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OPTIMIZING THE TEACHING-LEARNING PROCESS THROUGH A
LINEAR PROGRAMMING MODEL - STAGE INCREMENT MODEL

This paper examines the feasibility of operations research methods to
help the educator in educational decision making. Specifically, a linear program-
ming model is developed to c;ptimize the teraching-learning process.

The technical means to achieve a wide range of educational objectives
with various degrees of efficiency and effectiveness are at hand. But often the
educator faces a situation in which there are too many alternatives to be pursued,
too many combinations from which to select, too many factors that can confuse
or confound, or too many things that can get out of control because of the complex-
ity of the educational process,

The question today is not so much '"'Should eve'rybody be educated? " but
rather, "How should everybody be educated? ' or "What is the appropriate choice
among alternratives? " and "How can the educational programs be balanced?" The
problems of relevancy to educational objectives, the development of an optimal
solution, the choice among clear alternatives, the balance and integration of plans
and subsystems -- all may be solved by operations research methods.

Operations research is essentially a methodology which has been developed
for the allocation of scarce resources. The essenc.e of the operations research
approach is model building. Thus it is the counterpart to laboratory experimenta-
tion or hyp othesis. testing., In operations research, a model is almost always a
mathematical, and necessarily an approximate representation of reality. It musz
be formulated in such a way that it can solve the decision-making problem. The
emphasis {8 on optimization, optimization to one or more specified criterin.
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Operations research has been successfully applied to management
problems in business and industry. Few attempts were made to apply the methods
of operations research to the management problems in education such as budget
allqcation. bus routing, scheduling of time tables, and school district relocations.
{(Lareme, 1969) Operations'research.is an efficient method to find optimal solutions
for these problems

Operations researcn can also be used to optimize the teaching-learning
process. The teaching-learning proceés is a dynamic process. Because of
feedback characteristics and the time variant it‘ seems that dynamic programming
models or control theory r.nodels can be used for its optimization. But dyr.mamic
programming or control tht;ory models require complex calculations for their
solutions and the time required for the computational procedures, even with high
speed computers, i8 relatively long. However, the efficient maﬁagement of the
teaching-learning process depends upon immediate feedback to the student's res-
ponses. In order to satisfy this need for immediate feedback a mathematical model
must be chosen which allows the computer to respond in seconds ur less, In addition,
control theory models require exact functional relationships between the dependent
and the independent variables. Furthermore, these functional relationships should
be differentiable, that is, ‘a sccond degree derivative must exist within the range
of the independent variable set in order to find an optimal solution. Exact functional
relation.ships. however, do seldom ;x’.st among variables which operate in a learning
situation. Therefore, instead of an e‘xact relatlon_ship, a feasibility region is
defined irr which the independent variable set operates. Precision of the region

depends upon how well the mathematlcal properties of the variables can be described.
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The feasibility region is found by solving a set of linear inegualities. Each in-
equality specifies a subrelationship among the independent variables whose mathe-
matical properties are not adequately specified. An optimal solution can be found
by con';paring the feasibility region with the dependent variable which is obtained
from the value of thg ;?iteria function.

A researcher may find a linear programraing model to be the rnost efficient
and powerful model for the optimization of the teaching-learning process. Its
mathematical structure is simple and its algorithm is especially suited for the
digital computer; in addition, it provides byproducts through the solution of the
‘dual' form, i.e., analysis of shadow price. {Dantzig, 1963, 134-140) The assump-
tion underlying the model is linearity. The question arises whether we can convert
the seemingly complicated non-linear teaching-learning process into a neat linear
form, If we can do this, then computer managem.ent of the teaching-learning
process, and efficient individualized instruction, become feasible.

A Linear Programming model would have to solve the following problem:
To initialize and monitor the teaching-learning process of a student until he has
learned a set of tasks under optimal conditions. Let us define K as the set of tasks
which the linear programming model has to initialize and monitor. The task set
K can te represented as a two dimensional array with the dimension m x n, where

m- denotes the rows or states and n denotes the columns or stages. (See Fig.1).
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Each column of K indicates a stage of the teaching-learning
procesé. Stages are in a sequential order proceeding from source to destination.
The flow must go throuéh each stage. Each row of K indicates a state. A state
is an alternative point in a stage which a flow may or may not choose. The task
set K has n stages and each stage has m states.

