
DOCUMENT RESUME

ED 042 608 SE 009 196

AUTHOR Phillips, Melba
TITLE Electricity and Magnetism 2, Magnetostatics.
INSTITUTION Commission on Coll. Physics, College Park, Md.
SPANS AGENCY National Science Foundation, Washington, D.C.
PUB DATE 66
NOTE 37p.; Monograph written for the Conference on the

New Instructional Materials in Physics (University
of Washington, Seattle, 1965)

EDRS PRICE
DESCRIPTORS

ABSTRACT

EDRS Price MF-$0.25 HC-$1.95
*College Science, Electric Circuits, *Electricity,
*Instructional Materials, *Magnets, *Physics,
Theories

This monograph was written for the conference on the
New Instructional Materials in Physics, held at the University of
Washington in summer, 1965. The approach is phenomenological and
microscopic, and is intended for college students who are not
preparing to become professional physicists. The monograph has three
sections. 3qction I includes a short review of the discovery of
magnetic phenomena, and a discussion of the concepts of magnetic
poles, magnetic field intensity, magnetic moment and magnetic flux.
Section II deals with the magnetic interactions of steady currents.
Basic calculus is used to reformulate the lajor concepts of
magnetostatics in section Ili. Some problems for discussion are
included in sections I and II. (LC)



CO
O
%ID

CNJ

LU

CI

E. I , 14 I r1.1
t..1

U.S. Of minim. 101,0114111 WItiAtf
OfiKI Of OVATION

N1510(001 miS illy 14110DIX10 WM AS iffiirED NON TNI
111i01 01 0161M/IM OttmAIN t. OolS Of vilW 01010001S
P1TI1 NOT liffIS41Mt1 KARIM OfICAL OfIKI Of DOOM
009141 01 Mk,.

MELBA PHYLLIPS

University of Chicago



.:11NO 1N9NA10) 1111 

io NOKS 'au %NAM MUSA )111 1111 

1041110 100110044R 111111111 1011Y)001 
101)1110 TI1 114.1 HUM S1111011119Y 114N11 

emumo soouviorreao CNY )W101 

aatrioj mpg' Al 

01111Y19 N111 SIN DAMN 01111911110101 

S1N1 1X10014111 01 N0ISSIN111., 

.*1'11!a5 1( TS.11Ac!t Cllr; 



GENERAL PREFACE

This monograph was written for the Conference on the Now Instructional

Materials in Physics, held at the University of Washington in the sum-

mer of 1965. The general purpose of the conference was to create effec-

tive ways of presenting physics to college students who are not pre-

paring to become profess.onal physicists. Such an audience might include

prospective secohuary school physics teachers, prospective practitioners

of other sciences, and those who wish to learn physics as one component

of a liberal education.

At the Conference some 40 physicists and 12 filmmakers and design-

ers worked for periods ranging from four to nine weeks. The central

tank, certainly the one in which most physicists participated, WAS the

writing of monographs.

Although there was no consensus on a single approach, many writers

felt that their presentations ought to put more than the customary

emphasis on physical insight and synthesis. Moreover, the treatment waa

to be "multi-levol" --- that is, each monograph would consist of sev-

eral sections arranged in increasing older of sophistication. Such

papers, it was hoped, could be readily introduced into existing courses

or provide the basis for new kinds of courses.

Monographs were written in four content areas: Forces and Fields,

Quantum Mechanics, Thermal and Statistical Physics, and the Structure

and Properties of Matter. Topic selections and gener:li outlines were

only loosely coordinated within each area in order to leave authors

free to invent new approaches. In point of fact, however, a number of

monographs do relate to others in complementary ways, a result of their

authors' close, informal interaction.

Because of stringent time limitations, few of the monographs have

been completed, and none has been extensively rewritten. Indeed, most

writers feel that they are barely more than clean first drafts. Yet,

because of the highly experimental nature of the undertaking, it is

essential that these manuscripts bemade available for careful review
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by other physicists and for trial use with students. Much effort,

therefore, has gone into publishing them in a readable format intended

to facilitate serious consideration.

So many people have contributed to the project that complete

acknowledgement is not possible. The National Science Foundation sup-

ported the Conference. The staff of the Commission on College Physics,

led by E. Leonard Jossem, and that of the University of Washington

physics department, lei by Ronald Geballe and Ernest M. Henley, car-

ried the heavy burden of organization. Walter C. Michels, Lyman G.

Parrat., and George M. Volkoff read and criticized manuscripts at a

critical stage in the writing. Judith Bregman, Edward Gerjuoy, Ernest

M. Henley, and Lawrence Wilets read manuscripts editorially. Martha

Ellis ano Margery Lang did the technical editing; Ann Widditsch

supervised the initial typing and Issembled the final drafts, James

Grunbaum designed the format and, assisted in Seattle by Roselyn Pape,

directed the art preparation. Richard A. Mould has helped in all phases

of readying manuscripts for the printer. Finally, and crucially, Jay F.

Wilson, of the D. Van Nostrand Company, served as Managing Editor. For

the hard work and steadfast support of all these persons and many

others, 1 am deeply grateful.

Edward D. Lambe
Chairman, Panel on the
New Instructional Materials
Commission on College Physics



MAG;IETOSTATICS

PREFACE

This fragmentary and preliminar/ mate-
rial fits into an outline of "mlli-
level monographs" covering those as-
pects of electromagnetism which in our
view an undergraduate physics major
should come to know best. The anproach
is phenemeaological and macroscopic,
designed to take advantage of prior
experience; we begin magnelostatics
with magnets, for example. The mate-
rial is planned on two levels to lent,
through the four fundamental empirical
laws of electricity and magnetism to
electromagnetic radiation as a climax.
The propagation of electromagnetic dis-
turbances with velocity c, reached in
the "first course" material without
use of the calculus and equivalent to
the homogeneous wave equation, was
written in an elementary way by Oliver
Heaviside (Electromagnetic Theory,
London, 1912, Vol. 111, p. 3), but
only recently has appeared in the reg-
ular pedagogical literature. In our

treatment we have tried to stress the
physical foundations of Maxwell's great
synthesis, slating in words the argu-
ment corresponding to each mathemati-
cal step. This results in a consider-
ably larger proportion of expository
writing relative to mathematics than
is customarily found in derivations of
the wave equation from Maxwell's equa-
tions in their usual form. On the
other hand, expression of the laws in
differential form seems essential for
tracing radiation to its sources in a
physically meaningful way; the present
Chapter 3 of Magnetostatics could be
followed almost immediately by Chap-
ter 3 of Monograph III, which vould
trace radiation fields to retardation
effects. We regret having not suffi-
cient time to write such a chapter, as
well as thl omission of what should
have been Chapter 3 of Magnetostatics,
an elementary treatment of magnetic
materials.

OUTLINE OF MONOGRAPHS ON ELECTRICITY AND MAGNETISM

1

i

I. ELECTROSTATICS II. MAGNETOSTATICS
III. CIRCULATION LAMS

AND THEIR
CONSEQUENCES

r

1. Electric Forces 1. Magnets and 1. Faraday's Law of
' and Fields Magnetism Induction

FIRST
2. Electric Energy 2. Interaction of 2. Ampere's Law

COURSE and Potential Steady Currents Modified

MATERIAL 3. Electrical Proper-
tits of Matter

"Magnetic Proper-
tics of Matter

3. Propagation of
Electromagnetic
Disturbances

UPPER .

DIVISlov

4. Liect...ostatics

Prior uiated
3, Magnotostatics

itotorm9lated

'Maxwell's Equa-
Lions and Plane
Waves

CutiRSE
'Radiation Fields

MATERIAL

'No textual material rat prepared In the summer of 1965 for these chapters.



We have assumed no knowledge of
special relativity, but have empha-
sized the necessity for choosing a
frame of reference in which to define
electric and magnetic field quantities,
thus laying a foundation for the his-
torical development of relativity the-
ory. Unlike mechanics, vacuum electro-
dynamics needs no modification because
of special relativity except in inter-
pretation, so that an excursion into
relativity theory could be made before
or after study of the present material.

The experiments leading to the
four fundamental laws are described at
some length, but in use this written
material should be accompanied by dem-
onstrations and laboratory work. The
basic experiments should come to be a
part of genuine experience for stu-
dents, but a laboratory monograph
should be written as an extension of
the present outline. Ohm's law and cir-
cuitry, for example, do not al: ap-

preciable role in any other projected

booklets. We cannot. overemphasize the
importance of laboratory work, although
we were nut ale to undertake detailed
consideration o Its content.

We assume that students will have
studied mechanics, that they know New-
ton's laws, the definition of work,
the meaning of the symbol, and hai.e

ol elementary wee-
ler algebra before our material is In-

troduced. (We do define the vector
cross product as if for the first
time.) In the material designed for
upper-class work we assume basic cal-
culus. All vector calculus is developed
as needed, but we attempt throughout to
stress the physics, not the mathemat-
ics, and attempt no mathematical rigor.

The first chapters of Monographs I,
II, and III should be studied in that
order. The few discussion exercises we
include can only indicate a type of
problem we consider desirable. Numeri-
cal problems which we have made no ef
fort to provide, are also necessary.

M. Phillips

R. T. Mara
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1 MAGNETS AND MAGNETISM

Magnetic iron oro, known to us as lode-
stone or magnetite, is found in many
parts of the world, and its property
of attracting iron was noted by more
than one civilization early in itu
Iron Age. The property remained merely
a curiosity, even in the intellectual
climate of the Golden Age of Greece,
and the tendency of a magnet to orient
itself along the earth's meridian es-
caped notice. These directive effects
were probably first discovered in
China, but there is no conclusive evi-
dence that they were put to practical
use. The origin of the mariner's com-
paus is shrouded in mystery which may
never be dispelled, but by the en,1 of
the 12th century the compass was well
known in the Western world as a help-
ful device for sailors when the stars
were obscured.

