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OMNZRAL PRZIALCI

This monograph was written for the Conference on the New Instructional

Materials in Physics, held at the University of Washington in the sum-

mer of 1965. The general purpose of the conference was to create effec-

tive ways of presenting physics to college students who are not pre-

paring to become professional physicists. Such an audience might include

prospective secondary school physics teachers, prospective practitioners

of other sciences, and those who wish to learn physics as one component

of a liberal education.

At the Conference some-40 physicists and 12 filmmakers and design-

ers worked for periods ranging from four to nine weeks. The central

task, certainly the one in which most physicists participated, was the

writing of monographs.

Although there was no consensus on a single approach, many writers

felt that their presentations ought to put more than the customary

emphasis on physical insight and synthesis. Moreover, the treatment was

to be "multi- level" --- that is, each monograph would consist of sev-

eral sections arranged in increasing order of sophistication. Such

papers, it was hoped, could be readily introduced into existing courses

or provide the basis for new kinds of courses.

Monographs were written in four content areas: Forces and Fields,

Quantum Mechanics, Thermal and Statistical Physics, and the Structure

and Properties of Matter. Topic selections and general outlines were

only loosely coordinated within each area in order to leave authors

free to invent new approaches. In point of fact, however, a number of

monographs do relate to others in complementary ways, a result of their

authors' close, informal interaction.

Because of stringent time limitations, few of the monographs have

been completed, and none has been extensively rewritten. Indeed, most

writers feel that they are barely more than clean first drafts. Yet,

because of the highly experimental nature of the undertaking, it is

essential that these manuscripts be made available for careful review



by other physicists and for trial use with students. Much effort,

therefore, has gone into publishing them in a readable format intended

to facilitate serious consideration.
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PREFACE

DISTRIBUTIONS

This monograph is intended to provide an introduction to the idea of

distributions in general, and to some aspects of the subject of impor-

tance in physics. The level is intended to be suitable for students who

have had an introductory college physics course, although only very

little knowledge of physics is actually required. The first chapter is

entirely nonmathematical, the second is intended to be understandable

to students who have not had a calculus course, and the third chapter

requires familiarity with elementary calculus. A fourth chapter is

planned which treats applications in statistical ralchanics, but that

chapter is not included in the present publication.

It is my hope that the material may be helpful in giving a some-

what more detailed introduction to certain statistical and probabilis-

tic ideas than commonly occurs in the standard physics texts, and that

it may therefore find some use in preparing students not only for the

study of kinetic theory and statistical mechanics, but also for other

areas of physics where these ideas are useful.

Wayne A. Bowers
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1 INTRODUCTION

1.1 THE IDEA OF A DISTRIBUTION

Let us imagine ourselves capable
of seeing individual molecules flying
about in a gas. Suppose we fix our at-
tention on a small region, and consid-
er the motion of the molecules as they

move across the region. Suppose we are

asked: "How fast do they travel?" On
looking at several molecules, we find
that some travel slowly, some fast;
perhaps we find a tendency for a cer-
tain range of speeds to predominate,
but nevertheless values outside such a
range occur from time to time.

Again we look at the gas; this
time we follow an individual molecule
in its path. It collides with another

molecule, changes its direction and
speed, goes on to another collision,
strikes the wall of the vessel and
bounces off, collides with still a
third molecule - and so on. Suppose we
are asked: "How far does it travel be-
tween collisions?" Again there is no
single answer. Sometimes it travels a
micron, sometimes much less; the dis-
tances vary widely.

Or again, suppose we are simply
asked: "How many molecules are there in
a cubic micron?" If there is a reason-

ably high vacuum in the system, there

may be a density of about ten molecules
per cubic micron; but again, as we
watch any particular cubic micron of
volume, we see now eight, now thirteen,
now eleven, now seven molecules. The

number we see varies "randomly" about

an average value.
The questions asked about the

molecules in each of the examples given
have this one thing in common with each
other and in common with a host of
other questions which arise in physics

and in the other natural sciences tend

the social sciences. They cannot be an-

swered with a single number, but only

with a whole range of numbers. In this

respect they are in contrast with such

1

questions as: "What is the speed of
light in vacuo?" and "What is the tem-
perature of pure boiling water under
normal atmospheric pressure?", which
have precise numerical answers (ignor-

ing very small uncertainties which de-
crease further with each improvement

in the experimental apparatus). The
first type of question can be given
only such answers as: "Out of 200 mole-

cules, 52 had speeds/between 0 and 300
meters/sec, 89 had speeds between 300
and 600 meters/sec, and the remaining
59 had speeds greater than 600 meters/

sec."
This kind of an answer we call a

distribution because it tells how the
molecules are distributed with respect
to the property of interest - speed, in

this case. Such distributions arise in

every area of physics. The time of de-

cay of a radioactive nucleus, the angle

of scattering of a neutron colliding
with a carbon nucleus, the position of

an electron in a hydrogen atom, the

energy of the beta particle emitted in

the radioactive decay of a nuclear spe-
cies - all of these and. a host of

others are described by distributions
rather than by single numbers. In the
social sciences, perhaps even more than
in physics, distributions are ubiqui-

tous; such familiar examples as the
distributions of income, of life ex-
pectancy, or of education come to mind.
Not only is the determination of such
distributions the aim of much research
in the social sciences; once deter-
mined, they form the essential factual
base for further economic and socio-
logical work.

To define a distribution we must
first specify a population (molecules

of oxygen gas at normal pressure and
temperature; two-million-volt neutrons
scattered from carbon nuclei; students

in a certain physics course), and a
characteristic or property of the in-
dividuals comprising the population



2 DISTRIBUTIONS

which can be measured (speed of the
molecule; angle of scattering of the
neutron; final examination grade of the

student). A table, a graph, or a math-
ematical function telling how many of

the population have specified values of

the property in question then consti-

tutes the distribution. More explic-
itly, it is sometimes called a fre-

quency distribution, since it gives the

frequency of occurrence of the speci-
fied values of the property in ques-

tion.
We will distinguish between dis-

crete and continuous distributions. By

a discrete distribution we will mean

one for which a finite number of cate-

gories are used for specifying the
property in question. This may happen

in two ways. First, the property may
be intrinsically discrete, as in the

example described earlier of the num-

ber of molecules in a cubic micron,

which is necessarily an integer. (Many

distributions arising in probability
theory are of this type. The number of

heads in a sequence of coin tosses and

the number arising in the throw of a

pair of dice have such distributions.)

Second, the property in question, al-

though having in principle a continu-

ous range of values, may be divided

into a finite number of intervals for

convenience. Thus the range of scat-

tering angles for the neutron extends

continuously from 0° to 180°, but it

may be divided into eighteen 10° in-

tervals or thirty-six 5° intervals for

specifying the observed distribution.
The scale of such a division may be

determined in part by the instrumental

NUMBER OF
HEADS

FREQUENCY OF
OCCURRENCE

0 2

1 14

2 19

114 4

50

Table 1.1

limitations (perhaps intervals less

than 5° cannot be accurat3ly defined

by the particular apparatJs), and in

part by the amount of date accumulated.

By a continuous distribution, we

will mean one for which tne full con-

tinuous range of values of the property

is used, in the sense that the inter-

vals which would characterize a dis-

crete distribution are allowed to be-

come arbitrarily small. TD describe

adequately how this is done, the meth-

ods of the calculus must be used. We

will therefore postpone detailed dis-

cussion of continuous distributions to

Chapter 3. We may remark, however, that

in principle an infinite population

would be needed to specify a continu-

ous distribution, for as the intervals

are taken smaller, their number in-

creases. Thus with any finite popula-

tion, there is a limit to the possible

decrease in interval size. Neverthe-

less, the populations which enter in

many physical problems are so enormous

(as for example the 101 molecules in a

cubic centimeter of gas) that they are

effectively infinite, and the methods

of continuous distributions may be used

without trouble.

1.2 GRAPHICAL REPRESENTATION OF

DISTRIBUTION

Discrete distributions may be

represented graphically in various

ways. We shall use two slightly differ-

ent methods, one of which is appropri-

ate for the "intrinsically discrete"

distributions discussed in the previous

20
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VELOCITY INTERVAL,
METERS PER

SECOND

NUMBER
MOLECULES
GIVEN

OF
WITH

VELOCITY

40-100

100 200 16

200 300 35

300 400 44

400 500 37

500 600 28

600 700 17

700 800 11

SOO 900 6

900 1000 2

200

Table 1.2

section, and the other for the distri-
butions of continuously variable quan-
tities whose range is divided into in-
tervals. For the former we use a bar
graph, for the latter a histogram. Each
is essentially a plot of frequency of
occurrence vertically against the pos-
sible values of the quantity horizon-
tally. The bar graph uses vertical
lines at the positions of the discrete
index (usually an integer), since val-
ues between the discrete indices are

meaningless. The histogram uses rectan-
gles of the appropriate heights erected
on each interval, since tho individual
values may have occurred anywhere in
the interval into which they have been
grouped.

We will give an example of each
type of graphical representation. In
Table 1.1 and Fig. 1.1, we have a ta-
ble, and the corresponding bar graph,
giving the frequency of occurrence of
various numbers of "heads" in a series
of fifty tosses of a group of four
coins. The possible outcomes are of
course 0, 1, 2, 3, or 4 heads in each
toss, so a bar graph is appropriate.
In Table 1.2 and Fig. 1.2, we have a
table and the corresponding histogram
giving the distribution of speeds, in
intervals of 100 meters/sec, of 200
molecules.

Although it contains no more in-
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200 400 600 800 1000

VELOCITY (METERS PER SECOND)

Fig. 1.2

formation than the table from which it
is constri, ed, the bar graph or his-
togram is useful in giving a quick
qualitative impression of a distribu-
tion. It can readily give a visual com-
parison of two distributions, or of an
observed distribution with a theoreti-
cal or calculated one. But for more
quantitative information, such as aver-
ages and othernumbers associated with
the distribution, one must usually re-
fer to the data in the table.

1.3 CUMULATIVE DISTRIBUTIONS

es

Occasionally a slightly different
arrangement of the same iniarmation is
useful. We can, instead of giving the
numbers of molecules in each velocity
interval as in Table 1.2, give the to-
tal number of molecules with velocity
less than 100, 200, ... meters/sec.
Such a specification is known as a cu-
mulative distribution. In Table 1.3 and
Fig. 1.3 (see next page), the same
data as in Table 1.2 are given in this
fashion. Evidently the two types of
distribution are easily obtained from
one another; for example, the differ-
ences between successive entries in
the table for the cumulative distribu-
tion give the entries for the corre-
sponding intervals of the original fre-
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VELOCITY
METERS PER

SECOND

NUMBER OF I

MOLECULESWITH
LESS VELOCITY

0 0

100 4

200 20

300 55

400 99

500 136

600 164

700 181

800 192

900 198

1000 200

Table 1.3

quency distribution. Notice that a cu-

mulative distribution canrwt decrease
as one goes up the scale of the meas-
ured property. In fact, it must ulti-
mately increase from zero to the num-

ber in the population.
A different way of specifying a

cumulative distribution is familiar in
the treatment of test scores. If a stu-

dent is told he stands in the "78th

percentile" on a certain test, he knows

that his score is higher than that of

78% of the students taking the test.
This language (percentiles, or deciles,

or quartiles) corresponds to using

equal intervals (hundredths, tenths,

quarters) of the total range of the

vertical, or number, axis of such a

graph as that of Fig. 1.3, rather than

of the horizontal axis. One is asking,

in effect, not how many molecules have

velocities lying in the various equal
intervals, but rather what intervals

of velocity correspond to equal numbers

of molecules - one percent, or one
tenth, or one quarter, respOctively,
of the total number.

1.4 JOINT DISTRIBUTIONS

In all the examples cited so far,

one property of the individuals coo-

priming the population has been singled

200 400 600 800 1000

VELOCITY (METERS PER SECOND)

Fig. 1.3

out for attention: the speed of the

molecules, the grades of the students,

the angle of scattering of the neu-
trons. But the individuals also have

other properties. The molecules have

position and direction of motion as
well as speed; the students have ages,
heights,.and blood pressures as well

as exam grades; the neutrons have en-

ergies and momenta as well as angles of

scattering. The various properties may
be related to one another, or they may

be quite independent. The molecule's

speed - but not its direction! - is

closely related to its kinetic energy;
the student's 1eight is unrelated to

his examination grade, but is somewhat

related to his weight. In either case,

we may define a joint distribution of

two or more such characteristics. By

this we mean a listing, by table, or

graph, or mathematical function, of the

number of individuals of the population

that have simultaneously certain speci-

fied values of each of the two or more

characteristics.
We give in Table 1.4 and Fig. 1.4

a rather prosaic example: a joint dis-

tribution of heights and weights of

5000 men. Notice that a two-dimensional
array rather than a column is needed

for the table, and at three-dimensional
histogram for the figure. The difficul-

ties of pictorially representing joint
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distributions for more than two charac-

teristics are apparent! Nevertheless

they are of great importance in phys-

ics. For example, the joint distribu-

tion in position and speed of a mole-

cule, and the joint distribution of the

three components of the velocity of a

molecule, are basic distributions in

the kinetic theory of gases.

1.5 PROBABILITY DISTRIBUTIONS;

FLUCTUATIONS

Each of the frequency distriu-
tions we have studied may be converted

to a relative frequency distribution by

dividing each entry in the table speci-

fying the distribution by the total

number in the population. We will thus

obtain a table consisting of fractions

whose sum is unity. Each entry in the

new table will give the fraction of the

total population which lies in the

specified interval. Now suppose we make

aneher set of measurements of the same

kind on a new population of the same

type, whose total number is not the

same. The resulting frequency distri-

bution will of course be different from

the first; but if we again convert to

relative frequency, we expect the frac-

tions in the new distribution to be not

too different from those in the origi-

nal set. Experience shows that as we

accumulate more and more data corre-

sponding to larger and larger popula-

tions, the fractions giving the rela-

tive frequencies of the various altern-

atives tend to approach limits. These

limiting values we call the probabili-

e1-
x
W

HEIGHT

125-
190

LBS.