Any one task of the task set K, t-hat is, any one element of the array it
can be expressed as Kij where i and j are indices of the array, i.= 1,2,...,m,
indicating the number of rows and j = 1,2,..,,n, indicating the number of columns..
The first element of each column, i.e., Kij , 18 the initial task and the other elements,
i.e., sz ’ K3j s ij , are alternatives associated with the initial task. Initial
tasks may consist of major concept{s), problem(s), or, generally speaking, of
the major objective(s) to be taught at each stage, i.e., the stage objective. The
alternative tasks may elaborate upon or explain more fully the concept(s) or
problem\|s) of the initial task, or the alternative tasks may be of a reinedial or a
practice type, or they may add new knowledge to the initial tasks.

Because the stages ofA t.hle- teaching-learning process are sequenced and
ordered, K.j's are stored and presented according to the order of j. The states
in a given stage j are stored according to the order of i. But the states are
not presented according to the order of i but according to the individual needs of
the student. That is, K35 may be presented earlier than sz if a sequence of

K3 , sz v+++y proves to be optimal to a student. A task sequence provesto be

J
optimal if it assures a student the highest probability to achieve the stage objective

in the least amount of time from the first stage to the last stage, i.e., globally.
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A student’'s flow through the teaching-learning process can be conceived
as follows (see Fig. 2):

Liet )'s denote successive stages of the ta.sk set K, j=1, 2,..., n. Let
.i's denote the states, that is.‘ the initial task and alternatives at each stage j,where
i=1, 2, .., m, Then K“ s ine., i=1and j =1, is the task which initializes the
first stage of the teaching-learning process. In a given stage j, a student is present
ed with the task KU » he then gives a response to Kijwhi_ch is le s Rij is evaluated
by a contingency rule according to achievement criteria Qi' which are associated |

)
with the task Kij' If the response fulfills the achievement criteria, i.e. Ri' \.Qi' ’

J )
the student goes to the next stage, i.e., J$+ 1. If a etudént‘s response does not '
fulfill the achievement criteria, i.e., Rij<Q\j , the student's overall task perform-
ance is evaluatéd according to termination criteria, T, which determine whether
a student should drop or continue the task set K. If the s.tudent's overall performanc
is satisfactory, he continues with the task set K.. An optimization rule selects a
state or sequence of states which a student will be in. Optimization occurs within
a stage among the alte'rnatives of a stage. For example, suppose a student’s res-
ponse to an initial tesk needs to be strengthened. Then alternatives are selected
.in.a way which proves c;pti;nal for that student; only those items are optima? which
assure the highest probability to pass the achlevement criteria Qlj in the least

_amount of time.

Optimization can occur by elther of two methods;

1. Ortimal Item Method. Select that alternative which has the highest proba-
bility to pass the achievement criteria qj for student V., Repeat until atudent V
fulfills the achievement criteria qjor until no more aiternatives are available,

2, Optimal Path Method. A path is selected which conaists of an optimal

Q quence of alternatives at singe } for student V. This path is put into the computer
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memory. Then the first alternative of that path is presented to student V. Student
V responds to it, Then_ the next alternative of that path is presented to student V,
_etc., until student V. fulfills the criteria Qij or until no more alternatives are
available.

In the flow through the teaching-learning process there are two loops, the
Stage Increment Loop and the Optimization Loop. The Stage Increment Loop dirccts
the student to successive pre-sequenced stages of the learning task after the achieve-
ment criteria at each stage are fulfilled. The Optimization Loop selects fhe tasks,
within a stage and assures the highest probability of passing the achievement
criteria in the shortest amount of time for a particular student,
| The teaching-learning process can be terminated in either of three waya:
(1) When a stude;'lt has reached the last stage and his response satisfies Qij of that
stage, then the teaching-learning process is terminated successfully. (2) When a
student has reached the last stage, yet his response does not satisfy Q.lj for that
stage and no more alternatives are available, then the teaching-learning process is
terminated unsuccessfully. (3) When a student's overall task performance falls
below the termination criterla, T,l then a student's teaching-learning process is
terminated uns‘uccesafully.

