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GENERAL PREVFACE

This monograph was written for the Conference un the New Instructional
Materials in Physics, held at the Unlveraity of ¥Yashington in the sum-
mer of 1965, The genecral purpose of the conference was to create effec-
tive ways of presenting physics to college students who are not pre-
paring to become professional physicists. Such an audience might include
prospective secondary school physics teachers, prospective practitionert
of other sciences, and those who wish to learn physics 28 one component

. of & liberal education.

At the Lonfererce some 40 physicisets and 12 filmmakers and design-
ers worked for periods ranging from four to nine weeks. The central
"’2;_&3;"*"‘? the one in which moat physicists participated, !:?.&pe
writing of monographs.

Although there was no consensus on & single approach, many writers
felt that their presentations ought to put more than the customary
emphasis on physical insight and synthesis. Moreover, the treatment was
to be "multi-level" --~ that is, each monograph would consist of sev-
eral sections arranged in increasing order of sophlotieation. Such
papers, it was hoped, could be readily introduced into existing courwses
or provide the basis for new kinds ¢f courses.

Monographs were written 16 four content areas: Forces and Fields,
Quantum Mechanics, Thermal and SCAtioticnl Physica, and the Structure
and Properties of Matter. Topic selections and general outlines were
only loosely coordinated within each area in order to leave authors
free to invent new approaches. In point of fact, however, a number of
monographs do relate to others in complementary ways, a reosult of their
authora' close, informal interaction.

Because of stringeant time limitations, few of the monographs have
been completed, and none has been extensively rewritten. Indeed, most
writers feel that they are barely more than clean first drafts. Yet,
becauso of the highly experiments! aature of the undertaking, it is
essential that these manvacripts be made Avalladle for careful review



by other physicists and for trial use with students, Much effort,
therofore, has gone into publishing them in a readable format intended

to facilitate seriouvs considecation.

So many people have contributed to the préject that complste
acknowledgement 18 not possible, The National Science Foundation sup-
ported the Conference. The staff of the Commission on College Physics,
led by I, Leonard Jossem, and that of the University of ¥Washington
physics department, led by Ronald Geballo and Ernest M. Henley, car-
ried the heavy burden of organization. Walter C, Michels, Lyman G,
Parratt, and George M. Volkoff read and criticized manuscripts at a
critical stage in the writing. Judith Bregman, Edward Gerjuoy, Ernest
¥, Henley, and Lawrence Wilets .¢ad manuscripts editorially. Martha
Ellis and Margery lang did the technical editing; Ann Widditsch
aupervised the initial typing and assembled the final drafts. James
Grunbaum designed the format and, assisted in Seattle by Roselyn Pape,
directed the art preparation. Richard A. Mould has helped in all phases
of readying mtrnusoripts for the printer. Finally, and crucially, Jay F,
¥Wilson, of the D, Yan Nostrand Company, served as Managing Editor. Por
the hard work and steadfast support of all theae persons and many
othera, I am deeply grateful,

Edward D, Lambe
Chairman, Panel on the

Now Instructional Materials
Commission on College Physics



THE SYMMETRY OF NATURAL LAVYS

PREFACE

“The Symmetry of Natural Laws'" is a nonograph intended for advanced
undergradurte students, or beginniné graduate students, who have some
knowledge of modern physics as wéll as classical physics, including
the elementary quantum mechanical treatments of the hydrogen atom and
angular momentum, Thus it could woll form part of the instruction in

the lattor part of a course in introductory quantum theory,

The first chapter introduces the symmetry concept and relates it
to the laihenatical concept of invariance under a transformstion of
variables. These ideas are iliustrated in the contaxt of the classical
laws of mechanics in the Newtonian. form. The emphasis here, as in the
rest of the monograph, 1s.d1rected to physical, rathar than mathemati-
cal, generality. The first chapter has been tested on some undergradu-
ate students. .

The second chapter, which i8 only partly completed, and will be
reviced in order to simplify the presentation, discusses the symmetries
nf the 8chrodinger equation for one or two particies, including gauge
invariance of the wave funotion and parity. The rest of the chapter
will discuss atatistics,

Chapters to be writtea will inolude charge independence, with ap-
plication to nuclei and fundamental partioles, and the unitary sym-
metrien,

Laurie Lrown
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1 THE SYMMETRY
IN CLASSICAL

1.1 INTRODUCTION

The concept of symmetry, as ap-
plied to the laws of physics, is an
oxtension of gcomotrical symmotry
which is {llustratcd, for example, by
the cquilateoral trianglo. Wo recognize
the equilateral triangle ABC in Fig.
1.1(a) as possessing a symmotry not
posscsscd by tho scaleno triangle
A'B'C', Lot us try to oxpross in words
our fcolings about tho two triangles,

Given an exact duplicate of the
equilateral triangle, we would not
know which corner to label A, That is,
the three corners are all equivalent.
In more technical language, the tri-
angle ABC can be brought into congru-
ence with itsel{ in three different
ways through rotations in the plane
by 120°, This is a threefold symmetry.

Having arbitrarily selected a
corner to latel A, there remain two
ways of assigning the letters B and
€. One way 1is shown in Fig. 1.1(a):

A, B, C are asaigned in order clock-
wise. However, they could have been
assigned counterclockwine inatead, and
no rotation in the plare will convert
the clockwise to the counterclockwise
ordering. Notice that if we were

g, 1.3 Coagrvendes .ol

IDEA: APPLICATIONS ;
PHYSICS.

viewing Fig. 1.1(a) from beneath the
page, instead of from above, the or-
dering would have appeared counter-
clockwise. Theroforo, flipping the
triangle over will change the ordering
* (viewing it in a mirror will do the
same;. Having flipped it over, we can
still rotate it through 120' and bring
it iato congruence, and then repeat
this rotation to bring it into coi-
gruonce still onc more way. Thore are
thus, if we permit flipping the tri-
angle, six ways to bring it into con-
gruence with itself, i{.e., a sixfold
symmetry. Only one of these six con-
gruence operations, which are illus-
trated in Fig. 1.2, is possible for
A'B'C!, which has the lowest of all
orders vf symmetry, namely onefold
(i.e., no symmetry).
Up to this point we have related

a b ¢

*¢. 1.1 7Two kinds of triangles, (a) equi-
. lateral and (b) scalene.

8 A
[ ] [] . ¢
Ac Aa &
A ¢ A C A [
] . » - ¢
C A
. A ) ,
A . ¢ A . [ o A ’ ¢

the oquilateral triasgle AN,
1



2 THE SYMMETRY OF NATURAL LAWS

the notion of symmetry to the set of
congruences of two identical, labeled
triangles and have used the ideas of
rotation and fiipping to make concrete
the method for achioving such congru-
ences. These operations are evidently
not unique. For example, to achieve
the congruence shown in Fig. 1.2(e)

we could rotate the original triangle
by scme angle not 120°, then flip
about any axis, then perform an ap-
propriate rotation and sliding to
bring it to the desired location.
However, there is some point in
selecting for study a set of simple
operations, just sufficient to achieve
all six congruences. .

