
PD 046 222

AUTTIOP
TITLE

INSTITUTTO1

SPONS Ar3ENCY

PPPOPT NO
PUB DATF
NOTP

PDES PPICS
nFSORTD7Ols

IDENTIFIrRS

79STPACT

DOCUMENT RFSUMF

FM 00P 640

Van Cameen, Joseph A.
TowarlF the Automatic Oeneratior, of Proarammed
Eoreiln-Tanguaoe Instructional Materials.
Stanford univ., Calif. Inst. for Mathematical
Studies in Social Science.
Office of naval Pesearch, Vashington, P.C.
Psychological Sciences Div.
7-e-1(1
11 Ian 71
66p.: nsychology Series

FPS'S ?rice MF-$0.e Y:' -T3.20

*Computer Assisted Irstruction, Computer Pas''
laboratories, *Languaoe Instructior, tanguale
Patterns, Program DeFcrintions, Prooramel
Instruction, rrouramina, *Programing Languages,
Semantics, Serence Structure, svntav, Vocabulary
*Elementary Verbal Communicator, 'VC

The purpose of this ieport is to describe a se-t cf
projrams which either D.:rform certain tasks useful in the generation
of prooramel foreign-lanouloe instructional material or facilitate
the writing of such task - oriented proorams by other researchers. The
programs iescribel arr these: (1) a 11!?-10 assembly language proorm
for the selection from a coded vocabulary list of individual words to
he iFel in venerating a number of concrete drill sentences, (2) a

coding system lesionel to allow the concise tatement of a large ref
of semantic-syntactic patterns, (?) a Droll-am which utilizes material
encoded accoraino to the coding system, described above, (4) a pronra
for the automatic listing of individually coclei vocabulary ite,,s
inlet their semantic cla!:.re (r) a new string-manipulation lanouaoe
for the PDP -1(' cemouter, and (r) an rlementary Verbal Communicator
program. (Author/M71

0

TOWARDS THE AUTOMATIC GENERATION OF PROGRAMMED
FOREIGN-LANGUAGE INSTRUCTIONAL MATER I ALS

BY

JOSEPH A. VAN CAMPEN
U 5 DEPARTME XI' OF HEALTH EDUCATION

& WELFARE
Of FLCE OF EOUCATLON

THIS DOCUMENT HAS FM REPRODUCED
EXACTLY AS RFCENED FROM THE °FILSON OR
OFGAFOZAT0ON ORIGINATNr, 17 POINTS OF
VIEW OR OFXN,CNS STATED DO NOT %FEES
SARILY REPRESENT A F.E1AL OLEIC(OF EDU
CATION POS1,UN OR YULIE I

TECHNICAL REPORT NO. 163

JANUARY 11, 1971

PSYCHOLOGY SERIES

Reproduction in whole or in part is permitted for any purpose
of the United States Government. Distribution of this document
is unlimited.

This research was sponsored by the Personnel and Training
Research Programs, Psychological Sciences Division, Office of
Naval Research, under Contract No. N00014-67-A-0112-0042,
Contract Authority Identification Number, NR No. 154-318.

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

STANFORD UNIVERSITY

STANFORD, CALIFORNIA

TED4NICALc(PORTS

PSYCHOLOGY SERIES

INSTITUTE FOR MAThEISIATICAL S1&EIES IN THE SOCIAL SCIENCES

(Place .1 psóIlcati sIn to pwsoUwsas5 If phiJah.d title Ii diiFw,nt fran, till, of Technical R,pnri,
this Is sip, shown In pr.nth.us,)

B'w vpwti ow. I - 44, sow Technlcsl Repo,t ow. 125.)

50 N, C. P.thinsan sndR. C. Cell... Miso'aticsi Iswrin tI*. 3rotu7 2,1963. tIn 8. B. Wo,raofEd.), Sds tic ofL,
Basic Bock., Inc., 1965. Pp. 254-275)

SI P. Sopp.ps, E. CoVi.,i, &nd P. W.i,, AppIic.tlon of ,nat)e,natici l.wnlng t1ww and fingLilItic anityits to vOwel phoeanr* rnatclIqj Is
Rsosi,owwdi. 0.cen8av 28,962,

52 P. C. Atkinso,i. P. CaUse, B. Sepsow,, W. Jffrpy and P. Shosmakow. A tail of Ifosi ,od.Is 1w otinulul con.poandle9 with chit fr,n,
Jwvow 29, 1963. (.I. . 1964, 67, 52-58)

53 E.Othw. G,rwr,I l,lkov niedlis 1w Iewnirl with ieLa-6iat fwp.itlinq. AprIl 8, 1963.
54 J. 1. I'.yvsaodR. C. Atkinson. Choice bofosyiw wndr,wwdshijctjn. May 24,1963. (Jou'nol owU. l9tA, 1711-203)
55 P. C, Rst,Tnpoo, A ,.t-t)*o',llcaI ipproech to snçtnical insiolngfodnus of r.ssonr,*nl staianwnts. JUnO tO, 1963.
56 F. Oath.o,. P. W.lq and P. Pofweq. Tb. role of franicOption Irs Ill i.wrin of ths wtho9&pIric r. wrtiilonj of Russian sounos. Jun. 7, 1953.
57 P. Siippei. Nakiens of opelrnlcation In Iconnins a list .f simpi. liar,.. July 22, 963. tIn Mayrrard W. 5h,iiy, fl and Glenn 1. Bryan tEdol,

HonowJudnessandOptiwaiIty. N..Ywh: WII.y. 1964. Pp. II6-12'
58 8. C. Albinson md C. J. C,otlwes. Thowwtical sole, aii-j-ow* Iowrinp end IrW#ial Ipettlop. July 24, 1963.
59 P. C. Cell... Long-tar, b,hi,iw of liii andw thabilistrc rslrfwcarreM schedufe. Ocl.*er I, 1963.
60 N. C. Alkinon ind C. J. o(l*j. lest, of acquisItIon and retention, aols,s ton pair.d-aseocista lewnln,. Octnb.n 25, I963. (A oowp.nison

of psivpd iociste l.wninj modeli iiav'nj IIIfT,rrl ecquijltloir md pptarstlsi, arslsrurs, J. weth, NE., 1964, , 265-315)
61 W. J. McGill crud J. Gibbon. lbs poneral-ginona de6BvtIOur and noactlan tIuiuss. Noy4w 20,1963. U. oath. 1965, L 1-181

62 V. F. NepTow. Isoneonutal loanIng art rasfoss this. D.cen6er 9,1943. Ci, with, 944, ,, 336.351)
63 P. Suppes. The deyofopawnt of oatlwurmtk,J Concepta iurchIt84uu. Febnrwr 25,1944, lOs the b&uanion,l foendsirerro of ratlametical cor'cepto.

Monspapli of un Von Pesown hoQuVdfreeoloprowr, 1945, 30, 60-96)
64 P. Saps,. bib *witIca) concept fonpation In cJniI4'ers. April 10, 1964. (Au,w. Nyo6ofo9, 1966, 21, 13945fl1
65 8. C. CaUw, P. C. Atbiniour, sod T. Shollosu, Jr. Methoursilcal puodets Ion p4aJ learning. Augist 21,1964. (lit N. Wienpae,f J, P. Schods

Ills.), ns oftbs ! Auwierda,, Tb. N,tlowlwuds: Elceruieru PiMishlng Cs,, 1945.
Pp. 333-349)

1,6 I.. Keller, U. Cole, C. J. $,hq, ndW. K. Esiai. Psibedasisotots learuing with differential rewwd,. Arspist 20,1964. (Resad and
Infawerues v&O of blat oatcooei In paired Ussctat. loaning. M.o., 1965, 79,1-21)

67 V. F. Nanin. A abibIIlst1c ,ssd,t Ion lrow.respondlns. Cocents' 14,1944,
68 W. K. c.sW* and H. A. Tryla. Visual detection Is r,iMles to display sloe and r,drmdancy ad ositleel ,i.earr*s. Jpuasw 25,1965, Renlied

7-165, (Perception and Peychoghyslce, 1966, !. 9-tb)
69 P. Saps,, aodi Dent. Fodatiore o(,tloaliro-sup iheonylwco'ntiraseos.tinw procrn.s. Febrtpp'y 9,1945, C. !z.."b7.

4,202-225)
70 P.C. Atbiriow and N. A. KIscUa. A leanIng modal Ia Iarced. iced lessipamneolo, Fekurvay I0,1945, I. .1. mathoal.

I945,I8, 164-204)
71 C. J. O'm)an. Pseserutatlw, ondsii a liawi trowl vr4ditegonleI. It6IO, 194S,
7? P. Ssppp,, C. Cries, and U. Sn)d.g-Rey. Sonar ruodef, Va response Istancy Is sslsed-.ssxiaia, leaning. May 5,1965. U. ,ath.

1964,3,99-428)
73 MV. Lenl. Tb. gemoalizaties lirctioi Is lb. p*IIrl7 leasing ,npentsene. Jon. 1, 1965,
74 0. Ieo and T. S. Rodgers. Aseupleratlorn of piychmltrguistlo uaIta I. InItial rending. drIp 6,1965.
73 2. C. knoll. A.,ei.ta4 -icheiU far. csmti,osri ofrespersee. Judy 20,1965.
lb C. bow. wudW. K. Fete.. PoWanses.t-tesl Isquasoes Iepslr,d-onesclala I.auulrq. Apupsl 1,1965. 19(6,18,879-919)
77 S. L. s*as. Patwdi,onl aCiowleanIug.IthNb.oas ea6ey. SogoasdenI 1945. , 1944,19, 311.321)
7$ J. L. PhIllips end P.O. AthIrus. Tb. .lI,cts of display use ow .bat-tv. wiusy. A,puit 34, 1965.
79 N. C. Athhoeso and N. V. ShoRn'. Madseesticof aerIals I Par..ry arid leaving. Sspteebar 20,1945.
NO P. Seppee. Tb. papeholegloal Ipondatiori af withiwillcs. Octaka 23,194S. (i Ireernatlenoes de Nati Is hi Peche,cbe

$cIsntffi. Edlileer I, Corns PualIpual let. *ucbatbe Soserelflps. Pwlsu 1947. P5. 211-141)
24 p.1Teasp,*se.inInte4 taetrattlen Is the chidt piostidlUet, prckiew, pispacto. Oct0*e 29, I%5.
82 N. A. Klnthla, J. lownend, .1. V.11eV,.6., n4 P.C. Aibinsow. IsP*nnci of tyngistid vIsual twit ow udltwy ulpnal delicti..

Nese., 2 1965. (Pencepties and Psycb.pPsics, 1944.!, 67.?))
$3 P. S.,ps, V. Jerwis, end 4. Crows. ktthwi(id dislIs aid santa, puss tsr'puAao.hasel 511,190. Now,.tir 5,1945. lAsihpatt leeches,

ApI 1944, 303-309.
64 P. S.ppei end L. Hywin. Ce-sep loanIng with uueo-se.4a1 geeew*lcaI snionil. heanmer IS, 1942.
$3 P. I4ofhevd. ruVIst% on 17* Wuuionse tl'4-hqoat taoS. U. with. 194?. 3,377-4131.
84 P. Supp... Mceler*4 p.vw. ele,,Mwp.Ccheol wiDeastics -. the aecond pea. Nees$er 12,1945. ila Is 17* keof a, 1946,

294.30 7)
$7 P. Lawson. end F. RInferl. Leplo psi dtat.geat pies. Non,,* 29,1943.
$$ 1. Rifler, W.i. The-epen, J. N, t.wdy, erd P. C. Aiblreow, Tb. efficti of poInIaepa.4 .wNvvuI ow 8* dqolsllten of psWd-iiisctst.

ppappse,. D,oeadsulO,1943. l..j.,libé7,?l,l4$.l?7)
SN .1. I. YsIl,Jr, $en* eflecta ow wiereaInqere seeceis be howe. poaltP, hoavisug. D.o,ethp IS, 1945.
9$ P. $iupps SidS. Ciiii. 5150 SeIng t l PPIfrI.Is p..4fwi'Oi 4510 ow Oluiple addeles lIct.. dewy 14,1964. (led. V. kaurAti

as.,, Ie upiatIsJ 44.50).. *&CngIIe, B. C.0 ElM, 1967. Pp. 33-11.
II 9,315055, 684i. qllgF..4SngSu'd#aeIM WowS.. dewy 34,1964.
91 1. I.. sad P.C. MIru.. Malefi Va)Wthl 0* Iesdu pow.... F.hooay 11,1944. (. 1944,64,309.320)
93 8. C. tas. sd 0. ..e, C.e11sd Iai8*itlers ho IwNsd sedlep 310.1,1 pi'*d. cib 17,1964.

1944, . 3-fl)
94 P. Sogpse. RndsHMIs b0*sowe wd 0* creeP of Mi evIdence. 'ds 29I944. Ilod. 0MM. end P. 5.ppes (Cd,.),

Wuctine t. Awitvle* NaOs4Odhind P*lladmuig Ce., 1964. Pp. 4.43,
99 P,Spsse, Tb. owisoal. .,Ied Is 0170-school ,sitee51lri, ApI 12,1966. C Airle.siItI Ps*Ie.Velfeucelce.

TOe C.,dpsnea ffs,1 of dii Mv)eeIsd Seiricet, Psehorises, P. C, Char id Ce., 964. Pp. 49-74. -

I ta4lead ow I.sMo heck sear)

TOWARDS THE AUTOMATIC GENERATION OF PROGRAMMED

FOREIGN-LANGUAGE INSTRUCTIONAL MATERIALS

BY

JOSEPH A. VAN CAMPEN

TECHNICAL REPORT NO. 163

JANUARY 11, 1971

PSYCHOLOGY SERIES

Reproduction in whole or in part is permitted for any purpose
of the United States Government. Distribution of this document
is unlimited.

This research was sponsored by the Personnel and Training
Research Programs, Psychological Sciences Division, Office of
Naval Research, under Contract No. N00014-67-A-0112-0042,
Contract Authority Identification Number, NR No. 154-318.

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

STANFORD UNIVERSITY

STANFORD, CALIFORNIA

(

Table of Contents

Document Control Data R & D

Introduction

1. Program for Cycled Selection of Individual Vocabulary Items
Belonging to Certain Semantic Classes

2. Coding System for Concise Formulation of a Relatively
Large Number of Semantic-Syntactic Patterns

3. Program for the Generation of Concrete Semantic-Syntactic
Patterns from Master Patterns

Program for the Automatic Listing of Coded Vocabulary Items
as Members of Semantic Sets

1

2

3

9

24

28

5 The Elementary Verbal Communicator (EVC). A New String-

Manipulation Language for the PDP-10 Computer 30

6. Program for the Conversion of Assertions Concerning a
Target Language to a Coded Format

7. Conclusions

8. Distribution List

48

51

52

Security Classification

DOCUMENT CONTROL DATA . R & 0
(s.,....iry rrwrritmion of flflo, body of ebs fret, end InderIng Annolarion enw1 be An fired when Ilse overeF1 report Is elseitied)

1 ORIGINATING C TiVi TT (Corporate 'Who')

Stanford University
Institute for Mathematical Studies

in the Social Sciences

e. REPORT SECURITY CLASSIFICATION

Unlimited
2b, Gpoup

REPORT TITLE

Towards the Automatic Generation of Programmed Foreign-Language
Instructional Materials

1. OESCRIP TI VI NOTES (Type of report end Jhelum:ye delta)

Technical Report
S. AU THORIS1 (Flu, name, iniddlo folfol, lief nerroj

Joseph A. Van Campen

S REPORT DATE

January 11, 1971
Tr. TOTAL NO. Or PAGES

60
16. NO or REFS

0
4.. CON TRACT OR GRANT NO.

N00014..676.A.011200142
5, PROTECT NO.

NR 154-318
C.

d.

DC OIVGIsoTOR1E REPORT NUMBERISI

Technical Report No. 163

55. OrmER REPORT NOI SI (AN, other n.mbers 'halt may be wiped
this report)

IC. 011TRIEWTrON STATEMENT

Distribution of this document is unlimited.

11 SUPPLE/0EN! Ally NOTES oz SPONSORING m,LilAsiv C Tovi T r -.

IS. ABSTRACT

The report includes descriptions of the following: 1) A PDP-10 assembly
language program for the selection from a coded vocabulary list of individual
words to be used in generating a number of concrete drill sentences corresponding
to a single abstract sentence pattern, 2) a coding system designed to allow the
concise statement of a large set of semantic-syntactic patterns in which a given
vocabulary item can be employed, 3) a program which utilizes material encoded
according to the system described under 2) above to prodoce the total set of
individual phrase and sentence patterns available for the teaching of the given
vocabulary item, 4) a program for the automatic listing of individually coded
vocabulary items under the semantic classes to which they belong, 5) a new string-
manipulation language for the PDP-10 computer, designed to facilitate the creation
of programs dealing with language material without excessiNe utilization of machine
storage, and 6) an Elementary Verbal Communicator program for the conversion of a
limited set of English language statements concerning a base and/or target
language to a) an operation-code string which can be used to locate appropriate
frame- generation routines, and b) a set of instructional variables to be utilized
by such frame-generation routines.

DD (PAGE I)

(101 Set-ents Classification

Security Classification

KEY WORDS
LINK A

{1
LINK 8 LINK C

ROLE WT ROLE WT

computer-based instruction
computer-based generation of learning

materials
language instruction
programmed instruction
programming languages
sentence generation
string manipulation
utterance patterns

TOWARDS THE AUTOMATIC GENERATION OF PROGRAMMED FOREIGN-LANGUAGE

INSTRUCTIONAL MATERIALS*

Joseph A. Van Campen

Institute for Mathematical Studies

in the Social Sciences

Stanford University

Stanford, California 94305

Introduction.