150-
175

LBS.

175-
200

LBS.

I
OM-
225

LBS.

225-

250
LBS. TOTALS

5' -vr 9 22 19 1 0 51

51"-- snr , 46 158 160 76 27 475

5w-sir 51 227 423 332 09 1122

511'- 610* 02 309 768 683 197
1

2019

Cr- 61" 21 212 392 453 12D 1198

0T-Iff, 0 9 37 72 17 135

TOTALS 1118 937 1007 1917 450 r MOO

Table 1.4

600/

ce

co
400/

ay/

05'° rFe 511- 40
5'0

HEIGHT

Fig. 1.4

'Or
200 LB
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19 LB

250 LB
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ties of the various alternatives, and
the whole set of probabilities for all
the alternatives, which must add up to
unity, we call a probability distribu-
tion. Evidently such a definition can
only make sense for those cases in

whi( populations of sufficiently large

numl ,ctmally exist. The examples
from paysics with which we are chiefly
concerned are of this kind; the same is
not always necessarily so in other con-
texts. It would be difficult, for exam-
ple, to attach much meaning to the
statement: "The probability that bil-
lion - dollar corporations will go bank-
rupt in A66 is 0.02%"; but a similar
assertion about small companieb of

whizh there a7e many thousands, could

be perfectly g'ensible.
So long as we are dealing with a

"sufficiently large" sample of the
over-all population of interest, we may
identify its relative frequency distri-
bution with the protability distribu-
tion of the population. The work of the
next chapter will lead us to a crite-
rion for judging whether a sample is
"sufficiently large." But what if the

sample is not that large" Clearly, dif-
ferent samples will exhibit somewhat
different distributions, even though
they are drawn from the same larger
population. These variations (in phys-
ics they are often called "fluctua-
tions") are of great importance in
practical applications. An opinion-
polling organization must know how
large a sample to question in order
that the results obtained are reason-
ably representative of the actual dis-
tribution of opinion in the whole pop-
ulation. A manufacturer producing large

numbers of standardized items needs to

know how large a sample be tested

for conformity to the standard, in or-

der to have rcAsonable assurance that

no defective unit.' are allowed on the
market. Here again, the work of the

next chapter will give us means of es-

timating these variations for samples

of given sixes.

1.6 EXPERIMENT AND THEORY

In most of the examples discussed
above, we have been thinking of the
distributions as being found experi-
mentally. A large number of molecular
velocities, or neutron-scattering an-
gles, or men's heights and weights, are
measured, tabulated, and converted to
distributions. But not all distribu-
tions are errerimental; they may be
deduced theoretically from physical or
mathematical assumptions. Frequently
they require techniques from various
branches of mathematics - particularly
probability theory - for their deriva-
tion. Since much of probability theory
is concerned with the calculation of
other probabilities from sets of given
ones, the basic rules for combining
probabilities are used frequently in
th3 following chapters. We will there-
fore state them here for reference.

First: if A and B are mutually ex-
clusive alternatives, the probability
that either A or B will occur is the

sum of the probabilities of A and of B
occurring separately. (Example: the
probability that either 1 or 2 heads
show in a toss of 4 coins is the sum
of the probabilities that one head
shows, and that two heads show.)

Second: The probability that first
A and then B occur in successive inde-

pendent trials is the product of the
probabilities of A and of B occurring
separately. (Example: the probability
that first two heads show, and then one
head shows in a second toss of four

coins, is the product of the probabili-

ties that one head shows and that two

show.)
With the help of these apparently

simple rules, elaborate superstructures
of theory can be erected. But it is im-

portant to remember that, for the phys-

icist, tilts ultimate test of the valid-

ity of theoretical calculation of the

type which wa will do in the next chap-

ters is their comparison with experi-

ment.



IIITRCDUCT ION 7

PROBLEMS

1.1 Give examples of a distribution
which might be of interest in
(a) psychology, (b) linguistics,
(c) economics. In each case, spec-
ify the population, and the range

of values of the characteristic
whose distribution you envisage.

1.2 Sometimes a cumulative distribution
is defined by the number greater
than (instead of less than) a ser-
ies of successive equally spaced
values of the property in question.
Construct such a cumulative die-
tributierfor the molecular veloci-
ties of Table 1.2.

1.3 What is the meaning of the last row
and of the last column (labeled
totals) of the Joint distribution
given in Table 1.4?

1.4 The median of a distribution is the
value of the property such that
half the population lies above and
half below it in value. What is the
median for each of the distribu-
tions in Table 1.1 and Table 1.2?

1.5 ._ling the distribution of veloci-
ties in Table 1.2 to be sufficient-
ly representative of the whole pop-
ulation, what is the probability
that: (a) the velocity of a mole-
cule lies between 20C and 700 me-
ter/sec? (b) that three molecules
chosen independently all have ve-
locities lying between 300 and 400
meters/sec?

1.6 Imagine an instructor who gives
only three marks, high (II), medium
(M), and low (L), on every test,
and who gives one third of the
class each mark. When averaging two
tests, he gives H only to those who
have II on each, and similarly for
L. All the rest get M. What frac-
tion of the class will have aver-
ages of H, L, and M, respectively,
on two tests? On three? Using the
foregoing instance as a guide, ex-
plain why a student who is never

first in the class on any given
test, but who is consistently high
in standing, often ends the term
with the best average in the class.



3 DISCRETE DISTRIBUTIONS

2.1 NOTATION; MEAN AND OTHER AVERAGES

We will need a notation to de-
scribe the discrete distributions with
which this chapter will deal. Let ua
denote by N the total number in the
population in question; then the num-
ber of individuals falling in the kth
interval of the property whose distri-
bution is under study we will denote by
nk. The sum of all the numbers in the
various groups must be N; using the
customary notation for summation, we
have

Enk N, (2.1)

where the summation extends over all
the intervals into which the range of
values has been divided. The corre-
sponding probabilities we will denote
by pk; as remarked in Section 1.6, this
probability is found by dividing nk by
N:

ph nk/N,

Or
nk -N pk,

from which we oiatain

1 (2.2)

E pk nk=i N- 1, (2,3)
k

Thus the probability that an individ-
ual chosen at random from the popula-
tion is found to be in the kth inter-

val is pk; Eq. (2.3) represents the
statement that the total probability of
finding the individual somewhere among
all the intervals is unity, i.e., it is
sure to be found in one or another in-

terval.
The value of the property under

study, in the kth interval, will be de-
noted by an appropriate symbol - dif-
fering from example to example - with
subscript "k"; in the example of
heights in Table 1.4, we may use hk,
for velocities of molecules, is Table

1.2 we might use lk, and so on. Notice
that there is some ambiguity in the
phrase "the value in the kth interval";
there is no unique "value" of the
height for the interval from 5 ft 6 in.
to 5 ft 9 in. In examples of this kind
we will agree to use the value at the
midpoint of the interval (e.g., 5 ft
7i in. for tic case cited). In certain
other example of discrete distribu-
tions there will be no ambiguity, how-
ever, because the characteristic
studied takes on strictly discrete
(perhaps integer) values. If we ask for
the distribution of the total obtained
in a number of throws of a pair of
dice, for instance, the values are in-
tegers ranging from 2 to 12; in exam-
ples of this type, the phrase "value
in the kth interval" may be replaced
throughout by "kth value" in the pre-
ceding discussion.

An-extremely important quantity
associated with the distribution is the
mean value or average of the property
under study. It is defined just as the
ordinary arithmetic average of common
usage, as the sum of, the values of the
property for all individuals of the
population, divided by the total num-
ber in the population. Since the indi-
viduals are grouped in such a way that
n1 have the value hi, .n2 have the value
h2, and so on, the average, which we
will denote by (h), is given by

(h) (nib* + n2h2 + ...)/N

- (E nkhk) /N. (2.4)

Bearing in mind Eq. (2.2), which de-
fined the probabilities pk, we may also

write

(h) 2: pk hk. (2.5)

k

0 This mean value is the single num-
ber most often used to characterize a
distribution - if a single number must

8
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be used! In everyday usage this is very
familiar; one hears references to such
things as the average income in a state
or country, the average life expectancy
of a 25-year-old female, or the aver-
age number of years of schooling of
this group or that. In each of these
cases, the "average" is being used as a
single number to characterize a whole
body of information which really con-
stitutes a distribution. The actual in-
comes say vary from 0 to $100,000, the
life expectanzies from 1 to 75 years,
and the years of education from 0 to
20; but the average - which is the sin-
gle value which all the individuals
would need to have, in order to give
the same total value for the whole pop-
ulation that in fact exists - is used
as a quick summary.

It is however by no means the only
mean or average which may be needed.
There are many other averages which may
be defined, and which may be more ap-
propriate for some particular use. The
molecules of a gas have a distribution
of speeds (the "Maxwellian" distribu-
tion, which we will study later); and
the average or mean speed defined as in
Ego. (2.4) or (2.5):

(v) - :Pk vk - (Enk vk)/N

is often useful. But the kinetic en-
ergy of a molecule, according to clas-
sical mechanics, is proportional to the
square of the velocity; hence if we
need (as we will in the kinetic theory

of gases) information about the aver-
age, or mean, kinetic energy of the gas
of molecules, we must find the average

of the square of the velocity:

cc
W

2
z

<q>

WO
2
z=

(v2) Epkv: (Enk v:)/N. (2.6)

k -k

In a similar fashion, other functions
of the velocity which occur in other
contexts may need to be averaged over
the distribution of velocities, and we
will use a similar notation in each
case:

(f (0) Epk f(irk)

(Enk f(Vk))/N. (2.7)

In particular, the averages of the
powers of the quantity whose distribu-
tion is being studied, which are known
as the moments of the distribution, are
of interest; not infrequently in phys-
ics, various moments of a distribution
may be accessible to direct measure-
ment, even though the distribution as
a whole is not. From a knowledge of the
moments one can reconstruct - approxi-
mately - the distribution itself, or at
least confirm whether or not some the-
oretically predicted distribution
yields the observed moments.

2.2 WIDTH OF A DISTRIBUTION; STANDARD
DEVIATION

If the mean value is the single
number rost often used to characterize
a distribution, the number second in
importance after the mean is one which
measures the width of the distribution,
or the spread of values about the mean.

Clearly, many widely different distri-
butions can have the same mean; Figs.
2.1, 2.2, and 2.3 give examples of pos-

I I

qatio < q >

Fig. 2.2

W

2
z

I I

(1111111 < q>

Fig. 9.3
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sible distributions of a quantity q
whose values range from gain to quit.
In each case the mean value (q) is the
same, but the "shapes" of the distribu-
tions are quite different; in Fig. 2.1,
all values between chain and Cliax are

nearly equally likely, in Fig. 2.2,
only values near the mean are likely,
and Fig. 2.3 is intermediate between
the extremes represented by the first
two.

How is the "width" to be measured?
Evidently what is needed is some esti-
mate of the likelihood of various devi-
ations from the mean value; large devi-
ations are likely in Fig. 2.1, unlikely
in Fig. 2.2, and moderately likely in
Fig. 2.3. One's first thought might
reasonably be to take the average of
the deviations from the mean. Denoting
by aqk the difference between a partic-
ular value qk and the mean (q'

aq-k- (qk.- (q)). (2.8)

we can calculate its mean in the
standard way:

(M) ( (q (q) )) DE; nk(qk (q) )1/N

- E Pk (qk (q) ) ; (2.9)

but a little reflection shows that
this quantity is necessarily zero. It
is customary therefore to take instead
the mean of the squared deviation from
the mean:

(002) ((q (02)

[Enk (C1 k (CO ) /14 (2.10)

This quantity is called the variance
of the distribution, and its square
root (that is, the "root mean square"
deviation) is called the standard de-
viation of the distribution. It is
often denoted by a (lower case Greek

"sigma"):

a IN ((q (q))2) 4f

- 42; pk (mos. (2.11)

A useful alternative expression for 0
may be found by expanding the square
deviation:

a2 Epk (641c)2

:E:pk (cik2 2(q)qk 4. (02)

(q2) 2(0(0 4. (02

(q2) (02. (2.12)

The last steps have made use of Eqs.
(2.3), (2.5), and (2.6). In words, one
may say that the variance is the dif-
ference-between the mean square of the
quantity and the square of the mean of
the quantity. Since, in the language
used in the last part of the previous
section, the mean is the "first moment"
and the mean square is the "second mo-
ment" of the distribution, one may say
that knowledge of value of the first
moment specifies the mean, and of the
second moment the variance. Higher mo-
ments would give successively more de-
tailed features of the distribution.
For example, the third moment will give
some indication of whether positive or
negative deviations from the mean pre-
dominate; the variance gives no clue to
this, since it involves the square of
the deviation, to which positive and
negative deviations contribute equally.

2.3 THE BINOMIAL DISTRIBUTION

A distribution which arises natu-
rally in a variety of physical prob-
lems is the binomial distribution. It
arises whenever a choice of two altern-
atives is available, and the choice is
made many times. For example, in
"random walk" problem, which is a model
for Brownian motion or for molecular

-diffusion, one imagines a particle mov-
ing to the right or left along line

in steps of equal size. if each step is
equally likely to be to the left or to
the right, what is the likelihood that
the particle will have moved a certain
net distance to the right after a given
number of steps? Or again, under cer-
tain conditions, an atom with a mag-

netic moment, in magnetic field may,
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according to quantum theory, align it-
self in two ways only: along or against
the field. In a large collection of
such atoms, what is the likelihood of
finding a given number aligned with or
against the field? An even simpler
question which we will adopt for illus-
trating the binomial distribution, is
the following: In a box of gas, how
many of the molecules will be at any
instant in the rib;.; half of the box?
The question may sound trivial at
first; surely half the molecules are
in each half of the box - at least "on
the average": But how do we know that
this is so? Or even if it is so, what
does "on the average" mean? What are
the chances of finding a few more or a
few less than half of the molecules in
the right half? Does it matter whether
the gas is at normal pressure or ex-
tremely rarefied?

