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OPTIMIZING THE TEACHING-LEARNING PROCESS THROUGH A
LINEAR PROGRAMMING MODEL - STAGE INCREMENT MODEL

This paper examines the feasibility of operations research methods to

help the educator in educational decision making. Specifically, a linear program-

ming model is developed to optimize the teaching- learning process.

The technical means to achieve a wide range of educational objectives

with various degrees of efficiency and effectiveness are at hand. But often the

educator faces a situation in which there are too many alternatives to be pursued,

too many combinations from which to select, too many factors that can confuse

or confound, or too many things that can get out of control because of the complex-

ity of the educational process.

The question today is not so much "Should everybody be educated? " but

rather, "How should everybody be educated?" or "What is the appropriate choice

among alternatives?" and "How can the educational programs be balanced?" The

problems of relevancy to educational objectives, the development of an optimal

solution, the choice among clear alternatives, the balance and integration of plans

and subsystems -- all may be solved by operations research methods.

Operations research is essentially a methodology which has been developed

for the allocation of scarce resources. The essence of the operations research

approach is model building. Thus it is the counterpart to laboratory experimenta-

tion or hypothesis. testing. In operations research, a model is almost always a

mathematical, and necessarily an approximate representation of reality. It must

be formulated in such a way that it can solve the decision-making problem. The

emphasis is on optimization, optimization to one or more specified criteri:.
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Operations research has been successfully applied to management

problems in business and industry. Few attempts were made to apply the methods

of operations research to the management problems in education such as budget

allocation, bus routing, scheduling of time tables, and school district relocations.

(Lareme, 1969) Operations research is an efficient method to find optimal solutions

for these problems.

Operations research can also be used to optimize the teaching-learning

process. The teaching-learning process is a dynamic process. Because of

feedback characteristics and the time variant it seems that dynamic programming

models or control theory models can be used for its optimization. But dynamic

programming or control theory models require complex calculations for their

solutions and the time required for the computational procedures, even with high

speed computers, is relatively long. However, the efficient management of the

teaching-learning process depends upon immediate feedback to the student's res-

ponses. In order to satisfy this need for immediate feedback a mathematical model

must be chosen which allows the computer to respond in seconds or less. In addition,

control theory models require exact functional relationships between the dependent

and the independent variables. Further More, these functional relationships should

be differentiable, that is, a second degree derivative must exist within the range

of the independent variable set in order to find an optimal solution. Exact functional

relationships, however, do seldom exist among variables which operate in a learning

situation. Therefore, instead of an exact relationship, a feasibility region is

defined irr which the independent variable set operates. Precision of the region

depends upon how well the mathematical properties of the variables can be described.
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The feasibility region is found by solving a set of linear inequalities. Each in-

equality specifies a subrelationship among the independent variables whose mathe-

matical properties are not adequately specified. An optimal solution can be found

by comparing the feasibility region with the dependent variable which is obtained

from the value of the criteria function.

A researcher may find a linear programming model to be the most efficient

and powerful model for the optimization of the teaching-learning process. Its

mathematical structure is simple and its algorithm is especially suited for the

digital computer; in addition, it provides byproducts through the solution of the

'dual' form, i.e., analysis of shadow price. (Dantzig, 1963, 134- 140) The assump-

tion underlying the model is linearity. The question arises whether we can convert

the seemingly complicated non-linear teaching-learning process into a neat linear

form. If we can do this, then computer management of the teaching-learning

process, and efficient individualized instruction, become feasible.

A Linear Programming model would have to solve the followiag problem;

To initialize and monitor the teaching-learning process of a student until he has

learned a set of tasks under optimal conditions. Let us define K as the set of tasks

which the linear programming model has to initialize and monitor. The task set

K can be represented as a two dimensional array with the dimension m x n, where

rn denotes the rows or states and n denotes the columns or stages. (See Fig. 1).
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Each column of K indicates a stage of the teaching-learning

process. Stages are in a sequential order proceeding from source to destination.

