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GENERAL PREFACE

This monograph was written for the Conference on the New Instructional

Materials in Physics, held at the University of Washington in the sum-

mer of 1965. The general purpose of the conference was to create effec-

tive ways of presenting physics to college students who are not pre-

paring to become professional physicists. Such an audience might include

prospective secondary school physics teachers, prospective practiticners

of other sciences, and those who wish to learn physics as one component

of a liberal education.

At the Conference some 40 physicists and 12 filmmakers and design-

ers worked for periods ranging from four to nine weeks. The central

task, certainly the one in which most physicists participated, was the

writing of monographs.

Although there was no consensus on a single approach, many writers

felt that their presentations ought to put more than the customary

emphasis on physical insight and synthesis. Moreover, the treatment was

to be "multi-level" --- that is, each monograph would consist of sev-

eral sections arranged in increasing order of sophistication. Su2h

papers, it was hoped, could be readily introduced into existing courses

or provide the basis for new kinds of courses.

Monographs were written in four content areas: Forces and Fields,

Quantum Mechanics, Thermal and Statistical Physics, and the Structure

and Properties of Matter. Topic selections and general outlines were

only loosely coordinated within each area in order to leave authors

free to invent new approaches. In point of fact, however, a nunber of

monographs do relate to others in complementary ways, a result of their

authors' close, informal interaction.

Because of stringent time limitations, few of the monographs have

been completed, and none has been extensively rewritten. Indeed, most

writers feel that they are barely more than clean first drafts. Yet,

because of the highly experimental nature of the undertaking, it is

essential that these manuscripts be made available for careful review



by other physicists and for trial use with students. Mucn effort,

therefore, has gone into publishing them in a readable format intended

to facilitate serious consideration.

So many people have contributed tothe project that complete

acknowledgeluent is not possible. The National Science Foundation sup-

ported the Conference. The staff of the Commission on College Physics,

led by E. Leonard Jossem, and that of the University of Washington

physics department, led by Ronald Geballe and Ernest M. Henley, car-

ried the heavy burden of organization. Walter C. Michels, Lyman G.

Parratt, and George M. Volkoff read and criticized manuscripts at a

critical stage in the writing. Judith Bregman, Edward Gerjuoy, Ernest

M. Henley, and Lawrence Wilets read : aanuscripts editorially. Martha

Ellis and Margery Lang did the technical editing; Ann Widditsch

supervised the initial typing and assembled the final drafts. James

Grunbaum designed the format and, assisted in Seattle by Roselyn Pape,

directed the art preparation. Richard A. Mould has helped in all phases

of readying manuscripts for the printer. Finally, and crucially, Jay F.

Wilson, of the D. Van Nostrand Company, served as Managing Editor For

the hard work and steadfast support of all these persons and many

others, I am deeply grateful.

Edward D. Lambe
Chairman, Panel on the
New Instructional Materials
Commission on College Physics
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1 INTRODUCTION

How are very small distances or sizes
measured? I mean, for example, the
"diameters" of "microscopic particles":
atoms, atomic nuclei, and nucleons.
Do very small distances even have
meaning? Let us say we find a reason-
able experimental technique. How can
we know that the measurement should
have a clear interpretation? Although
it seems obvious that distances can
take on any value, it is not certain
thai; distance has the same properties
when very small as it does in every-
day experience. When physicists have
attempted to extrapolate from estab-
lished ideas to new realms of experi-
ence where measurements have not been
made, there is often a breakdown or
failure of their ideas. As a result
of this failure we need to be open
minded. It has been suggested, for
example, (though never confirmed)
that the is a very small funda-
mental length in nature, that dis-
tance is not a continuous variable. I
can readily name some more concrete
difficulties: (1) The object whose
diameters we measure may be fuzzy like
the earth's atmosphere (what is the
diameter of the earth with its atmos-
phere?) (2) The object may not have a
well-defined diameter in time, that
is, it may be pulsating like a man's
chest. (3) There is also the problem
of the projectile used as a probe.
The only objects fine enough to use
as tools of measurement or probes are
microscopic particles themselves. But
the particle used as a probe may it-
self have a size or a fuzziness (Fig.
1.1).

There are problems in defining
diameter of objects too small to see,
so it has to be done with care. Hope-
fully, different measurement proce-
dures lead to about the same number
for the diameter of a given object. If

we can fit these different measure-
ments into a theoretical framework and

1

BEAM 0 TARGET

Fig. 1.1 A beam of small particles is
shined on a target particle. We can imagine
that the scattering gives us a measure of
the diameter. It is hard to imagine that an
accurate determination of the diameter could
be made if the beam particles are larger
than the target.

can calculate the small discrepancies
between them, then we can be confident
we know what we're talking about.
There won't be time in this monograph
for discussion of several different
measurement procedures; but we will
discuss one of the most widely used
methods.

Let me give you a rough tabula-
tion of the results of size measure-
ments to set the scale, though I
haven't as yet discussed how the meas-
urements are made. Only in the case of
interatomic distances is the meaning
of the distance very clear. An atom
looks as in Fig. 1.2. It is clear what
we mean when we talk about the dis-

OBJECT

Size of molecule

Spacing of neighboring
atoms in a molecule

Diameter of an atom

Diameter of a nucleus

Spacing of neighboring
nucleons in a nucleus

Diameter of a nucleon

TYPICAL DISTANCE (IN CM)

-8
10

10
-a

-13
10

Table 1.1 SIZES OF MICROSCOPIC PARTICLES
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FUZZY ELECTRON CLOUD WITH
RELATIVELY WELL-DEFINED HEAVY NUCLEUS

Fig. 1.2 Model of an atom.

tance between atomic nuclei in, e.g.,

a diatomic molecule.
This table should not lead you

to believe that the subject is closed
and the questions I raised above
merely pedagogical. In important cases
the measurements have not been made

or the interpretation is not yet clear.

Some distance measurements, as we'll
discuss, are current research prob-
lems. At 10-8 cm much of the research
is now in the hands of the chemists.
The techniques and interpretation at
10'18 cm are also becoming well es-
tablished. Measurements at 10-13-10-14

cm are, however, rrther recent.
With ordinary mechanical means -

the traveling microscope - we can
measure distances to an accuracy of

about 10-4 cm. This is done by placing
cross hairs in the .-.1croscope view and

attaching the stage of the microscope
to a very finely machined screw drive.
One can watch as the object is moved
and thereby obtain a distance measure-
ment. The distance 10-4 cm is about
the size of one grain in fine-grain
photographic film. There are several
methods of extending distance measure-
ments way down to the submicroscopic
domain. These methods work more or
less well in the case of different
particles. I will discuss in detail
two closely related methods, which
I'll call interference and diffrac-

tion, which are probably the most
widely used for measuring small dis-
tances. First, after some general no-
tions are established, I will discuss
the interference patterns obtained
from electron scattering on gas mole-
cules to determine the interatomic
distances. We will see how chemists
do these experiments Lind what problems
they are currently interested in. In
an extended version of this monograph,
I will discuss the patterns obtained
in diffraction scattering of high en-
ergy particles by a nucleus. We can
obtain information about the diameter
and shape of the nucleus. i4e will also
discuss some details of the experi-
mental techniques.

The theoretical basis of these
techniques is the same as that of op-
tics as tl,ht in an introductory
physics course. The same mathematics
of wave motion, we can call it a wave
model, works to describe what is ob-
served in these scattering experi-
ments in all their intricate detail.
(See special topic: Models). We will
not divert ourselves with questions
vwxi the wave model works. The experi-
mental evidence for the model, some
of which will be pointed out at the
appropriate moment, is overwhelming.
We begin then with a review of optics.

MODELS:1 By "model" we mean "ana-
log." It is a mechanical or elec-
trical device or a system of
mathematical expressions whose be-
havior we can take as an idealiza-
tion of the behavior we want to de-
scribe. Consider a simple pendulum
as a model. There are several input
parameters such as a length of
string, mass of bob, and the ini-
tial conditions. For given values
of these inputs the pendulum has a
definite behavior (i.e., its posi-
tion as a function of time). Say I
want to describe the rate of busi-
ness activity in this country.
After associating the various prop-

'These special topics are to be used at the dis-

cretion of the reader.
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erties of the pendulum with appro-
priate properties of the national

product, I will have a model
(albeit not a good one) which pre-
dicts business cycles. I use the

simple pendulum as the analog of a

system I don't understand as well.

Other examples of models are colli-

sions of billiard balls for colli-

sion of atoms or water in a pipe

for direct current circuits. The

wave model we are about to discuss

is used, for example, to describe

waves on a vibrating string, waves

on the surface of water, alternat-

ing current, and light. I am going

to talk in terms of the optical

case because it is considered most

thoroughly in introductory physics.