Myths, legends, and superstitions
about magnets multiplied from ancient
times through the Middle Ages, and
even later. Magnets were employed in
medicine, especially for the healing
of wounds, and once the directional
properties were recognized, in the oc-
cult science° such as astrology. Yet

1

magnetism began to be a genuine sci-
ence during the Middle Ages; The first
account of the magnet that we would
call scientific was surprisingly early,
a letter dated August 12, )26P. The
epistle of Peter Perigrinus (Peter the
Pilgrim), born Pierre de Maricourt in
Picardy, sets forth a number of funda-
mental properties of magnetism.

It was Perigrinus who discovered
poles and distinguished precisely two
kinds. His method is of interest: Se-
lect a good piece of magnetite, shape
it into a sphere and polish it. Now
place on it a needle or sliver of
iron, and mark on the surface of the
sphere the direction taken by the
needle. Repeat the procedure at many
different positions on the sphere. At
the end it is found that the lines
"will run together in two points, just
as all the meridian circles of the
world run together in two opposite
poles of the world" (Fig. 1.1). Only
one of these poles points north if the
magnet is free to turn. Thus two oppo-
site magnetic pole.' were introduced,
and Perigrinus noted that unlike poles
attract. He went further to shot, that
if a magnet is cut (see Fig. 1.2), two
poles persist in every separpted part,
and that if two fragments are put to-
gether as before the new poles vanish.
He did not notice repulsion. Perigrinus
named the poles north and south, with
the north pole that which points to the
north. At that time magnetism was at-
tributed to the celestial sphere, not

Fig. 1.2



2 MACNETOSTATICS
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to the earth itself, and Perigrinus
did not think of the earth as a magnet.

This last step was taken by Wil-
liam Gilbert, physician to Queen Eliza-
beth, who repeated and extended the
experiments of Perigrinus and others.
Once the earth is taken as a magnet,
the action of a compass is simply an
example of the behavior of all magnets:
The north magnetic pole of the earth is
a "south" pole, which attrazts the
"north" poles of all compass needles
(see Fig. 1.3). Gilbert's great accoi-

qm

Fig. 1.4

plishment was to extract existing facts
and laws of magnetism from a wealth of
speculation and superstition, and to
discover new properties a 1 relations.
Pis theories, including the supposed
relation of magnetism to gravitation,
need not concern us here, although we
should note that they influenced Kep-
ler, and that Newton found them sug-
gestive in the development of his own
ideas. Gilbert's book. be Magneto, pub-
lished in 1600, Is still a classic
presentation of many qualitative as-
pects of magnetism.

Magnets exert forces on each other
and on iron withoot being in contact.
It was known to Ginert and those who
followed him that the effect of a mag-
net decreases as the distance from
the magnet increases, but the quanti-
tative relationship was first discov-
ered by the Reverend John Michell in
1750. The same relation was found by
Coulomb in 1785. The torsion balance,
which facilitated these experiments,
was invented independently by Michell
and by Coulomb, Lnd Michell's balance
was later used by Henry Cavendish for
his famous measurement of the constant
in Newton's law of gravitation.

In long magnetized needles, or
eiff wires of hardened iron, the lag-
netic effect is well concentrated ut
the ends, or poles (Fig. 1.4). Michell
established experimentally that the
two poles are opposite and of equal
strength for any or magLet, and that
repulsion and attraction between the
poles of two magnets are of equal mag-
nitude it distances of separation are
kept the same. lie also found that the
force exerted by the pole of a long
magnetized wire is the same in all di-
rections. He then determined the force
between poles for various distances,
and found its strength was inversely
proportional to the square of the dis-
tance between poles.

In order to write the law of
Michell and Coulomb in mathematical
form, we must assume some quantitative
measure of pole Ptrength, and it is
convenient to call north-seeking poles
positive (4) and south - seeking; poles



MAGNETS AND MAGNETISM

negative (-), by analogy to the desig-
nation of electric charge as positive
and negative. 11 we designate pole
strength by qm., the force between two
poles of strengths qm and qm' has a
magnitude given by

F - kgmqW/r2,

with k an arbitrary constant determined
by the units employed. In this formula
a negative force signifies attraction,
but force is actually a vector quan-
tity, and the force exerted on qm by
qm' at distance r may be written

= kqmqm'f/r2,

where r is a unit vector in the direc-
tion from qm' toward qm. The force is
directed as in Fig. 1.5 if qm. and qm'
are of like sign.

This law has exactly the same
form as Coulomb's law for the interac-
tion of electric charges, and a formal
analogy between the interaction of mag-
nets and electrostatic interactions
can be carried further. The magnetic
field intensity may be defined at any
point in the vicinity of magnet as
the force per unit positive pole at
that point. The conventional designa-
tion for magnetic field intensity is H,
so that

F = qm11,

where if is the field intensity at the
position of qm. The field intensity
produced by a single pole qm' at dis-
tance r from the pole is

= (kqm1/r2)T,

where the unit vector F is directed
from qm' to the point where It is to be
determined. If qm' is negative (an S
pole) the field intensity H is then
directed toward qm'. The field inten-
sity produced by two poles is the vec-
tor sum of the contributions of the two
poles taken separately - the principle
of superposition applies. The fact that
for real magnets the poles are not

-9'm

Fig. 1.5

m

points, that pole strength is actually
distributed over the surface or volume
of a magnet, causes no difficulty: All
effects are additive and can be summed
over elementary surfaces or volumes at
various distances from the point at
which the field is to be computed, just
as in electrostatics. In other words,
the principle of superposition applies
to magnetic forces, just as it does to
electric forces.

We shall find that we have little
occasion to work with poles as such in
the further development of magnetism,
although the magnetic field intensity
remains an important concept, We should
note that the mks unit of pole strength
is called the richer, so that II it:: in

newtons per weber. (To anticipate Cnap-
ter 2: The weber is defined in terms
of the ampere.) The constant k required
to give the force in newtons if pole
strength is measured in webers is (107/
1672) newton-meter2/weber2, or roughly
6 x 104. Clearly the mks system is not
designed to be convenient in working
with poles, but the weber remains use-
ful in other connections. It was named
for Wilhelm Eduard Weber (1804-1891),
who collaborated witi, the great mathe-
matician Gauss in putting the whole
question of electromagnetic units on a
rational basis.

In principle the magnetic field
intensity in the vicinity of magnets
could be computed at every point from
a knowledge of the strength and posi-
tion of all poles, but the numerical
results would be hard to visualize. On
the other hand, the direction and some
notion of the strength of H can be dem-
onstrated very easily with iron filings
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(Fig. 1.0) or a large number of very
small compasses. By definition a com-
pass sets itself in the direction of
the field intensity. A field line is a
line so drawn that its tangent is in
the direction of the field at each
point, and to a good approximation a
field line can be traced along its
length by a small compass. The number
of lines drawn does not matter, but we
see from Fig. 1.7 that the lines tend
to converge in regions of high field
intensity, and to become more widely
spaced where the field intensity is
weak. We are restricted to the region
outside the magnet, and even then show
only a two-dimensional cross section
of space, but it is clear that the
lines traced out in this way are smooth
and continuous,

Iron filings and small compass
needles are not entirely equivalent,
although both are oriented along mag-
netic field lines. Soft iron, of which
the filings are made, shows little or
no residual magnetism; a small sliver

Fig. 1.7
ay pornnion Allyn and Dat ono Inc.

of iron has no poles of its own, and
orients itself equally readily if
turned through 1800 in the field of a
magnet. The magnetism a piece of iron
exhibits owing to the presence of mag-
netite or other permanent magnets is
said to be induced.

The tiny compass needles with
which lines of magnetic field intensity
can be traced out are each complete
with two opposite poles of equal magni-
tude. That the tiny magnet tends to
align itself along the lines of if is
to be expected, since the force on the
positive pole is equal an opposite to
the force on the nearly coincident neg-
ative pole. But poles are well local-
ized only on long needles such as those
used by Michell and Coulomb. (Coulomb's
needles were 25 inches long.) For short
needles it is practically impossible to
determine a point position equivalent
to the actual distribution of pole
strength. A more convenient property
by which the strength of a magnet can
be measured is its magnetic moment, or,
more precisely, its magnetic dipole
moment. The dipole moment can be deter-
mined even for magnets which a.:e en-
tirely inaccessible for direct exami-
nation.

The dipole moment of a long mag-
net with poles at the ends is defined
as a vector directed from the negative
toward the positive (north-seeking)
pole, whose magnitude is the pole
strength qm times the distance between
the poles. Let us call the magnetic
moment of such a magnet m, If the mag-
net is placed in a uniform field, as
indicated in Fig. 1.8, the forces on
it are equal and opposite, but it will
experience a torque of magnitude mH
sin U, which tends to bring it into
alignment with the lines of H. (Here e
is the angle between the dipole moment
m and the direction of H.) For macro-
scopic magnets this torque can be
measured even if the pole strength is
so diffuse that its exact position has
little or no meaning. For microscopic
linear magnets the dipo2e moment is the
only accessible measure of magnetic
strength.



MAGNETS AND MAGNETISM 5

Even the torque may be difficult
to measure for a magnet so small as to
be mechanically inaccessible with a de-
vice such as a torsion balance. The di-
pole moment can still be determined by
finding the energy involved in lining
up such magnets in the direction of the
field lines, or by finding the energy
required to reverse taeir positions.
We note that if the magnet is initially
in the direction of H, the work re-
quired to turn it through 90°, so that
it becomes perpendicular to the field,
is mil. (Proof of this statement is left
to the problems.) It is conventional to
say that the magnetic dipole has zero
energy when it is perpendicular to the
lines of H. The energy is equal to
-mH cos 0 d -m 11 for any other orien-
tation. This is potential energy, since
it is determined by the position of the
magnet relative to the field, and the
negative sign makes the most stable po-
sition (alignment with the field lines)
that of the lowest potential energy.