A minimum set of operations which °

bring the equilateral triangle into
congruence with itsel! (and which we
may call symmetry operations) such as
rotations by 0°, 120*, 240', etc., and
"f1ipping" about some axis in the
plane can be analytically described in
a number of ways. The most powerful
way of doing so is in terms of an ab-
stract algebra of operations. For ex-
ample, if 1 is the identity operation
(that is, leaving the triangle alone =
analogous to multiplying a number by
the number 1) and if R is the opera-
tion of clockyise rotatidn by 120,
and if we write

R = 1, (1.1)

this means that thred successive
clockwise rotations of 120° are the
sane 48 leaving the triangle alone.
The matheaatical symbols R and I are
called gperators and an operator ale
gedbra like that satisfied by the con-
gruence operations on the equilateral
triangle is called a group algebra.
We shall not explicitly use the group
algedbra concept in our work, but it is
an interesting branch of mathematics
which is briefly discussed in an ele-
mentary way in the Appendix.

A group of symmétry oporations i
anhlogously assocciated with aay regue
1ar plane figure, auch as the squire,
poatagon, hoxagon, eto., and thus
Uo7 for the oirole, which in &

ERIC
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1imiting case of such regular n-sided
figures. The circle exhibits a con-
tinuous sequence of congruences with
itself (any point may be labeled A),
and upon flippine a clockwise sequence
of points beccmes counterclockwise.

Regular solids, such as cuves
and spheres, possess symmetry proper-
ties which can be discussed in a sim-
ilar way, and such geometrical sym-
metries play an important role in
much physical reasoning. The science
of crystallography, for example, con-
sists largely of the determination of
this kind of symmetry and in its ap-
plications.

But the symmeotry of physical laws
is often less easily visualizable. To
anticipate the sort of thing we are
aiming at, consider the sy ‘metry known
as "charge independence of the nuclear
forces." One example of this symmetry
is furnished by the pi-mesons or pivns.
There are pions carrying electric
charges of +e, 0, and -e, whera —e is
the charge of the electron. The
charged and neutral ptions have nearly
the same mass and are regarded as dif-
ferent "charge states" of a single
particle, the pion. As regards the
role played by the pions in nuclear
forces, the three charge states are
essentially equivalent. Thus, in some
sensu, they resemble the three corners
of the equilateral triangle. This
necessarily vague description of
charge independence" will be made
more precise after we beccwe more
familiar with symmetry concepts in
physics,

To begin familiarieing ourselves,
we start with a simple physical sys-
tem consisting of a positive and a
negative electron attracting each

other by electrostatic forces.

1.2 POSITRONIUN

A positronium "atom" is a hydroe
genlike syatem ia which the proton 18
replaced by a poditron. Unlike the
protoa, the positron has properties
fdentioal with the electron, except

i



THE SYMMETRY 1DEA 3

We are assuming here that the
structure of hydrogen-like atoms i3 en-
tirely determined Ly tho clectrostatic
Coulomb force. ¥While this is an excel-
lent first approximation, it Is not
entirely correct. Among tho many
smallor cffects which we aro neglect-
ing are magnotic offects, rclativistio
effects, and those which aro duo to
the intcrnal stvucture of tho noga-
tively and pomitivoly chnrgod parti-
cles. In positronium, an espocinlly
intoronting offnct ims tho "virtual
annihilat ion" of tho eloctron-positron
pair forming a photon, which then

for tho sign ¢of its oloctric chargo,
(Yo noto that bocauso tho chargo of
tho positron is +e, its magnotic mo-
ment! ch/2m is positive, while that of
the electron iy —eh/2m.)

Becausce the positron and cleotron
aro idontical in mass, and since the
desirnations “positivo" and "negative"
charge uro purely conventional, the
system {8 highly symmetrical in a way
that hydrogen is not. However, we can
gee the relationship »f the atates of
por:itronium to those of hydrogen, by
starting with a hydrogen atom and
inagining the proton to get lighter,
until ite mass i8 equal to that of the
electron. Recall the expression for
the energy of a hydrogen atom in the
state of principal quantum numdber n
(relative to an infinitely separated
slectron and proton):

E. . = m (1.2)

where Ry(H) = ped/2h? and the reduced
nass 4 is given by

'}l.% ‘i. (153)

R 10 the mass of the nuoleus (in this
case the proton), and m 18 the aaes of

110 sho waite.

ERIC
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materializes again into an electron-
positron pair. Uso of the words "“then"
and "again’ as indicating a temporal
scquenco is in this case purcly sche-
matic, as in fact the dotails of this
process are compietoly unobservable,
though we know it must cxist and must
shift the onergy lovels. (Can you see
why it cannot bo obaservadble? Can you
ostimate tho size of sumo of tho ef-
foots w3 havo montioned? Can you
think of othor hydrogenliko systoms?
Can you think of any other ofteots we
hav~ negleoted?)

tho olectron. [In tho classical Bohr
modol, proton and olectron revolvo ope
posite cach other about their common
centor of mass in such a way that
their moment of irertian is (4%, whera
0 18 the distance between proton and
electron. Can you prove this?]

From Eq. (1.2) it is clear that
if N is very large compared to m, as
in hydrogen, then g is nearly equal to
m, Also, the center of mass of the
atom is very close to the proton, But
if M is made smaller, the center of
aass moves away from the positive
charge until the positive and negative
charge are sysmetrically located with
reapect to it. Bquation (1.3) becomes,
when H = m,

1.1
p-mt

B b

- -E, (1.4)

80 that u = m/2. The energy levels of
positronium are thus ‘dentical with
those given by Eq. (1.2), hut with half
half the spacing

Ey (positronivm) = ~ ..___R’(P‘:.*")

n
--1BD

It is A remarkable fact that ale
though eleotron and positron have
identical properties, the matier of
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4 THE BYMNETRY OF NATURAL LAWS

which our famillar universe is made
contains only electrons. Of course,
positrons foel a repulsive Coulcemb
force frum positively charged protons
and so would not form antoms, but par-
ticlos idontical to protons oxcept for
having a4 nogativo chargo also exist,
and havo beon produced by high cnergy
beams from accelerators. Thoy also
constitute a rare component of the
cosmic rays. These particles, called
antiprotons, can form atoms with posi-
trons which would be indistinguishable
from ordinary hydrogon atoms excopt
for tho signs of their constituont
chargos. In fact, wo know of no roason
why an entire univorse composed of
antimatter might not exist.

Antiprotons and positrcens (which
can also be called antielectrons), in
the presence of ordinary matter soon
find their abundant oppositely charged
counterparts and are at’racted tu them
by the electrostatic Coulomb forces,
antiprotons to protons or other atomic
nuclei, and positrons to electrons,
¥hen this happens, each particle-
antiparticle pair annihilates, the
rest-mass-energy wmc® being transformed
in some other form of energy. Thus in
our local universe, antimatter has a
very short life. ’

1.3 SYMMETRY IN NATURE

The existence of particle-anti-
particle pairs is a striking illustra-~
tion of the fact that the underlying
laws of nature, some of which are un-
known to us, appear to possess im-
portant symmetry characteristijcs.