Most important models can be

stated as systems of equations
with several parameters. The

strength of physics rests on the

fact that a mathematical modal can

be used to descril?, =any different

physical systems. This enables
physicists to go on as more and

more experimental information is

collected. The data would bury us

if the description of every parcel

of data had to be wholly different.

Instead there are relatively few

mathematical models which are used

over and over.



2 OPTICS OF SLITS

(This may be a review - skip to the next section if you know the material.)

2.1 PROPERTIES OF THE WAVE MODEL

(1) The superposition principle:
If a wave with amplitude Al describes
a physical situation and so does a
wave with amplitude A2, then Al + A2

also describes a physical situation.
We will illustrate this directly with
the double-slit example. Mathemati-
cally this property follows from the
linearity of the wave equation and as-

sociated boundary conditions.
(2) Any amplitude A of "monochro-

matic" light, i.e., light of fixed fre-
quency, has (at a fixed point in
space), by definition the time depend-

ence:

A = a sin (wt + 4).

Here a is the "magnitude" of the wave

(a is positive),
co is the "angular frequency",
v = c0/21r is the "frequency" and

Fig. 2.1 Amplitude at a fixed point in
space. In this figure the phase is just

over 90°.

Fig. 2.2 The wavelength satisfies the rela-

tion A(x A) = A(x). In this figure the
phase is just under 1-,0°.

4

T = 1/v the "period,"
0 is the "phase."
See Fig. 2.1.

(3) For monochromatic light mov-
ing in the x direction for all y, z
(i.e., a plane wave) the amplitude has
the form at fixed time:

A = a sin (kx + 8).

Here k is the "wave number,"

= 21/k is the "wavelength" (see Fig.

2.2),
8 is the phase.

We combine the space and time de-
.

pendence so that the amplitude moving
in the x direction has the form:

A= a sin (kx cot + 6).

Here v = w/k = v.A, the "phase veloc-

ity," relates frequency and wavelength
In free space v = c, the velocity of

the light (Fig. 2.3).
Any surface on which the ampli-

tude has the same phase is called a
"wavefront." That is, the time depend-

ence at any point on a wavefront is

sin (cot + 0) , the value of 0 being

the same everywhere on the surface.

Fig. 2.3 Sine waves at t and t At. In

this illustration wat ks 90°. The curve at

t At is obtained from that at t by noting
that as the wt terms gets larger, if the kx
term gets larger by the same amount the am-
plitude will be unchanged. Thus a shift AX

to the right satisfies

sin 6 = sin (kAx utit 6) so that

v = Ax/At = w/k (constant).
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L x

z OUT OF PAGE

Fig. 2.4 Plane wave moving in the x direc-

tion. The lines indicate wavefronts which
are planes parallel to the y, z plane.

Formula:

A= a sin (kx at + 6)

Thr3, in the example we are di: -ass-

lug, since !. 's completely independent
of y and z, 0 is certainly independent
of y and z so that any plane parallel
to the y, z plane is a wave front (see
Figs. 2.4 and 2.5).

A completely general pattern of

monochromatic waveb is obtained by
adding, with various magnitudes b and
phases 8, sine waves, or plane waves
moving in different directions:

A = b(;) sin (17-i: cot + 45 (;))

(4) The propagation of a wave am-

plitude in three dimensions is deter-
mined by the position of successive
wavefronts in time. Successive wave-
fronts may be determined by Huygen's

SOURCE

Fig. 2.5 Spherical waves. The circles indi-
cate the wave fronts which are spheres cen-

terei on the source. Formula:

A = a(r) sin (kr wt + 6).

principle: Each point on a wavefront
can be regarded as a new source of

waves, which spread out spherically
from the point. The new wavefronts
are determined by adding these second-

any waves (Fig. 2.6). (See special

topic, Mathematical Statement of
Huygen's principle.

(5) We observe, e.g., on a screen,
the "intensity" which is defined as
the time average of the square of the

amplitude. The intensity can be con-
sidered to be energy/(area x time). The
intensity does not satisfy superposi-

tion:

IA/ + A2I2 AI + 41q

MATHEMATICAL STATEMENT OF HUYGENIS
PRINCIPLE: Consider a wavefront.
Let Q be a point on the front and
the amplitude in the neighborhood
of Q be

A(Q) = a(Q) sin (krn (A)

where rn is distance normal to the
wavefront (measured fvom the front).
The amplitude at P a distance r and
angle 0 from Q due to an area AS of
the wavefront at Q, is:

sin (Kr rot 12-1)

A(P) = a(Q)
[1 4- cos(1

2A

OLD WAVEFRONT

x

NEW WAVEFRONT

Fig. 2.6 The new wavefront a moment later
can be obtained from the old by constructing
the waves coming from each point and adding
all these amplitudes.
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Fig. 2.7 Geometry for Huygen's principle.

Let's discuss this expression.
The AS a(Q) factor in the magnitude
is just what we would expect: pro-

portionality to the magnitude at Q
and to the area of wavefront we con-
sider as a secondary source. The
bracketed factor is largest when P
is straight ahead of Q (in the di-
rection rn) and has a normalization
factor we wouldn't guess. The lir
factor is what we should expect for
spherical waves, as discussed below.
A sine wave sin (kr wt) is what
we might expect because kr/21r a r/A
is number of waves which fit into
the distance r. But the correct
answer, as shown in the appendix,
contains, in addition, the phase
g/2.

The net amplitude at P will
then be

AO) =
f
clS a(Q)

(i+cos 0(Q)) sin(kra cot

2A.

The full derivation is given in the

appendix.

2.2 THE DOUBLE SLIT

Consider the passage of monochro-
matic light from a distant source on
the left through a double slit and

SOURCE OF
PARALLEL LIGHT

rQ

onto an observing screen to the right
(Fig. 2.8).

Parallel light arrives normally
on the absorber with slits cut into it.
Beyond the slits we place a lens so
that parallel light is focused on the
observing screen. In this way we in
effect observe the angle 0 of the
light from the slits on the screen.

ABSORBING WALL WITH SLITS

Fig. 2.8 The double slit: Light from the
two slits emerging at the same angle 0 is

DETECTOR OR

OBSERVING PLANE

brought together by a lens at the same point

on the observing screen.
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Let the distance between slits be d.
Let them be infinitely long out of
the picture (z direction) for simpli-
city. Let their width, for later re-
ference, be a. Let x be the initial
direction of the light and y distance
along the observing screen. The dis-
tance to the observing screen is D.
(Fig. 2.9).

The wavefronts arrive parallel to
the absorbing plane (y, z plane). At
the first slit the amplitude of light
is:

Al = a sin (-IA).

At the second slit we have the identi-

cal amplitude

A2 = a sin (--wt).

Then amplitudes independently propa-
gate from the slits, as if the slits
were sources, over to the detector.
At a given point P on the observing
screen a distance ri from slit 1 and

r2 from slit 2,

Ai = bi sin (kri cot)

fri
- 131 sin ( --" 2a cut)

r2
A2 = b 2 sin 2a at) .

Here the coefficient b isn't too im-

D

SLIT 1 af---/-

d

SLIT 2 a{ ---1

Fig. 2.9 Gelmetry for double slit.

portant. The phase kr, or 2ar/A is
just 27r times the number of cycles
which fit into the path from the slit
to the point of observation (Fig.
2.10).

Actually there are two minor
facts hidden here. They are: (a) the
mathematical form of Huygen's princi-
ple tells us that there is a phase
loss of -a/2 or 1/4 cycle so we will
think of r as the actual distance
less -A/4; (b) the distance r also
needs to be modified because it is
the "optical distance" including a
little extra because the wave is
squeezed in the lens. These refine-
ments are unimportant, since both
these aspects of the definition of r
are exactly the same for ri and r2,
the difference ri r2 is unaffected.

Fig 2.10 The change in the phase of the
amplitude propagating from the slit to a
point on the screen can be obtained by count-

A = sin wt)

ing the number of waves (and fraction) along
the path from slit to screen.
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d

Fig. 2.11 Evaluation of the path difference.

Our results below only depend on this
difference.

At the point P on the observing
screen the amplitudes add construc-
tively if r2 r1 EEA = nA:

A = r2 r1 = nA. constructive

A = (n + 1/2)A destructive

where n is an integer. We are not sat-
isfied with this incomplete result.
Using trigonometric identities we can
add the amplitudes in detail. The mag-
nitudes bi depend on angle and dis-
tance, but only slowly. We assume
equal magnitudes bi = b, which should
be almost exactly true since from the
two slits to P the angle is the same
and distance almost the same. Omit the
common factor b in the following:

A= sin (II- 27 cer)
A

sin (-1- 2g Wt 4' 27)

Let us write this as

Fig. 2.12 Photograph of a double-slit inter-
ference pattern.

