preceeding further we must
say something more about the nature of
the problem to be discussed. Also we
must make a convention in regard to
signs. The motions we are about to con-
sider are those which are initiated by
projecting an object rith some given
initial velocity in some given direc-
tion and then allowing the object to
move freely under the influence only
of the earth's gravitational field. A
convenient way of specifying the ini-
tial conditions is to give the two
components of initial velocity along
the x and y axes. We denote these two
components as vox and troy respectively.
Next we must adopt a convention with
respect to signs. For the x axis it is
convenient to take the positive direc-
tion as the direction of vox. Then vox
enters the equations as a positive
quantity. For the y axis we may take
the positive direction to be upward
(in which case the acceleration is g
and voy is positive if directed up-
ward), or we may take it to be down-

ward (in which case the acceleration
is +g and voy is negative if directed
upward). Let us here choose the posi-
tive direction of the y axis to be up-
ward. Then using the results already
derived for distance as a function of
the time in constantly accelerated
motion we write for both the x and y
motions the relations

x = voxt

y = voyt 2 gt2.

According to these equations the ob-
ject is definitely located in position
at all later times t if, in the same
arbitrarily chosen coordinate system,
the object was at the origin at the
time t = O.

It is of interest to consider the
nature of the path (the trajectory),
followed by the object in its free
fall. The equation for this path may
be obtained by eliminating t between
the two equations. This elimination
gives

X 2
.2

/70x Vox

The characteristic feature of this
equation is that y varies as the
square of x in addition to having a
contribution proportional to it. This
feature gives the curve a characteris-
tic shape. Paths in a plane which
possess this feature of one variable
varying as the square of the other are
called parabolas. Thus, the trajecto-
ries of freely falling bodies are pa-
rabolas. The student will find it in-
structive to plot a few of these
curves using several different choices
of vox and voy.

The student may at this point
raise an important question. If he
recalls the theorem of Pythagorus he
knows that the actual displacement of
the object in the time t (the straight-
line distance between the starting
point and a selected point on the tra-
jectory), is given by

s = 1lx 2 + y2.
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One may well ask what is the actual
velocity at a selected point on the
trajectory. To begin with we know the
components. They are

vx = vox

vy = Voy gt,

where in the second relation we are
simply using again the definition of
constant acceleration and recalling
our convention in regard to signs. We
can now show that the actual velocity
v is obtained from the components vx
and vy in the same way that the actual
displacement s is obtained from the
component distances x and y. To show
this consider a small increment of
displacement As along the path with
the components Ax and Ay. Then by the
Pythagorean theorem

As2 = Ax2 + Ay2.

Dividing by Ate we obtain

2 2 fAvN2
\ At / \ At / At

But by definition of velocity this is
simply

v2 = 2 2V Vx VY

Quantities such as s (with com-
ponents x, y) and v (with components
vx, vy) are called vectors. We denote
them as s and v. They possess the im-
portant property of composition by
addition of the squares of the rectan-
gular components. They are quantities
possessing both magnitude and direc-
tion. They may be completely expressed,
as we have done, in terms of their com-
ponents. Or they may be expressed in
other ways. One other way which we
will find convenient is to give the
magnitude of the vector and the angle
which the vector makes with some spec-
ified direction. Consider for example
the velocity on the parabolic trajec-
tory which we have been considering.
The magnitude of this velocity is

V = Vvx2 vy2.

Now we must also give its direction.
One way is to specify the angle 0 be-
tween the direction of the vector and
the x (or y) axis. Suppose we use the
x axis. Then in terms of the compo-
nents we find it easy to show that
tan 0 = vy/vx. The two specifications
(v in terms of vx and vy, or v in
terms of v and 0) are completely equiv-
alent. We use whatever is most con-
venient.

Perhaps we should add one addi-
tional point in regard to our whole
procedure. We have assumed without
proof of any kind that all motion can
be decomposed into mutually perpendic-
ular motions which behave independ-
ently, and that these motions may then
be compounded to give the resultant
motion. The only proof of the validity
of this procedure is that which is ob-
tained from experiment. Independence
of motion has been assumed and a para-
bolic trajectory in agreement with ob-
servation has been predicted. It is
this interplay of intuition, hypothe-
sis, experiment, and comparison with
the predictions of theory that pro-
vides the basis for the acceptance and
rejection of ideas and the gradual
accumulation of what we classify as
scientific knowledge. Galileo was
among the first to recognize this.
The motion we have been considering
was in fact completely analyzed by him,
and in much the same way as we have
done it.

The motion we have been describ-
ing is often called projectile motion
because of its obvious applications.
For a further discussion of this mo-
tion see, for example, Holton, Intro-
duction to Physical Science, pp. 36-53;
Orear, Fundamental Physics, pp. 26-31;
and, Shortley and Williams, Elements
of Physics, pp. 77-7G.2

°Gerald Holton, Introduction to Concepts and
Theories in Physical Science (Addison-Wesley
Publishing Company, Inc., Reading, Mass., 1952);
Jay Orear, Fundamental Physics (John Wiley &
Sons, Inc., New York, 1961); George Shortley and
Dudley Williams, Elements of Physics (Prentice-
Hall, Inc., New York, 1953).
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2.4.3 Circular Motion

A very common type of natural
motion is motion at constant speed in
a circle. For example, many of the
planets move in orbits which approxi-
mate very closely to a circle, and
the speeds are nearly constant. The
motion of electrons in atomic orbits
can be described quite satisfactorily
for many purposes by using a model
based on circular orbits and constant
.eeds. Also in our everyday experi-

ence we encounter such motions fre-
quently, e.g., an automobile moving
at constant speed around a curve of
constant radius, the rider in a merry-
go-round, the contents of a cream
separator or other centrifuge. Thus,
there are many examples and we must
conclude that this is an important
type of motion.

We begin our consideration of
this motion by noting that our state-
ments in regard to it are of a differ-
ent character than in the two previous
cases. Instead of specifying the ac-
celeration and then asking for the
type of motion, as we did previously,
we are now specifying the type of mo-
tion, and we shall take as our prob-
lem the specification of the accelera-
tion. From the point of view of a
classification of motions the actual
starting point in any given case is
of course unimportant.

That there is an acceleration
must be obvious from what has already
been said. We have defined accelera-
tion as the rate of change of velocity.
In symbols for straight-line motion

Av
a =

At
At-0

But the present case is not one involv-
ing straight-line motion. Velocity is
a vector, and though its magnitude is
a constant (uniform speed around the
circle), its direction is changing
continuously. Consequently the veloc-
ity is in.fact changing and there
must be an acceleration. The accelera-
tion is also a vector. Thus, it has
both magnitude and direction, and it

is these properties which we now wish
to determine.

The analysis is most easily given
in terms of a graphical construction.
The procedure is a simple one and will
be carried out in class. It is de-
scribed also in many texts and stu-
dents will want to refer to these
other treatments. See, for example,
Holton, Introduction of Physical Sci-
ence, pp. 93-94, and Orear, Fundamen-
tal Physics, pp. 31-34 (see footnote
2).

The result of the analysis iF as

follows: Any object moving at constant
speed v in a circle of radius r is be-
ing continuously accelerated toward
the center of the circle. The magni-
tude of the acceleration has the con-
stant value

v2
a =

r

Note carefully both parts of this
statement: The acceleration has a
constant magnitude v2/r and a con-
stantly changing direction, namely,
the direction is always toward the
center of the circle. The direction
of the acceleration experienced by
the moving object is perpendicular to
its direction of motion.

We will later consider a number
of interesting applications of this
result. For the present let us con-
sider an application which we can make
easily to the motion of an object
around the periphery of the earth (an
earth satellite). Such an object is
unsupported and consequently it falls
in the earth's gravitational field
with an acceleration g = 980 cm /sect,
if it is not vzry high above the
earth's surface and the value of g is
about the same as at the earth's sur-
face. But now we consider the object
to have a forward velocity v. At low
velocitizs it will not move very far
over the surface of the earth before
it hits the ground. The trajectory
will be one of the parabolic trajec-
tories already described. But suppose
we increase v to higher and higher
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values. Then the point of contact with
the earth will move forward, and even-
tually it will be sufficiently far
forward that we can no longer regard
the object as moving in a simple x,
y coordinate systam with acceleration
g always directed along the y axis.
In other words, we must take into ac-
count the fact that the earth's sur-
face is in effect falling away from
the object. When this happens at a
rate such that the object in its fall
at constant accleration g remains at
a fixed distance above the earth's
surface, the object will be moving at
constant speed v in a circle of radius
equal to that of the earth or a little
larger. This is one of the possible
orbits of an earth satellite. Setting
the acceleration for motion in a cir-
cle equal to the free-fall accelera-
tion we have

V 2

g = ,

Re

where Re is the radius of the earth.
Using Re = 6.36 x 108 cm one finds

v = vTit; = 7.9 x 105 cm/sec

= 18000 mph

for the velocity of the satellite.

2.4.4 Simple Harmonic Motion

This is the motion which is exe-
cuted by all simple vibrating systems:
a pendulum, the prongs of a tuning
fork, a violin or piano string, the
air column of an organ pipe, the water
on the surface of a lake which is car-
rying a surface wave, the electric cur-
rent in the antenna of a radio or
television receiver which is respond-
ing to a broadcast wave, the effective
electric charge and current in an atom
as it radiates an electromagnetic
wave, and many others. In fact, the
motion we are about to describe is one
of the most basic and universal of all
the motions to be found in nature. If
in fact a given motion is not pre-

cisely of this character, it may often
be regarded as a superposition of
several motions which are of this type.
Consequently, it is of some importance
that we define the type of motion we
now have in mind rather precisely.

Our procedure will be to give a
definition of simple harmonic motion
(SHM), together with some of the im-
mediate consequences of the definition,
and then to show as we proceed that
various physical situations which we
encounter correspond exactly to the
definition and .herefore )ossess the
properties of SHM. As id each of the
previous cases the definition is
given by making a definite statement
about the acceleration. In this case
the statement is the following: SHM
is that motion for which the acceler-
ation is proportional to the displace-
ment and opposite in sign. This defini-
tion probably needs some amplification
in order to be understood. Let us
first simplify the situation by re-
stricting the motion we are talking
about to motion along a straight line.
Then let us choose a reference point
on this line from which to measure dis-
placements. This should be a fixed
point, and it can be taken as the ori-
gin of a coordinate system which in
this case consists of a single axis,
say the x axis. Finally, displace-
ments in one direction, say to the
right, can be taken as positive, and
displacements in the opposite direc-
tion as negative. Now we are ready to
understand the definition. If the sys-
tem in its motion finds itself on the
right at a certain distance from the
origin, then according to the defini-
tion it will at that instant be ex-
periencing an acceleration to the left,
the magnitude of which is proportional
to the distance from the origin. Simi-
larly, if the displacement happens to
be the left it will instantaneously be
experiencing an acceleration to the
right. If we put the definition in the
form of an equation we will write

a = Kx,

where x is the instantaneous displace-
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ment, a the instantaneous acceleration,
and K the proportionality constant.

Some of the properties of SHM
are immediately evident. Since the
acceleration is opposite in sign to
the displacement, the velocity is a
maximum as the system passes through
x = 0 in either direction and then de-
creases as x increases in positive or
negative directions. Consider the sit-
uation as the system passes through
x = 0 in the positive direction, i.e.,
with velocity to the right. As it
moves further to the right the accel-
eration increases, and in the negative
direction. This means tnat the posi-
tive velocity is decreasing at a rate
that increases as the displacement
increases. Eventually, the velocity
must decrease to zero, and when this
happens the system will have reached
its maximum displacement on the right.
We call this maximum displacement the
amplitude of motion. But the accelera-
tion is at its maximum negative value.
Consequently, the velocity must con-
tinue to decrease which means that it
is passing through zero toward nega-
tive values which then continue to in-
crease. Negative velocity means motion
to the left and consequently the sys-
tem moves toward the origin and even-
tually passes through the origin with
maximum velocity to the left. What
happens after this is a repeat on the
left side of what has just been de-
scribed as t,king place on the right
side, all signs being changed from
positive to negative and negative to
positive.

It is clear that the motion is

strictly periodic. We denote the
period by T. It is the time lapse be-
tween corresponding points in two
successive cycles; e.g., the time
lapse between two successive passages
through the origin moving in the same
direction. Other quantities of inter-
est are the maximum displacement in
positive and negative directions (the
amplitude of motion), which we denote
by xo, the maximum positive and nega-
tive velocity which we denote by vo,
and the maximum positive and negative
acceleration which we denote by ao.
Also, in addition to the period of
motion we may speak of the frequency
v. The period and frequency are re-
lated by

v = 1/T.

Further analysis of SHM shows
that xo, v ao, and T are related by

27T
vo =

T
x

ao = (-1--21) xo,

and that the period is related to the
constant K in the defining equation
for acceleration in SHM by

2g)2
K (

These relations are derived and dis-
cussed in the various textbooks on
physics. See, for example, Holton,
Introduction to Physical Science, pp.
99-102 (see footnote 2). The deriva-
tions will also be described in class.
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Motion in one form or another is the
normal state of all matter. On the
macroscopic scale we are aware that
very large bodies are in a continual
state of motion: the planets in their
orbits around the sun, the satellites
in smaller orbits around the planets,
and galaxies in rotation and transla-
tion through the vast expanse of the
universe. As we pursue our study we
become aware of an ecaal persistence
of motion on the microscopic scale:
translational, vibrational, and rota-
tional motion of all atomic particles
constituting matter, systematic mo-
tions of electrons within atoms, and,
on a still smaller scale, the motion
of subnuclear particles within the
atomic nucleus. In addition we are
aware of a large array of natural and
humanly controlled motions in our
everyday experience. Obviously, there
are many kinds of motion, involving
many different types of particle and
material bodies, interacting with each
other in a great variety of ways. One
naturally asks what it is that is com-
mon to all motion, what is its essence,
what are the causal effects, and what
are the principles by which these ef-
fects may be described and predicted.