Optimization of the task set K occurs from j = 1 to j = n, Optimization
occurs at each stage. Since optimization occurs only once at each stage and since
each optimlization occurs independently of another optimization, the global optimal

\

solution can be obtained through local optimal solutions.




10

Theorem: The sum of local optimal solutions is equivalent to the global
optimal solution

n
T(Min Z) 4 Min (:Vj 7;)

j=llocal ‘global j=1

Procf: Because each minimum Zjia a local optimum by definition, the sum of
ZJ. for all j should not be greater than the giobal minimum, hence the prcof is
immediate.

Let Zjbe the dependent variable of the function which we want. to optimize,
e. g., the sum of the vost associated with the alternative tasks at stage j, for
j=1,2,...n. Optimization, generally, occurs either through maximization or
minimization. Here, optimization ozcurs through minimizing the sum of the cost
associated with the alternatives. Since optimization occurs through minimization,

Zj is the minimand and Min is an operator of the bptimization.

Then( Min Zj) denotes minimum values of Z locally for j =1,2,...n. And
locatl

n

2 (Min Z;} is the sum of Z, values obtained through local optimal solutions
31 local ) .

n
for j=1,2,...n, the surn of Zj for all j, l.e., t Zj » I8 the minimand for the
Jnl . .

0
global optimization. Then (}éﬁ%al ' (Z_’\ Zj)) denotes the minimum value of
)=1

2% %

n
j=1

The following concepts are introduced and defined:

Falled State i': Let i' indicate a failed state, then Ki‘j indicates a task a student

" has feiind in stage j. Let the superscript | indicate ' contingent upon a failed state !

ERIC - 10
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then K:; for all i 4 ii‘ latate that the student has failed} stands for any alter-
lnative task as sequenced by the optix:nization rule contingent upon a failed state i'.
That is, whenever a student has failedlKi,j he will be presented with an optimal
sequence of Ki; where if(l' » within j. ‘
Set of Paths ] : LetiIbe a setof p'aths, that is, the set of all possible sequences |
‘of alternative tasks in stage j r esulting from state i'. If i'=zl, then t he student
failed the first s tate w hich is the initial task. Since there are {m-1) alternative
tasks in a stage, the maximum numb‘er of all possible sequences of alternative
tasks is {(m-1)!. Thus the maximum size of the set of paths is {m-1)!.

i

i .
Activity Jariable Xij : Let :q;j be an activity variable which links a former task

to a latter task within a path. An activity variable can be ip either one of two conditi
active or inactive. If the activity variable is active, a lir;kage between two tasks
occurs, that is a second task is presented to the student after he has completed «
first task; if the activity variable is inactive, a.llnkage does not occur, that is a
secc'md task will not 'be‘presented to the student. In the mathema.tical model, 1 is
assigned to the activity vari;ble if the actlvity variable is active, otherwise O.
The existence of an activity variable only guarantees the possibility of a linkage
between two tasks, but a linkage may or may not occur. If an actlvity variable
does not exist a linkage between a former and a latter task cannot occur. In the
Stage Increment Model activity variables exist only within stages, that is, only
states may or may not be linked. The’sequence of stages is predetermined.

Cost Coefficlents c:; and q;' ¢ A cost coefficlent c:; may be assoclated with each

A}
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il
activity variable xlj. that is, with each linkage, The cost codficient indicates the

cost of taking a second task after a student has failed a first task, The . .t

il
cost coefficient cij can be expressed as cost of teaching, cost of equipment, cost

of computer time, etc., or any combination of these. A second cost coefficient
) '
can be conceived. Let p;j be the probability of passing the task which is being

i! i
lin:éd by the activity variable x;j » Let q;j be the probability of failing the task
b T i1 it 1
being linked by x:j . Then p;j + q;j = 1 by definition. And pij , the probability
of passing, may be considered as another cost coefficient if a minus sign is attached

. ‘) ‘o
to it, i.e., (-;:u:'i ). The cost coefficients c;j 's and p:j 's are the optimization

criteria.

Weighting Coefficients wp and w_ : The mathematical model may be applied to

a situation in which certain costs or profit coefficients, rather than others, need to
be emphasized. For; example, some handicapped children are taught reading and
writing at great expense. The emphasis here is on achieving the task rather than
on the expense associated with the task. For the purpose of weighting profit or
cost coefficients, a set of weighting coefficients are introduced, Let wpbe the
weighting coefficient associated with the profit coefficients ;{; , and let W, be the
weighting coefficlent associated with the cost coefficients ci.l'j .