A = sin X + sin (X + 0)

= sin X (1 + cos 0) + cos X sin 0,

ri A
where X = 27 wt and 0 = 27.

If we square we obtain

A2 = [sin2X (1 + cos 0)2

+ cos 2X sine q]

+ sin X cos X (1 + cos 4) sin 0.

We take the time average to obtain the
intensity using the facts that sin2

+ 6) and cos2 (wt + 6) average to
1/2 while sin (wt + 6) cos (wt + 6)
averages to zero. Thus

I cc 1/2 [ (1 + cos 4) 2 + sin2

= 1 + cos = 2 cos2 (P/2

I = 2b2 cos 2
X X

= 2b2cos2
(7d sin 0)

(which, is, at least, positive). The
path difference A is fota,d by geometri-
cal construction (Fig. 2.11).

So I = 2b2cos2 ((7/A) d sin 0).

The observing screen will look as
shown (Fig. 2.12). Graphically (output
of photometer as a function of y),
ignoring the variation of b, this re-
sult is shown in Fig. 2.13. The only
approximation made in adding the am-
plitudes to find this intensity was
to equate b1 and b2. If they are not
equal we find

sin 9 = A/2d sin 9 = A/d 0

Fig. 2.13 The intensity cos2 (v/A d sin 0)
as a function of 0 (which is essentially y)
on the screen.
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b1 + b1

2

2 + b22

2

+ bib2 cos

+ bi 132 cos

(1)

27r d sin 0

A

In this case the minima in intensity
are not exactly zero since destructive
interference can't be perfect when one
magnitude is larger than the other.
The position of maxima and minima are
the same as before.

The intensity pattern we have
found can be interpreted in terms of
separation of the slits. The kind of
thing I want to talk about when we
get to molecules and nuclei is how we
can determine the slit separation, d,

by measuring the intensity as a func-
tion of distance. To do this, of
course, I would have to be able to
convert distance y on the screen to
angle 0, which is easy if I knew the
large scale geometry, and I would have
to know the wavelength.

THE INFORMATION CONTENT OF THE
PATTERN: In order to obtain an ac-
curate measure of the spacing in a
pattern we want to have many maxima.
If, for example, there was only one
very broad maximum on the observing
screen we would be hard pressed to
obtain a quantitative measure of
the pattern's structure. The more
fringes we observe the greater the
ease and accuracy of our measure-
ment. This means that the angular
interval of observation, AO, should

satisfy

NUMBER OF CASES

>> Aid,

and since the largest angular in-
terval available to us is of the

order of a radian:

A << d.

This seems only reasonable; to ob-
tain accurate information about d
we should use a wavelength much
smaller.

There is a limitation to this
argument, which shows that there is
nothing to gain by decreasing A be-
yond a certain point. Consider the
double slit. Let us superimpose on
the same photograph the patterns
from double slits of slightly dif-
ferent separations d. The patterns
shift slightly with d. Consider
double slits with separations d
and d(l+E) and that A << d, E << 1.

Since the argument in the expres-
sion for I(0) is ird sin 0/A, at and

near angles which satisfy

d sin 0/A = [d(1 + E) sin 0/X] 1/2

or sin 0 =
2 dE
A

the maxima of one pattern fall on
the other and the pattern disap-

pears,
More generally if we have

many double slits with separations
distributed between d(1E) and
d(1 +c), as in Fig. 2.14, then the
pattern is blurred for all angles
such that

Fig. 2.14 Thought experiment where the
intensity patterns for many different
double-slit systems of slightly differ-

ent d, as shown, are superimposed. The
information content of the pattern is

SLIT SEPARATION

improved by decreasing A until A ,z1 Ed,

where Ed is the width or spread of the
distribution of slit separations as
shown. You slowly lose information by
decreasing the wavelength further.
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SOURCE OF PARALLEL LIGHT

a

ABSORBING
WALL WITH SLITS

Fig. 2.15 Single-slit experiment.

sin 0
2 (1

We concludeconclude that the most suit-
able wavelength, from the stand-
point of information in the pattern
only, is roughly

A 2 Ed.

There is no advantage then in going
to a wavelength smaller than the
spread Ed, in sizes of the object
you wish to measure. Aside from
technical difficulties you will
eventually lose information be-
cause the useful part of the pat-
tern will be squeezed into a
smaller, more difficult to measure,
angular interval.

2.3 THE SINGLE SLIT

I have sluffed over several ques-
tions. What about the individual slit
width, a, and the wavelength A? Will
the simple formula we derived apply
no matter what their values? The
answer is no. To understand this look
at the single-slit problem.

Divide the slit into many narrow
strips 'If thickness Ay:

DETECTOR OR

OBSERVING SCREEN

At the slit let the amplitude be
A = sin ( wt). The amplitude propa-
gated from a particular strip cen-
tered at y is, at a point on the ob-
serving screen a distance ry away,

Ay b sin (kry wt)

= b sin (III 27r ut).

We have from the geometry that
ry = r y sin 0.

To add up the contribution of all
the narrow strips, we sum or integrate
these amplitudes Ay over the slit from
y = a /2 to y = +a/2. Let X stand for

Fig. 2.16 Geometry of single slit. As in
other figures, the lens must be considered
close to the slit and the screen very far
away.
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the time dependent y independent term,

X = cot 27 r/A

a/2

A 0: f dy sin (X + 21-17sj'L-1 0)

- a/a

cos (X 2r a sin 0 /A)

27r a sin 0/A

cos (X + 27 a sin 0/X)

2v a sin 0/A

of parallel lines as in the double-

slit case (Fig. 2.17).
In introductory physics, instead

of obtaining I(9), the angles near
which the maxima and minima occur are
determined by a trick. Divide the slit
into narrow stips and consider the
contribution of only one strip at y
position and one at y a/2. For these

two strips we have the double-slit
problem with d = a/2. The result is

a
where a: means "is proportional to." 2

sin 0 = nA. constructive

Analogous to the double-slit case,
trigonometric identities enable us to a sin 0 = (n + 1/2)X destructive
evaluate the intensity which comes out 2

to be
This works for every pair and so for

a sin 0) the entire slit. This condition for
sin2(7 A the minimum agrees with our formula.

I 0:
(7 a sin 0)2 The result for the maximum is only ap-

A proximately correct.
Let us look at two extreme cases.

Any slit you can easily make is much
wider than the wavelength of visible
light. If a/A is very large, I :-"t1 0 un-

less 0 kl 0 (Fig. 2.18). So the illumi-
nated region on the screen corresponds
to the slit. We have almost perfectly
sharp shadows beyond the slit. This is
the kind of shadowing we observe in

enough angles the screen will be
rather uniformly illuminated:

everyday life. Now consider a <<: A.

Since the argument (7 a sin 0/10"- 0 for

entire screen is almost equally illumi-
nated (Fig. 2.19).

all angles, the central maximum of the
pattern is bigger than the screen. The

We may conclude that at small

IDARK SHADOW

The intensity on the screen is a
function of y or 0, so it is a series

Fig. 2.17 The single-slit intensity
sine (7 a sin 0/X)/(7 a sin 0/A)2. The func-
tion oscillates because of the numerator and

decreases from the center of the pattern be-

cause of the denominator. The zeros occur at

sin 0= nX/a.

DARK SHADOW

LIGHT

Fig. 2.18 Condition for sharp shadow:

a >> A. There is illumination only if 0 is

essentially zero.
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Fig. 2.19 Condition for no shadow: a << A.
The light passing through the narrow slit

0 <X illuminated (uniformly),
a

while at sufficiently large angles (if
g/2 is large enougn) there is darkness:

>> in shadow (if
a

1) .

a

In deriving the double-slit form-
ula we ignored the single-slit effect.
We see that if we wish to neglect
these effects we should work in the
uniform region of the central maximum
portion of the single-slit pattern.
Thus we work at angles

<<
a

We note however, that since 0 < g/2,
there is no advantage in going to
a << A.

If we wish to obtain accurate
measurements from a double-slit pat-
tern we want the pattern to have many
oscillations, so the angular integral
over which we measure should satisfy

SOURCE 1 SLIT 1

SOURCE 2 SLIT 2

I
Fig. 2.29 Two distinct and independent
sources provide the beams for slit 1 and
slit 2. The intensity pattern will just

ALL EQUALLY ILLUMINATED
AT A LOW INTENSITY

distributes faintly all over.

a >> Aid as discussed before under
the special topic: Information Content
of the Pattern. Combining this inequal-
it with the one above, we obtain the
condition

a << d

This is what we intuitively expect: If
we want to measure the separation d
between two slits, the width a of each
slit should be much smaller than d.