3.1 DEVELOPMENT OF THE CONCEPT
OF INERTIA

The answer to these questions
came very late in the history of civi-
lization. As we will now learn, the
causal relations were not easy to dis-
cover. The difficulty lay in the fact
that no body in nature is really iso-
lated, and the achievement of effec-
tive isolation by experimental design
can be realized only after the problem
is well understood. The behavior of
each body in any given situation con-
sequently depends on unknown influ-
ences arising from the presence of
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other bodies. In the absence of ex-
plicitly stated principles, observa-
tions on the kind of motion occurring
under.a given set of conditions did
not lead to conclusions with regard
to the nature of the influences, and
without an understanding of the in-
fluences the same observations could
not lead easily to a discovery of the
principles.

An essential preliminary step
which had to be taken, first in the
history of man, and now in the learn-
ing process of the individual student,
is the development of an adequate con-
ception of a property of matter which
we call inertia. The simplest state-
ment of this property involves an ab-
straction. We assert that any body
which is not under the influence of
any other body in nature, namely, a
body completely isolated from all ex-
ternal influences, will remain in what-
ever state of rest or of uniform mo-
tion in a straight line in which it
may have happened to bE placed ini-
tially. This principle is a clear
negation of the Aristotelian view,
and a negation as well of the view of
the scholastics, the followers of
Aristotle at the end of the Middle
Ages, who up to the time of Galileo
asserted that a force is required to
maintain an unchanging motion. To the
Greeks and to the scholastics, any
notion such as uniform motion in a
straight line without the assistance
of an agent to maintain the motion
was simply preposterous.

The principle of inertia, essen-
tially as described above, was first
stated explicitly by Galileo, but
hints with respect to it began to ap-
pear in the thinking of several of the
natural philosophers during the im-
mediately preceding centuries. Thus,
Leonardo da Vinci in his long search
for an understanding of motion came
very close to expressing the spirit of
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the concept on several occasions. Be-
fore Leonardo, a fourteenth century
Franciscan friar, William Ockham,
cussed motion as an independent phe-
nomenon, and he comes close to giving
expression to a principle of inertia
when he says that a body has motion
because something of an abstract na-
ture which he calls impetus has been
imparted to it. This idea was carried
further by his pupil Jean Buridan at
the University of Paris, who went so
far as to say that the moving object
is carried forward by a nonmaterial
property which is quantitatively equal
to the product of the weight of the
object and some function of its vel-
ocity. Successive restatements of
these views during the next 250 years
did not lead to further sharpening of
this concept. There was, in fact, a
deterioration of thinking in regard
to it until, finally, the focus of
ideas was again sharpened, and in the
thinking of Galileo, and then
Descartes, the concept of inertia was
put upon a firm basis. It was essen-
tially in the form as stated by Gali-
leo that it was passed on to Newton
for the next great and culminating
advance.

3.2 NEWTON'S LAWS OF MOTION

The principle of inertia as de-
scribed by Galileo explicitly sates
that in the absence of external in-
fluences of any kind a body continues
to remain indefinitely in whatever
state of rest or of uniform motion in
a straight line it may happen to be.
It says nothing about the manner in
which changes in the state of motion
may be achieved, or how those changes
when they occur are to be related quan-
titatively to the influences which
must be present. These influences may
now be described as forces acting on
the individual bodies. In the absence
of forces all bodies continue to move
at uniform velocity in a straight line
or to remain at rest if initially
there were no motion. It was Newton's

great contribution to state correctly
the connection between the forces
which act on a body and the changes
in motion which are a consequence of
those forces. In doing this Newton
founded what we generally speak of as
the science of dynamics. The basic
principles of this science are com-
pletely contained in Newton's three
laws of motion which will now be de-
scribed.

3.2.1 The First Law

This law is a restatement of
Galileo's principle of inertia, with
explicit reference to the absence of
forces as the essential condition for
straight-line uniform motion. In words
which are very close to those used by
Newton in the first published version
of the three laws in the Principia,
1687, the first law is:

Every body persists in its state
of rest, or of uniform motion in a
straight line, unless it is com-
pelled to change that state by
forces impressed upon it.

For the understanding of this law,
it is of little consequence that
hardly any natural motion having the
specified characteristics exists. All
natural motions are in curved paths of
one kind or another, or in straight
lines at continuously changing veloci-
ties, and we must conclude that in
general forces are acting. What these
forces are cannot be determined from
the first law alone. If we do observe
a motion which is at constant velocity
in a straight line, as, for example,
and automobile moving at constant
speed on a straight highway, we must
conclude that the force is zero. This
may seem at first to violate our ex-
pectation based on common sense or
intuition, but if we stress the impli-
cation contained in the statement of
the first law that it is only the net
force to which reference is made, the
difficulty is removed. In the case of
the automobile, for example, the ob-
ject is being propelled forward by
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forces which have their origin in the
power plant, but other forces which
are a consequence of air resistance
and friction are acting as well. These
forces must be in the nature of op-
posing forces, and the constant speed
of the automobile must be a conse-
quence of the equality in magnitude
of the opposing forces. Thus, the net
force is zero and the motion is at
constant velocity.

3.2.2 The Second Law

This law provides the connection
between the magnitude and direction of
a force and the changing state of mo-
tion of a body on which the force is
acting. Newton observed that if in
the absence of a force the velocity is
constant, then in the presence of a
force the velocity is changing, i.e.,
there is an acceleration. The simplest
connection is that the force and the
acceleration are simply proportional.
We now note that the acceleration is a
vector. This is proved in the same
manner as we proved in section 2.4.2
that the velocity is a vector, start-
ing, however, with iv2 = 6vi + Ay; in-
stead of with Ls2 = Ax2 Ay2, for the
case of two-dimensional motion. Since
the acceleration is a vector, and the
acceleration and force are propor-
tional, then we anticipate that the
force is a vector. Consequently, we
now assert that the force and acceler-
ation are proportional and in the same
direction. This statement is the es-
sence of the second law.

Before we can give a more expli-
cit statement, we observe that there
are two kinds of difficulties. One dif-
ficulty is that we do not in fact know
what is meant by a force, and we do
not yet know hor to evaluate its mag-
nitude. The second difficulty is that
we clearly expect the connection be-
tween the magnitude of the force and
the resulting acceleration to depend
on a property of the body.

We will consider the second of
these two questions first. The prop-
erty of the body which is of interest

here is its inertia. But the first
law provides no measure of the inertia
of any body. It says only that as a
consequence of inertia, large or small,
the body continues to move at constant
velocity if it is not acted upon by
any force. But intuition as well as
the crudest of experiments tells us
that different bodies have different
inertias from the point of view of the
magnitude of the forces required to
change their states of motion, i.e.,
to give them an acceleration. It is
an everyday experience that "heavy"
objects are more difficult to set in
motion, or to deflect from a prede-
termined state of motion, than "light"
objects. Consequently, their inertial
properties differ and we now look for
a quantitative measure of inertia. We
will eventually find this quantitative
measure in the second law itself. For
the moment we must recognize that our
successive steps are to some degree
intuitive and provisional, that we
will find ourselves dealing with pairs
of concepts which can have no inde-
pendent meaning, and that the whole
procedure can be justified only after
all of the argument has been given.

It is from this point of view
that we now assert that all bodies
have measurable inertia and that the
measure of this inertia is the mass of
the body. The mass has not been pre-
viously defined. Naturally, we expect
"heavy" bodies to have more mass than
"light" ones, but we do not in fact
know, and we will not assume, that
mass and weight are proportional. Intu-
itively, we regard mass as a strict
measure of the matter content of a
body. Thus, the mass of a body will
not depend on where in the universe it
happens to be. The weight of course
will; it varies with position on the
.surface of the earth, and with alti-
tude, e.g. the weight changes in going
from sea level to a mountain top.

Since mass is defined in terms of
the matter content, a quantitative de-
finition of mass can be given by start-
ing with an arbitrarily chosen amount
which may then be used as a unit in
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terms of which all other masses will
be measured. What we use as a stand-
ard is simply a matter of convenience.
We could have used the mass contained
in a proton, or in a hydrogen atom if
we had wished. Actually, we have found
it quite convenient to begin with a
clearly defined macroscopic quantity
of matter. At one time we used the
matter contained in one cubic centi-
meter of water at a temperature of 4°
centigrade as the standard. We called
this the gram mass. Subsequently, we
have set aside another standard. This
is a cylinder of platinum alloy which
is preserved in the Bureau Internatio-
nale des Poids et Mesures at Sevres,
France, and duplicated for convenience
in various bureaus of standards
throughout the world. The quantity of
matter in this platinum cylinder is
very nearly one thousand times that
contained in the cubic centimeter of
water at 4° C. It is called the kilo-
gram mass. It is the presently ac-
cepted standard throughout the world.
The gram mass is now defined as the
one-thousandth part of this standard.

We are now ready to state New-
ton's second law. We will state it as
follows:

The acceleration of a body is pro-
portional to the net force acting
and inversely proportional to the
mass. The acceleration is in the
same direction as the net force.

These are not precisely the terms
in which Newton states the law. This
is partly a matter of terminology.
Some differences in content will be
described in the appropriate places.
For further information at this time
about Newton and about his methods, to-
gether with excerpts from the Princi-
pia, see Shamus, Great Experiments in
Physics (see footnote 1), and Cajori,
Newton's Principia, Motte's Transla-
tion Revised.3

'Florian Cajori, Newton's Principia, A. Revision
of Motte's Translation (University of California
Press, Berkeley, 1934).

We will wish also to express the
second law algebraically, and in addi-
tion, to make some reference to the
units in terms of which the various
physical quantities which enter into
the law are to be measured. If we let
m stand for the mass of the body, a
for the magnitude of the acceleration,
and F for the magnitude of the net
force, then the second law can be ex-
pressed in the form

F
m

This relation may equally well be writ-
ten as F - ma. More conveniently still,
let us introduce a proportionality con-
stant k and write

F = kma.

The choice of k is arbitrary. Clearly,
it defines the unit in terms of which
F will be measured, having already
fixed the units for m and a. A unit
for F has not yet been chosen. Conse-
quently we find it most convenient to
define a unit in which k = 1. If we do
this, the second law becomes

F = ma.

With m in grams and a in cm /sect, the
unit for F is g-cm/sec2. We call this
unit the dyne. Using the equation we
observe that the dyne of force is
that force which gives to a mass of
one gram an acceleration of one centi-
meter per second per second. The set
of units in which mass is in grams,
distances in centimeters, and time in
seconds in called the cgs (centimeter,
gram, second) system. In the cgs sys-
tem, forces are in dynes.

We will conclude this portion of
the discussion with two further re-
marks. The first is that the statement
of the second law which has been given
is presumed to be valid for all types
of forces. The force acting on a body
in any given case may be gravitational,
electrical, magnetic, nuclear, or
simple mechanical (as the push or pull
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of the hand or as a consequence of the
operation of a mechanical devise). No
matter what the nature of the force,
the second law as stated here is pre-
sumed to be the relation which pro-
vides the correct description of the
resulting motion. The proper descrip-
tion of these forces in terms of their
ultimate causes is a separate problem,
but once they have been described and
evaluated as forces of defined magni-
tudes and directions, Newton's second
law is available as a basis for the
description of the resultant motion.

The second remark is that we can
now show that Newton's second law is
available for the measurement of mass.
In principle, this is accomplished by
using the standard mass in order to
calibrate a set of forces. This is
done by measuring the acceleration of
the standard mass when acted upon by
the forces. If the standard mass is
1 g, the measured acceleration di-
rectly gives the value of the force
in dynes. Now use the measured forces
to accelerate unknown masses. Accord-
ing to the equation of motion, the
masses in each case are equal to the
forces applied divided by the meas-
ured accelerations. Consequently, any
mass may be measured, and the propor-
tionality of acceleration to force may
be checked under a large variety of
circumstances. Two additional methods
of measuring masses, one based on
Newton's second law and one independ-
ent of it, will be described later.

3.2.3 The Third Law

The simple forces in nature, and
the ones of greatest interest to us,
are those which act between pairs of
bodies and along a straight line
drawn from one to the other, e.g.,
the mutual attraction of the earth
and sun for each other must be viewed
as an attraction of the sun for the
earth as well as the earth for the sun;
a body resting on a table top pushes
down against the table and the table
pushes up against the body; an auto-
mobile accelerating on a highway

pushes against the road and the road
pushes against the automobile to give
it the acceleration. Thus all forces
are in effect double-ended. Newton's
third law states this important prop-
erty of forces in concise terms. It
may be expressed as follows:

In the mutual interaction of two
bodies with each other, the force
on the first body due to the second
is equal and opposite to the force
on the second due to the first.

As is generally the case with the
laws of physics, the range of validity
of Newton's laws can be determined
only as a consequence of detailed
study of the implications and by com-
parison of the predictions with ob-
servational results. Applications of
the laws to simple physical situations
and a description of some further im-
plications will be given in the next
few sections. Two remarks in regard to
validity may be made at this time,
however. The second law is obviously
valid only for observers who are them-
selves not being accelerated. In the
words of Newton, the observer must be
in an inertial system. He defined an
inertial system as one which is not
accelerating with respect to the fixed
stars. With this restriction the
second law is found to have general
validity for all motions which occur
at low velocity. The modification of
the second law which is required when
the velocity is not small, i.e., not
small compared with the velocity of
light, will be considered later. The
question of the range of validity of
the third law is a more difficult one.
We will make use of it only for ob-
jects which are at rest with respect
to each other or which are in actual
contact. Under these circumstances
the third law is found to have com-
plete validity and the conclusions
which we draw will correspond to the
facts of nature. One of these conclu-
sions is the conservatiom of momentum
to be described below. We will then
find that momentum conservation can be
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derived on the basis of a general prin-
ciple of physics which we will state:
the relativity principle. We will also
observe that the validity of momentum
conservation is easily checked experi-
mentally, and we will anticipate the
fact that no violations of momentum
conservation have ever been observed.
In effect, then, Newton's third law,
which is known to have limited valid-
ity, will be replaced by the momentum
conservation principle as the required
third law of dynamics.

