DOCUMENT RESUNE

ED 041 755 SE 009 208
AUTHOR Cotts, Pobert M.; Detenbeck, Robert W.

TITLE Matter in Motion.

INSTITUTION Commission on Coll. Physics, College Park, Md.

SPONS AGENCY National Science Foundation, Washington, D.C.

PUB DATE 65

NOTE 83p.; Monograph written for the Conference on the

New Instructional Materials in Physics (University
of Washington, Seattle, 1965)

EDRS PRICE FDRS Price MP-$0.50 HC-$U4.25

DESCRIPTORS *College Science, *Conservation (Concept), Energye.
«Instructional Materials, laboratory Experiments,
%*Motion, *Physics, Resource Materials

ABSTRACT
This monograph was written for the Conference on the

New Instructicnal Materials in Physics, held at the University of
Washington in summer, 1965. It is intended for college students vho
are not preparing to become professional physicists. The monograbh
contains three chapters. Chapter 1 deals with the law of inertia for
objects at rest and in motion, the theory of Galilean relativity and
deviations from the lawv of jpertia. The law of momentum conservation
and its applications are discussed in chapter 2. In chapter 3, the
principle of energy conservation and the concept of kinetic energy
are discussed. A number of experiments and problems are included in
each chapter. (LC)




SE op9 RoS

EDO 41755 -

U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BLEN REPRODUCED EXACTLY AS RECEIVED FROM THE
PERSON OR ORGANIZATION ORIGHIATING IT. POINTS OF VIEW OR OPHNONS
STATED DO NOT NECESSARSLY REPRESENT OFFICIAL OFFICE OF EDUCATION
POSITION OR POLICY.

Mastter in Iviciion
{

COMMISSION ON COLLEGE PHYSICS
DEPARTMENT OF PHYSICS AND ASTRONOMY
UNIVERSITY OF MARYLAND

4321 HARTWICK ROAD
COLLEGE PARK, MD. 20740

——— gt i et e vemase s -

ROBERT M. COTTS

Cornell University

ROBERT W. DETENBECK
University of Maryland




- e et T

GENERAL PREFACE

This monograph was written fcr the Conference on the New Instructional
daterials in Physics, held at the University of Washington in the sum-
mer of 1965. The general purpose of the conference was to create effec-
tive ways of presenting physics to college students who are not pre-
paring to become professional physicists. Such an audience might include
prospective secondary school physics teachers, prospective practitioners
of other sciences, and those who wish to learn physics as one component

of a liboral oducation.

At the Conference some 40 physicists and 12 filmmakers and aesign-
ers worked for periods ranging from four to nine weeks. The central
task, certainly the one in which most physicists participated, was the

writing of monographs.

Although there was no consensus on a single approach, many writers
felt that their presentations ought to put more than the customary
emphasis on physical insight and synthesis. Moreover, the treatment was
to be "multi-level" --- that is, each monograph would consist of sev-
eral sections arranged in increasing order of sophistication. Such
papers, it was hoped, could be readily introduced into existing courses

or provide the basis for new kinds of courses.

Monographs were written in four content areas: Forces and Fields,
Quantum Mechanics, Thermal and Statistical Physics, and the Structure
and Properties of Matter. Topic selections and general outlines were
only loosely coordinated within each area in order to leave authors
free to invent new approaches. In point of fact, however, a number of
monographs do relate to others in complementary ways, a result of their

authors' close, informal interaction.

Because of stringent time limitations, few of the monographs have
been completed, and none has been extensively rewritten. Indeed, most
writers feel that they are barely more than clean first drafts. Yet,
because of the highly experimental nature of the undertaking, it is

essential that these manuscripts be made available for careful review




by other physicists and for trial use with students. Much effort,
therefore, has gone into publishing them in a readable format intended

to facilitate serious consideration.

So many people have contributed to the project that complete
acknowledgement is not possible. The Natlonal Science Foundation sup-
ported the Confercace. Tho staff of the Commission on Colliege Physics,
led by E. Leonard Jossem, and that of the University of Washington
physics department, led by Ronald Geballe and Ernest M. Henley, car-
ried the heavy burden of organization. Walter C. Michels, Lyman G.
Parratt, and George M. Volkoff read and criticized manuscripts at a
critical stage in the writing. Judith Bregman, Edward Gerjuoy, Ernest
M. Henley, and Lawrer.ce Wilets read manuscripts editorially. Martha
Ellis and Margery Lang did the technical editing; Ann Widditsch
supervised the initial typing and assembled the final drafts. Jjames
Grunbaum designed the format and, assisted in Seaitle by Roselyn Pape, ;
directed the art preparation. Richard A. Mould has hel, »d in all phases
of readying manuscripts for the printer. Finally, and crucially, Jay F.
Wilson, of the D. Van Nostrani Company, se.ved as Managing Editor. For
the hard work and steadfast support of all these persons and many
others, I am deeply grateful.

h Edward D. Lambe
Chairman, Panel on the

New Instructional Materials
Commission on College Physics




MATTER IN MOTION

PREFACE .

Physics describes the real world. The laws of physics are useful be-
cause they describe the behavior of actual objects in real situations.
We use the language of mathematics to express the laws, and the logic
of mathematics to derive predictions from them. But physics is not
axiomatic. The assumptions on which physical laws are based are ex-
tracted from the physical world, and the predictions made by the laws
must be tested in laboratory experiments.

This monograph draws upon selected experiences from life and from
the laboratory to reveal clearly some of the patterns of nature.

The conservation laws for linear momentum and for energy devel-
oped herein are relevent to all natural phenomena, and provide insight
into a wonderful variety of events. They are not obvious from a super-
ficial examination, however, but require careful training of the ob-
serving cye and analyzing mind to discern them. We hope that in learn-
ing to recoguize this order in nature the reader will also discoerer
some of the beauty we see in her patterns.

From initial observations and experiments we try to formulate
general laws which describe many events. Attempts to state the laws
precisely in verbal or mathematical form often lead to definite ques-
tions which must be answered in the laboratory before the laws can be
stated. Once a law is clearly stated, it should make definite predic-
tions about new situations. These predictions can themselves be
tested in controlled laboratory experimenis. Our confidence in the
general applicability of any law depends ultimately on its past suc-
cess in predicting the results of experiments. The more times the
predictions are confirmed, the more confidentlr we apply the law to
tested.

The number and variety of experiwents which coufirm the predic-
tions of the laws of momentum and energy conservation is so large that
wha: we can present is limited by taste and time rather than by any

scarcity of data.




Within each section of the monograph we have attempted to state
clearly the principle to be developed. Then we have turned to éxperi-
ment and description to clarify and sharpen .he content of the princi-
ple. )

The emphasis has been placed here upon the general conservation
laws and their identical forms in all inertial frames. The princip’2
of Galilean relativity has been chosen as the expression of this invar-
iance because it seems to us to be the "natu;al" expression of rela-
tivity for elementary mechanics.

The monograph is incomplete in that it lacks the section on
Forces. This section, though‘necessary to a consistent development,
would not have been large (as indicated in the block diagram of the
monograph below). We hope that with a thorough understanding of these
two conservation laws, together with an introduction to the étudy of
interactions through forces and tential energies, the student can
study further the interactions of matter in context. We hope he will
use the tools of thé conservation laws tc study the structure of mat-
ter, the collisions of elementary particles, the.nature of fields,
etc., in other parts of his course.

We have assumed that the student is familiar with the vector de-
scription of motions before he reads this monograph. A suitable back-
ground might be found in the first six chapters of the PSSC text
Physics, or the monograph Motion written by Gerhart and Nussbaum at
the same time as this one.

The original vision of the monograph on momentum and energy con-
servation looked something like the sketch below, in which the size of

each area is roughly proportional to the number of pages.

Proposed

Law of Inertia

Momentum

Conservation

Forces

snergy

Conservation
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As it turned out, the monograph is not completed. The completed

sections are indicated below to roughly the same scale as above.

-

Done Missing

LAW OF INERTIA
Galilean relativity

MOMENTUM
CONSERVATION

g Forces

ENERGY CONSERVATION |

(Kinetic) -s+— Potential energies' thermal
energies, etc.

The "Law of Inertia" and "Comservation of Momentum" chapters are
sufficiently complete that they can probably be used in the classroom.
Although some "thinking" questions are presented in the text, addi-
tional drill problems will be needed for plassroom use.

Even a casual reading of the text will make it clear that it is
intended to be used a. .ng with classroom demonstrations as well as

laboratory experiments.

~
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1 THE LAW

1.1 INTRODUCTION

The law of inertia describes the
tendency of matter in motion to con-
tinue. At the mouth of a swift river
ono can sce the clear lake watcers
parted by the moving, muddy, river
water, which continues the motion it
had overland until the drag of the
neighboring liquid brings it to a stop.
An automobile at rest requires a force
to put it in motion, anocher force to
turn it. An arrow once put in motion
by a bowstring continues until it hits
something, or until the effects of air
resistance and gravity slow it and
pull it to earth.

The law of inertia was developed
as an expression of what matter would
do "if it were left alone." In terms
of the last example, the law of in-
ertia expresses what observations and
experimental tests indicate the arrow
would do if there were no gravity and
no air resistance. The word "until" in
the description of the arrow's motion
already implies that the motion would
in some way continue if there were no
outside interference. But we shall try
to express this notion in a more pre-
cisely stated form that can be testesd
in the laboratory.

1.2 THE LAW OF INERTIA FOR OBJECTS
AT REST

How does an object at rest behave
if it is "left alone"? What would it
do if it were placed at rest, far from
the remainder of the universe? We ex-
pect that the object would remain at
rest. This expectation is a generaliza-
tion of the everyday experience that
to put an object in horizontal motion
at the earth's surface requires some
sort of effort, some sort of interac-
tion with another object. Matter is a
sluggish sort of thing, hard to get
going.

,.‘_—-r—‘—--»._.,%—..x

OF INERTTIA

To each objcct a number called
its mass can be assigned to spccify
this sluggishness. A way to determine
quantitatively the mass of an object
will be developed in a later chapter.
For now, however, it is alrecady con-
venient to introduce the word. It is
common in physics to hecar or read the
words "a mass' used instead of "an ob-
ject'" when special attention is di-
rected to this sluggish behavior of a
bit of matter.

In history the difficulty in dis-

cerning the behavior of a mass, i.e.,
of an object, arose in separating the
properties of the mass itself from
effects pecuvliar to the earth's sur-
face. It ig -till difficult to con-
ceive the idea of a piece of matter,
an earthly object, far away from and
independent of the surface of the
earth. But it is not nearly so diffi-
cult now as it was before children
heard their parents and elders dis-
cuss such things. On the surface of
the earth, motions in the vertical and
horizontal directions differ; there is
gravity. We must decide whether a re-
leased object would still fall verti-
cally, i.e., toward the point now at
the earth's center, if the earth were
notc there. To one steeped in the
riodern view that space itself is
homogeneous and isotropic, the natural
answer is that there would be no verti-
cal direction in which to fall if the
earth were not present.

1f we probe the question further,
rou w1 see how an attitude toward
soace influences one's answer to the
question. Suppose the object had been
placed at rest at point A, and all on
its own, with no outside forces, it
had moved to point B at the end of one
second. It would no longer be possible
to assert that all points in space
are equivalent (i.e., space would not
be homogeneous as far as this object
is concerned), unless the object moved




2 MATTER IN MOTION

always the same amount in the same
direction in the first second no mat-
ter where it was placed at rest. But
then that constant dircction would be
"special"; i.c., we could not say that
space is isotropic.

To onc who builds his idcas from
common carthly sense experiences, the
universe may not seem to be such a
fcaturcless thing with no "preferred"
point or direction. In building a sys-
tem to explain the universe, Aristotle
assumed that different kinds of matter
have natural places to which they tend
to return. In his system the earthly
matter of familiar solids and liquids
tends to move toward the center of
the universe. Thus, in his system,
space itself has a speccial point (the
center of the universe) which differs
from others. This tendency explained
to Aristotle why objects fall verti-
cally toward the earth's center, for
the earth had presumably already ar-
rived at the center of the universe.
Indeed, its compact spherical shape
shape was explained as the result of
its parts clustering as close to that
center as possible.

In the modern view we take the
vertical motion of falling to be some-
thing peculiar to the presence of the
earth in that direction, and take the
horizontal behavior of massive objects
to be typical ¢ " their behavior in all
three dimensions if the earth were not
present, or if the earth and all other
disturbing objects were very far away.

QUESTION

Are these two views _f space mutually
consistent? In terms of what you now
know, can you devise an experiment to
decide between them? An ideal experi-
ment realizable in thought rather than
in the college laboratory is accept-
able here, but eventually the question
must be presented in the laboratory.

Although the notion or statement
that an isolated object at rest re-
mains at rest is an appecaling one if
we believe that space is homogencous
and isotropic, the validity of the
statement does not depend upon its
subjective appeal. The ultimate appeal
must be to experiment, cvean though a
direct experimental test of this sim-
ple statcement is very difficult. We
shall, however, be able to put this
assumption together with others to
build a coherent description of grad-
ually more complicated physical sys-
tems. Our trust in this and other
basic notions will increcase as long
as the descriptions enable us to make
new verifiable predictions about these
systems, and to the extent that the
predictions are indeeud borne out by
experiments.

1.3 THE LAW OF INERTIA FOR OBJECTS
IN MOTION

Everyone has experienced the dif-
ficulty of stopping or turning, as
well as starting, a very massive ob-
Ject in motion. In order to make a
ferryboat stop just at the edge of
the pier, it is not sufficient to turn
off the engines at the instant of ar-
rival. A boulder tumbling down the
side of a hill does not stop right at
the boirtom except in very unusual cir-
cumstances; if the ground below is
level, it rolls on for some distance.
And yet the behavior of an object in
motion, isolated from all disturbing
effects, is quite difficult to extract
from experaience,

It was not until the seventeenth
century that the simple behavior of
matter in motien was clearly described
in the Law of [nertia:

An isolated mass moving with a
given velocity wili continue
with the same velocity as long
as it remains isolated.

A constant velocity means both con-
stant speed and ccustant direction,
of course, because velocitv is a vec-

J




THE LAW OF INERTIA 3

tor quantity. "An isolated mass" re-
fers to an object alcue in space, far
away from and there‘ore free from the
effects of any disturbing influences.
However, when we test the law of in-
ertia directly “n the laboratory, we
must be content with systems that are
approximately isolated, systems in
which we have reduced the disturbing
influences of gravity, triction, air
resistance, etc., as much as possible.
The motions of objects in every-
day experience are so different from
the motion of an approximateliy iso-
lated object that cven today the law
of inertia doos not scem natural to
students of physics when they first
meet it. Objects moving on the surlace
of the earth come eventuzlly to a staop
if they are "left alone." The reason
for this is that the world around
them does not recally leave them un-
affectced. The motion of a child's
wagon along a sidewalk, for cxample,
is resisted by the bumps in the walk,
the air that must be pushed aside,
the ~runchy dirt, and the slightly
sticky oil in the wheel bearings.
Snow sledding and ice skating are spe-
cial fun partly because in these
sport:s the motion persists for a long
time without any effort, but even the
slight drag of the ice on the rumners
eventually brings the ride to a aalt.
The success of sled runners on
ice suggests a way to make horizontal
motion at the earth's surface approx-
imate the motion of an object that is
really isolated. The pressure of the
rvnners melts some of ti.e ice and
provides a thin film of water as a
lubricant. Introducing a fluid' be-

tween two solid surfaces (for example, .

0il in bearings), is one way of re-
ducing the frictional drag between
them. Gases are less sticky than
liquids and work even better as lubri-
cants. Many of the most successful
demonstrations of the behavior of iso-
lat~,d mechanical systems use a gas
film for reducing friction. Figure
1.1 shows some pictures of an air disk,
which moves across a smooth flat sur-
face with almost no friction. The mo-

tion of the disk is quite well iso-
lated. It is free from friction
against the surface on which it rides,
and keeping the surface hcrizontal
makes the motion in two dimensions
frec of the influence oi gravity.

When the air disk of Fig. 1.1 is
released at rest, it remains at rest
on the flat horizontal table, in ac-
cord with the predictions of the law
of inertia for isolated objects at
rest. It may worry you a little if the
table were leveled by adjusting it for
»o motion of the air disk. But is it
not wonderful that it is possible to
{find one level position such that all

Fig. 1l.1la One kin¢ of air disk consists of
a Lucite cylinder marked at its center with
a cross on a paper circle. The disk rests
on an air table. With this apparatus we can
study almost frictionless motion.

A i

- ID |J /“
222 %sz

T

Fig. 1.1b A thin layer of air A flowing
from the holes H in the air table T keeps
the Lucite disk D floating above the solid
surface. The air is fed to the holes
through channels C cut into the air table.

T T T v L T T L TP Ry




4 MATTER IN MOTION

Fig. 1l.1c The motion of an air disk with
constant velocity on its horizontal surface.
The disk moves from left to right. The

light was flashed every 0.1 second to record
the picture. This motaion closely approxi-
mates the ideal motion of an isolated body
with no external forces. The disk -ves
alor, a nearly straight line, and ¢ or
nearly egqual ¢ irtances in equal time inter-
vals. (Phovc courtesy of Dr. Harolud Daw,
Seattle Physics Writing Conference.)

air disxs placed anywhero on tho flat
table remajn at rest? By the way, can
you think of ancthecr way to level it?

When the air disk is released
with a certain velocity (Fig. 1l.1lc) it
continues with that same velocity
(spced and direction), until it
reaches the edge of the table. Check
this for yourself from the figure.
With dividers you can compare the set
of successive displacements in equal
time intervals. Can you invent a way
of specifying the maximum deviation
from straight-line motion? How accu-
rately would you say this experiment
verified the law of inertia? Did the
speed remain constant to within ten
percent? One percent? Were the devia-
tions from straight-line motion sig-
nificant?

Like any other single test the
one illustrated im Fig. 1.1 verifies
the law of inertia within a certain
accuracy within a limited range of
conditions. Vas*ations can and should
be made. The exper_-went can be re-
peated with different disks in differ-
ent horizontal directions. The experi-
ments can be performed in other labora-
tories and with other materials.

For higher speeds, where appreci-
able distances are covered in times
too short for gravity to have any

great-effect, it is possible to check
the law of inertia easily in three
dimeasions. Laboratory experiments
with neutrons or other subatomic parti-
cles usually assume the validity of
the law of inertia for the velocity in
three dimensions. For example, they
may require an isolated particle to
pass through a set of small holes,
lined up along a straight path, and
arrive at a target at a certain time.
The success of such experiments indi-
rectly supports the validity of the
law of inertia used in their design.

The law of inertiia has been
checked directly and indirectly in
many situations. "o within the accu-
racy expected, in every case where the
data has been carefully oxamined, the
predictions of the law of inertia have
boon vorified. Here is a delightful
simplicity in the motion of matter,
and it applies to any isolatcd object:
large or small, simple or complex.!

The law of inertia does not tell
everything about the motion of an
isolated object - only that so long as
it is isolated it moves with constant
velocity. As we now describe this mo-
tion in the I.nguage of _ector mathe-
matics we shall sharpen somewhat the
distinction between what aspects are
described by the law of inmertia and
what aspects are not.

When the object itself is very
small compared with the experimental
measurements of distance, we can con-
sider the object itself as a mass
point whose description consists of
its location relative to some origin
(three coordinate values). Then be-
cause of the relatively large scale
of our distance measurements we can
safely ignore any internal jiggling
or tumbling of the object itself. Such
a case is illustrated by the measure-
ment in Fig. 1.2, in which the veloc-
ity of a tumbling cube is detciined

1The first part of the film Inertia by E. «.
Purcoll {PSSC film #0302), could weil be used
here to reinforce this material in a "1iilm clip”
package, although a twvo~dimensional analysis
would be preferable.

- ———— ———————— - i ——




THE LAW OF INERTIA 5

from its displacement during a certain
time interval. The velocity ;, ob-
tained from the positions of one par-
ticular point on the cube at two dif-
ferent times, differs slightly from
the velocity that would result from
following the motion of a different
point. This uncertainty is not impor-
tant if it is less than the accuracy
with which we need to know v. It is in
this sense that we often describe the
motion of a finite object in terms of
the motion of an idealized particle,

a mass with no extension, character-
ized entirely by the position of a
point. The law of inertia predicts

ORIGIN OF REFERENCE FRAME

Fig. 1.2 The tumbling cube, free from ex-
ternal forces, carries the corner A from

T, at time t; to r, at tim .,, through a
displacement (;;'- ?;,. The average veloc-
ity of point “ during this interval of time
is

3 - (r; rl).
(t, — ;)
The displacement (r, — T,) is taken as
typical of the whole block because it is so
much longer than any dimension of the cube,
and v is taker for the "velocity of the
cube." Following another point on the cube
would result in a slightly different value
for the velocity, but we assume that this
uncertainty is less than the accuracy with
which we need to know V.

that a particle in isolation moves
with constant velocity.

In actual laboratory work it may
not be convenient to measure over
very large distances relative to the
size of the object. In many cases,
however, we can find objects which do
not have internal motions large
enough to disturb our measurements of
the whole body. For example, the cube
in Fig. 1.3 is not tumbling. No matter
what point on this cube is used for
measurement of V, the result is the
same.

We shall see later that even for
objects undergoing very complicated
internal motions there is one well-
defined point, the center-of-mass
point, that continues to move with con-
stant velocity if the object is iso-
lated from external influences. For
this point the law of inertia strictly
applies. After we have discussed the
law of comnservation of momentum, you
will be able to calculate the loca-
tion of the center of mass for any ob-

Fig. 1.3 When the cube is not tuabling,
the two displacements (r, — T,) and

('ﬁz - 'ﬁl) between times t, and t, are
equal. Hence the velocity can be calculated
from the displacement of point a'or point
A, or for that matter from any other poviat
fixed on the cube:

s.E-f) (R -R)
(t; =) (t; —t)°

- . Ak,
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6 MATTER IN MOTION

Ject. But you will probably not be
surprised to lcarn now that the center
of mass of an object with obvious sym-
metry (for example, a cube), corre-.
sponds to its geometric center (see
Figs. 1.4 #nd 1.5).

1.4 A SIMPLE PRINCIPLE OF RELATIVITY

It is possible to show that the
law of inertia obeys a simple princi-
ple of relativity. If the law is valid
in one laboratory, then it will be
true in the same form in any other
laboratory that mcves with constant
velocity relative to the first. )

Let us examine an experiment,
using very simple equipment., as it
takes place in two different labora-
tories. There is a device that cne can
make from a piece of string and 2.
weight to demonstrate the sluggishress
of matter. An elegant form of such a
device is the plumb bob used by carpen-
ters and surveyors to establish a
vertical direction. When the bob or
weight is suspended from the string
at rest, it hangs vertically beneath
the siring support. The string is
parallel to those of all other plumb
bobs in the neighborhood.(Fig. 1.6a)
The vertical string indicatcs that
there is no horizontal force on the
plumb bob at rest. This is in accord
with the law of inertia, which pre-
dicts that a vertical string (no hori-
zontal force), should be associated
with a plumb bob at rest with regard
to horizontal motion.

et

Fig. 1.4. A aultiple-flash photograph of a
cylindrically symmetric air disk which ro-
tates about its center (marked with a cross)
while the cent: . moves with constant veloc-
ity. The law of .nertia descr:ibes the hori-

- zontal motion of the center of the air disk,

even when it is rotating. The disk enters
the picture from the left, and the interval
between flashes is 0.1 second. (Photo cour-
tesy of Dr. Harold Daw, Seattle Physics
Writing Conference.)

When the bob is put into motion
by moving the string's support point
(Fig. 1.6b), the string must be tilted
to change the motion of the bob from
rest to a finite velocity. The tilting
string indicates that the bob is no
longer isolated from horizontal forces.
The tilt indicates the bob's inertia,
or resisiance to charging its velocity.

If the support then continues to
move with constant velocity, the bob
will eventually hang directly below it
again (after the swinging has died
down so tuat it has a steady position).
As long as the support moves with con-
stant velocity, the bob can move along
at the same velocity with essentially
no tilt to the string (see Fig. 1.6¢c).
Even the tiny tilt that remains be-

sl tehecdeist St i,

Fig. 1.5 A moving wrench photographed at
1/30 second intervals. The black cross

et el sttt ottt ottt

marks the center of mass. (From PSSC

Physics [D. C. Heath and Comfany, 1960] .)




THE LAW OF INERTIA 7

cause of air resistance can be removed
by performing the experiment inside a
closed autzmobile on a straight, level
road. A bob suspended from a support
moving along inside a closed car with
constant velocity hangs vertically,
beneath its support. And this is what
the law of inertia predicts. The verti-
cal string, implying a lack of any
horizontal force, is associated with
the constant velocity of the bob.

Now let us look at these results
from two different viewpoints.

The Bonneville Salt Flats Experimont

The Bonneville Salt Flats, Utah,
are chosen as the site of this experi-
ment because they provide a large, flat
horizontal surface on which an auto-
mobile can be driven with constant
velocity.