Having discussed, above, some specific features of the Stage Increment
Model and having described the initializing and monitoring of the teaching-learning
process, the mathematical model building can now proceed. The problem which

the Stzge Increment Model has to solve, i.e,, to initialize and monitor tha teaching-

LY
>
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learning process of a student until he has learned a set of tasks under optimal condi-

tions, is reformulated as follows: Find an optimal path I¥* in I, the set of paths,

The optimal path I* is a path which yields an optimal value from the objective

function. The search for an optimal path begins when ij i qj I Rijé Qij'

then no search for I* occurs because the student fulfilled the achievement criteria,
The search for an optimal path can occur by either of two methods:

Optimal Item Method

The optimal item method uses as an optimization criterion the highest proba-
bility to pass a state immediately after a student has failed a state. When a student
has failed state i', i. ., Rij‘ qj » the optimization rule selects an optima!l alterna-

tive from the same stage j. The student, then, responds to that optimal alternative,

If the response fulfills the achievement criteria iﬁ stage j, .then the student goes to
the next stage, otherwise another alternative will be seiected from the same stage,
etc, ' ~

Let a deno.te the optimal state selected by the optimlzatlon rule after the

failed state i'. Then the Optimal Item Method proceeds as follows:
il

To select X
A aj
i it
such that pa, = Max {PUB’

for j 1s given and | § {states the student falled},

13
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Optimal Path Method

Let I* be an optimal path in the set of paths I, i,e., I*¥ = E\x.ij')*} coreeef2)
Then our problem is to fird an optimal path I*¥ among all possible permutations of
alternative i in a given stage j initialized by the failed state i’,

The search for an optimal path begins at the end of a failed state i'. The
search may occur in two ways, either after a failed initial task or it may occur
after each failed alternative task., If optimization occurs after a failed initial task,
it occurs only once in a stage, this way may be preferred since it saves computati;m
time. The optimal sequence obtained through the optimization rule at the' end of a
failed initial task may or may not differ significantly from the sequences obtained
through the optimization rule at the end of the failed states or the sequences may
or may not differ significantly in their effects to pass the achievement criteria Qij'

The value of i' s 1 if the search for an optimal path occurs at the end of
the falled first state, i.e, the initial task. The value of i' is 2 if the search occurs
at the end of the failed second state, i.e., thé first alternative in the array K and,
in general, the value of i’ is ir if the search occurs at thg end of the r-th state, i.e.,
the (r-1)th alternative in K.

The maximum number of sequencing of alternatives by the optimization
rule, initialized by any falled state i', i8 {m-r)!, where m is the number of states
in stage j and r is the number of states that the learner has failed in.stage .

The objective criterlion of the search for'an optirnal path is to minimize
the total cost associated with the activje actlvity variables. Thft Is, to find I*

. , .
such that the total cost associated with actlvities xu In, lL.e,, costll} y is being

o 1
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minimized for all j:
Min  Z b, x ‘ (3)
‘n - (chosij. xij)ll.l......l.ll.......lll..lll.lilll.l
By applying Theorem (1), formula (3) can be decomposed locally such
that:

v g

, i
Z = ( MJln Zj =§C08tij . ,‘lj ) al.oalollll-oolallolooooolo(4)

it
il
The cost coefficients, costij » may be determined by the joint probabilities

of passing a current staie and failing preceding states.

Let p{‘; {u, V) be the pr‘obab.ility to pass the i-th state in stage j by student ,
V at the u-th cycle through the optimization loop initlalized by the failed state i',
For example, p;:; {1,V) is the probability to pass state 2 in stage 3 by student V
initialized by state 4 at the lst cycle. Let q;; (u, V) be the probability to fail the
i-th state in ztage j by student V at the u-th Cycle through the optimization loop
initislized by the éailed state.i'. |

After a student has falled a state, the probability that he failed that state
is 1, by definition, for u = 0, Hence q:;(u. V)= 1 if u = 0 by definition., Figure