3.3 MOTION IN THE GRAVITATIONAL FIELD
OF THE EARTH AT THE EARTH'S SUR-
FACE

The characteristics of all motical
at or near the surface of the earth in
which there are no forces acting
except the force of gravity are well-
known from Galileo's work. As we have
seen, he characterized this motion as
motion at constant acceleration g ver-
tically downward and at zero accelera-
tion horizontally. The only thing we
learn from an application of Newton's
second law to this situation is the
magnitude of the force of gravity on
any given object.

Consider the free fall of an ob-
ject of mass m. It falls with an ac-
celeration g, the numerical value of
which can be determined in any given
locality. Then, since a = g, Newton's
second law gives for the force of
gravity Fg the result

Fg = mg.

Since g = 980 cm /sect approximately,
the force of gravity on a one gram
mass is 980 dynes. Note that this is
an experimental determination of the
force of gravity on mass, and we do
not yet have any theoretical basis for
describing this force.

The following problems involving
applications of NeWton's second law
to physical situations in which the
only force acting is the force Fg will

be of interest. In addition, the last
of these problems, the problem of the
simple pendulum, provides an excellent
method for the precise measurement
of g.

3.3.1 Object Sliding On An Inclined
Plane

By the use of inclined planes,
Galileo was able to reduce the effec-
tive acceleration of gravity in a man-
ner which we will now demonstrate. Let
a mass m rest on a smooth flat surface
inclined at an angle 9 to the hori-
zontal. Assume that the object can -

slide without friction on this surface.
This condition may be achieved approx-
imately in practice by using a piece of
smooth dry ice as the mass m and a
sheet of plate glass for the plane. A
very much improved technique, involv-
ing materials which are now commer-
cially available, is to use a linear
air trough in which the sliding object
is continuously supported as it moves
on a film of air. For a description
of this device, see H. V. Neher and
R. B. Leighton, Am. J. Phys. 31, 255
(1963).

Referring now to Fig. 3.1, we
identify the force of gravity acting
on m, and we resolve this force as in-
dicated into two components, one paral-
lel to the plane, which we denote as
Fi, and the other perpendicular to the
plane, which we denote as F2. From
the geometry one observes that
F1 = F2 sin 9 and F2 = Fg cos 9 where
Fg = mg.

The only other force acting on m
is the reaction of the plane against
m. The force of reaction, like the
force of gravity, may be resolved into

Fig. 3.1
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parallel and perpendicular components.
But the parallel component is equal to
zero because the motion is specified
as frictionless. The perpendicular
component must be equal and opposite
to F2 since the body has no accelera-
tion perpendicular to the plane. Only
one force remains; namely, F1. This
produces acceleration down the plane.
Setting F1 = ma one obtains

a = g sin 0.

We observe that the acceleration
can be made arbitrarily small by mak-
ing 0 small. Also the acceleration is
a constant, and the kinematical rela-
tions valid for constant acceleration
may be used to describe the position
and velocity as a function of time
starting with any desired initial con-
ditions. The student should make up
several problems, some with numerical
data and describe the motion in each
case.

Perhaps it should be mentioned
that Galileo used rolling objects in-
stead of sliding objects. It was in
this way that he was able to reduce
the effects of friction to a negligi-
ble value. Further analysis of this
problem would show that for rolling
objects as for sliding objects the
conditions of constant acceleration
obtain, and Galileo was correct in his
conclusion that he had demonstrated

m g

Fig. 3.2

m2g

the existence of constant acceleration
in this motion by observing that the
ratio of distances traveled in suc-
cessive units of time were the ratios
of the odd integers. However, he
could not have predicted the actual
accelerations since he did not have
Newton's second law available. Also,
we are not yet ready to predict the
acceleration for rolling bodies. In
order to do so, we must make a further
study of Newton's equation and its ap-
plication to bodies which rotate and
to bodies which rotate and translate
simultaneously. Such topics will be
treated in another chapter.

3.3.2 Atwood's Experiment

A physical arrangement of some
interest is the one shown in the dia-
gram (Fig. 3.2), where it is assumed
that the wheel over which the string
is hung rotates without friction and
that its inertial properties are negli-
gible.

If the two masses are unequal,
say m,>mi, there will be an accelera-
tion because the net force on the sys-
tem is not zero. The acceleration is
easily determined by noting that the
net force is F = (m2 m1)g and that
the total mass to be accelerated is
(m1 + m2). We assume that the string
is inextensible and that as a conse-
quence the two masses have precisely
the same acceleration, one up and one
down. Then using Newton's second law,

or

(m2 )g (m2 + mi)a

m2 m
g.

m2 +
2 M1

Again the motion is at constant
acceleration and the kinematical rela-
tions derived for this case are avail-
able for use. Instead of considering
questions of this type, however, let
us note that in this case we have an-
other question that we could ask;
namely, what is the tension in the
string. The answer to this question
is also obtained by an application of
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Newton's second law. Consider for ex-
ample the mass m2. The two forces act-
ing on it are m2g downward and the
tension T in the string upward. Thus
the net force on m2 downward is
m2g - T. Substituting into the equa-
tion of motion, F = ma, we have

m2g T = m2 a

Since a is already determined, we can
introduce it into this equation and
solve for T, thus obtaining

2m1 m2
T = m2(g a) -m .

M M2

3.3.3 The Simple Pendulum

If a mass m which is essentially
a point particle is attached to a
string and is allowed to swing freely
under the action of gravity when the
other end of the string is attached
to a fixed point, we have an arrange-
ment which we call the simple pendulum.

Denote the length of the string
by k, and consider the system at an
instant when the motion is to the
right and the string makes an angle 0
with the vertical. This is illustrated
in Fig. 3.3: where we hcve also indi-
cated that the actual distance between
m and the vertical line is x, and that
the displacement along the arc is S.
We again resolve the force of gravity
mg into two components, one of which
is parallel to the direction of the
string and has the effect only of pro-
ducing tension in the string, and the
other is F1 = mg sin 0 which is direc-
ted along the arc and is responsible
for the acceleration. Using the equa-
tion of motion F1 = ma where a is di-
rected along the arc, i.e., in the
same direction as F1, we find

or
mg sin 0 = ma

a = g sin 9.

But from the figure sin 0 = x/k. Also,
for small amplitudes of motion to

Fig. 3.3

which we now restrict our discussion
x a-2.S. Then

gS
a = .

But when S is to the right (positive),
a is to the left (negative). There-
fore, the final expression for the ac-
celeration in small amplitude motion
is

a = S = kS,

where k = g/1.
Since a is proportional to the

displacement and opposite in sign,
the motion of the simple pendulum is
simple harmonic. But for SHM we have
learned that the period and the con-
stant K are connected by the relation
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Solving for T and substituting K =
we find

T = 2 / .

Since f and T can be measured with
precision, g is easily determined.

3.4 LINEAR MOMENTUM AND MOMENTUM CON-
SERVATION

The product of mass and velocity
turns out to be an especially impor-
tant physical quantity. It is called
the momentum and we denote it by the
letter p. Thus

p = my.

Since v is a vector, p is a vector.
Newton recognized the special physical
significance of the momentum. He
called it the quantity of motion.

Since the mass is constant (at
least in the context of the present
discussion), we can use the definition
of acceleration to write Newton's
equation of motion in a different
form; thus

F= ma =
mAy A(myl AP
At At At

In words, force is the time rate of
change of momentum. This is in fact
the way in which Newton originally
stated his second law. Our present in-
terest in writing the equation of mo-
tion in this form is that we can write
an expression for the change of mo-
mentum as a product of the force and
the time interval over which it acts.
Thus

Ap = FAt.

This equation certainly holds for con-
stant forces over time intervals of
arbitrary length. It also holds for

variable forces over short time in-
tervals during which the force doesn't
change very much during the interval
and an intermediate value may be used.
If the force is variable and the time
interval which we wish to consider is
not a short one we can divide the long
time interval into a large number of
short intervals in each of which we
regard the force as constant. Calculat-
ing the products FAt for each time in-
terval and adding them we obtain a
result which is in effect the product
of the average force over the whole
time interval and the time during
which it acts. We call this quantity
the impulse and denote it by the let-
ter I. Thus Newton's equation of mo-
tion becomes

Ap= I,

or, more explicitly, if the particle
of mass m has the velocity vo at the
beginning of the time interval, its
value v at the end is given by the re-
lation

m(v vo) = I,

where the impulse I can be evaluated
by adding up all of the contributions
to I which occur during the short in-
tervals into which the whole interval
is divided.

The importance of this result
lies in the fact that one can discuss
the total change of momentum without
discussing the details of the way in
which the force varies as a function
of time. An important case is that of
collisions between two particles. Let
the masses of the two particles be
denoted by the letters m and M. Let
the corresponding velocities before
the collision be denoted by vo and Vo,
and after the collision by v and V.
For simplicity, the motion of both
particles will be confined to the
same straight line. Velocities which
are positive will be to the right and
velocities which are negative will be
to the left. Now consider what happens
during a collision. A variable force
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F(t) is exerted by one particle on the
other and as a consequence of the col-
lision a total impulse I will have
been transmitted. But by Newton's
third law an equal and opposite force
will be acting between the two parti-
cles in the opposite direction; i.e.,
on the other particle, and it acts for
the same time. Thus, the impulse trans-
mitted to the second of the two parti-
cles is I. Then, for the two parti-
cles of mass m and M we have

m(v v0) = I and M(V V0) = I.

Combining these two equations we ob-
tain

or

m(v v0) = M(V V0)

mv0 + MV0 = my + MV.

This result has a simple interpreta-
tion. The left-hand side of the equa-
tion is the sum of the two momenta of
the particles before collision; the
right hand side is the sum of the
momenta after collision. The two sums
are equal. Consequently, the momentum
of the system has not changed. This is
the simplest case of the general theo-
rem that the total momentum of an
isolated system remains constant in-
dependent of all interactions within
the system. The extension of the proof
to the case of motion in three dimen-
sions and to systems containing more
than two particles presents no diffi-
culties.

We can use the principle of
momentum conservation to measure
mass. Let m by a standard mass and M
an unknown mass. Allow a collision
to take place with m moving initially
at velocity v0, M initially at rest
(V0 = 0), and measure v and V after
collision. Then from the momentum
conservation equation

M = m
V '

where all quantities on the right side

are known. Other examples of momentum
conservation will be described in class.

3.5 GALILEAN RELATIVITY

In the preceding section the prin-
ciple of conservation of momentum was
proved using a combination of argu-
ments based on Newton's second and
third laws of motion. Since momentum
conservation is believed to have uni-
versal validity whereas the third law
will he shown to have a limited valid-
ity, it is of considerable interest,
and a source of satisfaction, that we
are able to find a proof of it which
is based on a principle of physics
that has general acceptance and is un-
restricted in its applicability. This
is the relativity principle which
states that the laws of physics look
the same to all observers who are mov-
ing with constant velocity with re-
spect to each other.

In order to relate observations
made by one observer with those made
by another, one has to specify the
manner in which the two systems of
observations are to be related. The
intuitively correct way of making a
comparison between two observers who
are moving at constant velocity with
respect to each is simply to add or
subtract this constant velocity from
the velocities measured by one of the
two observers. Thus, if observer A is
moving with respect to B at constant
velocity u and A says that something
which cloth are observing has velocity
v, then B will say that it has vel-
ocity v + u. When sense data are re-
lated between two systems in this way,
we say that they ale being related
by a GLIilean transformation, and the
relativity principle which is being
used subject to this kind of a trans-
formation is called Galilean relativ-
ity. We are mentioning these terms at
this time because we will find later
that another relativity principle and
transformation must be considered if
we wish to deal with motions at high
velocity.
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We note that the form of Newton's
second law is unchanged in a Galilean
transformation, and consequently this
is one law of physics that can be im-
mediately verified to be the same for
two observers moving at constant vel-
ocity with respect to each other. The
proof is simple. Each of two observ-
ers A and B uses the second law in the
form

F = m
Av
At'

where v is the change of velocity in
a time At of a mass particle that
both A and B have under observation.
Since the actual instantaneous velo-
cities which each observes differ only
by the constant relative velocity u
which they have with respect to each
other, they will agree on all change
of velocity Av. Consequently, each
correctly predicts the motion in his
own system using the same law of mo-
tion. Simple examples in everyday ex-
perience illustrate this result. A
child may bounce a rubber ball on the
floor of an airplane in flight in the
same way that it bounces the ball on
the floor of its home. An object
dropped from mast height of a moving
ship in quiet water hits the deck at
the same point as when the ship is
stationary. Without knowledge of New-
ton's laws of motion, Galileo used
the relativity principle in answer
to critics who asserted that if the
earth was really in motion as speci-
fied by the Copernican theory, an ob-
ject dropped from the top of the
tower of Pisa should not land at its
base. He demonstrated the actual mo-
tion and explained why it occurs in
this way.