The description of magnetic inter-
actions in terms of an inverse square
law of force between poles seems to go
very smoothly, but it has a distinct
weakness: It does not include any
statement of the experimental fact that
poles cannot be isolated from each
other. This could, of course, be adoed
in words. Coulomb went further than
Michell: After establishing the in-
verse square law and the direct de-
pendence on magnetic pole strength, he
postulated that the "molecules of mag-
netic fluid" are themselves elementary
magnets, complete with two poles of
equal strength. Chains of such "mole-
cules" would then cancel each other
except at the ends, which appear as
magnetic poles. This would explain the
fact that two poles appear when a mag-
net is cut, equal and opposite in
strength and each equal and opposite
to the original pole still attached to
it. This is very much like the mcdern
view, except that we now view elemen-
tary magnetism as a property of matter
itself, not a separate fluid.

Wo have no proof that isolated
magnetic poles do not exist somewhere,

Fig. 1.8

A

and there are no known reasons why they
should nut exist. Nevertheless the
mathematical description of magnetism
as we find it should reflect the empir-
ical fact that no isolated magnetic
pole has ever been detected. This de-
scription would have to be amended if
isolated poles are ever discovered,
but in the meantime it would include
an essential fact of magnetism as
presently experienced.

The impossibility of separating
poles can be stated by saying that in
any volume cut off physically from re-
maining space by a bounding surface,
there is no net pole strength; in cut-
ting through a magnet, you create a
pole equal and opposite to one you were
trying to surround. Now in electrostat-
ics we are able to write a simple rela-
tion between the electric field inten-
sity and its sources within a particu-
lar volume in terms of the flux of the
field intensity. We can, similarly,
define the flux of the magnetic field
intensity 17 through an element of sur-
face AS as II AS, and find that mathe-
matically, as a result of the inverse
square law, the total outward flux of
H is

E fire d§ o 417k1q,

s closed

where qm is the total pole strength
inside the volume, as in Fig. 1.9. (We
recall that in the electrical case,
owing to the inverse square of the dis-
tance in the quantity to be summed, it
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Fig. 1.9

does not matter where the charge is
located within the volume, and the
principle of superposition then insures
that the total flux is independent of
the distribution of charge within the
volume.) But the surface involved in
this theorem of Gauss's it mathemati-
cal; there is no more physics in the
new statement than in the original law
of Michell and Coulomb. The power of
the Gauss form of Coulomb's law in
electrostatics is that net electrical
charges can be isolated with empty
space completely surrounding them, that
for any electric charge q there is no
uniquely associated -q. As a result,
Gaussian surfaces can be chosen with
the same symmetry as that of the
charge, so as to yield an expression
for the electric feld intensity. The
analogous theorem for the flux of H is
not so useful, since isolated spheres
and lines of magnetic pole strength
cannot be constructed.

And yet the concept of magnetic
flux suggests a way of stating the in-
separability of poles and the inverse
square law at the same time. Let us as-

Fig. 1,10

sums a quantity B welch is indistin-
guishable from the magnetic field in-
tensity in empty space outside the
magnet hu;, defined inside the magnet
by the condition that its total outward
flux from every closed surface is zero
whether there are magnets or not. Thus
we may write

E 5- . YS 0,
S closed

for all possible surfaces. This condi-
tion is satisfied by IL itself for sur-
faces which do not cut through magnets,
but not in general _for surfaces which
do. The demand on B is equivalent to
demanding a physical cut through the
magnet, which would create a pole
strength to cancel that already inside
the volume, rather than the mere math-
ematical surface of Gauss's theorem for
the field intensity. The behavior of
lines of B through a magnet is shown
in Fig. 1.10.

We shall see in the following
chapters that B can be given an opera-
tional definition in connection with
another aspect of magnetism. The only
virtue in introducing it here is to
state in mathematical form the insep-
arability of poles as we find them in
nature. In the mks system of units, B
and H are expressed in different units:

110 HH=

in empty space, where M0 is 4v x 10-7.
Again in empty space outside the mag-
net, a single pole of strength qm web-
ers gives rise to B,

B = (qm/4rr2)T,

so that B is measured in webers per
square meter. We should note the occur-
rence of the geometrical factor 4r,
just as in electrostatics. One place
or another this factor is sure to en-
ter the description.

If this were all there were to
magnetism, there would be no connection
with electricity, and the two would be
considered as separate subjects. It
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was, in fact, one of Gilbert's achieve-
ments that he distinguished clearly
between magnetism, as produced by mag-
netite and magnetized iron, and static
electricity PS produced by rubbing
glass with silk. But there is current

electricity which consists of a net
flow of charge, whether as free charge
or in electrical conductors, and mag-
netism is connected with the motion of
charge, as we shall see in the next
chapter.

PROBLEMS

1.1 Suppose you were confronted with
two iron bars that look identical
in every respect, but one has been
"permanently" and strongly magnet-
ized with its poles well localized
at the two ends, and the other not.
Without any additional equipment
whatsoever, how could you deter-
mine which is a permanent magnet
and which has no residual magnetism
of its own? Describe in detail the
operations you could perform and
the conclusions you would draw at
each step.

1,2 When one end of a magnet is brought
close Lo one end of an initially
nnmagneLlved nail, the nail itself
becomes a magnet and will attract
other nails. Tho effect is even
more pronounced if the end of the

magnet is actually brought into
contact with the end of the nail.
(If you have not observed such
phenomena you can easily do so with
toy magnets obtained at a variety
store.) What electrical phenomenon
is this analogous to? Is the analo-
gy complete, i.e., in what way do
the phenomena differ? (flint: What
would happen in the electrical
case after the two objects came in
contact with each other?)

1.3 Make a detailed list of ways in
which electrostatic and magneto-
static phenomena clearly differ
from each ()Lacy. (Note such aspects
as the ellAire of materlals that ex-
hibit relevant properties, phenom-
ena of conduction, phenomena of
polarity, etc.)



2 THE MAGNETIC INTERACTIONS OF STEADY
CURRENTS

The electrical effects first studied
were those of static charges produced
by rubbing amber with cloth, but no
quantitative results were obtained un-
til the properties of conductors were
distinguished from those of insulators.
In electrostatics a conductor is an
object whose surface has an equilib-
rium distribution of charge: There is
no difference of potential between any
two points on the surface of a conduc-
tor. This follows from the definition
of a conductor as something in which
charge is free to move.

But if a difference of potential
can be maintained between two points
of a conductor, there will be a flow
of charge from one point to the other.
We no longer have a static situation,
but we may have a steady flow. Let us
consider a linear conductor such as a
straight wire, and assume that some
external device can maintain a constant
difference of potential between the
ends (see Fig. 2.1). This device will
need to supply charge, but the charge
dues not build up anywhere - it leaves
the wire at the same rate that it en-
ters, and the conductor need have no
net charge. The result is a steady flow
of charge in the wire. The amount of
charge per unit time which passes any
position P is the current:

I -
Act coulombs

At second '

and one coulomb/second is called an
ampere. The direction of the current
is that of positive charge flow. A flow
of negative charge is equivalent to a
current whose direction is opposite to
the motion of the charge.

Many practical uses of conductors
involving the transfer of charge are
treated in the laboratory monograph of
this series. Here we shall not be con-
cerned primarily with any particular
relation between the magnitude of cur-

8

BATTERY

Fig. 2.1

rent in a conductor and the applied
potential difference, but demonstration
of the effect under immediate consider-
ation does involve setting up electri-
cal circuits, for which it usually suf-
fices to know Ohm's law: For many con-
ductors the current I of Fig. 2.1 is
directly proportional to the applied
potential difference denoted by V in
the figure. Mathematically,

V RI,

where R, called the resistance, de-
pends on the material of which the con-
ductor is made - whether copper or
aluminum, for example. For a uniform
wire the resistance is directly pro-
portional to the length and inversely
proportional to the cross-sectional
area of the wire. Ohm's law is impor-
tant as describing the behavior of many
conductors, but it is not a fundamental
law of electricity and magnetism. The
magnetic effects of electric currents
do not depend on the applicability of
Ohm's law.

The first currents observed were
those obtained by discharging conduc-
tors which had been charged electro-
statically, but such currents are usu-
ally small and sporadic. Production of
fairly large steady currents became



TNE MAGNETIC INTERACTION OF STEADY CURRENTS

possible only after Volta's invention
of the chemical battery at the begin-
ning of the nineteenth century. Devel-
opment of the battery as a practical
device facilitated many kinds of elec-
trical experiments including tho ef-
fects of current electricity.

Even earlier (1752), Benjnmin
Franklin had demonstrated that light-
ning is an electrical discharge. Obser-
vation of occasional erratic behavior
of compass needles daring a thunder-
storm suggested to Hans Christian Oer-
sted of Denmark some connection be-
tween electricity and magnetism, and
led to his remarkable discovery in
1819 that current electricity is ac-
companied by magnetic effects. Oer-
sted's experiment consisted of setting
a long straight portion of an electric
circuit above and parallel to a com-
pass needle, and finding that the nee-
dle is deflected from its original
north-south orientation when the cir-
cuit is closed (see Fig. 2.2). This is
not a temporary effect: The deflection
is maintained so long as the current is
maintained. With a strong current the
needle is very nearly at right angles
to the line of the current, and the
deflection of the needle is reversed
when the current is reversed. If the
compass is held above the wire instead
of below, and the direction of the cur-
rent is unchanged, the deflection of
the needle is again reversed.

We have seen that a compass aligns
itself along the direction of the mag-
netic field intensity, and that field
lines can be traced out with a small
compass. The "sense" or direction of
the arrow on a field line is that of
the dipole moment of the compass: from
negative to positive, or from S pole to
N pole. The field lines so traced for a
long straight wire carrying a current
are circles, directed in accord with a
right-hand rule: If the wire is grasped
with the right hand, the thumb point-
ing in the direction of positive charge
flow, the direction of the curved fin-
gers is that of the field lines. (Check
this rule with Fig. 2.3.)