3 shows the joint probability to pass stage j at cycleu =1,2,...,m,
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: u - Joint Probability to Pass at the u-th Cycle
1 Pl s V)
2 p' (2, V). ¢i' (1, V)
ij ij
3 v gt vy 6l (2, V)
ij ij ij i
' u-1
u Pt (W, V) T 4 (k, V)
- Py k=lc{j ’
. L m-zil
1
-1 . (m-1,V), . (k, V
m PN

* u = m implies that the student has failed all states

Fig. 3 Joint Probability to Pass Stage j at the u-th Optimlzation Cycle

Originated by the Falled State 1'.
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1 i

]
Let Pyj (m, V) be 1 by definition, Having defined q ij (0, V) =1 and

i’ it
Pij (m, V) = 1, then the cost coefficient (cost ij(u)) at the urth cycle is given in

general as follows:

i! [}

i u- !
cost;: (u, V) = - p:: (u, V) .ﬁqf- (k, V} foru=12,2,...,M teivivversnaaas(5)
Yy 1) k=0 Y
Since (5) denotes the joint probability to pass state i in stage j at the u>th
]

i
cycle, the sum of the joint probabilities, ﬂcostn {u, V) over:  uisl,

el uy) - F gt (W)=l
uz1 Y K=o Y

.'..""lll"'l'll"l""'ll"'(6)
il

Another type of cost coefficient, i,e., cij (u, V), which may indicate expense

of teaching, equipment, computer time, etc., can be combined with formula (5).
iU i! it
Let Cij {u, V) be a cost coefficient other than gj {u, V) or qij {u, V), associ-
3

ated with the failed state i', the cycle u, and student V. Then the cos@ij {u, V)

may be:

ot " u-t | 'L' (' )
cosry (V) = -p (uV) - T % 0Vt cylaV)

The cost coefficients may have weighting coefficients associated with

them, Let the weighting coefficients be wp and\wc » then forimula {7) reads:

A U ug U e
(ostzj (U.\I) = -Wp PtJ (u'\l> : 1’:‘3”(“'\[) + W C'Lj (Un\f) o

s . Al

A
hY
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Now7 the total cost associated with active activity variables may be mini-
mized locally for each stage j, where j=1,2,.,,,n.

The objective criterion is as follows:

ol wt { Y el
Mrurine Z = 5_1(~wp Py (u V) (F g5 (un)) v o) %

‘)‘!ocaJ ceeena(9)

A constraint is put on the objective criterion (9) i f the chance to pass a
state earlier, although the cost is higher, is preferred to the chance of passing a

state later,dthough the cost is less. This constraint may be expressed as;

: i‘ U L.‘
P AV - P (V)X 2o for u £ 0 c0e(10)
{

When (2), (9), and (10) are combined, the Stage Increment Model of the
teaching-learning process may be optimized by the following mathematical programs-

ming system:
*
Frda T¥ = §(x ) } Such That

Hinmize 2 Z (_b)? Pg(u V) (ﬂ.‘% (\(V))-f'w C (U V)) X

Je local
sub JeeT +o p (u-n V) x P RV Y =2 0 for W70,

and xg_.o -Fofau(-,(-|wd-l

-

The solution of the mathematical programming system yields two byproducts:
(1) the updating of cost coefficients, costj (u, V)'s, L. e, ' updnting of p” (u v),

j(u. V¥), and cj (v, V); and (2) the 'shadow price’.

18
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Updating of optimization criteria is done by modifying p:; {u, V),
qi; (u, V), and ¢ ;;(u, V) when the student fails a state which the computer once
assumed to be in an optimal path, Forthermore, the solution of the 'dual' form
g ives a set of shadow prices associated with each costii'j {u, V). Each shadow price
indicates the amount of improvement which can be obtained through a unit increase

!
of each cost;j {u, V). That is, it indicates the gain in pay-off value by improving

the quality of the tasks Kij 's,

The Stage Increment Model proposed in this paper makes scientific
optimization of the teaching-learning process possible. For each individual
student an optimal path is calculated by the computer according to the critzria
set by psychologists and teachers. Thus, the mathematical programming system
assists in making choices among possible alternafives when a curriculum must
be tailored to the individual needs of the students, The ultimate effects of the

Stage Increment Model, however, depend upon sound psychological support.
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