To consider this prublem, suppose
the box contains M molecules; let j be
in the left half and k in the right
half. Then we must have

j + k M. (2.13)

The possible values of k range from 0
to M; we want the distribution of k
over these values. To illustrate the
method, consider first the case of
three molecules, although our interest
is really in large numbers. In this
case we can simply enumerate the possi-
ble ways of assigning molecules to the
two halves respectively. In Fig. 2.4,
the possible assignments are sketched,
and the rumbers j and k for each as-
signment .'re listed, together with the
number nk of assignments for which k
molecules are in the right half, and
the probability pk of finding k mole-
cules in the right half.

Figure 2.4 shows that there are a
total of eight possible assignments.
This is understandable, since there are
two possibilities for each molecule,
hence 2 x 2 X 2 for all three. Of these
eight assignments, one corresponds to
no molecules in the right half, three
correspond to one molecule, three to
two molecules, and one to three. The

a

11

ASSIGNMENT i k nk I pk

3 0 1 i: 0 I

0 2

2 1 3I . .

2 10 1

1 21I ° I 1 171

1 2:I

I 0

1 S 0 I

i0 0 3 1 i

8 1

Fig. 2.4

corresponding probabilities are respec-
tively 1/8, 3/8, 3/8, and 1/8, as indi-
cated in the last column of the figure.
Thus, in a very large number of boxes
containing three molecules, we expect
to find that 1/8 of them contain no
molecules in the right half, 3/8 of
them contain one, 3/8 of them contain
two, and 1/8 of them contain three.
Alternatively, we may say that these
fractions give the number of times, in
a sequence of a large number of inde-
pendent looks at the same box, that one
will see the specified number of mole-
cules in the right half. From these
probabilities we may calculate the mean
number, and the various other averages
which might be of interest, in accord-
ance with the formulas of sections 2.1
and 2.2. Instead of doing this for the
special case of three molecules, how-
ever, let us first go on to the general
case of U molecules.

In the case of U molecules, there
will be a total of 22 possible assign-
ments of each of the M molecules to the
right or the left half. How many of
these correspond to precisely k mole-
cules in the right half? Only one as-
signment gives k 0: every molecule
on the left. But PS assignments give
It a, 1; the single molecule on the right
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may be chosen in M different ways. For
k - 2, the first of the two molecules
on the right may be chosen in M ways,
and the second in (M - 1) ways; this
gives a total of M(M - 1) ways. But no-
tice that this counts as distinct as-
signments those in which the same two
molecules are placed on the right, but
in reversed order. Since a single as-
signment is specified by saying, for
example, "put molecules #5 and #17 on
the right" without taking into account
the order in which #5 and #17 are se-
lected, we must correct for the spuri-
ous doubling of the number of assign-
ments which our method of courting
gives. Taking this into account gives
finally the result M(M - 1)/2 for the
number of distinct assignments of two
molecules to the right hali. For k 3,

the same line of reasoning gives the
result M(M - 1)(M - 2)/6; here the fac-
tor in the numerator gives the number
of ways of picking three molecules in
a particular order, and the factor 6
in the denominator corrects for the
number of permutations of the three
molecules selected to be in the right
half. For general k, the result is

nk 11(M -1)(M-2) (M- k + 1) /k!,

(2.14)

where again the denominator contains
the factor k! (to be read "k factor-
ial," the product of the first k inte-
gers), which is the number of permuta-

M
0

.
1 2 3 4 5 6 7 8

M
E nfr
I=0-

1 1 1

_

t 2

2 1 2 1 4

3 1 3 3 1 8

4 1 4 6 4 1 16

5 1 5 10 10 5 1 32

6 1 6 15 20 15 6 1 64

7 1 7 21 35 35 21 7 1 128

8 1 6 26 56 70 56 28 II 1 256

Tablo 2.1

tions of k objects, and which corrects
for the overcounting of the assign-
ments which the numerator effects. A
somewhat more symmetrical form can be
found by multiplying numerator and de-
nominator both by (M k)!, the product
of the integers from 1 up through
(M k):

M,

nk 1 0 . (M - k):
(2.15)

Bearing in mind Eq. (2.13), we may
also write:

M:
n k 10.

(k + j M). (2.16)

In this form, the symmetry between
right and left halves becomes apparent;
interchanging k and j leaves the ex-
pression unchanged, as it should. One
can now easily verify that the expres-
sions we wrote down earlier for n1, n2,
and n3 agree with the general expres-
sion. For nowhich we saw earlier has
the value 1, the general expressions in
Eqs. (2.15) or (2.16) are valid, pro-
vided we adopt the customary convention
that 0: - 1.

The name "Binomial Distribution"
for our result arises from the fact
that the numbers nk defined by Eq.
(2.16) are precisely the same numbers
that occur as the coefficients in the
binomial expansion of mathematics:

(a + 2: nk am-kbk.
k=0

(2.17)

That this is so is understandable when
one reflects that the kth' coefficient
in the expansion counts the number of
ways of pickil4 nut k la's and (M k)

a's from the set of M factors (a + b)

that are implied by (a + b)N. Formally,
this is identical with our problem of

picking out k molecules to put in the
right half and (M - k) to put in the
left half, from the total of M 'mole-
cules. We can use Eq. (2.17) to verify
that the total number of assignments is
21, as we asserted earlier; for if we
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let a b 1 ire Eq. (2.1?) , we get

(1 + 1)11 . 2: n fl) N-k(1)k
k=o

or

m

20 E nk = E M:
.(2.18)

k: (M - k):
k=o k =0

In Table 2.1, the binomial coeffi-

cients are listed for values of M from

1 to 8; for each M, the values of k run

from 0 through M. The sum of the coef-
ficients is also listed for each M. No-
tice that the table can be very easily
continued; given the set of nk for a
particular Mg the next row in the ta-
ble, corresponding to M + 1, is given

by the rule:

nk (M + 1 row) nk + nk_i (M row)

(2.19)

The corresponding probabilities are
found by dividing the nk by the total
number of assignments 2m; hence

If:

Pk 2I k: (M - k) !
(2.20)

We can now examine the distribution
and use it to answer some of the ques-
tions raised initially. A glance at

Table 2.1 shows that, for all values of

M occurring there, the most probable
value of k (the one for which nk, and
hence also pk is largest) is always

M/2, if M is even, and that if M is
odd, the two integers nearest to
M/2 are equally the most probable.
It is not hard to show that this
rerains true foe any M. Thus one
is indeed more likely to find just

one half of the molecules 'in the

right (or the left) half than any
other particular value. ?that about

the average, or mean number? From

the definition, it is given by

m
1

(k) 2: kpk 2:
10110 k no

(2.21)

By actual calculation, using the first

few values of M and Table 2.1, one
finds the value M/2 in each instance;
that it is true in general follows
from Eq. (2.21) by rewriting it slight-
ly differently and using Eq. (2.18),

with CM - 1) substituted for M:

Id
(k)

2 .4"-'
k=3

- 1):

(k - 1):[(M - 1) - (k 1)P.

(N 1):
21I i co (M - 1--

- MN 21
-1 M/2. (2.22)

2"

Hence the average number found in
either half of the box, in many trials,
will also be just half of the total
number of molecules.

Finally, the likelihood of devia-
tions from the mean value can be exam-
ined; for this purpose we need, as
shown in section (2.2), the mean of the
square of k. Before examining this
quantity mathematically, let us see
qualitatively what to expect, by plot-
ting the distribution of k for various

values of M. Fig. 2.5 (next page)
shows bar graphs of nk against k for
M = 8, 40, 200, and 1,000. For ease of
comparison they are drawn with the same
ordinate at the maximum, and with the
same range of the abscissa correspond-
ing to the full scale from 0 to M in
each case. For 11.,=200 and if =1000, not

every value of k has its nk drawn in
because of ti,e smallness of the scale.

Notice that the graphs of the dis-
tribmions become narrower as M in-
creases. Since they are drawn to the

same relative scale, this means that

the probability of a deviation from the
mean value M/2 by any given fraction of

M becomes smaller as N increases. Thus
although the probability of finding
3 or 5 molecules out of 8 in either
half of the box is not very much less
than the probability of finding 4, the
probability of finding 15 or 25 out of
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1
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1

5

1

.5

8
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k).
1k4 m1000

0 250 500 750 1000

k-->

40 is substantially less than that of

finding 20. For M - 200, the corre-
sponding numbers, 75 and 125, have ex-
tremely small probability compared with
100, and for M 1000, the correspond-

ing probabilities are entirely negligi-

ble.
We can confirm this qualitative

conclusion by calculating the standard
deviation, using the definition of sec-
tion 2.2. According to Eq. (2.12), we

must first find (k2):

(k3) 2: k2 pk
k=0

- 2:
k2 MI

k=0 21 k! (M k)le

A trick which is useful, because of the

occurrence of the factorial k in the

denominator, is to rewrite k2 as (k2

k + k), or (k (k 1) + k); then we

have:

(k2) (k(k 1) + k) (k(k 1)) + (k)

N!!, k(k 1) M!
+ (k)

.. 21 (M k)!
k=2

M
211 k=2

(M 2) !
+11/2

(k 2) ! [(M 2) (k 2)]

M(M 1)

211
2 (1-2) + 11/2

(M2 M)/4 + M/2

- (W2 + M)/4. (2.23)

Hence the standard deviation, according

to Eq. (2.12), is qbtained from

02 (k2) (k)2

(M2 + M)/4 (M/2)2

1 /4, (2.24)

Fig. 2.6 and its ratio to the mean value (k),is:
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0/(k) (M/4)1/1/(M/2) 1/10/3.

(2.25)

That is, the width of the distribution,

although it increases in proportion to

M1/2 in absolute size, decreases in
proportion to 1/M1/2 relative to the

average number, in agreement with our

qualitative result above based on the

appearance of the graphs of Fig. 2.5.

Thus a few cubic centimeters of gas,
containing, say, 2 x 1030 molecules,

will have "on the average" 1030 mole-

cules in each half; this number may
fluctuate by about 1010 from its mean
value. Although 1010 is a very large
number, it is a minute fraction of
1020: one part in 1010! It would be
extremely hard ever to observe a devi-

ation from the average so small as
this. If however we imagine reducing
the pressure until there are only 200
molecules in the same space, the aver-
age number of 100 in each half could
fluctuate by about Ifilibc or 10; this

is 10%, or a sizable fraction of the

average.

2.4 THE ASYMMETRIC BINOMIAL DISTRI-
BUTION

An assumption was hidden in the

work of the previous section: plausible,

but nevertheless an assumption. The
eight alternatives listed explicitly in

Fig. 2.4, for the assignment of three
molecules to the two halves of the box,

were regarded as "equally likely" to

occur. But suppose the imaginary parti-
tion dividing the box into two parts is
moved to the left, so that the left and

right sections contain one-third and
two-thirds of the total volume, respec-
tively. The enumeration of assignments

of Fig. 2.4 is still correct; but we

feel it absurd to regard them all as

"equally likely." How should we weight

the various assignments?
It seems intuitively plausible to

regard a single molecule as twice as

likely to be found in the right side as

the left under these cirwastances,.

/4

since its volume is twice as great.
Stated otherwise, the probability of
finding a single molecule on the left
is one-third, and on the right is two-
thirds. Then the probability for find-
ing k molecules on the right and

(M k) on the left is given by the

number of assignments found previously,
but multiplied by a factor (2/3)k

x (1/3)s- k, since probabilities of in-
dependent events are multiplied to find
the probability of simultaneous occur-
rence. The result is therefore:

Pk (M k)!
(2.26)

(2/3)k(1/3)11-k.

We can obtain the same result in a

slightly different way. If a single
moleculeis twice as likely to be found
on the right as on the left, a pair of
molecules is four times as likely to be
found on the right as on the left, and

a triplet is eight times as likely.

Hence the set of nk's of Fig. 2.4
should be multiplied by 1 for k 0, by

2 for k - 1, by 4 for k 2, and by 8

for k 3 to give the properly weighted
assignments, as shown in Table 2.2 be-
low. Notice that the total number of
assignments with the new weights is 27,
which is 33; dividing by this number,
we obtain the set of probabilities pk
given in the last column. But these
agree exactly with the result of Eq.

(2.26), when M is set equal to 3.
More generally, if we divide the

volume into two parts VL and VR, we

may take the probability of finding a

single molecule on the right to be

k OLD n WEIGHT NEW n NEW p

0 1 1 1 1/27

1 3 2 6 6/27

2 3 4 12 12/27

3 1 6 6 8/27

27 1

Table 2.2
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given by p - VR/(VL + VR), and the
probability of finding it on the left
to be given by q = VL /(VL + VR). Then
the same argument used in arriving at
Eq. (2.26) leads to the following ex-
pression for finding k molecules out
of a total of M to be in the volume V1:

M! k n k
Pk (M k):

n (2.27)

From the binomial expansion, Eq. (2.17),
we see that the sum of the pk's is
unity, as it should be:

hi!

± PR lc! k)! Pk
kaO k=0

= (p + q)m = lm = 1.

The case discussed in section (2.3) is
then the symmetric case p = q =

The general asymmetric binomial
distribution defined by Eq. (2.27) ap-
plies whenever one makes M independent
repetitions of a choice betweeh two mu-
tually exclusive alternatives whose
probabilities are p and q, with p + q

= 1. Other examples, in addition to the

one used above, can easily be con-
structed from the kinds of physical
problems discussed at the beginning of
section 2.3. The biased random walk, in
which the particle moves to the right
with probability p, and to the left
with probability q at each step, is
such an instance.

Using the same methods as in the
previous section, we can calculate the
mean value of k and its standard devi-

ation; the reader should carry through
the steps and convince himself of the

result:

(k) k PR-J

k=0

- p U, (2.28)

a2 (k2) (k) 2

- p(1 p) M. (2.29)

Hence
4(1 - p)M l(T1 7=FT

a/(k) -
P M V p m

(2.30)

Again the characteristic inverse square
root of the number of molecules ap-
pears. Notice that of p is much less
than unity - if, for example, we are
studying the probability of finding k
molecules in a very small volume of the
original box - then a is approximately
equal to 15711, or to IfTWT, and the ra-

tio a/(k) is then 1/5-i,or 1/N/tiT; the

expected fluctuations from the mean
number are of the order of the square
'root of the mean number itself.