A quantitative study of the mag-

9

Fig. 2.2

netic field intensity accompanying a
long straight linear current was under-
taken by Biot and Savart in Paris, im-
mediately after hearing of Oersted's
discovery. They found that the magni-
tude of the magnetic field intensity H
at any point is directly proportional
to the strength of the current, and in-
versely proportional to the shortest
distance from the point to the wire.
Quantitatively,

I/2vr (2.1)

for a long straight wire carrying cur-
rent of magnitude 1, in mks units. The
current is measured in amperes and r
in meters. There is no explicit arbi-
trary constant (for a change!), because

Fig. 2.3
By pwinistion PSSC letoD.C. Heath and Company
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Fig. 2.4

the ampere and the weber, which we have
already encountered in Chapter 1 as a
unit of magnetic pole strength, are so
defined that the only factor in this
formula is 2r, the ratio of the cir-
cumference of a circle to its radius._
Clearly the magnetic field intensity H
may be expressed in amperes per meter
instead of newtons/weber, and it is
usually so expressed in mks units. In
fact, H can be defined by this equation,
with the magnitude of H at a distance
of one meter from a long straight wire
carrying a current of one ampere being
equal to (1/2n) amperes/meter. The
equation as it stands, however, does
not give the direction of the magnetic
field intensity, and the right-hand
rule must be kept in mind as well as
the relation of magnitudes.

The form of the Biot-Savart law
given above, together with the rirht-
hand rule, suggests another way of put-
ting the relation between I and the

Fig. 2.5

Fig. 2.6

magnitude of H. Let us define what is
called the circulation of it Consider
a closed path, s, in the field; for
every part of the path multiply the
element of length Ls by the component
of H parallel to Ls', and sum the prod-
uct over the entire path. The result
is called the circulation of g about
the path chosen. For a circular path
in a plane perpendicular to the current
whose line passes through the center of
the circle (Fig. 2,4), .his process is
easily carried out. The field intensity
is everywhere in the same direction as
the path, the entire path length is
s 2nr, and the circulation is simply

E ff. a 2ur 2rr 1/2,7r I,

h CIONVd
(2.2)

just the current in the wire. But let
us evaluate the circulation of H over
a somewhat more complicated path con-
sistiag of concentric circular arcs
connected with radial lines as in Fig.
2.5, The length of each arc is propor-
tional to both its radius and the angle
it subtends, but the field intensity is
inversely proportional to the radius.
The radial portions of the path con-
tribute nothing, since they are per-
pendicular to ff, so that the circula-
tion about this pat'a is I, just as be-
fore. Even a slant element of path
contributes to the circulation only
0/2u, where 8 is the angle it subtends
as shown in Fig. 2.6. Thus the t I,
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lation of fl is equal to I if the area
bounded by the closed path has I pass-
ing through it, and equals zero if the
current circuit does not link through
the loop. Otherwise, the shape of the
closed path does not matter, nor does
the exact position of the current; the
only consideration is whether the cur-
rent "threads" the loop, that is,
whether therc, is flow of charge through
the area bounded by the oop (Fig.
2,7).

That this result is perfectly gen-
eral follows from its independence of
the shape of the loop for a lino cur-
rent, and from the principle of super-
position for a. We may write

circulation of IT E II 'As ..- I,

s closed
(2.3)

where I is the total (net) current
ti.reading the path of the circulation.
The circulation of H about two equal
and opposite currents is zero, even
though the currents are displaced from,
each other and the magnetic field in-
tensity itself may have quite appreci-
able values at various points along the

The circul ;,in law for H is ex-
treme4 nsefui t, finding the field
intensity associat d g.r,h all current
configurations which hive cylindrical
symmetry. An important example is the
solenoid, a coil of insulated wire
wound in a close helix or spiral on a
hollow cylinder, or having the shape of
of a cylinder. Let us consider a very
long Coil of this kind, of n turns per
unit length, eacy carrying current I.
We may investigate the field intensity
well away from both ends by taking a
circulation path partly inside and
partly outside the coil, as in Fig,
2.8, barely including the current car-
rying wires. For each turn of wire the
magnetic field in the plane of the turn
is at right angles to the plane, and if
the contributions of the loops above
and below are considered in pairs it
can be seen that the whole field is
parallel to the axis of the solenoid,
so long as we stay far from the ends.

rig. 2.7

Thus the short sides of the circula-
tion rectangle contribute nothing, and

IL Inside noutbidoi of I.

where f is the long dimension of the
circulation rectangle. But this same
equation holds if the circulation path
is changed to the dotted line inside
the coil, or for any other position of
the inside leg of the rectangle. We can
therefore conclude that the field in-

Fig. 2.8
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Fig. 2.9

7

tensity inside the cylinder is uniform,
having the same strength and direction
over the entire cross section. Exactly
the same argtmont can be made for the
leg of the rectangle outside the cylin-
der; the sides which are short in Fig.
2.8 may be made as long as we please.
The field intensity outside the sole-
noid, in a plane that cuts the cylin-
der far from the ends, is also uniform.
But the field intensity outside must be
very small indeed; full justification
of this statement is left to a problem.
Therefore:

Inside lioutside nI ° Hinside (2.4)

to a very good approximation.
Except in current configurations

of cylindrical symmetry, the circula-
tion law is not so very useful in find-
ing the magn.tic field intensity accom-
panying a current. To express the field
intEnsity at a point in terms of the
current in a circuit of arbitrary geom-
etry we shall need the vector product
of two other vector quantities.

The prototype vector is almost
literally the directed line segment in
three-dimensional space by which other
vector quantities such as force and
velocity are represented. We are famil-
iar with the scalar product of two vec-
torstors as it occurs in F s work, or
R s - electrical potential differ-
ence, giving a scalar quantity which
can be expressed as a single number.
The prototype cross product of two
vectors is the area of the parallelo-

gram defined by two directed line seg-
ments, represented in a direction per-
pendicular to that area. That two
lines specify a definite parallelogram
in a plane is shown in Fig. 2.9, By
definition

d -Xxff- AB sin&

where C is a unit vector at right an-
gles to the plane of A and B. The sense
or sign of X x B is determined by a
right-hand rule: With the plane of your
hand at right angles to the plane of A
and B, let the fingers of your open
right hand point in the direction of
the first named vector (A) with the
hand oriented so that the parallelo-
gram is in front of your palm - partial
closing of the fingers would bring them
parallel to the second vector (B); the
direction of your extended thumb is
that of A X B.

Vector cross multiplication is
not commutative: It is readily seen
that

x A - -(A x ff).

The cross product of A and B vanishes
if A and B are parallel, and has its
maximum magnitude if they are at right
angles to each other. We note that an
area is represented as normal to its
plane, but that the sign of the normal
is chosen by an arbitrary rule. Many
physical quantities share this charac-
teristic. Cross products may be repre-
sented by directed line segments, and,
for most purposes, such as addition
and multiplication, they behave like
ordinary vectors. Actually a vector
product is not exactly the same kind
of quantity as at least one of its vec-
tor factors - that a directed area is
not quite like a directed line segment
is shown in one of the problems. In the
problems the cross product is also ex-
pressed in terms of the components of
A and irt in Cartesian coordinates.

From other experiments of Riot
and Savart and of Ampere (to whose fur-
ther work we shall turn our attention
shortly) on circular circuits and those
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Fig. 2.10

which combine circular arcs and radial
circuit elements, it became evident
that magnetic effects are always di-
rectly proportional to the magnitude
of the current, and that the effect of
each element of current at a particu-
lar point P depends not only on the
distance of the point, but also on the
orientation of the current with respect
to the line between it and the point at
which H is to be determined. With ref-
erence to Fig. 2.10, the contribution
of a length of circuit As to the field
intensity at a point whose distance is
r is given by

AH 'As sin Oblurl, (2.5)

where 0 is the angle between IAW (taken
positive in the direction of the cur-
rent) and the line between the current
element and the point. The direction of

is at right angles to both la and r,
and in this instance into the page.
All this information is conveyed more
simply by means of the cross product

IAs x T
417r2 '

(2.6)

where r is a unit vector along r, di-
rected from the current element to the
point in space. This formula has to be
inferred from experiments with complete
circuits, for which the field intensity
is correctly given by

E IAs X f.

TiTi--*
e closed

(2.7)

Let us apply this last formula to
find the field intensity at the center
of a circular loop of radius r, carry-

Fig. 2.11

ing current I. The lead wires from the
battery produce no effect, (Why?) Since
As is perpendicular to the radius of
the loop, and the distance r is the
same for all elements of current, the
sum over all parts of the circuit can
be evaluated at once:

H -
I 2wr I

0:1'2 2r
(2.8)

at the center of a circular loot. The
direction of H is that of As x 2., out
of the page for the current indicated
in Fig. 2.11.

Ampere, who learned of Oersted's
discovery at the same time as did Blot
and Savart, reasoned that there should
be forces between two current circuits
if both produce magnetic effects, since
two magnets interact with each otner.
Within a week ho had shown that two
parallel wires carrying currents in the
same direction (see Fig. 2.12) attract
each other, and repel each other if
the currents are in opposite direc-
tions. The magnitude of the force be-
tween the wires is directly propor-
tional to both currents. As the result
of a remarkable series of experiments
performed during the next three years,

F

Fig. 2.12
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Fig. 2.13

Ampere was able to infer that the force
between two parallel current elements
Ilbs, and 13622 is given by

k' 1112 sin 0 tis, 6s2/r2

La. 1112 tisibs2 sin 0

4n r 2

where 110/47r is the constant of propor-
tionality in mks units (see Fig. 2.13).
The value of k' is taken arbitrarily as
10-7 newton/ampere2, so that p, 4v
X 10-7 newton/ampere2. The size of the
ampere (and thus also the coulomb) is
in fact determined by taking the con-
stant of exactly this magnitude.

Again the presence of sin 0 sug-
gests a cross product. Still another
angle must be taken into account if the
two current elements are not parallel,
and the formula begins to look even
mare complicated: s,

po 1,46;71 x (12a2 X F)
tor(on A.;', )

477 r2

po 124g2 X T )
(2.9)14.;1 X (

sir
2

where r is a_unit vector directed from
As2 toward As,. For the total force on
current element Jibs, exerted by cir-
cuit 2, we must sum over all I2A32:

F(on Ill ) Ill

2]
122`.322< F. 1

r 2 j
sa closed

But this way of writing tho force sug-
gests a simplification, since the term
in parentheses is, apart from the con-
stant po, the magnetic field intensity
found by Diot and Savart as a force per

ie
Fig. 2.14

unit pole. Moreover, it is found that
a current element experiences a force
when placed in the vicinity of an or-
dinary magnet, as indeed we might ex-
pect from the fact that a current ex-
erts forces on a magnetic compass nee-
dle. The force on our current element
Ilbsi may be written as

x Aoff x B, (2.10)

where

- 1: a I24g2
2

x F
(2.11)

ry r
sa closed

if if is produced by current 12. In
general throughout empty space

- (2.12)

whatever the sources of magnetic field
intensity (see Fig. 2.14).