COHERENCE. What pattern do we ob-
tain if two slits of separation d
are independently illuminated as
in Fig. 2.20?

We say that these two amplitudes
arriving at slits 1 and 2 are "in-
coherent" as contrasted with the
"coherence" of amplitudes arriving
from the same source. All the re-
sults up to this point are for the
coherent case. If AI and A2 are the
amplitudes at the detector associ-
ated with slits 1 and 2 then in the
coherent case we had:

DETECTOR

be the sum of the two single-slit inten-
sity patterns.



OPTICS OF SLITS

I = (A1 + A2)2 - Al + A2 + 2 A1A2

Where the bar indicates time avev-
aging. The 2 A1A2 term is called
the "interference term" and is re-
sponsible for the double-slit pat-
tern. Meanwhile for the incoherent
caerl we have no interference:

-71I = AI2 + A2 = II + 12.

The intensity pattern is simply the
sum of the intensities for the two
single slits separately.

The reason for this result is
as follows: Coherent amplitudes
have a definite relation between
their time dependences: i.9., at
any point r on the screen two co-
herent amplitudes Al and A2 have
time dependences of the form

AA = al sin ( -wt + 6)

A2 = a2 sin (-wt + 62).

Where the phase difference, 61 62

between the oscillations is inde-
pendent of time. Two incoherent am-
plitudes have on the average no
fixed phase difference. This is due
to the natire of typical sources of
light. You should imagine that a
source emits a train of waves of
time dependence

sin (-wt + 6)

only from time t1 to t2, where
t2 - t1 is very long compared to
the period r = 2a/cobut is still a
short time. After t2 a new wave
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with time dependence

sin (-cot + 6 + 6')

is emitted and so on. The various
phases 6, 6', 6", associated with
the light emitted at closely spaced
times by a single source, are un-
related to each other. They are
random angles. As the value of 6
changes to 6 + 6', a phase differ-
ence 61 62, associated with two
coherent amplitudes goes to
(61 + 6') - (62 + 6' ) = 61 - 62 and
so remains undamaged. But the phase
difference associated with two am-
plitudes arising from independent
sources will go to 61 + 61' -
(62 + 62') an angle unrelated to
61 - 62. We established above that
two coherent amplitudes

Al = a1 sin (-wt + 6)

A2 = a2 sin (-wt + 62)

give rise to an intensity

2 2

I =
al

2

+ a2
+ al a2 cos (61 - 6 2 )

For two incoherent amplitudes the
period of time averaging is norm-
ally long enough to cover any ran-
dom changes of phase so that

cos (6 - 62) (incoherent case)

and



3 OPTICS

3.1 SINGLE HOLE

Consider monochromatic light ar-
riving normally on an absorbing plane
into which has been cut a circular
hole of diameter a (Fig. 3.1).

On the screen let's use, instead
of y, z, coordinates p, 0. Here
p = r sin 8 and 0 is the azimuthal
angle. The intensity pattern on the
screen, which we do not derive, has
of course, circular symmetry. That is,
it does not depend on 0. The pattern
will be a set of concentric circles
about the p = 0 point. A photograph
would appear as shown (Fig. 3.2) while
the intensity plotted out from the
center of the pattern along p is as
shown in Fig. 3.3.

The formula for the intensity is

I
k

J1 2 /g a sin 0/A)
= constant .

(g a sin 0/X)2

where J1 is the "Bessel function" of
first order. The initial coefficient
is just

F Ora 2 2

A2r2 \ 4 j ,

where F is the incident beam intensity.
You don't need to know any more

about the Bessel function than I'll
tell you. For the moment we are satis-

PARALLEL

OF HOLES

fied to know the rough inequalities:

8 <<
a

illuminated (uniformly)

0 >>
L.

a
shadow (for < 1).

a

The situation is analogous to the
single slit of width a.

3.2 TWO HOLES

Let us now consider two holes in
an absorbing plane (Fig. 3.4).

The two holes are arranged one above
the other. For z = 0 on the screen
(i.e., along the y axis) we find

A(y, z = 0) = a12 sin (kri wt)

+ a22 sin (kri + kd sin 0 wt)

a1
4

-I- a2 4

I(y, z = 0) =
2

2 a2 2 cos
(2gd sin 01

+ al

Here I have omitted a factor, approx-
imately equal for the two slits. The
derivation is the same as in the
double-slit problem. Note that I do
not assume the two holes to have the
same diameter.

Now we generalize the problem so
that the orientation of the holes

1

ABSORBING WALL OBSERVING SCREEN

Fig. 3.1 Configuration for a single hole.

We use coordinates r = JJ7TriTJ measured
from an origin at the middle of the hole,

14

p = vy +z 2 measured from the center of the
screen, 0 where r sin 0 = p as drawn, and
0 the azimuthal angle on the screen.



OPTICS OF HOLES 15

Fig. 3.2 Photograph of single-hole inten-

sity pattern.

takes on any angle. That is, let the
line joining the holes lie at angle
a to the incident beam direction and

at an azimuthal angle p (with respect,

say, to the vertical). In the simple

vertical arrangement discussed above

a! = 90° and /3 = 0 (Fig. 3.5).

Looking at the geometry (Fig.

3.6) we find that

A = d[cos a cos (a + 0)].

For general (3 one finds that

-a1

d

t...,r)

ABSORBING WALL

sing =
.

0 = 1.22'
a a

P or 9

Fig. 3.3 Intensity as a function of dis-
tance from the center of a pattern, for a
hole of diameter a. For reference the single-
slit intensity sine Or a sin 0/A)/(7r a sin

9 /A)2 for a slit width a is shown as a
dashed curve. You note that the hole yields

a pattern slightly broader and with smaller

secondary maxima.

A= d(cos a cos a cos 9

+ sin a sin 0 cos (3).

We will not go further to study
the calculation of the intensity. What

we want is the average of intensities

over all a, p. Let me just state the

result:

a,°=
2

2 2
sin (2 kd sin 9/2)

+ al a2 (2 kd sin 8/2)

Fig. 3.4 Configuration for light incident

on two holes of unequal diameter. Consider

the vertical plane containing the holes

OBSERVING
SCREEN

LENS

(z = 0). At an angle 9 the path difference
is A = d sin 9, just as for the double slit.
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INCIDENT LIGHT
I

ABSORBING WALL

Fig. 3.5 Side view of two holes in a wall
at angle a (with p = 0). By rotating the ab-
sorbing wall about the horizontal (x axis)

Fig. 3.6 Geometry for determination of A

when p = O. The path length difference is
d cos a before the absorbing wall and
d cos (0 + al which is a positive distance
in the sketch, after the wall.

(recall k = 2v/A). (See special topic:
Mathematics of the Two-Hole Pattern).
The pattern has circular symmetry
aroung the center point x = 0 = p = 0

because the whole configuration is

symmetric about be x axis. Thus, us-

ing our circular coordinates on the
screen as in Fig. 3.1, it depends on
radial distance p, not 0.

If the diameters of the two holes

are rather different, then the differ-

ence between the intensities at maxi-

mum and minimum will be slight. The in-

tensity will look as shown in Fig.
3.7.

MATHEMATICS OF THE TWO HOLE PATTERN:
The two contributions to the am-

a

DETECTOR

keeping a fixed, we pass through different

angles j3.

IMilk

- - - - - --
1 min

P or 0

Fig. 3.7 Intensity pattern for holes of
rather different diameter (e.g., al )a2)
Imax is proportional to (al + a2)2 and Iin

is proportional to (al a2)2.

plitude at the screen have the

form

A oc al2 sin (kr ut)

+ a22 sin (kr + k0 cut) .

The extra phase kA = 2irAJA for he

second slit can be written

E.71

where a is the vector from the

k

Fig. 3.8 Geometry for double-hole diffrac

tion.
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first to the second slit (oriented
at angles cm, 3) and k, I? are the
"propagation vectors" before and
after the absorbing wall. That is,
Ikl = lel = k and the direction
of k is the direction of motion of
light: k is parallel to x and I?
is at an angle 0.

The intensity for fixed orientation
of the holes is the time average of
the sum of the squares of the two
terms in A plus the interference
term. The latter, after time aver-

aging, is

absorbing wall is

7r

(a12 a22)(1/2) ir sin y dy

0

cos (d PI cos y)

= al
2

a2
2 sin (d 1)

d I 17' I

We find cc' by geometrical con-

struction:

= 2k sin 0/2.