The flow must go through each stage. Each row of K indicates a state. A state

is an alternative point in a stage which a flow may or may not choose. The task

set K has n stages and each stage has m states.

Any one task of the task set K, that is, any one element of the array I:

can be expressed as Kij where i and j are indices of the array, i = 1, Z,...,m,

indicating the number of rows and j = 1, 2, , n, indicating the number of columns.

The first element of each column, i.e., K., is the initial task and the other elements,

i.e., K2i , K.3j , , are alternatives associated with the initial task. Initial

tasks may consist of major concept(s), problem(s), or, 'generally speaking, of

the major objective(o) to be taught at each stage, i.e., the stage objective. The

alternative tasks may elaborate upon or explain more fully the concept(s) or

problemks) of the initial task, or the alternative tasks may be of a remedial or a

practice type, or they may add new knowledge to the initial tasks.

Because the stages of the teaching-learning process are sequenced and

ordered, K. .i's are stored and presented according to the order of j. The states

in a given stage j are stored according to the order of i. But the states are

not presented according to the order of i but according to the individual needs of

the student. That is, IC,.
-33

may be presented earlier than K2j if a sequence of

K3) , K proves to be optimal to a student. A task sequence proves to be

optimal if it assures a student the highest probability to achieve the stage objective

in the least amount of time from the first stage to the last stage, i.e., globally.

6.446;.....b.10.4.01F"..........04M12. ;
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A student's flow through the teaching-learning process can be conceived

as follows (see Fig. 2):

Let Ps denote successive stages of the task set K, j=1, n. Let

i's denote the states, that is, the initial task and alternatives at each stage j,vehere

i = 1, 2, .0 M. Then e. , i = 1 and j = 1, is the task which initializes the

first stage of the teaching-learning process. In a given stage j, a student is present

de with the task K., he then gives a response to K, which is R. , R. is evaluated
-11 rj 9 13

by a contingency rule according to achievement criteria Q. which are associated
ij

with the task K.,ij . If the response fulfills the achievement criteria, i.e. 11ij )h... Q, ,
ij

the student goes to the next stage, i.e., J 1. If a student's response does not

fulfill the achievement criteria, i.e., R., <Q. , the student's overall task perform-
13 tj

ance is evaluated according to termination criteria, T, which determine whether

a student should drop or continue the task set K. If the student's overall performanc

is satisfactory, he continues with the task set K. An optimization rule selects a

state or sequence of states which ?, student will be in. Optimization occurs within

a stage among the alternatives of a stage. For example, suppose a student's res-

ponse to an initial tusk needs to be strengthened. Then alternatives are selected

in a way which proves optimal for that student; only those items are optima? which

assure the highest probability to pass the achievement criteria Qij in the least

amount of time,

Optimization can occur by either of two methods:

1. Optimal Item Method. Select that alternative which has the highest proba-

bility to pass the achievement criteria Cti for student V. Repeat until student V

fulfills the achievement criteria Q
.1

or until no more alternatives are available.
1

2. Optimal Path Method. A path is selected which consists of an optimal

sequence of alternatives at stage j for student V. This path Is put into the computer
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memory. Then the first alternative of that path is presented to student V. Student

V responds to it. Then the next alternative of that path is presented to student V,

etc., until student V. fulfills the criteria Q. or until no more alternatives are

available.

In the flow through the teaching-learning process there are two loops, the

Stage Increment Loop and the Optimization Loop. The Stage Increment Loop directs

the student to successive pre-sequenced stages of the learning task after the achieve-

ment criteria at each stage are fulfilled. The Optimization Loop selects the tasks.

within a stage and assures the highest probability of passing the achievement

criteria in the shortest amount of time for a particular student.

The teaching-learning process can be terminated in either of three way;:

(1) When a student has reached the last stage and his response satisfies Q.. of that

stage, then the teaching-learning process is terminated successfully. (2) When a

student has reached the last stage, yet his response does not satisfy Qii for that

stage and no more alternatives are available, then the teaching-learning process is

terminated unsuccessfully. (3) When a student's overall task performance falls

below the termination criteria, T, then a student's teaching-learning process is

terminated unsuccessfully.

