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OSNSRAL PREFACE

This monograph was written for the Conference vn the New Instructional

Materials in Physics, held at the University of Washington in the sum-

mer of 1985. The general purpose of the conference was to create effec-

tive ways of presenting physics to college students who are not pre-

paring to become professional physicists. Such an audience might include

prospective secondary school physics teachers, prospective practitioner(

of other sciences, and those who wish to learn physics es one component

. of a liberal education.

At the Conference some 40 physicists and 12 filmmakers and design-

ers worked for periods ranging from four to nine weeks. The central

task, certainly the one in which most physicists participated, was the
.16 11.

writing of monographs.

Although there was no consensus on a single approach, many writers

felt that their presentations ought to put more than the customary

emphasis on physical insight and synthesis. Moreover, the treatment was

to be "multi-level" --- that is, each monograph would consist of sev-

eral sections arranged in increasing order of sophistication. Such

papers, it was hoped, could be readily introduced into existing couvues

or provide the basis for new kinds of courses.

Monographs were written in four content areas: Forces and Fields,

Quantum Mechanics, Thermal and Statistical Physics, and the Structure

and Properties of Matter. Topic selections and general outlines were

only loosely coordinated within each area in order to leave authors

free to invent new approaches. In point of fact, however, a number of

monographs do relate to others in complementary ways, result of their

authors' close, informal interaction.

Because of stringent time limitations, few of the monographs have

been completed, and none has been extensively rewritten. Indeed, most

writers feel that they are barely more than clean first drafts. Tot,

because of the highly experimental nature of the undertaking, it is

essential that these manuscripts be made available for careful review



by other physicists and for trial use with students. Much effort,

therefore, has gone into publishing them in a readable format intended

to facilitate serious consideration.

So many people have contributed to the project that complete

acknowledgement is not possible. The National Science Foundation sup-

ported the Conference. The staff of the Commission on College Physics,

led by H. Leonard Jossem, and that of the University of Washington

physics department, led by Ronald Geballo and Ernest M. Henley, car-

ried the heavy burden of organization. Walter C. Michels, Lyman O.

Parrett, and George M. Wolkoff read and criticized manuscripts at a

critical stage in the writing. Judith Bregman, Edward Oerjuoy, Ernest

M. Henley, and Lawrence Wilets read manuscripts editorially. Martha

Ellis and Margery Lang did the technical editing; Ann Widditech

supervised the initial typing and assembled the final drafts. James

Grunbaum designed the format and, assisted in Seattle by Roselyn Pape,

directed the art preparation. Richard A. Mould has helped in all phases

of readying mtnuscripts for the printer. Finally, and crucially, Jay F.

Wilson, of the D. Van Nostrand Company, served as Managing Editor. For

the hard work and steadfast support of all these persons and many

others, i kw deeply grateful.

Edward D. Lambe
Chairman, Panel on the
New Instructional Materials
Commission on College Physics



THE SYMMETRY OF NATURAL LAWS

PREFACE

"The Symmetry of Natural Laws" is a monograph intended for advanced

undergraduate students, or beginning graduate students, who have some

knowledge of modern physics as well as classical physics, including

the elementary quantum mechanical treatments of the hydrogen atom and

angular momentum. Thus it could woll form part of the instruction in

the latter part of a course in introductory quantum theory.

The first chapter introduces the symmetry concept and relates it

to the mathematical concept of invariance under a transformation of

variables. These ideas are illustrated in the contoxt of the classical

laws of mechanics in the Newtonian. form. The emphasis here, as in the

rest of the monograph, is directed to physical, rather than mathemati-

cal, generality. The first chapter has been tested on some undergradu-

ate students.

10411.

The second chapter, which is only partly completed, and will be

revised in order to simplify the presentation, discusses the symmetries

of the 8chrodinger equation for one or two particles, including gauge

invariance of the wave function and parity. The rest of the chapter

will discuss statistics.

Chapters to be written will include charge independence, with ap-

plication to nuclei and fundamental particles, and the unitary spur

metrics.

Laurie Crown

0
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1 THESYHMETRY IDEA: APPLICATIONS
IN CLASSICAL )PHISICS.

1.1 INTRODUCTION

The concept of symmetry, as ap-
plied to the laws of physics, is an
extension of geometrical symmetry
which is illustrated, for example, by
the equilateral triangle. Wo recognize
the equilateral triangle ABC in Fig.
1.1(a) as possessing a symmetry not
possessed by the scalono trinnglo
A'B'C'. Lot us try to express in words
our feelings about the two triangles,

Given an exact duplicate of the
equilateral triangle, we would not
know which corner to label A. That is,
the three corners are all equivalent.
In more technical language, the tri-
angle ABC can be brought into congru-
ence with itself in three different
ways through rotations in the plane
by 120'. This is a threefold symmetry.

Having arbitrarily selected a
corner to label A, there remain two
ways of assigning the letters B and
C. One way is shown in Fig. 1.1(a):
A, B, C are assigned in order clock-
wise. However, they could have been
assigned counterclockwise instead, and
no rotation in the plate will convert
the clockwise to the counterclockwise
ordering. Notice that if we were

C
0

ASk
C A A

I /

Fig. 1.II Oesgritorefe of the equilateral triaegle kbe.

viewing Fig. 1.1(a) from beneath the
page, instead of from above, the or-
dering would have appeared counter-
clockwise. Therefore, flipping the
triangle over will change the ordering
(viewing it in a mirror will do the
same.). Having flipped it over, we can
still rotate it through 120' and bring
it into congruonee, and then repeat
this rotation to bring it into col.-
gruence still one more way. There are
thus, if we permit flipping the tri-
angle, six ways to bring it into con-
gruence with itself, i.e., a sixfold
symmetry. Only one of these six con-
gruence operations, which are illus-
trated in Fig. 1.2, is possible for
A'B'C', which has the lowest of all
orders of symmetry, namely onefold
(i.e., no symmetry).

Up to this point we have related

B

b r

C

1.1 Two kinds of triangles, (a) equi-
lateral and (b) scalene.

A



2 THE SYMMETRY OF NATURAL LAWS

the notion of symmetry to the set of
congruences of two identical, labeled
triangles and have used the ideas of
rotation and flipping to make concrete
the method for achieving such congru-
ences. These operations are evidently
not unique. For example, to achieve
the congruence shown in Fig. 1.2(e)
we could rotate the original triangle
by some angle not 120', then flip
about any axis, then perform an ap-
propriate rotation and sliding to
bring it to the desired location.
However, there is some point in
selecting for study a set of simple
operations, Just sufficient to achieve
all six congruences.

