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GENERAL PREFACE

This monograph was written for the Conference on the New Instructional
Materials in Physics, held at the University of Washington in the sum-
mer of 1965. The general purpose of the conference was to create e¢ffec-
tive ways of presenting physics to college students who are not pre-
paring to become profess.onal physicists. Such au audience might include
prospective seconuary school physics teachers, prospective practitioners
of other sciences, and those who wish to learn physics as one component

of a liberal education.

At the Conference some 40 physicists and 12 filmmakers and design-
ers worked for periods ranging from four to nine weeks. The central
task, certainly the one in which most physicists participated, was the

writing of monographs.

Although tlere was no consensus on a single approach, many writers
felt that their presentations ought to put more than the customary
oaphasis on physical insight and synthesis., Moreover, the treatment was
to be "multi-levol" --- that is, each monograph would consist of seve
cral scctions arranged in increasing order of sophistication. Such
parers, it was hoped, could be readily introduced into existing courses

or provide the basts for new kinds of courses.

Monographs were written in four content areas: Forces and Fields,
Quantum Nechanics, Thermal and Statistical Physics, and the Structure
and Properties of Matter. Topic sclections and generzi outlines were
only loosely coordinated within each area in order to leave authors
free to invent new approaches. In point of fact, however, a number of
monographs do relate to others in complementary ways, a result of their

authors' close, informal interaction.

Because of stringent time limitations, few of the mcnographs have
been completed, and none h;s been extensively rewritten. Indeed, most
writers feel that they are barely more than clean first drafts. Yet,
because of the highly experimental nature of the undertakiang, it is

essential that these manuscripts dbe - made availadle for careful review



by other physicists and for trial use with students, Much cffort,
therefore, has gonc into publishing them in a reoadable format jintended

to facilitato scrious consideration.

So many pcople have contributed to the project that complete
acknowledgement is not possible. The National Scicnce Foundation sup-
ported the Conference. The staff of the Commission on College Physics,
led by E. Leonard Jossem, and that of the University of Washington
physics department, led by Ronald Geballe and Ernest M. Henley, car-
ried the heavy burden of organization. ¥alter C., Michels, Lyman G,
Parrati, and George M. Yolkoff read and criticized manuscripts at a
critical stage in the writing. Judith Bregman, Edward Gerjuoy, Ernest
M. Henley, and Lawrence Wilets read manuscripts editorially. Martha
Ellis ana Maygery Lang did the technical editing; Ann Widditsch
supervised the initial typing and nssembled the final drafts, Janes
Grunbaum designed the format and, assisted in Seattle by Roselyn Pape,
directed the art preparation. Richard A. Mould has helped in all phases
of readying manuscripts for the printer. Finally, and crucially, Jay F.
¥ilson, of the D, Van Nostrand Company, served as Managing Editor. For
the hard work and steadfas: support of all these persons and many
others, 1 am deeply grateful,

Edward D, Lambe
Chairman, Pancl on the

New Instructional Materials
Commission on Collego Physics



MAGUHETOSTATICS

PREFACE

This fragmeatary and preliminary mate-
rial ity into an outline of "nmulti-
level monographs' coverjng those ns-
pectls of electromagnetism which in our
view an undergraduate physics major
should come Lo know best. The asproach
is phoncmenological and macroscopic,
designed Lo take andvantage of pyior
cxperficnce; we begin magnetostatics
with magneis, for example. The mate-~
rial is planncd on two levels to leau
through the four fundamental empirical
laws of clectricity and magnetism to
electromagnet ic radiation as a climax.
The propagation of electromagnetic dis-
turbances with velocity c, reached in
the "f{irst course" material without
use of the calculus and equivalent to
the homogeneous wave equation, was
written in an elementary way by Oliver
Heaviside (Electromagnetic Theory,
London, 1912, Vol. 111, p. 3), but
only recently has appeared in the reg-
ular pedagogical literature, In our

.

treatment we have tricd Lo stress Lhe
physical foundations of Maxwell's great
synthesis, stating in words the argu-
menl corresponding Lo cach mathemati-
cal step, This results in o consider-
ably lrger proportion of expository
wiriting relative Lo mathematies than
is customarily found in derivations of
the wave cqualivn Irom Maxwell's equa-
tions in Ltheir usual form, On the
other hand, expression of the laws in
differential form scems essential for
tracing radiation to its sources in a
physically meaningful way; the present
Chapter 3 of Magnetostatics could be
follewed almost immedinmtely by Chap-
ter 3 of Nonograph 111, which vould
trace radiation fields to retardation
effects. We regret having not sufff-
cient time to write such a chapter, as
well as th: omission of what should
have been Chapter 3 of Magnetostatics,
an elementary treatment of nagnetic
materijals,

OUTLINE OF MONOGRAPHS ON ELECTRICITY AND MAGNETISN

111. CIRCULATION LANWS

Eloctyical Propers
tica of Xatter

MATERIAL R 3.

Magnetic Propers
ties of Matter

1. ELECTROSTATICS 11. MAGNETOSTATICS AND THEIR
CONSBQUENCES
= — ——— *1======L===f — —
1. Electric Forces 1. Nagnets and 1. Faraday's Law of
and Fieius Magnetism Induction
FIRST 2. Electric Energy 2. Interaction of 2. Ampere's Law
COURSE and Potential Steady Currents Kodified

3. Propagation of
Elcctyomagnetic
Disturbances

e R ——

uirtR %4, Bicctlostatics
DIVISION | Refor uviated
CUURSE

MATERIAL

3, Magactostlatics
R!)f()l Mlated

tNaxwell's Equa-
tions and Planc
¥aves

*Radiation Ficids

S—

*No lextual materianl was preparced
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in the suamer of 1965

for Lthese chaptors.
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Yo have assumoed no knowloedpe of
specti]l volitivity, but havo cmpha=-
sized Lho necessity for clovosing a
f1ramc of referenco in which to dofino
electrie and magnetic field quantitfes,
thus laying a foundation ror the his-
torical development of relativity Lhe-
ary. Unlike mechanies, vacuun eteclro-
dynimies necds no noadification bhoeciluse
ol spocial relativily except in intops
pretation, so that an excursion fnto
relativity theory could be made before
or after study of Lhe present material.

The cxpeviments leading Lo Lhe
four fundamecntal laws are described at
some lenglh, bul fin use Lhis writien
miaterial should be accompaniced by dom-
onstratious and luboratory work. The
basic experiments should come to be a
part of genuine experience for stu-
dents, but 8 laboratovy monograph
should be written as an extension of
tho present outline. Ohm's law and cire
cuitry, for example, do not . ay an ap-
preciable role in any other projnrcted
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hookloels, We cannol ovoervemphasize Lhe
tnpurtance ol laboratoery work, although
wo wore not able to undertake detatled
consideralion o  its content,

We assume that studeals will have
studicd mechanices, that they know New=
ton’'s laws, the detinition of work,

Lhe menning of the 25 symbol, and have
noworkiug knowledpe ol clementiry vecs
Lor alpchen betore our material i85 in-
troduced., (We do define the veclor
cross producl as if for the first
time.) In the material desipgned for
upper-class woirk we assume basic c¢al-
culus, All vector caleulus is developed
as needed, bLut we altempt throughout to
stress Lhe physics, not the mdathemat-
icy, and atlempt no mathematical rigor,

The first chapters of Monographs I,
11, and 111 should be sludicd in that
order, The fow discussion cxerciscs we
include can only indicate a type of
problem we consider desirable. Numeri-
cal problems which we have made no ef.
fort to provide, are also necessarvry,

M. Phillips
R. T. Mara



CONTENTS

PREFACE

MAGNETS AND MAGNETISM

THE MAGNETIC INTERACTIONS OF STEADY CURRENTS

MAGNETOSTATICS REFORMULATED

20



1 MAGNETS

Magneiic iron ore, known to us as lodo-
stone or mapgnelite, is found in many
parts of the world, and its property
of attracting iron was noted by morc
than one civilization early in ity
Irvon Age. The property remained meorely
a curiosity, even in the intellectual
climate of the Golden Apc of Greecce,
and the tendeacy of a magnet to orient
{tself along the carth's moridian ex-
caped notice, These directive ellects
wore probably first discovered in
China, but there is no conclusive evi=-
dence that they were put to practical
use. The origin of the mariner's conm-
pass i8 shrouded in mystery which may
never be dispelied, but by the end of
the 12ih century the compass was well
known in the Westorn world as a help-
ful device for sailors when the stars
were uvhscured,

Nyths, lcgends, and superstitions
about magnels multiplied from ancient
times through the Middle Ages, and
cven later. Magnets were employed in
medicine, especially for the healing
of wounds, and once the directional
propertics were reccgnized, in the oc-
cult scienceg such as astrology. Yet

Fig. 1.1

Q
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MAGNETISM

magnelism bepan to be a genuine sci-
once during the Middle Apes; The f{irst
account of the magnet that we would
cnll scientific was surprisingly carly,
a letter dated August 12, 1269, The
cpistle of Peter Perigrinus {Peter the
Pilgrim), born Pierre de Maricourt in
Picardy, sets foith a number of funda-
mental properties of magnetism.