Joe, at rest on the ground at the
salt flats, sets up a number of plumb
bobs. To him they appear at rest and
vertical.

Don, inside a car driving at a
constant velocity of 50 miles per hour
west, also sets up a number of plumb
bobs fastened inside the car. To Don
his own plumb bobs appear at rest and
vertical. Therefore both Joe and Don
can agree on the law of inertia for
objects at rest. But note that they
are able to apply the same law in two
different laboratories, one of which
moves with constant velocity relative
to the other.

Joe, observing Don's plumb bobs
moving at the constant velocity of 50
mph west, and still hanging vertical,
confirms the law of inertia for ob-
jects in motion with constant velocity.

Meanwhile, I'on has been looking
at Joe's plumb bobs. Relative to Don's
reference frame in the car, Joe's
plumb bobs move at the constant veloc-
ity 50 miles per hour east, and hang
vertically. Dor can also verify the
law of inertia for objects moving at
constant velocity.

Whenever the car moves with veloc-
ity ;} Joe on the ground can verify

the law of inertia for Don's plumb
bobs traveling at velocity v and for
his own at rest. But at the same time
Don in the car can verify the .iaw of
inertia, relative to his own raference
frame, for Joo's plumb bobs traveling
at velocity —v, as well as for his own
at rest.

(¥,
~

S,

_4.

1

1O 0

(a) Bobs 1, 2, 3 and their supports 8,, §,,
S, are all at rest. The two similar p.umb
bobs (2 and 3) as well as all others at
rest (1) hang parallel.

.Sz 53
54

1o

(b) Rob 3 is being given a velocity to the
right by moving S; to the right from its
position of rest. The tilting string on
bob 3 indicates the resistance to the
change from rest to motion as the bob is
accelerated.

15, 15

9,

] ®

ﬁ

Vs

(c) Bobs 1 and 2 and their supports S, ana
S, are at rest. Bob 3 and its support S,
are moving to the right with constant veloc
ity 7,. Bob 3 rides directly under its sup-
port S,, hanging parallel to bobs 1 and 2.

Fig. 1.6 A plumb-bob experiment.
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It should now be clear that by
such experiments two observers could
never tell which one was moving and
whaich one was at rest, for the law of
inertia takes identical forms in both
laboratories. That is the essence of
this simplest principle of relativity,
which is true for the law of inertia
and for every other physical law for
which it has been tested:

The laws of physics are the same
in two laboratories whose motions
differ only by a constant relative
velocity.?

You will see how closely the law
of inertia and the principle of rela-
tivity are intertwined if we try to
predict some of the results of the
Bonneville Salt Flats cxperiment from
two assumptions:

(1) The law of inertia for ob-
jects at rest only, and

(2) the principle of relativity.
Joe, at rest on the ground, verifies
as before with his plumb bobs the as-
sumption (1), that objects at rest
and in isolatiomn remain at rest.

By applying the principle of rela-
tivity, Joe can predict that Don will
obtain the same results in his labora-
tory (moving with constant velocity).
Therefore, Joe can predict that he
(Joe) will see Don's plumb bobs hang-
ing vertically while moving at con-
stant velocity. From these two assump~
tions he can predict that the law of
inertia for moving objects will be
verified. If it were not in fact veri-

2The famous thcory of special relativity

stat2 by Einstein early in the twentieth century
includes this principle as one of its postulates.
Nowever, it also considers very carefully the
problems involved in describing moving systems
when information can travel no faster than the
spced of light (another of its postulates). Very
briefly, the results of these considerations are
that two observers moving rela.ive to each other
will not agrce on such measurements as the
length of an object, the duration of a time in-
terval between two events, etc. Because these
effects are small when the speeds are small com-
pared with the speed of light (3 x 10° w/s) we
shall not need to consider them in any of our
own experiments.

fied by Don's experiment, it would be
necessary to give up or somehow modify
one of the two assumptions.

Notice that Don can apply the
same reasoning and predict from his
vertical stationary plumb bobs inside
the moving car that Joe's plumb bobs,
at rest cn the ground, will also be
vertical. If the law of inertia is
correct for zero velocity, and if the
principle of relativity is correct
for the law of inertia, then the law
holds true for every velocity.

1.5 THE THEORY OF GALILEAN
) RELATIVITY

The theory of Galilean relativity
consists of two parts: the principle
of relativity discussed in the pre-
vious section, and a recipe for trans-
lating the description of moving ob-
jects from the viewpoint of one labora-
tory to that of another moving with
constant relative velocity.

During the discussion of the
Bonneville Salt Flats ezxperiment in
the preceding section, we assume that
the stationary observer (Joe), could
look into the window of the automobile,
passing with constant velocity, and
“s:ee" that the moving bobs were hang-
ing vertically. If Joe were to de-
seribe a more complicated experiment
going on in the moving car, one in-
volving velocities as well as posi-
tions, it would require a little more
attention to detail to relate Joe's
description to that of Don inside the
car. Don and Joe use different refer-
ence frames, moving relative to each
other, to describe the same phenomena.

A transformation is a recipe for
translating the descriptions of phe-
nomena from the language of one refer-
ence frame to that of another. The
Galilean transformation, in particular,
translates the description of a moving
object from the mathematical language
of one reference frame tc that of an-
other moving at constant velocity
relative to the first.
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1.5.1 The Galilean Transformation.

The essence of the Galilean tyrans-
formation is this: Joe, at rest in a
refercnce framc with origin 0, de-
scribes the motion of an object. At
the timec the object is at point P,
described by the position vector T
relative to the origin 0. Don, at rest
in another reference frame with origin
0', describes the locrtion of the ob-
ject at the same point P with the posi-
tion vector r', which gives the dis-
placement from 0' to P, as in Fig.
1.7a. If 0' moves at constant velocity
u relative to 0, and if we assume that
Joe and Don measure time with clocks
that run in perfect synchronism, then
the object's velocity vV relative to 0
(Joe), and v' relative to 0' (Don),
are related by

" - -
v =V = u.

All our measurements of velocity,
changes of velocity, etc., are based
ultimately on measurements of posi-
tion and time. Figure 1.7a shows how
the position of one objecit P is de-
scribed from two different reference
frames (in two laboratories), at the
same tine. We assume that one observer,
Joe, always describes things from the
0 reference frame and the other ob-
server, Don, from the 0' frame.

When the origin of the 0' frame
is separated from the origin of the 0
frame by the displacement R (Fig.
1.7a), the position of an object at
point P relative to the O frame )
and its position relative to the 0'
frame (r') are related by

T=R+r1'. (1.1)

This relationship should be clear
from the geometry of Fig. 1.7a and
the definition of vector addition.
subtracting the vector R from both
sides of Eq. (1.1) we obtain the
equivalent statement,

' =1 - R. (1.2)

Fig. 1.7a An object at P, described from
two different reference frames 0 (Joe's)
ard 0' (don's), when the twc origims are
separated by the displacement R, from the
origin 0 to the origin 0'. The position T
of P relative to O is related to its posi-
tion r' relative to 0' by ordinary vector
addition:

r=R+1r'.

Equation (1.2) can also be obtained
directly by looking at the transforma-
tion from Don's (0') viewpoint as in
Fig. 1.7b.

When the object is in motion, Joe
and Don separately establish its veloc-
ity by position and time measurements.
At his time t = 0, Joe finds the ob-
ject at P,, position ?o relative to 0;
at time t, he finds it at position ;a,
as in Fig. 1.€. By the definition of
average velocity v, the displacement
of the object from time O to time t,
is given by

-

Now suppose that, during the time
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Fig. 1.7b This figure is equivalent to
Fig. 1.7a, but it is drawn from Don's (0')
viewpoint. From the geometry and the defi-
nition of vector addition '

r' =-R + r.

interval O to t,, Don and his refer-
ence frame 0' move relative to Joe
with constant velocity u. The origin
0' will undergo a displacement G%l
during this time interval, as in Fig.
1.8.

From the geometrical relation-
ships of the figures, we shall be able
to describe the motion of the same ob-
ject in the mathematical language of
Don's frame of reference. Because Don
mnves relative to Joe, he will de-
scribe the positions and velocities
of the object with numbers different
from Joo's. llowover, thorc is a goo-
motrical reolationship botweon tho
two sots of moasurcments, a relation-
ship which depends upon the relative
velocity u.

In Fig. 1.9 we see Don's two
measurements of the positions of the

DON

Fig. 1.8 The motion of the object from P,
to P, and of the origin 0' as scen from
Joe's (0) frame of reference during the
time interval O to t,. If the object P
moves with average velocity v relative to
o,

-

r, =Ty + V.

If the origin 0' moves with constant veloc-
ity u relative to O,

i1 ='ﬁ°+-\;tl.
¢
object at points P, and Py, the same

points chosen by Joe. From the geom-
etry of the figure you should see that

T, = Ry + ut, + r,', (1.4)
whereas 1, is given by
T, = By + To'- (1.5)

The lengcu of the displacemeni
vt, between P, and P, in Joe's refer-
ence frame is obtained by substitu-
ting Eqs. (1.4) and (1.5) for r, and
T, in Eq. (1.3):

Vt, =T, = Ty; (1.3)
vt, = (-ﬁo + ut, + T,') - (R, + T,').

(1.6)
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Fig. 1.9 The two measurements by Don (?o'
and ;, ') of the positions of the object at
points P, and P, relative to his own o'
frame. The picture is drawn as though Joe
were standing still and Don moving. From
the geometry

- - -y ~'
ry, = R, +ut, +1,°,
and
- - -
re = Ry + X'

Equation (1.6) can be simplified by
noticing that the vector R, disappears
in ths subtraction:

Vt, =ut, + (r,' = T,'). 1.7)

Subtracting the vector 3%1 from both
gides of Eq. (1.7) and factoring the
time t, gives a form which will be use-
ful later,

G-Wt, = ' — TN (1.8)

Now we are ready to comsider
Don's velocity measurements. For sim-
plicity, assume that Don agrees, with
Joe, to start his clock at t = O when
the object is at P,. According to
Don's clock the object reaches P, at
time t, '. By definition of average
velocity, Don's measurement gives a
value of

- r,'—r
V' = LA — (1.9)

for ihe average velocity v' in his
frame of reference. Inserting the
value of r, ' — r,' from Eq. (1.8) into
Eq. (1.9) gives for the average veloc-
ity in the 0' system

Vi= (V=u) t /. (1.10)

We assume that the clocks of Joe
and Don run in perfect synchronism;3
i.e., that t, = t,'. Then we obtain
the simple vector equation,

V'=v—u. | (1.11)

The simple velocity transformation of
Eq. (1.11) can be stated in words as.

The velocity relative to 0' is
equal to the velocity relative to
0 minus the velocity of 0' rela-
tive to O.

The complete detaiis of the geo-
metrical transformation that we have
discussed, between the description
of motion in one reference frame and
that in another moving at constant
relative velocity, are summarized in
equations of the Galilean transforma-
tion, Eqs. (1.12).

0 frome 0' frame

Ro = position of 0' relative to 0 ot t = 0=t;

U = constont velocity of 0' relotive to 0.

F = position vector ¥ = position vector

t = time t =time

- -—p .
v = velocity vector v' = velocity vector

SThere is actually no universal time scale com-
mon to clocks moving with different velocities.
For relative speeds, small compared with the
speed of light, two observers will fand that
their clocks agree to within a very small cor-
rection. For laboratory velocities of macro-
scopic systems, this correction 1s negligible.
If the relative speed (u) were comparable to the
speed of light (3 x 10° meters per second), the
transformation equations of the special theory
of relativity would have to be used instecad of
the Galilean transformation.
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t' = ¢t (1.122)
r' = {r - ut) - R, (1.12b)
V' mvVv=-n (1.12¢)

These equations in vector form
are the equations of a general Gali-
lean transformation to the 0' frame
from the 0 frame of reference. They de-
pend on the constant velocity u.
Equation (1.12c) applies to the aver-
age velocity vV measured over any time
interval. Hence the equation can also
be used to relate two instantaneous
velocities v and V', determined in the
limit of an arbitrarily small timé in-
terval.

In some cases we shall be able to
use a much simpler form of the trans-
formation. If the two origins 0 and O'
coincide at t = 0 = t', and if the
relative velocity u is directed along
the parallel x and x' axes,

t! =t (1.13a)

X' =x-—ut, y' =y, z' =2z (1.13b)

VX' - Vx - u' Vy' = Vy' Vz' = Vz.

(1.13c)

The trunsformations we have dis-
cussed take descriptions in the mathe-~
matical language of Joe's system and
translate them into the quantities
vhich describe moving objects in Don's
moving system. Of course, Eq. (1.12)

can be solved for ?, r, and v if the
reverse transformation is needed:

t=t', (1.14a)
r = (r' +ut) + R, (1.14b)

and - - -
ve=uyv'4+u. (1.14¢)

Another way of obtaining these
same equations is to go back to the
beginning and redo all figures and
analysis from Don's frame of reference.
From this O0' frame the origin 0 of
Joe's frame moves with velocity —u.

From this 0' frame the object '"really"
undergoecs a displaccment V't,. Figure
1.10 shows an analysis of the situa-
tion as though Don werc standing still
and Joe were moving. Compare Fig. 1.9.
The relationship among the displace-
ments ut, , vt,, and v't, in Figs. 1.9
and 1.10 is illustrated in Fig. 1.11.
The velocity diagram in the same fig-
ure illustrates the similarity of tae
vector Eq. (1.14c).

1.5.2 Galilean Relativity and the Law
of Inertia.

The law of inertia is one of the
simplest examples of a law of physics
that takes the same form in two refer-
ence frames whose relative motion is
one of constant velocity.

Our experiments have indicated
that the law of inertia holds to a
good approximation for horizontal no-

Po

ODON
Fig. 1.10 The two measurements by Don and
Joe of the positions of the object at
points P, and P, , drawn as though Don were
standing still. Otherwise this picture
represents the same events as Fig. 1.9,
with which it should be compared. From the
geometyry

-.' - - -
r,' =R, - ut; +1r,,
and
r,' = -R, + T,
0 0 0°
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ol
)

g6l <
7

o) — AP
vt,

Fig. 1.11a The relationship among the
three displacements: ut,, vt,, and v't, of
Figs. 1.9 and 1.10. The points labeled 0,
0', and P signify that ut, is the change in
position of 0' relative to 0, vt, is that
of P relative to 0, and v't, is that of P
relative to 0'. These displacements all
occur during the time interval O to t,.

[ =
T
1)

(o) — P

Fig. 1.11b The relatipnship among the
three velocity vectors: 3, 7, v of Figs.
1.9 and 1.10. The points labeled 0, 0',
and P signify that u is the velocity of 0'
relative to O, v is that of P relative to
0, and V' is that of P relative to 0'.

tions at the surface of the earth,
relative to a reference frame fixed
to the earth. Let us assume for the
purpose of the argument that we have
found one reference frame (say far out
in space), in which it holds exactly
for motions in all three dimensions.
The law of inertia states that an
isolated mass moving with velocity v
(relative to this frame), continues
to move with the constant velocity v
as long as it remains isolated. The
name given to such a frame of refer-
ence is an inertial frame.

Let us imagine that an isolated
mass m moves With constant velocity v
relative to the inertial frame 0, as
in Fig. 1.12. The Galilean transforma-
tion tells how the motion of the same
mass is described relative to another
frame 0', which moves with constant
velocity u relative to 0. We have seen
in the first part of this section that
relative to 0' the mass m moves with
velocity given by Eq. (1.12c),

- - -
vl = v —u,

By definition of the reference
frame O0', u is a constant velocity.

<
ci

6 .“.
<{

Fig. 1.12 The mass m, moving with velocity
v relative to Epe reference frame 0, moves
with velocity v' relative to 0'. If the
frame 0' moves with velocity u relative to
0, then

V' - V - :.
I1f the mass m is isolated, and if O is an
inertial frame, v is a constant velocity.
If u is constant, then so is v', and 0' is

‘also an inertial system.

Because 0 is an inertial frame, Vv is
also a constant. Therefore, v is a
constant. The isolated mass m moves
with constant velocity relative to 0'.
Thus 0' is an inertial frame, one in
which the law of inertia is valid.

Every reference frame 0' moving
at constant velocity relative to an
inertial frame 0 is also an inertial
frame.

1.6 DEVIATIONS FROM THE LAW OF
INERTIA

A careful scrutiny of real mo-
tions at the earth's surface reveals
small deviations from the behavior
predicted by the law of inertia. Al-
though these effects are not large
enough to show up in simple laboratory
experiments like the ones we have dis-
cussed, they are important in some
natural phenomena. These are all con-
nected with the fact that a reference

Ui
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system attached to the earth is not
entirely suitable for determining the
laws of physics in their simplest and
most general form.

1.6.1 Inertial Frames

The earth rotates on its axis,
and a point fixed to the earth near
New York City travels around a circle
with a circumference of about 17,000
miles every 24 hours. The 700 mph
speed itself does not cause any diffi-
culties. We have seen that if the law
of inertia is valid in one frame, it
is also valid in another frame moving
at constant velocity relative to the
first. What causes deviations from the
law of inertia in the reference frame
fixed to the earth's surface is the
fact that the velocity of the refer-
ence frame is slowly changing with
tim2 as the earth rotates. The laws of
motion appear in quite different forms
in two laboratories, one of which is
rotating relative to the other. A
glass of water resting on a rotating

phonograph turntable behaves very dif-
ferently from a similar glass of water

resting on the floor.

Because the earth rotates very
slowly (once a day), the effects of
its rotation are not normally impor-
tant in the laboratory. They are some-
times important in very large-scale
natural phenomena involving distances
comparable to the earth's diameter.
The earth's rotation is responsible
for the ozt that winds in the north-
ern hemisphere do not blow radially
toward a low-pressure area but instead
spiral toward and around it in a coun-
terclockwise direction. The weather .
map in Fig. 1.13 shows such a circula-
tion around a low-pressure area in
the northern Great Lakes region of the
United States, and another around an
offshore low-pressure area in the
Atlantic.

The deviations from the law of
inertia to be expected by an observer
whose velocity is not constant with
respect to an inertial system are il-
lustrated in Fig. 1.14. In Fig. 1.14a

the observer and his laboratory (the
circle), with its reference frame are
at rest in the inertial system 0, and
the observer verifies the law of iner-
tia for the particle moving in his own
laboratory. When the laboratory moves
with constant velocity as in Fig.
1.14b, his laboratory frame is still
an inertial frame, although he does

" not measure the same constant velocity

that would be measured in another in-
ertial frame.

If the observer's frame of refer-
ence moves in one direction but with
changing speed relative to an inertial
frame, as in Fig. 1.1l4c, the law of
inertia will not be valid in his labor-
atory frame.

If the observer's laboratory
reference frame rotates, as in the uni-
form circular motion of Fig. 1.14d,
the law of inertia will not be valid
in his frame. This case illustrates
the difficulties experienced at the
surface of the earth, although the ef-
fects due to the earth's very slow
rotation are small.

If either the size or the direc-
tion of the velocity of the observer
are changing relative to an inertial
system, experiments described relative
to his frame will not verify the law
of inertia for that frame.

Suppose that one were actually to
verify the law of inertia for a mass M
in a2 direct experiment. The experinment
would have to be carried out in inter-
stellar space, far from any disturbing

influences that might be important. To
set up a frame of reference in such a

situation requires a marker to denote
the origin and some way to keep track
of distances, directions, and time.
The origin of the reference system
could be marked with a rock 0 suffi-
ciently small that one hopcs it
doesn't itself affect the motion of
the mass M. The law of inertia pre-
dicts that the masses O and M will
then separately move with constant
velocities relative to an inertial sys-
tem. Hence it predicts that their
relative motion will be one of con-
stant velocity.
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Fig. 1.13 This figure is a representation
of the U.S. Weather Bureau weather map for
July 31, 1965. The outline of the United
States in black is overlaid with isobars
(lines connecting points of equal atmos-
pheric pressure) dashed in blue. Wind veloc-
ities are indicated approximately by the

Distance and time measurements
alone cannot test for a constant rela-
tive velocity; some standard direc-

t ions must be set up. The directions
could be determined against the direc-
tions of "fixed stars'" imn the distance.
To a high degree of accuracy the stars
are so distant that their velocities
and ours have almost nc effect on the
pattern of starry crnstellations dur-
ing the course of a laboratory experi-
ment. Hence they provide a satisfac-
tory set of reference directions, if
we make the reasonable assumption that
the heavens do not share some uniform
(and henca undetectable in the changes
of star patterans) rotation which would
make sucn a frame of reference system
noninertial. Experiments carried out
on the earth, in which corrections are
aade for its motions relative to the
"fixed stars" indicate that they do
indeed previde an accurate set of di-
rections for setting up an inertial
system.

heavy blue vectors. The letters H and L
identify areas of high and low pressure.

The counterclockwise air circulations
around the low-pressure areas centered in
the northern Great Lakes and off the Atlan- -

tic coast are quite well developed.
é

QUESTIONS

1.1 How would you check whether the
rock O at the origin had any ef-
fect on the results of the exreri-
ment?

1.2 How many directions need to be es-
tablished to define a frame of
reference? If you were able to
measure only distances between
reference rocks and the mass M,
and could not see the stars, how
many reference rocks woula you
need io test the prediction of a
constant relative velocity between
masses? Assume that all reference
rocks could be placed at rest rela-
tive to each other.

1.6.2 Weightlessness.

In movies and television pictures,
millions of eyes have seon what life
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Fig. 1.14 The motion of a point ma 5 P (or
the center of mass of an extended object)
in inertial and noninertial frames. An in-
ertial frame is represented by the black
frame in the lower left of each picture.
The "clock" column indicates that succes-
sive horizontal rows show the position of
P after successive equal tiwe intervals.
Read vertically downward, each column shows

the same motion of point P, at constant
velocity in the inertial frame at the lower

left of the figure.

The white circle with the cross represents
another frame of reference. Its motion is
different in each column. In column A the
circle is stationary and its frame is in-
ertial. In column B the circle's frame is
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is like without gravity. Astronauts
and the public looking over their
shoulders have seen ubjects "fioating
in space" and moving in a straight

line at constant velocity without fall-
ing, relative to an orbiting satellite
of the earth.

It is amusing to sce what is spe-
cial about a reference frame fixed to
an orbiting satellite. Objects which
would "fall" relative to a reference
frame fixed on the earth "float'" rela-
tive to the satellite. '

And yet there is a pull of the
earth's gravity where the satellite is.
We know that for certain, because that
pull was used in the calculations that
predicted the satellite's orbit.
Briefly, the resolution of this para-
dox of weightlessness in the gravita-
tional field of the earth is this. The
satcllite and its contents are falling
togother in an orbit around the carth.
In the relative motion of the satel-
lite and its contents the falling is
not apparent.

Later we shall discuss how the
combination of an initial horizontal
velocity and a constant falling to-
ward the earth's center can combine
to produce a curved orbit around the
earth. But first let us examine what
other experiments tell us would happen
in a falling laboratory.

Figure 1.15 shows two laborator-
ies built of identical parts inside
closed elevators near the earth's sur-
face. Each has its own reference frame.
Joe is in the elevator with the 0
frame and Don is in the elevator with
the 0' frame.

At a particular instant Bob cuts
the cable on Don's elevator. Simulta-
neously Joe and Don 12t go of their
hammers in surprise, Joe's hammer
falls to hit his toe.

)%:?
B

4

) A

L ——— z' _—— P
Yy Yy’
x JOE —x'DON

U=0 L-
U=gt

Fig. 1.15 Two elevator laboratories. Joe's
elevator is at rest. Don's is accelerating
at a constant rate after the cable is cut.

Relative to the earth-fixed O
frame, Don's hammer also falls. But
Don's elevator and Don fall, too. Now
it is a remarkable thing about the
gravitational pull of the earth that
the observer, the elevator, and the
hammer gain speed at the same rate.
All objects falling at the same place
under the influence of gravity gain
equal amounts of vertical velocity in
equal time intervals. Thus, relative
to Don and his 0' irame, the hammer
does not fall (see Fig. 1.16).

The results of experiments with
hammers, bullets, elevators, people,
etc., at the earth's surface can be
summarized as follows: If at the be-
ginning of a time interval t the veloc-
ity of an object falling freely is ;5,
then at the end of that interv-l it
is

vV =v, + gt, (1.15)

where E is a constant vector
(9.8m/sec? down). Tf Don and Joe had
thrown their hammers with initial

an inertial one because it moves at con-
stant velocity relative to the inertial
frame at the corner of the figure. The mo-
tion of P at constant velocity relative to
the circles of columns A and B is summar-
ized in the superposition of points in the
circle at the bottom of the column. The

circle of column C is not an inertial sys-
tem. It moves in one direction, but with a
smoothly varying speed. The circle of col-
umn D, which rotates at a constant rate, is
not an inertial system. The effects noted
in column D are typical of those observed
at the surface of the rotating earth.

T T
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Fig. 1.16 Two freely falling hammers in a
gravitational field. In the laboratory 0
at rest, the hammer falls to the floor. In
the laboratory 0', which itself falls
freely, the hammer appears to float. The
clocks C and C' indicate successive equal
time intervals.

velocity Vb, then Joe's hammer would
have described a curved path (actually,
a part of a parabola), to the floor,

as in Fig. 1.17.