An attempt to provide a thorough-going answer to the question of
the extent to which the utilization of a computational system can facilitate
the generation of programmed materials for the teaching of foreign languages
would involve a consideration of so many elusive variables as to
necessitate h prolonged research effort by a number of specialists in such
diverse areas as computer hardware, systems programming, compilers and
interpreters, peripheral devices, foreign language teaching, and programmed

instruction. The purpose of this report is a much more modest one - -to

describe a set of programs, written for and successfully implemented on the
PDP-10 computing system of the Institute for Mathematical Studies in the
Sorial Sciences at Stanford University, which either perform certain tasks
useful in the generation of programmed foreign-language instructional
material or facilitate the writing of such task-oriented programs by °the,-

researchers.

Since ro further Federal funds have been requested by the principal
investigator for research in this area, each program dealt with below will
be presentec insofar as possible, on its own terms, without overly great
emphasis on the advantages which might flow from its integration with
programs not as yet implemented. (The ties between two or more existing
programs are, of course, poin..ed out in the introduction to the sections
dealing with each of the individual programs.)

1. Program for the Cycled Selection of Individual Vocabulary Item::
Belongirg to Certain Semantic Classes.

1.0 PurposE and Justification.

It would appear that a certain economy in the generation of foreign-
language instructional material could be achieved by taking advantage of
the fact that in the case of vast numbers of concrete utterances one or
more of the vocabulary it-..ms which make up the utterance can be replaced

by any one of a (in the case of elementary language courses almost always
fairly limited) set of other vocabulary items without destroying the

This research was supported by ONR Contract Number NOC.014-67-A0112-0042
and Project Number ONR Code 458.

3

acceptability of the utterance. Thus, for instance, in the English
utterance the doctor is writinga book, the word doctor can be replaced
by any member of a set including such words as lawyer, man, teacher,
author, and girl. The word book could be replaced by any member of a set
which includes the words poem, story, novel, letter, and speech. It would
appear that if we labelled the first set 'non-Infant humans' and the
second 'written object' we could rewrite the utterance as the (non-infant
human) is writing a (written object), in which the set labels are set, off
from concrete words by parentheses. Assuming that the words listed above
exhaust the membership of the sets in question (a situation quite possible
in the early stages of a first-year language course), we see that the
rewritten utterance could itself be rewritten in twenty-five different
ways by replacing both of the set labels by different members of the sets
in question.

The above example is, of course, an extremely crude one. On the one
hand it takes no account of the additional acceptable utterances which
nigh' be produced by allowing some variation in the grammatical categories
expressed in the original utterance (e.g, the doctor has written a book,
the doctors are writing a book, etc.). On the other hand, it ignores
troublesome cases of the type the doctor is writing the prescription (in
which the set of items which can replaced doctor is very small) and such
complications as the difference in set, membership needed to account for
the doctor is reading (not writing) a newspaper.

However, there is as yet no reason to believe that, within the
framework of a given language course, the use of set labels would not
result in considerable economies in a large number of cases. The fact
that such economies might not stand in any direct relationship to those
attainable on the basis of a thorough analysis of the total semantic
structure of a given language need not concern us hare.

Given the desirability of the replacement of some or all of the
constituents of utterance types by set labels, there can be no doubt.
that it would be useful to develop a program capable of replacing any
given set label by an individual member of the set. in question. Furthermore,
it would also be desirable to have 1) some record of the rela'ive
frequency of usage of the various members of the set, and) a mean-,1 of

insuring that this frequency would remain relatively uniform for all
merders of *he Zet.

1.1 Dscumentation

1.11 Function of the Program

For the above mentioned ends the principal investigator wrote ohi
implemented a PDF-10 assembly language program which examines a string containing
one or more set. labels and replaces those labels it encounters with
words belonging to the sets in question. In addition, this program examines
the usage index accompanying c eh member of the given set and select-3 the
member to be used in a giver, 'ase from the subset with the lowest index.
Finally, the usage index of the member selected is increased by one, unless

this would result in an index greater than the upper limit (decimal 9).
In the latter case, the index of the member selected is set at one and
those of the other set members are reset to zero.

1.12 File Format.

1.121 Input Files.

The input for the program consists of 1) a disk file (channel 1)
containing one or more strings including set labels to be replaced by
set members, and 2) a disk file (channel 2) containing an alphabetized list
of set labels each accompanied by the members of the given set.

1.1211 String Format.

Each string on channel 1 must include 1) one or more set labels,
each of which must, be enclosed in parentheses, and 2) a slash, not
enclosed in parentheses, indicating the end of the given string. The
string may include other items not enclosed in parentheses, e.g.,
punctuation marks and concrete language material. The only restriction
on such items is that they not include any of the following: an opening
or closing parenthesis, a slash, a plus mark (see 1.12111), a comma
(see 2.2322), a divide sign (see 2.2412), or either of the symbols < and
> (see 1.1222). Except for the terminating slash, which is omitted from
output strings, material not enclosed in parentheses is simply transferred
from the input to the output file without affecting the flow of the program
in any other way.

1.12111 Format of Set Labels in Strings.

As was pointed out in the preceding paragraph, set labels within
input strirgs are regularly enclosed in parentheses. However, it may
often prove useful for other purposes to include with a given set label
additional information concerning the item in question, such as its
syntactic role in the given string or possible restrictions on the set
of grammatical categories (e.g. number, tense) it may exhibit. In order
to permit the convenient notation of such additional information it was
decided to utilize a plus sign placed immediatCly after the final
character of a given set label in place of the closing parenthesis. The
latter is used to terminate the information accompanying the label.
Thus, material accompanying a set label may include any characters other
than an opening or closing parenthesis, a slash or a plus sign.

1.12112 Examples of String Input.

1.121121 String Containing only Set Labels Unaccompanied by Additional
Information.

Gerson) (emotion verb) (person)/

1.121122 Same String as 1.'L1121 with Punctuation Mark (Period).

(person) (emotion verb) (person)./

5

1.121123 Same String as 1.21122 with Concrete Language P:ems.

(person) does rot (emotion verb) (person)"

1.121124 Same String as 1.21123 with Additional Syntactic Information.

(person + subject) does not (emotion verb) (person + direct object)"

1.12112 Same String as 1.21124 with Additional Information on Category
Restrictions.

(person + subject singular) does not (emotion verb)
(person + direct object plural)./

Note that only the items in 1.121121 are significant for the program
in question. The other examples merely illustrate the manner in which
additional material, presumably of use in connection with other programs,
can be included along with the significant items.

1.1212 Set-List. Format.

Each of the alphabetically ordered set labels on channel 2 is
immediately followed by the members of the set in question.

1.12121 Set-Label Format.

Each set label is enclosed in parentheses. Labels may include any
character except a parenthesis, slash, or plus mark. In contrast to
1.2111, no additional information of any kind is permitted within the
parentheses enclosing the label.

1.12122 Set-Member Format.

1.121221 Set-Member Delimiters.

Each member of a set is set off by 1) a preceding less-than-or-equal
sign (<), and 2) a following greater-than-or-equal sign (>).

Aside from the usage index discussed in 1.121222 below, the characters
occurring between these two delimiters are never examined by the program
and may include, in addition to the basic form of a given vocabulary item,
additional coded information onthe item in question, such 3'3 its inflectional

or syntactic peculiarities. While it is obvious that certain conventions
would have to be established in order to insure the proper interpretation
of such information by programs concerned with gcnera%1n,7; inflected forms
or establishing the appropriate categories to be assigned to words governed
by or modifying the word in question, such conventions are irrelevant to
the operation of the program under consideration.

1.121222 Usage Index.

Immediately after the initial < there is a single decimal digit
indicating the relative frequency of usage for the wore in question. This

digit, which can range from to 8, is increased by one each time the given
word is selecte for use in a concrete sentence. The irogram rejects for

6

1

use in any given case a set member with a usage index higher than that of
any other member of the set, thus insuring a relatively uniform frequency
of use for all members of the set. (When the usage index of each member
of the set reaches eight,all of the indices in question are reset to zero.)

1.12123 Examples of Set-List Format.

1.121251 Set Labels.

(person)
(square object)
(emotion verb)

1.21232 Set Members (with zero usage index).

< 0 man >
< 0 cube >
< 0 like >

1.21233 Set Labels followed by Set Members (with zero usage index).

(person)
< 0 man >
< 0 woman >
< 0 boy >

(square object)
< 0 cube >
< 0 square >

(emotion verb)
< 0 like >
< 0 hate >
< $ despise >
< 0 adore >

1.122 Output Files.

The output of the program consts of 1) a disk file (channel 3)
consisting of one or more strings containing members of the sets specified
in the input strings discussed under 1.1211 above, and 2) a disk file
(channel 4) containing the updated version (i.e.,the version with usage
indices reflecting the utilization of set members employed in the output
strings) of the set list described Lader 1.1212 above.

1.221 Output String Format.

Each set label of the input string has been replaced by a member of
the set in question. Where the set label of the input string was
accompanied by additional information of the type described in 1.12111,
such additional information is placed immediately before the closing
delimiter of the set member. The usage index of the set member is omitted
in the output string.

7

1.2211 Examples of String Output with Corresponding Input.

1.22111 Input Set Labels Lacking Additional Information.

Input: (person) (emotion verb) (person) ./
Output: < man > < like > < woman >.

1.22112 Input Set Labels Including Additional Information.

Input: (person + definite) (emotion verb + 3. s. pres.)

(person + definite)./
Output: < man + definite > < like + 3. s. pres. >

< woman + definite > .

1.222 Updated-Set-List Format.

The format of the updated set list is identical. with that of the set-
list input file described in 1.1212. Only the usage indices of set members
utilized in the output strings described under 1.221 differ from the
corresponding items on the input file.

1.2221 Example of Updated Set List. Corresponding to Input Set
List. Given Under 1.21233 after Generation of Output String
Given Under 1.22111.

(person)
< 1 man _>
1 woman >_

< 0 boy >

(squaxe object)
< 0 cube >

square >

(emotion verb)
< 1 like >
Z: 0 hate -77,

< dspise >
: 0 adore >

1.2 Evaluation and Prospects for Future Development.

The program in question performs a useful, if sonewhat trivial,
function. It could be made more valuable by the addition of two features:
reiterative string generation and optional non-incrementation of the
usage inaPx of a given set roJmber. The latter feature would allow the
repeated utilization of one and the same set member within a single output
string (as in, for example, this man likes Mary and that man hates her).
The former would allow the generation of more than one output string for
a single specified input string, persumably by means of a decimal digit
placed after the final slash of the string. Thus, using the sets given
under 1.21233, the input string

8

(person) (emotion verb) (person) 73 would give

< man > < like > < woman >_
boy > hate 5 < man >_ _

< woman > < despise > < boy >_ -
Whether or not reiterative string generation is implemented, it would

be extremely desirable to have some means of avoiding undesirable limitations
on the make-up of output strings resulted from random coincidences in the
number of members constituting individual sets (e.g., the limitation of a
group of ten output strings from sets A, B, and C, each with three members

BI Cl, A2 B2 C2,to the types Al and A3 B3 C3). Where the output strings
are all generated from a single input specification this problem can be
solved simply by comparing each new output string with those previously
generated and replacing one or more members until either a new string is
formed or all possible combinations are exhausted. In other cases one
might insure that no two sets would have the same number of members by
adding dummy members with an "illegal" usage index at the end of some of

the sets. (Whenever such a dummy was encountered the first member of
the set could be utilized, but only the illegal index usage of the dummy

member would be raised. By keeping the illegal indices in a fixed relation
to those of the real members of the set it would be possible to include more
than one dummy member in a given set.)

2. Coding System for Concise Formulation of a Relatively Large
Number of Semantic-Syntactic Patterns.

2.0 Justification and Purpose.

As was pointed out in 1.1 above, the utilization of input strings
containing one or more set labels corresponding to groups of words sharing
certain semantic features may enable us to generate a large number of
concrete sentences from a single specified input string. Such input

strings will henceforth be referred to as semantic-syntactic patterns,
sin,:e, as we have seen in 1.12111, they may include as much information
as necessary concerning the syntactic roles played by the members of the

string.

The question arises whether it might be possible to attain certain
economies in the specification of the semantic-syntactic patterns
themselves by developing a coding system which would permit two or more
semantic-syntactic patterns including one or more common set labels to
be included within a single 'master pattern.' From the poiri'L of view cf an

individual generating the input for a language course, such a formulation
would presumably be more economical than the separate specification of each
of the semantic-syntactic patterns in question. It would, of course,
necessitate the development of some procedure for the retrieval of
individual patterns from a master pattern, a procedure discussed in
section 3 below.

The exact extent to which the use of master patterns would prove more
economical than the specification of all individual patterns is difficult

to predict. However, it would appear that in certain cases considerable

9

gains could be made. One of these cases is that of a noun which can occur
with only one of a set of mutually exclusive modifiers, e.g. the noun
house, which can be modified by the definite article, the indefinite
article, a demonstrative adjective or a possessive adjective (e.g. the house,
a house, this house, my house), but not, at least in normal usage, by two
or more of these at the same time (e.g. the a house, *a my house, this

the house, etc.)

Another case occurs when a word dependent on another word may, but
need not, itself be modified by yet another word, e.g., good books, very
good books, write letters, write short letters, write very short letters.

While it may be that a more sophisticated approach to input coding
will account for such cases by the use of general algorithms based on
considerations of semantic and/or syntactic compatibility, it would not be
unreasonable to provide a more immediate means of reducing the redundancies
which might arise from an approach limited to the specification of
individual patterns.

2.1 General Characteristics of a Desirable Coding System.

A coding system for master patterns should make a clear distinction
between items which must be present in any and all the individual patterns
generatable from the master pattern and those which are absent from one
or more of the Individual patterns. Within the latter grain
distinguish, on the one hand, between items which can cooccur ari.1 items
which are mutually exclusive, and, on the other, between items which can
occur independently of any other item and items which are dependent on
another item, i.e., which can occur in an individual pattern only if another
item is present. Finally, the coding system must provide for the above
distinctions with a maximum of simplicity so that the specification of
master pattern does not irvolve significantly greater effort and
Possibility for error than the specification of an individual pattern
including approximately the same number of characters.

2.2 Introductor:, Comments on The Proposed Coding System.

2.21 Relation of the Proposed Codi%g System to -.Ae FcTmat of individual

Semantic - Syntactic Patterns.

Since individual semantic-syntactic patterns must contain at least

one or more set labels delimited by parentheses (cf. 1.1211) it would

seem reasonable to utilize parentheses as the fundamental delimiter in
master patterns as void. On the other Lend, since the plus sign can occur
within individual set labels (cf. 1.12111), it cannot conveniently be
used as a set -label delimiter in a master pattern. The slash used to
terminate individual syntactic-semantic patterns can be retained to
signal the end of a master pattern.

2.22 Relation of the Proposed Coding System to Boolean Algebra.

The proposed coding system, while utilizing somewhat different symbols,
was strongly influenced by Boolean algebra in 1) the utilization of

parentheses, and 2) the expression of conjunction and disjunction. Since

10

it may be reasonably assumed that a large percentage of those reading
this report will be familiar with the Boolean notation, it would seem
that a discussion of the features of the proposed coding system can best
be carried out by contrasting these features with their Boolean
counterparts.

2.23 Conjunction.

2.231 Use of Parentheses to Express Subordinative Conjunction.

As was pointed out in 2.21, the utilization of parentheses in a
delimitative function allows us to retain in master patterns symbols
employed as delimiters in concrete semantic-syntactic patterns. In Boolean
algebra the parentheses are utilized for determining the order of operations.
In the proposed coding system this function has been essentially retained
(for illustrations see 2.52 and 2.53 below). In addition, however,
parentheses are employed in noting a subordinative conjunctive relationship
between a pair of set labels, i.e., a relationship in which one of the
conjoined set labels is grammatically dependent on (e.g. in agreement
with, a modifier of, governed by) the other. This is accomplis?ed by
placing the dependent (i.e. governed, egreeing, or modifying) se), label,
together with its enclosing parentheses within the parentheses which enclose
the non-dependent member of the pair. Thus) for example, the set-label
pair (noun subject (verb predicate)) indicates that the predicate depends
on (agrees with) the subject.

This additional function results in a much more extensive utilization
of parentheses in our notation than in Boolean algebra, since there are
numerous cases which necessitate the noting of subordinative conjunction
between members of a set-label pair, even though the order of operations
is irrelevant.

Thus, in Boolean algebra (A(B(C))) is merely an extremely uneconomical
notation of (ABC) or simply ABC. In our notation, since it includes no
indication of non-subordinative conjunction or of disjunction (see 2.232
and 2.2k below), (ABC) represents simply a single set label (recall that
no set label may occur without parentheses), while (A(B(C))) represents
three conjoined set labels such that C is dependent on (modifies or is
governed by) B and B is dependent on A. The sequence (AB(C)) represents
two conjoined set labels, (AB) and (C), the latter modifying or being
governed by the former, while (A(BC)) shows the same relationships between
the set labels (A) and (EC).

2.2311 The Ordering of Dependent Set Labels.

In order to simplify the operation of the program discussed in
section 3 below, a dependent set label cannot precede the set label on
which it is dependent. There is, for example, no such pattern as ((A)BC)
or ((AB)C). The notation for such cases must be (BC(A)) and (C(AB)),

respectively.

11

It follows that our dependency notation may entail significant
differences between the order of set labels included in a master :attern
and the order of concrete words occurring in sentences generated iron
individual semantic-syntactic patterns derived from the master pattern.
Thus, a string of the type Ioor men might correspond to a master pattern
including the set-label sequence7Terson (wealth adjective)). Provisions
for converting dependency-oriented sequences to the order actually
employed in utterance strings are discussed in section 3 below.