We now turn to the proof of mo-
mentum conservation using only the
relativity principle. This proof can
be based on very simple experiments.
We consider the motion of two or more
mass particles which move without fric-
tion along a single straight line. The
near absence of friction is achieved
by using the air trough described in

Section 3.3.1 as the track along which
the objects move. In all cases the
motion is initiated by having two mass
particles in contact and permitting a
small explosion to take place between
:.hem. Then the objects move away from
each other at constant velocities
(since there is no friction), which
are measured, and then after a certain
time they are reflected back from the
ends of the track by suitable reflec-
tors which are placed there. They
eventually come into contact again
and it can be arranged that on making
contact they stick together. The na-
ture of the subsequent motion depends
on the circumstances. The desired data
consists in the measurement of the
velocities at all stages of the motion.
The relativity principle is used to
obtain predictions about the motion in
one frame of reference when it is
known in another, and thus to obtain
results in certain nonsymmetrical situ-
ations from results which are easily
obtained in symmetrical situations. In
the course of the analysis one finds
that a definition of mass based on a
a comparison of measured velocities
can be made which is independent of
the kinds of matter in a body and does
not depend on velocity (for these
cases of small velocity). One also
finds that as a consequence of the an-
alysis one has proved the principle
of conservation of momentum.

A complete discussion and demon-
stration of associated experiments
will be given in class. Students
should consult Feyman, Leighton, and
Sands, Lectures in Physics, Vol. I,
pp. 10-3 to 10-7,4 in advance of this
discussion.

3.6 ANGULAR MOMENTUM, TORQUE, AND
ANGULAR MOMENTUM CONSERVATION

It is frequently of interest to
describe the motion of a point parti-

"Richard P. Feynman, Robert B. Leighton, and
Matthew Sands, Lectures on Physics (Addison-
Wesley Publishing Company, Inc., Reading, Mass.,
1963).
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Fig. 3.4

cle with respect to a fixed point with-
out restriction as to the kind of mo-
tion the particle may have. At a
particular instant of time, let the
particle be at the vector distance r
from the fixed point 0 moving along a
path C at the instantaneous velocity
v.

The velocity vector v makes the angle
0 with respect to a line perpendicular
to the vector connecting the point
0 to the instantaneous position of the
particle (Fig. 3.4).

We now define a quantity which
we call the angular momentum and de-
note 1, by the sumbol A. The defini-
tion is

A = myr cos 0 = mrvi = mvri,

where vi = v cos 0 is the component of
v perpendicular to r, and ri = r cos 0
is the component of r perpendicular to
v. The angular momentum is regarded as
positive if the rotation about 0 is
counterclockwise as seen from above
the page. These relations provide use-
ful alternative definitions of angu-
lar momentum. It is convenient to have
still another definition. The instan-
taneous motion is in a plane which con-
tains the vectors v and r. Consider an
xy coordinate system in that plane. If

the coordinate system is oriented so
that the positive x axis points along
r, the above definitions of A give

A = mvyx.

If, on the other hand, the coordinate
system is oriented so that the posi-
tive y axis points along r, the defi-
nitions yield

A = mvxy.

Then in general for an arbitrary ori-
entation of the coordinate system

A = m(vyx vxy).

We are now going to show that the
angular momentum changes with time in
a manner which is determined uniquely
by the forces and the position of m
with respect to 0. Consider first a
small change in A which is regarded
as occurring in a small time interval
At. Since each term of A is a product
of two factors, each of which changes
with time, we obtain for the change
of A

AA = m(vyAx + xIvy vxAy yAvx).

Dividing by At, we obtain the rate of
change of A. Thus
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DA ( fra. AY. AW
At

= M V
Y At

-F. vx YX
At At At/

= m(xay yax),

where we have used

Ax Avx
v = v a =
x At' Y At' x At , Y At

Now consider the force acting on
m. At a given instant the force F has
the components Fx and Fy in the chosen
xy coordinate system. By Newton's sec-
ond law of motion

Fx = max and Fy = may.

Let a be the angle between the direc-
tion of P and the perpendicular to r
(just as 0 is the angle between the
direction of v and the perpendicular
to r). Then define the torque L by
the relations

L = Fr cos a = Fir = Fri,

which is to be regarded as positive if
it tends to produce rotation in the
counterclockwise direction. By the
same argument as before this corre-
sponds to

L = F x

if the positive x axis is oriented
along r, and to

L = FxY,

if the positive y axis is oriented
along r. Then in general for any ori-
entation of the coordinate system

L = Fyx For.

Using the equations of motion

L = m(xay yax) .

Comparing with the expressions for
AA/At, we obtain the simple general
result

AA
L =

At

This is the form taken by Newton's
second law when expressed in terms of
torques and angular momenta rather
than in terms of forces and linear
momenta. It has the immediate conse-
quence that if the torque on a parti-
cle about any point is zero, the an-
gular momentum is a constant. In this
form the statement is analogous to
Newton's first law for linear motion.
However, it can be immediately gener-
alized. If there are several particles,
or more generally, any system of par-
ticles interacting internally in any
way whatever, but no net torque on the
system as a whole, the total angular
momentum of the system remains con-
stant in time. This general result is
of great importance in physics. It is
the theorem of conservation of angu-
lar momentum. In this form it is the
rotational analog of the previously
proven theorem of conservation of
linear momentum. Examples illustrating
the principle of conservation of angu-
lar momentum will be described in
class.

3.7 ENERGY AND ENERGY CONSERVATION

Energy is one of the most funda-
mental of all the concepts of physics,
and in a certain sense it is also one
of the most abstract. Partly for this
reason a simple unambiguous definition
is not possible at the beginning of
our study. The most that we can do is
to define certain forms of energy,
and to describe certain relations,
which suggest why the concept is of
some importance. As we proceed, we
will find that there are other forms
of energy which are to be added to the
list of forms already known. Also we
will find that an outstanding charac-
teristic of physical processes is that
energy is being continuously trans-
formed from one form to another, and
most important of all, that this trans-
formation occurs without any loss or
gain in the total energy which is
present in a given system, or, if
there is a loss or gain, the differ-
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ence can be accounted for in terms of
a gain or loss in outside systems.
This leads to another conservation
law, a law as fundamental to the un-
derstanding of physical processes as
the law of conservation of momentum,
but of an entirely different nature.
Whereas we have been able to give a
simple definition of momentum and the
associated momentum conservation law,
the definition of energy and its con-
servation will have to be developed
as we proceed. We are here making a
beginning of this study.

Consider a constant force F act-
ing on a mass particle m. By Newton's
second law of motion, the accelera-
tion a constant and is determined
by the relation

F = ma.

For simplicity let the particle be re-
stricted in its motion to a straight
line and let the force act along this
line. Multiply both sides of Newton's
equation by S, the distance through
which we choose to observe motion of
the particle while acted upon by the
force F. This gives

FS = maS.

Since the motion is at constant accel-
eration, we can replace the product
(aS), on the right hand side of the
equation by using the relation

This gives

172
v
..,

o
2 = 2aS.

FS = imv2 imvo2.

We note carefully the implications of
this equation. The only factors appear-
ing on the left-hand side are the
applied force and the distance through
which the force has been allowed to
act. The quantities appearing on the
right-hand side refer only to the
state of motion of the particle; i.e.,
in addition to the mass they depend
only on the velocity of the particle.

Furthermore, the right-hand side is
a difference of two terms of the same
kind, one an initial value, and the
other a final value. This suggests a
kind of conservation law, and we now
interpret the result in this way. We
will call FS the work done by the ap-
plied force F and denote it by W. We
will call imv2 the kinetic energy of
motion of the particle and denote it
by K. Then the relation we have de-
rived can be written,

W = K Ko,

which says that the change of kinetic
energy of the particle is equal to
the work done by the applied force.
In other words we have made a defini-
tion of a new cynamical property, and
at the same time a definition of ef-
fort by an outside agency, in such a
way that the effort expended by the
agency turns out to be equal to a gain
in the magnitude of a certain property
possessed by the body.

We will find that the definition
of work which we have made here can
always be used. If the applied force
is not in the direction of motion,
we generalize the definition so that
it reads product of force and the
component of displacement along the
direction of the force or product of
displacement and the component of
force along the direction of the dis-
placement. The student will show
easily that these two forms of the
definition are exactly equivalent. The
definition may be written symbolically
in the form

W = FS cos e,

where 0 is the angle between the di-
rections of the force and displace-
ment. A further generalization is to
the case that the force is not con-
stant with change in displacement.
Then the latter must be regarded as
divided into small intervals within
each of which the force may be re-
garded as constant. By evaluating the
work done in each of the small inter-
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vals and then taking a sum over all
intervals, one obtains the work done.

As we have seen, a body possesses
energy by virtue of its motion. This
energy is called kinetic energy. An-
other form of energy which the body
may possess is by virtue of ics posi-
tion in space and this energy is
called potential energy. Consider a
particle in a force field, e.g., a
mass particle m in the gravitational
field of the earth, and consider dis-
placements such that the particle is
never far from the surface of the
earth. Then the force F = mg is ap-
proximately the same for all positions
and we say that the particle is in a
constant force field. In other exam-
ples the force will vary with posi-
tion in space, but whether it varies
from point to point or not is of no
consequence for our present purpose.
The main point is that there is a
force and that this force is a func-
tion of position in space (including
also the case where it is a constant).
All such situations are characterized
by the statement that the particle is
in a force field.

We now observe that work must be
done by some unspecified agent if the
particle is to be moved from one point
in a force field to another. We call
the work done the change of potential
energy of the particle in the force
field between the two points in ques-
tion. We denote the potential energy
by U. If the agent moves the particle
along the line of force in the force
field, but in the opposite direction,
a maximum work is done per unit dis-
tance of separation of the two points,
and it is positive. We say that there
is an increase of potential energy.
If the agent moves the particle per-
pendicular to the direction of the
lines of force in the force field, no
work is done, an, there is no change
in potential energy. In calculating
the change of potential energy be-
tween any two points in the force
field, the force applied by the un-
specified agent must at all times be
just equal and opposite to the force

in the force field plus a very small
increment AF to cause eventual dis-
placement from one point to the other.
If AF = 0, there is no displacement,
e.g., a mass m supported on a table
top is at rest because the force mg
downward in the force field is pre-
cisely balanced by the force mg up-
ward exerted by the outside agent,
the table top. If AF is not zero,
there is motion with acceleration. In
order to calculate changes of poten-
tial energy between two points, we
regard AF as being so small that the
acceleration, and therefore the gain
in kinetic energy, is negligible, and
in the limit of AF = 0, is actually
zero.

We speak of difference of poten-
tial energy between two points in
space rather than potential energy
at a point because there is no unique
reference point from which to measure
potential energy. However, we fre-
quently define one. For example, if
we are interested in the motion of a
mass m with respect to the floor in
our laboratory, we would define the
floor as the position of zero poten-
tial energy. Then all points above the
floor are points of positive poten-
tial energy. For example, the poten-
tial energy of the mass m at a height
h above the floor is

U = mgh,

because the work done in moving the
object from the floor to the point in
question is the product of the force
mg which one must apply and the height
h through which the object is moved.
The choice of a zero of potential en-
ergy is always a matter of convenience
and it will be made in quite different
ways in the various situations which
we will encounter.

We will now summarize our ideas
on energy insofar as we have gone. A
mass particle possesses kinetic energy
because of its velocity of motion and
it possesses potential energy depend-
ing on where it is in a force field.
If an unspecified agent does work on
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the mass particle, this work may be
used to change the kinetic energy, or
to change the potential energy, or to
do both simultaneously. In general

W = AK + AU.

We also note that if there rela-
tion is correct for a mass particle
which is being acted upon by an agent,
it must also be correct in the limit
that the agent does no work, i.e.,
w = 0. Then for the isolated mass

particle in a force field

AK + DU = 0.

This is the simplest form of the en-
ergy conservation law. It says that a
mass particle always moves in such a
way that the sum of its kinetic and
potential energies is a constant.

These concepts will be developed
at greater length in class, and appli-
cations to simple situations will as-
sist in the clarification of the ideas
involved.



4 FORCE

4.1 INTRODUCTION

In our consideration of the laws
of motion we have dealt so far mainly
with the inertial properties of matter,
and with certain consequences of the
second law, such as the conservation
of energy, the validity of which may
be assumed provisionally to be inde-
pendent of the nature of the forces.
Most important has been the result
that a quantitative comparison of in-
ertial masses, independently of the
nature of the matter involved, can be
given. Of considerable interest also
was the fact that the comparison of
masses could be based separately on
distinct and seemingly independent
principles of physics: on the laws of
motion on the one hand, or, alterna-
tively, on a general principle that
all of the laws of nature are essen-
tially the same for observers in dif-
ferent inertial systems, i.e., no one
inertial system is to be regarded as
preferred over any other. Thus, the
principle of inertia as embodied in
the statement of the first law, and
the concept of inertial mass as used
in the second law would appear to be
on a rather sound foundation.

But we have not yet had any real
test of the second law. Most of the
applications which have been made so
far have dealt with motions of ob-
jects under the influence of a gravi-
tational force near the earth's sur-
face in which we already had full
knowledge of the acceleration, at
least for the case of free fall. As
we have seen, the only role of the
second law in such cases was merely
to extend the terminology, to permit
a discussion in terms of forces as
well as in terms of accelerations.
Thus a constant acceleration was dis-
cussed as a constant force; nothing
new about the motion was learned. One
exception was the application of the
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second law to the motion of a particle
at uniform speed in a circle. In this
case we used the second law to pre-
dict the magnitude of the force re-
quired to keep the object moving in a
circle, and we compared this calcu-
lated force experimentally with the
force of gravity on the same object.
In this way we showed that the measure-
ment of a force, using Newton's second
law, gave results in two entirely dif-
ferent physical situations which were
consistent with each other. A few
other examples demonstrated also the
nontrivial nature of the concept of
force, but, on the whole, we learned
nothing new about the nature of force.

In order to go further we must
say something specific about forces.
If we are to predict the kind of mo-
tion which occurs in any given physi-
cal situation, we must know not only
that force and acceleration are re-
lated to each other in a certain way,
but we must have also detailed knowl-
edge of the forces which are acting.
This information about forces is ob-
viously independent of and supplemen-
tary to our knowledge of how forces
act to change the state of motion. In
effect the information which we re-
quire about forces constitutes the
basis for the statement of separate
laws of physics, and these laws must
be ascertained, tested, and provision-
ally verified in much the same way
as all other laws of physics.