A minimum set of opeaations which
bring the equilateral triangle into
congruence with itsel: (and which we
may call symmetry operations) such as
rotations by 0', 120', 240', etc., and
"flipping" about some axis in the
plane can be analytically described in
a number of ways. The moat powerful
way of doing so is in terms of an ab-
stract algebra of operations. For ex-
ample, if I is the identity operation
(that is, leaving the triangle alone -
analogous to multiplying a number by
the number 1) and if R is the opera-
tion of clockwise rotation by 120',
and it we write

Rs 1- I, (1.1)

this means that three successive
clockwise rotations of 120' are the
same as leaving the triangle alone.
The mathematical symbols R and I are
called operators and an operator al-
gebra like that satisfied by the con-
gruence operations on the equilateral
triangle is called a voup_Alitert.
We shall not explicitly use the group
algebra concept in our work, but it is
an interesting branch of mathematics
which is briefly discussed in an ele-
mentary way in the Appendix.

A group of symmetry operations is
analogously associated with any rom
lar plane figure, such as the square,
pentagon, hexagon, etc., and thus
also for the eirole, which is a

limiting case of such regular n-sided
figures. The circle exhibits a con-
tinuous sequence of congruences with
itself (Illy point may be labeled A),
and upon flippin' a clockwise sequence
of points becomes counterclockwise.

Regular solids, such as owns
and spheres, possess symmetry proper-
ties which can be discussed in a sim-
ilar way, and such geometrical sym-
metries play an important role in
much physical reasoning. The science
of crystallography, for example, con-
sists largely of the determination of
this kind of symmetry and in its ap-
plications.

But the symmetry of physical laws
is often less easily visunlizable. To
anticipate the sort of thing we are
aiming at, consider the sy,metry known
as "charge independence of the nuclear
forces." One example of this symmetry
is furnished by the pi-mesons or piuns.
There are pions carrying electric
charges of +e, 0, and e, where e is
the charge of the electron. The
charged and neutral pions have nearly
the same mass and are regarded as dif-
ferent "charge states" of a single
particle, the pion. As regards the
role played by the pions in nuclear
forces, the three charge states are
essentially equivalent. Thus, in some
sense, they resemble the three corners
of the equilateral triangle. This
necesparily vague description of
"charge independence" will be made
more precise after we bows(' more
familiar with symmetry concepts it
physics.

To begin familiarising ourselves,
we start with a simple physical sys-
tem consisting of a positive and a
negative electron attracting each
other by electrostatic forces,

1.9 POSMONIUM

A positronium "stool, is a hydro-
genlike system in which the proton is
replaced by a positron. Unlike the
proton, the positron has properties
identical vita the electron, except
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We are assuming here that tho
structure of hydrogenlike atoms is en-
tirely determined by the electrostatic
Coulomb force. While this is In excel-
lent first approximation, it Is'not
entirely correct. Among tho many
smaller effects which wo aro neglect-
ing are magnetic effects, relativistic
effects, and those which aro duo to
the internal btrusture of tho nega-
tively and positively chnrged parti-
cles. In positronium, an especially
interesting effect is the "virtual
annihilation" of the electron-positron
pair forming a photon, which then

for the sign of its electric charge.
(!o note that becnuno the charge of
tho positron is 4e, its magnetic mo-
ments eh /2m is positive, while that of
the electron is eh/2m.)

Because the positron and electron
aro identical in mass, and since the
desirnations "positive" and "negative"
charge uro purely conventional, the
system is highly symmetrical in a way
that hydrogen is not. However, we can
see the relationship of the states of
po,4tronium to those of hydrogen, by
starting with a hydrogen atom and
imagining the proton to get lighter,
until its mass is equal to that of the
electron. Recall the expression for
the energy of a hydrogen atom in the
state of principal quantum number n
(relative to an infinitely separated
electron and proton)t

gs 01._ 11
no I

(1.2)

where RY(2) pe4/2h1 and the reduced
mass p is given by

1 1 1
H a

(1.3)

H Is the mass of the nucleus (in this
case the proton), and a is the mass of

Its ass setts.

materializes again into an electron-
positron pair. Uso of the words "then"
and "again" as indicating a temporal
sequence is in this case purely sche-
matic, as in fact the details of this
process are completely unobservable,
though we know it mast exist and must
shift the energy levels. (Can you see
why it cknnot bo obdervable? Can you
estimate tho size of sumo of the ef-
fects vs have mentioned? Can you
think of other hydrogenlike systems?
Can you think of any other effects we
haw, neglected?)

tho electron. [In the classical Bohr
model, proton and electron revolve op-
posite each other about their common
center of mass in such a way that
their moment of inertia is pal, where
($ is the distance between proton and
electron. Can you prove this ?)

From Eq. (1.2) it is clear that
if 11 is very large compared to m, as
in hydrogen, then p is nearly equal to
a. Also, the center of mass of the
atom is very close to the proton. But
If H is made smaller, the center of
mass moves away from the positive
charge until the positive and negative
charge are symmetrically located with
respect to it. equation (1.3) becomes,
when M a,

1 1 1 2

It is a a'
(1.4)

so that # m/2. The energy levels of
positronium are thus !dentical with
those given by Eq. (1.2), but with half
halt the spacing

Ry(p0B.)
Ea (positronium)

ni

S !1R1. (1.6)

It is a remarkable tact that al,
though electron and positron have
identical properties, the matter of
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which our familiar universe is made
contains only electrons. Of course,
positrons feel a repulsive Coulomb
force from positively charged protons
and so would not form atoms, but par-
ticles identical to protons except for
having a negative charge also exist,
and have boon produced by high energy
beams from accelerators. They also
constitute a rare component of the
cosmic rays. These particles, called
antiprotons, can form atoms with posi-
trons which would be indistinguishable
from ordinary hydrogen atoms except
for the signs of their constituent
charges. In fact, wo know of no reason
why an entire universe composed of
antimatter might not exist.

Antiprotons and positrons (which
can also be called antielectrons), in
the presence of .ordinary matter soon
find their abundant oppositely charged
counterparts and are at'racted to them
by the electrostatic Coulomb forces,
antiprotons to protons or other atomic
nuclei, and positrons to electrons.
When this happens, each particle-
antiparticle pair annihilates, the
rest-mass-energy me being transformed
in some other form of energy. Thus in
our local universe,, antimatter has a
very short life.

1.3 SYMMETRY IN NATURE

The existence of particle-anti-
particle pairs is a striking illustra-
tion of the fact that the underlying
laws of nature, some of which are un-
known to us, appear to possess im-
portant symmetry characteristics.
Some of these symmetry properties can
be read directly from known laws (for
example, the laws of electrodynamics
as we will see below), and we may, as
a working hypothesis, guess that the
unknown laws also possess these sym-
metries. Such a hypothesis must, of
course, be subjectedto experimental
tests.