(a12 a22) cos (d' (1 P)). Our final answer is then

Now to average over the directions al 4 a2 4

of d we take k e to be the axis I -
2

of a spherical coordinate system.
The average of the interference + al a2 a2

2 sin (2 kd sin 0/2),

term over all orientations of the (2 kd sin 0/2)



4 SCATTERING

4.1 OPTICAL SCATTERING FROM A BLACK
DISK.

We want to consider the standard
scattering experiment. An essentially
parallel collimated beam arrives at a
target and some of it is scattered on
to a detector. Both the collimator
opening and the distance to the de-
tector are very large or macroscopic
distances. The target is made up of
microscopic particles or, in principle,
a single microscopic particle. If the
target is a single black disk, then
we have the configuration shown in
Fig. 4.1.

We need to know the amplitude, As, un-
der the condition that the collimator
diameter W is very, very large:

When the black disk target is absent
we just have the hole configuration
considered uefore. We discussed how
for 0 >j A/W there is dark shadow at
the detector. Let the amplitude when
only the collimator is present be Ac.
If we call As the amplitude for the
configuration with only a small hole

ITARGET

COLLIMATOR DETECTOR

Fig. 4.1 Standard scattering experiment,
with black disk target of diameter a, the
collimator opening W is much larger than
either A or a. Both the collimator opening
and the distance to the detector are very
large or macroscopic distances.
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of diameter a, then to the right of
the absorbing plane we have Fig. 4.2.

AB = Ac As

Since Ac is essentially zero at the
detector for 0 >> A/W we find

AB =

and the intensity for black disk scat-
tering is

I= F va2]2
Ex2r2 4

di k
2 OT a sin 0

A
)

(7r a sin 0\2

A

just as for transmission of light
through a hole. Meanwhile at very
small angles 0 -=X/W, the beam will
overwhelm the light scattered from the
disk so the pattern will not be easily
discerned.

4.2 SCATTERING OF "MATTER" WAVES

We've seen how to calculate the
scattering of light by a black disk
(and by two black disks), and you

I I I

Fig. 4.2 The amplitude to the right of the
absorbing plane for a black disk target is
the difference between the collimated ampli-
tude with no target and the amplitude for a
small hole of the same diameter as the disk.
This is because the amplitude must be zero
just to the right of a black disk (by defi-
nition of "black").
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Fig. 4.3 A typical pattern of x-ray in-

tensity on the observing screen with a
crystalline target.

can imagine how it would be done for

other arrays of black disks (or for
scatterers other than black disks).
There are two essentially different
types of arrays. There ore crystals
which consist of regularly aligned
rows of atoms, and there are amorphous

materials, gaseous, liquid or solid,
which don't have such a regular struc-
ture between the molecules. The inten-
sity pattern for scattering of light
(in this case x rays to get small
enough wavelengths) from a crystal is
an arrangement of spots at certain
angles (Fig. 4.3). It is the same as
the pattern you obtain from light fall-
ing on a set of absorbing walls with
regularly spaced holes in them (Fig.

4.4).
For an amorphous target the wave

model predicts a pattern which is a
series of concentric circles, as for
the one and two black disk cases dis-
cussed. There may be some regularity
as you go out it radius in such a
pattern such as bright rikig - not-so-
bright ring, and so on.

In summary, we see that the wave
model predicts coznplex patterns. Many
of the features arise, however, from
simple considerations.

If instead of directing a beam

1 1

1 1

1 1

1 1

1 1

INCIDENT DETECTOR

LIGHT

Fig. 4.4 If the wave fits in certain direc-
tions there will be a spot at the detector
at that angle. The wave model predicts par-
ticular patterns of spots for different

crystal targets.

of light or x rays on a target, let us
use an intense beam of "matter" parti-
cles of definite energy.2 I mean parti-
cles such as electrons and protons.
Under reasonable conditions it turns
out that you observe the same kind of
patterns as with light. If the target
is a crystal you observe spots; if it
is an amorphous material, rings.

We shall assume that the wave
model determines the intensity distri-
bution for scattering of microscopic
"matter" particles as well as for scat-
tering of electromagnetic radiation.
We will use the same formula for the
intensity. We will just need to know
what to insert for the wavelength in
the formula. I will discuss this
later.

Let us digress from the main
thread of our argument to point out
that this assumption has two very
pleasing aspects: (a) It can be shown
that, in the case of particles larger
and heavier than electrons and protons,

20f course, more than the beam may have to be
changed. The lens is inessential to any of these
experiments and there is no known lens for x rays.
If a lens would be helpful with the "matter" par-
ticles, a magnetic lens for charged particles
can be used. The detector would probably be dif-
ferent although photographic film can be used in

all cases.
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Fig. 4.5 Pattern obtained with intense
beam (circles). Typical pattern obtained
at very low intensity is made of individ-
ual dots, here denoted by crosses to make
them stand out.

the wave model eventually goes over to
classical mechanics. In the appropri-
ate limit, it describes the scattering
of billiard balls correctly. (Although
the wave model has this consistency,
the classical mechanics of large ob-
jects does not apply to microscopic
particles.) (b) The wave model unifies
some of our ideas about light and "mat-
ter" particles. Let us look at one
aspect of this by discussing a thought
experiment. Take a picture of the in-
tensity pattern arising from scattering
a beam of particles of definite energy
and with a particular target. Say it
is a ring pattern. Now reduce the beam
intensity, leaving everything else the
same. We may need to improve our de-
tector. There is no problem, however,
in obtaining very sensitive detection
these days. As we decrease the inten-
sity and reduce the exposure we will
obtain a rather rough and vague pat-
tern like a newspaper photograph
rather than the smooth clear pattern
obtained at high intensity. Reducing
the intensity farther we will obtain
just one or a few dots in a picture
(Fig. 4.5).

Reducing it further we will finally
obtain nothing (i.e., no beam particle
scattering into the detector). The
least non-null result is one spot.
Each spot is made by the arrival of a
single scattered beam particle.
Imagine obtaining many, many negatives,
each with a few spots on it. Placing
them one on top of the other and look-
ing through you will see the same
smooth pattern which would be obtained
in a single high-intensity exposure.
The same phenomenon occurs in the case
of light. The light particles are
called "photons." Normally an intense
beam cc-gists of so many of these
units that it appears to be continu-
OUS. 3

The wave model predicts the es-
sentially continuous distributions
which arise in cases of high intensity
and long exposure. The wave model does
not predict where any individual par-
ticle will arrive at the observing
screen. But since a smooth intensity
distribution is made up by adding the
contributions of individual particles,
the intensity distribution is a prob-
ability distribution for individual
scatterings. We will not make use of
this fact but will always consider the
smooth pattern obtained with suffi-
ciently intense beams and long expo-
sures.

To complete this discussion let
us state the wavelength relation for
matter waves (and the energy relations
for photons). For a matter particle
(nonrelativistic):

E
MV2 .21

2 2m

3We do not usually have to worry that neighboring
beam particles have any influence on each other.
The density of beam particles in a beam is usu-
ally less than in the best vacuums man has made.
For example, if the beam intensity is 1013/sec
X cm2 (i.e., about one microampere on a cm2
target - a typical order of magnitude), and the
beam velocity is one-third the velocity of light
then the beam density is 1013/1010 - 103 parti-
cles per cats. The beam particles are spaced 1 mm
apart! They certainly do not influence each other
during any atomic or subatomic scattering process.
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where p is the momentum. The expres-
sion for the wavelength (in vacuum) to
be used in the wave model is known as
the de Broglie relation:

X = .

p

This relation, with the same value of
the constant h has been found to be
valid for all particles. Ordinarily h
is stated in cgs. units as 6.63 x10-27
erg x sec. We will not, however, use
this unit system in our calculations.
We will not here discuss the experi-
ments which yield the best determina-
tions of h. For photons, or any ex-
treme relativistic particle, the rela-
tion between energy and momentum is

E= pc.

The de Broglie relation again applies
so that

E = hc/X (photons)

E = h2/2m X2 (nonrelativistic
particles).

For completeness, although it doesn't
enter into our intensity formula, I
state the frequency relations. For

light we saw that

co = kc or v = c/X,

which implies,

E = hv.

This relation also applies to nonrela-
tivistic particles.

Often you will see the constant

h = h /27r

tsed instead of h. If we also intro-
duce the symbol

X = Xi2a

(the distance in which the amplitude's
phase passes through one radian rather
than one cycle), the above formulae be-
come

A = hip = 1/k (4.1)

E = pc = hc/A = hkc (photons) (4.2)

E = p2/2m2 = h2/2mx2 = h2k2/2m

(nonrelativistic particles)
(4.3)

and

E = hw.