Much of the history of physics
since the beginning of the scientific
revolution in the seventeenth century
has been concerned with the determina-
tion of force laws. It began when New-
ton, contemplating the motion of the
planets and searching for a test of
his second law of motion, asked him-
self about the forces which must exist
between the planets and the sun. As we
will see, he came up with a law, the
law of universal gravitation, describ-
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ing one of the basic interactions in
nature.

The discovery of other types of
interaction occurred in the eighteenth,
nineteenth, and twentieth centuries.
At the present time we know of four
basic interactions. According to our
present knowledge, all of the forces
of nature, nuclear and subnuclear,
atomic and molecular, the forces re-
sponsible for planetary and galactic
ioticn, and all of the forces of every-
day experience, are made up of one or
more of the four basic interactions.
Thus, it is in terms of basic interac-
tions that we will eventually describe
all of the natural motions, e.g.,
electrons in atoms, neutrons and pro-
tons in the atomic nucleus, atoms and
molecules in macroscopic matter, and
the planetary and galactic motions of
the large scale universe. It is also
in terms of these basic interactions
that we explain how matter is held to-
gether, and why it is not infinitely
compressible. Also we will be able to
convince ourselves that all of the
forces of everyday experience, e.g.,
the forces between the various compo-
nents of a mechanical device, the
forces involved in the contraction of
a muscle, and the forces between the
hand and a rigid object which it
grasps and seeks to move, these forces
and all other forces which might be
mentioned, can be described in terms
of the basic interactions. Clearly the
basic interactions are of fundamental
importance. They will be mentioned
and briefly characterized in the next
section, and then described in more
detail in succeeding chapters. Be-
cause of its historical importance and
its relevance in connection with the
first real test of the validity of
the second law of motion, special con-
sideration will be given to the law
of universal gravitation and its ap-
plications to a wide range of plane-
tary, terrestrial, and interplanetary
motions. This will be the subject of
the next chapter.

We also have need in our study
of physics for force laws which are

determined empirically. It is in fact
through the continuous interplay of
empirically determined force laws and
a similtaneous search for an under-
standing in terms of general princi-
ples that the nature of the basic in-
teractions was actually discovered.
Thus, our knowledge of the nature of
the electromagnetic interaction was
obtained from observations made on
large collections of static electric
charge and on the interaction forces
between metallic wires carrying elec-
tric currents rather than on the
forces between the members of a single
pair of charged particles moving in a
specified way with respect to each
other. But it is generally not a sim-
ple matter to deduce the basic inter-
actions from the forces as observed
in a specified macroscopic situation,
or, conversely, to find the form of
the large-scale interaction by perform-
ing a summation over all of the basic
interactions which are present. For
this reason the student of physics
needs to study both aspects of the
problem simultaneously. He studies the
basic interactions in order to gain
insight into the nature of physical
processes by describing those which
are elementary in considerable detail,
and he studies the behavior of vari-
ous systems in the presence of empiri-
cally determined forces in order to
achieve an understanding of the dif-
_2erent kinds of motion which occur in
complex physical situations. It is im-
portant, however, to realize that in
principle one set of forces can be de-
termined from the other, and in more
advanced courses the student learns
how this is done. A description of
several of the more important and in-
teresting of the empirically deter-
mined forces is given in the section
following the description of the basic
interactions.

4,2 THE FOUR BASIC INTERACTIONS

In the following section we brief-
ly characterize each of the following:
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(a) The gravitational interaction.
(b) The electromagnetic interac-

tion.
(c) The nuclear interaction; also

called the strong interaction.
(d) The weak interaction.

All the forces of nature fall into one
or the other of those four categories.
The following description is intended
to provide some initial orientation
about them. Each must then be studied
in considerable detail in relation to
the physical phenomena of which each
is the principal part.

4,2.1 The Gravitational Interaction

This is the simplest of all the
interactions and it was the first to
be discovered. All matter in the uni-
verse experiences a force of attrac-
tion for all other matter. It is as-
sumed that the magnitude of the force
is proportional to the product of the
masses of the interacting bodies and
inversely proportional to the square
of the distance between them. The
direction of the force lies along the
line connecting the two bodies, and
according to Newton's third law of
motion, each of the two bodies, when
at rest with respect to each other,
experiences the same attracting force
toward the other. In symbols the mag-
nitude of the force is given by

F= G11112111
r2

where m1 and m2 are the two masses
and r is the separation distance. An
important part of the assumption is
that the constant G is a universal
constant; i.e., the force of attrac-
tion between two masses at a given
distance of separation is independent
of where the masses are in the uni-
verse. It is on the basis of this as-
sumption that we denote the law as
the law of universal gravitation. How-
ever, the asumption of proportionality
to mass does not necessarily imply
that the mass with which we are now

dealing is the same as the inertial
mass appearing in the second law of
motion. Strictly speaking we should
call the mass to which the force of
gravitational attraction is propor-
tional the gravitational mass. The
sonnection between gravitational and
inertial mass must then be determined
by experiment. In recent years this
connection has been studied under con-
ditions such that differences between
gravitational and inertial mass of as
little as 1 part in 1010 would be de-
tected. No difference has yet been ob-
served. Consequently we assume that
inertial mass and gravitational mass
are proportional, and we will choose
the units such that they are equal.

We do not know precisely when
and how the idea of a law of universal
gravitation first came to Newton. The
law was first published in 1687 in
the Principia, a great work containing
all of Newton's original contribu-
tions to science, mathematics, and
philosophy. Newton himself says that
the law of universal gravitation came
to him when he asked himself whether
the falling of an apple to the earth's
surface could be caused by the same
kind of force that causes the moon to
fall steadily toward the earth as it
moves forward with a constant linear
speed in its circular orbit. He then
calculated the moon's acceleration
from the known period and radius of
its orbital motion, and, in a manner
similar to that which we described in
the section on kinematics, he noted
that the acceleration of the moon was
smaller than that of the apple (or any
other falling body at the earth's
surface), by a factor which was approx-
imately equal to the ratio of the
squares of the distances to the center
of the earth. In the words of Newton
he "found [the two forces, on the moon
and on the apple] to answer pretty
nearly." This was in 1665 and 1666,
twenty-one years before the publica-
tion of the Principia. It suggested
to him the inverse square law of force.
The proportionality to mass, which
Newton assumed from the beginning to
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be the inertial mass, then follows
from the fact that accelerations at
the earth's surface are the same for
all bodies, and consequently the grav-
itational force must be proportional
to mass. As we will show later Newton
was even able to obtain an approxi-
mate value of the universal constant
G. Its precise determination will be
described in the next chapter. The
numerical value is

G = 6.67 x 10-'3 dyne cm2/g2.

4.2.2 The Electromagnetic Interaction

Mass is only one of the many
properties of matter. According to the
molecular - atomic hypothesis to be
discussed later, and the wide range of
observational phenomena which are
compatible with this hypothesis, all
matter consists of a combination of a
few kinds of atoms, each of which has
a definite internal structure. The
basic entities involved in the over-
all structure of the atom are two
types of particles, an atomic nucleus
and a number of electrons. Both the
nucleus and the electrons possess the
property of inertial mass. But in ad-
dition they possess a property which
we describe as electric charge. It is
the interaction of these charges with
each other which we call the electro-
magnetic interaction. It is this inter-
action which is responsible for the
formation of atoms and molecules. The
electrons move in the atom around the
nucleus under the influence of forces
which constitute the electromagnetic
interaction to form a stable system
in which the attractive forces of the
electric interaction are precisely
balanced by the inertial forces as
given by Newton's second law of mo-
tion. Since the particles also possess
mass, there are gravitational forces
as well, but the magnitude of the
latter are very much smaller than the
former and they play a negligible role
whenever electromagnetic forces are
present.

It is at this point that we note
an important qualitative difference
between electromagnetic and gravita-
tional forces. The latter is always at-
tractive whereas both attractive and
repulsive forces exist between elec-
tric charges. Two identical charges
always repel each other, but pairs of
charges such as the electron and the
atomic nucleus, or the electron and a
proton, attract. Thus, one must con-
clude from the outset that there are
two kinds of electric charge which we
call positive and negative charge.
According to the convention which has
been adopted the charge on the elec-
tron is negative and the charge ou the
proton, and on the atomic nucleus, is
positive.

Experiment shows that the nega-
tive charge on the electron and the
positive charge on the proton are pre-
cisely equal in magnitude. Also the
charge on an atomic nucleus is pre-
cisely an integral multiple of the
protonic charge. It is this exact
equality of the basic units of nega-
tive and positive charge that accounts
for the fact that normal matter is
electrically neutral. The number of
electrons in each normal atom is equal
to the number of basic units of posi-
tive charge on its nucleus, and these
electrically neutral atoms are com-
bined to form neutral molecules, and
the latter combine to form matter as
we know it. Consequently, there is
normally on the macroscopic scale no
manifestation of an electromagnetic
interaction since the interacting
bodies are normally uncharged. The
only interaction between such bodies
is gravitational. But within the atom.
and for reasons to be discussed later,
between atoms and molecules separated
by a short distance there is an elec-
tromagnetic interaction. The intra-
atom electromagnetic interaction is
responsible for the stability of
atoms. The interatom and intermolecu-
lar short range electromagnetic inter-
action is responsible for the cohe-
sive properties of matter. As we will
find, these interactions are all so
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enormously large compared to the grav-
itational interaction which is always
present that the latter is completely
negligible in its effects whenever
the former are present. In fact, it
was only very recently that the gravi-
tational force on a single free elec-
tron due to the attraction of the
earth was observed.

Electric charges exert forces on
each other which depend on the magni-
tude and sign of the charges, on the
distance of separation and on their
relative motion. The simplest case is
that of two charges which are at a
fixed distance r from each other. If
the two charges have the values q/
and q2 the force of attraction or re-
pulsion is proportional to the product
q/q2 a'd to 1/r2. It is convenient to
define the unit of charge in such a
way that the proportionality factor is
unity. Then in one set of units which
we call the cgs electrostatic system
of units

cli ck
F .

This is to be interpreted as a re-
pulsive force if the sign of q/q., is
positive, otherwise it is attractive.
It is the electrostatic part of the
electromagnetic interaction. Like the
gravitational force its magnitude var-
ies as the inverse square of the dis-
tance of separation between the par-
ticles.

Adeitional contributions to the
electromagnetic interaction occur if
the charges are in motion. A more
complete description of the electro-
magnetic interaction, including also
a description of typical electric and
magnetic phenomena on the basis of
which the form of the interaction is
determined, will be given in the chap-
ter on electric and magnetic fields.

4.2.3 The Nuclear or Strong Interac-
tion

The existence of this interac-
tion was first suspected in 1932 when
the neutron was discovered and it was

realized that the atomic nucleus was
composed of neutrons and protons. As
we have already noted, the protons
each possess one unit of positive
electric charge. The neutrons have the
same mass as the proton, but they
possess no electric charge. Conse-
quently, no attractive electrostatic
interactions are present in the nu-
cleus. In order to account for the
tight binding of neutrons and protons
to form a stable nucleus it was nec-
essary to invent a new force. Certain
propertiQs which this force must have
were evident from the beginning. The
new force must be attractive and it
must be essentially the same between
neutron pairs, proton pairs, and be-
tween neutrons and protons. The range
of the force, i.e., the separation
distance below which the magnitude of
the force is not negligible, must be
of about the same dimensions as the
nucleus or somewhat less, and within
this range the force must he suffi-
ciently strong to overcome the proton-
proton electrostatic repulsion and in
addition provide the strong binding
which is observed for each of the con-
stituent particles in the nucleus.
Quantitative details of the nuclear
interaction will be given in the chap-
ter on the atomic nucleus.

4.2.4 The Weak Interaction

This interaction is mentioned
here only for completeness; it is one
of the four basic interactions. Its
role, however, is not well understood.
It is the interaction which is respon-
sible for certain particle transforma-
tions. Thus, for example, a free neu-
tron may change into a proton by
emitting an electron and a lighter
particle called the neutrino. Simi-
larly, certain heavy nuclei may change
into other nuclei by this and an an-
alogous process. We speak of such
processes as particle decays and nu-
clear decays. It is a kind of tearing-
down process, and the forces which are
responsible may be regarded in a cer-
tain sense as disruptive forces. Con-
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sequently, the weak interaction forces
which are responsible for these proc-
esses are quite different from the
other forces, each of which in its
own way is responsible for the stabil-
ity which we observe in nature. The
weak interaction is of quite a differ-
ent character and its role in the
scheme of natural phenomena is a mys-
tery. This interaction will not be dis-
cussed further in this course, al-
though the decay phenomena for which
it is responsible will be described
qualitatively.

4.3 EMPIRICAL FORCE LAWS

In many physical situations of
interest motion takes place under con-
ditions which are not completely de-
termined. For example, an object, say
an airplane, moves through the air at
high speed. The air which supports the
plane against the downward pull of
gravity also offers resistance to its
forward motion. As the airplane moves,
the air is compressed in some regions
near the airplane, rarified in others,
and always in motion. Some of the air
flows smoothly around the airplane,
but much of it does not. There is
turbulence and there are random vari-
ations in the lines of flow. Clearly
the situation is physically very com-
plicated. However well one might un-
derstand the basic principles of air
flow and the movement of rigid objects
through a fluid medium, the problem
of calculating all the details of mo-
tion in a situation such as this would
be enormously complicated.