Optimization of the task set K occurs from j = 1 to j = n. Optimization

occurs at each stage. Since optimization occurs only once at each stage and since

each optimization occurs independently of another optimization, the global optimal

solution can be obtained through local optimal solutions.

MalHamaam.
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Theorem: The sum of local optimal solutions is equivalent to the global
optimal solution

Z(Min ) Min (Z 7). )
j.ilocal global

isBecause each minimum Z .i a local optimum by definition, the sum of

Z. for all j should not be greater than the global minimum, hence the proof is

immediate.

Let Z.
Jbe

the dependent variable of the function which we want to optimize,

e. g. , the sum of the cost associated with the alternative tasks ,it stage j,. for

j=1, 2, n. Optimization, generally, occur s either through maximization or

minimization. Here, optimization occurs through minimizing the sum of the coat

associated with the alternatives. Since optimization occurs through minimization,

Z. is the minimand and Min is an operator of the optimization.

Then
Z.1)

Min denotes minimum values of Z locally for j = 1, 2, ...n. And
k local

n
(Min Z1) is the sum of Z. values obtained through local optimal solutions

j.1 local

for j = 1, 2, ...n, the sum of Z. for all j,
Z3

is the minimand for the
J.I.

global optimization. Then (gloo
al 1FMi

Cr,
1

Z
ji

denotes the minimum value ofb\
. The following concepts are introduced and defined:

Failed State Let i' indicate a failed state, then K.. indicates a task a student
t;)

has fi.tiod in stage j. Let the superscript i indicate ' contingent upon a failed state '

10
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then K.. for all i state that the student has failed3 stands for any alter-ij

native task as sequenced by the optimization rule contingent upon a failed state P.

That is, whenever a student has failed K1.
1) .

he will be presented with an optimal
issequence of K. where i (P), within j.

Set of Paths I : Let I be a set of paths, that i s, the set of all possible sequences

of alternative tasks in stage j resulting from state i'. If i'=1, then t he student

failed the first state which is the initial task. S ince t here a re tyn -1) alternative

tasks in a stage, the maximum number of all possible sequences of alternative

tasks is (m-1)!. Thus the maximum size of t he set of paths is (m-1)!.

Activity Iariable xij : Let be an activity variable which links a former task
lJ

to a latter task within a path. An activity variable can be in either one of two conditi

active or inactive. If the activity variable is active, a linkage between two tasks

occurs, that is a second task is presented to the student after he has completed a

first task; if the activity variable is inactive, a linkage does not occur, that is a

second task will not be presented to the student. In the mathematical model, 1 is

assigned to the activity variable if the activity variable is active, otherwise 0.

The existence of an activity variable only guarantees the possibility of a linkage

between two tasks, but a linkage may or may not occur. If an activity variable

does not exist a linkage between a former and a latter task cannot occur. In the

Stage Increment Model activity variables exist only within stages, that is, only

states may or may not be linked. The of stages is predetermined.

Cost Coefficients
ij qj

and : A cost coefficient cji may be associated with each

11
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activity variable that t is, with each linkage. The cost coefticient indicates the

cost of taking a second task after a student has failed a first task. The

cost coefficient c
.1
. can be expressed as cost of teaching, cost of equipment, cost

1

of computer time, etc., or any combination of these. A second cost coefficient

can be conceived. Let pij be the probability of passing the task which is being
.1

lined by the activity variable x. Let . be the probability of failing the taskt
being linked by xij . Then ti = 1 by definition. And pij , the probability

of passing, may be considered as another cost coefficient if a minus sign is attached
1

to it, i. e., (-p ). The cost coefficients cij 's and pij 's are the optimization

criteria.