2.5 THE MULTINOMIAL DISTRIBUTION

The binomial distribution occurs
whenever a choice of two alternatives
is made repeatedly. But of Len there are
more than two alternatives! We can
imagine dividing our box of gas into
three, or ten, or a million parts in-
stead of two; a random walk can take
place on a plane or in space instead
of on a line, with a number of differ-
ent choices of steps possible each time
rather than simply "right" or "left";
a magnetic atom may have several ori-
entations possible relative to an ex-
ternal magnetic field instead of simply
"along" or "against." How are we to
handle these cases?

We may state the problem this way:
M molecules are to be distributed among
N cells of equal volume into which the
box has.been divided in imagination.
How many of the possible assignments of
individual molecules to cells corre-
spond to having k1 molecules in cell 1,
k2 in cell 2, and so on up to kN in
cell N, in such a way that k1 + k2 +

+ kN = M? Let us first notice that
our previous work has shown that for

N = 2, the number in question is
M!/(ki!)(k2!), using the new notation.

We can understand this result by
slightly different reasoning than we
originally used to obtain it. The num-
ber of different assignments would be
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Si! if we had only one mo1.3cule in each

cell, since. U! is the number of permu-

tations of M objects. But a permutation

of the k1 molecules in the first cell

among themselves, when k1 is greater
than one, does not give a distinct as-

signment, so we must divide by k1!; a

similar argument for the other cell re-

quires us to divide by k2!. Now the re-

quired generalization to N cells is

easy to see: We must divide by the fac-

torial of each individual cell's popu-

lation. Hence the result for the re-

quired number of assignments, which we

shall call n(ki, km, ... km) is:

M!
n(ki, k2, km)

ki! k2! kJ!'

(2.31)

The total number of assignments is Ns,

since there are N possibilities for

each of the M molecules; hence the

probability of the given assignment is

p(ki, k2, km)

Nu k 1' k 2 ! ks!'
.

(2.32)

This distribution, which is a joint

distribution of the kind discussed in

section 1.4 in N variables, is known

as the multinomial distribution. As

with the binomial distribution, this

name originates from the fact that the

n(k1, km, ... km) are the coefficients

in a certain expansion:

(AI + a2 + as)*

. 2: n(ki, k2, ... 14)(a1) 1(a2)
k
2

ki)
(2.33)

where the sum is over all sets of non-

negative integers kit km, ... ks satis-

fying the condition k1 + k2 + ks

M. This is the genera/ multinomial

expansion; that the coefficients are

indeed given by Eq. (2.31), follows on

observing that a given coefficient

counts the number of distinct ways of

picking out k1 factors al, k2 factors

a2, ... km factors as from N factors

(a1 + a2 + am). This is exactly the

same counting problem as that of pick-

ing out k1 molecules to put on the

first cell, etc., out of a total of N

molecules. We can use this to confirm

that the total number of assignments

is Ns; indeed, setting each of the al

in Eq. (2.33) equal to unity, we get:

or

(1 1 di mg n(k1, k2,

N terms (k1)

... km) (1)k1 (02 alkx

Ns 2: n(ki, k2, ks); (2.34)

(ki)

(It 1 ,k2,k3) n(111,4,k3)

PERMUTA- I

TIONS PRODUCT

(5,0,0) 1 3 3

(4,1,0) 5 6 30

(3,2,0) 10 6 ' 60

(3,1,1) 20 3 60

(2,2.1) 30 3 90

243 . 3

Tabl 2.3

Fig. 3.6
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hence the probabilities add correctly
to unity:

2: p(ki,
(k1)

(k j)

... km)

Ter n(k2 , 14,

Nu - 1.
Na

k,)

(2.35)

This distribution is harder to visual-
ize than the binomial. For N - 3, how-

ever, where k1 and k2 are essentially

the only variables involved (since k3
is necessarily equal to CI k1 14),
we can construct a three-dimensional
graph analogous to Fig. 1.4 of Chap-
ter 1. We have done this in Fig. 2.6,

(preceding page) which exhibits the
frequencies n(k1,k2,k2) for the case

- 5. Table 2.3 (preceding page)
gives the values of n for the possible

assignments.
From Fig. 2.6, one can see a ten-

dency, even though the number of mole-
cules is small, for the assignments
corresponding to approximately equal
distribution of the molecules among the
cells to predominate. It is not hard to
demonstrate that the uniform (i.e.,
equal population of cells) distribution
is indeed the most probable one, at
least in the case where the number N
of molecules is an integer multiple of

the number N of cells. For if N e rN,
where r is an integer, the uniform dis-
tribution is the one for which k1 k2

r; the corresponding n is
(M!)/(r!)11. Suppose we move one mole-

cule out of one cell and into another;

the corresponding n is now (N!)/(r 1)!

x (r + 1):(r!)1-2. The ratio of the

second to the first is (r!)2/(r 1)!

x (r + 1)!, which equals r/(r + 1);

hence the change has decreased the num-

ber of assignments, and thus also the

probability of occurrence.
We can calculate the mean value of

the kes, and also other averages of

interest; but for this purpose we must
first note the generalization of the
definition of an average which is re-
quired for the case of a Joint distri-

bution. The average of any function of

the ki's is defined in analogy to Eq.
(2.7) of section 2.1:

(f(k1, k,, ... k,))

2: mi, k., k,)
Na (.0

n(k1, k2,

2: mi, 14, ... 14)

p(k1, k2, k,), (2.36)

where the sum is over all values of
each 14 from 0 to N, such that k1 + k2

+ + N. In particular, the mean
value of any of the 1E1 can be calcu-
lated for the multinomial distribution
given by Eq. (2.31) or (2.32):

(k1) - L. V
k N!

Ni
(k1
La

)
k !lc

2 X
!... k,!

(M - 1):

2:
)
(k

1
1): k2! ks!

(14

and using Eq. (2.34) with (W 1) in

place of N, we obtain:

(ki) /111-1 (2.37)

As we expect, the mean value (k1) is

simply the number of molecules per
cell; an identical calculation holds
for each of the k's, from the symmetry
of the multinomial distribution in the

k's. Hence we have for each 1:

(k1) NIL (2.38)

Similarly, we can find the standard
deviation for each 14; the calculation
is like that for the binomial distri-

bution, and yields, for each 1:

012 (k12) - (14)2

- 1) M/N2. (2.39)

Notice that this agrees with the re-

sult (Eq. (2.24)) for the case N 2.

If on the other hand we allow N to be

1
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much greater than unity, this result

becomes approximately:

0j2 " M/N - (ki),

or al IVY= (14C7,

and ai/(ki) - 1/4117WH 1/4(470.

(2.40)

(2.41)

Thus the relative fluctuations in num-
ber in a given cell are again inversely
proportional to the square root of the
mean number in that cell. With one cu-
bic centimeter of gas containing 1020

molecules, for example, the number of
molecules in each cubic micron of the
volume (one micron l0-4 cm) is 108 on

the average; this would exhibit fluctu-
ations of the order of 104 molecules,

which is only 0.01% of the average
number.

Again, here, as with the symmet-
ric binomial distribution in section
(2.3), we have implicitly assumed, in
giving equal weights to all the indi-
vidual assignments of molecules to
cells, that a single molecule is
"equally likely" to be found in each
cell. This is surely plausible when the
volumes of the cells are equal; but
what if they are not? Or, in the ran-
dom walk problem, what if steps in dif-

ferent directions have different prob-
abilities? The generalization required
to handle these problems follows along

the same lines as given in section 2.4.

Suppose the volume of the ith cell is

Vi and the total volume is V; then the

probability pi of finding a single mol-
ecule in the ith cell is pi - Vi/V; the

sum of the pa's is 1, since the sum of

the Vi's is V. The probability of find-

ing k1 specified molecules in VI, k2

in V2, and so on, is (pi)kI(p2)k2

(pm)ka; this must be multiplied by the

number of assignments, from Zq. (2.31),

that give the required distribution
among the cells, to yield the result:

mi
p(ki k2 , km)

k1 I k.j 1 ... k11

x (p1)al(Ps)as (2.42)

The multinomial theorem, Eq. (2.33) as-

sures us that

p(ki, k2, 1,

(ki)

and the previous case, given by Eq.
(2.32) is recovered when all the cell
volumes and hence all the probabilities
are equal: pi = p2 = e2 = 1/N.

The discussion of the mean values

and the standard deviations of the km's

follows very much as before; carrying
out the details is left as one of the
problems at the end of the chapter. The

results are:

(k1) (2.43)

vie (1.

ai/(ki) - 4(1

(2.44)

(2.45)

These results clearly reduce to the
previous ones (Eqs. (2.38) and (2.39)),
when pi 1 /N. We see that the mean

fraction of the molecules in the ith
cell is just pi, which is simply the
fraction of the total volume in the
ith cell, and that again the fractional
deviation from the mean is inversely
proportional to the square root of the
mean number for each cell.

Let us summarize in more genera:
language the essential result of this
section. Suppose N alternative outcomes
of an event are possible, and they have
probabilities p1, p2, .0. 1:02. Then if a

sequence of N independent trials are
carried out, the probability V-It out-
come 1 occurs ki times, 2 occurs k2

times, and so on, is given by the mul-
tinomial distribution, Eq. (2.42). In
the limit as M becomes larger and larg-

er, the fraction kin( is increasingly

likely to be found very near to p1;
that is, its mean is p1, and its stand-
ard deviation decreases as M increases.
Indeed, it is precisely this behavior
of repeated trials which allows us to
identify the probability pi with the
frequency of occurrence of the ith al-

ternative in repeated trials as dis-
cussed in section 1.6, and which there-
fore renders consistent our very use of

the term.



20 DISTRIBUTIONS

PROBLE2U3

2.1 Work out the distribution for the
total showing face up when a pair
of dice are thrown, assuming both
the dice and the throw to be unbi-
ased (i.e., each of the six faces
equally likely to turn up). What
is the most probable result? The
mean result? The standard devia-
tion?

2.2 Use the binomial distribution to
discuss the random walk on a line.
Starting at x 0, a particle moves
unit distance either to the right
or the left with equal probability.
(Imagine tossing a coin each move
to decide which way - heads, go
right, tails, go left.) Out of a
total number N of moves, it-takes
L to the left and R to the right;
L + R N. The net distance trav-
eled to the right is evidently D
R - L. What is the distribution of
D? Find the most probable, and the
mean values of D. What is the root
mean square of D?

2.3 Coin-tossing sequences of heads and
tails may be discussed with the
help of the binomial distribution.
What odds should you be willing to-
offer against tossing exactly 6
heads in 20 tosses?

2.4 Toss a coin 60 tines, and keep a
record of the results.

(a) Does the total number of heads
in the 60 throws lie within the
theoretical standard deviation of
the expected mean number?

(b) Divide the results into 20 se-
quences of 3 tosses, and find the
distribution among the four altern-
atives (0,1,2,3, heads). Does it
lie "reasonably" close to the the-
oretical binomial distribution?

!S

2.5 For the case of three molecules in
a box, work out the results of Ta-
ble 2.3 in the following way: Imag-
ine first that the box is divided
into three equal parts, and list
explicitly (as in Fig. 2.4) all of
the possible ways of assigning the
three molecules to the three parts.
Then imagine one of the partitions
eliminated, so that there are only
two parts left, one double the size
of the other. Count the number of
assignments corresponding to 0, 1,
2, 3, molecules, respectively, in
the larger part.

2.6 Consider a random walk in the plane
along a square network with equal
possibilities of moving right,
left, up, or down at each step. Let
N steps be taken, of which k1, k2,
k3 and k4 are respectively to the
right, left, up, and down.

(a) Express the distance D from the
starting point in terms of the kl's.

(b) Find the mean square distance
moved in N steps, (D2).

(Hint: The ki are distributed ac-
cording to a multinomial distribu-
tion with N = 4. You will need to
work out averages of the form
(k1k2) as well as those-done in the
text.)

2.7 Given a joint distribution of two
or more quantities k1, 1E2, 000 ,

the correlation coefficient rij is
defined by the relation

rls ((klIEJ) (14)(ks))/crios.

Work out the value of rij for the

nultinonial distribution. To what
does it reduce for the-case N 27



3 CONTINUOUS DISTRIBUTIONS

3.1 INTRODUCTION: MEAN VALUES;
EXAMPLES

The probability distributions
dealt with in Chapter 2 were discrete,
that is, the possible alternatives
could be characterized by an integer k
(or a set of integers ki), which ranged
over a finite number of values. Very
often we need to deal with what we will
call continuous distributions, where
the possible alternatives are charac-
terized by one or more variables which
range over a continuum like that of the
real numbers. Some examples of continu-
ously distributed quantities which
arise in physics, together with the
range of possible values of the quan-
tity in question, are:

(1) The distance between succes-
sive collisions of a molecule in a gas
- the so-called "free path"; any posi-

tive value.
(2) A velocity component of a mol-

ecule in a gas; any positive or nega-
tive value.

(3) The angle through which a nu-
clear particle is scattered in a col-
lision; any value between 0 and v.

(4) The time of decay of a radio-
active nucleus; any positive vane.
Of course, in any of these examples,
we may - as in the example of the ve-

locities in Chapter 1 - divide the
range into a finite number of in..er-

vals, and treat the distribution as
discrete. Indeed, the limitations, of
accuracy of the measuring instrument,

Fig. 3.1

21

and the finiteness of the population
may require us to do so. Nevertheless,

we may imagine both the accuracy of
measurement and the size of the popu-
lation increased sufficiently to allow
the intervals to be decreased indefi-
nitely; in the limit we can speak about
the probability corresponding to an
arbitrarily small interval.