Let us consider another kind of
physical situation. When two objects
are in contact a force is required to
move one with respect to the other.
Consider for example an object resting
on an inclined plane with no external
forces acting other than the force of
gravity. As the angle 0 which the
plane makes with the horizontal is in-
creased, starting from zero, the com-
ponent of gravitational force parallel
to the plane, mg sin 0, increases. But

the object does not start to move un-
til 0 is increased to some critical
value. The failure of the object to
be accelerated at angles less than
this critical value is explained by
the assertion that a frictional force
is present. At sufficiently small val-
ues of 0 this frictional force adjusts
itself so that it exactly balances
the downward force mg sin 0, and the
net force is zero. A critical angle is
reached because the frictional force
can not exceed a certain maximum value.
We now ask about the determination of
the maximum frictional force from
first principles. Can we, for example,
use whatever knowledge we have of the
bas±c interactions to calculate the
maximum frictional force which can be
sustained by two surfaces in contact?
A little consideration based, let us
say, on some further knowledge of the
nature of surfaces shows that we can
not. In general we are not dealing
with surfaces that are perfectly
smooth, and we are hardly ever dealing
with surfaces which are completely
free of contaminants. Even if we go to
considerable effort to make sure that
the surfaces are smooth and that they
are clean, there will still be oxides
and absorbed gases present. The actual
magnitude of the frictional force will
depend on all of there details, and
obviously a calculation of the fric-
tional force starting from the basic
interactions could not lead to the
correct results in the absence of de-
tailed knowledge of the surface con-
ditions. We can go further in our char-
acterization of this type of problem.
We can in fact achieve almost perfect
smoothness and cleanliness of two
surfaces. We can also remove all or
most of the absorbed gases. Suppose
now that we are
terials of the same kind, say two
pieces of copper. The surfaces which
we bring into contact are almost per-
fectly smooth, they are clean, and
there are no absorbed gases upon them.
We can go quite far experimentally in
realizing these ideal conditions. When
we do we find that the two pieces
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stick together. The atoms on the sur-
face of one piece of material find
themselves about as close to some
atoms in the other piece as they are
to some atoms in the piece to which
they belong. Thus, ideally there is
no frictional force between the sur-
faces of different bodies; there is
only cohesion. In the absence of co-
hesion one has friction, but the mag-
nitude of the friction depends on such
noncalculable factors as roughness,
contamination, and adsorbed gas.

Let us consider still another ex-
ample. If force is applied along the
length of a straight wire, the wire
is changed in length. The magnitude of
the change in length depends on the
force applied. If the materials of
which the wire is made are known and
homogeneous and if the basic interac-
tions are fully understood, the rela-
tion between applied force and change
in length can be calculated. But the
problem is obviously not a simple one,
and in the end one may find that one
understands problems of this type only
in principle. To some extent it is the
essence of physics to supply answers
to problems of this kind only in prin-
ciple. One can describe all of the con-
nections between the basic interac-
tions, the arrangement of atoms in the
matter under consideration, the state
of dynsmical motion of the atoms with-
in the crystal lattice, and still not
be able, or even find it desirable, to
give precise numerical answers to
questions of the type we are now ask-
ing.

In each of the three examples we
have cited the question of interest is
concerned with a force law: what is
the resistance of the air to a high
speed airplane and how does the re-
sistive force depend on the relevant
parameters of the problem; what is the
force of friction between two surfaces
which are pressed together and on what
factors does it depend; what is the
force required to stretch a wire a
given amount? In these and in many
other examples of a similar character
we find it desirable to determine the

forces empirically. The force laws de-
termine in this way then provide the
basis for the further consideration of
many interesting types of motion. They
also provide the experimental data
with which the results of a theory of
each of the force laws based on first
principles can be compared.

The determination of force as a
function of the parameters in any
given physical situation does not pre-
sent any conceptual problems, though
the actual execution of an experiment
in which a force is measured may not
always be easy. In principle one needs
a force scale. One of the simplest is
a spring whose changes in length as a
consequence of the application of a
force are accurately reproducible.
Such a spring may have its various
elongation calibrated using known
forces, as for example, by compari-
son with the force of gravity. Another
convenient device is a column of li-
quid in an open or closed tube. Such
a column exerts a pressure (force per
unit area), which is equal to the
height of the column multiplied by
the density of the liquid and the ac-
celeration of gravity. Account must
be taken also of pressure on the top
surface of the liquid column, but this
can be reduced to a negligible value.

The following examples of empiri-
cal force laws are typical of numerous
phenomena to be found in nature. Each
example belongs to a wider range of
phenomena than is indicated by the
brief description given.

4.3.1 Sliding Friction

The force required to move two
bodies in contact along the surface of
contact depends on the nature of the
surfaces and on the force which is
pressing the two bodies together. We
will speak of this force as the maxi-
mum frictional force and denote it by
the symbol Fr. Tangential forces
smaller than Fr produce no motion.
Tangential forces greater than Fr pro-
duce motion with acceleration. Since
the force pressing two surfaces to-
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gether is a normal force (perpendicu-
lar to the surfaces in contact), we
denote it by N. The experimental re-
sult is that

Fr AN,

where /J. is a constant called the co-
efficient of fr'otion. This coeffi-
cient depends on the nature of the
surfaces, and it may depend also on
the temperature and the atmospheric
humidity. For a given roughness of sur-
faces it depends very much on the
state of contamination. It does not
depend on the area of contact between
the two bodies.

In many cases one finds that the
frictional force decreases after the
motion has started, and it may in fact
depend slightly on the velocity. Con-
sequently one speaks of a coefficient
As of static friction and a coeffi-
cient Ak of kinetic friction. The dif-
ference between gs and 7/k is negligi-
ble in some cases, as for example, in
the contact of two dry metals, or for
a material like teflon on metal. But
for glass on glass Alt is often less
than half of As and for many surfaces
Ak is of the order of 20% less than As.

It should be noted that Fr = AN
is not a vector relation: Fr is a
tangential force and N is a normal
force. The equation gives a relation
among magnitudes.

4.3.2 Viscosity of A Liquid or Gas

When the layers of a fluid me-
dium move at different velocities a
force may be found which is responsi-
ble for the conditions. Thus, in the
flow of fluids through pipes, the
fluid immediately adjacent to the
walls is stationary and the fluid in
the center is moving at the greatest
velocity. In between the wall and the
center of the pipe the various layers
are moving at intermediate velocities
with a continuous variation from zero
velocity at the walls to the maximum
velocity at the center. In order to
maintain this condition the pressure

on the fluid and within the fluid de-
creases in the direction of flow.

This kind of condition is most
easily visualized by considering the
flow of fluid between two horizontal
planes. Let the lower boundary plane
be at zero velocity and the upper
plane at velocity v. Between the two
planes the velocity of the fluid
changes uniformly with distance from
zero at the bottom to the maximum
value at the top. In order to main-
tain this condition one finds that
there must be a force on the two
planes, the one at the top being in
the direction of the fluid velocity,
and the one at the bottom oppositely
directed and equal in magnitude. This
force is proportional to the area of
the boundary planes, to the velocity
v, and inversely proportional to the
separation distance d between the
planes. Denoting the force per unit
area by F, the expression for F con-
sistent with experiment is

F=

We call 77 the viscosity coefficient
of the fluid. It may be determined
empirically by experiments based on
the arguments which have just been
given, but for experimental conven-
ience the conditions need not be pre-
cisely those in terms of which we have
described the force law. The viscosity
coefficient is an important property
of the fluid medium. For any given
fluid consisting of known molecules
interacting with each other in known
ways, 1 may be calculated from first
principles.

4.3.3 Resistance to Motion Through
A Fluid

Any object moving through a
fluid medium, e.g., the air or water,
always experiences a resistive force,
that is, a force which is opposite in
sign to the direction of motion. For
small bodies moving at low velocities
this force is proportional to the



40 BASIC THEMES OF PHYSICS

velocity and the magnitude depends on
the linear dimensions. It is conven-
ient to express the experimental re-
sult in the form

Fr = kkv,

where k is a constant depending on the
shape of the body and on the viscosity
of the fluid medium, f is a linear
dimension of the object, and v is the
velocity of motion.

If the object in question is a
small sphere (of diameter less than
about 1 mm in the case of air), con-
ditions of fluid flow around the ob-
ject are such that a precise calcula-
tion in terms of properties of the
medium can be made. The result is
known as Stoke's Law. It is

Fr = 6unrv,

where r is the radius of the sphere
and 7] is the viscosity of the medium.

For larger spheres and for
spheres moving more rapidly a depar-
ture from the linear dependence on
velocity is observed. A contribution
to Fr proportional to v2 begins to be
observed and for higher velocities
this contribution dominates. Even for
raindrops falling in the atmosphere
there is some deviation from the
linear dependence of Fr on v.

For objects like airplanes one
has

Fr = Cv2.

In spite of the great complexity of
this system the force law is a simple
one, and a reproducible determination
of the constant C is possible. The
force is however given by a square law
rather than a linear dependence on v.

4.3.4 Elastic Deformations

All rigid bodies change their
shape under the application of a force.
Well-known examples are the stretching
or compression of a helical spring by
a force acting parallel to the axis of

the helix, the bending of a beam by
the application of a force transverse
to the beam, and the elongation of a
wire by the application of a force
along the length of the wire. In each
case the magnitude of the deformation
produced can be measured as a change
in a linear dimension. The magnitude
of the change is found to be always
proportional to the magnitude of the
applied force providing that the elas-
tic limit of the material of which
the body is made is not exceeded.
Elastic limits are defined in terms of
the maximum forces which can be ap-
plied without producing a permanent
deformation in the shape of the body.
Some materials such as steel have
high elastic limits, and bodies made
of such materials are called elastic.
Other materials such as lead and rub-
ber have small elastic limits, and
for some others such as putty and
dough the limit is effectively zero.
Bodies made of materials of low elas-
tic limit are described as inelastic.

Consider now an elastic body. To
be specific let us take the case of a
helical spring. In the absence of any
applied force it has some length xo.
We might call this the equilibrium
length. If we now apply a force F
the length changes to xo + x, and if
we apply a force 2F the length changes
to xo + 2x, i.e., the change in length
is proportional to the applied force.
The force law may be expressed in the
form F x. It is convenient for many
purposes to write the force law in
terms of the opposing force in the
spring. This force is the negative of
the applied force. Introducing also a
proportionality constant k we write
the force law for the sping in the
form

F = kx

The constant k is called the force con-
stant. Its magnitude is determined by
the size and shape of the body, by
the materials of which it is made, and
by the nature of the deformation which
is being considered. When applied to
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any simple elastic deformation as the
stretching of a helical spring or the
bending of a flat spring, the force
law is known as Hooke's law. The im-
portant property is the proportional-
ity to displacement and the opposition
of displacement and force. We note
particularly that the force in the
spring is a restoring force whose mag-
nitude is directly proportional to the
displacement from equilibrium.

Another example is the stretching
of a wire by oppositely directed
forces parallel to the axis of the
wire. In this case it is convenient to
use a generally valid definition of
an elastic coefficient as a ratio of
stress to strain and to define each of
the latter in such a way that the co-
efficient is a pure material constant.
Thus, if the wire has the equilibrium
length k and the cross-sectional area
A, and if an applied force F produces
an increase in length Ak, we define

stress =
F

A

Ak
strain =

and the elastic coefficient which we
denote by Y as

Y =
stress Fk

strain AAk

A little consideration of this rela-
tion shows that Y depends only on the
material of which the wire is made.
It is called Young's modulus.

Other definitions of elastic co-
efficients can be given when they are
needed. In all cases the strain is pro-
portional to the stress for suffi-
ciently small stresses and the elastic
coefficient is defined simply as the
ratio of these two quantities.

4.3.5 Surface Tension

The surfaces of liquids are al-
ways under tension. It is this tension
which is responsible for the spherical
shape cf rain drops, the floating of

a needle on the surface of water under
certain conditions, and the rising of
certain liquids in capillary tubes;
e.g., the transport of fluids from
the ground to the upper portions of
growing plants.

The ultimate source of surface
tension is the short-range attraction
of the molecules in a liquid for each
other. In the body of the fluid the
attractive forces are equally strong
in all directions. But near the sur-
face the molecules are pulled pre-
dominantly toward the main body of the
liquid and away from the surface. The
net result of this unbalanced attrac-
tion is to produce forces which lead
to a minimization of the surface area.
These forces have the kinds of con-
sequences listed above.

The magnitude of the unbalanced
surface forces can be measured by pro-
ducing free surfaces as in a soap
film. If the film is made rectangular
in shape the opposing forces on two
opposite sides of the rectangle re-
quired to maintain the film can be
measured. The result is that the force
in the surface is simply proportional
to the length of the surface edge. The
proportionality factor is defined as
the surface tension.

4.3.6 Molecular Forces

A somewhat different empirical
force law than any we have discussed
so far is the short-range force of
molecules for each other. Since mole-
cules are rather complicated struc-
tures, the calculation of the interac-
tion between two molecules starting
with the basic interactions (the elec-
trostatic interaction in this case),
is not necessarily a simple problem.
The general features of this interac-
tion are easily determined, but the
quantitative details are not. Conse-
quently, it is of some interest to
have an empirical determination.

The result is that the force be-
tween molecules is attractive at long
distances and repulsive at short dis-
tances. At an intermediate distance
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the force changes from attractive to
repulsive, and consequently there is
an equilibrium distance, the average
distance of separation of the mole-
cules in the bulk material, at which
the force petween molecules is zero.
The attractive force is really not
long range since its magnitude varies
the inverse seventh power of the dis-
tance, and therefore it decreases to
zero very quickly after reaching its
maximum value just outside the equi-
librium distance.