But Don & hammer, moving with
velocity v after a time t (Eq. 1.15),
relative to the 0 frame, continues to
meve with velocity v, relative to the
0' frame (see Fig. 1.17). Let us see
how this comes about. Applylng Eq.
(1.15) to the velocity U of Don's
elevator, we find that, starting from
rest,

U = gt, (1.16)

at time t later.

If the velocity of the hammer is
V relative to the 0 frame, and the
velocity of the 0' frame is U relative
to the O frame, then the hammer's
velocity relative to 0' ist

V' = v - 0. (1.17)

‘The Eq. (1.16) was developed in section 1.5 for
two reference frames moving with constant veloc-
ity. It can also be applied when the velocity 1]
is changing 1f it is applied to iastantaneous
velocities,

I
L 4 2

Fig. 1.17 Two hammers fall after having
becn given an initial velocity 70 to the
left. In the O frame, at rest in the gravi-
tational field of the earth, the hammer
falls to the floor. In the 0' frame, freely
falling with the hammer, the initial veloc-
ity v5 - vo appears to continue unchanged.

But by subst1tut1ng Eq. (1.16)
for U and (1.15) for V into Eq. (1.17)
for V' we obtain

v' = (v, + gt) — gt
V' =v,. (1.18)

The hammer moves with constant
velocity relative to Don's freely
falling elevator. If Don regards the
hammer as isolated, he finds that his
0' frame is an inertial frame. A ref-
erence frame falling freely in the
earth's uniform gravitational field
is an inertial frame if other masses
falling also under the influence of
gravity are treated as isolated.5

A freely falling elevator would
be, for a short while, a suitable
Place for demonstrating the law of
inertia in three dimensions. The lack
of weight would have a corollary bene-
fit in reducing friction. Objects
could move freely through the thin
air rather than being dragged over a
rough table. Experiments we now per-

$The apparent absence of gravity ain a properly
accelerated frame of rcierence 1s very impor-
tant to the theory of general relatavaty, whach
deals-with accelerated frames and gravitation.
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Fig. 1.18 An airplane flying in a para-
bolic path, in which during. each time inter-
val At the velocity gains an amount gAt in
the downward direction. For such a path the
airplane provides a weightless reference
frame in which the hammer inside "floats."

form with great effort using air
disks, etc., could be done easily
with hammers, people, china cups, al-
most anything.

To acquaint astronauts with the
sensations of weightlessness, an in-
genious method for producing weight-
lessness without the dangers of fall-
ing elevators has been devised. An
airplane with initial velocity ﬁo can
be flown in a (parabolic) path such
that for 20 seconds or so the velocity
changes in the vertical direction in
the same manner as in free fall:

(1.19)

Such a path is illustrated in Fig.
1.18. Relative to the airplane, ob-
jects within it do not fall when re-
leased. The airplane provides a weight-
less frame. An object released at time
zero wWithin the plane has velocity ;;
relative to the plane and velocity

e - -

vo = vg + U, (1.20)
relative to the ground. at a later
time t its velocity relative to the
ground is given by Eq. (1.15) while
that of the plane is given by Eq.

To provide an inertial frame the airplane
would have to fly without changing its at-
titude, as in the figure. In actual fact,
an airplane would not fly that way very
well.

(1.19) above. Relative to the airplane
the object has velocity

|

- T
v + U, + gt) — (U, + gt)
', (1.21)

v o=

~ <€

1
<|

The airplane in this special trajec-
tory is an inertial frame. The situa-
tion is illustrated in Fig. 1.18.

A satellite in an orbit circling
the earth has a motion similar to that
of the airplane in a parabolic path.
It has acceleration toward the center
of the earth.

Although the "weightlessness"
effect is much more general, let us
restrict ourselves to a discussion of
a simple circular orbit within a few
hundred miles of the earth for which
the gravitational effect of the earth
does not change much in size. The size
|gl of the constant acceleration given
to all masses is about the same as it
is at the surface

gl = 9.8 m/sec?. (1.22)
Of course the direction of E is at
each point on the orbit given by the

A —
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local direction to the earth's center
(geocentric direction).

You should recall from your study
of the description of motion that a
circular motion at constant speed in-
volves an acceleration which is con-
stant in size and directed toward the
circle's center. The size of this ac-
celeration is
' (1.23)

- \J
| af =T

where v is the constart speed around
a circle of radius r.

The gravitational influence of
the earth near its surface gives all
freely falling objects, including the
satellite and its contents, an accel-
eration given by Eq. (1.22) in the
geocentric direction. Thus, if the
tangential velocity is exactly correct
for the radius r, the satellite and
its contents continue to move in a cir-
cular orbit with constant speed, the

acceleration be.ng provided by the in-
fluence of the earth's gravity. The
correct speced for such a circular
orbit can be obtained by setting |al
of Eq. (1.23) equal to |g|. Thus,

vz

=r IEEI’
or

' v =Vr lgi. (1.24)
For a radius of about 4000 miles, this
gives a speed of about 18,000 mph.®

An object isolated except ior the

effects of gravity and at rest rela-
tive to the satellite will continue
with the satellite in the circular or-
bit, both undergoing the same acceler-
ation of size, |g| toward the earth's
center.

$1f the speed is not exactly that of Eq. (1.24)
the orbit is not circular. The satellite and
objects within are still equally affected by
gravity, and a situation of weightlessness pre-
vails, but it is more complicated to describe.

L




2 THE LAW OF

2.1 MOMENTUM AND THE CONSERVATION LAW

One very important aspect of
linear motion of an cbject is that it
has linear or translatioral momentum.
The momentum of an object equals the
product of the mass of the object and
its velocity. Since velocity is a
vector quantity and mass is a scalar,
momentum is a vector quantity. The
momentum is written as p,

- -
p = mv.

Momentum and the conservation law
for momentum are the main topics of
this chapter. It is the purpose of
this chapter to develop the concepts
of nmomentum, of its conservation law,

and of mass itself. .

Momentum is basic tc the struc-
ture of physics. The law of conserva-
tion of momentum is one of the unify-
ing principles of physics.

What do we mean when we say that
something is conserved? Let us try to
define this briefly now, with the ex-
pectation that full appreciation of
conservation laws comes only with use
and undorstanding of the roal thing.
1f the quantity conserved is momcntum,
thea —¢ state, '"For any isolated sys-
tem, the total momentum of that sys-
tem is constant." The conservation law
is independent of how complicated the
processes may be going on within the
system, whether they involve living
or nonliving things, expansions or
contractions, fast or slow changes. If
the total amount of momentum of the
system is known at any one time, and
if the system remains isolated, then
the total momentum will have that same
value at any other time.

Once firmly established, such a
general statement as the conservation
law can be an extremely powerful tool.
A conjecture made concerning the sys-
tem can be declared possible or abss-

MOMENTUM
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lutely impossible depending on whether
or not the conjecture agrees with the
conservation law.

As we will see, direct applica-
tion of conservation laws can bring
new insight to the physics in the sys-
tem.

The law of momentum conservation
is basic and so nearly elementary that
it can be considered early in the de-
velopment of mechanics. Of the two
alternatives - postulating the law and
then deriving and testing its conse-
quences or developing the law from a
series of experiments - we have chosen
the latter. Some of the experiments
will be thought experiments that can
readily be visualized, and some can be
actually performed in your classroonm.
Of course, many more than we can ac-
tually perform were necded to give mo-
mentum conservation the strong posi-
tion it holds today in physical thcory,
but our experiments will be representa-
tive of the important points in the
development of the law.

The first situations we study
will be simple ones with which we can
casily cope. From these we shall be
able to perceive the simplicity in
more complex situations and eventually
to analyze some of them in detail.

The first chapter dealt with mo-
tion of an isolated objecct. The object
was not necessarily a point mass. Even
though it may have consisted of
several component parts, it was never-
theless visualized as one object, or
a system "as a whole." In going from
one, to more than one object, we will
find that some of the Lasic concepts
of physics, such as the mass of each
object, momentum conservation of the
system, and force between objects,
can be developed by considering just
two objects or particles interacting
with one another. In this chapter, the
concepts will usually be developed
first in the specialized case which is
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(a)

Fig. 2.1 The system of two spheres and a
small spring. That the system is isolated
is schematically indicated with an imagi-
nary dotted line.

(a) The system is shown just before the

easier to visualize or to reproduce in
the classroom. Subsequent to this, a
brief general development will be
given which will be more formal and
also mcre abstract in that it will not
be tied to a particular given physical
experiment. All concepts carry over to
the general from the special without
faltering.

Let us consider this problem:
There are two spheres "floating" to-
gether in outer space, isolated and
far from the earth or other objects.
One sphere, A, is massive and other
oiher, B, has low mass. (Mass has heen
described in Chapter 1 as a sluggish-
ness of matter, a property that ex-
presses matter's inertness to changes
in its velocity.) A small compressed
spring located between A and B is
suddenly released and forces A and B
apart as shown in Fig. 2.1.

Perhaps the obvious question
asked of the laws of physics should
be, "Given a knowledge of the mass
of A, the mass of B, and complete
specification of the spring, with what
speed will A be moving and with what
speed will B be moving =!ier the
spring expansion?'" Thal » a good
question and it has an aaswer if all
the information is available.

But consider other questions.

(1) Is there "a quantity" of this
isolated system which is uachanged by
(is conserved during) this spring ex-
pansion?

(2) Is there "a quantity" of mo-
tion equally acquired by A and B?

(3) If there are quantities of

—_— e -

(b)

small compressed spring is relcased.

(k) The system is shown after separation
produced by rclecase of the small spring.
Vectors ;} and 7} are the velocities of

A and B, respectively.

motion unequally acquired by A and B,
what determines the division between
A and B?

Perhaps you detect the qualita-
tive difference between tiese ques-
tions and the "obvious" question above.

There are clear answers to (1)
and (2) and from these answers, the
"obvious" question as well as (3) are

readily solved. The answers to ques-
tions (1) and (2) suggest general,
universal conservation laws basic to
all of physics. Two of these laws
will be developed in the chapters
which follow.

In our laboratory we will do ex-
periments similar to the one described
above except that they will not be
performed "floating in outer space."
Instead the objects A and B will move
along a straight horizontal track.
This is a special track known as an
"air track" or "air troagh," and the
objects are glide blocks ('"gliders"),
that move freely on a (ilm of air.
The gliders are supported by many
small jets of air continuously coming
out of the track. The motion of each
glider on its cushion of air is prac-
tically frictionless. Although fric-
tion is an interesting and complicated
subject, we don't want to study it
right now! Certainly friction is evi-
dent and useful in our lives for with-
out it, for example, we couldn't take
steps in walking. Some roughness be-
tween our feet and the sidewalk is
needed for firm footing. In mechanics
experiments, however, where we would
like to find out what controls motion
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Fig. 2.2 (a) Photograph of an air-trough
with a typical glider in position near the
end of the trough. Both the glider and the
end post are fitted with bumper springs.
The hoses at the end admit air to the mani-
fol? (shown i Fig. 2.3). This glider is
fitted witli a marker to irndicate its
position on the scale that is mounted on
the side. (Photograph of Search Linear Air
Trough, courtesy of Macalaster Scientific
Corporation.)

of things, the friction between our
object and whatever supports it would
be a nuisance. Fortunately, it is al-
most eliminated by use of an air track.

2.2 AIR TRACK AND THE TWO-PARTICLE
EXPLOSION
The air track is actually a hol-

GLIDE BLOCK
AIR FLOW / AIR FLOW

AIR MANIFOLD

(a) Section of trough type of air track.

Fig. 2.3 Cut-away secctions of the two
types of air tracks. The air manifold is
continuously supplied with air at a pres-
sure higher than atmospheric preossure. The
air oscapos through all of the small air

(b) Photograph of a roof-top type air
track with two gliders in position on the
track. Both of the gliders and the end
post are equipped with bumper springs. The
screws used to adjust the vertical height
of the track can be seen near the end of
the track. The air input hose is at the
back end of the track, as seen here. The
forward end of the manifold is closed so
that the only escape for the air is through
the vents along the track. (Photograph of
Stull-Euling Linear Air 1Irack, courtesy of
Ealing Corporation.)

low tube which can be shaped either
as a trough or as a roof top. The two
usual types of tracks are shown in

Figs. 2.2 and 2.3.
When the track is in use, air

AlR
FLOW

(b) Section of roof-top type of air track.

vents located along the upper surface of
the manifold. This air flow, which is in-
dicated in (a) and (b), forms the air cush-
ion which supports the glidor.

e e o L e e ideaem L L s e it s i at
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Fig. 2.4 Schematic representation of a
symmetric air-track explosion experiment,
(a) The glide blocks are shown in position
Just before the spring is released. (b) The
blocks are shown in motion after the spring
has been released.

above atmospheric pressure is pumped
into the hollow interior and this air
escapes continuously through the small
jet vents (holes) that are located all
along the track surface. For either
track in Fig. 2.2, the glider is large
enough to cover several vents and it
rides or "hovers'" over the track on
the cushion of air provided by the
Jets. As long as the glide block does
not go too fast, it glides along fric-
tionlessly on its air support without
scraping the track.
) We are provided with a number of
identical glide blocks made of, for
example, aluminum. Being identical
means being made of the same "stuff"
and’ being made the same size and
shape. Let us also assume that we are
provided with meter sticks and stop
watches so that the velocities of our
gliders can ba measured. Other, more
sophisticated, timers such as strobe
cameras, photoelectric cell timers,
etc., may be available. Such refine-
ments may be needed for .high-speed
carts, but they involve no change in
the principle of measurement. All in-
volve the determination of velocity
from length and time measurements.
Note that no knowledge of the laws ol

mechanics is needed to measure veloc-
ity, v.

To study motion, something is
needed (as the literal motivator)
which will get our objects, the glide
blocks, into motion in a controllable
way. We will use a small coiled spring
for this purpose. Many other devices,
such as a chemical explosive (a toy
“cap"), an electric motor, or com-
pressed gas, could also be used. The
small spring has advantages for us at
this time, and it will be used first.

The spring will be compressed be-
tween the left, A, and the right, B,
gliders shown in Fig. 2.4. After the
system is quickly released, the spring
will expand and force the gliders
apart. The gliders will move along the
track and the velocity of each can
then be measured as it goes along.

The method of spring release de-
serves attention. One should not rely
on using his hands for holding the
gliders together and for releasing
them. A person may be neither nimble
nor quick enough to avoid disturbing
the glider motion. A proven technique
is to use a string loop which slips
over a pin on each cart and holds
them together. The string can be
burned with a match with little or no
disturbance to the gliders as they fly
apart during the spring expansion.

The track should be level. This
is readily accomplished by adjusting
the track position while using the
glider at rest as a level indicator.
With the track horizontal, we can
neglect all gravitational effects and
with the air turned on, we very nearly
simulate a "floating in space' experi-~
ment in one dimension along the track.

All of the spring “explosions"
that we can observe on our track will
be found to have two qualitative fea-
tures in common:

(a) While the spring is expand-
ing, it is always in contact with both
gliders. Both gliders then lose con-
tact with the spring simultaneously.
(This means that the spring is small
and that its motion can be neglected
in the discussion that follows.)
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(b) After the gliders lose con-
tact with the spring, each moves with
its own constant velocity along the
track.

The observation (a) above is im-
portant in the development of mechan-
ics.

The observation (b) follows di-
rectly from the law of inertia dis-
cussed in Chapter 1. The free glider
continues to move with constant veloc-
ity because it is isolated on our

frictionless track. The constant veloc-

ity implies that the instantaneous
velocity of a glider right after an
explosion has the same value as the
average velocity we measure for any
convenient length Ax of its trip along
the track. It then follows that the
instantaneous velocity of each glider
after an "explosion" is found as the
measurement of the average velocity
of each glider. The average velocity
is easier to measure since it equals

A _xp =y

Vx ave At tz - tx ’

and Ax can be taken as a convenient
displacement which allows reasonably
convenient measurements of At. Ques-
tion: Is the track location of the in-
terval (x, — x,) at all critical? That
is, can (x, — Xx,) be near the end of
the track as in Fig. 2.5a, or should
it be near the explosion as in Fig.
2.5b?

2.3 AIR-TRACK EXPERIMENTS AND
RESULTS

2.3.1 Experiment 1. Identical Left-
and Right-Side Objects.

Two identical objects or gliders,
A and B, are placed at the center of
the air track as shown in Fig. 2.6,
and "exploded'" apart by the spring.
Arter the explosion, the veloc1ty of
A, vA and the velocity of B, va are
measured. A number of small Springs
of various shapes and degrees of stiff-
noss arc usod, and for ocach explosion

’l‘v X2
- — :
W com AT

(a)

Xy X9y
| |

~— —
ET______l%%l_lnau_%Zl_______j
~ (b)
Fig. 2.5 (a) Location of interval (x, - x,)
near end of track. (b) Location of interval

(x, = x,) near explosion. The arrows repre-
sent velocity vectors.

— V7777 /W77,

-

— o

Fig. 2.6 Two identical gliders are shown
in position before the spring is released.
The dotted line runs through the center of
the system.

-\7‘ and ;, are measured.

If we were to examine the meas-
urements, we would find that in each
explosion, the speed acquired by A
equals the speed acquired by B. Since
v, and v. are vectors in opposite di-
rections,

V, + vy = 0.

This is not a very surprising re-
sult since the experiment is perfectly
symmetric about a vertical line drawn
through the center of the spring. What
is there to favor the left over the
right? If A and B were interchanged,
no basic experimental charnge would
exist since A and B are identical
aluminum blocks.

2.3.2 Experiment2. Nonsymmetric Ex-
Pplosion.

The left-right symmetry is re-
moved by making the ieft glider larger
or smaller than the right glider. This
can first be done by simply using more
than one glider and by connecting ticm
rigidly togothor possibly as a train

T T
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Fig. 2.7 Two trains of identical blocks,
N, and N,, are shown in posilion on the
air track before the spring is released.

500 ] 1 I \

)

Fig. 2.8 A plo£ of Epe ratio of speeds of
block trains, |va|/lvyl, versus the in-
verse ratio of the number of blocks in the
trains, (N3/N,). Each point (o) represents
the result of one experiment with one set
of Ny and N,. The best fit continuous line
through the data points is a straight line.
The two dotted lines are plots gf

IVal 71 Vsl = (Na/Na)? and |V)|/]V,l

= (Na/N, )2,

or as a stack of glide blocks. Let N,
and Ny be the number of identical
glide blocks on the left and right
sides of the spring, respectively, as
in Fig. 2.7.

Let us try some explosions with
various values of N, and Ng. The
speeds developed by A and B are found
to be no longer equal. What we find is
that the smaller the number of blocks
on a side, the faster that side moves.
From a study of the measurements, we
would find that for many values of N,

and N and for many sizes and kinds of
"explosion springs,'" the ratio of
velocities varies in inverse linear
proportion to the ratio of the number
of identical glide blocks.

Or: the ratio of velocity magni-
tudes is

v N
lval _ Na, (2.1)
Ivgl N,

Does the inverse proportionality
surprise you? Take an extreme case
with Ng = 10 and N, = 1, and Ng /N, = 10.
Perhaps you can visualize large B
slowly moved by the explozion and A
scooting away rapidly from the explo-
sion. Better yet, do the experiment!

How could we study these meas-
urements? How could we establish the
linear (first power) dependence of
the ratio of |v, |/|vg| upon (Ng/N,)
and not some other ''power law'" depend-
ence such as, for example, (N,/N,)?
or (Ny/N,)2? The qualitative depend-
ence of |v,|/|va| on (N;/N,) may be
suggested by visual observations of
the experiment. If we were to suspect
some dependence of IV}I/I;;I upon
(Ng/N,), we might try plotting the re-
sults as ratios on a graph as in
Fig. 2.8.

The plot demonstrates visually
and quantitatively the linear depend-
ence of |v, |/|vg| upon (Ng/N,) and
clearly rules out the other power law
dependences mentioned earlier.

The conclusion expressed by Eq.
(2.1) says nothing of the size of each
individual value of |v|. Big springs
can be observed to produce faster mo-
tion, and small springs produce slower
motion for both A and B. With a par-
ticular small spring, for example,
both A and B move slowly, but the
ratio of |V,] to |Vg| is still given
by the ratio of Ny to N,.

If we now rewrite the equality

as
- N.IVBI) (202)
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we can note that the left side of the
Eq. (2.2) describes side A only and
contains no dependence on B. The right
side similarly dcpends on B only. This
equation tells us that there is still -
a left-right equality in the motion
even though there are more blocks (and
thus more "stuff" on one side than the
other). The product of N and |v| still
has a kind of left-right symmetry even
though we thought we had removed this
symmetry!

In this one~-dimensional experi-
ment, the vectors which represent
velo_ities, ;; and 3;, are opposite
in direction. Since the velocity is a
vector quantity, the product Nv must
also be a vector quantity because N
is a scalar. The direction of Nv is
given by the direction of v.

Since N,v, and N.;; have equal
magnitudes, it follows that

NV, = —Npvy. (2.3)

These vectors are shown in Fig.
2.9. Equation (2.3) can also be writ-
ten as

Nava + Npvg = O. (2.4)

When the conclusion is stated as
in Eq. (2.4), it appears as a conserva-
tion principle. Ia words, Eq. (2.4)
says that the value of the sum of
products of Nv has a value after the
explosion that equals the value of the
sum of products Nv before the explo-
sion. The value of this sum is con:

-

Va v

< >
N, Ng
Y7 R VAT
< Nava Ny -V.n >

Fig. 2.9. 8Since N is greater than N‘L
l;;l is less thaa |vai. The vectors N,v,
and Ngvg are equul in magnitude and oppo-
side in direction.

served, remains constant, at a value
which for this exieriment is zero. If
Eq. (2.4) is valid, then no matter
may be the nature of the explosion,
small or wecak, fast or slow, the sum
of products of NV must be zero at the
conclusion of the explosion. Eguation
(2.4) is written to emphasize the con-
servation concept and we certainly
recognize limitations in its applica-
tion at this time since it was only
developed for a particular series of
aluminum glide blocks on an air track!

2.4 THE CONCEPT OF MASS

To extend the experiment to other
materials, we could make up a series
of identical gliders of copper, gold,
plastic, cic., and we would always
find a conservation principle for the
sum of Nv for any one particular sub-
stance.

Would the law hold if we mixed
up, say, copper and aluminum blocks?
In order to do this, we need a way to
compare copper to aluminum in the con-
text of this mechanics experiment.
When is a copper block equivalent to
an aluminim block? The equivalence
can be established experimentally by
putting one aluminum glider on the
left and one copper glider on the
right. If the copper block acquires a
greater speed than the aluminum block,
then a larger copper glider will have
to be chosen. If the copper block
moves more slowly than the aluminum,
then a little copper will have to be
shaved from it until, with careful
adjustment,

I.;copper I = Varuminual » (2.5)
and we can say that the two blocks are
equivalent in this experiment.

A comparison between a third ma-
terial, Lucite plastic, for example,
and aluminum could also be establisbed.
In a comparison of equivalent Lucite
and aluminum blocks one would observe

lvl.ucitel - lv.lu-inunl * (2.6)

S A L a
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GOLD COPPER

Fig. 2.10 A collection of glide blocks
having the same cross section. Each block
has been cut to be equivalent to the alumi-
num glider in air track explosion experi-

If we have established that for
three sgeparate gliders,

lvcopperl = l"ah .null
and

Ivl.ucitol = Ivalu-inu-' ’

can we now assert that |3;°m”,| will
equal |vy,cicel in "air-track explo-
sion" experimental comparison between
them? One might expect that the cop-
per glider and the Lucite glider would
be equivalent, but this would not be
established until the gliders were ac-
tually compared in a similar "air-
track explosion" experiment. Might not
ather untested factors affect the
equivalence? Would color, shape, and
metallic character have an effect? It
turns out that these factors do not
matter. If it is determined by air
track explosions that for a certain
material, "J"

vyl = IV, 1,
and for material "K"
Ivg! = IV, 1,
then experiment will show that
15,1 = 151.
Figure 2.10 shows a collection of
gliders matched by experiment for

equivalence.
In a continuation of the air-

ALUMINUM LUCITE PLASTIC

ments. If the aluminum glider has a length
of 1.00 unit, the length of the gold glider
is 0.140 unit, the copprer 0.303 unit, and
the Lucite plastic, 2.29 units.

track explosion experiments, it can

be demonstrated that equivalent blocks
of the various materials can be freely
substituted for one another and the
conservation principle of Eq. (2.4)
still sholds.

N‘;‘ + N.;. = 0.

It can also be demonstrated that
double blocks (twice as long) and
fractional blocks can be used and the
conservation law still holds provided
the meaning of N is changed to allow
for multiple blocks and fractions of
a block.