Some of these symmetry properties can
be read directly from known laws (for

" example, the laws of electrodynamics

Q

as we will see below), and we may, as
a working hypothesis, guess that the.
unknown laws also possess these sym-
metries. Such a hypothesis must, of
course, be subjected ‘to experimental
tests.
It is important to stress that

we are talking about the symmetries
possessed by the fundamental laws and

RIC

Aruitoxt provided by Eic:

the elementary constituents of matter
(if, indeed, there be such), and that
we cannot expoct these syrmotries to
be apparont in ordinary uncontrolled
obsorvation, It is true that many
symmetrical objects and processos ap-
poar in nature (such as noarly porfoct
sihgle crystals), but they are excep-
tional. One reason for this is obvi-
ougs., Considor two identical pendulums
independently supported: if both are
at rest, we have a completely sym-
metric systom, But if ono is met into
motion, while thk9 othor rcmains at
rost, tho symmotry is dostroyed. If,
instond, tho two pondulums arc lightly
couplod (say, with a woightless weak
spring) and set into motion either
exactly in phase or 180°out of phase
with equal amplitudes, they will un-
dergo symmetrical motions ~ but these
initial conditions must bhe precisely
chosen. Thus, symmetrical behavior of
a system requires, in addition to the
symmetry of the laws of nature, that
the system be constituted and started
in a2 symmetric way.

A lack of symmetry in "the way
things got started" may be the reason
why, although natural law (so far as
we know) is symmetric between particle
and antiparticle, ordinary matter is
nade entirely of particles - and not
antiparticles. There is, however,
another possibility. The symmetry laws
which we read from a known law of
physics, and which operate success-
fully on a given level of experience,
may fail when subjected to a more
sensitive test. Thus, for example,
space~-reflection symmetry (or

""parity"), says that right-handed and

left-handed descriptions of nature are
aquivalent., This holds for the elec-
tromagnetic and the strong nuclear in-
teractions but has been found to fail
for the weak interactions. It is,
therefore, a useful approximaie sym-
metry on a certain leval of experi-
ence, but it is violated in some tyres
of relatively rare processos. On the
cosmological time scale, even a small
violation of symmetry can have enor-

-mous effects. We do not know how much

4

‘



THE BYMMETAY IDEA ]

of the lack of symmetry in nature is
due to weak violations of the other~
wise symmetrical laws of nature.

1.4 CONSEQUENCES OF THE SYMMETRY OF
NATURAL LAWS

Among the many successes of theo-
retical physics after the development
of guantum mechanies, perhaps the most
spectacular have teen the predictions
of the existence of hitherto unknown
fundamental particles and their prop-
erties. These predictions have been
based to a large extent upon symmetry
considerations. Dirac's wave oguatiory
proposed in 1828 to give a relativis-
tically corrcct doscription ol the
spinning electron, possesses symmetry
under an operation (that is, a mathe~
matical transformation), known as
“"charge conjugation', and this leid.to
the prediction of the positron, dis-
covered in the cosmic rays in 1934,
Although Dirac's equation does not
give a complete account of the elec-
tromagnetic properties of the proton,
on the other haud, the assumption that
the true laws governing the proton,
whenever they are found, will also
possess the property of charge conju-
gation symmetry similarly led to the
prediction ¢f the existence and ¢ther
oroperties of the antiproton, dis-
covered at Berkeley in 1955. Detailed
dir,cussion of Dirac's equation is be-
yond the gcope of this monograph, and
we shall confine ourselves to mathe-
matically simpler examples. However,
a discussion of charge conjugation
invariance for particles without apin
will be included in Appendix 2.

1.5 SYMMETRY AND INVARIANCE

Up to this point we have been

using the teru "symmetry" in a general'

intuitive sense. The mathematical
meaning of symmotry is contained in

_the notion of invariance of a mathe-

matical expression under a transfor-
mation of variables.

Suppose we have a mathematical
expression depending on one oy more
variables u, v, w ,... and transform
to a new set of vartiables equal in
number u', v', w',.,.. . That is, we
have

u' = u'fu, v, v,...)
v = y'(u, v, w,...). (1.8)
If the transformation is a suitable
one, we will be able to solve these
equations for the original variables
and obtain
ue=uu', v', w',...)
vev(u', v\, w'...). a.7)
[For example, we might have
R 1
u'' = ﬁ(u +v),
IO 1.8)
v ﬂ.(u - ) (1.
vhich can be solved to give
1 1 L}
u=- Uﬁ(u + V")
1 [} [}
v = 7§(u -v".] (1.9)

If we now transform our original
methematical expression f(u, v, w,...)
by substituting for u, v, w,... their
expressions, Eq. (1.7), in terms of
the new variables, we obtain a new
and, in general, different function
g of the new variables (which is, how-
ever, numerically equal to the old
one):

f(u, v, w’...) = g{u', v', w',...).
(1.10)

[For the example given in Eq. (1.8)
and (1.9) we get
2y, v) = (g’ + v"), e - vn)

" g(u', v').)

(.11

H o
P
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6 THE SYMMETRY OF NATURAL LAWS

A convenient pictorial representa-
tion, vory frequently used, is the
following: Suppose there are only two
variables u and v, each of which can
take on & certain continuous range of
numerical values. Let us set up a Bys-
tem of perpendicular u and v axes., A

. pair of allowed values of u and v core
«  responds to a point in the cross-

<

r—mwce OF v}
\% 4

\

DN

le——RANGE OF u——>|

hatched area, and f(u, v) can be

' thought of as a number attached to
this point. Similarly we can set up a
set of u', v' axes and use Eq. (1.6)
to determine a pair of values of u',
v'! for each pair u, v and in this way
relate a point in the (u', v') plane
to each allowed point in the (u, v)

- plane, In general, the area in the

i (u', v') plane will not resemble that
in the (u, v) plane. The equality in

o —

el e

1f now it should turn out that not
only are f{(u, v, w,...) and g(u', v',
w',...) numerically equal, but that

g is the same function of the primed
variables that f is of the unprimed
variables (obviously this is a very
special circumstance), we then say
that f(u, v, w,...) is invariant under
the transformation of variables. Eq.
(1.8) :

[Again, for the example of Eq.
(1.8), it )

£(u, v) = u? 4+ 2, (1.12)

Eq. (1.10) states that the number at-
tached to the point P' in the (u', v')
plane is the samc as the number at-
tached to its corresponding point P in

v i

) |

the (u, v) plane. This picture, which
can be extended to more variables by
introducing more dimensions, holds for
any transformation of the kind we have
called "acceptable.' (What sort of
transformations might be "unaccept-
able?") Since the coordinates u', v'
are usually different from the coor-
dinates u, v, the function g(u', v') 3
must usually be different from the -
function f(u, v) to attach the same
number to the point P in the u, v

plane and the point P' in the u', v'
plane. If, nevertheless, as for the
example discussed in Eqs. (1.8), (1.9),
and (1.12), it turns out that while