It was Peripgrinus who discovered
poles and distinguished precisely two
kinds. llis metnod is of interest; Se-
tect a good piece of magnetite, shape
it into a spherc and polish it, Now
place on 1t a necedle or sliver of
iron, and mark on the surface of the
sphere the direction taken by the
needle, Repeat the procedure at many
different positions on the sphere, At
the end it is found that the lines
“will run togetlher in two puints, just
as all the meridian circles ol the
world ruvn topcther in two opposite
poles of the world" (Fig. 1.1). Only
onc of thesc poles points north if the
magnet is firee to turn, Thus two oppo-
site magnetic poles were introduced,
and Perigrinus noted that unlike poles
attract. He went further to show that
if a magnetl is cut (sce Fig., 1.2), two
poles persist in every separated part,
and that if two fragnments arve put to-
gethur as before the new poles vanish,
He did not notice repulsion, Perigrinus
named the poles north and south, with
the north pole that which points to the
north, At that tire magnetism was at-
tributed to the celestial sphere, not

N

Fig. 1.2
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2 MAGNETOSTATICS

N POLE
SOUTH

Fig. 1.3

to the carth itself, and Perigrinus
did not think of the carth as a magnet,
This last step was taken by Wil-
liam Gilbert, physician to Queen Eliza-
beth, who repeated and extended the
experiments of Perigrinus and others.
Once the earth is taken as a mapnet,
the action of a compass is simply an
example of the behavior of all magnets!
The north magnetic pole of the earth is
& "south” pole, which attracts the
"north' poles of all compass needles
(see Fig. 1,3). Gilbert's great accon-

Fig. 1.4

plishment was to cxtract existing Jacts
and laws of magnetssm from a4 wealth of
speculation and superstition, and to
discover new propertics a4 | relations,
lis theorivs, including the supposcd
relation of magnetism to gravitation,
neced not concern us here, although we
should note that they influcnced Kep-
ler, and that Newton found them sug-
gestive in the development of his own
ideas. Gilbert's book, De Mngﬁg&g, pub-
lished in 1600, is still a classic
presentatioa of many qualitative as-
pects of magnetism,

Magnets exert forces on each other
and on iron withoot being in contact.
It was known to Gilhert and those who
followed him that the cffect of a mag-
net decreases as the distance from
the magret increases, but the quanti-
tative relationship was first discov-
ered by the Reverend John Michell in
1750, The same relation was found by
Coulomb in 1785, The torsion balance,
which facilitated these experiments,
was invented independently by Michell
and by Coulomb, wund Michell's balance
was later used by Henry Cavendish for
his famous measurement of the constant
in Newton's law of gravitation.

In long magnetized needles, or
s*iff wires of hardened iron, the iage
netic effect is well concentrated ut
the ends, or poles (Fig. 1.4). Nichell
established experimentally that the
two poles are opposite and of equal
strength for any one magi.et, and that
repulsion and attraction between the
poles of two magnets are uvf equal mag-
nitude {f distances of separation are
kept the same, lle also found that the
force excrted by the pole of a long
magnetized wire is the same in all di-
rections. He then determined the force
between poles for various distances,
and found its strength was inversely
propoitional to the squaire of the dis-
tance between poles,

In order to write the law of
Michell and Coulomb in mathesatical
form, we must assume some Guantitative
neasure of pole sirength, and it is
convenlient to call northesceking poles
positive {+) and soutin-sccking poles
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ncpgative (<), by analogy to Lthe desipg-
nalion ol eleetrice charge as positive
and noegaltlve, I we designate pole
slrength by qn. Lhe Joree bolween Lwo
poles of slrenpgilhs qp and qQpn' his a
magnitude given by

I kqpap'/r®,

with k an arbitrary constant determined
by Lhe units cmployed., In this lormula
a negalive force signifies attraction,
but force is actually a vector quan-
tity, and the force exerted on q, by
Qy' at distance r may be written

F = kauq,'t/r2,

where ; is a unit vector in the direc-
tion from q " toward q,. The force is

directed as in Fig, 1.5 if q, and q,'

are of like sign,

This law has exactly the same
form as Coulomb's law for the interac-
tion of electric charges, and a formal
analogy between the interaction of mag-
nets and electrostatic interactions
can be carried further, The magnetic
field intensity may be defined at any
point in the vicinity of & magnet as
the force per unit positive pole at
that point, The conventional designa-_
tion for magnetic field intensity is H,
so that

F = qgf,

where H is the field intensity at the
position of q,, The field inteasity
produced by a single pole q,' at dis-
tance r from the pole is

H = (kq.'/ra)F,

where the unit vector I is directed
fyom qu,* Lo the point where il is to be
determined. If q,' is negative (an S
pole) the field intensity H is then
directed toward q,'. The field inten-
sity produced by two poles is the vec-
tor sum of the contributions of the two
poles taken separately - the principle
of superposition applies. The fact that
for real magnets the poles are not

ERIC
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Fig., 1,5

points, that nole strength is actually
distributed over the surface or volume
of a magnet, causes no difficulty: All
effects are additive and can he summed
over elementary surfaces or volumes at
various distances from the point at
which the field is to be computed, just
as in electrostatics. In other words,
the principle of superposition applies
to magnetic forces, just as it does to
electric forces.

We shall find that we have little
occasion to work with poles as such in
the further development of magnetism,
although the magnetic field intensity
remains an important concept, We should
note that the mks unit of pole sitrength
is called the weher, so that H is in
newtons per weber. (To anticipate Cnap-
ter 2: The weber is defined in terms
of the ampere.) The constant k required
to give the force in newtons if pole
strength is measured in webers is (107/
1672) newton-meter?/weber?, or roughly
6 X 10*. Clearly the mks system is not
designed to be convenient in working
with poles, but the weber remains use-
ful in other connections. It was named
for Wilhelm Eduard Weber (1804-1891),
who collaborated witir the great mathe-
matician Gauss in putting the whole
guestion of electromagnetic units on a
rational basis.

In principle the magnetic field
intensity in the vicinity of magnets
could be computed at every point from
a knowledge of the strength and posi-
tion of all poles, but the numerical
results would be hard to visualize. On
the other hand, the direction and some
notion of the strength of H can be dem-
onstrated very easily with iron filings
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Uy permiapivn Physical Scirnce Stinby Commitice

{Fig, 1.6) or a large number of very
small compiasses, By definition a com-
pass sets itsel! in the direction of
the ficld intensity., A fiecld line is a
line so drawn that its tangent is in
the direction of the field at each
point, and to a good approximation a
field line can be traced along its
length by a small compass. The number
of lines drawn <oes not matter, but we
see from Fig. 1.7 that the lines tend
to converge in regions of high field
intensity, and to become more widely
spaced where the field intensity is
weak. We are restricted to the region
outside the magnet, and even then show
only a two-dimensional cross section
of space, but it is clear that the
lines t¢raced out in this way are smooth
and continuous,

Iron filings and small compass
needles are not entirely equivalent,
although both are oriented along mag-
netic field lines. Soft iran, of which
the filings are made, shows little or
no residual magnetism; a small sliver

Fig. 3.7

Dy permisnion Allyn sad Dacons Inc,

of iron has no poles of its own, and
orients itsclf cqually rciadily if
turncd through 180° in the field of a
magnel . The magnetism a picce of iron
exhibits owing to the prescence of nug-
netite or other permanent mapnets is
said Lo be induced,

The tiny compass needles with
which linces of magnetic field intensity
can be traced out arc cach complete
with two opposite poles of cqual magni-
tude. That the tiny magnel tends to
align itself alung the lines of 1T is
to be expected, since the foree on the
positive pole is cqual an' opposite to
the force on the nearly coincident neg-
ative pole. But poles are well local-
ized only on long ncedles such as those
used by Michell and Coulomb. (Coulomb's
needles were 25 inches long.) For short
ncedles it is practically impossihle to
determine a point position equivalent
to the actual distribution of pole
strength. A more convenient property
by which the strength of a magnet can
be measured is its magnetic moment, or,
more precisely, its magnetic dipole
moment . The dipole moment can be deter-
mined even for magnets which aire cn-
tirely inaccessible for direct exami~
nation.

The dipole moment of a long mag-
net with poles at the ends is defined
as a vector directed from the negative
toward the positive (north-seeking)
pole, whose magnitude is the pole
strength q, times the distance between
the poles. Let us call the magnetic
moment of such a magnet m. If the mag-
net is placed in a uniform field, as
indicated in Fig. 1.8, the forces on
it are equal and opposite, but it will
experience a torque of magnitude mH
sin 0, which tends to bring it into
alignment with the lines of . (lere 8
is the angle between the dipole moment
m and the dirvection of H.) For macro-
scopic magnets this torque can be
measured ceven if the pole strength is
so dilfuse Lhat its cxact position bhas
little or no meaning. For microscopic
lincalr magnets the dipole moment is the
only accessible measure of magnetic
strength,
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Even tho torque may be difficult
to measur'e for a magnet so small as to
be mechanically inaccessible with a de-
vice such as a torsion balance. The di-
polec moment can still be determined by
finding the energy involved in lining
up such magnets in the direction of the
field lines, or by finding the encrgy
1required tu reverse taeir positions,

Ye note that if the nmagnet is initially
in the direction of ﬁ, the work re-
quired to turn it through 90°, so that
it becomes perpendicular to the field,
is mH, (Proof of this statcument is left
to the problems.) It is conventional to
say that the magnetic dipole has zero
cnergy when it is perpendicular to the
lines of H. The energy is equal to

-mH cos § = -m +H for any other orien-
tation. This is potential energy, since
it is determined by the position of the
magnet relative to the field, and the
negative sign makes the most stable po-
sitioar (alignment with the field lines)
that of the lowest potential energy.

The description of magnetic inter-
actions in terms of an inverse syguare
law of force between poles seems to go
very smootihly, but it has a distinct
weakness: It does not include any
statement of the experimental fact that
poles cannot be isolated from each
other, This could, of course, be aaued
in words. Coulomb went further than
Michell: After establishing the in-
verse square law and the direct de-
pendence on magnetic pole strength, he
postulated that the "molecules of mag-
netic fluid" are themselves elementary
magnets, complete with two poles of
equal strength, Chains of such "mole-
cules" would then cancel each other
except at the ends, which appear as
magnetic poles., This would explain the
fact that iwo poles appear when a mag-
net is cut, equal and opposite in
strength and each equal and cpposite
to the original pole still attached to
it, This is very much like the mcdern
view, cxcept that we now view clemen-
tary magnetism as a property of matter
itself, not a separate fluid.