It is important to stress that
we are talking about the symmetries
possessed by the fundamental laws and

the elementary constituents of matter
(if, indeed, there be such), and that
we cannot expect these symmetries to
be apparent in ordinary uncontrolled
observation. It is true that many
symmetrical objects and processes ap-
pear in nature (such as nearly perfect
single crystals), but they are excep-
tional. One reason for this is obvi-
ous. Consider two identical pendulums
independently supported: if both are
at rest, we have a completely sym-
metric system. But if one is set into
motion, while the other remains at
rest, tho symmetry is destroyed. If,
instead, the two pendulums aro lightly
coupled (say, with a weightless weak
spring) and set into motion either
exactly in phase or 180.out of phase
with equal amplitudes, they will un-
dergo symmetrical motions - but these
initial conditions must be precisely
chosen. Thus, symmetrical behavior of
a system requires, in addition to the
symmetry of the laws of nature, that
the system be constituted and started
in a symmetric way.

A lack of symmetry in "the way
things got started" may be the reason
why, although natural law (so far as
we know) is symmetric between particle
and antiparticle, ordinary matter is
made entirely of particles - and not
antiparticles. There is, however,
another possibility. The symmetry laws
which we read from a known law of
physics, and which operate success-
fully on a given level of experience,
may fail when subjected to a more
sensitive test. Thus, for example,
space-reflection symmetry (or
'"parity"), says that right-handed and
left-handed descriptions of nature are
equivalent. This holds for the elec-
tromagnetic and the strong nuclear in-
teractions bbt has been found to fail
for the weak interactions. It is,
therefore, a'useful approximm.e sym-
metry on a cerf,:ain leval of experi-
ence, but it is violated in some tyl.es
of relatively rare processes. On the
cosmological time scale, even a small
violation of symmetry can have enor-
.mous effects. We do not know how much
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of the lack of symmetry in nature is
due to weak violations of the other-
wise symmetrical laws of nature.

1.4 CONSEQUENCES OF THE SYMMETRY OF
NATURAL LAWS

Among the many succebses of theo-
retical physics after the development
of quantum mechanics, perhaps the most
spectacular have teen the predictions
of the existence of hitherto unknown
fundamental particles and their prop-
erties. These predictions have been
based to a large extent upon symmetry
considerations. Dirac's wave equationf
proposed in 1928 to give a relativin-
tically correct description of the
spinning electron, possesses symmetry
under an operation (that is, a mathe-
matical transformation), known as
"charge conjugation", and this led to
the prediction of the positron, diu-
covered in the cosmic rays in 1934.
Although Dirac's equation does not
give a complete account of the elec-
tromagnetic properties of the proton,
on the other hand, the assumption that
the true laws governing the proton,
whenever they are found, will also
possess the property of charge conju-
gation symmetry similarly led to the
prediction of the existence and other
properties of the antiproton, dis-
covered at Berkeley in 1955. Detailed
discussion of Dirac's equation is be-
yond the scope of this monograph, and
we shall confine ourselves to mathe-
matically simpler examples. However,
a discussion of charge conjugation
invariance for particles without spin
will be included in Appendix 2.

1.5 SYMMETRY AND INVARIANCE

Up to this point we have been
using the term "symmetry" in a general
intuitive sense. The mathematical
meaning of symmetry is contained in
the notion of invariance of a mathe-
matical expression under a transfer-
nation of variables.

Suppose we have a mathematical
expression depending on one or more
variables u, v, w ,... and transform
to a new set of variables equal in
number u', v', . That is, we
have

u' 10(u, v, w,...)

v' v'(u, v, w,...). (1.0)

If the transformation is a suitable
one, we will be able to solve these
equations for the original variables
and obtain

u u(u', v', w',...)

v(u', v', w',...). (1.7)

[For example, we might have

1

(u
u'

1/2-

+v),

v' (u v),

which can be solved to give

u - -4(ul + v')

(L0 - 0).1

(1.8)

(1.9)

If we now transform our original
methematical expression f(u, v, w,...)
by substituting for u, v, w,... their
expressions, Eq. (1.7), in terms of
the new variables, we obtain a new
and, in general, different function
g of the new variables (which is, how-
ever, numerically equal to the old
one):

f(u, v, w,...) g(u', v', w',...).
(1.10)

[For the example given in Eq. (1.8)
and (1.9) we get

1 1
f(u, v) f(a(ut + v'), -411(u' - v'))

v9.1 (1.11)
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A convenient pictorial representa-
tion, very frequently used, is the
following: Suppose there are only two
variables u and v, each of which can
take on a certain continuous range of
numerical values. Let us set up a sys-
tem of perpendicular u and v axes. A
pair of allowed values of u and'v cor-
responds to a point in the cross-

V

O

ag

Pe%

RANGEOFu---*

hatched area, and f(u, v) can be
thought of as a number attached to
this point. Similarly we can set up a
set of u', v' axes and use Eq. (1.8)
to determine a pair of values of u',
v' for each pair u, v and in this way
relate a point in the (u', v') plane
to each allowed point in the (u, v)
plane. In general, the area in the

v') plane will not resemble that
in the (u, v) plane. The equality in

If now it should turn out that not

only are f(u, v, w,...) and g(u', v',
w',...) numerically equal, but that
g is the same function of the primed
variables that f is of the unprimed
variables (obviously this is a very
special circumstance), we then say
that f(u, v, w,...) is invariant under
the transformation of variables. Eq.
(1.8),

[Again, for the example of Eq.
(1.8), if

Eq. (1.10) states that the number at- 1

tached to the point P' in the (u', v')
plane is the same as the number at-
tached to its corresponding point P in

v'

the (u, v) plane. This picture, which
can be extended to more variables by
introducing more dimensions, holds for
any transformation of the kind we have
called "acceptable.' (What sort of
transformations might be "unaccept-
able?") Sincb the coordinates u', v'
are usually different from the coor-
dinates u, v, the function g(u', v')
must usually be different from the
function f(u, v) to attach the same
number to the point P in the u, v
plane and the point P' in the u', v'
plane. If, nevertheless, as for the
example discussed in Eqs. (1.8), (1.9),
and (1.12), it turns out that while
P' and P are given by different pairs
of numbers, f(u, v) and g(u', v') give
the same values also for the some pair
of mr?bers, then f(u, v) is invariant
undel the transformation of u, v to
u', v'. (Try a numerical example to
illustrate these ideas.)

then

+ v'), - v'

-
2

1

2

1
-(u' + v')2 + -(10 - v')2

u'3 + v'2
g(u',

Thus, not only does

f(u, v) - g(u', v'), (1.14)

which merely expresses the numerical
(1.12) equality of the expressions f and g

(1.13)
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for corresponding values lf the vari-
ables u, v of f and the variables u',
v' of (i.e., those values related by
Eq. (1.5) or their equivalent Eq.
(1.16); but also

g(u', v') f(u', v'). (1.15)

This makes the much stronger statement
that g has the same form in the vari-
ables u', v', that f has in the vari-
ables u, v. That is, g and f are the
same functions of their respective
variables.]