P' and P are given by different pairs

N

of numbers, f(u, v) and g(u', v') give ¢
the same values also for the same pair .#
of nisbers, then f£(u, v) is invariant 1
undes the transformation of u, v to B
u', v'. (Try a numerical example to i
illustrate these ideas.) R
i
. A
then )
2{3=(ur + v, =(u' - v'»
7 ' V2
- %(ul + vu)z + %(u! - vI)I
= u'? 4 y'3 = g(u', v"). (1.13)
Thus, not only does
f(u, v) = g(u', v'), (1.14)

which merely expresses the numerical
equality of the expressions £ and g

[




THE SYMMETRY IDEA 7

for corresponding values € the vari-
ables u, v of £ and the variables u',
v' of & (1{.e., those values related by
Eq. (1.5) or their equivalent Eq.
(1.16); but also

glu', v') = f(u', v'), (1.15)
This makes the much stronger statement
that g has the same form in the vari-
ables u', v', that f has in the vari-
ables u, v, That is8, g and £ are the
same functions of their respective
variables, ,

A type of transformation which
plays a very important role in many
physical applications is the linear ,
transform:.tion of a set of variables,
8ay), u; ...up to a set -of variables
ut..auy'e

U 'omoag 0 o+ apguy ¢ ol + Bpauy
' = azu; + azaug + ...+ ag,u,
(1.16)

Up' = 8,,U; + AUy + ... + A U,

The set of numerical coefficients
{as3} is often written as a square.

array
813833 -+ B4p
a’xaaa s e aan

anla. L ann (1 117)

and is called a matrix.

"1.6 READING A SYMMETRY FROHM A NAIUﬁAL

LAVW.

As a simple example from classical
physica, let us take Newton's second
law, restricting it to one space di-
mension, '

F = qa = nX. (1.18) -
By x is meant the position, with re-
spect to some origin, of a classical
Newtonian point partiocle of mass m,

" but_not on x.

while ¥ stands for d3x/dt2?. In general,
then, x will be a function of the time
X = x(t). The force F applied to the
particle can be arbitrarily chosen in
this model, and whether or not Eq.
(1.18) incorporates a symmetry de-
pends entirely on the way the force
depends on space and time or on the
position of the particle.? We write

Eq. (1.13) in the form

£(x, t) ® F(x, t) — mik(t) = 0, (1.19)
and consider the transformations of
the variables x and t which leave

f(x, t) invariant, for special choices
of F.

Case {(a). The force depends on t,

In this case, the transformat:sn
X' =x-¢,
t' = t, (1.20)

leaves f(x, t} invariant. For, solving
for x and t, we get

X=x'+0

t=1t', (1.21)
and substituting in
2
£(x, t) = F(L) - %;%. (1.22)
wo got
g(x', t') = £(x' + ¢c, t")
d2x!
= F(t') - m&;%;
- £(x', t'). (1.23)

The expression (1.22) for f£(x, t) is

TNote that x (and also t) are being used with
two different meanings which should, however,
cause no confusion since the context will make
clear which meaning is intended. We use x to de-
signate a point in apace and also to designate
the position of a particle. In the former use
dx/dt has no meanipng (unless the whole coordinmate
system 1s maving); 1o the latter use, dx/dt is
the velocity of the particle with respect to the
fixed coordinato system.
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thus invariant under the transformn-
tion Eq. (1.20). We have also, from
Eq. (1.19)

g(x', t') = 0, (1.24)
but this would be true even for trans-
formations which do not leave Eq.
(1.19) invariant, as thiz is already
implied in the definition of '"trans-
formation.'" For example, consider the
transformation

x' = x/b, or x = bx',

t =1t (1.25)
Then,

glx', t') = f(bx', t*)

= F{t') — mbX'. (1.26)

This is not equal to £(x', t'), unless
b » 1. Nevertheless, g(x', t') = 0,

We may ask now, what is the mean-
ing of the transformation Eq. (1.20)?
This may be peen in Fig. 1.3.

Here x is the position of the
particle with respect to the origin O,
while x' = ) ~ a is the position of
the particle with respect to the point
a. Thus Eq. €1.22) is invariant with
respect to a shift of the origin. This
is, for this physical problem we can
choose our origin anywhere. The motion
of the particle is the same, 110 matter
where we start it out. This will not
be true in the next case considered.

Case (b). The force depends on

x, but not on t.

In this case we write
£(x, t) = F(x) — mk {1.27)

and consider the transformation

[ €
Ywmy=¢

. l‘“”"”ll

Fig. 1.3 Depioticn of Xq. (1.20).

¢

X' = x
tr o=t~ t,, {1 78}
We now obtain
g{x', t') = f(x', t' + t,)
= F(x') — mR', (1.29)

so that Eq. (1.27) is invariant to a
shift of the origin of time; i.e., it
does not matter when we start our stop
watch. The motion of the particle is
the same no matter when we start it.

An exceedingly simple, but very
irteresting transformation of Eq.
{(1.27) is

x' = x

t) = —t, (1.39)

which is called "time-reversal." This
gives

g(x’, t') = F(x')

o e )

= P(x') ~mx' = £(x', t"),

(1.31})

so that again Eq. (1.27) is invariant.
The physical meaning of the time-re-
versal transformation is by no means
obvious, but its implications are
profound and will be discussed in the
next section.

1,7 THE "TIME-REVERSAL" TRANSFORMA-
TION

¥hen we discuss the symmetry of
natural laws, we have ir mind a region
of space and an interval of time within
which natural objects intevact by
means of their mutual forces. Whether
we are considering a problem of rela-
tivistic dynamics, or one ir which the
nonrelativistic approximation is
nearly correct, it is useful to adopt
the idea of a maximum signal velocity
go that we can observe our system
within a region of space and an inter-
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Fig. 1.4 Scattering of two particles.

val of time (or, as we say, a region
of space-time), such that the system
can be considered isolated. The im-
portant point is that we wish to avoid,
at least for the time being, having

to make assumptions about external
forces.

Our isolated system is then a
small unive. 2. There are no forces
"external' to this universe, and we
may observe in it the free play of
natural laws. .

Considor now the collision of two
particlos in an isolated rogion of
spaco-timo, assuming tho volocities
aro small anough that the nonrelativ-
istic approximation holds. At the
initial time t,, let particle a have'
momentum p,‘ and let particle b have
momentum pl » recalling that momentum
p = my = m(d/dt)r These two momenta,
Px' and p1 , determine a plane which
will be the plane of the subsequent
motion, assuming that the mutual in-
teraction forces act along the line
Joining the two particles, as is re-
quired by Newton's third lav.. In the
course of time the iwutual interaction
forces T* and TP, where T* = —FP
aliar the momentum of each particle
rocording to Newton's second law, i.e.,

T =S Lz
To(t) = %; pP(t), (1.32b)

so that by time t,, the respective
momenta have become p,* and p,® as
shown in Fig. 1.4,

Since p* and p® are themselves
time derivatives of the space coordi-
nates of the particles, the transfor-
mation t' = =t results, at any time t,

&
> (" Q:’V"‘

Fig., 1.5 Impulee equals change of momentum,

P

in
PE(t') = P(~t) = —=p*(t)  (1.33a)
and

po(t') = pP(~t) = ~p®(t). (1.33b)

Under the time-reversal
transformation the vector momen-
tum and velocity of a particle
change sign.?