It is simplest to begin with the
notion of the cumulative distribution
function, -hich was discussed in sec-
tion 1.3. Let us denote by P(x) the

probability that the quantity whose
distribution is under study is less
than x. Then P(x) can never decrease
as x increases; for if x' is greater

than x, P(x') must be equal to P(x),

the probability that the quantity is
less than x, plus the probability that
it lies between x and x'; since proba-

bilities cannot be negative, P(x') can-

not be less than P(x). The general ap-
pearance of possible P's is illustrated

in Figs. 3.1 and 3.2. The first shows

a distribution which has a minimum and

a maximum possible value for x, while

the second shows a distribution which
extends indefinitely to large negative
and positive values. Ultimately, P(x)

must approach 0 at the left-hand end
and 1 at the right-hand end of the
graph; The probability of finding a
value of z lying between two specified
values xl.and x2 is then given (pro-

vided xi is less than x2) by [P(x2)

P(301. If P(x) is a continuous func-
tion, then [P(x2) P(LI)J will ap-

Fig. 3.2
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Fig. 3.3

Ill

X

a
L

Fig. 3.6

proach zero as x2 approaches xl; and
if furthermore, P(x) is differentiable,
then for (x2 --x1) sufficiently small,
we may write by Taylor's expansion:

P(x2) P(x2) + 012 xd(dPidz)z=zit

neglecting higher terms of the expan-

sion.
Hence

P(x3) P(x1) - (x2 x1) p(x1), (3.1)

where P(E) - dP/dx. (3.2)

Thus the probability that x lies in a
small interval around xi is given by
the product of the interval with p(zi);
hence the name probability density
function which is sometimes used for
the derivative p(x). It can also be
called the probability "per unit in-
terval of x." Dimensionally it has the
units of the reciprocal of x, since
multiplication by an interval of x
giies a pure number - a probability.
Note particularly that it is not the
probability of "finding the value z";
since we are dealing with a continuum,
such a probability must be zero: Fig-
ures 3.3 and 3.4 illustrate the proba-
bility density functions corresponding

-->
x
a

Fig. 3.4

1

V

Fig. 3.6

to the cumulative probability functions
of Figs. 3.1 and 3.2, respectively.
The cross-hatched area in Fig. 3.4 is
given by the integral of p(x) from zi
to x2. Using Eq. (3.2) and the funda-
mental theorem of integral calculus,

we have:

f ig= p(z) dx - rx2 (dP/dz) dz
21 Jx1

- P(z)r- P(z2) P(34). (3.3)

Hence the area under the probability
density curve from xi to z2 gives the
prob,hility of finding a value of x

lying 'tween z1 and x2. In particular,
if we let xi go to -moo we have, since

- 0:

P(x) dx - P(x2), (3.4)

and if we let z2 go to +a, we have,
since P(+60) - 1:

j p(x) dx - / (3.5)

The equation is completely analogous
to Eq. (2.3) of the discrete case, and
is sometimes referred to as the "nor-
malisation" condition on the probabil-

ity density function.
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We may define mean values in a
fashion analogous *t.o that use in Caap-

ter 2, but replacing sums by integrals;
thus the value of x is:

(x) x p(x) dx, (3.6)

and the standard deviation is given by

a' . ((a (0)')

(x (x))2 p(x) dx

- (x2) (x)2 (3.7)

and in general, the mean value of any
function of x by

(f(x)) J..0 f(x) p(x) dx (3.8)

These formulae may be thought of as
arising from the corresponding ones of
the discrete case (Eqs. (2.5), (2.7),
and (2.11)) by first breaking up the
range of x into N intervals, and asso-
ciating the probability p(xk)Axk with
the kth interval Axk. Applying the
discrete formulae, and then passing to
the limit &k -.0 and N -.0% gives the
integral expressions.

Let us illustrate these notions
with a few examples.

3.1.1 Uniform Distribution Between
x 0 and x L

Suppose a particle is "equally
likely" to be found anywhere on the x-
axis between 0 and L. We take this to
mean that the probability density p(x)

is constant between 0 and L, and zero

elFeriltre:

0, (x < 0)

P(x) C, (0 ds x .11 L) (3.9)
0, (x > L)

Since condition (3.5) must be satis-

fied, the constant C must be equal to
1/L. The cumulative distribution P(x)
is then given by application of Eq.

(3.4):

POO fzio p(x9 dx'

{

0 , (x <0)
a. z/L, (0 s x s. L) .

1 , (z > L)

(3.10)

Figures 3.5 and 3.6 show graphs of
p(x) and P(x), respectively. A simple
calculation, using Eqs. (3.6) and
(3.7), shows that (x) L/2, as one
would expect, and that a L/10.
0.289 L.

3.1.2 Uniform Distribution in Angle

Imagine a particle scattered so
that its final direction of travel
makes an angle 0 with its initial di-
rection. We say it has been scattered
through an angle O. If we are consider-
ing scattering only in a plane, B may
range from -v to +v, and a uniform dis-
tribution would correspond to a density
function p(0) 1/2v, in analogy with
the result in 3.1.1. Suppose, however,
that we are interested in scattering
in space, and that by uniformity of
distribution we mean that all direc-
tions in space, relative to the origi-
nal direction, are "equally likely." A
reasonable interpretation of what this
means is the following: Consider a
sphere; each point of the sphere de-
termines by its radius vector from the
center a direction of scattering, rel-
ative to a fixed direction- determined

Fig. 3.7
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xo

Fig. 3.8

by a fixed point on the sphere. Then
we shall mean by "all directions equal-

ly likely," that equal areas on the
sphere are equally likely; hence the
probability of scattering through an
angle between 0 and (0 + de), relative
to a given direction, is to be equated
to the ratio of the area of the sphere
corresponding to such directions, to
the whole area of the sphere. Refer-
ring to Fig. 3.7, (preceding page) we

see that angles of scattering between

0 and (0 + de) correspond to a ring of
radius R sin 0 and width R de on the
sphere; the area of the ring is there-
fore 2012 sin 0 de, and since the sur-
floe area of the whole sphere is 402,
we have:

P(0) de o 202 sin 0 de/402

- sin 0 dO, (0 < 0 5. ir).

(3.11)

Thus the probability density vanishes
at both 0 and v, and has a maximum at

A /2, that is, it vanishes for directly

forward or directly backward scatter-

ing, and has a maximum at right angles

to the incident direction. There are

more ways, so to speak, in which scat-

terings at right angles can occur, than

forward and backward scatterings.

3.1.3 Gaussian Distribution

This distribution occurs fre-

quently in a variety of applications. .

We shall see it arising as a limiting

case of the binomial distribution, and

in the discussion of the distribution

of errors of observation. It is also

called the "normal distribution" by

Fig. 3.9

statisticians. It is defined by:

1
P(x) exp -(x-x0)2/202,

P(x)

(3.12)

1

1511-62
ilm exp --(x1-20) 2/202 dxf

The mean value of the distribution is

xo and the standard deviation is cr.

Figures 3.8 and 3.9, respectively, give

graphs of p(x) and P(x); in each one,
two cases are included, corresponding

to "small" and "large" values of cr.

The integral expression for P(x) in Eq.

(3.13) cannot be expressed in terms of

"elementary" functions, but itself de-

fines a new function, values of which

can be found in mathematical or statis-

tical tables.

3.2 CHANGE OF VARIABLE

A frequently arising problem in
dealing with distributions is that of

finding the distributicn of a quantity

which is a known function of another

quantity, whose distribution is known.

Consider, for example, the angular dis-

tribution of particles scattered in

collisions. What determines its form?

If the scattering can be treated by

classical dynamics, the angle of scat-

tering in any given collision is de-

termined by the "impact parameter" of

the collision, which is the perpendic-

ular distance from the line along which

the incident particle travels, to a

parallel line through the scattering
center. That is, there is a unique

functional relation, whose form de-
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pends on the nature of the interaction
between the incident particle and the
scattering center, between the impact
parameter b and the scattering angle 0.
Figure 3.10 illustrates a possible
pair of trajectories for a scattering
event, with the impact parameter angle
indicated for each. To determine the
distribution of scattering angles,
therefore, one must know the distribu-
tion of impact parameters, and trans-
late through the functional relation
between the two.

To state the problem in general
terms, suppose we are given the prob-
ability density function p(y) for a
quantity y, and we are also given that
y is related to another quantity x
through a functional relation y = f(x).
What is the probability density func-
tion for x? We will assume for simplic-
ity initially that f(x) is monotone;
that is, that it is a*steadily increas-
ing function. The reason for this is
to assure that each value of x corre-
sponds to only one value of y and vice
versa. Figure 3.11 illustrates the re-
lation between y and x. Referring to
the figure, we see that the values of
y lying between yo and (yo + Ay) cor-
respond'precisely to the values of x

lying between x0 and (x0 + Ax) and to.

no others, where yo = f(xo), and Ay is

related to Ax through:

by = P(xdbx, f' (x) = df/dx. (3.14)

The probability that y lies between y0
and (yo + by) is p(ydAy; this is iden-
tical with the probability that x lies
in its corresponding interval. Hence
we have:

probability x is in interval from xo

to (x0 + Ax) p(y0)4y

p[f(x0)]P(x0)Ax.

(3.15)

This is in the form of a function of

xo multiplied by the interval Ax;

hence from the definition of the prob-

ability density function for x, the

function of xe multiplying Ax must be

that density. Denoting it by q(x), we

have:

q(x) a p[f(x)]f"(x). (3.16)

We may Aay: substitute f(x) for y both
in the density and in the differential
of y; the coefficient of the differen-
tial of x is the density function for
x. Suppose now that f(x) had been a
decreasing function instead of an in-
creasing one. The slope P(x) would
have been negative, and if we used Eq.

(3.16) unchanged, we would have a neg-
ative probability, which is not al-
lowed. The difficulty can be traced to
Eq. (3.14), which gives the relation
between the intervals Ax and by. We
really only want the relation between
their magnitudes; for our purposes it
is irrelevant whether the slope is
positive or negative. We can take this
into account by using the absolute mag-
nitude of the slope in Eq. (3.14); we

then have:

AY L° IP(x)1Ax (3.17)

and Eq. (3.16) would become instead:

q(x) - p[f(x)]Ifi(x)1. (3.18)

SCATTERINGt
CENTER

Fig. 3.10

Fig. 3.11
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If now we consider a case in

which y is not a single-valued func-

tion of x, that is, more than one value

of y corresponds to certain values of

x, the probability density for x will

have contributions from each y corre-

sponding to that x. Figure 3.12 shows

a possible situation of this kind.

From the figure one sees that for x

between xl and x2, there is one con-
tribution to q(x), whereas between x2

and x3 there are two contributions. If

we distinguish between upper and lower

branches of f(x) by calling them f1(x)

and f2x), as indicated in Fig. 3.12,

then the probability density function

for x is given by:

p[f2 (x)j fl' (x) (3(1 < x < x2)

q(x)
p[ fi (z)]fi ' (x) + p[ f (x)]

X If2'001, (x3 < x < x3) .

(3.19)

Yt

X--) Xt

21.

More complicated cases can be treated

similarly.
Let us give an instance of each

of these possibilities. The scattering

problem can be illustrated by a very

simple model: Imagine particles scat-

tered by a smooth sphere. The relation

between impact parameter and scatter-

ing angle is easily found, using the

geometry of the problem. Figure 3.13

shows a typical trajectory; the parti-

cle is incident at impact parameter b,

bounces off the smooth sphere of radius

R with angle of "reflection" equal to

angle of incidence, and goes off at

angle 0 with its original direction.

From the figure, we see that the fol-

lowing relations hold:

0 + 20

and sin 0 b/R.

Hence we have for the relation between

b and 6:

b R sin 0 R sin HO 0)]

R cos (6/2) (3.20)

We are now ready to translate the b

distribution to 0 distribution. But

what is a reasonable assumption about

the distribution ofoimpact parameters?

If we are thinking of the problem as a

model for an atomic or nuclear scatter-

ing experiment, we are not able to con-

trol the b values for individual colli-

sions; we simply have a beam of parti-

cles of 'a certain mean intensity. This

means that, in a plane perpendicular

to the beam, equal areas have, on the

average, equal numbers of particles

incident on them. That is, the proba-

bility density is uniform across the

area of the beam. Relative to a given

target particle (the sphere of our

model), this means that the probabil-

ity of the impact parameter lying be-

tween b and (b + db) is given by the

ratio of the area perpendicular to the

beam corresponding to this range of b

values, to the total area of the bean

intercepted by the sphere. (In this
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model, particles incident at values of
b greater than R ere not scattered at
all, and will not enter into the dis-
cussion.) Since the area of a ring of
radius b and width db is 2vb db, and
the area of a circle of radius R is
IrR2, we have:

p(b) db 2st db/02

2 b db /R3, (0 sb sR).

(3.21)

We can now apply Eq. (3.16), to find
the distribution of 0:

CO) 2R cos k2-)1T8 [R cos (i)] 1/R2

2 cos (0/2) sin (6/2)

- sin a (0 se 5 V). (3.22)

Remembering the discussion of the uni-
form angular distribution in section
3.1.2, we see that the distribution
above is identical with that found in
Eq. (3.11) of that section; the angu-
lar distribution of the particles scat-
tered from a smooth sphere is uniform.
This simple result is, so to speak, an
accident arising from the particular
form of interaction between the inci-
dent particle and the scattering cen-
ter. Other laws of interaction will
give different angular distributions;
in particular, the Coulomb interaction
which enters when the particles both

carry electrostatic charges is an im-
portant case, but will be left to the

Problems for discussion.
For an illustration of the case

of a multiple-valued relation between

the quantities in question, consider
the following example. A simple har-

monic oscillator is vibrating with am-

plitude a and angular frequency w, so
that its displacement x at time t is

given by:

z a sin cot (3.23)

Fig. 3.14

Suppose we look at, or take snap-
shots of the oscillator "at random."
What is the distribution of disp]ace-
ments we will observe? By "randomness"
here, we mean that any instant is as
likely to be chosen as any other for
the snapshot; that is, the distribution
of observation times is uniform, in the
same sense as we used the term in sec-
tion 3.1.1. From the uniformity of dis-
tribution of observation times, we are
to deduce the corresponding distribu-
tion of displacements, given Eq. (3.23)

relating the two. Figure 3.14 shows the
relation between t and x. It is many-
valued, but we may confine our atten-
tion to a single period of the motion,
since all periods are identical. Within
one period, say from -T/2 to +T/2,
there are two time intervals which cor-
respond to any one given space inter-
val, as shown in the figure. However,
the symmetry of the curve is such that
they will each contribute equally to
the distribution of x, so that we can
confine our attention to the half per-
iod from -T/4 to +T/4, during which x
increases monotonically from -a to +a.
A uniform distribution of times in this
interval corresponds to the density

function:

p(t) it (2/T) dt, (T/4 S t 5 +T/4).