Clearly, then N, is a measure of
the amount of stuff in the "A" group
and Ny is a measure of the amount of
stuff in the "B" group. From the re-
sults of these experiments, N is also
a measure of the sluggishness or in-
ertia of the train of blocks. Trains
of glider blocks that have iarge N
acquire low velocities in the exoe+i-
ment. We have used N to label the
"amount of stuff" and the inertia of
each train in this experiment because
this particular experiment deals onlvy
with blocks. If we could melt the
aluminum blocks of each train and
form them into another shape (for ex-
ample, a sphere). and repeat the ex-
plosion experiments "floating in outer
space" the same velocities would be
measured. Some characterization or
label less restrictive than the "num-
ber of blocks" is needed for each
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train. There is such a physical quan-
tity, and it i8 called mass.

The mass of a block or group of
blocks is diroctly proportional to the
number, N.

For scts of blocks A and B,

LIS
My Np 2.7)

We say that the particular Lucite
plastic block and the aluminum block
of Fig. 2.10 have the same mass be-
cause they are equivalent in behavior
in the air-track experiment. Both
blocks contain the same amount of
stuff or matter, although they are
very diiferent in other physical and
chemical characteristics.

The similarity in the behavior
is similarity in one-dimensional mc-
tion. There is no spinning or tumbling
motion to the block as it slides along
the track. The motion is purely trans-
lational. Certainly the blocks shown
in Fig. 2.10 are not mechanically
equivalent in all respects. The vari-
ations in lengths could be very im-
portant in some mechanical systems
involving rotations of the: 2 objects,
but in pure translational motion, the
objects are equivalent.

Mass is more than a bare number.
Mass has physical units or '"dimen-
sions,"” and the dimension we shall
usually use is the kilogram. So far
we are capable of measuring ratios of
masses only with the air-track experi-
ment. From the definition of mass
given above, we determine the mass
ratio of two sets of blocks from the
velocity ratio, as measured in one of
the air-track explosions.

(2.8)

The air-track explosion experi-
ments help in the development of the
concept of mass as a measure of the
inertia of an object or particle. In
this work the mass of a block or
glader is inversely related to its
final speed on the track. Or, the

bigger the woss of the glider, tho
greater the incertia of tho glider.
The larger the mass of an object, tho
loss responsivo il is Lo causes that
would put il inlo motion or change its
motion.” The mass is a measure of the
inertia of the object.

The mass is also a measure of
the amount of matter in an object, It
is simply extensive in that if the
volume of an object is increascd by
adding the same material in the same
state, the mass increases in direct
proportion to the amount of material.

Mass is a positive scalar quan-
tity. Only onc number is needed to
specify the mass of an object. The
connection between the scale of mass
developed here and the unit of mass,
the kilogram or the gram, can be es-
tablished by experiment. A standard
mass is placed on one of two identical
gliders and then the usual speed
measurements following another spring
explosion are made. For example, if
the empty gliders each have mass Mg,
the mass of the standard is, say,
0.1000 kilogram, and the ratio of the
speed of the empty glider to the speed
of the glider c.rrying the standard is
|Val/|Veal, then,

My + 0.1 kg v, |
M, |Veal’

and
0.1 kg

[Iir‘al )
= -1
| Vaa | ]
The mass of each glider can then be
so measured and each glider can be
labeled with its own mass in kilograms.
Once these glider blocks are so cali-
brated, they can be used toc determine
masses of other gliders in units of
kilograms.

With the definition of mass which

has been developed, the air-track
equipment could be used as a mass

TWhet ‘r an otject is "put into motion" or has
its motion changed is only a question of waich
frame of reference the aotion is described from.
This is more thoroughly discussed in Section 2.6.

. aiers
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measuring device. To mcasure an un-
known mass, M,, thc unknown could be
placed on a pan or in a compartment of
one glider, M,, so that the loaded
mass of that glider would be (M, + M,).
In an explosion cxperiment with an-
other glider of mass M,, the final
speeds |v,| and |v,| of the loaded
block (1) and the second block (2)
would be observed. Then

(M, + M) Iizl’
M, v, |
and finally
[v,|
M, = M —2— _ M, .
0 2 Ivll 1

This is admittedly an awkward
way of measuring mass, and it would
never be practical in a chemist's
laboratory. The analytic balance used
by chemists is certainly simpler,
faster, and more accurate.

The determinations of the mass
of a chunk of matter by the air-track
method and the chemist's balance are
in perfect agreement. Tr.re is, how-
ever, a difference in tne principle
of operation of these two methods.
The air-track method of determining
mass makes a comparison of the in-
ertial properties of one chunk of mat-
ter with the inertial properties of
a known mass. The determination of
mass with the analytical balznce makes
a comparison of the gravitaitional at-
traction of the earth for one chunk
of matter with the gravitational at-
tractior of the earth for a known
mass.

The develupment of a mass concept
and the measurement of mass with the
air track or similar equipment are
completely independent of the earth's
gravitational attract:en., In fact,
the horizontal air track was used to
isclatce the experiments on motion
from the cffects of gravity. The air-
track experiments could be. performed
Just as well in a spacce ship meving
at constant velocity, nmillions of
milos from any planct. Such a space

ship would be frce of gravitational
cffects and would provide an ideal
inertial reference frame in which to
work. Actually, the air-track would
Lhen not be neceded as a gravity iso-
lator!

There are many physical and bio-
logical processes in which the massces
of the elements of the system are
important and zll gravitational ef-
fects are unimportant. It is satisfy-
ing to know that a mass concept and
scale can be developed independent of
gravitation.

Mass as a measure of the inertia
of matter is a concept drawn from ex-
periment. The validity of this con-
cept depends upon its usefulness in
understanding and analyzing more and
more complex physics. It is a concept
which has withstood such tests.

There are other concepts of mass.
The famous law of universal gravita-
tion discovered by Isaac Newton states
that the force of gravity exerted by
one mass on another is directly pro-
portional to the product of their two
nasses and inversely proportional to
the square of their separation dis-
tance. A concept of mass developed
from this law requires some knowledge
of "force." We will not discuss this
further until after we develop the
concept of "force." There is also the
mass-energy equivalence contained in
the special theory of relativity. This
concept of mass will be discussed in
the study of energy and energy con-
servation.

2.4.1 Dependence of Mass on Velocity.

If our experiments were repeated
with more and more powerful springs,
we would, within our ability to meas-
ure, obtain the same value for the
mass of an object, no matter how fast
the gliders could be scparated. We
would conclude that the mass is in-
dcbendcnt of velocity. This conclu-
sion holds (that is, is accurate
enough), at the low speeds within the
reach of our air tracks and springs,
but other experiments with micro-
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scopic particles (protons and elec-
trons, for example), in the high-
energy physics laboratories of the
world have demonstrated that mass is
not indecpendent of spced. Apprcciable
changes in mass are not apparcnat un-
less the spced of the particle ap-
proaches the speed of light. The veloc-
ity dependence of mass is given by
Einstein's special thcory of rolativ-
ity as

oo

where M, 18 the mass of tho objoct at
rest (v = 0), ¢ is the specd of clcc-
tromagnetic waves (light) in a vacuunm,
and v is the speed of the mass.

The Eq. (2.9) for the velocity
dependence of mass says that a moving
mass is loss responsive to forces that
would change its motion than the same
object at rest. Experiments support
the form of this equation. Equation
(2.9) is a succinct statement of "how
matter behaves" with no elaboration
of how this comes about. Substituting
numbers from our own air-track experi-
ments shows that the correction of Eq.
(2.9) to the one we use,

M- (2.9)

M= M,

is negligible within experimental
error.

The speed of light is very large,
3 x 10® meters/second or 186,000
miles/second. With our air-track
equipment, we could never make our
gliders move at speeds approaching
the speed of light. In fact, such
equipment could not make any macro-
scopic object (that is, an object per-
ceivable with the human senses), move
at speeds approaching 186,000 miles/
second. For example, the mass of an

object moving at 3 meters/second
(about 6 mph) is bigger than its rest

mass by a factor of 1.00000000000000005.
Even at speeds comparable to those of
carth satellites orbiting near the
earth's surface (about 20,000 mph),

the mass correction factor (M/M,) is

still very nearly one (1.0000000005).
Microscopic (or atonic) particles such
as protons or electrons have been ac-
celerated in laboratorics to spcceds
app}oaching c, and in such work Eq.
(2.9) has been well verified. Values
of (M/M,) of grecater than 10° have
becn achieved. It is worth noting that
the language used to describe the

laws ol mechanics at relativistic
(noarly cqual to ¢) speeds uses con=
copts that first become familiar in
the rclationships and equations of
low-veclocity mechanies. Qur dovelop-
mont will continuo in tho nonrolativ-
istic domain and tho conscervation laws
s0 exposcd will bo applicable to rela-
tivistic mechanics as well.

2.4.2 Dcnsity.

The different glide blocks in
Fig. 2.10 have the samc mass, but they
vary greatly in size. Jt is clear then
that size alone does not determine the
mass of an object. The relationship be-
tween the mass of an object and its
size, as measured by its volume, is
expressed in terms of thc mass density
of that material. From daily life, we
are aware of high-density and low-
density materials. A block of wood is
easier for a child to move about than
a block of iron of the same size.

We know that if we made three
aluminum glide blocks of identical
size the three blocks would have the
same mass. The amount of mass in a
given volume of aluminum is a property
of aluminum. Copper has a different
characteristic mass in the same vol-
ume of copper.

The density of a material de-
pends upon its composition, its tem-
perature, and the pressure. For many
common solids and liquids, the compo-
sition alone is sufficient to deter-
mine the density to within a few per-
cent. If a small element of volume
(A vol.) of material contains an
amount of mass (Am), the density of
that mateirial is defined as

{Am)

density = (@ vol) "
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The usual units of density are
kilograms per cubic meter, kg(m~3),
or grams per cubic centimeter, g(cm-3).
The units of g(cm 3) are most often
used for conveniei.ce. The density of
water at 4°C is 1000 kg(m 3) and the
density of, for example, aluminum is
2700 kg(m~3). In the cgs system, these
densities are 1.000 g(cm~3) and
2.700 g(cm=3). The relative lengths
of the glide blocks shown in Fig. 2.10
can be determined from the densities
of the materials which are for gold,
19.3 g(cm™3); copper, 8.92 g(cm~3);
aluminum, 2.70 g(cm~3); and Lucite
plastic, 1.18 g(cm™3).

2.5 CONSERVATION OF MOMENTUM

Return again to the two-body ex-
plosion as produced on the air track.
If the objects have masses M, and M,,
and if the system starts from rest,
then the objects A and B move apart
with speeds |v,| and |vy|, respec-
tively. We have seen that

|V | Mg
- = _’
[ val Ma

and
MAI-‘;AI = !gl?gl . (2.10)

Again, as in Eq. (2.2), we rec-
ognize a left-right or A-B symmetry
in the Eq. (2.10) above. The product
M|v] of object A equals the product
M|v] for object B. Note also that only
one number, the mass, is needed to
characterize each object in this ex-
periment.

Remembering that ;A and ;; are
vectors in opposite directions, Eq.
(2.10) can be written to contain this
information, or

MV, = —MpVy,
and then
MV, + Mgvy = 0. (2.11)
Equation (2.11) is written as a con-

servation law, and the quantity that
is conserved in this explosion is the

sum of the products of Mv of *he in-

dividual objects. The product Mv for i

a particle, the product of the mass of

an object times its velocity, is

called the momentum of that object. i
Momentum is a vector quantity.

Since mass is a scalar and velocity a

vector, the product of the two is a

vector. The direction of the momentum

is the same as the direction of the

velocity. The symbol 3 is often used

for momentum:

e e

P = mv. (2.12)

The units of momentum are
(kg m/sec) in the mks system or
(g cm/sec) in the cgs system.

Equation (2.11) states then that
the total momentum of this system is
conserved. This is our first encounter
with this great law of physics, the
law of conservation of momentum.

In words, the Eq. (2.11) states
that the vector sum of the momenta of
the individual objects remains con-
stant following the two-body explo-
sion. Each object had zero momentum
before the event, so that the total
mor . "tum must be zero, and being con-
served, remain constant at a value of
zZero.

The law of conservation of momen-
tum states that

For any isolated system, the total
momentum of that system is constant.

The words "total momentum'" mean
the sum of all of the individual mo-
menta of all the parts of the system.
This sum must necessarily be a vector
sum since the momentum of each part
(or particle) of the system is a vec-
tor. i
The total momentum of an isolated
system remains constant as time de-
velops independent of any kind of
chemical, mechanical, eclectrical, or
yet unnamed change that may occur
within that system. The parts of the
system may be flying apart from one
another, and even though they become
separated by very large distances,
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they still romain parts of the system.
If tho various parts of tho systom
ncvor do inloract in any way with part
or all of any other systcm, then the
system under consideration remains
isolated and the total momentum is
constant.

An isolated system is one on
which no external force acts. A com-
plete discussion of what is meant by
“isolated" will have to await further
development of the concept of force.

When Eq. (2.11) is written in the
form given,

l‘v‘ + ll.v. = 0,

the equation is expressed as a conser-
vation law. The total momentum of this
system is zero, and remains zero so
long as the system is isolated from
the rest of the universe. The fact
that the sum of the momenta of tne
particles of this system must be zero,
and not some other number, is a con-
sequence of the special experiment
under consideration. If the system
(blocks A and B) were not at rest, but
the blocks were moving together before
the explosion with the spring com-
pressed between them, then the total
momentum would not be zero. The total
momentum would have to equal the sum
of the initial momenta of the system.
We consider this next in section 2.6,
where we examine a moving explosion.
We will see in section 2.6 that
the fact that momentum is conserved
at zero in one reference frame means
that momentum i8 conserved at some

value othor than zero in any frame
moving at constant volocity reolative
to tho framo in which the total mo-
mentum is zoro. The total momontum is
conserved (remains constant), in each
irame, in accord with the principle of
relativity.

2.6 THE PRINCIPLE OF RELATIVITY AND
THE CONSERVATION LAW

2.6.1 The Moving Explosion.

In Chapter 1 we discussed the
principle of relativity, which states
that the laws of nature must be the
same in tw., different laboratories or
frames of reference that move relative
to one another with a constant veloc-
ity.

If the conservation of momentum
law holds for an explosion in our
frame, then it must also hold for ex-
plosions in other frames moving at
constant velocity relative to ours.
According to the relativity principle,
no matter in which of these frames
observers make measurements on the
air-track explosion, all observers
would conclude that the total momentum
of the system is conserved.

It may be helpful to imagine that
the air track is fixed on a large cart
which always moves horizontally with
constant speed in the +x direction.
The x axis is fixed to .he laboratory
floor. There is room on the cart for
air-track explosion equipment includ-
ing timers and students for making

JOE

@)

Fig. 2.11 The two-particle explosion under
investigation by two sets of observers sym-
bolized by Joe and Don. Don, who is on the
cart, is at rest with respect to the air

track. The cart velocity is u relative to
Joe, who is on the floor. The coordinate
axes x' and x are parallel.
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measurements. The student observers

on the cart locate block positions on
the x' axis which is located on the
air track, and the x' axis is parallel
to the x axis. The cart observers
measure veiocities in terms of time
rate of change of the x' coordinate,
and the symbol v will be used for
their velocities.

For quick reference, call the set
of observers on the cart (x') by the
name of one observer, Don, and the set
on floor (x axis) by the name of one,
Joe. The cart moves with velocity u
wnich is directed in the +x direction.
The motion is indicated by the vector
u, shown in Fig. 2.11.

Don studies explosions, and ob-
serves that two given blocks of mass
MA and Mg, acquire velocities vA and
v. in opposite directions relative to
the track (x' axis). In Don's refer-
ence frame, the blocks are at rest be-
fore the explosion. Don's situation is
Just exactly the experimental setup
described in section 2.4. Don's obser-
vations will be the same as those of
section 2.4 and his measurements show

Iva'l Mg
— - =2
'Vn" M,

These results can be expressed in
vector form, as in section 2.5,
MA;A' + M.;.' = 0. (2.13)
Conservation of total momentum of
the A-B system in Don's frame is ex-
pressed by Eq. (2.13).

How would Joe, who has his own
meter sticks and clocks, describe the
explosion? Before the spring between
blocks A and B is released, the blocks
both have the samne velocity, G, which
is just the velocity of the cart (or
X' axis) since both blocks are at rest
in that frame. Immediately after the
completion of the explosion, A and B
have different velocities relative to
Joe. The velocities measured by Joe
are v, and v..

If a block moves with velocity
v' along the x' axis, and the x' axis

moves with respect to the x axis with
velocity G, then the velocity of that
block relative to the floor is, from
Eq. (1.11),
vV=yv'+u. (2.14)
For example, if the cart velocity
u = +3m/sec ("m/sec in the positive x
direction) and if B moves with velocity
vg' = +l.5m/sec relative to the cart,
then vy = +3m/sec + 1.5m/sec = +4.5
m/sec relative to the x axis. Remember
that the symbols in Eq. (2.13) carry
their own sign which signifies the di-
rection of the vector along the x'
axis. If one of the velocities is neg-
ative it appears as a negative number.
From Eq. (2.13),
v' =v-—n1. (2.14a)

Write Eq. (2.14a) separately for
block A and B.

-V.A' = ;A - :l..
vg' = v, — u. (2.15)

Equations (2.15) make the connec-
tion between what measurements Don
makes (VA ’ v, ) and the measurements
Joc makes (V,, vg). This connection or
transformation is an expression of the
fact that Don and Joe agree on space
and time measurements. It is the
Galilean transformation developed in
section 1.95.

Don's velocity data fit Eq.
(2.13). If we substitute the right
side of Eq. (2.15) into Eq. (2.13) for
each v', then Eq. (2.13) becomes

Ma(vy — U) + Mp(V, — U) = 0
or

M v, + Mgvy = M U + M_u. (2.16)

Equation (2.16) is our prediction
of the equation that Joe's measure-
ments should obey.

Can you recognizc the conserva-
tion of momentum law being expressed

s
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by Eq. (2.16)? The right side of Eq.
(2.16) is the vector sum of the mo-
menta of A and B before the explosion
and the left side of Eq. (2.16) is the
vector sum of the momenta of A and B
after the explosion. The total momen-
tum remains constant, or momentum is
conserved ir Joe's reference frame as
well as Don's.®

Example: Put numbers into the above.

Given: M, = 0.3 kg Mg= 0.2 kg

v,' =-1.0 m/sec u = +3 m/sec

]

(1) Find v,'.
MV, '+ MV, ' =0
(.3 kg)(—1.0 m/sec) + (0.2 kg) V}' =0

ve' = +1.5 m/sec

(2) Find v,, v,
for A, V,'=v,—u

-1.0 m/sec = v, — 3 m/sec

5 Va = +2 m/sec

va' =vg—u

1.5 m/sec = v, — 3 m’/sec

SThe physics of this thought experiment is con-
tained in tho two-particle explosion in which
both particles aro moving together befcre the
explosion. The 'system" consists of particles A
and B in addition to a small spring the motion
of which is assumed to be ncgligible. Remember
that the air track is not part of the system.
Since the system is well isolated from the air
track, it is really not necessary to have the
atr track itaolf in tho moving (Don's) framec.
Wo could just as woll do theo exporiment in which
the aly track was fixoed in tho x frame (Joo's)
and in which Den makes obscrvations from a cart
moving with velocity u equal to the common ini-
tial velocity of A and B. The results in the
form of Eqs. (2.13) and (2.16) would still ob-
tain.

Is it possible for Joe, with only a knowledge of
his own measurements on the explosion and a
knowlodgo of Galilean rolativity, to predict
what Don’s measurements are?

& Vg = +4.5 m/sec

(3) wWhat is the momentum in the un-
prime (Joe's) frame before the explo-
sion?

Pror ™ MaVa(betore) + MaVp(petore)

We know that
Va(before) = Va(before) =~ Y-
- M‘i + M.ﬁ
(.3 kg) (3m/sec)
+ (.2 kg) (3m/sec)

Pror = + 1.5 kg m/sec

oo im

(4) what is the momentum in the un-
prime frame after the explosion?

-

Pror = MV, + Mpv,
= (.3 kg) (2 m/sec)
+ (0.2 kg) (4.5 m/sec)

-

Pror = +1.5 kg m/sec

Note that the total (vector sum) mo-
mentum of the system remains constant.
Momentum is conserved.

How would Joe describe this explosion?
He would say that the two blocks were
initially moving together with the
same speed of +3 m/sec. The spring re-
leased and after the "explosion," A
was still moving to the right (+x di-
rection), but more slowly at +2 m/sec
and B was moving more rapidly at

+4.5 m/sec.

Don says the two blocks were initially
at rest and after the spring released
A moved left (—x' dircction) at

-1 m/scc and B moved right (+ x' di-
rection) at +1.5 m/sec.

Both sets of observers' measurements
are in accord with the 1aw of conser-
vation of momentum.
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2.6.2 The Sticky Collision.

Let us consider a problem that is
somcthing like an inverted cxplosion.
Assumc that the cnds ol the sliding
blocks have been prepared in such a
way that the blocks stick togecther
whenever the ends touch one another.
The ends might be coated with a glue
or mastic, or some kind of mechanical
coupling might be used. When two such
blocks are projected toward one an-
other, they collide, join together,
and move as one. Such sticky colli-
sions are usually referred to as com-
pletely inelastic collisions.

Perhaps you can think of some
examples of completely inelastic col-
lisions. In chemical reactions, one
molecule or atom might come in contact
with a second molecule or atom and
combine with it to form the molecule
of a new compound. The constituent
parts would move together after they
combine, and we would call this a com-
pletely inelastic collision. An open-
top freight car (a gondola car) coasts
along under a buge sand hopper which
drops a load of sand intc the car as
it coasts by. The sand and the car
have suffered a type of collision and,
after its completion, they move as
one. It is possible to measure the
velocity of a rifle bullet by shooting
the bullet into a large wooden block.
~ If the block is large enough, the bul-

let becomes imbedded in the block and
. the two then move together if the
block is free to move. By measuring
~ the velocity of the block with the

bullect imbedded in it, and by knowing
the mass of the block and the mass of
the buliet, the original speed of the
bullet can be found from the law of
conscrvation of momentum applied to
this completely inclastic collision.
Figure 2.12 shows anothcer cxample of

a complctely inelastic collision.

Consider blocks E and F, of mass
Mg and My, respectively, which are
projected toward one another on our
air track. Assume that these blocks
suffer a completely inelastic colli-
sion. It will not be necessary to un-
derstand the nature of the glue used
as a sticking agent or how the mechan
ical coupling works. We need only es-
tablish that »ur two-block system is
isolated in that the blocks move fric-
tionlessly over the track. The total
momentum of the system of blocks E and
F must then be conserved.

I1f blocks E and F are projected
toward one another with equal speeds,
and if the blocks have egual mass,
then it is clear that the pair come to
rest and stay at rest after they col-
lide. This is a symmetric collision
and the total momentum of the system
is zero.

With a less symmetric collision
for blocks with unequal masses and/or
unequal speeds, the momentum conserva-
tion law is applied in equation form.
With enough given information the
equation can be solved for the unknown.
For example, in Fig. 2.12, let the
total mass of the first boy and his
sled be M, and the mass of the unsus-
pecting boy be M,. The momentum of

V —

(a)

Fig. 2.12 (a) A completely inelastic col-
1isicn in which one object (the unsuspect-
ing boy) is initially at rest.

()

(b) After the collision the system moves
with one velocity V.
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thig system‘pefore the collision is
M,v, where v, is the initial velocity
of the sled. The total momentum after
the collision is (M, + M;)V. In apply-
ing the conservation of momentum law,
we write '

M,v, = (M, + M,)V.

If My, My, and ;; are given, then
the final velocity is found to be

Ve—a 7,
M, + M) !

In thoe complotely inelastic col-
lision on the air track, assume that
masses My and Mp have initial veloci-
ties ;} and V,. After the collision
Mz and My move together with velocity

[ ]

The total momentum before the

collision is

Pror = MgVy + Mpvy,
and after the collision

Pror = (Mg + Mp)V.
Momentum of this isolated system is
conserved and the conservation is ex-

pressed in Eq. (2.17):

Mgvg + Mpvy = (Mg + Mp)V. (2.17)

Numerical Example:

In a one-dimensional collision
along the x axis, let

M, = 0.25 kg; vy = +2 n/sec,
and
My = 0.75 kg; Vy = —4 m/sec.
Find V, the final velocity.
Mgvy + Mpvy = (Mg + M)V

(0.25 kg) (2 m/sec) + (0.75 kg)(—4m/sec)
= (1.00 kg)V

V=-2.5 m/sec.

After the collision, the two move with
a speed of 2 m/scc in the negative x
direction. My had more negative momen-
tum than M; had positive mom¢ntum, and
the total momentum in this » reference
frame is negative.

It is interesting to note that
there is an inertial reference frame
moving with constant velocity relative
to the laboratory in which the two
blocks are at rest after the collision.
In this framo the final momentum is
therefore zero. It will be shown by
explicit calculation that the momentum
is conserved in this frame as well.

Call this frame the primed frame
and put its x' axis parallel to the
laboratory x axis along the air track.

Let the constant velocity of the
x' frame with respect to the x frame
be u and since the blocks move with
velocity V after the collision,

u=V.