The tangents to the particle
trajectories in Fig. (1.4) give the
directions of the momenta of parti-
cles a and b at each instant of time
during their motion. The effect of the
forces is to bring about a continuous
change in these momenta. In a short
time interval At, for example, Eq.
(1.32) states that the changes in the
momenta are

Ap*(t) = T%(t)At
ApP(t) = TP(t)At.

(1.34a)
(1.34b)

This is tho statement that impulse
equals change of momentum. Notice

that although we have labeled the
forces by the time f*(t), the forces
in fact depend only on the distance
between.the particles. The meaning of
Eq. (1.34a) can be exhibited graphi-
cally as in Fi, . 1.5. Under the trans-

SRecalling that at each instant of time

Ta(t) = -Ib(t), ve can infer_from Eq. (1.32)
that (d/dt)Ba(t) = ~ (d/dt')Py(t*), vwhere t*® is
any transformation of t, t' = t'(t). Thie
statement hae obviously aothlnz to do with time-
revereal-invariance lvon i1 we chooss

t! @ ti(t) = ~¢,
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Fig. 1.6 Impulso oquals change of momoptum

(time revorsed).

formation t' = ~t, the situation is
graphically shown in Fig. 1.6, Thus,
while pa acquires the change of mo-
montum Aﬁi, the fact that the laws

of motion, Eq. (1.34), are invariant
under tho time-roversal transforma-
tion means thalt with the time reversed,
P*' = -P* acquires the change of mo-
montum in an equal time interval of
Ap*' = —-Ap*. Note that it is essential
here that the force is unchanged by
the transformation,.

Clearly, this means that if t, is
earlier than t,, and if we start at
A' and B' instead of A and B (see
Fig. 1.4), with momenta —B,' and
-p,®, the trajectories will be tra-
versed in the reverse directions, the
particles ending at A and B after a
time equal to that for the forward
traversal with momenta ~p,® and —B,b .
In brief, the motions are reversed.$

Let us summarize what we have
learned of the significance of the
time-reversal transformation in clas-.
s8ical mechanics: .

¥hen two particles obeying New-
ton's laws move under the action of
their mutual interaction forces, if
at any instant the momenta of the two
particles are reversed, the reverse
motion will result,

Thus, in a gas, where we con-
sider a collection {or "ensemble") of

$The transformation t' = —t is a purely mathe-
matical one;, and there is no way, of course, to
carry out this operation physically. It tells

un something about the symmeotry ol the cauations
of physice. The physical analogy to keep in nind
i this: If we tako a movie of a proceas and run
it baokwarde and the proceaa ie time reveraal in-
variant; there ie no way to tell with certainty
whether we are eeeing the original or the re~
veresd motion, eince both are poeeible motione.

random motions, we always ascribe an

equal probability to a motion and its
reversed motion. This is known as the
principle of detailed balanco.

More complex, though equally im-
portant, situations arise in classical
physics than the collision of two
Nowtonian particlos intcracting by
means of velocity indopondent forces
depending only on the distance be-
tween particles. Nevertheless, it is
found that the fundamental laws are
always time-reversal invariant. This
can always be interpreted, as we have
done, as motion recvorsal: The final
configuration with rovorsced momonta
leads, with unchanged laws of force,
to the initial configuration with re-
versed momenta, after an cqual timeo
interval, ("Initial" and "final" can,
of course, designate any earlier and
later time during the motion.}

In classical physics this leads
to a certain paradox concerning the
approach to equilibrium, which is not
fully resolved even in the quantum
theory. If we introduce some gas into
one corner of a large evacuated box,
we expect the gas to distribute itself
uniformly throughout the volume. After
a time T, it will then find itself in
a certain configuration with the gas
particles having definite momenta (in
classical physics). At equilibriunm,
the configuration with reversed mo-
menta is equally probable. But if this
configuration is realized, it will
lead alter another interval T, to all
the gas being again in the corner into
which it was originally introduced. In
the real gas, this does no> happen,
for small uncontrolled external in-
fluences cannot be entirely eliminated

(vibrations of the support, sound

waves, etc.). Since these belong to a
larger universe than the box of gas,
we become involved with a larger time
scale than that of the gas molecule
collipions. If, indeed, time-reversal
invariance really holds exactly® and

$Recent exporimente on the decay propertiee of
K meaone appear to indioate the firet evidence
for poamible fallure of time~revereal invariance
on a mioroeocoplo enle.

.
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our universe is expanding into a
"box", it may sometime reverse itself,

1.8 INFERRING A LAW OF NATURE FROM A
SYMMETRY'

Galilco's law of inertia, which
is Newton's first law of motion, is:
fundamental to classical mechanics.
This iaw states that in the absence of
a net external force, the total mo-
mentum of a system is unchanged. At
first sight, this may appear to be
merely a special case of Newton's
sccond law, but in fact the sccond
law has no moaning unless the law of
tnertia holds, because otherwise
Newton's second law becomes only a
definition of what is meant by force,
and thus has no predictive value. The
law of irertia describes the setting
within which tihe action takes place =~
namely, empty space., It permits the
measurement of forces by balancing an
unknown force against a standard force,
since it gives a method for determin-
ing when no net force acts.

Consider a large, flat, horizon-
tal, frictionless table top. Let us
start an object from the center with
a certain momentum, Until the edge is
reached, no net forces will act to
change the momentum. But if the table
is curved, tipped, or rough, or con-
tains holes, the momentum will not be
conserved, Similarly, a three-dimen-
sional space in which Newton's first -
law holds contains no roughness,
curvature, edges, or other local fea-
tureg to disturb the motion. In brief,
the space in which the law of inertia
holds is homogeneous and isotropic;
that is, each part of empty space is
like each other part, and every direc-
tion is equivalent to every other di-
rection. This is a symmetry. We have
made the tacit assumption, as well,
that each interval of time ("empty"
time, if you like), has the same in-
trinsic properties as every other
equal interval of time.

Can we reverse the discussion,
and infer the law of inertia from the

.

Q

, homogeneit{ of space and time, and the

isotropy of space? Let us use tiie idea
of invariance, considering a one-
dimensional example. At some instant,
let the position of a point particle
be x and its velocity v, Assuming

v = v(x) and making the substitution
x' = x =~ x,, corresponding to a shift
of origin, we get (refer to Eq. (1.14)
and Eq. (1.15)),

v(x) = v(x' + X4) 5 v'(x'). (1.35)

Because of the assumed homogeneity of
space, the function v(x) must be in-

" variant under the translation of the

origin, hence

vi(x') = v(x') (1.36)
and from Eq. (1.35) and Eq. (1.36) to-
gother, we have

vix' + X4) = v(x') (1.37)

for any x,. Hence the function v(x)
must bo a constant, which proves the
law of inertia for this case. Because
of the isotropy of space, this holds
for any velocity component, and for
v = vix, v, 2).