Wo have no proof that isolated
magnetic poles do not exist somowhere,
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and there arc no known reasons why they
should not exist, Nevertheless the
mathematical description of magnetism
as we find it should reflect the empir-
ical fact that no isolated maygnetic
pole has ever been detected. This de-
scription would have to be amended if
isolated poles are ever discovered,

but in the meantime it would include

an essential fact of magnetism as
presently experienced,

The impossibility of separating
poles can be stated by saying that in
any volume cut off physically from re-
maining space by a bounding surface,
there is no net pole strength; in cut-
ting through a magnet, you create a
pole equal and opposite to one you were
trying to surround, Now in electrostat-
ics we are able to write a simple rela-
tion between the electric field inten-
sity and its sources within a particu-
lar volume in terms of the flux of the
field intensity. We can, similarly,
define the flux of the magnetic field
intensity K through an element of sur-
face AS as H+ AS, and find that mathe-
matically, as a result of the inverse
square law, the total outward flux of
H is

Y, KeaSednkq,

§ closced

where q, is the total pole strength
inside the volume, as in Fig. 1.9. (We
recall that in the electrical case,
owing to the inverse square of the dis-
tance in the quantity to Lo summed, it
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Fig., 1.9

does not matter where the charge is
located within the volume, and the
principle of superposition then insures
that tie total flex is independent of
the distribation of c¢harge within the
volume,) But the surface involved in
this theorem of Gauss's is mathemati-
cal; there is no more physics in the
new statement than in the original law
of Michell and Coulomb. The power of
the Gauss form of Couleomb's law in
electrostatics is that net electrical
charges can be isolated with empty
space completely surrounding them, that
for any electric charge q there is no
uniquecly associated —q. As a result,
Gavwssian surfaces can be chosen with
the same symmetry as that of the
charge, so as to yield an expression
for the electric field intensity. The
analogous theorem for the flux of i is
not so useful, since isclated spheres
and lines of magnetic pole streungth
cannot be constructed,

And yet the concept of magnetic
flux suggests a way of stating the in-
separability of poles and the inverse
square law at the same time., Let us as-

Fig. 1.10

sume a quantity f woleh is indistin-
guishable from Lhe magnetic field in-
tensity in empty space oulside the
magnel bui, defined inside the nmagnet

by the condition that its total outward
flux from cvery closed surface is zcero
whether there are magnets or not. Thus
we may write

> .48« o0,

S closed

for all possible surfaces. This condi-
tion is satisficd by fl itself for sur-
faces which do not cut through magnets,
but not in general for surlaces which
do. The demand on B is equivalent to
demanding a physiceal cut through the
magnel, which would crcate a pole
strength to cancel that already inside
the volume, rather than the mere math-
ematical surface of Gauss's theorem for
the field intensity. The behavior of
lines of B through a magnet is shown
in Fig. 1.10,.

We shall see ip the following
chapters that B can be given an opera-
tional definition in connection with
another aspect of magnetism. The only
virtue in introducing it here is to
state in mathematical form the insep-
arability of poles as we find them in
nature. In the mks system of uanits, B
and B are expressed in different units:

e

B = u,H

in empty space, where #, is 47 X 1077,
Again in empty space outside the mag-
net, a single pole of strength q, web-
ers gives rise to ﬁ,

B = (qm/4nr2);,

so that B is measured in webers per
square meter. We should note the occur-
rence of the geometyical factor 4r,
just as in electrostatics., One place

or anothe» this factor is sure to cn-
ter the description.

I{f this were all there were to
magnetism, there would Le no connection
with clcctricity, and the two would be
considored as separalo subjectls, It

ERIC
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was, in fact, one of Gilbert's achieve-
ments that he distinguished clearly
between magnetism, as produced by mag-
netite and magnetized iron, and static
elcectricity as produced by rubbing
glass with silk, But there is current

clectricity which consists of a net
flow of charge, whether as free charge
or in electrical conductors, and mag-
netism is connected with the motion of
charge, as we shall see in the next
chapter,

PROBLEMS

. 1,1 Suppose you were confronted with

two iron bars that look identical
in every respect, but one has been
"permanently’ and strongly magnet-
ized wilh its poles well localized
at Lthe two ends, and Lhe other not.
Without any additional cquipment
whatsoever, how could you deter-
mine which is a pormancent magnet
and which has no residual magnetism
of its own? Describe in detail the
oporations you could perform and
the conclusions you would draw at
cach slep.

1.2 When one end of a magnet is bhrought
close Lo one end ol an fuftiully
wimangnaelized nadl, Lho nnil itsels
becomes n magnel and will attract
octher nails, The effect is even
more proncunced if the end of the

O
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magnet is actually brought into
contact with the end of the nail.
(If you have not observed such
phenomena you can easily do so with
toy magnets obtained at a variety
store.) What electrical phenomenon
is this analogous to? Is the analo-
gy complete, i.e., in what way do
the phernomena differ? (Jlint: What
would happen in the electrical

case after the two objects came in
contaci with each other?)

1.3 Make a detailed liscg of ways in
which eclecirostatic and magnceto-
static phenomena clearly differ
from cach olacr, (Nale such hH[u~cLs
as Lhe rature of naterfials that ex-
hibit relevant properviies, phenom-
cna ol conduction, phcnomena of
polarity, etc.)
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2 THLE MAGNETIC
CURRENTS

The electrical effects lirst studicd
were those of static charges produced
by rubbing amber with cloth, but no
quantitative results were obtained un-
til Lhe properties of conductors were
distinguished from those of insulators.
In electrostatics a conductor is an
object whose surface has an equilib-
rium distribution of charge: There is
no difference of potential between any
two points on the surface of a conduc-
tor. This follows from the definition
of a conductor as somethiug in which
charge is free to move.

But if a difference of potential
can be maintained between two points
of a conductor, there will be a flow
of charge from one point to the other,
We no longer have a static situation,
but we may have a steady flow. Let us
consider a linear conductor such as a
straight wire, and assume that some
external device can maintain a constant
difference of potential between the
cnds (sce Fig., 2.1). This device will
nced to supply charge, but the charge
does not build up anywhere - it leaves
the wire at the sume rate that it en-
ters, and the conduclor need have no
net charge, The result is a steady flow
of charge in the wire. The amount of
charge per unit time which passes any
position P is the current:

1 4q coulombs

T at sccond

and one coulomb/seccond is called an
ampere. The direction of the current

is that of positive charge flow. A flow
of negative charge is equivalent to a
current whose direction is opposite to
the motion of the charge.

Many practical uses of conductors
involving the transfer of charge are
treated in the laboratory monograph of
this series. Here we shall not be con-
cerned primarily with any particular
relation between the magnitude of cur-

INTERACTIONS oOF

STEADY

—— e o e o oyn -

BATTERY

4 __Y_

Fig. 2.1

rent in a conductor and the applied
potential difference, but demonstration
of the effect under immediate consider-
ation does involve setting up electri-
cal circuits, for which it usvally suf-
fices to know Ohm's law: For many con-
ductors the current I of Fig. 2.1 is
directly proportional to the applied
potential differcnce denoted by V in
the figure. Mathematically,

V « RI,

where R, called the resistance, de-
pends on the material of which the con-
ductor is made - whether copper or
aluminum, for example. For a uniform
wire the resistance is directly pro-
portional to the length and inverscly
proportional to the cross-sectional
area of the wire, Ohm's law is impor-
tant as describing the behavior of many
conductors, but it is not a fundamental
law of electricity and magnetism. The
magnetic effects of electric currents
do not depend on the applicability of
Ohm's law.

The first curirents observed were
those obtained by discharging conduc-
tors which had been charged electro-
statically, but such currents are usu-
ally small and sporadic. Producticn of
fairly large steady currents became
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possiblo only after VYolta's invontion
of the chemienl battery at the bogin-
ning of the nincteenth century. Dovel-
opment of the battery as a practical
dovice facilitaled many kinds ol olec-
trical coxperiments including tho ef-
fects of curroent electricity,

Even carlior (1752), Benjomin
Franklin had demonstrated that light-
ning is an elecctrical discharge., Obsora
vation of occasional erratic behavior
of compags ncedles during a thuander-
storm suggested to Hans Christian Oer-
sted of Denmark some connection be-
tween electricity and mognetism, and
led to his remarkable discovery in
1819 that current electricity is ac-
companied by magnetic effects. Oer-
sted's experiment consisted of setting
a long straight porticn of an electric
circuit above and parallel to a com-
pass needle, and finding that the pee-
dle is deflected from its original
north-south orientation when the cir-
cuit is closed (see Fig. 2.2). This is
not a temporary effect: The deflection
is maintained so long as the current is
maintained. With a strong current the
needle is very nearly at right angles
to the line of the current, and the
deflection of the needle is reversed
when the current is reversed. If the
compass is held above the wire instead
of below, and the direction of the cur~
rant is unchanged, the deflection of
the needle is again reversed.

We have seen that a compass aligns
itself along the direction of the mag-
netic field intensity, and that field
lines can be traced out with a small
compass. The "sense' or direction of
the arrow on a field line is that of
the dipole moment of the compass: from
negative to positive, or from S pole to
N pole, The field lines so traced for a
long straight wire carrying a current
are circles, directed in accord with a
right-hand rule: If the wire is grasped
with the right hand, the thumb point-
ing in the direction of positive charge
flow, the direction of The curved fin-

" gers is that of the field lines. {Check

this rule with Fig, 2.3.)
A quantitative study of the mag-

Q
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Fig. 2.2

netic field intensity accompanying a

~ long straight linear current was under-

taken by Biot and Savart in Paris, im-
mediately after hearing of Qersted’s
discovery., They found that the magni-
tude of the magnetic field intensity H
at any point is directly proportional
to the strength of the current, and in-
versely proportional to the shortest
distance from the point to the wire.
Quantitatively,

H = 1/29r (2.1)
for a long straight wire carrying cur-
rent of magnitude 1, in mks units. The
current is measured in amperes and r
in meters., There is no explicit arbi-
trasy constant (for a change!), because

Fig, 2.3
By permission PSSC Phrysics-D.C. Heath and Company
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the ampere and the weber, which we have
already encountered in Chapter 1 as a
unit of magnetic pole strength, are so
defined that the only factor in this
formula is 27, the ratio of the cir-
cumference of a circle to its radius,
Clearly the magnetic field intensity H
may be expressed in amperes peir meter
instead of newtons/weber, and it is
usually so expressed in mks units, In
fact, H can be defined by this equation,
with the magnitude of H at a distance
of one meter from a long straight wire
carrying a current of one ampere being
equal to (1/27) amperes/meter. The
equation as it stands, however, does
not give the direction of the magnetic
ficld intensity, and the rigiht-hand
rule must be kept in mind as well as
the relation of magnitudes.