2.2312 Examples of the Use of Parentheses to Express Subordinative
Conjunction.

2.23121 Master-Pattern Notation Mathes Utterance Order.

Master-Pattern Notation: (person(emotion verb(person)))./
Utterance: John likes Mary.

2.23122 Master-Pattern Notation Diffe-is from. Utterance Order.

Master-Pattern Notation: (writing verb(writing object(duration
adjective(adjectival intensifier))))./

Utterance: Write very snort stories.
(The master-pattern oracr (A(B(C(D)))) corresponds to the
utterance order Wis.)

2.232 Use of the Comma and Parentheses to Express Non-Subordinative
Conjunction.

2.2321 Definition of Non-Subordinative Conjunction.

It is possible that two set labels which are themselves not members
of the sane dependency pair (i.e., do not have a subordinative
conjunctive relationship with one another) may nevertheless play identical
(dependent or, less frequently, non-dependent) roles in separate
subordinative-conjunctive relationships with one and the same set label.
From the point of view of grammatical analysis, such set-label pairs
fall into two categories: those which are clearly cases of coordinative
conjunction (e.g., IlL, black clouds) and those in which one of two
dependent set labels can be viewed as dependent not on a single non-
dependent set label but on the dependency pair formed by the non-dependent
set label with the other dependent set label. Thus, for instance, in the
phrase this old book the demonstrative adjective can be viewed as
modifying the phrase old book. Again, in he rarely writes letters
the adverb mtv be viewed as dependent an the phrase writes letters.

However, it would appear that little or nothing is gained by
providing separate notations for these two typos of sequences. In all

the cases which have come to the attention of the principal investigator
thus far, there is no evidence that items which could be viewed as
dependent on a dependency pair as a whole behave differently from items
dependent only on the non- dependent member of such a pair. Thus, the
agrement of the demonstrative in such phrases as this old book fellows

12

the name rules as in phrases of the type this book. Again the adverb in
he rarely writes letters is subject to the same rules as the one in he

rarely writes.

For this reason it would seem in the interests of notational economy
to view both of the cases discussed above as examples of a single
phenomenon--non-subordinative conjunction, i.e. a conjunctive relationship
between two set labels not entailing the dependency of one of them on the

other. Accordingly, phrases of the type this old book will receive the
cone notational treatment as those of the type old, tattered books.

2.2322 Notational Devices.

2.23221 Non-subordinative Conjunction of Two Set Labels Dependent on
Third Set Label.

Since by definition set labels which stand in a non-subordinative
conjunctive relationship to one another also play identical roles in
separate subordinative conjunctive relationships to a third set label,

it follows that if the non-subordinatively conjoined set labels are
dependent on the third set label it would be possible simply to include
both of the former within the parentheses enclosing the latter. For
example, (A(B)(C)) would represent the non- subordinatively conjoined pais
of set labels (B) and (C), each of which is dependent on the third set

label (A). However, it would appear that not only notational economy,
but also graphic clarity would be served by introducing into our system
a new delimit,ational symbol which would permit us to include
non-subordinatively conjoined set labels within a single set of parentheses.
Since the dot and the multiplication sign, commonly employed to denote
'onjunction in Boolean algebra, are easily confused with the period and
she letter x, respectively, it was decided to utilize the comma for this

purpose. Thus, in place of (A(B)(C)) we may write (A(B,C)).

2.23222 Non-Subordinative Conjunction of Two Set Labels with

Dependent. Third Set Label.

It might seem at first glance that the notation of cases of this

type (e.g. expensive hats and shoes, in which the adjective applies to
both nouns) could follow the pattern established in 2.23221, i.e., that
the non-subordinately conjoined set labels could be separated by a comma
and the dependent third set label included within the parentheses
surrounding the non-dependent pair. Thus, (A,B(C)) would represent the
non-subordinatively conjoined set labels (A) and (B) and the third set
label (C) Thick depends on both (A) and (13).

Unfortunately, the utilization of this notation for cases of this
type is rendered less than desirable by the need for a convenient
representation of such phrases as this very old book, in which, from the

point of view of our notational system, the adjective old participates
in three relationships: 1) non-subordinative conjunctive with this,
2) subordinative conjunctive with the non-dependent item book, and
3) subordinative conjunctive with the dependent item very. In accordance

13

with 2.23221, the master pattern for phrases of this type could include
(noun(demoastrative adjective, age adjective)). However, it would appear
that the most convenient and graphically clear notation of the set label
for the adjectival intensifier modifying old would be its inclusion between
the set label corresponding to that adjective and the first closing
parentheses, i.e., (noun(demonstrative adjective, age adjective(adjectival
intensifier))).

It would therefore appear that, unless we wish to modify the notation
adopted in 2.23221, it would be best to devise another notation for phrases
of the type expensive hats and shoes. It would seem that this could be
accomplished with maximal clarity by 1) placing the dependent third set
label outside the parentheses surrounding the non-subordinatively conjoined
pair and 2) indicating its dependence on the preceding pair by enclosing
it within an extra set of parentheses. Thus, instead of (A,B(C)) - -a

notation reserved for cases in which (C) is dependent only on (B)--we would
write (A,B)((C)).

2.23223 Non-Subordinative Conjunction of More Than Two Set Labels.

It is quite possible that the non-subordinative conjunctive relation-
ships discussed in 2.23221 and 2.23222 may hold among more than two set
labels. Thus, instead of this old book or old, tattered books we might
have this old, tattered book, with three non-subordinatively conjoined
items dependent on book. On the other hand, in addition to phrases such
as expensive hats and shoes we can expect expensive hats, shoes and gloves,
in which expensive is dependent on three conjoined nouns.

The notation of such cases can be adequately handled simply by
extending the techniques discussed in 2.23221 and 2.23222 to provide for
the insertion of a delimiting comma after every non-subordinatively
conjoined set label except the last. Thus, the first series cited in
the preceding paragraph would correspond to the notation (A(B,C,D)),
while the second would be written as (A,B,C)((D)).

2.2R23 Examples of Non-Subordinative Conjunction.

2.23231 Two Non-Subordinatively Conjoined Set. Labels.

2.252311 Non-Dependent Third Set Label.

Master-Pat'ern Notation: (noun(demonstrative pronoun, age adjective))/
Utterance: this old book
Molter- Pattern Notation: (noun(ogc adjectivc, condition adicctivc))/
Utterance: old, tattered books

2.232312 Dependent Third Set Label.

Master-Pattern Notation: (purchase verb, sale verb)((object noun))/
Utterance: buy and sell books
Master-Pat'ern Notation: (male adult, female adult)((wealth adjective))/
Utterance: rich r n ani wunr2n

1L4

2.23252 More than Two Not - Subordinatively Conjoined Set Labels.

2.232321 Non-Dependent Subordinatively Conjoined Set Label,

Master Pattern: (noun(demonstrative pronoun, age adjective,
condition adjective))/

Utterance: this old, tat,-ered book

2.232322 Dependent Subordinatively Conjoined Set Label.

Master Pattern: (purchase verb, sale verb, exchange verb)((object
noun))/

Utterance: buy, sell, and trade books

2.24 Disjunction.

2.241 Primary Role of Exclusive Disjunction.

Since, as was pointed out in 2.0 above, one of the strongest
justifications for the creation of a master-pattern notation lies in the
fact that certain words can occur with any one of a set of mutually
exclusive modifiers, it is not unreasonable to attend first to the
notation of the "exclusive or" relationship.

2.2411 Definition of Exclusive Disjunction.

For our purposes an exclusive disjunctive relationship can be said
to occur between two or more set labels in a given master pattern when
1) for any concrete semantic-syntactic pattern derivable from the given
master pattern only one of the set labels can be present, and 2) any one
of the set labels, if it is indeed present in a concrete semantic-syntactic
pattern, will play one and the same role in a dependency pair with one
and the same subordinatively conjoined set label. Thus, for instance
phrases of the type my book and this book could be derived from a single
master-pattern formulation in which the set labels corresponding to Lay and

this are in exclusive disjunction.

2.2412 Notation.

2.24121 Exclusive Disjunction between Two Set Labels.

Since we have already employed the plus sign within set labels
(cf. 1.1211) it cannot conveniently be employed to indicate a disjunctive
relationship between two set labels. Since, however, it seems desirable
to utilize a symbol not normally employed in the strings constituting
such labels, and because of the associative ties between disjunction,
separation and division, it was decided to employ the divide sign (4) to
separate the members of an exclusive disjunctive pair. The subordinative
conjunctive relationship of each member of the pair to a third set label
in the master pattern is indicated by the devices discussed in 2.25221
and 2.25222 above. Thus, (A 4 B) indicates that the set labels (A) and (B)
are in exclusive disjunction; (C(A 4 B)) indicates that whichever one of
them is present in a given string will depend on (C); while (A IM(C))
indicates that (C) will depend on whichever one of (A) or (B) occurs in a
given string.

15

2.24122 Exclusive Disjunction between More Than Two Set Labels.

As in the case of non-subordinative conjunction, we simply modify the
notation developed for pairs of set labels by writing a delimiter [%fter
each set label except the last. Thus, with a non-dependent subordinatively
conjoined set label we write (A(B s C 4 D)), while with a dependent one
we write (A 4 B e C)((D)).

2.2413 Example of Exclusive Disjunction.

Master Pattern: (noun(demonstrative adjective 4 possessive
adjective definite article))

2.24131 Concrete Patterns.

2.241511 (noun(demonstrative adjective))

2.241312 (noun(possessive adjective))

2.241515 (noun(definite article))

2.24132 Utterances.

2.241321 Corresponding to 2.241311.

this book

2.241522 Corresponding to 2.241312.

my book

2.241325 Corresponding to 2.241313.

the book

2.22 Inclusive Disjunction.

2.2421 Definition of Inclusive Disjunction.

For our purposes an inclusive disjunctive relationship can be said
to occur between two or more set labels in a given master pattern when
1) any combination of the set labels in question can occur within a
concrete semantic-syntactic pattern derived from the given master pattern
and,2) each of the set labels which does occur in a concrete semantic-
syntactic pattern will play one and the same role in a dependency pair
with one and the same subordinatively conjoined set label. Thus, if within
a .ingle master pattern, in addition to phrases of the type, old,
tattered books, which were cited in conjunction with non-subordinative
conjunction774. 2.2221), we wish to make provision for phrases such as
old books and tattered books, we need simply change the relationship
between the set labels age adjective) and (condition adjective) to one
of inclusive disjunction.

16

2.422 Notation.

There would appear to be no strong reasons for introducfng a new
symbol to represent the inclusive disjunctive relationship. First of
all, as is pointed out in2.631232, this type of relationship is not
likely to occur with any great frequency in the material with which
we are concerned. Secondly, it is adequately covered by the notational
devices utilized to indicate restrictions on the omission of optional
dependent set labels (cf. 2.631232 and 2.632232).

2.5 The Ordering of Operations.

2.51 Relationship of Ordering to Subordinative Conjunction.

In order to permit the derivation of an optimally large number
of concrete semantic-syntactic patterns from a single master pattern,
it is necessary to allow for a wide variety of disjunctive and
conjunctive relationship "networks" involving a large number of set
labels. This in turn necessitates a set of rules governing the order
in which we will perform the selection or grouping of set labels in
deriving concrete patterns. Thus, if we are faced with a master
pattern of the type (A 4 B(C 4 D)), we must be able to decide whether
one of the selective operations indicated by the two disjunction
symbols depends on the results of the other. A similar question must
be asked about the selection and grouping operations indicated by the
divide sign and the comma in (A i B(C,D)).

As was pointed out in 2.231, a subordinative conjunctive
relationship between two set labels indicates that one of them is
grammatically dependent on the other. In addition, if the non-
dependent label or labels with which a given dependent label is
subordinatively conjoined is (are) not non-subordinatively conjoined
with a dummy label (cf. 2.63 and 2.7 below), the dependent, label
can occur only in those concrete semantic-syntactic patterns which
include (one of) the non-dependent label(s).

It follows that subordinative conjunction can serve as a guide
to the ordering of operations, since operations affecting the dependent
set label of a given deperlency pair need be performed only after the
completion of these operations 4hich determine the presence or absence
in a given concrete pittern of the set label(s) with which the
dependent label must to conjoined.

17

2.52 Parentheses Depth as a Guide to the Ordering of Operations

Since in noting subordinative conjunction we place the dependent .
set label(s) either within the parentheses enclosing the non-dependent
label(s) or (cf. 2,23222) within an extra set of parent.reses, it follows
that we can order our operations in the manner described in 2.51 simply
by performing first those operations enclosed by the smallest number of
sets of parentheses.

Operations entailing a greater number of sets of parentheses would
be performed only if they involved set labels which were subordinatively
conjoined with one or more set labels selected from the master pattern
as a result of the performance of preceding operations.

Thus, for example in (A 4 B(C)), we would first choose between (A)

and (B). Only if (B) were chosen would we proceed to the selection of
(C), since (cf. 2.23222) this label is not subordinativ,?ly conjoined with
(A). Similar considerations would apply to (A 4 B(C + n)) or (A 4 B(C,D)).

On the other hand, in (A 4 B)((C)), (C) would always be selected, since it
depends on either (A) or (B).

2.521 The Utilization of Additional Sets of Parenthe;es.

The ordering of operations in accordance with the lierarchy of
subordinative conjunction does not permit us to impose different orders
of grouping and selection on a number of set labels all of which pla: one
and the same role in subordinative conjunction with one and the same set
label. Thus, we have so far no way of deciding whether (A(B,C+ D,E))
will result in the concrete patterns (A(B,D,E)) and (A(B,C,E)) or in
(A(BC)) and (A(DE)).

It would appear that the simplest solution to this problem is the
introduction into our notation of additional sets of parentheses not
needed for the representation of subordinative conjunction. Thus, if
we wish to insure the derivation of the first pair of concrete patterns
mentioned in the preceding paragraph, we need only writ (A(B,(C+D),E)),
while the derivation of 1-,e second pair is assured by ;AUB,C) + (D,E))).

Note that the additional parentheses do not replu:o any of the other
operational symbols. This feature, which leads to -loe of what may

appear to to superfluous sets of parentheses in certain cases (cf. the
second notation above), was introduced to simplify the)rogram discussed
in section 5 below.

2.55 Examples of the Derivation of Concrete Semanti-Syntactic
Patterns from Vater Fattersn in which the Ordering of
Operations is Significant.

2.531 Additional Parentheses Not Espined.

Mater Pattern: (proper name kinship noun(prope: name + possessive
aljective))((oral noise verb))/

F

J

2.53],1 Concrete Pattern Resulting from Selection of Set Label
(Proper Name).

(proper name(oral noise verb))/

2.5312 Concrete Patter.,6 Resulting from Selection of Set Label
(Kinship Noun)/

2.53121 (kinship nour(proper name, oral noise verb))/

2.53122 (kinship noun(possessive adjective, oral noise verb))

2.5313 Utterance Corresponding to 2.5311.

John is singing.

2.53141 Utterance Corresponding to 2.53121.

Mary's brother is talking.

2.53142 Utterance Corresponding to 2.53122.

Their nephew is crying.

2.532 Additional Parentheses Required.

Master Pattern: (noun((possessive adjective + demonstrative
adjective), age adjective))/

2.5321 Concrete Patterns.

2.53211 (noun(possessive adjective, age adjective))/

2.53212 (noun(demonstrative adjective, age adjective))/

2.5322 Utterances.

2.53221 Corresponding to 2.53211.

my old house

2.53222 Corresponding to 2.53212.

this new table

2.6 Optional Relationships.

2.61 Definition of Optional Relationships and Optional Set Labels.

As was indicated in 2.0, there are numerous cases in which a set
label may, but need not, be subordinatively conjoined with a dependent
set label. In such cases the subordinative conjunctive relationship can
be referred to as an optional relationship and the dependent set label as"
an optional set label. Thus, in a master pattern notation (noun(quality
adjective(adjectival intensifier))), corresponding to phrases of the type

19

very good books, there is one optional relationship--(quality adjective
(adjectival ...ntensifier))--and one optional set label--(adjectival
intensifier).

2.62 The Need for a Notational Device.

It might at first appear that there is little or no need to provide
a separate notation for optional relationships and/or set labels.
indeed, in the case just cited and in many others it would be possible
to account for such concrete patterns lacking the optional items--in
this case the pattern (noun(quality adjective))--by a general algorithm
based on the rule for the ordering of operations. Thus, the dependent
set label of a subordinatively conjoined pair might be regarded as an
optional set label and the subordinative conjunction viewed as an optional
relationship whenever the non-dependent set label also occurred as the
dependent member in a subordinative conjunctive relationship with a
third set label.

There are, however, a number of cases in which such an approach
would fail. Thus, in representing prepositional phrases modifying a
verb we employ the pattern (verb(preposition(noun))). In many cases the
omission of the set label (noun) will result in a concrete pattern
leading to the generation of unacceptable utterances. Compare for
instance he reads in bed and he reads in. Again, certain transitive
verbs (e.g. pulverize, compress ever occur without a direct
object in normal speech, while others (e.g. read, write) do so quite
frequently. It would, therefore, appear that the development of a
separate notation for optional relationships and/or labels is both
necessary and useful.

2.65 The Utilization of the Dammy Label to Indicate
Opt coral Relationships.

2.631 Rationale.

Since, on the one hand, it would seem desirable to keep the set of
symbols no' permitted within set labels a% small as possible, and since,
on the other, it would seem less thar desirable to develop new notational
devices for optional variants of each of the three types of relationships
discussed above, it was decided to signal the presence of an optional
rela'ionship by placing the optional set label in exclusive disjqnction
with a "dusty" or "zr!rol set label consisting of the single digit 0.
Note that the utilization of the dummy label (0) does not force us to
exclude the character from other set labels. The only restriction it
entails is t, exclusion of s,st labels consisting solely of the
character 0.