In Chapter 1 the field if was de-
fined so that its net flux through the
surface enclosing any volume of space
vanishes, although the net flux of H
might be different from zero. The lines
of both B and H as produced by currents
are without beginning or end, and the
net flux of both quantities through the
surface enclosing any volume is zero.
To see this we need consider only an
increment of field arising from a sin-
gle current element Ms, and remember
that the entire field at a point is the
sum of such increments. Let us examine

10 A; x F
4613

N°1-1" r

The direction of di is perpendicular
to both a and 1, and its magnitude de-
pends on r. If we choose any point and
move along the direction of 615, wo
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shall tracc out a circle in a plane at
right ningles to the direction of As,
which would yield no net flux from Lho
surfnce of n volume such as shown in
Fig. 2.15. Increments of [3 arising
from other current elements have the
same property: The circles of di they
contribute may lie in different planes,
but the lines of each are continuous,
Thus for B as a whole, the summation
of the flux over any closed surface,

E ag 0 E HAAS
S close.' S closed

if II is produced by currents.
The equation V lbs x B is often

taken as the definition of the vector
field B, which is called the magnetic
induction field. The units of ff arc
newtons/ampere-meter. It is left to the
problems to show that these units are
consistent with those given in Chap-
ter 1. In empty space, where our equa-
tions hold, the field quantities B and
are really indistinguishable, al-

though their units are arbitrarily dif-
ferent in the mks system. We shall in-
vestigate further the equivalence of
currents and magnets, and how this
equivalence depends on the absence of
separable magnetic poles, but let us
first look again at the role of if in
the interaction of two currents.

We have investigated the magnitude
and direction of B (although we some-
times called it a) In relation to its
sources in some simple cases. If we
know B ai; any point we can immediately
find the force on a current element
IAs placed at that point by computing
lAs x B. In terms of Ampere's experi-
ments, the interaction between two cur-
rents is thus for convenience consid-
ered in two steps, the production of a
field B by one circuit and the action
of the field B on the other circuit.
In view of the complicated dependence
of the forces on the angles involved,
this procedure has great advantages,
since we need now consider only one
angle at a time. Furthermore, the con-
tributions to if frc.la different sources,

be they current? or magnets, are addi-

Fig. 2.15

LINE OF AT

Live, so that simultaneous interactions
may be considered in a relatively sim-
ple way. Even so, it should be remarked
that the greatest advantages of the
field concept become apparent only when
the sources, and therefore the fields,
are permitted to vary in time. The sub-
ject of time varying fields is reserved
for another monograph in this series,
but we should note that light and other
electromagnetic radiation can be simply
understood only on the basis of elec-
tric and magnetic field quantities.

If we consider only forces on cur-
rent elements, we need only one mag-
netic field quantity, that defined to
give the force per unit current at
right angles to the direction of the
field, namely, B. The necessity for
considering a second field quantity,
the magnetic field intensity ff, does
not then arise until we consider mag-
netic materials, within which B and iT
are different. But can we confine our
attention exclusively to currents? It
was Ampere's hypothesis that all mag-
netic interactions can in fact be
traced to currents. whether they occur
in macroscopic circuits or are assumed
to exist in the most elementary form
of matter. To establish the basis for
this hypothesis we must consider the
forces on a loop of current in a
field B.

Let us take a rectangular loop of
wire cdef, as shown in Fig. 2.16, hav-
ing dimensions a and b, placed ini-
tially so that its plane is parallel to
a field 6 which is uniform in space ar,d
constant in time. The current in the
loop is 1. We nay compute the force on
each straight section of the loop from
the formula F 16; X B. With the cur-
rent as indicated, we see that there
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Fig. 2,16

is a force IbB directed out of the
plane on the wire cd, a force IbB di-
rected into the plane on the wire of
and no forces on fc and de since these
wires are in the same direction as the
lines of B. The net force on the loop
is zero, but there is a torque of mag-
nitude ablB tending to turn it out of
the plane, into such a position that
what is now the front of the loop faces
down, with the plane of the loop per-
pendicular to the lines of B. This is
exactly what would happen to a rectan-
gle of magnetic material whose front
face is a negative (south-seeking) pole
and whose back face is positive (north-
seeking). The loop is thus equivalent
to what Ampere called a magnetic shell,
a flat magnet of magnetic moment pro-
portional to the product of itu area
and the current on its boundary,

Fig. 1.17

S

Fig, 2.18

We may recall that the torque on
a magnot of magnetic moment m in a re-
gion of field intensity II is mil when
the direction of the moment is at
right angles to H. The torque on our
loop is IAB, where A - a x b is the
area of the loop. If we want to keep
the same units as before for magnetic
moment, we may ascribe to the loop a
moment of magnitude 'OA, directed per-
pendicular to the plane of the loop,
and positive toward a right-hand thumb
whose curved fingers point along the
current. For other orientations of the
loop the torque is IAB s;r1 0, where 8
is the angle between the magnetic mo-
ment and the field lines, in agreement
with the torque mH sin 0 on a magnet
in a field intensity n.

The magnetic moment of a current
loop does not depend on the shape of
the loop. A circular loop is equivalent
to a magnetic disk whose faces are of
equal and opposite polarity, and whose
magnetic moment is again 'OA, with A
the area of either face. Ampere went
further; according to his hypothesis,
all magnets are current configurations,
which exist on a submicroscopic scale.
A "magnetic shell" would consist of an
indefinite number of tiny current
whirls, all oriented in the sane sense,
so that the net current is zero except
at the boundary of the shell, or loop;
internally the currents of contiguous
whirls cancel each other as is evident
in Fig. 2.17. A helix of wire with ad-
jacent turns of current is thus equiv-
alent to a stack of magnetic disks, as
in Fig. 2.18; the net effect as a nag-
net is a positive (north-seeking) pole
at one end of the helix aid a negative
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pole at the other. The impossibility
of separating poles is then just the
impossibility of separating the faces
of a disk.

The modern view of magnetism is
not very different from this simple
picture, and Ampere's hypothesis has
been accepted in principle. Because of
the absence of separable magnetic
poles, all magnetism is traced to cur-
rents, even when the physical currents
are not accessible to measurement. The
neutron, for example, is an uncharged
particle, but it does have a magnetic
moment; in this sense it behaves like
a circulating negative charge. Recent
experiments have shown that the neu-
tron does behave more like an infini-
tesimal current whirl than like an in-
finitesimal linear magnet, although its
current is quite inaccessible for de-
tailed investigation.

Search for the isolated magnetic
,)ole continues, but all the evidence
in hand supports the view that ff, a

field which acts on currents and can
be traced to moving charge, is a more
basic concept than that of the magnetic
field intensity fl, simply because elec-
tric charges and currents do exist.
Nevertheless we continue to explore
magnetic fields with iron filings and
compass needles, and the concept of
magnetic field intensity IT can hardly
be avoided in the description of wig-
nntiv materials.

Einstein has pointed out in his
"scientific autobiography" that con-
cepts used to describe the physical
world are in truth intellectual crea-
tions, devised by scientific imagina-
tion but not freely: The discipline
imposed by observation and experiment
is very strict. The concepts of elec-
tromagnetic theory are very intimately
related to one another, reflecting an
enormous body of diverse but related
experimental results. More than one of
the concepts plays a dual role, and
experiments can often be described in
more than one way. Yet we shall see in
Monograph III that there are only four
fundamental empirical laws of electric-
ity and magnetism, which can be de.

scribed in a most elegant and simple
way in terms of field quantities. We
have already considered three of these
laws: Coulomb's law for the interac-
tion of two static charges, the law of
Michell and Coulomb for the interaction
of two magnetic poles plus a statement
of the ineeparability of poles, and the
law describing the magnetic effect of
currents or the interaction of two cur-
rents, usually called Ampere's law. The
remainder of this booklet will be de-
voted to further development of this
third law. Before undertaking a more
mathematical and thus more powerful
formulation of the law, however, let
us examine the effect of magnetic
fields on individual charges.

The currents we have considered
thus far were assumed to exist in un-
charged conductors, but a current is
defined as a flow of charge. The ques-
tion of whether the mechanical motion
of a charged body produces magnetic
effects was first tested experimentally
by Henry Rowland of Johns Hopkins Uni-
versity in 1878. Rowland electrostatic-
ally charged the rim of an insulating
disk, rotated the disk, and found that
magnetic effects were indeed produced.
The experiment is very difficult to
imrform because the currents produced
in this way are small, but the result
is unambiguous. That moving charges
experience a force in n magnetic field
is much easier to demonstrate: Streams
of electrons in a vathotle ray tube pro-
duce a visible glow on the glass enve-
lope of the tube which is shifted very
readily by even a small magnet. In
fact, it was concluded that cathode
rays are charged particles as a result
of their deflection by both electric
fields and magnetic fields.

The correct formula for the force
on a charge moving in a magnetic field
can be obtained from that for the force
on an element of current in a conduc-
tor. Let us assume that a conductor has
N movable charges per unit volume, each
charge of magnitude q. These movable
charges may undergo very complicated
motions, but if there is a net flow of
charge in one direction, we may ascribe
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As

Fig. 2.19

to them an average "drift" velocity v.
A linear conductor of unit cross sec-
tion, a segment. Of .8WA.C.114 I al

in Fig. 2.19, would then carry a cur-
rent Nqv - this is the nmount of charge
crossing the face shown per unit time.
The amount of charge per unit time
flowing through a portion of the face
whose area is A is then NqAv, and the
general formula is I - NqAv. For a
current element of length As,

Ids NqAAsv.