(3.24)

The period T is related to w through

2w.
The relation between t and z is found
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q(x)

-a

Fig. 3.15

a

by solving Eq. (3.23) for t:

t - (1/0 arc sin (x/a). (3.25)

Hence we have, applying Eq. (3.14):

/1

Ca) -d-x-ko) arc sin (1c.)]
a

/2 \ 1 1
kur;41 (x/z)2 a

1
(-a x s +a) .

iWa2 x2

(3.26)

This probability density function for
x is sketched in Fig. 3.15. We see that
it has a symmetrical minimum at x = 0,
and that it rises asymptotically to 0
at x = -a and x - +a. This is no cause
for alarm, if we remember that it is
only areas under the curve that are in-
terpreted as probabilities. Any inter-
val (even one extending to a or -a)
does indeed have a finite area under
it; in fact, the area under the whole
carve is 1, as it must be. The form of
the curve shows that we are much more
likely to see large displacements than
small ones, if we look at random times;
this is understandable when we remem-
ber that the speed of the oscillator is
large at the center and zero at the end
points. It, therefore, spends more time
at the ends than at the middle, and our

probability density for the observed
positions reflects this fact.

3.3 RADIOACTIVE DECAY; MOLECULAR
FREE PATHS

An important family of distribu-
tions which occurs in various contexts
in physics can be illustrated by the
problem of radioactive decay. Suppose
we observe a substance containing ra-
dioactive nuclei, which decay into a
different species of nucleus with the
emission of an alpha particle, say, at
the moment of decay. What is observed
is this: The number of nuclei which
still survive at time t is an exponen-
tial function of time.

N(t) - Noe-At (3.27)

That is, the fraction surviving after
any given time is the same fbr each
succeeding time interval of the same
length, so thlu if half remain after
10 days, ona quarter will remain after
20 days, one eighth after 30 days, and
so on. Stated otherwise, the number
which decay between times 0 and t is
given by:

Ndec - No - N(t) - No(1 e-4t)

(3.28)

We interpret this in terms of the in-
dividual nuclei by saying that the
probability of decay between time 0
and time t for each nucleus is:

P(t) - 1 e-xt (3.29)

This is then a cumulative probability
distribution for the time of decay; the
corresponding probability density func-
tion p(t) dt, which gives the probabil-
ity that the decay occurs between times
t and (t + dt), is given as usual by
Eq. (3.2):

P(t) dt - P(t + dt) - P(t)

- P1(t) dt

4e
-At dt (3.30)
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Figs. 3.16, 3.17. 3.18, respectively,
give sketches of p(t), P(t), and of
[1 - P(t)]. Notice that we can inter-
pret Equation (3.30) in the following
way: It is the product of two factors;
the first, e-At, is, by Eq. (3.29),
equal to [1 - P(t)j, the probability
of survival of time t; the second, Adt,
must therefore represent the probabil-
ity of decay in the interval dt. Now
Eq. (3.29) gives, for sufficiently
small time inter141s Al (small enough
ao that AAt <t 1), by expanding the
exponential function:

P(At) 1 - e-MAt)

1 - [1 - A(At) ]

- A(At) . (3.31)

The remarkable fact of nature to ob-
serve here is that A is independent of

tine, that is, the probability of de-
cay in a small time interval At is al-
ways A CAt), whether we are observing
the nucleus immediately after its for-
mation, or after a long time has al-
ready passed. The nucleus has, so to
say, no memory of its own "age" built

in. Contrast this behavior with the
distribution of ages in a biological
population, like human beings. Here
the probability of death in the next

year, say, increases steadily from

Oft

Fig. 3.16

Fig. 3.19

birth on (except possibly in the very

early part of life). That is, A is not
constant, but increases with time. A
simple model to describe this behavior
may be made by assuming A to be pro-
portional to the time:

A(t) bt. (3.32)

Then we have the probability of death
between times t and (t + dt) given by
the product of the probability of sur-
vival up to time t, that is [1 PIO],
with the probability of death in the

interval dt:

p(t) dt [1 - P(t)]A(t) dt,

or, using Eq. (3.32) and the fact that

p(t)

P'(t) bt [1 - P(t)],

d/dt [1 - PM' [1 - P(t)] .

This can be integrated, bearing in mind
that P(0) - 0, to give:

1 - P(t) exp -(bt2/2) (3.33)

P(t) 1 - exp -(bt 2/2) (3.34)

p(t) P'(t) bt exp - (bt2 /2). (3.35)

These curves are sketched in Figs. 3.19,

3.20, and 3.21. Notice the similari-

Fig. 3.17

Fig. 3.20

Fig. 3.1$

Fig. 3.21
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ties and differences between these and

the corresponding curves for the case

of radioactive decay in ?igs. 3.16,

3.17, and 3.18. The difference between

the two cases may be put in the follow-

ing way: for the radioactive decay

case, the probability of survival to

time (t1 + t2) is given by exp -A(ti

+ t2); this may be expressed as the

product of the probability of survival

to time ti, exp -Ati, by exp -At2,

which is the probability of survival a

further time t2, but which is inde-

pendent of ti: It is quite otherwise

for the survival law given by Eq.

(3.33); here we have instead:

exp -b(ta + t3)2/2 exp -bti 2/2

x exp-b(t1t2 + t22/2),

and the second factor, which gives the

probability of survival a further time

t2, clearly depends on ti. This will

be the case for IRE survival law except

the radioactive decay law.

Let us go on to calculate the mean

life of the decaying nuclei. This will

be given by our standard equation for

mean values:

(t) f: tp(t) dt

rJ tAe
At

dt
o

- (1/A).1.0" xe-x dx

Here we have 'made the change of inte-

gration variable x = At. The value of

the definite integral occurring above

is just 1, so we have:

(t) = 1/A. (3.36)

Thus the parameter A characterizing

the decay is itself simply the recip-

rocal of the mean life, and we may re-

express the decay law id the form:

fit'
)

p(t)dt =
(---exp

-t/(t)

P(t) 1 - exp -t/(t) .

(3.37)

(3.38)

The mean life is therefore the time in

which the number of surviving nuclei

falls to 1/e of its original value.

Essentially the same types of dis-

tribution are encountered in a quite

different physical context, in which

we have "distance of travel" in place

of the "time" of the. decay law. Of

course, a translation from time ;o dis-

tance could be imagined easily for the

radioactive decay problem as follows:

Imagine all the nuclei to have the

same initial speed; then the distance

they travel before decaying will be

proportional to the time elapsed be-

fore decay, and if we can observe the

path lengths traveled until decay, they

will have a distribution 'which will be

of precisely the same form as our dis-

tribution of decay times. (Something

very much like this is actually done

in fundamental particle physics, where

the tracks of unstable short-lived

particles are observed in bubble cham-

bers or other devices, and mean lives

are deduced from them.) But now we may

imagine, instead of "decay," that the

particle undergoes "interactions," or

more simply, collisions which change

its speed and direction of motion. This

occurs continually, for example, in a

gas; the molecules move in essentially

straight lines (so-called "free
paths"), interrupted from time to time

by collisions which change the direc-

tion of motion. Imagine following a

molecule in its motion; there will be

a sequence of free paths of varying

lengths, which therefore have a cer-

tain distribution, characterized by a

certain mean free path. This distribu-

tion is of considerable importance in

the kinetic theory of gases, particu-

larly in connection with processes like

heat conduction and diffusion for which

the collisions play an important role.

We may amlyze the problem of the

distribution of free paths in much the

same way as the radioactive decay prob-

lem. The probability that a collision

will occur in a snall interval Ax is,

we assume, simply proportional to the

interval, and does not depend on how

far the molecule has traveled since its

last collision. The molecule has no
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"memory" of its past. Thus we will
write (Ax/L) for this probability,
where L is a constant of the dimensions
of length. Then if p(x) dx is the prob-
ability that a collision occurs between
x and (x + dx), and if P(x) is the cu-
mulative probability that a collision
occurs between 0 and x, so that [1

P(x)] is the probability that no col-
lision occurs between 0 and x, we must.
have

P(x) dx [1 P(x)] (dx/L). (3.39)

But

i(x) dx P(x + dx) P(x) Pqx) dz,

hence

P'(x) [1 P(x)] /L,

or

41 111(4j/ds (1/L)[ l P(x)] .

(3.40)

The solution cq this differential
equation for which P(0) 0 is:

or

and

1 P(x) exp -x/L, (3.41)

P(x) 1 exp -dx/L, (3.42)

P(x) dx exp (-x/L) dx/L. (3.43)

Thus the distribution of path lengths
is exponential, exactly like the dis-
tribution of radioactive decay times.
Figures 3.16, 3.17, and 3.18 serve
equally well to illustrate either one.

The mean free path is given in the

usual way by:

(x) fa. xp(x) dx

- fexp (-m/L)

L. (3.44)

Thus the parameter L is simply the

mean free path. Its actual value for
gases at standard conditions is of the
order of 10 cm.

3.4 OTHER MOLECULAR PATH PROBLEMS;
POISSON DISTRIBUTION

We may go on to consider further
questions associated with molecular

paths such as the following: In a given
length of the molecule's path, what is
the probability of its undergoing pre-
cisely 0,1,2, ... n, . . collisions?

What is the probability that the nth
collision (from a given starting point)
takes place between x and (x + dx)?
Apart from the intrinsic interest of
these questions, their discussion will
lead us to a connection with work of
the previous chapter, namely to an im-
portant limiting case of the binomial
distribution.

Consider the first question posed
above. Given a length of a molecule's
path, what are the respective proba-
bilities that during that length of
path the molecule has undergone 0 or
1 or 2 ... collisions? If we denote
these probabilities by Q0(x), Q1(x),
Q2(x), ... then we already know Q(x);
since it is the probability of no col-
lision occurring between 0 and x, it
is identical with [1 P(x)] of the
previous section, and is given by
exp -x/L. What about Qi(x)? There are

many ways in which one collision can
occur in a path length x; it can occur
at any point between 0 and x. The total
probability is given by the sum of all
the probabilities of the alternative
ways in which it can happen. If we de-
note by dx, the small interval in which
the collision occurred, and let x1 be
its distance from the origin of the
path, we can see with the help of Fig.
3.22, that the probability that one

Fig. 3.99
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collision occurs in dal, and that no
collision occurs elsewhere, is given

by the product: (probability of no col-

lision between 0 and x1) times (prob-

ability of a collision in dal) times

(probability of no collision between

x and x), that is, by the expression:

dx,
(x

x1)
exp

(L L
exp

L

This expression must be summed - that

is, integrated - over all possible

values of xi, i.e., from 0 to x, to

get Qi(x), the probability of pre-

cisely one collision occurring between

0 and x. Hence we have

Qi (X) 1" f exp( --

L
--II' -1

L

e
-x/i (adz

Jo L

e-x/L
L /

(3.45)

This function rises from zero at the

origin to a maximum value at x L,

and then falls again as x increases

further. This is to be expected: path

lengths of the order of one mean free

path are more likely to contain pre-

cisely one collision than either longer

or shorter paths.

The subsequent functions Q2(x),

Q2(x) and so on, can be found similar-

ly. With the help of the sketch in

Fig. 3.23, we can write the probabil-

ity that collisions occur in dzi at xi,

and in dx2 at x2, and nowhere else as:

ex+ exp
L L

1
x dx dx

x exp Sa-22,1
L

The total probability is given by in-

x2

xt. )I( (x2 xi)

0

tegrating over all values of xl and x2

from 0 to x with the restriction that

xi < x2; or alternatively, we can in-

tegrate them without restriction, and

divide the result by two to account

for the spurious doubling which arises

in this method from the interchange of

xi and x2. In either case, we obtain:

Q2 (x)
(171) fox dx2 fo dxa

1

x exp
pa_ (x2 x1) (x 22),

e-mii
dx

ex ex*
Jo 2 Jo dxi

X2 dx 2
1 2ill.

(17) e

e2 L
1 (3.46)

Carrying on similarly, we can find the

general result for the probability of

pkecisely n collisions occurring in

the distance

Q0(x) -
1 fnne-x/s.