2.6311 Optional Relationship Affecting Only One Depenfent Set. Label.

This VP' is.extremely simple, requiring only the insertion of the
divide sign a.1 the dummy Intel after the optional label. Thus, while
(A(F(C))) includes no optional relationship, in (A(B(C 0))) the
relationship (P((')) and the set label (c) are optional. Again, in

(A 4 B)((C)) the concrete patterns are limited to (A(C)) and (B(C)),
while in (A 4 B)((C 4 0)) they include (A(C)), (B(C)), (A), and (B).

2.6312 Optional Relationship Affecting Two or More Dependent Set Labels.

2.63121 Dependent Set Labels in Exclusive Disjunction.

This type is also quite simple: since only one of the dependent
set labels participating in such a relationship can be present in any
concrete semantic-syntactic pattern, we can make the relationship
optional by the same means as in 2.6311. Thus, non-optional (A(B t C)),
which allows only the concrete patterns (A(B)) and (A(C)), corresponds
to optional (A(B C 4 0)), which permits (A) as well.

2.63122 Dependent Set Labels in Sobordinative Conjunction.

This case too is taken care of simply by inserting the exclusive
disjunction symbol and the dummy label. Thus, non-optional (A(B(C))),
which generates only one concrete pattern, corresponds to optional
(A(B(C) 4 0)), whicn permits both (A(B(C))) and (A).

2.63123 Dependent Set Labels in Non-Subordinative Conjunction.

This case is somewhat more complicated gran the preceding ones,
since it requires the utilization of additional sets of parentheses to
define the order of operations (cf. 2.521).

2.631231 Unrestricted Omission of Optional Labels.

This type entails no complications other than the use of additional
sets of parentheses. Thus, if the non-optional notation is (A(B,C,D)),
which generates only one concrete pattern, the notation (A(B,C,(D 4 0)))
permits both (A(B,C,D)) and (A(B,C)); (A(B,(C 4 0),D)) allows (A(B,C,D))
and (A(B,D)); (A(B,(C 4 01(D 4 0))) gives all of the above plus (A(B));
(A((B t 0),C,D)) generates (A(B,C,D)) or (A(C,D)); etc., etc. The
maximum number of concrete patterns is generated by (A((B 4 0),(c 4 0))
(D t 0)))) which permits any combination of dependent labels with the
label (A), as well as a concrete pattern consisting of (A) alone.

2.651252 Restricted Omission of Optional Labels.

It may prove desirable in some cases to insure that all the
concrete patterns derived from a given master will include at least one
(or, less rTotably, more than one) member of a group of non-subordinatively
conjoined optional set labels. Thus, one might wish to permit, phrases
of the type he speaks Russian well, he speaks well, and he speaks Russian,
but to exclude phrases such as he speaks. While there is some doubt as
to whether restrictions of this tyre are likely to be utilized very
often, they can be adequately conveyed by a combination of optional non -
subordinative conjunction and non-optional exclusive disjunction.
Thus, if we wish to generate the concrete patterns (A(B,C)),(A(B)) and
(A(C)), but to exclude (A), we need write not (A((B t 0),(C 4 0))), ILO
(A((B,(C 4 0))4C))

21

Inso''ar7 as only one of the optional dependent set labels need be
present in any concrete pattern, the restricted omission of optioral set
labels is equivalent to an inclusive disjunctive relationship amon3 them.
As was pointed out in 2.422, this fact, combined with the relative
infrequency of Ibis relationship, obviates the necessity for a special
notational device representing inclusive disjunction as such.

2.632 Examples of the Derivation of Concrete Semantic - Syntactic
Patterns from Master Patterns including Optional Relationships.

2.6321 Only One Dependent Set Label.

Master Pattern: (person(reading verb(reading object + M)./

2.63211 Concrete Pattern including Optional Relationship.

(person(reading verb(reading object)))./

2.63212 Concrete Pattern without Optional Relationship.

(person(reading verb))./

2.63213 Utterance Corresponding to 2.1

John is reading a book.

2.63214 Utterance Corresponding to 2.63212.

John is reading.

2.6322 More than One Dependent Set Label.

2.63221 Dependent Set Labels in Exclusive Disjunction.

raster Pattern: (noun(demonstrative adjective 4 possessive
adjective 4))/

2.652211 Concrete l'atterns ',7ith Optional Relationship.

2.6522111 (noun(&mnstrative aljectiv+1)/

2.6522112 (nounposse3siv? adjective))/

2.652212 Cotcrete Fattern without Optional Relationship.

(noun)/

2.652215 Utterances

2.63221.51 Corre pending to 2.652'2,11.

this hat

2.6'22152 Cortesionding to 2.6522112.

my hat

22

2.6322::55 Corresponding to 2.632212.

hat

2.63222 Dependent Set Labels in Subordinative Conjunction.

Master Pattern: (noun(age adjective(adjectival intensifier) + 0))/

2.632221 Concrete Patterns.

2.6322211 (noun(age adjective(adjectival intensifier)))/

2.6322212 (noun)/

2.632222 Utterances.

2.6322221 Corresponding to 2.6322211.

very old hats

2.6322222 Corresponding to 2.6322212.

hats

2.63223 Dependent Set Labels in Non-Subordinative Conjunction.

2.632231 Unrestricted Omission of Dependent Set Labels.

Master Pattern: (person(read verb((read object 4 $),(speed adverb 4

0))))./

2.6322311 Concrete Patterns.

2.63225111 (person(read verb(read object, speed adverb)))./

2.65225112 (person(read verb(read object)))./

2.63225113 (person(read verb(speed adverb)))./

2.65223114 (person(read verb))./

2.6322512 Utterances.

2.65223121 Corresponding to 2.63223111.

John reads books quickly.

2.65225122 Corresponding to 2.63225112.

John reads books.

2.63223123 Corresponding to 2.65223115.

John reads quickly.

23

2.65222510 Corresponding to 2.632225114.

John roads.

2.652252 Restricted Omission of Dependent. Set Labels
(Inclusive Disjunction).

Master Pattern: (person(read verb((read object,(speed adverb 4 0))
speed adverb)))./

The concrete patterns and utterances are identical with those in
2.65223111 through 2.65223115 and 2.65223121 through 2.63223123,
respectively.

2.7 Evaluati._,I, and Prospects for Future Development.

Apart from the largo number of sets: of parentheses needed to insure
the proper ordering of operations (cf. 2.521) and the complexity of the
notational device: for inclusive disjunction (cf. 2.631232), our
notation makes no provision for 'he optional notation of the non-dependent
set label in a subordinatively conjoined pair. Since in patterns almost
all labels which play a non-dependent role in one subordinative conjunctive
relationship also play u dependent role in another such relationship,
only such set labels as those playing' the role of 'he subject. or, in the
case of subjeetless imperative sentences, the verb, are not covered by
our notation.

There is, however, no reason why we could not cover these cases as
well, simply by placing the non-dependent set label in exclusive disjunction
with the dummy label. Thu, if we wish to allow for both the concrete
pattern (A(D)) and (0, we could write (A t 0)((B)). Such a modification
would require a corresponding modification of the program discussed in
the following section of "his report.

Program for the Generation of Concrete Scrantic-Syntactic
Patterns from Mastcr Patterns.

5.0 Purpose and Justification.

The creation of a proEr,m of this yri.e is necessary in crier 'o
realize the economies, male los.;:ible ly 'he coding li:cu..T,J in

section 2. The potential of lnYer in ;.(.)

Doctzen'a'ion.

Function- cf the

!).111 The i'.erivation of Concrete ra. terns.
The primary function of the prot7ran is to produce the complete set

of concrete semantic-syntactic pattern: derivable from a master pattern
(cf. 2.0). The concrete patterns could than presumably be used as input
for a program of the type described in section 1.

3.112 The Representation of Conjunction in Concrete Patterns.

The program discussed in section 1 operates on set labels each of
which is enclosed by a single set of parentheses. It follows that it
cannot operate on concrete patterns which utilize the devices discussed
under 2.231 and 2.232. On the other hand, the information on the
subordinative and non-subordinative conjunction of set labels which must
be included in master patterns cannot be simply omitted in generating concret
patterns, since it provides a major part of the information on government,
agreement and modification needed to generate the correct forms of
individual words selected by the program discussed in section 1. Since
the.': program permits the inclusion of additional information relevant to
a given set label after a plus sign following the string of characters
constituting the label itself and preceding the closing parentheses for
that label, it would appear that a second function of the program under
discussion must be the conversion of the master-pattern representation
of conjunctive relationships to a form compatible with the input format
specified in 1.1211.

3.12 File Format.

.121 Input Files.

The input for the program consists of a disk file (channel 1)
containing one or more master patterns with the format specified in section
2. For examples of master pattern input see 2.2312, 2.2323, 2.2413,
2.53, etc. (Note that there is no provision in the existing master
pattern notation for the irelusion of literals, i.e. concrete words. At

present the only way to include a literal in a master pattern notation is
to represent it as a set label corresponding to a set with a single
member.)

3.122 Output Files.

3.1221 Equivalence of Concrete Patterns and Input Strings Discussed
in 1.1211.

The output of the program consists of a disk file (channel 5)
identical in format to that of the input file on channel 1 mentioned in
1.121. Each concrete pattern of our output is identical with one of the
input strings discussed under 1.1211.

3.1222 The Representation of Subordinative and Non - Subordinative
Conjunction.

As was indicated in 3.112, information on conjunctive relationship:
between set labels is coded as additional information accompanying
individual set labels in accordance with 1.12111. This information takes
the form of two alphabetic characters immediately following the plus sign
and themselves followed by a space. The space, which serves only to set
off the two characters from any other additional information which may
precede the closing parenthesis for the given set label, may be omitted
if there is no additional information. The first. of the two characters

25

serves to identify the set label in question, while the second identifies
a non - dependent set label with which the set label is subordinatively
conjoined. Thus, the coding (x + ba) indicates that set label (x) is
represented by the character b and is a dependent set label subordinatively
conjoined with the non-dependent set lase:. represented by the character
a. Again (y + ca) states that set label (y) is represented by the
character c and also depends on the set label represented by the character
a.

Whether or not (x) and (y) are coordinatively conjoined can be
decided only after a consideration of such factors as their semantic
compatibility and, in some cases, additional coding. However, it is
clear that the fact of their non-subordinative coordination--the only
information conveyed by our master-pattern notation--can be established
simply by ascertaining that they both depend on the set label represented
by the character a.

If a set label does not depend on any other set label, the second
character after the plus is identical with the first. Thus, the sequence
(z + aa) indicates that the set label (z) is represented by the character
a and is not a dependent set label in any subordinative conjunctive
relationship. It would appear that, subject to certain limitations
connected with clause boundaries, representations such as (x + aa) and
(y + bb) would indicate that (x) and (y) are non-subordinatively conjoined.

3.1223 Examples of Output with Corresponding Input and Sample Utterances.

3.12231 Input with No Optional Relationships.

Input; (person(read verb + write verb(write object)))./

3.122511 Output.

3.1223111 (person + aa)(read verb + ba)./

3.1225112 (person + aa)(vrite verb + ca)(write object + dc)./

3.122312 Utterances.

3.1225121 Corresponding to 3.1223111.

John is reading.

5.1223122 Corresponding to 3.1223112.

John is writing a letter.

3.12232 Input with Optional Relationships.

Input: (yerson(real verb((read object 4 0),(spced adverb 4 0))))./

3.122521 Output.

26

3.1223211 (person + aa)(read verb + ba)(read object + cb)(speed adverb
+ (db)./

3.1223212 (person + aa)(read verb + ba)(read object + cb)./

3.1223213 (person + aa)(read verb + ba)(speed adverb + db)./

3.1223214 (person + aa)(read verb + ba)./

3.122322 Utterances.

3.1223221 Corresponding to 3.1223211.

John reads books quickly.

3.1223222 Corresponding to 3.1223212.

John reads books.

3.1223223 Corresponding to 3.1223215.

John reads quickly.

3.1223224 Corresponding to 5.1223214.

John reads.

5.2 Evaluation and Prospects for Future Development.

Insofar as the notation discussed in section 2 is a satisfactory
one, the program under consideration would appear to operate quite
satisfactorily: it converts master patterns to concrete patterns without
losing any information on subordinative and non-subordinative coordination.
However, as was pointed out in 2.2311, the sequence of set labels in a
master pattern and, consequently, in concrete patterns as well, may
often differ from the order in which individual words corresponding to
such labels would occur in normal utterances. It would appear therefore,
that the concrete patterns produced by the program documented under 3.1
should be utilized not as input for the program documented under 1.1,
but as input for a "re-ordering" program, which would have as its output
concrete patterns identical to those of the input in every respect except
the sequencing of set labels. The latter would correspond to the normal
word order of utterances co be generated from the queen concrete pattern.

While it is impossible to give here a detailed outline of the
operation of such a program, it is clear that it would entail the use
of transformations lased on 1) the information on subordinative and non-
subordinative conjunction placed after the plus sign accompanying each
sec label in a concrete pattern, and 2) other information on the semantic
and/or syntactic properties of members of individual sets. Thus, if in a
concrete pattern for English utterances 1) (x) depends on (y), and 2) (x)
is an adjectival intensifier while (y) is an adjective, the concrete pattern
rotation (y + aa)(x + ba) would be converted to (x + ba)(y + aa) to insure
the correct order of such phrases as very good, extremely tad, etc.

27

4. Program for the Automatic Listing of Coded Vocabulary Items as
Members cf Semantic Sets.

4.0 Justification and Purpose.

The preparation of a set list of the type discussed in 1.1212
necessitates the association of individual vocabulary items with the set
labels referring to the semantic sets of which a given vocabulary item
is a member. However, once this association has been established, there
is no reason why the actual inclusion of the vocabulary item in the list
of set members corresponding to each relevant set label cannot be
accomplished by a computer program. It would appear that such a program
would significantly reduce the time and effort required to create and
update the set list.

4.1 Documentation.

4.11 Function of the Program.

The program operates on 1) an alphabetized list of vocabulary items
each of which is followed by the set labels corresponding to the sets of
which is a member, and 2) a set list of the type discussed in 1.1212.
Each vocabulary item is listed among the set members corresponding to each
of the set labels with which it is associated. If a given set label is

not found on the set li3t, it is entered at the appropriate alphabetic
fosition in 'he list with th,, new vocabulary item(s) as its member(s).

4..2 r I le Format.

L.t21 Files.

Tne inFlt for the program consists of 1) a disk file (channel 1)
Ceri!Bihirg a list of new vocabulary items with their associated set labels,
and 2) a disk file (channel 2) identical in format with the set list
discuF:tsed under 1.1212.

4..211 Vo_aeurary List. Format.

Eac'r. vocabulary item is imm-rdiately preceded by the symbol < and

immedively followed by 'ho symbol The set labels associated with the
vocabulary item follow tne symbol . Each set label is enclosed in
rarenthe:es. cr. :et-label format are the same as those
discussed in 1.12121.

4.12111 Example cf Vocabulary ..1st Format.

c toy --, (a.r.imate teing)(juvenile)(male)(tiersoci)

_c go > (motion -.tr-b)

house ' (1uilling)(iranimIte being)(residence)
red > (celor aljective)

....

List Format.

See 1.1212.

28

4.122 Output Files.

The output consists of a disk file (channel 3) of the ssme format
as the input set list. It differs from the latter in that it 1) lists
the vocabulary items found on the channel-1 input file under each of the
set labels with which they are associated, and 2) includes set labels
found in the vocabulary list but not in the channel -2 input file.

4.1221 Example of Output with Corresponding Input.

4.12211 Channel -1 input.

< boy > (animate beIng)(juvenile)(male)(person)

4.12212 Channel -2 Input,.

(animate being)
< dog
< man >
< woman >

(male)
< man >

(person)
< man >
< woman >

4.12213 Output..

(animate being)
< boy >

dog 5
man >

< woman >

(Juvenile)
< boy >

(male)
< boy >_
< man >

(person)
< boy >
< man >
< woman >

4 . 3 Evaluation and Pro:recto for Future Development.

While the program documented under 4.2 is a useful labor saver, it

would appear that considerably greater economies could be attained by a
program which, by taking account of the fact that membership in one set
often implies membership in one or more additional sets, would permit a
significant reduction in the nunter of set labels associated with
vocabulary items on the input list. Thus, it would appear that the item
< by >, used in 4.12211, could he coded simply as (juvenile)(male), since
any item associated with the first of these two set labels would also be
associated with (animate being) and (person).

29

5. The Elementary Verbal Communicator (E7C). A Now String-Manipulation
Language for the PDP-10 Computer.

5.0 Justification and Purpose.

5.01 The Need for a Higher-Level Language.

Although the programs documented in sections 1, 5, and 4 were written
in PDP-10 assembly language, it soon became clear that rapid progress in
the development of programs capable of generating instructional material
would necessitate the use of a higher-level language. This was due to
1) the large number of programs to be written, and 2) the interdependent
character of many of the programs. Thus, the three programs documented so
far center on a single problem--the generation of large numbers of
utterance patterns from a small amount of input. No attention has been
paid to such complex problems .s the correlation of utterance patterns in
the base language with those of the target language or the generation of
inflected forms from the basic forms given in set lists.

The interdependency of many programs can be seen from the fact that,
of the three programs discussed so far, the output of those documented
under 5.1 and 4.1 serves as input for the one documented under 1.1. This

means that a modification in one program may easily entail corresponding
modifications in another Such a chain-like relationship between different
programs makes he greater programming speed afforded by a higher-level
language particularly desirable.