But Ads is just the volume of the cur-
rent element and NAM is the total num-
ber of charges involved. Thus the force
per charge q is

lk; X
? N Abs

qv x B. (2.13)

This derivation of F q; x if in-
volves too many assumptions to be rig-

orous, but the result is entirely cor-
rect. For a charge q moving with ve-
locity v, qv is equivalent to a current
element. The force q; x ii is called the
Loreiltz force, first. derived rigorously
by the famous Dutch physicist H. A. Lo-
rentz in 1892. It is often taken as a
Fundamental equation, and the force on
a current element derived from it. It

can be taken as the defining equation
for the magnetic field quantity IS is
that field which gives a velocity de-
pendent force on a charge q, in accord
with the equation for the Lorentz
force, as distinguished from the elec-
tric field intensity E, which produces
a force which is independent of the ve-
locity. We note that both E and B are
defined in a particular frame of ref-
erence, that in which the velocity of
the charge is v.

One of the most interesting prop-
erties of the Lorentz force is that it
is incapable of changing the speed or
kinetic energy of a moving charge,
since the force (and therefore the ac-
celeration) is at right angles to the
velocity. In a uniform magnetic field
which is itself perpendicular to the
velocity, the motion of a charged par-
ticle is circular.

PROBLEMS

2.1 Show that if I, 9, and E are unit
vectora in the direction of in-
creasint x, y, and s in a right-
handed Cartesian coordinate system,

;x; 0 iiitxfokixi

ixf. I
;xi. i
x I

Show also that in terms of Carte-
sian components,. the vector product
of A Axit Ar9 Ali and B Bx*

4. By; + Bar may be written in the
form of a determinant:

A x Ii Ax Ay As

It., By 1311,

2.2 Suppose you have a long cylindri-
cal conductor of rodius r0, carry-
ing total current I0. The current
is distributed uniformly over a
cross section of the conductor, so
that 10 tr0 5 j, where J is the

current density in amperes/meter'.
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(a) The field lines of II outside
the cylinder are circles centered
at the axis. Would this also be
true of the magnetic field lines
within the cylinder? Give your
reasons.

(b) What is the magnetic field in-
tensity on the axis of the cylin-
der?

(0 What is the magnitudsl of II at
r - Arft?

(d) Plot the magnitude of II against
the distance r from the axis of the
cylinder, both inside and outside
the cylinder. At what distance from
the axis is this magnitude great-
est?

2.3 Let P be a point outside the long
solenoid of Fig. 2.8, whose dis-
tance from the axis is large com-
pared with the radius of the sole-
noid. According to Eq. (2.6), each
element of current contributes to
the field intensity a om la X
Pirt.

(a) Consider qualitatively the con-
tributions to the magnetic field

intensity from current elements
lAs parallel to P and those per-
pendicular for from a single turn
of the coil in the plane of P per-
pendicular to the axis. Do they
tend to reinforce or to cancel each
other?

(b) Make the same qualitative esti-
mate of contributions &I for a
point inside the solenoid.

(c) Consider, again qualitatively,
the contributions dit from two
turns, one above and one below the
plane of P perpendicular to the
axis.

(d) What :e your conclusions con-
cerning the validity of Eq. (2.4)7

2.4 If a_charged body moves with veloc-
ity v at right angles to a uniform
field D, its path is circular,
since F cl; x 6, and thus it ac-
celeration is perpendicular to v.
What sort of path would :exult if
v were in the same direction as the
lines of 0? What sort of path would
be produced if the angle between v
and 13 were neither 0° nor 904?
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Ampere's law is all there is to mag-
netostatics if we confine our attention
to the magnetic effects of steady cur-
rents, but some Aspects of the subject
become apparent only if more elegant
mathematical methods are available.
Mathematics is more than a powerful
tool for the solution of problems Re-
lations between physical quantities are
often revealed by mathematical analy-
sis, so that more physics emerges
clearly. The danger lies in a tendency
to substitute mathematical formaliam
for physical thought, to overlook or
neglect the physical content of a math-
emntien1 equation or a line of mathe-
matical reason, instead of being guided
by it. Let us try to keep the physics,
or sometimes only geometry, firmly in
mind in our further analysis of sag-
netostatics. For this chapter we shall
only assume knowltdgt of basic calcu-
lus, that branch of mathematics in-
vented by Newton not only to make hard
problems easier but also to sharpen and
clarify his ideas concerning the physi-
cal world.

Let us begin by rewriting the re-
lations considered earlier in terms of
differentials and integrals. Ampere's
law has appeared in essentially two
different forms. The direct expression
of the force on a current element Iola,
is

non Ildi.1) I1c1;2 x e, (3.1)

where

B- Et f Isds, x I

4w-----T--- ' (3.2)

where t is a unit vector from Ilds2 to
the point at which if is computed. The
substitution of ds for As is routine,
but tho circle at the middle of the in-
tegral sign is shorthand notation for
the 'm closed" below the summation sign
of Chapter 2. Nero it should bo road

20

"the integral over the entire circuit
s" of the integrand as written. This
integral is, of course, a vector, every
elcaent contributing to B in a direc-
tion at right angles to both ds2 and
to the lino from d'Si2 to tho position
of lids, where B is to be determined
to give the correct force.

We have also .toted that B so de-
fined yields a flux such that the total
outward flux of D through any closed
surface is zero. If dg is an element
of surface, directed ot,t from the vol-
ume inclosed by the surface,

f 6 dg 0 (3.3)
cloned

Unfortunately one must write in words
that this surface integral is closed.
A little sphere at the middle of the
integral sign could be a convenient
shorthand notation except for the fact
that a sphere is indistinguishable from
a circle in two dimensions. In the
booklet on electrostatics we have con-
sidered a function corresponding tc
such a closed surfce integral which
describes a property of the integrand
vector at each point in the inclosed
space. We shall consider this property
of if at a later stage of the dis-
cussion.

We have seen that the physical con-
tent of Aapere'c law may be written al-
ternatively as a circulation law for 6,
which may also be written as an inte-
gral. The field II is a vector quantity
defined at all points (x,y,t) in the
region of interest, The line inte6ral
of II on a path C from pointP_to point
P' is a scalar, written es f:B .ds,
where ds is an element of length in
the direction of the local tangent to
the path, and the integrand is the
product of ds and the component of
parallel to ds (see Fig. 3.1). (in
terms of magnetic poles this integral
would represent 06 times the work done
by the field in moving a unit pole
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from P to P'.) The circulation of a
vector implies a closed path, not nec-
essarily in a plane, and the integral
sign can again be written with a circle
at the middle to indicate that the ini-
tial and final points are coincident:

B d; (3.4)

is simply a neater way of writing the
circulation law for B.

We have thus far considered almost
exclusively linear currents such as
those carried by thin wires, but the
total current through a surface bounded
by the circulation loop may be distrib-
uted over the surface and may vary from
one part of the surface to the next.
We may readily take account of such
variations if we express the total cur-
rent I In terms of the current density
3. For a conductor of cross-sectional
area A in which the density of current
is uniform, I I. JA. As a vector quan-
tity, j is the current per unit area
of a plane normal to the direction of
charge flow. Since an element of sur-
face can be represented by a vector dS
normal to its surface,

I f dg (3.5)

is the total current through a surface
over which the integral is evaluated
(see Fig. 3.2). (In this monograph we
confine our Attention to steady cur-
rents, for which the integral of 3
over a closed surface would net aero.)
Therefore the circulation law for g
may be written

lB.dB -po S dg, (3.6)

where the integral on the right is to
be carried out over a surface, in fact
any surface, which is bounded by the
curve C. We should recall that the pos-
itive direction for dS is chosen by a
right-hand rule; for a curve traversed
counterclockwise in the plane, dS is
positive out of the page; if clockwise,
dg is positive into the page. Thus far
we have hardly changed the form of thi
equations relating magnetic fields to

Fig. 3.1

their sources: g is written as an in-
tegral over all portions of a linear
current, instead of the corresponding
sum, and the line integral B is re-
lated to current through a surface, as
was the sum of B As in Chapter 2. is
it possible to relate the magnetic
field to its source strength at each
point, much as we found in the Electro-
statics monograph that we could relate
the electric field intensity to the
charge density at each point? If there
were only magnets with poles, and no
magnetic effects of currents, the an-
swer would be completely analogous to
the electrostatic relations. It is in-
deed true that the net outward flux of
the magnetic field intensity g (but not
that of g) from a closed volume Is the
total pole strength within the volume,
and that H is related to density of

Fig. 3.2
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Fig. 3.3

pole strength in the same way that the
electric field intensity is related to
the charge density. But we have seen
that the net flux of both g and g from
a closed volume is zero if these fields
are produced by currents. This is a
very interesting and important property
of magnetic fields, but it is of no im-
mediate help in relating fields to the
currents which produce them.

The answer comes from the circula-
tion law for D (or for 11, since the two
fields are the same in empty space, ex-
cept for an arbitrary constant factor
no). It will be necessary to examine
circulation more closely and to develop
further the mathematics associated with
it. This mathematics applies to all
vector fields, but we shall call the
field D, and feel free to apply the
mathematical consequences to other vec-
tor fields as the need arises.

In electrostatics we were guiled
to the appropriate mathematical theo-
rem by Gauss's law: Beginning with a
relation between the surface integral
of the electric intensity E over a
closed surface and the charge within
the enclosed volume, we found that the
function of E which can be identified
with the charge density at each point
in space is the divergence of I (div
E). The circuital form of Ampere's law
relates a closed line integral of B to
the Integral of the current density
over a surface bounded by the liner By
analogy we shoule expect to find a
function of B at each point of apace

such that its integral over any surface
bounded by a_line is equal to the cir-
culation of Ii about the perimeter of
the surface. If it is to be identified
with the current density, it must be a
vector quantity. In other words, we
seek a vector C which is a mathematical
function of ff such that

fff . d' fe dg .1' j dg.