The form of the BiolL-Savari law
gilven above, together with the right-
hand rule, suggests another way of put-
ting the relation between 1 and the

t

Fig. 2.5

o

P

Fig. 2.6

magnitude of H, Lel us define what is
called the circulation of H: Consider

a closed path, s, in the field; for
every part of the path multiply the
element of length As by the component
of # 'parallel to AS, and sum the prod-
uct over the entire nath. The result

is called the circulation of H about
the path chosen. For a circular path

in a plane perpendicular to the current
whose line passes through the center of
the circie (Fig. 2.4), ihis process is
easily carried out. The field intensity
is everywhere in the same direction as
the path, the entire path length is

s = 27r, and the circulation is simply

> d+as=2m = 2rr Va2ar = 1,
s closed
(2.2)

just the current in the wire. But let
us cvaluate the circulation of il over

a somewhat more complicated path con-
sisting of concentric circular arcs
connected with radial lines as in Fig.
2.5, The length of cach arc is propor-
tional to both its radius and the angle
it subtends, but the rield intensity is
inversely proportional to the racius,
The radial portions of the path con-
tribute nothing, since they are per-
pendiculor to H, so that the circula-
tion about this path is I, just as be-
fore. Even a slant clement of path
contributes to the circulation only
0/21, where § is the angle it subtcnds
as shown in Fig., 2.6. Thus the (¢



EE

THE MAGNETIC INTERACTION OF STEADY CURREN{S 11

lation of i is equal to I if the area
bounded Ly the closed path has I pass-
ing through it, and cquals zcro if the
cwrrenl circuit does not link through
the loop. Otherwise, the shape of the
closed palh does not matter, nor doces
the exact position of the curreni; the
olily conaideration is whother the cur-
rent “threads” the loop, that is,
whether there is flow of charge through
the area bounded by the ioop (Fig,
2.7).

That this result is perfectly gen=-
eral follows from its indopondeince of
the shape of the loop for a line cur-
rent, and from the principlo of super-
position for . Wo may write

-—

circulation of f = Y, fi+ad=1,
8 closed (2.3)

whero I is the total (net) current
threading the path ol the circulation,
The circulation of i about two equal
and opposite currcnts is zero, cven
though the currents are displaced fronm
cach other and the magnetic field in-
tensity itself may have quite appreci-
able values at various points along the

pati, -
The circul ‘on law for Il is ex-
treme.,; wsefuvi 1 finding the field

intensity assuciat d w!.h all current
configurations which hsve cylindrical
symmetry. An important example is the
solenoid, a coil of insulated wire
wound in a close helix or spiral on a
hollow cylinder, or having the shape of
of a cylinder., Let us consider a very
long ¢oil of this kind, of n turns per
unit length, eacy carrying current I.
We may investigate the field intensity
well away from both ends by taking a
circulation path partly inside and
partly outside the coil, as in Fig,
2.8, barely including the current car-
rying wires. For each turn of wire the
magnetic field in the plane of the turn
is at right angles to the plane, and if
the contributions of the loops above
and below are considered in pairs it
can be seen that the whole field is .
parallel to the axis of the solenoid,
so long as we stay far from the ends.

Q
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Pig, 2.7

Thus the short sidos of the circula-
tion rectangle contlribute nothing, and

Hinstde & = Hourgtaef = ntlI,

where £ is the long dimension of the
circulation rectangle. But this samc
cquation holds if the circulation path
is changed to the dotted line inside
the c¢oil, or for any other position of
the inside leg of thc rectangle. We can
therefore conclude that the field in-

Fig. 2.8
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tensity inside the cylinder is unifornm,
having the same strength and direction
over the entire cross sectaon. Exactly
the same argununt can be made for the
leg of the rectangle outside the cylin-
der; the sides which are short in Fig.
2.8 may be made as long as we please.
The field intensity outside the sole-
noid, in a plane that cuts the cylin-
der far from the ends, is also uniform,
But the field intensity outside must be
very small indeed; tull justification
of this statement is left to a problem.
Thexrefore:

Hinside Houtsidze = NI = Hypgiqe  (2.4)

to a very good approximation.

Except in current configurations
of cylindrical symmetry, the circula-
tion law is not so very useful in find-
ing the magnutic field intensity accom-
panying a current. To express the field
intensity at a point in terms of the
current in a circuit of arbitrary geom-
etry we shall need the vector product
of two other vector quantities.

The prototype vector is almost
literally the directed line segment in
three~dimensional space by which other
vector quantities such as force and
velocity are represented. We are famil-
iar with the scalar product of two vec-
tors as it occurs in F - § = work, or
F - 5 = electrical potential differ-
ence, giving a scalar quantity which
can be expressed as a single number,
The prototype cross product of two
vectors 18 .he area of the parallelo-

pram defined by two directed line sop-
menls, represcented in a dircection per-
pendicular to that arca, That two
lines specifly a definite parallelogram
in a plane is shown jin Fig. 2.9, By
definition

Te«XAxD=AB sin & g.

where & is a unit vector at right an-
gles to the planc of A& and B, The sense
or sign of A x B is determined by a
right-hand rule: With the planc of your
hand nt right angles to the plane of Y
and B let the fingers of your copen
right hand point in the direction of
the first named vector (A) with the
hand oriented so that the paralleclo-
gram is in front of your palm - partial
closing of the fingers would bring them
parallel to the second vector (B); the
direction of your extended thumb is
that of A X B.

Yector cross multiplication is
not commutative: It is readily seen
that

—

BxA=-(RxH)),

The cross product of A and B vanishes
if A and B are parallel, and has its
maximum magnitude if they are at right
angles to each other., We note that an
area is represented as normal to its
plane, but that the sign of the normal
is chosen by an arbitrary rule. Many
physical quantitics share this charac-
teristic. Cross products may be repre-
sented by directed line segments, and,
for most purposes, such as addition
and multiplication, they behave like
ordinary vectors. Actually a vector
product is not exactly the same kind
of quantity as at least one of its vec-
tor factors - that a directed area is
not quite like a directed line segment
is shown in one of the problems. In the
problems the cross product is also ex-
pressed in terms of the compouents of
X and B in Cartesian coordinates.

From other experiments of Biot
and Savart and of Ampere (to whose fur-
ther work we shall turn our attention
shortly) on circular circuits and those
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Fig., 2.10

which combine circular arcs and radial
circuit elements, it became evident
that magnetic effects are always di-
1rectly proportional :o the magnitude
of the current, and that the effect of
each element of current at a particu-
lar point P depends not only on the
distance of the point, but also on the
orientation of the current with respect
to the_line between it and the point at
which H is to be determined. With ref-
erence to Fig. 2.10, the contribution
of a length of circuit As to the field
intensity at a point whose distance is
r is given by

A4 = IAs sin 6/4nr?, (2.5)
where & is the angle between IAs (taken
positive in the direction of the cur-
rent) and the line between the current
element and the point. The direction of
H is at rignt angles to both 1AS and r,
and in this instance into the page.
All this information is conveyed more
simply by means of the cross product

" Tamrr (2.6

where ? is a unit vector along r, di-
rected from the current element to the
point in space, This formula has to be
inferred from experiments with cumplete
circuits, for which the field intensity
is correctly given by

1A58 X *
41r

ﬁ-

8 closed

. (2.7)

Let us apply this last formula to
find the field intensity at the center
of a circular loop of radius r, carry-

Fig. 2.11

ing current 1, The lead wires from the
battery produce no effect, (Why?) Since
AS is perpendicular to the radius of
the loop, and the distance r is the
same for all elements of current, the
sum over all parts of the circuit can
be evaluated at once:

I 2nr I
Frr il (2.8)
at the centernof a circular~}oog. The
direction of H is that of As X r, out
of the page for the current indicated
in Fig. 2.11.

Ampere, who learned of Oersted's
discovery at the same time as did Biot
and Savart, reasoned that there shculd
be forces between two current circuvits
if both produce magnetic effects, since
two magnets interact with each other,
Within a week he had shown that two
parallel wires carrying currents in the
same dircction (see Fig. 2.12) attract
each other, and recpel cach other if
the currents are in opposite dircce-
tions. The magnitude of the force be-
tween the wires is directly propor-
tional to both currents, As the result
of a remarknble series of experiments
performed during the next three years,

n b

e Y -
F F

Fig. 2.12
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Fig. 2.13
Ampere was able to infer that the force

between two parallel current elements
I,As, and IjAs, is given by

AF = k' I, I, 8in 6 As, As,/r?
py 1,1, 48,48, sin 6
4n r? !

where H,/47 is the constant of propor-
tionality in mks units (see Fig, 2,13),
The value of k' is taken arbitrarily as
10”7 newton/ampere?, so that y, = 47

X 1077 newton/ampere?. The size of the
ampere (and thus also the coulomb) is
in fact determined by taking the con-
stant of exactly this magnitude.

Again the presence of sin 0 sug-
gests a cross product., Still another
angle must be taken into account if the
two current elements are not parallel,
and the formula begins to look even
more complicated: .

- 1,45, X (1,45, X ©
AF(onI,As,)ni—J% 185, rgz 2 )

- Yo I As, X ;
- 143, X (ZF e s A

- (2.9)
where fis a _unit vector directed from
Asz toward Asl. For tho total force on
current clement I Asl cxerted by cir-

cuit 2, we must sum over all I,As,:

Mo 1,48, x §
x[4n Z r? '

8,; closed
But this way of writaing the force sug-
goests a simplification, since the term
in parentheses is, apart from the con-

stant p,, the magnetic field intensity
found by Diot and Savart as a force peor

|
1
_ |
|
1
l
l

||A?|
——
< F
-~
%
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Fig. 2.14

unit pole. Moreover, it is found that

a current clement exporiences a force

when placed in the vicinity of an or-

dinary magnet, as indeed we might ex-

pect from the fact that a current ex-

erts forces on a magnetic compass nee-~
dle, The force on our current element

IIAEl may be written as

Fe 1,85, x off = 1,85, x B, (2.10)
where
1'3’,. Z Yo lzéz_f_;‘_" (2.11)
ra rz

8; closed

if B is produced by current I,. In
general throughout empty space

B = uoH, (2.12)
whatever the sources of magnetic field
intensity (see Fig. 2.14).

In Chapter 1 the field B was de-
fined so that its net flux through the
surface enclosing any volume of space
vanishes, although the net flux of H
might be different from zero. The lines
of both B and H as produced by currents
are without beginning or end, and the
net flux of both quantities through the
surface enclosing any volume is zero,
To scce this we nced consider only an
increment of field arising from a sin-
gle current element IA§, and remember
that the entire field at a point is the
sum of such increments. Let us examine -

AB - 4l as x T
- poA" - 4n rz .