Weighting Coefficients w and we : The mathematical model may be applied to

a situation in which certain costs or profit coefficients, rather than others, need to

be emphasized. For example, some handicapped children are taught reading and

writing at great expense. The emphasis here is on achieving the task rather than

on the expense associated with the task. For the purpose of weighting profit or

cost coefficients, a set of weighting coefficients are introduced. Let w be the

weighting coefficient associated with the profit coefficients pij, and let we be the

weighting coefficient associated with the cost coefficients c.ii .

Having discussed, above, some specific features of the Stage Increment

Model and having described the initializing and monitoring of the teaching-learning

process, the mathematical model building can now proceed. The problem which

the Stage Increment Model has to solve, i.e., to initialize and monitor th, teaching-

12
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learning process of a student until he has learned a set of tasks under optimal condi-

tions, is reformulated as follows: Find an optimal path 1* in I, the set of paths,

The optimal path I* is a path which yields an optimal value from the objective

function. The search for an optimal path begins when R. t
k

. If tj Q..,
I.1 J ij

then no search for I* occurs because the student fulfilled the achievement criteria.

The search for an optimal path can occur by either of two methods:

Optimal Item Method

The optimal item method uses as an optimization criter'.on the highest proba-

bility to pass a state immediately after a student has failed a state. When a student

has failed state i', Rijn Q., the optimization rule selects an optima? alterna-

tive from the same stage j. The student, then, responds to that optimal alternative.

U the response fulfills the achievement criteria in stage j, then the student goes to

the next stage, otherwise another alternative will be selected from the same stage,

etc.

Let a denote the optimal state selected by the optimization rule after the

failed state Then the Optimal Item Method proceeds as follows:
i'To select xaj

such that Pa) = Max Ip1,/,

for j is given and 1 Estates the student failed}

13
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Optimal Path Method

Let I* be an optimal path in the set of paths I, i. e. , I* = )*3 (2)

Then our problem is to find an optimal path I* among all possible permutations of

alternative i in a given stage j initialized by the failed state i'.

The search for an optimal path begins at the end of a failed state i'. The

search may occur in two ways, either after a failed initial task or it may occur

after each failed alternative task. If optimization occurs after a failed initial task,

it occurs only once in a stage, this way may be preferred since it saves computation

time. The optimal sequence obtained through the optimization rule at the end of a

failed initial task may or may not differ significantly from the sequences obtained

through the optimization rule at the end of the failed states or the sequences may

or may not differ significantly in their effects to pass the achievement criteria Q.

The value of is 1 if the search for an optimal path occurs at the end of

the failed first state, i. e. the initial task. The value of is 2 if the search occurs

at the end of the failed second state, i.e., the first alternative in the array K and,

in general, the value of i' is fr if the search occurs at the end of the r-th state, i.e.,

the (r-1)th alternative in K.

The maximum number of sequencing of alternatives by the optimization

rule, initialized by any failed state i', is (m-r)!, where m is the number of states

in stage j and r is the number of states that the learner has failed in stage j.

The objective criterion of the search for an optimal path is to minimize

the total cost associated with the active activity variables. That is, to find I*
Lt

such that the total cost associated with activities so in I, i.e., cost. , is being

14
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minimized for all j:

Min Z = ( cost. , x ) (3)

By applying Theorem (1), formula (3) can be decomposed locally such

that

Z = ( Min cost
i'

. x. ) (4)
it

Zi it ii tj
i'

The cost coefficients, costii , may be determined by the joint probabilities

of passing a current state and failing preceding states.

Let pri (u, V) be the probability to pass the i-th state in stage j by student

V at the u-th cycle through the optimization loop initialized by the failed state i'.

For example, p;4.3 (1, V) is the probability to pass state 2 in stage 3 by student V

initialized by state 4 at the 1st cycle. Let q V) be the probability to fail the

i-th state in stage j by student V at the u-th Cycle through the optimization loop

initialized by the failed state 0.

After a student has failed a state, the probability that he failed that state

is 1, by definition, for u = 0. Hence qij(u, V) = 1, if u = 0 by definition. Figure

3 shows the joint probability to pass stage j at cycle u = 1, 2 ..... m.