5 MOLECULAR STRUCTURE OF GASES
BY ELECTRON DIFFRACTION

5.1 RIGID MOLECULES

We are going to discuss the ex-
perirental determination of intera-
tomic distances in a gas molecule by
observation of interference effects in
electron scattering, commonly called
"electron diffraction." Let us first
assume that the various interatomic
distances in a given molecule are
fixed (i.e., the same at all times).
The structure of the molecule is de-
termined by listing the distances rij
between all atoms i and j as indicated
in Fig. 5.1.

The distances we are talking about, as
you recall from Chapter 1, are the
distances between the atomic nuclei.
(The space between these nuclei is
more or less fully occupied by atomic
elerrtrons.)

Imagine, then, a collimated beam
of electrons of energy E scattered by
a gas target (a well-defined jet of
gas passing at right angles to the
beam) onto a photographic plate (Fig.
5.2).

1'12

Fig. 5.1 If the distances between all atoms
in a molecule are fixed, then the molecule
has a definite rigid form as indicated by
the examples. The 4 and 5 atom arrays may,
of course, be three dimensional. Note that
for a molecule with five or more atoms one
or more of the distances rij can be found
from the other rijts.
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A typical electron energy used is
about 40 000 electron volts (40 kV).
This is not much more than that de-
livered by the electron gun in the pic-
ture tube of a standard television re-
ceiver.

The reason for choosing this en-
ergy is discussed in the special topic,
Information Content of a Pattern. Just
for the moment, let us relax our as-
sumption that the interatomic dis-
tances have fixed values and consider
the realistic case where a typical in-
teratomic distance rij is not exactly
fixed, as a function of time, but
takes on various values around its
equilibrium value re, i.e., r takes on
values from roughly re + Ar to re Ar.
Then the bast wavelength to use is

Ar

If you use a much smaller wavelength
than this, the pattern smooths out to
uniform illumination except at very
small angles. A 40 kv electron has
wavelength (Eq. (4.3)):

TO VACUUM PUMP

I

1

L

ELECTRON GUN

COLLIMATOR

L
GAS INPUT

ROTATING SECTOR

PHOTOGRAPHIC
I PLATE

Fig. 5.2 Schematic drawing of the electron
diffraction apparatus. The size from top to
bottom is about one meter. The rotating sec-
tor is explained in Fig. 5.4.
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A = 27A2/2mE

ti 0.06 X 10-8 cm

This wavelength is about equal to the
spread Ar in the distribution of inter-
atomic distances that is observed (see
section 5.2). The wavelength is much
smaller than the spread (effectively
about 1 A) in the distribution of po-
sitions of atomic electrons. The elec-
tron beam has sufficiently small wave-
length it is not strongly af-
fected by the electrons in the target
but only by the nuclei (Fig. 5.3).

In section 3.2 we established the
intensity formula

",

4 4
1 "2

I (s)
2

sisn

r

sr

'

where instead of scattering angle 0, I
have introduced s, the momentum trans-
fer.4 This notation is commonly used

by physical chemists:

s = 2 k sin 0/2

and r is the separation of the two
black disks (we saw in section 4.1
that this intensity formula applies
to two black disks of diameter ai as
well as to two holes). To apply this
intensity formula to scattering of
electrons by atomic nuclei instead
of black disk scattering, we need only
one modification. For each atom sub-
stitute fi(s) for ail. Here fi is the
Coulomb, or Rutherford, scattering am-
plitude for the scattering of one
charged point particle by another. We
don't derive this modificaidon. The
intensity is then

I

f 2 f 2
1 2

sin sr
+ f1 f 22 sr

This is the formula for a rigid dia-

tomic molecule.

4Workers in x-ray and low energy electron scat-
tering usually use notation such that 20 is the
scattering angle. You should check the defini-
tion of 0 when reading an article by a chemist
or an article on x-ray scattering.

(a)

(b)

(c)

(d)

sin k,r

b(r)

A,

r

Ar

td J v

11

J

Fig. 5.3 We see that it is reasonable that

a wave of short wavelength (a) doesn't no-

tice a gradually changing (force) distribu-
tion (b), by multiplying the wave at every
point by the distribution b. The result,

sin kar b(r), is plotted in (c). The aver-

age value of (c) is very small, i.e.,
(sin kar b(1))ave ;L-, 0, since the positive

and negative parts of the wave are almost
equally affected by b. The criterion for a
small effect is A <KAI' where br is roughly
the smallest distance in which there is a
large relative change in b(r). Meanwhile
the wave sin kdr shown in (d), where Ad "1 Ar,

will be strongly influenced by b.

Just as for black disk scatter-
ing, the intensity pattern for a
single atom, I = 1 (s)2, is a much
smoother function of angle than the in-
terference term, f1f2 sin (sr)/sr be-
cause of the sin (sr) factor (see sec-
tion 2.3). The experimentalists sub-
tract away the smooth background from
I (s) and deal directly with the
"molecular intensity":5

In (s) ac f1 f2
sin sr

sr

5The photographic emulsion also records "inelas-
tically" scattered electrons (to be covered in a
future Chapter 6), which are distributed smoothly
with s. If the total smooth background intensity
Ib = f12 + Iinelastic then the molecular intensity

is Is
E'fifi sin sr].)

. This defines the
Ib

constant of proportionality in Eq. (5.1).
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For a polyatomic molecule the expres-
sion is

sin srij
In (s) ockfifj

srij
(5.1)

The primed sum means sum over i and j
but with no i = j terms.

The intensity distribution for
Coulomb scattering is strongly peaked
at forward angles, falling off at
large angles. For a single atom

I f2 cc

Zeff2 Zeff2
C = sin4 0/2 S4

where Zeff is the effective charge of
the atomic nucleus. (We do not derive
this formula here.) It is very incon-
venient to handle this enormous range
of intensities from small to large
angles. A simple device which effec-
tively multiplies I by s3 or s4, say,
(whatever the experimentalist desires)
is the rotating sector. This is a
piece fif metal which stops beam elec-
trons which strike it but otherwise

Fig. 5.4 Shape of metal sector rotated
about the axis (into page) of the incident
electron beam. This one effectively multi-
plies the scattered intensity by a factor
proportional to s3.

has no effect. It rotates about the
same axis as the axis of the beam,
and is shaped to cut out more of the
forward scattered electrons than elec-

trons scattered through a large angle
(Fig. 5.4).

Now we can discuss results. A
typical intensity curve for a compli-
cated polyatomic molecule as a func-
tion of momentum transfers is shown
in Fig. 5.5.
The particular distances rid in the in-
tensity formula (5.1) which give a
good fit to the data are found by var-
ious techniques. The most convenient
procedure is discussed in Section 5.2.
Typical results for rij are 1 to 5 A
with a reproduceability of up to
0.002 A. The agreement with other tech-
niques (analysis of spectroscopic data,
neutron scattering and scattering of
x rays) is well within 0.01 A in f a-
vorable cases. Another check which is
well satisfied is provided by the self
consistency of the set of distances
rij in a molecule of five or more
atoms (see Fig. 5.1). So the results
are quite convincing.

As a more concrete illustration
of the technique, we show in Fig. 5.6
(a, b, c) three molecular intensity
curves as a function of s as they
might be obtained from an experiment.
These curves are all for the molecule
dichloroethylene (C2H2C12) and they
show the variation in the molecular
intensity for three forms of the mole-
cule. The molecules all lie in a plane
but differ in the placing of the chlo-
rine atoms with respect to the carbon
as sketched in the figure next to the
corresponding intensity curves. These
forms of the molecule can be disting-
uished by measuring the distance be-
tween the two Cl atoms. In (a), called
1,1 dichloroethylene, the Cl atoms
are close, in (b), called 1,2 cis
dichloroethylene, they are further
apart, and in (c) 1,2 trans-dichloro-
ethylene, they are further apart.6 The
increasingly rapid oscillation of sin
sr with increasing rci_c, is evident.