1.9 SYMMETRY, INVARIANCE, AND CON-
SERVATION LAWS

In the previous section we have
illustrated, for a very simple exam-
ple, how a symmetry (the homogeneity
and isotropy of space) can lead to
invariance of an observable quantity
(the invariance of the velocity v(x)
considered as a function of the posi-
tion x under an arbitrary shift of
origin), and to the conclusion that p

. must be constant for the motion con-

sidercd.

The statement that some measur-
able physical quantity does not change
during a process undergone by some
isolated system is a conservation
statement. Of greatest interest are
those quantities which can be identi-
fied a8 never changing for an isolated
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system, whatever the process. Sone
examples are: total vector momentunm,
total angular momentum, total energy,
total electric charge. These conser-
vation laws can usually be shown to

follow from a symmetry assumption,
Aslde from its great p-actical im-
portance, this 18 a very interesting
and esthetically satisfying realiza-
tion. .

QUESTIONS

1, Would you expect magnetic effects
to be more or less importanut within

the positronium atom than in the
hydrogon atom? Why?

2, Tho moan timo for tho ground state
of positronium to annihilate into
two y rays is about 10°!° seq. Is

" this a long or a short time on the
atomic scale? Discuss,

3, Extend the discussion of the invare

iance properties of Eq. (1.189) by

considering a general force F(x, t),

depending on both space and time.

If invariance is to be maintained
under the transformation Eq. (1.21),
what proporty must F possoss? Un-
dor transformation Eq. (1.25)? Un-
der transformation Eq. (1.28)?7 Un-
der transformation Eq. (1.30)?

4. Can we show, using the arguments of
section 1,8, that in a homogeneous,
isotropic, force-free space the ac-
celeration is constant as well as
the velocity? What constant value
has the acceleration?



2 SYMMLIRY PRINCIPLES

IN QUANTUN

2.1 INTRODUCTION

Symmetry principles play a much,
greater role in quantum physics than
they do in classical physics. Among
the many reasons are these:

(a) The classical laws are known,
Thus, while the recognition of the
symmetries they contain is esthetically
satisfying, and often provides a
powerful analytic tool, the laws in
themselves are already complete and
nothing essentially new is added. In
those parts of quantum theory where
the laws are either unknown or uncer-
tainly known, ono often tries to find .
those predictions which follow ouly
from accepted symmetry principles and
conservation laws.

(b) Classical physics can be
considered as a special application of
quantum physics when the constant of
action h, Planck's constant, is negli~
gible. In the limiting case, when
h — o0, the scparation between states
of definite energy tends to zero, so
that a classical state is essentially
an ensemble of many gquantum mechanical
states. For example, a magnet in a
uniform magnetic field takes up one of
only a finite set of discrete orienta-
tions in quantum theory, while in the
classical limit the set of possible
orientations is continuous. These two
kinds of symmetry (discrete vs. con-
tinuous) are different. When the
number of possible orientations is
small, as in the quantum theory of
elementary systems, powerful restric-
tions can be placed on the possible

" internal complexity of the systenm,
while in classical ithaory this is not
possible. .

(c) The systems studied by quan-
tum theory are usually simpler sys-
tems - such as crystals, molecules,
atoms, nuclei, and elementary parti-
cles, The intrinsioc symmetries of such
lxltonl are more readily apparent,

Q o
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(d) There are many more quantum
mechanical symmetries, _

Reasons (b), (¢), and (d) are not
all independent of each other, and
will require fuller explanation, par-
ticularly (d), which we now discuss.

Although the aim of quantum
theory is to predict the results of
experiment, there are intermediary
stages of calculation when we deal
with descriptions of the system which
are not directly measurable. The fea-
tures of the description which are not
directly measurable have only a con=-
ventional significance like the labels
A, B, C on the vertices of an equilat~
eral triangle -~ and this gives rise,
ag in the case of the triangle, to a
group of symmetry transformations.

Consider the Schrdedinger wave
function Y(r, t), describing a parti-
cle in a potential. The physical sig-
nificance of ¥ is that its absolute
square represents the probability (or
sometimes only the relative probabil-
ity) of finding the particle within a
given volume. More precisely,

P(T, t)av B [y(F, t)|2av
s P*(F, t)P(F, t)av (2.1)

is the probability for finding the
particle in the infinitesimal volume
d¥ at the time t. But exactly the
ssme information is contained in

PIE, t) = elv’&(?, t), (2.2)

gince

[9'(F, t)]? = [9(r, t)|? (2.3)
as long as ¢ i8 a real number. In fact,
¢ may be any arbitrary real function

of space and time. This group of sym~
metry transformations of the wave
funotion is called gauge transforma-
tion. The only other restriotion on ¢
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The term '‘gauge invariance" is
also used in connection with tho glas-
.. 8ical electromagnetic field. In that
» caso it is connected with the fact

_that, just as the static electric
* field E ean be derived from 2 scalar
.- potential V, Ew-~ grad V¥, 8o the
- static magnetic field B can be derived

' from a vector potential X, according

to
B = curl .

Howaver, since for any scalar fuaction
X(¥, t), curl div X = 0,

is that if we add two wave functions,
such as wl(r, t) + ¢2(r, t), to form
a new state, under a gauge transfor-
mation both ¥, (¥, t) and ¢, (¥, t) must
undergo a gauge transformaiion with
the same gauge function ¢ - otherwise
the probability meaning will be al-
tered.

To see this, consider a special
example of the gauge transformation,
obtained by letting ¢ be the number 7.
Since elr = =1, the transformation is

¢'(F. t) = —¢(;. t). (2.4)
Evidently —~y, ~ ¥, has the same prob-
ability meaning as ¥, + ¥,, while
=¥, + ¥, does not, for example.

e o

X' = X+ grad X

is a vector potential which furnishes
the same magnetic field as 4

B = curl X = curl X,

This 18 referred to as 'gauge invari-
ance of the first kind," while that of
the wave functions is called 'guage
invariance of the second kind." By
using both gauge invariances and mak-
ing the functioi X identical with the
function ¢ in Eq. (2.2) one can prove
the conservation of electric charge

in quantum theory.

i

NPT EPETE Y AT PR R A T

’

A solution of this equation is

ipx

P(x) = C exp b

(2.6)

_where C is a normalization constant

The probability density
P(;, t) is invariant under a gauge
transformaiion of the wave func-
tion.

2.2 THE FREE PARTICLE IN QUANTUM
THEORY

The simplest example of the

‘exp

Bchrddinger wave equation is that for .

a free particle of energy E in one
dimension:

g¢(3> (2.5)

2- dx ?"*"

and p ~ v2mE/Nh?, The relative proba-
bility of finding the particle between
X and x + Ax i3

X+,
! (e fraxe = lcl',{ -
= el ax, 2.7

i.e., proportional to the size of the
interval Ax.

I1f we shift the origin of x to x,
so that the new x value is x' = x — Xx,,
the wave function becomes

ip(x' + x,)

Y(x) = P'(x') = C exp .