5.02 Reasons for Developing a New Language.

The higher-Level languages available 04 the PDF-10 system used by
the principal investigator inctuded Fortran, Gogol, Sail and Lisp. Of

these, the first was not at all suited for string manipulation of th.2 type
entailed by our programs. Gogol and Sail were also less than satisfactory
for our purposes, and, in addition, were not regularly used by tne systems
programmer connected with our project. the fourth language, Lisp, while
more suited to our needs, was so inadequately documented +hat its use might .
have entailed a large number of unforeseen difficulties. It was hoped
that the X653 would be able to make available another string-manipulation
lafguage-SNL III. However, this language, which was ideally suited
for our purposes, did not become available during the contract period.

In view of these difficult less it was decided to develop a strin-
manivdiation language specifically adapted to he need: of our own research.
This approach proved to have two major advantages. First, it male the
principal investigator to a large extent independent of other programmers,
since the wribirg of the programs documented above had given him considerable
familiarity with the FOP-10 assembly language - -the basic tool in the
creation of the new string manipulation language. Secondly, it allowed
him to try a large number of approaches to one and the same programming
problem--a freedom niways curtailed to some extent by the utilisation of
a pre-existing language,

5.1 Documentation.

Any program written in the string-manipulation language EVC consists
of a series of instructions. Each instruction must begin with an operation

code. An operation code is defined as a string of alphanumeric characters
immediately preceded by a line feed and immediately followed by the
tabulation character (henceforth referred to as the tab mark). Operation

codes may not begin with a hyphen (of. 5.311). Most, but not all, instructions

include one or more additional constituents, henceforth called operands.
Operands are discussed in the sections dealing with the operation codes

they accompany.

5.11 Input.

5.111 Disk-file Input.

The current version of EVC permits the concurrent usage of two disk
files for input purposes. (It would, of course, be relatively simple to
increase this number, but such a modification would entail no fundamental
changes in the language--only the creation of additional input instructions.)

Since the input files currently allowed must be attached to disk channels
2 and 4, we shall henceforth refer to them as file 2 and file 4,

respectively.

5.1111 Input from File 2.

5.11111 General Characteristics.

Input from file 2 is transferred to a core storage area which will
henceforth be referred to as the item buffer. (The size of the item
buffer currently permitted is 50 FDP-10 words, i.e., 250 seven-bit ASCII

characters. It would, however, be a simple matter to develop one or more
other versions of EVC with item buffcrs of different, lengths.) The
storing of new input always begins at the first word of the item buffer
so that newly stored input must be transferred to another storage area
(see 5.1113? below) if it is to survive the execution of subsequent

input instructions.

5.11112 Input Operation Codes.

All instructions resulting in the transferral of input from file 2
to the item buffer operate on a character-by-character basis, i.e., only

one seven-bit ASCII character at a time is read into the FDP-10

accumulator utilized for such Input. The operation codes, which all
begin with the sequence TXT, fall into ,wo groups--those which commence
the storage of input in the item buffer with the next available ASCII
character on file 2, and those which store no characters until a given
character or character sequence has teen encountered. The latter type will

henceforth to referred to as iniAator-dependent operation codes.

31

5.111121 Operation Codes with Immediate Commencement of Character
Si:orage-

The storage of characters from file 2 in the item buffer continues
until the program encounters a terminator. In addition to the end-of-file
mark, the terminator may be a single character, a character sequence, or
any one of as many as five different characters. Where only a single
character or character sequence is utilized to terminate the transmission,
it is possible either to stop the storage of characters with the last
character preceding the terminator to store the terminator as well.

5.1111211 The Operation Code TXTUPPO.

This operation code causes the storage in the input buffers of the
next available character on file 2 and of all characters following it up
to (but not including) a given character or character sequence. The
charat'ter or sequence which is used as a terminator follows the tab mark
and is enclosed by a pair of identical delimiting symbols which may take
the :nape of any character not included in the lerminator itself.

Thus, the instruction TXrUPPO x.x will result in the storage in
the item buffer of the next available character on file 2 and of all the
following characters up to the first period. The same result. can be
achieved by TXTUPPO 1.1, TXTUFTO -.-, etc. The instruction
`DrUITO -and- would result in the storage of all characters preceding
the first occurrence of the word and, while TXTJPPO zbutz would halt
storaps with the last cnaracter preceding the first occurrence of the
string tut.

5.11112111 Examples of Operation.

5.111121111 Instruction; TXt7UP?2

Next available file 2 itput. Tom, Dick and Harry...

-s.haracter; stored in item buffer: Tom

5 111121112 irtruction: TX-CLJP?: ,aj1

(:ile input as in 5.111121111)

Character> stored: Tom, Lick

5.1111212 The Operation Cod-

This differs from T7CUP:ti 5.1111211) only in that it results in
the storing of the terminator as well as the characters preceding It
7:hus, if we use 1XTHHJ in 5.111121111 the characters stored would be Torn.

se in 5.111121112 would result in the storage of Tom Dick and.

5.1111213 Tne Operation Cole TXPALT.

This op-?ration coie is iientical in its effect with TX2H2U, except that
the terminator may to any one of a set et five or fewer single characters.
The eharac'ers tFel as terminators immediately follow the tab mark.
The firac character of the se' is immediately followed ty a period, while

4

an:r others are immediately followed by a comma, which is itself immediately

followed by the next terminator. The instruction TXTALT t, ?. will

terminate the transmission of input with the storage of tie first

exclamation point or question mark encountered. Note that both the comma
and the period will be treated as terminators, if they occur in an odd-

numbered position. Thus, the instruction TXTALT .,,,t,;, ?. would result

in the termination of input transmission after the storage of the first
period, comma, exclamation point, semicolon, or question mark encountered

in the text.

5.11112131 Examples cf Operation.

5.111121311 Instruction: TXTALT ,,.,?,!.

5.1111213111 Next available input: Tom, Dick and Harry.

Characters stored: Tomi

5.1111213112 Next available input: Dick and Harry.

Characters stored: Dick and Harry.

5.1111213113 Next available input: Is he home? No, he's nctt

Characters stored: Is he home?

5.111122 Initiator-Dependent Operation Codes.

As was indicated above, these operation codes do not result in the
storage of input characters in the item buffer until the program encounters
an initiator, i.e., a character or string of characters specified in the

instruction. Storage may commence with the initiator itself or with the

first character following the initiator. Termination follows one of the

patterns discussed in 5.111.1211 and 5.1111212. Note that in these
instructions both initiators and terminators are limited to a single

character or character sequence. It, would, ho:ever,be relatively simple
to develop additional instructions permitting the use of alternative
initiators and/or terminators (cf. 5.1111213).

5.1111221 The Operation Code TXTINC.

This operation code commences storage of characters in the input
buffer with the first character of the initiator itself and terminates
storage with the final character of the terminator. The initiator follows

the tab mark and is set off in the manner specified for the terminator

in 5.1111211. The closing delimiter of the initiator must be immediately
followed by the terminator, also set off as in 5.111)211. Thus, for

example, the instruction TXTINC -and--but will result in the storage
of the first example of the string and encountered on file 2 plus all the
following characters through the first occurrence of the string tut.

5.11112211 Examples of Operation.

33

5.111122111 Instruction. TXTJNO /D//y/

Next available input: Tem, Dick and Harry.

Characters stored: Dick and Harry

5.111122112 Instruction: 7'XT1NJ: -Ha-x.x

input as in 5,111122111.

Characters stored: Harry,

5.1111222 The Operation Code

This is identical in format and operation with TXTINC, except that
neither the initiator nor the terminator is stored, Thus, its use in
5,111122111 would result in the storage of ick and Harr. In 5.111122112
it would store arry only.

5,1111225 The Operation Code TXTEAI.

This operation code is identical in format and operation with TXT1NC
and except that it stores the terminator and omits the initiator.
Thus, its use in 5.111122111 would give ick and Harry. In 5.111122112
it. would store arry. only

5.1112 Input from File 4.

This follows exactly the same pa'tern as that described under
5.1111, even to the use of one and the same item buffer, Instruction
format is identical excep' that operation codes which operate on file 4
must begin with. the sequence T4T instead of TXT, e.g., T:4I1JPTO, MALT,
t'iTILC, etc,

5,1115 Tne Input of Literals.

5,11151 :I.ransfer cf Literals to Item Puffer.

It is possible to place a string of on or more Ascf,1 characters in
the item suffer simply by using the operation code 1Z111T. The
characters to to stored in the item are set off in the same manner as the
terminator urd with :XIUPTO (cf. 5.1111211). Thus, IKTLIP -too- places
the three characters boo in '.he item buffer, The same result is, of course,
achieved by IXTL1I xtoox or LKTLIT /too, etc. To place the phrase
Tom., Dick and Harry in the item buffer we write only IXTLI? xTom, Dick
and Harrvx.

5.11152 Iniut Followed by Storage of Literals and/or Sets of
Literals in Core Area Other than In u' Puffer.

Since vast majority of cases it is desir,ble to be able to
retain stored literals for future usage, the input of a literal will
almost al .ways 1"...r followed ty its transfer from the item buffer to another
storage area. In aiditien, it i3 cften convenient to be able to retrieve
more than one literal a' a time. The following instructions result in
1) the storage of a li'eral or a of literals in an area of core other

than the item buffer, and 2) the association of the literal or set of
literals stored with another literal, also stored in an area of core
other than the input buffer. The former will henceforth be re'erred to
as a class, while the latter will be called a class name. If a class
includes more than one literal, each individual literal will be called
a class member.

5.111521 The Operation Code NWCLS.

This operation code, which can be used only when none of the literals
to be processed includes either a comma, a period, or a percentage sign,
has the following format: the tab mark is immediately followed by the
literal which is to become the class name. The latter is immediately
followed by a comma which is itself followed either by a space or by the
first character of the first class member. The last class member is
immediately followed by a period- All the others are immediately followed
by commas, which may be followed by a space preceding the first character
of the next class member. Thus, the instruction NWCIIS vowels a,e,i,o,u.
results in the storage of the literal vowels as a class name associated with
a class whose members are the five vowel letters preceding the period.
The instruction NWCLS results in the storage of the literal ?
both as a class name and as the sole Liember of the associated class.

5.111522 The Operation Code NOLNTM.

This may be used in place of NWC.LS when it is necessary to store
class names or class members including either a comma or a period or both
(no class name or class member may ever include the percentage sign).
The first character after the tab mark is the delimiter chosen to set off
the class name from the first class member and the individual class members
from one another. It mus'. be immediately followed by the first character
of the class name and it must immediately follow both the last character
cf the class name and that of each of the class members. There may,
however, be a space between the delimiter and the first character of a
class member. The delimiter immediately following the last character of
the last class member is itself immediately followed by another delimiter.
None of 'he literals to be stored may include the delimiter.

Titus, the instruction NCI21M ivowels/a/e/i/o/u// has the same
results as NWCLS vowel] a,e,ijo,u. (cf. 5.111521). However, the latter
cannot be utili%ed in place of NCIZ /averages/1.2/5.4/6.2//, where the
class members l.2, 5.'0, 6.2 include the period.

5.12 Manipila'ion of String: within Core Storage Areas.

5.121 String Stored in 'Item Buffer.

5.121i Deletion of String Characters.

5.12111 qeratioh Codes Specifying Caiac'rs to be Dele'c..

35

5.121111 The Operation Code KILLST.

This operation code results in the deletion of the final character
and as many as 28 of the immediately preceding characters from the string
currently stored in the item buffer. The tab mark is followed by a decimal
number from 1 through 29. Thus, if the item buffer contains the string
Harry, the instruction KILLST 1 would reduce the contents to Harr,
while the instruction KILLST 2 would reduce Harry to yt!,:r.

5.121112 The Operation Code KILFRS.

This is identical with KILLST except that deletion begins with the
first character and proceeds with -:he immediately following ones. Thus,

KILFRS 1 changes Harry to arrv, etc.

5.12112 Operation Codes Specifying Characters to be Retained.

5.121121 Numerical Specification.

5.1211211 The Operation Code LKTLST.

This code causes the deletion of all but the final character and as
many as 28 of the characters immediately preceding it. Format follows
that for 5.121111. Thus, IKTIST 5 changes Harry to rry.

5.1211212 The Operation Code LKTFRS.

This is the reverse of IETLST, deleting all but the first character
plus as many as 28 of the immediately following characters. Thus,

LKTFRS 3 changes Harry to Har.

5.121122 Delimiter-Dependent Specification.

5.1211221 Specification of Initial Delimiter.

5.12112211 The Operation Code IKEIGNG.

This code deletes all characters in the input buffer preceding the
first occurrence of a given character or character sequence. The latter
is set off as in 5.1111211. Thus, LKEGNG -r- changes Harry to rry.

5.12112212 The Operation code LKFLLW.

This differs from IKEIZG only in that the delimiting character or
sequence is also deleted. Thus, IKFLLW /rj changes Harry to iy.

5.1211222 Specification of Terminal Delimiter.

5.12112221 The Operation Code LK-CHRU.

This causes deletion of all characters following the first occurrence
of a given character or character sequence. Format as in 5.1111211.
Thus, LKTHEU xrx changes Hariv to Har.

.56

5,12112222 The Operation Code LKUPTO.

This differs from LKTHRU only in that the delimiting chancter or
sequence is also deleted. Thus, LKITTO ,r, changes Harry tc Ha.

5.12113 Deletion Dependent on Immediately Preceding Instruction.

5.121131 The Operation Code LKTRST.

This operation code, which has no operand, must be used immediately
after an instruction containing one of the following operation codes:
NMBUNG, NMFLLW, NMFRST, NMLAST, NMTHRU, NMUPTO (cf. 5.12122 below). Its

effect is to delete from the item buffer those characters stored by the
immediately preceding instruction. Thus, the two instructions NMFRST 1,

start (cf. 5.1212212) and LKTRST have the same effect on the item buffer
as the single instruction KILFRS 1, i.e. they change Harry to arry.
The sole difference is that in the former case the H has been stored as
the sole member of the class start, while in the latter it has been
irretrievably lost.

5.1212 Transfer of Characters in Item Buffer to Other Core Areas.

Transfer of some or all of the characters currently in the item
buffer to another core area follows the pattern for the storage of literals
described under 5.11132. The characters to be stored are treated as a
single literal, i.e. they become the sole member of a class. Since

storage and retrieval entail the aosociation of the characters with a
class name, each of the operation codes described below contains either
the sequence NM or the sequence NM

5.12121 Storage of Entire Contents of Item Buffer.

5.121211 The Operation Code NMITEM.

This operation code stores the entire current contents of the item
buffer as the sole member of a class. The class name follows the tab
mark and, in contrast to 5.121212, is not subject to modification by the

program. Thu.,, WITEM label stores the entire current contents of the
item buffer as the sole member of a class with the name label.

5.121212 The Operation Code SERNAM.

Phis code differs from NMIPEM only in that the class name following
the tab is expanded by one of the decimal digits from Q through 9. The

digit chosen is determined by the number of times the class name occurring
after the operation-code tab mark has already been used. Thus, the first

occurrence of SEENAM label will associate the current contents of the
item buffer with the class name label . The next occurrence of this
instruction associates the item-buffer string with labell, the next with
label2, etc.

5.12122 Transfer of Part of Item-Puffer Conl.en1:.

5.321221 Numerical Srecification of Characters to to Stored.

31

5.12122_1 The Operation Code NMLAST.

This operation code transfers the final character in the .tem buffer
plus as many as 28 immediately preceding characters to a core area other
than the item buffer and associates the charac+ 's, which are treated as
a single class member, with a new class name. 2he contents of the item
buffer are not affected, but pointers are set to indicate which characters
in the buffer were not transferred (cf. 5.121131 and 5.1212231).

The tab mark is immediately followed by a decimal number from 1
through 29, which is itself immediately followed by a comma. The latter
is followed by the new class name, with or without an intervening space.
Thus, the instruction NMLAST 2,end does not change the contents of the
item buffer, but, if the latter contains the string Harry, stores the
sequence as the sole member of the class end. In addition it sets
pointers indicating that the characters Har were not stored by this
instruction.

5.1212212 The Operation Code NMFRST.

This operation code differs from NMLAST only in that it transfers
the first character and as many as 28 immediately following characters.
Thus, NMFAST 2,begin leaves Harry unchanged in the item buffer, stores
Ha as the sole member of the class begin, and sets pointers to indicate
that the characters ary were not transferred by this instruction.

5.121222 Delimiter-Dependent Specification of Characters to be Stored.

5.1212221 The Operation Code NMFLLW.

This operation code transfers all characters in the item buffer which
follow the first occurrence of a given character or character sequence and
associates them with a new class name as the sole member of the class in
question. The contents of the item buffer are unchanged but pointers are
set to indicate the characters not stored as a result of this instruction
(cf. 5.121131 and 5.1212231). The tab mark is Immediately followed by
the delimiting character or character sequence, set off as in 5.1111211.
The latter is followed by the new class name, with or without an
intervening space. If the item buffer contains Harry, the instruction
NMFLLW -ar-end stores the sequence ry as the sole member of the class
end, leaving the item buffer unchange(i, and indicates that Har has not been

moved.

5.1212222 The Operation Code NMDONG.

This parallels ?Th "LLW, except that the delimiting character or

sequence is also stored. Thus, its use in the example for 5.1212221 would
result in the storage not of Iy, but of arry.

5.1212223 The Operation Code NMU1T0.

This code parallels NMFLLW except that it stores the character:7
preceding, the first occurrence of the delimiting character or sequence.
Its use in the exampl.r., for 5.1212221 would result in the storage of H.