Relative to the primed frame,
Mgz and My move before the collision
with velocities vg' and vy' which are
related to Vi and vy by the transforma-
tion rule from Eq. (1.11).

-V."-;'-a
and - (2.18)

-

vp' = vy — u.

In the primed frame the total
momentum of the system before the col-

lision is -ls!m. where,
35‘0’1‘ - M';g' + M'-V."
= Mg(vg — W) + Mp(vy — u)

Plop = MgV, + Mavy — (Mg + Mp)u. (2.19)

Since u = V, Eq. (2.19) becomes

Ploy = Mgvy + Mjv, — (M, + M,)V.(2.20)

From ¥g. (2.17) it follows that
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the right-hand side of Eq. (2.20) is
zero.
Pror = 0. (2.21)

Equation (2.21) expresses the
total momentum of the E,F system be-
fore the collision in the x' reference
frame. The Eq. (2.21) was calculated
from the knowledge (1) that momentum
is conserved in the unprimed x frame,
and (2) that the velocities of E and
F in the primed frame could be ex-
pressed in terms of their velocities
in the unprimed frame in Eq. (2.18).
The result of the calculation is that
the total momentum of the system in
the primed frame x' before the colli-
sion is found to be zero, Eq. (2.21).
We know that 3.}.0,1. is zero after the
collision since the blocks are then
at rest in the primed frame. 7Tiiis
shows that the momentum is conserved
in the primed frame as well as in the
unprimed frame.

Let us rework the numerical ex-
amplo for blocks E and F in the primed
framo. The x' axis moves relative to
the x axis with a volocity

u=YVe=-2,5mn/sec.
Then
+2.0 m/sec - (—2.5 m/sec)

+4.5 m/sec,

and

- - -

Vp — U
—4 m/sec — (—=2.5 m/sec)

-1.5 m/sec.

this reference, frame E is

"---§

Fig. 2.13 An idealized bird in flight.
The dotted line marks the motion of the
center of mass point of the bird and the

»
~§---‘

initially moving in the +x' direction
at 4.5 m/sec and F is moving in the
-x' direction at 1.5 m/sec.

This particular frame of refer-
ence is of more than usual interest,
for this frame contains the center of
mass of the system.

2.7 THE CENTER- OF-MASS CONCEPT

In Chapter 1 the law of inertia
was stated for complicated systems as
a law describing the motion of the
center-of-mass point. In an isolated
system, it is this point which moves
with constant velocity during the com-
plicated motions of the system's
parts. In the last section it was
stated that in the inertial reference
frame that contains the center of
mass, the total momentum of the sys-
tem is zero. Even though this 1is one
of many inertial frames, the fact that
zero is a rather unique number leads
one to suspect that this refercnce
frame is particularly simple for the
description of motion, and it is!

The center-of-mass concept is not
a completely unfamiliar one. We use it
commonly in what seem to be "natural"
descriptions of the internal moticas
or notions within a system. A few ex-
amples will recall the common distinc-
tion between motion of an object as
a whele and the internal motions of
an object. When we see a bird flying
we say that the bird "flaps his wings,"
but that is looking at the wing mo-
tion from the bird's viewpoint. The
wing-flapping motion is an internal
motion, a motion within the (bird) sys-
tem. As seen from the ground, the mo-
tion of a wing describes a wavy line
as shown in Fig. 2.13.

solid line marks the path of a white
feather at the bird's wing tip.
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When we think of a flapping wing
we think of up~down motion of the
wing, and the up-down motion is the
wing motion in the reference frame of
the bird. It is the motion in the cen-
ter of mass reference frame.

As a helicopter ascends, we think
of the whole helicopter rising with
its great whirling propeller spinning
above ii. We tend to think of the pro-
peller blades spinning relative to the
body of the helicopter. Actually the
path of a point on the tip of that
great propeller in the air is a helix,
or spiil, as shown in Fig. 2.14.

In the study of mechanics and in
the study of the consezvation laws it
is often useful arnad illumircating to
separate internal motion from motion
of the object as 2a whole. The most
useful point of reference of . system
about whicn to descrite the motion
within that system is the center-of-~
mass point.

2.7.1 The Center-of-Mass Point.

We would expect that this poiat
would move along with the system and
be somewhere in the "middle" of it.
One might first ‘hink that the point
could he located at the average of
positions of all of the parts of the
system. This thought is partly right.
In averaging the positions of each
part of the system, the parts with
more mass are counted more. For this
kind ¢f averagirng, the average posi-
tion is called the center-of-mass
point. It may not be at the geometric
zenter of the system. If some parts
have greater mass, the center-of-mass
will be shifted toward the massive
parts away from the geametric center.

The formal definition of the lo-
catiun of the center-of-mass point
can be specified in relation to any
convenient coordinate system. The posi-
tion of thc center of mass is the
weighted average of the positions of
all the elements of mass compcsinr
that system, with the mass of each
eiement used as a weighing factos.

Let ro, be the position of the

Fig. 2.14 A helicopter in vertical take-
ofi. The dotted line marks the path of the
center of mass of the helicopter and the
solid line marks the path of one tip of one
of the propeller blades.

center of mass of a system or object,
and let T,, T, T3, . . « , T3 , «
;; be the position vecturs of each of
the N elements of mass which comprise
the system. let m, , m,, m,, . . .,
M, . . . my be the masses of the re-
spective mass elements.
Then by the definition,

- - - -

Te® LR R TR A TR TS S
or

N []

Z:“irx

e = N ’
Z"t
i=1

where N is the total numoer of mass
elements in the systenm.

(The symbol, Z, is shorthand for
"the sum of." Each term of the sum-
mation is represented by the sub-
script "i," where "i" is a running
index covering a range of values
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C B

T ‘i:>

|

- 1 | [ X axis
Ol Xa Xe Xg

Fig. 2.15 Two metal spheres A and B con-
nected by a thin plastic rod. The x axis is
parallel to the rod.

from one (1) through N. The range of
values of "i" over which the sum is
made is indicated by the subscript
“j=1" below Z and the swperscript
“N" above Z.)

The denominator of Eq. (2.22)
equals the total mass of the system.
Equation (2.22) is then

N
.;c - Z-‘»;‘» ’ (2.23)
i=]1

where

M= iilu.

i=1

Before studying some examples of
the application of this definition,
it will be useful to have Eq. (2.23)

expressed in terms of individual x, y,.

and z coordinates of - Cartesian co-
or2inate system. Thes: are

N
Z:'ixi
1=1

Xe= "

N
2'171

i=1
Yo" Tu

(2.24)

i&‘izl

i=1
Zg "™ M .

As an introductory specific ex-
anple, in obtaining tho center-of-mass

. section.) f

position, think of an object shaped
like a dumbbell made of two homogene-
ous metal spheres, A and B, having
masses, M, and M,, respectively, con-
nected by a thin plastic rod. Assume
that the mass of the plastic rod can
be neglected for the purposes of this
discussion. The system is shown in
Fig. 2.15.

There are two mass elements in
this system, M, and My, and their po-
sitions are identified as the posi-
tions of the centers of the spheres.
(This means that M, and My are as-
sumed to be point zasses located at
the center of the spheres. This as-
sumption is justified later in this

If My > Mg, then the center-of- ;
mass point will be located closer to E
A than to B. Let the center-to-center !
distance between A and B be repre-
sented by L. This is a one-dimensional
system so that, for convenience, one
coordinate axis (x) is established
parallel to the rod connecting A and
B. Then

and the center-of-mass coordinate x
is -

M AXa + “3x. i
- ——— .S

Suppose M, = 2M,; then

2l.x‘ + l.x.
(2". + l.)

Xe = Sx‘ +'§x..
Since

Xg = x, + L,
then

Xe = X, + L/3.

The center-of-mass point, C, is
located between A and B and one third
of the spacing, L, away from A. The
ratio of tho distancos from C to B and
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A is two to vno and this, clearly, re-
flects the mass ratio.

Xp —xc My 2
Xe — X, Mp 1

In general, one can find a coor-
dinate system that will have its ori-
gin at the center of mass even though
the location of that poiat may not
yet be known. This is done by requir-
ing that ;E equal zero in this coor-
dinate system. In tae example just con-
sidered, let x' be the coordinate axis
which has its originm at C.

Then

Myx,' + M '
AX A B

2.25
My, + My) -~ ( )

Xc' -

Now, since we have set x¢' = O,
and if we choose the system shown in
Fig. 2.16 with M, = 2M,, Eq. (2.25)
becomes

0= 2!.' + x.'. (2-26)

The origin of the x' axis must be
located irn such a way that Eq. (2.26)
is obeyed. Also, since the spacing be-
twesn'B and A is equal to L,

X.' - X" - L. (2.27)

It follows from Eqs. (2.26) and (2.27)
that,

X" - —L/3
X.' - +2L/3.

The x' axis with points x,' and x,
marked is shown in Fig. 2.16. The thin
plastic rod connecting A and B in our
example is aciazally unnecessary, for
if it were removed the center-of-mars
point would still be locoted at C. It
is not necessary that there actually
be some material at the ceater-of-mass
point. Its position is clc:rly speci-
fied without a marker being there.

The location of the center of
mass of more complicated objects is
determined by application of Eq.

o -

A
=x’ axis [ Ic .B +x’_axis

o]

|
|
|
!
X'a I

Fig. 2.16 The origin (0') of the x*' axis
is established at C. With M, = 2M,,
Xg' = +2L/3 and x,' = —L/3 where L is the
center-to-center spacing of A and B.

(2.23). If the system has some ele-
ment or elements of symmetry, the
symmetry can be used to help locate
the center of mass. If the system has
a plane of symmetry, the center of
mass will lie in the plane.

For example, a tennis racket is
symmetric about two planes tha* are
parallel to the handle and perpendicu-
lar to one another. Since the center
of mass must be on both of these
planes, it is on the line of intersec-
tion of these planes. The location is
shown in Fig. 2.17.

A frying pan has only one plane
of symmetry. Can you describe it?

The symmetry of the water mole-
cule can be used to good advantage in
locating its center-of-mass point.

The water molecule is approximatod as
three points in Fig. 2.18. Its center
of mass lies along the bisector of the
105° angle shown as a dotted line in
Fg. 2.18.

Prove to yourself that the center
of mass is located on the bisector of
the angle HOH in Fig. 2.18 and at a
distance OC = (R/9) cos 52.5° where
R is the O — H spacing in the mole-
cule.

Sometimes there are lumps or
groupings of matter in the system
that are more or less distinguishable
from one another. All of the mass ele-
rents of such a group can be repre-
sented by a point mass, equal to the
group mass, located at tae center-of-
mass point in the group. We did this
in locating tae center of mass of thw
dunbbell-shaped object in am eariier
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Fig. 2.17 The xy and xz planes are the
mutually perpendicular planes of symmetry
of a tennis racket. The line of intersec-
tion containing C, the center of mass
point, is taken as the x axis. A typical

discussion. Each sphere, M, and M,,
was represented as a point mass lo-
cated at the center of each sphere.
This trick is especially useful when
the ccmposite parts of the system have
easily determined centers of mass, but
the whole system may not be very
symmetric.

Suppose we want to find the cen-
ter of mass of the object shown in

H\

WH

Fig. 2.18 Schematic representation of a
water molecule. Poirt C is the center-of-
mass point. The mass of the oxygen atom, O,
is 16 times the mass of one of the hydrogen
atoms, H. The OH distance is R, and

OoC = (i/9)R cos 52.5°.

mass element, m;, is shown. The use of the

symmetry has established the y and z coor-
dinates of C and only the x component is
left to be determined.

Fig. 2.19, which is a first approxima-
tion to a hockey stick.

The centers of mass of the handle
A and the blade B are at their respec-
tive geometric centers. To find the
center of mass of the hockey stick,
replace the handle with a point mass
M, located at its center of mass C,,
and replace the blade with a point
mass Mg located at its center of mass
Cp. The center of mass of the whole
hockey stick is then located by find-
ing the center of mass of the M, and
My point masses.

This procedure is exact and the
formal definition of center of mass

A

Ce
Fig. 2.19 A hockey stick without rounded
edges and corners. The center of mass of
part A is located at C, and the center of
mass ¢f part B is located at Cy. The center
of mass of the hocaey stick is located at
point C on the line connecting C, and Cg.
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can be used to demonstrate its valid-
ity. The center-of-mass position is
defined by Eq. (2.23),

N
Mry -~ anr‘ .
i=1

Divide the summation into two
" parts involving in one only mass ele-
ments of A and in the other only mass
elements of B. Then Eq. (2.23) can be
written as

Nre = ) mT, + )omT, ,
A B

where the A and B mean "over part A
only" and "over part B only" respec-
tively. The term f m,r;, is just the

summation we would have if we were
finding the center of mass of part A
only. Or, we can write

l‘;‘ - Z-‘?‘ (2.28)
A
and
MpT, = ) myTy, (2.29)
B
where T, and rs are position vectors
of the center-of-mass points of A and
B, respectively.

Each individual summation can be
replaced by the product of a point
mass and the position vector of its
center of mass.

Finally,

- - -
Mry = Nyry, + Mr..

The argument is readily extended
to systems with more than two parts.

3.7.2 Center of Mass and the Motion
of the System.

A useful property of the motion
of complex systems is that the total
momentum of the system equals the
product of the to{al mass of the sys-
tex and the velocity of the center-of-
mass point. A corollary to this prop-

Fig. 2.20 In (a) of this figure, the photo-
graph of subsequent positions of the dumb-
bell is made from a fixed camera while the
dumbbell moves past it, rotating “end over
end" as it goes. Each set of position indi-
cators on the picture provides a simulca-
neous location of both masses and the cen-
ter of mass.

In (b), the camera moves in the reference
frame of the center of mass while the dumb-
bell repeats the motion shown in (a).
(Photos courtesy Fiim Studio, Educational
Services, Incorporated)

erty is that the internal motions of
the system dc not contribute to the
total linear momentum of the systen.
These characteristics can be under-
stood from a description of the cen-
ter-of-mass motion of the system.
Even though some or all of the ele-
ments of mass in the system may he
moving, the instantaneous position of
+he center-of-mass point can be es-
tablished from the instantaneous lo-
cations of the mass elements. Figure
2.20 gives an excellent example of
this.

Fig. 2.20 is a stroboscopic
("time history"), photograph of the mo-
tion of a dumbbell-staped object simi-
lar to the one discussed above. One
mass, indicated by an open circle (o)
bas twice the mass of the other, shown
as a cross (x) in the photograpn. The
center of mass is located at a dis-
tance equal to one third of the two
mass center-to-center spacing away
from the larger mass. A closed circle
indicates the center-of-mass position.
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Fig. 2.21a This figure shows the initial
instantaneous position of the dumbbell-
shaped object in the (0) reference frame.
Mass M, equals 2M,. The ceater-of-mass
point is labeled C.

The motion in Fig. 2.20a looks a
bit complicated, but the su~cessive
positions of the dumbbell-shaped ob-
Ject can be located easily. For every
instantaneous position of the center
of mass, the simultaneous positions of
M, and M, can be located on a straight
line passing through the center of
mass. For each subsequent position of.
the center of mass, the angular posi-
tion of this line is changed. It ap-
pears from Fig. 2.20a that the object
is rotating in some way as it moves
along. The rotational motion is more
apparent in Fig. 2.20b.

The first thing that strikes
one's eye in Fig. 2.20b is the cir-
cular motion of the x and o syrdols.
Clearly, the dumbbell is simply rota-
ting at constant angular velocity in
this frame of reference. To make the
photograph of Fig. 2.20b, the experi-
menter had to move his camera at con-
stant velocity in order to "stop" the
center-of-mass point. The velocity
needed for his camera could be ob-
tained from Fig. 2.20a in which this
velocity could be determined from the
equal spacing of the center-of-mass
points.

We conclude then that the motion
in the figure is omne of rotation about
the center-of-mass point superimposed
upon translatioun of the center of
RASS .

(0)

Fig. 2.21b Instantaneous position of dumb~
bell shown at a time At later than Fig.
2.21a. The displacements of M, , M,, and
point C in the (0) reference frame are in-
dicated by vectors Ar,, Ar,, and Arg, re-
spectively.

There is an appealing simplicity
in the separation of motion into
translation and rotation for this sys-
tem. The rotational mot on is the in-

ternal motion of this object. The

point at which the division between
the two motions is made is the center-
of-mass point in the system. If we
look again at the defining equation
for the center-of-mass position r, and
see hovw ;c varies with time, we can
see how this separation is conven-
iently made. ]

Let ;c be the instantaneous posi-
tion vector to the center-of-nass
point C, and let r, and r, be the
simultaneous position vectors to
masses (1) and (2), respectively, of
the dumbbell used in Fig. 2.21. The
location of an origin, (0), used in
specifying these vectors, as shown in
Fig. 2.21 is in an inertial frame of
reference. The position of each mass
element relative to the center of
mass C is given by vectors in the
center-of-mass coordinate system (0')
having its origin at point C. These
vectors are labeled ;;' and T,' for
masses (1) and (2) respectively.

For each mass element

-

r, = ?c +1,', (2.30)
‘w - - -
g = rg + Ty, (2.31)

IRy
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Fig. 2.21c Two instantaneous positions of
the dumbbell are shown in the (0°') refer-
ence frame. The origin of the (0') frame is
located on the center-of-mass point C. The
"internal displacements” -easured relativo
to (0°') are_indicated by Ar, ' and Ar,'.
Note that Ar,' and Ar,' are antiparallel in
this two-mass system. What is the ratio of
tﬂ? magnitude of Ar,' to the magnitude to
Ar,'?

Multiplying Eq. (2.30) and Eq.
(2.31) by M, and M,, respectively,
these equations become

M,T, = MTc + N,T,° (2.32)

and - - -
M,r, = Myrg + Myry'. (2.33)
The sum of Eqs. (2.32) and (2.33)

,18

MT, + M7, = (M, +M,)r,
+ [mT," + 0,7, (2.34)

and from this sum we will be able to
find the total momentum, (M,v, + M, V,;).
Before doing so, it should be
noted that the sum of terms in the
bracket | ] of Eq. (2.34) is zero.
This must be true, because the bracket
sum is the weighted (by mass) sum of
the positions of the elements of 'mass
composing this system where these
positions (the primed vectors) are
specified relative to C. From the
definition of center of mass, it must

) be true that

M,T, " + MyTy" = (M, + M.

Since the origin of the (0') coordi-
nate system is located at C, the cen-
ter of mass,

re' = 0.
s [MT,* + T, =0, (2.35)

and Eq. (2.34) becomes
M, T, + M7, = (M, + Mp)Tc. (2.36)

In a short time, At, the position
vectors wiil, in general, change by a
small amount. These changes are shown
in Fig. 2.21. Both T, and r,' change
during the interval At, but the change
in T, does not equal the change in T,'
since these vectors are in two differ-
ent reference frames in relative mo-

tion.
During the time interval At,

;, becomes (;, + A;, ),
T, becomes (T, + Ar,),

Tc becomes (r¢ + Arg).

Equation (2.36) is rewritten for this
later time as

M (T, + AT,) + M, (T, + AT,)
- (M, + M) (T, + &r¢). (2.37)

By subtracting Eq. (2.36) from Eq.
(2.37). we find

N,AT, + MAT, = (M, + My)Ar;. (2.38)

Divide Eq. (2.38) by At to obtain

Ar, Ar, Ar,
M, —3 —_—i - )—-S
valh @ el A v

or, in the limit as At - C,

AT, /At = V,, Ar,/At = Vv,, and

A?c/At - .v.c.

MV, + Mpv, = O, + M,)v,.
Therefore,

Pror = (4, + Np)vg, (2.39)

which is our expression for the total
momentum of tae two-particle (mass)
system shown in Fig. (2.21).
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Equation (2.39) follows from Eq.
(2.36), and Eq. (2.39) is valid for
any reference frame used to descrite
the position and motion of the center-
of-mass point.

In the (0') reference frame, the
velocity of the center of mass is
zero,

v.' =0,
80 that in this frame
Plor= Mv, = 0.

The total momentum in the center-
of-mass frame is zero. During the time
interval At considered above the dis-
placements of M, and M, are Ar, ' and
Ar,' in the center-of-mass frame.
These displacements are shown in Fig.
2.21c. The velocities of M; and M; in
the (0') frame are, in the 1limit of
At - 0,

v,' = Ar, /At
v,' = Ar,'/At.

' The displacements AT, ' and Ar,'
are oppositely directed and they obey.
the relation h '

HIA;;' - -'zA;z't

because these displacements do not
displace the center of mass in the
(0') frame. Therefore, -

o ! Mo !
Mv,' =-Mv,".

The momenta of the two objects
exactly cancel one another in the (0')
frame and P,y = O.

In the above discussion the (0')
“rame was defined with its origin
located at the center-of-mass point.
However, all of the above statements
concerning displacements and veloci-
ties in the (0') frame are also valid
in other reference frames in which the
center of mass is at rest, v.' = 0,
even though the origins of such frames
may not be located on the centeér-of-

mass point. You recall from previous
study of motion that the displacementi
of a point, or the velocity of a
point, is the same in all reference
frames which differ from one another
by only a fixed constant displacement
between their origias. The set of
reference frames in which the center
of mass is at rest is often referred
to as the set of "zero momentum" refer-
ence frames because the total momen-
tum of the system is zero in each of
these frames.

Several interesting things are
expressed by Eq. (2.39).

(1) The total momentum of the
system is independent of the internal
motions of the system.

By the phrase "internal motion"
we mean motion relative to the frame
of reference in which the center of
mass is at rest. This frame is the
(0') frame ipn sur discussion. Internal
motion involves time rate of change of
T, and T,' and these do not appear
in Eq. (2.39), because of the special
property of the center of .sass, Eq.
(2.35).

There is internal wotion in this
system because the individual Ar,'
and A?z' displacement vectors are not
zero in the (0') reference frame. The
internal motions are always of such a
combinaticn that the internal momenta
M,v,' and M,v,' exactly cancel and
make no contribution to the total mo-
mentvm of the system.

Whan we say "total momentum' we
mean the momentum of the system as a
whole, and it may then not be surpris-
ing that the internal-motion veloci-
ties do not appear in Eq. (2.39). That
they dc. not appear is the case only
when tuhe internal motion is defired
relative to the center-of-mass (or,
zero-momentum) frame of refereace.

(2) The total momentum of the
system equals the product of the total
mass and the velocity of the center of

While the internal motions of the
system may be involved and complicated,
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the motion of the center-of-mass point
is representative of the motion of the
system as a whole. The observations
(1) and (2) above are based upon
mathematics and they express, with
better precision, our earlier division
or separation of motion into motion of
the system as a whole and motion
within the system in the discussion

of Fig. 2.13 and Fig. 2.14.

(3) If the system is isolated
from the world outside itself, the
center-of-mass point obeys the law of
inertia.

If the system is isolated, then
the total momentum of the system is
conserved. Since the total mass does
not change, the velocity of the cen-
ter of mass must be constant accord-
ing to Eq. (2.39). Whatever compli-
cated internal motions the system has,
its center of mass will continue to
move with constant velocity. This last
statement is the law of inertia, and
it is thus contained within the law
of conservation of momentum.

Conclusions (1), (2), and (3)
above are general and can be derived
form2lly and quickly from the general
definition of the center-of-mass vec-
tor of Eq. (2.23), ~

N
i=1

During a time At, each value of
;a changes so that

?‘ becomes (;1 + Ary)
and - - -
r. becomes (r, + Ar.).

Then,
N - -

N(ro + Ar,) =~ z:m‘(r1 + Ar,). (2.40)
i=1

Subtract Eq. (2.23) from Eq.
(3.40) and obtain

N
MAT, = ) my(ATy). (2.41)
1=1 :

Divide Eq. (2.41) by At.
N
U(AT, /At) = ) my(AT,/At).
i=1
In the limit as At - 0,

(Ary /At) -~ V;.

Then

N

i=1

N
Mv,= z:p‘,

i=1

where 31 - m?i is the momentum of the
i'th mass element.
The total linear momentum is

N
Pror = Z Pi.
i=1
Therefore,

Pror = MV, . (2.42)

Conclusions (1), (2), and (3) hold for
Eq. (2.42).

2.8 COLLISIONS

Momentum is a vector quantity.
The vector character of momentum may
not have been fully apparent in the
one-dimensional explosions and colli-
sions discussed earlier. In systems
free to move in two or three dimen-
sions, the vector character of the
conservation of momentum law is clear.

In this secticn we extend this
discussion to more than one dimension,
and we will also consider collisions
in which the colliding objects re-
bound and do not stick together after
they collide. The completely inelastic
collision discussed earlier is not an
uncommon occurrence in nature, but it
is u special cazse. Collisions in which
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objects move apart after the collision
are abundant in nature. In the study
of physical or biological processes,
we often study the interaction of one
particle with another or the interac-
tion of one object, or system, with
another. Often these interactions
occur as collisions. We say that a
collision occurs when two objects,
which were initially separated, come
together to interact with one another
and then, in most cases, separate
again.