(3.7)

If the second equality is to be true
for any surface bounded by the curve of
of the line integral, it follows that
the integrands must be the same, andC

Consider any simple closed curve
in a region where there is a field B.
An area bounded by a closed curve,
whether plane or not, can be divided
into two or several areas by lines be-
tween two points on the boundary. In
Fig. 3.3 there are three areas, around
each of which we may take the circula-
tion of d in the counterclockwise
sense indicated. In the sum of these
circulations all the interior bound-
aries are traversed twice, in opposite
directions. Thus

fgdW-f if al f LI dW,
1

+ f g dg3. (3.8)

The sum of counterclockwise circula-
tions of B about all the subdivisions
is just the circulation about the
whole, and this result is independent
of whether the surface, or the curve
bounding it, is plane. The same ift true
of clockwise circulations, of course,
but the sense of all the circulations
in the sum must be the same for can-
cellation of adjacent interior bound-
aries. The rule is equally justified
for ten subdivisions, or a hundred. In
general

f 8. d; E d;,. (3.9)
311 i

(We are here reminded of Ampere's hy-
pothesis on the equivalence of a closed
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Fig. 3.4

current and a shell of magnetic di-
poles, which involves submicroscopic
current whirls; there is indeed a sim-
ilarity, which we shall pursue later.)

Circulation itself is a scalar
quantity, but any plane surface has an
orientation in space which can be
specified by a vector normal to the
plane, and any well behaved surface
can be broken up into elements suffi-
ciently small to be considered plane.
(We shall exclude surfaces with infi-
nite peaks.) Let us see what the ori-
entation of a surfacc has to do with
the circulation of a vector about its
boundary.

Consider a small triangular plane
boundary abc, Fig. 3.4, and two sur-
faces bounded by it, one the plane abc,
the other a surface made up of segments
of three pieties chosen at right angles
to each other. According to the sum
rule,

f 6 de f ff di7, + f as
abe *de bcal

fB des .
abd

(3.10)

It is most unlikely that the three
terms on the right contribute equally
to the total circulation, for several
reasons. Each small circulation speci-
fies a different area and a different
length of perimeter, and of course B
itself Pnd its variation in space is
quite independent of the surfaces we .

happened to choose. There is a relation
between the surfaces themselves, which

Fig. 3.5

follows from the theorem that the vec-
tor sum of all the outward surfaces of
a polyhedron equals zero. (The proof
of this theorem is left to a problem.)
We note that the four triangles bound
a tetrahedron (Figs. 3.4 and 3.5), for
which the right-hand rule for circula-
tion leads to positive inward direc-
tions for surfaces 1, 2, and 3, and a
positive outward surface for the tri-
angle abc. If AS AS3, ag3. and dS
represent these four surfaces, then

af - aSc af + as, . (3.11)

But does this vector relation between
surfaces have anything to uo with the
scalar relation of the circulations?
If there is a vector related to the
circulation about each surface such
that its scalar product with the sur-
face itself would net the circulation
the answer would certainly be affirma-
tive.

A vector related to the circula-
tion about an elementary plane surface
can be constructed by multiplying the
circulation of B about its boundary by
a unit normal to the surface, and di-
viding by the magnitude of the surface:
Let us write (f B dsa/ASI)A, as a
vector in the direction of the unit
normal AI to AS1 The scalar product
of this vector with SS is just f 6
del, since 61 AS AS,. In fact,

If we take the vector

C
16 dal i 5

A +
AS

.
as,

DS
a

(3.12)
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Fig, 3.6

then C dg is the original sum of cir-
culations. We note that e is not in gen-
eral the same as (fri dir/AS);, where
; is the unit vector normal to the sur-
face abc, although a*. J. if ' ds.

The quantity f D d;/AS is the compo-
nent of e normal to the surface AB.

The components of e are thus far
defined in relation to plane surfaces,
which may be oriented in three mutu-
ally perpendicular and thus independent
directions. Our surfaces at, a52, and
AS3 are themselves components of Ag.
Now the surface a may be taken as
small as we please, and in the limit
of small AS we define a vector which
is called the curl of g, written
curl B. For the component. of curl if
normal to a surface element AS whose
orientation is

a
(curl g)/ 1;:

/ If
(3.13)

with the line integral taken around
the boundary of AS. The integral form
of the circulation sun is then

a curl if a (3.14)

where the surface integral extends
over the surface (any surface) bounded
by the closed curve of the line inte-
gral, the positive direction of 4g be-
ing determii.ed in relation to the cir-
culation path by the right-hand rule.

The vector curl 13- is then a function
of B at every point in space which is
mathematically related to the circula-
tion of B by this formula.

The mathematical relation between
the line integral of a vector 5 about
a closed path and the surface Integral
of curl B was derived by George Gabriel
Stokes, and is known as Stokes' theo-
rem. There is no physics in it. But we
have seen that if B represents the
magnetic field,

f Q d; f j dg, (3.15)

whore y is the current density, There-
fore, for any surface f curl dg
must equal f pj dg, a demand which
is impossible to satisfy unless

curl I3 - poi (3.16)

at every point, This is the physical
relation we have sought between 11 and
the current at any point in space.

The name curl suggests going
around, and we have arrived at the
idea of curl by considering circula-
tion, but of course curl is not iden-
tical with circulation. Consider, as
a simple example, a long conducting
circular cylinder in which there is a
uniform current density j, as indicated
in the cross-section diagram (Fig.
3.6). Curl B poj has nonvanishing
value only within the cylinder, but

fl3 ds a.. I, the total current thread-
ing the circulation loop, even if every
point on the loop is outside the cylin-
der. There is, of course, a magnetic
field B both outside and inside the
cylinder, and it is B itself of which
one takes the circulation.

The magnetic field intensity it-
self can be mapped out by a compass
needle, a single small sagnetic dipole
free to orient itself along the field
lines; the curl of the field intensity
can be demonstrated with a magnetic
"quadrupole' - two small permanent
magnets with like poles cemented to-
gether - but an "octopole" is more sta-
ble and convenient. The negative
(south- seeking) poles of four small
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permanent magnets can be cemented to a
wire as indicated in Fig. 3. ?, so that
their positive or N poles are the four
tips of a cross at right angles to the
wire. A cork attached to the wire will
make the whole contrivance float in a
solution of NaC1, for example. If the
electrodes are arranged so that the
current flows vertically in a cylinder
of electrolyte, the "curl -}l- meter" will
rotate continuously, the sense of rota-
tion depending on the direction of the
current. Outside the cylinder of cur-
rent a dipole will show the presence
of a magnetic field, but the "curl -7-
meter" does not rotate in the absence
of current in the solution.

We have noted in electrostatics
that the line integral of the electric
field intensity I between any two
points is independent of the path con-
necting the points and thus fg d;
0 around any closed curve. It is now

seen from the definition of the curl
of a vector that this absence of cir-
culation corresponds to the statement
that curl r . 0 at every point in an
electrostatic field. We also found that
the point by point relation satisfied
byS so as to express the physical
content of Coulomb's law is div
p/(0, where p is the electric charge

density. From the definition of the
divergence of a vector and the fact
that the net flux of the magnetic
field g from any closed volume is zero,
it follows that div 6 . O. All these
relations can be summarized:

Electrostatics Magnetostatics

div I - p/cc di*? g . 0

curl g 0 curl B - piT

These are the basic equations of elec-
trostatics and magnetostatics. Their
physical content is Coolonl's law and
Ampere's law.

In electrostatics we went further,
and found that the determination of the
field g corresponding to any conf1f,ura-
lion of static charges was much facili-
tated by the introduction of a scalar
potential function 0. The properties
of the static field included the con.

Fig, 3.7

dition that the line integral of t
from one point to another is given by

, E a 0, - 01,
1

(3.17)

the difference of potential between the
two points. The possibility of relying
on 0 to obtain g depends on the condi-
tion that curl g 0. It is left to
the problems to show that the curl of
the gradient of any scalar function of
position vanishes identically.

It is clear that we cannot depend
on a scalar potential to obtain 5 if
the magnetic field owes its existence
to currents, since the circulation of
g does not in general vanish. But the
divergence of 6 does vanish - the lines
of 6 never begin or end. These condi-
tioas suggest that the magnetic field
may be written as the curl of another
vector, for it can be shown that the
divergence of any vector which is it-
self a curl is identically zero. To
show this let us again consider a
finite volume (Fig. 3.8), on the sur-
face on which there is a closed curve
that divides the surface into SI and
SI. For anE vector field A the circu-
lation of A about the closed curve is

f X d; f curl X dgi

- I curl X dg,

by the right-hand rule, since wo have
taken dg positive outward from the en
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Fig. 3.8

Si

closed volume for both surfaces. But
the total flux of curl A out of the
volume is

f curl X . dEc + j curl 7, '

f
8 closed

curl X dg

f X d; -f X 0.

This is true for any volume, and for
any closed curve on the surface of the
volume, and must therefore be true in
the limit:

div curl X h.

i curl X dg
I'm s closed

ar-s AV

property of d as produced by magnets
to include the inseparability of mag-
netic poles along with Coulomb's law
for magnets.

In view of the limiting process
by which the curl was defined it is
not surprising that it resembles the
gradient and the divergence in being a
differential operator with respect to
coordinate, in three-dimensional space.
In order to make quantitative use of
the concept we must write it in terms
of coordinates, although the physical
quantity it represents is quite inde-
pendent of the particular coordinate
system chosen. For our purposes, the
familiar Cartesian coordinates will
suffice, particularly if we remember
to choose the origin of coordinates
and the orientation of the axes so as
to make the description of the physi-
cal problem as simply as possible.

Let us consider the x component
of curl A in a right-handed Cartesian
coordinate system at the point (x,y,x).
In Fig. 3.9, dy and dz are shown as
finite increments in the direction of
increasing y and i; eventually we shall
let dy and di become as small as we
please. Cy definition,

a 0. (curl X)* limit 1

Thus writing g as the curl of another
vector insures that its divergence is
zero, a condition ilposed physically
on the magnetic field If if it is pro-
duced by currents, and defined as a

fig. 3.4

A dS 11,did).