(3.47)

Notice that the total probability of

all possible numbers of collisions in

a given distance is unity, as it should

be, independent of the distance:

Qu(x)
(24 RA

11 =0̀ n 1 kli/ e

+x/i. -Rh
e e (3.48)

Hence the Qn(x) constitute a discrete

distribution for each x; we may use

them, for example, to calculate the

IEdX2

Fig. 3.23



CONTINUOUS DISTRIBUTIONS 33

mean number of collisions to be ex-

pected in a distance x:

(n) 2: n(2.00
n=o

El° JL
(.2E) e-31/L

niU=0

1 ( lE )
e-2/1.

o=sL 1-4 (n - 1): L

x ex
e

(x)
- e . (3.49)

Reasonably enough, the mean number of

collisions in a given distance is
found by dividing the distance by the

mean free path. Figure 3.24 shows

sketches of the Qn plotted as functions

of x; the predominance of small numbers

of collisions for short paths, and the

gradually increasing importance of
larger numbers as the paths become

longer, is evident from the curves.
It is important to recognize,

however, that Qn(x) is not, as it

stands, a continuous distribution with

respect to x, of the type we have been

studying heretofore in this chapter; it

is neither a probability density, nor

a cumulative distribution. We could

ask: What is the probability that the

n'th collision takes place between x

and (x + dx) ?, or what is the probabil-

ity that the nth collision occurs be-

tween 0 and x? These functions would

be continuousitdistributions in x; a

density, and a cumulative distribution

respectively.
Let us denote by pn(x) dx the

probability that the nth collision

takes place between x and (x + dx); it

must be given by the product of the

probability that precisely (n 1) col-

lisions take place in the distance x,

by the probability that one collision

takes place in dx. But the former is

Qn_1(x) and the latter is (dx/L); hence

pn(x) dx Qn_i(x) (i-c")

a-s
1

1):

x
1, / /

e-x/L ids

(n -

We see that the first one of the fam-

I

ma2

. --
----_sr...::::::....... :::":".r.nr,

L 2L 3L 41 SI

Fig, 3.24

ily, pi(x), is identical with the p(x)

of the previous section Eq. (3.43),

as it should be, and that all the pn's

satisfy the required normalization con-

dition:

o
pn(x) dx

1 r .0 I
u-a -x/Li dx\

(n 1): J0
x\

e

1
(n 1): - 1 (3.51)

(n - 1):

Hence we may calculate averages in the

usual ways; for example, the mean dis-

tance to the nth collision is given

by:

(x) - f x pn(x) dx

(11 -L fo ( r -xL

L n:

(n I):
nL. (3.52)

This result is of course closely re-

lated to the result in Eq. (3.49), but

they are by no means identical. Imagine

regarding the two formulas as prescrip-
tions for an experimental determination

of the mean free path L; then the first

says: "Take many sections of path, each

of length x; find the average number of

collisions in each, and divide it into

x to obtain L." The second says: 'Pick

a number n of collisions; then measure

many times the path required to give

that number. Divide n into the average

path length to obtain L."
Similarly, the two dis 7ibutions

pn(x) and- Qn(x) are closely related,

but their difference must be clearly

understood. Qn(x) is a discrete distri-

1
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bution with n as the index enumerating
the various alternatives; x enters as
a parameter, fixed in advance, though
capable of taking on a continuous range
of values from 0 to .0. It answers the
question "Given x, what is the distri-
bution of n?" But pp(x) is a continu-
ous distribution in x - a probability
density function - in which n enters
as a parameter, fixed in advance,
which may have any integer value. It
answers the question "Given n, what is
the distribution of x?"

The discrete distribution Qn(x) is
known to statisticians as the Poisson
distribution. It is related to the
asymmetric binomial distribution of
section 2.4 in a way which can be,un-
derstood by using a somewhat different
approach to the collision problem.
Imagine the length x of path divided
into a large number M of segments; M
is to be taken large enough so that
(x/M), the length of each segment, is
small compared to the mean free path L.
Then for each segment two alternatives
are possible: either there was a col-
lision in that segment, or there was
not; the former alternative has the
probability (length of segment)/(mean
free path), i.e., p = x/ML; the latter
has probability q = 1 p = 1 - (x/ML).
Since there are M segments, the distri-
bution of n, the number of occurrences
of collisions, is given by the asym-
metric binomial distribution (Equation
(2.27):

P ni1-11
n: (M n)! " (3.53)

Now p is very small; furthermore, we
are interested in the limit in which
M --so. With this in mind, we rearrange
the terms of Eq. (3.53) as follows:

M (M -
Ps

x ) (

1)(M 2) (M n + 1)
n'.

X -n 1 (X Nil
(917-n! L .1

r--
X

(1-1/1)(1-2/1)-141-(n-1)/Mi1

[1 (V1141

l

(3.54)

Now for fixed n, the term in the curly
brackets approaches unity as M -*05i

and in the same limit, the factor
[1 (x/ML)]m approaches e7241, accord-
ing to one of the definitions of the
exponential function. We have there-
fore in the limit:

1 (x;
p = e

n: L
(3.55)

and we see that this is identical with
the Qn(x) deduced in a different way
previously. Thus the Poisson distribu-
tion is a limiting case of the binomial
distribution in which one of the alter-
natives has an extremely small proba-
bility. As such it has many applica-
tions other than the one we have been
discussing here.

3.5 GAUSSIAN DISTRIBUTION; ERRORS

There exists a different approxi-
mation to the binomial distribution
from the one considered in the previous
section, which is of great importance.
It is the limit in which M is large,
and the probabilities in the neighbor-
Joid of the maximum of the distribu-

tion, which occurs at M/2 in the sym-
metric case, are of primary interest.
Furthermore, we are often interested
in regarding the index k of the dis-
tribution as continuous rather than as .

discrete; this can be made meaningful
when M is sufficiently large, when

changes of several units in k corre-
spbnd to only very slight changes in
the associated probability Let us
see how to handle this approximation.
We will use the symmetric case for
simplicity; the general asymmetric
case can be done similarly.

We begin by considering the ratio
of the probability for arbitrary index
k to the probability at the maximum,
which occurs at k = M/2. According to
Eq. (2.20), this is given by:

pit [ (m/2) :] 2

PE/a k: - ): (3.56)

It will be useful to introduce an in-
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dex m which is measured from the peak
of the curve:

m k - (M/2) (3.57)

Then we have

(M/2)! (M/2)!

Pm/2 [(M/2) + m] ! [(M/2) - m] :

(0)(0-1)(0-2)...(0-m+1)

(iM+m)(iM+m-1)(0+m-2)...(0+1)

1[1-(2/M)][1-(4/11)1..41-2(m-1)/MJ

[1+(2/M)] [1+(4/11)]...[1+(2m/M)]

(3.58)

We have written it this way to show
that if m is much less than M - which
is the case in the central part of the
distribution that we want to approxi-
mate to - then each factor in both the
numerator and the denominator is close
to unity. However, there are many fac-
tors, for even if m is much less than
M, it can be itself large compared with
unity. It will be helpful, since we
have a product of many factors, to
take the logarithm, since the loga-
rithm of the product of several fac-
tors is equal to the sum of their log-
arithms. Doing this, we obtain

In (Fie-). Eln [1_(;_m
pit,2 .1=1

111[1 (N]
J =1

[2:12 \
2

If

(M21)
J=i

2

Lm 2 km /
J =1

Here we have used the Taylor expansion
of the function In (1 + x) for small x.
Now using the summation formulae

.-1E j m(m - 1)/2

J=1

and

j m(m + 1)/2,

J = 1

and neglecting all but the first term
in each sum because the higher terms

give rise to expressions proportional
to m2/M2, which is much less than
(m2/M), we obtain.

In Pm (2/M)mlm--1) (2/11)m (m +1)

pil/3 2 2

2m2/M,

or:

Ps/Pkik exp(-2m2/M)

and

Pa = p113 exp (-2m2/11) . (3.59)

If we reexpress this in terms of the
original index k, we have:

Pk - P1/2 exp I-2[ k - (M/2)]2/M}.

(3.60)

This is evidently of the Gaussian
form defined in Eq. (3.12), except
that it is a discrete distribution in
an index k taking on integer values
rather than a probability density in a
continuous variable. We may take the
transition to that form by observing
that if M is large enough so that
there exist intervals a which, di-
though they contain several values of
k (that is, they include several con-
secutive integers), they are still suf-
ficiently small compared to M so that
pk changes very little in that inter-
val, then the probability that the in-
dex lies between k and (k + bk) is
simPly.Pkbk. If we now rewrite this in
the style of a density function, we
have:

p(k) dk

Pmax exp {-2[k - (M/2)] 2/11} dk,

(3.61)

which is now precisely of the form of
a Gaussian density function, with mean
N/2 and standard deviation e M/4.
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Notice that these values are identical

with those found in Chapter 2, Eqs.

(2.22) and (2.24). The constant paax
which occurs in the distribution has of

course a known value; but it is sim-

pler to observe that the normalization
condition requires it to be:

pa - VE7ii. (3.62)

Thus the Gaussian distribution appears
as a limiting form of the binomial
distribution, appropriate for large M

and in the neighborhood of the maxi-

mum of the distribution.
One of the areas of application

of the Gaussian (or "normal," as the

statisticians call it!) distribution

is in the discussion of experimental

error. It is often said that the meas-

ured values of any physical quantity,

if a sufficient number are accumulated,

form a Gaussian or normal distribution

about the "true" value. Leaving aside

any deeper discussion of the question

of what one means by the "true" value,

let us simply suppose that there does,

in fact, exist a correct value qn
(possibly determined by using more re-
fined apparatus) of the quantity be-

ing measured, and let us inquire what

might be the cumulative effect of

various possible sources of error in
the measurement. A very crude model of

the process is the following: Suppose

there are M sources of error in the

experiment, and each gives rise to an

error +E or -E with equal probability.

The actual result of an individual
'measurement of the quantity q will

then be:

q qo (k DE, (3.63)

where k is the number of times +E oc-

curs, and j is the number of times'

that -e occurs. Now k + j M; hence

q qn + (2k - M)c. (3.64)

Now the repetition M times of the

choice +c or gives rise to a bi-

nomial distribution for k, the number

of +C choices; hence

MI 1

Pk kf (m - k)! 2*
(3:65)

is the probability that an individual
measurement will yield a value of q
corresponding (through Eq. (3.64) to a
given k. Rewriting this in the approx-
imation derived earlier, we have

p(k) dk

1/57ii exp {-2[k - (M/2)] 2 /MI dk.

Now let us use the results of section
3.2 to convert from a distribution in

k to a distribution in q:

p(k) 7iii

X exp [ (2/M) (q - q0)/2E] 2 dg/2e

Hence the probability density function
for q is given by

p(q) = 41/20E2 exp [ -(q q0)2/2m0],

(3.66)

so that the distribution of q values is

is indeed Gaussian, with mean qn and

standard deviation 4E.
This is, of course, a very crude

and unrealistic model of the "error"

problem; nevertheless, it does happen

that even under considerably less re-
strictive assumptions, one arrives at

a Gaussian distribution of errors.

This does not, of course, guarahtee
that in any particular experiment the

distribution of values obtained 1..eces-

sarily follows the "normal" distribu-
tion;but it is indeed observed to
hold in sufficiently many situations
to make it a very useful first assump-

tion.

3.6 JOINT DISTRIBUTIONS; MAXWELLIAN
VELOCITY DISTRIBUTION

In the discrete case, we studied

the. joint distribution arising in the

problem of assignment of molecules to

several cells into which a volume of

gas had been divided. The collection

of integers kl, ka, Its, 14 giving
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the number of molecules occupying each

cell was found to occur with a proba-

bility p(ki, k2, ky) which depended

jointly on all the k 's; this was
called therefore a "joint distribu-

tion." In the continuous case the anal-

ogous situation occurs; we often have

to deal with joint distributions of

several variables. An example to which

we will return later is the distribu-

tion of the velocity components of a

molecule in a gas. Each molecule has a

velocity vector specified by the three

components along the thre' axes of ref-

erence, say vx, vy, and vx. We need to

know the probability that simultaneous-

ly the x component has a valt!.v lying

between vs and (vx + dvx) , the y com-

ponent has a value bet,7een 147 and

(vy + dvy), and the z ,component has a

value between vz and + dvz) . Or we

may be interested in its speed pnd di-

rection, and therefcle inquire about

the probability of simultaneously find-

ing its speed between v and (v + dv)

while its direction lies within the

solid angle defined by the intervals

from 0 to (0 4 dO) and 4 to OA + dO)

of the spherical polar angles defining

its direction with respect to a fixed

polar axis.
In general, we define the joint

probability density of two quantities

by the function of two variables

p(x,y) such that p(x,y) dx dy gives the

probability that the first lies between

x and (x + dx) and the second lies be-

tween y and (y + dy). The generaliza-

tion to more variables is made in the

obvious way: p(x,y,z) dx dy dz for

three, and so on. The density must sat-

isfy a normalization condition:

p(x,y) dx dy 1, (3.67)

which assures us that the two quanti-

ties are certain to be found somewhere

in their range. The probability that x

and y lie within any region R of the

x-y plane is given by the integral:

frp(x,y) dx dy,
a

where the integration symbol II mewls

I

a two-dimensional integral over the

region R.
From such a joint distribution,

the distribution of either variable

separately may be found; for the prob-

ability that the first one lies be-

tween x and (x + dx), irrespective of

the value of y, is given by

dx f p(x,y) dy. (3.68)

This follows by taking R to be the

whole region corresponding to x lying

in the interval dx while y is anywhere;

this is simply a strip of width dx run-

ning parallel to the y axis, and the

corresponding integration is just what

is expressed in Eq. (3.68). Similarly

the probability that the second varia-

ble lies between y and (y + dy), irre-

spective of the value of x, is given

by

dy f p(x,y) dx. (3.69)

Each of these is properly normalized

by virtue of Eq. (3.67).

Mean values of functions of x and

y are defined in a way which is the ap-

propriate generalization of the single-

variable Eq. (3.8) to the case of two

variables:

(f(x,y))
m

f(x,y) p(x,y) dx dy.

In addition to the
(x2) (x)2, and

which we have used

(3.70)

means (x),(y), crx2

0y2 (y2) (y)21

frequently, a new

average called the "correlation coef-

ficient" and defined by the equation:

r ((xy) (x)(Y))/ozoy (3.71)

becomes important; it is an indicator

of the degree to which the two varia-

bles are independent of one another.

They are independent if p(x,y) is of

the form of a product pi (x) p2(y); for

then the probability of the joint

event "x in dx and y in dy" is simply

the product of the probabilities of the

events "x in dx" irrespective of y,

and "y in dy," irrespective of x. Since

the probability of Joint events is the
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product of the individual probabilities
only if the events are independent, the
product form p1 (x) p2 (y) for the joint
probability indicates independence of x
and y.We see that r will vanish in this
case, for then we will have (xy) -
(x)(y). If, however, x and y are "cor-
related," then r need not vanish. If,
for example, there is a tendency for
positive x to occur with positive y,
and negative x with negative y, then
r will be positive.

Let us give some simple examples
of joint distributions.

3.6.1 Uniform Distribution Over a
Rectangular Area

Suppose a point is to be picked
"at random" from the rectangle in the
x-y plane defined by 0 5x 5. L1 , 0 .25:y

15. L2; what joint probability density
function describes this? "At random"
means here that the point is equally
likely to be found in any two areas of
the same size within the rectangle;
hence p(x,y) is constant over the rec-
tangle, and zero elsewhere. Bearing in
mind the normalization condition, Eq.
(3.6?), we may write:

(dx
1 0 ''S

CIO/LI/121 0 y L2
p(x,y) dx dy

el0 sewhere

(3.72)

In this case the variables are inde-
pendent, since p(x,y) can be written
as the product pi(x) p2(y), where pl
and p2 are each of the form of the uni-
form one-dimensional distribution given
by Eq. (3.9). The various avtlrages can

be found easily.