An understanding cf collisions
is helpful, and there ore some things
that the laws of physics can say in
general about them. One of these is
that if the collision occurs in such
a way that the participants of the
collision are isolated (or temporarily
isolated) from the "outside world,"
then the total momeatum of the system
of participants must be conserved.

We will assume that there is a
period of time both before and aiter
the collision during which each of
the colliding particles moves with a
constant definable momentum. The total
monentum either before or after the
collision will equal the vector sum
of the momenta of the colliding parti-
cles.

We will also assume that the time
duration of the actual collision or in-
teraction between the colliding parti-
cles is small and negligible. The
image of the collision is that of a
brief impact during which each parti-
cle involved more or less suddernly
changes its motion. This condition
upon the time duration of the colli-
sion is not necessary if the system
involved is well isolated. If the sys-
tem is not isolated, we can assume
that there is a "temporary isolation"
of the system from the outside world
during the collision providing that
the collision time duration is short.

The analysis of such a collision
will be only approximately correct;
often an approximation is good
enough. To say that the collision
time is short is to say that there

is not enough time during the col-
lision for the "outside world" to
change the motion of the system by
very much. Look at one particle in-
volved in the collision and examine
its change in motion during the
collision impact. If there is a
coupling with the outside world,
the momentum of this particle will
be changed partly by the interac-
tions with the outside world as
well as by the interactions with
the other particle(s) in the sys=
tem during the collision. The sum
of these two changes in momentum
equals the resultant change of
momentum of that particle, Ap.
Then

Ap = A;coll + A-l;ov

where Apco11 €quals the change in
momentum due to intrasystem interac-
+ions with the other particle(s) of
the system and Ap,y €quais the
change in momentum due to the inter-
system interactions (with the "out-
side world"). The assumption of
“temporary isolation® used in study-
ing much of collision physics can
be stated in terms of these momen-
tum changes as,

APcoll > APovw

so that Apow can be neglected.

2.8.1 A Sample Collision.

Consider the collision shown in
Figs. 2.22a and 2.22b. Figure 2.22a is
a stroboscopic photograph of two hard
steel spheres of unequal mass which
move toward one another, collide, and
separate again.

Figure 2.22b is a scale drawing
made from the photograph of Fig. 2.22a.
The time intervals between successive
positions of each sphere (1 and 2),
are equal. The displacement between
successive positions of each sphere
is then proportional to the velocity
of the snhere. Velocity measurements
can be taken directly from the draw-




THE LAW OF MOMENTUM CONSERVATION 49

0 {

rig. 2.22a A multiple-flash photograph
which shows equal-time intervals in the
collision between two spheres of unequal
masses. The mass of the large sphere is
201 grams (0,201 kg) and the mass of the
small spherec is 85 grams (0.085 kg) . Both
spheres enter from the top of the photo-
graph. (From PSSC Physics [D. C. Heath and
Company, 1960] .) -

ing proportional to the displacement
between successive positions of each
sphere.

The spheres shown in Fig. 2.22a
are made of hard steel and are sus-
pended from long strings, like pendu-
lum bobs. The two bobs are pulled up
and away from their equilibrium posi-
tions and released. They are pulled
back so far that the striugs are al-
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Fig. 2.22b A scale drawing from the photo~
graph of Fig. 2.22a. The center-of-mass
point of the two spheres has been deter-
mined for each instantaneous position
shown in Fig. 2.22a. The constancy of the
velocity of the center-of-mass point is a
measure of the constancy of the total mo-
mentum.

most horizontal when the spheres are
released. The speed of the spheres
increases as they swing down, but
they move at almost constant velocity
in the region of the "bottom'" of the
swing where the collision occurs. We
assume that the system consisting

of these two spheres is isolated from
the outside world insofar as horizon-
tal motion is concerned, even though
each sphere is connected to the out-
side world by its string. In the re-
gion of the collision the string is
almost vertical and has only a small
effect on the horizontal motion. The
total momentum of the system is the
vector sum of 31 and 3,. In this dis-
cussion, the subscript (i) will be
used to designate "initial" values of
momentum or velocity before the col-
lision. Similarly, the suhscript (f)
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Fig. 2.22c The velocity and momentum vec-
tors found from Fig. 2.22b. (I) the 1n1tial
velocity vectors of m, and m,, v11 and v,,,
and the final velocity vectors v,y and Vat s
are shown. The vector ve is the velocity of
the center-of-mass point. (II) The initial

will be used for "final" values after
the collision.

and final momenta of m, and m,. (IIX) The
(vector) sum of the initial momenta and

the sum 02 the final momenta have been
found separately. The value of vc obtained
from p,o, divided by the total mass is also
shown.

ity expressed in Eq. (2.43) can be
checked.

There is another way of express-
ing the momentum conservation in this
collision that will be useful in un-
derstanding Newton's third law of
mechanics when we encounter it. This
way of expressing momentum conservas
tion is

The initial velocities are seen
from the Fig. 2.22 to be almost equal.
The exact magnitude of one of the ini-
tial velocities is taken as the spa-
cing of subseguent positions of the
spheres before the collision and the
velocity direction of each sphere is
along the line of images. The product
of mass and velocity of each disk
equals the momentum of each; the
initial momenta are shown drawn to
scale in Fig. 2.22c, for masses
m, = 85 g, my = 201 g.

Since the two objects, 1 and 2,
form an isolated system, the final - -
total momentum (after tie collision) Pror¢t) ™ Pror¢e) ? (2.43)
equals the value of the initial total
momentum. Both objects experience mo=-

i
I
1

Ap, + Ap, = 0, (2.44)

where 531 and AB, are the momentum
changes cf particles 1 and 2.

' The Eq. (2.44) is obtained di-
rectly from Eq. (2.43),'

which is, in the form of the particle

mentum changes due to the collision, mcmenta,

but the sum of their nomenta remains - - - -

unchanged. Because momentum is a vec- Py + P2y = Piz + Pat

tor, both magnitude and direction of

the system's total momentum m:st re- Then

main constant. Let p“n.equal the to- - - - -

tal momentum of this system. Then (P = P1s) + (Pag — P2y) = 0. (2.45)

-p.M(i) - EM(f) ’ (2.43) sinqe Apl - (plf - p’.’.)’ (2.46)

The vector sum of -l;u and Bzg is . and Ap; = (pg Pi2), (2.47)

shown in Fig. 2.22b. By comparing
their sum, p'rur(t) in Fig. 2.22c with
Pm(t) in the same ligure, the equal-

then, from Eqs. (2.45), (2. 46) , and
(2.47) we obtain Eq. (2.44)
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P?o

Fig. 2.24 The collision as it appears in
the center-of-mass (0°') fr..e of reference.
The pairs of letters a-a, b-b, etc., cor-
respond to these pairs of letters exactly
as they appeur in Fig. 2.22b. This f!gure
is drawn to the same scale as Fig. 2.22b.
The vectors representing the momenta have
been drawn at twice the length they would
have if the scale of Fig. 2.22: were used.

in the laboratory frame as shown in
rig. 2.23.

2.8.2 The Sample Collision in the
Center-of-Mass Reference Frame.

The description of collisions is
often simpler in the center-¢f-mass
reference frame. Choose the moving
frame (0') so that it moves with the
center of mass. We can place the ori-
gin of the (0') frame at the center
of mass of the two particle system.
Therefore choose

u=v,,

where Vo is the velocity of the center
of mass point of our two particles in
Fig. 2.22.

Figure 2.24 shows how this colli-

sion looks in the center-of-xass frame.

The system has a total momentum equal
to zero in this reference frame. No-
tice that the momentum of particle 1
is antiparallel to »he momentum of
particle 2 in both the initial and
final states of this system. (Since

l(//iic'

The magnitude of each final momentum is
about 12% less than the magnitude of each
initial momentum in this collision. In com-
paring the changes of momentum of each
sphere in this reference frame, found froa
Pe' and P,’, with the changes of momentum
shown in Fig. 2.23, keep in mind that there
is a factor of two difference in scale of
these two figures.

the collision is not "head on," the
initial trajectories do not neces-

sarily lie along one straight line

even though they are parallel.) The
sum (p,' + p,') is zero both before
and after the collision.

The diagrams for vector addition
in this reference frame are certainly
simpler than in the frame of Fig.
2.22b. The momentum of particle 1 is
related to the momentum of particle
2 by a simple change in sign. There
are other features of this representa-
tion that make it attractive ia under-
standing and analysis. Before getting
to them, let us see how to transform
the description of this collision from
the laboratory frame to the center-of-
mass frame.

How is the velocity of this frame,
vc, deternined from a knowledge of
pl‘ and pz‘? The most direct way to
obtain vc is to make use of the fact
developed in section 2.7 that the to-
tal momentum of the system equals the
product of the total mass of the sys-
tea and the velocity of the center-of-

mass poiunt. Then,
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Pe
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P?o

Fig. 2.24 The collision as it appears in
the center-of-mass (0') fr..e of reference.
The pairs of letters a-a, b-b, etc., cor-
respond to these pairs of letters exactly
as they appear in Fig. 2.22b. This f/ gure
is drawn to the same scale as Fig. 2.22b.
The vectors representing the momenta have
been drawn at twice the length they would
have if the scale of Fig. 2.22: were used.

in the laboratory frame as shown in
Fig. 2.23.

2.8.2 The Sample Collision in the
Center-of-Mass Reference Frame.

The description of collisions is
often simpler in the center-cf-mass
reference frame. Choose the moving
frame (0') so that it moves with the
center of mass. We can place the ori-
gin of the (0') frame at the center
of mass of the two particle system.
Therefore choose

3 -5,
where Vo 1s the velocity of the center
of mass point of our two particles in
Fig. 2.22.

Figure 2.24 shows how this colli-

sion looks in the center-of-mass frame.

The system has a total momentum equal
to zero in this reference frame. No-
tice that the momentum of particle 1
is antiparallel to vhe momentum of
particle 2 in both the initial and
final states of this system. (Since

J//ﬁi“

The magnitude of each final momentum is
about 12% less than the magnitude of each
initial momentum in this collision. In com-
paring the changes of momentum of each
spbore in this reference frame, found from

' and p‘ » With the changes of momentua
lho'n in Fig. 2.23, keep in mind that there
is a factor of two difference in scale of
these two figures.

the collision is not “head on," the
initial trajectories do not neces-

sarily lie along one straight line

even though they are parallel.) The
sum (p,' + p,') is zero both before
and after the collision.

The diagrams for vector addition
in this reference frame are certainly
simpler than in the frame of Fig.
2.22b. The momentum of particle 1 is
related to the momentum of particle
2 by a simple change in sign. There
are other features of this representa-
tion that make it attractive ia under-
standing and analysis. Before getting
to them, let us see how to transform
the description of this collision from
the laboratory frame to the center-of-
mass frame.

How is the velocity of this frame,
vc, deter-ined from a knowledge of
pu and sz? The most direct way to
obtain 7; is to make use of the fact
developed in section 2.7 that the to-
tal momentum of the system equals the
product of the total mass of the sys-
tea and the velocity of the center-of-

mass poiunt. Then,
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(m; + -3);; - i&x *'i%t
and
- E! + 331
- 2.51
Ve o m)’ ( )
where m, and m, are the masses of
particles 1 and 2, respectively.
Equation (2.51) could also be
written in terms of the final particle
momenta of the system Since P, is
constant .

- Pt + Da¢ .
Vo = _('n rar) (2.52,

Whe2n V., is obtained from the to-
tal momeutum of the system as in Eq.
(2.5)) or Eq. (2.52), it is often re-
ferred to as the velocity of tke
vcenter-of-momentum” or the ‘“‘zero-
momentum"” reference frame as well as
"the center-of-mass" reference frame.
We will use the phrases "center-of-
mass frame," "center-of-momentua
frame," and "zero-momentum frame® in-
terchangeably. (The center-of-momentum
concept is especially useful for ex-
ample if one of the particles is a
photon which has momentum even though
its rest mass is zero.)

We already have the total momen-
tum of particles 1 and 2 defined in
Fig. 2.22c. When Py 18 divided by
the total mass, (m, + m;), the result
is the center-of-mass vector, veloc-
ity Ve, shown in Fig. 2.22c(III).

For convenience, the instanta-
neous position of the center-of-mass
point, C, of particles 1 and 2 have
been indicated on Fig. 2.22b. The dis-
placement between subsequent positions
of C in Fig. 2.22b is a measure of
v which can readily be coupared with
Ve in Fig. 2.22c(I). Note also that
the spacings between subsequent posi-
tions of C are equal, or, v, is con-
stant.

The momentum of a particle in the
"gero-momentun” frame is obtained
irom Kq. (2.49) with u set equal to

'..

R "h - m,. (2.53)

P2’
Pu’
B - -
e A AW
Par
F V
Py’ -
(~mw,)
- ““5&) ';
Pys u

V

Fig. 2.25 Scale drawings representing the
determination of the momentum of each parti-
cle in the zero-momentum reference frame
according tc Eq. (2.50) of the text. The
values of the momenta in the laboratory.
frame ard the value of v, are taken from
Fig. 2.22c. A convenient way of finding the
length of the lines representing the vec-
tors Ix,vc is to draw them as the appropri-
ate ‘v'ructional .length of vector l’m of Fig.
2.22c. 8ince Vo = Pygr/(m; + n,), n, Ve
equals Pyor(®, /m; + m,) and m, v, equals
Pror(my/m;, + m,). The scalc of this drawing
is the same as that of Fig. 2.24.

By applying the momentum trans-
formation rule of Eq. (2.53) to each
particle, the momentum of each parti-
cle in the (0') frame is found from
each particle's momentum in the (0)
frame. The application of the trans-
formation rule is represented by the
vectors, drawn to scale, in Fig. 2.29.

The direction of the vectors
drawn in ¥ig. 2.25 are identical to
the directions of the same vectors
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m, v,
——

b = IMPACT PARAMETER ~ v,’ ™2

Fig. 2.26 The trajectories of two parti-
cles, », and m,, are shown by dotted lines
as they would move if the particles were
to continue their initial motions w:ithout
deflecting one another. Tho "impact paraze-
ter," b, is shown.

as they appeared an Fig. 2. 42 The
vectors pd , pzt ’ pu and p“ ap-
pear in Fig. 2.24 as they are deter-
mined in Fig. 2.25.

The reader can find the vector
representing the change in momentum
of particle 1 and of particle 2 in
the Q' frame from the defining rela-
tions,

AE;' "Bu T 311'
‘AB;' "‘351' - 3;1'-

Dravy or sketch these vector diagrams
shoaing Apl' and Apz . Does

A.pl o —Ap, s thut 1s, are the momen-
tum changes equal and opposite in this
reference frame? Compare Apl' with Apl
of Fig. 2.23. Compare Ap,' with Ap, of

Fig. 2.23.
Let us say that the momentum of

one particle is known in the zero-
momentum frame after the collision.

We can quickly find the momeatum of
the other particle at that same time
by simply multiplying the first parti-
cle's momentum by minus one.

Notice that the law of comnserva-
tion of momentum does not provide
enough information to allow the unique
prediction of both momenta after tke
collision even though the initial mo-
menta of both particles may be known.

There are many (an ii. inite num-
ber of) pairs of vectors representing
P!y and P}y that add up to zero total
momentum for the system. The question
of which of these pairs is the cor-

rect one appearing in Fig. 2.24 can-
not be answered on the basis of mo-

mentum conservation alone.

This limitation on prodictabil-
ity oan be demonstrated mathomati-

cally. Ccllisions in a plane are
defined by two-dimensional vectors.
Two numbers are required to define
a two-dimensional vector: its direc-
tion (an angle) and its magnitude.
1f, for example, both final momenta
are unknown, there are four unknown
numbers, two for each momentum
vector. The law of conservation of
momentum provides one vector equa-
tion that connects these four un-
knowns with the total momentum
which is assumed known. Since this
is a vector equation, it must place
two conditions on our unknowns. In
algebraic form, the vector equation
beccmes two algebraic equations;
for example, as one equation for
the x components and one for the y
component-. These two equations
reduce the number of unknowns from
four to two. Even a knowledge of
what happens to the kinetic ener-
gies of the particles (discussed

in Chapter 3) would add only one
more equation and thus reduce the
number of unknowns to one. A unique
solution cannot be found from the
conservation laws alone.

The missing information has to
do with the details ‘of the collision.
In principle, the final momenta can
be predicted fully if (a) the separa-
tion between the two initial trajecto-
ries and (b) the nature of the inter-

3ction between particles are known.

Sometimes the two objects are
spherical; i.e., the interaction
between them depends only on the
distance separating them and not
upon the direction of one from
another. Then all that one needs to
know about their initial trajecto-
ries is the "impact parameter" il-
lustrated in Fig. 2.26. The impact
parameter is the distance between
the two trajectories that would be
obtained if there weie no interac-
tion. It would be the discance of
closest approach botwoon contors
12 the two objocts continuod undo-
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flected. Head-on collisions have
zero impact parameter.

We shall not be concerned here
with prediction of trajectories of
all particles in a collision.

2.8.3 Examples of Momentum Conserva-
tion Described in the Labora-

tory and in the Zero-Momentum
Frames of Reference.

Each of the pairs of photographs
used in these examples was made by two
cameras sSimultaneously. One camera was
fixed in the laboratory and the photo-
graphs made by it are labeled (a). The
other camera was mounted in a moving
frame which traveled at the same
velocity as the center of mass of the
system being photographed. The photo-
graphs made by this camera are labeled
(b). A similar camera set-up was used
in making Fig. 2.20.

The colliding objects used in mak-
ing these photographs ars d:-y-ice disks
or pucks similar to those .lescribed in
Section 1 of Chapter 1 wita just one
exception. Each of the dry-ice pucks
used here contains a nine-inch-long
bar magnet mounted vertically along
its axis. The magnets are mounted so
that their "north" ends are down and
their "south" ends are up. When the
dry-ice pucks are near one another
on the horizontal surface on which
they glide, the magnetz repel one an-
other. Their "interaction” is a mag-
netic one. These dry-ice pucks collide
without actually "touching" each other.
The interaction between ihe magnets
causes the momentum of each dry-ice
puck to charnge during a collision or
an explosion."

The center of mass of the dry-ice
pucks is marked; one is marked by a
cross (x) and the other is marked by
an open circle (o). The coilisions can
be considered to be collisions be-
tween point particles located at the
marked positions. The photographs ’
show instantaneous positions of the
dry-ice pucks taken with successive
light flashes equally spaced in time.

Look at each of these photographs,
with these.questions in mind.

(1) In the (a) photographs, can
you locate the center of mass for each
subsequent position of the dry-ice
pucks? ]

(2) Can you predict what the (b)
photograph should look 'like from the
(a) photograph and a knowledge of the
mass ratio?

(3) Is the velocity of the center
of mass in (a) constant? Should it be?

(4) Is the momentum of this 2-
particle system conserved?

(5) Is the change of momentum of
one. particle equal and opposite to
the change of momentum of the other
particle in each photograph?

Example 1. Collision Between '‘wo Ob-
jects of Equal Mass.

The collision between two mag-
netic dry-ice pucks of equal mass is
shown in Fig. 2.27. In this collision
one dry-ice puck (1) is initially in
motion and the second (2) is initizlily
at rest in the laboratory frame of
reference. The Fig. 2.27a is from the
laboratory camera and the Fig. 2.27b
shows the collision in the zero-
momentum frame.

In Fig. 2.27a, mass (1) initially
approaches mass (2) from the left.
During the collision (1) forces (2)
away and (1) reacts by being deflected
from its original ‘rajectory. After
the collision they both move to the
right while (1) also moves toward the
lower edge of the picture and (2)
moves toward the upper edge.

In Fig. 2.27b, in the center-of-
mass reference frame, the masses move
toward one another with (1) coming
from the left and (2) coming from the
right. After the collision, (1) is
moving toward the bottou of the photo-
graph and (2) is moving toward the
top.

Figure 2.28a and b show the vec-
tors representing the momenta of (1)
and (2) of Fig. 2.27a and b. Since
(2) is initially at rest in the labora-
tory frame its momentum in that frame

P
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Fig. 2.27a Multiflash photograph of <olli-
sion betwnen two magnetic dry-ice pucks of
equal mass. One mass, marked (x) is ini-
tially at rest znd the other, (o) is ini-
tially in motion from the left. The photo-
graph was taken in the laboratory frame of
reference. (Courtesy Film Studio, Educa-
tional Services, Incorporated.)

is zero. Let p,y = p, in the lab frame.
Then the total momentum in this frame
is

Pror ™ Py + P3y
Bm' Bo-

The vectors p,, and p,y shown in
Fig. 2.28a are drawn from velocity
moasuroments made from Fig. 2.27a.
The vector sum of P,¢ and p., equals
Po Witiiin a two percent accuracy and
momentum is conserved.

01 23 45 0 i ? ? 1 5
[P N BN N l $ . Rk . " 5 st
| | i ]
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¢ ] ! |
t ' i i
L — >: ! Prors —t
Py =Po D o
Pay Pas

Fig. 2.28a The momentum vectors represent-
ing initial and final momenta of pucks (o),
p,, and (x), p,, of the collision of Pig.
2.27a. The mraentum of each puck is shown
for the labcravixy frame of roference. Col-
parison of the resultant p" + Pyg aNG yu
is used to oconfirm the oconservation of mo-

sentum.

Fig. 2.27b A multiflash photograph of the
game colliision shown in Fig. 2.27a. This
photograph was made simultaneously with

Fig. 2.27a by a camera moving in the zero-
momentum (center-of-mass) frame of refer-
ence. There is one-to-one correcpondence be-
tween the positions of the pucks in this
figure and in Fig. 2.27a. (Courtesy Film
Studio, Educational Services, Incorporated.)

The init:al and final momenta of
particles 1 and 2 are shown in Fig.
2.28b in the zero-momentum frame. The
total momentum can be seen to be zero
in this frame. Prove to yourself that
the value of p!; and pj, should be
(P,/2) and (~P,/2), respectively, in
this reference frame.

Example 2. Collision Between Two Ob-
jects of Uncqual Mass, Mass Ratio Two
to One.

The collision becween two mag-
netic dry~ice pucks of unequal mass
is shown in Fig. 2.29. In Fig. 2.29a
one dry-ice puck (1), mass M, , initi-
ally approaches a second puck (2)

Pay’
—_— -
5.10' Pz"
Py’

Fig. 2.28b The momentum vectors of the
pucks of Fig. 2.27b before and after the
collision in the zZero-momentum frame. The
sux of the momenta is zero both before and
after the collision.
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Tig. 2.29a Multiflash photograph of a col-
1ision of two magnetic dry-ice pucks of un-
equal mass. One mass, marked (x) is ini-
tially at rest. The other dry-ice puck, (o),
im initially in motion from the left. The
(o) puck has twice the mass ¢f the (x)

puck. The photograph was taken iz the labor-
ntory frame of reference. (Courtesy Film
Studio, Educational Services, Incorporated.)

which is at rest. The mass of (1), M,
equals twice the mass of (2), M.

The general directions of motion
of the magnetic dry-ice pucks in Fig.
2.29 are similar to the directions of
wmotior in Fig. 2.27. The exact differ-
ences in their trajectories are due
to the different mass ratio of the
pucks in the Fig. 2.29.

Figure 2.30a and b show the vec-
tors representing the momenta of (1)
and (2) of Fig. 2.29a and b, respec-
tively. Since (2) is initially at rest
in the lab frame (Fig. 2.29a) the to-
tal momeutum of the syrtem equals the
initial momentum of (1), P,y . Let

?%1 - 230
0.1 4 é 10 0 2 4 é6 810
i A e —
i ) |
! !
| } : - [
! . ! Provs '
Py = 2Py \ j..i
Pt P

Fig. 2.30a Tho momontum voctors roprosent-
ing tho initial and final momonta of pucks
(), ;, and (x), ;,, of the collision in
Fig. 2.29a. The momentum of each puck is
shown in the laboratory frame of reference.
The resultant of p,g + Pyz can be compared
with p,, to confirm the conservation of
momentum.

Fig. 2.29b A multiflash photograph of the
same collision shown in Fig. 2.29a. This
photograph was made simultaneously with

the one used in Fig. 2.29a by a camera mov<
ing in the zero-momentua (center-of-mass)
frame of reference. Each puck position in
this figure corresponds to a puck position
shown in Fig. 2.29a. The initial motion is
from the left and the right. (Courtesy Film
Studio, Educational Ssrvices, Incorporated.)
80 that

-

Pror ™ 230.

The vecto.'s p,y and p,y shown in
Fig. 2.30a are drawn from veloc’ 'y
measurements taken from Fig. 2.29a,
and a knowledge of the mass ratio.
Compare the vector sum (Pye + Pa21)
with 2p, to see that the momentum is
corserved. Note that neither the vec-
tor sum of vel»-ities nor an algebraic
sum of momenta is conserved. Only the

vector sum of momentum is conserved.