The relative amounts ci of these and
other forms of dichloroethylene in a

'The label 1,1 refers to the fact that both Cl
atoms are attached to one carbon; and 1,2 refers
to the fact that one Cl is attached to the first
carbon and the other to the second.
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1

0 10 20

C1 -H1 1.07010.005

Cl -C2 1.42410.002
Cl -C3 2.30410.004

Cl-H2 2.23010.010

Cl-H3 3.34010.010

Be- C 1.91510.005

Be- C' 2.32010.010

Be- H 2.72010.020

Be-H' 3.02010.020

C1 -C1 3.45010.0 0

Fig. 5.5 Molecular intensity curves for

(C5115)2Be, dicyclopentadienylberyllium,
are shown in the upper figure. Curve A is

the experimental data and B is a theoretical
fit to the data based essentially on Eq.

given sample of the gas can be deter-
mined by finding what linear combina-

tion

zci I." ) (s)

of the intensities I
(i)

for each form

30 40 S (A )

(5.1). On the lower left are some of the dis-
tances determined with errors (representing
the reproduceability of the results). On the

lower right is a sketch of the structure of
the molecule as deduced from this experiment.

fits the electron scattering from that
sample. (Usually there are better
methods for making such a determina-
tion than electron scattering). An ap-
plication of this type of experiment
is that the concentrations ci (T)
measured at various temperatures en-
able calculation of some thermody-
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namic properties of dichloroethylene.
An extensive discussion of the

significance of the determination of
interatomic distances in molecules is
beyond the scope of the work, and is
not understood by most physicists (in-
cluding the author). I will just make
a few general remarks. Theoretical
models and accumulated experimental
data on molecular structure indicate
extensive regularities. For example,
(a) various classes of molecules ex-
hibit particular kinds of rotational
symmetry such that the same angles
occur in many molecules; (b) a bond
such as the carbon-carbon bond is
found to have a well-defined bond dis-
tance in a given general situation so
that a given type of C-C bond has the
same bond distance in many molecules.
These relations for structure parame-
ters, such as C-C bond distance as a
function of the type of bond, are
called semiempirical relations. An ex-
perimental determination of the struc-

ture of a particular molecule not only
leads to a table of distances and
angles for that molecule, but also in-
fluences the chemist's understanding
of molecular structure in general,
since the results may or may not agree

with the semiempirical formulae.
There is considerable practical

value in establishing semiempirical
relations for structure parameters. For
example, organic chemists are inter-
ested in designing and building new
organic molecules. They can make good

guesses about the constitution of new
molecules with the help of the semi-
empirical relations. Another example
is predicting the behavior of materi-
als at very high temperatures where
direct experimental tests are diffi-
cult. A theoretical prediction of the
properties of a material via statisti-
cal mechanics can be made if the struc-
ture parameters are known.

5.2 VIBRATING MOLECULES

Two approximations are involved
in the formula for the molecular in-
tensity (e.g., for a diatomic mole-

cule):

Im cc fl f2 sin sr/sr

(a) We assumed the interatomic dis-
tance r to be the same for all mole-
cules of a given kind and the same at
all times. (b) We assumed that scatter-
ing from one atom in the molecule is
the same as scattering off the atom in
isolation, e.g., such that the scatter-
ing amplitude fl is unaffected by the

fact that atom 1 is very close to
atom 2. We also assumed that the
phases Oi for each atomic scattering
are the same since we omitted the
cos (61 62) factor. The assumption
(a) is very poor but it is easy both
to understand what is going on and how
to do the problem without making the
assumption. Assumption (b) is usually

Fig. 5.6 Molecular intensity curves for
1,1 dichloroethylene and cis and trans
isomers of 1,2 dichloroethylene are
shown in a, b, and c, along with sketches
of the deduced molecular structure. The in-
tensity curves look roughly like the experi-
mental data for Ia. Since this type of exper-
iment is now "ancient history" it was more
convenient to calculate the curves using

the expression:

sin srIa "C12 sr

+ 2Z
sin sr c-ci sin src-cr

cZci
src-cl src- cr

sin src-c.
+ Zc2

src_c

Here Zcl = 17 and Zc = 6. The distance
rci_clis the chlorine-chlorine distance,
with values 1.68, 3.06, and 4.23 A in a, b,

c, respectively. In each of the three cases
there are two equal short distances from Cl
to C atoms and two equal long ones and these
two distances are the same for the three
cases. These are rci_c = 1.68 A and

rci_c' = 2.66 A. The electron scattering by
hydrogen is neglected. The C-C distance is

1.38 A.
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P(r)

Fig. 5.7 Radial distribution for a diatomic
molecule.

very well satisfied, so 'we need not go
into the relatively sophisticated
arguments needed to improve the inten-
sity expression if this assumption is
modified.

Instead of (a) we consider that
a given kind of diatomic molecule has
an interatomic distance which oscil-
lates in time around an equilibrium
value re. We assume that this vibra-
tion of the molecule is relatively
slow so that a beam electron sees a
fixed distance r as it passes a par-
ticular molecule. This approximation
is excellent: since the mass of the
electron is much smaller than the
atomic mass, its velocity is much
larger. Let the distribution of the
es be described by a function P (r).
That is, imagine that we somehow ex-
amine a very large sample of molecules
at one instant and plot the number of
molecules observed to have interatomic
distance r (say in each interval of r
of width 0.001X). We will obtain an
essentially smooth curve (Fig. 5.7).

We would get the same curve ::.rom ex-

amination of a single molecule at
many widely spaced times.7 The equi-
librium separation distance is re. The
root mean square amplitude of vibra-
tion is indicated by Ar in the sketch.
The shape of P(r) might be, for ex-
ample,

P(r) « e z nr l

71e would have to wait long enough to be sure
that if we disturbed the molecule with one elec-
tron it would have time to settle down to its
lowest state before the next electron arrived.

The molecular intensity we ob-

serve is the result of many electrons
independently scattering from a single

type of molecule, and will be

I, (s) m Jdr P(r) fi f2
sin sr

sr
(5.2)

We can obtain the fuction P(r) expli-
citly from I(s) by transforming Eq.
(5.2). We must assume in the following
that the proportionality factor in
Eq. (5.2), associated with the defini-
tion of In (see footnote 5) and with
the rotating sector used, has an s
dependence cancelling the s dependence
of fife. The Fourier integral theorem
states that

40 GO

g(z) =-1-1 [dkeikx Idx'eikx' g('' ) 1
2r

(5.3)

The important mathematical condition
for the validity of (5.3) is that
fig(x)12 dx is finite, which, you will
see below, is true here. Now, in Eq.
(5.2), omitting constant factors, and

using sin sr = )/2isr,

Is (s) =

so
eiSr

-40

P(IrI) dr, (5.4)
2isr

so that, rewriting (5.3), we find

. .
2E1 _1 1 i
r 2v

dse-isr 1 e P(Irf I )
dr'e is

r
,

1
1 se-isr 'NA's') ds

in
-02

40

=
2

is sin sr Ia(s)ds.
7f

0

The transform

GO

2'1111 = irds s sin (sr) Ie(s) (5.5)
71r

0

is called the "radial distribution
function" and is just l/r times the ac-
tual distribution of interatomic dis-
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P(r)r

Fig. 5.8 Radial distribution curve corres-

ponding to the pulytomic molecule considered

tances. Exactly the same formula ap-

plies to polyatomic molecules.
A radial distribution function

for a complex molecule is shown in

Fig. 5.8. The central values of the

peaks are essentially the equilib-

rium distances (re)iu between atoms.

(Some study is of course necessary
to make the proper assignment i j

to each peak in P(r).)

The half width of any peak is related

to the amplitude of vibration but,

obviously, it is a complicated job to

sort out the vibrations in a poly-

atomic molecule because the many vi-

brations are going on at the same time.

They are not independent of each other.

Let us briefly discuss the vibra-

tions of a diatomic molecule. The dis-

tribution of interatomic distances,
P(r), will consist of a single peak

as in Fig. 5.7. One can learn a lot

about the vibration and the inter-
atomic force from this information. It

can be shown that the force between

the two atoms has the form illustrated

in Fig. 5.9.
Presumably, for small vibrations,

the interatomic force is a restoring

force about the equilibrium position

re:

F(r) = k(r re).

In other words the potential energy

in Fig. 5.5.

near re has the form of an harmonic

oscillator potential:

1
V(r) =

2
k (r re)2 + const.

This form will be valid roughly in the

shaded region of Fig. 5.9. We haven't

discussed enough quantum theory as yet

to enable us to solve the harmonic
oscillator problem, but-this is one of

the standard subjects of introductory

quantum mechanics and perhaps you can

V(r) Z,Z2 e2/r for small r

r.

Fig. 5.9 A rough sketch of the potential

energy as a function of the separation dis-

tance between the two atoms of a diatomic

molecule. At small enough distances the

coulomb repulsion is the dominant interac-

tion. In the shaded region there is an at-

tractive well which can trap the pair of

atoms so that they form the molecule. The

separation of the atoms in the molecule is

approximately re.
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come back to this molecular example
when you take it up. Empirical knowl-
edge of P(r) will enable you to deduce
something about the force constant k
and about the period of vibration. The

latter can then, for example, be cor-
related with information about mole-
cular spectra (i.e., the frequencies
of electromagnetic radiation absorbed
or emitted by the molecule).