A type of transformation which
plays a very important role in many
physical applications is the linear,
transform_tion of a set of variables,
say, u2...ur to a setof variables
u1'...ur':

allul + a22u2 + + Nor
u2' a22u2 + a22u2 + + a2rur

(1.16)

not + a52u2 + + aur

The set of numerical coefficients
IMO is often written as a square
array

aix812

agia22

."

."

a1,,

a2n

Sine am Sinn (1.17)

and is called a matrix.

1.6 READING A SYMMETRY FROM A NATURAL
LAW.

As a simple example from classical
physics, let us take Newton's second
law, restricting it to one space di-
mension,

P ma RR. (1.18i

By x is meant the position, with re-
spect to some origin, of a classical
Newtonian point particle of mass a,

while it stan!s for d2x/dt2. In general,
then, x will be a function of the time
x x(t). The force F applied to the
particle can be arbitrarily chosen in
this model, and whether or not Eq.
(1.18) incorporates a symmetry de-
pends entirely on the way the force
depends on space and time or on the
position of the particle.2 We write
Eq. (1.13) in the form

f(x, t) a F(x, - mk(t) 0, (1.19)

and consider the transformations of
the variables x and t which leave
f(x, t) invariant, for special choices
of F.

Case (i). The force depends on t,
but not on x.

In this case, the transformatnn

x* x - c,

t' - t, (1.20)

leaves f(x, t) invariant. For, solving
for x and t, we get

x x' +o

t t',

and substituting in

d2
f(x, F(t) - mdt"

x

(1.21)

(1.22)

we get

g(x', t') - f(x' + c, t')

F(t*) - m
dt"

f(x', t'). (1.23)

The expression (1.22) for f(x, t) is

'Note that x (and also t) are being used with
two different meanings which should, however,
cause no confusion since the context will make
clear which meaning is intended. We use x to de-
signate a point in space and also to designate
the position of a particle. In the former use
dx/dt has no meaning (unless the whole coordinate
system is roving); in the latter use, dx/dt is
the velocity of the particle with respect to the
fixed coordinate system.
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thus invariant under the transforma-
tion Eq. (1,20). We have also, from
Eq. (1.19)

11011

g(x', t') 0, (1.24)

but this would be true even for trans-
formations which do not leave Eq.
(1.19) invariant, as this is already
implied in the definition of "trans-
formation." For example, consider the
transformation

Then,

x' x/b, or x - bx',

t t'. (1.25)

g(x', t') f(bx', t')

FW) - mbRt. (1.26)

This is not equal to f(x', t'), unless
b 1. Nevertheless, g(x', t') 0.

We may ask now, what is the mean-
ing of the transformation Eq. (1-20)?
This may be peen in Fig. 1.3.

Here x is the position of the
particle with respect to the origin 0,
while x' - - a is the position of
the particle with respect to the point
a. Thus Eq, 41.22) is invariant lith
respect to a shift of the origin. This
is, for this physical problem we can
choose our origin anywhere. 'Me motion
of the particle is the same, 'o matter
where we start it out. This will not
be true in the next case considered.

Case (b). The force depends on
x. but not on t.

In this case we write

f(x, t) F(x) - adt (1.27)

and consider the transformation

0
rei
x'-, -e

Fig. 1.9 Depletion of 2q, (1.20).

x' x

t' t to.

We now obtain

(1 18)

g(x', t') f(x', t' + to)

F(x') mg', (1.29)

so that Eq. (1.27) is invariant to a
shift of the origin of time; i.e., it
does not matter when we start our stop
watch. The motion of the particle is
the same no matter when we start it.

An exceedingly simple, but very
interesting transformation of Eq.
(1.27) is

x' x

t' - -t, (1.30)

which is called "time-reversal." This
gives

g(x', t') F(x')

t_ d

9]
(1.31)

i

d(-d 94itk(-t
F(x') - f(x', t'),

so that again Eq. (1.27) is invariant.
The physical meaning of the time-re-
versal transformation is by no means
obvious, but its implications are
profound and will be discussed in the
next section.

1.7 THE "TIME-REVERSAL" TRANSFORMA-
TION

When we discuss the symxetry of
natural laws, we have in mind a region
of space and an interval of time within
which natural objects interact by
means of their mutual forces. Whether
we are considering a problem of rela-
tivistic dynamics, or one in which the
nonrelativistic approximation is
nearly correct, it is useful to adopt
the idea of a maximum signal velocity
so that we can observe our system
within a region of space and an inter-
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Fig. 1.4 Scattering of two particles.

val of time (or, as we say, a region
of space-time), such that the system
can be considered isolated. The im-
portant point is that we wish to avoid,
at least for the time being, having
to make assumptions about external
forces.

Our isolated system is then a
small unive,-1. There are no forces
"external" to this universe, and we
may observe in it the free play of
natural laws. .

Consider now the collision of two
particles in an isolated region of
space-timo, assuming the velocities
are small enough that the nonrelativ-
istic approximation holds. At the
initial time ti, let particle a have'
momentum pia and let particle b have
momentum plb, recalling that momentum
p my ......m(d/dt)r. These two momenta,

pia and plb, determine a plane which
will be the plane of the subsequent
motion, assuming that the mutual in-
teraction forces act along the line
joining the two particles, as is re-
quired by Newton's third law. In the
course of time the mutual interaction
forces la and r, where 71
Finer the momentum of each particle
t*.zcordivig to Newton's second law, i.e.,

71(t)
dt

P(t) (1.32a)

Tb(t)
dt r

-4b(t), (1.32b)

so that by time t3, the respective
momenta have become pea and psb as
shown in Fig. 1.4.

Since pa and ib are themselves
time derivatives of the space coordi-
nates of the particles, the transfor-
mation t' t results, at any time t,

a.

Fig. 1.5 Impulse equals change of momentum.

in

;14(t') 'P(t) 4a(t) (I.33a)

and

ilb(v) p P(t) . (1.33b)

Under the time-reversal
transformation the vector momen-
tum and velocity of a particle
change sign.3

The tangents to the particle
trajectories in Fig. (1.4) give the
directions of the momenta of parti-
cles a and b at each instant of time
during their motion, The effect of the
forces is to bring about a continuous
change in these momenta. In a short
time interval At, for example, Eq.
(1.32) states that the changes in the
momenta are

aim - fa(t)At

- IbmAt.