The direction of AB is perpendicular

to both AS and r. and its magnitude de-
pends on r, If we choose any point and
move along the direction of AB, wo
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slhinll tracc out a circle in a planc at
right angles to Lhe direclion of As,
which would yiceld no net flux from the
suwrface of a volume such as shown in
Fig, 2.15, Increments of arising
from other current elements have the
samo property: The circles of Aff they
contributo may lic in difforent planes,
but the lines of each are continuous,
Thus for B &s a whole, the summation
of the flux over any closed surface,

> B

§ closed

aS5w 0= P, H:«as

S closcd

if il 1s produced by currents.

The equation F = 1As X B 1s often
taken as the definition of the vector
ficld O, which is called the magnetic
induction field, The units of B arc
newtons/ampere-neter. It is left to the
problems to show that these units are
consistent with those given in Chap-
ter 1, In empty space, where our equa-
tions hold, the field quantities B and
il are really jindistinguishable, al-
though their units are arbitrarily dif-
ferent in the mks system. ¥We shall in-
vestigate further the equivalence of
currents and magnets, and how this
equivalence depends on the absence of
separable magnetic poles, but let us
first look again at the role of B in
the interaction of two currents.

¥e have investigated the magnitude
and direction of B (although we some-
times called it if) in relation to its
sources in some simple cases. 1f we
know B a: any point we can immediately
find the force on & current element I
TAs placed at that point by computing
1as x B. In terms of Ampere's experi-
ments, the interaction bertween two cur-
rents is thus for convenience consid-
ered in two steps, the production of &
field B by one circuit and the action
of the field B on the other circuit,

In view of the complicated dependence
of the forces on the angles involved,
this procedure has great advantages,
since we need now consider only one
angle at a time, Furthermore, the con-
tributions to B froa different sources,
be theéy currente or magnets, are addi-
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tive, so that simultancous interactions
may be considercd in a relatively sim-
ple way. Even so, it should be remarked
that the greatest advantages of the
ficld concept become apparent only when
the sources, and therefore the fields,
are pa2rmitted to vary in time., The sub-
Ject of time varying fieclds is resnrved
for another monograph in this serics,
but we should note that light and other
electromagnetic radiation can be simply
understood only on the basis of elec-
tric and magnetic field quantities,

If we consider only forces on cur-
rent elements, we need only one mag-
netic field quantity, that defined to
give the force per unit current at
right angles to the direction of the
field, namely, 8. The necessity for
considering a second field quantity,
the magnetic field intensity ﬁ, does
not then arise until we consider mag-
netic materinls, within which B and H
are different, But can we confine our
attention exclusively to currents? It
was Ampere's hypothesis that all mag-
netic interactions can in fact be
traced to currents. whether they occur
in macroscopic circuits or are assuned
to exist in the most elementary form
of matter, To establish the basis for
this hypothesis we must consider the
forces on & loop of current in a
field B.

Let us take a rectangular loop of
wire cdef, as shown in Fig. 2.16, hava
ing dimensions a and b, placed ini-
tially so that its plane is parallel to
a field B which is unifora in space and
constant in time, The current in the
loop is8 1, ¥Ye may compute the force on
each straight section of the 1o0p from
the formula ¥ = 148 x B. With the cura
rent as indicated, we s5ee that there
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is a force IbB directed out of the
plane on the wire cd, a force 1bB di-
rected into the plane on the wire ef
and no forces on fc and de since these
wires are in the same direction as the
lines of . The net force on the loop
is zero, but there is a torque of mag-
nitude ablbB tending to turn it out of
the plane, into such a position that
what 48 now the {ront of the loop faces
down, with the planc of the loop per-
pendicular to the lines of D. This is
exactly what would happen to a rectan-
gle of magnetic material whose front
face 18 a nepative (south-sceking) pole
and whose back face is positive (north-
seeking). The loop is thus equivalent
to what Anmpere called n magnetic shell,
a flat magnet of magnetic moment pro-
porticnal to the product of itus area
and the current on its boundary,

Fig. 3.17

Fig. 2.18

We may reccall that the torque on
a magnet of magnetic moment m in a re-
p#ion of ficld intcnsfiry il 1s mH when
the dircction of the moment is at
right angles to ii. The torque on our
loop is 1AB, where A = a X b is the
arcea of the loop. 1f wo want to kecep
the same units as before for magnetic
moment, we may ascribe to the loop a
moment of magnitude i, 1A, directed per=~
pendicular to the plane of the loop,
and positive toward a right-hand thumb
whose curved fingers point along tLhe
current. For other orientations of the
loop the torque is IAB sin 6, where @
is the angle between the magnetic mo-
ment and the field lines, in agrecment
with the torque mH sin &# on a magnet
in a field intensity il,

The magnetic moment of a current
loop does not depend on the shape of
the loop. A circular loop is equivalent
to a magnetic disk whose faces are of
equal and opposite polarity, and whose
magnetic moment i8 again pyy 1A, with A
the area of either face. Ampere went
further; according to his hypothesis,
a2ll magnets are current configurations,
which exist on a submicroscopic scale.
A "magnetic sheli' would consist of an
indefinite number of tiny current
whirls, all oriented in the same sense,
so that the net current is zero except
at the houndary of the shell, or loop;
internally the currents of contiguous
whirls cancel each other as is evident
in Fig. 2.17, A helix of wire with ad-
Jacent turns of current is thus equiv-
alent to a stack of magnetic disks, as
in Fig. 2.18; the net effect as & mage
ret is & positive (north-seexing) pole
at one end of the helix and a negative
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pole at the other. The impossibility

of separating poles is thea just the

impossibility of scparating the faces
of a disk.

The modern view of magnelism is
not very different from this simple
picture, and Ampeyve's hypothesis has
been accepted in principle. Because of
the absence of separable magnetic
poles, all magnetism is traced to cur-
vents, even when the physical currents
are not accessi%le to measurement. The
neutron, for example, is an uncharged
particle, but it does have a magnetic
moment ; in this sense it behaves like
a civculating negative charge. Recent
experiments have shown that the neu-
tron does behave more like an infini-
tesimal current whirl than like an in-
finitesimal linear magnet, although its
current is quite inaccessible for de-
tailed investigation.

Secarch for the isolated magnetic
pole continues, but all the evidence
in hand supports the view that B, a
field which acts on currents and can
be traced to moving charge, is8 a more
basic concept than that of the magnetic
ficld intensity f, simply because elec-
tric charges and currents do exist,
Nevertheless we continue to explore
magnetic ficlds with iron filings and
compass necedles, and the concept of
magnelic field intensity il can hardly
be avoided in Lhe description of may-
rotic materialy,

Etnstedin has poloted oul in his
“sciventliffic autobiography'" that cone
copls used to describe the physical
wor'ld arc in truth intellectual crea-
tions, devised by scicentific imagina-
tion but not freely: The discipline
imposcd by observation and ecxperinent
is very strict. The concepts of elec-
tromagnetic theory are very intimately
related to one another, reflecting an
enormous body of diverse but related
experimental results. More than oune of
the concepts plays a dval role, and
experiments can often be described in
more than one way. Yet we shall see in
Monograph 111 that there are only four
fundamental empirical laws of electrige
ity and magnetisa, which can be de~

Q
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scribed in a most clegant and simple
way in terms of ficld quantitics. We
have already considered three of these
laws: Coulomb's law for the interac-
tion of (wo stutic charges, the law of
Michell and Coulomb for Lhe interaction
of two magnetic poles plus a statement
of the inceparability of poles, and the
law describing the magnetic effect of
currents or the interaction of two cur-
rents, usually called Ampere's law, The
remainder of this booklet will be de-
voted to further development of this
third law, Before undertaking a more
mathematical and thus more powerful
formulation of the law, however, let

us examine the effect of magnetic
fields on individual charges.

The currents we have considered
thus far were assumed to exist in un-
charged conductors, but a current is
defined as a flow of charge. The ques=-
tion of whether the mechanical motior
of a charged body produces magnetic
effects was first tested experimentally
by Henry Rowland of Johns Hopkins Uni-
versity in 1878. Rowland clectrostatice-
ally charged the rim 2f an insulating
disk, rotated the disk, and found that
magnetic effects were indeed produced.
The experiment is very difficult %o
erform because the currents produced
in this way are small, but the result
is unambiguous., That moving charges
cxpericnce a force in n magnetic ficlu
is much casicr Lo demonstrate: Streamy
of clectrong In a cathode ray tube proe-
duce a visible glow on Lhe glass cnvee
lope of the tube which is shifted very
readily by even a small magnet, 1n
fact, it was concluded thal cathode
rays are charged particles as a result
of treir deflection by both electric
fields and magnetic ficlds.

The correct formula for the force
on a charge moving in a magnetic field
can be obtained from that for the force
on an element of current in a conduc-
tor. Let us assume that a conductor has
N movable charges per unit volume, each
charge of magnitude q. These movable
cherges may uadergo very complicated
motions, but if there is a net flow of
charge in one direction, we may ascribe
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Fig. 2.1%9

to them an average "dyift" velocity v,
A lincar conductor of unit cross scc-
tion, a scgment of which is indicated
in Fig., 2.19, would then carry a cur-
vent Kqv - this is the nmount of charge
crossing the face shown per unit time,
The amount of charge per unit time
flowing through a portion of the face
whose area is A 18 then NgAv, and the
genoral formula {8 I = NgAv. For a
current olement of lcngth As,

IAs = NqAAsv,

But AAs is just the volume of the cur-
rent element and NAAs is the total num-
ber of charges involved. Thus the force
per charge q is

? - \S X ﬁ - -

“NAAs -~ Qv X B. (2.13)

This derivation of F = qv x B in-
volves too many assumptions to be rig-

-~

orous, but the result is entirely cor-
rect., ior a chargc q moving with ve-
locity v, qv is cquivnlent to a current
clement., The force qv x ¥ 18 called the
Loreantz force, first derived rigorously
Iy the famous Dutch physicist !, A, Lo-
rentz in 1892. It is often taken as a
fundamental cquation, and the force on
a current clement derived Ifrom it, It
can be taken as the defining cequation
for the magnetic ficld quantity fi: I is
that [fecld which gives a velocity de-
peadent force on a charge q, in accord
with the cquation for the Lorentz
force, as distinguished from the clec-
tric field intensity E, which produces
a force which is independent of the ve-
locity. We note that both E and B are
defined in a particular frame of ref-
erence, that in which the velocity of
the charge is v.