Momentun is a vector quantity!

ir. Fig. 2.30b the initial and
fin:1 momenta of (1) and (2) are
s%.wn for the zero-momentum frame.
Prove to yourself that the initial
values, Py ' and p,y', in this refer-
ence. frame should be (2p,/3) and

(-2p,/3), respectively.
Tsu'
L e ot e

Pu’ Eﬂ' LF"'

Fig. 2.30b The momentum vectors of the
pucks of Fig. 2.29b before and after the
collision in the zero-momentum frame. The
sum of the momenta is zero both before and
after the collision.

Y




68 MATTER IN MOTION

Fig. 2.31a Multiflash photograph of an
explosion of two equal mass magnetic dry
ice pucks. The "explosion" is triggered by
the breaking of a solder wire conuection
between the two pucks. Thc solder wire is
broken by melting it in a match flame. The
wiggly white line is due to the match
flame. The coupled pair are initially mov-
ing toward the right. The motion is shown
in the laboratory frame of reference. (Cour-
tesy Film Studio, Educationul Services, In-
corporated.)

Example 3. Moving Explosion of Two
Objects Having Equal Mass.

The previous moving explosion con-

gidered earlier was for one dimen-
sional motion. In this example, the
line along which the two-particle ex-
plosion occurs is not parallel to the
initial motion of the system in the
laboratory reference frame.

The explosion is caused by the
repulsive force between two magnetic
dry-ice pucks. Initially the two ob-
jects are held together by a thin
solder .tetal wire. This metal melts
at a relatively low temperature and
it will melt in the flame from a
match. In performing the experiment,
the two magnetic pucks are first tied
together by a loop of solder wire.

The pair is given its initial velocity
along the table, and then the experi-
menter brings a flame from a match to
the wire solder. When the solder melts,
the "explosion" occurs in that the two
magnetic pucks forc: each other apart.
The use of the match flame as the

Fig. 2.31b A multiflash photograph of the
same explosion shown in Fig. 2.31a. This
photograph was taken simultaneously with
the one used in Fig. 2.31a by a camera
moving in the zero-momentum (center-of-
mass) frame of reference. In this frame of
reference the pucks are initially at rest
and they move away from each other along

a straight line after the explosion. (Cour-
tesy Film Studio, Educational Services, In-
corporated.)

trigger for the explosion is 2 negli-
gible perturbation on the system and
the system can be considered to be
isolated.

The explosion of two equal mass
pucks is shown in Fig. 2.31la and b.
The wiggly white line in the photo-
graphs is due to motion of the match
flame used. In Fig. 2.31a, the coupled
pair of dry-ice pucks initially move
toward the right. In the center-of-
mass reference frame, shown in Fig.
2.31b, the dry-ice pucks are initilally
at rest and move away from one another
along 2 straight line after the ex-
plosion.

Let the initial momentum of each
dry-ice puck in the pair equal p,.

The total momentum of this system in
the laboratory frame is then

Pror ™ Piy + P2y
;le‘- 2-60-

Fig. 2.32a shows the initial and
final momenta of the dry-ice pucks of
Fig. 2.31a as drawn froa measurements
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Pig. 2.32a The aomentum vectors reopresent-
ing the initial and final momenta of the
pucks (o), p,, and (x), p,, in the moving
explosion of Fig. 2.31a. The momentum of
each puck is shown for the laboratory refer-
ence frame.

of velocity taken from Fig. 2.31. The
vector sum of final momenta shows the
conservation of momentum at a value of
2p°, to within experimental accuracy.

Since the initial momentum of
each dry-ice puck is zero in the zero
momentur frame, only the final momenta
appear in Fig. 2.32b. That the vector
sum of the final momenta of the two
pucks p,s' and DP,y' is zero can be
seen in Fig 2.32b.

Example 4. Moving Explosion of Two

Objects Having Unequal Mass, Mass
Ratio Two to Ome.

Figure 2.33a shows the two mag-

Fig. 2.33a Multiflash photograph of two
dry- ice pucks of unequal mass. The mass
ratio is two. The coupled pair of pucks is
initially moving toward the right in the
photograph. The puck marked (o) ha< twice
the mass of the puck marked (x). The motion
is shown in the laboratory frame of refer-
ence. (Courtesy Film Studio, Educational
Services, Incorporated.)

‘\Fu'

Fig. 2.323b The momentum vectors of the
pucks of Fig. 2.31b after the explosion in
the zero-momentum frame of reference. The
pucks are at rest before the explosion in
this reference frame.

netic dry-ice pucks move in from the
left and explode apart near the center
of the photograph. Clearly the more
massive dry-ice puck acquires a lower
velocity perpendicular to the original
direction of motion than does the less
massive one. We let m, equal 2m, and
draw the momentum vectors for this ex-
plosion from velocity measurements on
the photographs. Figure 2.33b shows
the explosion in the center-of-mass
frame of reference.

In Fig. 2.34a, the initial and
final momenta are drawn to scale for
the explosion in the laboratory frame.

Fig. 2.33b A multiflash photograph of the
same expiosion shown in Fig. 2.33a. This
photograph was taken simultanecusly with
the one used in Fig. 2.33a by a camera mov-
ing in the zero-momentum (center-of-mass)
frame of reference. In this frame of refer-
ence the pucks are initially at rest and
they move away from each other aftrr thre
explosion in a straight line. (Courtesy
Film Studio, Educational Services, Incorpo-
rated.)

e a e e m il
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Fig. 3.34a The momentum vectors represent-
ing the initial and final momenta of the
pucks (o) and (x) in the moving explosion
of Fig. 2.33a. 1" e momentum vectors are
shown for the laboratory frame of reference.

The total momentum is

where Vv, is the initial velocity ob-
tained from the photograph. The vector
sum of the final momenta equals 3p,.

In the center-of-mass frame, the
final velocities are in ratio two to
one so that the momenta are equal and
opposite in this reference frame. The
vectors representing .l;lg ' and 3,,' in
the center-of-mass frame are shown in
Fig. 2.34b.

If ycu were given 3,, and Bm
for this explosion could you find the
Epmentum in the center of mass frame,
Pig'?

These examples have demonstrated
that the law of conservation of mo-
mentum works only if we treat' momentum

Fig. 2.34b The momentum vectors of the
pucks of Fig. 2.33b after the explosion in
the zero-momentum frame of reference. The
pucks are at rest before the explosion in
this reference frame.

as a vector quantity. The rules we
follow in finding sums and differences
are the rules of vector algebra. We
see that physical systems demonstrate
these rules. There is something marvel-
ous about this unity of mathematics
and physics. If you don't begin to

see this unity and understand some
examples of it, then you will rot have
seen physics. When physics problems

get solved they are first expressed

in a mathematical form. The transforma-
tion of physics problems into mathe-
matical problems is often the toughest
part of physics problem solving. Once
this is properly done, the solution to
the ensuing mathematical problem,

found by the logic of the mathematics,
will be the answer to the physics
problem!

As we study physics further, we
will see furthe+r phyeics examples and
problems. Without becoming expert in
problem solving, it is hoped that
there will be sufficient exposure to
grant some insight into the unity of
physics and mathematics.
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3.1 THE PRINCIPLE OF ENERGY CON-
SERVATION

Matter in motion has a price! The
inertia of mass at rest requires a
force to put that mass in motion, and
momentum still does not tell the whole
story. In the experizents discussced in
this book, a variety of agents were
used to put matter in motion: a com-
pressod spring, a chomical oxplosivo,
another pioce of moving matter, and so
forth. These agents possess a potenti-
ality for putting matter in motion
that differs somehow from the ability
of passive a_enis to change the direc-
tion of the veciur momentum. Energy,
the "price" of matter in motion, dif-
fers qualitatively from momentum. An
ice skater works very hard to build up
speed tn perform his tricks, but then
he giiues around iatricate curves and
loops with little further effort,
a2t4]e his vector momentum may change
rapidly and even reverse. The effort
required to make a moving railway
train turn a corner and redirect its
constant speed is qualitatively dif-
ferent from the ranting and snorting
of the engine that accompanies put .ing
it into motion from rest, giving it
energy of motion. There is something
called energy rc<ieased in the burning
of ths fuel that is r.eded to put the
train or the skater in motion, but
which is not required to change their
direciions. Energy is a measure of the
price of mass in motion.

A moving mass itself can, in a
collision, transfer motion to another
mass while leaving the rest of the
world »i1affected, and onte form of en-
ergy is present in the motion itself.
This form of energy is called kinetic
encrgy. Because ther: are many sys-
tems which do not involve obvious mo-
tion, but which contain the potemtial-
ity for producing it, a description of
the physical world must include other

CONSERYVATION OF
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forms of energy as well. The useful-
ness of the concept of energy stems
from the fact that we can define each
of these forms of energy in a measur-
able way, such that the total amount
of energy in the universe never
changes. Whenever an experiment has
been performed with careful bookkeep-
ing of all the different forms of en-
ergy, it has been found that the total
amount of onorgy remains constant. En-
ergy thkat is removed from onc form ap-
pears in others, and energy that ap-
pears in one form is always balanced
by energy that disappears in others. It
is in thie sense that physicists asso-
ciate their formulas for many different
forms of energy. A compressed spring,
a nuclear reactor; a gasoline-air mix-
ture waiting to burn do not share a
common appearance or feel or sound.
They do not appear at all alike to the
senses, and the different forms of en-
ergy are very elusive, but there is
always a strict correspondence in tte
amount of one kind of energy that is
exchanged for a given amount of another.
The great variety of forms in
which energy exists is suggested by
the number of methods one might use
to put a mass in motion. The mass
could be struck with another moving
mass, or it could be accelerated by a
stretched elastic band. It c..uld be
put into motion by tying to :«% ome end
of a rope that is wound at the other
end around the shaft of an electric
motor, or accelerated from rest simply
by the pull of the earth. A rush of
hot gases from the burning of gasoline,
the steanm from heated water, or a hur-
ricanc bdorn in the tropical oceans
can start the mass moving. In many
cases it is fairly easy to trace the
L1story of the energy given the mov-
ing mass even farther back. The elec-
triec motor that accelerates the mass
may te connected by wires to a gemera-
tor ‘driven by a nuclear reactor many
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miles away. The living things from
which the gasoline was ultimately de-
rived took energy from the brilliant
rays of the sun. Fortunately many
kinds of energy in this bewildering
array have features in common, and
the different forms of energy canm be
grouped into classes and subclasses
that simplify the over-all picture.
The most convenient classifica-
tion of energies for our purpose is
in terms of the kinds of quaniities
needed to calculate them. In som2
cases these classifications will be
rough and will overlap a little, but
they are still useful. The kinetic
energy of matter in motion depends
only on the mass involved and the

- speed with which it is moving. If a

mass m moves with velocity v, its
kinetic energy KE depends on m and v
(the size of v) according to the equa-
tion,

Kk = imv3. (3.1)

In the mks system of units (meter-
kilogram-second) this equation gives
the energy in units-called Joules.
Other kinds of 2nergy, which can
be converted to kinetic energy, de-
pend only upon a position. The name
potential energy for this form prob-
ably arose because it has the poten-
tiality of being converted to the more
obvious kinetic energy. The elastic
potential energy of a stretched or
compressed spring depends upc. its
length, the position of one end rela-
tive to the other. Opposite charges
on the top and bottom of a thurier-
cloud have a great attraction for each
other. The electrical potential en-
ergy which depends upon their separa-
tion is converted to a rushing kinetic
energy when the charges flow together
in a lightning stroke, and then to
light energy, heat energy, sound en-
ergy, and chemical energy in the s “
sequent collisions with intervening
air molecules. Because the forces be-
tween atoms themselves are basically
electrical in nature, many forms of
potential energy are really kinds of
electricai. potential energy. When the

bonds between atoms are slightly dis-
torted, as in stretching a spring,
the change in elecirical potential
energy is sometimes called elastic
potential energy. When new electrical
bonds between atoms are created and
old ones destroyed, as in the burning
of gasoline, the change in electrical
potential energy is included as chem-
ical energy.

The gravitational poiential en-
ergy associated with a r:ck separated
from the surface of the earth can be
converted to kinetic energy by letting
rock and earth come together. If the
rock falls only a few hundred feet,
the kinetic energy is most apparent
in the motion of the rock; but if it
falls for thousands of miles, much of
the energy will beused in heating
and vaporizing the rock as a white-
hot shooting star flashes across the
sky. Any two objects have a gravita-
tional potential emergy that depends
only on their masses and their separa-
tion. This statement applies not only
to the earth and another object, but
to two asteroids, two dust particles,

" or two atoms isolated in space. At

the surface of the earth gravitational
interactions are very important. Be-
tween two dust particles the gravita-
tional potential energy is very small,
but then so are the dust particles
themselves. The gravitational poten-
tial emergy has an important effect
on the future of a cloud of countless
billions of ztoms and dust particles
as it collapses into a hot (energetic)
ball of fire called a star. However,
in assembling a proton and an elec-
tron into cne hydrogen atom, the
change of gravitational potential
energy is so small compared with the
changes in electrical energy that it
can always be neglected. For masses
typical of elementary particles like
the clectron and proton, and for the
amount of electric charge on these
particles (the smallest nonzero elec-
tric charge), the electrical energy
changes completely dominate the gravi-
tational enorgy. Only for wlectrically
neutral matter (with mo net electrical
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charge) is gravitational potential en-
ergy significant.

The motiuns of macroscopic ob-
J2cts can be described in terms of
gravitational or electrical forms of
potential energy. Even the interac-
tions of electrons and atomic nuclei
a8 they interact to form atoms and
molecules involve potential energies
that are basically electrical. Of
course, describing the wealth of var-
ied phenomena that make up the motions
of the stars, the planets, their in-
habitants, and the atoms of which they
are composed into changes of kinetic
and two kinds of potential energy is
a terribly incomplete description. But
it does reveal a thread that runs
through the whole tapestry of natural
phenomena.

In laboratory experiments which
probe the nucleus of the atom itself,
in events which involve distances
only one ten-thousandth of an atomic
diameter, new forms of potential en-
ergy become important. Nuclear po-
tential energies describe the effects
of forces which act only over the very
short distances found between parti-
cles inside the atomic nucleus (less
than 10~!* meter). They are important
to tke macroscopic world in that they
determine the constituents from which
it is made. In this submicroscopic
realm the description of nature in
terms of forces is very complicated,
and the use of the energy concept has
been a necessary part of whatever
progress has been made in understand-
ing it.

To build a conservation law for
energy, the kinetic and potential en-
ergies of an object treated as a parti-
cie (i.e., specified by the position
of a point) are not enough. The -mo-
tions of the parts must also be taken
into account, if energy can be trans-
ferred to or from these motions. A
walking man has more kinetic energy
than just the kinetic energy of his
center-of-mass motion. Figure 3.1 does
not do justice to the full complexity
of a man in motiom, but it illustrates
the point with a model which is per-

Fig. 3.1a A man walking. This is a very
complicated motion which involves more than
Just one mass moving with a velocity. The
next two parts of this figure illustrate
Just a little of this complexity.

= >

v \' .
Fig. 3.1b A simple model that can "walk."
Here it is sliding. The main mass M and
the two feet share the common velocity V,
which is therefore the velocity of the cen-
ter of mass. The kimetic energy is
(M + 2m)V2,

MV

L4

-

(0]

Fig. 3.1c The model "walking." If ome foot
is at rest on the ground and the other mov-
ing forward at velocity 2V, the over-all
center of mass still moves with the mean
velocity, V. The total kinetic energy ex-
ceeds that in Fig. 3.1b:

KE = iMVZ + im(2V)?
- 4(M + 2m)V2 + V2,

—3 v

haps the next step in complexity from
a single mass moving with one velocity.
As well as internal kinetic en-
ergies associated with their veloci-
ties, real objects commonly hava in-
ternal potential energies associated

—— T
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(a) Two equal masses connected by a spring
of negligible mass. In the inertial frame
in which the center of mass P is at rest,
the two masses have equal and opposite
velocities. A particular situation at one
instant of time is.illustrated here.

(b) Viewed from another inertial frame,
which happens to be our laboratory frame,
épo center of mass moves with the velocity
u. The masses move in this frame with
velocities (u ~ v') and (u + v') at the
moment illustrated.

(c) A single mass, 2m, moving with the cen-
ter-of-mass velocity U.

Fig. 3.2 The total energy of a vibrating
dumbbell from three viewpoints. The energy
of the dumbbell seen in the laboratory as
in (b) is

E=dn(u-v')?+ in(u + v')? 4+ PE of spring

= mu? + mv'? 4+ PE of spring.

This quantity differs from the kinetic en-
ergy of a single mass 2m moving with the
center-of-mass velocity u, as in (c). The
kinetic energy in (c) is

KE = §(2m)u?® = mu?.

We shall see later that it is more than
coincidence that the internal emergy (dif-
ference between E for (b) and KE of (c) is
Just the total energy calculated from the
viewpoint of (a), in the rest frame of the
center of mass:

Internal energy = {mv'? 4 {mv'?
+ PR of epring = av'? + PE of spring.

with the relative positions of thetr
parts. The moving vibrating dumbbell
of Fig. 3.2 1s made of two equal
masses m connected by a spring of
negligible mass. The motions of the
masses give this object kinetic energy,
and the spring stores a potential en-
ergy which depends on its length.
When the dumbbell participates in
processes in which energy is trans-
ferred only to or from the motion of
the whaole (as for example, when it is
released to fall under the influence
of gravity), then the whole dumbbell

- can be treated as one particle with a

total mass 2m, as in Fig. 3.2c. The
energy of the internal motions need
not be taken into account when it
remains constant. Only when the dumb-
bell is involved in more complicated
situations, where energy can be trans-
ferred to the motion of one mass rela-
tive to the other, is it necessary

to treat the two masses separately.
The total energy in the more detatled
analysis includes the kinetic energy
of a particle of mass 2m moving with
the center-of-mass velocity plus the
kinetic energies of the two masses m
in the center-of-mass reference frame
plus the potential energy of the com-
pressed or stretched spring. If the
center of mass of the system moves
with velocity U relative to the labor-
tory, and if the two masses move with
velocities +v' and —v' relative to the
center of mass, the total energy E of
the moving, vibrating dumbbell in the
laboratory r¢ ference frame is (see
Fig. 3.2),

E = §(2m)u? + inv'? + imv'? 4 DPE of
spring,

or

E - mu? + mv'?2 + PE of spring.

That the separation into center-of-
mass energy (Mu?) plus internal energy
(mv'? + PE of spring) takes place so
naturally will be shown later to be
more than a coincidence. When a part
of each mass m can change its motiun
separataly from the rest, an even more
detailed analysis is required.
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Objects of a size we can nandle
are all made of smaller pieoces called
atoms, and, in spite of our best ef-
forts, the energy of n large mass in
motion has a tendency to become dis-
sipated in the random motions of the
atoms that comprise it and its envi-
ronment. The air pushed aside as an
automobile passzs, the viscous oil in
the bearings, cthe squashing of the
tires, all transfer energy from the
macroscopic motion of the car to the
random motions of atoms. The conver-
sion of tae over-all directed kinetic
energy cof center-of-mass motion to
the energy of random atomic motions
we call heat can even be useful. The
kinetic energy of an automobile in
motion must sometimes be dumped in a
hurry. The automobile's brakes use
friction to convert its kinetic energy
to heat. A typical 1500-kilogram auto-
mobile moving at 30 meters per second
(about 60 mph), has a kinetic energy
of about 7 x10% Joules according to
Eq. (3.1). After its brakes have
brought it to a halt, there is no more
kinetic energy associated with the
car's center-of-mass motion. In search-
ing for a clue as to where the energy
went, even an initially uniformed ob-
server would be impressed by the tem-
perature rise of the car's brakes.

For the car above, the approximately
30 kilograms of steel in the brake
drums and shoes could be warmed by
more than 40°C. in one stop, becoming
too hot to touch. Further experimenta-
tion would reveal that the tempera-
ture rise of the brakes increases with
the kinetic energy of the car's motion.
More quantitative and careful experi-
ments on a variety of moving objects
would show that a definite amount of
kinetic energy is always required to
produce the same thermal effect. (A
common unit of thermal energy, the
calorie, is the amount of heat re-
quired to raise one gram of water one
degree centrigrade.) This consistency
in the amount of heat obtained from
each unit amount of kinetic energy
leads to the conclusion that heat is a

form of energy. Heat is a variety of

of internal energy associated with
the myriad random motions that go on
among the atoms of the hot brake lin-
ing or any other material substance.
The heat energy associated with
the motions of atoms in a solid brake
lining or molecules whizzing about in
a gas is too comrlicated and involves
too many particles to keep track of
in cetail. Fortunately, the total in-
ternal energy of such a system is of-
ten found to be equally shared, on
the average, among all the kinetic and
potential energies of its parts. When
the many particles in a complicated
svstem interact with each cother
quickly, so that the particles share
their energies in mutual interactions
many times before and during the time
it takes to make a measurement on the
system, the system can be thought of
as "homogenized," In such systems each
particle has its average share of en-
ergy, just as each drop in a quart of
homogenized milk has its share of
cream. Then the total energy of the
system can be simply related to the
average energy of each particle. The
average particle energy suffices to
predict many of the gross properties
of the whole system, for example, the
pressure of a gas in a container or
the length of a solid. A useful meas-
ure of the average energy of the parti-
cles in these complicated but homo-
geneous systems is the temperature.
Two identical objects (say, two
brake shoes) can be placed in physical
contact so that the atoms of one can
bump against the atoms of another, ex-
changing energy. If, on the average,
heat energy flows in these collisions
from object A to object A*, we say
that the temperature of A is higher
than that of A'. The temperatures of
A and A' are equal when, on the aver-
age, no energy flow takes place in
either diroction, as demonstratod by
watching some macroscopic property
that depends on the average particle
energy. When the two objects A and A'
are identically constructed, it comes
as no great surprise that energy flows
from the system with more energy to
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Fig. 3.3 Brake shoe A and thermometer B in
physical contact. The brake shoe and the
itiiermometer are 2¢ the same temperature
wher there is no net energy flow into or
out of the thermometer, as demonstrated by
the fact that the length of the liquid in
the capillary tube does not change with
time.

that with less; i.e., that a higher
temperature for the same system of
particles implies a higher total heat
eaergy. The temperature provides a
measure of this tendency of heat en-
ergy to flow that can also be applied
tc 1ifferent objects. Two different
objects A and B have the same temper-
atur.s if, when they are placed in
physical contact (for example a brake
shoe placed against a thermometer as
in Fig. 3.3), no energy flows on the
average in either direction.

Energy appears in still another
wonderful disguise as mass itsel”.
The kinetic and potential energies of
an object, from both its over-all mo-
tion and its internal motions, affect
its mass. The conversion factor from
energy to mass is so small, however,
that the mass changes associated with
the kinetic energies we find in =z
macroscopic object are insignificant
fractions of the mass of the object at
rest. The kinetic energy of a mass
moving at typical laboratory speeds
is given Eq. (3.1). The mass change
Am associated with any energy change
AE in a system is given by

Am - :—‘.f, (3.2)

where c is the speed of light (3 x 10°®

meters per second). If a mass m, at
rest is given a kinetic energy KE,
associated with the speed v by Eq.
(3.1), the corresponding increase in
mass is given by substitution of KE
from Eq. (3.1) for AE in Eq. (3.2):

dm v2

Am = 20—,

(3.3)

The fractional mass change (Am/m,) is

obtained by dividing both sides of Eq.
(3.3) by m:

Am v
iy o (3.4)

The speed ¢ is so extremely large,
compared with any reasonable labora-
tory speed that the fractional in-
crease in mass is negligible. A speed
of 1000 miles per hour is equal to
about 500 meters per second in mks
units. For this speed the frac.ional
increase in mass is only

242
;2; - Q(——g v :g,) 1 x 1012, (3.5)
It is only with microscopic particles,
where speeds can be made comparable
with the speed of 1light, that the frac-
tional mass increase with kinetic en-
ergy is significant.

For speeds v comparable to c,
Eq. (3.1) is no longer adequate, and
must be replaced by aa equation for
the total energy,

E = mc? (3.6)

in which the mass m is not the mass

of the object at rest, but the mass of
the object now, in the situation where
we want to know its energy. For an ob-
Ject with mass m, at rest, its mass

® when moving with speed v is

- — (3.7)

C

This gives it a total energy when in
motion of
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E = —L——o0u | (3.8)

at rest, its total energy, according
to Eq. (3.6) was only
Eo - noc’. (309)

The kinetic energy, which had to be
supplied to set it in motion, is

——— - — = 1 3 \
KE = E - Eo = -oc‘(1 - —==—.(3.10)
v
2 ‘?)
When (v3/c2?) is very small compared

:0 one, it is a very good approxima-
tion to write

c1 4 35 . (3.11)

When th's approximation is valid (and
v3/c? i8 certainly small in Eq. (3.5))
the expression (3.10) for the kinmetic
energy can be written

e = meet [1- (14 45)]

= dmyv? ., (3.12)
The error in the approximation in Eq.
(3.12) is of the size of myv'/c?,
which is smaller by a fraction some-
thing like v2/c? than the value #m,v3.
Recall Eq. (3.5) for "typical" numbers.