(1.34a)

(1.34b)

Thfs is thy' statement that impulse
equals change of momentum. Notice
that although we have labeled the
forces by the time Fa(t), the forces
in fact depend only on the distance
between the particles. The meaning of
Eq. (1.34a) can be exhibited graphi-
cally as in Fill, 1.5. Under the trans-

'Recalling that at each instant of time
74(t) 41,(t), we can infer from Eq. (1.32)
that (d/dt)ia(t) (d/dt');b(t1), where V is
any transformatioq of t, t' t'(t). This
statement has obviously nothing to do with time-
reversal-invariance even it we choose
tl t'(t) t.
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INrP

t° 0
to 4

Fig. 1.6 Impulse equals change of momoptum
(time reversed).

formation t' -t, the situation is
graphically shown in Fig. 1.6. Thus,
while -1:74 acquires the change of mo-

mentum the fact that the laws
of motion,.Eq. (1.34), are invariant
under the time-roversal transforma-
tion means that with the time reversed,
pm - -pm acquires the change of mo-
mentum in an equal time interval of
AP" -44. Note that it is essential
here that the force is unchanged by
the transformation.

Clearly, this means that if to is
earlier than tl, and if we start at
A' and B' instead of A and B (see
Fig. 1.4), with momenta -p2m and
4213, the trajectories will be tra-
versed in the reverse directions, the
particles ending at A and B after a
time equal to that for the forward
traversal with momenta --.511 and -13.111 .

In brief, the motions are reversed.4
Let us summarize what we have

learned of the significance of the
time-reversal transformation in clan -.
sical mechanics:

When two particles obeying New-
ton's laws move under the action of
their mutual interaction forces, if
at any instant the momenta of the two
particles are reversed, the reverse
motion will result.

Thus, in a gas, where we con-
sider a collection (or "ensemble ") of

4The transformation t' t is a purely mathe-
matical one, and there is no way, of course, to
carry out this operation physically. It tells
us something about the symmetry of the couations
of physics. The physical analogy to keep in wind
is this: If we take movie of a process and run
it backwards and the process is time reversal in-
variant, there is no way to tell with certainty
whether we are seeing the original or the re-
versed motion, since both are possible, motions.

random motions, we always ascribe an
equal probability to a motion and its
reversed motion. This is knpwn as the
principle of detailed balance.

More complex, though equally im-
portant, situations arise in classical
physics than the collision of two
Newtonian particles interacting by
means of velocity independent forces
depending only on the distance be-
tween particles. Nevertheless, it is
found that the fundamental laws are
always time-reversal invariant. This
can always be interpreted, as we have
done, as motion reversal: The final
configuration with reversed momenta
leads, with unchanged laws of force,
to the initial configuration with re-
versed momenta, after an equal time
interval. ("Initial" and "final" can,
of course, designate any earlier and
later time during the motion.)

In classical physics this leads
to a certain paradox concerning the
approach to equilibrium, which is not
fully resolved even in the quantum
theory. If we introduce some gas into
one corner of a large evacuated box,
we expect the gas to distribute itself
uniformly throughout the volume. After
a time T, it will then find itself in
a certain configuration with the gas
particles having definite momenta (in
classical physics). At equilibrium,
the configuration with reversed mo-
menta is equally probable. But if this
configuration is realized, it will
lead after another interval T, to all
the gas being again in the corner into
which it was originally introduced. In
the real gas, this does no happen,
for small uncontrolled external in-
fluences cannot be entirely eliminated
(vibrations of the support, sound
waves, etc.). Since these belong to a
larger universe than the box of gas,
we become involved with a larger time
scale than that of the gas molecule
collipions. If, indeed, time-reversal
invariance really holds exactly and

Recent experiments on the decay properties of
k mesons appear to indicate the first evidence
for possible failure of tine-reversal invariance
on a microscopic sole.,
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our universe is expanding into a
"box", it may sometime reverse itself.

1.8 INFERRING A LAW OF NATURE FROM A
SYMMETRY

Galileo's law of inertia, which
is Newton's first law of motion, is.
fundamental to classical mechanics.
This law states that in the absence of
a net external force, the total mo-
mentum of a system is unchanged. At
first sight, this may appear to be
merely a special case of Newton's
second law, but in fact the second
law has no moaning unless the law of
inertia holds, because otherwise
Newton's second law becomes only a
definition of what is meant by force,
and thus has no predictive value. The
law of inertia describes the setting
within which the action takes place -
namely, empty space. It permits the
measurement of forces by balancing an
unknown force against a standard force,
since it gives a method for determin-
ing when no net force acts.

Consider a large, flat, horizon-
tal, frictionless table top. Let us
start an object from the center with
a certain momentum. Until the edge is
reached, no net forces will act to
change the momentum. But if the table
is curved, tipped, or rough, or con-
tains holes, the momentum will not be
conserved. Similarly, a three-dimen-
sional space in which Newton's_first
law holds contains no roughness,
curvature, edges, or other local fea-
tures to disturb the motion. In brief,
the space in which the law of inertia
holds is homogeneous and isotropic;
that is, each part of empty space is
like each other part, and every direc-
tion is equivalent to every other di-
rection. This Is a symmetry. We have
made the tacit assumption, as well,
that each interval of time ("empty"
time, if you like), has the same in-
trinsic properties as every other
equal interval of time.

Can we reverse the discussion,
and infer the law of inertia from the

homogeneity of space and time, and the
isotropy of space? Let us use the idea
of invariance, considering a one-
dimensional example. At some instant,
let the position of a point particle
be x and its velocity v. Assuming
v - v(x) and making the substitution
x' - x xo, corresponding to a shift
of origin, we get (refer to Eq. (1.14)
and Eq. (1.15)),

v(x) = v(x' + x0) s v'(x'). (1.35)

Because of the assumed homogeneity of
space, the function v(x) must be in-
variant under the translation of the
origin, hence

v'(x') - v(x') (1.36)

and from Eq. (1.35) and Eq. (1.36) to-
gether, we have

v(x' + xo) - v(x') (1.3?)

foram xo. Hence the function v(x)
must ba a constant, which proves the
law of inertia for this case. Because
of the isotropy of space, this holds
for any velocity component, and for
v - v(x, y, z).

1.9 SYMMETRY, INVARIANCE, AND CON-
SERVATION LAWS

In the previous section we have
illustrated, for a very simple exam-
ple, how a symmetry (the homogeneity
and isotropy of space) can lead to
invariance of an observable quantity
(the invariance of the velocity v(x)
considered as a function of the posi-
tion x under an arbitrary shift of
origin), and to the conclusion that p
must be constant for the motion con-
sidered.