These molecular forces are re-
sponsible for a number of the macro-
scopic properties which have? already
been mentioned. They are responsible,
for example, for the sliding friction-
al force which is present when two
surfaces are in contact. Foreign mole-
cules are generally present at such
surfaces. As the two surfaces are

moved with respect to each other,
molecular attractions between mole-
cules which are in motion with re-
spect to each other generate atomic
motions and set up vibrational waves
in the adjacent medium which can carry
away energy. If the foreign molecules
are absent there may be adhesion, and
this too is caused by the molecular
interaction. Finally the molecular in-
teraction can be used to explain
Hooke's law of elasticity in bulk ma-
terials. Any deformation of the body
produces a change in the average sepa-
ration distance of the laolecules along
the line in which the deformation oc-
curs. One can show that for small
changes the molecular force changes
between positive and negative values
uniformly with distance. This is just
the behavior required to explain the
over-all force law.



5 MOTION UNDER THE INFLUENCE OF
GRAVITATIONAL FORCES

5.1 INTRODUCTION

As described in section 4.2, all
matter attracts all other matter in
the universe with a force which has
its origin in a property of mass. This
is a very weak interaction in compari-
son with other forces to be studied in
later chapters, but for matter as ob-
served in the large-scale universe it
is usually the only force. It is the
force which determines the motion of
the planets, comets, and satellites,
and at the same time it is the force
which is responsible for the free fall
of objects at the surface of the
earth, and for the property of materi-
als which in everyday language we de-
scribe as weight. Since it is possible
in laboratory experiments to eliminate
the effects of other forces, the range
of conditions under which the gravita-
tional force can be studied is a very
wide one, extending, insofar as the
magnitude of the interacting masses
are concerned, from a few grams to
masses of the order of sun's masses,
and, insofar as separation distances
are concerned, from a few centimeters
in a laboratory experiment to the many
millions of miles separating the plan-
ets and their attracting center in a
solar system.

The great achievement of Newton,
among many others, was to recognize
that this wide range of phenomena
could be considered together an6 de-
scribed in terms of a few simple basic
laws of physics which he then pro-
ceeded to formulate. We have already
considered the basis for his formula-
tion of the equations of motion. In
the section on basic interactions we
have also described some aspects of
the basis for his formulation of the
laws of universal gravitation. But
there were also other stimuli and
other clues. Of major importrnce in
this connection were the resLlts of
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the life time work of Johannes Kepler
(1571-1630), student of Tycho Brahe
and immediate predecessor to Newton.
Using the very extensive and accurate
astronomical observations of Brahe,
Kepler succeeded in synthesizing all
astronomical data in the form of three
general laws of planetary motion. For
Newton these laws provided both a clue
to the nature of the interacting
forces and at the same time a severe
test of any hypothesis which might be
advanced to explain the motion. Kep-
ler's laws of planetary motion will
be described in the next section.

As the student will have noted,
the law of universal gravitation as
stated in the previous chapter can
apply only to bodies whose extensions
in space are negligible in comparison
to the distance of separation. In gen-
eral it is only for such cases that
there is a definite separation dis-
tance r. Strictly speaking, the law
of universal gravitation applies only
to the interaction of two mass ele-
ments Am, and Amt in two volume
elements AV, and 0V2, the linear di-
mensions of each of which are negli-
gible in comparison to the separation
distance. Newton was keenly aware
that the law could not be applied
without further consideration to such
bodies as the earth and the moon, or
the earth and a baseball, the radii
of one or both of which are comparable,
or at least, not negligible in com-
parison with the separation distance
of the two bodies. It was his flilure
to solve this problem in the early
stages of his consideration of the
law of universal gravitation which
caused him to withhold the announce-
ment of the great success which he had
in fact achieved. Many years before
the actual publication of these re-
sults he was able to give convincing
arguments in support of his conclu-
sion t'.-tt a single type of force was
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capable of explaining both the astro-
nomical and terrestrial motions, that
the direction of the force was along
the lines of centers connecting two
spherically shaped bodies, and that
the magnitude of the force was in-
versely proportional to the square
of the distance between their centers.
But the statement that "the law of
gravitational interaction between two
large spheres in which the distribu-
tion of matter is spherically sym-
metrical (as is presumably the case
for all the planetary bodies) is given
by the same expression as for two
point masses, provided only that the
centers of the spheres are used as
the points between which the separa-
tion distance is measured," requires
the use of the calculus for its proof.
Newton invented the calculus, and he
succeeded eventually in proving the
statement which we have just given. In
our subsequent consideration we will
assume that the expression

F = G 1111
T

applies both to point particles of
masses m, and m2 and to spherical dis-
tributions of matter in which the
total masses are m, and m2 and the
distance between centers is r.

5.2 KEPLER'S LAWS

Kepler's three laws of planetary
motion are concerned with the nature
of the orbits, the speed of a planet
at various points in a given orbit,
and the way in which the periods of
motion change as one goes from one or-
bit to another in a given planetary
system. Since no one up to this time,
including Kepler, had any notion that
the motion of a heavenly body could be
anything but circular, or a superposi-
tion of circular motions, Kepler's
stunning conclusion (after many years
of futile effort with circular orbits),
that the orbit was in fact a simple
mathematical curve of which the circle

was only a special case represented
a great break with the past. Since he
found that the orbits were not in gen-
eral circular, there was no longer any
basis 1'0- ,inking that the speed of
a in a given orbit was constant.
Thus, a statement with respect to the
varying speed of motion, a kind of var-
iation which Kepler found could be
expressed with the utmost simplicity,
became the second law. Finally it was
natural to look for a unifying princi-
ple relating all orbits in a single
planetary system. This was not easy to
find and it required nine more years
of searching and a considerable faith
in the basic unity and harmony of na-
ture, a faith which Kepler surely had,
in order to persist so long. Finally
he found the general principle which
became his third law. The student in-
terested in further details of the
historical development will find a
summary beginning with the astronomy
of ancient Greece in Holton, Introduc-
tion to Physical Science, chaps. 6-11
(see footnote 2).

We will now state and briefly de-
scribe each of the three laws of
Kepler.

5.2.1 Kepler's First Law

This law states that the planets
move in elliptical paths, with the
attracting center, the sun in the case
of the solar system, at one of the two
foci of the ellipse.

The properties of the ellipse
have been known since the second cen-
tury 11,C. Liko the circle it may be
described by a simple equation in rec-
tangular coordinates:

X2 2

a2 1,2 7

where a aid b are called the half ma-
jor and hLlf minor axes (a >b). For
a = b thelequation describes a circle
of radius,a. Thus, the circle is a spe-
cial case!o:f the ellipse and in accord-
ance with Vvpler's first law, a circle
is a possitle planetary orbit.



MOTION UNDER THE INFLUENCE OF GRAVITATIONAL FORCES 45

Fig. 5.1

Other properties of the ellipse
which are found useful in an elemen-
tary treatment are the following:

(a) The ellipse is a curve drawn
in such a way that the sum of the dis-
tances to two fixed points, r1 + r2 in
Fig. 5.1, is a constant. The two fixed
points are called the foci of the el-
lipse. With a rectangular coordinate
system oriented as shown in the figure
the major axis 2a is along x and the
minor axis 2b is along y.

(b) The constant distance r1 + r2
is equal to the major axis 2a. This
is evident frem a consideration of the
point on the ellipse for which r1 has
its maximum value (and r2 its minimum
value).

(c) The foci are separated by the
distance 2c where

C = Va2 b2.

This follows from a consideraticn of
the point on the ellipse for which
r1 = r2. At this point

1
2 = r22 = b2 c2

2a = r1 + r2 = 2r1 = 2Vb2 + c2

a = 1V-7571-c2

(d) The departure of an ellipse
from a circle of radius a is conven-
iently described in terms of an ec-
centricity paraleter e defined by

b2 c
e =1/1 =

a a

x

The separation of the two foci is
2c = 2ea, and for a circle e and c
are equal to zero.

(e) Another expression for the
ellipse is in terms of the distance r
to one of the two foci, say the one on
the right, and the angle 9 which the
line connecting the planet to this
focus makes with the positive x axis.
This is

1 a= (1 + e cos 0).
r b2

This expression for the ellipse may be
obtained by starting with

substituting

x2
2 - 1,

a b

x= c + r cos 0

y = r sin 9,

using the previously determined rela-
tions to eliminate c and introduce e,
and carrying out the required alge-
braic manipulations.

5.2.2 Kepler's Second Law

This law states that the velocity
of a planet in its elliptical orbit is
such that a line drawn from the at-
tracting center at one focus of the
ellipse to the planet sweeps out equal
areas in equal intervals of time. This
is called the law of constant areal
velocity.
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The restatement of this law in
terms of linear velocities will be
described when we consider Newton's
derivation of the empirical laws from
the equations of motion and the force
law. For the present let us consider
only the linear velocities at two
points on the ellipse which are re-
spectively the two points of minimum
and maximum approach to the attracting
center. These two points lie at the ex-
tremities of the major axis and are
called the perihelion and aphelion,
respectively. At these points, and
only at these points, the velocity of
the planet is perpendicular to the
line drawn from the planet to the at-
tracting center. Denote the lengths of
these lines as ra and rp. If the cor-
responding velocities are va and vp
the areas swept out in unit time are
irava and irpvp. But according to
Kepler's second law these areas are
equal. Then

Va rp

Vp ra

5.2.3 Kepler's Third Law

This law describes the manner in
which the period of a planet in its
orbit varies as one goes from an orbit
of one size to another, all within a
given planetary system. The law says
that the square of the period is pro-
portional to the cube of the mean
radius. One can show by a simple geo-
metric argument based on the statement
ri + r2 = 2a that the mean radius is
equal to a. The third law can then be
expressed in the form

T2 = ka2,

where k is the same for all planets
in a given system.

5.3 DERIVATION OF KEPLER'S LAWS FROM
THE LAW OF UNIVERSAL GRAVITATION

We will discuss Kepler's laws
from the point of view of their being

a consequence of the law of universal
gravitation. This procedure is the
inverse of the historical development.
As we have indicated, Newton probably
rested heavily on his knowleOge of
Kepler's laws for inspiration and
guidance in his search for a physical
interpretation of planetary motion.
Thus, the mathematical form of the
orbit in which the planet moves, as
described by Kepler, reinforced his
conviction that the force of attrac-
tion between two masses falls off as
the inverse square of the distance be-
tween them, and the constancy of the
areal velocity told him that the force
must be directed along the line of
centers connecting the two bodies.
These conclusions are not immediately
obvious to the mathematically unini-
tiated student, but after some reflec-
tion they were obvious to Newton, and
we will be able to demonstrate impor-
tant aspects of them here. Our pro-
cedure, however, will be to start with
the force law, and then discuss Kep-
ler's laws as an immediate consequence,
basing the proof of course on the equa-
tions of motion.

We begin with Kepler's second
law rather than the first. We will now
show that the constancy of areal vel-
ocity is an immediate consequence of
all force laws that have the property
that the force is directed along the
line of centers connecting two bodies.
Such forces are called central forces.
We encounter forces in nature which
are not central, and for these the
property of constant areal velocity
does not exist. But other forces be-
sides the force of gravitational at-
traction are central and for all of
these the motion is such that the
areal velocity is constant. Thus,
Kepler's second law falls into a very
general category. We will proceed now
to prove it in this general sense.
We will prove that the areal velocity
is constant for any force which is
central. We will then know it to be
true in the special case of a gravita-
tional force.

Consider three nearby points in
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Fig. 5.2

the orbit which are separated by two
small and equal time intervals At.
For convenience we will take t = 0 at
the midpoint and t = At and t = + At
at the earlier and later points, re-
spectively. Draw lines from the at-
tracting center at S to the planet at
each of the three points, and denote
by r Ar, r, and r + Ar the changing
magnitude of the distance between the
two bodies, (see Fig. 5.2). We note
also that the velocity is changing
as the planet moves along the orbit.
Denote by v the velocity t = O. We
resolve this velocity into two com-
ponents, one, vi which is perpendicu-
lar to r, and the other, v11 which is
parallel to r. This bri gs us to the
critical point in the argument. Since
the force is central it is along the
direction r. By Newton's second law
of motion this :orce can change only
the parallel component. Then v1 is a
constant. It will change with r as
a consequence of motion to another
part of the orbit, but at a given r,
vi is not changing as a consequence of
the force. Then in the diagram the
dotted lines drawn perpendicular to r
are of equal lengths viAt. Consider
now the two triangles representing
the areas swept out by r in moving
from t = -At to t = 0, and from t = 0
to t = +At. These triangles have the
common base of length r and they both
have the altitude viAt. Then the area
of both triangles is 1 rviAt, and the
areal velocity in both intervals is
irvi. The areal velocity is a con-

stant because vi is not changed by the
central force. As the planet moves
around the orbit, r changes and there-
fore, vi changes, but the areal velo-
city

_vA rvi,

is a constant. Thus, Kepler's second
law is proven for central forces. An
equivalent statement is that the angu-
lar momentum A about the attracting
center S is a constant. From section
3.6, A = mrvi = 2mvA , where m is the
mass of the planet. Since vA is con-
stant, A is constant. The latter also
follows directly from the relation
proved in Chapter 3 that torque is
equal to time rate of change of angu-
lar momentum. Since for a central
force the torque is zero, it follows
that the angular momentum is a con-
stant.