Not only kinetic energy changes
but also other kinds of energy changes
affect the mass of an object. The
kinetic and potential energy changes
in the chemical reaction

2"2 +‘03 - 21’[20’

are such that the internal energy of
the two water molecules is less than
that of the oxygen and iwo hydrogen

molecules by about 2 x 107! ?® Joules.
If this energy remains in the system
as internal or kinetic ensrgy of the

o)

o)
(a) Two H, viecules and one O, molecule at
rest. The total mass is M.

o'
‘ ‘\\
<(———- Iﬂski;——)> ‘lalb

(b) After the reaction the two moving jig-
gling H,0 molecules stili have mass M if
they retain the energy Q released by the
reaction as energy of internal motion.

Solog

(c) 1f the energy Q relecased by the reac-

tion is removed, the mass of the products

at rest is srmaller by the amount Q/c? than
the mass M of the reactants.

Fig. 3.4 In the reaction 2H, + 0, = 2H,0
the mass decrease is about 2 x 10°3° kg,
out of a total mass M of 6 x 10°2¢ kg, a
fractional decrease of 3 x 1n=1t

two water molecules, the total mass
stays exactly constant during the re-
action. When, however, the energy es-
capes and the total mass of two H,0
molecules at rest is compared with the
total mass of one O, and two H; mole-
cules, cthere should be a very small
difference (see Fig. 3.4). Because the
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Fig. 3.5 The selection of a system sepa-
rated from the rest of the universe by an

two H,0 molecules have 2 x 107!°?
Joules less internal energy, they
should have a mass smaller by

AE _ 2 x 10719
c? (3 x 10%)2

Am = = 2 x 10°3% kg

The fractional difference in the

6 x 10"2% kg total mass of four hydro-
gen and two oxygen atoms is only about
3 x 101!, Even if many water mole-
cules are used to boost the total mass
change Am by a large factor, such a
small fractional effect is undetect-
able with present laboratory tech-
niques. The mass changes in reactions
are significant fractions of the total
mass only when nuclear potential en-
ergies are involved. A slow neutron
(almost zero kinetic energy) can be
absorbed by the nucleus of U23% (an
isotope of the element uranium that
has, in addition to the 92 protons of
any uranium atom, the particular num-
ber of 143 neutrons in its nucleus).
The resulting nucleus of 236 particles
is unstable and splits roughly in half.
The result of the reaction is the re-
lease of two lighter atomic nuclei,
some excess neutrons, and an energy
of about 3 x 107! Joules. If the en-
ergy escapes and the mass of the proud-
ucts at rest is compared with the

mass of the reacting particles at
rest, the lower internal energy of the
products is reflected in a mass de-
crease of 4 x 10°2® kilograms. In this
nuclear reaction the energy release is

imaginary boundary. OUTSIDE

so large compared with the mass of the
particles involved (a total of about

4 x 10°25 kilograms), that the frac-
tional change is significant (0.001 or
0.1%). Of course, the missing mass

was not "lost"; it was the mass of the
escaped energy. In all reactions where
there are energy changes the principle
of energy conservation guarantees that
mass will be conserved as well, if the
mass of each form of energy is prop-
erly accounted for. In chemical reac-
tions and most otl.er laboratory experi-
meats the energy charges are suffi-
ciently small compared to the masses
involved that the mass of the particles
appears to be ccnserved within experi-
mental error even if the mass-equiva-
lent of the energy involved is ignored.

3.2 ISOLATION, EXTERNAL AND INTERNAL

The principlé of energy conserva-
tion states that the total energy in
the universe remains constant, but in
practice the principle is seldom ap-
plied to thke whole universe. A labora-
tory experiment or a theoretical calcu~
lation usually is confined to one
small but interesting part of the uni-
verse. It is common to call this piece
of the universe a system, and to
imagine it completely surrounded by a
boundary surface through which pass
only things and influences that we
know, understand, and can measure
(see Fig. 3.5).
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The total energy of the universe
can be written as the sum of the en-
ergy inside and the energy outside
the boundary. If no energy crosses the
boundary, then we can conclude that
the energy of the system (inside) and
the energy of the rest of the universe
(outside) are separately constant. It
is always implicit in such an argu-
ment that we kno¥ of all forces that
might act across the boundary so that
we can be really certain that no en-
ergy is transferred. When this is the

case, the system is called an isolated

systom.

Even for a systoem which is not
isolated, some useful statement of
energy conservation is possible if we
can identify and measure all the forms
in which energy crosses the boundary.
In such circumstances any change AE
in the energy of the system during a
time interval At is equal to the net
energy that flows inward across the
boundary during that time:

AE = (energy flow in)
= (energy flow out).

With a system like the train of
Fig. 3.5, the principle of energy con-
servation is most useful when it can
be written in terms 2f a few simple
quantities. If the train merely coasts
up and down hills, the total energy E
can be written as

E = $av? + gravitational PE.

Internal energies like those of the
parts of the engineer's watch remain
separately constant during the coast-
ing. and hence add nothing of inter-
est to the conservation of total en-
ergy. If we add to E the energy,

E, = energy of watch = constant,

the sum E + E, is a constant but is
of no more interest than E itself. It
is the flow of energy back and fo:rth
from the kinetic energy term (imv?)
to the potential energy term that is
interesting. Adding another constant

term E, merely adds complication with-
out adding anything of interest.
If the brakes are applied to the

train of Fig. 3.5, the total energy

must contain another term E, for the
heat energy of the brakes. Even in
braking situations, the energy

E' ~ 4mv2 + gravitational PE + E,

remains constant. If the engine burns
fuel in air, this energy is included

as well. Calling the chemical energy

of the fuel-air mixture E,, the con-

stant quantity is

E" = 4mv? + gravitational PE + E, + E,.

Always the idea is to have as few
terms as possible, consistent with all
the energy changes that actually occur.
The total energy of any system
includes other internal energies in
addition to the terms included in a
typical description of its '"relevant"
energy. The watch ticking in the en-
gineer's pocket, the electrons within
atoms, the protons within nuclei, etc.,
all involve energies . that are usually
neglected in writing down the total
energy of a train. These energies are
neglected because they do not change
separately in the course of the
train's motion. In laboratory mechan-
ics experiments it is a great simpli-
fication to reduce friction to such a

' small effect that macroscopic energies

are not mixed in with random atomic
energies, for then the total energy
of tiie system can be written without
including heat energy. Fortunately,
the internal energies associated with
motions of nucleons within nuclei and
with the structures of elementary par-
ticles themselves are quite well in-
sulated from the macroscopic world.
These energies do not change in
macroscopic experiments and need not
be included in their description. The
only place where the total of all the
energy in an object ie important,
whether it changes or not, is in de-
termining its mass,.
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3.3 ENERGY-CONSERVATION EXPERIMENTS

The historical development of the
law of conservation of energy depended
upon the discoveries that various
kinds of encrgy were intorchangeable
according to unigque rules. For a fixed
amount of one kind of energy, a fixed
amount of another can be obtained. But
to make such a rule apparent, one must
have a formula for the amount of each
kind of energy.

We shall somewhat parallel this
historical development in form,
though much more efficiently, indeed,
if we examine some selected experi-
ments to determine the formulas for
different kinds of energy. Briefly,
the analysis of each exgcriment will
go something like this:

.~ (1) We assume that there is a
law of conservation of energy.?

(2) we isolate a system; that is,
we attempt to prevent it from exchang-
ing energy with the rest of the uni-
verse. Together with assumption (1),
this means that we assume the total
energy of our isolated system to be a
constant.

(3) Furthermore, we choodse a
system in which our observations lead
us to assume that only a few forms of
energy are changing, including among
them only one kind of energy whose
formula we do not know. If E,, E,,

E, represent energies whose formulas
we already know, and whose changes we
can recognize, and if we assume for
our system

E, + E; + E; + E, = constant, (3.13)
then we can calculate changes in E, :

AE, = — (AE, + AE, + AE,). (3.14)

*Historically, thec grand conservation law en-
compassing all the energy forms did not come un-
til the late ninetcenth century. But it was al-
reoady known around 1700 that there are some
simple systems in which the kinetic energy is
conserved. Early studies of heat encrgy (then
interproted as "caloric') separate from mechan-
ical energy invoked a separate conservation law.
We now know that the two laws are special cases
of the energy conservation law.

(4) If we can obtain from Eq.
(3.14) a formula for E, (like
KE = 4mv?) in terms of all the vari-
ables that describe the system (length,
temperaturc, etc.), and if the same
formula describes all such experiments,

then we have confirmed the conserva-
tion law, Eq. (3.13), limited to these
four kinds of energy.

The confirmation of Eg. (3.13)
supports indirectly our faith in the
assumptions (1), (2), and (3) used to
obtain it. Of course, each such experi-
ment also helps confirm that we have
the correct formulas for E;, E,, and
E;.

The fact thai we can for so many
different cases find a conservation
law of the form of Eq. (3.13), summing
many and various kinds of energy to a
constant total, leads us to believe
that there is a quantity corresponding
to what we call energy. And it does
seem to be conserved. Whenever we keep
careful account, none is found to be
created or destroyed.

We shall see some examples of
this kind of analysis in the follow-
ing sections, beginning with kinetic
energy.

3.4 KINETIC ENERGY

In this section we shall start
with the assumption that a mass m mov-
ing with speed v has a kinetic energy
determined by these two numbers. By
considering cases in which kinetic
energy seems to be conserved, we shall
show that if it is conserved in any
collisions (called elastic collisions),
it must have the form

KE = (constant) nv?.

The development wi'll reveal con-
nections among kinetic 2nergy, momen-
tum conservation, and ‘Galilean rela-
tivity. Let two observers, moving with
constant relative velocity, watch the
same collision. To show that they
agree on whether or not energy is con-
served in the collision, we shall
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need the law of conservation of mo-
mentum.

Eventually Eq. (3.1) must meet
additional tests. In experiments in
which KE from Eq. (3.1) is conserved,
does the rest of the energy also re-
main constant, as predicted by the
law of conservation of energy? In ad-
ditioral experiments involving other
forms of energy as well, does this
formula pernit writ.ng an energy con-
servation law thzt is confirmed by
measurements?

A mass m,, moving with_velocity
v‘l, strikes a body of mass mg, which
had initially a velocity vgi. This is
the start of a collision. We shall
show that there are some such colli-
sions in which kinetic energy is "ob-
viously" present in equal amounts be-
fore and after the collision, even to
one who does not know Eq. (3.1). There
are indeed such collisions. They occur
very frequently in the microscopic
realms of atomic and nuclear physics.
A macroscopic collision in which
kinetic energy is ''obviously' the same
afterwards as before can be demon-
strated in the class room on the air
track. Collisions which do not change
the kinetic energy are called elastic
collisions.

3.4.1 The Equal-Mass Elastic Colli-

sion.

Two identical gliders A and B
are placed on the air track, B ini-
tially at rest and A with initial ve-
locity ;}1. The gliders have equal
mass,

and are equipped with spring-steel
bumpers on the ernds. These bumpers can
be distorted in a collision and returned
to their original shapes with very
little transfer of energy to the motion
of the atoms within the springs. The
measurements will show that this is so.
Some of the data from a typical
experiment might look like that in
Table 3.1. The results of such an ex-

TRIAL
NO. i 2 3
== s P e R —
BEFORE Vai 0.115 0.573 1.25
Vat *zero zzero =0.01
AFTER
Vel 0.114 0.565 1.24
Units are m/sec

Table 3.1 Elastic collisions for data for

m, = mg = 0,400 kg
Vg = 0

initial and final velocities are presented

for three trials.

periment would be well descrid>d by
the equations

(3.15a)
(3.15b)

Var = 0,

-t -
Vp- = Vai -

The before and after pictures of
such an elastic collision between
equal masses would resemble Fig. 3.6.

With the assumption that the
kinetic energy of a moving mass de-
pends upon m and v only, Eqs. (3.15)
tell us that kinetic energy is con-

o
N _
|

(a) Two identical gliders A and B before
the collision. Glider B is at_rest while
glider A moves with velocity v,, The glid-
ers are equipped with elastic steel bumpers
b. The kinetic energy is contained in the
motion of mass m, at speed 'Vas l .

-

Vai= VM
a————

B

ot e 4 P

(. |
(b) After the collision A is fougg at rest
and B moves With velocity Ve = Vay. Be-
cause the two gliders are identical, it is
here "obvious" that B carries off the same
kinetic energy originally brought to the
collision by A. A collision in which ki-
netic energy is conserved is called an
elastic collision.

Fig. 3.6 An elastic collision between
equal masses.
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Vai nets will collide elastically, as did
A the gliders with spring-steel bumpers.
— o = — If they have equal masses and one in

Fig. 3.7a The unequal masses A and B on
the air track before the collision. Ini-
tially

- -
Va = Vag
-V.. - o .

-l -l

Vat A\

A B
L ]

Fig. 3.7b The unequal masser, A and B
separating after the collision. Finally

- -p
VAo = Vag

- -

served in this experiment. Initially

a mass m, = m travels with speed |v,,l,
and an equal mass sits at rest.
Finally, the data describe a situation
in which mass mg = m travels with
speed |;k1|. and an equal mass sits at
rest. The kinetic energy is unchanged
in this cocllision,

This experiment serves to demon-
strate that we can find a set of "elas-
tic'" springs. But an experiment with
equal masses will not demonstrate that
the kinetic energy must have the
unique form of Eq. (3.1). Just for
fun, try calculating from the data the
initial and final kinctic energies
on the following assumptions:

Try: KE'cc(my [Vy]| + mp |Va]) (3.16a)
Try: KE'oc(m, [V4]2 + my |V4]2) (3.16D)
Try: KE'oc(my | V|2 + my |¥p]|®) (3.16¢c)

They all are conserved. Can you see
why this particular experiment will
not distinguish among them?

Not all collisions are elastic,
but one very simple collision experi-
ment, in whicih kinetic energy is '"ob-
viously" conserved, has been described
here. Equivalent experiments can be
performed in other ways. Two air
gliders with mutually repelling mag-

motion is sent against another at rest,
they will exchange velocities in the
magnetic collision. The one initially
in motion will siop, and the other
acquire the initial velocity.

A proton and a neutron have
nearly equal masses. Quite often when
a neutron in motion collides '*head-on"
with a proton at rest ("head-on" as-
sures straight-line motion), it comes
to rest, and the proton goes on ahead
with the neutron's total kinetic en-
ergy; i.e., with the same mass and
the same speed.

3.4.2 The Unequal-Mass Elastic Colli-

sion ,

The same elastic springs employed
in our first experiment can be used in
another experiment with unequal masses.
We shall find the conservation of eau-
ergy in the slightly more complicated
collision just as convincing (after
some analysis) from the data we re-
cord. As a reward for carrying through
the more complex analysis, we shall
be able to determine the actual form,
Eq. (3.1), for the kinetic energy.

Th: 3 second experiment begins
with mass mg at rest on the air
track.!® The initial velocity of mass
mp 1S Vay. The two gliders have dif-
ferent masses, but they use the same
spring bumpers used so successfully
before.

A few of the data from such an
experiment, pictured in Fig. 3.7,
might look like those in Table 3.2.

A quick inspection of the data
in Table 3.2 is not sufficient .0 see

1°We choose mg initially at rest for simplicity.
It will turn out that there is nothing to be
geined but complication by choosing a nonzero
Va1, unless we could set

; :‘A -
- e v
| }3 np At

to make the laboratory the zero-momentum {(center-
of-mass) frame.
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whether kinetic cnergy is the same be-
fore and after the collision.!! But
look at the experiment from the center-
of-mass viewpoint! Table 3.3 shows

the same glider motions from the cen-
ter-of-mass frame. Look at the con-
stancy of kinetic energy! In tha
center-of-mass frame, each mass leaves
the collision with the same srpeed

that it entered; only its direction is
changed. '

If the kinetic energy depends
only on the mass and the speed, it
must surely be unchanged before and
after these collisions described in
Table 3.3. The data of this table can
be described as far as energy is con-
cerned by

(3.17a)
(3.17b)

lvag'l = lvays'l

Ivas'l = lvas'l.

For collisions which obey Eqs. (3.17),
it is "obvious" to an observer in the
center-of-mass frame that kinetic en-
ergy i - the same after the collision
as before.

The question we now want to an-
swer is "What quantity remains con-
stant in the laboratory trame before
and after collisions which are ‘ob-
viously' elastic in the center-of-
mass frame?"

We cannot try all possible func-
tions of m and v in the time allotted.
But we might compare the three assump-
tions of Eqs. (3.16):

(a) Is tho quantity (malva! + mglvyl)
constant? (Table 3.41a)

(b) Is the quantity (malval? + mplvygl?)
constant? (Table 3.4b)

(c) Is the quantity (malv,a|® + mplvyl?)
constant? (Table 3.4c¢)

115ctually a very clever observer mighi notice a
clue to the elasticity in Table 3.2 in that the
size of the relative velocity between m, and
my is the same after the collision as before.
But the center-of-mass frame gives a better van-
tage poimt for viewing the elastic collisica.,

1 2 3 4
0.247 0553 | 1.07 1.54
-0.104 | <0.235 | -0.450 | -0.65)
0.140 0314 | 0.601]| 0.8

Units are m/sec

Table 3.2 Velocity data from an air-track
collision. The collisions between unegqr.al
masses use sSpring steel bumpers that are
supposed to make them elastic. The data
will tell if this is so. The initial condi-
tions are .

m, = 0.200 kg, v, = Va3
m, = 0.500 kg, vy = O.

IrmAL

NO. 1 2 3 4

| — —F = — —
va'] 0176 | 0395| 0.765| 1.10

BEFORE

) Vo' | -0.075 | -0.158 | -0.306 | -0.440
Vai' | -0.175 | -0.393 | -0.756 | -1.09

AFTER
Vo' | 04494 | 0.156] 0.295] 0.430

tinits are m/sec

Tabl¢ 3.3 The velocities of Table 3.2 from
the center-of-mass frame. The center of
mass moves in the laboratory with velocity

- - (-‘) - - 2-0
u (-‘ + -.)"‘ ?“ *

Table 3.4 shows that in these
collisions for which kinetic energy is
conserved in the center-of-mass system
the quantity (malval? + mplvgl?) is
conserved in the laboratory system.
This is the first Jjustification for
the form of Eq. (3.1)

KE = dmalvyl? + 3mplv,l?

The factor 4 arises trom the relation
between force and changes of kinetic
energy. Any other multiple of mv?
would aiso be conserved in an elastic
collision.

3.4.3 The Form of the Kinetic Energy.

it is possible to show mathemati-
cally that a ccllision for which

o — T ——
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TRIAL NO. 1 2 3 4
mulva,d 0.0494 0.111 0.214 0.308
malvasl + mgfvg,l 0.0908 0.204 0.390 0.595

Table 3.4a Is the quantity (m,s/v,|+ my|vy|) the same before and after

the collision?

I TRIAL NO, H 2 3 4
— ==y
REFORE mylva,l’ 0.0122 0.0612 0.230 0.474
AFTER malvat|? + mglvgl? 0.0120 0.0605 0.222 0.463

Table 3.4b 1Is the quantity (m,|v,|? + nylvgl?) the same before and

after the collision?

] 2 3 4

% P #
BEFORE malva,l? 0.00302 0.0338 0.246 0.684
AFTER malvarlP + mglvg ? | 0.00160 0.0181 0.127 0.384

Table 3.4c 1Is the quantity (m,lvy|? + myjvy|?) the same before and

after the collision?

(3.18a)
(3.18b)

V'se

Vit = —vu

in the center-of-mass frame will not

change the quantity
molv,al? + ?l';ilz

in any other inertial frame.

Tke center-of-mass frame is an
inertial frame in which the center-of-
mass point moves with the constant
velocity zero.

The center of mass moves with con-
stant velocity U with respect to an-
other.inertial frame. Ya this frame,
the initial and final velocities for
the elastic collision desc:-ibed by
Eqs. (3.18) are

D Vag = Vg + U

(3.19a)
:".i - ;'.‘ + a; ;.t - .V.'.‘ + .6.
(3.19b)

In order to write the quantity

my|vasl? = mplvtay + U2

in the laboratory frame, we need to

do a little geo-etry F1gure 3.8 shows
that the length Iv' + U] of the vec-
tor, v+ U, is either the sum of the
lengths if the vectors are parallei,
or the difference of the lengths if
they are opposite.

(};'I + |U| if Vv* 2:.d U are
parallel

Iv'] — |T] if v' and U are
opposite and if |v'| > |Ul

18] — |v'] if v¢ and U are
(opposite and if |U| > |v'].

(3.20)

v + U -J

Hence

(157 12 + l2v'] 1U] + |u|?
if v and U are parallel
Iv' + U]2 =<
[v']? = 2|9'] |T] + IT)2
(11 v' and U are opposite.

(3.21)

To allow for these two cases with
one simple notation, we iatroduce the

T St el i Rt bt b Bt s 1o 1§
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"scalar product" or "dot product'; of
two one-dimensional vectors:'?

- - -
+ |v'| |U| for_v'
parallel to U

:' . 5 [ ] 3 . :' -<
- |v'| |U] tor v*
_ opposite to U.

(3.22)

This notation permits us to write

IV |2 = v*' - V' (3.23)
and
IV + Gl2 = |7']|2 + 2v' - U + |U]3.
(3.24)

Notice how much simpler it is to write
Eq. (3.24) instead of Eq. (3.21). The
scalar product has a pair of useful
properties which can be verified from
the definition, Eq. (3.22):
multiplication by a scalar,

av' - U=(v') - G=v' - (ml).

and addition (2.33)

(V' +V'p) - U=V - U+ v'y - U

Before the collision

malVasl? + mplVayl? = malVv'ay + UI?
+ mg|v'y, + U2
- my |V + 20,V - T
+ malUI? + mglv'y, |2
+ 2mV'y, ° U+ mglTUl2.

(3.27)

$27he same notation will be used later for the
three-dimensional generalization, where the
term "scalar product™ is especially appropriate.
For one-dimensional vectors expressed by posi-
tive and negative mumbers it is just like the
ordimary arithmetical product.

vl
‘ﬁ-
v
- - »
v +u
v’ )
(1}
-.—?
vl +u
y! -
e —
U
-,
v/’ +u

Fig. 3.8. 'l‘he.formla for the lengt!:. of the
vector (v' + U) depends oa whether v' and
U are parallel or antiparallel

I: 19 + 0l = Iv'] + Ul
I1: |v' + Ul = |v*] - |l
III: !v' + Ul = U1 - Iv'l.

Collecting appropriate terms together,
we find that

malVagl? + mglVgyl® = malv'yyl?
+ mpl Vg 12 + 2(myv'y,
+mgV'py) - U+ (my+ mp)iUl2,
(3.28)

After the collision, the same expan-
sion and collection of terms gives

my|Vagl? + mplVagl? = malviayl?
+ mplViagl? + 2(mav'ag

+ mgv'py) - U+ (mg + mp) 1012,

(3.29)

For elastic collisions defined by
Eq. (3.18), tho two expressions in
Eqs. (3.28) and (3.29) are equal. Be-
cause of Eq. (3.18), each of the first
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two terms on the right side of Eq.
(3.28) is separately equal to each of
the first two terms on the right side
of Eq. (3.29):

(3.30a)
(3.30b)

malviag |2 = mulvtagl?,

mglvipgs [? = mylvipe]?.
Because momenium is conserved,

MV'ag + MpV'pg = MyV'ys + mpV'pg.
(3.31)

Hence, the third term on the right

side of Eq. (3.28) is equal to the

third term on the right side of Eq.
(3.29):

2(‘.:'.‘ + I.-V.'.i) ° -6
- 2(-‘;"1 + -.;'.f) ® -ﬁ

(3.32)

The last term on the right-hand side

"of Eq. (3.28) is identical with the

last term on the right hand side of
Eq. (3.29).

Let us summarize what we have
Just shown. If there are in fact elas-
tic collisions described in the center-
of-mass frame by merely a reversal of
velocities Eq. (3.18), and if momentum
is conseived Eq. (3.31), then the quan-
tity malval? + mplval? in any other
inertial frame is the same after the
collision as it was before it.

Hence, if taere is a kinetic en-
ergy associated with matter in motion,
and if we can write a2 conservation

equation for kinetic energy alone in
elastic collisions, the formula for
kinetic energy must be

KE = (constant) mv2.

3.4.4 The Ultimate Appeal.

Our few experiments and their
analyses only indicate but do not
prove that kinetic energy is propor-
tional to mv2?. Nor is it at all justi-
fied to jump to any grand conclusion
yet that ther is such a thing as en-
ergy which is conserved.

But there are a few things that
we can do to check our hypothesis that
kinetic energy is the same after an
elastic collision as before. We can
check the other properties (besides
velocity) of the isolated air-track
gliders before and after the experi-
ment to see if they are the same. If
other properties (temperature, shape,
etc.) of the gliders stay the same
in such collisions, perhaps that in-
dicates that the other energies, in-
ternal to the glider, remain constant

The next step in the development
of energy conservation is to go back
to the laboratory, to put the equation

KE = imv?

-to an experimental test. This can be

done by studying experimeuts in which
kinetic energy is exchanged for an-
other form. The laboratory provides
the ultimate test for physical theor-
ies.
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