The statement that some measur-
able physical quantity does not change
during a process undergone by some
isolated system is a conservation
statement. Of greatest interest are
those quantities which can be identi-
fied as never changing for an isolated
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system, whatever the process. Some
examples are: total vector momentum,
total angular momentum, total energy,
total electric charge. These conser-
vation laws can usually be shown to

follow from a symmetry assumption.
Aside from its great actical im-
portance, this is ,a very interesting
and esthetically satisfying realiza-
tion.

QUESTIONS

1. Would you expect magnetic effects
to be more or less important within,
the positronium atom than in the
hydrogon atom? Why?

2. Tho moan time for tho ground state
of positronium to annihilate into
two y rays is about 10 -10 sec. Is
this a long or a short time on the
atomic scale? Discuss.

3. Extend the discussion of the invar-
iance properties of Eq. (1.19) by
considering a general force 1,(x, t),

depending on both space and time.
If invariance is to be maintained
under the transformation Eq. (1.21),
what property must F possess? Un-
der transformation Eq. (1.25)? tin-

der transformation Eq. (1.28)? Un-
der transformation Eq. (1.30)?

4. Can we show, using the arguments of
section 1.8, that in a homogeneous,
isotropic, force-free space the ac-
celeration is constant as well as
the velocity? What constant value
has the acceleration?



2 BYMMLeRYPRINCIPLES
IN QUANTUM THEORY

2.1 INTRODUCTION

Symmetry principles play a much
greater role in quantum physics than
they do in classical physics. Among
the many reasons are these:

(a) The classical laws are known.
Thus, while the recognition of the
symmetries they contain is esthetically
satisfying, and often provides a
powerful analytic tool, the laws in
themselves are already complete and
nothing essentially new is added. In
those parts of quantum theory where
the laws are either unknown or uncer-
tainly known, one often tries to find .

those predictions which follow only
from accepted symmetry principles and
conservation laws.

(b) Classical physics can be
considered as a special application of
quantum physics when the constant of
action h, Planck's constant, is negli-
gible. In the limiting case, when
h o, the separation between states
of definite energy tends to zero, so
that a classical state is essentially
an ensemble of many quantum mechanical
states. For example, a magnet in a
uniform magnetic field takes up one of
only a finite set of discrete orienta-
tions in quantum theory, while in the
classical limit the set of possible
orientations is continuous. These two
kinds of symmetry (discrete vs. con-
tinuous) are different. When the
number of possible orientations is
small, as in the quantum theory of
elementary systems, powerful restric-
tions can be placed on the possible
internal complexity of the system,
while in classical theory this is not
possible.

(c) The systems studied by quan-
tum theory are usually simpler sys-
tems - such as crystals, molecules,
atoms, nuclei, and elementary parti-
cles. The intrinsic symmetries of such
systems are more readily apparent.
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(d) There are many more quantum
mechanical symmetries.

Reasons (b), (c), and (d) are not
all independent of each other, and
will require fuller explanation, par-
ticularly (d), which we now discuss.

Although the aim of quantum
theory is.to predict the results of
experiment, there are intermediary
stages of calculation when we deal
with descriptions of the system which
are not directly measurable. The fea-
tures of the description which are not
directly measurable have only a con-
ventional significance like the labels
A, 13, C on the vertices of an equilat-
eral triangle - and this gives rise,
aE in the case of the triangle, to a
group of symmetry transformations.

Consider the SchrBedinger wave
function 067, t), describing a parti-
cle in a potential. The physical sig-
nificance of 0 is that its absolute
square represents the probability (or
sometimes only the relative probabil-
ity) of finding the particle within a
given volume. More precisely,

t)dV gl 1067, t)I2dV

0*(7, 00('r, t)dV (2.1)

is the probability for finding the
particle in the infinitesimal volume
dV at the time t. But exactly the
same information is contained in

since

0'(r, t) ei00(r, t), (2.2)

W(r% t)12 t)12 (2.3)

as long as it, is a real number. In fact,
01 may be any arbitrary real function
of space and time. This group of sym-
metry transformations of the wave
function is called gauge transforma-
tion. The only ether restriction on
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The term "gauge invariance" is
also used in connection with the slu-
steal electromagnetic field. In that

. case it is connected with the fact
that, just as the static electric
field g can be derived from a scalar

. , potential V, - - grad V, so the
static magnetic field B can be derived
from a vector potential X, according
to

g curl X.

Hoz2ver, since for any scalar function
X(7, t), curl div X 0,

is that if we add two wave functions,
such as 01(r, + 02(r, t), to form
a new state, under a gauge transfor-
mation both 01(r, t) and 0267, t) must
undergo a gauge transformation with
the same gauge function (/) - otherwise
the probability meaning will be al-
tered.

To see this, consider a special
example of the gauge transformation,
obtained by letting q be the number v.
Since et* -1, the transformation is

- -0(r, t). (2.4)

Evidently -01 - 02 has the same prob-
ability meaning as 01 + 02, while
-01 + 02 does not, for example.

The probability density
P(r, t) is invariant under a gauge
transformation of the wave func-
tion.

2.2 THE FREE PARTICLE IN QUANTUM
THEORY

The simplest example of the
6chr3dinger wave equation is that for
a free particle of energy B in one
dimension:

hl ds- 21.717-00(x) EIP(x). (2.6)

It - X+ grad X

is a vector potential which furnishes
the same magnetic field as X:

N curl X curl X'.

This is referred to as "gauge invari-
ance of the first kind," while that of
the wave functions is called "guage
invariance of the second kind." By
using both gauge invariances and mak-
ing the functioi X identical with the
function 0 in Eq. (2.2) one can prove
the conservation of electric charge
in quantum theory.

6

A solution of this equation is

lac0(x) C exp
'

(2.6)

.where C is a normalization constant
and p 42mE/h2. The relative proba-
bility of finding the particle between
x and x + Ax is

x+Ax x +Ax

f 10(xl)Pdx' ICPJ dx'

(2.7)

i.e., proportional to the size of the
interval Ax.

If we shift the origin of x to xo
so that the new x value is x' x - xo,

the wave function becomes

0(x) - 0'(x') C exp
ip(x' + x0)

+ipxo
exp 0(x') (2.8)

Thus the wave function is not invari-
ant under a shift of origin. However,
by applying the gauge transformation

exp
x

ipxo
tO 0'(x) we get

-i
exp ----A

px
0(x)

-ipxo +ipx
A

-

exp exp --2 15C 9 )

h h r

4(x') (2.9)

so that the probability density P(x)
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is not altered by the shift of origin.
This corresponds to the fact that the
motion of a free particle in classical
mechanics is independent of the origin
of coordinates. In each case, the re-
sult depends on the fact that the mo-
mentum is constant, since if p de-
pended upon x the conclusion would not
be valid.