+ipx

= exp £ ¥(x") (2.8)
Thus the wave function is not invari-
ant under a shift of origin. However,
by applying the gauge transformation

ipx,

to YP'(x) we get

—ipxo
h

exp ¥ (x)

= @xp il%f& P &')
= p(x') (2.9)

g0 that the probability density F(x)
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is not altored by the shift of origin.
This corresponds to the fact that the
motion of a freoe particle ir classical
mechanics is independent of the origin
of coordinates. In each case, the re-
sult depends on the fact that the mo-
mentum is constant, since if p de-
pended upon x the conclusion would not
be valid. '

2.3 PARTICLE IN A SYMMETRIC POTEN-
TIAL PARITY

The Schrddinger oquation for a
particle of onorgy E bound in a poten-
tial 48, in one dimension,

- B L veopeo = B,

In terms of the constant nonrelativ-
istic total energy E and the potential
energy V(x), the statement that the
particle is bound in the potential
means that the kinetic energy T(x)

= E - V(x) is negative for infinite
separation, {.e., T(x = «) and

T(x = —) are negative. Many, though
not all, potentials go to zero at in-
finity; for example, the Coulomb,
gravitational, and square well poten=-
tials. For these cases 'bound" is
equivalent to E being negative.

Not all potentials need be syu-
metric about the origin. An energy
diagram for a particle bound in a
nonsymmetric potential i8s shown in
Fig. 2.1,

I1£, however, the potential is

symmetric about the origin (or better, -

if an origin can be found about which
the potential is symmetric), as in
Fig. 2.2, then interesting results
follow about the nature of the wave
function ¥(x) which depend only on the
symmetry and not on other details of
the potential,

The symmetry of the potential
about the origin means '

V(x) = V(-x), (2.10)

4y “hen, we make the transformation

of ¢he variable x which corvesponds to

reflection about the origin
. X' = -x, (2.11)

and substitute it in the Schrédinger
equation, we get

H d3y(=x) + v
2m  dx? (2.12)

For one-dimensional problems in
quantum mechanics it i8 eusy to prove
that thoro can boe only ono bound state
of a givon enorgy, and since ¢ (x) and
Y(~x) both satisfy tho samc Schri-
dinger equation for a bound state of
energy E, we know they nmust both de-
scribe the same physical situation.

As discussed in the previous section,

ENERGY —>

X \ /-'
o [/ BOUND STATE
ENERGY

Fig. 2.1 Nonsymmetric potential.

ENERGY = 0

|
&
&
.,/’///’—\\\ & I{,—\\\\\‘-.
[T ——y \ / ENERGY =0
T\

" rig. 3.3 Symwetric potential.

~e
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this means that the respective proba-
bility densities

P(x) = [$(x)]|* (2.13)
and

P(-x) = [3(=x)|* (2.14)
must be equal, This, in turn, weans

p=x) = e'9P(x) (2.18)
for all x. Thus, .

$(=3) = elé3$(3) (2.16)
but also

$(3) = ei¢P(3). (2.17)

That is, ve can equally well write

PATIAN
1 l

N

—
(YTX ]

N ]
I

By poeninnion, Wleeu- 01 Bech Conping, ¥ .

rig. 5.3 VWave functions for the osed-dimen-
ll?tll harmonie odoillateor,

ERIC
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(and this is8 not transformation of
variables),

P(x) = eldp(~x). (2.18)

Substituting Eq. (2.15) in Eq. (2.18),
we get

P(x) = etidy(x) (2.19)
for all x, and hence
olld w1, (2.20)

S8ince o%1¢ is the square of etld, it
follows that e!® i1s either 41 or =1,
and we conclude from Eq. (2.15) or Eq.
(2.18) that

H(x) = aPp{-x). (2.21)

Now ¥(x) = $(~x) means that the
wave function has the same symmotry ae
the potential; that is, it is symmeot-
ric about the origin. The other solu-
tion,

$(x) = ~$(-x), (2.22)

means that tho wave function is anti-
symmetric about the origin (that is,
the reflection ig flipped over). Put-
ting x » 0 in Eq. (2.22) we seo that
in tho antisymmetric case the wave
function must be géro at the origin,

¥ave functions for the lowest en-
ergy levels of tho symmetric harmonic
oscillator potential V(x) = m'x® are
shown in FPig. 2.3. Notice that the
ground state (B ~ }hw) must be symnet-
ric, as it has ro nodes, and that the
symmotric and untisymmetric {or even
and 9dd), wave funutions alternate as
the energy is increased.

In thvee dimensions, reflection
in tne origin takes the fora

X = =X
X -~y (2 -23)
B o —2

in Carteslan coordinates, or in vector
terainology

T «~F, (2.24)
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This 18 known as the parity transform-
ation. A function which is invariant
undor this symmotry transformation is
snid to have ovon parity, or parity
+1. A functicn whioh bucomes ite own
negative is said to have odd parity,
or parity -1,
For oxample,

cos 6 = TfT. Ir] = /xF + y¥ + x¥
(2.25)

has odd parity (although it is an even
funct icn of ), while

g8in 0 = y1 ~ cos'd

has even parity. S8imilarly, a wave
function in three dimensions which de-
pends only on the length ot r, $(|x|),
has even parity.

(2.26)

2.4 TWO-PARTICLE SYSTEHS IN QUANTUM °
MECHANICS®

In considering the probleom of a
particle bound in a potential we as-
sumed that the potential was a given
function of position, which is equive
alent to the statement that the parti-
cle moves under the action of an ex-
ternally applied force. The symmetry
properties possessed by the particle's
"motion" (in quantum mechanical lan-

guage, by its wave function), are then’

detormined by the symmetry properties
wo have ascribed to the applied force.
As in the classical case, however, the
free play of natural laws can bést dbe
observed by considering instead two
particles in mutual interaction. :
Y6 now ahow that the problem of
two particles interacting with mutual
forces, given by a poteatial which de-
pends only on tha position of one
particle relative to the other, i.e.,

Th10 section v somevhat more difficelt than
the others, and it 1o sot essentianl for tde
furthor devolopment, Boverer, the reader vho
knovs partisl derlvatives showlid 200d 1t 2t thie

*

]

PARTICLE 1

g/

W, PARTICLE ?

Fig. 2.4 Description of two-particles i
syatom,

V(Xy = T,) where ¥, and ¥, are respec-

tively the positions of particles 1 and
2 (see Fig. 2.4), recduces to the solu-

tion of a ono-particle Schrddinger

equation with a modified kinetic en-

orgy.
The two-particle system is de-

scribed by a wave function ¥(r,, T,)
with the probability interpretation

p(;l. ;g) - '*(;11 ;.)l.
B pE(T,, TP, T,),

where P(TY,, T,)dv,dV, is the probabil-
ity of finding partlcle 1 within the
volume dV, located at T, and simultp-
neously finding particle 2 within the
volume dV, located at Ty . The wave
function ¢(r,, T,) satisfics the
8chr8dinger equation (for total energy
B)t

] - -
[’-— o 0!~ 2; V! 4 V(r, - r,)]
x (T, , Ty) = B§(F,, T,) (2.27)

The syabol ¥,? means (d'/dx,')
+ (d*/dy,*) + (d?/de;?) where T, has
eo-ponents Xy9 Y10 2 and similarly
tor V,®, which refers to the coordi-
nates of particle 2,

Yo now introduce two new vector
coordinates:

R, the coordinate of the center
of mass

and

B =F, =T, the relative coor ;
disate of 3 with respect to 1, ;
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By definition,

MY+ MY,
R-—llo i, (2.28)
Letting the total mass m;, + my = N,
and defining the reduced kgss U by

l - 4 _1 —1 . l
iy + n, ' (2.29)
we have

ue .!x.;x . (2.30)

To complete the notation, we lot 9
have coordinates &, n, ¢ mo that
N=Ys2="

t =2 -2,

(2.31)

and we 1ot R have coordinates X, Y, %,
a0 that

X = ikx, + ;lx,
Y= aL,I + a‘Ya
Z - Elz, + alz,.