One of the most interesting prop-
erties of the Lorentz force is that it
is incapable of changing the speed or
kinetic energy of a moving charge,
since the force (and therefore the ac-
celeration) is at right angles to tie
velocity. In a uniform mugnetic field
which iB itself perpendicular to the
velocity, the motieca of a charged par-
ticle is circular,

PROBLENS

2.1 Show that if %, 7, and £ are unit
vectora in the direction of in-
creasint x, y, and £ in a right-
handed Cartesian coordinate system,

IxKeO0mugxpotxt
Ex§ei
Fxtef
Fxiey

Show also that in terms of Carte-
sian components, the vector_product
of A = Ay Rea r§ ¢+ A2 and B =~ By £

+ 8,? + B.E may be written in the
form of a determinant:

£ 9 1z
AxbBe|a, A, A,
Dl B’ n‘

2.2 Suppose you have a long cylindrie
cal conduclor of rodius r,, carrye
fag total current 1,. The curreat
is distributed uniforaly over a
¢ross section of the conductor, so
that 1, = sr,?j, where J is the
current density in amperes/meter?,
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2.3

(a) The field lines of Il outside
the cylinder are circles centered
at the axis. Would Lhis also be
true of the magnetic ficld lines
within the cylinder? Give your
reasons.,

(L) What is the magnetiic field in-
tensitly on the axis of the cylin-
der?

{cy What is the magnitudo of 1l at
L ?!lrn?

(d) Plot the magnituce of H againat
the distance r from the axis of the
cylinder, both inside and outside
the cylinder., At what distgnce from
the axis is this magnitude great-
est’?

Let P Lbe a point outside the long
solcnoad of Fig. 2.8, whose dis-
tance from the axis is large com-
pired with the radius of the sole-
noid. According to Eq. (2.6), each
2lement of current countributes to
the field intensity Al = 1A x
g/rt,

(a) Consider qualitatively the con=-
tributions to the magnetic field

intensity from current elements

1AS parallel to F and those per-
pendicular te © from a single turn
of the coil in the plane of P per-
pendicular to the axis. Do thoey
tend to reinforce or Lo cancel cach

other?

(L) Make the same qualitative esti-
mate of contributions Al for a
point inside the solenovid.

{c) Consider, again qualitatively,
the contributions Al firom tlwo
turns, onc above and onc below the
plane of P perpendicular to the
axis,

(d) What aie your conclusions con-
cerning the validity of Eq. (2.4)7

If a charged body moves with veloc-
ity v at right angles to a uniforn
field ﬁ. its path is circular,
since F = qv x B, and thus ftv ac-
celeration is perpendicular to v.
¥hat sort of path would :e¢sult if

vV wvere in_the same direction as the
1ines of B? What sort of path would
be produced if the angle between v
and B were neither 0° nor 90°?
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Ampere's law i8 all there is to mag-
netostatics if we confine our attention
to the magnetiec effects of steady cur-
rents, but some nspects of the subject
become apparent only if more clegant
malhematicnl methods are available.
Mathematica {8 morce than a powerful
tool for the solution of problems: Re-
lations between physical quantities are
often rovealed by mathematical annly-
g8is, 80 that morce physics cmorges
clearly., The danger lics in a tendency
to substitute mathematical formalism
for physical thought, to overlook or
negleet the physical content of a math-
cmatlical cquation or n linc of mathe-
matical reason, instead of Leinp puided
by 1t. Let us try to kcep the physices,
or sometimes only gecometry, firmly in
mind in our further analysis of mag-
netoatatics, For this chapter we shall
only assume knowledge¢ of basic calcu-
lus, that branch of mathematice in-
vented by Newton not only to make hard
problems easier but also to sBharpen and
clarify his ideas concerning the physi-
cal world,

let us begin by rewriting the re-
lations considered earlier in terms of
differentials and integrals. Ampere's
law has appeared in essentially two
different forms. The direct expression
of the force on a current element I,ds,
is

Flon I,ds,) = I,ds, x B, (3.1)
where
.‘-L)g. !,d;' XF
B = 1% . . (3.2)

where f 18 a unit vector from I,d;, to
tho point at which B is computed, The
sutstitution of ds for AS is routino,
but tho circlo at thoe middlo of tho in-
togral sign is shorthand notation lor
tho s closod” bolow tho sumsalion sign
of Chapter 2, lere it should bO read
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“"the integral over the entire circuit
8" of the integrand as written. This
integral is, of course, a vector, cvery
elcment contributing to # in a direc-
tion nt right angles to both ds, and
to the lino from ds; to tho position
of lldgl where § is to be determined
to give the correct force.

¥We have nleo aoted that B so de-
finecd yiclds a flux such that the total
outward flux of B through any closcd
surfaco is zero. If dS 18 an clement
of surface, directed out from the vol-
ume inclosed by the surface,

D«a8 -0
cloxed

(3.3)

Unfortunantely onc must write in words
that this surface integral is closed,
A little sphere at the middle of the
iniegral sign would be a convenient
shorthand notation except for the fact
that & sphere is indistinguvishable from
a circle in two dimensions, In the
booklet on electrostatics we have con~-
sidered a function corresponding tec
such a closed surfice integral which
describes a property of the integrand
vectar at cach point in the inclosed
space, We shall cousider this property
of B at a later stage of the dis-
cussion,

¥e have seen that the physical con-
tent of Ampere'c law may be written al-
ternatively as a circulation law for B,
which may also be written as an inte-
gral. The field § is a vector quantity
defined at all points (x,y,2z) in the
region of interest., The line interal
of i on a path C from poiant P to point
P' 1s a scalar, written ¢s ("B . ds,
where ds is an eleaent of length in
the dircction of the local tangent to
the path, nd the integrand is the
product of ds and tho componcnt of O
parallel to ds (sco Fig. 3.1). (In
tormo of magnctic poles this integral
would represonl i, times the work done
by tho field in moving a unit pole
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from P to P'.} The circulation of a

vector implies a closed path, not nec-
essarily in a plane, and the integral

8ign can again be written with a circle
at the middle to indicate that the ini-
- tial and final points are coincident:

fc B ' ds = 1 (3.4)

is s8imply a neater way of writing the
circulation law for @,

¥We have thus far considered almost
exclusively linear currents such as
those carried by thin wires, but the
total current through a surface bounded
by the circulation loop may be distrib-
uted over the surface and may vary from
one part of the surface to the next.
We may readily take account of such
variations if we express the total cur=
rent I in terms of the current density
j For a conductor of cross-sectional
area A in which the deasity of current
is uniforn, I = JA. As a vector quan-
tity, j is the current per unit area
of a plane normal to the direction of
charge flow. Since an element of sur-
face can be represented by a vector d8
normal to its surface,

1~ f3:a8 (3.5)

is the total current through a surface
over which the integral is evaluated
(sce Fig. 3.2). (In this monograph we
confine our attention to stoadz cur-
rente, for which the integral of J
over a closed surface would net zero.)
Therefore the circulation law for B
may be written

JB . a5y, f7 . a5, (3.6)

where the integral on the right is to
be carried out over a surface, in fact
any surface, which is bounded by the
curve C, We should recall that the pos-
itive direction for d§ is chosen by &
right-hand rule; for » curve traversed
counterclockwise in the plane, dS is
posltive out of the page; if clockwise,
dS 1s positive into the page. Thus far
we have hardly changed the fora of the
equations relating magnetic fields to

EKC
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Fig. 3.1

thesr sources: B is written 2s an in-
tegral over nll portions of a linear
current, instead of the corresponding
sum, and the line integral -f B is re-
lated to current through a surface, as
was the sum of B - As in Chapter 2. Is
it possible to relate the magnetic
field to its source strength at each
point, much as we fourd in the Electro-
statics wmonograph that we could relate
the electric fiecld intensity to the
charge density at each point? If there
wore only magnets with poles. and no
magnetic effects of currents, the an-
swer would be completely aralogous to
the electrostatic relations. It is in.
deed true that the net outward flux of
the magnetic field intensity il (but not
that of B) from a closed volume is the
totul pole strength within the volume,
and that B 48 related to density of

Fig. 3.2
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Fig. 3.3

pole strength in the same way that the
electric field intensity is reclated to
the charge density, But we have scen
that the net flux of both H and @ from
a closed volume is zero if these fields
are produced by currents. This is a
very interesting and important property
of magnetic fields, but it is of no im-
mediate help in reclating fields to the
currents which produce thenm,

The answer comes from the circula-
tion law for B (or for i, since the two
ficlds arc the same in eapty space, ex=-
cept for an arbLitrary constant factor
Ho). It will be necessary to examine
circulation more closely and to develop
further the mathematics associated with
it. This mathematics applies to all
vector fields, but we shall call the
field ﬁ, and fcel free to apply the
mathematical consequences to other vec=-
tor fields as the need arises.

In electrostatics we were guiied
to the appropriate mathematical theo-
rem by Gauss’'s law: Beginning with a
relation between the surface integral
of the electric intensity E over a
closed surfece and the charge within
the enclosed volume, we found that the
function of E which can be identified
with the charge density at each point
in space is the divergence of B (div
E). The circuital form of Ampere's law
relates a closed line integral of 8 to
the integral of the current density
over & surface bouaded by the line., By
analogy we should expect to find a
function of B at each point of space

such that its intepgral over any surfaco
hounded by a 1line is cqual to the cir-
culation of B aboul the perimeter of
the surface, If Lt is to bhe identified
with the current density, it must be a
vector quantity. In other words, we
scek a vector C which is a mathematical
function of D such that

fB a5~ [T aS- 4y [T - a5
(.7

If the second equality is to be true
for any surface bounded by the curve of
of the line intepral, it follows that
&he lnipnrnnds must be the same, and
C = 15,

Consider any simple closed curve
in a region where there is a field B,
An arca bounded by a closed curve,
whether plane or not, can be divided
into two or several areas by lines be-
tween two points on the boundary. In
Fig. 3.3 there are three areas, around
each of which we may take the circula-
tion of B in the counterclockwise
sense indicated. In the sum of these
circulations all the interfor bound-
aries are traversed twice, in opposite
directions. Thus

fB-ag- fB.d8 + B -5

+ fB . ds,. (3.8)
The sum of counterclockwise circula-
tions of B about all the subdiv‘sions
is just the circulation about the
whole, and this result is independent
of whether the surface, or the curve
bounding it, is plane. The same is true
of clockwise circulations, of course,
but the sense of all the circulations
in the sum must be the same for can-
cellation of adjacent interior bound-
aries. The rule is equally justified
for ten subdivisions, or a hundred, In
general

fB.a8= 2, (B . ds,.

all

(3.9)

(¥e are here reminded of Ampere's hy-
pothesis on the equivalence of a closed
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Fig. 3.4

current and a shell of magnetic di-
poles, which involves submicroscopic
current whirls; there is indeed a sim-
ilarity, which we shall pursue later,)

Circulation itself is a scalar
quantity, but any plane surface has an
orientation in space which can be
specified by a vector normal to the
plane, and any well behaved surface

- can be broken up into elements suffi-
ciently small to be considered plane.
(Ye shall exclude surfaces with infi-
nite peaks.) Let us see what the ort-
entation of a surface¢ has to do with
the circulation of a vector about its
boundary.