2.3 PARTICLE IN A SYMMETRIC POTEN-
TIAL PARITY

Tho SchrSdinger equation for a
particle of onorgy E bound in a poten-
tial is, in one dimension,

h2 did (x3
+ V(x)0(x) E0(x).

2m dx2

In terms of the constant nonrelativ-
istic total energy E and the potential
energy V(x), the statement that the
particle is bound in the potential
means that the kinetic energy T(x)

E V(x) is negative for infinite
separation, i.e., T(x 00 and
T(x 0) are negative. Many, though
not all, potentials go to zero at in-
finity; for example, the Coulomb,
gravitational, and square well poten-
tials. For these cases "bound" is
equivalent to E being negative.

Not all potentials need be sym-
metric about the origin. An energy
diagram for a particle bound in a
nonsymmetric potential is shown in
Fig. 2.1.

If, however, the potential is
symmetric about the origin (or better,
if an origin can be found about which
the potential is symmetric), as in
Fig. 2.2, then interesting results
follow about the nature of the wave
function 0(x) which depend only on the
symmetry and not on other details of
the potential.

The symmetry of the potential
about the origin means

V(x) - V(x). (2.10)

If, then, we make the transformation

of the variable x which corresponds to
reflection about tho origin

x' x, (2.11)

and substitute it in the SchrSdinger
equation, we get

_ A! s.110±-Uc + v(c)0(x) - E0(x).
2m dx2

(2.12)

For one-dimensional problems in
quantum mechanics it is easy to prove
that there can be only ono bound state
of a given onorgy, and since 0(x) and
0(x) both satisfy tho same Rohrer.
dinger equation for a bound state of
energy E, we know they must both de-
scribe the same physical situation.
As discussed in the previous section,

BOUND STATE
ENERGY

Fig. 2.1 Noneymmetrio potential.

BOUND STATE
ENERGY

Fig. 2.2 Symmetric potential.
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this means that the respective proba-
bility densities

P(x) I#(x)I' (2.13)

and

P( x) 10(w)11 (2.14).

must be equal. This, in turn, means

0(x) 000(x) (2.15)

for all x. Thus,

0(-3) - 000(3) (2.16)

but also

0(3) 610*(3), (2.17)

(and this is not transformation of
variables),

0(x) e100(x). (2.18)

Substituting Eq. (2.15) in Eq. (2.18),
we get

0(w) m emi. 0(x) (2.19)

for all lc, and hence

ell, 1. (2,20)

Since ell. is the square of 00, it
follows that e10 is either +1 or 1,
and we conclude from Eq. (2.15) or Eq.
(2.18) that

16(x) *0(x). (2.21)

That is, we can equally well write

IF pommy os., VIrOprrarPO MN" cessamp, .

fig. 5.2 'Ave fusetiose for tbe oaf-dines-
1110$111 barmoilie eeeillater.

Now 0(x) 0(x) means that the
Wave function has the same symmetry as
the potential; that is, it is symmet-
ric about the origin. The other solu-
tion,

0(x) 0(x), (2.22)

means that the wave function is anti-
symmetric about the origin. (that is,
the reflection is flipped over). Put-
ting x 0 in Eq. (2.22) we see that
in the antisymmetrio CAMS the wave
function oust be Lin at the origin.

Wave functions for the lowest en-
ergy levels of the symmetric harmonic
oscillator potential V(x) im400 are
shown in Fig. 2.3. Notice that the
ground state (it ihw) must be symmet-

ric, as it has ro nodes, and that the
symmetric and antisymmetric (or mg
and AA), ware functions alternate as
the energy is increased.

In three dimensions, reflection
in toe origin take the form

x x
X

-a

(2.23)

in Cartesian coordinates, or in vector
terminology

-4% (2.24)
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This is known as the salix transform-
ation. A function which is invariant
under this symmetry tranoformation is
said to have oven parity, or parity
+1. A functicn which becomes its own
negative is said to have odd parity,
or parity -1.

For example,

cos 0 - r-r, Irl - 4X2 + y* + x*
111

(2.25)

has odd parity (although it is an even
function of 0), while

sin 0 41 - cosi° (2.28)

has even parity. Similarly, a wave
function in three dimensions which de-
pends only on the length of 7, #(1rI),
has even parity.

2.4 TWO-PARTICLE SYSTEMS IN QUANTUM'
MECHANICS*

In considering the problem of a
particle bound in a potential we as-
sumed that the potential was a given
function of position, which is equiv-
alent to the statement that the parti-
cle moves under the action of an ex-
ternally applied force. The symmetry
properties possessed by the particle's
"motion" (in quantum mechanical Ian-
gunge, by its wave function), are then
determined by the symmetry properties
we have ascribed to the applied force.
As in the classical case, however, the
free play of natural laws can best be
observed by considering instead two
particles in mutual interaction.

We now show that the problem of
two particles interacting with mutual
forces, given by a potential which de-
pends only on tha position of one
particle relative to the other, i.e.,

*ills portion to soseithat Dori ditlievit ibis
the stair*, ale it is sot for Iii
fattier doosloproot. isievor, lb. roadie She
Riots partial dieloalites abiold read it at Ibis
petit.

PARTICLE I

IS

0

Fig. 2.4 Deftoription of two- pertioli
system.

V(1:2 - 71) where 171 and 171 are respec-
tively the positions of particles 1 and
2 (see Fig. 2.4), reduces to the solu-
tion of a one-particle SchrOdinger
equation with a modified kinetic en-

211L-
The two-particle system is de-

scribed by a wave function #(71,
with the probability interpretation

P(7,, 71) - 1061, ;012

n #* (7'1, 7, )0(71 , 7, ),

where P(re, ile)dYedVe is the probabil-
ity of finding particle 1 within the
volume d'ie located at 71 and simulta-
neously, finding particle 2 within the
volume dlte located at re. The wave
function #(r1, re) satisfies te
Schadinger equation (for total energy

pi'b. .pia
+ 71 )12111 2.2

X (rl ;,) E#(r1 r1) (2.27)

The symbol Vel means (dl/dx11)
+ (d1/dyel) + (dI/dsel) where 7, has
components xe, ye, se and similarly
for 141, which refers to the coordi-
nates of particle 2.

We now introduce two new vector
coordinates:

Mid

1, the coordinate of the center
of mass

- ;Ye the relative coorw
disate of 2 with respect to 1.
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By definition,

ms;a,
mi + Ms (2.28)

Letting the total mass mi + mi N,

and defining the reduced mass m by

A 1 1

A mi
+

ms
,

we have

µ!S
To complete the notation, we let
have coordinates it n, t so that

( xi xl

n Y, Y1

t let Lil

Similar expressions are obtained for
02/8x22, etc.