We turn now to the proof of Kep-
ler's first law. In order to prove it
we must show that the orbit has unique
properties which we recognize as be-
longing to the mathematical curve
which is called the ellipse. Some of
the properties of this curve have al-
ready been described. There are
several methods which can be used to
relate these mathematical properties
to characteristics of the motion as
determined by the form of the gravita-
tional attraction. One method is to
start with the equation of motion.
This method requires a discussion in
terms of instantaneous rates of change
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and is consequently a method making
use of the calculus. Another method
is purely geometrical, but the geo-
metrical argument is rather long and
tedius. A third method is based on the
consideration that the total energy
E = K + U is a constant. Beth the ki-
netic energy K and the potential energy
U change as the planet moves around
the orbit but the sum is unchanged.
Using the result already demonstrated
in the proof of the second law that
changes of velocity due to the force
take place only along the line of cen-
ters, we can obtain an expression for
the velocity, and therefore the kine-
tic energy K, as a function of posi-
tion along the orbit in terms of the
angle which the line of centers makes
with some fixed line. We also need to
have an expression for the potential
energy of the two bodies as a function
of the separation distance. The po-
tential energy, and a new concept, the
potential, are discussed in section
5.5. The derivation of the first law
follows. But since this derivation is
not essential to the student's under-
standing of the remainder of the text,
the derivation will be found in an
Appendix rather than in this chapter.
We will note here only that one ob-
tains by this procedure an expression
for the separation distance r in terms
of position along the orbit which is
precisely of the form which we recog-
nize as that of an ellipse. Thus,
Kepler's first law is proven. Essen-
tial to the proof are both the cen-
tral character of the force and its
variation as the inverse square of
the distance.

We will prove the third law only
for the special case of motion in a
circle. Consider a planet of mass m
moving around a sun of mass M at a
constant fixed distance of separation
R. According to the law of universal
gravitation, a force

Mm
f = G R2

acts on the planet. By Newton's third
law of motion an equal and opposite

force acts on the sun. Thus, both bod-
ies are accelerated toward each other,
that of the planet being equal to
f/m, and that of the sun f/M. We con-
sider here the case that M is very
large in comparison with so that the
acceleration of the sun in comparison
with that of the planet is negligible.
Under these circumstances, we can re-
gard the sun as fixed in space. If we
simplify the problem still further by
choosing as the elliptical path in
which the planet moves the special
case of a circle in which the speed v
of the planet is a constant, then the
acceleration of the planet is v2/R
where R, the distance to the sun, is
also the radius of the circle in which
the planet moves. Setting this accel-
eration equal to f/m we obtain

GMv2
R

This result may be expressed as a re-
lation between the period T and R.
Since vT = 27TR the result is

41x2 R3

GM

This is the relation we set out to de-
rive. For the more general case of an
ellipse of major axis 2a the relation
is

T2
4H2 a3

GM

The period does not depend on the ec-
centricity of the ellipse but only on
its major axis. In accordance with the
statement of the third law T2 - a 3 .

The derivation gives us in addition
the magnitude of the proportionality
factor, 40/GM.

5.4 MEASUREMENT OF G

Since G is a universal constant,
its numerical value is of great im-
portance. However, it is a difficult
quantity to measure with precision and
more than a century passed after New-
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ton's enunciation of the law of uni-
versal gravitation before an experi-
ment especially designed to measure
G was successfully performed. Newton
was able to provide however an esti-
mate of its magnitude. We will de-
scribe two methods, both involving the
mass of the earth. Since the mass of
the earth cannot be known until G has
been determined, and therefore had to
be estimated or guessed, the value of
G obtained by these methods was not
very reliable.

One method is based on observa-
tions of the moon, an earth satellite.
The moon's orbit is nearly circular
and the relation derived in the proof
of Kepler's third law,

47x2 R3T2 -
GM '

is a valid one. In this case M is the
mass of the earth since it is the
massive center around which the plane-
tary motion is taking place, R is the
distance from the earth to the moon
and T is the period of the moon. The
mass of the earth may be calculated
from the relation

M = 4
3p

3

where RE is the radius of the earth
and T is the average density. Since
the latter is not known in the ab-
sence of measurements to be described
below any calculation of G based on
an estimate of -p is bound to be inac-
curate.

A second method makes direct use
of the law of universal gravitation
as a basis for calculating the force
of gravity on objects near the earth's
surface. The force on an object of
mass m is

F = mg = G
RE

or

G =
gRE2 3

M 4R REP

The acceleration of gravity g, and

the radius of the earth RE are known,
but the average density To- must again
be estimated.

The third method involves a di-
rect measurement of the force between
two known masses at a known distance
of separation. This is the Cavendish
experiment performed by Henry Caven-
dish in 1797. In this experiment two
small lead spheres are connected by a
horizontal rod which is suspended at
the center from a thin quartz fiber.
Two other lead spheres are placed
symmetrically with respect to the sus-
pended spheres so that the distances
of separation between pairs can be
made quite small and the force of at-
traction acts to twist the quartz fi-
ber. The force of attraction can be
measured by observing the angle
through which the suspension is turned
and using a calibration of the angle
in terms of known forces. The experi-
ment is easily demonstrated and an
accurate value of G can generally be
obtained. As sta...ed in Chapter 4, the
accepted value is

G = 6.67 x 10-6 dyne cm2/m2.

Using this value of G in the two pre-
vious experiments one obtains a value
for T, the average density of the
earth, and therefore the mass of the
earth. The result is

T = 5.5 g/cm3.

Thus, Cavendish referred to his experi-
ment as an experiment in weighing the
earth.

5.5 THE GRAVITATIONAL POTENTIAL

The change of potential energy
of a system has been defined as the
work which must be performed by an out-
side agent in order to change the con-
figuration within the system. We wish
now to calculate the work done when
the separation distance between two
masses m and M is changed from some
value r to arbitrarily larger dis-
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r
1

Fig. 5.3

tan es. In order to calculate this
work we will let the separation dis-
tance increase in small steps, first
from r to r1 as shown in Fig. 5.3,
then from r1 to r2, then from r2 to
r3, and so on. In each of the inter-
vals the variation of the force with
distance will be very small because
the intervals are small. Consequently
the work done may be calculated in
each interval by using the average
force in the interval and multiplying
by the short distance through which
the bodies are moved relative to each
other. Let us calculate the work done
when m is moved from the point marked
r in the figure to rj. At r the at-
tractive force is

and at rj it is

mM
G-7 ,

G
mM

2 °

Since the quantity 1/rr1 lies between
1/r2 and 1/r12 in magnitude, it is
plausible to assume that the average
force in this interval is given by

Y-=
GmM
rr1

This is in fact the case as may be
demonstrated rigorously using the cal-
culus. We will simply assume that the
expression is correct. Then the work
done in this interval is

w F(ri r) = GmM(1
r

r2
r3 rn rn+I

vals. Thus, between rn and rn,1 the
work done is

W = GMMeL 1 ).

rn rn+ii

The work done in any large interval
is merely a sum of such terms. Start-
ing with m at the point r the work
done in moving m out to an arbitrarily
distant point is accordingly

W= Gmm _ _ )

r, 1r, rzi

r2 r2/
JJ

We observe that there is considerable
cancellation of terms in this expres-
sion. In fact, only the end terms in
any such summation over a finite num-
ber of intervals survive. If the sum-
mation is continued indefinitely the
second of these two end terms becomes
smaller and smaller. In the limit that
we move from the point r to an infi-
nite distance it goes to zero. Conse-
quently, the work done in changing
the separation distance from r to co
is given by the simple expression

W= GinMr
But this is the change of potential
energy, and it is observed to be posi-
tive. If we now arbitrarily define the
potential energy at infinity to be
zero then the potential energy at r is

GU= mMr
Similar expression will be obtained Using this result for potential
for the work done in succeeding inter- energy of one body m in the gravita-



MOTION UNDER THE INFLUENCE OF GRAVITATIONAL FORCES 51

tional field of M (or of M in the
gravitational field of m) it is con-
venient to define the related concept
of potential. Putting our attention on
one of the two bodies, say M, we con-
sider the potential energy of a body
of unit mass in the gravitational
field of M at the separation distance
r. This potential energy is defined
as the potential ' due to M. Thus,

0 GM

The potential energy U of a body of
mass m is then obtained by multiply-
ing 0 by m, i.e.,

u = Om.

The concept of potential will be de-
veloped more fully in a succeeding
chapter dealing with electrostatics.
Since, however, the concept is a gen-
eral one for a large class of fields,
it is useful to introduce it at this
point.

It is of some interest now to
return to the concept of gravitational
potential energy and to use the prin-
ciple of energy conservation as a
basis for calculating the escape ve-
locity of any object from the vicinity
of another. We may be interested for
example, in knowing the velocity with
which an object at the surface of
the earth must be projected in order
that it will escape to infinity. In
order to simplify the problem the in-
fluence of the sun and all other
planets in the solar system will he
neglected for the purpose of the cal-
culation. We simply observe that at
the earth's surface the total energy
of a body of mass m moving with a ve-
locity ve is

E =K+U=imv02 GmMe

Re

where Me and Re are the mass and
radius of the earth, and use has been
made of our knowledge of the potential
energy, the energy at infinity being

taken as zero. If we now wish the body
to escape to infinity the total energy
E can not be less than zero. If it is
different from zero and positive it
will be all kinetic. Thus, the condi-
tion that the body is barely able to
escape is the condition that E = 0.
Solving for vs we obtain

2GMe
ve2

e

For numerical purposes in problems of
this kind it is convenient to rewrite
the product G Me by using the relation

mg = G
niMe

Reg'

for the value of g at the earth's
surface. This gives

GMe g Reg.

Then the escape velocity is

ve = 47a:

= 1.1 X 106 cm/sec = 7 miles/sec,

where we have used g = 980 cm/sec and
Re = 6.37 x 108 cm.

5.6 OTHER APPLICATIONS

In the same way as observations
on the period and radius of the moon
may be used to measure the mass of the
earth, once G has been determined, the
mass of any body which is the center
of a planetary system may be deter-
mined if sufficiently accurate data on
its satellites are available. The mass
is given by

M
GTs2 '

471'2 R s3

where Rs and Ts are the orbital radius
and period respectively of the satel-
lite. In this way the mass of our sun
can be determined from orbital data
relating to the earth or any of the



52 BASIC THEMES OF PHYSICS

other planets. For orbits which are
not circular, or approximately so, the
quantity Rs must be interpreted as
the half-major axis as. Similarly, the
mass of Jupiter can be determined from
observations on its moons. As is to
be expected on the basis of internal
consistency of the interpretation and
the proven validity of Kepler's third
law, different determinations of mass
obtained from the data on different
planets are in agreement.

The third law is useful also for
establishing a direct comparison of
two orbital periods when the ratio of
the orbital radii are known. From the
derived relation we obtain the ratio

2 R 3-
T 2

where 1 and 2 refer to two different
planets in the same planetary system.
Applying this relation, for example,
to the moon and an artificial earth
satellite in an orbit apprcximately
100 miles above the earth's surface,
one obtains for the satellite
Ts = 0.061 days = 1.46 hours, using
TM = 27.3 days, Rs = 4100 miles and
RH = 240,000 miles.

Other applications may be dis-
cussed as problems assigned to the
student.



Appendix A PROOF OF KEPLER'S FIRST LAW

The following proof is based on
the principle of energy conservation
together with a conclusion which may
be drawn from the concept of the ve-
locity circle. The latter concept must
be developed and then used for the
specified purpose. The over-all proof
proceeds in three steps which will now
be described. A fourth step then gives
the dependence of total energy on the
size of the orbit.

1. We first prove that as the
planet moves in its orbit the change
Av in the magnitude of the velocity
corresponding to a small change in po-
sition along the path is proportional
to the change in angle AO of the line
drawn from the planet to the sun.

A closed path is assumed from the
outset. The attracting center is at S,
and the position of the planet with
respect to S is specified by r and 0
with 0 measured from the line drawn
to S at the distance of closest ap-
proach, (see Fig. 5.4). Let this dis-
tance be denoted by r and the veloc-
ity at this point in the orbit by vp.
From Kepler's second law as proved in
Chapter 5,

rvl = rpvp.

Using
rA0

vi =

r2A0 = rpvpAt.

From the force law

F = ma = m -4S.L = G mM
At r 2

GM
Av = r2 At.

Eliminating r2 between these equations

GM
Av = ---- AO

rpvp

53

The direction of the vector Av' is to-
ward S.

2. The velocity circle.
Construct a velocity diagram by

beginning with the vector Vp and add-
ing successive increments Av each
proportional in magnitude to succes-
sive increments AO. Since each Av
points toward S, the successive incre-
ments make angles with respect to each
other which are equal to the change in
O. Then the increments fall within a
velocity circle. The center of this
circle C is displaced from the origin
0 ofthcl velocity diagram if the veloc-
ity va at the point of maximum dis-
tance from S is not equal in magnitude
to v

t)*
The diagram which is Mus-

trateu (Fig. 5.5), shows a particular
velocity v obtained after adding a
certain number of increments Av with a
combined angular change O. The radius
of the velocity circle is

V = i( + vp),

and the distance between C and 0 is

6 = V va = 1(vp va).

Then

V2 = V2 + 62 + 2V6 cos 0

= i(vp2 Va2) 1(vp2 Vat) COS 0.

Fig. 5.4
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Fig. 5.5

3. Substitution into the energy
equation

mM
E= K + U = imv2 G,

where for U we are using the result
derived in section 5.5, gives

From

= 1 (v 2 4. va2 4E )

r 4GM `v m

Vp 2 Va 2
COS O.

4GM

Then

1
r

= (2 ) i(-- --) cos 0.
rp ra ra

Comparison with one of the relations
described in the discussion of Kep-
ler's laws in Chapter 5 shows that
the path is an ellipse.

4. The energy can be expressed
in terms of velocities alone, or in
terms of the size of the orbit

Use rava= rpvp repeatedly starting
with

Then

2 2Vp
2

1

rp ra

, 2 2 , 2 _ va2
GM 1vP v

,
a lvp

2rp 2

1
rp va

1
ra v

P

27(v
P

+ va).

E = imvp2

Since also

GmM
rp

= -- AMV V2 p a

GM = ivprp(vp + va) = ivavp(ra + rp)

E = mvp2 G11111 = imva2 G 14 2v1 pva
ra ra

GM
+ rp

vp2 + va 2 _ I E = 2G m +
rap

V 2 " 2 = 2GM(1 L\v

krp ra)

E
GmM GmM

ra rp 2a'

where 2a is the major axis.