3.6.2 Uniform Angular Distribution

Directions in space may be speci-
fied by the spherical polar coordinates
0 and 0 which give the position of the
point on a sphere at which a ray from
the origin intersects a sphere. By a
"uniform angular distribution" we mean
that the intersection point is equally

likely to be found in equal areas on
the sphere; therefore to express the
probability density function in terms
of 0 and 0 we need to find what frac-
tion of the total area of the sphere
corresponds to the area on the sphere
defined by the range de of 0 and dO
of O. Figure (3.25) shows the relevant
area; we see that it has dimensions
R dO by R sin 0 dO. The area of the
sphere is 4irR2; hence the ratio of the
two, which gives the probability that
the point lies in the range of 0 and 0
specified, is given by:

P(010) dO dO (R d0)(R sin 0 dp) /4irR2

sir 0 de d0/4v. (3.73)

Notice that here also the variables
are independent. Furthermore, we may
work out the distribution of 0 alone;
according to Eq. (3.68) this is given
by:

de fairiP(0,0) dO (sin 0 d0)/41, fair d4

2v (sin b d0)/4v

... sin 0 d0/2,

which agrees with the result of sec-
tion 3.1.2, Eq. (3.11).

Just as for distributions in one
variable, the question of change of
variables arises for joint distribu-
tions. We saw in section 3.2 how to
handle such a change; the method is
simply to substitute the change of
variable, both in the density function
and in the differential which accom-
panies it. The coefficient of the dif-
ferential of the new variable is then
the density function in the new vari-

able.
For joint distributions in two or

more variables an analogous procedure
is appropriate, but one must remember
the method of transforming an element
of area or volume from one set of vari-
ables to another. If p(x,y) dx dy is
the density function in x and y, and if
they are each functions of two new
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variables u and v whose distribution

is required,

x f(u,v)

y g(u,v),

then in the calculus of two or more

variables we learn that the methodof
transforming elements of area from the

x-y plane to the u-v plane is this:

of /au f/av

dx dy
ag/au ag/av

du dv. (3.74)

The determinant of the partial deriva-

tives which enters is called the Jacob-

ian determinant of the transformation,

and is often denoted by J(f,g/u,v). Us-

ing this notation, we may write the

transformation of the density function

thus:

p(x,y) dx dy p[f(u,v),g(u,v)]

xJ(f,g/u,v) du dv; (3.75)

so that the new density function q(u,v)

is given by:

q(u,v) p[f(u,v),g(u,v)j J(f,g/u,v).

(3.76)

If, for example, we wish to

transform from (x,y) to polar coordi-

nates in a plane (r,8), for which x

r cos 0, y r sin 0, we find that

dx dy - r dr dO, and p(x,y) dx dy

p(r cos 0, r sin 0) r dr dO, so that

q(r,0) r p(r cos 0, r sin 0).

In a similar fashion the transforma-

tion from a distribution in three var-

iables (x,y,z) to one in the corre-

sponding spherical polar coordinates

(r,0,0), for which the equations re-

lating the coordinates are

x r sin 0 cos 0,

y r sin 0 sin 0,

z r cos 0,

R SIN 0
(R SIN 0)0

Rcle

Fig. 3.25

will result in a volume element trans-

formation

dx dy dz r2 sin 8 dr dO dO,

so that if the original density func-

tion is p(x,y,z), the transformed one

is:

q(r,0,0) p(r sin 8 cos 0,

r sin 0 sin 0, r cos 0)r2 sin 0.

Notice that if, for example, the den-

sity function inthe polar coordinates

were required to be uniform in angle,

we would have to require that p be of

such a form that no angular dependence

arise from it, since the sin 0 factor

from the volume element already gives

the form of angular dependence required

by Eq. (3.73) to describe a uniform an-

gular distribution. What this means is

that p can depend on (x,y,z) only

through the combination (x2 + y2 + z2),

which is of course just r2 and is in-

dependent of angle.
As a final example of a joint dis-

tribution, we will discuss briefly the

distribution of molecular velocities

in a gas. This distribution, which is

very important in the kinetic theory

of gases, is generally known as the

"Maxwelliap" distribution in honor of
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James Clark Maxwell, who was one of the
first physicists to explore the kinetic
theory mathematically. A number of dif-
ferent derivations exist; we shall give
here one similar to one of Maxwell's
early discussions. It is not to be re-
garded as a rigorous proof, because a
number of unproved assumptions will be
made in the course of the argument.
Nevertheless it is interesting, and it
illustrates the use of arguments of' a
type much used in modern physics -
arguments of symmetry.

Let us then denote by p(vs, vs)

the joint probability density for find-
ing the x component of velocity of a
molecule between vs and (vx + dvx),
;11e y component between vy and

(vy + dvy) , and the z component be-
tween vs and (vs + dvs). It will be
useful to imagine a "velocity space,"
that is, a set of Cartesian coordinates
corresponding to each velocity compo-
nent; a given point in this space cor-
responds to the velocity vector extend-
ing from the origin to the point. The
point may also be described by spheri-
cal polar coordinates; (v,0,0) instead
of (vs, vy, vs); in this case v repre-
sents the speed, or magnitude of the
velocity vector (v2 vx2 + vy2 + vs2),

and 0 and 4 are the polar angles cor-
responding to the direction of the ve-

vx v sin 0 cos 0
vy v sin 0 sin 0
Vs m V COS 0

Fig. 3.26

locity. Figure 3.26 shows the relation
between the various coordinates.

What general arguments can we give
about the form of the distribution
function? First: p(vx, vy, vs) should
be of such a form that all directions
of motion are equally probable for the
molecule; we do not expect nature to
have any preference for one direction
over another. This means that the angu-

lar distribution ahould be uniform, in
the sense in which we used the term
earlier. This means that p must depend

on the velocity components only through

the speed v, since as we saw before,
the transformed volume element in polar
coordinates already describes a uniform
angular distribution. We can express
this result by writing

p(vx, vy, vs) G(v2)

G(vx2 + vy2 + vs2), (3.77)

where by G we mean a function of a
single variable. Second: We will sup-
pose that vx, vy and vx are independ-

ent, that is, that the distribution of
any one of them is the same for fixed

values of the other two, regardless of
the particular values chosen for the
other two. As we saw earlier in this
section, independence implies that the
joint distribution is a product of in-

dividual distributions:

P(VX, vy, Fi(VX) F2(vy) F2(VZ)0

This is the weakest assumption of thls
method of arriving at the Maxwellian
distribution. It is by no means obvious

that if we examine those molecules with

vy vZ 0, we will find precisely the
same distribution of values of v that

we will find if we examine those mole-
cules with, say, large values of vy and

and vs. Nevertheless, the randomizing
effect of the molecular collisions does
indeed have the net effect of making
the distribution of the components in-
dependent. It is not easy to demon-
strate this in a simple way, so we
shall simply assume it. Third: the in-
dividual distributions FI, F2, and F3
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must actually be identical, for the
labeling of the axes is quite sbi-
trary; it clearly cannot matter which
direction we happen to call x. The
distribution of the x component must
be the same as that of the y component.
Thus:

p(vs, vy, vs) G(vs2 + vys + vs2)

F(vs) F(vy) F(vs). (3.78)

The remarkable fact ±s that these as-
sumptions completely determine the
fort of the distribution function.
Notice first that if we set vy = vs 0

in Eq. (Z.78), we get a relation be-
tween the functions F and G:

G(vO) F(vs) [P(9)121 (3.79)

which, when substituted in Eq. 3.78)
for F, gives us a relation for the
single function G:

G(vs2 + v,2 + vs2)

G(vs2) G(vy2) G(vz2)4F(0)111.(3.80)

It will simplify matters a bit if we

temporarily use (u,v,w) in place of
the squares of the velocity components.
If we also notice that from Eq. (3.79)

we have G(0) [F(0)12, and if we let

g(u) G(u)/G(0), then Eq. (3.80) can

be rewritten as:

g(u + v + w) g(u) g(v) g(w). (3.81)

The only possible function satisfying
this relation is an exponential func-
tion, as we see if we differentiate
both sides with respect to u, and then

set u v 0; this yields:

gqw) - e(0) g(w). (3.82)

The aolution of this differential
equation for which g(0) I is:

g(w) e-aw, a -g1(0). (3.83)

inserting the result into Eq. (3.76)

we obtain the distribution function:

p(vs, vy, vs) G(v2) - G(0) g(v2)

- 0(0) exp -av2

G(0) exp -s (vs2 + v72 + vs2)

(3.84)

The constant G(0) is determined by the

._.ruralization condition:

.0

mJ- .0,

wo

1 p dvs dvy dvsLmJ-

G(0) f exp (-avx2) dvx

x f exp (-avy2) dvy

x f p exp (-ays2) dvs

G(0) (w/a)",

hence, the final form of the distribu-
tion function is:

F(vx, vy, vs) gm (a/s)"

x exp -a(vs2 + vy2 + vA2). (3.85)

This is the Naxwellian distribution;

we see that it is "Gaussian" in each
velocity component. The constant a re-
mains undetermined; evidently it has
to do-with the width of the distribu-
tions that is, the mean square veloc-

ity. In the kinetic theory one shows
that it must be inversely proportional
to the absolute temperature of the gas.

We may write the distribution in
the polar form; using the fact that
the volume element becomes v2 sin 0 dv

d6 d4 in spherical polar coordinates,

the distribution becomes:

q(v, 6, = (a /t)'/2 exp (nav2)

x v2 sin 0. (3.80

Returning to the original notation and By integrating over the polar angles,
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we can get the distribution of speed
alone:

q(v) fir
o
f go!, et 0) dv d6 dif)J*

61/08/2 exp (-ays)va

X failir sin 8 de d4
o o

40/s/ i0 vs exp -ays. (3.87)

ir

From these results we can work out the

various averages of interest: mean
speed, mean square speed, mean square
of a velocity component, and so on.
Therole of the Maxwellian distribu-
tion of velocities 'is fundamental in
many fields of physics, and the gen-

eralization to the Maxwell -Boltznann
distribution which is made in statis-
tical mechanics underlies the whole of

thermal physics.

PROBLZII8

3.1 For the case of scattering of a'

particle with charge ql at a fixed
scattering center with charge q2,
by virtue of the electrostatic in-
teraction between them, the rela-
tion between impact parameter b
and scattering angle 8 is given by
classical dynamics to be b

q2/nv2) cot (0/2), where n is
the mass and v the speed of the
scattered particle. Find the angu-
lar distribution of the scattered
particles. (This is the "Rutherford
scattering" from which Rutherford
deduced the existence of small,
massive, charged nuclei in atoms.)

3.2 Locking out the window, I see ob-

jects falling past me. Measuring
their speeds, I find ':hat they are

distributed uniforml. etween

40 ft/sec and 80 ft/sec.

(a) Assure they are being dropped
from rest at various heights above

me. What is the distribution of

heights required to give my ob-

served distribution of speeds?

(b) Assume instead that they are
all being dr:..pped from 25 feet

above me, but with various initial

speeds. What distribution of ini-

tial speeds will account for my

observed distribution of speeds?

3.3 For each of the distributions dis-
cussed in section 3.4, find the

standard deviation, for Q,(x) this
will mean finding (n2), and for
pn(x) dx, finding (x2). In each
case compare the standard deviation

with the mean value itself, and use
this result to formulate instruc-
tions for the experimenter inter-
ested in measuring the mean free
path to an accuracy of about 5% in

the way discussed immediately fol-

lowing Eq. (3.52).

3.4 The counts produced by a Geiger
counter exposed to a steady source
which gives an average rate of one

count in time T, form a time se-

quence governed by the same Poisson
distribution that governs the mo-
lecular paths discussed in the
text; it is only necessary to sub-

stitute t for x and T for L. What
is the probability that in a time

3T there occur (a) 2 or less
counts? (b) Exactly 3 counts?

(c) 4 or more counts?

3.5 The probability that the first
collision takes place between 0
and x is given by P(x), Eq. (3.42).
Call this PI(x); then find P2(x),
the probability that the second
collision takes place between 0
and x. (Sint: This is the cumula-
tive distribution associated with
the density p2(x). ) At what dis-
tance will one have 96% probability
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that the first collision has oc-

curred? The second?

3.6 Suppose a needle of unit length is

dropped onto a plane marked with

parallel lines unit distance apart.

It falls "at random" on the plane.

Take this to mean that the joint

probability of finding the center

of the needle at a distance be-

tween x and (x + dx) to the right

of a line and of finding the angle

which the needle makes with lines

to lie between 0 and (0 + dO), is
uniform over the range 0 5X 51
and -1r/2 < 0 < +I/2. Find the prob-

ability that the needle intersects

a line, and the probability that it

does not intersect a'line. (Hint:

You will need to find the area R

in the x-0 plane corresponding to

the required conditions.)

3.1 Suppose x is uniformly distributed
between 0 and 1, and y is also

uniformly distributed between 0

and 1, and they are independent of

one another. What is the joint
probability density for x and y?

Find the region R of the x-y plane

for which the aver-te (x+y)/2 lies

between 0 and s. What is the prob-

ability P(s) that the average lies

in this region? What is the prob-

ability density function p(s) ds

of the average? Find a2 for the

original distribution of x (or y),

and find a2 for the distribution

of the average s. Speculate on the

probable behavior of a2 as the num-

ber of identically distributed in-

dependent variables averaged in-

creases.

3.8 (a) Show that the mean square of

each component of the velocity of

the molecules in a gas is one third

of the mean square speed. (Hint: It

is not necessary to perform any in-

tegrals; use the relation between

v2 and the squared components, the

definition of the mean, and a sym-

metry argument.)

(b) From statistical mechanics we

know that the mean kinetic energy
im(v2) of the molecule in a gas
must be equal to 3kT/2, where k is

Boltzmann's constant and T is the

absolute temperature. Use this to

establish the relation between the

constant a appearing in the Max-

wellian distribution and the abso-

lute temperature T.