Consider a small triangular plane
boundary abe, Fig. 3.4, and two sur-
faces bounded by it, one the plane abc,
the other a surface made up of segments
of three platies chosén at right angles
to each other, According to the sum
rule,

§ Beai~ fB.95, + [B.as,
(113 [ L] o¢d

+ {B.ds,. {(3.10)

abd
1t is most unlikely that the thrce
terms on the right contribute equally
to the total circulation, for several
reasons. Each small circulation speci-
fics a differcent area and a different
length of perimeter, and of course B8
itself and its variation in space is
quite independent of the surfaces we .
happened to choose, There is & relation
belwecen the surfaces themselves, which

[Kc
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follows from the theorem that the vec-
tor sum of all the outward surfaces of
a polyhedron equals zero. (The proof
of this theorem is left to a problen.)
¥e note that the four triangles bound
a tetrahedron {Figs. 3.4 and 3.5), for
which the right-hand rule for circula-
tion leads to positive inward direc-
tions for surfaces 1, 2, and 3, and a
positive outward surface for the tri-
angle abc. If A5, , &S,, a5,. and &5
represent these four surfaces, then

A - a8, + a8, + 43,. (3.11)

But does this vector relation beiween
surfaces have anything to uo with the
scalar relation of the circulations?
1f there 18 a vector related to the
circulation about each surface such
that its scalar product with the sur-
face itself would net the circulation
the answer would certainly be affirma-
tive.

A vector related to the circula-
tion about an elementary plane surface
can be constructed by multiplying the
circulation of D about its boundary by
a unit normal to the surface, and die-
viding by the magnitude of the surface:
Let us write (§ B . ds,/aS, )h as &
vector in the direction of the unit
nornal ﬁ to As,. The scalar product
of this vector with_aS is Just j B

. ds,, since A, - AS = A4S, . In fact,
if we take the vector
jJB - ds, = §B : ds, =
Bodog—ti ¢+ ——2 1,
L ., -
s = Ay, (3.12)
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CURLB =0

CURL B = 4,1

Fig. 3.6

then © * AF 18 the original sum of cire
culations. We note that C is notl in gen-
eral tho same as (I.E + J8/AS)n, where
n 18 the unit vector normal to the sure
face abe, although € + A8 « f B + ds.
Tho quantity f B + d8/48 1s the compo-
nent of © normal to the surface AS.

The compunents of C are thus far
defined in relation to plane surfaces,
which may be oriented in three mutu-
ally perpendicular and thus independent
directions. Our surfaces AS,, aY,, and
AS, are themselves components of Af,
Nov the Burface AS may be taken as
small as we please, and in the liait
of small AS we define a vector which
18 called the curl of B, written
curl B, For the component. of curl B
normal to a surface element AS whose
orientation is n,

(curl B)g = A::u JLEié—gg (3.13)

with the line integral taken around
the boundary of AS, The integral fora
of the ¢irculation sum I3 then
fB a8 =~ feurt B .45 (3.14)
where the surface integral extends
over the surface (any surface) bounded
by the closed curve of the line inte-
gral, the positive direction of d5 be-
ing determined in relation to the cire
culazion path by the right-hand rule.

The vector curl B 18 then a function
of T at every pointl in space which is
mathematically related to the circula-
tion of O by this formula,

The mathematical relation between
the line integral of a vector B aboul
a closed path and the surface integral
of curl B was derived hy George Gahriel
Stokes, and i8 known as Stokes' theoo-
rem. Thero is no physics in i{t, But weo
have seen that if B represents the
magnetic field,

5

wliore 3 18 the current density, Thero=
fore, for any surface curl i + oS
must equal [ pj ' d§, a demand which
is impossible to satisfy unless

ds = p, [J - d§, (3.15)

curl § = 1, J (3.16)
at overy point. This i8 the physical
relation we have sought between f and
the current at any point in space,

The name curl Ssuggests going
around, and we have arrived at the
idea of curl by considering circula-
tion, but of course curl is not iden-
tical with circulation. Consider, as
a simple example, a long conducting
circular cylinder in which there is a
uniform current density j, as indicated
in the cross-section diagram (Fig.
3.6). Curl B = 4,7 has nonvanishing
value only within the cylinder, but

8 + ds = I, the total current thread-
ing the circvlation loop, even if every
point on the loop is outside the cylin-
der. There i8, of course, a maghetic
field B both ouctside and inside the
cylinder, and it is B itself of which
one takes the circulation,

The magnetic field intensity it-
self can be mapped out by a conpass
needle, a single small aagnetic dipole
free to orient itself along the field
lines; the curl of the field intensity
can be demonstrated with a magnetic
“quadrupole' - two Small permanent
magnets with like poles cemented to-
gether « dut an “octopole™ is more ata-
ble and convenient. The negative
(southe«seeking) poles of four small
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permanent magnets can be cemented to a
wire as indicated in Fig. 3.7, so that
their positive or N poles are the four
tips of a cross at right angles to the
wire. A cork attached to the wire will
make the whole contrivance float in a
solution of NaCl, for example. If the
electrodes are arranged so that the
current flows vertically in a <ylinder
of electrolyte, the "curl-il-metor” will
rotate continuously, the sense of rota=-
tion depending on the direction of the
current. Outside the cylinder of cur-
rent a dipole will show the presence
of a magnetic field, but the "curl-il-
meter® does not rotate in the absence
of current in the solution.

¥e have noted in electrostatics
that the line integral of the electric
field intensity E between any two
points is independent of the path con-
necting the points and thus {E . ds
= 0 around any closed curve, 1t is now
geen from the definition of the curl
of a vector that this absence of cir-
culation corresponds to the statement
that curl F = 0 at every point in an
electrostatic field. We also found that
the point by point relation satisfied
by % 50 as to express the physical
content of Coulomb's law is div E
= p/€,, wvhere p 18 the electric charge
density., From the definition of the
divergence of a vector and the fact
that the net flux of the magnetic
field B from any closed volume is gzero,
it follows that div B = 0. A1l these
relations can be summarized:

Electrostatics Magnetostatics
div B = p/e, div B =0
curl E=0 curl B = pJ

Thege are the basic equations of elece
trostatics and magnetostatics. Thelir
physical content is Covloma's law and
Amnpere’s law,

In clectrostatics wo went further,
and found that the determination of the
ficld B corresponding to any confijura-
tion of static charges was much facili-
tated Dy tho introduction of a scalar
potontial function ¢. Tho proportics
of the atatig fio0ld included tho cone
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dition that the line integral of E
from one point to another is given by

*
..j1 E.d5=¢ -9, (3.17)
the difference of potential between the
two points, The possibility of relying
on ¢ to obtain E depends on the condi-
tion that curl B = 0. It is left to
the problems to show that the curl of
the gradient of any scalar function of
position vanishes identically.

1t i8 clear that we cannot depend
on a scalar potential to obtain B if
the magnetic field owes its existence
to currents, since the circulation of
B does not in general vanish. But the
divergence of B does vanish - the lines
of B never begin or end. These condi=~
tions muggest that the magnetic field
may be written as the curl of another
vector, for it can be shown that the
divergence of any vector which is it-
self a curl is identically zero. To
show this let us again consider a
finite volume (Fig. 3.8), on the sur-
face on which there is a closed curve
that divides the surface into S, and
S,. For any vector field A the circu-
lation of A about the closcd curve is

fX . d8 = feurt X . 4§
--fcmrl X . d§,

by the rightshand rule, since we have
tuken dS positivo oulward from tho cne
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Fig. 3.8

closed volume for both gurfaces. But
the total flux of curl A out of the
volume is

Jeurt X . aF, + fourl X+ aF, -

- f curl A . a¥ -
8 closed

« fX.d8-fX . di -0,

This is trve for any volume, and for
any closed curve on the surface of the
volume, and must therefore be true in
the limit:

div curl X »

f curl X . dF

o 1im —3 closcd £ 0,
AV 0 AV

Thus writing B as the curl of another
vector insures that its divergence is
gero, a condition fwposed physically
on the magnetic field B 1f it is pro-
duced by currents, and defined as &

4 Y -

XqYe20 dy ey Yy ->

rig. 3.%

property of B as produced by magnets
to include the inscparability of mag-
netic poles along with Coulomb's law
for magnets,
In view of the limiting process
by which the curl was defined it is
not surprising that it resembles the
gradient and the divergence in being a
differential operator with respect to
coordinates in threc-dimensional space.
In order to make quantitative use of
the concept we must write it in terms
of conrdinates, although the physical
quantity it represents is quite inde-
pendent of the particular coordinate
system chosen, For our purposes, the
familiar Cartesian coordinates wilil
suffice, particularly if we rcmember
to choose the origin of coordinates
and the orientation of the axes so as
to make the description of the physi-
cal problem as simpia as possible.
Let_ps consjder the x component
of curl A in a right-handed Cartesian
coordinate system at the point (x,y,z).
In Fig. 3.9, dy and dz are shown as
finite increments in the direction of
increasing y and 2; eventually we shall
let dy and dz become as small as we
please, Ly definition,

- 1 - -
Ccurl A), Mt 5 {x.4d8,,

(3.19)

with the line integral taken around
the boundary of the small rectangle
shown, The vector A(x,y,r) must vary
with changing y or 2 (or both) if the
line integral is to be different froum
gero, and we must allow for this vari-
ation to f{irst order in dy and dz. For
the legs of the rectangle adjacent to
the point x,,y,,2, A is A(x,.¥,.2.).
but all of the leg dz on the right is
at y, 4 dy, and the leg dy at the top
is at 2, + de. The line integral is
then