5.1212224 The Operation Code NMTHE111,

This parallels NMUPTO, except that the delimiting character or
sequence is also stored. Its use in the example for 5.121222'_ results

in the storage of Har.

5.121223 Transfer Dependent. on Immediately Precedirg Instruction.

5.1212231 The Operation Code NMREST,

This code, which can be used only immediately following an
instruction with one of the operation codes NMPGNG, NMiLLW, NMFRST,
NMLAST, NMTHRU or NMUPTO, transfers all the characters in the item buffer
not moved as a result of the preceding instruction and associates them
with a new class name as the sole member of the class in question. The

contents of the item-buffer are unchanged. The tab mark is immediately
followed by the new class name. Thus, the instruction sequence

NFRST 1,start and NMREST end leaves an item buffer containing Harry
unchanged, but stores the character H as the sole member of the class
start and the string arry as the sole member of the class end.

5.122 Manipulation of Strings Stored in Core Areas Other than
Item Buffer.

5.1221 Inclusion of Two or More Classes in Another class.

It may often be useful to be able to manipulate the members of two
or more classes at a single stroke. This can be accomplished by
including the membership of each of the classes in question among the
members of a single larger class.

5.12211 The Opera' icn !'ode '60MFOS.

This operation code establishes a new class the mernten, of which
incluue all therwrfters of two or more other classes. A new class
resulting from the u e of this operation code will be called a composed
class, in contrast to a non-composed class, i.e., a class resulting from
he use of any other operation code.

The format of instructions with this operation code exactly parallels
that of those used with the operation code NWCIZ (cf. 5.111521). The name
cf the new composed class stands between the tat, mark and the first comma,
followed by the classes whose members will be included in the membership
of the new composed class. ThP new composed class may include not only
the mentors of non-composed classes but also those of other composed
classes. Note tha' none of the class names or class members may incluie
a period, comma, or percent .ion (cf. 5.111521),

If we assume the existence of the non- composed classes :tart and end,
generated as in 5.1212251, we can gain the ability to manipulate the entire
name Harry by using the instruction COMPOS narzatart,eni. The m-mters

of the new non-ccmposei class name would 1:f? H ant arry Note that the
sequencing if the renters cf a composed class reflects the order ih which
its component classes are named in the C(!fPS instruction.)

As a more meaningful example we may cite the instructional sequence

NWCLS vowels, a,e,i,o,u.

NWCLS liquids, r, 1.

NWCLS nasals, n, m.

COMPOS vocalics, vowels, liquids.

COMPOS sonorants, vocalics, nasals.

The composed class vocalics includes the members a, e, i, o, u, r,

and 1. The composed class sonorants includes all of these plus n and m.

5.1222 Deletion of Classes.

The following instructions permit the deletion of strings stored in
core areas other than the item buffer. Since such strings are always
associated .lith a non-composed class, their deletion also entails the
deletion of the corresponding class name. Note that there is as yet. no
provision in EVC either for the deletion of composed classes or for their
modification to reflect the deletion of non-composed classes which they
include. It follows that the deletion instructions must be used with
extreme care. On the other hand, the deletion feature permits the
repeated use of one and the same class name with different memberships,
i.e., it makes possible the storage of both variables and constants in the
same manner.

5.12221 The Operation Code DELETE.

This operation code results in the deletion from core of an entire
non-composed class--both the class members and the class name. The tab

mark is immediately followed by the name of the class to be deleted.
Thus, assuming that the instructions cited in 5.1212231 had been executed,
the instruction DELETE end would result in the removal from core of
both the class name end and the class member airy.

5.12222 The Operation Cole LELSEB.

This code parallel.= DELEtE except that. it deletes the names and
memberships of all the non-composed classes constituting a series formed
in accordance with 5.121212 above. Thus, if, after executing two of the
SEBNAM instructions discussed in 5,121212, we write DELSER label, both
the class names 1ate4 and latell and their members would be deleted.

5.1223 Tran=ference of String:; to Item Buffer.

5.12231 Transfer of Inlivilual Class Members to 1.1-,c, Item Buffer.

These instructions make possible the examir.at ion ani manipulation of
individual class members. They are applicable only to non- composed
classes.

5.122311 The Operation Code LOOKAT.

This operation code transfers the first member of a givon non-composed
class to the item buffer. In addition, it sets a class - member pointer to
the first character of the second member of the class, if any such member

exists. The class name immediately follows the tab mark. Thus, if we

assume the previous execution of the instruction NWCLS nouns,hat,dog,

face. (cf. 5.111321), the instruction LOOKAT nouns places the
characters hat in the item buffer.

5.122312 The Operaticn Code IXCLNX.

This code transfers to the item buffer that member of a given class
which is indicated by the pointer mentioned in 5.122311. In addition it
resets the class-member pointer to the first character of the next member
of the class, if any such member exists. The format parallels that for

5.122311.

Thus, if we follow the LOOKAT instruction illustrated in 5.122311
with LKCLNX nouns, the string doB will be transferred to the item

buffer. If we repeat the LKCLNX instruction the item buffer will contain
face.

5.122313 The Operation Code LKCRCM.

This operation code also transfers to the item buffer a single member
of the class whose name follows the tab mark. However, the member chosen

is the member whose sequential position within the class corresponds to
that of the last class member of any non-composed class transferred to
the item buffer by either an LOOKAT or an LKCLNX instruction. Thus, if

the class verbs has the membership run, .62, jump, and if after manipulating
the string face, placed in the item buffer by the second LKCLUX instruction
mentioned in 5.122312, we write LKCRCM verbs, the member transferred
to the item buffer will be ,12E22, since it occupies the same sequential
position within the class verbs, which face occupies within the class nouns.

5.122314 The Operation Code LKSRIG.

This operation code places in the item buffer the sole member of the
first of a series of cne-memler classes generated by the use of the
instruction SERNAM (cf. 5.121212 above). In addition, a series-member
pointer is set to indicate tiie class, if any, which is the second member
of the series in question. The format is the same as for the operation
code SERNAM (cf. 5.121212). Thus, the instruction IZSREC label will
put the class member associated with the class more latel0 in the
item buffer.

5.122315 The UIeration Code 1XSRNX.

This or.c:i.tion code places in the item buffer the class member
associated with that class of a series generated by the use of SERNAM
instructions (cf. 5.121212) which is indicated by the series-member
pointer mentioned in 5.122314. It also resets the pointer to indicate the
next class in the series, if any such exists. Thus, if, after executien
of the LKSRIC instruction sited in 5.122314. the program encounters

LKSRNX label, it will transfer to the item buffer the class member
associated with tle class name label and reset the series-member pointer
to indicate the class name label., if such a class exists.

5.122316 The Operation Code IKCFSM.

This code parallels LKCNCM (cf. 5.122313), except that it operates
with classes included in series generated by SERNAM instructions
(cf. 5.1'21212). Thus, if after he execution of the 1KSRNX instruction
cited in `:..12231'; the proEram encounters the instruction LKC16M word,

it will place in the item buffer the class member associated with the
class name wordl and set the series-member pointer to indicate the class
name word2.

5.12232 Transfer of All Member:: of a Class to the Item Puffer.

5. 122321 Operaticn Code DUi&.

opera' ion code moves he entire membership of a non-compo7ed
class, wit h pe.scent ve marks separat ing t he individual 1.0 t he
item buffer. The class name follows the tab nark. Thus, assundng the sane
class nemlership as that given in 5.122311, the instruction r.ft p nouns

ilace: in the item buffer the sequence hatMoeface.

5.12233 Transfr to the Item I_Iffer of the Membership of All
Classes in a Series.

.5.125.31 The. Operation Code JOINSR.

This operation code places in the item buffer, without intervening
spaces, he membership of all the classes in a series generated by
repeated SE5A71 instructions (cf. 5.121212). The sequencing of class
members corresl.chis to the ascending rd.:merical crier of '.1.2 digit_ in

the class names assoiatsd with ten. '2i:us, if the class latel has

1 he rerTher and he class lateli has tiy- ;t07,1'-i- a, and there is no
the instruction J(.1:;5R. label places xya in the item

-buffer.

51;:.:352 The Cperat!,on Cole F,fia'!-.

This differs from Ly'r;:,R only in tha' individual class meml,-rs are

el,arstsi ly a u-e in, the (xanple citci for 5.1225f1 daces
XY '3 in the l'en b,:ffer.

Jsntrol of Prograzi

5.151 Uncnditional Trahsfe .

511 Transfer t c cm. 17;:tr= ion ?rocs led ly a :Ate] ,
A label in an 12,',7 program is a string of characters im7ediately

pret_riel ani followed d' The initial hyphen must le
immeiiately preceded t a line fee:. While the termdnatin hyphen nsel
nct to immediately ly a line feed, the pre -gram will irnore all

the characters which occur between that hyphen and the next line feed.
(For examples of labels see 5.13111 and 5.13112.)

5.13111 The Operation Code GOTO.

This operation code causes the program to take as its next
instruction the first instruction following a given label. The label,
minus the preceding and following hyphens, is placed immediately after
the tab mark. Thus, GnTO middle causes the program to take as its
next instruction the instruction following the label -middle-.

5.13112 The Operation Code GOTOIT.

This operation code differs from GOTO in that the label is not
specified in the instruction but is assumed to be already present in the
item buffer. There are no other operands. Thus, if the item buffer
contains the sequence middle Ole instruction GOTOIT will have the same
effect as GOPO middle.

5.13113 The Operation Code VISIT.

This operation code differs from GOTO only in that it sets a
return pointer to indicate the location of the next instruction following
the VISIT instruction. The return pointer may then be utilized in
connection with a GOBOKE instruction (of. 5.13121). Thus, the use of

VISIT middle has the same immediate effect on program flow as the use

of G070 middle.

5.15114 The Operation Code VISITI.

This differs from VISIT (cf. 5.13113) Just as GOTOIT (cf. 5.13112)
differs from GOTO (cf. 5.15111). Thus, if the item buffer already
contains the string middle, VISITI will have the same effect as
VISIT middle.

5.1312 Transfer to an Instruction Preceded by a VISIT
or VISITI Instruction.

5.15121 The Operatio Code GOh'CME.

This operation cote causes the program to take as its next
instruction the instruction indicated by the return pointer mentioned
in 5.13115. It has no operands. Note that the use of GCHCME must be
carefully coordinated with that of VISIT and VISITI.

5.1313 Omission of Instructions.

5.15131 The Operation Code SKIP.

This operation :ode causes the program to iEnore a number (from 1
to decimal 29) of 1in9s(instructions and/or labels) in selecting the neat
instruction to be executed. Tie number of lines to be ignored is
sr.ecified by a decimal number following the tab mark. Thus, SKIP
causes the rTogran to take as its next instruction the instruction on the
fourth line following the SKIP instruction. (If that, line is occupicd

by a label t1-14 program will take i7 o next instruction from the following
line)

5 ondit.ional ltran'sfer.
Since all condi' ional-7 ransfer inst ructions have opera' ion code

beginning, with t he equerco IF, they will henceforth be referred to as
IF inst ract ion Ail IF ins",ruc ions cause the program to test for th,
existence of a given cord it ion. Depending on the result a of the t est,

ho program eit her proceed.' t") th-, next instruction following, t he IF
ie-t uct ion omit ,t hat ins' ruction and t ranefei%; t o t he following

ruc ic)n, bena're: a: if he IF ins tru._-'r len were t he instruction

SUP 1 (cf.

5.121 anofe/ i iona I on he B.,;:ult s of a C.omparioon

of tai' F, of Item Buffer and a Lit eral.

). (Tra7 ode rt. '11.;FIo .

,'n1- -cal ice, code 7 he program to omit ; he nox ins' ratr Jon

if 7 con' er;r: of 'no m for are neF identical with h a given
fte 1 1, ei off as in 5. 1111211, follows t he ab mark. dlua,
the itc74 'rut fer cont. sins the t. ring Harry, the inc.' ruct ion IF 'WEN

will reoallt in omi:ntion of the next- inst rue!. ion. if he i buffet'

doo 3 con' ale 5' ring jol.u, ' he next in.'t r,ict ion will be execut

2'ne itot rqc' ion al' or 8N 11.1DEN in -7 ruction is woliallv an

ut,c ond i it)nal ran.:f..,/ ruct {cf. . 5, L.51). MA::, ruct ion

IF 1 Di.2i xJ,:hnx triftlf. to immedia7 ely followed by GOT') middle co that
I h., presence of he r.4, ring John in he it em buffer would re.:ult in a

ranefer o 7 ee ins* ruc, ion following I he label -middle- (cf 5.15311)

1,t'212 7e r i as 7oci

tte following in fuc ion if of

ti i em .;f ho" a given ral Format a: in 5 .1t"... 11

, if i' ern t or (a i /,-; ri I1 johnnz, t he ins i lira

/.lohr./ would not r! cul in an OrrIU.'.,-Pci in njo itcugt.

11.1f*.7; ch fit wou ri

- 52 1 5 1 Cif ra' icn

- can z,7- r,f a lit: if se.lu'lice of charaet el'a

it er, incl.fiseg i so cit,'..racer an not id on' ic al with a Ziv,"

1 1-'c.,rm.a a]. it, 5 1")?11. Au :., T1-17:ND -y- will no', re sal" in

an i.;:r h, l tut- for cont ains Hari v or Joh,ny.
Howe vet EiT) -rv- will omit in inst rus len if' the latter inr, i.

enco.:ntf.

5.15;2:1, Zee r a' ion 11;b1.,.

dill from 1'1:41 or,Iy in Ina' he F.' ring the' it err, t_lfftr

mu in.: lu 'he fir: .:Yarn.. r. Tins. 13.- fa; /Jolt.n/ not emit

in: vitt r Jc/-n or Sol-aw,' i5 In is it em f u
1,1-3; ; ,rr;- will 07.! inrt rust ion if it encotin" cr."- 'he form-Hr.

5.1322 Transfer Conditional on Number of Characters in Item Buffer.

5.15221 The Operation Code IFLNGRTH.

This causes omission of an instruction if the item buffer does not
contain more than a given number of characters. The number (in decimal
notation) is given after the tab. Thus, IFLNGRTH 5 will omit an
instruction if the item buffer contains John or Harry, but not if it
contains Johnny.

5.13222 The Operation Code IFSHTRTH.

This omits an instruction if the item buffer does not contain fewer
than a given number of characters. Format as in 5.13221. Thus,

IFSHTRTH 5 omits a line if the item buffer contains Harry or Johnny,
but not if it contains Jonn.

5.13223 The Operation Code IFEQLGTH.

This omits a line if the item buffer does not contain a given number
of characters. Format as in 5.13221. IFEQLGTH 5 omits an instruction
if either John or Johnny is encountered, but riot if the item buffer contains
Harry.

5.133 Transfer Conditional on the Results of a Comparison of the
Contents of the Item Buffer with One or More Class Members.

5.1551 The Operation Code IFMEN.__
This operation code omits an instruction if the contents of the

item buffer are not identical with one of the members of a given class
(composed or non-composed). The class name follows the tab mark. Thus,
assuming the same class membership as in 5.122311, the instruction
1FMEM nouns will omit a line if the item buffer does not contain one
(and only one) of the three strings, doe, face, hat.

5.1552 The Operation Code IFMESR.

This differs from 11.151M only in that the contents of item buffer
COMparei with the membership of each of the classes constituting a

series generated by the use of SE NAM instructions (cf. 5.121212). Thus,

1FMRSR label, assuming the same classes and membership a:t in 5.122331,
will omit an instruction unless the item buffer contains either a or xv.

5.1335 The Operation Code IM4ATH.

1

This operation code omits an instruction if the item. buffer does not
include a larger number of characters than the number found in the first
member of a given non-composel class. Format as in 5.1351. Titus,

IiTTIXTE nouns, assuming the same membership as in 5.122511, will omit
an instruction if the item buffer contains less than four characters since
hat, the first member of the class in il:estion.contains three.

'.5

5.1534 The Opevation Code IFLSEXTH.

This differ from IFRBEXTH only in that an instruction is omitted if
the item buf-P:_c does not contain fewer characters than the first member ('
the non-composed class. Thus, assuming the same membership as in 5.122311,
IFLSEXTH nouns will omit an instruction if the item buffer contains more
than two characters.

5.1555 The Operation Code IFEQEX.

This differs from I.F._,X111 only in that an instruction is omitted if
the item buffer and the first member of the non-composed class do not
contain the same number of characters. Thus, in the example cited in
5.15514,1YEga nouns will omit a line if the input buffer contains either
more ur less than three characters.

5.1336 The Operation Code TFLSTE.

This operation code omits an instruction if the first ASCII character
in the item buffer is not numerically less than the first ASCII character
of the first member of a given non-composed class. Thus, assuming the
same membership as in 5.122311, IFLSTH nouns will omit a line if the
first ASCII character in the item has an octal value of 150 or more, since
octal 150 is the value of ASCII h, the first character of hat.

5.1537 Ths Operation Code IFGhTH.

This differs from IFIZTH only in that an instruction is omitted if the
first ASCII character in the input buffer is not numerically greater than
the first character of the first member of a given non-composed class.
Thus, in the example cited in 5.15_56, IFGHTH nouns will omit a line
if the first ASCII character in the item buffer has an octal value of 150
or less.

Transfer Conditional on Existence of a Given Non-Composed Class.

u:.13;41 Oiseration Code IFEXST.

This operation code omits a line if a given non-composed class is
not currently stored in core. The class name follows 1-.e tab mark. Thus,

assuming only 'he classes men'iond in 5.122511, IFEXST nouns will not

omit an instiuction, while IFXST adjs will.

.13;2 The (4eralion Cede 1F1SN',,,.