15
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Joint Probability to 1% ss at the u-th Cycle

prj (1, v)

p!' (2, V) qii (I, V)
iJ ij

(3, V) . q (11, V) . qi' (2, V)
ij ij lj

u -1
p1' (u, V) :Tr (k, V)
ij k= 1-1j

m -2
m - 1 p.. (m- 1; V) .

1
g (k, V)

k=

m* qij (k, V)

* u = m Implies that the student has failed all states

Fig. 3 Joint Probability to Pass Stage j at the u-th Optimization Cycle

Originatad by the Failed State i'.
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i 'Let pij (m, V) be 1 by definition, Having defined q (0, V) = 1 and
1

pij (my V) = 1, then the cost coefficient (cost ii(u)) at the u.th cycle is given in

general as follows:

i' i1 u.-i ii
costij (u, V) = - pij (u, V) . 1 1 q.. (k, V) for u = ), 2 ..... M (5)

bto 13

Since (5) denotes the joint probability to pass state i in stage j at the u-th

cycle, the sum of the joint probabilities, costij (u, V) over u is 1.

(el

P.. (u,V) it (K,V) 1
r- ki kto (6)

Another type of cost coefficient, i. e. , c.. (u, V), which may indicate expense

of teaching, equipment, computer time, etc., can be combined with formula (5).
1 itLet cij (u, V) be a cost coefficient other than pj (u, V) or qii (u, V), associ-

ated with the failed state the cycle u, and student V. Then the cost (u, V)

may be:

cosrL. (LI,Nr) (ky) Li

The

L4-t

(7)

The cost coefficients may have weighting coefficients associated with

them. Let the weighting coefficients be wp and wc , then formula (7) reads:

Cost.Lu,v) ytjtiLIA V) kii"( .0(10+ (.4)( Ci: (Uf)
cl gro.N

(8)
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Now the total cost associated with active activity variables may be mini-
mized locally for each stage j, where j = 1, 2 n.

The objective criterion is as follows:

(COp Pt (u.An (U A)) -f ,(2

o ki (9)

P41(1% Mel Z.
),) t 0 ((Lb

A constraint is put on the objective criterion (9) if the chance to pass a
state earlier, although the cost is higher, is preferred to the chance of passing a

state laterolthough the cost is less. This constraint may be expressed as:

....(10)

When (2), (9), and (10) are combined, the Stage Increment Model of the

teaching-learning process may be optimized by the following mathematical program-
ming system:

F.,,t1 c. ) 4..) 5 uch Mati!

3 E (-Lop p. (u.v) t.t), 0.1,v)).x14i ninitze 2. -
1,j 9 K:0 Li

06ubieer4')(u-11-kr) (UIV) Y. for Or 4 0)tj

.fir al) L L and.1and X-.

The solution of the mathematical programming system yields two byproducts:
(1) the updating of cost coefficients, cost (u,V)is, e. , updating of pij Cu, V),ij

is is
ij (u, V), and cis

ij (u, V); and (2) the 'shadow price'.

18
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1
Updating of optimization criteria is done by modifying pij(u, V),

q (u, V), and c ii(u, V) when the student fails a state which the computer onceij

assumed to be in an optimal path. FOrthermore, the solution of the 'dual' form

g ives a set of shadow prices associated with each cost
i

. (u, V). Each shadow price

indicates the amount of improvement which can be obtained through a unit increase

of each cost (u, V). That is, it indicates the gain in pay-off value by improving

the quality of the tasks Kid 'a.

The Stage Increment Model proposed in this paper makes scientific

optimization of the teaching-learning process possible. For each individual

student an optimal path is calculated by the computer according to the criteria

set by psychologists and teachers. Thus, the mathematical programming system

assists in making choices among possible alternatives when a curriculum must

be tailored to the individual needs of the students. The ultimate effects of the

Stage Increment Model, however, depend upon sound psychological support.
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