(3.19)

with the line integral taken around
the boundary of the small rectangle
shown. The vector A(x,y,c) must vary
with changing y or t (or both) if the
line integral is to be different from
zero, and we must allow for this vari-
ation to first order in dy and da. For
the legs of the rectangle adjacent to
the point mo,y0,10 A Is A(xo.YO.Ite).
but all of the leg dt on the right is
at yo dy, and the leg dy at the top
is at a1 + dz. The line integral is
then

Ay(xotym,s0) dy + At(xm,y0 + dy,so) da

- Ay(xmasore + di) dy

As(Noye,se) di,
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the last two terms being negative be-
cause the path is traversed in the di-
rection of decreasing y and z, respec-
tively. To take into account the fact
that in one term Az is evaluated at
yo + dy, we write

Az(x0,y0 + dy, zo) Az(xopYoPzo)

(aAz(x0,y,z0))
+ dy

ay
ye

where (DA lay)yo is the slope of Az
plotted against y, evaluated at the
point yo, the other two coordinates
remaining unchanged. This does not im-
ply that As is a linear function of y.
If dy were to rennin a finite length
we should have to worry in more detail
about the dependence of Az on y. Simi-
larly,

Ay(x0,y0,zo + dz) a Ay(x0,y0,zo)

(aAy(xo,y0,z))
dz.

az
zo

When these expressions are substituted
in the closed line integal all terms
which do not involve derivatives can-
cel, and we are left with

aA, aAi
(curl X) - _

x py Etz
(3.20)

where the coordinates need not be
written explicitly.

The other components of curl X
can be derived in the same way, but it
is equally valid to invoke the sym-
metry of a right-handed Cartesian co-
ordinate system and obtain the y and z
components by cyclic permutation of
x,y,z:

(curl X) aAx
8z ex

aAz

(curl X) . aA
z ax ay (3.21)

The result is reminiscent of the form
of the cross product of two vectors.
If x, y, and z are unit vectors in the

direction of increasing x, y, z, we re-
call that

a x (Apz AzBy)I

+ (A213 - AzBz)T + (A,By AyBOZ.

In writing the gradient and the diver-
gence in Cartesian coordinates we have
already made use of _a vector differen-
tial operator V E (Wax) + (ia/ay)
+ (ia/a,), rnd have found it convenient
to write grad 0 - and div E - VV E.
Here we may write curl X 0 x A, and
the determinantal form o the cross
product of two vectors s again a help-
ful mnemonic device:

curl X - x X - d a

ax 8y 8z

A, Ay Az

(3.22)

The symbol V (del) is useful in the
manipulation of mathematical relations
between physical concepts, since it
can be treated as an ordinary vector
so long as its role as a differential
operator is kept firmly in mind, but
the meaning is more apparent if we say
"curl" instead of "del cross" in read-
ing a formula.

We have seen that the magnetic
field B can be written as the curl of
some other vector which is also defined
for all points of space. The relation
between a vector and its curl is clar-
ified by consideration of some simple
examples. Let us take

B =, curl X (3.23)

where A - B0(9x gy)._It is easily
found that curl A - Boi, a uniform
field parallel to the z axis of coor-
dinates, but what about the lines of
A? It is a simple exercise to show that
they are concentric circles, lying in
planes perpendicular to the z axis.

As a second example consider
X (p0,) /9) (x' + y2)2 parallel to the
Axis but depending symmetrically on
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F1g. 3.10

x and y. (The first factor imconstant
and a scalar.) Find II B., curl A. Now
find curl B. The nnswor has boon antic-
ipated in writing the constant factor
in the expression for A, but the rela-
tion between the succession of vectors
found by taking the curl is interest-
ing.

The vector X of which the mag-
netic field B is the curl is called the
"vector potential." The scalar poten-
tial in electrostatics was defined as
work per unit charge, measured in
volts, and could be traced to its
sources by summing the effects of all
charges giving rise to the field in-
tensity E. We saw that its gradient is
just the electric field intensity (ex-
cept that we change the sign), that is,
the physically observable force per
unit charge is derived from the scalar
potential by means of the operator
"del." The relation between work and
force is then quite apparent, and the
measurement of E in volts per meter
reinforces the connection. The role of
the vector potential in magnetic fields
is more complicated, largely because
the force per unit current element is
not in the direction of the field B
but at right angles to it. The sim-
plest justification for using the word
potential here is that A represents a
quantity whose derivative (its curl,
this time) is a.physically measurable
field, namely, B.

Just as the scalar potential 0
can be traced to electric charges we
should expet that A can be traced to
currents. We shall write down the cor-
rect relation between the vector po-
tential and linear current sources,
then show that this relation is com-
patible with the dependence of B on
these same curronts, as known from

Ampere's law. Before doing so, however,
we should note that X is not completely
determined by the demand that Its curl
give the correct magnell., field; any
vector whose curl Is zero could be
added to A without affecting a at all.
We have noted in the description of
the fields P. and ri that it is neces-
sary to know both the curl and the di-
vergence to specify a vector, Since A
has been introduced only so that its
curl represents a, nothing has been
said about its divergence, which may
be anything. It is customary in magne-
tostatics to require that div A - 0,
but this restriction Is arbitrary. The
fact that the vector potential is not
completely defined by requiring that
its curl give the right magnetic field
is reminiscent of the ambiguity of the
sr dr potential of electrostatics, to
which any arbitrary constant could be
added.

It is possible to show that the
expression for B in terms of a current,
Eq. (3.2), may be written as the curl
of some other vector quantity which can
then be identified as the vector poten-
tial. It is somewhat simpler, mathe-
matically, to write down a formula /or
the vector potential and show that its
curl gives Eq. (3.2). Let us put

A
1.10 Ids

4v r
(3.24)

where Ids is an element of current, as
usual, and r is the distance from Ids
to the point where A (and hence is

to be computed, which we may call the
field point (see Fig. 3.10). The curl
of A is to be taken at the field point,
and depends on the coordinates of that
point, not those of the source. (After
all, the same field B at some point
could be produced equally well by a
variety of source configurations.)
Moreover, owing to the principle of
superposition, it makes no difference
whether we take the curl at each point
of the integrand and then sum, or
first sum over all parts of the cir-
cuit Ids and then take the curl at the
field point. In other words,



MAGNETOSTAT/C5 REFORMULATED 29

A- Po f la Po r (Ia )
V x

40 r 4w

f x Ida"

where in the las. term we have made
explicit use of the fact that the del
operator does not act on the coordinates
or the current element. The field point
is involved in the integrand only
through the factor l/r, where r is the
distance from Ids to the field point,
and thus depends both on the variable
of integration ds and those at which
the vector derivative is taken.

In writing curl K in tho final
form above wo have taken advantage of
the fact that the operator del behaves
like a vector as well as a differential
operator, but the integrand now reads
differently: V(1/0 grad (l /r), and
we have the cross product of a gradient
of a scalar and Ids. The gradient of
lir is very familiar from electrost-t-
ics, since the electrostatic poteW'al
of a point charge is properti.onal to
l/r, where r is the distance from the
point charge to the point at which we
take the gradient to find E, the elec-
tric field intensity. (Of course, we
could also simply compute it again.)
If we take the source point, the posi-
tion of Ids, as the origin of coordi-
nates, grad (1/0 -T/r2, where F is
a unit vector directed from Ids to the
field point. With this substitution,
and a change of order in the cross
product which changes its sign,

po r Ids X
curl A ,

411 r 2 (3.25)

which is identical with Eq. (3.2).
Thus our expression for A is justified.

The vector potential, like the
scalar potential, is defined at the
field point, but we see that it is very
closely related to the current. In
fact, for each element of current

-
Id;

4w r
(3.26)

and thus each increment of A is in the
same direction as the current element
which produces it. From the definition
of the curl we see again that the
field B is at right angles to A, as
well as to Ids.

Tho vector potential is sometimes
usoft'l in solving problems in magneto-
statics, but it does not play nearly
so practical a role in determining B
from steady currents as does the sca-
lar potential in electrostatics prob-
lems. On the other hand, it is almost
indispensible in relating fields to
nonsteady currents, the fields produced
by time varying currents. We shall re-
turn to this point in another chapter.
But before- leaving the '4hject, lot us
note an interesting relation between
the vector potential and the flux of
the magnetic field B through a surface.
Thus far we have considered the circu-
lation of B in relation to the current
through a surface bounded by the cir-
culation path, and have noted that the
flux of B through a closed surface al-
ways vanishes, but we can now derive a
new circulation law. Consider the flux
of ET through a surface bounded by a
closed path. By definition this flux
is the integral of B d6 over the sur-
face. But g - curl I. Therefore the
flux through the surface is

0 f fVx X' dg f X 67,

(3.27)

just the line integral of I round the
boundary of the surface. In the early
chapters of Monograph III you will have
learned that a changing flux of B
through a surface is accompanied by a
circulation of the electric field in-
tensity Z. Thus

Llta. aB
dt f TT . dg - Jr a fat ds,

(3.28)

and therefore an electric field which
has a circulation is related to the
vector potential: Z -69X/60.

The reformulation of magnetostat-
ics in terms of vector calculus has in
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itself added nothing to the physical
content of Ampere's law; in fact, the
physics of curl if A T may be less
transparent than fir . ds I, except
for the "curl-II-meter" which works only
in fluid conductors, As for the vector
potential, A is sometimes, but not al-
ways, useful for solving problems, but
it is not oven directly observable by
means of classical currents or magnets,
The power of the differential formula-
tion of the laws of electricity and
magnetism is fully realized only when
variations of the fields in time are
taken into account. If 2. and B (or ff)
are permitted to vary in time, as they
are bound to do, a whole new set of

electromagnetic consequences are ob-
served, The differential forms of Am-
pere's and Faraday's laws helped Max-
well to conclude that "light itself
(including radiant heat, and other
radiations if any) is an electromag-
netic disturbance in the form of waves
propagated through the electromagnetic
field according to electromagnetic
laws." Even Maxwell did not succeed in
tracing electromagnetic radiation to
its sources; to accomplish this in an
unambiguous way requires the vector
potential, or something equivalent to
it, a single quantity to which both
the electric field and the magnetic
field are related,