This differs from P'EXT only in that. the omission of an instruction
takes place if a given non - composed class is currently in core. Thus,

in the example cite in 5.1341, IFISNO nouns omits an instruction,
hi le IFISNO aijs does not.

5.14 Cu`A..ut.

Cu'itzt is always onto a disk file attached to channel !, For this
rease.n we will ref'r 'o the output file as file 3.

5.141 Output of Contents of Item Buffer.

5.1411 The Operation Code PUTIT.

This operation code causes the entire current contents of the item
buffer to be written on file 3. No operands are used. Thus, if after
the instructions LKLIT abc (cf. 5.11131) and KILFRS 1 (cf. 5.121112)
the program encounters a PUTIT instruction, the string be will be written
on file 3.

5.142 Output of Class Membership.

5.1421 The Operation Code PUTALL.

This operation code causes the program to write on file 3 the
entire membership of any class -- composed or non-composedwith a carriage
return following each class member. The class name follows the tab mark.
Thus, PUTALL nouns, assuming the same membership as in 5.122311, causes
the program to write on file 3 the sequence

hat

face
dog

5.1422 The Operation Code RIMER.

This results in the writing on file 3 of the class members corresponding
to all of the classes in a series generated by repeated SERNAM instructions
(cf. 5.121212). Each class member is followed by a carriage return. Thus,
assuming the same classes and class members as in 5.122331, the instruction
PUTSER label writes on file 3

xy

a

5.145 The Output of Literals.

5.1451 The Operation Code PUPLIT.

This operation code causes a string of characters following the tab
mark and set off as in 5.1111211, to be written on file 3. Thus,

arrLIT -abc- writes abc on file 3.

5.15 Program Delimiters.

5.151 The Operation Code RDA.

Tne first instruction of any EVC program must begin the operation
code ED3. The tab mark may, but need not, to followed by additional
material. This material must not extend beyond the first line feed
following ED;.

;47

Tho Oseratin CoJe F111.

The lant instruction of any EVC program must begin with th:s
operation code. it.ogram operation is normally terminated by a COTO

instruction (cf. 5.1:511) which leans to the execution of the PIN instruction.
Material following the tab mark of the 7IN instruction is ignored.

6. Program for the Conversion of Assertions Concerning
a Ya.,'gf.t Lfnlgt:age to a Coded Format.

6.0 ation and Ptirpos.

6.01 Areh,tyTal At,''ortion's as a Substitute for a Prograriming Language.

One of the major obstacles to the utilization of computational
techniquos by languoge teachers has been the need to master a programming.

lanzuage. Such langiagey, no matel how user-oriented, always entail

the as of n(w modes of discourse about a familiar subjoct, a
task which many iinl di!i'icult or insuimountable. It would, therefore,

seem desinable to n-,k it for lag uae teachers (ani other

:;cholass well) t2 intact effectively with a computing system "on

their own without the previous acquisition of a ;.-stom of

discourse: whish iiffers markodly from that which they are accustemod to
employ.

It would app_ar that a .:atisfaitory solution to this problem entails
an approa-h to the problem of discourse systs,ms diamoirically opposed to
that inherent in the prograsming language approach. Iuctoad of forcing

the languaF: ',oaf: her to rrater a new lexicon and granmar, we must analyze
the utto:an:es, which aaraetorizo his own discourse in the hope of
deriving the: fro;,, a finite (if, perhaps, large) set of archetypal

assortious, capable .:o;vs(ying all th- information which a language

teacher no::ftlly wisl..es to cynnunicat... 1: 'cc are sulcssfal in this

tiik we cf.n hope to ef.,ta'cdih L" 'F'1:

--ashor ant thc com[c.tin ryquiring le former to
..311 Stat -.,:i a for corTi,,4.3- bin t

fianework of tni archetypal acs,,rtions included in cnir 7Ci, and 0 ailpply
tho variabls leiuiied to come r". a givt.r. archetypal assertion to a

otatemnt to tlie is or languages he is dealing with.

(a:A a statement will ht,n.c.:foilh 'co call.:d a cc^ t .o assertiou.

) ist..latios of an a1'CiS. aesertion lot considr
4h following f-tattne :

1) Pu-sian 1 Y prinours,3 like the vwel of
Engli-h
Th. closest It.:rglish court to that of strescY1

Y 1:z A, v. :l hcand in lik
To pro.::o...;:co plane the an:

a1i.roxim3toly sane position as ..hat

for th of Eng.lizh

We submit that each of the above statements is adequately covered
by the following assertion: The sound represented by Russian stressed Y
is very similar to the sound represented by the oo of Englis:1 'toot'.

This statement may in turn be converted to the archetypal assertion:
The sound represented by TARGET LANGUAGE VARIABLE is very similar to that
represented by BASE LANGUAGE VARIABLE.

It would appear that a language teacher wishing to communicate to a
computational system the information conveyed by any of our three
original utterances would 1) easily recognize the equivalence of the
original utterance and our archetypal assertion, and 2) find no difficulty
in supplying the variables needed for the formulation of a concrete
assertion.

6.02 The Value ')f a Converter Program.

Ti a concrete assertion is to serve as a useful tool in the
generation of programmed instructional material it is necessary to have
some convenient means of 1) distinguishing the archetypal portion of
the assertion from the variables accompanying it, and 2) retrieving the
individual variables whenever they may be needed in the generation of
instructional frames. It follows that it will be useful to convert a
concrete assertion from its original formulation to 1) a string of
characters corresponding to the archetypal portion of the instruction
and constituting an operation code to be utilized in calling computer
routines used to generate the appropriate instructional frames, and 2) a
set of literals corresponding to the variables of the concrete assertion
and each associated with a single label utilized in the frame-generation
routines.

6.1 Decumentaticr.

6.11 Function of +he. Program.

(See 6.01 and (.0.2.)

6.12 File format.

(.121 InIut File.

The input coneists of a disk file (channel 2) containing one or
more ccneret? aes-rticrs.

6.1211 Use of the Tab ark plus a Delimitative Character to
indicate the Beginning of a Concrete Assertion.

Each concrete assertion must begin with a tab mark. The tab mark

muct l immellatly ty a delimitative character. This may te
any ASCII character other than the tab mark which does not occur within
the assertion in a mere -de limitative function. however, it is generally
more' ccry nien'. to uee a character such as a slash or a hylhen than to
employ an alrhanumeric character.

6.1212 'the Delimination of Variables within a Concrete Assertion.

Variables within a ":orctrete assertion are set off by a preceding and
a follo....ing single occurrence of the delimitative character specif Led at

the 1,ginning of the assertion. Spaces immediately preceding or following
the delimitative character are ignored.

6.1215 .)f.' the Delimita'..ive Character to Terminate a Concrete

k;sertion.

'trite la. t. non-delimitative character of a concrete assertion is
immediately foll.c2ved by an uninterrupted sequence of two delimitative
characters. If the terminal non-delimitative character is part of a
variable, 4 h- charact."-r which signal's the end of the variable
al:o as t11.- firtt of the two characters used to terminate the
a ...erticr.: A p." ing characters is ignored.

": Con,tict..e Ion c action Variable.

6.121-1 hyphen Osa as Delimitative Character.

ound repre-Tert,.1 by --Rtitsdan stressed Y- i a very similar to

hat rt pr.es.-nted by English vowel in .
(`n this s. for the variables are liu;,Aan stress,

Enclish f.) Y and

121;42 Sla r 'J d as Delimitative Uharactr.

sound repre'sentnd by /i(tcssian stressed Y./ is very similar to
hat rep) e...entv by /t En.i.t,lish vowel in ' toot' .//

(.122 .

1:.L5 01 a disk file (channel 5) con'ainir,g Lb-
ial an pi'L.gram including one Tit:IN.11'. instruction (cf.

-, condi. te as:7, rt of f

Pt.%! r f cr the Si Instiust ion (:f. r:.111:V.2)

iientit.a., with f.: the C',T..'rt- ar;sei :en.

Clat.s Nam,

C-; each 1,,.',111 "!'. ins t ra:-tion con:. 1:.4.3 of ' h:t 'nit i al

le' tens of 4.1:c weed hich make up the non-variable Ivrtion of the concrete
at. icn o t he in ,4 uo7 ion. Thus, for t he example cif e I

und,i 6.1,:71% t'ne class ame

6.1225 C la r .

it re individual class m-ml...,rs for each NC.;:iT's`. ins' rust ion consist.

of the individual variabli-s included in 'Yr coin. conrct
7i7b;i-. for the example cit,A under 6.1t-1% IS class m..mlers

strirgs s' rss 9 Y and v in too' .

Ci0

6.1224 Example of Output Corresponding to the Tnput
Illustrated under 6.1214.

6.12241 With Delimitative Character as in 6.12141.

NCLNTM -tsrbivsttrb-Russian stressed Y-the English vowel
in 'toot' --

6.12242 With Delimitative Character as in 6.12142.

NCLNTM /tsrbivsttrb/Russian stressed Y/the English vowel
in 'toot'//

6.2 Evaluation and Prospects for Future Development.

The program documented under 6.1 provides material which could be
used as input for more sophisticated EVC programs designed to generate
instructional frames. Thus, the example cited under 6.1224 could be
converted to a presentation frame, consisting of the archetypal assertion
itself, and two fill-in frames, one calling for the student to fill in
the first variable, the other calling for the second variable.

It would appear that a carefully organized set of archetypal assertions
would make possible a much more sophisticated set of frame generation
routines. Thus, if we changed the example cited under 6.1214 to -The
sound represented by -Russian- stressed -Y- is very similar to that
represented by the -oo- in the -English- word -toot--, the more discrete
nature of the variables would permit a much wider variety of reinforcement
frames.

7. Conclusions.

The work carried out during the contract period resulted in the
development of a number of research tools which, ii is to be hoped, will
prove useful in future work on the automatic generation of materials for
programmed language instruction. Thus, the programs and notations
discussed in sections 1 through 5 should prove helpful in the automatic
generation of a wide variety of phrases and/or uttATances utilizing a
given vocabulary item. The program discussed in ;action 4 facilitates
the input of information necessary for the successful application of such
generative techniques to a new vocabulary. The EVC language discussed
in section 5 will, it is hoped, greatly increase the speed with which new
programs can te written and debugged. Finally, the EVC program discussed
in section 6 allows language teachers to pr4are input. for computer
processing without learning a new mole of discourse.

While it is obvious that many problems must. be overcome in developing
automatically generated programmed language-instructional materials, it
would seem that we can now proceed to the investigation of such problems
in a much more efficient manner than was previously possible.

51

7,itribution List

OFFICE OF NAVAL RESEARCH

PERSONNEL AND TRAINING RESEARCH PROGRAMS (CODE 458)

DISTRIBUTION LIST

(TRACT NO. NO0014-67-A-0112-0042

I y

:thief of Naval Research
;ode 453
Department of the Navy
Washington, D. C. 20360

*(A11)

Director
OTri Branch Office

1050 East Grcen Street
Fac,adena, California 91101

(All)

Director, Naval Research Laboratory
Washington, D. C. 20390
ATTN: Library, Code 2029 (ONRL)

(A11)

()Mee of Naval Research
Area Office

1076 Mission Street
San. Francisco, California 94103

(A.11)

Irirector

Naval Research Laboratory
WaAington, D. C. 20390
A??N: Technical Information Division

(All)

Dfen.:e Documentation Center
Cameron Station, Building 5
5010 Duke Street.
Alexandria, Virginia 22314

(All)

Commanling Officer
Service School Command
U. S. Naval Training Center
San. California 92133

(All)

CONTRACTOR Dr. Joseph A. Van Campen

3 Commanding Officer
Naval Personnel and Training
Research Laboratory

San Diego, California 92152
(All)

1 Commanding Officer
Naval Medical Neuropsychiatric

Research Unit
San Diego, California 92152

(12346)

1 Commanding Officer
Naval Air Technical Training Center
Jacksonville, Florida 32213

(2356)

1 Dr. James J. Regan, Code 55
Naval Training Device Center
Orlando, Florida 32815

1 Technical Library
U. S. Naval Weapons Laboratory
Dahlgren, Virginia 22448

(All)

1 Research Director, Code 06
Research and Evaluation Department
U. S. Naval Examining Center
Building 2711 - Green Bay Area
Great Lakes, Illinois (0058
ATTN: C. S. Winiewicz

(All)

1 Chairman
Behavioral Science Department
Naval Command and Management Division
U. S. Naval Academy, Luce Hall
Annapolis, Maryland 21%02

(All)

.en trod,.:cin,s 'he addreizses in this list, (1411tte the information in parentheses
follc ws the aidress. Thi7 information is for CNR use onlv.

52

1 Dr. A. L. Siafkosky
Scientific Advisor (Code AX)
Commandant, of the Marine Corps
Washington, D. C. 20580

(All)

1 Director
Aerospace Crew Equipment Department.
Naval Air Development Center
Johnsville
Warminster, Pennsylvania 18974

(1346)

1 Chief
Naval Air Technical Training
Naval Air Station
N-mphi, Tennessee 58115

(All)

1 Director
Education and Training Sciences Dept.
Naval Medical Research Institute
National Naval Medical Center
Building 142
Bethesda, Maryland 20014

(All)

1 Commander
Sutmarine Development Group TW0
Fleet Post Office
New York, New York 09501

(16)

1 LCD R J. C. Meredith, USN (Bet.)
Institute of Library Rescarch
University of California
Berkeley, California 947L0

O
1 Commander

Operational Test & Evaluation Force:
U. S. Naval Base
Norfolk, Virginia 25511

(All)

1 office of Civilian Manpower Management
Technical Training Branch (Code 02)
.13r'trs nt of the Navy

Washington, D. C. 205?)
(1256)

55

1 Chief of Naval Operations, (Op-07TT)
Department of the Navy
Washington., D. C. 2,0550

(All)

1 Chief of Naval Material (MAT 051M)
Room 1525, Main Navy Building
Washington, D. C. 20560

(All)

1 Mr. George N. Graine
Naval Ship Systems Command (SHIPS 05H)
Department of the Navy
Washington, D. C. 20560

(All)

1 Chi,-f

Bureau of Medicine and Surgery
Code 513
Washington, D. C. 20590

(All)

6 Technical Library (Pers-11b)
Bureau of Naval Personnel
Department of the Navy
Washington, D. C. 20370

(All)

3 Personnel Research and Development,

Laboratory
Washington Navy Yard, Building 200
Washington, D. C. 20590
A^::1;: Library, Room 5507

(12545)

1 Cormander, Naval Air Systems Command
Navy Dkinrtment, A1R-4152
Walington, D. C. 20560

(2!-())

1 Ccmmandant of tne Marine Corps
Headquarters, U. S. Marine Corps
Code AO1B
Washington, D. C. 20t..50

1 Technical Library
Naval Ship Systems Command
Main Navy Building, Peon 1552
Wa:hington. D. C. 20560

(A11)

(125)

1 Mr. Philip Rochlin, Head
Technical Library Branch
Naval Ordnance Station
Indian Head, Maryland 20640

(All)

1 Library, Code 0212
Naval Postgraduate School
Monterey, California 93940

(All)

1 Technical Reference Library
Naval Medical Research Institute
National Naval Medical Center
Bethesda, Maryland 20014

(A11)

1 Technical Library
Naval Ordnance Station
Louisville, Kentucky 40214

(45)

1 Naval Undersea Research and
Development Center

3202 East Foothill Boulevard
Pasadena, California 91107
ATTN: Code 161

(5)

1 Commanding Officer
U. S. Naval Schools Command
Mare I3land
Val)e.lo, California 914592

(5)

1 Scientific Advisory Team (Code 71)
Staff, COMASWFORLANT
Norfolk, Virginia 23511

(All)

1 Education & Training Developments Staff
Personnel Research & Development Lab.
Washington Navy Yard, Building 200
Wrn;hing',on, D. C. 20390

(All)

1 Dr. Don H. Coombs, Co-Director
ERIC Clearinghouse
Stanford University
Palo Alto, California 94305

(156)

5'i

1 ERIC Clearinghouse on
Educational Media and
Stanford University
Stanford, California

Technology

94505
(156)

1 ERIC Clearinghouse on Vocational
and Technical Education

The Ohio State University
1900 Kenny Road
Columbus, Ohio 43210
ATTN: Acquisition Specialist

(135)

1 LTCOL F. R. Ratliff
Office of the Assistant Secretary

of Defense (MRU)
The Pentagon, Room 31)960
Washington, D. C. 20301

(All)

1 Dr. Ralph R. Canter
Military Manpower Research Coordinator
OASD (M&RA) MR&U
The Pentagon, Room 3D960
Washington, D. C. 20301

(All)

1 Deputy Director
Office of Civilian Manpower Management.
Department of the Navy
Washington, D. C. 20390

(All)

1 Chief, Naval Air Reserve Training
Naval Air Station
Box 1
Glenview, Illinois 60026

(25)

1 Technical Library
Naval Training Device Center
Orlando, Florida 32813

iG

ARMY

1 Director
Human Resources Research Organization
300 North Washington Street
Alexandria, Virginia 22314

(A11)

1 Human Resources Research Organization
Division #1, Systems Operations
300 North Washington Street
Alexandria, Virginia 22314

(A11)

1 Human Resources Research Organization
Division #3, Recruit Training
Post Office Box 5787
Presidio of Monterey, California 93940
ATTN: Library

(All)

1 Human Resources Research Organization
Division #4, Infantry
Post Office Box 2086
Fort Benning, Georgia 31905

(A11)

1 Human Resources Research Organization
Division #5, Air Defense
Post Office Box 6021
Fort Bliss, Texas 79916

(All)

1 Human Resources Research Organization
Division #6, Aviation
Post Office Box 428
Fort Rucker, Alabama 56360

(All)