We now consider the first two
terms in the bracket of Eq. 12.27)

he h2v 11 v I
Nig 1 2Ms

(2.29) b!
2 im,

81 1 52

ma Wl-

(2.30) 1 81 1 se

sal 0y, ms ii:r

81
+

1 at 1.
is 57:71

Take the part
(2.31)

and we let I have coordinates X, Y, E,
so that

MX
M

+ ?xi

Y ?II ;110

Z easi + ?as.

1 a' 14. or
Us

a'".ftsaro.
ex

1

(2.35)

(2.36)

which is, according to Eq. (2.34)

82 m 8 8

(2.32) 1,11/817 tfIM

Notice that the x components, 4
and X, of p and 3 depend only on xl
and xs and not, for example, on y, or
mk. We are thus able to express xi and
mi, and 4/0x1, Wax'', Mex., blibmil
in terms of 4 and X. We get

ex, axl at ax, ax

,
84 V bX

and

sex:' 8284(88x) + ex)

x ft + S 4i) 1 * 4;t

110 Ei

M
tt

'IT
2
M
!I 8 8

maiir it /I].

(2.37)

where the change of sign in the second
bracket is traceable to the definition
in Eq. (2.31) where xi, ye, , al have
the negative sign. In combining the
terms in the two brackets of Eq. (2.37)
it will be seen that the terms contain-
ing mixed derivatives cancel, and we
get

(1. 1 01 .4 Si
(2.33) + TOP (2.38)Ug

(2,34)

Or

,
M

i ,
0 8(2

(2.39)

on recalling the deftnitionft of 4 and
N. Similar expression* are obtained
for tie one, parts of Eq. (2.3t) so
that Ns have finallys
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h2^'117 2

2m '

h2/0 OS

WaTT 842 042)

+
1.111

214\9X2 810 SZ2/

h2 h2v I
2A

,..

P 2M a

The SchrBdinger equation (2.27)
is thus equivalent to the two Bohr&
dinser equations*

(2.40a)

SA
v
0

mla v (17) - so0 (A)
(2.40b)

where 0(71, ) F(I)0(p) and
ER Ep so E.

Equation (2!40a), which describes
the motion of the center of mass of
the two-particle system, is the equa-
tion for a free "particle." Its solu-
tion is

FM A exp (0.1), (2.41)

which reduces to tho constant A in the
contor-of-mass system, that is, that
system in which tho total momentum P
(and hence EA) is zero. Since we are
primarily interested in tho mutual in-
teraction of the two particles, we
usually work in this reference system.
In this case we deal with Eq. (2.40b)
alone, which id a 'one- particle"
Schrbdinger equation, with "mass" A,
the reduced sass, as the "particle"



Appendix OROUP ALGEBRA

Consider the "minimum set of opera-
tions" discussed in the text by which
the equilateral triangle can be brought
into congruence with itself. This par-
ticular minimum set consists of:

Clockwise rotation about the cen-
ter of the triangle by 120° (called
R) .

Clockwise rotation about the cen-
ter of the triangle by 240° (called
R2 because it is equivalent to R per-
formed twice in succession), leaving
the triangle alone (called I, stand-
ing for "identity"), flipping about
an axis, say the angle bisector of
the lower left hand vertex angle
(called F).

For the moment, let us only con-
sider the rotations, and not the flip-
ping. The operation R, repeated twice
is written RR. As we have noted above,
this is equivalent to the operation
Ri. Similarly RRi means performing
RI first, then R (we read operations
from the right to the left), while
R'/1 means performing R first, then
Ai. Evidently,

1110 RIR RI I.

The rotations alone have the
properties required to form what mathe-
maticians call a group:

(a) There is a set of operations
(R, Ri, I) called group elemontil and
h rule for combining them (that is,
successively performing them). We call
the successive performance RRI (that
is, first 112, then R), multiplication

of RI by R n the left or multiplica-
tion of R by Ammon the right.

(b) If we consider RRR, the re-
sult may be written Isle or Milt, or
to take abother example ee can write
RAI as el or R(RI) R.R. That is,
multiplication is galoolativt.

20

(c) There is an identity element
I.

(d) R2 and R are inverses in the
sense that R'R I and RR' I.

(e) Any product of R, R2, I is
again one of these three, for example:

R R4 R2 ...

R2 RI R2 ...

I R' RI RI ...

The set of elements R, RI, I is
closed under multiplication./

Although the elements I, R, and
RI form a group, they form part of an-
other larger group which can be ob-
tained by bonsidering them in combina-
tion with the element F. We say that
I, R, and RI form a subgroup of the
larger group, which consists of I, R,

R', Fl F, FR, and FR'. To show that
this set of six elements form a group,
and to exhibit the group properties,
we make a gro4p multiplication table.
Note first that the element FR is ..Lot

equal to RF, and that, in general,
left multiplication is not equivalent
to right multiplication. This can be
seen by actually performing the opera-
tions in order, starting from the
right. In this way the reader can ver-
ify, in fact, that RF FR'. In the
multiplication table (facing page),
the elements in the left-hard column
are multiplied by those in the top row
to obtain the entry at the intersec-
tion.

In making the table we have sim-
plified the results so that only group
elements appear In the table. For ex-

'A stoop coattlattog of osl a ousels loaeot
(itk. It) as/ it pours to tolled a smile tun.
tvIdoatly there cultists a tittle troop of Ivor
lpoids (the N' rotallots) aid, Is foal, of
It,., sit, . . . lssts. to Nat foo tbOy tor.
rfpood coosltleally,
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ample, in obtaining R,FR, we have used
RF FRS , hence

RFR RF.R FRS R FRS FI F.

Similarly,

R.FR2 RF.RI FR2.0 FR4 - FR.

Since only group elements appear
in the table, we have proven that the
six elements chosen are closed under
group multiplication. There is an
identity element I, and each element
can bo soon from the table to have an
inverse in tho sot. Thorctoro, they
form a group.

The group of six elements having
the multiplication table shown is some-

0

MULTIPLICATION TABLE

I R RIF FR FR=

I I R 112 F FR FR'

R R $12 I FR: F FR

R1 Re I R FR FR' F

F F FR I FR! I R R2

FR FR FR' P 112 I R

FR' FR' F FR R RI I

times called the permutation group on
throo letters, since tho six positions
of tho equilateral triangle shown in
Fig. 1.2 correspond to tho six possible
arrangements or permutations of the
letters ABC which label the vertices.