Ay(xy,y912,) dy ¢ Aglxq,yy ¢ dy,2,) dz
= Ay(xg,79:24 + d2) dy

= Ag{xg,74.2,) dn,



MAGNETOSTATICS REFORMULATED 27

the last two torms boeing negative bo-

cause the path is traversed in the di-
rection of decreasing y and z, respec-
tively. To take into account the fact

that in one term Az is evaluated at

Yo + dy, we write

Aglxy .y, + dy, 29) = Az{Xy,¥0,2,)

X (gﬂ,(xo.y.fgl> dy
ay Yo

where (A /ay), is the slope of A,
plotted agalnst y, evaluated at the
point y,, the other two coordinates
remaining unchanged. This does not im-
ply that Az is a linear function of y,
If dy were to remnin a finite length
wg should have to worry in more detail
about the dependence of Az on y. Simi-
larly,

A,(xoty°!zo + dZ) = Ay(xovyo'zo)

N (BAx(xo,yo,z)) 4z,
dz z,

When these expressions are substituted
in the closed line integ ‘al all terms

which do not involve derivatives can-

cel, and we are left with

- A, oA,
(curl A)x = %;: ~ 2 (3.20)

whera the coordinates need not be
written explicitly. -
The other components of curl A

can be derived in the same way, but it

is equally valid to invoke the sym-
metry of a right-handed Cartesian co-
ordinate system and obtain the y and z
components by cyclic permutation of

X,¥,2:

T L
(cart By = 55 ~ o
A, A
£y - 22r_ lx
(curl RX), B By (3.21)

The result is reminiscent of the form
of the cross product of two voctors,
1t x, y, and z are unit vectors in tho
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direction of increasing x, y, z, wo re-~
call that

(X x B) = (AyB, — A,By)X
(A By — AxBz)¥ + (ABy — A,B,)Z.

In writing the pgradient and the diver-
gence in Cartesian coordinates we have
alrcady made use of .8 vector differen~
tial operator ¥ = (xa/a,) + (ya/a )

+ (za/a ), °nd have found it convenient

‘ to write grad ¢ = Vg, and div E = V.

Here we may write curl A + ¥V x &, and
the determinantal form o the cross
product of two vectors s again a help-
ful mnemonic device:

curl A= T x K= %= 2. 2
ax ay 9z
Ay Ay, A,

(3.22)

The symbol ¥ (del) is useful in the
manipulation of mathematical relations
between physical concepts, since it
can be treated as an ordinary vector
so long as its role as a differential
operator is kept firmly in mind, but
the meaning is more apparent if we say
"eurl" instead of "del cross" in read-
ing a formula,

¥e have seen that the magnetic
field B can be written as the curl of
some other vector which is also defined
for all points of space. The relation
between a vector and its curl is clar-
ified by consideration of some simple
examples. Let us take

B = curl A (3.23)

where A = B, (yx - ;}) It is easily
found that curl A=B z, a uniform
field parallel to the z axis of coor-
dinates, but what about the lines of
A? It is a simple exercise to show that
they are concentric circles, lying in
planes perpendicular to the z axis,

As a second examplo consider
X = (p3/4)¢(x? + y*)Z parnllol to the
Zz axis Lut doponding symmetrically on
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x and y. (Tho rirat factor is constant
and a scalar.) Find i = curl X, Now
find curl i, Tho answor has bLoon anlice-
ipated in writing tho constant factor
in the expression for x, but the rela-
tion between the succession of vectors
found by taking the curl is intorest-
ing.

The vector A of which the mag-
netic field B is the curl is called the
"vector potential." The scalar poten-
tial in electrostatics was defined as
work per unit charge, measured in
volts, and could be traced to its
sources by summing the effects of all
charges giving rise to the field in-
tensity E, We saw that its gradient is
just the electric field intensity (ex-
cept that we change the sign), that is,
the physically observable force per
unit charge is derived from the scalar
potential by means of the operator
"del.'" The relation between work and
force is then quite apparent, and the
measurement of E in volts per meter
reinforces the connection. The role of
the vector potential in magnetic fields
is more complicated, largely because
the force per unit current element is
not in the direction of the field B
but at right angles to it. The sim-
plest justification for vsing the word
potential here is that A represents a
quantity whose derivative (its curl,
this time) is a physically measurable
field, namely, B.

Just as the scalar potential ¢
can be traced to electric charges we
should expes~t that A can be traced to
currents. We shall write down the cor~
rect relation between the vector po-
tential and linear current sources,
then show that this relatior is com-
patible with the dependence of B on
these same curronts, as known from
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Ampere's law. Before doing so, however,
wo should nole that A is not comploteoly
delormined by tho domand thal ity curl
give tho correct migneli.. ficld; any
veetor whoso curl §s8 zero could ho
ndded Lo A without aflfecting B oat all.
We have noled 1n the deseription of
tho fiolds E und T that it 1w neces-
sary to know both the curl and the di-
vergenco to specily a vector. Sinco A
hasg been introduced only so thal iLs
curl ropresents ﬁ, nothing has beon
said about its divergence, which may
be anything. It is customary in magne-
tostatics Lo require that div A = O,
but this restriclion is arbitrary. The
Incl Lhat the vector potentinl is not
completely defined by requiring that
its curl give the right magnetic field
is reminiscent of the ambiguity of the
sc¢ 4ar potential of electrostatics, to
wh.ich any arbitrary constant could be
added.

It is possible to show that the
expression for B in terms of a current,
Eq. (3.2), may be written as the curl
of some other vector quant.ity which can
then be identified as the vector poten-
tial., It is somewhat simpler, mathe-
matically, to write down a formula for
the vector potential and shkow that its
curl gives Eq. (3.2). Let us put

£l pld8
A= - (3.24)

where Ids is an element of current, as
usuval, and r is the distance from Ilds
to the point where A (and hence B) is
to be computed, which we may call the
field point (see Fig. 3.10). The curl
of X is to be taken at the field point,
and depends on the coordinates of that
point, not those of the source. (After
all, the same field B at some point
could be produced equally well by a
variety of source configurations.)
Moreover, owing to the principle of
superposition, it makes no difference
whether we take the curl at each point
of the integrand and then sum, or
first sum over all parts of the cir-
cuit Ids and then take the curl at the
field point. In other words, )
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where in the 1las. term we have made
explicit use of the fact that the dol
aoperitor does not act on the coordinntes
! the current =lement, The field point
is involved in the integrand only
through the factor 1/r, where r is the
distance from Ids to the field point,
and thus depends hoth on the variable
of integration ds and those at which
the vector derivative is taken,

In writing curl A in tho finnl
form above wo have tnkon advantago of
tho fact that the opoerator del behaves
like a vector as well as a differentinl
operator, but the integrand now reads
differently: ¥(1/r) = grad (1/r), and
we have the cross product of a gradient
of & scalar and 1ds, The gradient of
1/r 18 very familiar from electrost-t-
ics, since the electrostatic poten‘ ‘al
of a point charge is proportjonal to
1/r, where r is the distance from the
point charge to the point at which we
take the gradient to find E, the elec-
tric field intensity. (0Of course, we
could also simply compute it again.)

If we take the source point, the posi-
tion of IdE, as the origin of cooxrdi-
nates, grad (1/r) = —#/r2, where ¢ is
- a unit vector directed from Ids to the
field point, With this substitution,
and a change of order in the cross
product which changes its sign,

- Vo (1d8 X T
curl X = 2 {225, (3.25)

which is identical with Eq. (3.2).

Thus our expression for A is justified,
The vector potential, like the

scalar potential, is defined at the

field point, but we see that it is very

closely related to the current. In

fact, for each elerment of current

= 1ds
AA 47 r

(3.26)

and thus each increment of A is in the
gamo direction as the current olement
which produces it, From the definition
of the curl we see again that the
rield B is at right anglos to A, as
well as to Ids.

Tho vector potentinl is sometimes
usefvl in solving problems in magnoto-
statics, but it does not play nearly
so practical a role in determining B
from steady currents as does the sca-
lar potential in electrostatics prob-
lems. On the other hand, it is almost
indispensible in relating fields to
nonsteady currents, the fields produced
by time varying currents. We shall re-
turn to this point in another chapter.
But before leaving Lho ':ubject, let us
note an intercsting relation betwecn
the vector potential and the flux of
the magnetic field B through a surface.
Thus far we have considered the circu-
lation of B in relation to the current
through a surface bounded by the cir-
culation path, and have noted that the
flux of B through a closed surface al-
ways vanishes, but we can now derive a
new circulation law. Consider the flux
of B through a surface bounded by a
closed path. By definition this flux
is the integral of B - dF over the sur-
face. But B = curl A. Therefore the
flux through the surface is

¢p = [B-dF = [T xK.af = (X .a5,
(3.27)

just the line integral of X round the
boundary of the surface. In the early
chapters of Monograph III you will have
learned that a changing flux of B
through a surface is accompanied by a
circulation of the electric field in-
tensity E. Thus

d¢ 3B - - 3A -~
—t-a--fa-t-'ds-—fﬁ'ds-fs?'ds.

(3.28)

and therefore an electric field which
has a circulation is related to the
vector potential: E = —(9X/9t),

The reformulation of magnetostat-
ics in terms of vector calculus has in
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itsclf added nothing to the physical
content of Ampere's law; in fact, the
phys.cs of curl il - 3 may be less
transparent than j'ﬂ ' g8 m I, oxcept
for the "curl-ll-metor'" which works only
in fluid conductors, As for the voctor
potentinl, A is gometimes, but not al-
ways, usoful [or solving probloms, but
it 18 not oven directly observable by
means of classical currents or magnots,
The power of the differential formula-
tion of the laws of elcctricity and
magnetism is fully realized only when
variations of the fields in time are
taken into account., If E and B (or i)
are pormitted to vary in time, as they
are bound to do, a whole new set of
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electromagnetic consequences are oh-
served, The differential forms of Am-
pero's and Faraday's laws helped Max-
well to conclude that "light {itsolf
(including radiant heat, and othor
radiations if any) is8 an cleetromag-
notic disturbance in Lhe lorm of waves
propagated through the clectromagnetic
field according to electromagnetic
laws.'" Even Maxwell did not succeed in
tracing olectromagnetic radiation to
its sources; to accomplish this in an
unambiguous way requires the vector
potential, or something equivalent to
it, a single quantity to which both
the electric fiold and the magnetic
field are related.