Notice that the x componentes, ¢
and X, of § and R depend only on x,
and x, and not, for example, on y, or
23, Wo are thus able to express x, and

(3.33)

Xg and °,°X], 0'/8“ ’ 0/08“ 0'/08. .

in terns of { and X. We get

S T 1 S N ). S X
oz, Mx, 8¢ Ox, "X
m @
Rk R (.39)
and
3 WA [ )
() - G

S8imilar expressions are obtained for
8?/8x,t, etc,

. We now consider the first two
terms in the bracket of Eq. (2.27)

oo, Ko,
a1 T Zm,
L SR LI W U
2 |m 0x, r, 8x,
+ — —213 s L -217
y Oy my 8y,
m, 02,7 ', 8z,7]° (2.35)
Take the part
1 8! 1 o
m ox° + n, bx,%! (2.36)

which is, according to Eq. (2.34)

1 [o? n,? 9! LT
‘-,[W""Fi‘”u 3T 8%’

where the change of sign in the second
bracket is traceable to the definition
in Bq, (2.31) whero x;, y,, &, have
the negative sign. In combining the
terns in the two brackets of Eq. (2.37)
{t will be séen that the teras contain-
ing mixed derivatives cancel, and we
got

(- + -— + !1—%7!1 %%1. (2.38)
or
' 12
ﬂ %Er + % axle (2.39)

on recalling the def'nitions of u and
K. 8imilar expressions are obtained
for the other partes of Eq. (3.38) so
that e have finally:
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[

2
JUNLL UK, B JESSR L ]
2n 1 2m,v'
hisat 1 R ! )
BETAT L T UM T

g..Lv ! oy

The Schridinger equation (2,27)
is thus equivalent to the two Bchrd-

dinger equations:

B AU RTCY

. %ﬁv’lo(ﬁ) + V@P)QP) = lpa(B)o

where $(T,, Ty) = F(R)G() and
El + Ep = E.

Equation (2,40a), which doscribes
the motion of the centor of mass of
tho two-particle system, is the equa-
tion for a free 'particle." Its solu-
tion is

F(R) = A exp (35-R), (2.42)

which reducos to tho constant A in the
contor-of-mass systom, that is, thnt
system in which tho total momontum P
(and hence Ep) i8 zoro. Sinco we are
primarily interested in tho mutual in-
teraction of the two particles, we
usually work in this reference system,
In this case we deal with Eq. (2.40b)
atone, which 18 a "one-particle"
8chrddinger equation, with "mass" 4,
the reduced mass, as the “partiocle"

RaBS., -
.
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Appendix

Consider the "minimum set of opera-
tions" discussed in the text by which
the equilateral triangle can be brought
into congruence with itself. This par-
ticular minimum set consists of:

Clockwise rotation about the cen-
ter of the triangle by 120° (called
R)-

Clockwise rotation about the cen-
ter of the triangle by 240° (called
R? because it is equivalent to R pere
formed twice in succession), leaving
the triangle alone (called I, stand-
ing for “identity"), flipping about
an axis, say the angle bisector of
the lower left hand vartex angle
{called F).

For the moment, let us only con-
sider the rotations, and not the flip-
ping. The operation R, repeated twice
is written RR. As we have noted above,
this is equivalent to the operation
R!, Similarly R-R! means performing
R! firat, then R (we read operations
from the right to the left), while
R* :R means performing R first, then
A, Evidently,

R'R = R*R= R = I,

The rotations alone have the

properties required to form what mathe- -

maticians call a group:

(a) There is a set of operations
(R, R', I) called group elements and
& rule for combining them (that is,
successively performing them). We call
the successive performance R:R' (that

is, first R', then R), multiplication
of R' by R on the left or multiplica-
tion of R by R" on the right.

(b) If wo consider R.R-R, the re-
sult may be written R-A* or R*:R, or
to take another example we can write
RAt a8 R'% or R(RI) = R.R. That is,

multiplication is psg0Qiative.

GROUP

ALGEBRA

.

(c) There is an identity clement
l.

(d) R* and R are inverses in the
songe that R'R = I and RR! = I,

(e) Any product of R, R*, I i8
again one of these three, for example:

R=R' =R = , .,
R?! = RV = R* = .,
l - R’ -~ R. = R. = L3N '}

The set of elements R, R?, I is
olosed under multiplication.?

Although the elements I, R, and
R' form a group, they form part of an-
other larger group which can be ob-
tained by tonsidering them in combina-
tion with the element F. ¥We say that
I, R, and R® form a subgroup 6f the

- larger group, which consists of I, R,

R*, FI = F, FR, and FR'. To show that
this set of six 2lements form a group,
and to exhibit the group properties,
wo make & group multiplication table.
Note first that the element FR i8 not
equal to RP, and that, in general,
ieft multiplication is not equivklent
to right multiplication. This can be
seen by actually performing the opera-
tions in order, starting from the
right. In this way the resder can ver-
ity, in fact, that RF = FR'. In the
multiplication table (facing page),
the olements in the left-hard column
are multiplied by those in the top row
to obtain the entry at the interaec-
tion.

In making the table we have sim-
plified the resulta so that only group
elements appear in the table. For ex-

YA group conatstiag of osly o sisgle elesment
(2tke &) and 1te povers 10 ctalled o g16lit srOuR.
Svideatly there coasiots & epelic groep of fowr
sleseats (t2e §0° rotaticss) and, 1a fact, of
five, 8iz, . . . slesests. To Mt do they tor
resposd geonsterically?
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ample, in obtaining R'FR, we have used
RF = FR?, hence

RFR = RF*R= FR':R= FR' = FI = F,

Sinmilarly,
R.FR® = RF:R® = FR*.R? = FR' = FR.

Since only group elements appear
in the table, we have proven that the
8ix elements chosen are closed under
group multipliication. There is an
identity eloment I, and each element
can bo soen from the table to have an
invorso in tho sot. Thorcforo, thoy
form a group, )

The group of six elements having °
the multiplioation table shown is sone-

NULTIPLICATION TABLE

| R R? F FR | FR?
1 1l R R? F FR | FR?
R R R? | FR? f FR
R? R? I R FR | FR? f
F F FR | FR? ] R R?
FRE FR | FR2| P R? I R
FRE] FRT| F FR R R! )

times called the permutation group on
throo lottors, sinco tho six positions
of tho oquilatoral trianglo shown in
Fig. 1.2 corrospond to tho six possible
arrangesent4 or permutations of the
letters ABC whioh 1label the vertices.