Appendix A SOLUTION OF THE WAVE EQUATION

In this appendix we derive the inte-
gral formula for the amplitude at any
point in terms of the amplitude on a
wavefront, which was given in section

2.1.
The wave equation in three dimen-

sions in a homogeneous nonabsorptive
medium is:

1 82
02 A(r,t) = A(r,t)

Here we assume that A is a scalar func-
tion. We will neglect polarization ef-
fects. A(r,t) can represent the
strength of either the electric or mag-
netic field. The wave equation can be
derived from Maxwell's equations if
one assumes a homogeneous isotropic
medium, i.e., constant permeability
and dielectric permittivity, and if
one assumes zero conductivity and ne-

glects polarization.(Any intermediate
or advanced text on electromagnetism
will discuss this derivation of the
wave equation from Maxwell's equations.

We consider only monochromatic
light, i.e., steady waves. You can
check that a particular plane wave so-
lution moving in the direction k has

the form:

A= a sin (1E%-i wt + 44, (A.1)

where k = w /c. The general solution of
the wave equation for a monochromatic
wave can be written as a general
linear combination of these plane wave

solutions:

A(ie.,t) fdii a (7) sin [ - wt + 0(10 .

(A . 2)

(You can check that you don't need to
consider more than one plane wave
along a given direction because two
such waves arc equivalent to a single
wave moving in the same direction with

appropriate magnitude and phase.)
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Ratber than seek solutions of the
wave equation in terms of the coeffi-

cients a(k) and phases 0(k), let us
restate the problem. At any fixed
point r, a general monochromatic wave
must have the form

A(i ,t) = A(i) sin [wt + x(;)]. (A.3)

This amplitude can be written:

A (Pot) = Al(r') cos wt + A26) sin wt,

(A.4)

where according to (A.1) the Ai sat-

isfy the "Helmholtz equation":

W4A1 (;) + k2A1(;) = 0 (A.5)

The intensity I(i), which is the en-
ergy/(area x time) passing through a
surface normal to the motion of the
wave (thus the energy passing through
the wave front at 0, is

I = A(r;02 = A(r')2 (A.6)

where the bar indicates time averag-

ing.
It is more convenient to deal

with a single complex solution Ac than
with the real solutions Ai even though
electric and magnetic fields are real.
We will use the complex amplitude in
this appendix, but not in the main
text. You can check that the results
are the same for the two. Let Ac(i,t)

be a complex solution of the wave equa-
tion for monochromatic light. Instead
of (A.3) we can write

Ac(F,t) = Ac(;) eiwt (A.7)

where Ac(;) satisfies the "Helmholtz
equation"

V2 Ac(;) + k2Ac(;) = 0 (A.8)
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and

Ac(;) = A(;)eix(;) =
2

(A
1

+ A
2

).

(A.9)

To go back and forth between the real
and complex solutions we just remember
that the phase in time of the real am-
plitude is the same as the complex
phase of the complex spatial amplitude,
and that the magnitude of the real
time dependent amplitude, A(r), is J2
times the magnitude of the complex
amplitude. I have introduced the fac-
tor 1/4'5 to keep the prescription for
the intensity simple. The intensity is
the absolute value squared of the com-
plex amplitude:

1
I = 2 A2 (r) = I A c(i)12 (A.10)

The solution of a differential
equation such as (A.8) with boundary
conditions is often more easily ob-
tained by restating the differential
equation and its boundary conditions
as an integral equation (In our case
the boundary conditions would be de-
scription of sources, absorbers, mir-
rors, etc.). Often, as is the case for
us, a powerful approximation is sug-
gested by the form of the integral
equation: one approximates it b) an
integral over known functions.

To establish the integral equa-
tion we make use of an auxiliary func-
tion G(r,ro) which is the amplitude
corresponding to a point source at ro:

G= exp (ikir rol)

I ;01

This is an outgoing sperical wave go-
ing out from the point ro. (Multiply
as in Eq. (A.7) by 0-11')t to see that

the wave,moves out radially from 1.0

with velocity c as time increases.)
The intensity is

I = 1G12 = ;012

inversely proportional to the square

of the distance from r0. Through any
cone with apex at 1.0 the energy flow
is

a(;) = LW,

where a is the cross-sectional area of
cone and d'a is the solid angle sub-
tended by the cone. The energy flow is
independent of Ir 1.01 as expected.

The total energy flow out from r0 is:

fan = 4r.

The auxiliary function G is called a
Green's function. Mathematically the
statement is that G satisfies:

V =G + k2G = 4r ö (A.12)

For those not familiar with the delta
function, (A.12) is equivalent to the
two relations

+ k2G = 0 (A.13)

for r r0, and

id3r(W.G + k2G) = 4r (A.14)

for any volume V containing the point
ro. To prove (A.13), note that in any
neighborhood not containing the singu-
lar point 1.0 we can differentiate us-
ing the expression for V2 in spherical
coordinates

[V:
r are

f = 8 (r f)

1

r2 sin 0
(sin

0 a0
f)

1 a2
]

r2sin20 402
f .

Thus

A exp (ik I ;01) 1 ,d2 ikRr
vr Ir rot R dR2

e

= 0
R

where R = Ir rol. To prove the rela-
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tion (A.14) first observe that for a
sphere of radius Ro centered at ro

eikRfie do dR -0

as the radius of the sphere, Ro, goes
to zero. The remaining term is

fd3R V2G = Ids* = 47/R2 tig -- -41/

SurfaceY Ro

1
since

dG -* - --2 as Ro -. 0

Ro
dR Ro

To obtain our integral equation
we form a standard combination: G
times Eq. (A.8) for A minus A times
Eq. (A.12) for G (we use the complex
solution but will drop the subscript
c). Integrating over a volume V con-
taining rr0 we have:

f[G(v2 k2) A - A (v2 k2) G] dor

= 47r AGO). (A.15)

We manipulate the integrand to obtain

47r Aq0) = jd3r(GV2A AV2G)

= fcf3r171 (OA AVG)

which, by Gauss' theorem becomes

47r Afro) = AVITIG G4A) dS (A.16)

where n is distance along the outward
normal on the surface S which bounds

the volume V.

We want to consider a particular
configuration where there is a dis-

tant source to the left of an absorb-
ing wall which has finite openings,
connected in any way. To the right we

can assume that space is empty. Equa-

tion (A.16) is an integral equation:

we cannot in advance specify A and

0A/8n on some boundary and be consist-
ent with the source and absorbers. The

A and aA/an have to be solved for. The
type of configuration we want to con-

ABSORBER

*SOURCE

Fig. A.1 Typical geometry for expression

(A.16).

seder suggests the following approxi-
mation, however. Assume that we can
take the amplitude arriving from the
source to the left of the absorbing
wall to be given. Just behind the ab-
sorbers we assume that A and OA/an
vanish. Similarly on the distant
boundary enclosing the volume to the
right (we take the volume V to be
large) we assume that A and aA/an van-

ish. The latter approximation may be
justified by considering a slightly
ti-"- dependent wave rather than a
st..,dy wave and taking the right-hand
surface to be far beyond the point 1'0.
Then at times of interest there
shouldn't be any contribution from the
right surfaces to A(r0).

At every opening in the absorber
consider that the boundary surface is
made up of a wavefront and necessary
surfaces perpendicular to the front
to complete covering the opening.

DIRECTION OF

THE WAVE

FROM THE SOURCE

WAVEFRONT ABSORBER

Fig. A.2 Sketch for evaluation of 8A/an.
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CIRCLE CENTERED

AT r0

Fig. A.3 Sketch for evaluation of 8G /8n. We
see that bx = An cos9.

We neglect A and 8A /8n on the surfaces
perpendicular to the front. Choose a
front with zero phase, to be definite,
so that

A(i,t) = a(;) exp(ikn iwt),

where a(;) is a slowly varying func-
tion compared to the phase factor
e-i" so that

aA
= ikA.

an

Meanwhile, we see from Fig. A.3 that

aG
= ik cos 9 G.

an

Again we have made use of the fact
that the phase factor dominates the
variation of the function.

With these approximations the in-
tegral equation becomes the integral:

A(r,t) =
4a
j-1.1/1 G(1 + cos9) dS

x IdS a(;) (1 + cos9)
exp(ikl 11'01 iwt)

fir' ;01

Where the integration is over the wave-
front arriving at the openings in the
absorber. This is the expression we
set out to derive, being just the com-
plex version of the expression given
in section 2.1.
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