1 Commandant
U. S. Army Adjutant General School
Fort Benjamin Harrison, Indiana 46216
AWN: ATSAG-EA

(All)

1 Director of Research
U. S. Array Armor Human Research Unit.
Fort Knox, Kentucky 40121
ATTN: Library

(All)

55

1 Armed Forces Staff College
Norfolk, Virginia 23511
ATTN: Library

(235)

1 Director
Behavioral Sciences Laboratory
U. S. Army Research Institute

of Environmental Medicine
Natick, Massachusetts 01760

(All)

1 Chief, Training and Development
Division

Office, Deputy Chief of Staff
for Personnel

Department of the Army
Washington, D. C. 20310

(5)

1 U. S. Army Behavior and Systems
Research Laboratory

Commonwealth Building, Room 239
1320 Wilson Boulevard
Arlington, Virginia 22209

(1246)

1 Division of Neuropsychiatry
Walter Reed Army Institute

of Research
Walter Reed Army Medical Center
Washington, D. C. 20012

(All)

1 Behavioral Sciences Division
Office of Chief of Research and

Development
Department of the Army
Washington, D. C. 20310

AIR FORCE

1 Director
Air University Library
Maxwell Air Force Base, Alabama 36112

ATTN: AUL-8110
(23456)

1 Headquarters, Electronic Systems Division
ATTN: Dr. Sylvia Mayer / ESMDA
L. G. Hanscom Field
Bedford, Massachusetts 01730

(23456)

1 Commandant
U. S. Air Force School of Aerospace
Medicine

ATTN: Aeromedical Library (SMSL-4)
Brooks Air Force Base, Texas 78255

(All)

1 AYHRL (TR/Dr. G. A. Eckstrand)
Wright-Patterson Air Force Base
Ohio 45453

(13456)

1 Personnel Research Division (AFHRL)
Lackland Air Force Base
San Antonio, Texas 78236

(All)

1 AFOSR(SRLB)
1400 Wilson Boulevard
Arlington, Virginia 22209

(All)

1 Headquarters, U. S. Air Force
Chief, Personnel Research and Analysis

Division (AFPDPL)
Washington, D. C. 20350

(2345)

1 Headquarters, U. S. Air Force
AFFTRBD
Frourams Resources and Technology Div.
Washington, D. C. 20530

(All)

1 AYHRL (HRTT/Dr. Ross L. Morgan)
Wright-Patterson Air Force Base
Onio 45433

(1456)

56

1 Dr. Alvin E. Goins, Executive Secretary 1

Personality and Cognition Research
Review Committee

Behavioral Sciences Research Branch
National Institute of Mental Health
5454 Wisconsin Avenue, Room 10A02
Chevy Chase, Maryland 20015

(12456)

1 Office of Computer Information
Center for Computer Sciences and
Technology

National Bureau of Standards
Washington, D. C. 20234

(2456)

2 Exeoutive Secretariat
Interagency Committee on
Manpower Research

Dr. C. Victor Gunderson
Computer Assisted Instruction

Laboratory
University of Texas
Austin, Texas 78712

(56)

1 Dr. Lee J. Cronbach
School of Education
Stanford University
Stanford, California 94505

(12456)

1 Dr. F. J. DiVesta
Pennsylvania State University
520 Rackley Building
University Park, Pennsylvania 16802

(56)

1111 Twentieth Street, N. W., Room 251-A 1

Washington, D. C. 20036
Dr. Robert Dubin
Graduate School of Administration

(235) University of California
Irvine, California 02650

1 Mr. Joseph J. Cowan, Chief
Psychological Research Branch (P-1)
U. S. Coast Guard Headquarters
400 Seventh Street, S. W.
Washington, D. C. 20226

(All)

1 Executive Officer
A171. rican Psychological Association

1200 Seventeenth Street, N. W.
Washington, D. C. 20036

(All)

1 Dr. Bernard M. Ba-s
University of Rochester
Management Research Center
Rochester, New York 1;627

(12345)

1 Mr. Edmund C. Berkeley
Computers and Automation
815 Washington Street
Newtonville, Massachusetts 02160

(5)

1 Dr. Donald L. Bitzer
Computer-Raced Education Research

Laboratory
University of Illinois
Urbana, Illinois 61801

(1456)

57

(2345)

1 Dr. Philip H. DuBois
Department of Psychology
Washington University
Lindell & Skirker Boulevards
St. Louis, Missouri 65150

(15)

1 Dr. Marvin D. Dunnette
University of Minnesota
Department of Psychology
Elliot Hall
Minneapolis, Minnesota 55455

(12545)

1 Mr. Wallace Feurzeig
Bolt, Beranek and Newman, Inc.
50 Moulton Street
Cambridge, Massachusetts 02138

(56)

1 S. Fisher, Research Associate
Computer Facility
Graduate Center
City Universily of New York
55 West 4Thd Street
New York, Nev York 10036

(156)

1 Dr. John C. Flanagan
American Institutes for Research
Post Office Box 1113
Palo Alto, California 94302

(All)

1 Dr. Robert Glaser
Learning Research and
Development Center

University of Pittsburgh
Pittsburgh, Pennsylvania 15213

(1456)

1 Ds. Albert S. Glickman
Amelican Institutes for Research
8.j55 Sixteenth Street
Sit-sr Spring, Maryland 20910

(All)

1 Dr. Bert Green
Department of Psychology
Johns Hopkins University
Baltimore, Maryland 21218

1 Dr. Robert R. Mackie
Human Factors Research, Inc.
Santa Barbara Research Park
6780 Cortona Drive
Goleta, California 93017

(All)

1 Dr. Richard Myrick, President
Performance Research, Inc.
919 Eighteenth Street, N. W.,

Suite 425
Washington, D. C. 20036

(All)

1 Dr. Gabriel D. Ofiesh
Center for Educational Technology
Catholic University
4001 Harewood Road, N. E.
Washington, D. C. 20017

(156)

1 Mr. Luigi Petrullo
2431 North Edgewood Street

(156) Arlington, Virginia 22207
(All)

1 Dr. Duncan N. Hansen
Center for Computer Assisted

::nstruction
Florida State University
Tallahassee, Florida 32506

(All)

1 Dy'. M. D. Havron
Human Sciences. Research, Inc.
We:Agate Industrial Park
7710 Old Springhoute Road

Virginia 22101
(1145)

1. Dr. Carl E. 1.ielm

iNpartment of Educational Psychology

City University of New York
42n3 Street

N w York, New York 10056
('Sc,)

1 Dr. Albert E. Hickey
Entlek, Incorporated
42 Pleasant Street
Newlulyport, MasLachusetts 01950

(456)

58

1 Dr. Len Rosenbaum
Psychology Department
Montgomery College
Rockville, Maryland 20852

(All)

1 Dr. Arthur I. Siegel
Applied Psychological Services
Science Center
404 East Lancaster Avenue
Wayne, Pennsylvania 19087

(A11)

1 Dr. Paul Slovic
Oregon Research Institute
Fost Office Box 5196
Eugene, Orego,) 97.05

1 Dr. Arthur W. Staats
Department of Psychology
University of Hawaii
Honolulu, Hawaii 96822

(1456)

(56)

1 Dr. Benton J. Underwood
Department of Psychology
Northwestern University
Evanston, Illinois 60201

1 Dr. John Annett
Department of Psychology
Hull University
Hull
Yorkshire, England

(56)

(All)

1 Dr. M. C. Shelesnyak
Interdisciplinary Communications
Program

Smithsonian Institution
1025 Fifteenth Street, N. W.,
Suite 700

Washington, D. C. 20005
(1456)

1 Dr. Joseph W. Rigney
Behavioral Technology Laboratories
University of Southern California
University Park
Los Angeles, California 90007

(All)

1 Educational Testing Service
Division of Psychological Studies
Rosedale Road
Princeton, New Jersey 08540

(All)

1 Dr. Harold Oulliksen
Department of Psychology
Princeton University
Princeton, New Jersey 08540

(56)

1 Dr. George E. Howland
Rowland and Company, Inc.
Post Office Box 61
Haddonfield, New Jersey 08033

(All)

59

1 Dr. Mats Bjorkman
University of Umea
Department of Psychology
Umea 6, Sweden

(156)

1 Dr. Howard H. Kendler
Department of Psychology
University of California
Santa Barbara, California 93106

(56)

PERSONNEL AND TRAINING RESEARCH PROGRAMS DISTRIBUTION LIST - CHANGE I

ADD to May 1970 Distribution List

1 Technical Services Division
National Library of Medicine
8600 Rockville Pike
Bethesda, Maryland 20014

(126)

1 Head, Aerospace Psychology Department
Naval Aerospace Medical Research

Laboratory
Naval Aerospace Medical Institute
Naval Aerospace Medical Center
Pen,;noola, Florida 52512

(12456)

1 AFHRL (DOI)
Brooks Air Force Base
Texas 78255

1 Mr. Emil Jean Caille
Center for Research Studies

and Applied Psychology
Ministry of Army
Marine Arsenal
Toulon, France

(A31)

(56)

1 Dr. Norman Kerr
Bureau of Naval Personnel (FERS-A521)
Washington, O. C. 20570

60

(Continued from inside front cover)

96 R, C. Atkinson, J. W. Brelsford, and R. M. Sh Iffrin. Multi-process models for memory with applications to a continuous presentation task,
Apr1113,1966. (J. math. penal:, 1967, 4, 277 -300).

97 P. Supper and E. Crothers. Some remarks on stimulus-response theories of language /earning, June 12, 1966.
98 R. Biork. elf-or-none subprocesses in the !tuning of complex sequences. (J. math. Esychol.. , 1968, I , 2-195).
99 E. Connor, The stausticel dittermbation of lingumtuc units, July I, I v.

100 P. Supper, L. Hyman, and M. Jerman. Linear 'trues'sl models for response and laterioy performance In arithmetic. In J. P. Hill (ed.),
Minnesota Symposia on Child Psychology, Minneapolis, Minn.:1967. Pp. 160 -200).

101 J. L. Young. Effect' of Intervals between reinforcements and test trials In paired-associate learning. August 1,1966.
102 /4 A. Wilson. An tnvestigation of linguistic unit Ore in memory processes. August 3,1966.
103 J. T. Townsend. Choice behavior In a cued-recognition fask. August 8,1966.
104 W. H. Batchelder. A mathematical analysis of mufti-level verbal lemming. August 9,1966.
105 H. A. Taylor. The observing response In a cued psychophysical task. August 10, 1966.
106 R. A. Blorl. Learning and short-term retention of paired associates In relation to specific sequences rf Interpresentation Intervals.

August 11,1966.

107 R. C. Atkinson and R. M. Shiffrin. Some Two-process models for memory, September 3 0,1966.
108 P. Supper and C. Price. Aecelerited program In elementary -schod rrethernetics--the tiled year. January 3 0,1967.
109 P. Sumo and 1. Rosenthal-Hill, Concept formation by kindest/ten children in a card - sorting tusk. February 27,1967.
110 R. C. Atkinson and R. M. ShiffrIn. Haman memory: a proposed sputum and its control processes. March 21,1967.

III Theodore S. Rodgers. Linguistic considerations In the design of the Stanford computer-based curriculum in Initial reading, June 1,1967.

112 Jack M, Knutson. Spelling drills using a computer-assisted instructional system. June 30,1967.
113 R, C. Atkins wt. instruction In initial reading under computer coned: the Stanford Project. July 14, 1967,
114 J. W. Efrelsford, Jr. and It, C. Atkinson. Retail of paired-associates as a function of overt and covert rehearsal procedures. Jay 21,1967.
115 J. H. Steltv. Some results concerning subjective probability swoons with semicrders. August 1,196 7
i 16 0. E. Rurrelhart. The effects of Interpresentation Karon on performance Ina continuous palredemsoclate task. August 11,1967.
117 E. J. Fishman, 1. Keller, and R. E. Atkinson. Massed vs. distributed practice In computerized spelling drills. August 18, 1967,
118 G. J. Gruen, An investigation of tome counting algorithms for tale addition problems. August 21,1967.
119 H. A. Wilson and R. C. Allinson. evader-based instructIr ... Initial reading: a progress report on the Stanford Project. August 25,1967.
12C F. S. Roberts and P. Supper. Some problems In the geometry of visual perception. August 31,1967. (Syrchast, 1967, 17, 173.201)
121 D. Jamison. Bay's ran decisions under total and pvtial Ignorance. D. Jamison and J, Korlefecki. Subjective probabilities under total

uncertainty. September 4,1967,
122 R. C. Atkinson. Computerized Instruction and the learning process. September 15,1967.
123 W. K. Estes. Outline of a theory d punishment. October 1.1967.
124 T. S, Rodgers. Measuring vocabulary difficulty: An analysis of Item veriables In leaning Russian-English and Japanese-English vocabulary

parts. Dec44.'18,1967.
125 W. K. Estes. Reinforcement In human leaning. Name.. 20,1967.
126 C. 1, Woliord, D. L. Weiss), W. If Estes. Further evidence concerning 'canning ant sampling assumptions of visual detection

models, January 31,1968.
127 R. C. Atkinson and R. M. Shiffrin. Some speculations on Storage and retrieval processes In long-tern memory. February 2, 1968.
128 John Holaren. Visual detection with Imperfect recognition. March 29, 1968.
129 Lucille B. Miodnosly. The Frostig and the Bender Gestalt as predictors or reading achievement. April 12,1968,
130 P. Symms. Some theoretical models for met emetics learning. April IS, 1968. (J9,enal of Research and Dollfr.`1 t6 cation,

1967, I, 5.22)
131 C. Al, Olson, learning end retention in a continuous recognition task May 15,1968.
132 Ruth lionere Hartley, An Investigation of list types and cues to facilitate Initial reading vocabulary acquisition. May 29, 1968.
133 P. Supper, Stimulus -response theory of finite automata. June 19, 1968.
134 N. Alder and P. Supper. Duarelfier-free ulcer for constructive plane geometry. June 20, 1968. (in J. C. H. Gerretse" and

F. Dort 1E61, Compaltie MathenttIce. V.P. 20. Groningen, The Nettherlards: eielteet-Hoordhdf, 1968. Pe. 14 3-152.1
135 W, K. Estes and 0. P. Horst. Latency as a function of nunibor sr response elternallreS in pained - associate 4,01. July t, 1968.
136 M. Schlag.Rey and P. Swipes. High -ode Cranston' In concept *reification. Judy 2, 1968. IPsychom. SO., 1968, It, 141.1421
117 R. Al. Shuffle. Search aid retrieval processes in long -term memory. August 15, 1968.
131 P. 0, Freund, G. 11, Loftus, and N.C. Atkinson. Applications of ewitlprocess models by memory 10 corr,f,,c,0 recognition tasks.

December IP, 1968.
139 11, C. Atkinson. Inferuation delay In human learning. December 18, 1968.
140 R. C. Atkinson, J. E. Hoimeen, and J. F. Ards. Process a time as Influenced byline number of elements in tree visual display,

Meech i4, 1969.
141 P. Sumas, E. F. latvs, and id. ermen. Problem-solving on a twasse-based teletype, Mach 25,1969,
142 P. Stapes and Mew Salorningste. Evaluation of Oree computer-assisted instruction programs, Map 2,1969.
143 P. Sieves. On the problems of vita orathenceks In the development of the social sciences. May '2, 196
144 2, Donde. Probablitstic relational structures and their applications. May 14, 1969.
145 R. C. Atlinson and T. D. Wider's. Wren memory and the concept el reiricecemere. May 20, 1969.
146 R. J. Take. Some model-theoretic results in mess veered theory. May 22,1969.
147 P. Supper. Skasuremet: Probiems el theory and application. June 12, 1969.
148 P. Steppes and C. Pete. Accelerated program In eleneemy-school neithematics--the rokrth yew. August 7, 1969.
149 0. Rundus and R.C. Atkinson. Rehearsal in free recall: A verdure foe direct observation. August 12, I la6 9.
ISO P. SupPes and S. Feldman. Young 0-toren% coneuhens.on e1 Iogcal cer,,,rct.m.s. Csoctuir IS, 1969.

Cone imaed on bad can /

f Continued from Inside back cover

151 Joaquimli. Laubsch. An adaptive teaching system for optimal Item allocation. November 14, 1969.

152 Roberta L. Kratzky and Richard C. Atkinson. Memory scans based on alternative test stimulus representations. November 25, 1969,
153 John E. Hoirmaren. Response latency as an Indicant of information processing in visual search tasks. March 16, 1970.

154 Patrick Supper. Probabilistic grammars for natural languages. May 15, 1970.
155 E. Gammon. A syntactical analysis of some first-grade readers. June 22, 1970.
156 Kenneth N. Wexler. An automaton analysis of the learning of a miniature system of Japanese. July 24, 1970.
157 R. C. Atkinson and J. A. Paulson. An approach to the psychology of instruction. August 14, 1970.
158 R.C. Atkinson, J.D. Fletcher, N.C. Chetin, and C. M. Stauffer. Instruction in Initial reading under computer control: the Stanford project,

August 13, 1470.

159 Dewey J. Rundus. An analysis of rehearsal processes In free recall. August 21, 1970.

160 R.L. Klotz J.F. Juola, and R.C. Atkinson. Test stimufus representation and experimental context effects Inmemory scanning.
161 Wilt lam A. Rottmayer. A formal theory of perception. Noyeither 13, 1970.
162 Elizabeth Jane Fishman Loftus. An analysis of the structural variable; that determine problem-solving difficulty on a computer-based teletype,

December 18, 1970.

163 Joseph A. Van Campers. Towards the automatic generation of programmed foreign-language instructional materials. January 11, 1971.

